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Abstract 

 

The first part of this thesis describes electrolyte transport through an array of 20 

nm wide, 20 μm long SiO2 nanofluidic transistors. At sufficiently low ionic strength, the 

Debye screening length exceeds the channel width, and ion transport is limited by the 

negatively charged channel surfaces. At source-drain biases > 5 V, the current exhibits a 

sharp, nonlinear increase, with a 20 − 50-fold conductance enhancement. This behavior is 

attributed to a breakdown of the zero-slip condition. Implications for peptide sequencing 

as well as energy conversion devices are discussed. 

The next part describes a technology for the detection of the highly aggressive 

brain cancer glioblastoma multiforme (GBM). In general, proteomic approaches have 

shown great promise in recent years for correctly classifying and diagnosing cancer 

patients. However, no large antibody-based microarray studies have yet been conducted 

to evaluate and validate plasma molecular signatures for detection of glioblastoma and 

monitoring of its response to therapy. In this study, we compared plasma samples from 

46 glioblastoma patients (72 total samples) with those of 47 healthy controls with respect 

to the plasma levels of 35 different proteins known to be generally associated with tumor 

growth, survival, invasion, migration, and immune regulation. Average-linkage 

hierarchical clustering of the patient data stratified the two groups effectively, permitting 

accurate assignment of test samples into either GBM or healthy control groups with a 

sensitivity and specificity as high as 90 % and 94 %, respectively (when test samples 

within unbiased clusters were removed). The accuracy of these assignments improved 

(sensitivity and specificity as high as 94 % and 96 %, respectively) when the cluster 
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analysis was repeated on increasingly trimmed sets of proteins that exhibited the most 

statistically significant (p < 0.05) differential expression. The diagnostic accuracy was 

also higher for test samples that fell into more homogeneous clusters. Intriguingly, test 

samples that fell within perfectly homogeneous clusters (all members belonging to the 

same group) could be diagnosed with 100 % accuracy. Using the same 35-protein panel, 

we then analyzed plasma samples from GBM patients who were treated with the 

chemotherapeutic drug Avastin (Bevacizumab) in an effort to stratify patients based on 

treatment-responsiveness. Specifically, we compared 52 samples from 25 patients who 

exhibited tumor recurrence with 51 samples from 21 patients who did not exhibit 

recurrence. Again, several proteins were highly differentially expressed and cluster 

analysis provided effective stratification of patients between these two groups (sensitivity 

and specificity of 90 % and 96 %, respectively). 

Finally, single-cell resolution patterning of tissue engineered structures is 

demonstrated. The proper functioning of engineered constructs for tissue and organ 

transplantation requires positioning different cell types in anatomically precise 

arrangements that mimic their configurations in native tissues. Toward this end, 

microfabrication strategies have facilitated great strides in cell micropatterning in recent 

years, but these technologies are still limited in that they can typically only pattern one or 

two cell types at a time with feature sizes that are larger than a single cell. We present a 

patterning methodology that allows for high-density, multiplexed patterning of distinct 

cell types on glass at single-cell resolution.  The technique involves two microfluidic-

patterning steps run perpendicularly to each other in which “anchor” oligos are first laid 

down on a polylysine-coated glass substrate followed by binding of “bridging” oligos 
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containing both an anchor-complementary sequence and a unique sequence that can bind 

to an oligo-functionalized cell. In this manner, dense arrays of 3 x 3 and 3 x 1 DNA grids 

can be patterned and then converted into cell arrays. As a proof-of-concept, both a 

neuron-astrocyte construct and a pancreatic islet construct containing 2 distinct islet cell 

types were patterned separately as a dense array of cell grids. Once fixed in a hydrogel 

matrix, layers of patterned cells were then stacked to form 3-D tissue engineered 

constructs. 
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