Technologies for Protein Analysis and Tissue Engineering, with Applications in Cancer

Thesis by

Udi Benjamin Vermesh

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2011

(Defended October 4, 2010)

© 2011

Udi Benjamin Vermesh

All Rights Reserved

A man should look for what is, and not for what he thinks should be.

-Albert Einstein

Acknowledgements

This thesis would not have been possible without the support and guidance of a multitude of mentors, colleagues, friends, and family. I would first like to thank my advisor, Jim Heath, whose big picture ideas and the drive to make a large impact on the scientific community allowed the research projects contained within this thesis to come to fruition. His scientific zeal truly inspired me. I would also like to thank Professor Paul Mischel and Dr. Tim Cloughesy for providing indispensable knowledge and for making it possible for my colleagues and me to perform clinical trials in the fight against cancer.

I would like to thank my brother and fellow graduate student, Ophir Vermesh, for working side-by-side with me every day and pushing me to achieve. I enjoyed the quality time I got to spend with my brother, and I look forward to him having a great scientific and medical career. Thanks to Jang Wook Choi for helping lead the nanofluidics project with me. He taught me the ins and outs of micro- and nanofabrication with his patient, meticulous nature and allowed me to get my bearings in the lab when I was first starting my graduate research.

I'm thankful to John Nagarah, whose creative and thorough advice helped me look at solving scientific problems in a whole new light. I also enjoyed the conversations we shared and his ability to display humor even during the tough times. I'd like to thank Rong Fan for teaching me how to develop mathematical models to describe physical phenomena in my research. His expert knowledge in nanofluidics is truly remarkable.

I would also like to thank Professor David Tirrell, Professor Mory Gharib, and Professor Robert Grubbs for agreeing to be members on my thesis committee. I would like to thank Diane Clark Robinson and Kevin Kan for their efforts in making sure the lab always ran smoothly. I would also like to thank Tiffany Huang and Shawn Sarkaria at UCLA for facilitating the glioblastoma project, specifically for their help in determining an appropriate plasma protein panel for detecting this cancer. Thanks to my fellow graduate student colleagues Chao Ma and Kiwook Hwang for assisting me in the tissue engineering research. I'd also like to thank fellow colleagues Kaycie Butler and Ann Cheung for the light-hearted conversations we exchanged.

Finally, I'd like to thank my parents. They instilled in me virtues of hard work, decency, and a thirst for knowledge. Without their direction, I would not have become an individual capable of becoming a good scientist. Most importantly, they allowed me the freedom to choose whatever life would bring the most happiness for me.

Abstract

The first part of this thesis describes electrolyte transport through an array of 20 nm wide, 20 μ m long SiO₂ nanofluidic transistors. At sufficiently low ionic strength, the Debye screening length exceeds the channel width, and ion transport is limited by the negatively charged channel surfaces. At source-drain biases > 5 V, the current exhibits a sharp, nonlinear increase, with a 20 – 50-fold conductance enhancement. This behavior is attributed to a breakdown of the zero-slip condition. Implications for peptide sequencing as well as energy conversion devices are discussed.

The next part describes a technology for the detection of the highly aggressive brain cancer glioblastoma multiforme (GBM). In general, proteomic approaches have shown great promise in recent years for correctly classifying and diagnosing cancer patients. However, no large antibody-based microarray studies have yet been conducted to evaluate and validate plasma molecular signatures for detection of glioblastoma and monitoring of its response to therapy. In this study, we compared plasma samples from 46 glioblastoma patients (72 total samples) with those of 47 healthy controls with respect to the plasma levels of 35 different proteins known to be generally associated with tumor growth, survival, invasion, migration, and immune regulation. Average-linkage hierarchical clustering of the patient data stratified the two groups effectively, permitting accurate assignment of test samples into either GBM or healthy control groups with a sensitivity and specificity as high as 90 % and 94 %, respectively (when test samples within unbiased clusters were removed). The accuracy of these assignments improved (sensitivity and specificity as high as 94 % and 96 %, respectively) when the cluster analysis was repeated on increasingly trimmed sets of proteins that exhibited the most statistically significant (p < 0.05) differential expression. The diagnostic accuracy was also higher for test samples that fell into more homogeneous clusters. Intriguingly, test samples that fell within perfectly homogeneous clusters (all members belonging to the same group) could be diagnosed with 100 % accuracy. Using the same 35-protein panel, we then analyzed plasma samples from GBM patients who were treated with the chemotherapeutic drug Avastin (Bevacizumab) in an effort to stratify patients based on treatment-responsiveness. Specifically, we compared 52 samples from 25 patients who exhibited tumor recurrence with 51 samples from 21 patients who did not exhibit recurrence. Again, several proteins were highly differentially expressed and cluster analysis provided effective stratification of patients between these two groups (sensitivity and specificity of 90 % and 96 %, respectively).

Finally, single-cell resolution patterning of tissue engineered structures is demonstrated. The proper functioning of engineered constructs for tissue and organ transplantation requires positioning different cell types in anatomically precise arrangements that mimic their configurations in native tissues. Toward this end, microfabrication strategies have facilitated great strides in cell micropatterning in recent years, but these technologies are still limited in that they can typically only pattern one or two cell types at a time with feature sizes that are larger than a single cell. We present a patterning methodology that allows for high-density, multiplexed patterning of distinct cell types on glass at single-cell resolution. The technique involves two microfluidicpatterning steps run perpendicularly to each other in which "anchor" oligos are first laid down on a polylysine-coated glass substrate followed by binding of "bridging" oligos containing both an anchor-complementary sequence and a unique sequence that can bind to an oligo-functionalized cell. In this manner, dense arrays of 3 x 3 and 3 x 1 DNA grids can be patterned and then converted into cell arrays. As a proof-of-concept, both a neuron-astrocyte construct and a pancreatic islet construct containing 2 distinct islet cell types were patterned separately as a dense array of cell grids. Once fixed in a hydrogel matrix, layers of patterned cells were then stacked to form 3-D tissue engineered constructs.

Table of Contents

Acknowledgements	iv
Abstract	vi
Table of Contents	ix
List of Figures and Tables	xiii

Chapter 1: Introduction	1
1.1 Protein Analysis and Proteomics	1
1.2 Nanoscale Protein Sequencing Devices	3
1.3 Plasma Protein Profiling for the Detection of Cancer	5
1.4 Thesis Synopsis	7
1.5 References	10

2.1	Introduction	13
2.2	Experimental Methods	17
2.3	Results and Discussion	18
	2.3.1 Slip-enhanced ion transport through nanofluidic channels	18
	2.3.2 Nanochannel ion transport model	22
	2.3.3 Tuning the nanochannel surface charge density by application of gate voltages	23
	2.3.4 Peptide sequencing	26

	2.3.5 Mechanical power enhancement	29
2.4	Conclusion	30
2.5	References	31
2.6	Appendix A: Nanochannel Fabrication and Measurement	34
2.7	Appendix B: Conductance Equation Derivation	37
2.8	Appendix C: Mechanical Power Calculations	40
2.9	Appendix D: Differential Conductance of Potassium Chloride	43

Chapter 3: Plasma Proteome Profiling of Glioblastoma Multiforme using DNA-Encoded Antibody Microarrays: Characterizing Biomarker Signatures of Disease and Treatment Response	
3.1 Introduction	44
3.2 Materials and Methods	49
3.2.1 DNA-encoded antibody libraries (DEAL) technique	49
3.2.2 Antibody array platform	50
3.2.3 Multiplexed assays on patient plasma	50
3.2.4 Plasma collection and processing	51
3.2.5 Data processing and statistics	52
3.2.6 Classification of patients	53
3.3 Results	55
3.3.1 Evaluation of DNA directed antibody microarrays	55
3.3.2 Classification of GBM patients versus healthy controls	57
3.3.3 Diagnostic strength as a function of protein panel size	60
3.3.4 GBM patients on Avastin – classification of tumor growth vs. no growth	63

3.4 Discussion	66
3.5 Future Outlook	72
3.6 References	75
3.7 Appendix A: DNA-Encoded Antibody Libraries (DEAL) Technique	81
3.8 Appendix B: Patient Characteristic Tables	83
3.9 Appendix C: Serum Protein Biomarker Panels and Oligonucleotide Labels	85
3.10 Appendix D: DNA Crosstalk Validation Assay	90
Chapter 4: High-Density, Multiplexed Patterning of Cells at Single-Cell Resolution for Applications in Tissue Engineering	91
4.1 Introduction	91
4.1.1 Advances in tissue engineering	91
4.1.2 Challenges and limitations to high-resolution multiplexing	95
4.2 From High Density Microarrays to Single-Cell Resolution Cell Arrays	97
4.2.1 Creating a dense multiplexed cell microarray	97
4.2.2 Platform design flexibility and patterning opportunities	101
4.2.3 DNA conjugation of cells	102
4.2.4 Patterning human central nervous system and mouse pancreatic islet tissue constructs	105
4.3 Experimental Methods	113
4.3.1 Mold and device fabrication	113
4.3.2 Validation of oligonucleotide set	114
4.3.3 First flow-patterning step	115
4.3.4 Second flow-patterning step	116

4.3.5 DNA microarray validation	116
4.3.6 Conjugating cells with DNA	117
4.3.7 Cell culture	118
4.3.8 Cell patterning	118
4.3.9 Cell binding specificity	119
4.3.10 Hydrogel encapsulation of cells	119
4.3.11 Cell function assessment	120
4.4 Discussion	121
4.5 Conclusion	124
4.6 Future Outlook	124
4.7 References	128
4.8 Appendix	134

Chapter 1

Figure 1.1	Schematic of a nanopore measurement	3
Figure 1.2	Schematic of an array of nanofluidic channels	4
Figure 1.3	Nanoporous material sample	5
Figure 1.4	Antibody microarray	7

Chapter 2

Figure 2.1	Nanochannel electrokinetics	15
Figure 2.2	Overview of nanofluidic device	18
Figure 2.3	Source-drain current-voltage (I-V) data of the nanofluidic devices at various values of [KCl]	20
Figure 2.4	The effect of a high electric field on Stern layer ions	22
Figure 2.5	The influence of gate voltage (V _g) on the nanofluidic device at [KCl] = 10^{-4} M	25
Figure 2.6	The influence of gate voltage (V _g) on the nanofluidic device at [Aspartic Acid] = 10^{-4} M	27
Figure 2.7	The influence of gate voltage (V_g) on the nanofluidic device at [Lysine] = 10^{-4} M	28
Figure 2.8	Nanochannel device fabrication	34
Figure 2.9	Model of gated KCl I _{SD} -V _{SD} curves	39
Figure 2.10	KCl differential conductance plots	43

Chapter 3

Figure 3.1	Assay platform and methodology	56
Figure 3.2a	GBM patients vs. healthy controls	58
Figure 3.2b	GBM vs. healthy controls using the 9 proteins with the most statistically significant p-values	59
Figure 3.3a	Diagnostic strength vs. protein number for "GBM vs. Healthy" cohort	61
Figure 3.3b	ROC plots for "GBM vs. Healthy" cohort	62
Figure 3.4a	GBM patients on Avastin – tumor growth vs. no growth	64
Figure 3.4b	GBM patients on Avastin – tumor growth vs. no growth using the 4 proteins with the most statistically significant p-values	65
Figure 3.5	Schematic depiction of multi-parameter detection of proteins in integrated microfluidics using the DNA-Encoded Antibody Library (DEAL) technique	81
Table 3.1	GBM patient vs. healthy control population characteristics	83
Table 3.2	Avastin-treated GBM patients: characteristics of patient population with and without tumor recurrence	84
Table 3.3	List of proteins and corresponding DNA codes	86
Table 3.4	List of DNA sequences used for spatial encoding of antibodies	87
Table 3.5	Antibody vendors and catalogue numbers	89
Figure 3.6	Test for DNA cross-hybridization	90

Chapter 4

Figure 4.1	Cell arrangements within islets of Langerhans in different species	95
Figure 4.2	The preparation of a high density DNA microarray for tissue assembly	98

Figure 4.3	Fluorescent scans of high density DNA microarrays	100
Figure 4.4	Cell-encoding and assembly methodology	104
Figure 4.5	Construction of human neuron-astrocyte assemblies	107
Figure 4.6	Selective patterning of mouse α and β islet cells in two and three dimensions, integrated with assays for insulin production	109
Figure 4.7	Hydrogel-encasing of cells	111
Figure 4.8	Scaled-up multiplexing	127