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Chapter 3 

Plasma Proteome Profiling of Glioblastoma 
Multiforme using DNA-Encoded Antibody 
Microarrays: Characterizing Biomarker 
Signatures of Disease and Treatment Response 
 

 
 

3.1 Introduction 

Glioblastoma multiforme (GBM) [WHO grade IV astrocytoma] is the most 

common primary brain tumor in adults and the most aggressive form of glioma1. Due to 

its highly proliferative and infiltrative nature, GBM carries the poorest prognosis of any 

cancer, with a median patient survival of ~12 months, despite major advances in 

chemotherapy, radiation therapy, and surgery over the last few decades2. Although 

glioblastoma patients share many disease features in common, the fact that patients can 

differ tremendously in their response to therapy suggests that the cancer is molecularly 

heterogeneous. Indeed, it is known that genetically, there are two routes of glioblastoma 

development. Primary or de novo GBM, which is typically characterized by sudden onset 
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of high grade malignancy and an older age of onset, involves EGFR amplification and 

inactivation of the PTEN gene due to loss of heterogeneity at chromosome 103,4. 

Secondary GBM, which is defined by progression from a lower-grade astrocytoma, and 

often presents at a younger age, initially involves chromosome 17 deletions and 

inactivation of the p53 gene, followed by a series of other mutations as the tumor 

undergoes malignant transformation2-4. However, even within these two broad categories, 

patients differ in the types of subsequent chromosomal alterations and mutations their 

tumors exhibit, as well as in rates of tumor growth and progression, overall survival, and 

types of treatments to which they respond.  

Gene expression profiling has been instrumental in further elucidating key 

molecular players involved in GBM growth and progression, as well as the supporting 

cast of molecules that exhibit less pronounced changes5,6, greatly facilitating the search 

for candidate GBM biomarkers. However, gene expression profiling provides a window 

only to RNA expression levels, whereas much of the information processing within the 

cell occurs at the level of protein network interactions. Often the relationship between 

RNA and protein expression level is nonlinear7 due to additional transcriptional and post-

transcriptional controls8,9. Therefore, key drug targets could be differentially expressed at 

the protein level but not the RNA level10. In addition, post-translational processing and 

modifications can alter the activities of proteins and their locations within the cell8. This 

information cannot be obtained solely by profiling gene expression. 

Proteomic approaches pick up where genomic approaches leave off by allowing 

one to survey disease-related changes in global protein expression, find correlations 

between proteins that are similarly differentially expressed, and analyze those changes in 
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the context of known or prospective protein signaling pathways and networks. In 

particular, antibody-based microarray technology has facilitated the simultaneous high-

affinity profiling of numerous proteins from relatively small samples of cell and tissue 

lysates, culture media7, and bodily fluids, such as blood11, urine12, saliva, tears13,14,   and 

cerebrospinal fluid15. The advantages of this form of multiplexed protein detection over 

other approaches, such as 2D-PAGE and mass spectrometry, are its higher throughput 

and sensitivity, scalability, ease of use, cost-effectiveness, smaller sample requirements 

(< 50 µL), straightforward protein quantitation, and its ability to detect low abundance 

plasma proteins without the need for tedious protein fractionation steps7,11,16. As such, 

this technology represents a promising platform for novel disease-biomarker discovery. 

In addition, because small quantities of sample are sufficient to obtain enormous amounts 

of information, new opportunities are afforded for minimally-invasive diagnosis, 

stratification, and monitoring of cancer patients16.  

Blood is an ideal fluid for minimally-invasive detection of cancer-associated 

markers17. Cancer cells, like any other cell, secrete proteins into the bloodstream that can 

provide important information about their physiological and pathological state17. As well, 

intracellular proteins and cell-surface receptors are released into the circulation when 

cancer cells die. Antibody-based microarrays can permit the simultaneous, sensitive 

detection of many of these circulating factors from very small sample volumes – as little 

as a fingerprick’s volume worth of blood (10 – 50 µL)16. It might nevertheless be 

expected that plasma detection of brain tumor markers would be challenging because the 

blood-brain barrier (BBB) greatly limits the free passage of proteins and other molecules 

between the two compartments18. However, the integrity of this barrier becomes greatly 
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compromised at sites of inflammation19 or neovascularization20-22, which both typically 

accompany glioblastoma tumors. In addition, glioblastoma tumors secrete soluble factors 

that disrupt the blood-brain barrier23.  

Unfortunately, for the vast majority of cancers and other diseases, no biomarkers 

have thus far been discovered with adequate specificity and sensitivity for whole-

population screening or disease monitoring. Relatively few serum biomarkers have been 

FDA-approved for cancer monitoring, and just one – prostate specific antigen (PSA) – is 

approved for disease screening24. Likewise for glioblastoma, although gene expression 

profiling has allowed for the discovery of numerous protein biomarker candidates, none 

of these proteins on its own has achieved broad application for routine clinical diagnosis, 

prognosis, or monitoring of GBM, or for evaluating or predicting therapeutic response25.  

However, it has become increasingly recognized that large panels of proteins, in 

which each component protein has relatively poor disease specificity on its own, can, as a 

group, provide a highly sensitive and specific molecular signature of disease26,27. A 

number of studies have demonstrated the ability of antibody-based microarrays to 

identify protein expression patterns that can discriminate between patients with cancer (of 

the bladder28, pancreas29, prostate30, or stomach31) and normal controls. In theory, a 

sufficiently informative protein biomarker panel could stratify a given disease into 

subgroups based on unique molecular phenotypes, much as has been shown in gene 

expression profile studies5,10. Treatments could then be customized to the tumor’s 

specific set of molecular alterations. This would greatly contrast with the current 

expensive and time-consuming trial-and-error, watch-and-wait approach of administering 

a chemotherapeutic, awaiting a response, and then changing the medication if no 
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response is achieved. All the while, the patient’s tumor continues to advance in grade and 

stage.  

The routine use of antibody-based microarrays for multiplexed, high-throughput 

plasma biomarker detection and patient classification requires that these platforms be 

created using standardized methods that optimize sensitivity, reproducibility, cost, and 

compatibility with microfluidic chip based environments. While many approaches for 

arraying antibodies on slide surfaces have been investigated, DNA-directed antibody 

immobilization provides a number of unique advantages in this regard. For one thing, as 

compared to directly spotted antibodies, DNA-tethered antibodies exhibit less 

denaturation and possess greater orientational freedom, allowing a larger proportion of 

antibodies to be oriented such that their binding sites are accessible to cognate 

antigens32,33. Studies have also shown that this approach offers improved spot 

homogeneity and reproducibility, and far more economical use of antibody materials32. 

Importantly, for multiplexed point-of-care diagnostics, DNA-directed immobilization is 

amenable to microfluidic chip assembly because the antibodies can be arrayed 

subsequent to bonding of the PDMS stamp with the DNA-spotted slide – a thermal 

process that would otherwise destroy the antibodies16,33.  

The goal of the present study was to determine whether a plasma protein signature 

could be elucidated that would be able to differentiate patients with glioblastoma (n = 46) 

from healthy controls (n = 47) via a simple blood test that uses close to fingerprick 

volumes (≤  50 µL) of blood. We also sought to elucidate a plasma biomarker signature 

indicative of tumor growth – and, conversely, treatment response – in Avastin-treated 

GBM patients. Our platform consisted of capture-antibody arrays created by DNA-
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directed assembly within ELISA-like wells. These antibodies were targeted against 35 

distinct proteins known to be generally associated with tumor growth, survival, 

migration, invasion, angiogenesis, and immune-regulation. The platform allowed us to 

profile even low-abundance analytes (such as cytokines and growth factors) in plasma 

using microliter-scale sample volumes. We detected a number of proteins that were 

differentially expressed with high statistical significance (p < 0.05), allowing us to use 

these plasma biomarker signatures to classify patients into the aforementioned 

experimental and control groups with high sensitivity and specificity. 

 

3.2 Materials and Methods 

3.2.1 DNA-encoded antibody libraries (DEAL) technique 

The antibody assembly platform used here is based on the DNA-encoded 

antibody library (DEAL) method, which has been reported elsewhere by our group33. 

When DEAL is utilized to measure proteins, it is used as follows (Figure 3.5 in 

Appendix). Capture antibodies (CAs) against the protein of interest are chemically 

labeled with single-stranded DNA (ssDNA) oligomers, yielding ssDNA-CA conjugates. 

The coupling reaction is accomplished using succinimidyl 4-formylbenzoate (SFB, 

Solutink) and Succinimidyl 4-hydrazinonicotinate acetone hydrazone in N,N-

dimethylformamide (DMF) (SANH, Solulink) as conjugation agents to link amine 

termini on DNA oligomers to the amine side-groups of proteins. A size-exclusion column 

is used to purify the product by removing excess unreacted DNA molecules. Separately, 

the complementary ssDNA oligomers (100 µM in a 50 % DMSO/water mixture) are 
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spotted onto a poly-L-lysine coated glass slide (150 µm spots spaced 300 µm center-to-

center) using an array spotter (VersArray Chip Writer Pro, BioRad). Each spot also 

contains 10 µM of oligo M as a spot loading control. At the beginning of a DEAL protein 

assay, incubation of ssDNA-CA conjugates with the complementary spatially-patterned 

ssDNA array assembles the CAs onto those specific sites through DNA hybridization. 

This step transforms the DNA microarray into an antibody microarray that is ready for a 

protein sandwich assay. Biological samples (i.e. plasma isolated from human whole 

blood) can be applied onto the CA microarray and antigens can be captured. Finally, 

detection antibodies and/or fluorescent read-out probes are introduced sequentially to 

complete the immuno-sandwich assay. DNA oligomer sequences are chosen with 

appropriate melting temperatures to optimize 37 oC hybridization to complementary 

strands while minimizing cross-hybridization (< 5 % in fluorescence signal). 

3.2.2 Antibody array platform 

Our platform consists of ELISA-like wells assembled by bonding a PDMS slab 

with square holes to a poly-lysine coated glass substrate onto which 6 x 6 oligonucleotide 

arrays have been pre-spotted. Thirty-five distinct DNA-addressed antibodies are directed 

to their complementary spots during the assay. The assay wells accommodate up to 200 

µL of sample, but in fact, only about 20 – 50 µL are needed to obtain a reasonable signal-

to-noise. We used 50 µL of plasma for all of our assays. 

3.2.3 Multiplexed assays on patient plasma 

Each microarray well (12 wells/slide) was first blocked with 200 µL of blocking 

buffer – 3 % wt/vol bovine serum albumin fraction V (Sigma) in 150 mM 1x PBS 
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without calcium/magnesium salts (Irvine Scientific) – for 1 hour in a 37 oC incubator. 

The wells were then aspirated, and 50 µL of a cocktail containing 35 different DNA-

antibody conjugates (50 nM each) in blocking buffer were pipetted into the wells to 

transform the DNA arrays into capture-antibody arrays. After incubation at 37 oC for 1 

hour, the wells were aspirated, and then rinsed with blocking buffer 4 – 5 times to remove 

excess unbound conjugate. At this step, the wells were ready for the blood test. Fifty-

microliter undiluted plasma samples were added to each well and allowed to incubate for 

1 hour at 37 oC. The samples were then aspirated and each well was again rinsed 4 – 5 

times with blocking buffer. Next, a cocktail containing the 35 biotinylated detection 

antibodies (50 nM each) in blocking buffer was added to each well (50 µL) and was 

allowed to incubate for 1 hour at 37 oC. The wells were aspirated and rinsed 4 – 5 times 

with blocking buffer, followed by incubation of a solution containing 50 nM 

Streptavidin-Cy5 (eBioscience) and 50 nM M’-Cy3 for 1 hour at 37 oC. The wells were 

aspirated, and rinsed 4 – 5 times with blocking buffer. The PDMS well template was then 

peeled off the slide within a blocking buffer bath, and the slide was allowed to incubate 

in the bath for 1 minute at room temperature. The slide was then immersed in 150 mM 1x 

PBS, 1/2x PBS, and twice in deionized water in separate 50 mL falcon tubes for 1 

minute, 10 seconds, and 2 seconds, respectively. The slide was then spun dry and scanned 

by a fluorescence microarray scanner.  

3.2.4 Plasma collection and processing 

Blood samples were collected by standard phlebotomy techniques in 10 mL blood 

collection tubes containing ACD-A anticoagulant (BD Vacutainer yellow-top glass 

tubes). The samples were centrifuged at 1500 x g for 15 minutes, and the plasma was 



52 
 

collected and subdivided into 200 µL aliquots. Care was taken to ensure that plasma 

samples were frozen at -80 oC within 2 hours of collection to minimize degradation of 

plasma proteins by proteases. Each aliquot was thawed just once as needed. 

3.2.5 Data processing and statistics 

Post-assay, all array slides were scanned using a two-color laser fluorescence 

microarray scanner (GenePix 4200A Professional, Axon Instruments) at the same 

instrument settings – 70 % and 50 % for the laser power of the 635 nm and 532 nm 

channels, respectively. Optical gains were 550 and 500 for the 645 nm and 532 nm 

channels, respectively. Spot intensities were quantified with the software program 

GenePix Pro 6.0 using the fixed circle method. For each sample, the local background 

was subtracted from each spot, and the average and standard deviation were taken for 

each of the 35 sets of six repeated spots. A semi-global normalization method was used 

for chip-to-chip normalization. Briefly, the coefficient of variation (CV) was calculated 

for each analyte over all samples and ranked. The 15 % of analytes (5 analytes) with the 

lowest CV-values were used to calculate the normalization factor Ni  = Si/μ, where Si  is 

the sum of the signal intensities of the 5 analytes for each sample, and μ is the average of 

Si  from all samples. The dataset generated from each sample was then divided by the 

normalization factor Ni. Universally, all datasets contained at least 4 analytes that had 

comparable intensities to negative controls run in separate experiments. Therefore, the 

net intra-assay intensities were calculated by subtracting each background-corrected 

analyte intensity by the mean intensity of the 4 lowest-intensity analytes. Unsupervised 

two-way average linkage hierarchical clustering (Cluster 3.0) was then performed on an 

entire patient cohort data set, and the resulting heatmap and dendrogram were viewed 
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using Java TreeView. The statistical significance (both Mann-Whitney and t-test p-

values) of differential protein expression between experimental and control groups was 

analyzed using the AnalyseIt add-in for Microsoft Excel. This add-in was also used to 

generate box plots for each measured analyte across each study group. 

3.2.6 Classification of patients 

Two-by-two contingency tables and diagnostic parameters – sensitivity, 

specificity, negative predictive value (NPV), and positive predictive value (PPV) – were 

calculated by repeated random sub-sampling cross-validation. An Excel macro developed 

in-house was used to randomly assign 10 patients to a test set, leaving the remainder of 

patients as the training set. Unsupervised two-way average linkage hierarchical clustering 

(Cluster 3.0) was then performed on the entire patient cohort dataset (now containing 10 

unknowns) and the resulting heatmap and dendrogram were viewed using Java 

TreeView. The ten unknown patients were then manually classified as belonging to the 

experimental (Group A) or control group (Group B) based on the following decision rules 

(x = fraction of members within the unknown’s cluster that belong to same group): 

 

1. The minimum number of clusters incorporating the unknown and at least 5 other 

members is analyzed. If all members of this cluster fall into the same group (x = 

1), the unknown is classified as a member of that group with high confidence (this 

is considered a homogeneous zone). If x > 0.75, the unknown is still considered to 

be part of the majority group (with average confidence) but the cluster is no 

longer considered a homogeneous zone. If x < 0.75, then… 
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2.  The minimum number of clusters incorporating the unknown and at least 8 other 

members is analyzed. If now x > 0.75, the unknown is considered to be part of the 

majority group. If 0.5 < x < 0.75, the unknown is still considered to be part of the 

majority group, but with low confidence. In this case… 

 

3. The minimum number of clusters incorporating the unknown and at least 14 other 

members is analyzed using the same decision rules as in 2. 

 

4. If x ~ 0.5 after step 3, then the unknown remains unclassified and is removed 

from the analysis. Alternatively, an x ~ 0.5 is sufficient to remove the unknown 

sample from the analysis even if the unknown is grouped within a smaller cluster 

if the members of that cluster are closely correlated, yet far less correlated with 

the nearest neighboring cluster. 

 

5. If in step 1, the unknown is part of a cluster containing 4 or fewer members that 

are all highly correlated with each other relative to the nearest neighboring 

cluster, the unknown is assigned to the majority group with low confidence if 0.5 

< x < 0.66, average confidence if 0.66 < x < 0.75 and high confidence if x = 1. 

 

6. If two or more unknowns are nearest neighbors, these unknowns remain 

unclassified and are removed from the analysis. 
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This random sub-sampling was then repeated 10 times with replacement (100 

unknown events), such that some patients may have been randomly assigned to a test 

sample more than once, while others not at all. An Excel macro developed in-house then 

compared the predicted and actual classifications, and output the total number of true-

positives, false-positives, true-negatives, and false-negatives in a 2 x 2 contingency table, 

as well as the sensitivity, specificity, NPV, and PPV of the diagnostic evaluation. This 

constituted the full diagnostic evaluation for a dataset. For the two patient cohorts 

examined in this study, diagnostic evaluation was also performed on trimmed datasets 

consisting of subsets of n proteins (from the initial 35-protein panel) that exhibited the 

most statistically significant differential expression between experimental and control 

groups (where n = 3, 6, 9, 12, 16, 20, 25). For each dataset, points were plotted in ROC 

space (sensitivity vs. 1 – specificity) to assess the predictive power of the test.  

 

3.3 Results 

3.3.1 Evaluation of DNA directed antibody microarrays 

Preliminary experiments were run in advance to validate a set of 35 orthogonal 

oligos that exhibited minimal cross-hybridization (< 5%). In addition, the full panel of 

DNA-conjugated antibodies was validated with a set of cognate recombinants to ensure 

that there was minimal cross-talk between each recombinant and non-cognate spots. Each 

DNA spot was loaded with reference DNA (10 %), which, once hybridized with a dye-

conjugated complement, served as a DNA-loading control. For each oligo, the spot 

loading was highly consistent both across an entire slide as well as between slides. 
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The fluorescent readouts from all plasma samples assayed on the 35-plex 

antibody array platform were analyzed for spot homogeneity, reproducibility, and signal-

to-noise. A representative image of the fluorescent readout from a single assay well is 

shown in Figure 3.1. Each well contained a total of six repeats of 6 x 6 spot arrays (35 

antibodies + 1 green Cy3-conjugated reference oligonucleotide). The spots are circular, 

well-defined, and radially homogeneous. There was very little intra-assay variation in the 
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intensities of each set of 6 spot repeats. In addition, spot intensities tended to be highly 

consistent even between duplicate assays run on separate slides.  

3.3.2 Classification of GBM patients versus healthy controls 

We compared plasma samples from 46 GBM patients (72 samples: for some 

patients, plasma samples from multiple collection dates were available) with those of 47 

healthy controls with respect to the plasma levels of 35 different proteins known to be 

generally associated with tumor growth, survival, invasion, migration, and 

immunoregulation. Two-way average-linkage hierarchical clustering allowed these two 

groups to be discriminated with a sensitivity and specificity of 84 ± 15 % and 89 ± 31 %, 

respectively (Figure 3.2a). The heat map is divided into numerous islands of GBM 

patient, healthy control, and mixed population clusters without a clean separation 

between the two groups. We then sought to determine whether the diagnostic accuracy 

could be improved by removing those test samples from diagnostic evaluation that did 

not fall into highly homogeneous clusters (i.e. > 70% of the cluster members belong to 

the same group). Within the subpopulation of test samples that fell into highly 

discriminatory clusters, the sensitivity and specificity improved to 90 ± 14 % and 94 ± 8 

%, respectively, albeit with a diagnosable population size that was 70 % of the original. 

Among test samples that clustered entirely with members of a single group 

(“homogeneous zones”), the sensitivity and specificity both approached 100 %. Thirty 

percent of samples fell into one of these homogeneous zones, allowing that subpopulation 

to be diagnosed with near-perfect accuracy.  
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We then repeated the cluster analysis with a trimmed panel that included only the 

nine proteins with the most statistically significant (Mann-Whitney and t-test p-values < 

0.05) differential expression (Figure 3.2b). These included: MMP3, PDGF, IP10, 

IGFBP2, VEGF, IL13, GM-CSF, MMP9, and CRP. The resultant heat map shows far 

improved classification of GBM patients and healthy controls into two separate clusters, 
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with few misclassifications in each cluster. By using this trimmed protein panel, the 

sensitivity and specificity achieved were 88 ± 13 % and 97 ± 8 %, respectively. As 

before, those samples (20 % of the sample population) that did not decisively cluster with 

a particular group were removed from diagnostic evaluation, and the sensitivity and 

specificity among the resulting diagnosable population improved to 94 ± 10 % and 96 ± 8 

%, respectively. Again, both sensitivity and specificity approached 100 % among test 

samples that clustered within perfectly homogeneous zones.  

3.3.3 Diagnostic strength as a function of protein panel size 

The cluster analysis was repeated for n-protein subsets of the original 35 protein 

panel, where n = 3, 6, 9, 12, 16, 20, 25, & 35 of the most statistically significant 

discriminators of GBM and health status. Diagnostic test sensitivity, specificity, and 

positive and negative predictive values were calculated for each of these subsets. Those 

test samples that did not decisively cluster with a particular group were removed from the 

evaluation. As can be seen in Figure 3.3a, the sensitivity and specificity remain about 

level as one trims the panel from 35 to 20 proteins. Both parameters increase as the panel 

is trimmed from 16 proteins onwards, with a peak at 6 proteins, followed by a sharp drop 

as the panel size is reduced further. On the other hand, the percentage of samples 

evaluable increases steadily as one trims the panel from 35 proteins down to 9 proteins 

and then tapers off. Since the strength of a diagnostic test lies not only in its diagnostic 

accuracy but also in the percentage of the population it can evaluate, we designated an 

artificial parameter S to represent the product of a diagnostic value and the percentage of 

patients diagnosable for each n-protein subset. As can be seen in Figure 3.3a, this 

parameter increases steadily as the protein panel size is reduced, peaking at 9 proteins 
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and then falling off sharply. Therefore, the 9-protein subset appears to optimize test 

performance by achieving a high diagnostic accuracy while still maintaining the ability to 

diagnose a large fraction of the sample population. 
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The predictive power of each n-protein subset for classifying GBM patients and 

healthy controls can also be evaluated by plotting the true positive rate (sensitivity) vs. 

the false positive rate (1 – specificity) for each subset. As observed in Figure 3.3b, the 6- 

and 9-protein subsets yield points in ROC (Receiver-Operating Characteristic) space that 

are farthest in perpendicular distance from the 45o line, suggesting that this number of 

differentially expressed proteins maximizes the predictive power. Points for all protein-

panel subsets move farther from the diagonal line as the sample population is trimmed to 

include: only those samples in clusters that are highly biased – the great majority (> 70 

%) of members belong to either the GBM patient or healthy control groups (as in Figure 

3.3b ii); or, only those samples in clusters that are completely biased – all members 

belong to one of the two groups (as in Figure 3.3b iii). Perfect classification was 

achievable in both 6- and 9-protein subsets when analyzing only the subset of test 

samples that were located within perfectly homogeneous clusters. As a whole, the data in 
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Figure 3.3 shows that by performing cluster analysis on patient plasma samples assayed 

for the 6 or 9 proteins most significantly differentially expressed, a very high degree of 

predictive power could be achieved among samples in highly biased clusters. In addition, 

the 9-protein set optimized the predictive power and the number of patients diagnosable. 

Furthermore, a subgroup of these patients who fell into perfectly homogeneous clusters 

could be diagnosed with near certainty.  

3.3.4 GBM patients on Avastin – classification of tumor growth vs. no growth 

We then assayed plasma samples from GBM patients treated with the 

chemotherapeutic drug Avastin (Bevacizumab) with respect to the same 35-protein panel 

as before. Specifically, we compared 52 samples from 25 patients who exhibited tumor 

growth (according to MRI imaging) with 51 samples from 21 patients who exhibited no 

tumor growth since their last evaluation. Two-way average linkage hierarchical clustering 

allowed these two groups to be discriminated with a sensitivity and specificity of 74  ± 10 

% and 78 ± 19 %, respectively (Figure 3.4a). When only patient samples within highly 

biased clusters were analyzed (45 % of the total sample population), the sensitivity and 

specificity improved to 90 ± 11 % and 96 ± 8 %, respectively. The sensitivity remained 

the same but the specificity increased to 100 % when test samples only in perfectly 

homogeneous clusters were analyzed (20 % of sample population).  
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The heat map is divided into 3 main sections consisting of samples from: 1. 

patients whose tumors have grown since their last evaluation (recurrence); 2. patients 

whose tumors have remained stable since their last evaluation (no recurrence); and 3. a 

mixed population of patients exhibiting either possible, slow growth or no growth. The 



66 
 

patient samples were then clustered with respect to the 4 proteins that were differentially 

expressed with the highest statistical significance (Mann-Whitney/t-test p < 0.05). Figure 

3.4b shows clustering of patient samples into 3 main groups: 1. tumor growth; 2. no 

tumor growth; and 3. mixed population: consisting of both patients with and without 

tumor growth. Particularly notable is that serum levels of HGF and TGFβ1 appear to be 

highly upregulated in the tumor growth group as compared with the no growth group. 

The cytokines MIP1α and IL12 (not shown in the heatmap) are also highly upregulated in 

the growth group. In addition, VEGFR2 appears to be highly down-regulated, while IL2 

is only somewhat downregulated, in the growth group compared with the no growth 

group. The alterations in cytokine levels observed in the sera of patients with growing 

tumors with respect to non-growing tumors may not necessarily be attributable to 

changes in tumor production and secretion of these cytokines. Rather, they may actually 

reflect changes in systemic responses to the growing tumor, such as inflammatory-

associated or other immune-mediated responses. 

 

3.4 Discussion 

While antibody microarrays have been used in the past to profile cancers of the 

lung, liver, ovary, prostate, pancreas, colon, and bladder, this is the first study 

demonstrating their use for plasma profiling of glioblastoma. In this study, we have 

shown that by interrogating a relatively large panel of 35 plasma proteins, biomarker 

signatures could be straightforwardly elucidated that could differentiate GBM patients 

from healthy controls, and that could classify GBM patients treated with Avastin based 

on whether they were responsive to therapy. Furthermore, none of these proteins on its 
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own has been shown to be an effective biomarker for cancer diagnosis or for treatment 

response. Therefore, this study also reaffirmed past observations that large panels of 

proteins can serve as highly sensitive and specific biomarker signatures of disease, even 

when each component protein is a poor disease-marker on its own. 

The study also showed that the predictive power of patient classification by 

hierarchical clustering depended on the number of differentially expressed proteins 

analyzed. Tests that included those proteins that were statistically significantly 

differentially expressed (p < 0.05) had greater predictive power compared with tests that 

additionally contained large numbers of non-discriminatory proteins or compared with 

tests that contained too few discriminatory proteins. The implication for future biomarker 

signature discovery from large numbers of proteins is that variously sized subsets of 

differentially expressed proteins should be evaluated to find the optimally-sized set for 

maximal predictive power.  

In this study, the accuracy of test sample classification was also dependent on the 

fraction of members within the test sample’s cluster that belonged to the same group 

(experimental vs. control). Therefore, prediction accuracy improved when evaluating 

only those test samples in highly biased clusters, and approached 100 % within 

completely homogeneous clusters. Of course, the fraction of diagnosable patients 

decreased as the tolerance for cluster heterogeneity was reduced. In light of this, an 

optimal tolerance was chosen that maximized diagnostic accuracy while minimizing the 

fraction of patients left out of the diagnostic evaluation. In this study, we evaluated only 

three tolerance settings, corresponding to exclusion of test samples in clusters that were: 

i. perfectly heterogeneous, ii. < 70 % homogeneous, and iii. < 100 % heterogeneous. 
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However, the study could potentially be reanalyzed with a larger set of tolerances to find 

an even better optimum. Alternatively, all patients could have been included in the 

diagnostic evaluation, but with the appreciation that the diagnosis of patients in certain 

clusters would be more accurate than in others. In theory, an accuracy score or 

confidence level could be calculated for grouping within any cluster. Subsequently, only 

those patients whose diagnoses have a predicted accuracy greater than, say, 90 % would 

be triaged for therapy, whereas all others would have to undergo further tests to ascertain 

their diagnosis. Based on our results, the diagnostic accuracy would be expected to 

increase with the homogeneity of a test sample’s cluster, with even higher accuracies 

likely attainable in homogeneous clusters of larger size.  

Though it might have been anticipated that plasma protein detection of brain 

tumors would be difficult due to the blood-brain barrier, in fact, we were able to detect 

differential expression of a number of factors. Many of these have been associated with 

systemic cancers or have been previously shown to be differentially expressed in culture 

media from GBM cell lines and primary cells, in the CSF fluid of GBM patients, or even 

in patient sera. For example, VEGF, a powerful mediator of endothelial cell proliferation 

and angiogenesis generally, which was found to be upregulated in GBM patients in this 

study, has also been shown previously to be highly secreted from GBM cell lines and 

primary tumors and to be expressed in the CSF fluid of glioblastoma patients34. VEGF is 

typically associated with advanced tumor stage and poor prognosis in a variety of 

cancers34. While no difference in serum expression of VEGF in the context of GBM was 

found by some35, our results corroborate reports that have shown upregulated serum 

expression of VEGF36. VEGF is known to promote microvascular permeability34, which 
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likely plays a role in the enhanced BBB leakiness at sites of characteristically highly 

neovascularized GBM tumors, thereby permitting its detection (as well as detection of a 

whole host of other tumor-associated proteins) in the plasma.  

PDGF, which also has an important role in glioblastoma angiogenesis – 

particularly, in peri-endothelial cell recruitment37 – was found to be upregulated in 

Avastin-treated GBM patients with growing tumors in this study. This finding is 

supported by past studies that have demonstrated that PDGF and its receptor are co-

overexpressed in glioblastoma-derived cell lines as well as in primary GBM tumors, 

promoting neovascularization and tumor progression by an autocrine mechanism38,39.  

The fact that HGF levels were highly overexpressed in the sera of Avastin-treated 

GBM patients exhibiting tumor growth as compared to those with stable tumors confirms 

previous reports demonstrating that higher tumor content and CSF levels of HGF are 

correlated with increased tumor malignancy and poorer prognosis40. HGF has also been 

implicated in synergizing with VEGF to promote glioma angiogenesis and increased 

microvessel density, particularly by inducing endothelial cell proliferation41,42. It is also 

known that c-Met receptor activation by HGF enhances several oncogenic mechanisms, 

including cell cycle progression, proliferation, survival, migration, and invasion, and that 

GBM progression can be mediated by an HGF/c-Met autocrine loop41. Since tumors 

require extensive neovascularization for sustained growth, and considering the 

instrumental role HGF plays in GBM progression, its heightened presence in the plasma 

of patients with tumor growth seems sensible.  

Serum IGFBP2, a binding protein that regulates the bioavailability and bioactivity 

of IGFs, was also found to be upregulated in this study, corroborating past reports of 
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elevated serum and CSF levels of IGFBP2 in patients with GBM and higher grade 

gliomas generally43,44. IGFBP2 has previously been shown to be involved in tumor 

growth regulation both in vitro and in vivo, and to promote glioma cell migration and 

invasion45,46. Its increased expression has therefore also been associated with increased 

glioma malignancy and poorer patient prognosis43.  

The ability to detect these proteins in the blood is perhaps less surprising when 

considering the leaky nature of newly-forming blood vessels in and around a 

glioblastoma tumor20, as well as the inflammation-associated47,48 increase in BBB 

permeability in the tumor’s vicinity. Furthermore, not all the differentially expressed 

proteins detected are products of tumor cells. Many of these proteins, and particularly the 

cytokines, are likely secreted from inflammatory and immune cells located either in 

proximity to the tumor or much farther away, representing a systemic immune or 

inflammatory anti-tumor response. For example, GM-CSF, IP-10/CXCL-10, and IL13 

were all found to be highly expressed in GBM patient plasma as compared to healthy 

controls. In addition, IL12, MIP1α, and TGFβ1 were all found to be highly differentially 

expressed in Avastin-treated GBM patients with growing tumors as compared to those 

with stable tumors.  

Serum GM-CSF expression has previously been shown to be increased in GBM 

patients36. This is not surprising considering its important, yet conflicting, roles in 

promoting tumor proliferation, migration, and angiogenesis on the one hand36,49, while on 

the other hand stimulating myeloproliferation in order to mount an immune/ 

inflammatory attack against growing tumors48,49. Likewise, MIP1α and its receptors have 

been shown to be overexpressed in GBM cells in vitro, and likely serve to attract 
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appropriate subsets of inflammatory and immune effector cells – including lymphocytes 

and macrophages – to the sites of tissue damage for repair50. However, this antitumor 

activity may be outweighed by an autocrine loop that promotes proliferation of the tumor 

cells50. Differential upregulation of TGFβ1 in patients with growing tumors is consistent 

with studies showing that tumors, such as glioblastoma, can lose their cytostatic 

responsiveness to this cytokine, and can instead respond to it by producing PDGF, the 

tumor growth promoter mentioned previously. Alternatively, tumors can overproduce and 

utilize TGFβ1 to suppress an antitumor host immune response and evade immune 

surveillance51.  

The high expression of IP-10/CXCL-10 seen in GBM patients in this study could 

also reflect the immune system’s attempt to inhibit further tumor growth. This cytokine is 

secreted by monocytes, endothelial cells, and fibroblasts as a chemoattractant for 

recruitment of monocyte-lineage cells, T cells, and NK cells that can participate in an 

anti-tumor response52. In addition, it has previously been implicated in inhibition of 

angiogenesis52, which is vital for tumor growth. Because its upregulation is induced by 

IFNγ, it is believed to contribute to the IFNγ-dependent anti-tumor effects of IL1253. This 

is also consistent with the upregulation of IL12 observed in this study in Avastin-treated 

GBM patients with tumor growth as compared to those with stable tumors. Interestingly, 

it also has conflicting tumor-promoting and proliferative effects on non-transformed 

astrocytes and cultured glioma cells, and its presence has been correlated with increased 

malignancy grade54. However, its role as a discriminatory marker in this study may be 

confounded by the fact that our experimental population was older than the control 

population, and IP-10 levels naturally increase with age, doubling between ages 40 and 
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70 – 8055. Of all the analytes studied, IL13, a cytokine known to have both pro- and anti-

tumor effects, showed the highest GBM patient plasma overexpression. This may be 

attributable to IL13 insensitivity in GBM patients as a result of GBM tumor 

overexpression of the “decoy” inhibitory receptor IL13R𝛼𝛼256, which may be leading to a 

compensatory increase in IL13 production.  

Surprisingly, the levels of both CRP and MMP9 were actually decreased in GBM 

patient plasma as compared with healthy controls, and VEGFR2 levels were 

downregulated in Avastin-treated GBM patients with growing tumors as compared to 

those with stable tumors. Because of MMP9’s documented involvement in promoting 

tumor invasion, as well as its anti-apoptotic and pro-angiogenic effects57,58, its decreased 

plasma level in GBM patients in this study was unanticipated. Furthermore, the decrease 

in VEGFR2, a VEGF receptor, is unexpected since one-third of primary glioblastomas 

harbor amplifications in 3 receptor tyrosine kinase genes that are juxtaposed on 

chromosome 4: KIT, PDGFRA, and VEGFR259. Furthermore, past studies have shown 

that VEGFR2 (and VEGFR1) is highly expressed in primary GBM tumors60. However, 

VEGFR2 downregulation could be explained by the fact that these receptors are 

internalized by the cell when bound by ligand. Since VEGF levels are high, a significant 

amount of receptor internalization could be taking place. 

 

3.5 Future Outlook 

The fact that the plasma samples used in this study could be interrogated by 

multiplexed antibody arrays within ELISA-like wells allowed relatively small sample 

volumes ( < 50 µL) to be used. This suggests that these assays can in the future be 
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performed using blood from a fingerprick rather than the much larger quantities 

(milliliters) typically harvested by phlebotomy. In addition, the DNA-directed assembly 

of antibodies makes this platform amenable for use within microfluidics platforms, since 

DNA arrays can withstand the bonding temperatures required for platform assembly 

whereas directly-spotted antibody arrays cannot16,33. Therefore, a promising next step 

would be to integrate these arrays and antibody panels within a microfluidics-based blood 

separation diagnostic device. Because on-chip blood separation obviates the need for 

centrifugation and other blood processing steps, and due to the faster kinetics of ligand 

capture under conditions of fluid flow, all the assay steps within the microfluidic 

environment can be performed in under an hour. Consequently, a point-of-care diagnostic 

chip that probes for the most highly discriminatory proteins described herein for 

classifying patients into GBM or healthy subgroups (or for gauging treatment response) 

would allow patients to be diagnosed or monitored using a simple fingerprick blood test 

within a short time after walking into a doctor’s office. 

Future studies could also enlarge the microarray panel to hundreds of plasma 

proteins and evaluate even larger patient populations with varying grades of glioma. This 

could allow for higher resolution stratification of patients into diagnostic and treatment 

groups based on their molecular phenotypes, which could be more informative than 

histological grading alone. Additional studies could also assess the ability of these types 

of assays to classify patients as responders or non-responders shortly after initiation of 

treatment. Currently, using contrast-enhanced MRI imaging, it could take at least a week 

or more to discern whether a tumor is still growing or stable. However, it is likely that 

molecular changes within the tumor are occurring long before these changes manifest as 
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visible tumor growth and progression. Therefore, a blood test that could evaluate 

treatment response within hours of administration of a chemotherapeutic would allow 

doctors to arrive at the most effective treatment in the shortest possible time. The 

resulting benefits to the patient’s health as well as the cost-savings could be significant. 
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3.7 Appendix A: DNA-Encoded Antibody Libraries (DEAL) 
      Technique 

 

 
 

The advantages of DEAL are multifold. First, the fact that DNA hybridization is 

utilized as an assembly strategy allows for multiple proteins to be detected within the 

same microenvironment, since the various 1o CA antibodies for the various proteins to be 

detected can be each labeled with a different ssDNA oligomer (Figure 3.5).  Second, 

antibodies are not particularly stable, and this makes surfaces onto which antibodies are 

attached unstable towards drying out, heating, etc.  This means that the antibody must be 

attached to the surface immediately prior to use.  Using DNA hybridization as an 

assembly strategy means that the surface can be prepared ahead of time, dried out, 
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heated, shipped around, etc. The instability of antibodies also makes protein assays 

difficult to execute within microfluidics environments, since the antibodies don’t survive 

the microfluidics fabrication.  This is, again, circumvented with the DEAL approach.   
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3.8 Appendix B: Patient Characteristic Tables 
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3.9 Appendix C: Serum Protein Biomarker Panels and  
      Oligonucleotide Labels 
 

 

The protein panels used in the cancer-patient serum experiment (panel 1) and 

finger-prick blood test (panel 2), the corresponding DNA codes, and their sequences are 

summarized in Table 3.3 and Table 3.4. These DNA oligomers were synthesized by 

Integrated DNA Technologies (IDT), and purified by high pressure liquid 

chromatography (HPLC). The quality was confirmed by mass spectrometry. The 

antibody vendors and catalogue numbers are listed in Table 3.5. 
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Table 3.3. List of proteins and corresponding DNA codes_______________________ 

DNA-code Human Plasma Protein     Abbreviation  

Panel (1) 

A/A’  Interleukin-2      IL-2 
B/B’  Monocyte Chemotactic Protein 1    MCP1 
C/C’  Interleukin-6        IL-6 
D/D’  Granulocyte-Colony Stimulating Factor    G-CSF 
E/E’  Macrophage Migration Inhibitory Factor    MIF 
F/F’  Epidermal Growth Factor     EGF 
G/G’  Vascular Endothelial Growth Factor    VEGF 
H/H’  Platelet Derived Growth Factor    PDGF 
I/I’  Transcription Growth Factor alpha    TGFα 
J/J’  Interleukin-8      IL-8 
K/K’  Matrix Metalloproteinase 3       MMP3 
L/L’  Hepatocyte Growth Factor     HGF 
M/M’  Reference (Cy3)      M’-Cy3 
N/N’  Interferon-Inducible Protein 10     IP10/CXCL10 
O/O’  Stromal Cell-Derived Factor 1     SDF1 
P/P’  Insulin-like Growth Factor Binding Protein 2   IGFBP2 
S/S’  Insulin-like Growth Factor Binding Protein 5   IGFBP5 
U/U’  Macrophage Inflammatory Protein 1 alpha   MIP1α 
Z/Z’  Transcription Growth Factor Beta 1    TGFβ1 
AA/AA’  Chitinase 3-like 1      Ch3L1 
BB/BB’  Vascular Endothelial Growth Factor Receptor 3   VEGFR3 
CC/CC’  Tumor Necrosis Factor alpha     TNFα 
HH/HH’  Granulocyte-macrophage colony stimulating factor    C3 
II/II’  Matrix Metalloproteinase 2     MMP2 
JJ/JJ’  Interleukin-10      IL-10 
KK/KK’  Interleukin-1 beta      IL-1β 
MM/MM’  Interleukin-12      IL-12 
NN/NN’  Matrix Metalloproteinase 9     MMP9 
PP/PP’  Transforming Growth Factor Beta 2    TGFβ2 
QQ/QQ’  Granulocyte Macrophage Colony-Stimulating Factor  GM-CSF 
RR/RR’  C-Reactive Protein      CRP 
SS/SS’  Vascular Endothelial Growth Factor Receptor 2   VEGFR2 
TT/TT’  Interleukin-13        IL-13 
UU/UU’  Interleukin-23      IL-23 
VV/VV’  Serpin E1       Serpin E1 
WW/WW’  Fibrinogen      Fibrinogen 
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Table 3.4.  List of DNA sequences used for spatial encoding of antibodies__________ 

Sequence 
Name Sequence 

Tm (50mM  

NaCl) OC 

A 5'- AAA AAA AAA AAA AAT CCT GGA GCT AAG TCC GTA-3' 57.9 

A' 5' NH3- AAA AAA AAA ATA CGG ACT TAG CTC CAG GAT-3' 57.2 

B 5'-AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA -3' 57.4 

B' 5' NH3AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC -3' 55.9 

C 5'- AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA -3' 57.6 

C' 5' NH3-AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC -3' 56.2 

D 5'-AAA AAA AAA AAA AAT GGT CGA GAT GTC AGA GTA -3' 56.5 

D' 5' NH3-AAA AAA AAA ATA CTC TGA CAT CTC GAC CAT -3' 55.7 

E 5'-AAA AAA AAA AAA AAT GTG AAG TGG CAG TAT CTA -3' 55.7 

E' 5' NH3-AAA AAA AAA ATA GAT ACT GCC ACT TCA CAT -3' 54.7 

F 5'-AAA AAA AAA AAA AAT CAG GTA AGG TTC ACG GTA -3' 56.9 

F' 5' NH3-AAA AAA AAA ATA CCG TGA ACC TTA CCT GAT -3' 56.1 

G 5'-AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3' 59.3 

G' 5' NH3-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3' 58.6 

H 5'-AAA AAA AAA AAT TGA CCA AAC TGC GGT GCG-3' 59.9 

H' 5' NH3-AAA AAA AAA ACG CAC CGC AGT TTG GTC AAT-3' 60.8 

I 5'-AAA AAA AAA ATG CCC TAT TGT TGC GTC GGA-3' 60.1 

I' 5' NH3-AAA AAA AAA ATC CGA CGC AAC AAT AGG GCA-3' 60.1 

J 5'-AAA AAA AAA ATC TTC TAG TTG TCG AGC AGG-3' 56.5 

J' 5' NH3-AAA AAA AAA ACC TGC TCG ACA ACT AGA AGA-3' 57.5 

K 5'-AAA AAA AAA ATA ATC TAA TTC TGG TCG CGG-3' 55.4 

K' 5' NH3-AAA AAA AAA ACC GCG ACC AGA ATT AGA TTA-3' 56.3 

L 5'-AAA AAA AAA AGT GAT TAA GTC TGC TTC GGC-3' 57.2 

L' 5' NH3-AAA AAA AAA AGC CGA AGC AGA CTT AAT CAC-3' 57.2 

M 5'-Cy3-AAA AAA AAA AGT CGA GGA TTC TGA ACC TGT-3' 57.6 

M' 5' NH3-AAA AAA AAA AAC AGG TTC AGA ATC CTC GAC-3' 56.9 

AA 5’-AAAAAAAAAATAAGCCAGTGTGTCGTGTCT-3’ 58 

AA' 5’NH3-AAAAAAAAAAAGACACGACACACTGGCTTA-3’ 58.1 

BB 5’-AAAAAAAAAAAGTCTGATCCCATCGCGTAT-3’ 57.8 

BB' 5’NH3-AAAAAAAAAAATACGCGATGGGATCAGACT-3’ 57.8 
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CC 5’-AAAAAAAAAAGAGGTCAGTTCACGAAGCTC-3’ 58.2 

CC' 5’NH3-AAAAAAAAAAGAGCTTCGTGAACTGACCTC-3’ 58.2 

HH 5’-AAAAAAAAAAGCACTAACTGGTCTGGGTCA-3’ 59.2 

HH' 5’NH3-AAAAAAAAAATGACCCAGACCAGTTAGTGC-3’ 58.4 

II 5'-AAA AAA AAA AGT CAG GTG TTC GCG CTC ATT -3' 60.1 

II' 5'NH3-AAA AAA AAA AAA TGA GCG CGA ACA CCT GAC -3' 59.4 

JJ 5'-AAA AAA AAA AGA TCG TAT GGT CCG CTC TCA -3' 58.8 

JJ' 5'NH3-AAA AAA AAA ATG AGA GCG GAC CAT ACG ATC -3' 58 

KK 5'-AAA AAA AAA AAC AGG TCA TCG AAC TCT CAG -3' 56.7 

KK' 5'NH3-AAA AAA AAA ACT GAG AGT TCG ATG ACC TGT -3' 57.5 

MM 5'-AAA AAA AAA AGG CGG CTA TTG ACG AAC TCT -3' 59.5 

MM' 5'NH3-AAA AAA AAA AAG AGT TCG TCA ATA GCC GCC -3' 58.8 

NN 5'-AAA AAA AAA AGC AGG GAA TTG CCG ACC ATA -3' 59.9 

NN' 5'NH3-AAA AAA AAA ATA TGG TCG GCA ATT CCC TGC -3' 59.1 

PP 5'-AAA AAA AAA ACG CGG CGT GTC TCA GAA TAT -3' 59.8 

PP' 5'NH3-AAA AAA AAA AAT ATT CTG AGA CAC GCC GCG -3' 58.9 

QQ 5'-AAA AAA AAA AAT CCG GTC TCA TCG CTG AAT -3' 58.2 

QQ' 5'NH3-AAA AAA AAA AAT TCA GCG ATG AGA CCG GAT -3' 58.2 

RR 5'-AAA AAA AAA AAA TGC TCA CAT CGC AGG TAC -3' 57.6 

RR' 5'NH3-AAA AAA AAA AGT ACC TGC GAT GTG AGC ATT -3' 58.3 

SS 5'-AAA AAA AAA AAC GCT AAT GAC GGC AGT GCA -3' 60.4 

SS' 5'NH3-AAA AAA AAA ATG CAC TGC CGT CAT TAG CGT -3' 60.3 

TT 5'-AAA AAA AAA AAT GTG TCC GAA CGT CGA GCT -3' 59.8 

TT' 5'NH3-AAA AAA AAA AAG CTC GAC GTT CGG ACA CAT -3' 59.8 

UU 5'-AAA AAA AAA AGC CGT CGG TTC AGG TCA TAT -3' 59.4 

UU' 5'NH3-AAA AAA AAA AAT ATG ACC TGA ACC GAC GGC -3' 58.7 

VV 5'-AAA AAA AAA AGT CGC GGG TTC TGC ACA TAT -3' 59.9 

VV' 5' NH3-AAA AAA AAA AAT ATG TGC AGA ACC CGC GAC -3' 59.2 

 

* All amine-terminated strands were linked to antibodies to form DNA-antibody conjugates using SFB/SANH coupling 
chemistry described by R. Bailey et al.33 Codes AA-HH were used in the experiment examining fresh whole blood from a 
healthy volunteer. Codes A-M were used for the molecular analyses of cancer patient serum samples. 
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Table 3.5.  Antibody vendors and catalogue numbers__________________________ 

 
Company 
 

 
  

 
 

Capture Antibody 
     (Catalogue #) 

Detection 
Antibody 
(Catalogue #) 

IL2  BD  555051  555040 

MCP1  eBioscience 
eBioscience 

 16-7099-85  13-7096-85 

IL6   16-7069-85  13-7068-85 

G-CSF  R&D systems  MAB214  BAF214 
MIF  R&D systems  MAB289  BAF289 
EGF  R&D systems  MAB636  BAF236 
VEGF  R&D systems  MAB293  BAF293 
PDGF  R&D systems  MAB1739  BAF221 
TGFa  R&D systems  AF-239-NA  BAF239 
IL8  BD  554718  554716 
MMP3  R&D systems  AF513  BAF513 
HGF  R&D systems  MAB694  BAF294 
IP10  R&D systems  MAB266  BAF266 
SDF1  R&D systems  MAB350  BAF310 

IGFBP2  R&D systems  MAB6741  BAF674 

IGFBP5  R&D systems  MAB8751  BAF875 
MIP1a  R&D systems  AF-270-NA  BAF270 
TGFb1  BD  559119  559119 
Ch3L1  R&D systems  DY2599  DY2599 
VEGFR3  R&D systems  MAB349  BAM3492 
TNFa  eBioscience  16-7348-85  13-7349-85 

C3  abcam  ab17455-100  ab14232-50 
MMP2  R&D systems  DY1496  DY1496 
IL10  eBioscience  16-7108-85  13-7109-85 
IL1b  eBioscience  16-7018-85  13-7016-85 

IL12  eBioscience  14-7128-82  13-7129-85 

MMP9  R&D systems  MAB9092  BAM909 
TGFb2  R&D systems  DY302  DY302 
GM-CSF  BD  554502  554505 
CRP  R&D systems  MAB17071  BAM17072 
VEGF R2  R&D systems  MAB3573  BAF357 
IL13  eBioscience  16-7139-81  13-7138-81 

IL23  eBioscience  14-7238-85  13-7129-85 

Serpin E1  R&D systems  MAB1786  BAF1786 
Fibrinogen  abcam  ab10066-250   ab14790-200 

 

http://www.ebioscience.com/ebioscience/specs/antibody_14/14-7029.htm�
http://www.ebioscience.com/ebioscience/specs/antibody_13/13-7028.htm�
http://www.ebioscience.com/ebioscience/specs/antibody_14/14-7099.htm�
http://www.ebioscience.com/ebioscience/specs/antibody_13/13-7096.htm�
http://www.ebioscience.com/ebioscience/specs/antibody_14/14-7069.htm�
http://www.ebioscience.com/ebioscience/specs/antibody_13/13-7068.htm�
http://www.rndsystems.com/pdf/mab350.pdf�
http://www.rndsystems.com/pdf/baf310.pdf�
http://www.rndsystems.com/pdf/mab6741.pdf�
http://www.rndsystems.com/pdf/baf674.pdf�
http://www.ebioscience.com/ebioscience/specs/antibody_14/14-7348.htm�
http://www.ebioscience.com/ebioscience/specs/antibody_13/13-7349.htm�
http://www.ebioscience.com/ebioscience/specs/antibody_14/14-7018.htm�
http://www.ebioscience.com/ebioscience/specs/antibody_13/13-7016.htm�
http://www.ebioscience.com/ebioscience/specs/antibody_14/14-7128.htm�
http://www.ebioscience.com/ebioscience/specs/antibody_13/13-7129.htm�
http://www.ebioscience.com/ebioscience/specs/antibody_14/14-7139.htm�
http://www.ebioscience.com/ebioscience/specs/antibody_13/13-7138.htm�
http://www.ebioscience.com/ebioscience/specs/antibody_14/14-7238.htm�
http://www.ebioscience.com/ebioscience/specs/antibody_13/13-7129.htm�
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3.10 Appendix D: DNA Crosstalk Validation Assay 
 

 
 


