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Abstract

Recent decades have seen dramatic advances in our ability to make quantitative measurements of the level

of gene expression in organisms of all types. The data resulting from these experiments has raised the need

for quantitative models that go beyond the verbal and cartoon-level descriptions that have been so useful

in developing a qualitative picture of the nature of gene expression. The improvement in our quantitative

description of regulatory networks and our corresponding ability to rewire these networks at will has led

many to argue for an analogy between biological regulatory networks and their electronic counterparts.

In the electronic setting, we can predict the output current given knowledge of the input voltage and the

parameters characterizing the circuit. However, this has so far been nothing more than a hopeful analogy

since the input-output functions of most quantitative models of transcriptional regulation are based on

phenomenological fits with little-to-no connection to the microscopic parameters of the system. This thesis

sharpens this analogy by presenting an integrated approach to understanding transcriptional regulation in

bacteria in terms of the microscopic parameters involved in the decision-making processes. This is achieved

by a three-pronged approach consisting of theoretical models, in vivo measurements and single-molecule

experiments in vitro.

The theoretical analysis is based upon two different families of models aimed at describing the output

of several regulatory architectures as a function of their input parameters. Thermodynamic models of

transcriptional regulation are used to predict the mean level of gene expression of several bacterial promoter

architectures as a function of the concentration of the intervening regulatory proteins and their binding

energies to DNA and to the associated transcriptional machinery. In recent years, however, an increasing

body of work has been performed where levels of gene expression are quantified in single cells and sometimes

even at the single molecule level. These measurements have revealed that “noise” in gene expression can

play a significant role in decision-making processes in systems ranging from bacteria to mammalian cells.

Stochastic models of transcriptional regulation predict this variability in gene expression as a function of

the microscopic parameter of the system. Unlike thermodynamic models, however, the predictions from

stochastic models are dependent on the rate constants describing the regulatory circuit of interest. A

complete set of models that predict input-output functions of regulatory systems in bacteria as a function

of not only equilibrium parameters, but also probabilities of transition between different regulatory states is

presented.

The second half of the thesis complements the theoretical analyses by presenting several experiments
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aimed at testing the various predictions generated by these models. One of the experiments is carried out

in vivo and aims to test the theoretical predictions for the input-output function of simple repression in

terms of its microscopic parameters such as the concentration of repressor inside the cell and its binding

energy to DNA. By quantifying the output level of gene expression as a function of the intracellular absolute

concentration of repressor it is shown that our models can account for the level of gene expression as a

function of the input parameters over several orders of magnitude. The simple repression motif is also

explored experimentally using a second method based upon evaluating fluctuations in the partitioning of

regulatory proteins during the cell division process. A third set of experiments performed at the single-

molecule level in vitro show how a particular repressor protein binds to DNA at two different sites and loops

the intervening DNA.
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Chapter 1

Transcriptional Regulation by the
Numbers: An Introduction

One of the great classes of mystery that has dominated biology over the last half century centers on how

cells make different decisions and is sometimes referred to as regulatory biology. Examples range from

bacteria making decisions to eat one type of sugar instead of another to the cells in an embryo deciding

on their different developmental fates. Indeed, biology is full of examples where cells need to assess their

environment, communicate with each other and integrate that information in order to make decisions. A

big part of this signal integration and decision making process occurs at the level of gene expression. Jacob

and Monod’s realization that there were genes whose sole role was to regulate other genes was one of the

great achievements of the biology of the last century [1]. Their finding that a gene can express a protein

that regulates a second gene in a way that is dependent on the sugar content of their environment opened

the door to a whole new approach to biology where the networks describing these interactions are mapped

with exquisite detail [2].

In particular, the discovery of Jacob and Monod and subsequent workers resulted in the articulation of a

simple model in which each gene is preceded by a regulatory region known as the promoter. This promoter

serves as the binding site for RNA polymerase, the molecular machine that takes the genomic information in

DNA and turns it into mRNA which is in turn converted into new proteins by the ribosome. This promoter

region of the DNA is subject to control through two classes of regulatory protein known as repressors and

activators which can bind the DNA and alter the probability of RNA polymerase binding.

Much effort has been put into mapping these regulatory networks. For example, we have an almost

complete description of the interconnectivity between genes in E. coli [3]. We know to a reasonably high

accuracy which gene regulates which other gene and if it does so in a positive (activator) or negative (repres-

sor) fashion as exemplified by the graphical representation of the E. coli transcriptional network in figure

1.1. In a significant number of the cases the binding sites for the transcription factors in the vicinity of their

target promoters have been mapped. Even though our current understanding of transcriptional regulation

in higher organisms is much more limited than the bacterial case, significant progress has been made in, for
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Repressor

Repressor / Activator
Activator

Figure 1.1: E. coli transcriptional network. Different genes in E. coli are shown together with their connec-
tions as activators, repressors or as being dually regulated. (Adapted from [8])

example, dissecting developmental networks. One of the most complete and fascinating examples is that of

endomesoderm specification in the sea urchin S. purpuratus [4]. Figure 1.2 shows one of the latest versions

of the understanding of this decision network. Here, the hierarchical organization of developmental decisions

can be seen to span both space and time. Within such regulatory networks recurring modules defined as

particular patterns of interconnectivity between the components of the network have been identified and

characterized with respect to their functions [5–7]. In fact, a large portion of the community’s effort has

been concentrated in mapping new elements of networks and identifying new connection patterns [2].

The arrows in figures 1.1 and 1.2 indicate if a gene activates or represses a certain target gene. They are

a necessary level of coarse graining in the description of transcriptional networks. However, the fact that

these arrows have different quantitative meanings is often overlooked [9, 10]. This concept is exemplified

in figure 1.3, where we show that the same regulatory motifs, namely activation and repression, can be

realized in a variety of ways. For example, activation can be exerted by a single CRP molecule, by two

independent CRP molecules that interact with RNA polymerase but not with each other or by lambda

repressor, which multimerizes on the DNA in order to trigger activation. Repression can also be realized in

a variety of different ways. The examples shown in figure 1.3 illustrate simple repression, a motif in which a

single repressor binds in the vicinity of the promoter, DNA looping, a motif in which a transcription factor

binds at two sites simultaneously and loops the intervening DNA and of multiple repressors binding near
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(A)
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veg1

veg1
veg2

veg2

endomesoderm specification to 30 h(B)

Figure 1.2: Genetic network associated with control of the developmental pathway of the sea urchin embryo.
(A) Schematic of stages in the embryonic development of the sea urchin. (B) Genetic network associated
with sea urchin development. (Adapted from [4])
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Figure 1.3: Arrows in network diagrams can have multiple realizations. Different realizations of the same
network motif are shown for activation and repression. Though their qualitative features might be similar
there will be quantifiable differences in their regulation functions.

the promoter.

Even within one realization of the repression motif, for example, simple repression, there is a huge richness

in the DNA architecture involved. This richness is exemplified in figure 1.4. Figure 1.4(A) shows the number

of different promoters that are regulated by the same repressor through this regulatory motif. Each regulated

promoter has potentially a different binding sequence for the repressor and, hence, a different binding energy.

The positioning of the binding is also a parameter that is widely exploited in E. coli as shown by figure 1.4(B).

Finally, figure 1.4(C) shows that these repressors are present at a wide range of concentrations within the

cell. It is interesting to note, however, that the concentrations used for figure 1.4(C) were obtained from a

mass spectroscopy study [11] which is more likely to detect high concentration proteins accurately. As such

figure 1.4(C) should not be viewed as a complete survey, but as a call to attention to the fact that the census

of E. coli is still incomplete.

The detailed survey of regulatory architectures shown for the case of simple repression in figure 1.4 is just

one example of the level of understanding that biologists have attained regarding regulatory architectures

in bacteria. Together with the emergence of synthetic biology, where novel architectures can be created

de novo, this has in part resulted in a view that we have a complete knowledge of how these regulatory

circuits operate. There are many examples where analogies between these regulatory circuits and electronic

circuits have been drawn [12, 13]. These hopeful analogies claim that our understanding of elements that

make genetic circuits is comparable to our knowledge regarding electronic circuits. In electronic circuits

our knowledge of the different elements that make them (resistors, transistors, etc.) allow us to predict the

output voltage as a function of the input voltage by just looking at a map of the circuit.
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Figure 1.4: Different realizations of the simple repression motif in E. coli. (A) Histogram showing how many
different promoters are regulated by the same repressor. (B) Histogram of the positions of simple repressor
binding sites with respect to the transcription start. (C) Histogram of the concentrations at which various
simple repressors are found in the cell. (A and B obtained from RegulonDB [3], C obtained from [11])

However, our knowledge about gene regulatory input-output functions is far from complete. It is certainly

far from being anywhere comparable to our knowledge of their electronic counterparts. The most common

description of regulatory response is usually cast using the phenomenological Hill function. For example, in

the case of of repression it has the form

gene expression level =
α

1 + ([R]/Kd)
n + β, (1.1)

where n is the Hill coefficient which determines the sensitivity of the gene regulatory function, Kd is a

dissociation constant and α and β are constants that determine the maximum and basal levels of expression.

This description often provides a satisfactory fit to the data, but it often lacks a direct connection to the

relevant microscopic parameters. For example, it is not uncommon to obtain non-integer values of n which

are difficult to reconcile with simple models of transcription factor binding to the DNA. As a result it is a

phenomenological fit and provides limited predictive power.

This thesis is in part an effort to circumvent the limitations of a description of gene regulatory circuits in

terms of Hill functions such as the one shown in equation 1.1. The main challenge posed here is the recapit-

ulation of the quantitative behavior of simple regulatory circuits in terms of their fundamental microscopic

parameters. These efforts have been divided in a three-pronged approach: theoretical modeling of regulatory

networks, reconstitution and characterization in an in vitro context and in vivo experimentation through

the synthesis of regulatory motifs where the relevant parameters had been changed systematically. All three

approaches are united by our search for relevant “knobs”, parameters of the system that can be controlled

both experimentally and theoretically. Figure 1.5 shows an example of the knobs we have identified for the

regulatory architecture of simple repression. They can all be thought off as different inputs in the simple

repression input-output functions. Though the results of our theoretical and experimental approaches can

be clearly separated in sections as in this thesis, the experiments cannot be conceived without the theo-

retical background and the theoretical models were developed with constant attention to predictions about

quantities that are actually measurable.
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Figure 1.5: Knobs for the simple repression regulatory motif. (A) In simple repression a repressor binds to
a site in the vicinity of the promoter and excludes RNA polymerase binding. (B) The different “knobs” or
parameters that can be varied in this regulatory architecture are, on the DNA architecture front, the relative
position of the binding site with respect to the promoter and the binding sequence of the repressor operator.
On the front of molecular concentrations the concentrations of inducer, the concentration of repressor and
the number of promoter copies within the cell can be controlled.

The thesis is divided in two parts. The first part describes our theoretical efforts. Here we dissect the

mean response and variation of regulatory architectures in terms of microscopic parameters such as binding

energies to DNA, interaction energies between molecular players and DNA mechanics. The second part

describes our in vitro and in vivo approaches to testing those theoretical models developed in the first part.

We show that approaching these problems through the prism of a theoretical background has allowed us

to dissect some regulatory architectures and to contrast the predictions of our theoretical models with an

unprecedented accuracy and precision.

1.1 A Roadmap to Part I: Theoretical Models of Transcriptional

Regulation

Part I describes two approaches to dissecting transcriptional networks: thermodynamic models and stochastic

models. Thermodynamic models have a rich history as tools to describe the mean transcriptional response

in bacteria [14–16]. They predict the relative change in mean expression levels as a function of microscopic

parameters such as the concentration of molecular players and their interaction energies with DNA and

between each other. While incredibly useful and not fully explored experimentally, thermodynamic models

only give us information about mean levels and binding energies (or, equivalently, equilibrium constants).

On the other hand, recent years have witnessed an explosion of new and varied experimental techniques
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that allow us to query the level of gene expression of single cells [17–19]. Being able to measure higher

moments of the distribution of gene expression levels rather than only their mean value opens the door to

dissecting regulatory networks in terms of rates of transitions between states. As such they are a further

way of querying the microscopic properties of cells.

Chapter 2 is an introduction to thermodynamic models of transcriptional regulation. Here we conceive

transcriptional regulation in bacteria as a competition for the real estate in the vicinity of the promoter. This

competition results from repressors binding to DNA to exclude RNA polymerase from binding to it combined

with the action of activators that can recruit RNA polymerase to the promoter. This approach is based on

enumerating the possible states a promoter can be in and assigning a weight to each one as exemplified in

figure 1.6(A). This chapter culminates with an expression for the fold-change in gene expression for several

regulatory architectures. This is shown diagrammatically for the particular example of simple repression

in figure 1.6(B). These expression are shown in table 1.1 and are a reference guide for researchers trying

to model the response of the architectures addressed or arbitrary combinations of them. These results are

described in detail in chapter 2 of this thesis.

Chapter 3 is a systematic exploration of the models developed in chapter 2. Here we dissect several

regulatory motifs that have been previously experimentally characterized and generate predictions for their

respective input-output functions. In essence, we use the regulatory architectures addressed in table 1.1

and use them to dissect regulatory circuits that have been investigated throughout the literature. The work

described in this chapter for the first time dissected the quantitative response of eight regulatory motifs

in terms of thermodynamic models of transcriptional regulation. Some of these predictions are shown as a

collage in figure 1.7 while the results are described in detail in chapter 3 of the thesis. In general, these

predictions consist in calculating the fold-change in gene expression as a function of the concentration of

transcription factors and the relevant binding energies. Interestingly, not too many experiments had been

done to date that allowed for a direct contrast of the theoretical models. This led us to the development of

our experiment on the simple repression motif addressed in chapter 7. Both chapters 2 and 3 are the result

of a very fruitful collaboration between the Phillips group, the Kondev group from Brandeis University and

the Hwa group from UCSD. This led to the publication of two articles in [20, 21].

Our fascination with the connection between in vivo and in vitro DNA mechanics [22] led us to spend a

considerable amount of effort in understanding repression by DNA looping in the context of the lac operon.

Lac repressor has two binding heads which can bind to any of the three sites available in the wild-type lac

operon, looping the intervening DNA and leading to repression. A regulatory architecture that exploits DNA

mechanics is in itself extremely interesting as this is a strategy employed by both prokaryotes and eukaryotes

alike [22]. Additionally, it is a beautiful opportunity to obtain information about the in vivo mechanical

properties of the DNA.

In chapter 4 we present this study where we shed light on the role of DNA looping in bacteria through

the quantitative dissection of this regulatory motif. DNA looping has been proposed to play a key role in
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Figure 1.6: Thermodynamic and stochastic description of transcriptional regulation. (A) In the thermody-
namic model approach the possible states of the system are enumerated and their corresponding weights
assigned. In this case of simple repression the promoter can be either occupied by RNA polymerase or Lac
repressor, but not by both simultaneously. (B) By assuming linearity between the promoter occupancy and
the resulting level of gene expression the fold-change in gene expression can be calculated as the relative
change in promoter occupancy in the presence and absence of the transcription factor. (C) An alternative
view of transcriptional regulation is based on rate equations rather than state probabilities. In this simple
model there is a rate of promoter switching between states (konR and koffR ), a mRNA production rate (r) and
a degradation rate (γ). (D) In analogy to the states and weight from (A) we can understand this stochastic
models as different trajectories of the system each with their own probability or weight.
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1. Simple repressor

R

2. Simple activator

A

3. Activator recruited by a helper (H)

AH

4. Repressor recruited by a helper (H)

RH

5. Dual repressors

R2R1

6. Dual repressors interacting

R2R1

7. Dual activators interacting

A2A1

8. Dual activators cooperating via looping

A2A1

9. Repressor with two DNA binding units and DNA looping
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CASE FOLD-CHANGE IN GENE EXPRESSION

Table 1.1: Thermodynamic model predictions for several regulatory architectures. The thermodynamic
models presented in chapter 2 lead to a prediction for the fold-change in gene expression as a function of
key microscopic parameters for several regulatory architectures. The regulation factor is shown using a
statistical mechanics notation (left) and a biochemical notation (right). In the statistical mechanics notation
the lowercase letters x are defined as x = X/NNS exp(−β∆εxd), where X is the intracellular number of the
transcription factor x is describing, NNS is the number of non-specific sites and ∆εxd corresponds to the
interaction energy of the transcription factor with the DNA. Interaction energies between proteins X and Y
are denoted εxy. Please, see chapter 2 for more details.
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Figure 1.7: Examples of regulatory architectures and their corresponding predictions. Some of the results
from chapter 3 corresponding to several regulatory architectures are shown here for the case of (A) simple
activation by CRP, (B) cooperative co-activation with MelR as an activator and CRP as a helper molecule,
(C) simple repression by Lac repressor and (D) repression by DNA looping by Lac repressor. In all these
cases we predict the fold-change in gene expression as a function of the concentration of the particular
transcription factors involved and as a function of their interaction energies.
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Figure 1.8: Quantitative dissection of the wild-type lac operon. We use our thermodynamic models to fit
the fold-change in gene expression for various lac operon mutants measured by Oehler et al. [24] resulting in
a prediction for the fold-change as a function of the concentration. Notice that both loops between O1 and
O3 and between O1 and O2 can lead to similar levels of repression at the wild-type concentration of Lac
repressor (denoted by the dashed vertical line). (B) Using the parameters obtained in (A) we can predict the
probability of looping for all three of the possible loops in the lac operon as a function of the Lac repressor
concentration. Interestingly, the two loops that contribute to repression have similar probabilities, whereas
the O3-O2 loop, which is not capable of repressing the circuit, has a negligible probability. Notice how
different concentrations of repressor can lead to one loop being more favorable than the other one. Why
evolution would select for such a sophisticated architecture rather than a simple loop is a mystery the chapter
leaves us with.

stabilizing levels of gene expression with respect to fluctuations in the concentration of transcription factors

[23]. However, the situation of the wild-type lac operon is different due to the presence of multiple DNA

loops that can lead to repression independently. The lac operon has three binding sites leading to three

different loops, two of which can cause repression (O1-O2 and O3-O1). A cartoon of the lac operon can be

found in the legend of figure 1.8(A).

By dissecting experiments on various lac operon mutants through our models we suggest that this operon

is not making use of the isolation with respect to fluctuations. These conclusions are shown schematically

in figure 1.8(A), where we show that rather than providing “robustness” against fluctuations in repressor

concentration the role of the multiple loops in the lac operon seems to be related to redundancy. Each loop

leads to the same level of repression independently. This analysis also leads to a calculation of the in vivo

probability for the different loops in the operon as shown in figure 1.8(B). Here we show that though at

wild-type concentrations the probabilities of the different loops are comparable, the concentration of Lac

repressor can be used as a tuning parameter to favor the formation of one loop over the other.

The looping free energy we obtain can be used for more than the understanding of the lac operon. It can

also be used as a way to access the in vivo mechanical properties of DNA. In chapter 4 and in figure 1.9 we

show that the looping free energy has predictive power by considering the outcome of a recent experiment

by Becker et al. [25] based on the looping free energy obtained from the Müller et al. experiment [26].

Most available experimental techniques are able to give us information about the in vivo properties of

DNA on length scales larger than 1 kilobasepair [27]. In contrast DNA looping experiments can give us

access to the mechanical response of DNA at shorter length scales. We contrast the looping free energy

obtained with several polymer models of DNA shown in figure 1.10 and determine that at lengths between

150 bp and 1 kbp, the behavior of DNA is consistent with a self-avoiding random walk with a persistence
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Figure 1.9: Predictions for the looping free energy. The models developed in chapter 4 state that the looping
free energy is an intrinsic parameter describing the effective mechanical properties of the intervening DNA.
If this is true, different experiments performed with different binding sites and concentrations of repressor,
but the same distance between the repressor binding sites, should lead to the same looping free energy. (A)
Müller et al. [26] and Becker et al. [25] each measured the level of gene expression in DNA looping using
different experimental setups. (B) These differences in setup led to significant differences in the fold-change
levels. (C) The looping free energy calculated from the Müller et al. experiment leads to an expectation
about the free energy obtained from the Becker et al. measurements. In general terms, the two looping free
energies are comparable. However, there are intriguing differences between the looping free energies that are
discussed in chapter 4 in more detail.
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Figure 1.10: Different regimes of scaling for a semiflexible polymer confined to a cell. In chapter 4 we discuss
the implications of the different polymer models for DNA. For contour lengths below the Kuhn length LKuhn,
which is a measure of the stiffness of the DNA, the polymer behaves like a stiff rod. The end-to-end distance
ree scales linearly with the corresponding contour length L. As we go up in scale the polymer behaves like a
self-avoiding random walk up to a length scale defined by a mesh with a typical radius rξ. The corresponding
contour length of polymer within that radius is defined as Lξ. Because of the constrained volume given by the
E. coli cell the Flory theorem states that for length scales beyond the mesh size, but smaller than the typical
dimensions of the cell the effective polymer will behave like an entropic spring with a scaling ree ∝ L3/2.
Finally, for contour lengths beyond the typical cell dimension, Lcell, the density of polymer monomers is
uniform throughout the cell. As a result, the end-to-end distance becomes constant and independent of the
contour length. In the chapter we show that the available data is consistent with a model of DNA as a
self-avoiding random walk on length scales between 150 bp and 1 kbp.

length of about 25 bp.

One problem when comparing free energies obtained in in vivo and in vitro experiments is that they might

not be defined with respect to the same zero of energy. Chapter 4 finalizes with a careful treatment of the

contribution of non-specific binding to DNA looping which allows us to, for the first time, plot the outcome

of in vivo and in vitro experiments (some of which are described in chapter 9) on the same figure. As a result

in figure 1.18 we compare the results from the in vivo experiments by Müller et al., the in vitro measurements

corresponding to chapter 9 and several other key experiments on DNA looping by Lac repressor and DNA

mechanics at short length scales. Please, refer to the description of chapter 9 below for a detailed explanation

of the conclusions stemming from figure 1.18. Chapter 4 is again the result of long-standing collaboration

between the Phillips and Kondev groups and is about to be submitted to Physical Biology.

Chapter 5 explores precisely the same collection of architectures as in chapters 2 and 3, but now with

the ambition of calculating the higher moments of the mRNA distribution. Because of recent efforts in

single-cell measurements on gene expression, these moments have become amenable to direct experimental

measurement. The modeling approach relies on the description of possible trajectories of the system and

their corresponding weights rather than the description in terms of states from chapters 2 and 3. An example

of a kinetic scheme analyzed is shown in figure 1.6(C) and the corresponding trajectories and weights are

shown in figure 1.6(D). The results calculated in this chapter provide a suite of predictions for what we

expect will result from such measurements and the results are summarized in table 1.2. This is the result

of a project led by Alvaro Sanchez from the Kondev group at Brandeis in collaboration with the Phillips
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Table 1.2: Fold-change in noise for several regulatory architectures. The fold-change in noise (defined
as variance/mean, also called the Fano factor) is shown for several regulatory architectures. Unlike the
predictions of the thermodynamic models shown in table 1.1 the predictions from the stochastic models
depend on rates of transition between promoter states. This gives access to a whole new set of microscopic
parameters.

group. This work is currently under review at PLoS Computational Biology.

1.2 A Roadmap to Part II: Experimental Dissection of Gene Reg-

ulatory Motifs

As mentioned in the beginning of this chapter it is almost impossible to conceive of our experimental efforts in

the absence of the theoretical models described in Part I. Hence, the order of presentation follows logically and

also historically in terms of the work carried out in the thesis. In this section of the thesis we dissected gene

regulatory motifs in terms of the “knobs” that we had identified through our theoretical explorations. We

characterized the input-output relations of these networks both in vivo and in vitro as a function of parameters

such as binding energies and concentrations of transcription factors. Surprisingly, in most of the cases

the predictions from the theoretical models were found to correspond quite convincingly with experiment,

showing that we could indeed largely compute the input-output function from first principles. Such successful

theory-experiment interplay opens the door to a new generation of theoretical and experimental observations
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where increasingly complex regulatory motifs and interactions between such motifs are dissected.

The models of transcriptional regulation described in chapters 2 and 3 predict changes in gene expression

that can span over several orders of magnitude. Being able to test such models will depend strongly on

choosing the right reporters of gene expression. It is not only important to choose a technique with the

right dynamic range. Since we want to characterize relative changes in gene expression, it is also of the

utmost importance that the measuring technique is linear over the range assayed. In particular, the two most

widespread techniques to measure gene expression are the enzymatic reporter β-galactosidase and fluorescent

proteins. Figure 1.11 poses the question: does the absolute level of gene expression or fold-change in gene

expression depend on the technique invoked to measure it? Chapter 6 is a systematic characterization and

comparison of the enzymatic reporter β-galactosidase and the fluorescent reporter EYFP in this context. In

order to set absolute bounds on their dynamic ranges we calibrate the in vivo fluorescence of YFP. Through

this absolute calibration we determine that the reporters are linear related over four orders of magnitude

and also that they are limited in different ways. EYFP is bounded on the low range to about 10 molecules

per cell by the cellular autofluorescence. In contrast, β-galactosidase has no such limitation. However, when

present inside the cell at high enough levels, over 20,000 molecules per cell, it can significantly affect cellular

growth. The resulting calibration is summarized in figure 1.12, where the linearity can be clearly appreciated

and where we have marked the limits of each reporter through the shaded regions. This chapter served as

a fundamental guide when planning the in vivo experiments presented in this thesis. The fact that both

reporters are interchangeable allowed us get the best of both worlds. This experimental work is currently

being reviewed at Biophysical Journal.

One of the simplest yet richest regulatory motifs is that of simple repression (see figure 1.4, for example).

Here, a single repressor binds to a site overlapping the promoter resulting in the exclusion of RNA polymerase

from the DNA and the subsequent downregulation of the gene. In figure 1.5 we identified some of the

“knobs” of this architecture that are relevant both experimentally and theoretically in the context of the

thermodynamic models presented in chapters 2 and 3. In chapter 7 we dissect simple repression by tuning

two of these knobs, namely the intracellular number of repressor and the binding energy. We generated

several strains with different levels of Lac repressor and measured the fold-change in gene expression for

constructs bearing binding sites of different strengths as shown in figure 1.13(A,B). Though it is relatively

easy to generate strains with different concentrations of repressor, it is not that straightforward to predict

the actual number of repressors each strain will bear. Using the binding energies obtained in chapters 3

and 4 and the prediction of the input-output function from the thermodynamic models we then predict

the number of repressor in each strain. These predictions are shown in figure 1.13(C) and are validated

by measuring the intracellular number of repressors directly through quantitative immunoblotting over two

orders of magnitude. Such a direct census of Lac repressor had not been done since its purification in the

60s. This was a highly successful first excursion into the validation of our models. We show that we can

account for the resulting changes in the output gene expression over more than three orders of magnitude.
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Figure 1.11: Different ways of quantifying the fold-change in gene expression. (A) Using fluorescent proteins
the light emission of single cells can be quantified. In this case the fluorescence of a distribution of cells can
be measured using microscopy. The mean of each distribution (corresponding to the presence and absence
of transcription factor) can then be divided to obtain the fold-change. (B) Similarly, an enzyme such as
β-galactosidase can be used to quantify the level of gene expression of the two strains making the fold-
change. In this case a macroscopic volume of each sample is broken up using detergent and a substrate is
subsequently added. This substrate becomes yellow when cleaved by the enzyme reporter. As a result, by
monitoring the rate of change in the color of the reaction by spectrophotometry the amount of enzyme per
cell can be calculated. Unlike fluorescence this an inherently bulk measurement. In chapter 6 we show that
both reporter methods are complementary and necessary to span a significant dynamic and linear range of
gene expression.

It is a direct example of the capabilities of the input-output functions generated by thermodynamic models

and the door to addressing more complex regulatory architectures. This work is under review at Proceedings

of the National Academy of Sciences.

The experiments presented in chapter 7 are a great way to characterize a regulatory network in terms of

the thermodynamic models developed in chapters 2 and 3. This kind of analysis resulted in the estimation

of the in vivo binding energies (or, equivalently equilibrium constants) of Lac repressor to DNA. However,

if we want to obtain information about the in vivo rates involved in the regulation process we need to go

beyond the mean level of gene expression obtained from bulk experiments. We also need to go beyond

thermodynamic models, which deal exclusively with mean levels of expression, and adopt a description of

regulation set by the stochastic models shown in chapter 5. Such inference of in vivo rates can only be done

in the context of single cell experiments, where higher moments of the protein distribution than the mean

are detected.

In chapter 8 we present a dissection of the simple repression motif at the single cell level. This experiment

introduced by Rosenfeld et al. [28, 29] is based on a clever use of dilution and random fluctuations which

results in a continuous titration of the repressor. Since the repressor in question is fused to a fluorescent

protein its relative concentration can be tracked in single cells as a function of time. The production of

this repressor fusion can be modulated by adding or removing a small inducer molecule, aTc, as shown in
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Figure 1.12: Comparison of β-galactosidase and EYFP as reporters of gene expression. By generating several
strains expressing either EYFP or β-galactosidase from the same promoter we can compare the dynamic
range of each reporter with respect to each other. In chapter 6 we perform this comparison and find them
to be linear over four orders of magnitude which spans most of the relevant in vivo range of expression of
bacterial promoters. We perform an absolute calibration of each reporter which allows us to set absolute
bounds on their applicability. EYFP is limited to about 10 molecules/cell due to cell autofluroescence. On
the other hand, β-galactosidase is reliable on the low end due to its low background, but starts affecting cell
growth significantly when present at concentrations in excess of 20,000 enzymes/cell. These limitations are
depicted as shaded areas in the plot.
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Figure 1.13: Probing the simple repression motif. (A) Knobs we control experimentally. The affinity of the
binding sites can be varied by mutating the DNA sequence of the operators. We vary the concentration
of repressor by generating several strains expressing different constitutive levels of repressor. However, this
number of repressors is not known a priori. (B) Resulting fold-change in gene expression for the different
values of the knobs. (C) Using the binding energies obtained in chapters 3 and 4 we can predict the number
of Lac repressors in each strain, which we check through quantitative immunoblotting.



18

TetR LacI-CFPaTc

CFP
level

YFP
level

Time

YFP

(A) (B) (C)

0.5

1

1.5

2

2.5

x 10 4

Time (frames)

Y
FP

 f
lu

o
re

sc
en

ce
 (

au
)

103

104

N
u
m

b
er o

f LacI-C
FP (au

)

10 20 30 40

Figure 1.14: Characterizing a gene regulatory network through dilution and fluctuations. (A) The simple
repression architecture expresses the fluorescent protein YFP. Its promoter is repressed by a LacI-CFP fusion.
This repressor is in turn expressed off of a promoter that is regulated by Tet repressor. By adding aTc to the
cells the production of LacI-CFP is induced. (B) Before starting the experiment aTc is removed resulting in
the shutting down of LacI-CFP production. With subsequent cellular divisions the amount of LacI-CFP in
each cell decreases due to the partitioning between daughter cells, resulting in a higher level of the regulated
YFP gene. (C) Representative trace of fluorescence in the YFP (green) and CFP (red) channels as a function
of time for a single cell. With each division event the total amount of LacI-CFP per cell halves on average.
As the concentration of LacI-CFP decreases the rate of production of YFP increases. Notice that we are
tracking a single cell lineage and that with each division new lineages are created. Those additional lineages
are shown using a dimmer color. Also, it is clear from the figure that the partitioning of LacI-CFP between
daughter cells is random. In chapter 8 we use these fluctuations to infer the relation between LacI-CFP
fluorescence per cell and its absolute intracellular number.

figures 1.14(A,B). In our particular setup we have Lac repressor fused to the fluorescent protein CFP which

is regulating the expression of YFP through simple repression. In figure 1.14(C) we show a representative

trace of the total CFP and YFP fluorescence as a function of time. Notice that cell divisions lead to new

lineages and that the partitioning in the number of repressors is random.

This dilution method is not only useful in getting a titration of the repressor. We can use the fluctuations

in the binomial partitioning of LacI-CFP in order to relate the CFP fluorescence measured in arbitrary units

(see, for example, the axis in figure 1.14(C)) to an absolute number of repressor molecules. As a result we

can perform a similar characterization of the simple repression motif as that performed in chapter 7. The

main difference in this new method is that we can now perform the assay at the single cell rather than bulk

level. In figure 1.15 we show the fold-change in gene expression of single cells as a function of the intracellular

concentration of the Lac repressor fusion for different choices of the Lac repressor binding site. Through our

thermodynamic models we can obtain their respective in vivo binding energies. Interestingly, these binding

energies are systematically lower than those found using bulk methods in chapter 7. This might reflect an

unknown systematic error in one of the two methods for the absolute counting of repressors (fluctuations

vs. immunoblots) or, more likely, it might be due to the fact that the LacI-CFP fusion used in this chapter

behaves in a different way from wild-type Lac repressor, which is the protein used in chapter 7.

Finally, chapter 8 is our first attempt at contrasting the stochastic models developed in chapter 5 with

single cell data on variability in transcriptional regulation. In figure 1.16(A) we show the fold-change in the

variance of gene expression (measured with respect to a strain lacking the repressor) as a function of the
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Figure 1.15: Single cell input-output function for simple repression. Through the dilution method shown
in chapter 8 and figure 1.14 we quantify the single cell fold-change in gene expression as a function of the
intracellular number of Lac repressor-CFP molecules. In analogy to the analysis developed in chapter 7 in a
bulk context we can obtain the binding energies corresponding to each possible binding site sequence for this
architecture. The fold-change corresponding to O3 is too low to determine the binding energy accurately.
One intriguing outcome of this analysis is a systematic difference between the in vivo binding energies found
through this approach and those found in chapter 7 using wild-type repressor rather than a fluorescent fusion.
This suggests that either the binding activity of LacI-CFP is different than wild-type LacI or that one of the
two methods (single cell dilution or immunoblots in bulk) is not accurately measuring the absolute number
of molecules per cell.

fold-change in mean level of gene expression for several choices of the Lac repressor binding site. Though not

very pronounced, there seems to be a systematic effect with stronger operators leading to higher variance for

a given fold-change in mean gene expression. This observation is confirmed qualitatively in figure 1.16(B),

where we show a theoretical prediction using the stochastic models developed in chapter 5. Such comparisons

are very exciting as only a very limited number of examples where the effect of promoter architecture on

expression noise have been shown in bacteria.

It is important to note that the experiments described in chapter 8 are a very recent development in the

Phillips lab and that its details and our understanding of the data are still evolving significantly on a daily

time scale. Nevertheless, given the various different dissections of a regulatory presented throughout this

thesis we considered it relevant to include a snapshot of our current understanding of simple repression at

the single cell level. This work is the result of a side-by-side collaboration with Linda Song in our lab and

with the Kondev group at Brandeis University.

As pointed out in the description of chapter 4 in the previous section the mechanical properties of DNA

are not well understood in the in vivo context. Further, they are not even completely clear in the in vitro

setting, especially for short loops spanning only a couple of hundreds of base pairs, such as those found in

bacteria [22, 30]. Even though the behavior of DNA mechanics is not well understood at the length scales

involved in DNA looping by Lac repressor, no direct experiment to date had been done that satisfactorily

addressed this issue in the in vitro context. Such an experiment requires quantifying the looping probability
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Figure 1.16: Variability in gene expression as a function of the promoter architecture. (A) The fold-change
in variance of a strain expressing LacI-CFP measured with respect to a strain lacking the repressor is plotted
as a function of the fold-change in mean gene expression for different realizations of the simple repression
promoter architecture. A slight systematic trend, where binding sites with a higher affinity lead to higher
noise in expression, is observed. (B) This behavior is reproduced qualitatively by using stochastic models
of transcriptional regulations such as the ones presented in 5. In chapter 8 we discuss possible strategies to
compare the theoretical prediction to the experimental data in quantitative detail.

of Lac repressor over several lengths of the loop. Chapter 9 is a careful and systematic in vitro dissection of

DNA looping by Lac repressor at the single molecule level. This is performed using the Tethered Particle

Method, shown diagrammatically in figure 1.17(A–C), where beads each bound to a single DNA molecule

tethered to a surface are tracked. By measuring the excursion of the bead over time (figure 1.17(A,B))

the effective length of the DNA tethered can be inferred. This results in a probability distribution of the

DNA molecule being in any of its discrete states exemplified by the histogram shown in figure 1.17(C). This

single molecule technique has many advantages. First, unlike techniques such as nitrocellulose binding or

gel retardation assay, it allows for a true equilibrium measurement of the system. Second, by monitoring

single molecules we can distinguish multiple looping states which bulk techniques are unable to do. In 9 we

show that even though some aspects of the thermodynamic models apply to this motif there are several gaps

in our understanding related to the mechanical properties of the DNA-repressor complex. In fact, we show

that theoretical simulations based on the known geometrical details of Lac repressor and on the canonical

elastic view of DNA cannot account for the observed behavior.

This is summarized in figure 1.18. The data denoted as “TPM, Han et al.” corresponds to our in vitro

results, whereas the curve “Monte Carlo simulation, Towles et al.” shows our theoretical expectations based

on our knowledge of the geometrical details of Lac repressor and the mechanical properties of DNA. We also

show that the in vivo data (“Müller et al.”) presents a much higher flexibility than either in vitro outcome.

The result of this comparison is a still confusing picture: neither the in vivo, in vitro or the theoretical

expectation agree with each other, and this casts doubt on our understanding of DNA mechanics at short

length scales. In chapters 4 and 9 we discuss several reasons for the differences, ranging from a breakdown of
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the elastic model of DNA at short length scales to the role of in vivo DNA binding proteins such as HU, H-NS

and IHF which decorate the chromosome and the effect of supercoiling. The experimental work presented

here was almost exclusively performed by Lin Han, a graduate student in the Phillips lab with whom I had

some overlap. My main contribution was related to data analysis and to contrasting it with theoretical

models of transcriptional regulation and DNA mechanics. This work was done in collaboration with the Phil

Nelson group at the University of Pennsylvania and led to the publication of two papers [31, 32].
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Figure 1.17: Tethered particle method to measure in vitro DNA looping. (A) A bead bound to a DNA
molecule which is in turn tethered to the surface is tracked as a function of time. (B) The mean root square
deviation from its center is calculated over a time window revealing the existence of multiple discrete states of
the molecule. (C) The information in (B) corresponding to many molecules can be collapsed into a histogram
which gives a measure of the probability of the DNA molecule being in each of its states. In this particular
example, two looped configurations and one unlooped configuration are detected. (D) The process described
in (A–C) can be repeated for DNA molecules with different loop lengths resulting in a direct measurement
of the looping probability as a function of the distance between Lac repressor binding sites.
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Figure 1.18: In vivo and in vitro experiments and calculations on DNA looping and DNA mechanics. The
looping J-factor J related to the looping free energy Floop through the definition J = 1 Me−βFloop is shown
for the in vivo data of Müller et al. [26] data based on the model for the non-specific looping reservoir
presented in chapter 4. This prediction is superimposed with the looping J-factors derived from the the in
vitro experiments presented in chapter 9 (Han et al., [31]) and a theoretical expectation (Towles et al., [32]).
The results of several other in vitro looping experiments are shown. In some cases the looping J-factor was
not reported explicitly and had to be estimated from the data. As such some of the in vitro values should be
viewed as approximations. even in those cases where there was no direct measurement of J itself. From this
plot it is clear that there is still a large spread in experimental data and that the experimental techniques
need to improved upon. A particular example of this is the large effect due to supercoiling observed by
Whitson et al. [33], which is not present in the more recent experiments by Normanno et al. [34]. Finally,
we show results for DNA cyclization, where the propensity of DNA to form circles in the absence of any
proteins is measured. Here, too, the results of Du et al. [35] agreeing with the theoretical expectation based
on the wormlike chain model [36] are to be contrasted with the much higher flexibility obtained by Cloutier
and Widom [37]. Other data sources are: Hsieh et al. [38], Vanzi et al. [39] and Wong et al. [40].
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Chapter 2

Introduction to Thermodynamic
Models of Transcriptional Regulation

This chapter is a reproduction of reference [1] which was published together with the next chapter correspond-

ing to reference [2].

The expression of genes is regularly characterized with respect to how much, how fast, when and where.

Such quantitative data demands quantitative models. Thermodynamic models are based on the assumption

that the level of gene expression is proportional to the equilibrium probability that RNA polymerase (RNAP)

is bound to the promoter of interest. Statistical mechanics provides a framework for computing these

probabilities. Within this framework, interactions of activators, repressors, helper molecules and RNAP

are described by a single function, the regulation factor. This analysis culminates in an expression for the

probability of RNA polymerase binding at the promoter of interest as a function of the number of regulatory

proteins in the cell.

2.1 Introduction

The biological literature on the regulation and expression of genes is, with increasing frequency, couched in

the language of numbers. Four key ways in which gene expression is characterized quantitatively are through

measurement of: (i) the level of expression relative to some reference value; (ii) how fast a given gene is

expressed after induction; (iii) the precise relative timing of expression of different genes; and (iv) the spatial

location of expression. In the first section of this review we revisit particular examples of such measurements

in the bacterial setting. These provide the motivation for the models that form the main substance of this

and the companion article [2]. Through much of these reviews we call attention to particular revealing case

studies rather than giving a thorough coverage of the literature.
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2.1.1 How much, when and where?

One class of particularly well-characterized examples of gene expression levels includes cases associated with

bacterial metabolism and the infection of bacteria by phage [3, 4]. This group will serve as the centerpiece

of this and the companion article. In the classic case of the lac operon, several beautiful measurements have

been taken. These characterize the extent to which the genes are repressed as a function of the strength of

the operators, their spacing and the number of repressor molecules [5–7]. Similar measurements have been

made for other genes implicated in bacterial metabolism, in addition to those tied to the decision between

the lytic and lysogenic pathways after infection of Escherichia coli by phage λ [8–13]. A second way by

which the regulatory status of a given system is quantified is by measuring when genes of interest are being

expressed. The list of examples is long and inspiring, and several representative case studies can be found

in the literature [14–16] . A third way in which an increasingly quantitative picture of gene expression is

emerging is based on the ability to make precise statements about the spatial location of the expression of

different genes. Here, too, the number of different examples that can be mustered to prove the general point

is staggering [17–19]. The key point of these examples is to note the growing pressure head of quantitative

in vivo data, which calls for more than a cartoon-level description of expression.

The physicochemical modeling of the type of quantitative data described above is still in its infancy. One

class of models, which will serve as the basis of this article, comprises the so-called “thermodynamic models”

[20–22]. The conceptual basis of this class of models is the idea that the expression level of the gene of

interest can be deduced by examining the equilibrium probabilities that the DNA associated with that gene

is occupied by various molecules; these include RNAP and a battery of transcription factors (TFs) such as

repressors and activators. There is a long-standing tradition of using these ideas to unravel the dynamics of

gene expression systems, particularly important examples being associated with the famed lac operon and

phage λ systems [20, 22–26]. Importantly, the thermodynamic models can serve as input to more general

chemical kinetic models.

The key aim of this and the accompanying article [2] is to show how the thermodynamic models yield

a general conceptual picture of regulation using what we call the “regulation factor”. Such arguments are

useful because they enable direct comparison with quantitative experiments, such as those discussed above.

The purpose of models is not just to “fit the data” (although such fits can reveal which mechanisms are

operative) but also to provide a conceptual scheme for understanding measurements and, more importantly,

for suggesting new experiments. It is also worth noting that when such models fall short it provides an

opportunity to find out why and learn something new.

This article is, to a large extent, pedagogical and aims to demonstrate how a microscopic picture of

the various states of the gene of interest can be mathematized using statistical mechanics. The companion

article is built around the analysis of case-studies in bacterial transcription and centers specifically on how

the activity of a given promoter is altered (the “fold-change” in promoter activity) by the presence of

transcription factors.
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2.2 Thermodynamic Models of Gene Regulation: The Regulation

Factor

The fundamental tenet of the thermodynamic models for gene regulation is that we can replace the difficult

task of computing the level of gene expression, as measured by the concentration of gene product ([protein]),

with the more tractable question of the probability (pbound) that RNAP occupies the promoter of interest.

More precisely, these models are founded on the idea that the instantaneous disposition of the gene of interest

can be established from the probability that various molecules — RNAP, activators, repressors and inducers

— are bound to their relevant targets.

Such models are based on a variety of different assumptions, all of which can and should be evaluated

critically. Perhaps the most glaring assumption is that of equilibrium itself. This assumption can be examined

quantitatively on the basis of the relative rates of transcription factor binding, RNAP binding, open complex

formation, transcript formation and translation itself. For example, if the rate for open complex formation

is much smaller than the rates for RNAP binding and unbinding from the promoter, then the probability of

finding the polymerase on the promoter will be given by its equilibrium value. A second key assumption of

this class of models is the idea that the probability of promoter occupancy by RNAP is simply proportional

to the level of expression of a given gene. The difficulty lies in the fact that there are several different

mechanisms that can intervene between RNAP binding and the existence of a functional gene product.

Despite these caveats, we argue that this class of models is both instructive and predictive and, in those

cases where the models are found wanting, provides an opportunity to learn something.

In this review, we first analyze the probability that RNAP will be bound at the promoter of interest in

the absence of any activators or repressors. This is followed by cases of increasing complexity that involve

batteries of transcription factors. Although our preliminary discussion is focused on the statistical mechanics

of polymerase binding, the framework is the same for generic protein-DNA and protein-protein interactions.

For the purposes of this review, we make the simplified assumption that the key molecular players (RNAP

and TFs) are bound to the DNA either specifically or non-specifically. This question has been addressed

in the context of the λ-switch [26], for the lac repressor [23, 27] and for RNAP [28]. Stated differently, as

a simplification, we will ignore the contribution of free polymerase in the cytoplasm, in addition to those

RNAP molecules that are engaged in transcription on other promoters. Relaxing this assumption has no

effect on the framework developed below. Hence, to evaluate the probability of promoter occupancy in

this simple model, the reservoir of RNAPs will be the non-specifically bound molecules (as shown in figure

2.1(A)).

To evaluate the probability of polymerase binding (pbound) we must sum the Boltzmann weights over all

possible states of P polymerase molecules on DNA [29, 30]. P is the effective number of RNAP molecules

available for binding to the promoter. Estimating this number in vivo is fraught with difficulty because

many RNAPs are engaged in transcription at any given time and, as such, are not available for binding.
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Fortunately, this problem is avoided when calculating the fold-change for all the cases of interest, as we do

in the accompanying paper [2]. This is because, in these cases, the absence of activators results in a very

small pbound value and so P drops out of the problem.

We calculate pbound by considering the distribution of P RNAP on the non-specific sites (NNS), which

make up the genome itself, and a single promoter. Then we distinguish two classes of outcomes (shown

in figure 2.1(B)): all P RNAP molecules bound non-specifically, or one RNAP bound to the promoter and

P − 1 RNAP bound nonspecifically. Next, we count the number of different ways that these outcomes can

be realized. Once these states have been enumerated, we weight each of them according to the Boltzmann

law: if e is the energy of a state, its statistical weight is exp(−βε). Finally, to compute the probability

of promoter occupancy, we construct the ratio of the sum of the weights for the favorable outcome (i.e.,

promoter occupied) to the sum over all of the weights.

As noted above, this simple model includes two broad classes of microscopic outcomes: (i) those in which

all P polymerase molecules are distributed among the nonspecific sites, and (ii) those in which the promoter

is occupied and the remaining P − 1 polymerase molecules are distributed among the non-specific sites. To

evaluate the probabilities of these two eventualities we need to know the number of different ways that each

outcome can be realized. The statistical question of how many ways there are to distribute P polymerase

molecules among NNS non-specific sites on the DNA is a classic problem in combinatorics, and the result is

NNS !
P !(NNS − P )!

.

The overall statistical weight of these states is based not just on how many of them there are but also on

their Boltzmann weights according to

Z(P ) = Z(P )︸ ︷︷ ︸
statistical weight-promoter unnoccupied

+
NNS !

P !(NNS − P )!︸ ︷︷ ︸
number of arrangements

× e−βPε
NS
pd︸ ︷︷ ︸

Boltzmann weight

, (2.1)

where εNSpd is an energy that represents the average binding energy of RNAP to the genomic background. The

correct treatment of the genomic background requires explicit consideration of the distribution of binding

energies of RNAP, and TFs, to different sites — both specific and non-specific — on the DNA. The question

of how to treat this problem more generally than the simple-minded treatment given here can be found in

[31, 32]. The total statistical weight can now be written as

Ztot(P )︸ ︷︷ ︸
total statistical weight

= Z(P )︸ ︷︷ ︸
promoter unoccupied

+ Z(P − 1)e−βε
S
pd︸ ︷︷ ︸

RNAP on promoter

, (2.2)

where εSpd is the binding energy for RNAP on the promoter (the S stands for specific). The states and

corresponding weights, normalized by the weight of the promoter unoccupied states, Z(P ), are shown in
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figure 2.1(B).

To find the probability of RNAP being bound to the promoter of interest, we calculate

pbound =
Z(P − 1)e−βε

S
pd

Ztot(P )
. (2.3)

Note that the numerator in this case is the statistical weight of all microscopic states in which the promoter

is occupied, and the denominator is the statistical weight of all microscopic states. If we now divide top and

bottom by Z(P − 1)e−βε
S
pd and use the functional form given in equation 2.1, the probability of promoter

occupancy is given by the simple form

pbound =
1

1 + NNS
P e∆εpd

, (2.4)

where we have introduced the notation ∆εpd = εSpd − εNSpd [33]. To obtain the last equation we made the

simplifying assumption that P � NNS . The results computed above can be depicted in graphical form (as

shown in figure 2.1(C)) by plotting the probability of promoter occupancy as a function of the number of

RNAP molecules for two different promoters. For this particular case we have used several rough estimates,

explained in the figure legend, concerning the binding energies of RNAP molecules to specific and non-

specific sites on the DNA in a typical bacterial cell. One interesting speculation is that the high probability

of RNAP occupancy for the T7 promoter, even in the absence of transcription factors, could be related to

the infection mechanism of T7 phage [34]. In contrast, it is also interesting to note the very low probability

of occupancy of the lac promoter in this simple model in the absence of activation. We view equation 7.8 as

characterizing the basal transcription rate in this simple model. In light of this result, the key conceptual

outcome of the remainder of this review is the idea that the presence of transcription factors (activators and

repressors, etc.) has the effect of altering equation 7.8 to the simple form

pbound =
1

1 + NNS
PFreg

eβ∆εpd
, (2.5)

where we introduce the regulation factor, Freg. The regulation factor should be seen as describing an effective

increase (for Freg > 1) or decrease (for Freg < 1) of the number of RNAP molecules that are available to

bind the promoter.

To illustrate precisely the idea of the regulation factor, we show how activators recruit [3] RNAP to

the promoter of interest. The recruitment concept is illustrated in schematic form in figure 2.2(A), where

it is seen that the activator molecule recruits the polymerase through favorable contacts characterized by

an adhesive energy, εap. The point of the schematic is to show how the various states of occupancy of the

promoter and activator binding site can be assigned Boltzmann weights, which can then be used to compute

their probabilities.

Once again, the first step in our analysis is to determine the total statistical weight. This is obtained
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Figure 2.1: Probability of promoter occupancy. (A) Schematic showing how, in the simple model, the
DNA molecule serves as a reservoir for the RNAP molecules, almost all of which are bound to DNA.
(B) Illustration of the states of the promoter either with RNAP not bound or bound and the remaining
polymerase molecules distributed among the non-specific sites. The statistical weights associated with these
different states of promoter occupancy are also shown. (C) Probability of binding of RNAP to promoter
as a function of the number of RNAP molecules for two different promoters. We assume the number of
non-specific sites is NNS = 5 × 106, and calculate the binding energy difference using the simple relation
∆εpd = β−1 ln

(
KS
pd/K

NS
pd

)
, where the equilibrium dissociation constants for specific binding (KS

pd) and non-

specific binding (KNS
pd ) are taken from in vitro measurements. In particular, making the simplest assumption

that the genomic background for RNAP is given only by the non-specific binding of RNAP with DNA, we
take KNS

pd = 10000 nM [35], for the lac promoter KS
pd = 550 nM [36] and for the T7 promoter, KS

pd = 3 nM
[37]. For the lac promoter, this results in ∆ε = −2.9 kBT and for the T7 promoter, ∆ε = −8.1 kBT .

by summing the Boltzmann weights of all of the eventualities associated with the activators and polymerase

molecules being distributed on the DNA (both non-specific sites and the promoter). As seen in figure 2.2(A),

there are four classes of outcomes: (i) both the activator site and promoter unoccupied; (ii) just the promoter

occupied by polymerase; (iii) just the activator site occupied by activator and (iv) both of the specific sites

occupied. This is represented mathematically as

Ztot(P,A) = Z(P,A)︸ ︷︷ ︸
empty sites

+ Z(P − 1, A)e−βε
S
pd︸ ︷︷ ︸

RNAP on promoter

+ Z(P,A− 1)e−βε
S
ad︸ ︷︷ ︸

activator on specific site

+ Z(P − 1, A− 1)e−β(εSad+εSpd+εpa)︸ ︷︷ ︸
RNAP and activator bound specifically

(2.6)

where the statistical weight for P polymerase molecules and A activator molecules distributed among NNS

nonspecific sites is given by

Z(P,A) =
NNS !

P !A!(NNS − P −A)!︸ ︷︷ ︸
number of arrangements

× e−βPε
NS
pd e−βAε

NS
ad︸ ︷︷ ︸

weight of each state

. (2.7)

In figure 2.2(A) the weights of the four states are normalized by the weight of the empty state Z(P,A).

In equation 2.7 we use the notation εxd to characterize the binding energy of molecule X to DNA, and
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superscripts S and NS to signify specific or non-specific binding, respectively. ∆εxd = εSxd − εNSxd is the

difference between the two. For the purposes of this simple model we have assumed that the reservoir for the

activator molecules is the genomic DNA, although there is strong evidence that, in the case of the lac operon,

many of the activators (cAMP receptor proteins; CRPs) are actually in the cytoplasm [38]. In contrast, as

will be seen in the following paper [2], in our actual applications of thermodynamic models to real operons,

the question of whether the reservoir is non-specific DNA or the cytoplasm never arises.

As usual, to compute the probability of interest, we construct the ratio of the sum of weights for all

those outcomes that are favorable (i.e., polymerase bound to the promoter) to the sum of weights over the

total set of outcomes Ztot(P,A). This results in a value of pbound that adopts precisely the form described

in equation 2.5. The regulation factor, Freg(A), is given by

Freg(A) =
1 + A

NNS
e−β∆εade−βεap

1 + A
NNS

e−β∆εad
, (2.8)

where we have made the additional assumption that NNS � P,A. Note that if the adhesive interaction

between polymerase and activator goes to zero, the regulation factor itself goes to unity. Furthermore,

for negative values of this adhesive interaction (i.e., activator and polymerase like to be near each other)

the regulation factor is greater than one, which translates into an apparent increase in the number of

polymerase molecules available for binding to the promoter. This claim can be seen more clearly if we

define the fold-change in promoter activity as the ratio of the probability that RNAP is bound in the

presence of transcription factors to the probability that it is bound in the absence of transcription factors:

fold− change = pbound(P,A)/pbound(P,A = 0). The fold-change is plotted in figure 2.2(B) for typical values

of the adhesive interaction εap and the other binding parameters, for the simple model in which the reservoir

for CRP is assumed to be non-specific DNA.

Similar arguments can be made for the action of repressor molecules. Consider repression by R repressor

molecules that can bind to an operator (with energy εSrd) that overlaps with the promoter. By enumerating

the different states with their associated weights in a way similar to that used in figure 2.2(A) and noting

that the state where both the repressor and RNAP bind to their sites is not allowed, we can again derive

the form for promoter occupation, equation 2.5, but this time with the regulation factor,

Freg(R) =
1

1 + R
NNS

e−β∆rd
. (2.9)

The above scheme can be extended further to describe co-regulation by two or more activators and/or

repressors. For example, in the case of activation considered above, if the binding of the activator to its

operator site is assisted itself by a helper protein, which might bind to an adjacent site [2], then the regulation

factor still has the form given in equation 2.8 but with the number of activators, A, replaced by an effective
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Figure 2.2: Statistical mechanics of recruitment. (A) Schematic showing the relationship between the various
states of the promoter and its regulatory region, and their corresponding weights within the statistical
mechanics framework. (B) Fold-change in promoter activity as a function of the number of activated (inducer-
bound) CRP molecules, according to equations 7.8 and 2.8, for different values of the adhesive interaction
energy between activator and RNAP. As in figure 2.1, ∆εad = β−1 ln

(
KS
ad/K

NS
ad

)
, with KNS

ad = 10000 nM
[39] and KS

ad = 0.02 nM [40]. These in vitro numbers are chosen as a representative example to provide
intuition for the action of activators. Applications to in vivo experiments are given in the accompanying
paper [2]. Several different representative values of the adhesive interaction εad that are consistent with
measured activation are chosen to illustrate how activation depends upon this parameter.
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number of activators

A′ = A
1 + H

NNS
e−βεhde−βεha

1 + H
NNS

e−βεhd
. (2.10)

Note that the multiplicative factor in equation 2.10 has the same form as in equation 2.8 except that now

the number of helper molecules, H, appears in the expression, and the interaction energy εha refers to that

between the helper molecules and activators. In fact, this is the generic expression describing the recruitment

of one DNA binding protein by another, and it is not limited to activatorRNAP recruitment.

The introduction of the regulation factor enables a discussion of various regulatory motifs in a unified

way, as made explicit by table 2.1. These examples will be discussed in the context of particular bacterial

gene regulatory systems in the ensuing paper. The main point captured by this table is that the conceptual

picture of thermodynamic models is identical regardless of regulatory motif and involves summing all of the

relevant states. It culminates in the regulation factor which, as will be shown in the companion paper [2], is

equal to the measurable fold-change of promoter activity.

As a final example, we consider the way in which DNA looping can play a role in dictating the regulation

factor. Indeed, recent work by Vilar and Leibler [30] and Vilar and Saiz [41] and others [25, 42] has shown

how the thermodynamic models can be applied to regulatory control by looping. In the accompanying paper

[2], we apply these ideas to the particular question of how such regulation depends upon the distance between

the two binding sites, but content ourselves here with a discussion of the conceptual basis. Two distinct

looping scenarios are shown in figure 2.3. In case (A), a repressor molecule, which can bind to two distinct

regions on the DNA, loops out the intervening region. The classic example of this mode of action is the Lac

repressor. In case (B), one protein, such as CRP, favorably bends the DNA so that a second activator can

contact RNAP, although paying a lower free energy cost than it would if it were acting alone. In both cases,

the free energy cost associated with making a DNA loop is outweighed by the benefit of additional binding

energy between the repressor and DNA [case (A)] and between the activator and RNAP [case (B)].

In summary, the statistical mechanical framework described here can be used to consider several different

regulatory motifs [12, 13, 26, 29, 31, 32, 43], as showcased in table 2.1. In each of the cases considered in the

table, the probability of promoter occupancy is given by equation 2.5, with the sole change from one case to

the next being the form adopted by the regulation factor itself.

2.3 Conclusions and Future Prospects

We argue that as a result of the increasingly quantitative character of data on gene expression there is a

corresponding need for predictive models. We have reviewed a series of general arguments about the way

in which batteries of transcription factors work in generic ways to mediate transcriptional regulation. The

models described here result in several important classes of predictions. The application of these ideas to

particular bacterial scenarios forms the substance of the second article [2].

Though ideas like those presented here have the potential to serve as a quantitative framework for thinking
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1. Simple repressor

R

2. Simple activator

A

3. Activator recruited by a helper (H)

AH

4. Repressor recruited by a helper (H)

RH

5. Dual repressors

R2R1

6. Dual repressors interacting

R2R1

7. Dual activators interacting

A2A1

8. Dual activators cooperating via looping

A2A1

9. Repressor with two DNA binding units and DNA looping

R1R2

10. N non-overlapping activators and/or repressors acting independently on RNAP

ANR2A1

 

 

 

 

 

 

 

 

  

 

 

 

 

  

 

 

 

 

 

CASE REGULATION FACTOR

Table 2.1: Regulation factors for several different regulatory motifs. In the schematics of the motifs appearing
in the first column, the inverted T symbol indicates repression, arrows represent activation, and a dashed line
is for DNA looping. The second column gives the regulation factor in terms of the number of transcription
factors (TFs) in the cell and their binding energies, and the third column provides a translation of the
regulation factor into the language of concentrations and equilibrium dissociation constants (used in the
following paper [2]). For an arbitrary TF we introduce the following notation: in the second column, x is
the combination X

NNS
e−β∆εxd , and [X] in the third column denotes the concentration of transcription factor

X. KX = [X]/x is the effective equilibrium dissociation constant of the TF and its operator sequence on
the DNA. Furthermore, in the third column we introduce f = e−βεxp for the glue-like interaction of a TF
and RNAP, and ω = e−βεx1x2 for the interaction between two TFs. In cases 8 and 9, Floop is the free energy
of DNA looping, ω in case 8 is defined as e−βFloop , while [L] in case 9 is the combination NNS

Vcell
e−βFloop , Vcell

being the volume of the cell.
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Figure 2.3: DNA bending in transcription regulation. (A) DNA looping enables Lac repressor to bind to
the main and the auxiliary operators simultaneously, thereby increasing the weight of the states in which
the promoter is unoccupied. This leads to stronger repression than in the single operator case. (B) DNA
bending by the activator leads to cooperative binding of the two activators because the free energy cost of
bending is paid only once. This leads to a boost in activation above that provided by independent binding
of the two activators [44].

about transcriptional regulation, there are several outstanding issues. Some especially troubling features of

these models are: (i) what are the precise conditions under which equilibrium assumptions are acceptable?

(ii) When can the probability of RNAP binding at a promoter serve as a surrogate for gene expression itself?

(iii) What is the role of fluctuations? (iv) These models pretend that the basal transcription apparatus is a

single molecule that interacts with transcription factors, whereas the transcription apparatus is a complex

that is itself probably subject to recruitment for its assembly. Despite these concerns, our view is that

thermodynamic models have long demonstrated their utility and it will be of great interest to carefully

explore their consequences experimentally. Case studies using the thermodynamic models are reviewed in

the accompanying paper [2].
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Chapter 3

Applications of Thermodynamic
Models of Transcriptional Regulation

This chapter is a reproduction of reference [1] which was published together with the previous chapter corre-

sponding to reference [2].

With the increasing amount of experimental data on gene expression and regulation, there is a growing

need for quantitative models to describe the data and relate them to their respective context. Thermody-

namic models provide a useful framework for the quantitative analysis of bacterial transcription regulation.

This framework can facilitate the quantification of vastly different forms of gene expression from several

well-characterized bacterial promoters that are regulated by one or two species of transcription factors; it

is useful because it requires only a few parameters. As such, it provides a compact description useful for

higher-level studies (e.g., of genetic networks) without the need to invoke the biochemical details of every

component. Moreover, it can be used to generate hypotheses on the likely mechanisms of transcriptional

control.

3.1 Introduction

Biology is undergoing a transformation from a “component-centric” focus on the individual parts toward a

“system-level” focus on how a limited number of parts work together to perform complex functions. For

gene regulation, this theme has been discussed extensively in the context of simple genetic circuits [3–6]

in addition to complex, developmental networks [7]. The functional properties of a genetic circuit often

critically depend on the degree of cooperativity in the interactions between the molecular components [8].

For gene regulation, this cooperativity is dictated to a large extent by the architecture of the cis-regulatory

region, [9] and the specific mechanism of transcriptional activation or repression [10], which is mediated

through interactions among various transcription factors (TFs) and the RNA polymerase (RNAP) complex.

Often, even qualitative features of a gene circuit (e.g., whether a circuit can be bistable or whether it

can spontaneously oscillate) cannot be determined without quantitative knowledge of the transcriptional

regulation of key genes in the circuit [5].
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Predicting the expression level of genes directly from the underlying biochemistry and biophysics is a

difficult task. This is due most notably to ignorance of many biochemical parameters, especially their relevant

in vivo values. However, the thermodynamic model reviewed in the preceding article [2] yields several general

mathematical forms for the dependence of the fold-change in gene expression on the concentration(s) of the

TF(s) regulating transcription. These general forms contain only a few parameters characterizing the effective

interactions between the molecular players. Thus, from a practical standpoint, it is expedient to quantify

the transcriptional regulation of a gene by fitting expression data to the appropriate model function in order

to obtain effective parameters that best describe the promoter [10,11]. This procedure might be useful even

when the simplifying assumptions made by the thermodynamic models are not satisfied [2]. By analyzing

gene expression data within the thermodynamic framework, one can elucidate whether an assumed set of

interactions between TFs and RNAP can consistently explain the data. Failure of the analysis can suggest

important missing ingredients, such as unknown mechanisms of cooperativity, whereas success can lead to

predictions for new experiments (e.g., how operator deletion would affect gene expression).

There has been much recent progress in understanding the mechanistic aspect of bacterial gene regulation

[10]. However, the systematic quantification of gene expression is still in its infancy. In this paper, we

review several experimentally characterized cis-regulatory systems in bacteria. For each case, we provide

what we believe to be the most appropriate form for the dependence of the promoter activity on the TF

concentration(s). For each system, we show graphically how the expected form depends on the effective

parameters. We hope to demonstrate how the thermodynamic models can provide a direct link between the

arrangements of interactions in a promoter region and the quantitative characteristics of gene expression.

3.1.1 Quantitative characteristics of activation and repression

Our quantitative discussion focuses on several well characterized bacterial promoters controlled by one or two

species of TFs. We use the results of the thermodynamic model listed in table 2.1 of the preceding chapter

[2]. We make the additional simplifying assumption that the in vivo promoters are weak, so that even at full

activation the equilibrium gene expression is still small (e.g., < 10% of the strongest promoters). Indeed,

for a large number of bacterial promoters, the expression is small in the exponential growth phase when

compared with the expression of the ribosomal genes, for example, which are fully turned on [11]. In this

weak promoter limit, the fold-change in promoter activity (henceforth simply referred to as “fold-change”)

is given directly by the regulation factor (Freg) listed in table 2.1. We will consider two types of activators:

those activators that recruit RNAP to its promoter, and those that stimulate the transition rate of bound

RNAP from a closed to an open complex. Even though the latter is a kinetic effect, its impact on the

overall promoter activity (e.g., transcription initiation rate) can, nevertheless, be effectively described by the

thermodynamic model in the weak promoter limit that we study.
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3.1.2 Simple activation

The simplest example of activation involves the binding of an induced TF to a single operator site, and the

subsequent recruitment of RNAP. This is the case with the lac promoter of E.coli, shown in figure 3.1(A) (in

the absence of the lac repressor). The activating TF is a CRP (cAMP receptor protein) dimer in complex

with the inducer cAMP [12, 13]. We will denote this complex by CRP∗2 and use ∗ to indicate the activated

form of a TF. Case 2 in table 2.1 gives the mathematical form of the expected fold-change for this situation

with [A] = [CRP∗2], and figure 3.1(B) plots its dependence on the induced dimer concentration. The two

parameters of the model are the effective in vivo dissociation constant (KA) between CRP and the operator,

and the enhancement factor (f), which characterizes the degree of stimulation in transcription resulting from

operator-bound CRP. These are readily revealed in a log-log plot of the relative promoter activity against the

cellular concentration of the induced activator, [CRP∗2]. As long as the range of [CRP∗2] probed is sufficiently

broad, one can read the enhancement factor (f) from the graph as the maximal fold-change between full

activation at saturating levels of [CRP∗2] and basal activity at low levels of [CRP∗2]. One can also read off the

effective dissociation constant (KA) as the value of [CRP∗2] at half-activation. The steepness of the transition

region — called the “sensitivity” (or “gain”) in the literature [14] — plays an important role in the function

of genetic circuits. Here, we quantify transcriptional sensitivity by the log-log slope (s) at the mid-point of

the transition region. s ≤ 1 for promoters containing a single operator, and s approaches 1 for only very large

values of f . In contrast, functions such as amplification, bistability or spontaneous oscillation all require

circuit components to have high sensitivity, with a value of s > 1 [8].

3.1.3 Cooperative activation

TFs often have domains that enable interaction with one another when bound to adjacent operator sites,

and this interaction can result in cooperativity in transcriptional activation. The PRM promoter of phage

lambda, shown in figure 3.2(A), is such an example [3]. Binding of the dimeric lambda repressor cI to the

operator OR2 (the “activator” site) stimulates transcription, and binding of cI to the upstream operator

OR1 (the “helper” site) helps to recruit cI to IR2. The expected fold-change (case 3 in table 2.1 with

[A] = [H] = [cI2], KH = KR1 and KA = KR2) depends on the affinities KR1 and KR2 of cI to the two

operators, the cooperative interaction (ω) between the two operatorbound cI dimers, and the enhancement

factor f due to the OR2-bound cI. It is shown in the log-log plot of figure 3.2(B) (thick solid line) as a

function of [cI2]/KR2.

To quantify the possible role of the auxiliary operator OR1, we also plot in figure 3.2(B) the fold-change

for different ratios of KR1 and KR2. Comparing these curves, it is clear that the auxiliary operator OR1
does not change the degree of full activation, given by f. The most significant feature of this dual-activator

system is perhaps the increase in the log-log slope of the transition region (compared with the extreme cases)

for intermediate values of KR2/KR1. In fact, for the realistic parameter of KR2/KR1 ≈ 25 (thick solid line

in figure 3.2(B)), we have a sensitivity of s ≈ 0.93. This is close to the maximum attainable for this system,
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Figure 3.1: Simple activation. (A) Cis-regulatory architecture for transcriptional activation involving a
single CRP operator, as found in the lac operon. The yellow box denotes the operator site and the blue
box corresponds to the promoter. The DNA-binding affinity of the transcription factor for its operator
is described by the in vivo dissociation constant KA, which is the TF concentration at which the operator
occupancy is half-maximal. The activator recruits RNAP through protein-protein interactions (schematically
drawn as interacting protein subunits). (B) log-log plot of the fold-change in gene expression as a function of
the induced CRP dimer concentration, [CRP∗2]. The maximum log-log slope in the transition region, which is
defined as the sensitivity (s), is highlighted with the dashed line and is equal to 0.75. This plot was generated
using KA = 5 nM, f = 50. These parameter values were estimated from experiments similar to those of
Setty et al. [15], who measured β-galactosidase activity as a function of extracellular cAMP concentration
in E. coli MG1655 cells, but with the additional deletion of the cyaA gene which encodes adenyl cyclase [16].
The enhancement factor obtained is consistent with that of others [17]. The estimated value of the effective
dissociation constant KA is dependent on the literature values for several biochemical parameters concerning
cAMP binding and transport, and is not expected to be accurate to within a factor of 2. (For comparison,
previous in vitro measurement of the CRP-operator affinity has ranged from 0.001 nM to 50 nM depending
on the ionic strength of the assay [18–20].)
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with its small enhancement factor (f ≈ 11), and is nearly double the maximum sensitivity (s ≈ 0.54) for

the promoter with OR2 only (thin solid line in figure 3.2(B). For TFs with larger values of ω and f , this

cis-regulatory construct can, in principle, provide more sensitivity, with s approaching 2.

The same cis-regulatory design can be used to implement co-activation — one of the simplest forms of

signal integration — if the two operators are targets of two distinct TF species. A possible example of this

is the variant of E. colis melAB promoter studied by Wade et al. [21] (see figure 3.3(A), where transcription

is stimulated by an induced MelR dimer bound to the weak proximal operator, O2. Meanwhile, CRP bound

to the upstream operator O1 helps recruit MelR but does not directly participate in activation. Assuming

that the induction of MelR by melibiose results in an increase in MelR-operator binding affinity, we expect

the form of the co-dependence to be given by case 3 in table 2.1, but with [A] = [MelR∗2], [H] = [CRP∗2]

and KH = K1, KA = K2. The fold-change is plotted against the induced CRP concentration on the log-log

plot of figure 3.3(B) for different concentrations of the induced MelR. To better visualize the co-dependence

on CRP and MelR, it is useful to plot the fold-change as a three-dimensional plot; see figure 3.3(C). The

transition region (the yellow band) is clearly dependent on both TFs. Consider a simplified situation where

CRP and MelR can each take on two possible concentrations a pair of “low” and “high” values. Then it

is possible to choose the pair of concentrations (e.g., those marked by the 4 open circles in figure 3.3(C))

such that the fold-change is large (the green region) only when both concentrations are high. This mimics a

logical AND function of the two inputs [22]. It is also possible to choose the pair of concentrations as marked

by the four solid circles such that the fold-change is large (the green region) unless both concentrations are

“low”. The latter choice mimics a logical OR function. The flexibility of this cis-regulatory scheme makes

the shape of the fold-change readily evolvable [23] (e.g., between the AND/OR functions) by merely altering

the operator sequences that encode the values of K1 and K2.

3.1.4 Synergistic activation

An alternative mechanism for co-activation is synergistic or dual activation [27–29], where two operator-

bound TFs can simultaneously contact different subunits of RNAP and activate transcription. This mech-

anism is limited to TFs that can activate transcription at different locations relative to the core promoter.

Prominent examples of such synergistic activation in the bacterial literature [27–33] all involve the activator

CRP because it can recruit RNAP from multiple locations at varying distances upstream of the promoter

[10, 34].

The synthetic promoter studied by Joung et al. [29] contained two operators: one for cI proximal to

the core promoter (O2) and the other for CRP at an upstream operator (O1) (see figure 3.4(A)). The data

from the study by Joung et al. support the model where each operator-bound activator can independently

interact with RNAP and enhance transcription [29]. The expected fold-change is given by case 8 in table

2.1 (with [A1] = [CRP∗2], [A2] = [cI2], KA1 = K1, KA2 = K2 and ω = 1) and shown in the log-log plot of

figure 3.4(B) as a function of [CRP∗2] for various cI concentrations. Note that, since ω = 1, the dependence
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Figure 3.2: Enhanced sensitivity by cooperative activation. (A) Cis-regulatory architecture for cooperative
transcriptional activation in phage lambda PRM promoter. Here, we are considering PRM alone without
the upstream PR promoter [3] or the upstream PL region, which affects PRM activity through DNA looping
[24]. We also neglect the operator OR3, which has very weak affinity to cI in the absence of PL [24]. The
yellow boxes denote the operator sites OR1, OR2 and the blue box corresponds to the promoter. The DNA-
binding affinity of cI2 for OR1 and OR2 is described by the dissociation constants KR1 and KR2, respectively.
The activator stimulates transcription and cI dimers interact with one another through intimate, cooperative
interactions, both of which are indicated by overlapping protein-protein domains. (B) log-log plot of the
fold-change in gene expression as a function of cI2 concentration for different ratios of KR2/KR1. The
maximum log-log slopes (s) for the different curves are listed in the legend. The promoter with KR2/KR1 = 0
corresponds to a deletion of OR1, and the regulation function for this case (thin solid line) is identical to
the single operator case shown in figure 3.1. If this promoter has a very small KR1 (i.e., strong OR1), then
the onset of full activation will be shifted to smaller cI concentrations (dotted line). The latter corresponds
effectively to a stronger OR2 site, with dissociation constant KR2/ω. These plots are generated using f ≈ 11
[25] and ω ≈ 100 [26] as extracted from in vitro biochemical studies. The absolute in vivo values of the K
values are not known (which is why the concentration is expressed in terms of [cI2]/KR2). However, the
ratio KR2/KR1 ≈ 25 (thick solid line) can be deduced from the in vitro results [26]. The transition region
is steepest when v � f and KR2/KR1 ≈ f . We note that the parameters for PRM are nearly optimal for
enhanced sensitivity.
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Figure 3.3: Cooperative co-activation. (A) Cis-regulatory construct for co-activation by CRP and MelR. The
figure shows the truncated JK15 version of melAB promoter studied by Wade et al. [21]. The full melAB
promoter is more complicated due to the presence of multiple MelR operators. However, the co-activation
pattern is similar to that of JK15 discussed here. The yellow boxes denote the operator sites O1, O2 and
the blue box corresponds to the promoter. The DNA-binding affinity of CRP2 for O1 and MelR2 for O2

is described by the dissociation constant K1 and K2, respectively. MelR can recruit RNAP (drawn with
proteinprotein contacts) and cooperative interaction between MelR2 and CRP2 is indicated by interacting
protein subunits. (B) log-log plot of the fold-change in gene expression as a function of activated CRP
dimer concentration [CRP∗2] for different activated MelR dimer concentrations [MelR∗2]. Since none of the
parameters f , ω, and K values have been determined experimentally, the scales of the plot can only be
expressed relative to these parameters. Nevertheless, the plot reveals important qualitative predictions by
the thermodynamic model (e.g., the dependence of the maximal CRP-dependent fold-change on the MelR
concentration). (C) Three-dimensional log-log plot of the fold-change in gene expression as a function of
both CRP2 and MelR2. For different choices of “high” and “low” concentration (the four combinations of
“high/low” for these two TFs form a rectangle), the same melAB promoter can serve as an OR function
(solid circles) or an AND function (open circles).
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Figure 3.4: Synergistic co-activation. (A) Cis-regulatory architecture for synergistic co-activation in synthetic
promoters [29]. The yellow boxes denote the operator sites O1, O2 and the blue box corresponds to the
promoter. The DNA-binding affinity of CRP2 for O1 and cI2 for O2 is described by the dissociation constants
K1 and K2, respectively. Each activator can independently interact with RNAP and enhance transcription
at different strengths f1, f2 (as shown with interacting protein-protein subunits). (B) log-log plot of the fold-
change in gene expression as a function of [CRP∗2] for different concentrations of [cI2]. (C) Three-dimensional
log-log plot of the fold-change in gene expression as a function of both CRP2 and cI2. Note that on log scale,
the product appears as an additive shift.

of gene expression on [CRP∗2] is independent of [cI2], except for an overall vertical shift. This is a reflection

of the multiplicative nature of independent synergistic activation. An alternative way of visualizing the same

result is the three-dimensional plot of figure 3.4(C).

In another experiment by Joung et al. [27], both the proximal site (O2) and the distal site (O1) were

engineered to bind CRP (see figure 3.5(A), left). An important result of these experiments was that the

fold-change with both CRP operators is larger than the product of the fold-changes with one operator alone.

This is not consistent with the independent recruitment assumption and suggests additional cooperativity

(ω > 1). A possible mechanism proposed by Joung et al. is that DNA bending (see figure 3.5(A), right)

induced by the CRP bound to the proximal operator O2 facilitates the upstream CRP interaction with

RNAP, without any direct protein-protein interaction between the two TFs. This cooperative effect can be

included in the thermodynamic model as shown in case 8 of table 2.1 (with [A1] = [A2] = [CRP∗2], KA1 = K1,

KA2 = K2 and ω > 1) regardless of the specific molecular mechanism. Similar to the case of activation by

cI, the expression level is most sensitive when the K values for the two binding sites are equal. In figure

3.5(B), we plot the expected fold-change, with K1 = K2 and different values of ω. The extra cooperativity

increases both the enhancement factor (ω × f1 × f2) and the sensitivity (s) of the transition region.
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Figure 3.5: Enhancement of sensitivity by synergistic activation. (a) To the left is the cis-regulatory archi-
tecture for synergistic activation by the same TF in synthetic promoters [27]. The yellow boxes denote the
operator sites O1, O2 and the blue box corresponds to the promoter. The DNA-binding affinity of CRP2 for
O1 and O2 is described by the dissociation constants K1 and K2, respectively. Activators at each operator
can recruit RNAP independently at different strengths f1, f2 (as shown with interacting proteinprotein sub-
units). As illustrated to the right, the binding of CRP to proximal O2 bends DNA and facilitates the bent
interaction of RNAP to CRP bound at upstream O1. (b) log-log plot of the fold-change in gene expression
as a function of [CRP∗2] for equal dissociation constants (K1 = K2). We have included the additional co-
operativity ω that can occur when the binding of CRP to O1 promotes the interaction of RNAP to CRP
bound at O2. The additional cooperativity simultaneously increases the maximal fold-change to ω× f1× f2

and enhances the transcriptional sensitivity in the transition region.
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3.1.5 Simple repression

The simplest example of repression involves the binding of a TF to a single operator site that interferes with

the binding of RNAP to the core promoter. This is the case in the truncated lac promoter (e.g., lacUV5)

which has only the main operator, Om, of LacI located closely downstream of the core promoter (figure

3.6(A)) [35]. The expected fold-change is given by case 1 of table 2.1, with [R] = [LacI4], KR = Km and only

one unknown parameter, Km, characterizing the effective dissociation constant of the operator Om. Here, it

is possible to compute Km [36] directly from the experimental data of Oehler et al. [35], because the cellular

concentration of LacI was quantified. In fact, because Oehler et al. characterized gene expression at two

distinct LacI concentrations, the two data points can be used to check the consistency of the thermodynamic

model.

This analysis was performed for the three lac operator sequences O1, O2 and O3 studied in [35] (results

shown in figure 3.6(B)). We note that the Km values obtained, K1 ≈ 0.22 nM, K2 ≈ 2.7 nM and K3 ≈

110 nM for the three operators, are significantly different from, for example, the results K1 ≈ 10−3 nM,

K2 ≈ 10−2 nM and K3 ≈ 0.016 nM to 1 nM obtained from in vitro assays [37–39]. These results underscore

the fact that the relevant TF-operator binding constant for the thermodynamic model is not given by the

in vitro measurement — even if the appropriate physiological conditions are used — but must be corrected

for by considering the interaction of the TF with the genomic background [2, 40]. Consistent with the

theoretical expectation, the ratios of the K values are in reasonable agreement between the in vivo and the

in vitro results. We note also that the expected range of promoter activities is much larger than those for the

activator-controlled promoters described above. This follows from the strong excluded volume interaction

between the repressor and RNAP, such that more repressor proteins generally lead to stronger repression;

whereas in activation more activator protein does not lead to more activation beyond the enhancement factor

(f), which is set by the weak activatorRNAP interaction.1 By contrast, the sensitivity is still limited to

s ≤ 1 with a single operator site.

3.1.6 Repression by DNA looping

For the wild-type lac promoter, the degree of repression exceeds 1000-fold with only ∼ 10 repressor molecules

in a cell [13]. This is substantially larger than the< 100-fold repression achievable by the best of the truncated

promoters (figure 3.6) at the same repressor concentration. The additional repression is facilitated by the

stabilization of the Om-bound Lac tetramer, which can simultaneously bind to an auxiliary operator Oa

through DNA looping (see figure 3.7(A)). The wild type lac promoter has two such auxiliary operators: O2

located 401 bases downstream and O3 located 92 bases upstream. We describe the simpler case studied

experimentally by Oehler et al. [35], which involves only repression and looping between the main operator,

Om, and the downstream auxiliary operator, O2. The expected fold-change is given by case 9 of table 2.1,
1Not discussed here is a lower plateau of promoter activity for saturating amounts of repressor, sometimes referred to as

promoter leakage. Such leakage could result, for example, from the passage of the replication fork through a tightly repressed
promoter, leading to basal transcription activity.
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affinity of LacI4 for Om is described by the dissociation constant Km. (b) log-log plot of the fold-change
in gene expression as a function of LacI4. Here, the repressor concentration shown on the horizontal axis
refers to the cellular LacI tetramers in the absence of inducers. The experiments of Oehler et al. [35]
used the operator sequences O1, O2, O3 at position Om and measured fold-repression at two different LacI
concentrations (50 nM and 900 nM); the data are shown as circles. The expected form of the fold-changes
are plotted as the solid, dotted and dashed lines as indicated in the legend. The value of Km for each curve
(see legend) is determined by fitting one of the two data points. The fact that the other data point lies
closely on the curve supports the applicability of the thermodynamic model to this promoter.
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with [R] = [LacI4].

Given that the three K values are already determined (see figure 3.6(B)), there is only one unknown

parameter in this case in the form for the fold-change (case 9 of table 2.1). This is [L], the effective

concentration of repressors that are made available, as a result of DNA-looping, for binding to one of the two

operators. This looping is itself caused by the binding of a repressor to the other operator. Oehler et al. [35]

did experiments with the main operator, Om, substituted for one of the three operator sequences (O1, O2

and O3), each for two concentrations of LacI. The results of all six experiments are described consistently

by the expected fold-changes according to the thermodynamic model (see figure 3.7(B)), with [L] ≈ 660 nM

[36].

Quantitatively, the strong repression effect (compare figure 3.6(B) and figure 3.7(B)) results directly from

the large value of [L] generated by DNA looping, which amplifies the effective concentration of one operator-

bound repressor 660-fold. This enhancement of the local repressor concentration is a result of the linkage

between Om and Oa, as already described qualitatively elsewhere [35, 41]. Intuitively, once a LacI tetramer

binds to one of the two operators, it is available within a small volume for binding to the other. The actual

value of [L] is clearly dependent on the spacing between the two operators, in addition to the energetics

of bending the DNA backbone. We have deduced the dependence of [L] on operator spacing (shown in

figure 3.7(D)) by analyzing the data of Müller et al. [42], who measured the fold-changes in repression for

promoter constructs with different spacing between the main and auxiliary operators (see figure 3.7(C)). In

figure 3.7(C), we also show the predicted transcriptional fold-changes for the same constructs of Müller et

al. [42], but at different LacI concentrations.

3.1.7 Cooperative repression

Interaction between the TFs can also enhance the sensitivity in transcriptional repression. The PR promoter,

which controls the expression of cro in phage lambda (illustrated in figure 3.8(A)), is a good example of this

mode of repression [3]. When bound to either OR1 or OR2, the lambda repressor, cI, blocks the access

of RNAP to the core promoter, thereby repressing transcription. The combined effect of two repressive

operators, reinforced by the cooperative interaction between the operator-bound cIs, results in both further

repression and enhanced sensitivity. The expected form of fold-change is given by case 6 in table 2.1

([R1] = [R2] = [cI2]) and plotted in figure 3.8(B). Maximum log-log (i.e., sensitivity) in repression is the

largest when KR1 and KR2 are equal. Similar schemes have been generalized for co-repression by two species

of repressors [43–45], and can be used to mimic the logical NAND function [22].

In fact, enhanced sensitivity in repression does not require direct interaction between the repressor

molecules. An example is the PLtetO-1 promoter [46], which contains two operators of TetR; see figure

3.8(C). The expected form of the fold-change is given by case 5 in table 2.1, with [R1] = [R2] = [TetR∗2],

and KR1 = K1, KR2 = K2. By appropriately decreasing K1 and K2, it is possible to make the activity

of this promoter (not shown) nearly identical to that represented by the solid line in figure 3.8(B) (i.e.,
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Figure 3.7: Repression by DNA looping. (A) Cis-regulatory layout for looping and repression in the lac
promoter experiments of Oehler et al. [35]. Yellow boxes are operators and the blue box is the promoter.
LacI tetramer bound at the main operator Om interferes with RNAP binding to the promoter, and this
is indicated by the overlap (green box) between the promoter and the operator. This binding is further
stabilized if the other two legs of the tetramer bind at Oa through DNA-looping. (B) log-log plot of the
fold-change in gene expression as a function of LacI4 concentration for different constructs where Om is
replaced by O1, O2, or O3 and Oa is O2. The curves are generated by plotting case 9 of table 2.1 using
the appropriate dissociation constants shown in figure 3.6 for each pair of operators involved. Note that the
six data points (shown with circles) can all be brought into agreement with the expected form (the lines)
by the choice of a single parameter, the available LacI4 concentration [L] due to looping. The best-fit value
obtained is [L] ≈ 660 nM. (C) Loglinear plot of the transcriptional fold-change as a function of distance D
between O1 (located at position Om) and an auxiliary operator Oid located upstream of the promoter, for
various repressor concentrations. The data of [42] (filled circles) are fitted to the transcriptional fold-changes
expected for looping (solid line) using [LacI4] = 50 nM and values of K1 ≈ 0.27 nM and Kid ≈ 0.05 nM
determined from the data of [35]. The fitting function is the dependence of the available concentration due to
looping, [L], on the operator spacing D. We use the form [L] = exp(−a/Db ln(D) + c×D+ e) motivated by
the worm-like chain model of DNA bending [48]. The other lines correspond to the predicted gene expression
of the same constructs at different LacI concentrations as indicated in the legend. (D) Log–linear plot of [L]
versus D obtained from the fit described in (C), with a = 140.6, b = 2.52, c = 1.4× 10−3, e = 19.9.
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Figure 3.8: Enhanced sensitivity by dual repression. (A) Cis-regulatory architecture for cooperative tran-
scriptional repression in phage lambda PR promoter. The yellow boxes denote the operator sites OR1, OR2

and the blue box corresponds to the promoter. Repression is indicated by the overlap (green box) between
the promoter and operator. The cooperative interaction between bound cI2 at operators OR1 and OR2 is
given by ω (protein-protein contacts). (B) log-log plot of the fold-change in gene expression as a function of
cI2 concentration for two different values of KR2/KR1. At high repressor concentrations, the maximum log-
log slope(s) for all the curves is equal to 2 with the exception of KR2/KR1 = 0 (i.e., deletion of OR1) where
the maximum log-log slope is equal to 1. The latter case corresponds to a single repressive site, OR2 (see
figure 3.6). This plot was generated using ω ≈ 100, and KR2/KR1 ≈ 25 extracted from in vitro biochemical
studies [26]. The absolute in vivo values of the K values are unknown, which is why our concentration is
expressed in terms of [cI2]/KR2. (c) Cis-regulatory architecture for transcription repression in PLtetO-1
promoter engineered by Lutz and Bujard [46]. Note that there is no cooperative interaction between the
TetR dimers. The log-log plot of fold-change of PLtetO-1 promoter is similar to that of phage lambda PR
with a maximum log-log slope equal to 2.

with the steepened slope) even though the TetR dimers do not contact each other physically. The enhanced

sensitivity is expected here because of the “collaborative” nature of repression — the occupation of either

operator is sufficient to block RNAP from the core promoter, leaving the other operator site available for

binding for “free” [47]. We expect that a similar construct where the two operators are targets of different,

non-interacting TFs would implement co-repression. Comparing the activating and repressive modes of tran-

scription control, we find repressive control to be advantageous because high sensitivity can be generated

by TFs without the need of TFTF interaction, and fold changes are not limited by the magnitude of the

(typically weak) TFRNAP interaction [48].

3.1.8 Phenomenological model of transcription control

The mathematical description for the different activation and repression mechanisms discussed above can

be summarized by very simple forms. For a single TF species with up to two operators in the cis-regulatory
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region, all of the fold-changes described in table 2.1 can be compactly represented by the general form

Freg([TF ]) =
1 + a1[TF ] + a2[TF ]2

1 + b1[TF ] + b2[TF ]2
. (3.1)

Similarly, for co-regulation by two TFs with cellular concentrations, [TF1] and [TF2], and for no more than

one operator each in the regulatory region, the foldchange has the form

Freg([TF1], [TF2]) =
1 + a1,0[TF1] + a0,1[TF2] + a1,1[TF1]× [TF2]
1 + b1,0[TF1] + b0,1[TF2] + b1,1[TF1]× [TF2]

. (3.2)

The general forms in equation 3.1 and equation 3.2 include many possible mechanisms of activation and

repression not discussed above. If 3 binding sites for the TF are involved in the regulatory process, then

equation 3.1 or equation 3.2 would be generalized to the ratio of third-degree polynomials of the [TF ]s.

The above analysis indicates that, by quantitatively measuring the fold-change as a function of the

activated TF concentration(s), we can achieve two important goals: (i) by fitting experimental results to

an expression such as equation 3.1 or equation 3.2, one would obtain a quantitative characterization of

the promoter at all TF concentrations, but with only a few (e.g., four or six) parameters. This can be

done regardless of the validity of the thermodynamic model itself. As discussed previously, the compact

description will facilitate quantitative higher-level study of gene circuits. (ii) By comparing the values of

these parameters to the expected forms according to the thermodynamic model (e.g., table 2.1), one can

generate hypotheses on the likely mechanisms of transcriptional control for further experiments. Thus, the

form of the fold-change in gene expression itself can be an effective diagnostic tool to distinguish subtle

mechanisms of transcriptional control.

3.2 Conclusions

We have illustrated a variety of promoter activities implemented in different cis-regulatory designs. Also

illustrated are important functional differences (e.g., in transcriptional cooperativity, and in the nature of

combinatorial control) among promoters characterized by different parameters of the same cis-regulatory

construct. These differences often cannot be discriminated by the qualitative characterization of promoter

activity predominantly practiced in molecular biology today (e.g., fold-change in gene expression caused

by deletion of a regulatory protein). Instead, they call for more quantitative characterization, particularly

the quantification of the TF concentrations or their relative concentrations, controlling promoter activity.

The reward of quantitative characterization includes a compact phenomenological description of promoter

activity for higher-level analysis and the elucidation of unknown mechanisms of transcriptional control.
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Chapter 4

DNA Looping and Gene Regulation:
The Physics of Biological Action at a
Distance

This chapter is the reproduction of a manuscript to be submitted to Physical Biology shortly.

DNA looping is a ubiquitous regulatory motif in bacteria where a transcription factor can bind to multiple

sites on the DNA that are often hundreds of base pairs apart. Over the past several decades a set of fascinating

quantitative experiments have been performed on DNA looping in the context of the lac operon. We use

thermodynamic models of transcriptional regulation to systematically dissect such experiments leading to

the quantification of the looping free energy cost paid in these configurations. We explore the consequences

of this parameter both in the context of the lac operon and raise questions about the canonical view of DNA

looping as a means to reduce fluctuations in gene expression. We also show that the looping free energy is

a transferrable parameter that can be extracted from one experiment in order to generate predictions about

another. By combining the looping free energy as a measure of the mechanical properties of DNA with

simple polymer models we set bounds on the in vivo effective mechanical properties at length scales between

100 bp and 1 kbp, showing that it can be thought of in terms of simple excluded-volume polymer models. By

taking into account the contribution of non-specific looping to the in vivo looping free energy we are able to

compare the results of in vivo and in vitro experiments explicitly. We conclude that our current mechanical

understanding of protein-DNA looping cannot account for the much higher DNA flexibility observed in vivo

with respect to in vitro and suggest a new round of experiments to shed light on this issue. This work can

serve as the basis of a systematic characterization of more complex regulatory motifs within the framework

of thermodynamic models of transcriptional regulation.

4.1 Introduction

Transcriptional regulation is one the most common ways in which cells make decisions about the level of

expression of their genes. This regulation is carried out by a variety of transcription factors, proteins that
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bind to DNA and interact with RNA polymerase (RNAP) by either inhibiting or enhancing its ability to

bind the promoter [1]. It is amusing that in the two celebrated examples of transcriptional decision making

which led to the formulation of the operon concept, the λ switch and the lac operon, DNA looping plays

a crucial role [2, 3]. In DNA looping, transcription factors bind to two sites on the DNA simultaneously

looping the intervening DNA [4, 5]. The mechanical properties of the DNA can therefore play an active role

in the regulation of the level of gene expression.

The role of DNA mechanics in decision making is not limited to bacteria. There is an increasing body

of evidence that points to the role of the physical properties of DNA in eukaryotes. On long length scales,

elements that are thousands of base pairs away from each other on the DNA communicate to regulate

transcription [6, 7]. These long range interactions can be measured directly on a genome-wide scale [8, 9].

The physical state of the DNA has also even been suggested to be involved in the maintenance of epigenetic

states [10]. The majority of our knowledge about the mechanical state of the DNA inside the cell comes from

techniques that give access to length scales of a kbp and beyond [8, 11]. However, there is limited information

for lengths scales shorter than 1 kbp. These length scales are precisely those that are accessed by DNA looping

in transcriptional regulation in bacteria and are also relevant in the context of, for example, nucleosomal

positioning. There is increasing evidence that nucleosome positioning is encoded by the mechanical properties

of the DNA that is wrapped around the histone octamer [12]. However, the subject of strongly bent DNA

remains a source of controversy [13, 14].

In this paper we examine the role of DNA looping in transcriptional regulation. We do this by inves-

tigating repression by DNA looping using the lac operon as a particular case study. One of the regulators

of this operon is the Lac repressor (LacI). This repressor has two binding heads, allowing it to bind to two

DNA sites several hundreds of base pairs away from each other simultaneously. We use thermodynamic

models of transcriptional regulation as the tool to dissect this DNA looping motif. These models have a

rich history in quantitatively describing transcriptional regulation (for reviews see [1, 15]). DNA looping

has been addressed in the context of these models on multiple occasions allowing for a connection between

the level of gene expression and microscopic parameters that are directly related to the in vivo mechanical

properties of DNA [1, 16–20].

The logic behind our approach is to analyze increasingly complex promoter architectures, starting with

the case of simple repression where there is only one repressor binding site. At each stage in the analysis we

will use parameters obtained from the previous simpler architecture. As a result, when analyzing complex

systems regulated by DNA looping, the only free parameter that remains will be the looping free energy

itself.

The remainder of the paper is organized as follows. First, we analyze simple repression by Lac repressor

in the absence of DNA looping. This will allow us to build up key concepts such as the energetics of its

binding to DNA and the nature of the non-specific reservoir. With these concepts in hand, we explore the

theoretical implications of repression by DNA looping in the lac operon through the prism of our models. We
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show that the obtained looping free energy is more than a fitting parameter by using it as a tool to generate

predictions. Finally, we analyze experiments on lac operon mutants as a way to access the in vivo mechanical

properties of DNA at length scales spanning from single base pairs to 1 kbp. The paper culminates with a

direct comparison of our current best knowledge about the mechanics of DNA looping in vivo and in vitro

that is only possible through the quantification of the contribution of non-specific sites to the in vivo looping

free energy. This comparison shows significant differences between the two contexts suggesting a new round

of quantitative and systematic experimentation.

4.1.1 Lac repressor and the lac operon

The Lac repressor is a tetramer built of identical dimeric subunits. Each of these subunits has a DNA binding

head [21] which can bind to DNA independently [3, 22]. Its in vivo mode of repression is thought to occur by

sterically excluding RNAP from the promoter [23]. As a result, a loop is not required to achieve repression.

The lac operon has three binding sites, or operators, for its repressor (O1, O2 and O3, with their binding

affinities decreasing in that order) and one binding site for its activator, CRP. In figure 4.1a we present the

architecture of the lac promoter (for a review and very interesting history of the lac operon see [3]).

Distal, or auxiliary, sites like O2 or O3 do not exert any significant effect on gene expression in the

absence of O1 [24]. However, cooperativity between the proximal and distal operators is obtained through

the simultaneous binding of Lac repressor to the main site and one of its auxiliary partner sites, which have

to be brought together to each of the binding heads by looping the intervening DNA [3]. The contribution of

DNA looping to repression in the lac operon can be readily observed by measuring changes in gene expression

in constructs that delete and mutate different combinations of operators [22, 24], change the concentration

of transcription factor [22] and change the spacing between operators [16, 25, 26].

We build our models using experimental data based on simplified constructs like that shown in figure

4.1b. In this case, only the main operator is present. We use the thermodynamic formalism to obtain in

vivo binding energies of Lac repressor to each one of it operators. These energies will be then used as known

parameters when addressing the more complex case of transcriptional regulation by DNA looping.

4.2 Simple repression by Lac repressor

We begin by formally introducing thermodynamic models of transcriptional regulation in bacteria. From

there we move on to dissecting the case of simple repression, where only one binding site for the repressor

is present. Similar formalism to that presented here have also been applied to simple repression by Lac

repressor in [18, 20, 27]. We first consider the simpler case of a repressor with only one binding head. It is

convenient that dimeric mutants of Lac repressor with such characteristics do exist [24]. We next consider

simple repression by Lac repressor tetramers, which will lead us to consider subtleties such as the role of the

extra binding head in simple repression. The analysis in this section will culminate in the determination of
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Figure 4.1: Architecture of the wild-type lac operon and engineered versions relevant to the models in this
paper. (A) Distances between the binding sites for the molecular agents in the wild-type lac operon. (B)
Simplified construct with only a Lac repressor main operator, Om, present used by Oehler et al. [22] and
Becker et al. [26]. (C) Looping construct with a main operator and an auxiliary operator Om and Oa,
respectively, used by Müller et al. [25] and Becker et al. [26].

the in vivo binding energies of Lac repressor to its different binding sites. As a result only the looping free

energy will remain as an unknown when addressing repression by DNA looping.

A significant part of this section is a reproduction of the Supplementary Information in [28].

4.2.1 Thermodynamic models of transcriptional regulation

Thermodynamic models of transcriptional regulation are based on computing the probability of finding RNA

polymerase (RNAP) bound to the promoter and how the presence of transcription factors (TFs) modulates

this probability. These models and their application to bacteria are reviewed in [1, 15]. These models make

two key assumptions. First, they assume that the processes leading to transcription initiation by RNAP are

in quasi-equilibrium. This means that we can use the tools of statistical mechanics to describe the binding

of RNA polymerase and TFs to DNA. Second, they assume that the level of gene expression is proportional

to the probability of finding RNAP bound to the corresponding promoter.

We start by analyzing the probability that RNAP will be bound at the promoter of interest in the absence

of any transcription factors. We assume that the key molecular players (RNAP and TFs) are bound to the

DNA either specifically or non-specifically. In particular, this question has been addressed experimentally

in the context of RNAP [29] and the Lac repressor [30, 31] our two main molecules of interest in this

paper. Experiments demonstrate that the reservoir for RNAP is the background of non-specific sites. In

order to determine the contribution of this reservoir we sum over the Boltzmann weights of all the possible
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configurations. For P RNAP molecules inside the cell with NNS non-specific DNA sites one finds

ZNS(P ;NNS) =
NNS !

P !(NNS − P )!
e−βε

NS
pd ' NP

NS

P !
e−βε

NS
pd , (4.1)

where β = 1/kBT . The factor of NNS !/[P !(NNS−P )!] in the previous expression accounts for all the possible

configurations of RNAP in the reservoir. This is shown diagrammatically in figure 7.6. The second factor

assigns the energy of binding between RNAP and non-specific DNA, εNSpd , and as a theoretical convenience

that may have to be revised in quantitatively dissecting real promoters, is taken to be the same for all

non-specific sites. A more sophisticated treatment of this model to account for the differences in the non-

specific binding energy has been addressed by [32]. Finally, the last expression corresponds to assuming that

NNS � P , a reasonable assumption given that the E. coli genome is approximately 5 Mbp long and that

the number of σ70 RNAP molecules, the type of RNAP we are interested in for the purposes of this paper,

is on the order of a thousand [33].

We calculate the probability of finding one RNAP bound to a promoter of interest in the presence of this

non-specific reservoir. Two states are considered: either the promoter is empty and P RNAPs are in the

reservoir or the promoter is occupied leaving P − 1 RNAP molecules in the reservoir. The corresponding

total partition function is

Z(P ;NNS) = ZNS(P ;NNS)︸ ︷︷ ︸
Promoter unoccupied

+ e−βε
S
pdZNS(P − 1;NNS)︸ ︷︷ ︸
Promoter occupied

, (4.2)

where we have now defined εSpd as the binding energy between RNAP and the promoter. The probability of

finding the promoter occupied, pbound, is then

pbound(P ) =
e−βε

S
pdZNS(P − 1;NNS)

ZNS(P ;NNS) + e−βε
S
pdZNS(P − 1;NNS)

=
1

1 + NNS
P eβ∆εpd

, (4.3)

with ∆εpd = εSpd− εNSpd , the difference in energy between being bound specifically and non-specifically. With

this framework in hand we can now turn to addressing regulation by Lac repressor through simple repression.

4.2.2 Simple repression by Lac repressor dimers

As for polymerase, we invoke the assumption that the reservoir for dimeric Lac repressor is the non-specific

DNA. This assumption is supported by experimental evidence [30, 31]. Our aim is to examine all of the

different configurations available to P RNA polymerase molecules, R LacI dimers and NNS non-specific sites.

If the binding energy of RNAP and the LacI head to non-specific DNA are εNSpd and εNSrd , respectively, the
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RNAP
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P polymerases to distribute in                    ways

NNS boxes

NNS!

P! (NNS-P)!

Figure 4.2: Model for the RNA polymerase reservoir. The non-specific sites on the genome are assumed to
be the reservoir for RNAP. Different arrangements of RNAP in this reservoir are shown.

non-specific partition function becomes

ZNS(P,R2) =
NP
NS

P !
e−Pβε

NS
pd︸ ︷︷ ︸

ZNS(P )

(NNS)R2

R2!
e−R2βε

NS
rd︸ ︷︷ ︸

ZNS(R2)

, (4.4)

where we have assumed that both LacI dimers and RNAP are so diluted in the reservoir that they do not

interact with each other. We use the notation R2 with the subscript 2 as a reminder that we are describing

Lac repressor dimers.

This model assumes three distinct classes of microscopic state for the promoter: 1) promoter unoccupied,

2) one RNAP taken from the reservoir and placed on the promoter and 3) a LacI dimer taken from the

reservoir and placed on the operator. In this scheme, Lac repressor and RNAP cannot be found on the

promoter simultaneously [23]. These states and their corresponding normalized weights, which we derive

below, are shown in figure 7.7(A). The total partition function is

Ztotal(P,R2) = ZNS(P,R2)︸ ︷︷ ︸
promoter free

+ ZNS(P − 1, R2)e−βε
S
pd︸ ︷︷ ︸

RNAP on promoter

+ ZNS(P,R2 − 1)e−βε
S
rd︸ ︷︷ ︸

LacI dimer on Om

, (4.5)

where εSpd and εSrd are the binding energies of RNAP and a Lac repressor head to their specific sites,

respectively. We factor out the term corresponding to all molecules present in the reservoir and define

∆εpd = εSpd − εNSpd and ∆εrd = εSrd − εNSrd as the energy gain of RNAP and dimeric LacI when switching

from a non-specific site to their specific sites, respectively. The probability of finding RNAP bound to the

promoter is given by

pbound =
P

NNS
e−β∆εpd

1 + P
NNS

e−β∆εpd + R2
NNS

e−β∆εrd
. (4.6)

This expression can be rewritten as

pbound =
1

1 + NNS
P ·Freg(R2)e

β∆εpd
, (4.7)
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where we have defined the regulation factor

Freg(R2) =
1

1 + R2
NNS

e−β∆εrd
. (4.8)

Notice that in the absence of repressor (R2 = 0), pbound reduces to equation 7.8. The regulation factor

can be seen as an effective rescaling of the number of RNAP molecules inside the cell [15].

Though determining the probability of promoter occupancy is interesting, it is not necessarily the most

natural quantity to measure experimentally. Relative levels of gene expression are often measured instead

by characterizing the concentration or activity of a reporter protein or by measuring changes in its mRNA

concentration. The fold-change in gene expression is defined as the ratio of reporter produced in the presence

of the transcription factor (repressor in this case) relative to the amount of reporter produced in the absence

of the transcription factor. It is important to note here that we are defining the fold-change with respect to

the presence and absence of the transcription factor itself and not with respect to the presence and absence

of an inducer, a definition that is much more common mainly for its experimental ease.

One of the key assumptions in the thermodynamic class of models is that the level of gene expression is

linearly related to pbound. This allows us to equate the fold-change in gene expression to the fold-change in

promoter occupancy

fold-change(R2) =
pbound(R2 6= 0)
pbound(R2 = 0)

. (4.9)

If we substitute p as shorthand for P
NNS

e−β∆εpd in the expression for pbound, we find

fold-change(R2) =
p+ 1

p+ 1
Freg(R2)

. (4.10)

The fold-change becomes independent of the details of the promoter in the case of a weak promoter, where

p� 1, 1
Freg(R2) , which permits us to write the approximate expression

fold-change(R2) ' FReg(R2) =
(

1 +
R2

NNS
e−β∆εrd

)−1

. (4.11)

In this work we consider two closely related promoters: the wild-type lac promoter and a mutant lacUV5

promoter [25]. In the case of the lac promoter if one considers in vitro binding energies of RNAP to the

promoter, p has the approximate value ∼ 10−3 [15]. For the lacUV5 promoter used in some of the experiments

analyzed in this work the p is expected to be of order 0.1 or smaller [28].

The expression in equation 7.16 relates the fold-change in gene expression to two inputs that can be

controlled experimentally: the binding energy of the operator and the cellular concentration of Lac repressor.

Oehler et al. [22] created different constructs where several values of these two “knobs” were characterized.

They then measured the fold-change in gene expression as a function of the concentration of LacI dimers

inside the cell for constructs bearing Oid, O1, O2 and O3 as the main operator in a simple repression
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Figure 4.3: Single-site repression by LacI dimers. (A) Schematic listing of the different states and their
respective weights when RNAP and the dimeric repressor have overlapping sites. (B) Repression for four
different strengths of the main repressor binding site (Om) as a function of the number of dimers inside the
cell. The binding energy of dimeric Lac repressor to each operator are calculated by fitting each data set to
the repression expression from equation 7.16 and presented in table 7.1.

Table 4.1: Single-site binding energies for repressor dimers and tetramers. The energies are obtained using the
data by (1) Oehler et al. [22] and (2) Garcia and Phillips [28] and equations 7.16 and 7.24 for the dimers and
tetramers, respectively. The error bars for the Oehler et al. data are calculated assuming an error in the fold-
change measurement of 30%. The in vitro binding constants are calculated using KNS

rd ≈ 40, 000× 10−11 M
[34], KOid ≈ 2, 4× 10−12 M [35], KO1 ≈ 1.35× 10−11 M [34], KO2 ≈ 2× 10−10 M [36] and KO3 ≈ 15×KO1

[37]. Notice that even though the in vivo binding energies do not coincide with the in vitro energies the
relative difference between the energies for Oid and O1 or O2 are comparable.

Operator Dimers (kBT )(1) Tetramers (kBT )(1) Tetramers (kBT )(2) in vitro (kBT )
Oid −18.2± 0.3 −17.7± 0.3 −16.8± 0.2 -12.0
O1 −16.1± 0.2 −16.2± 0.1 −15.1± 0.2 -10.3
O2 −13.7± 0.5 −13.7± 0.1 −13.7± 0.2 -7.6
O3 −10.0± 0.4 −10.4± 0.4 −9.6± 0.1 -7.6

architecture.

In figure 7.7b we present their data as well as a fit of the fold-change in gene expression. Notice that for

each construct there is only one unknown: the in vivo binding energies, ∆εrd. As a result we estimate these

in vivo binding energies for each one of the operators. The results are summarized in table 7.1. Interestingly,

if we are to believe the claims of the thermodynamic models, this data on simple repression can now be

inherited for use in the consideration of more complex architectures involving the same operators.

4.2.3 The non-specific reservoir for Lac repressor tetramers

As a next level of transcriptional complexity, we now consider simple repression by Lac repressor tetramers.

In principle, when dealing with Lac repressor tetramers only one head has to be bound to the DNA in order

to exert any repression. It is not clear, however, what the state of the remaining head is. To derive the

consequences of simple repression by tetramers we must address this issue. For example, that extra head

could be “hanging” from the DNA without establishing contact with DNA. Another option is that the extra
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head will also be exploring different non-specific sites. For the purposes of this section we will assume that

the second head can also bind to DNA. In section 4.4.2 we explore this model further

We begin by assuming that both Lac repressor binding heads are bound to DNA at all times either

specifically or non-specifically. At this point this choice is arbitrary and the final results will not depend

on the particular model for the state of the second head. We work with this particular formulation of the

problem since it is both concrete and analytically tractable and makes the counting of the accessible states

more transparent.

The model for the non-specific reservoir is depicted in figure 7.8. For LacI dimers we assumed that

the molecules were exploring all possible non-specific sites. In this model both heads of a tetramer will be

exploring all possible non-specific sites as well. As a result we will need to account not only for binding to

all sites, but for looping between all these non-specific sites. We start by considering only one LacI molecule.

We count the possible ways in which we can arrange the two heads on different non-specific sites on the

DNA. We label the site where one of the heads binds i and the other site j. For every choice of sites an

energy εNSrd is gained for each head that is non-specifically bound. These two sites can be joined through

four different DNA loops which are depicted in figure 4.5. Each one of these loops correspond to a different

orientation between the DNA binding site and the protein binding head. We will label these different tangent

orientations with the index σ. A cost in the form of a looping free energy Floop(i, j, σ) is also paid for bringing

sites i and j together. The sum over all non-specific states can be written as

ZNS(R4 = 1) =
1
2

NNS∑
i=1

e−βε
NS
rd

︸ ︷︷ ︸
head 1, site i

NNS∑
j=1

e−βε
NS
rd

︸ ︷︷ ︸
head 2,site j

∑
σ

e−βFloop(i,j,σ)

︸ ︷︷ ︸
Looping between sites i and j with configuration σ

. (4.12)

We introduce the notation R4 to specify the number of Lac repressor tetramers, signified by the subscript 4.

Note that a factor of 1
2 has been introduced in order not to over-count loops. This is equivalent to assuming

that the two binding heads on a repressor are indistinguishable. Our model assumes that the binding of a

tetramer head is independent of the state of the other head. As a result the interaction between a head and

DNA are the same in the tetramer and dimer case.

To simplify this expression we chose a particular binding site for the first head, i0, and sum over all

possible positions for the second head. This can now be done for the different NNS positions that can be

chosen for i0, resulting in

ZNS(R4 = 1) ' 1
2

NNS︸ ︷︷ ︸
choices for i

e−β2εNSrd

NNS∑
j=1

∑
σ

e−βFloop(i0,j,σ). (4.13)

Finally, we bury the term
∑
j

∑
σ e
−βFloop(i0,j,σ) into an effective non-specific looping free energy e−βF

NS
loop .

In section 4.2.3 we will discuss different models for FNSloop and their distinctive predictions.

In order to obtain the partition function for R4 tetramers we assume that all repressors are independent
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(A) (B)

Figure 4.4: Model for the non-specific looping background. Possible states of non-specific DNA bound by
Lac repressor. (A) Dimers will explore all available non-specific sites. (B) Tetramers explore all possible
loops between non-specific sites.

and indistinguishable. We therefore extend the partition function to the case of R4 non-interacting tetramers

in the reservoir by computing

ZNS(R4) =

[
ZNS(R4 = 1)

]R4

R4!
=

1
2R4

(NNS)R4

R4!
e−βR4 2εNSrd e−βR4 F

NS
loop , (4.14)

where the binding energy is still defined as in section 4.2.2.

From this point on we will only consider Lac repressor tetramers. As a result, for notational compactness

we replace R4 with R. We obtain the complete non-specific partition function by multiplying the factor

corresponding to repressors with a factor corresponding to RNAP being bound non-specifically shown in

equation 7.9 resulting in

ZNS(P,R) =
(NNS)P

P !
e−βPε

NS
pd

1
2R

(NNS)R

R!
e−βR 2εNSrd e−βRF

NS
loop , (4.15)

which now allows us in the next section to address the case of simple repression by LacI tetramers.

4.2.4 Simple repression by Lac repressor tetramers

We begin by taking one head of one Lac repressor tetramer out of the non-specific reservoir shown in equation

7.19 and binding it specifically to the operator. This can be easily done by going back to equation 7.17. We

label the position on the genome corresponding to the specific site i0. We will choose only those terms in the

summation corresponding to the binding site of interest. Since either one of the heads can reach the position

labeled by i0 we obtain the following partition function for a single tetramer bound to a specific site

ZO,NSR =
1
2
e−βε

S
rde−βε

NS
rd

NNS∑
i=1

∑
σ

e−Floop(i,i0,σ) +
NNS∑
j=1

∑
σ

e−Floop(i0,j,σ)

 . (4.16)
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Figure 4.5: Different loop geometries. Different configurations for a DNA loop given a separation between
the two binding sites. We label the different configurations using the notation introduced by Geanacopoulos
et al. [38]
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Because both sums are identical we can reduce this to

ZO,NSR = e−βε
S
rde−βε

NS
rd

NNS∑
j=1

∑
σ

e−Floop(i0,j,σ) = e−βε
S
rde−βε

NS
rd e−βF

NS
loop . (4.17)

We are now ready to calculate the total partition function. We will consider the three states from figure

7.1. The weights corresponding to the first two states will be the same as in the LacI dimer case. The third

state corresponds to the partition function term we just calculated. The total partition function is then

Ztotal(P,R) = ZNS(P,R) + ZNS(P − 1, R)e−βε
S
pd + ZNS(P,R− 1)× ZO,NSR . (4.18)

After rewriting these equations using equation 7.22 using the weak promoter approximation we get the

following fold-change in gene expression

fold-change(R) '
(

1 + 2
R

NNS
e−β∆εrd

)−1

. (4.19)

Even though the contribution from the non-specific loops drops out of the expression, we see that there

is now a factor of two in front of the number of LacI tetramers. This is different from the fold-change in

gene expression for dimers shown in equation 7.14. It can be easily understood if we think about the actual

number of binding heads that are now present. In the case of dimers we have R2 binding heads whereas for

tetramers there are 2R4 binding heads inside the cell. As a result, no information about the non-specific

looping background can be obtained by doing experiments on simple repression. We see that as long as the

number of binding heads is the same the fold-change will not vary. Interestingly, this is one of the conclusions

from the data by Oehler et al. [22]. They compared repression for Lac repressor dimers and tetramers under

the condition 2R4 = R2 and saw a comparable fold-change in gene expression. An alternative way to look

at this is by comparing the binding energies obtained for dimers and tetramers. These two set of energies,

obtained from equations 7.16 and 7.24, are shown in table 7.1.

In a recent experimental paper, we presented a set of experiments where the consequences of equation 7.24

were explored systematically by tuning the number of repressors and operator strengths over a wide dynamic

range [28]. This led to a better estimate of the tetramer binding energies for each of the operators. These

binding energies are also shown in table 7.1. We can also compare the in vivo binding energies obtained from

gene expression measurements to their in vitro values. This comparison can be made through the relation

[15]

∆εrd = εSrd − εNSrd =
KS
rd

KNS
rd

, (4.20)

where KS
rd and KNS

rd are the specific and non-specific dissociation constants, respectively. In table 7.1 we

show the resulting in vitro binding energies resulting from various measurements of the dissociation constants

discussed in the literature. Note that even though the absolute values of the binding energies are not the
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Figure 4.6: Single-site repression by LacI tetramers. (A) States and weights when RNAP and the repressor
have overlapping sites. (B) Repression for four different strengths of the main repressor binding site (Om)
as a function of the number of repressors. The binding energy of Lac repressor to each operator is calculated
by fitting each data set to the repression expression from equation 7.24. The numbers are given in table 7.1.

same in vivo as in vitro, nevertheless the differences between the binding energies for Oid and O1 and O2

are comparable.

Now that we have obtained the in vivo binding energies of Lac repressor to its operators we are ready

to address more complex regulatory architectures such as DNA looping. The fact that we have already

determined these binding parameters will result in there being only one unknown: the looping free energy,

a quantitative measure of the mechanical properties of DNA.

4.3 DNA Looping by Lac Repressor

In the previous section we explored simple repression by Lac repressor as viewed through the prism of

thermodynamic models. One of the main outcomes of this approach was the calculation of DNA binding

energies of the repressor to its different operator sequences. We now take the next step in this constructionist

analysis of DNA looping. We consider the case where there are two specific binding sites for Lac repressor,

a main and an auxiliary site as shown in figure 4.1c. Both heads can be bound simultaneously bringing

the operators into proximity and forming a DNA loop as shown in figure 4.7. It should be noted that at

this point we cannot commit to a particular structural model of the looped DNA because of lack of in vivo

information about the geometrical and mechanical properties of both the protein and the supercoiled DNA

[13]. For now, we choose to think of the looping free energy as a parameter. Later on in the text we will

make a series of attempts at connecting this magnitude to DNA mechanics.

In this section we will mathematically describe repression by DNA looping. This will allow us first to

develop intuition about the potential usefulness of this regulatory motif. In particular, this section will lead

to a dissection of the wild-type lac operon in terms of the probabilities of formation of each of its three loops

(O3-O1, O1-O2 and O3-O2).
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Figure 4.7: Statistical mechanics of repression by DNA looping. States and weights used in the looping
model. See text for how these weights were determined.
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4.3.1 The looping regulation factor

In order to model the construct from figure 4.1c we ask how many different ways we can find LacI bound

to any of its sites. In figure 4.7 we show the relevant states and their corresponding weights that will be

derived below. Notice that the auxiliary operator cannot exert any repression by itself. This operator can

only do so when it is part of the loop since in this case it is helping to stabilize the binding of LacI to the

main operator.

To compute the repression, we need the total partition function. Using ZNS(P,R) from equation 7.20

and the result from equation 7.22 regarding the binding of one head to a specific site while the other one is

non-specific we can write the total looping partition function

Ztotal(P,R) = ZNS(P,R)︸ ︷︷ ︸
empty sites

+ZNS(P − 1, R)e−βε
S
pd︸ ︷︷ ︸

RNAP on promoter

+ (4.21)

ZNS(P − 1, R− 1)e−βε
S
pde−β(εSrad+εNSrd +FNSloop)︸ ︷︷ ︸

RNAP on promoter, repressor on Oa

+

ZNS(P,R− 1)e−β(εSrmd+εNSrd +FNSloop)︸ ︷︷ ︸
repressor on Om

+ZNS(P,R− 1)e−β(εSrad+εNSrd +FNSloop)︸ ︷︷ ︸
repressor on Oa

+

ZNS(P,R− 2)e−β(εSrmd+εSrad+2εNSrd +2FNSloop)︸ ︷︷ ︸
two repressors: on Om and Oa

+ZNS(P,R− 1)e−β(εSrmd+εSrad+FSloop)︸ ︷︷ ︸
loop between Om and Oa

,

where we have defined FSloop as the free energy cost of bringing the main and auxiliary sites together by

looping the DNA. This free energy cost includes information about the possible loop configurations denoted

by σ and shown in figure 4.5. The specific looping free energy can be described in terms of the looping free

energy of each configuration as follows

e−βF
S
loop =

∑
σ

e−βFloop(σ). (4.22)

As a result we bury all details of the actual loop geometry into an effective specific looping free energy.

We define ∆Floop = FSloop − FNSloop as the looping free energy measured with respect to the non-specific

looping background. In section 4.4.2 we go back to this issue but, for now, we will focus only on ∆Floop.

Once again, we use the weak promoter approximation (equation 7.16) and equate the looping regulation

factor to the fold-change in gene expression obtaining

fold-change (R) ' Freg(R) = (4.23)(
1 + 2

R

NNS
e−β∆εrad

)
/

(
1 + 2

R

NNS
(e−β∆εrmd + e−β∆εrad)+

4
R(R− 1)
(NNS)2

e−β(∆εrmd+∆εrad) + 2
R

NNS
e−β(∆εrmd+∆εrad+∆Floop)

)
.
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The factor of two arising from the presence of two binding heads could be absorbed into the binding energies,

although this would require us to offset ∆Floop by ln(2), as was done in [1]. In the present work, however,

we will keep it in an effort to understand the contribution of the non-specific loops to FNSloop.

We now have an expression that relates a magnitude that can be easily determined experimentally such

as the fold-change in gene expression to a change in the mechanical state of a protein-DNA complex given

by ∆Floop. Having determined the binding energies from simpler experiments previously is key to this as

the only unknown in equation 4.23 is the looping free energy. In the remainder of this paper we explore the

consequences of equation 4.23. We investigate the relevance of DNA looping in transcriptional regulation

and try to connect the looping free energies that can be obtained in vivo to both theoretical and in vitro

experimental expectations.

4.3.2 Why is looping useful for transcriptional regulation?

Why is DNA looping such a persistent regulatory architecture? In this section we will try to develop intuition

about the looping motif and suggest some explanations as to why this motif is so common in prokaryotes

(see the reviews by Schleif [5] and Matthews [4], for further elaboration).

Before going into the mathematical derivations we wish to pose the problem in a clearer way by reference

to figure 4.8. Here we compare the predicted fold-change as a function of the concentration of repressor

molecules inside the cell for different choices of single operator constructs (figure 4.1b) and for a particular

choice of a looping construct (figure 4.1c). As already noted by Vilar and Leibler [18] and reviewed by

Saiz and Vilar [27, 39] we see that DNA looping can give a larger fold-change than simple repression at

wild-type concentrations of LacI (∼ 10 repressors/cell). Even if simple repression is implemented using the

strongest, unnatural binding site Oid, DNA looping gives a higher fold-change in gene expression at wild-type

concentrations of repressor binding to the weaker, natural binding sites.

One interesting characteristic of the looping fold-change as a function of repressor number is the presence

of a plateau in the curve. In particular note that there is a regime in which a substantial change in LacI

concentration produces a small fold-change in gene expression. This plateau occurs at concentrations that

are typical for the wild-type lac operon. It has been suggested that the wild-type parameters have been tuned

for repression to be “robust” against fluctuations in the concentration of transcription factor [27]. It has also

been suggested that DNA looping can have a significant effect on cell-to-cell variability [18]. However, it has

been shown recently that this conclusion depends strongly on the particular choice of parameters assumed

for the different rates involved in the process [40]. Finally, it is important to note that, though all these

ideas have been suggested in the context of repression by DNA looping, the case of the wild-type lac operon

is more complex. The presence of three different operators leads to multiple loops whose consequences we

will explore in section 4.3.3. In the context of the wild-type lac operon, DNA looping has been shown to

be key for the maintenance of bistability [41]. Here, it was proposed that upon unbinding from O1, the

repressor will rebind to it with a different rate if it is already bound to O2 or O3 than if it is coming from
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Figure 4.8: Comparison of simple repression and DNA looping. Fold-change from a single O1 site (dashed
black) and a single Oid site (dashed red) compared to repression by looping from an O1−O2 configuration
with the difference in looping free energy ∆Floop = 10kBT (solid black). Also notice that for high number of
repressors the fold-change due to the O1-O2 loop approaches the fold-change due to O1 in simple repression.

the cytoplasm. This difference in rates results in extra stability in the lac operon leading presumably to the

observed bistability [41–43].

For high repressor concentrations the looping motif reduces to simple repression by the main operator.

This can be understood by comparing the last two states of figure 4.7, since in the limit of R→∞ the term

that goes as R2 becomes dominant over all the others. This term corresponds to having one LacI molecule

bound to each site. The concentration is so high that the auxiliary site will be always bound independently

of the state of the main site. Under this limit the expression for the fold-change from equation 4.23 becomes

fold-change R→+∞−→
2 R
NNS

e−β∆εrad

4 R2

(NNS)2 e
−β(∆εrmd+∆εrad)

=
[
2
R

NNS
e−β∆εrmd

]−1

'
[
1 + 2

R

NNS
e−β∆εrmd

]−1

. (4.24)

In conclusion, once the concentration of repressor is high enough the contribution of DNA looping to re-

pression becomes negligible and we are left with only simple repression. An example is shown in figure 4.8,

where it can be seen that repression by an O1-O2 loop approaches simple repression by O1 for high number

of repressors.

Finally, in figure 4.9 the fold-change in gene expression as a function of LacI concentration is plotted for

different choices of main and auxiliary sites and for various values of the looping free energy. From these

plots all the intuition developed in this section can be easily confirmed. These plots also give a sense for

the range of fold-change values that can be attained by changing all the relevant parameters of the looping

motif within reasonable ranges.
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Figure 4.9: Dissecting the looping motif. Repression as a function of Lac repressor concentration for (A)
different choices of Om with Oa=O2, (B) different Oa with Om=O1 and (C) for different values of the
difference in looping free energy ∆Floop with Om=O1 and Oa=O2.

4.3.3 Reconstructing the lac operon

The analysis of the previous section suggests that two of the main potential features of the looping motif

are an increase in the level of repression and a robustness with respect to fluctuations in the concentration

of repressor. The wild-type architecture of the lac operon is different, however, from the two-operator case

considered there. Three operators are present in that case allowing for three different loops. In this section

we dissect this case in order to determine which features of the simpler looping motif with only one possible

loop still apply to the wild-type case.

Having three binding sites translates into three possible loops: O1-O2 (401 bp), O1-O3 (92 bp) and

O2-O3 (492 bp). Each loop corresponds to a different interoperator distance and, therefore, to a different

looping free energy. It is of importance to point out the presence of a binding site for the activator CRP

between O3 and O1. CRP has been reported to interact with LacI or the LacI-mediated O3-O1 loop [44].

One possible explanation for this is the fact that CRP bends the DNA it binds to, potentially facilitating the

formation of the DNA loop [44–46]. As a result of this interaction we might expect the looping free energies

for looping to be different in the presence or absence of CRP. In order to determine the respective values

of Floop we invoke the different lac operon deletions characterized by Oehler et al. [22]. These constructs

are shown in figure 4.10(A), where it is shown that they measured the fold-change in gene expression for all

possible deletions of the wild-type lac operon in the context of two different Lac repressor concentrations

and in the presence of the CRP binding site.

Since we already have the binding energies corresponding to each operator we can use equation 4.23 in

order to determine the looping free energies for the O1-O2 and O3-O1 loops on the basis of the two-operator

measurements. However, this strategy does not allow us to determine the looping free energy of the O3-O2

loop from such constructs because this loop does not affect repression directly. To obtain its looping energy

we turn to a model of repression in the wild-type lac operon. The full lac operon involves a significant

proliferation of states beyond those shown in figure 4.7 and as a result, we go straight to the expression for

the fold-change. In order to do so in a more compact fashion we define the weight corresponding to a single
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repressor bound to any of the sites as

ri =
2R
NNS

e−β∆εrdi , (4.25)

where the subscript i labels the operator that is bound. When two binding sites are occupied simultaneously

we define

rij =
4R(R− 1)

(NNS)2 e−β(∆εrdi+∆εrdj) (4.26)

and when all three are bound we use

rijk =
8R(R− 1)(R− 2)

(NNS)3 e−β(∆εrdi+∆εrdj+∆εrdk). (4.27)

The states with a loop are described by

rloop(ij) =
2R
NNS

e−β(∆εrdi+∆εrdj+∆Floop,ij). (4.28)

Finally, we can also have a loop and the remaining site occupied by another Lac repressor molecule. We

represent this by

ri,loop(jk) =
4R(R− 1)

(NNS)2 e−β(∆εrdi+∆εrdj+∆εrdk+∆Floop,jk). (4.29)

In all of these definitions the indices i, j and k correspond to the different operators. Using this notation

the fold-change in gene expression for the wild-type lac operon is

fold-change = [1 + r2 + r3 + r23 + r23,loop] / (4.30)[
1 + r1 + r2 + r3 + r12 + r13 + r23 + r123 + rloop(12)+ (4.31)

rloop(13) + rloop(23) + r1,loop(23) + r2,loop(13) + r3,loop(12)

]
.

Notice that the only unknown in this expression is the looping free energy between O3 and O2. We obtain it

by fitting this formula to the data for the wild-type lac operon from figure 4.10(A). In table 4.2 we show the

various looping energies for the different operator combinations obtained so far. In section 4.4.1 we obtain

looping energies for loops of the same lengths as the lac operon loops in the absence of CRP. These looping

energies are also shown in table 4.2. Notice that for those loops harboring the CRP site within the loop that

the difference in looping energy is roughly 2 kBT . This stabilization of the loops by CRP is in quantitative

agreement with previous results both in vitro [44] and in vivo [46].

Now that we have all the parameters of equation 4.30 we can predict the fold-change in gene expression

for the lac operon and its mutants at any concentration of Lac repressor. These predictions are shown in

figure 4.10(A). It is interesting to note that even though a construct bearing only O1 and O2 shows the

plateau at wild-type concentrations of Lac repressor that was identified in the previous section, the complete

wild-type construct does not maintain this feature. As a result, we conclude that in the natural lac operon
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with all three binding sites the plateau in the repression curve does not exist. Wild-type E. coli is not robust

against fluctuations in repressor by the mechanism suggested when only the O1-O2 loop is considered. It

has been proposed that the absence of CRP can recover this “robustness” in the lac operon [39, 47, 48].

Interestingly, all three looping constructs shown in figure 4.10(A) have very similar levels of gene expres-

sion at the wild-type concentration of 10 repressors per cell. This becomes more clear in figure 4.10(B) where

we plot the probability of the different loops as a function of the number of Lac repressors. It can be seen

that the probability of looping between O1 and O2 is approximately equal to that corresponding to O1 and

O3 at the wild-type concentration. It is possible that the three-operator system is simply maximizing the

amount of repression in the cell over the entire range of repressor concentrations. In figure 4.10(A) it can be

seen that over the entire range of repressor concentrations the fold-change resulting from the presence of 3

binding sites is always larger than or equal to the fold-change with 2 binding sites. That is, the fold-change

effect is enhanced by the presence of all three operators. Still, this then leaves the question open: if the

looping probabilities and the repression levels attained by each loop are the same, what is the functional and

evolutionary significance of the full three operator case?

From figure 4.10(B) it is also evident that the predominant loop can be selected by changing the concentra-

tion of transcription factor. The fact that such a titration might select for a predominant DNA conformation

might be of special interest for eukaryotic domain intercommunication proteins such as SpGCF1 [49].

Finally, a caveat of the model for the lac operon proposed here is that it does not account for “deacti-

vation” of CRP when repressor is bound to O3. Oehler et al. [22] observed that there is residual repression

in the absence of both O1 and O2 sites. Another possible caveat has to do with an experimental subtlety

related to how the operators where deleted. For some of the operator deletions some of the base pairs of

the operators were mutated. The choice of bases to mutate corresponded to the ones that had been deter-

mined to be most relevant for binding [50]. Still, it was recently proposed that a residual binding energy

corresponding to the deleted operators can cause a significant change in the predicted behavior [20, 48]. As

a result, a more complex model accounting for both CRP inactivation and residual binding to the deleted

operators might be necessary in order to analyze the results by Oehler et al. in more detail.

Table 4.2: Looping energies between the wild-type operators. The energies corresponding to loops in the
wild-type lac operon are shown in the presence and absence of CRP.

Loop Distance (bp) ∆Floop in the presence of CRPa (kBT ) ∆Floop in the absence of CRPb (kBT )
O3−O1 92 6.3 7.9
O1−O2 401 8.4 10.3
O3−O2 493 11c 11

aObtained from Oehler et al. [22]
bObtained from Müller et al. [25]
cenergy is obtained by using the two previous looping energies and solving for the wild-type case with the three operators

present
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Figure 4.10: Contribution of the various DNA loops in the lac operon. (A) Experimental data measured
by Oehler et al. [22] and theoretical fits corresponding to the wild-type lac operon and various simpler
constructs derived from it. (B) Theoretical prediction of the probability of formation of the different loops
in the lac operon as a function of the repressor concentration. The vertical dashed line in (A) and (B)
corresponds to the wild-type concentration of Lac repressor.

4.4 In vivo DNA Mechanics

So far we have treated the looping free energy as a parameter that gives us predictive power about lac

operon mutants, leading to plots like those shown in figure 4.10. However, we have not yet interpreted the

mechanical significance of this looping free energy in terms of either the in vivo or the in vitro mechanical

properties of DNA.

The recent development of experimental techniques such as chromosome conformation capture (3C) based

methods, DNA FISH and live tagging of nuclear loci using transcription factor-fluorescent protein fusions

has opened the door to the analysis of DNA inside the cell at different resolutions spanning kbp to Mbp

[8, 9, 11, 51, 52]. However, little is known about in vivo DNA mechanics on shorter length scales. It is known,

for example, that nucleoid-associated proteins such as HU, IHF and H-NS and that supercoiling affect the

effective flexibility of DNA at these short length scales [26, 53]. Despite recent efforts [54] a quantitative

understanding of in vivo DNA mechanics and their effect on DNA looping based on fundamental properties

of DNA is still lacking.

In the remainder of the paper we address DNA looping experiments with Lac repressor as a tool to dissect

the in vivo physical properties of DNA on length scales up to 1 kbp, in general, and their contribution to

transcriptional regulation in particular. We will take a step further from thinking of the looping free energy

as a parameter that can be fit to try to understand it in terms of simple mechanical models.

We will show that the looping energy is not just a parameter that is specific to a particular experimental

context, but that it can be extracted from one experiment in order to generate predictions about another

experiment. Additionally, we will interpret the long-distance behavior of the looping free energy in terms of

simple mechanical models of DNA. Finally, we will try to go beyond that by connecting the in vivo and in

vitro description of DNA mechanics. This is key in understanding DNA mechanics inside the cell since our

knowledge and intuition about it is built mainly around in vitro experiments [13].
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4.4.1 Looping free energy vs. distance

Several experiments have been performed where the length of a loop involved in transcriptional regulation

was varied systematically while monitoring the resulting change in gene expression both in the lac operon

[16, 25, 26, 55] and other systems. Length is one of the most easily controllable parameters of the mechanical

response of DNA both in vitro and in vivo. Such experiments have the potential of revealing key aspects of

DNA mechanics and how it influences gene expression [13, 56].

We address two different experiments on DNA looping using Lac repressor. The corresponding tran-

scriptional architectures are shown in figure 4.11(A). Here, the distance between the main and auxiliary

operators was varied and for each one of these constructs the fold-change in gene expression measured. The

data from these two experiments is shown in figure 4.11(B). There are a few subtle differences between these

two experimental setups. One of the main differences is the choice of binding sites. While Müller et al. used

O1 and Oid as the main and the auxiliary operators respectively, Becker et al. used O2 and Oid. The first

group worked at a concentration of about 50 repressors per cell, while the latter measured gene expression

in the wild-type system that has about 10 repressors per cell. Müller et al. performed their experiments on

the chromosome, while Becker et al. had their construct on a single copy F-plasmid of about 180 kbp in

length. The sequences introduced between the operators are also different and, in principle, random. It must

also be noted that the cells were grown in completely different media and temperature conditions in each

experiment. All these differences lead to completely different values for the fold-change in gene expression

as can be seen in figure 4.11(B).

The reader is reminded that once we know the binding energies to the operators involved in a DNA

looping construct there is only one unknown in the fold-change in gene expression described by equation

4.23, namely the looping free energy. As a result, for each one of the DNA looping experiments described

above we can obtain a looping free energy as a function of the distance between the operators, an approach

that has previously been applied [1, 19, 27, 57].

In contrast to previous analysis [19] we will show that though we are addressing two completely different

experiments on DNA looping with very different characteristics the looping free energy obtained is the same.

This suggests that we are dealing indeed with a parameter that is just related to the effective mechanical

properties of DNA which are in turn determined by the DNA itself and potentially with various other DNA-

binding proteins [26, 53]. We will also be able to recapitulate some of the functional dependence of the

looping energy in terms of very simple models of DNA mechanics. As a result we argue that such DNA

looping systems can be used as a tool to characterize the in vivo mechanical properties of DNA.

4.4.1.1 ∆Floop at short distances

In this section we analyze the length dependence of the looping free energy at short lengths. We address

the data from Müller et al. and Becker et al. where the fold-change was measured with single base pair

resolution. Since we are dealing with lengths comparable to the persistence length (∼ 150 bp), we expect
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Figure 4.11: Fold-change as a function of interoperator distance. (A) Diagram of the constructs used by
Müller et al. and Becker et al. to measure fold-change as a function of distance between operators. (B)
Data for fold-change as a function of interoperator distance.

the DNA to be tightly bent in the looped configuration it adopts [13]. In this length regime the size of

the loop is comparable to the size of the protein itself. This suggests that the looping free energy will be

determined by a combination of DNA bending and the particular geometrical constraints set by the protein.

Such geometrical constraints include, for example, the particular angle of alignment of the binding heads

with the operators and the separation between the two binding heads [54, 58–61].

In figure 4.12(A) we show the short distance fold-change data from both sets of experiments. If our model

is correct, despite the difference in fold-change of the two experiments shown in figure 4.12(A) we should

obtain the same looping free energy from them. One strategy is to obtain the looping free energy from the

Müller et al. experiment using the looping regulation factor from equation 4.23 and the operator binding

energies from table 7.1 and generate a “prediction band”. In figure 4.12(B) we overlay the looping free energy

obtained from the Becker et al. data with this prediction band. It is clear that, despite certain systematic

difference between the prediction and the looping free energy, the amplitude of the modulation in the looping

free energy as well as the maximum and minimum value lie within the prediction band. Alternatively, we

can obtain the looping free energy for each experiment and compare their values directly. This approach is

shown in figure 4.12(C).

Regardless of the approach chosen to compare the looping free energies, the most striking feature is that,

despite a difference in phasing, they are comparable. They both oscillate with a comparable amplitude

and mean value within experimental error. Saiz et al. [19, 27] performed a similar analysis, but did not

obtain overlapping looping free energies probably due to the fact that the fold-change in the Becker et al.

work was defined differently than in the Müller et al. experiment. Instead of defining it as the ratio of

expression in the presence and absence of repressor, Becker et al. defined it as the ratio of expression in the

absence and presence of the inducer IPTG. We obtained their raw gene expression data, which included a

construct without any repressor binding sites (Nicole Becker, personal communication). By assuming that

this construct has the same level of expression as any other construct in the absence of Lac repressor we
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Figure 4.12: From repression to ∆Floop at short distances. (A) Fold-change as a function of distance between
operators measured by Müller et al. [25] and Becker et al. [26] for short distances with single base pair
resolution. (B) We extract the looping free energy from the Müller et al. data by using the looping regulation
factor in equation 4.23 in order to generate a “prediction band” for the looping free energy. This prediction
band is contrasted with the looping free energy obtained from the Becker et al. data. Though systematically
different, the looping energy from the experiments falls within range of the prediction. (C) Direct comparison
between the looping free energies obtained from both experiments.

recover our definition of fold-change in gene expression for their data.

Interestingly, the two looping free energies have maxima that are aligned, but minima that are out of

phase. Additionally, the peaks seem to be asymmetric, but in a different way depending on the experiment.

The maxima in looping free energy correspond to the lengths at which the twist of DNA makes it the hardest

for the intervening DNA to loop. It has been proposed that the phasing and asymmetry of the looping free

energy can be explained by the presence of different looping geometries that are favored differently in the two

experiments [62]. Even though this is a plausible explanation to the best of our knowledge no mechanistic

rationalization of this effect has been reached yet. It is clear, however, that the background of the experiment

(for example, the different conditions between the experiments by Müller et al. and Becker et al.) can

determine the specific shape of the phasing in DNA looping. A real understanding of such phasing behavior

will undoubtedly require much better knowledge of the geometrical details of the Lac repressor-DNA loop

complex [54, 59–61].

Despite the obvious differences in the looping free energy, it is important to point out the striking

similarities. These two experiments were carried out in different growth media, with different binding

sites and repressor concentrations and in different DNA contexts (the chromosome vs. an F-plasmid).

Nevertheless, they yield looping free energies which are comparable in many of their features.

As a result this exercise gives us confidence that this looping free energy is more than a fitting parameter.

It is a magnitude that captures the mechanical properties and geometrical constraints of DNA and that can

be used to predict the outcome of an experiment where all the other parameters (binding energies, repressor

concentrations, etc.) are changed.
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4.4.1.2 A polymer model for in vivo DNA

Over the last few years a significant body of experimental work has addressed the in vivo mechanical proper-

ties of DNA in various contexts [8, 9, 11, 52, 63–65]. These studies access the properties of the DNA at length

scales of several kilobasepairs (kbp) and longer. In contrast, our knowledge of the mechanical properties of

DNA in vivo at length scales below 1 kbp is rather limited. This is partially due to the fact that most of

the current techniques lack the resolving power to query the DNA at these length scales [8]. In this context

the experiments by Müller et al. are very suggestive. By measuring repression by DNA looping at lengths

between 100 bp and 1 kbp they open the door to a characterization of the DNA in a range not accessible by

other techniques.

Our objective is to determine an effective polymer model for DNA at these length scales. A first step

in that direction is to estimate the Kuhn length of DNA. This length is a measure of the stiffness of the

DNA and gives a sense for the length scale over which DNA behaves like a stiff rod [66] and is double the

persistence length, another magnitude often used to express the flexibility of a polymer. Müller et al. [25]

and Law et al. [16] performed such an analysis in the context of their DNA looping experiments obtaining

a Kuhn length of about 40 bp. In order to infer this value of the persistence length they both used a model

in which they examined the free energy penalty to make a DNA circle (i.e cyclization). This observation

is confirmed in figure 4.13, where we show the looping free energy obtained from the data of Müller et

al. together with different curves describing DNA cyclization for several choices of the Kuhn length. It is

important to note that, in contrast to this estimation, recent computational models that take into account

many geometrical details of the Lac repressor-DNA loop complex estimated the Kuhn length to be around

200 bp [54].

We expect the behavior of DNA to be different at different length scales. A useful way to quantify these

behaviors is to look at the scaling of the average end-to-end distance of the polymer, ree as a function of its

contour length, L. Some of these different regimes are shown diagrammatically in figure 4.14. For lengths

below the Kuhn length we expect DNA to behave like a stiff rod. As a result the end-to-end distance scales

linearly with the contour length. The looping probability at these length scales will, however, be hard to

calculate because of the geometrical and physical details of the repressor [54, 59–61].

As we go higher in scale above the Kuhn length the geometrical details of the Lac repressor-DNA complex

will cease to be relevant. This is due to the fact that the DNA implicated in the loop will be much larger than

the dimensions of the protein itself. At these length scales the polymer will start feeling its own presence

resulting in a self-avoiding random walk with a scaling of the end-to-end distance that goes as L1.76 [67].

This self-avoiding random walk defines an average structure that behaves as a “blob” or mesh with a radius

rξ and a corresponding contour length Lξ. For longer length scales now the “blobs” start interacting with

each other. There is a self-avoiding interaction of each blob with itself and with other chains (or very distant

parts of the same chain), the first leading to expansion of the chain and the second to collapse. Interestingly,

the Flory theorem states that these two effects will compensate each other. As a result for length scales
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Figure 4.13: Estimation of the in vivo Kuhn length at length scales below 1 kbp. We show the looping free
energy for cyclization calculated using the wormlike chain model [56] for several choices of the Kuhn length
overlaid with the looping free energy calculated from the Müller et al. data. This approach bounds the in
vivo Kuhn length between 40 and 60 bp.

beyond the mesh size the blobs behave like a simple random walk polymer chain resulting in a scaling of the

end-to-end distance of L3/2 [68]. Finally, when we consider contour lengths much larger than the typical size

of the cell the polymer is so tightly packed within the cell that its density becomes constant. Effectively, once

we go to such long contour lengths the two ends behave as if they were not connected by the intervening

polymer, resulting in uncorrelated behavior. This constant density translates into a constant end-to-end

distance regardless of the contour length.

Given our previous estimate of the Kuhn length we have a clear expectation of where DNA will stop

behaving like a stiff rod. However, it is not clear a priori where the boundary between self-avoiding and

confined self-avoiding random walk regimes will lie. In order to determine that boundary we need to calculate

the mesh size Lξ. In order to do so we calculate the free energy corresponding to the polymer within the

“blob”, Fblob. This energy will consist of two terms. First, an entropy term related to the multiple polymer

configuration compatible with a given mesh size rξ. Second, an energy term which describes the self-avoidance

behavior between monomers, Fexcluded [66].

Fixman calculated the probability distribution for the radius of gyration of a self-avoiding polymer [69].

The entropy associated with this probability distribution is

Sblob(r) = −β−1

(
−2 ln(r) +

3
2
r2π2

Na2

)
+ const, (4.32)

where r is the radius of gyration, a is the Kuhn length and N is the number of Kuhn segments. Both r and

a are usually expressed in nm. The number of segments is related to the length of the polymer in base pairs
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Figure 4.14: Different regimes of scaling for a semiflexible polymer confined to a cell. For contour lengths
below the Kuhn length, aν, DNA behaves like a stiff rod. The end-to-end distance ree scales linearly with
the corresponding contour length L. As we go up in scale the polymer behaves like a self-avoiding random
walk up to a length scale defined by the mesh size rξ and Lξ. Because of the constrained volume given by the
E. coli cell the Flory theorem states that for length scales beyond the mesh size, but smaller than the typical
dimensions of the cell the effective polymer will behave like an entropic spring with a scaling ree ∝ L3/2.
Finally, for contour lengths beyond the typical cell dimension, Lcell, the density of polymer monomers is
uniform throughout the cell. As a result the end-to-end distance becomes constant and independent of the
contour length.

L by L
νa , with nu ' 3 bp/nm the conversion between base pairs and nm for DNA. There is also a constant

term with no dependence on r. This formula is valid for 6r2

Na2 � 1.

The term related to the excluded volume for a polymer that is approximated by a gas of hard cylinders

is [66]

Fexcluded(r) = β−1N2 3a2d

8r2
, (4.33)

where d is the diameter of the DNA of about 2 nm.

The total Flory energy is then

FFlory(r) = Sblob(r) + Fexcluded(r). (4.34)

We wish to find the value rξ that minimizes this energy by taking the derivative of FFlory with respect to

the radius and equating it to zero. The resulting expression is

dFflory(r)
dr

β = 0 = − 2
rξ

+
3rξπ2

Nξa2
+G2

ξ

3a2d

8r2
ξ

, (4.35)

where we have included the mesh contour length Lξ associated with the mesh size rξ. We now make an

approximation before solving this polynomial equation. Notice that the ratio between the first and second

terms in equation 4.35 corresponding to the entropy is

2
rξ
/

3rξπ2

Nξa2
=

4
π2

Nξa
2

6r2
ξ

� 1. (4.36)
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We are making the assumption that, due to self-avoidance, the size of the blob, r is much larger than the size

of the random walk polymer with the same number of Kuhn segments Na2/6. As a result we can neglect

the first term in equation 4.35 which leads to

rξ =
(

3
8π2

)1/5

N
3/5
ξ

(
a4d
)1/5

. (4.37)

We thus obtain a relation between the radius of the mesh and its corresponding contour length.

We now use an extra condition related to the DNA density within the cell. This density is to a first

approximation uniform and should be equal to the DNA density within a blob. We can then equate both

densities
Lcell
Vcell

=
Lξ

4
3πr

3
ξ

, (4.38)

where Lcell is the size of the E. coli genome and Vcell is its volume. We now solve for the contour length Lξ

and obtain

Lξ =
(
Vcell
Lcell

)5/4
ν9/4(

2
32π

)1/4 (ad)3/4
' 1200 bp. (4.39)

We conclude that for loops longer than the Kuhn length and shorter than about 1200 bp the expected scaling

of the looping probability should be of approximately L1.76.

In order to determine if the looping free energy does have the expected scaling we fit it to the following

formula

∆Floop(L) = n× ln(L) +B, (4.40)

with B being a constant factor that is related to the zero of energy. We fit the minima in looping free energy

from the Müller et al. data. These minima correspond to the orientation between operators where the least

cost in phasing is paid in order to loop. The resulting fit to equation 4.40 is shown in figure 4.15, where we

have only used the data points with a loop length larger than 150 bp. In the same plot we show the best

fit when we fix the exponent to be either n = 1.76 or n = 3/2. The result of the best fit is n = 1.6 ± 0.1,

which is in principle consistent with both the self-avoiding random walk and the constrained self-avoiding

random walk regimes. Interestingly, our results are different from those obtained by Vilar and Saiz using

similar models [57]. We are unaware of the reason for this discrepancy.

In conclusion, gene expression experiments for DNA-looping dependent promoters are able to set con-

straints on effective polymer models of DNA. They allow access to a length scale that is not usually resolvable

using standard techniques [9]. Though our results are not entirely conclusive, we have shown that the be-

havior of DNA at this scale is consistent with a self-avoiding polymer in vivo and with a Kuhn length of

40 bp. This is consistent both with the position of the repression maximum and the scaling of repression as

a function of DNA loop length at operator separations between 100 and 1000 bp [68]. More accurate data on

DNA looping at these length scales would certainly increase our ability to constrain these polymer models.
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Figure 4.15: Using the looping energy to set constraints on polymer models of DNA. The looping free energy
calculated from the data of Müller et al. [25] is fitted to the polymer models shown in figure 4.14. Note that
we are only fitting data points for length of 150 bp and higher.

4.4.2 A model for the non-specific looping reservoir

One of the challenges in comparing results from different experiments is treating the arbitrariness of the

reference energy. In the in vivo case we have worked with a definition in which the zero of energy is

determined by the non-specific looping background energy FNSloop. If we were to compare this energy to the

looping free energy coming from an in vitro assay we would have to shift one of the free energies accordingly.

In this section we present an explicit model for the in vivo non-specific looping background. We show that

we can account for this non-specific background in terms of very simple thermodynamic considerations.

We begin by replacing the looping free energy with an associated looping J-factor. A description in

terms of this quantity makes the analysis more transparent. This J-factor is defined as the concentration of

operator DNA in the vicinity of a Lac repressor binding head given that the other head is already bound to

the other operator. The relation between the looping J-factor Jloop and the looping free energy is [70]

Jloop = c0e
−βFloop , (4.41)

where c0 is the standard biochemical state which is usually taken as 1 M. We will suppress reference to the

subscript in Jloop but remind the reader that this is not the same J as arises in cyclization.

In section 4.3.1 we defined the in vivo change in looping free energy as

e−β∆Floop = e−β(FSloop−F
NS
loop) =

JS

JNS
, (4.42)

where we have used our definition for the looping J-factor from equation 4.41. The in vivo change in looping

free energy is comprised then of two different looping J-factors: specific and the non-specific. Knowing the
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value of JNS will then allow us to account for the difference in offset between the in vivo and in vitro looping

free energies.

With reference to figure 7.8(B) we see that our model for the non-specific looping background consists

of Lac repressor adopting all possible loop configurations between all available binding sites on the DNA. In

equation 4.13 we defined the non-specific looping free energy as

e−βF
N
loopS =

∑
j

∑
σ

e−βFloop(i0,j,σ). (4.43)

Here, i0 is an arbitrary non-specific site on the DNA where the first binding head is placed. The second

head then explores all available non-specific binding sites through the index j. Finally, each loop can be

formed with four of the different tangent orientations shown in figure 4.5. The index σ keeps track of these

orientations. Since the position i0 is arbitrary we can just sum over a length L resulting in

JNS = e−βF
N
loopS =

∑
L

∑
σ

e−βFloop(L,σ) =
∑
L

∑
σ

J(L, σ). (4.44)

In this last equation we have included the non-specific looping energy and expressed it in terms of a sum

over all the possible looping J-factors between non-specific sites. By making a continuum approximation we

can rewrite this expression as an integral

JNS =
∑
l,σ

J(L, σ) =
∑
σ

1
lbp

∫ NNS

1

J(L, σ) dL, (4.45)

with lbp the length of a base pair.

To make progress we separate the integral in equation 4.45 into three regimes that are illustrated schemat-

ically in figure 4.16(B). First, looping at very short distances can occur, such that the distance between the

DNA binding sites is comparable to the dimensions of the protein. As we go up in scale for the length of

the loop we reach another regime where the geometrical details of the protein are not very relevant. This

corresponds to looping at distances higher than 100 to 150 bp as discussed in section 4.4.1.2. Finally, we

can have looping at distances which are so long that the two sites are effectively uncorrelated, as if each site

was on separate DNA strands.

Equation 4.45 is basically telling us that the contribution of each of those non-specific looping regimes

has to be added in order to determine the energy of the non-specific looping background. In figure 4.16 we

present a cartoon of how we expect J(L, σ) to behave for the different length regimes. It must be kept in

mind that this is just a graphical way of qualitatively separating the behavior into different regimes and that

plot is not meant to be interpreted literally with respect to the particular dividing regions. Splitting the
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looping J-factor into these regimes allows us to split the integral into three different terms, namely,

JNS =
∑
σ

1
lbp

(∫ L0

1

J1(L, σ) dL+
∫ L1

L0

J2(L, σ) dL+
∫ NNS

L1

J3(L, σ) dL

)
. (4.46)

Next we estimate the contribution of each integral in the previous equation.

From the Müller et al. data [25] we know that there will be a maximum in the looping J-factor at around

70 bp and that it will decrease for shorter lengths, at least until 55 bp. Their construct does not allow them

to go to much smaller interoperator spacings because the auxiliary operator would have to overlap with their

promoter. For shorter distances we expect the J-factor to be highly dependent on the geometric details and

flexibility of the LacI-DNA complex [58]. Because of the lack of such information we will assume that in this

regime, J1 is negligible compared to the contribution from the two other regimes.

As we saw in section 4.4.1.2 one description for the DNA that is consistent with the looping free energy

is that of DNA in terms of a polymer that behaves as an entropic chain with a Kuhn length of around

40 bp. We will therefore assume that this regime can actually be described by the probability of closure or

cyclization of a Gaussian chain [67] given by

J2(L) =
(

3
2π La

)3/2

, (4.47)

where a = 40 bp is the Kuhn length.

As we go to even longer lengths we expect the J-factor to converge to a constant. This is an effect of the

DNA being constrained to the volume of the cell. E. coli has a genome with a length of ∼ 100, 000 Kuhn

lengths whereas the typical dimension of the cell is of ∼ 60 Kuhn lengths. This tells us that confinement

should be a relevant effect. In this regime (also shown in figure 4.14) the concentration of one site in the

vicinity of the other one cannot decrease below V −1
cell ' 1.67 nM, since they are uncorrelated.

In order to calculate the contribution from the second regime we integrate J2(L). We assume that all four

possible tangent orientations σ are described by the same expression, which results in a total contribution

from this regime of the form

∑
σ

1
lbp

∫ L1

L0

J2(L, σ) dL = 4
1
lbp

∫ L1

L0

(
3

2π La

)3/2

dl < 4
1
lbp

∫ +∞

L0

(
3

2π La

)3/2

dl ' 50 mM. (4.48)

In this last calculation we have overestimated the contribution slightly by taking the limit L1 → +∞.

At length scales larger than L1 the distance between the two ends of a loop is so large that, even though the

two ends are on the same polymer chain, they act as if they were uncorrelated or independent of each other.

As a result, the concentration of one end in the vicinity of the other one is constant and can be approximated

by the concentration of one base pair inside the cell 1
Vcell

' 1.67 nM. By taking J3(L) ' 1
Vcell

' 1.67 nM
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the contribution from regime 3 to JNS is then

∑
σ

1
Lbp

∫ NNS

L1

J3(L, σ) dl ' 33 mM. (4.49)

We conclude the contribution of non-specific looping between uncorrelated, distant sites is comparable to

the contribution of non-specific looping between sites that are within a range of 100 kbp. We estimate the

non-specific J-factor to be JNS ' 80 mM or FNSloop ' 1.9 kBT .

With this result in hand we can go back to the long distance looping free energy addressed in section

4.4.1.2. Even though we have a prediction for FNSloop we also fit it using the equation

e−β∆Floop = 4
(

3
2π La

)3/2 1
JNS

. (4.50)

The result of both the prediction and the fit are shown in figure 4.17. Through the fit we obtain JNS =

(24±2) mM or FNSloop = (−3.7±0.1) kBT . This is within a factor of 3.5 of our estimate of JNS . One possible

explanation for our overestimation of the non-specific looping background is that we accounted for more base

pairs than are actually accessible in regime 3. Using recombination it has been shown that the E. coli region

is separated into macrodomains [71]. It is possible that Lac repressor can only loop non-specifically between

sites in the same macrodomain, reducing the value of JNS . Additionally, it is important to point out that

our prediction is based on modeling DNA as an entropic chain given by equation 4.47. Though in section

4.4.1.2 we show that the scaling of the looping free energy is consistent with this model, that does not say

that equation 4.47 is a valid expression to describe it. The prefactors could differ, which would result in a

different estimation of the contribution of regime 2. Nevertheless, we are satisfied with the relative success

of the prediction based on our simple model. Now that we have a value for FNSloop we are ready to compare

the in vivo looping free energy with different in vitro experiments.

4.4.2.1 Predicting the in vitro outcome for DNA looping by Lac repressor

To understand the similarities and differences between in vivo and in vitro DNA looping requires similar

experiments to be performed systematically in both settings. The in vivo experiments of Müller et al. [25]

described in the previous section are a concrete and excellent example of such systematic experimentation.

On the in vitro front the looping probability of Lac repressor was recently quantified for several loop lengths

[70]. However, in order to be able to plot both looping free energies or looping J-factors on the same plot

we need to account for the difference in the definition of the zero of energy. This correction to the in vivo

looping free energy is done by subtracting the contribution from the non-specific looping background FNSloop

calculated in the previous section. Operationally, this is done by plugging the in vivo looping free energy

obtained from the Müller et al. experiment in section 4.4.1 into equation 4.42 relating the looping free energy

and the looping J-factor.
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Figure 4.17: Determination of the contribution of the non-specific reservoir to the looping free energy.
By fitting equation 4.50 to the looping free energy obtained from the Müller et al. data we estimate the
contribution of the non-specific looping to the looping free energy to be (3.7 ± 0.1) kBT or (24 ± 2) mM.
This value is to be compared with our prediction generated using our toy model of 1.9 KBT or 80 mM.
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Figure 4.18 shows the in vivo looping J-factor from Müller et al. together with various in vitro quan-

tifications of DNA looping in the context of Lac repressor. Additionally, we include recent experiments on

DNA mechanics at short distances.

As mentioned above, the two most interesting data sets to compare are those of Müller et al. [25] and

Han et al. [70] together with the theoretical expectation for the in vitro experiment based on Monte Carlo

simulations [61]. First, the most naive use of the wormlike chain model for the in vitro looping free energy

is not in accord with the in vitro data it is trying to describe. This could be attributed to a failure of

the wormlike chain model itself. This scenario is reviewed in detail in [14]. However, a more plausible

explanation is that the numerical simulations did not account for the geometrical and mechanical properties

of the protein adequately [54, 59, 60, 72].

Regardless of our failure to understand the in vitro data in terms of first-principle models, it is still

interesting to contrast the in vivo and in vitro looping J-factors. Whereas in vitro looping seems to become

slightly less costly for lengths of 300 bp, the in vivo energy has its optimum at 70 bp. This observation

implies that DNA is effectively more flexible in vivo than in vitro. This higher effective flexibility could come

from the DNA itself as a result of a breakdown of the wormlike chain model. In fact, recent experiments

on DNA cyclization have sparked significant controversy by suggesting that DNA is much more flexible at

short length scales than what the wormlike chain model would predict. The results by Cloutier and Widom

[73] shown in figure 4.18 should be contrasted with the theoretical expectation of the wormlike chain model

also shown in that figure. Similar conclusions about the breakdown of ellasticity at short length scales have

been reached by other works [74]. On the other hand, work by Du et al. [75] has shown a good agreement

with the theoretical expectation. It is clear that this issue is far from settled.

The higher in vivo flexibility could also be due to the presence of nucleoid-associated proteins such

as HU, H-NS and IHF [26, 53] or to the fact that the in vivo DNA is supercoiled [76, 77]. By deleting

various nucleoid-associated proteins Becker et al. have shown that the fold-change in gene expression due to

DNA looping by Lac repressor changes significantly. Developing a quantitative model based on structural

information will most likely require the quantification of the effect of these proteins on looping over several

length scales [54, 62, 78]. Additionally, being able to control the concentration of these nucleoid-associated

proteins would allow the development of rudimentary equilibrium models of their contribution to the effective

flexibility of DNA [79–81]. The role of supercoiling in DNA looping remains elusive. Even though Whitson

et al. reported a significant increase in DNA looping when using supercoiled DNA [82, 83] the effect seen

by Normanno et al. in their single molecule experiments where supercoiling was systematically controlled

is much smaller [84]. It is clear that both significant experimentation and theoretical modeling are still

necessary to dissect the effect of supercoiling in this system.

Though the comparison of the in vivo and in vitro looping J-factors leaves us with more questions than

answers we view this as progress. Up until now, there was no direct way to compare the absolute values

of each experimental outcome. Though our approach is model dependent it allows for an initial contrast
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Figure 4.18: In vivo and in vitro experiments and calculations on DNA looping and DNA mechanics. The
in vivo looping J-factor based on the Müller et al. [25] data using our model for the non-specific looping
reservoir. This prediction is superimposed with looping J-factors derived from a variety of different in vitro
measurements. Among them are the the looping J-factors derived from the in vitro experiments by Han et al.,
[70] and the corresponding theoretical expectation by Towles et al. [61] showing a significant disagreement
between the theoretical, in vivo and in vitro aspects of the problem. In some of the other experiments shown
here the looping J-factor was not reported explicitly and had to be estimated from the data. As such, some
of the in vitro values should be viewed as approximations. From this plot it is clear that there is still a
large spread in experimental data and that the experimental techniques need to be improved upon. Finally,
we show results for DNA cyclization, where the propensity of DNA to form circles in the absence of any
proteins is measured. Here, the results of Du et al. [75] agreeing with the theoretical expectation based on
the wormlike chain model [56] are to be contrasted with the much higher flexibility obtained by Cloutier and
Widom [73]. Other data sources are: Hsieh et al. [36], Whitson et al. [83], Vanzi et al. [85], Normanno et
al. [84] and Wong et al. [86].

between the two settings based on quantitative arguments rather than qualitative comparisons.

4.5 Conclusion

The increasing availability of systematic and quantitative experiments on transcriptional regulation calls

for the development of theoretical models that live up to these experiments by generating quantitative

descriptions of the relevant transcriptional motifs and by suggesting new rounds of experimentation. In

this paper we have quantitatively and systematically dissected the ubiquitous regulatory looping motif in

bacteria.

Our bottom-up approach consisted in analyzing experiments on simpler constructs which allowed us to

obtain fundamental parameters of the regulatory motif such as binding energies that could then be used

for the more complex DNA looping architecture. As a result we were able to extract the in vivo change in

looping free energy by Lac repressor. Through this framework we determined that one of the main features of

the simple looping motif is a robustness in the level of expression with respect to fluctuations in the number

of repressors. However, we also illustrated that this feature is lost in the wild-type lac operon. Interestingly,

the multiple loops within the lac operon have similar probabilities of looping leading to similar levels of

repression. Why evolution would lead to such a redundancy is a mystery we can only speculate on and that

is beyond the scope of this paper. However, other authors have addressed this issue in detail [20, 39, 48].
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Our models also propose a clear microscopic interpretation for the parameters obtained. In this context

we analyzed experiments on lac operon mutants as a tool for reporting on the in vivo properties of DNA.

We showed that this looping free energy gives predictive power, namely, that one can use the values deduced

from one experiment performed under one set of conditions (binding site energy, number of repressors, etc.)

in order to predict the outcome of another experiment under a completely different set of conditions.

DNA looping allows access to information about the in vivo properties of DNA on length scales no

resolvable by standard techniques [9]. By contrasting the looping free energy with simple polymer models

we show that the behavior of DNA at length scales below 1 kbp is consistent with a self-avoiding random

walk and with a constrained-volume self-avoiding random walk.

We also showed that though some features of the looping free energy can be understood in terms of

simple polymer models of DNA mechanics, there are fundamental differences between in vivo and in vitro

DNA mechanics that can only be accessed though a new round of experimentation. For example, a next

generation of in vitro DNA looping experiments should explore the effect of supercoiling and the presence of

nucleoid associated proteins [84]. These parameters are harder to control in vivo. Still, recent experiments

show that some level of manipulation of nucleoid associated proteins and supercoiling can be exerted in

the in vivo context of DNA looping experiments [26, 53]. Rather than quantifying the effect of deletions of

proteins such as HU on DNA looping, being able to titrate their intracellular concentration might allow for

a better understanding of their role in DNA mechanics from the thermodynamic perspective.

We view such efforts as key in developing a picture of transcriptional regulation in terms of input-

output functions. Here by just knowing a set of simple parameters such as the identity of binding sites and

concentrations of the relevant transcription factors the output of a regulatory architecture can be predicted.

Of course, more and more complex regulatory architectures will have to be dissected experimentally and

theoretically in order to determine if thermodynamic models of transcriptional regulation are indeed a good

tool for calculating such input-output functions.
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Chapter 5

Effect of Promoter Architecture on
the Cell-to-Cell Variability in Gene
Expression

This chapter is a reproduction of reference [1].

According to recent experimental evidence, promoter architecture, defined as the number, strength and

regulatory role of the operators that control transcription from a promoter, plays a major role in determining

the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding

modeling effort that addresses the question of how changes in promoter architecture affect noise in gene

expression, in a systematic rather than case-by-case fashion. In this article, we make such a systematic

investigation, based on a microscopic model of gene regulation that incorporates stochastic effects. In par-

ticular, we show how operator strength and operator multiplicity affect this variability. We examine different

modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and

how each of these affects the level of variability in transcriptional output from cell-to-cell. We propose that

direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the

probability distribution of mRNA number per cell can be used to test kinetic models of gene regulation. The

emphasis of the discussion is on prokaryotic gene regulation, but our analysis can be extended to eukaryotic

cells as well.

5.1 Introduction

A fundamental property of all living organisms is their ability to gather information about their environment

and adjust their internal, physiological state in response to environmental conditions. This property, shared

by all organisms, includes the ability of single-cells to respond to changes in their environment by regulating

their patterns of gene expression. By regulating the genes they express, cells are able to survive, for example,

changes in the extracellular pH or osmotic pressure, switch the mode of sugar utilization when the sugar

content in their medium changes, or respond to shortages in key metabolites by adapting their metabolic



107

pathways. Perhaps more interesting is the organization of patterns of gene expression in space and time

resulting in the differentiation of cells into different types, which is one of the defining features of multicel-

lular organisms. Much of this regulation occurs at the level of transcription initiation, and is mediated by

simple interactions between transcription factor proteins and DNA, leading to genes being turned on or off.

Understanding how genes are turned on or off (as well as the more nuanced expression patterns in which the

level of expression takes intermediate levels) at a mechanistic level has been one of the great challenges of

molecular biology and has attracted intense attention over the past 50 years.

The current view of transcription and transcriptional regulation has been strongly influenced by recent

experiments with single-cell and single-molecule resolution [2–12]. These experiments have confirmed the

long-suspected idea that gene expression is stochastic [13, 14], meaning that different steps on the path from

gene to protein occur at random. This stochasticity also causes variability in the number of messenger RNAs

(mRNA) and proteins produced from cell-to-cell in a colony of isogenic cells [12, 15–18]. The question of

how transcriptional regulatory networks function reliably in spite of the noisy character of the inputs and

outputs has attracted much experimental and theoretical interest [19, 20]. A different, but also very relevant,

question is whether cells actually exploit this stochasticity to fulfill any physiologically important task. This

issue has been investigated in many different cell types and it has been found that stochastic gene expression

is a key player in processes as diverse as cell fate determination in the retina of D. melanogaster [21], entrance

to the competent state of B. subtilis [8], resistance of yeast colonies to antibiotic challenge [18], maintenance

of HIV latency [22], promoting host infection by pathogens [23] or the induction of the lactose operon in E.

coli [24]. Other examples have been found, and reviewed elsewhere [25, 26]. The overall conclusion of all

of these studies is that noise in gene expression can have important physiological consequences in natural

and synthetic systems and that the overall architecture of the gene regulatory network can greatly affect the

level of stochasticity.

A number of theoretical and experimental studies have revealed multiple ways in which the architecture of

the gene regulatory network affects cell-to-cell variability in gene expression. Examples of mechanisms for the

control of stochasticity have been proposed and tested, including the regulation of translational efficiency [9],

the presence of negative feedback loops [27–29], or the propagation of fluctuations from upstream regulatory

components [30]. Another important source of stochasticity in gene expression is fluctuations in promoter

activity, caused by stochastic association and dissociation of transcription factors, chromatin remodeling

events, and formation of stable pre-initiation complexes [6, 16, 17, 24, 31]. In particular, it has been reported

that perturbations to the architecture of yeast and bacterial promoters, such as varying the strength of

transcription factor binding sites [18], the number and location of such binding sites [12, 32], the presence

of auxiliary operators that mediate DNA looping [24], or the competition of activators and repressors for

binding to the same stretch of DNA associated with the promoter [33], may strongly affect the level of

variability.

Our goal is to examine all of these different promoter architectures from a unifying perspective provided by
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stochastic models of transcription leading to mRNA production. The logic here is the same as in earlier work

where we examined a host of different promoter architectures using thermodynamic models of transcriptional

regulation [34, 35]. We generalize those systematic efforts to examine the same architectures, but now from

the point of view of stochastic models. Stochastic models allow us to assess the unique signature provided

by a particular regulatory architecture in terms of the cell-to-cell variability it produces.

First, we investigate in general theoretical terms how the architecture of a promoter affects the level of

cell-to-cell variability. The architecture of a promoter is defined by the collection of transcription factor

binding sites (also known as operators), their number, position within the promoter, their strength, as well

as what kind of transcription factors bind them (repressors, activators or both), and how those transcription

factors bind to the operators (independently, cooperatively, simultaneously). We apply the master-equation

model of stochastic gene expression [36–39] to increasingly complex promoter architectures [31], and compute

the moments of the mRNA and protein distributions expected for these promoters. Our results provide an

expectation for how different architectural elements affect cell-to-cell variability in gene expression.

The second point of this paper is to make use of stochastic kinetic models of gene regulation to put forth

in vivo tests of the molecular mechanisms of gene regulation by transcription factors that have been proposed

as a result of in vitro biochemical experiments. The idea of using spontaneous fluctuations in gene expression

to infer properties of gene regulatory circuits is an area of growing interest, given its non-invasive nature

and its potential to reveal regulatory mechanisms in vivo. Different theoretical methods have recently been

proposed, which could be employed to distinguish between different modes (e.g., AND/OR) of combinatorial

gene regulation, and to rule out candidate regulatory circuits [28, 40, 41] based solely on properties of noise in

gene expression, such as the autocorrelation function of the fluctuations [28] or the three-point steady-state

correlations between multiple inputs and outputs [40, 41].

Here, we make experimentally testable predictions about the level of cell-to-cell variability in gene ex-

pression expected for different bacterial promoters, based on the physical kinetic models of gene regulation

that are believed to describe these promoters in vivo. In particular, we focus on how varying the different

parameters (i.e., mutating operators to make them stronger or weaker, varying the intracellular concentra-

tion of transcription factors, etc.) should affect the level of variability. This way, cell-to-cell variability in

gene expression is used as a tool for testing kinetic models of transcription factor mediated regulation of

gene expression in vivo.

The remainder of the paper is organized as follows: First we describe the theoretical formalism we use to

determine analytic expressions for the moments of the probability distribution for both mRNA and protein

abundances per cell. Next, we examine how the architecture of the promoter affects cell-to-cell variability

in gene expression. We focus on simple and cooperative repression, simple and cooperative activation, and

transcriptional regulation by distal operators mediated by DNA looping. We investigate how noise in gene

expression caused by promoter activation differs from repression, how operator multiplicity affects noise in

gene expression, the effect of cooperative binding of transcription factors, as well as DNA looping. For each
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one of these architectures we present a prediction of cell-to-cell variability in gene expression for a bacterial

promoter that has been well characterized experimentally in terms of their mean expression values. These

predictions suggest a new round of experiments to test the current mechanistic models of gene regulation at

these promoters.

5.2 Methods

In order to investigate how promoter architecture affects cell-to-cell variability in gene expression, we use

a model based on classical chemical kinetics (illustrated in figure 5.1(A)), in which a promoter containing

multiple operators may exist in as many biochemical states as allowed by the combinatorial binding of

transcription factors to its operators. The promoter transitions stochastically between the different states as

transcription factors bind and fall off. Synthesis of mRNA is assumed to occur stochastically at a constant

rate that is different for each promoter state. Further, transcripts are assumed to be degraded at a constant

rate per molecule.

This kind of model is the kinetic counterpart of the so-called “thermodynamic model” of transcriptional

regulation [42], and it is the standard framework for interpreting the kinetics of gene regulation in biochemical

experiments, both in vivo [3, 24] and in vitro [42, 43]. This class of kinetic models can easily accommodate

stochastic effects, and it leads to a master equation from which the probability distribution of mRNA and

protein copy number per cell can be computed. It is often referred to as the standard model of stochastic

gene expression [39, 44, 45]. The degree of cell-to-cell variability in gene expression can be quantified by

the stationary variance, defined as the ratio of the standard deviation and the mean of the probability

distribution of mRNA or protein copy number per cell [36], or else by the Fano factor, the ratio between the

variance and the mean. These two are the two most common metrics of noise in gene expression, and the

relation between them will be discussed later.

In order to compute the noise strength from this class of models, we follow the same approach as in

a previous article [31], which extends a master equation derived elsewhere [37, 38, 46] to promoters with

arbitrary combinatorial complexity. The complexity refers to the existence of a number of discrete promoter

states corresponding to different arrangements of transcription factors on the promoter DNA. Promoter

dynamics are described by trajectories involving stochastic transitions between promoter states which are

induced by the binding and unbinding of transcription factors. A detailed derivation of the equations which

describe promoter dynamics can be found in the Appendix, but the essentials are described below.

There are only two stochastic variables in the model: the number of mRNA transcripts per cell, which is

represented by the unitless state variable m, and the state of the promoter, which is defined by the pattern

of transcription factors bound to their operator sites. The promoter state is described by a discrete and

finite stochastic variable (s) (for an example, see figure 5.1(A)). The example in figure 5.1(A) illustrates

the simplest model of transcriptional activation by a transcription factor. When the activator is not bound
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(state 1), mRNA is synthesized at rate r1. When the activator is bound to the promoter (state 2), mRNA

is synthesized at the higher rate r2. The promoter switches stochastically from state 1 to state 2 with rate

konA , and from state 2 to state 1 with rate koffA . Each mRNA molecule is degraded with rate γ.

The time evolution for the joint probability of having the promoter in states 1 or 2, with m mRNAs

in the cell (which we write as p(1,m) and p(2,m), respectively), is given by a master equation, which we

can build by listing all possible reactions that lead to a change in cellular state, either by changing m or by

changing s (figure 5.1(B)). The master equation takes the form:

d

dt
p(1,m) = −konA p(1,m) + koffA p(2,m)− r1p(1,m)− γmp(1,m) + r1p(1,m− 1) + γ(m+ 1)p(1,m+ 1),(5.1)

d

dt
p(2,m) = konA p(1,m)− koffA p(2,m)− r2p(2,m)− γmp(2,m) + r2p(2,m− 1) + γ(m+ 1)p(2,m+ 1).

Inspecting this system of equations, we notice that by defining the vector:

~p(m) =

 p(1,m)

p(2,m)

 , (5.2)

and the matrices

K̂ =

 −konA koffA

konA koffA

 ; R̂ =

 r1 0

0 r2

 ; Î =

 1 0

0 1

 , (5.3)

we can rewrite the system of equations 5.1 in matrix form

d

dt
~p(m) =

[
K̂ − R̂−mγÎ

]
~p(m) + R̂~p(m− 1) + (m+ 1)γÎ~p(m+ 1). (5.4)

This has several advantages, but the most important one is that the matrix approach reduces the task of

obtaining analytical expressions for the moments of the steady-state mRNA distribution for an arbitrarily

complex promoter to solving two simple linear matrix equations (more details are given in the Appendix).

The matrices appearing in equation 5.4 all have simple and intuitive interpretations. The matrix K̂

describes the stochastic transitions between promoter states: The off-diagonal elements of the matrix K̂ij

are the rates of making transitions from promoter state (j) to promoter state (i). The diagonal elements of

the matrix K̂jj are negative, and they represent the net probability flux out of state (j): K̂jj = −
∑
i 6=j K̂ij .

The matrix R̂ is a diagonal matrix whose element R̂jj gives the rate of transcription initiation when the

promoter is in state (j). Finally, the matrix Î is the identity matrix.

An example of matrices K̂ and R̂ is presented pictorially in figure 5.2. It is straightforward to see that

even though equation 5.4 has been derived for a two-state promoter, it also applies to any other promoter

architecture. What will change for different architectures are the dimensions of the matrices and vectors

(these are given by the number of promoter states) as well as the values of the rate constants that make up

the matrix elements of the various matrices.
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An important limit of the master equation, which is often attained experimentally, is the steady-state

limit, where the probability distribution for mRNA number per cell does not change with time. Although

the time dependence of the moments of the mRNA distribution can be easily computed from our model, for

the sake of simplicity and because most experimental studies have been performed on cells in steady-state,

we focus on this limit. As shown in the Appendix, analytic expressions for the first two moments of the

steady-state mRNA probability distribution are found by multiplying both sides of equation 5.4 by m and

m2, respectively, and then summing m from 0 to infinity. After some algebra (elaborated in an earlier paper

and in the SI), we find that the first two moments can be written as:

〈m〉 =
~r · ~m(0)

γ
, (5.5)

〈m2〉 = 〈m〉+
~r · ~m(1)

γ
. (5.6)

The vector ~r contains the ordered list of rates of transcription initiation for each promoter state. For the

two-state promoter shown in figure 5.1, ~r = (r1, r2). The vector ~m(0) contains the steady-state probabilities

for finding the promoter in each one of the possible promoter states, while ~m(1) is the steady-state mean

mRNA number in each promoter state. The vector ~m(0) is the solution to the matrix equation

K̂ ~m(0) = 0, (5.7)

while the vector is obtained from (
K̂ − γÎ〉

)
~m(1) + R̂~m(0) = 0. (5.8)

Figure 5.1 illustrates the following algorithm for computing the intrinsic variability of mRNA number for

promoters of arbitrarily complex architecture:

1. Make a list of all possible promoter states and their kinetic transitions (figure 5.1(B)).

2. Construct the matrices K̂ and R̂, and the vector ~r, (figure 5.2).

3. Solve equations 5.7 and 5.8 to obtain ~m(0) and ~m(1).

4. Plug solutions of equations 5.7 and 5.8 into equations 5.5 and 5.6 to obtain the moments.

The normalized variance of the mRNA distribution in steady-state is then computed from the equation:

η2 =
V ar(m)
〈m〉2

=
〈m2〉 − 〈m〉2

〈m〉2
=

1
〈m〉

+ 1over〈m〉
(
~r · ~m(1)

γ
− 〈m〉2

)
. (5.9)

Equation 5.9 reveals that, regardless of the specific details characterizing promoter architecture, the intrinsic
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noise is always the sum of two components, and it can be written as

η2 =
1
〈m〉

+ η2
promoter. (5.10)

The first component is due to spontaneous stochastic production and degradation of single mRNA molecules,

it is always equal to the Poissonian expectation of 1/〈m〉, and is independent of the architecture of the

promoter. For an unregulated promoter that is always active and does not switch between multiple states (or

does so very fast compared to the rates of transcription and mRNA degradation), the mRNA distribution

is well described by a Poisson distribution [45, 47], and the normalized variance is equal to 1/〈m〉. The

second component (“promoter noise”) results from promoter state fluctuations, and captures the effect of

the promoter’s architecture on the cell-to-cell variability in mRNA:

η2
promoter =

1
〈m〉2

(
~r · ~m(1)

γ
− 〈m〉2

)
. (5.11)

In order to quantify the effect of the promoter architecture in the level of cell-to-cell variability in mRNA

expression, we define the deviation in the normalized variance caused by gene regulation relative to the

baseline Poisson noise for the same mean (see figure 5.3):

Fold-change in mRNA noise =
η2

η2
Poisson

=
V ar(m)/〈m〉2

1/〈m〉
=
V ar(m)
〈m〉

. (5.12)

Therefore, the deviation in the normalized variance caused by gene regulation is equal to the ratio between

the variance and the mean. This parameter is also known as the Fano factor. Thus, for any given promoter

architecture, the Fano factor quantitatively characterizes how large the mRNA noise is relative to that of

a Poisson distribution of the same mean (i.e., how much the noise for the regulated promoter elevates with

respect to the Poisson noise). This is the parameter that we will use throughout the paper as the metric of

cell-to-cell variability in gene expression.

5.2.1 Promoter noise and variability of mRNA and protein numbers

For proteins, the picture is only slightly more complicated. As shown in the Appendix, in the limit where

the lifetime of mRNA is much shorter than that of the protein it encodes for (a limit that is often fulfilled

[31]), the noise strength of the probability distribution of proteins per cell takes the following form (where

we define n as a state variable that represents the copy number of proteins per cell):

V ar(n)
〈n〉2

=
〈n2〉 − 〈n〉2

〈n〉2
=

1 + b

〈n〉
+

1
〈n〉2

(
b
~r · ~n(1)

γprotein
− 〈n〉2

)
, (5.13)

where γprotein stands for the protein degradation rate, and the constant b is equal to the protein burst size

(the average number of proteins produced by one mRNA molecule). The mean protein per cell is given by
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Figure 5.1: Two-state promoter. (A) Simple two-state bacterial promoter undergoing stochastic activation
by a transcriptional activator binding to a single operator site. The rates of activator association and
dissociation are given by konA and koffA , respectively, and the rates of mRNA production for the basal and
active states are r1 and r2, respectively. The mRNA degradation rate is assumed to be constant for each
molecule, and is given by the parameter γ. (B) List of all possible stochastic transitions affecting either the
copy number of mRNA (m) or the state of the promoter (s) and their respective statistical weight. State 1
has the operator free. State 2 is the activator bound state. The weights represent the probability that each
change of state will occur during a time increment ∆t . The master equation is constructed based on these
rules.

〈n〉 = b
~r·~m(0)

γprotein
, and the vector ~n(1) is the solution of the algebraic equation:

(
K̂ − γproteinÎ

)
~n(1) + bR̂~m(0) = 0. (5.14)

The reader is referred to the Appendix for a detailed derivation and interpretation of these equations. In the

previous section we have shown that the noise for proteins and mRNA take very similar analytical forms.

Indeed, if we define ~rn = b~r and R̂n = bR̂, as the vector and matrix containing the average rates of protein

synthesis for each promoter state, it is straightforward to see that equations 5.8 and 5.14 are mathematically

equivalent, with the only difference being that in equation 5.14 the matrix R̂n represents the rates of protein

synthesis, so all the rates of transcription are multiplied by the translation burst size b. Therefore, the

vectors ~m(1) and ~n(1) are only going to differ in the prefactor b multiplying all the different transcription

rates. We conclude that the promoter contribution to the noise takes the exact same analytical form both for

proteins and for mRNA, with the only other quantitative difference being the different rates of degradation

for proteins and mRNA. Therefore, promoter architecture has the same qualitative effect on cell-to-cell

variability in mRNA and protein numbers. All the conclusions about the effect of promoter architecture on

cell-to-cell variability in mRNA expression are also valid for proteins, even though quantitative differences

do generally exist. For the sake of simplicity we focus on mRNA noise for the remainder of the paper.

5.2.2 Parameters and assumptions

In order to evaluate the equations in our model, we use parameters that are consistent with experimental

measurements of rates and equilibrium constants in vivo and in vitro, which we summarize in table 5.1.
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Figure 5.2: Cartoon depiction of the construction of kinetic rate matrices and vectors. (A) Cartoon repre-
sentation of the kinetic rate matrix K̂. The diagonal elements represent the net rate at which the promoter
abandons each state. For instance, element {K̂}11 is the rate at which the promoter abandons state 1 due
to stochastic association of the activator with the promoter: {K̂}11 = −konA , and element {K̂}22 = −koffA is
the rate of dissociation of the activator from the promoter, abandoning state 2. The non-diagonal element
{K̂}21 = konA is the rate at which the promoter makes a transition from state 1 to state 2 (by dissociation
association of one activator to the promoter), and the non-diagonal element {K̂}12 = −koffA is the rate at
which the promoter makes a transition from state 2 to state 1 (by dissociation of the activator). (B) The
transcription rate matrix contains, in its diagonal elements, the net rate of transcription at each promoter
state. Element {R̂}11 = r1 is the rate of transcription in promoter state 1 and {R̂}22 = r2 is the rate of
transcription in promoter state 2. (C) The vector ~r = (r1, r2) contains the rates of transcription at states 1
and 2, and is identical to the diagonal of matrix R̂.
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Kinetic rate Symbol Value Reference
Unregulated promoter transcription rate r 0.33 s−1 [52]
Repressor and activator association rates k0

R, k0
A 0.0027 (s nM)−1 [3]

Repressor and activator dissociation rates koffR , koffA 0.0023 s−1 [42]
mRNA decay rate γ 0.011 s−1 [11]

Ratio between transcription rates due to activation f = r1/r2 11 [50]
Cooperativity in repression Ωrepression 0.013 [50]
Cooperativity in activation Ωactivation 0.1 [35]

Looping J-factor [J ] 660 nM [35]
Protein translation burst size b 31.2 proteins/mRNA [6]

Protein decay rate γprotein 0.00083 s−1 [53]

Table 5.1: Kinetic parameters used to make the quantitative estimates in the text and plots in the figures.
These parameters are all measured for model systems such as the Plac or PRM promoters in E. coli, and
are here considered representative for promoter-transcription factor interactions.

Although these values correspond to specific examples of E. coli promoters, like the Plac or the PRM
promoter, we extend their reach by using them as “typical” parameters characteristic of bacterial promoters,

with the idea being that we are trying to demonstrate the classes of effects that can be expected, rather than

dissecting in detail any particular promoter. The rate of association for transcription factors to operators in

vivo is assumed to be the same as the recently measured value for the Lac repressor, which is close to the

diffusion limited rate [48].

Operator strength reflects how tightly operators bind their transcription factors, and it is quantitatively

characterized by the equilibrium dissociation constant KO−TF . The dissociation constant has units of

concentration and is equal to the concentration of free transcription factor at which the probability for the

operator to be occupied is 1/2. KO−TF is related to the association and dissociation rates by KO−TF =

koff/k
0
on, where koff is the rate (i.e., the probability per unit time) at which a transcription factor dissociates

from the promoter, and k0
on is a second-order rate constant, which represents the association rate per unit

of concentration of transcription factors (i.e., kon = k0
on[NTF ] ). For simplicity, we assume that the binding

reaction is diffusion limited, namely, k0
on is already close to its maximum possible value, so the only parameter

that can differ from operator to operator is the dissociation rate: strong operators have slow dissociation

rates, and weak operators have large dissociation rates.

Throughout this paper, we also make the assumption that the mean expression level is controlled by

varying the intracellular concentration of transcription factors, a scenario that is very common experimentally

[49–51]. We also assume that changing the intracellular concentration of transcription factors only affects

the association rate of transcription factors to the operators, but the dissociation rate and the rates of

transcription at each promoter state are not affected. In other words, kofF is a constant parameter for each

operator, and it is not changed when we change the mean by titrating the intracellular repressor level. All

of these general assumptions need to be revisited when studying a specific gene-regulatory system. Here our

focus is on illustrating the general principles associated with different promoter architectures typical of those

found in prokaryotes.
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5.2.3 Simulations

To generate mRNA time traces, we applied the Gillespie algorithm [54] to the master equation described in

the text. A single time step of the simulation is performed as follows: one of the set of possible trajectories

is chosen according to its relative weight, and the state of the system is updated appropriately. At the same

time, the time elapsed since the last step is chosen from an exponential distribution, whose rate parameter

equals the sum of rate parameters of all possible trajectories. This process is repeated iteratively to generate

trajectories that exactly reflect dynamics of the underlying master equation. For the figures, simulation

lengths were set long enough for the system to reach steady-state and for a few promoter state transitions

to occur.

To generate the probability distributions, it is convenient to reformulate the entire system of mRNA

master equations in terms of a single matrix equation. To do this, we first define a vector

~P =



p(1, 0)

p(2, 0)
...

p(N, 0)

p(1, 1)
...

p(N, 1)

p(1, 2)
...

p(N, 2)
...



=


~p(0)

~p(1)

~p(2)
...

 , (5.15)

where is the joint probability of having mRNAs while in the ith promoter state. Then the master equation

for time evolution of this probability vector is

d~P

dt
=



K̂ − R̂ γÎ 0 . . .

R̂ K̂ − (R̂+ γÎ) 2γÎ . . .

0 R̂ K̂ − (R̂+ 2γÎ) . . .

0 0 R̂ . . .
...

...
... . . .




~p(0)

~p(1)

~p(2)
...

 , (5.16)

where each element of the matrix is itself an N by N matrix as described in the text. Then finding the

steady-state distribution ~Pss is equivalent to finding the eigenvector of the above matrix associated with

eigenvalue 0. To perform this calculation numerically, one must first choose an upper bound on mRNA

copy number in order to work with finite matrices. In this work, we chose an upper bound six standard
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deviations above mean mRNA copy number as an initial guess, and then modified this bound if necessary.

Computations were performed using the SciPy (Scientific Python) software package.

5.3 Results

5.3.1 Promoters with a single repressor binding site

We first investigate a promoter architecture consisting of a single repressor binding site, and examine how

operator strength affects intrinsic variability in gene expression. Although this particular mode of gene

regulation has been well studied theoretically before [2, 17, 37, 38, 45], it is a useful starting point for

illustrating the utility of this class of models. Within this class of models, when the repressor is bound to

the operator, it interferes with transcription initiation and transcription does not occur. When the repressor

dissociates and the operator is free, RNAP can bind and initiate transcription at a constant rate r. The

probability per unit time that a bound repressor dissociates is koffR , and the probability per unit time that a

free repressor binds the empty operator is konR = k0
on[NR], where k0

on is the second-order association constant

and [NR] is the intracellular repressor concentration. The rate of mRNA degradation per molecule is γ. This

mechanism is illustrated in figure 5.3(A).

We compute the mean and the Fano factor for this architecture following the algorithm described in the

Mathematical Methods section. The kinetic rate and transcription rate matrices K̂ and R̂ are shown in

table 5.2. For this simple architecture, the mean of the mRNA probability distribution and the normalized

variance take simple analytical forms:

〈m〉 =
r

γ

koffR

koffR + konR
=
r

γ

1

1 + konR /koffR

, (5.17)

η2 =
1
〈m〉

+
konR

koffR

γ

γ + koffR + kobR
. (5.18)

Using the relationship between konR and the intracellular concentration of repressor, we can write the mean

as:

〈m〉 =
r

γ

1

1 + k0
on[NR]/koffR

= 〈m〉max
1

1 + [NR]/KOR
. (5.19)

Here we have defined the equilibrium dissociation constant between the repressor and the operator as: KOR =

koffR /k0
on. It is interesting to note that equation 5.19 could have been derived using the thermodynamic

model approach [34, 35, 42, 55]. In particular we see that this expression is equal to the product of the

maximal activity in the absence of repressor 〈m〉max = r/γ, and the so-called fold-change in gene expression:(
1 + konR /koffR

)−1

= (1 + [NR]/KOR)−1 [35]. The fold-change is defined as the ratio of the level of expression

in the presence of the transcription factor of interest, and the level of expression in the absence of the

transcription factor.
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The Fano factor for the mRNA distribution can be computed from equation 5.12 and we obtain:

Fano = 1 +
konR

koffR + konR

r

γ + koffR + konR
, (5.20)

which is also shown as the first entry of table 5.3. In many experiments [5, 16, 32, 50], the concentration

of repressor inside the cell [NR] (and therefore the association rate konR = k0
on[NR]) can be varied by either

expressing the repressor from an inducible promoter, or by adding an inducer that binds directly to the

repressor rendering it incapable of binding specifically to the operators in the promoter region. When such

an operation is performed, the only parameter that is varied is typically konR , and all other kinetic rates are

constant. The Fano factor can thus be re-written as a function of the mean mRNA, and we find:

Fano = 1 + 〈m〉 1− 〈m〉/〈m〉max
koffR /γ + 〈m〉/〈m〉max

. (5.21)

Therefore, for any given value of the mean, the Fano factor depends only on two parameters: the maximal

mRNA or protein expression per cell, and a parameter that reflects the strength of binding between the

repressor and the operator: koffR . Equations 5.19 and 5.20 reveal that changes in the mean due to repressor

titration affect the noise as well as the mean. Since neither the repressor dissociation rate koffR nor the

mRNA degradation rates are affected by the concentration of repressors, koffR /γ is a constant parameter

that will determine how large the cell-to-cell variability is: The Fano factor is maximal for promoters with

very strong operators, (koffR � γ), and it goes to 1 (i.e., the distribution tends to a Poisson distribution)

when the operator is very weak and the rate of dissociation extremely fast (koffR � γ). In the latter limit of

fast promoter kinetics, the fast fluctuations in promoter occupancy are filtered by the long lifetime of mRNA.

Effectively, mRNA degradation acts as a low-pass frequency filter [56, 57], and fast fluctuations in promoter

occupancy are not propagated into mRNA fluctuations. Therefore, promoters with strong operators are

expected to be noisier than promoters with weak operators [58]. From this discussion it should also be

clear that the mRNA degradation rate critically affects cell-to-cell variability. Any processes that tend to

accelerate degradation will tend to increase noise, and mRNA stabilization (i.e., protection of the transcript

by RNA binding proteins) leads to reduction of variability. However, the focus of this article is on promoter

architecture and transcriptional regulation. Therefore, we do not consider regulation of transcription by

mRNA degradation, and assume that all the promoters transcribe the same mRNA as is often the case in

experimental studies.

The effect of operator strength on the mRNA distribution is illustrated in figures 5.3(B) and 5.3(C),

where we show the normalized variance and the Fano factor, as a function of the fold-change in the mean

mRNA concentration for a single strong operator whose dissociation rate is koffR = 0.0027 s−1 (a value that

is representative of well characterized repressor-operator interactions such as the Lac repressor-O1, or the

cI2-OR1), and for a single operator whose dissociation rate koffR is 10 times faster. The Poisson noise is

shown for reference. The level of variability is always smaller for the weak operator than for the strong
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operator, due to faster promoter switching leading to smaller mRNA fluctuations and a more Poisson-like

mRNA distribution (figure 5.3(E)), in which most cells are close to the mean. Slow dissociation, on the other

hand, causes slower promoter fluctuations and highly non-Poissonian mRNA distributions, with few cells

near the mean expression level (see figure 5.3(E), strong promoter). In figure 5.3(D) we plot the fold-change

in protein noise due to gene regulation for the simple repression architecture. As expected, we find that the

effect of operator strength in protein noise is qualitatively identical to what we found for mRNA. Since the

same can be said of all the rest of architectures studied, we will limit the discussion to mRNA noise for the

rest of the paper, with the understanding that for the class of models considered here, all the conclusions

about the effect of promoter architecture in cell-to-cell variability that are valid for mRNA, are true for

intrinsic protein noise as well.

An example of the single repressor-binding site architecture is a simplified version of the PlacUV5 pro-

moter, which consists of a single operator overlapping with the promoter. Based on a simple kinetic model

of repression, in which the Lac repressor competes with RNAP for binding at the promoter, we can write

down the K̂ and R̂ matrices and compute the cell-to-cell variability in mRNA copy number. The matrices

are presented in table 5.2. Based on our previous analysis, we know that stronger operators are expected

to cause larger noise and higher values of the Fano factor than weaker operators. Therefore, we expect that

if we replace the wild-type O1 operator by the 10 times weaker O2 operator, or by the ∼ 500 times weaker

operator O3, the fold-change in noise should go down. Using our best estimates and available measurements

for the kinetic parameters involved, we find that noise is indeed much larger for O1 than for O2, and it is

negligible for O3. This prediction is presented as an inset in figure 5.3(C).

5.3.2 Promoters with two repressor-binding operators

Dual repression occurs when promoters contain two or more repressor binding sites. Here, we consider three

different scenarios for architectures with two operators: 1) repressors bind independently to the two operators,

2) repressors bind cooperatively to the two operators and 3) one single repressor may be bound to the two

operators simultaneously thereby looping the intervening DNA. At the molecular level, cooperative repression

is achieved by two weak operators that form long-lived repressor-bound complexes when both operators are

simultaneously occupied. Transcription factors may stabilize each other either through direct protein-protein

interactions [55], or through indirect mechanisms mediated by alteration of DNA conformation [59].

5.3.2.1 Cooperative and independent repression

The kinetic mechanisms of gene repression for both the cooperative and independent repressor architectures

are reproduced in figure 5.4(A). For simplicity, we assume that both sites are of equal strength, so the rates

of association and dissociation to both sites are equal. Cooperative binding is reflected in the fact that the

rate of dissociation from the state where the two operators are occupied is slower (by a factor Ω� 1 ) than

the dissociation from a single operator. This parameter is related to the cooperativity factor ω often found
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Figure 5.3: Simple repression architecture. (A) Kinetic mechanism of repression for an architecture involving
a single repressor binding site. The repressor turns off the gene when it binds to the promoter (with rate konR ),
and transcription occurs at a constant rate r when the repressor falls off (with rate koffR ). (B) Normalized
variance as a function of the fold-change in mean mRNA copy number. The parameters used are drawn
from table 5.1. The value of koffR = 0.0023 s−1 from table 5.1 corresponds to the in vitro dissociation
constant of the Lac repressor from the Oid operator (black). The results for an off-rate 10-times higher are
also plotted (red). As a reference for the size of the fluctuations, we show the normalized variance for a
Poisson promoter. (C) Fano factor for two promoters bearing the same off-rates as in (B). Inset. Prediction
for the Fano factor for the ∆O3∆O2PlacUV5 promoter, a variant of the PlacUV5 promoter for which the
two auxiliary operators have been deleted. The fold-change in mRNA noise is plotted as a function of the
fold-change in mean mRNA copy number for mutants of the promoter that replace O1 for Oid, O2 or O3.
The parameters are taken from table 5.1 and [35]. Lifetimes of the operator-repressor complex are 7 min
for Oid, 2.4 min for O1, 11 s for O2 and 0.47 s for O3. (D) Fold-change in protein noise as a function of
the fold-change in mean expression. As expected, the effect of operator strength is the same as observed for
mRNA noise. (E) Time traces for promoter activity, mRNA and protein copy number are shown for both
the weak operator and the strong operator. The mRNA histograms are also shown. The weaker operator
with a faster repressor dissociation rate leads to small promoter noise, and an mRNA probability distribution
resembling a Poisson distribution (shown by the blue-bar histogram), in which most cells express mRNA
near the population average. In contrast, the stronger operator with a slower repressor dissociation rate,
leads to larger promoter noise and strongly non-Poissonian mRNA statistics.
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in thermodynamic models [56] by Ω = 1/ω. A typical value of Ω for cooperative binding is on the order of

10−3 − 10−2 [50, 55]. By way of contrast, independent binding is characterized by a value of Ω = 1 , which

reflects the fact that the rate of dissociation from each operator is not affected by the presence of the other

operator.

The K̂ and R̂ matrices for these two architectures are defined in table 5.2. Using these matrices, we

can compute the mean gene expression and the Fano factor for these two architectures as a function of the

concentrations of repressor. The resulting expression for the fold-change in noise is shown as entry number

3 of table 5.3. As shown in figure 5.4(B), the noise for cooperative repression is substantially larger than

for the independent repression architecture. The high levels of intrinsic noise associated with cooperative

repression can be understood intuitively in terms of the kinetics of repressor-operator interactions. At low

repressor concentration, the lifetime of the states where only one repressor is bound to either one of the two

operators can be shorter than the time it takes for a second repressor to bind. This makes simultaneous

binding of two repressors to the two operators a rare event. However, when it occurs, the two repressors

stabilize each other, forming a very long-lived complex with the operator DNA. This mode of repression, with

rare but long-lived repression events, is intrinsically very noisy, since the promoter switches slowly between

active (unrepressed) and inactive (repressed) states, generating wide bimodal distributions of mRNA (see

figure 5.4(C)). On the other hand, independent binding to two operators causes more frequent transitions

between repressed and unrepressed states, leading to lower levels of intrinsic noise and long-tailed mRNA

distributions (see figure 5.4(C)).

As an example of the two repressor-binding sites architecture, we consider a simplified version of the lytic

phage-λ PR promoter, which is controlled by the lysogenic repressor cI. The wild-type PR promoter consists

of three proximal repressor binding sites, OR1, OR2 and OR3, with different affinities for the repressor

(OR2 is ∼ 25 times weaker than OR1) [60], and three distal operators OL1, OL2 and OR3. For simplicity,

we consider a simpler version of PR, harboring a deletion of the three distal operators. In the absence of

these operators, the OR3 operator plays only a very minor role in the repression of this promoter, and it

can be ignored [50, 61]. We are then left with only OR1 and OR2. The cI repressor binds cooperatively to

OR1 and OR2, and that cooperativity is mediated by direct protein-protein interactions between cI bound

at each operator [61]. Mutant forms of cI that are cooperativity deficient (i.e., not able to bind cooperatively

to the promoter) have been designed [62]. In the inset in figure 5.4(B), we compare the normalized variance

of the mRNA distribution, both for wild-type cI repressor, and for a cooperativity deficient mutant such

as Y210H [62]. The cooperative repressor is predicted to have significantly larger promoter noise than the

cooperativity deficient mutant.

5.3.2.2 Simultaneous binding of one repressor to two operators: DNA looping

Repression may also be enhanced by the presence of distant operators, which stabilize the repressed state by

allowing certain repressors to simultaneously bind to both distant and proximal operators, forming a DNA
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Figure 5.4: Dual repression architecture. (A) Kinetic mechanism of repression for a dual-repression architec-
ture. The parameters koffR and konR are the rates of repressor dissociation and association to the operators,
and Ω is a parameter reflecting the effect of cooperative binding on the dissociation rate. For independent
binding, Ω = 1 and for cooperative binding Ω = 0.013 (see table 5.1). (B) Fold-change in the mRNA noise
caused by gene regulation for independent (red) and cooperative (black) repression as a function of the mean
mRNA copy number. Inset: Prediction for a variant of the λ PR promoter where the upstream operators
OL1 , OL2 and OL3 are deleted. The promoter mRNA noise is plotted as a function of the mean mRNA
number for both wild-type cI repressor (blue line) and a repressor mutant (Y210H) that abolishes coopera-
tivity (red line). Parameters taken from [43, 63]. The lifetime of the OR1-cI complex is 4 min. Lifetime of
OR2-cI complex is 9.5 s. (C) mRNA distribution for the same parameters used in (B).

loop [64, 65]. The Plac promoter is a prominent example of this architecture. The kinetic mechanism of

repression characterizing this promoter architecture is presented in figure 5.5(A). The repressor only prevents

transcription when it is bound to the main operator Om, but not when it is only bound to the auxiliary

operator Oa. DNA loop formation is characterized by a kinetic rate kloop = k0
on[J ] where [J ], the looping

J-factor, can be thought of as the local concentration of repressor in the vicinity of one operator when the

repressor is bound to the other operator [34, 35]. The rate of dissociation of the operator-repressor complex

in the looped conformation is given by kunloop = ckoffR . The parameters [J ] and c have both been measured

in vitro for the particular case of the Lac repressor [42, 66], and also estimated from in vivo data [34, 67].

The K̂ and R̂ matrices for this architecture are defined in table 5.2. We use these matrices to compute the

mean and the noise strength, according to equations 5.5–5.12 resulting in the fifth entry of table 5.3.

We first examine how the presence of the auxiliary operator affects the level of cell-to-cell variability in

mRNA expression. In figure 5.5(B) we compare the Fano factor in the absence of the auxiliary operator

with the Fano factor in the presence of the auxiliary operator, which is assumed to be of the same strength

as the main operator. We use parameters in table 5.1, and we first assume that the dissociation rate of the

operator-repressor complex in the looped state is the same as the dissociation rate in the unlooped state,

so c = 1 and kunloop = koffR . This assumption is supported by single-molecule experiments in which the

two operators are on the same side of the DNA double-helix, separated by multiples of the helical period

of DNA [42, 66]. Under these conditions we find that the presence of an auxiliary operator results in a

larger Fano factor, in spite of the fact that the auxiliary operator Oa does not stabilize the binding of the

repressor to the main operator Om. Interestingly, we find that the Fano factor is maximal at intermediate
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concentrations of repressor for which only one repressor is bound to the promoter, making the simultaneous

occupancy of the auxiliary and main operators mediated by DNA looping possible. In contrast, the Fano

factor is identical to that of the simple repression case if the concentration of repressor is so large that it

saturates both operators and looping never occurs. It had been previously hypothesized that DNA looping

might be a means to reduce noise in gene expression, due to rapid re-association kinetics between Om and

a repressor that is still bound to Oa, which may cause short and frequent bursts of transcription [67, 68].

Here, by applying a simple stochastic model of gene regulation, we show that the presence of the auxiliary

operator does not, by itself, decrease cell-to-cell variability. On the contrary, it is expected to increase it.

The reason for this increase is that the rate of dissociation from the main operator is not made faster by

DNA looping; instead the presence of the auxiliary operator causes the repressor to rapidly rebind the main

operator, extending the effective period of time when the promoter is repressed.

Indeed, we find that only if the dissociation rate for a repressor in the looped state is faster than in

the unlooped state, the presence of the auxiliary operator might reduce the cell-to-cell variability. To

illustrate this limit, we have assumed a value of c = 100, so that kunloop = 100koffR , and find that the

Fano factor goes down, below the expectation for the simple repression architecture. A modest increase in

the dissociation rate in the looped conformation has been reported in recent single-molecule experiments for

promoter architectures in which the two operators are out of phase (located on different faces of the DNA)

[42].

An example of this type of architecture is a simplified variant of the PlacUV5 promoter, which consists

of one main operator and one auxiliary operator upstream from the promoter. The kinetic mechanism of

repression is believed to be identical to the one depicted in figure 5.5(A) [24, 42, 66, 67]. We can use the

stochastic model of gene regulation described in the theory section to make precise predictions that will

test this kinetic model of gene regulation by DNA looping. We find that the kinetic model predicts that, if

we move the center of the auxiliary operator further upstream from its wild-type location, in increments of

distance given by the helical period of the DNA, such that both operators stay in phase, the fold-change in

noise should behave as represented in figure 5.5(C). In order to model the effect of DNA looping, we assume

that the dependence of the rate of DNA looping on the inter-operator distance D (in units of base-pairs) is

given by [34], kloop = konR × exp
[
− u
D − ν ln(D) + wD + z

]
, where u = 140.6, v = 2.52, w = 0.0014, z = 19.9,

[34], and we assume the same concentration of repressors (and therefore the same value for konR ) for all of the

different loop lengths. Note that in figure 5.5(C), the Fano factor is not plotted as a function of the mean,

but as a function of the inter-operator distance D. That is, we keep the number of repressors constant, and

instead we alter the distance between the two operators. This results in mRNA distributions that differ both

in the mean and the variance.
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Figure 5.5: Repression by DNA looping. (A) Kinetic mechanism of repression. koffR and konR are the rates
of repressor dissociation and association. The rate of loop formation is kloop = [J ]k0

R , where [J ] can be
thought of as the local concentration of repressor in the vicinity of one operator when it is bound to the other
operator. The rate of dissociation of the operator-repressor complex in the looped conformation is given by
kunloop = ckoffR . The parameter c captures the rate of repressor dissociation in the looped state relative
to the rate of dissociation in a non-looped state. (B) Effect of DNA looping on cell-to-cell variability. The
Fano factor is plotted as a function of the fold-change in the mean expression level, in the absence (blue)
and presence (black) of the auxiliary operator, and assuming that dissociation of the operator from Om
is the same in the looped and the unlooped state (c = 1). The presence of the auxiliary operator, which
enables repression by DNA looping, increases the cell-to-cell variability. The regions over which the state
with two repressors bound, the state with one repressor bound or the looped DNA state are dominant are
indicated by the shading in the background. The noise is larger at intermediate repression levels, where
only one repressor is found bound to the promoter region, simultaneously occupying the auxiliary and main
operators through DNA looping. The rate of DNA loop formation is kloop = 660 nMk0

R [35]. We also show
the effect of DNA looping in the case where the kinetics of dissociation from the looped state are 100 times
faster than the kinetics of dissociation from the unlooped state: c = kunloop/k

off
r (red). In this limit, the

presence of the auxiliary operator leads to less gene expression noise. (C) Prediction for a library of PlacUV5
promoter variants, harboring an O2 deletion, and with the position of O3 moved upstream by multiples of
11 bp while keeping its identity (red), or replaced by the operator by Oid (black). Parameters are taken from
the analysis in [35] of the data in [69]. We assume a concentration of 50 Lac repressor tetramers per cell.
The association rate of the tetrameric repressor to the operators is taken from table 5.1. The lifetimes of the
operator-repressor complex are given in the caption to figure 5.3. The dependence of the rate of DNA looping
on the inter-operator distance is taken from [35], and equal to: kloop = konR × exp

[
− u
D − v ln(D) + wD + z

]
,

where u = 140.6, v = 2.52, w = 0.0014, z = 19.9. Note that the Fano factor is not plotted as a function of
the mean, but as a function of the inter-operator distance D. In this case, as we change D, we vary both
the mean and the Fano factor.
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5.3.3 Simple activation

Transcriptional activators bind to specific sites at the promoter from which they increase the rate of tran-

scription initiation by either direct contact with one or more RNAP subunits or indirectly by modifying the

conformation of DNA around the promoter [59]. The simplest example of an activating promoter architec-

ture consists of a single binding site for an activator in the vicinity of the RNAP binding site. When the

activator is not bound, transcription occurs at a low basal rate. When the activator is bound, transcription

occurs at a higher, activated rate. Stochastic association and dissociation of the activator causes fluctuations

in transcription rate which in turn cause fluctuations in mRNA copy number.

This simple activation architecture is illustrated in figure 5.1(A). The K̂ and R̂ matrices for this architec-

ture are given in table 5.2. Solving equations 5.5–5.8 for this particular case, we find that the mean mRNA

per cell for this simple mechanism takes the form:

〈m〉 =
r2

γ

konA

konA + koffA

+
r1

γ

koffA

konA + koffA

. (5.22)

The mean mRNA can be changed by adjusting the intracellular concentration of the activator. The rate

at which one of the activators binds to the promoter is proportional to the activator concentration: konA =

k0
on[NA] . Following the same argument as we used in the simple repression case, the equilibrium dissociation

constant for the activator-promoter interaction is given by KOA = koffA /k0
on. Finally, it is convenient to

define the enhancement factor: the ratio between the rate of transcription in the active and the basal states

f = r2/r1. The mean mRNA can be written in terms of these parameters as:

〈m〉 =
r1

γ

(
KOA

[NA] +KOA
+ f

[NA]
[NA] +KOA

)
. (5.23)

The Fano factor can be computed using equations 5.5–5.12 and it is shown as entry 2 of table 5.3. We can

rewrite the equation appearing in table 5.3 by writing konA as a function of the mean:

Fano = 1 + 〈m〉
(
f − 〈m〉/〈m〉basal
〈m〉/〈m〉basal

)2 〈m〉/〈m〉basal − 1

(f − 〈m〉/〈m〉basal) + koffA

γ (f − 1)
. (5.24)

With these equations in hand, we explore how operator strength affects noise in gene expression in the case

of activation. Stronger operators bind to the activator more tightly than weak operators, leading to longer

residence times of the promoter in the active state.

In figure 5.6(A) we plot the Fano factor as a function of the fold-change in mean expression for a strong

operator as well as a 10 times weaker operator. We have used the parameters in table 5.1. Just as we

saw for the simple repression architecture, it is also true for the simple activation architecture that stronger

operators cause larger levels of noise for activators than weaker operators.

To get a sense of the differences between these two standard regulatory mechanisms, we compare simple
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repression with simple activation. In figure 5.6(B), we plot the Fano factor as a function of the mean

for a repressor and an activator with identical dissociation rates. We assume that the promoter switches

between a transcription rate r = 0 in its inactive state (which happens when the repressor is bound in the

simple repression case, or the activator is not bound in the simple activation case), and a rate equal to

r = 0.33 s−1 (see table 5.1) in the active state (repressor not bound in the simple repression case, activator

bound in the simple activation case). As shown in figure 5.6(B), at low expression levels the simple activation

is considerably (> 20 times) noisier than the simple repression promoter. At high expression levels both

architectures yield very similar noise levels, with the simple repression architecture being slightly noisier.

A low level of gene expression may be achieved either by low concentrations of an activator, or by high

concentrations of a repressor. Low concentrations of an activator will lead to rare activation events. High

concentrations of a repressor will lead to frequent but short-lasting windows of time for which the promoter

is available for transcription. As a result, and as we illustrate in figure 5.6(C), the activation mechanism

leads to bursty mRNA expression whereas the repressor leads to Poissonian mRNA production. This result

suggests that in order to maintain a homogeneously low expression level, a repressive strategy in which a

high concentration of repressor ensures low expression levels may be more adequate than a low activation

strategy.

An example of simple activation is the wild-type Plac promoter, which is activated by CRP when com-

plexed with cyclic AMP (cAMP). CRP is a ubiquitous transcription factor, and is involved in the regulation

of dozens of promoters, which contain CRP binding sites of different strengths [70]. In the inset of figure

5.6(A) we include CRP as an example of simple activation, and make predictions for how changing the wild-

type CRP binding site in the Plac promoter by the CRP binding site of the Pgal promoter (which is ∼ 8

times weaker [71]) should affect the Fano factor. As expected from our analysis of this class of promoters,

the noise goes down.

5.3.4 Dual activation: independent and cooperative activation

Dual activation architectures have two operator binding sites. Simultaneous binding of two activators to the

two operators may lead to a larger promoter activity in different ways. For instance, in some promoters each

of the activators may independently contact the polymerase, recruiting it to the promoter. As a result, the

probability to find RNAP bound at the promoter increases and so does the rate of transcription [34, 72]. In

other instances, there is no increase in enhancement factor when the two activators are bound. However,

the first activator recruits the second one through protein-protein or protein-DNA interactions, stabilizing

the active state and increasing the fraction of time that the promoter is active [61]. These two modes are

not mutually exclusive, and some promoters exhibit a combination of both mechanisms [73].

We first investigate the effect of dual activation in the limit where binding of the two transcription

factors is not cooperative. Assuming that activators bound at the two operators independently recruit

the polymerase, we compare this architecture with the simple activation architecture. The mechanism of
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Figure 5.6: Simple activation architecture. (A) The Fano factor is plotted as a function of the fold-change
gene expression (blue line). In red, we show the effect of reducing operator strength (i.e., reducing the
lifetime of the operator-activator complex) by a factor of 10. Just as we observed with single repression, weak
activator binding operators generate less promoter noise than strong activating operators. The parameters
used are shown in table 5.1 with the exception of r1 = 0.33 s−1/f , where f is the enhancement factor.
Inset: Prediction for the activation of the Plac promoter. The fold-change in noise is plotted as a function
of the fold-change in mean mRNA expression for both the wild-type Plac (CRP dissociation time = 8 min),
represented by a blue line, and a Plac promoter variant where the lac CRP binding site has been replaced
by the weaker gal CRP binding site (dissociation time = 1 min). The enhancement factor was set to f = 50
[35]. These parameters are taken from [71] and [35]. The remaining parameters are taken from table 5.1.
(B) Fano factor as a function of 〈mRNA〉/〈mRNA〉max for a repressor (black) and an activator (red) with
the same transcription factor affinity. The transcription rate in the absence of activator is assumed to be
zero. The transcription rate in the fully activated case is equal to the transcription rate of the repression
construct in the absence of repressor and is r = 0.33 s−1 as specified by table 5.1. For low expression
levels 〈m〉/〈m〉max < 0.5 simple activation is considerably noisier than simple repression. (C) The results of
a stochastic simulation for the simple activation and simple repression architectures. We assume identical
dissociation rates for the activator and repressor, and identical rates of transcription in their respective active
states. As shown in (B), low concentrations of an activator result in few, but very productive transcription
events, whereas high concentrations of a repressor lead to the frequent but short-lived excursions into the
active state.
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activation is depicted in figure 5.7(A), and matrices K̂ and R̂ are presented in table 5.2. For simplicity,

we assume that both operators have the same strength, and both have the same enhancement factor f =

r2/r1 = r3/r1 .When the two activators are bound, the total enhancement factor is given by the product of

the individual enhancement factors, which in this case is f × f = r4/r1 [34]. All of the other relevant kinetic

parameters are given in table 5.1. The Fano factor is plotted in figure 5.7(B). We find that compared to the

single operator architecture, the second operator increases the level of variability, even when binding to the

operators is non-cooperative.

We then ask whether this is also true when the binding of activators is cooperative. We assume a small

cooperativity factor Ω = 0.1. Just as we found for repressors, cooperative binding of activators generates

larger cell-to-cell variability than independent binding, which in turn generates larger cell-to-cell variability

than simple activation. This is illustrated in the stochastic simulation in figure 5.7(C). As expected the dual

activation architectures are noisier than the simple activation, characterized by rare but long-lived activation

events that lead to large fluctuations in mRNA levels. In contrast, the simple activation architecture leads

to more frequent but less intense activation events.

Together with the results from the dual repressor mechanism, these results indicate that multiplicity in

operator number may introduce significant intrinsic noise in gene expression. Multiple repeats of operators

commonly appear in eukaryotic promoters [2, 74, 75], but are often found in prokaryotic promoters as well

[61, 72, 76]. It is interesting to note that this prediction of the model is in qualitative agreement with the

findings by Raj et al. [3] who report an increase in cell-to-cell variability in mRNA when the number of

activator binding sites was changed from one to seven.

An example of cooperative activation is the lysogenic phage-λ PRM promoter [61]. This promoter

contains three operators (OR1, OR2 and OR3) for the cI protein, which acts as an activator. When OR2 is

occupied, cI activates transcription. OR1 has no direct effect on the transcription rate, but it helps recruit cI

to OR2, since cI binds cooperatively to the two operators. Finally, OR3 binds cI very weakly, but when it is

occupied, PRM becomes repressed. There are variants of this promoter [50] that harbor mutations in OR3
that make it unable to bind cI. In figure 5.7(D), we include one of these variants, r1-PRM [51] as an example

of dual activation, and we present a theoretical prediction for the promoter noise as a function of the mean

mRNA. We examine the role of cooperativity by comparing the wild-type cI, with a cooperativity deficient

mutant. We find that the cooperative activator causes substantially larger cell-to-cell variability than the

mutant, emphasizing our expectation that cooperativity may cause substantial noise in gene expression in

bacterial promoters such as PRM.

5.4 Discussion

The DNA sequence of a promoter encodes the binding sites for transcriptional regulators. In turn, the

collection of these regulatory sites, known as the architecture of the promoter, determines the mechanism of
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Figure 5.7: Dual activation architecture. (A) Kinetic mechanism of dual activation. The parameters koffA

and konA are the rates of activator dissociation and association to the operators, and Ω is a parameter reflecting
the effect of cooperative binding on the dissociation rate. (B) Fano factor as a function of the mean mRNA
for independent (Ω = 1, black), cooperative (Ω = 0.1, red), and for simple activation (blue). The parameters
are taken from table 5.1 and r1 = 0.33 s−1/f , r2 = f×r1, r3 = f×r1, and r4 = f2×r1; f is the enhancement
factor. (C) A stochastic simulation shows the effect of independent and cooperative binding in creating a
sustained state of high promoter activity, resulting in high levels of mRNA in the active state and large
cell-to-cell variability. (D) Prediction for the r1-PmboxRM promoter (a PmboxRM promoter variant that does
not exhibit OmboxR3 mediated repression [51]). This promoter is activated by cI, which binds cooperatively
to OmboxR1 and OmboxR2. The prediction is shown for wild-type cI (Ω = 0.013) and for a cooperativity
deficient mutant (Y210H, Ω = 1). Parameters are taken from [35, 43, 60, 63]. The lifetime of OmboxR1-cI
complex is 4 min. Lifetime of OmboxR2-cI complex is 9.5 s.
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Table 5.2: Kinetic rate matrices for all mechanisms in the text. In the first column, we represent the kinetic
mechanisms of gene regulation for all of the architectures considered in the text. In the second and third
columns, we show the corresponding promoter kinetic transition rate matrices K̂ and the vector ~r = ~uR̂ for
all of the mechanisms.
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Fold-change in noisePromoter
architecture

1. Simple repression

R

2. Simple activation

A

3. Dual repression

RR

AA

4. Cooperative activation

off on off on   

5. Repression by DNA looping

RR  

     

 

 

1

2 
   

ΩΩ Ω

Ω Ω Ω

 Ω

 Ω  Ω

 Ω  Ω  Ω

 Ω  Ω  Ω

Table 5.3: Fold-change in noise for different promoter architectures. The fold-change in promoter noise
is shown as a function of the different kinetic parameters corresponding to each promoter architecture
considered throughout the text. Refer to table 5.2 for the definition and value of each rate.
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gene regulation. The mechanism of gene regulation determines the transcriptional response of a promoter to

a specific input, in the form of the concentration of one or more transcription factors or inducer molecules.

In recent years we have witnessed an increasing call for quantitative models of gene regulation that can serve

as a conceptual framework for reflecting on the explosion of recent quantitative data, testing hypotheses,

and proposing new rounds of experiments [35, 77, 78]. Much of this data has come from bulk transcription

experiments with large numbers of cells, in which the average transcriptional response from a population of

cells (typically in the form of the level of expression of a reporter protein) was measured as a function of

the concentration of a transcription factor or inducer molecule [50, 79]. Thermodynamic models [35, 42, 55]

of gene regulation are a general framework for modeling gene regulation and dealing with this kind of bulk

transcriptional regulation experiments. This class of models has proven to be very successful at predicting

gene expression patterns from the promoter architecture encoded in the DNA sequence [49, 77–81]. However,

a new generation of experiments now provides information about gene expression at the level of single cells,

with single-molecule resolution [3, 5–7, 10, 11, 24, 32, 47, 51]. These experiments provide much richer

information than just how the mean expression changes as a function of an input signal: they tell us how

that response is spread among the population of cells, distinguishing homogeneous responses, in which all

cells express the same amount of proteins or mRNA for the same input, from heterogeneous responses in

which some cells achieve very high expression levels while others maintain low expression. Thermodynamic

models are unable to explain the single-cell statistics of gene expression, and therefore are an incomplete

framework for modeling gene regulation at the single-cell level.

A class of stochastic kinetic models have been formulated that make it possible to calculate either the

probability distribution of mRNA or proteins per cell or its moments, for simple models of gene regulation

involving one active and one inactive promoter state [37, 38, 45, 82]. Recently, we have extended that

formalism to account for any number of promoter states [31], allowing us to model any promoter architecture

within the same mathematical framework. Armed with this model, we can now ask how promoter architecture

affects not only the response function, but also how that response is distributed among different cells.

In this paper we have explored the feasibility of this stochastic analog of thermodynamic models as

a general framework to understand gene regulation at the single-cell level. Using this approach we have

examined a series of common promoter architectures of increasing complexity, and established how they

affect the level of cell-to-cell variability of the number of mRNA molecules, and proteins, in steady-state.

We have found that, given the known kinetic rates of transcription factor association and dissociation from

operators, the level of variability in gene expression for many well-studied bacterial promoters is expected to

be larger than the simple Poissonian expectation, particularly for mRNA and short-lived proteins. We have

investigated how the level of variability generated by a simple promoter consisting of one single operator

differs from more complex promoters containing more than one operator, and found that the presence of

multiple operators increases the level of cell-to-cell variability even in the absence of cooperative binding.

Cooperative binding makes the effect of operator multiplicity even larger. We also found that operator
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strength is one of the major determinants of cell-to-cell variability. Strong operators cause larger levels of

cell-to-cell variability than weak operators. We have also examined the case where one single repressor may

bind simultaneously to two operators by looping the DNA inbetween. We have found that the stability of

the DNA loop is the key parameter in determining whether DNA looping increases or decreases the level of

variability, suggesting a potential role of DNA mechanics in regulating cell-to-cell variability.

We have examined the difference between activators and repressors, and found that repressors tend to

generate less cell-to-cell variability than activators at low expression levels, whereas at high expression levels

repressors and activators generate similar levels of cell-to-cell variability. We conclude that induction of

gene expression by increasing the concentration of an activator leads to a more heterogeneous response

at low and moderate expression levels than induction of gene expression by degradation, sequestration or

dilution of a repressor. In addition, we have used this model to make quantitative predictions for a few

well-characterized bacterial promoters, connecting the kinetic mechanism of gene regulation that we believe

applies for these promoters in vivo with single-cell gene expression data. Direct comparison between the

model and experimental data offers an opportunity to validate these kinetic mechanisms of gene regulation.

5.4.1 Intrinsic and extrinsic noise

There are two different classes of sources of cell-to-cell variability in gene expression. The first class has its

origins in the intrinsically stochastic nature of the chemical reactions leading to the production and degra-

dation of mRNAs and proteins, including the binding and unbinding of transcription factors, transcription

initiation, mRNA degradation, translation and protein degradation. The noise coming from these sources is

known as intrinsic noise [83]. A different source of variability originates in cell-to-cell differences in cell size,

metabolic state, copy number of transcription factors, RNA polymerases, ribosomes, nucleotides, etc. This

second kind of noise is termed extrinsic noise [83]. The contributions from intrinsic and extrinsic sources can

be separated experimentally, and the total noise can be written as the sum of intrinsic and extrinsic compo-

nents [4]. In this paper we focus exclusively on intrinsic noise, and the emphasis is on bacterial promoters.

This double focus requires us to discuss to what extent intrinsic noise is relevant in bacteria.

The experimental evidence gathered so far indicates that intrinsic noise is the dominant source of cell-to-

cell variability in bacteria of the mRNA copy number. In a recent single-molecule study, transcription was

monitored in real time for two different E. coli promoters, PRM and Plac/ara [5]. The authors measured

the rates of mRNA synthesis and dilution, as well as the rates of promoter activation and inactivation in

single cells. The intrinsic noise contribution was calculated from all of these rates. It was found to be

responsible for the majority of the total cell-to-cell variability, accounting for over 75% of the total variance.

Another recent experiment in B. subtilis [8] found that mRNA expressed from the ComK promoter is also

dominated by intrinsic noise. Furthermore, this study indicated that intrinsic mRNA noise is responsible for

activation of a phenotypic switch that drives a fraction of the cells to competence for the uptake of DNA [8].

A third recent report investigated the activation of the genetic switch in E. coli which drives the entrance
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of a fraction of cells into a lactose metabolizing phenotype [24]. The authors of the study found evidence

that stochastic binding and unbinding of the Lac repressor to the main operator was responsible for the

observed cell-to-cell variability in gene expression and, consequently the choice of phenotype. Furthermore,

the authors discovered that the deletion of an auxiliary operator that permits transcriptional repression by

DNA looping leads to a strong increase in the level of cell-to-cell variability in the expression of the lactose

genes, indicating that promoter architecture plays a big role in determining the level of noise and variability

in this system. Taken all together, these experiments suggest that intrinsic mRNA noise is dominant and

may have important consequences for cell fate determination. In addition, at least in one case, promoter

architecture has been shown to be of considerable importance.

At the protein level, the contribution of extrinsic and intrinsic noise to the total cell-to-cell variability

has also been determined experimentally for a variety of promoters and different kinds of bacteria. The

first reports examined intrinsic and extrinsic protein noise in E. coli and found that extrinsic noise was

the dominant source of cell-to-cell variability in protein expressed from a variant of the PL promoter in a

variety of different strains [4]. However, the intrinsic component was non-negligible and for some strains,

dominant [4]. A second team of researchers examined a different set of E. coli promoters involved in the

biosynthetic pathway of lysine [84]. The authors found that the intrinsic noise contribution was significant

for some promoters (i.e., lysA), but not for others. In a third study the total protein noise was measured for

a Lac repressor-controlled promoter in B. subtilis, and it was reported that the data could be well explained

by a model consisting only of intrinsic noise [9]. The authors found that the rates of transcription and

translation could be determined by directly comparing the total cell-to-cell variability to the predictions of

a simple stochastic model that considered only intrinsic sources of noise. They also found that the model

had predictive power, and that mutations that enhanced the rate of translation or transcription produced

expected effects in the total noise.

In summary, all studies that have measured mRNA noise in bacteria so far report that intrinsic noise

contributes substantially to the total cell-to-cell variability. This is further supported by observations that

most of the mRNA variability comes from intrinsic sources in yeast [32] and mammalian cells [2]. The issue

is less clear for protein noise. Some reports indicate that it is mostly extrinsic [4], but others suggest that

intrinsic noise may also be important [9, 24, 84]. It seems likely that the relative importance of intrinsic and

extrinsic noise depends on the context, and that for some promoters and genes extrinsic noise will be larger,

whereas for others the intrinsic component may dominate. In any case, it is clear that both contributions

are important, and both need to be understood.

5.4.2 Comparison with experimental results

The aim of this paper is to formulate a set of predictions that reflect the class of kinetic models of gene

regulation in bacteria that one routinely finds in the literature [42, 66, 67, 85–87]. Our analysis indicate that

if these models are correct, and if the kinetic and thermodynamic parameters that have been measured over
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the years are also reasonably close to their real values in live cells [88], the effect of promoter architecture

in cell-to-cell variability in bacteria should be rather large and easily observable. In this sense, our intention

is more to motivate new experiments than to explain or fit any currently available data. We only know

of one published report in which the effect of perturbing the architecture of a bacterial promoter on the

cell-to-cell variability in gene expression has been determined [24]. Given that there are several examples

of promoters in bacteria for which a molecular kinetic mechanism of gene regulation has been formulated

[42, 66, 67, 85–87, 89], we hope that the computational analysis in this paper may serve as an encouragement

for researchers to do for bacteria the same kind of experiments that have been already performed in eukaryotes

[2, 12, 16, 18, 32]. Indeed, several different studies have examined the effect of promoter architectural elements

in cell-to-cell variability in protein and mRNA in eukaryotic cells. Although our efforts in this paper have

focused on bacterial promoters rather than eukaryotic promoters, it is worthwhile to discuss the findings of

these studies and compare them (if only qualitatively) with the predictions made in this paper.

Two recent studies measured intrinsic mRNA noise in yeast [32] and mammalian cells [2]. Both papers

concluded that stochastic promoter activation and inactivation was the leading source of intrinsic noise.

While stochastic chromatin remodeling is suspected to be the origin of those activation events, neither one

of these studies was conclusive about the precise molecular mechanism responsible for promoter activation.

However, both studies found that promoter architecture had an important role and strongly affected the

level of total mRNA noise. In both studies, the authors found that when the number of binding sites for a

transcriptional activator was raised from one to seven, the normalized variance increased several-fold. This

qualitative behavior is in agreement with our prediction that dual activation causes larger intrinsic mRNA

noise than simple activation. It is possible that this agreement is coincidental, since the actual mechanism

of gene regulation at these promoters could be much more complicated than the simple description of gene

activation at a bacterial promoter adopted here.

Other studies [12, 16, 18] have measured the total protein noise from variants of the GAL1 promoter

in yeast, and found that their data could be well explained by a model that considered only intrinsic noise

sources. These studies also concluded that the main sources of intrinsic noise were stochastic activation

and inactivation of the promoter due to chromatin remodeling. However, it was also found that the stable

formation of pre-initiation complex at the TATA box and the stochastic binding and unbinding of tran-

scriptional repressors contributed to the total noise [12, 16, 18]. The authors of these studies found that

for point mutations in the TATA box of the GAL1 promoter in yeast, which made the box weaker, the

level of cell-to-cell variability went down significantly. This is also in good agreement with our prediction

that the stronger the binding site of a transcriptional activator, the larger the intrinsic noise should be.

However, since this study measured the total noise strength, and did not isolate the intrinsic noise, the

observed decrease in noise strength as a result of making the TATA box weaker may have other origins.

These experiments were conducted under induction conditions that minimize repression by nucleosomes and

activation by chromatin remodeling. A more recent report by the same lab [12] found that the copy number
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and location of a transcriptional repressor binding site greatly affects the total protein noise. The authors

found that when they increased the number of repressor binding sites, the noise went up. This is also in

qualitative agreement with our prediction that operator number positively correlates with intrinsic noise in

the case of dual repression. However, the same caveat applies here as in the previous case studies, which is

that only the total noise was measured. Although the authors of this study attributed all of the noise to

intrinsic sources, it is still possible that extrinsic noise was responsible for the observed dependence of noise

strength on operator number.

Finally, it is worth going back to bacteria, and discussing the only study that has yet examined the effect

of a promoter-architecture motif on cell-to-cell variability in gene expression. In this paper, the authors

investigated the effect of DNA looping on the total cell-to-cell variability for the PlacUV5 promoter in E.

coli [24]. Using a novel single-protein counting technique, Choi and co-workers measured protein distributions

for promoters whose auxiliary operator had been deleted (leaving them with a simple repression architecture),

and compared them to promoters with the auxiliary operator O3 present, which allows for DNA looping.

They report a reduction in protein noise due to the presence of O3, which according to our analysis, may

indicate that the dissociation of the repressor from the looped state is faster than the normal dissociation

rate. The authors attributed this looping-dependent decrease in noise to intrinsic origins, related to the

different kinetics of repressor binding and rebinding to the main operator in the presence of the auxiliary

operator, and in its absence. However, their measurements also reflect the total noise, and not only the

intrinsic part, so the explanation may lie elsewhere. These results emphasize the need for more experiments

in which the intrinsic noise is isolated and measured directly.

More recently, several impressive experimental studies have measured the noise in mRNA in bacteria

for a host of different promoters ([90], and Ido Golding, private communication). In both of these cases,

simplified low-dimensional models which do not consider the details of the promoter architecture have been

exploited to provide a theoretical framework for thinking about the data. Our own studies indicate that the

differences between a generic two-state model and specific models that attempt to capture the details of a

given architecture are sometimes subtle and that the acid test of ideas like those presented in this paper can

only come from experiments which systematically tune parameters, such as the repressor concentration, for

a given transcriptional architecture.

5.4.3 Future directions

Some recent theoretical work has analyzed the effect of cooperative binding of activators in the context of

particular examples of eukaryotic promoters [91, 92]. The main focus of this study is bacterial promoters.

The simplicity of the microscopic mechanisms of transcriptional regulation for bacterial promoters makes

them a better starting point for a systematic study like the one we propose. However, many examples of

eukaryotic promoters have been found whose architecture affects the cell-to-cell variability [2, 12, 18, 32, 33].

Although the molecular mechanisms of gene regulation in these promoters are much more complex, with
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many intervening global and specific regulators [53], the stochastic model employed in this paper can be

applied to any number of promoter states, and thus can be applied to these more complex promoters.

Recent experimental work is starting to reveal the dynamics of nucleosomes and transcription factors with

single-molecule sensitivity [93, 94], allowing the formulation of quantitative kinetic and thermodynamic

mechanistic models of transcriptional regulation at the molecular level [77, 81]. The framework for analyzing

gene expression at the single-cell level developed in this paper will be helpful in investigating the kinetic

mechanisms of gene regulation in eukaryotic promoters, as the experimental studies switch from ensemble,

to single cell.

5.4.4 Shortcomings of the approach

Although the model of transcriptional regulation used in this paper is standard in the field, it is important

to remark that it is a very simplified model of what really happens during transcription initiation. There are

many ways in which this kind of model can fail to describe real situations. For instance, mRNA degradation

requires the action of RNases. These may become saturated if the global transcriptional activity is very

large, and the degradation becomes non-linear [57]. Transcription initiation and elongation are assumed

to be jointly captured in a single constant rate of mRNA synthesis for each promoter state. This is an

oversimplification also. When considered explicitly, and in certain parameter ranges, the kinetics of RNAP-

promoter interaction may cause noticeable effects in the overall variability [46]. Similarly, as pointed out

elsewhere [95–97], translational pausing, backtracking or road-blocking may also cause significant deviations

in mRNA variability from the predictions of the model used in this paper. How serious these deviations are

depends on the specifics of each promoter-gene system. The model explored in this paper also assumes that

the cell is a well-mixed environment. Deviations from that approximation can significantly affect cell-to-cell

variability [58, 98]. Another simplification refers to cell growth and division, which are not treated explicitly

by the model used in this paper: cell division and DNA replication cause doubling of gene and promoter

copy number every cell cycle, as well as binomial partitioning of mRNAs between mother and daughter cells

[4]. In eukaryotes, mRNA often needs to be further processed by the splicing apparatus before it becomes

transcriptionally active. It also needs to be exported out of the nucleus, where it can be translated by

ribosomes.

To study the effect of transcription factor dynamics on mRNA noise we assume that the unregulated

promoter produces mRNA in a Poisson manner, at a constant rate. This assumption can turn out to

be wrong if there is another process, independent of transcription factors, that independently turns the

promoter on and off. In eukaryotes examples of such processes are nucleosome positioning and chromatin

remodeling, while in prokaryotes analogous processes are not as established, but could include the action

of non-specifically bound nucleoid proteins such as HU and H-NS, or DNA supercoiling. Experiments that

measure cell-to-cell distributions of mRNA copy number in the absence of transcription factors (say without

Lac repressor for the lac operon case) can settle this question. In case the Fano factor for this distribution is
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not one (as expected for a Poisson distribution) this can signal a possible transcription factor-independent

source of variability. The stochastic models studied here can be extended to account for this situation.

For example, the promoter can be made to switch between an on and an off state, where the transcription

factors are allowed to interact with promoter DNA only while it is in the on state. In this case the mRNA

fluctuations produced by an unregulated promoter will not be Poissonian. One can still investigate the

affect of transcription factors by measuring how they change the nature of mRNA fluctuations from this new

base-line. Comparison of this extended model with single-cell transcription experiments would then have

the exciting potential for uncovering novel modes of transcriptional regulation in prokaryotes.

For the purpose of isolating the effect of individual promoter architectural elements on cell-to-cell vari-

ability in gene expression, we have artificially changed the value of one of those parameters, while keeping

the other parameters constant. For instance, we have investigated the effect of altering the strength of an

operator on the total cell-to-cell variability. In order to do this, we ask how changes in the dissociation rate

of the transcription factor alter the cell-to-cell variability, given that all other rates (say the rate of transcrip-

tion, or mRNA degradation) remain constant. This assumption is not necessarily always correct, since very

often the operator sequence overlaps the promoter, and therefore changes in the sequence that alter operator

strength also affect the sequence from which RNAP initiates transcription, which can potentially affect the

overall rates of transcription. As is usually the case, biology presents us with a great diversity of forms,

shapes and functions, and promoters are no exception. One needs to examine each promoter independently

on the basis of the assumptions made in this paper, as many of these assumptions may apply for some

promoters, but not for others.

For the same reason of isolating the effect of promoter architecture and cis-transcriptional regulation on

cell-to-cell variability in gene expression, when we compare different architectures we make the simplifying

assumption that they are transcribing the same gene, and therefore that the mRNA transcript has the same

degradation rate. Care must be taken to take this into account when promoters transcribing different genes

are investigated, since the mRNA degradation rate has a large effect on the level of cell-to-cell variability.

We have also assumed that when transcription factors dissociate from the operator, they dissociate into an

averaged out, well-mixed, mean-field concentration of transcription factors inside the cell. The possibility of

transcription factors being recaptured by the same or another operator in the promoter right after they fall

off the operator is not captured by the class of models considered here. Recent in vivo experiments suggest

that this scenario may be important in yeast promoters containing arrays of operators [32].

In spite of all of the simplifications inherent in the class of models analyzed in this paper, we believe they

are an adequate jumping off point for developing an intuition about how promoter architecture contributes

to variability in gene expression. Our approach is to take a highly simplified model of stochastic gene

expression, based on a kinetic model for the processes of the central dogma of molecular biology, and add

promoter dynamics explicitly to see how different architectural features affect variability. This allows us

to isolate the effect of promoter dynamics, and develop an intuitive understanding of how they affect the
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statistics of gene expression.

It must be emphasized, however, that the predictions made by the model may be wrong if any of the

complications mentioned above are significant. This is not necessarily a bad outcome. If the comparison

between experimental data and the predictions made by the theory for any particular system reveals in-

consistencies, then the model will need to be refined and new experiments are required to identify which of

the sources of variability that are not accounted for by the model are in play. In other words, experiments

that test the quantitative predictions outlined stand a chance of gaining new insights about the physical

mechanisms that underlie prokaryotic transcriptional regulation.

Appendix: The moments of the distributions

The moments of the mRNA probability distribution

We start by considering the same mechanism as in the text (see figure 5.1), in which the promoter switches

between one active and one inactive state. There are only two stochastic variables in the model: the number

of mRNA transcripts per cell (m), and the state of the promoter which reflects which transcription factors

are bound where. The promoter state is always a discrete and finite stochastic variable (s) (for an example,

see figure 5.1(A)). The example in figure 5.1(A) illustrates the simplest model of transcriptional activation

by a transcription factor.

When the activator is bound to the promoter (state 1) mRNA is synthesized at rate r1. When the activator

is not bound (state 2) mRNA is synthesized at a lower rate r2. The promoter switches stochastically from

state 1 to state 2 with rate koffA , and from state 2 to state 1 with rate konA . Each mRNA molecule is degraded

with rate γ.

The time evolution for the joint probability of having the promoter in states 1 or 2, with m mRNAs

in the cell (which we write as p(1,m) and p(2,m), respectively), is given by a master equation, which we

can build by listing all possible reactions that lead to a change in cellular state, either by changing m or by

changing s (figure 5.1(B)). The master equation takes the form:

d
dtp(1,m) = −koffA p(1,m) + konA p(2,m)− r1p(1,m)− γmp(1,m) + r1p(1,m− 1) + γ(m+ 1)p(1,m+ 1),
d
dtp(2,m) = koffA p(1,m)− konA p(2,m)− r2p(2,m)− γmp(2,m) + r2p(2,m− 1) + γ(m+ 1)p(2,m+ 1).

Inspecting this system of equations, we notice that by defining the vector:

~p(m) =

 p(1,m)

p(2,m)

 ,

and the matrices

K̂ =

 −koffA konA

koffA −konA

 ;R̂ =

 r1 0

0 r2

 ;Î =

 1 0

0 1

 ,
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we can rewrite the system of equations 5.4.4 in matrix form

d

dt
~p(m) =

[
K̂ − R̂−mγÎ

]
~p(m) + R̂~p(m− 1) + (m+ 1)γÎ~p(m+ 1).

In steady-state, the left-hand side of equation 5.4.4 is equal to 0:

0 =
[
K̂ − R̂−mγÎ

]
~p(m) + R̂~p(m− 1) + (m+ 1)γÎ~p(m+ 1).

In order to find the first two moments of the steady-state mRNA probability distribution, we follow the

same strategy as in references [31, 38]: we multiply both sides of equation 5.4.4 by m and m2 respectively,

and then sum over all values of m, from 0 to ∞. We start from the first moment of the mRNA distribution,

which requires us to multiply equation 5.4.4 by m and then sum:

∞∑
m=0

m
([
K̂ − R̂−mγÎ

]
~p(m) + R̂~p(m− 1) + (m+ 1)γÎ~p(m+ 1)

)
=
∞∑
m=0

mK̂~p(m)−
∞∑
m=0

m2γÎ~p(m)

−
∞∑
m=0

mR̂~p(m) +
∞∑
m=0

mR̂~p(m− 1) +
∞∑
m=0

m(m+ 1)γÎ~p(m+ 1).

Since none of the three matrices K̂, R̂ and Î are functions of m, they can be taken out of the sums, and we

find:

0 = K̂

∞∑
m=0

m~p(m)− γÎ
∞∑
m=0

m2~p(m)− R̂
∞∑
m=0

m~p(m) + R̂

∞∑
m=0

m~p(m− 1) + γÎ

∞∑
m=0

m(m+ 1)~p(m+ 1).

It will be convenient in what follows to define the following vectors of partial moments of the mRNA

probability distribution:

~m(0) =
∞∑
m=0

m0~p(m) =


∞∑
m=0

m0p(1,m)
∞∑
m=0

m0p(2,m)

 =

 p(1)

p(2)

 ,

~m(1) =
∞∑
m=0

m~p(m) =


∞∑
m=0

mp(1,m)
∞∑
m=0

mp(2,m)

 ,

~m(2) =
∞∑
m=0

m2~p(m) =


∞∑
m=0

m2p(1,m)
∞∑
m=0

m2p(2,m)

 .

The usefulness of these vectors of partial moments of the mRNA distribution lies in the fact that they

are related to the moments of the probability distribution. For instance, the mean mRNA is given by

〈m〉 =
2∑
s=1

∞∑
m=0

mp(s,m) =
∞∑
m=0

mp(1,m) +
∞∑
m=0

mp(2,m).



141

If we define, again for convenience, the vector ~u = (1, 1), we find that the mean of the mRNA distribution is

related to the vectors of partial moments by 〈m〉 = ~u · ~m(1). Following this example, it is also straightforward

to prove that the second moment of the mRNA distribution is given by:
〈
m2
〉

= ~u~m(2). Given these

definitions, we return to equation 5.4.4 which we can now write as:

K̂ ~m(1) − γÎ ~m(2) − R̂~m(1) + R̂

∞∑
m=0

m~p(m− 1) + γÎ

∞∑
m=0

m(m+ 1)~p(m+ 1) = 0.

We can re-arrange terms in the last two sums so that we write them as operations on the vectors of partial

moments of the probability distributions. For instance, by making the change of variables: m→ m+ 1, and

taking into account the fact that the number of mRNA molecules inside the cell can never fall below 0 (so

that ~p(−1) = 0), we find:

∞∑
m=0

m~p(m− 1) =
∞∑
m=0

(m+ 1)~p(m) = ~m(1) + ~m(0).

Similarly, by making the change of variables m+ 1→ m, the last sum takes the simpler form:

∞∑
m=0

m(m+ 1)~p(m+ 1) =
∞∑
m=0

m(m− 1)~p(m) = ~m(2) − ~m(1).

Entering these results into equation 5.4.4, we finally find:

K̂ ~m(1) − γÎ ~m(2) − R̂~m(1) + R̂
(
~m(1) + ~m(0)

)
+ γÎ

(
~m(2) − ~m(1)

)
= K̂ ~m(1) − γÎ ~m(1) + R̂~m(0).

The vector of partial moments ~m(1) is therefore the solution to the matrix equation:

(
K̂ − γÎ

)
~m(1) + R̂~m(0) = 0.

The final step is to multiply both sides of equation 5.4.4 by the vector ~u = (1, 1). Because of how it was

constructed (i.e., p(1,m)s loss is p(2,m)s gain during transitions between promoter states), the matrix K̂

has the property that the sum of the elements of any one of its columns is always 0. Therefore, we find that

~uK̂ = 0. The matrix R̂ is diagonal, so if we multiply matrix R̂ on the left by vector ~u, we get a vector that

is equal to the list of diagonal elements of matrix R̂. Thus, we define the vector ~r = (R̂11, R̂22), as the vector

for which it is true that ~uR̂ = ~r. Finally, the identity matrix is Î =

 1 0

0 1

. Therefore, multiplying Î on

the left by the vector ~u leads us to: ~uÎ = ~u . Therefore, when we multiply equation 5.4.4 by the vector we

find:

0 = ~uK̂ ~m(1) − ~uγÎ ~m(1) + ~uR̂~m(0) = −γ~u~m(1) + ~r~m(0).

Knowing that the mean of the mRNA distribution is related to the vector of partial moments by: 〈m〉 =
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~u~m(1), we find that:

〈m〉 =
~r~m(0)

γ
.

Note that, by definition,

~m(0) =
∞∑
m=0

m0~p(m) =


∞∑
m=0

m0p(1,m)
∞∑
m=0

m0p(2,m)

 =

 p(1)

p(2)

 .

In other words, the first element of vector ~m(0) is the steady-state probability to find the promoter in state

1, and the second element is the steady-state probability to find the promoter in state 2. This vector

is straightforward to obtain by summing equation 5.4.4 over all m, and it is the solution of K̂ ~m(0) = 0,

normalized so that p(1) + p(2) = 1. In order to find the second moment, we just multiply equation 5.4.4 by

m2 and sum over all m from 0 to ∞. As a result of this manipulation, we find:

∞∑
m=0

m2
([
K̂ − R̂−mγÎ

]
~p(m) + R̂~p(m− 1) + (m+ 1)γÎ~p(m+ 1)

)
=
∞∑
m=0

m2K̂~p(m)−
∞∑
m=0

m3γÎ~p(m)

−
∞∑
m=0

m2R̂~p(m) +
∞∑
m=0

m2R̂~p(m− 1) +
∞∑
m=0

m2(m+ 1)γÎ~p(m+ 1) =

K̂ ~m(2) − γÎ ~m(3) − R̂~m(2) +
∞∑
m=0

m2R̂~p(m− 1) +
∞∑
m=0

m2(m+ 1)γÎ~p(m+ 1).

The last two terms of the right-hand side of equation 5.4.4 can be simplified by writing the two sums in

terms of the vectors of partial moments. In order to do that, we must make the same changes of variables

that we invoked above when dealing with the mean. First, the change of variables m→ m+ 1 allows us to

rewrite the first sum as:

∞∑
m=0

m2~p(m− 1) =
∞∑
m=0

(m+ 1)2~p(m) = ~m(2) + 2~m(1) + ~m(0).

Finally, the change of variables m+ 1→ m , allows us to re-write the last sum as:

∞∑
m=0

m2(m+ 1)~p(m+ 1) =
∞∑
m=0

m(m− 1)2~p(m) = ~m(3) − 2~m(2) + ~m(1).

Entering these last two sums in equation 5.4.4, we find:

K̂ ~m(2) − γÎ ~m(3) − R̂~m(2) + R̂
(
~m(2) + 2~m(1) + ~m(0)

)
+ γÎ

(
~m(3) − 2~m(2) + ~m(1)

)
=

K̂ ~m(2) + R̂
(
2~m(1) + ~m(0)

)
+ γÎ

(
−2~m(2) + ~m(1)

)
= 0.

As we did before, we can transform this equation into an equation for the moments of the mRNA distribution
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by multiplying both sides of this equation on the left by the vector ~u. Performing these operations, we find:

~uK̂ ~m(2) + ~uR̂
(
2~m(1) + ~m(0)

)
+ ~uγÎ

(
−2~m(2) + ~m(1)

)
= ~r

(
2~m(1) + ~m(0)

)
+ γ~u

(
−2~m(2) + ~m(1)

)
=

2~r~m(1) + ~r~m(0) − 2γ
〈
m2
〉

+ γ 〈m〉 = 0.

Therefore, the second moment of the mRNA distribution in steady-state is given by:

〈
m2
〉

=
~r~m(1)

γ
+
~r~m(0) + γ 〈m〉

2γ
.

Using the fact that the first moment is given by:

〈m〉 =
~r~m(0)

γ
.

, we can further simplify the second moment as:

〈
m2
〉

= 〈m〉+
~r~m(1)

γ
.

Therefore, the normalized variance can be written as:

η2 =

〈
m2
〉
− 〈m〉2

〈m〉2
=

1
〈m〉

+
1
〈m〉2

(
~r~m(1)

γ
− 〈m〉2

)
.

The moments of the protein probability distribution

We can use the same method to compute the normalized variance of the protein distribution. We will start

from a promoter that is constitutively active, and then extend our analysis to a promoter that switches

between two or more active and inactive states. We assume that each transcription event leads to the

production of multiple proteins (a “burst”). The number of proteins produced per mRNA (which we denote

as β) obeys a geometric distribution [6, 11, 14] with an average burst size . Therefore, the probability for β

is given by: h (β) = bβ

(1+b)β+1 . We assume that proteins are also degraded with a constant rate per molecule

of δ . In order to write down the master equation for this process, we have to consider all the possible

ways in which the cell can enter or leave a state with n proteins during a small increment of time dt. If

we assume that mRNA lifetime is much shorter than protein lifetime (an approximation that is realistic in

many experimental systems — see refs [6, 11, 52]), then all of the proteins may be assumed to be made

simultaneously. Therefore, we need to consider the possibility that the cell will jump from a state with n

proteins to a state with n+β, for all possible values of β. The probability that the cell will leave a state with

n proteins, by making a transition to a state with n+ β proteins is equal to the product of the probability

that the cell is in a state with n proteins (p(n)), the probability that the cell will make a transcript during

dt (rdt), and the probability that the transcript makes β proteins before it is degraded (h(β)). Thus, the

total probability per unit time to abandon a state with n proteins is given by rh(β)p(n). Since β can in
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principle take any integer value, the total probability to abandon the state with n proteins by the occurrence

of a protein burst is given by the sum of rh(β)p(n) over all possible values of β. This term will be given by:
∞∑
β=1

rh (β) p(n) = rp(n)
∞∑
β=1

h (β). Also, we need to consider that the cell may enter a state with n proteins

from any state with less than n proteins. The probability per unit time that the cell enters a state with n

proteins, from a state with n−β proteins is given by: rh(β)p(n−β). Therefore, following the same logic as we

did before, the net probability per unit time that the cell enters a state with n proteins is
n∑
β=1

rh (β) p(n− β).

With these considerations, the master equation for a constitutive promoter is given by:

d

dt
p(n) = −

∞∑
β=1

rh (β) p(n) +
n∑
β=1

rh (β) p(n− β)− δnp(n) + δ(n+ 1)p(n+ 1).

As discussed above, the first sum can be further simplified to:

∞∑
β=1

rh (β) p(n) = rp(n)
∞∑
β=1

h (β) = rp(n)
∞∑
β=1

bβ

(1 + b)β+1
= r

(
b

1 + b

)
p(n).

As a result, the master equation takes the form:

d

dt
p(n) = −r

(
b

1 + b

)
p(n) +

n∑
β=1

rh (β) p(n− β)− δnp(n) + δ(n+ 1)p(n+ 1).

In steady-state, the right-hand side of equation 5.4.4 is equal to 0, and we have:

0 = −r
(

b

1 + b

)
p(n) +

n∑
β=1

rh (β) p(n− β)− δnp(n) + δ(n+ 1)p(n+ 1).

The first two moments of the steady-state protein distribution p(n) can be obtained, in exactly the same

way we used to find out the moments of the mRNA distribution in the previous section: by multiplying both

sides of equation 5.4.4 by n and n2 respectively, and then summing over all n. Before we do that, it is useful

to evaluate the sums
∞∑
n=0

n2
n∑
β=1

rh (β) p(n− β) and
∞∑
n=0

n
n∑
β=1

rh (β) p(n− β) . We can find the general term

of the first sum by expanding the series:

∞∑
n=0

n2
n∑
β=1

h (β) p(n− β) = 12 (h(1)p(0)) + 22 (h(1)p(1) + h(2)p(0)) + 32 (h(1)p(2) + h(2)p(1) + h(3)p(0)) + ... =(
12h(1) + 22h(2) + 32h(3)...

)
p(0) +

(
22h(1) + 32h(2) + 42h(3)...

)
p(1) +

(
32h(1) + 42h(2) + 52h(3)...

)
p(2) + ... =

∞∑
n=0

p(n)

(
∞∑
β=1

h (β) (n+ β)2

)
=
∞∑
n=0

(
b+ 2b2 + 2bn+ b

1+bn
2
)
p(n).
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We can do the same for the second sum, and we find:

∞∑
n=0

n
n∑
β=1

h (β) p(n− β) = 1 (h(1)p(0)) + 2 (h(1)p(1) + h(2)p(0)) + 3 (h(1)p(2) + h(2)p(1) + h(3)p(0)) + ... =

(h(1) + 2h(2) + 3h(3)...) p(0) + (2h(1) + 3h(2) + 4h(3)...) p(1) + (3h(1) + 4h(2) + 5h(3)...) p(2) + ... =
∞∑
n=0

p(n)

(
∞∑
β=1

h (β) (n+ β)

)
=
∞∑
n=0

(
b+ b

1+bn
)
p(n).

Likewise, it will be necessary to recall from the first section of this Appendix, that the sum
∞∑
n=0

n(n+1)p(n+1)

can be computed by using the change of variables: n+ 1→ n, and we find:

∞∑
n=0

n(n+ 1)p(n+ 1) =
∞∑
n=0

n(n− 1)p(n).

With these results in hand, we can finally solve the first two moments of the protein distribution p(n). As

explained above, we can find the first moment by multiplying both sides of equation 5.4.4 by n and then

summing over all n. In order to find the second moment, we multiply both sides of equation 5.4.4 by n2 and

then sum over all n. For the first moment, we find:

0 = −r
(

b
1+b

) ∞∑
n=0

np(n) + r
∞∑
n=0

n
n∑
β=1

h (β) p(n− β)− δ
∞∑
n=0

n2p(n) + δ
∞∑
n=0

n(n+ 1)p(n+ 1) =

= −r
(

b
1+b

)
〈n〉+ r

(
b+ b

1+b 〈n〉
)
− δ

〈
n2
〉

+ δ
〈
n2
〉
− δ 〈n〉 = rb− δ 〈n〉 .

Solving this equation, we find that the mean protein per cell is equal to:

〈n〉 =
rb

δ
.

For the second moment, we find:

0 = −r
(

b
1+b

) ∞∑
n=0

n2p(n) + r
∞∑
n=0

n2
n∑
β=1

h (β) p(n− β)− δ
∞∑
n=0

n3p(n) + δ
∞∑
n=0

n2(n+ 1)p(n+ 1) =

= −r
(

b
1+b

)
〈n〉+ r

(
b+ 2b2 + 2b 〈n〉+ b

1+b

〈
n2
〉)
− δ

〈
n3
〉

+ δ
〈
n3
〉
− 2δ

〈
n2
〉

+ δ 〈n〉 =

= r
(
b+ 2b2 + 2b 〈n〉

)
− 2δ

〈
n2
〉

+ δ 〈n〉 .

Solving this last equation, we find that the second moment of the protein distribution is equal to:

〈
n2
〉

=
r

2δ
b+

r

2δ
2b2 +

r

2δ
2b 〈n〉+

〈n〉
2

= (1 + b) 〈n〉+ 〈n〉2.

Therefore, the normalized variance of the protein distribution for a constitutive promoter takes the form:

V ar(n)
〈n〉2

=

〈
n2
〉
− 〈n〉2

〈n〉2
=

(1 + b) 〈n〉+ 〈n〉2 − 〈n〉2

〈n〉2
=

(1 + b)
〈n〉

.
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If now we consider that the promoter can exist in two states, characterized by having different rates of

transcription, then the cell’s state is characterized not only by the number of proteins present, but also by

the state of the promoter. Therefore, the master equation must consider two variables: one characterizing

the state of the promoter (s), and one representing the number of proteins per cell (n). By analogy with the

mRNA master equation, and the master equation for the protein distribution of a constitutive promoter, the

two-state master equation for the protein distribution can be written as:

d
dtp(1, n) = −konA p(1, n) + koffA p(2, n)−

∞∑
β=1

r1h (β) p(1, n) +
n∑
β=1

r1h (β) p(1, n− β)− δnp(1, n) + δ(n+ 1)p(1, n+ 1),

d
dtp(2, n) = konA p(1, n)− koffA p(2, n)−

∞∑
β=1

r2h (β) p(2, n) +
n∑
β=1

r2h (β) p(2, n− β)− δnp(2, n) + δ(n+ 1)p(2, n+ 1).

Just as we did in order to compute the moments of the mRNA distribution, we can define the vector

~p(n) = (p(1, n), p(2, n)). By doing so, we will be able to re-write the master equation 5.4.4 as a matrix

equation, that will be applicable to any promoter with any number of states. This matrix equation can be

written in terms of exactly the same matrices we used for the mRNA probability distribution. We find:

d

dt
~p(n) =

[
K̂ − b

1 + b
R̂− nδÎ

]
~p(n) + R̂

n∑
β=1

h(β)~p(n−β) + (n+ 1)δÎ~p(n+ 1).

In steady-state, the left side of equation 5.4.4 is equal to 0, and the master equation has the form:

0 =
[
K̂ − b

1 + b
R̂− nδÎ

]
~p(n) + R̂

n∑
β=1

h(β)~p(n−β) + (n+ 1)δÎ~p(n+ 1).

Just as we did in order to calculate the moments of the mRNA distribution, it will be convenient to define

the vectors of partial moments:

~n(0) =
∞∑
n=0

n0~p(n) =


∞∑
n=0

n0p(1, n)
∞∑
n=0

n0p(2, n)

 =

 p(1)

p(2)

 ,

~n(1) =
∞∑
n=0

n~p(n) =


∞∑
n=0

np(1, n)
∞∑
n=0

np(2, n)

 ,

~n(2) =
∞∑
n=0

n2~p(n) =


∞∑
n=0

n2p(1, n)
∞∑
n=0

n2p(2, n)

 .

It is straightforward to see that the vector is exactly identical to the vector ~m(0). The next two vectors ~n(1)

and ~n(2) can be obtained by multiplying equation 5.4.4 by n and n2 respectively, and then summing over all
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n. We end up with the following two equations:

0 =
∞∑
n=0

n
[
K̂ − b

1+b R̂− nδÎ
]
~p(n) + R̂

∞∑
n=0

n
n∑
β=1

h(β)~p(n−β) +
∞∑
n=0

n(n+ 1)δÎ · ~p(n+ 1) =

= K̂~n(1) − b
1+b R̂~n(1) − δÎ~n(2) + δÎ

(
~n(2) − ~n(1)

)
+ R̂

(
b

1+b~n(1) + b~n(0)

)
=
(
K̂ − δÎ

)
~n(1) + bR̂~n(0),

and

0 =
∞∑
n=0

n2
[
K̂ − b

1+b R̂− nδÎ
]
~p(n) + R̂

∞∑
n=0

n2
n∑
β=1

h(β)~p(n−β) +
∞∑
n=0

n2(n+ 1)δÎ · ~p(n+ 1) =

= K̂~n(2) − b
1+b R̂~n(2) − δÎ~n(3) + δÎ

(
~n(3) − 2~n(2) + ~n(1)

)
+ R̂

(
b

1+b~n(2) + 2b~n(1) + b(1 + 2b)~n(0)

)
=

= K̂~n(2) + δÎ
(
−2~n(2) + ~n(1)

)
+ R̂

(
2b~n(1) + b(1 + 2b)~n(0)

)
=

=
(
K̂ − 2δÎ

)
~n(2) +

(
δÎ + 2bR̂

)
~n(1) + b(1 + 2b)R̂~n(0).

.

Now by multiplying the vector ~u = (1, 1) on the left of equations 5.4.4 and 5.4.4, we find

0 = −δ 〈n〉+ b~r~n(0),

and

0 = −2δ
〈
n2
〉

+ δ 〈n〉+ 2b~r~n(1) + b(1 + 2b)~r~n(0).

Thus, we find analytical equations for the first two moments of the protein distribution:

〈n〉 =
b~r~n(0)

δ
,

〈
n2
〉

= (1 + b) 〈n〉+
b~r~n(1)

δ
.

Where ~n(1) is the solution of equation 5.4.4:

0 =
(
K̂ − δÎ

)
~n(1) + bR̂~n(0).

Armed with these equations, we can finally compute the stationary variance of the protein distribution:

V ar(n)
〈n〉2

=
(1 + b) 〈n〉+ b~r·~n(1)

δ − 〈n〉2

〈n〉2
=

(1 + b)
〈n〉

+
1
〈n〉2

(
b~r~n(1)

δ
− 〈n〉2

)
.
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Chapter 6

Comparison and Calibration of
Different Reporters for Quantitative
Analysis of Gene Expression

This chapter is a reproduction of reference [1].

Absolute levels of gene expression in bacteria are observed to vary over as much as six orders of magni-

tude. Thermodynamic models have been proposed as a tool to describe these expression levels as a function

of the number and interaction energies of the transcription factors involved in regulating a given transcrip-

tional circuit. In this context, it is essential to understand both the limitations and linear range of the

different methods for measuring gene expression and to determine to what extent measurements from differ-

ent reporters can be directly compared, with one aim being the stringent testing of theoretical descriptions

of gene expression. In this paper we compare two protein reporters by measuring both the absolute level

of expression and fold-change in expression using the fluorescent protein EYFP and the enzymatic reporter

β-galactosidase. We determine their dynamic and linear range and show that they are interchangeable over

four orders of magnitude. By calibrating these reporters such that they can be interpreted in terms of

absolute molecular counts, we establish limits for their applicability: autofluorescence on the lower end of

expression for EYFP (at about 10 molecules per cell) and interference with cellular growth on the high end

for β-galactosidase (at about 20,000 molecules per cell). These qualities make the reporters complementary

and necessary when trying to experimentally verify the predictions from the theoretical models.

6.1 Introduction

In recent years our understanding of transcriptional regulation has increased dramatically. This is true both

in terms of the number of regulatory circuits that have been dissected and of the precision with which they

have been characterized [2–8]. As illustrated in figure 6.1, quantitative measurements of gene expression

have determined that the mean absolute level of expression of different promoters range over more than

six orders of magnitude. The majority of gene products regulated under bacterial and viral promoters are
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Figure 6.1: Gene expression levels in E. coli. The estimated absolute expression level of several bacterial
promoters and a strong viral promoter obtained from the literature are shown in red (see Supporting Materials
and table 6.4 for the corresponding references and assumptions made in order to determine the level of
expression). For comparison the results from two recent cell censuses of E. coli are also shown as histograms
of the number of proteins [8, 9]. Note that the range of expression spans over about six orders of magnitude
for a given set of measurements illustrating the wide dynamical range associated with bacterial promoters.
The discrepancy between the two cell census of E. coli are further explored in figure 6.15.

present at levels from 0.1 to 105 molecules per cell.

In addition to being concerned with these absolute levels of expression, it is also of interest to know the

range over which these promoters can be regulated. As shown in figure 6.2(C,D) the level of expression of a

given promoter can in turn be regulated to vary over several more orders of magnitude. These results make

it clear that a quantitative genome-wide characterization of transcriptional regulation requires techniques

with a broad dynamic range and for which the experimental uncertainties have been precisely characterized.

Quantitative experiments like those described above are making it possible to directly compare measure-

ments of regulatory response with the predictions of an increasingly sophisticated host of theoretical ideas

for describing regulatory circuits [10, 12–20]. This poses an experimental challenge: is there a technique or

techniques that can reliably span this range of expression?

There are a wide variety of different methods for carrying out measurements of gene expression like those

described above [21–24]. One classic scheme for measuring the level of gene expression is based upon the

enzyme action of β-galactosidase (LacZ) as a reporter in which a substrate for this enzyme can be detected

colorimetrically upon cleavage [21]. However, the use of fluorescent reporters is increasingly becoming the

method of choice, especially with the construction of a variety of libraries in which nearly each and every

gene in a model organism can be read out fluorescently [2, 4, 8]. In certain cases, this idea has been pushed

all the way to the single-molecule limit where individual molecules in regulatory circuits are detected through

their fluorescence [25]. mRNA counting, both in bulk through quantitative PCR and at the single molecule

level, is also becoming widespread as a means for quantifying levels of gene expression [8, 26]. In the cases

where antibodies against the protein of interest are available, Western or immunoblotting can provide a

quantitative measure of the protein contents of a cell [27]. Finally, another popular enzymatic technique is
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based on reporting gene expression levels through bioluminescence [22, 28, 29].

The quest to quantitatively dissect regulatory networks of all types [5, 6, 26, 30] raises questions about

the relative merits of these different measurement techniques. When trying to compare the significance of

these different measurements and to use them as the basis for the development of theoretical models, it is

important to have some calibration which reveals their respective dynamic ranges and how they are related.

For example, one important question is whether they are linearly related, thus rendering them able to report

reliably on the level of expression. Additionally, it is important to determine whether the use of reporters

affects cellular processes in any observable way. To that end, in this work, we use systematic experimentation

in the context of a well-characterized regulatory network to compare enzymatic and fluorescent reporters as a

measure of level of gene expression. Similarly, recent measurements have begun to systematically explore the

relation between the amount of expressed protein and the level of mRNA [8, 26, 31] and the quantification

of protein levels through Western or immunoblots [27, 32]. Luminescence has an advantage related to its low

background levels [33]. Being an enzymatic reporter, it requires the addition of a substrate to the medium

or the encoding of genes that can produce the substrate within the cell. To our knowledge, even though

it has been established that a constant luminescence level per cell can be used to quantify the number of

cells in culture with a very high dynamic range [28], only a very limited comparison of luminescence as a

reporter for gene expression has been done with respect to another reporter [34]. The necessity for providing

the cells with a substrate has certainly diminished its use with respect to the widespread fluorescent protein

reporters. Additionally, there have been reports of the bioluminescence genes potentially affecting their own
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expression [35]. As such we did not address this technique in this work, though studies similar in spirit to

those performed here would be useful.

Our aim was to compare enzymatic and fluorescence reporters for the same promoters in a way that

spans the large absolute dynamic range found in bacterial and viral promoters. In analogy to previous work

[8, 36] the main strategy consists in engineering a promoter regulated by Lac repressor into E. coli which

we subsequently induce to a variety of different levels with constructs harboring either a fluorescent or an

enzymatic reporter.

The theoretical models mentioned previously predict the fold-change in gene expression, namely, the

change in gene expression due to the presence of a transcription factor measured with respect to the level

of gene expression in the absence of the same transcription factor as a function of the concentrations and

interaction energies of the different molecular players [10, 13, 15]. Contrasting such relative predictions

with experimental data relies heavily on the linearity of the reporter used. As such, we require not only

that reporters span a high dynamic range, but that they also be linear over the fold-change range of the

theoretical predictions.

To implement this alternative strategy we constructed a variety of different realizations of the network

in which the binding affinities for Lac repressor are varied in a way that leads to different fold-change levels

that differ over several orders of magnitude. Using these schemes, we can explore the presumed linearity of

response of the enzymatic assays and their fluorescent reporter protein counterparts.

In the following sections we show a comparison and absolute calibration of the two reporters both in

terms of their absolute levels and the fold-change in gene expression. We show that they are interchangeable

over several orders of magnitude of expression, but each method has a limited dynamic range either due

to limitations of the reporter or to how the reporter acts on the cells. We conclude that they are both

complementary and necessary if a systematic characterization of the predictions generated by thermodynamic

models spanning over multiple orders of magnitude is to be achieved.

6.2 Materials and Methods

6.2.1 DNA constructs and strains

The construction of all plasmids and strains are described in detail in the Supporting Materials.

In short, plasmid pZS25O1+11, pZS25O2+11, pZS25O3+11 and pZS25Oid+11 have a lacUV5 promoter

controlling the expression of either a EYFP or LacZ reporter. Care was taken to delete the O2 binding site

present in the wild-type lacZ coding region [37]. These plasmids are shown schematically in figure 6.13.

A construct bearing the same antibiotic resistance, but no reporter, was created by deleting YFP from one

of our previous constructs. This construct serves for determining the cell autofluorescence (for fluorescence

measurements) and spontaneous hydrolysis (for enzymatic measurements).

Plasmid pZS3*1-lacI expresses Lac repressor off of a pLtetO-1 promoter [38]. The ribosomal binding
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sequence of this plasmid was weakened by mutating it (Alon Zaslaver, personal communication) resulting in

pZS3*1BRS1-lacI.

Plasmid pLAU53-NoLacI-TetR-YFP is a derivative from plasmid pLAU53 ([39], kindly provided by Paul

Wiggins). It expresses a fusion of TetR to the YFP gene used in this work under the control off the arabinose

inducible promoter pBAD.

The E. coli strains used in this experiment are shown in table 7.3. Chromosomal deletions were generated

using the protocol developed by Datsenko and Wanner [40].

Chromosomal integrations were performed using recombineering [41]. Primers used for these integrations

are shown in table 7.2. The reporter constructs were integrated into the galK region [42] of strain HG105

(lacI-) using primers HG6.1 and HG6.3. Strain HG205 (lacI++) was created by integrating pZS3*1RBS1-lacI

into the phage-associated protein ybcN [43] using primers HG11.1 and HG11.3.

Integrations of the reporters were moved from strain HG105 (lacI-) to strains HG104 (lacI+) and HG205

(lacI++) using P1 transduction (openwetware.org/wiki/Sauer:P1vir phage transduction). All integrations

and transductions were confirmed by PCR amplification of the replaced chromosomal region and by sequenc-

ing.

For YFP measurements of the fold-change in gene expression, strains MG1655 and TK140 [5] were used.

MG1655 is wild-type E. coli encoding the lac operon and wild-type levels of Lac repressor. TK140 has a

deletion of the lacI gene. Unlike strains HG104, HG105 and HG205, these two strains have the lac operon,

which will result in significant levels of β-galactosidase for strain TK140. As a result, strains MG1655

and TK140 can only be used for fluorescence measurements. Constructs bearing LacZ as a reporter were

integrated into strains HG104, HG105 and HG205.

The region of plasmid pLAU53-NoLacI-TetR-YFP covering the pBAD promoter, TetR-YFP and the

ampicilin resistance gene was integrated into the galK locus of strain H104 using primers HG22.04 and

HG22.05 and transduced to strain 563 (kindly provided by Paul Wiggins) to create strain 563::TetR-YFP.

This strain has both Tet and Lac repressors binding arrays located at the lac operon and near oriC, respec-

tively.

All sequences, plasmids and strains are available upon request.

6.2.2 Growth conditions and gene expression measurements

Strains to be assayed for gene expression were grown overnight in 5 ml LB plus 30 µg/ml of kanamycin

at 37 ◦C and 300 RPM shaking. The cells were then diluted 1000- to 4000-fold into 4 ml of M9 minimal

medium + 0.5% glucose in triplicate culture tubes. Kanamycin was only added at this step for the strains

bearing plasmids. The inducer IPTG was also added at this stage if necessary. These cells were grown for 6

to 9 hours until an OD600 of approximately 0.3 was reached after which they were once again diluted 1:10

and grown for 3 more hours to an OD600 of 0.3 for a total of more than 10 cell divisions. At this point, cells

were harvested and their level of gene expression measured.
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Induction and single cell microscopy was performed on the YFP samples as described in the Supporting

Materials. Our protocol for measuring LacZ activity is basically a slightly modified version of the one

described in [21, 44]. Details are given in the Supporting Materials.

6.2.3 In vivo YFP calibration

Strain 563::TetR-YFP was grown as described in [45], but in the absence of any inducers. In order to

reduce the autofluorescence coming from the background buffer/media, we “sandwiched” a small volume

of the the cells between two cover glasses corresponding to approximately 25 mm × 25 mm × 1 µm. We

used low autofluorescence (Corning D263) coverglass and imaged using a 473 nm laser in epifluorescence

and a EM-CCD Andro iXon camera. The glass was cleaned using an RCA wash [46]. Such a reduction in

the background was necessary to get an acceptable signal-to-noise ratio. The fluorescence of bright spots

attributed the EYFP-Tet repressor fusion bound to the DNA was tracked over multiple frames using a

customized version of the the Matlab code “PolyParticleTracker” [47]. The data was analyzed using custom

Matlab code. Representative traces and images are shown in figure 6.3(A–D). The resulting distribution is

shown in figure 6.3(E).

6.3 Results

In the following sections we show a strategy for obtaining an absolute calibration of our two protein reporters.

We then compare these reporters side-by-side and determine their ranges of applicability. Finally, we take

these experiments one step further by characterizing the fold-change in gene expression measured with both

reporters for a simple transcriptional network. This final analysis allows us to determine a range over which

thermodynamic models of gene regulation can be tested using this approach.

6.3.1 Absolute calibration of the reporters

Absolute measurements of gene expression are often reported in arbitrary units, especially for fluorescence

measurements where the signal depends on the particular details of the microscope used. Such a quantifica-

tion of fluorescence makes it hard, if not impossible, to compare results between setups and establish unified

standards. On the other hand, having a simple way to turn these arbitrary units into an absolute number

of molecules would be helpful both in the context of taking the census of cellular proteins [2, 8, 48] and also

in the context of characterizing the limits of each reporter.

In the following sections we obtain an absolute calibration for both the enzymatic and fluorescent reporters

characterized throughout this work. In turn, this calibration will allow us to set absolute bounds on the

interchangeability of these reporters as well as their effectiveness as reporters of the level of gene expression.
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6.3.1.1 Calibration of the absolute number of EYFP molecules

Several previous experiments have performed absolute calibrations of fluorescence levels by looking at a bulk

solution of purified fluorophore in buffer [7, 8, 49, 50] or in cell extract [51]. These approaches require a

known volume of illumination which can be achieved, for example, by performing either confocal microscopy

[49, 50] or two-photon microscopy [7].

These methods should be considered in light of at least two caveats. First, they rely on the extinction

coefficient of the fluorophore to determine its concentration. However, the solution will be comprised of

active and bleached fluorophores. Therefore the effective extinction coefficient of the solution will be an

unknown combination of the extinction coefficients for the active and bleached fluorophores. Second, they

are performed outside the cell. Even in the case of cell extract the local environment the protein sees might

be different than that of the unperturbed cellular interior.

Counting fluorescent proteins inside the cell is, however, not straightforward. Because of the fast diffusion

time of free fluorescent proteins in the cytoplasm [52] the signal of individual fluorescent molecules gets

blurred over the cell on the time scale of tens of milliseconds. As a result the fluorescence per unit area

of a single fluorophore in the cytoplasm becomes comparable to the cell autofluorescence and, hence, not

detectable under common continuous illumination conditions. A way to circumvent this is by immobilizing

the fluorophore. For example, membrane proteins fused to fluorescent reporters present a much slower

diffusion on the membrane than that of proteins in the cytoplasm. Single fluorophores can be then imaged

in this way [8, 53, 54].

Our main approach for calibrating the fluorescence of a single EYFP molecule consists in immobilizing

EYFP molecules in vivo by fusing them to a transcription factor which is in turn strongly bound to the

genomic DNA of E. coli. Though this method has the advantage of being in vivo, one caveat is that in this

case we are not imaging free cytoplasmic EYFP like in the gene expression measurements in this work. The

fact that EYFP is fused to another protein that is in turn bound to the DNA could result in a difference of

fluorescence.

Puncta of EYFP fused to Tet repressor could be observed inside the cells despite the poor signal-to-noise

ratio of about 1.5. In some cases these puncta could be observed to disappear in a single step as shown in the

trace in figure 6.3(A,B). We associate this with the photobleaching step of a single EYFP molecule. More

often though the puncta would correspond to multiple EYFP molecules. These fluorescence traces manifest

multiple discrete levels as shown in figure 6.3(C,D). By integrating the fluorescence of the steps over a small

area we can obtain the distributions of steps shown in figure 6.3(E). Please, refer to the Supporting Materials

for a detailed discussion of the data analysis process.

We compared the fluorescence per EYFP molecule to the total fluorescence coming from a particular

strain, HG105::galK<>25O2+11-YFP, under the same conditions. This strain expresses cytoplasmic EYFP.

As a result we estimate the number of EYFP molecules in this strain to be 2, 600 ± 600. The reasoning

behind choosing a strain where we directly measure the number of EYFP molecules is that all further gene
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Figure 6.3: Absolute in vivo fluorescence calibration. Representative fluorescence snapshots (A) and their
corresponding fluorescence traces (B) for a single bleaching event of the EYFP-Tet repressor fusion-bound
to the genomic DNA. (C,D) Snapshots and fluorescent traces for multiple bleaching events of the EYFP-Tet
repressor fusion. The red lines correspond to a least-squares fit to a single- or multiple-step function. (E)
Distribution of fluorescence of bleaching steps for the in vivo sample.

expression measurements with EYFP as a reporter will be measured with respect to this “reference” strain.

In this way we can easily estimate the number of EYFP molecules in any other strain we measure. Finally,

we also quantified the fluorescence of single purified EYFP molecules and obtained a consistent result within

15 %. Please, refer to the Supporting Materials for details of this single molecule fluorescence quantification.

As a sanity check on these results, we estimate the expected number of EYFP molecules. The average

number of EYFP molecules in steady state can be approximated by

〈EYFP〉 =
α× b
β

, (6.1)

where α is the mRNA production rate, b is the number of proteins made per mRNA molecule, and β is the

protein decay rate [55]. Because of the long lifetime of EYFP, the “decay rate” is actually nothing more than

the cell doubling time since each cell division effectively halves the number of proteins. For the experiments

considered here, we have a cell division time of around 1 hour. The number of proteins per mRNA has

been measured for the lac operon to be about 20 protein molecules per mRNA molecule [56]. Therefore, we

take b = 20 proteins/mRNA. This number is within the range of the various protein/mRNA measurements

performed by [8]. Finally, the transcription rate for the fully induced lac operon has been reported to be

between 1 min−1 and 20 min−1 [57, 58]. However, the lacUV5 promoter is about 30% weaker than the wild

type lac promoter [59] resulting in a range of α = 0.7 − 14 min−1. When combining the decay rate β, the



164

translation rate b and the transcription rate α we obtain an expected number of EYFP molecules of 1200 to

20000 per cell, a range comparable to our measurement.

6.3.1.2 Calibration of the absolute number of LacZ molecules

A simplified version of the reaction describing the breakdown of ONPG into ONP by β-galactosidase is given

by

ONPG + LacZ k−→ ONP + LacZ. (6.2)

From this reaction scheme we can derive the rate equation for the production of the yellow compound ONP

which is given in turn by
d[ONP]
dt

= k[ONPG][LacZ] (6.3)

and a rate equation for the decay in ONPG concentration due to its hydrolysis

d[ONPG]
dt

= −k[ONPG][LacZ]. (6.4)

We wish to obtain the concentration of β-galactosidase, [LacZ], in our reaction in order to calculate the

number of LacZ molecules per cell in the culture that was used to perform it.

If we assume that we have an excess concentration of ONPG and that the time of the reaction is short

compared to 1/(k[LacZ]) we can neglect its depletion during the reaction. As a result we take [ONPG] as a

constant in equation 6.3. The reaction described by equation 6.3 is the one we perform in the β-galactosidase

assay to measure the amount of LacZ molecules per cell in Miller units (MU). In this assay we monitor the

production of ONP over time given by the increase in absorbance at 420 nm of the solution. The standard

definition of the Miller units [21] is

MU = 1000
OD420 − 1.75×OD550

t× v ×OD600
, (6.5)

where v is the volume of cells used in ml at a cell density given by OD600 and t is the reaction time in

minutes. These Miller units were defined such that the fully induced wild-type lac operon has an activity

of 1000 MU and such that its non-induced level would yield approximately 1 MU. We seek to relate these

arbitrarily defined Miller units defined in equation 6.5 to equation 6.3 in order to obtain an actual number

of LacZ molecules inside the cell.

First, the term OD420 − 1.75 × OD550 in equation 6.5 is a measure of the amount of ONP, the product

of the breakdown of ONPG by β-galactosidase, in the reaction corrected for the cell debris (see Materials

and Methods). We relate the absolute concentration of ONP in the reaction to the absorption reading

through this term such that γ[ONP] = OD420 − 1.75 × OD550. From an experimental point of view, the

key assumption is that of a linear increase in the amount of ONP over time. Given that at the moment the

experiment starts, there is as yet no ONP, we can obtain d[ONP]/dt simply by taking the accumulated ONP



165

at time t and dividing by this elapsed time, that is,

d[ONP]
dt

≈ [ONP]
t

. (6.6)

We also invoke a relation between the OD600 reading and the density of cells such that OD600×v×δ = Ncells,

where Ncells is the number of cells. Finally, we wish to obtain the number of LacZ tetramers present

in the reaction NLacZ from this previous equation. This can be done by rewriting the concentration as

[LacZ] = NLacZ/V , where V is now the reaction volume of the standard Miller LacZ assay. If we insert this

in our definition of MU we get

MU = 1000 γ k[ONPG]δ
1
V

NLacZ
Ncells

. (6.7)

We determined δ for our strains to be (8.9 ± 0.8) × 108 /ml. The relation between ONP absorption at

420 nm and concentration is 0.0045/µMONP approximately [21, 60]. The volume of the reaction in the

standard Miller assay is V = 1.2 ml. However, before the ONP reading the sample gets diluted to around

1.7 ml by the addition of Na2CO3. Therefore we define γ=0.0045/µMONP × (1.7 ml/1.4 ml). Finally,

we need to obtain the turnover rate of LacZ given by k. Wallenfels and Weil [61] report a turnover rate

of 138 × 106
MONP

min×MLacZ×MONPG
, where we are referring to LacZ tetramers. Similar values have been

reported by other authors [58, 62]. Since the initial concentration of ONPG in the reaction is 1.86 mM we

get

MU×ml×min× 0.5 ≈ NZ
Ncells

. (6.8)

Although this is only a rough estimate because of a lack of error bars associated with the reported values

for the specific activity of LacZ, this gives us a direct connection between Miller units and number of LacZ

molecules per cell.

This LacZ calibration that we have just calculated is consistent with previous experimental results on the

lac operon. For example, the expression level of the repressed operon is about 0.6 MU [5]. Our calibration

suggests that this corresponds to 0.3 LacZ tetramers/cell. Using single molecule techniques, the average

number of LacZ tetramers under repressed conditions was estimated to be 1.2 tetramers/cell [56]. The

internal consistency of these different estimates is encouraging.

6.3.2 Limits of LacZ and YFP as absolute reporters of gene expression

Recall that our aim was to compare enzymatic and fluorescence reporters for the same promoters in a way

that spans the large dynamic range found in natural bacterial and viral promoters.

As we have already noted, the level of expression in such bacterial promoters span over six orders of

magnitude as shown in figure 6.1 and table 6.4. Our interest was to design an experiment that would

permit us to capture a similar dynamical range in a way that would result in a systematic comparison

between the enzymatic and fluorescent reporters. To that end, we use an approach based on induction.
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We use an inducible lacUV5 promoter with a single binding site for Lac repressor (Oid) located directly

downstream from its transcriptional start (see figure 6.13). Two versions of this construct regulating the

expression of either the lacZ or EYFP genes were created. These constructs were either located on the

bacterial chromosome or a low copy plasmid in strains that bear wild-type levels of Lac repressor (lacI+),

high levels of Lac repressor (lacI++) or no Lac repressor (lacI-). By growing the different combinations of

resulting strains at different concentrations of the inducer IPTG we were able to compare the total EYFP

fluorescence and LacZ enzymatic activity per cell. These induction curves are shown in figure 6.14.

In figure 6.4 we present the corresponding expression levels measured using the two reporters over four

orders of magnitude. For comparison, these results are juxtaposed with the literature expression levels

of some naturally occurring promoters such as those presented in figure 6.1 and table 6.4. The blue line

corresponds to a fit to a linear model showing that the data is consistent with a linear relation between the

two reporters. This observation is consistent with recently published results [8]. The slope or conversion

factor is (9.6±0.7)×10−5 arbitrary fluorescence units/Miller units (MU). Even if we fit the relation between

the two reporters with a more general functional form such as a power law, we find a linear dependence as

shown in figure 6.16.

Although β-galactosidase activity is measured in absolute units, the fluorescence intensity depends

strongly on details of the experimental apparatus used for the measurement such as the illumination in-

tensity and transmission of the optical elements. The calibrations mentioned above that convert YFP

arbitrary fluorescent units and LacZ Miller units into a number of molecules allows for our expression levels

to be converted into an approximate absolute number of molecules of each reporter as shown by the labeling

on the alternative axes in figure 6.4. We estimate the EYFP-LacZ relation to be around roughly 0.1 EYFP

molecules/LacZ monomer. This value seems to be at odds with the fact that they are being expressed from

the same promoter. If the transcription rate is the same because of this then that leaves some difference at

the translation initiation and translation levels. However, we lack sufficient information to estimate those

differences. Alternatively, an underestimation of the number of EYFP molecules inside the cells could be

due to issues related to the fluorescence of the molecule itself such as quenching and misfolding [63].

Fluorescence measurements are fundamentally limited for low levels of gene expression. When the fluores-

cence signal becomes comparable to the autofluorescence level (below 10 molecules/cell) the determination of

the level of gene expression has a high associated error. In contrast to free cytoplasmic fluorescent proteins,

this limitation is less stringent in the case of fluorescent proteins that are immobilized on the cell membrane

[53, 63] or DNA by a fusion (this work and [64]). The high error in the determination of low expression

levels is reflected in the fluorescence distributions shown in figure 6.5. For the lowest expression levels, the

dominant error comes from variations in the autofluorescence. For example, we observe a slight systematic

bias towards overestimating the level of autofluorescence. Given the size of the autofluorescence variation,

we do not regard the mean value of fluorescence as statistically significant. This limitation is indicated as a

grey shaded area in figure 6.4. To give a sense of the scale, the expression level of the repressed wild-type lac
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Figure 6.4: Relation between the mean cell fluorescence and β-galactosidase activity. The fluorescence per
cell is plotted against the β−galactosidase activity. Each point corresponds to the same construct bearing
either EYFP or lacZ as a reporter in the same strain background and at the same concentration of IPTG. The
blue line is a linear fit fixing the intercept to zero with a slope of (9.6±0.7)×10−5 fluorescence units/MU or
an estimated 0.1 YFP molecules/LacZ monomer. The grey shaded area represents the range of YFP where
the fluorescence signal is comparable to the cell autofluorescence (see discussion in the main text and figure
6.5). The red shaded area corresponds to the range where our assay can detect LacZ expression affecting
cell growth (refer to the main text and to table 6.1). The expression values of several natural promoters,
some of which are also shown in figure 6.1, are plotted on the blue line.
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Figure 6.5: Reproducibility of low fluorescence levels. Histograms of the mean fluorescence per area in
single cells corresponding to highly repressed samples and two repeats of the same non-fluorescent control
are shown. The variation observed in these samples is comparable to the separation between non-fluorescent
and low fluorescent distributions resulting in a considerable error in the estimation of the fluorescence of the
sample.

promoter could not be measured with fluorescence unless a more sophisticated technique to visualize single

fluorescent proteins is invoked [53]. By way of contrast, no significant analogous background was observed

in any of our LacZ measurements, showing that this method is more reliable for quantifying very low levels

of gene expression. In fact, linearity of the LacZ activity has been reported down to 0.03 MU [5].

When performing a measurement of gene expression using reporters it is important to demonstrate that

the presence of the reporter itself is not affecting the state of the cell. We choose the growth rate as

an indicator of the cellular state. For all the expression levels shown in figure 6.4 the doubling rate is

approximately one hour regardless of the reporter. However, strain lacI- bearing a plasmid with LacZ as a

reporter showed a longer doubling time of (74 ± 1) minutes, which was not the case for the corresponding

EYFP strain. These growth rates are shown in table 6.1 and the corresponding growth curves are shown

in figure 6.17. We confirm previous observations that expression levels above 20,000 LacZ tetramers/cell

start affecting the cell significantly [65]. Unlike the low end of expression, where EYFP was limited by the

autofluorescence, we find that for the high end of expression LacZ becomes limiting not because of signal

issues, but because the cell is affected by the fact that high levels of LacZ are being expressed. Interestingly,

even some of the stronger promoters such as rrnB and the T7 A1 promoter have levels below this threshold.

Though our measurements primarily focused on the use of microscopy to quantify EYFP fluorescence it is

by no means the only option. An alternative is, for example, to use a plate reader. Though this method does

not provide single cell information, it is able to produce data in much higher throughput than microscopy.

On the other hand, plate readers will be more limited in terms of the minimum level of fluorescence they can

quantify reliably. We perform a comparison between fluorescence measurements on the same strains using

microscopy and a plate reader in the Supporting Materials leading to figure 6.12. We reach the conclusion
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Strain Location Reporter IPTG (µM) Doubling time (min)
lacI++ Chromosome No reporter 0 59± 1
lacI++ Plasmid No reporter 0 57± 1

lacI- Plasmid EYFP 0 59± 2
lacI+ Plasmid LacZ 1000 62± 1
lacI+ Plasmid LacZ 0 59± 1
lacI- Plasmid LacZ 0 74± 1

Table 6.1: Effect of expression level on growth rate. Cells expressing a high level of EYFP (lacI-/Plasmid)
have effectively the same doubling time as a strain without any reporter (lacI++/Chromosome/No reporter
and lacI++/Plasmid/No reporter). However, the same is not true for high LacZ levels (lacI-/Plasmid),
where the level of expression affects the doubling time in a measurable way.

that they are completely interchangeable, but that the lower limit of detection is now on the order of 50

molecules/cell, roughly 5 times more than with microscopy.

6.3.3 Limits of LacZ and YFP as reporters of the fold-change in gene expression

The fold-change in gene expression due to regulation by a transcription factor is defined as the level of

gene expression in the presence of that molecule divided by the level of gene expression in its absence. In

particular, it is the key magnitude predicted by thermodynamic models of transcriptional regulation [10, 15].

These models can predict fold-changes in gene expression that span over multiple orders of magnitude for

both repression (fold-change< 1) and activation (fold-change> 1).

In order to test these models it is then necessary to be able to decide which reporter will be the best to

assay a particular type of regulatory architecture. For example, in the previous section we found that we

can reliably measure EYFP fluorescence down to 10 molecules/cell. If we are dealing with a promoter with

a basal expression level of approximately 3, 000 YFP molecules/cell like the lacUV5 promoter integrated

on the chromosome used in this work, this means that the lowest fold-change we can measure with YFP is

10/3000 ≈ 10−3. On the other hand, the maximum LacZ activity attainable before cell growth starts being

compromised is around 20,000 LacZ tetramers/cell. This means that we can only increase the number of

LacZ tetramers beyond the basal level up to this level before the cell senses the presence of these molecules as

measured by its growth rate. Since the basal level of our promoter corresponds to 4, 000 LacZ tetramers/cell

this translates into a maximum measurable fold-change of 20000/4000 ≈ 101 using LacZ as a reporter.

In order to test part of this assertion about the maximum fold-change in repression we performed fold-

change measurements on constructs bearing the operators O1, O2 or Oid and the reporters LacZ or EYFP.

Figure 6.6 shows the fold-change measured using EYFP as a function of the fold-change measured using

LacZ for the different single binding site constructs (O1, O2 and Oid) in two different Lac repressor back-

grounds: lacI+ and lacI++. We see that the fold-change levels measured with both reporters are in good

correspondence. As expected, when the fold-change in gene expression reaches 10−3 the EYFP readings start

becoming too noisy to determine the fold-change in gene expression reliably, setting a limit on the range of

fold-change that can be measured using EYFP as a reporter.
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Figure 6.6: Fold-change in gene expression measured by LacZ and EYFP. The fold-change of a construct
bearing a single Lac repressor binding site (Oid, O1 and O2) in the lacI+ and lacI++ backgrounds is
compared when lacZ and EYFP are used as a reporter. The line has a slope of one. The point in the plot
displaying the lowest fold-change corresponds to fluorescence levels that are near the detection limit. This
results in the very large error bar shown.

6.4 Discussion

In this work we explored the feasibility of testing theoretical models of gene regulation using two reporters of

protein expression: EYFP and LacZ. The calibration between EYFP and LacZ levels shown in this work is

an important methodological prerequisite for testing quantitative models of gene expression. One important

outcome is that it makes it possible to compare previously available data, generally taken using LacZ as

a reporter, with single-cell expression data obtained using EYFP over most of the range of expression of

bacterial promoters.

Fluorescent molecules have generally been the method of choice recently because they allow for live

imaging of single cells. Our work establishes a clear absolute boundary for these measurements: the autoflu-

orescence level. The intuitive expectation that autofluorescence will contaminate fluorescent gene expression

measurements is converted into a concrete and precise numerical criterion. We expect this absolute boundary

to be dependent on the particular fluorescent protein used, as they can vary widely in their spectral prop-

erties and as the autofluorescence is also measurably different at different wavelengths [66]. Interestingly,

the enzymatic activity of LacZ shows no such limitation. However, for high levels of expression the presence

of LacZ affects cell growth in a detectable way before any similar effect from EYFP can be detected. The

experimental capacity to use both methods and to switch between one reporter and the other presented in

this work makes it possible to obtain the best of both worlds: very low expression levels can be measured

accurately in bulk using LacZ in absolute units whereas slightly higher levels of expression can be measured

at the single cell level using fluorescence. Because of fundamental limitations associated with each reporter

we conclude that both techniques need to be used together if the full range of absolute gene expression is
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to be measured. The outcome of this work has direct consequences on the fold-change in gene expression

detectable with each reporter and, in turn, on the range of predictions that these measurements can be

contrasted against.

6.5 Supporting Materials

6.5.1 Promoter activities

The promoter activities in figure 6.1 are also shown in table 6.4. These correspond to various measurements

found in the literature and were obtained as follows. Some promoters such as lac [5] and rrnB [67] had

expression levels directly reported in Miller units corresponding to single-copy chromosomal integrations.

However, the data for the PL and the T7 PA1 promoters was available in pBLA units rather than Miller

units. This is measured by comparing the rate of mRNA synthesis of the promoter of interest with the rate

of mRNA synthesis of the β-lactamase promoter [59]. Lanzer and Bujard [68] estimated the relation between

pBLA and Miller units, to be around 5000 MU/pBLA units.

The measurements for the PL, T7 PA1 [59] and pBAD [69] promoters were performed on plasmids

bearing a ColE1 origin of replication. Earlier measurements have estimated this origin of replication to

result in a plasmid copy number of approximately 60 per cell [38]. As a result, we estimate the level of

expression of a single copy of each of the promoter on plasmids by dividing their expression by the plasmid

copy number.

Finally, the levels of expression calculated in Miller units were converted to an absolute number of

molecules using the absolute LacZ calibration described in the text of 0.6LacZ tetramers/cell
MU .

6.5.2 Supplementary materials and methods

6.5.2.1 Plasmids

Plasmid pZS22-YFP was kindly provided by Michael Elowitz. The EYFP gene comes from plasmid pDH5

(University of Washington Yeast Resource Center [3]). The main features of the pZ plasmids are located

between unique restriction sites [38]. The sequence corresponding to the lacUV5 promoter [70] between

positions -36 and +21 was synthesized from DNA oligos and placed between the EcoRI and XhoI sites of

pZS22-YFP in order to create pZS25O1+11-YFP. Note that we follow the notation of Lutz and Bujard [38]

and assign the promoter number 5 to the lacUV5 promoter. The O1 binding site in pZS25O1+11-YFP

was changed to O2, O3 and to Oid using site-directed mutagenesis (Quikchange II, Stratagene), resulting in

pZS25O2+11-YFP, pZS25O3+11-YFP and pZS25Oid+11-YFP. These plasmids are shown diagrammatically

together with the promoter sequence in figure 6.13.

The lacZ gene was cloned from E. coli between the KpnI and HindIII sites of all the single-site constructs

mentioned in the previous paragraph. The O2 binding site inside the lacZ coding region was deleted without
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changing the LacZ protein [71] using site-directed mutagenesis. Successful mutagenesis was confirmed by

sequencing the new constructs around the mutagenized area.

After we had generated these constructs and integrated them on the E. coli chromosome (as described

below) we determined that the different LacZ constructs had acquired some mutations. On average there

were three different point mutations in each construct, though pZS25O3+11-lacZ had lost both the KpnI

and HindIII sites. All these constructs still expressed functional LacZ. This problem did not present itself in

the case of the EYFP constructs. We attribute this higher number of mutations in part to possible problems

in the PCR amplification of the lacZ coding region. Another possible explanation is related to having a

longer plasmid with the lacZ gene as opposed to the EYFP gene (3213 bp versus 714 bp). However, it must

be noted that none of their EYFP counterparts had any mutations in the coding region, giving less strength

to this argument since a simple estimate assuming the same proportion of mutations would have resulted in

roughly 1/4 the mutations seen in the LacZ case.

Plasmid pZS21-lacI was kindly provided by Michael Elowitz. This plasmid has kanamycin resistance.

The chloramphenicol resistance gene flanked by FLIP recombinase sites was obtained by PCR from plasmid

pKD3 [40]. The insert was placed between the SacI and AatII sites of pZS21-lacI to generate pZS3*1-lacI. The

ribosomal binding sequence of pZS3*1-lacI was weakened by performing the mutation AGAGGAGAAAGG

→ AGATTTGAAAGG (Alon Zaslaver, personal communication) resulting in pZS3*1RBS1-lacI. Higher

levels of Lac repressor with respect to wild-type can be confirmed by comparing the expression of a construct

such as pZS25O1+11 in the two different backgrounds.

Plasmid pET11a-His-YFP was used for the EYFP over-expression and purification described below.

His-YFP was created by PCR amplifying the EYFP gene from pZS25O1+11-YFP adding a His-tag at the

N-terminus of EYFP and the restriction sites for NheI and BamHI (see table 7.2 for primer sequences). This

insert was ligated in pET11a (New England Biolabs). The resulting plasmid was transformed into strain

BL21(DE3).

Plasmid pLAU53-NoLacI-TetR-YFP was constructed from plasmid pLAU53 ([39], kindly provided by

Paul Wiggins). Its Lac repressor-CFP fusion was deleted by making use of the EcoRI restriction sites flanking

the coding sequence. The plasmid was digested and the relevant fragment gel purified and re-ligated to obtain

pLAU53-NoLacI. Though this plasmid already has TetR-YFP fusion, the EYFP it contains differs from the

EYFP used in this work in some key amino acids [72]. As a result we swapped the EYFP in the plasmid

for the one used in our reporter constructs. The EYFP gene was amplified from plasmid pZS25O1+11-

YFP using primers HG22.03 and HG25.11 (see table 7.2). These primers added flanking restriction sites

for HindIII and XhoI. Plasmid pLAU530-NoLacI was digested with the same restriction enzymes and the

relevant fragment gel purified and ligated with the PCR product to generate pLAU53-NoLacI-TetR-YFP.
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6.5.2.2 EYFP purification

His-tagged YFP was expressed in E. coli BL21(DE3) cells harboring the pET11a-His-YFP expression plasmid

and purified using Ni-NTA affinity chromatography (Qiagen) according to the manufacturer’s protocol.

6.5.2.3 In vitro EYFP calibration

The purified protein was diluted by 105 to 106 in PBS. Single YFP molecules bound nonspecifically to low

autofluorescence (Corning D263) coverglass were imaged using a 473 nm laser in epifluorescence. The rest

of the imaging was done as described for the in vivo calibration in the main text.

6.5.2.4 Gene expression measurements

Three replicates of each strain were grown in different tubes in order to be able to obtain a mean expression

level and its standard deviation. However, the day-to-day variation tended to be more significant than the

variation from sample to sample on a given day. Therefore all data points shown in this experiment are

the result of averaging over mean values obtained on at least three different days. The error bars are the

standard deviation over these days.

The level of gene expression as a function of different IPTG concentrations was measured for strains

HG104::galK<>25Oid+11, HG105::galK<>25Oid+11, HG205::galK<>25Oid+11, HG104 + pZS25Oid+11,

HG105 + pZS25Oid+11 and HG205 + pZS25Oid+11 for EYFP and LacZ. For the repression measurements

in EYFP strains HG104 was replaced by MG1655 and strain HG105 by TK140 as described in the main

text.

The results of the induction measurements are shown in figure 6.14, where the levels of gene expression are

normalized by their maximum. The levels of expression for both reporters were then combined to generate

figures 6.4 and 6.16. The level of fluorescence was normalized by the mean fluorescence per cell of strain

HG105::galK<>25O2+11-YFP, which became our fluorescence standard.

Single-cell microscopy

Cells bearing EYFP were imaged at 100x magnification. In order to check for uniformity of the epi-

illumination field we first imaged 0.5 µm fluorescent beads (TetraSpeck, Invitrogen) resulting in a typical

inhomogeneity throughout the field of view of less than 5%. The cells were immobilized between a number

1.5 coverglass and a pad of 1.5% low-melting-temperature agarose in PBS. Images of the cells in phase

contrast and fluorescence were taken. The time between the initial placement of cells on the pad and the

last picture taken was about five hours. No detectable difference in the level of gene expression that could

be attributed to these five hours on the pad was observed.

We used automated microscopes to take 20 snapshots per strain. Fluorescence was quantified using either

a Hamamatsu Orca-285 or a Roper Scientific CoolSnap camera. With every data acquisition we quantified

the reference strain HG105::galK<>25O2+11-YFP. This allowed us to directly compare the result from the

different microscopy setups.
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The phase contrast images were used for automatic segmentation of the cells using custom Matlab

code, based on code kindly provided by Michael Elowitz. The total fluorescence per cell was calculated by

integrating the fluorescence per pixel over the cell area. The average fluorescence per cell was calculated

by averaging the cell’s intensity over the cell’s area, as determined by the segmentation. Cell and pad

autofluorescence were determined by looking at strains bearing the no reporter construct.

β-galactosidase assay

LacZ activity was measured by the classic colorimetric assay [21, 44] with some slight modifications as

follows. A volume of the cells between 2.5 µl and 200 µl was added to Z-buffer (60 mM Na2HPO4, 40 mM

NaH2PO4, 10 mM KCl, 1 mM MgSO4, 50 mM β-mercaptoethanol, pH 7.0) for a total volume of 1 ml. The

volume of cells was chosen such that the yellow color would develop in no less than 15 minutes. For the case

of the no-reporter constructs 200 µl of cell culture was used. Additionally, we included a blank sample with

1 ml of Z-buffer. The whole assay was performed in 1.5 ml Eppendorf tubes.

In order to lyse the cells, 25 µl of 0.1% SDS and 50 µl of chloroform was added and the mixture was

vortexed for 10 s. Finally, 200 µl of 4 mg/ml 2-Nitrophenyl β-D-galactopyranoside (ONPG) in Z-buffer were

added to the solution and its color, related to the concentration of the product ONP, monitored visually.

Once enough yellow developed in a tube the reaction was stopped by adding 200 µl of 2.5 M Na2CO3 instead

of adding 500 µl of a 1 M solution as done in other protocols. At this point the tubes were spun down at

> 13, 000 g for three minutes in order to reduce the contribution of cell debris to the measurement.

200 µl of solution was read for OD420 and OD550 on a Tecan Safire2 and blanked using the Z-buffer

sample. The OD600 of 200 µl of each culture was read with the same instrument. The absolute activity of

LacZ was measured in Miller units using the formula

MU = 1000
OD420 − 1.75×OD550

t× v ×OD600
0.826, (6.9)

where t is the reaction time in minutes and v is the volume of cells used in ml. The factor of 0.826 is not

present in the usual formula used to calculate Miller units. It is related to using 200 µl Na2CO3 as opposed

to 500 µl. When using 500 µl, the final volume of the reaction is 1.725 ml (1ml Z-buffer, 25 µl 0.01% SDS,

200 l ONPG, 500 µl Na2CO3). However, when using only 200 µl of Na2CO3 the total volume is 1.425 ml.

The factor of 0.826 adjusts for the difference in concentration of ONP.

All reactions were performed at room temperature. No significant difference in activity was observed

with respect to performing the assay at 25C in an incubator.

Plate reader measurements

Cells were grown using the protocol described above in section “Gene expression measurements”. When

the culture reached an OD600 higher than 0.3 we loaded 200 µL of each culture onto a 96-well plate with

a flat, clear bottom. The plate was measured in a Tecan Safire II. Fluorescence was measured from the top

(height set manually to 5250 µm) with an excitation wavelength of 505 nm, and an emission wavelength of

535 nm, both with a bandwidth of 12 nm. The gain was automatically adjusted from the brightest well.
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Absorbance at 600 nm was also measured. After subtracting the readings from a blank sample (media

without cells) we calculated the fluorescence per absorbance unit. The cell autofluorescence was obtained

by performing this measurement on a strain without a fluorescent reporter. Its fluorescence per absorbance

unit was subtracted from all other samples. Finally, all resulting fluorescence values were normalized by the

fluorescence of strain HG105::galK<>25O2+11-YFP.

6.5.3 In vivo and in vitro single molecule measurements

Fluorescent molecules were tracked using the Matlab code “PolyParticleTracker” [47]. This code finds local

maxima in an image and follows these maxima over successive frames of the same field of view. When the

molecule bleaches, however, there is nothing to track and the code stops quantifying the fluorescence from

that region. Additionally, for some frames, the code’s selection criteria (involving area, skewness, etc.) fail

to continue tracking particles which were clearly there.

In order to circumvent these two issues we modified the code such that whenever the tracking of a particle

was lost it would report its last known position. Additionally, we only kept traces where the particles had

been found successfully in at least the first three initial frames. This particle finding scheme resulted in a

significant amount of false positives per field of view because random fluctuations in the field of view would

be transiently recognized as real particles. On average, we would track on the order of 100 puncta per field

of view of which no more than 10 would correspond to real molecules. In order to distinguish the molecules

from the vast number of false positives we manually screened all molecules using custom Matlab code. We

confirmed that indeed there was a molecule at the position as shown by the snapshots in figure 6.3(A,C).

We also checked that the position of the particle did not change by more than two to four pixels over the

course of the analyzed trace.

The fluorescence of the selected molecules was then integrated over a box of a certain area. We present

a detailed discussion regarding the choice of this parameter further below. For now, the following examples

will be given using an area of 9 × 9 pixels, but the general conclusions are independent of this choice. Our

traces consisted of 200 continuous frames with an exposure of 250 ms. However, in most cases we would only

keep the fragment of the trace around the photobleaching steps as shown in figure 6.7(A). In figure 6.7(B)

we present the tracking of the centroid and in figure 6.7(C) we show a set of snapshots over the selected time

window.

The steps in the traces such as the one shown in figure 6.7(A) were fitted to a step or multiple step

function using least-squares minimization. We manually called the number of steps within a trace and the

position of the transitions as starting parameters for the fit. We compared this scheme to using an automated

Hidden Markov Model (HMM) approach [73]. We analyze the complete traces corresponding to molecules

we had manually selected using both our manual fit scheme and and HMM. For the HMM analysis we used

vbFRET, a Matlab package [73]. A sample trace with both fitting schemes is shown in figure 6.8(A). Notice

that in the case of HMM we do not constrain the time window for each trace. By doing this over our whole
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data set we can compare the distributions of steps obtained by the manual fit to the distribution of discrete

levels found by HMM. This is shown in figure 6.8(B), where it is clear that both distributions are comparable.

This gives us confidence that our manual fitting approach is not significantly different from other automated

schemes.

One of the main problems in measuring low fluorescent signals in vivo is the contribution from the cell

autofluorescence [66]. When taking a time lapse this cell autofluorescence will bleach, resulting in a time-

varying background. An example of this effect is shown in figure 6.9(A), where we present the fluorescence

per pixel as a function of time of a small box located inside and outside one of the cells. We see that there

is a change of about 40 counts per pixel of the cell autofluorescence over the time trace. For a box with

an area of 9 × 9 = 81 this corresponds to a total fluorescent signal of approximately 3,000 counts, which is

comparable to the magnitude of the steps we are trying to detect. A way to reduce the contribution of this

effect is to “pre-bleach” the field of view before actually taking data. Operationally, this can be done by

keeping only photobleaching steps that occurred after a certain time. In figures 6.9(B,C) we show the effect

of doing such filtering on the step size distribution. Notice that the distributions seem to converge once we

only keep steps that occurred after 40 frames or later. As a result we apply this filter with a threshold of 40

frames for all our in vivo data.

In order to quantify both the in vivo and in vitro fluorescence of the single molecules and obtain traces

such as those shown in figure 6.3(A,B) we integrated the signal over a box centered around their centroids.

If the integration box has an area given by A and this area is bigger than the size of the diffraction limited

spot corresponding to the molecule we are observing then the fluorescence before the photobleaching step is

given by

Fluo0 = Y FP + Fluoback,0 ×A, (6.10)

where Y FP is the fluorescence of the YFP molecule and Fluoback,0 is the fluorescence per unit area coming

from the background. This last magnitude will be a combination of the camera offset and the autofluorescence

coming from the glass, buffer and, in the in vivo case, of the cell autofluorescence. Notice that we gave the

background fluorescence the subscript “0” to denote that there might be a time dependence. After the

photobleaching step the fluorescence detected in that same area is

Fluof = Fluoback,f ×A. (6.11)

In this last equation we have defined the fluorescence of the background after the photobleaching event.

Of course, if the background does not change over the time course of the experiment then the difference

Fluof−Fluo0 corresponds to Y FP , the fluorescence coming from a single molecule. If the level of background

of baseline fluorescence is slightly different between the initial and final time points we get

Fluo0 − Fluof = Y FP + (Fluoback,f − Fluoback,0)A. (6.12)
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We worry that this effect could be present leading to a systematic error in the estimation of the fluorescence

steps. This could be due to changes in background autofluorescence over time or to non-linearities in the

detection of low fluorescence levels. This effect would manifest itself as a linear increase in step size with the

area of integration. There are obvious limits to this equation. If the area is too small then it will not capture

the total fluorescence of the diffraction limited spot. If the area is too large then it will go beyond the cell

itself and the background will be significantly different. In figure 6.10 we show the mean step fluorescence

as a function of the size of the integration box. As expected, a small area (of 3 × 3 pixels2) results in a

small step size with respect to the other areas. The remaining areas correspond to 5 × 5, 7 × 7 and 9 × 9

pixels2. Given that a cell under our magnification conditions is about 8 to 9 pixels wide we view the area

of 9 × 9 pixels2 as the biggest box that can be fit within the cell. In the figure we show a fit to equation

6.12 and the mean resulting from averaging the over the three larger area boxes. Both the values calculated

from the intercept of the linear fit and from averaging over the different data points give comparable results.

We conclude that we cannot detect a difference between the background fluorescence before and after the

bleaching step within our experimental error.

Interestingly, the in vitro values did not show a flat response of the step size as a function of the integration

area in the same way than its in vivo counterpart did. In figure 6.11(A) we show the scaling of the in vitro

step fluorescence with the area. Interestingly, we see a significant slope of (11.5 ± 0.4) au/pixel2. If we are

to believe the model in equation 6.12, such a slope would correspond to an underestimation of the value of

the background before the bleaching step, Fluoback,0. This shift can be clearly observed in the distributions

as shown in figure 6.11(B). Additionally, it can be seen in the trace corresponding to a single molecule. This

is shown in figure 6.11(C), where we shifted all the fluorescence levels after the bleaching step in order to

show all the traces on the same plot. The fact that we see this effect when directly integrating the signal

corresponding to a single trace without going through any automated analysis script suggests that this is

not an artifact of our data analysis, but a true feature of the data.

We are unable to determine where this systematic error is coming from. This effect was also present when

imaging the single molecules under Total Internal Reflection Fluorescence microscopy (TIRF), where there is

a significant reduction of the background fluorescence coming from the buffer. Our main hypothesis is that it

is due to a non-linearity in the acquisition process. However, we were unable to determine this unequivocally.

Regardless of the origin of this systematic error if we assume that the measured step fluorescence as a function

of the integration area follows a form such as the one shown in equation 6.12 we can use the intercept of the

linear fit to account for the systematic shift and determine the real fluorescence per molecule. The intercept

in the fit of figure 6.11(A) is 1470 ± 30 au/pixel2. This implies that the fluorescence detected in vitro is

15% lower than its in vivo counterpart. If we were to take a box of a size comparable to the cell size of

9× 9 pixel2 we would estimate the in vitro fluorescence to be higher than the in vivo fluorescence by about

40%. Interestingly, this result is consistent with recent measurements comparing the in vivo single molecule

and in vitro bulk fluorescence of the fluorescent protein Venus [8].
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Figure 6.7: Selection scheme for single molecule traces. (A) A region of the trace presenting a discrete step
or photobleaching is selected and fitted to a step function. (B) We confirm that the tracking of the molecule
was successful by corroborating that there wasn’t any significant movement of the particle over the selected
time period. The image shown corresponds to the first selected frame and the circles show where the centroid
of the particle was found as a function of time. (C) A window around the centroid at different time points is
monitored to make sure there aren’t any extraneous objects and that we do indeed have a diffraction limited
spot within the integration area. The size of the window monitored is twice that of the integration window.
In this example the window has a side of 17 pixels.
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shown where we fitted the step manually to a step function using least-squares and using a Hidden Markov
Model approach (HMM). For the latter we don’t constrain the fit to a particular time window. (B) Histogram
of steps obtained manually compared to a histogram of the different levels found by HMM over our whole
data set.

6.5.4 Plate reader vs. microscopy for determining fluorescent levels

One of the advantages of using a fluorescent reporter to measure gene expression is that, unlike using LacZ, no

further reactions are needed. Once the cells have reached the desired point in their growth all that remains is

to quantify their fluorescence level. However, even though it can be highly automated, microscopy remains
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Figure 6.9: Effect of photobleaching on the in vivo calibration. (A) Fluorescence per pixel of a small region
inside a cell without any fluorescent puncta and outside the cell. A moving average has been applied to
smooth the traces. (B) Effect of keeping only steps that occurred after a certain time point on the step size
distributions. (C) Mean step size as a function the minimum time of occurrence of steps. The error bars are
the standard error of the means. The numbers next to the data points correspond to the number of steps
analyzed.

a slow technique when many strains are to be assayed. A compromise is to quantify fluorescence using

bulk methods such as a plate reader. Such a device can query the level of fluorescence of multiple strains

much faster. However, there is a price to be paid in the form of dynamic range. Whereas with microscopy

we could detect down to 10 molecules/cell, with the plate reader used for this work (Tecan Safire II, see

Supplementary Methods) the minimum level of fluorescence that could be detected reliably corresponded to

about 50 molecules/cell. In figure 6.12 we show a direct comparison of the two techniques. Here, it is clear

that both of them give the same result as long as the signal is not close to the detection limit.
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Figure 6.12: Comparison of microscopy and plate reader as methods to quantify gene expression. The same
strains were quantified both using microscopy and using a plate reader (Tecan Safire II). The results show a
1:1 correlation between plate reader and microscopy, although the plate reader has a lower limit of detection
which is greater than that of microscopy. Whereas using microscopy we can detect as few as roughly 10 EYFP
molecules/cell, the plate reader can detect molecules only in excess of concentrations of 50 molecules/cell
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6.5.5 Supplementary figures and tables

ctcgagtttacactttatgcttccggctcgtataatgtgtggaattgtgagcgctcacaattgaattc
XhoI -35 -10 Oid EcoRI

EYFP or
lacZ

kanamycin resistance

t0
terminator

SC101 Origin
(Approx Position)

T1
terminator

EcoRI (747)

HindIII (1491)

KpnI (772)

XhoI (685)

AvrII (1619)

SacI (3956)

AatII (614)

RBS

lacUV5 promoter

aattgtgagcggataacaattO1
aaatgtgagcgagtaacaaccO2
ggcagtgagcgcaacgcaattO3pZS25Oid+11

YFP (4298bp)
lacZ (6656bp)

Figure 6.13: Plasmid diagram and promoter sequence. The main features of the plasmids pZS25O1+11-
YFP and pZS25O1+11-lacZ are shown flanked by unique restriction sites. The particular promoter sequence
based on the lacUV5 promoter is shown together with the sequences of the different Lac repressor binding
sites used.

Table 6.2: List of E. coli strains used throughout this experiment. Chromosomal positions correspond to
the sequence in GenBank accession no. U00096.

Strain Alternative name Genotype Derived from Comment
HG104 lacI+ ∆lacZYA MG1655 Deletion from 360,483 to 365,579
HG105 lacI- ∆lacZYA, ∆lacI MG1655 Deletion from 360,483 to 366,637
HG205 lacI++ ∆lacZYA, ∆lacI, HG105

ybcN<>3*1RBS1-lacI
TK140 ∆lacI MG1655 [5]

Table 6.3: Primers used throughout this work. For integration primers, lowercase indicates the portion of
the primer that is homologous to the E. coli gene where the integration is made and uppercase indicates
primer homology to the plasmid where PCR was carried out.

Primer Sequence Comment
HG6.1 gtttgcgcgcagtcagcgatatccattttcgcgaatccggagtg Integration of the EYFP and lacZ

taagaaACTAGCAACACCAGAACAGCC reporter constructs into the galK gene.
HG6.3 ttcatattgttcagcgacagcttgctgtacggcaggcaccagct

cttccgGGCTAATGCACCCAGTAAGG
HG11.1 acctctgcggaggggaagcgtgaacctctcacaagacggcatca Integration of pZS3*1RBS1-lacI into

aattacACTAGCAACACCAGAACAGCC the ybcN gene.
HG11.3 ctgtagatgtgtccgttcatgacacgaataagcggtgtagccat

tacgccGGCTAATGCACCCAGTAAGG
HG22.03 attatagctagcatgggtcatcaccatcaccatcacggtcgtaa Make His-EYFP and insert into pET11a.

aggagaagaacttttcactgg
HG22.03R tattaatggatccttatttgtatagttcatccatgccatgt
HG25.02 atattaaagcttatttgtatagttcatccatgccatg Fuse TetR for EYFP in pLAU53-NoLacI
HG22.11 attatctcgagttggtgcgtaaaggagaagaacttttcactgg
HG22.04 gtttgcgcgcagtcagcgatatccattttcgcgaatccggagt Integration of pLAU53-NoLacI-TetR-YFP

gtaagaaTTAATGCGCCGCTACAGGG into the galK gene.
HG22.05 ttcatattgttcagcgacagcttgctgtacggcaggcaccagc

tcttccgTACTTTTCATACTCCCGCCATTCA
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Figure 6.14: Induction curves used in this work. The level of gene expression of the EYFP and lacZ constructs
is shown as a function of the IPTG concentration for the different construct locations (chromosome or low
copy plasmid) and strain background. The level of expression is normalized by the corresponding maximum
levels of activities. Error bars correspond to the standard deviation of measurements performed over at least
four different days. Refer to the Materials and Methods for a description of the different strains.

Table 6.4: Promoter activities from the literature measured using the LacZ assay. These activities from the
literature have been measured for a range of different promoters and conditions. The promoter strengths
quoted here are often approximate and should therefore not be considered as accurate. Refer to “Promoter
activities” in these Supplementary Materials for details of how these activities were calculated. (1) Measured
in M9 + 0.5% glucose. (2) For a cell doubling of about 1.25/h. (3) Calibrating Pbla activity and LacZ units
[68]. (4) Assuming a plasmid copy number of 60 copies/cell [38].

Promoter Strength (MU) Reference Comment
lac promoter, no IPTG 0.5-0.6 [5] (1)

lac promoter, 1 mM IPTG 600-700 [5] (1)
rrnB P1-P2 3,000 [67] (2)
PL, no cI 3,200 [59] (3,4)
T7 PA1 6,400 [59] (3,4)

pBAD, no arabinose 7 [69] (4)
pBAD, 2% arabinose 580 [69] (4)
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Figure 6.15: Comparison of different E. coli cell censuses. The number of proteins for a particular protein
measured by mass spectroscopy [9] is compared to the same magnitude measured by fluorescence in single
cells [8]. As a reference, a black line with a slope of one is plotted in order to emphasize the systematic
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Figure 6.16: Relation between the mean cell fluorescence and the β-galactosidase activity. The total fluores-
cence per cell is plotted against the β-galactosidase activity. Each point corresponds to the same promoter
bearing either EYFP or lacZ as a reporter in the same strain background and at the same concentration of
IPTG. The blue line is a linear fit fixing the intercept to zero (see figure 6.4). The red line is a fit to a power
law with a resulting exponent of 1.01 ± 0.05, consistent with a linear relation between the two reporters.
The shaded area is defined by the standard error for the power law fit.
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a detectable fashion. This level of LacZ is reached when our plasmid reporter is present in strain lacI-.
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Chapter 7

Quantitative Dissection of the Simple
Repression Input-Output Function

This chapter is a reproduction of reference [1].

We present a quantitative case study in transcriptional regulation in which we carry out a systematic

dialogue between theory and measurement for an important and ubiquitous regulatory motif in bacteria,

namely, that of simple repression. This architecture is realized by a single repressor binding site overlapping

the promoter. From the theory point of view, this motif is described by a single gene regulation function

based upon only a few parameters that are convenient theoretically and accessible experimentally. The usual

approach is turned on its side by using the mathematical description of these regulatory motifs as a predictive

tool to determine the number of repressors in a collection of strains with a large variation in repressor copy

number. The predictions and corresponding measurements are carried out over a large dynamic range

in both expression fold-change (spanning nearly four orders of magnitude) and in repressor copy number

(spanning about two orders of magnitude). The predictions are tested by measuring the resulting level of

gene expression and are then validated by using quantitative immunoblots. The key outcomes of this study

include: a systematic quantitative analysis of the limits and validity of the input-output relation for simple

repression, a precise determination of the in vivo binding energies for DNA-repressor interactions for several

distinct repressor binding sites, and a repressor census for Lac repressor in E. coli.

7.1 Introduction

It is now possible not only to make quantitative, precise and reproducible measurements on the response

of a variety of different genetic regulatory architectures, but even to synthesize novel architectures de novo.

These successes have engendered hopeful analogies between the circuits found in cells and those that are

the basis of many familiar electronic devices [2, 3]. However, in many cases, unlike the situation with the

electronic circuit analogy, our understanding of these circuits is based upon enlightened empiricism rather

than systematic, quantitative knowledge of the input-output relations of the underlying genetic circuits.

Regulatory biology has shed light on the space-time response of a wide variety of these genetic circuits.
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Examples range from the complex regulatory networks that govern processes such as embryonic development

[4, 5] to the synthetic biology setting of building completely new regulatory circuits in living cells [6]. In

particular, the dissection of genetic regulatory networks is resulting in the elucidation of ever more complex

wiring diagrams (see, as an example [7]). With these advances it is becoming increasingly difficult to develop

intuition for the behavior of these networks in space and time. In addition, often, the diagrams used to

depict these regulatory architectures make no reference to the census of the various molecular actors (the

intracellular number of polymerases, activators, repressors, inducers, etc.) or to the quantitative details of

their interactions that dictate their response. As a result, there is a growing need to put the description of

these networks on a firm quantitative footing.

Often, the default description of regulatory response is offered by phenomenological Hill functions [8–13]

which in the case of repression have the form

gene expression level =
α

1 + ([R]/Kd)
n + β, (7.1)

where n is the Hill coefficient which determines the sensitivity of the gene regulatory function, Kd is a

dissociation constant, and α and β are constants that determine the maximum and basal levels of expression,

respectively. Though such descriptions might provide a satisfactory fit of the data, they can deprive us of

insights into the mechanistic underpinnings of a given regulatory response, or worse, can force us into thinking

about the behavior of a given circuit in a way that is not faithful to the known architecture.

Alternatively, using thermodynamic models, it has been shown for a wide class of regulatory architectures

that for each and every circuit, one can derive a corresponding “governing equation” that provides the fold-

change in gene expression as a function of the relevant regulatory tuning variables [14–16]. The goal of our

work is to carry out a detailed experimental characterization of the predictions posed by one such governing

equation for the regulatory motif describing simple repression (see figure 7.1(A)) in which a repressor can

bind to a site overlapping the promoter resulting in the shutting down of expression of the associated gene.

This is a particularly fundamental case study since in E. coli alone, there are over 400 circuits that are

regulated by different transcription factors that repress by binding to a single site in the vicinity of the

promoter [17]. Indeed, simple repression and activation are often thought of as the elementary ingredients

of a much more diverse range of real regulatory circuits [18, 19].

As seen in figure 7.1, the level of expression in circuits governed by simple repression can be tuned by

several different parameters. One of the key tuning variables in nearly all regulatory and signaling networks

is the concentrations (or numbers) of the relevant molecular players in the process of interest. We use the

repressor concentration as one of the main tunable parameters in the experiments described below, with

a 100-fold range of different repressor concentrations considered. In order to explore our understanding

of how this parameter dictates regulatory response, we need to know how many repressors our strains of

interest harbor. A series of beautiful recent experiments has made important progress in carrying out the

molecular census using a variety of clever methods. These molecular counts include the census of all actin-
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related proteins in S. pombe cells [20], a count of essentially all the proteins in S. cerevisiae cells [21], a

determination of the distribution of both lipids and proteins in synaptic vesicles [22], several counts of the

proteins in E. coli [23, 24] and other cell types as well [25]. Most relevant to the current work is a recent

experiment using a fluctuation-based counting method to determine the number of transcription factors in

E. coli that control a synthetic circuit of interest [11]. Our work adds a new twist to protein census taking

by using thermodynamic models as a way to count the number of repressors in a simple regulatory motif.

A quantitative control of the absolute number of transcription factors is seldom employed in experiments

that aim to dissect regulatory architectures even though it is one of the main strategies to to verify the

predictions from thermodynamic models [14–16]. Previous work has usually relied on the control of an

external inducer to vary the regulatory response of a genetic circuit [6, 10, 12, 13, 26, 27]. However, the use

of inducer molecules, though experimentally convenient, adds another layer of complexity to the modeling

approach and has only been systematically characterized in a few cases [12].

Recent measurements [11, 24, 28–32] have also often focussed on the variability or “noise” associated with

transcriptional regulation. Although there has been great recent interest in this gene expression variability,

we argue that a crucial quantitative prerequisite to fully dissecting the properties of genetic networks is a

viable description of their mean response, and any conceptual frameworks used to describe the noise must

first be consistent with these mean responses.

In this work we test these thermodynamic models of transcriptional regulation by generating parameter-

free predictions for the level of gene expression as a function of the regulatory tuning variables of the

simple repression architecture. We show significant agreement between the theoretical description and the

measurements over multiple orders of magnitudes of the inputs and outputs of the system. We conclude that

through thermodynamic models we can accurately predict the level of regulation due to simple repression,

opening the door to the design of synthetic genetic circuits where the level of gene expression can be tuned

theoretically and to the better interpretation of the transcriptional response of naturally occurring circuits.

7.2 Theory and Experimental Design

Though our analysis should be relevant generically for simple repression, the reasoning behind our experi-

ments is based upon a series of earlier measurements and calculations on the level of repression in the specific

case of the lac operon [33, 34]. In particular, we consider the case where there is only a single specific binding

site for the Lac repressor (see figure 7.1). The wild-type lac operon was rewired such that only the main

operator was present and then, in turn, different strains were constructed in which the strength of that main

operator was systematically weakened according to the progression Oid to O1 to O2 to O3, as shown in

figure 7.12.

Thermodynamic models assume that the processes leading to transcription initiation by RNAP are in

quasiequilibrium. This means that we can use the tools of statistical mechanics to describe the binding
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Figure 7.1: The simple repression motif. (A) States and weights of the thermodynamic model describing
this regulatory motif. We assume that Lac repressor sterically excludes RNA polymerase from the promoter,
though that assumption is not critical to our analysis. P and R are the number of RNA polymerase and Lac
repressor molecules inside the cell, respectively. NNS is the number of non-specific sites, which we assume
to be the size of the genome. ∆εpd and ∆εrd are the difference in energy between being specifically and
non-specifically bound for RNA polymerase and Lac repressor, respectively. The difference in color in the
repressor binding site denotes an overlap of the binding site with the promoter. (B) The tuning variables
that can be varied in the model and controlled experimentally are the binding strength (by changing the
Lac repressor operator sequence) and the concentration of Lac repressor (by changing its mRNA ribosomal
binding site). The effect of tuning these parameters on the fold-change in gene expression is shown in the
graphs. Note that stronger repressor binding corresponds to a larger fold-change. For a detailed derivation
of the expression and discussion of the assumptions used see the Supplementary Information.

of RNA polymerase and TFs to DNA. Further, the level of gene expression is assumed to be proportional

to the probability that RNA polymerase is bound to the promoter of interest [14, 35]. This probability is

determined, in turn, by the interactions between polymerase and the promoter and competition for those

binding sites by repressors. In figure 7.1(A) we show the thermodynamic states and weights corresponding

to a minimal model of the simple repression regulatory motif. In this simplified model the promoter can

be found in only one of three states: i) empty, ii) occupied by RNA polymerase, and iii) occupied by Lac

repressor. The partition function for this system is obtained by summing over the statistical weights of each

of these states and is given by

Z = 1︸︷︷︸
promoter empty

+
P

NNS
e−β∆εpd︸ ︷︷ ︸

RNA polymerase bound

+
2R
NNS

e−β∆εrd︸ ︷︷ ︸
LacI bound

, (7.2)

where P is the number of RNA polymerase molecules, R is the number of Lac repressor tetramers, and

NNS ≈ 5 × 106 is the number of non-specific DNA sites (the length of the genome), corresponding to the

reservoir for both molecules. β is (kBT )−1 with kB being the Boltzmann constant and T the absolute

temperature. The energies ∆εpd (RNA polymerase-DNA) and ∆εrd (repressor-DNA) correspond to the

difference between specific and non-specific binding for RNA polymerase and Lac repressor, respectively,

where we make the simplifying assumption of a homogeneous nonspecific background. The factor of 2 in
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front of the concentration of Lac repressor stems from the fact that this molecule is a tetramer, a dimer of

dimers, with two binding heads. Therefore, 2R corresponds to the number of binding heads inside the cell.

For a complete derivation of these terms, please refer to [15, 36] and the Supplementary Information.

The probability of finding RNA polymerase bound to the promoter is then given by

pbound =
P

NNS
e−β∆εpd

Z
, (7.3)

where Z is the partition function defined in equation 7.2. A much more convenient quantity to measure is

the fold-change or relative change in gene expression due to the presence of the transcription factor, namely,

fold-change =
pbound(R 6= 0)
pbound(R = 0)

=
1 + P

NNS
e−β∆εpd

1 + P
NNS

e−β∆εpd + 2R
NNS

e−β∆εrd
. (7.4)

The great advantage of this quantity is that it is easily accessible both theoretically and experimentally. It

is unitless and can be measured by comparing the levels of gene expression (in any arbitrary or absolute

units) when Lac repressor is present and absent. We define this fold-change in gene expression with respect

to the absence of transcription factor and not with respect to a state where the transcription factor is fully

induced, such as in the presence of saturating concentrations of IPTG. Using inducers would require us to

consider the induction process explicitly [12]. In the case of a weak promoter such as lacUV5 used in this

work ([16] and Supplementary Information) the term P
NNS

e−β∆εpd is much smaller than one. This results in

the fold-change collapsing to the simpler form

fold-change =
1

1 + 2R
NNS

e−β∆εrd
. (7.5)

This last expression serves as the basis of our experimental design where we identify two tuning variables

that can be controlled experimentally in a systematic fashion: the binding energy and the concentration of

Lac repressor. In figure 7.1(B) we show the predicted fold-change as a function of these two experimentally

accessible parameters. Alternatively, the binding of Lac repressor can be described by a dissociation constant,

the concentration of Lac repressor for which the fold-change in gene expression is 1/2. This approach is

explained in the Supplementary Information. Throughout the text we report both binding energies and

dissociation constants.

Earlier hints as to how simple repression plays out quantitatively were offered by Oehler et al. [33, 34]

who measured the fold-change in gene expression for constructs bearing each one of the four operators and

for two different concentrations of Lac repressor. Using equation 8.2 or equivalent expressions [16, 37] the

binding energy of Lac repressor to each one of the operators can be estimated. These binding energies are

shown in figure 7.2(A). It must be noted though that these original measurements were not performed with

the intention of the kind of quantitative dissection advocated here and that therefore the uncertainties in

the parameters are substantial.
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If the binding energies obtained from the Oehler et al. data are to be more than an exercise in data fitting

they need to be used to generate predictions that will help explore the range of applicability of thermodynamic

models of transcriptional regulation. Our ambition was to follow these intriguing earlier measurements to

their logical conclusions by generating parameter-free predictions for the fold-change in gene expression as a

function of the repressor concentrations and to contrast them with a new set of experiments aimed at testing

those same predictions over a wide range of repressor copy numbers.

For the measurements reported here, we created roughly 30 strains of bacteria where we systematically

tuned the concentration of repressor using a recently developed scheme for controlling ribosomal binding

strength [38]. Though this scheme provides a rough expectation for the number of repressors in each one

of those strains we had no precise or accurate a priori knowledge of the actual intracellular numbers of Lac

repressors. These strains bear reporter constructs regulated by simple repression such as the ones shown in

figure 7.12, for which we measure the fold-change in gene expression. If we are to believe the input-output

function from equation 8.2, once we know the binding energy of the operator in question there is a direct

and unequivocal relation between the fold-change in gene expression and the number of repressor molecules.

Testing these predictions requires an accurate and precise quantification of the absolute levels of repressor

inside the cell. In fact, we view this approach as a way to count molecules by inference by looking at levels

of gene expression and passing these levels of expression through the theoretical filter of equation 8.2.

In the following sections we test these parameter-free predictions over a wide range of both expression

and repressor concentration and show that they largely jibe with our experimental observations. The logic

advocated here is that if equation 8.2 is shown to be predictive it will open the door to creating synthetic

gene regulatory circuits whose level of gene expression can be precisely tuned a priori and to being able to

predict the regulation of a particular promoter by just looking at its regulatory sequence. In addition, a

predictive understanding of the input-output relation of these architectures will serve as a jumping off point

for the design and understanding of more complex circuits such as those involving DNA looping, cooperative

repression, etc. [16].

7.3 Results

Equation 8.2 represents a provocatively simple expression purporting to describe the response of a bacterial

cell to a wide variety of perturbations such as altering the DNA target sites (with the Kd’s changing by

three orders of magnitude or, equivalently, ∆εrd changing by 6 kBT [16, 37, 39, 40] ) and repressor copy

numbers (with the copy numbers changing by several orders of magnitude). If we take this equation seriously,

it implies that once we have determined the parameter ∆εrd (or equivalently the in vivo Kd’s), there is a

quantitative relation between the fold-change in gene expression and the corresponding concentration of Lac

repressor. Namely, once we know one quantity we can predict the other.

In order to exploit equation 8.2 we designed lacUV5 promoters with a single binding site for Lac repressor
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Figure 7.2: Single-site binding energies and prediction of the number of repressors for different strains. (A)
The operator binding energies and dissociation constants are deduced from the data by Oehler et al. [34]
using equation 8.2. The error bars are calculated assuming an error in the fold-change measurement of 30%
and assuming no error in the number of repressor molecules. (B) The fold-change in gene expression is
measured for all four operators in six different strain backgrounds. Using the binding energies from (A) we
fit the data to equation 8.2 in order to make a parameter-free prediction of the number of repressors present
in each strain shown in (C). Errors in the predictions represent the standard error of the corresponding fit.

at the wild-type position of O1. These promoters bore either Oid, O1, O2 or O3 and controlled the expression

of the enzymatic reporter gene LacZ (see Materials and Methods and figure 7.12). We integrated each one

of these simple repression constructs such as the one shown in in figure 7.1(A) in the chromosome of a strain

bearing no Lac repressor and in six different strains that we systematically designed to express different

constitutive levels of Lac repressor. As mentioned above, though we had a qualitative expectation about

the concentration of Lac repressor present in each strain we had no previous quantitative information about

that magnitude.

7.3.1 Taking the repressor census through thermodynamic models

We measured the fold-change in gene expression of our simple repression constructs bearing the operators

Oid, O1, O2 or O3 in the six different strain backgrounds we created. For a given strain if we fit equation 8.2

to data of fold-change in gene expression as a function of the operator binding energy we can obtain a

prediction for the number of Lac repressors it harbors. The fits and resulting predictions are shown in figure

7.2(B) and (C). The corresponding absolute values measured for each strain are shown in figure 7.13.

Since the majority of our strains were created for this particular work, the resulting predicted cellular

concentrations cannot be compared to any external standard. However, strain HG104 expresses wild-type

levels of repressor from the native lacI gene. Indeed, for this strain we predict 9± 2 repressor tetramers per
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cell, comparable to the previous and, to our knowledge, only available absolute measurement [41].

In order to bring the predictions of the model for simple repression to fruition we need to directly

measure the number of repressors in each one of our six strains. We measured the in vivo concentration of

Lac repressor in these six strains by performing quantitative immunoblots from cell lysates such as those

shown in figure 7.3(A). In order to get an absolute count of the amount of Lac repressor in each strain a

series of dilutions of a purified Lac repressor standard of a known concentration was used (figure 7.3(B)).

Quantification of the immunoblots luminescence was performed using a cooled CCD camera. Care was taken

to account for spatial non-uniformities in the light collection as depicted by figure 7.3(C). We can reliably

detect a wide range of purified Lac repressor standard using our immunoblots (as low as 50 pg, corresponding

to approximately 5 repressors per cell). This increases our confidence in the method as a way of precisely

quantifying protein concentrations in bulk even at very low levels (see Materials and Methods and figure

7.3(D)).

Our predictions for the number of Lac repressors in each strain can now be compared to the direct

measurements of this quantity which are shown in figure 7.4(A). In figure 7.4(B) we compare the predic-

tions and direct measurements explicitly. The direct measurements are comparable to the predictions within

experimental error, giving us confidence that the proposed input-output function from equation 8.2 appro-

priately describes the input-output properties of the simple repression regulatory motif. This suggests in

turn that once we know the binding energy for an operator we have predictive power. Though this analysis

yielded results that are largely consistent between theory and experiment, it appears that we systematically

underestimate the number of repressors in the two strains with the highest concentrations. The reader is

referred to the Supplementary Information for a further discussion of these two strains. More generally, since

the original measurements we used to obtain the binding energies [34] were not intended to determine the

binding energies as input into a predictive model, given their uncertainties, it is interesting to see to what

extent they jibe with measurements specifically designed to obtain them.

7.3.2 Direct determination of the in vivo Lac repressor binding energies

The scheme for exploring the limits and validity of the thermodynamic model advocated in the previous

section is based on the previous knowledge of the binding energy of Lac repressor to its operator DNA. As

noted above, these binding energies were obtained from previous experimental results, which correspond to

data that was not taken with the objective of exploring the experimental results in terms of equation 8.2.

In this sense, it is somewhat surprising that the resulting predictions match so well with our experimental

data.

Having shown in the previous section that the input-output function corresponding to equation 8.2 can

successfully account for all our experimental observations, one might still wonder if the binding energies

used in the model could be more precisely constrained. One scheme to achieve a better quantification of the

binding energies is to fit the fold-change in gene expression as a function of the number of repressors for a
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Figure 7.3: Immunoblots for the measurement of the in vivo concentration of Lac repressor. (A) Typical
luminescence image obtained from an immunoblot. (B) Map of the samples loaded on the membrane shown
in (A). The blank (HG105) and 1I samples are used to create a normalization map by subtracting the blank
luminescence from all samples and dividing by 1I. White spots correspond to the cell lysates measured and the
blue spots correspond to the different concentrations of purified Lac repressor standard. (C) Normalization
map generated by fitting a 2D polynomial to 1I samples scattered around the membrane (black dots) after
removing the blank. This map was used to account for non-uniformities in the collection of luminescence
from the membrane. (D) Luminescence vs. quantity of LacI loaded. The calibration samples are used to
construct a power law fit. The luminescence of the measured samples are shown as well. The unknown
amounts of repressor loaded are determined by using the calibration curve. Samples 1I and RBS1 have been
diluted 1:8 to match them to the dynamic range of the assay and therefore appear in the figure as having
less signal within a spot (see Supplementary Information).
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this work. These predictions were examined experimentally by counting the number of Lac repressors using
quantitative immunoblots.
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Figure 7.5: Determination of the in vivo binding energies. For each strain we combine the measurements of
the fold-change in gene expression with its corresponding repressor concentration and solve equation 8.2 to
obtain an estimate of the binding energies (dots). The energies obtained from the Oehler et al. data [34] are
also shown. The lines correspond to using all measurements of the fold-change in gene expression with their
corresponding repressor concentration to fit equation 8.2 in order to obtain the best possible estimate for
the binding energies. This fit is shown in figure 7.15. The results of this approach are shown as horizontal
lines and the shaded region captures the uncertainty.

particular construct bearing one of the operators. Implementation of this concept is shown in figure 7.15,

where we are now combining all of our measurements in order to determine the best values of the different

in vivo binding energies. On the other hand, one might chose to use the information about fold-change

and repressor copy number for one particular strain in order to derive the different binding energies. This

can be done, in turn, for all strains created for this work. In figure 7.5 we compare such fits with the

binding energies that can be obtained from analyzing a single strain. Additionally, we show the energies

from figure 7.2(A) for comparison. These multiple approaches for obtaining the binding energies, all leading

to essentially comparable results (see, for example, figure 7.14), increases our confidence in the simple model

of equation 8.2 and in the minimalist modeling philosophy used to obtain it as a quantitative and predictive

tool.

It is common in the theoretical treatment of experiments on transcriptional regulation to include a

constant level of expression dubbed the “leakiness”. This is usually understood as a low level of activity

that is independent of any regulation. The reader is referred to the Supplementary Information for a more

detailed description of leakiness where we show that the values obtained for the binding energies do not

change significantly for reasonable values of the leakiness.
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7.4 Discussion

Theoretical models of gene expression, especially in bacteria, have reached a very high level of sophistication.

Similarly, measurements of gene expression have come to the point where they are both reproducible and

quantitative enough to serve as the basis for explicit attempts at confronting theory and experiment and

to explore the merits of these theoretical perspectives as a conceptual framework for describing regulatory

response. Indeed, such measurements have now reached the point where in our view it is no longer appropriate

to use just words to describe them — they call for a theoretical response that is commensurate with the

level of quantitative detail in the experiments themselves. To that end, we have undertaken a detailed study

of one of the most important and fundamental regulatory building blocks found in living organisms from all

three domains of life, namely, simple repression. Simple repression and its positive regulation counterpart,

namely simple activation, serve as the paradigmatic building blocks of the much richer regulatory strategies

that are used both in the growing list of natural and synthetic networks now being explored.

In recent years, the governing equations characterizing the transcriptional response of these elementary

regulatory building blocks and much more complicated assemblies of them have been worked out in detail

using the ideas of statistical mechanics. The work described here provides a template for the kind of rich

interplay between theory and experiment that should be demanded of these other networks as well. In

particular, the governing equations describing regulatory architectures feature certain key tuning variables

which serve to elicit different biological responses. In the experiments described here, we have explored two

of the elementary tuning parameters that govern the simple repression motif, namely, the strength of the

transcription factor binding sites and the molecular counts of the repressors themselves. We have shown that

an input-output for simple repression obtained from thermodynamic assumptions, which depends on those

two tuning parameters, can indeed predict in a parameter-free manner the regulatory outcome over roughly

four orders of magnitude in the transcriptional output.

Using the thermodynamic model approach coupled tightly with precise measurements we have been able

to perform a systematic quantitative dissection of the input-output relation for simple repression and believe

that similar analyses should be carried out for each of the other governing equations describing key regulatory

motifs. As a byproduct of these measurements, we have been able to make a precise determination of the

in vivo binding energies for DNA-repressor interactions. In addition, these results provide a census of the

repressor content for Lac repressor in E. coli over a large dynamic range (roughly two orders of magnitude

in repressor counts). The predictive power revealed by this model based on a few parameters is one of the

first steps towards having a standardized description of a regulatory architecture based on its microscopic

parameters [2, 3]. Harkening back to the electronic circuit analogy, the results presented here are analogous

to illustrating that for a resistor there is a value for the resistance which is necessary and sufficient to predict

the current given the voltage. In our case specification of the binding energy ∆εrd is necessary and sufficient

to predict the fold-change in gene expression given the number of repressors.

Further characterization of this architecture should explore the role of promoter copy number and operator
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position since these architectural features too are known to alter the expression profile as well [42–44]. In

addition, with these insights in hand for the case of simple repression in the lac operon, it is now important

to examine a suite of similar architectures in E. coli and other bacteria with the idea being to explore the

extent to which the successes found in this case can be expected to apply to other genes.

7.5 Materials and Methods

7.5.1 DNA constructs and strains

The construction of all plasmids and strains is described in detail in the Supplementary Information.

In short, plasmids pZS25O1+11, pZS25O2+11, pZS25O3+11, and pZS25Oid+11 have a lacUV5 promoter

controlling the expression of a LacZ reporter. Care was taken to delete the O2 binding site present in the

wild-type lacZ coding region [45]. These plasmids are shown schematically in figure 7.12.

Plasmids pZS3*1-lacI expresses Lac repressor off of a pLtetO-1 promoter [46]. The ribosomal binding site

of this construct was weakened following [38] using Site Directed Mutagenesis (Quikchange II, Stratagene).

In table 7.5 we show the predicted strength from the model and the corresponding concentration of Lac

repressor once the constructs were chromosomally integrated. We can see that even though the predicted

and measured values do not correlate too well the constructs chosen span a wide range of expression levels.

This does not necessarily contradict the results reported in [38] as they claim they can predict the RBS

strength within a factor of 2.3.

The E. coli strains used in this experiment are shown in table 7.3. Chromosomal deletions were generated

using the protocol developed by Datsenko and Wanner [47]. HG105 is wild-type E. coli (MG1655) with a

complete deletion of the lacIZYA genes. HG104 is also wild-type E. coli with a deletion of the lacZYA genes.

We therefore expect strain HG104 to express wild-type levels of Lac repressor.

Reporter constructs and Lac repressor constructs were integrated into the galK and ybcN regions using

recombineering [48]. The corresponding primers and a detail of the targeted chromosomal positions are

shown in table 7.4. The reporter constructs were then combined with the different strains expressing varying

amounts of Lac repressor using P1 transduction (openwetware.org/wiki/Sauer:P1vir phage transduction).

All integrations and transductions were confirmed by PCR amplification of the replaced chromosomal region

and by sequencing.

7.5.2 Growth conditions and gene expression measurements

Strains to be assayed were grown overnight in 5 ml LB plus 30 µg/ml of kanamycin and chloramphenicol

(when needed) at 37 C and 300 RPM shaking. The cells were then diluted 1:4000 to 1:1000 into 4 ml of M9

minimal medium + 0.5% glucose in triplicate culture tubes. Antibiotics were not added at this step. These

cells were grown for 6 to 9 hours until an OD600 of approximately 0.3 was reached after which they were

once again diluted 1:10 and grown for 3 more hours to 0.3 OD600 for a total of more than 10 cell divisions.
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At this point cells were harvested and their level of gene expression measured. Our protocol for measuring

LacZ activity is basically a slightly modified version of the one described in [49, 50]. Details are given in the

Supplementary Information.

7.5.3 Measuring in vivo Lac repressor concentration

Cell lysates of our different strains bearing Lac repressor were obtained as described in the Supplemen-

tary Information. Calibration samples using a known concentration of purified Lac repressor (courtesy of

Stephanie Johnson) diluted in lysate of HG105 strain (strain without Lac repressor) were used.

A nitrocellulose membrane was prepared for sample loading and afterwards blocked and treated with Anti-

LacI primary monoclonal antibody and HRP-linked secondary antibody as discussed in the Supplementary

Information. 2 µl of each sample were spotted on the membrane in a pattern similar to that of a 96-well plate.

The resulting drops had a typical size of 3 mm. All samples were loaded in triplicate with the exception

of samples 1I and HG105. Both of them were loaded on the order of 20 times on different positions of the

membrane in order to obtain a spatial standard that would allow for corrections of non-uniformities in the

light collection (see below).

The membrane was dried and developed with Thermo Scientific SuperSignal West Femto Substrate

(Thermo Scientific) and imaged in a BioRad VersaDoc 3000 system with an exposure of five minutes. A

typical raw image of one of the membranes is shown in figure 7.3(A) and the corresponding loading map

can be seen in figure 7.3(B). Custom Matlab code was written to detect the spots and calculate their

total luminescence. The luminescence coming from the HG105 blank samples was fitted to a 2nd degree

polynomial, which was in turn subtracted from all other luminescence values. After this another 2nd degree

polynomial was fitted to the 1I samples, resulting in a typical surface such as the one shown in figure 7.3(C).

Notice that differences of up to 25% could be observed between different positions on the membrane. This

last polynomial was used to normalize the intensity of all other samples.

The luminescence corresponding to the calibration samples was overlaid with the luminescence from the

strains. The calibration samples were fitted to a power law using only the calibration data points in the

range of the samples that were to be measured. An example of this calibration is shown in figure 7.3(C).

For additional details please refer to the Supplementary Information.

Finally, the amount of Lac repressor found in a spot was related to the number of Lac repressors molecules

per cell by calibration of the OD readings of the original cultures to cell density. The calibration between

mass detected on the membrane and the corresponding intracellular number of Lac repressors depends on

the concentration of cells in the cultures assayed and the volume recovered from the various concentration

and lysis steps. As such, there is no calibration factor. However, on average a detected mass of 12 pg within

a spot would correspond to 1 Lac repressor tetramer per cell. Please refer to equation 7.35 for more details

of this calibration. This whole procedure was repeated for four sets of strains grown on different days.



207

7.6 Supplementary Information

7.6.1 Theoretical background

In the following sections we explore the theoretical background leading to the different predictions explored

in the main text. We start by introducing thermodynamic models in general and arrive at an expression for

the fold-change in gene expression due to repression by Lac repressor.

7.6.1.1 “Thermodynamic models” of transcriptional regulation

Thermodynamic models of transcriptional regulation are based on computing the probability of finding RNA

polymerase (RNAP) bound to the promoter and how the presence of transcription factors (TFs) modulates

this probability. These models and their application to bacteria are reviewed in [15, 16].

These models make two key assumptions. First, the models assume that the processes leading to tran-

scription initiation by RNAP are in quasiequilibrium. This means that we can use the tools of statistical

mechanics to describe the binding of RNA polymerase and TFs to DNA. Second, they assume that the level

of gene expression of a gene is proportional to the probability of finding RNAP bound to the corresponding

promoter.

We start by analyzing the probability that RNAP will be bound at the promoter of interest in the absence

of any transcription factors. We assume that the key molecular players (RNAP and TFs) are bound to the

DNA either specifically or non-specifically. In particular, this question has been addressed experimentally in

the context of RNAP [51] and the Lac repressor [52, 53] our two main molecules of interest in this paper. The

reservoir for RNAP is therefore the background of non-specific sites. In order to determine the contribution of

this reservoir we sum over the Boltzmann weights of all the possible configurations. For P RNAP molecules

inside the cell with NNS non-specific DNA sites we get

ZNS(P ;NNS) =
NNS !

P !(NNS − P )!
e−βε

NS
pd ' (NNS)P

P !
e−βε

NS
pd , (7.6)

where β = 1/kBT . The first factor in the first expression accounts for all the possible configurations of

RNAP on the reservoir. This is shown diagrammatically in figure 7.6. The second factor assigns the energy

of binding between RNAP and non-specific DNA, εNSpd (the subscript pd stands for RNA polymerase-DNA

interaction), and as a theoretical convenience that may have to be revised in quantitatively dissecting real

promoters, is taken to be the same for all non-specific sites. A more sophisticated treatment of this model

to account for the differences in the non-specific binding energy has been addressed by [54]. Finally, the last

expression corresponds to assuming that NNS � P , a reasonable assumption given that the E. coli genome

is ∼ 5 Mbp long and that the number of σ70 RNAP molecules, the type of RNAP we are interested in for

the purposes of this paper, is on the order of a thousand [55].

We calculate the probability of finding one RNAP bound to a promoter of interest in the presence of this
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non-specific reservoir. Two states are considered: either the promoter is empty and P RNAPs are in the

reservoir or the promoter is occupied leaving P − 1 RNAP molecules in the reservoir. The corresponding

total partition function is

Z(P ;NNS) = ZNS(P ;NNS)︸ ︷︷ ︸
Promoter unoccupied

+ e−βε
S
pdZNS(P − 1;NNS)︸ ︷︷ ︸
Promoter occupied

, (7.7)

where, in analogy to the non-specific binding energy, we have defined εSpd as the binding energy between

RNAP and the promoter. Our strategy in these calculations is to write the total partition function as a sum

over two sets of states, each of which has its own partial partition function. The probability of finding the

promoter occupied, pbound is then

pbound(P ) =
e−βε

S
pdZNS(P − 1;NNS)

ZNS(P ;NNS) + e−βε
S
pdZNS(P − 1;NNS)

=
1

1 + NNS
P eβ∆εpd

, (7.8)

with ∆εpd = εSpd− εNSpd , the difference in energy between being bound specifically and non-specifically. With

these results in hand we can now turn to regulation by Lac repressor.

7.6.1.2 Simple repression by Lac repressor

In its simplest form, repression is carried out by a transcription factor that binds to a site overlapping the

promoter. This causes the steric exclusion of RNAP from that region, decreasing the level of gene expression.

Additionally, these transcription factors might be multimeric resulting in the presence of two DNA binding

heads on the protein and leading to DNA looping if extra binding sites are present. In the case of Lac

repressor, for example, the protein is already in its multimeric form before binding to DNA [56].

We begin by analyzing the case of repressors that require binding only to a single site to repress expression

for the case of a repressor with only one binding head. This case study will allow us to develop key concepts

like the role of non-specific binding which will be useful when addressing the case of repression by Lac

repressor tetramers.

Repression by Lac repressor dimers

We will use the simpler case of a repressor with just one binding head to build some key concepts. In

analogy to section 7.6.1.1 for the case of RNAP we consider Lac repressor to be always bound to DNA,

either specifically or non-specifically. This assumption is consistent with the available experimental data

[53]. Our aim is to examine all of the different configurations available to P RNA polymerase molecules, R

LacI dimers and NNS non-specific sites. If the binding energy of RNAP and the LacI head to non-specific

DNA are εNSpd and εNSrd , respectively, the non-specific partition function becomes

ZNS(P,R2) =
NP
NS

P !
e−Pβε

NS
pd︸ ︷︷ ︸

ZNS(P )

NR2
NS

R2!
e−R2βε

NS
rd︸ ︷︷ ︸

ZNS(R2)

, (7.9)
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where we have assumed that both LacI dimers and RNAP are so diluted in the reservoir that they do

not interact with each other and we use the notation R2 with the subscript 2 as a reminder that we are

considering the case of dimers.

Our model states that we can find three different situations when looking at the promoter: 1) both sites

can be empty, 2) one RNAP can be taken from the reservoir and placed on its site and 3) a LacI dimer can be

taken from the reservoir and placed on the main operator. These states and their corresponding normalized

weights, which we derive below, are shown in figure 7.7(A). This model assumes that LacI sterically excludes

RNA polymerase from the promoter, which is supported by the results from [57]. However, it can be easily

modified to accommodate a state where both LacI and RNAP are bound simultaneously, for example.

Notice, however, that we are not considering a state where both RNAP and a LacI dimer are bound to

the promoter region at the same time [57]. The total partition function is

Ztotal(P,R2) = ZNS(P,R2)︸ ︷︷ ︸
promoter free

+ ZNS(P − 1, R2)e−βε
S
pd︸ ︷︷ ︸

RNAP on promoter

+ ZNS(P,R2 − 1)e−βε
S
rd︸ ︷︷ ︸

LacI dimer on Om

, (7.10)

where εSpd and εSrd are the binding energies of RNAP and a Lac repressor head to their specific sites,

respectively. We factor out the term corresponding to having all molecules in the reservoir and define

∆εpd = εSpd− εNSpd and ∆εrd = εSrd− εNSrd as the energy gain of RNAP and dimeric LacI when switching from

a non-specific site to their respective specific sites, respectively. The probability of finding RNAP bound to

the promoter is given by

pbound =
P

NNS
e−β∆εpd

1 + P
NNS

e−β∆εpd + R2
NNS

e−β∆εrd
. (7.11)

This expression can be rewritten as

pbound =
1

1 + NNS
P ·Freg(R2)e

β∆εpd
, (7.12)

where we have defined the regulation factor

Freg(R2) =
1

1 + R2
NNS

e−β∆εrd
. (7.13)

Notice that in the absence of repressor (R2 = 0), pbound turns into equation 7.8. The regulation factor

can be seen as an effective rescaling of the number of RNAP molecules inside the cell [15] and, in the case

of repression, it is just the probability of finding an empty operator.

One of the key assumptions in the thermodynamic class of models is that the level of gene expression is

linearly related to pbound. This allows us to equate the fold-change in gene expression to the fold-change in

promoter occupancy

fold-change(R2) =
pbound(R2 6= 0)
pbound(R2 = 0)

. (7.14)



210

If we substitute p as shorthand for P
NNS

e−β∆εpd in the expression for pbound, we find

fold-change(R2) =
p+ 1

p+ 1
Freg(R2)

. (7.15)

The fold-change becomes independent of the details of the promoter in the case of a weak promoter, where

p� 1, 1
Freg(R2) , which permits us to write the approximate expression

fold-change(R2) ' FReg(R2) =
(

1 +
R2

NNS
e−β∆εrd

)−1

. (7.16)

In the case of the lac promoter if one considers in vitro binding energies of RNAP to the promoter, p has the

approximate value ∼ 10−3 [15]. The case of the lacUV5 promoter used in this work is explored in section

7.6.1.4, where we show that though it is a stronger promoter than the wild-type lac promoter, p is still a

small value. Repression always bears a regulation factor smaller than one, suggesting that we can use the

weak promoter approximation for the lacUV5 promoter.

In much the same way done in this work, Oehler et al. [34] created different constructs by varying the

identity of the Lac repressor binding site. For each one of these constructs they measured the fold-change

in gene expression as a function of the concentration of LacI dimers inside the cell.

In figure 7.7(B) we present a fit of their measured fold-change as a function of the number of Lac repressor

molecules inside the cell. This fit is made by determining the parameters in equation 7.16. Notice that for

each construct there is only one unknown: the in vivo binding energies, ∆εrd. The results are summarized

in table 7.1.

The non-specific reservoir for Lac repressor tetramers

We now consider the differences in the case where experiments are performed using tetramers rather than

dimers (as in the present study). When dealing with Lac repressor tetramers only one head has to be bound

to the DNA. In principle, it’s not clear what the state of the other head will be. For example, that extra

head could be “hanging” from the DNA without establishing contact with DNA. Another option is that the

extra head will also be exploring different non-specific sites. For the purposes of this section we will assume

that the second head can also bind to DNA.

Even though only one head bound to the operator is necessary for repression we will see that it is

important to account for the presence of the second head. In analogy to the dimer case, we will assume that

both Lac repressor binding heads are bound to DNA at all times, either specifically or non-specifically. This

choice is arbitrary and the final results will not depend on the particular model for the state of the second

head. We work with this particular formulation of the problem since it is both concrete and analytically

tractable and makes the counting of the accessible states more transparent.

The model for the non-specific reservoir is depicted in figure 7.8. For LacI dimers we assumed that the

molecules were exploring all possible non-specific sites. For the case of tetramers, in contrast, LacI will be

exploring all possible DNA loops between two different non-specific sites. We start by considering only one
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LacI molecule. We count the possible ways in which we can arrange the two heads on different non-specific

sites on the DNA. We label the site where one of the heads binds i, the other site j. For every choice of sites

an energy εNSrd is gained for each head that is non-specifically bound. A cost in the form of a looping free

energy Floop(i, j) is also paid for bringing sites i and j together. The sum over all nonspecific states can be

written as

ZNS(R4 = 1) =
1
2

NNS∑
i=1

e−βε
NS
rd

︸ ︷︷ ︸
head 1, site i

NNS∑
j=1

e−βε
NS
rd

︸ ︷︷ ︸
head 2,site j

e−βFloop(i,j)︸ ︷︷ ︸
Looping between sites i and j

. (7.17)

Note that a factor of 1
2 has been introduced in order not to over-count loops. This is equivalent to assuming

that the two binding heads on a repressor are indistinguishable. Our model assumes that the binding of a

tetramer head is independent of the state of the other head. Therefore, the interaction between a head and

DNA are the same in the tetramer and dimer case.

Since the bacterial genome is circular we can chose a particular binding site for the first head, i0, and

sum over all possible positions for the second head. This can now be done for the different NNS positions

that can be chosen for i0, resulting in

ZNS(R4 = 1) ' 1
2

NNS︸ ︷︷ ︸
choices for i

e−β2εNSrd
∑
j

e−βFloop(i0,j). (7.18)

Finally, we bury the term
∑
j e
−βFloop(i0,j) into an effective non-specific looping free energy e−βF

NS
loop . We

will discuss different models for FNSloop and their distinctive predictions elsewhere [36]

In order to obtain the partition function for R4 tetramers (where now the subscript 4 is a reminder that

the repressor is a tetramer) we assume that all repressors are independent and indistinguishable. We therefore

extend the partition function to the case of R4 non-interacting tetramers in the reservoir by computing

ZNS(R4) =

[
ZNS(R4 = 1)

]R4

R4!
=

1
2R4

(NNS)R4

R4!
e−βR4 2εNSrd e−βR4 F

NS
loop , (7.19)

where the binding energy is still defined as in section the previous section.

From this point on we will only consider Lac repressor tetramers. As a result, for notational compactness

we replace R4 with R. We obtain the complete non-specific partition function by multiplying the factor

corresponding to repressors with a factor corresponding to RNAP being bound non-specifically shown in

equation 7.9 resulting in

ZNS(P,R) =
(NNS)P

P !
e−βPε

NS
pd

1
2R

(NNS)R

R!
e−βR 2εNSrd e−βRF

NS
loop , (7.20)

which now allows us in the next section to address the case of repression by tetramers.

Repression by Lac repressor tetramers

We begin by taking one head of one Lac repressor tetramer out of the non-specific reservoir shown
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in equation 7.19 and binding it specifically to the operator. This can be easily done by going back to

equation 7.17. We label the position on the genome corresponding to the specific site i0. We will choose only

those terms in the summation corresponding to the binding site of interest. Since either one of the heads

can reach the position labeled by i0 we obtain the following partition function for a single tetramer bound

to a specific site

ZO,NSR =
1
2
e−βε

S
rde−βε

NS
rd

NNS∑
i=1

e−Floop(i,i0) +
NNS∑
j=1

e−Floop(i0,j)

 . (7.21)

Because both sums are identical we can reduce this to

ZO,NSR = e−βε
S
rde−βε

NS
rd

NNS∑
j=1

e−Floop(i0,j) = e−βε
S
rde−βε

NS
rd e−βF

NS
loop . (7.22)

We are now ready to calculate the total partition function. We will consider the three states from figure

7.1. The weights corresponding to the first two states will be the same as in the LacI dimer case. The third

state corresponds to the partition function term we just calculated. The total partition function is then

Ztotal(P,R) = ZNS(P,R) + ZNS(P − 1, R)e−βε
S
pd + ZNS(P,R− 1)× ZO,NSR . (7.23)

After rewriting these equations using equation 7.22, and using the weak promoter approximation we get a

fold-change

fold-change(R) '
(

1 + 2
R

NNS
e−β∆εrd

)−1

. (7.24)

The last term corresponds to having R− 1 repressors in the reservoir and having 1 repressor with one head

bound specifically. Even though the contribution from the non-specific loops just vanished, we see that there

is a factor-of-two difference in front of the number of LacI tetramers. This is different from the fold-change in

gene expression for dimers shown in equation 7.14. It can be easily understood if we think about the actual

number of binding heads that are now present. In the case of dimers we have R2 binding heads whereas for

tetramers there are 2R4 binding heads inside the cell. As a result, no information about the non-specific

looping background can be obtained by doing the experiment described in the main text. We see that as

long as the number of binding heads is the same the fold-change will not vary. Interestingly, this is one of

the conclusions from the data by Oehler et al. [34]. They compared repression for two different numbers

of monomers of each kind of LacI, such that 2R4 = R2. The fold-change in gene expression obtained for

each monomer concentration is comparable for dimers and tetramers as long as this condition is met. An

alternative way to look at this is by comparing the binding energies obtained for dimers and tetramers.

These two set of energies, obtained from equations 7.16 and 7.24, are shown in table 7.1.



213

7.6.1.3 Connecting ∆εrd to Kd

We can also describe the fold-change in perhaps the more familiar language of dissociation constants [16].

We think of the two reactions shown in figure 7.9 where the DNA can either be bound by RNA polymerase

or by Lac repressor. In steady state we can relate the concentrations of the different molecular players to

the respective dissociation constants through

[P ][D]
[P −D]

= KP , (7.25)

and
[R][D]

[R−D]
= Kd. (7.26)

In these equations we have defined [P ] and [R] as the concentrations of RNA polymerase and Lac repressor

that are not bound to the promoter, respectively. The concentrations of their respective protein DNA

complexes are [P − D] and [R − D]. [D] is the concentration of free DNA. Finally, KP and Kd are the

dissociation constants for RNA polymerase and repressor, respectively.

We want to determine pbound, the probability of finding the promoter occupied by RNA polymerase. This

can also be expressed as the fraction of DNA molecules occupied by RNA polymerase and given by

pbound =
[P −D]

[D] + [R−D] + [P −D]
. (7.27)

If we divide by [D] and use equations 7.25 and 7.26 we arrive at

pbound =
[P ]/KP

1 + [R]/Kd + [P ]/KP
. (7.28)

By comparing this expression to, for example, equation 7.3 we can relate the repressor binding energy ∆εrd

to the tetramer dissociation constant through

[R]
Kd

=
2R
NNS

e−β∆εrd . (7.29)

Throughout the text we express the binding energies also in the language of dissociation constants. To do

this we assume an E. coli volume of 1 fl such that a repressor per cell corresponds to a concentration of

1.7 nM.

7.6.1.4 Weak promoter approximation for the lacUV5 promoter

A key assumption leading to the simple expression for the fold-change in gene expression from equation 8.2

is that the weight corresponding to RNA polymerase being bound to the promoter is much smaller than

one, meaning that the promoter will be unoccupied. Mathematically, we express this as P
NNS

e−β∆εpd � 1.



214

Following [15] we can write the binding energy as

∆εpd = εSpd − εNSpd =
KS
d

KNS
d

, (7.30)

where KS
d and KNS

d are the dissociation constants of RNA polymerase to specific and non-specific DNA,

respectively. In vitro values for the non-specific dissociation constant are about KNS
d = 10, 000 nM [58],

whereas the specific dissociation constant for the lacUV5 promoter has been measured to be KS
d = 6 nM [59]

and 80 nM [60]. This corresponds to a binding energy range between -4.8 and -7.4 kBT . In exponentially-

growing E. coli there are around 500 σ70 RNA polymerase molecules available [55]. this results in a range

for the factor P
NNS

e−β∆εpd of 0.01–0.16. Therefore we conclude that not neglecting the term corresponding

to RNA polymerase binding to the promoter from our expression for the fold-change would only result in a

small correction at the most.

7.6.2 Sensitivity of the predictions

In this work we used the data by Oehler et al. to obtain the binding energies which in turn were used to

generate predictions. This was done because we intended to test the predictions generated by the thermo-

dynamic model. On the other hand, we could combine all our available data for the fold-change in gene

expression with the corresponding data on the number of Lac repressor in each strain in order to obtain the

best possible estimate for the Lac repressor binding energies. The corresponding fit and resulting energies

are shown in figure 7.15.

In order to get a better sense for how well this fit was constraining the values of the binding energies

we wished to analyzed the “sensitivity” of the fit. In order to do this we plotted the data corresponding to

the binding site O1 and overlaid it with curves for the fold-change in gene expression where we have chosen

different values for the binding energy. In figure 7.10 we show the data for the O1 binding site together with

its best fit and several other curves with different choices of the binding energy. It is clear from this figure

that the fit is constraining the value of the binding energy relatively well (within less than 1 kBT ) and that

the error in the parameter resulting from the fit captures this.

7.6.3 Repression for strains RBS1 and 1I

In the main text we hint multiple times at a slight discrepancy between our theoretical predictions and

the results measured for the fold-change in strains RBS1 and 1I. We do not believe that this discrepancy

is due to a problem with the determination of the concentration of Lac repressor because we were able to

reliably detect higher and lower concentrations of the purified standard than those corresponding to these

two strains. Another alternative is that we didn’t quantify the level of gene expression correctly. Indeed,

the measurements for Oid correspond to the lowest levels of gene expression quantified in this work. For

example, could there be some constant transcription level or “leakiness” that cannot be repressed by Lac
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repressor? However, the shift is also present in the other operators where the levels of gene expression are

such that a constant “leakiness” would have a negligible effect. Additionally, the measurements of these

two strains for all other operators are well between the range of the rest of the data which shows no such

systematic shift. We are then forced to conclude that the discrepancy, if real and not just an unfortunate

experimental systematic error unaccounted for, is due to the fact that these strains have a much higher

level of Lac repressor. This line of logic would lead us to conclude that affinity of Lac repressors to DNA

can somehow be affected if its intracellular number is too high. However, further experimentation will be

necessary in order to confirm this assertion.

7.6.4 Accounting for leakiness

One interesting property of equation 8.2 is that it predicts that the fold-change in gene expression will go down

indefinitely as the number of repressors is increased. However, at some point one would expect to have some

constant level that is, in principle, independent of any regulation. This is called “leakiness” and is usually

attributed to transcription that is independent of the promoter of interest. Such non-desired transcription

could stem, for example, from RNA polymerase escaping from a nearby promoter and generating a transcript.

We wish to determine if our results are being contaminated by such leakiness and if so, what its effect on

the estimation of the binding energies would be. The smallest absolute value of LacZ activity detected in our

strains corresponds to binding site Oid in strain 1I. This combination has an activity of about 1 MU. This

activity level sets a bound on the maximum value of the leakiness: since we can measure activities down

to 1 MU the leakiness cannot be any higher than that and, in the worst possible case, it would be equal to

1 MU.

The fold-change in gene expression was calculated throughout this work using the following formula

fold-change =
expression(R 6= 0)
expression(R = 0)

. (7.31)

However, if there was leakiness in our measurements this would mean that we are overestimating the expres-

sion measurements. If leak corresponds to the value of this leakiness then the corrected fold-change in gene

expression is

fold-change =
expression(R 6= 0)− leak
expression(R = 0)− leak

. (7.32)

Here we have made the implicit assumption that the leakage does not depend on the presence of Lac repressor.

Correcting our measurements for leakiness would then result in lower values of the fold-change. In order to

determine how much of a difference this correction could make to our calculation of the binding energies we

performed an analysis analogous to the one shown in figure 7.15 for different proposed values of leakiness

ranging between 0 and 1 MU. The results of these different fits are shown in figure 7.11(A). It is clear from

this figure that there would not be a significant change in the binding energies for any of the considered

values of leakiness. In figure 7.11 we show the relative change in binding energy between the worst case
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scenario (leakiness of 1 MU) and the case where we do not correct for leakiness. It is clear that even in this

extreme case the corrections to the binding energies are negligible. We conclude that leakiness, if present,

would not be affecting our results in any measurable way.

7.6.5 Supplementary materials and methods

7.6.5.1 Plasmids

Plasmid pZS22-YFP was kindly provided by Michael Elowitz. The EYFP gene comes from plasmid pDH5

(University of Washington Yeast Resource Center [11]). The main features of the pZ plasmids are located

between unique restriction sites [46]. The sequence corresponding to the lacUV5 promoter [61] between

positions -36 and +21 was synthesized from DNA oligos and placed between the EcoRI and XhoI sites of

pZS22-YFP in order to create pZS25O1+11-YFP. Note that we follow the notation of Lutz and Bujard [46]

and assign the promoter number 5 to the lacUV5 promoter. The O1 binding site in pZS25O1+11-YFP was

changed to O2, O3 and to Oid using Site Directed Mutagenesis (Quikchange II, Stratagene), resulting in

pZS25O2+11-YFP, pZS25O3+11-YFP and pZS25Oid+11-YFP. These plasmids are shown diagrammatically

together with the promoter sequence in figure 7.12.

The lacZ gene was cloned from E. coli between the KpnI and HindIII sites of all the single-site constructs

mentioned in the previous paragraph. The O2 binding site inside the lacZ coding region was deleted without

changing the LacZ protein [33] using Site Directed Mutagenesis. Successful mutagenesis was confirmed by

sequencing the new constructs around the mutagenized area.

After we had generated these constructs and integrated them on the E. coli chromosome we determined

that the different LacZ constructs had acquired some mutations. On average there were three different

point mutations in each construct, though pZS25O3+11-lacZ lost both the KpnI and HindIII sites. All

these constructs still expressed functional LacZ. This problem did not present itself in the case of the

YFP constructs. We attribute this higher number of mutations in part to possible problems in the PCR

amplification of the lacZ coding region.

Every time the fold-change in gene expression is calculated the expression of a strain is normalized by the

expression of another strain bearing the exact same mRNA sequence. Therefore, we do not believe that the

different mRNA sequences and potential different absolute LacZ activities have a considerable effect on the

fold-change. This is in part also supported by the fact that our experimental data and theoretical predictions

match reasonably well. If there is an effect on the fold-change due to the differences in the coding region it

seems to be of the same magnitude as the experimental error.

A construct bearing the same antibiotic resistance, but no reporter, was created by deleting YFP from one

of our previous constructs. This construct serves for determining the spontaneous hydrolysis or background

of our enzymatic measurements.

Plasmid pZS21-lacI was kindly provided by Michael Elowitz. This plasmid has kanamycin resistance.

The chloramphenicol resistance gene flanked by FLIP recombinase sites was obtained by PCR from plasmid
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pKD35. The insert was placed between the SacI and AatII sites of pZS21-lacI to generate pZS3*1-lacI.

For this work we wished to have additional concentrations than those provided by pZS3*1-lacI, for which

we mutated the ribosomal binding regions. These new ribosomal binding regions were designed using a

recently developed thermodynamic model of translation initiation [38]. First, the original RBS (“WT”)

was deleted using Site Directed Mutagenesis (Quikchange II, Stratagene) using primer 15.29 and its reverse

complementary. This primer deleted the sequence between the EcoRI site and the transcription start. From

here we proceeded to add new ribosomal binding sequences by mutagenesis using primers 15.2, 15.31, 15.37

and 15.39. All the primer sequences are shown in table 7.2. These primers gave rise to new ribosomal binding

regions named RBS1, RBS446, RBS1027 and RBS1147.

7.6.5.2 Strains

Chromosomal integrations were performed using recombineering [48]. Primers used for these integrations

are shown in table 7.4. The reporter constructs were integrated into the galK region [28] of strain HG105

using primers HG6.1 and HG6.3. Note that our reporter gene was integrated in the opposite direction of

the neighboring in order to avoid spurious read through of the LacZ coding region by RNA polymerase

molecules transcribing from nearby promoters. Constructs expressing Lac repressor with the different RBS

were integrated into the phage-associated protein ybcN [62] using primers HG11.1 and HG11.3.

This resulted in strains HG105::ybcn<>3*1-lacI, HG105::ybcn<>3*1RBS1-lacI, HG105::ybcn<>3*1RBS446-

lacI, HG105::ybcn<>3*1RBS1027-lacI and HG105::ybcn<>3*1RBS1147-lacI. For simplicity we call these

strains 1I, RBS1, RBS446, RBS1027 and RBS1147, respectively. The reporter constructs were then com-

bined with the different strains expressing varying amounts of Lac repressor using P1 transduction

(openwetware.org/wiki/Sauer:P1vir phage transduction). All integrations and transductions were confirmed

by PCR amplification of the replaced chromosomal region and by sequencing.

7.6.5.3 β-galactosidase assay

Our protocol for measuring LacZ activity is basically the one described in [49, 50] with some slight modifica-

tions as follows. A volume of the cells between 2.5 µl and 200 µl was added to Z-buffer (60 mM Na2HPO4,

40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4, 50 mM β-mercaptoethanol, pH 7.0) for a total volume of

1 ml. The volume of cells was chosen such that the yellow color would develop in no less than 15 minutes.

For the case of the no-reporter constructs 200 µl of cell culture was used. Additionally, we included a blank

sample with 1 ml of Z-buffer. The whole assay was performed in 1.5 ml Eppendorf tubes.

In order to lyse the cells, 25 µl of 0.1% SDS and 50 µl of chloroform were added and the mixture was

vortexed for 10 s. Finally, 200 µl of 4 mg/ml 2-Nitrophenyl β-D-galactopyranoside (ONPG) in Z-buffer were

added to the solution and its color, related to the concentration of the product ONP, monitored visually.

Once enough yellow developed in a tube the reaction was stopped by adding 200 µl of 2. 5M Na2CO3 instead

of adding 500 µl of a 1 M solution as done in other protocols. At this point the tubes were spun down at
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> 13, 000 g for three minutes in order to reduce the contribution of cell debris to the measurement.

200 µl of solution was read for OD420 and OD550 on a Tecan Safire2 and blanked using the Z-buffer

sample. The OD600 of 200 µl of each culture was read with the same instrument. The absolute activity of

LacZ was measured in Miller units using the formula

MU = 1000
OD420 − 1.75×OD550

t× v ×OD600
0.826, (7.33)

where t is the reaction time in minutes and v is the volume of cells used in ml. The factor of 0.826 is not

present in the usual formula used to calculate Miller units. It is related to using 200 µl Na2CO3 as opposed

to 500 µl. When using 500 µl, the final volume of the reaction is 1.725 ml (1ml Z-buffer, 25 µl 0.01% SDS,

200 l ONPG, 500 µl Na2CO3). However, when using only 200 µl of Na2CO3 the total volume is 1.425 ml.

The factor of 0.826 adjusts for the difference in concentration of ONP.

All reactions were performed at room temperature. No significant difference in activity was observed

with respect to performing the assay at 25C in an incubator.

7.6.5.4 Measuring in vivo Lac repressor concentration

The Lac repressor purification protocol used in this work is an adaptation of the one published in [63]. The

strains to be assayed were first grown to saturation in LB + 20 µg/ml of chloramphenicol. They were then

diluted 1:40,000 into 50 ml of M9 minimal medium + 0.5% glucose and grown to an OD600 of approximately

0.6. Cells were spun down (6,000g for 10 minutes) and resuspended in 36 µl of breaking buffer (BB, 0.2 M

Tris-HCl, 0.2 M KCl, 0.01 M magnesium acetate, 5% glucose, 0.3 mM DTT, 50 µg/L PMSF, 50 mg/100 ml

lysozyme, pH 7.6) per ml of culture and per OD. Typically, around 45 ml of culture would be spun down and

resuspended in 900 µl of BB. Cells were slowly frozen by placing them at -20C, after which they were slowly

thawed on ice. At this point 4 µl of a 2000 Kunitz/ml DNase solution (Sigma) and 40 µl of a 1 M MgCl2

solution were added and the samples were incubated at 4C with mixing for 4 hours. Samples were frozen,

thawed and incubated with mixing at 4C two more times after which they were spun down at 15,000 g for 45

minutes. At this point the supernatant was obtained and its volume measured. The pellet was subsequently

resuspended with 900 µl of BB and spun down again. This will serve as a control that most Lac repressor was

in the original supernatant. The luminescence of these sample resuspensions were compared with respect to

the luminescence of the samples corresponding to the first spin. On average, the resuspension signal would

be about 12% of the first spin signal. However, some samples showed signals as high as 35%. We chose to

discard any data coming from samples showing a resuspension signal higher than 20%.

Additionally to the cell lysates calibration samples were prepared before performing a measurement.

Purified Lac repressor (courtesy of Stephanie Johnson) was diluted into lysate of strain HG105 to different

concentrations. The concentration of purified repressor in our stock solution was determined by spectroscopy

using the available extinction coefficient [64]. In order to have all samples within the dynamic range of our

methods (see below) cell lysates corresponding to strains 1I and RBS1 were diluted 1:8 in HG105 lysate.
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A nitrocellulose membrane was prewetted in TBS (20 mM Tris-HCl, 500 mM NaCl, pH7.5) for 10 minutes

and then left to air dry. After loading the samples the immunoblots were blocked using blocking solution

which consists of 5% dry milk and 2% BSA in TBST (20 mM Tris Base, 140 mM NaCl, 0.1% Tween 20,

pH 7.6) with mixing at room temperature for one hour. After that the membrane was incubated in 1:1000

dilution of Anti-LacI monoclonal antibody (from mouse, Millipore) in blocking solution at 4C overnight. The

membrane was subsequently incubated in a 1:2000 dilution of HRP-linked anti-mouse secondary antibody

(GE Healthcare) for one hour at room temperature. Finally, the membrane was washed by incubating in

TBST for 5 minutes twice and by a final incubation of 30 minutes.

As described in the text, we obtain the total luminescence corresponding to each spot using Matlab

image analysis custom code. This information is stored in a matrix Lum(x, y), where the coordinates on

the membrane are given by x and y. The values corresponding to the HG105 blank sample are them fitted

to a 2nd-degree 2D polynomial. This polynomial can be represented as Background(x, y). Finally, we can

also fit such a polynomial to the luminescence of the samples corresponding to strain 1I. This results in the

polynomial 1I(x, y). In figure 7.3(C) we plot the polynomial 1I(x, y)− Background(x, y). The normalized

luminescence matrix is then calculated in the following way

Lumnorm(x, y) =
Lum(x, y)−Background(x, y)

1I(x, y)−Background(x, y)
. (7.34)

All further analysis is then done on the normalized matrix Lumnorm(x, y).

The calibration standards are fitted to a power law LacIlum = A× LacIBmass +C, where LacIlum is the

luminescence collected from the spots on the membrane and LacImass is their corresponding masses. We

are interested in obtaining an interpolation between the calibration samples in order to get an estimate of

the amount of Lac repressor loaded in each spot on the membrane. Therefore, we perform the fit on only

the calibration data that is directly in the range of our unknown samples, as shown by the calibration line

in figure 7.3(D).

Once the amount of Lac repressor in each spot was obtained the corresponding number of Lac repressors

per cell were calculated. As an example, we will consider the case where there is one repressor tetramer

per cell and estimate the expected amount of repressor on the membrane. We typically start with a 45 ml

culture at an OD600 of 0.6. This, in turn, is concentrated down to 900 µl after the purification process.

2 µl of these concentrated cells are loaded on the membrane. In this case, we can now calculate the amount
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loaded on the membrane resulting in

Ncells loaded = 0.8× 109cells/ml︸ ︷︷ ︸
OD600 to cell density calibration

× 0.6︸︷︷︸
OD600

× (7.35)

45 ml︸ ︷︷ ︸
culture volume

× 2 µl
900 µl︸ ︷︷ ︸

final purified volume and amount loaded

= 48× 106 cells.

The calibration of OD600 to cell density was performed by plating serial dilutions of a culture at a known

OD600 and counting colonies. The molecular weight of a tetramer is 154kDa. This results in a mass of

around 12 pg in a spot. Of course, there is an uncertainty associated with this calculate of the number of

cell loaded which will propagate into the measurement of the number of repressors per cell. However, this

uncertainty stems from errors in measuring volumes and in calibrating the OD600 readings and are no larger

than 5 to 10 %. On the other hand, the day-to-day variation of the reading were on the order of 20 to

30 %. As a result we chose to report only the day-to-day variation as our error in the measurement of the

intracellular concentration of Lac repressor.
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7.6.6 Supplementary figures and tables
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Figure 7.6: Model for the RNA polymerase reservoir. The non-specific sites on the genome are assumed to
be the reservoir for RNAP. Different arrangements of RNAP on this reservoir are shown.
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Figure 7.7: Single-site repression by LacI dimers. (A) Schematic listing of the different states and their
respective weights when RNAP and the dimeric repressor have overlapping sites. (B) Repression for four
different strengths of the main repressor binding site (Om) as a function of the number of dimers inside the
cell. The binding energy of dimeric Lac repressor to each operator is calculated by fitting each data set to
the repression expression from equation 7.16 and presented in table 7.1.
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Table 7.1: Single-site binding energies for repressor dimers and tetramers. The energies are obtained using
the data by Oehler et al. [34] and equations 7.16 and 8.2 for the dimers and tetramers, respectively. The
error bars are calculated assuming an error in the fold-change measurement of 30%.

Operator Dimers (kBT ) Tetramers (kBT )
Oid −18.2± 0.3 −17.7± 0.3
O1 −16.1± 0.2 −16.2± 0.1
O2 −13.7± 0.5 −13.7± 0.1
O3 −10.0± 0.4 −10.4± 0.4

(A) (B)

Figure 7.8: Model for the non-specific looping background. Possible states of non-specific DNA bound by
Lac repressor. (A) Dimers will explore all available non-specific sites. (B) Tetramers explore all possible
loops between non-specific sites.

+

+

KP

Kd

Figure 7.9: Repression as a set of chemical reactions. The two reactions involved in regulation by simple
repression are shown. KP and Kd are dissociation constants. These reactions are also described by equations
7.25 and 7.26.
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Figure 7.10: Sensitivity in the determination of the binding energies. The data for binding site O1 is shown
with its best fit along with several other choices of the binding energy parameter which reveal how the
positions of the curves depend upon this choice. Visual inspection of the curves constrains the value of the
binding energy to within less than 1 kBT of the fit value.
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Figure 7.11: Potential effects of leakiness on the calculation of binding energies. (A) A variable leakiness
in the level of gene expression was assumed and the fold-change in gene expression was reanalyzed using
equation 7.32. The resulting binding energies are shown as a function of the assumed leakiness. (B) Relative
change in binding energies for each operator corresponding to the case without any assumed leakiness and
to the worst possible leakiness of 1 MU.
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ctcgagtttacactttatgcttccggctcgtataatgtgtggaattgtgagcgctcacaattgaattc
XhoI -35 -10 Oid EcoRI
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Figure 7.12: Plasmid diagram and promoter sequence. The main features of the plasmid pZS25Oid+11-
lacZ are shown flanked by unique restriction sites (the features are not to scale). The particular promoter
sequence based on the lacUV5 promoter is shown together with the sequences of the different Lac repressor
binding sites used.
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Figure 7.13: Average absolute levels of expression. The absolute levels of expression corresponding to our
different constructs in the different strain backgrounds are shown in Miller units. By the ratio of the activity
of a given construct in a given strain with respect to the activity of the same construct in strain HG105
we calculate the fold-change in gene expression. Note that throughout the repression values correspond to
the average of the repression measured on different days. In this case we plot the average of the absolute
expression of each strain and construct over different days. The error bars correspond to the standard
deviation of the repeats.
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Figure 7.14: Different ways of calculating the binding energies give comparable predictions. For each strain
noted by a group of bars the binding energies were obtained by taking the number of repressors obtained
through immunoblots as a given and combining this with the fold-change measurements for the same strain.
With these binding energies we predict the number of repressors for all the remaining strains. For comparison,
the actual direct measurement done using immunoblots is also included

Table 7.2: Primers sequences. These primers and their respective reverse complement were used to modify
the RBS of the different constructs. The inserted RBS regions are denoted by capitalized bases.

Primer number and name Sequence Description
15.29-RBSDelete gacgcactgaccgaattcatggtgaatgtgaaaccag Delete the RBS from pZS3*1-lacI
15.2-tetR-RBS1 cgcactgaccgaattcattaaagaTTT

gaaaggtaccatatggtg
15.31-RBS446 cgcactgaccgaattc

TCTAGACAGTATAGAGTAGAGAGACTAA
atggtgaatgtgaaac

15.37-RBS1027 cgcactgaccgaattc
TCTAGATATTTAAGAGGACAATACTGG

atggtgaatgtgaaac
15.39-RBS1147 cgcactgaccgaattc

TCCCCACATTAAACAGGGAAGACTGG
atggtgaatgtgaaac

Table 7.3: List of E. coli strains used throughout this experiment. Chromosomal positions correspond to
the sequence in GenBank accession no. U00096.

Strain Genotype Derived from Comment
HG104 ∆lacZY A MG1655 Deletion from 360,483 to 365,579
HG105 ∆lacZY A, ∆lacI MG1655 Deletion from 360,483 to 366,637
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Table 7.4: Primers used throughout this work. For integration primers, lowercase indicates the portion of
the primer that is homologous to the E. coli gene where the integration is made and uppercase indicates
primer homology to the plasmid where PCR was carried out. Chromosomal positions correspond to the
sequence in GenBank accession no. U00096.

Primer Sequence Comment
HG6.1 gtttgcgcgcagtcagcgatatccattttcgcgaatccggagtg Integration of the lacZ

taagaaACTAGCAACACCAGAACAGCC reporter constructs into the galK gene between
HG6.3 ttcatattgttcagcgacagcttgctgtacggcaggcaccagct positions 1,504,078 and 1,505,112.

cttccgGGCTAATGCACCCAGTAAGG
HG11.1 acctctgcggaggggaagcgtgaacctctcacaagacggcatca Integration of lacI constructs into

aattacACTAGCAACACCAGAACAGCC the ybcN gene between
HG11.3 ctgtagatgtgtccgttcatgacacgaataagcggtgtagccat positions 1,287,628 and 1,288,047.

tacgccGGCTAATGCACCCAGTAAGG

Table 7.5: Predicted and measured strength of the different ribosomal binding sequences used to generate
constitutive levels of Lac repressor. The ribosomal binding sequence denoted as “WT” corresponds to the
original found in pZS3*1-lacI [46]. The measured strength corresponds to the resulting level of repressor
once these constructs are integrated on the chromosome. The predicted strengths are calculated form [38].
Both the predicted and measured strengths are normalized by this RBS.

RBS Normalized predicted strength (au) Normalized measured strength (repressors/cell)
“WT” 1 1± 0.3
RBS1 0.88 0.7± 0.2
R1027 0.58 0.6± 0.1
R446 0.25 0.25± 0.07
R1147 0.64 0.64± 0.03
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Figure 7.15: Obtaining the binding energies. Using all measurements of the fold-change in gene expression
with their corresponding repressor concentration we fit equation 8.2 to obtain the best possible estimate for
the binding energies. The results of the fits are expressed in units of kBT .
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Chapter 8

Using Fluctuations to Characterize a
Regulatory Network at the
Single-Cell Level

This chapter is the reproduction of a current paper draft in its very early stages. As a result it should be

viewed as a snapshot of our current efforts.

Recent developments in the analysis of gene expression have made it possible to query distributions in

the level of gene expression rather than just population averages on their means. In this paper, we use

fluctuations in partitioning during cell division as a way to explore both the means and variability in gene

expression for a ubiquitous regulatory motif found in bacteria, namely simple repression. One of the outcomes

of this method is the ability to identify the usually unknown calibration factor linking fluorescence units to

repressor number. This allows us, in turn, to directly count transcription factors. With the repressor count

in hand, it is then possible to make a systematic characterization of the governing equation resulting from

thermodynamic and stochastic models of transcription for several different regulatory architectures. Using

thermodynamic models we show that the in vivo binding energies of the repressor to DNA are consistent

with previous measurements performed in bulk. Additionally, we qualitatively confirm predictions based

on simple stochastic model that state that the variance in simple repression scales with the strength of the

binding of the repressor to its operator DNA.

8.1 Introduction

Regulatory biology remains one of the most fertile areas for the quantitative dissection of biological systems,

with two broad classes of examples coming from the study of cell signaling and gene regulation [1–5]. With

increasing regularity, these systems are examined in tandem using both theoretical ideas with precise “gov-

erning equations” that are thought to constitute a predictive first approximation to their behavior, and using

precision measurements whose ambition is to explicitly test the validity of these models. In the context of

bacterial chemotaxis, there has been a long tradition of this direct interplay between theory and experiment
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[6–9]. Similarly, the study of gene expression in bacteria has enjoyed a close interplay between the so-called

thermodynamic models which predict the mean level of expression as a function of architectural parameters

characterizing the regulatory motif of interest, and quantitative measurements which can now be performed

at the single-cell level [5, 10–14].

One of the key tunable parameters in the governing equations describing different regulatory motifs is the

number of copies of the transcription factors in question. For example, in the context of the simple repression

regulatory motif considered here, there is a simple linear relationship between the repression and the number

of repressors. As such, knowledge of the number of transcription factors is a key prerequisite for testing

models of the regulatory response. However, at best, it is an extremely laborious process to construct the

different strains that make it possible to tune the repressor concentration and to perform the measurements

yielding the actual counts of transcription factors [14–18]. In an earlier paper, we have adopted this strategy

permitting an examination of the level of expression over more than four orders of magnitude in fold-change

and nearly two orders of magnitude in repressor number [14]. It is extremely appealing to have alternative

methods that do not require new strain construction for every measurement and even more importantly, if

the quantitative dissection of biological systems is to be put on a solid footing, different methods must yield

the same results in a reproducible fashion.

In our earlier dissection of the simple repression regulatory motif, we resorted to an approach using

quantitative immunoblots to measure the number of repressors [14]. However, like with all methods, there

are always associated uncertainties and experimental limitations. One such limitation is the fact that suitable

antibodies with high enough affinity are needed to carry out the detection of the proteins of interest. In

immunoblots the amount of repressor in a cell lysate is quantified. However, it is not necessarily true that

all repressors inside the lysed cells are in the lysate itself. Some of the protein may be left behind in the

fractions that lead to the the cell extract. These issues would result in an underestimate of the amount of

protein that is actually inside the cell resulting in the conclusion that immunoblots probably provide a lower

bound on the total intracellular number. As a result, we are interested in a completely independent means

of characterizing the same regulatory motif.

An extremely intriguing alternative strategy was recently developed that is based upon the clever use of

fluctuations in the partitioning of transcription factors during cell division [17, 19]. It is this method that

serves as the centerpiece of the present work. There is a great tradition of the use of fluctuations as the

basis of key measurements. At the end of his book “Atoms”, Jean Perrin provides a table of more than 15

independent ways to determine Avogadro’s number and many of them are based on exploiting fluctuations

[20]. Further, one of the points made by Perrin in his analysis of these independent means of determining

Avogadro’s number is that together, they provided great confidence in the underlying hypothesis of atomism.

Of course, biology has a similar tradition of the use of fluctuations for the purposes of exploring processes

such as bacterial evolution as exemplified in the Luria-Delbruck experiment [21].

The idea of the fluctuation-based counting methods is to explore the asymmetries in partitioning of the
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molecules or molecular complexes of interest during the cell division process. In the simplest scenario, it is

assumed that the partitioning between daughter cells is random, corresponding effectively to each molecule

making a coin flip. As a result, the distribution of transcription factors should be binomial. This simple

fact alone is enough to determine the unknown calibration factor, α, relating the total fluorescence intensity

of a cell, Itot, to the number of fluorescently labelled transcription factors it harbors, Ntot, through the

expression Itot = αNtot. In particular, by observing the fluorescence of the two daughters, captured in the

quantities I1 and I2, it can be shown that

〈(I1 − I2)2〉 = αItot. (8.1)

This relation follows from the properties of the binomial distribution as shown in the Supplementary Infor-

mation (“Derivation of calibration factor”) and features the unknown parameter α which characterizes the

number of photons emitted per fluorophore.

Of course, the use of a method like this carries with it a number of intrinsic assumptions about both the

cellular processes in question and the nature of our measurements. In particular, the method relies on the

assumption that the fluctuations due to partitioning are the dominant source of the partitioning error as

revealed by differences in fluorescence intensity of the two daughter cells. However, the method will fail when

the variations coming from other sources are larger than the fluctuations due to the partitioning [17–19].

One such source is the experimental uncertainty in quantifying a total level of fluorescence within a cell. In

addition, proteins which live in the cytoplasm are influenced by variations in relative daughter cell size [18],

cells with a larger volume are proportionally more likely to inherit proteins from the parent cell. However,

for transcription factors which spend most of their time bound to the chromosome, the effective partitioning

should be identical in every daughter because of the equal segregation of DNA between them. Lac repressor,

has been shown in various occasions to reside mostly on the DNA [22–25]. Nevertheless, demonstrating the

independence of fluorescence fluctuations from volume fluctuations is an essential control when assuming fair

binomial partitioning. We present this control in figure 8.9.

Additionally, equation 8.1 only applies if there is no new production of the repressor in question over the

cell cycle. If this assumption is not met, the calibration can still be obtained, but the formula is different,

as discussed in the Results section. Finally, the method assumes that all repressor molecules are labeled

with a bright fluorescent protein. This is certainly not the case as fluorescent proteins can be misfolded

giving rise to a dark species. We expect this to occur in approximately 20% of the molecules resulting in an

underestimation of the number of repressors [26].

Interestingly, exploring lineages even when the partitioning is not random is useful. In such cases,

as shown for example in a recent paper describing the partitioning of carboxysomes during division of

cyanobacteria, the distribution reveals an active mechanism of partitioning of the macromolecular assemblies

of interest [27].

Thermodynamic models of transcriptional regulation have proven a valuable tool when dissecting gene
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regulatory motifs [10, 12–14, 28]. They predict the relative change in mean gene expression levels as a

function of the concentrations of the relevant transcription factors and their binding energies to DNA and

their interaction energies with each other. However, these analyses of the mean expression level only give

information about binding energies or dissociation constants. They do not provide any information about

the microscopic rates involved in the transcription process.

Recently developed experimental techniques now make it possible to query the levels of gene expression

at the single-cell level. Such measurements can be performed either by reading out the level of mRNA or

proteins and sometimes are even carried out with single molecule resolution [17, 29–38]. Measurement of the

higher moments of the distribution of expression levels opens the door to a dissection of regulatory networks

in terms of their rates [32, 34, 37, 39, 40].

When dissecting gene regulatory networks in terms of the higher moments of the protein distribution it is

important to know what the sources of variability in protein production are. For example, when quantifying

the variability of a gene regulatory input-output relation as a function of the concentration of the relevant

transcription factor it is important to decouple the inherent variability in transcriptional regulation from the

variability in concentration of the transcription factor of interest over a cell population. As such, the method

presented here has the advantage that the rate of production is measured for a known concentration of

repressor at the single-cell level. This results in the elimination of a significant component of the “extrinsic”

contribution to the noise. One of our aims in this paper is to go beyond the earlier use of the fluctuation

method to actually shed light on the correspondence between recent theoretical predictions about the noise

and measurements where the promoter architecture is varied systematically by changing the affinity of the

repressor operator DNA sequence.

8.2 Results

8.2.1 Introduction to the circuit and the dilution method

Many measurements of gene regulation in bacteria are based on growing macroscopic cultures under con-

ditions where it is certain that there is exponential growth [14–16, 28, 41]. Once the cells have reached

this stage of growth, they are queried for their level of expression. On the other hand, the measurements

advocated here consist in taking a movie of an E. coli microcolony as it grows under a microscope [42].

As a result, it is not clear that such proper environmental conditions exist when taking movies of growing

bacteria, and more importantly, cells themselves are subjected to a wide range of conditions and densities

and it is important to develop a picture of the level of expression under all such conditions. In this paper, we

begin to explore these questions by comparing the behavior of networks of interest following both protocols

for growing cells and to explore the relation between their repression values.

One of the motifs that we examine is shown in figure 8.1(A). In particular, the motif corresponds to

the so-called “simple repression” regulatory motif, with the addition that the repressor which carries out
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Figure 8.1: Dilution circuit. (A) In the presence of aTc, Tet repressor cannot repress the production of
LacI-CFP resulting in high levels of repressor and low levels of the downstream gene YFP in the cell. (B)
Once aTc is washed away, production of new repressor is turned off. As the cells divide, the LacI-CFP
proteins get diluted resulting in an ever increasing production rate of YFP. (C) Fluorescence trace over time
for a lineage of bacteria. As expected from the circuit in which the Lac repressors are diluted out over cell
cycles, fluorescence of LacI-CFP (red) decreases at each cell division. At the same time, expression of the
regulated YFP (green) increases indicated by the increasing slope. At each cell division two new lineages
are created corresponding to each of the daughter cell. These new parallel lineages are shown using dimmer
colors in the background.

this repression (Lac repressor) can itself be controlled by the presence or absence of an inducer (aTc) which

controls a second repressor (Tet repressor). The steady-state response of this circuit characterized using

traditional methods during exponential growth is reported in the Supplementary Information (“Steady-state

characterization of the regulatory circuit”). These controls are useful in establishing the correct function of

the regulatory circuit.

With these controls in hand, we turn to the analysis of the movies themselves. In this case, individual

bacteria are followed through subsequent divisions and the level of fluorescence in two different fluorescent

channels are monitored simultaneously as shown in figure 8.1(B,C). As expected, as the level of repressor is

diluted through sequential cell divisions, its ability to repress the production of downstream target genes is

reduced. As a result, there is an ever increasing rate of production of the product gene.

8.2.2 Calibrating the total number of repressors per cell

By far the most common way to elicit a change in the regulatory response of a genetic circuit is to resort to

small inducer molecules that are added to the media and interact with the transcription factors of interest

[28, 43–45]. However, such approaches add an extra layer of complexity to the analysis of regulatory motifs

because we now need to account both for the transport of the inducer into the cell and for the interaction of

the inducer with the transcription factor. Finally, we also require a quantification of how the activity of the

transcription factor depends upon its binding to these inducers [28, 45, 46].

An alternative scenario is to tune the number of transcription factors rather than their activity. This

approach gives direct access to parameters such as the binding energies of transcription factors to their

operators and their interaction energies with each other [10, 12, 13]. We recently employed such an approach

to dissect the same regulatory network [14]. The strategy employed in this case to control the number of
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repressor molecules was to generate a library of strains with different constant constitutive levels of Lac

repressor. In this case the number of Lac repressors was quantified using quantitative immunoblotting.

Of course, for this approach to work one needs to be able to both control the number of transcription

factors and to measure how many of them are present. Measuring the absolute concentration of transcription

factors through immunoblotting depends upon the availability of suitable antibodies. Alternatively, the tran-

scription factor of interest can be fused to a protein sequence or tag for which there is an antibody available

[47–50]. Still, this technique is inherently a bulk technique and does not allow for protein quantification at

the single-cell level.

One way around this is through fusions of the transcription factor to a fluorescent protein. In principle,

this can permit monitoring of the intracellular concentration at the single-cell level. In this case, the fluo-

rescence needs to be calibrated in order to convert arbitrary units on a camera into an absolute count of

molecules. In this context one common approach for calibrating absolute number of fluorescent molecules

has been to measure the mean intensity of a single copy of the fluorescent molecule [37, 38, 51] or of a bulk

solution of purified fluorophore [6, 38, 52–54]. In this work we use instead the recently developed calibration

method based on fluctuations in protein partitioning during cell division [17, 19]. The potential advantage

of this method over those described above is that the calibration is performed in the same experiment. As a

result there is no cross-calibration to be done with respect to an independent measurement of a sample that

serves as a standard of concentration.

One potential caveat of this approach is that the fusion to a fluorescent protein might affect the function

of the transcription factor in question. Unfortunately, there is no straightforward way to determine if this

is the case, short of performing some sort of control using the same transcription factor but in the absence

of the fluorescent fusion. We have recently published a dissection of the same regulatory network using

wild-type transcription factor without any modifications such as fusions [14]. Repeating this protocol with

our fluorescent fusion would allow us to directly compare the absolute number of the two different species

of repressor.

With these caveats in mind, once we have obtained a series of image sequences and performed the relevant

lineage identification, we can plot the fluorescence intensity of the mother cell during each cell division and

the difference in the intensities of the two daughters. Such data is shown in figure 8.2. As noted already

in equation 8.1, through the accumulation of a collection of triplets (I1, I2, Itot), we can fit the unknown

calibration factor α. In figure 8.2 we show the results for our calibration factor using this method. As can be

seen in the figure, the individual cell divisions (corresponding to the data points) are subject to very large

partitioning errors, precisely as would be found in direct simulations of this division process. On the other

hand, experimental errors not related to the binomial partitioning such as, for example, the uncertainty in

quantifying fluorescence can contaminate the calculation of the calibration.
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8.2.3 Measuring the single-cell input-output function

One of the main thrusts of our efforts has been to set up measurements such that it is possible to test the

governing equations associated with a variety of different regulatory architectures. For the case of simple

repression that we consider here, the fold-change in gene expression is given by

fold-change =
1

1 + R
NNS

e−∆εrd/kBT
, (8.2)

where R is the number of repressor dimers present in the cell, NNS is the size of the non-specific reservoir

(which we take here to be the whole E. coli chromosome such that NNS = 5× 106) and ∆εrd is the binding

energy of repressor to its operator. Experimentally it is defined as the ratio of the level of expression in

the presence of repressor to the level of expression of the same regulatory architecture in the absence of the

transcription factor such that

fold-change =
gene expression(R 6= 0)
gene expression(R = 0)

. (8.3)

In earlier work, Oehler et al. [16] measured the repression for two different operator concentrations (though

there were large uncertainties in these measurements). We complemented and improved those measurements

by characterizing the regulatory output for several more discrete repressor concentrations [14]. Here, we use

the dilution method as a way to more or less continuously titrate the number of repressors and thereby to
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explore the simple repression function over a reasonable fraction of its full dynamic range.

The fold-change in gene expression shown in equation 8.3 is defined in the context of steady-state mea-

surements, where the mean fluorescence per cell is quantified for strains with and without repressor. However,

measurements such as those shown in figure 8.1(C) give a rate of increase in the regulated gene (YFP) as

a function of the amount of LacI-CFP in the cell. Over a cell cycle the steady-state level, 〈YFP〉, and the

average rate of production of YFP, rYFP are related by

〈YFP〉 = rYFP/β. (8.4)

Here β is the decay rate of YFP which we assume to be constant and, due to the long lifetime of YFP, we

assume it to be determined by the time for cell division. We see that the fold-change in mean level of YFP

expression is equivalent to the fold-change in the rate of expression of YFP

fold-change =
〈YFP〉(R 6= 0)
〈YFP〉(R = 0)

=
rYFP(R 6= 0)
rYFP(R = 0)

. (8.5)

This equivalence assumes that there is well-defined single rate of expression throughout the cell cycle. This

is a helpful assumption when comparing single-cell measurements to bulk measurements as we will do in the

remainder of this section. However, it is clear that at some point in the cell cycle the number of promoters

inside the cell doubles due to the duplication of the genome [55]. As such a realistic analysis of the regulatory

network will have to take this subtlety into consideration.

In figure 8.3 we show the mean fold-change in gene expression (calculated from the ratio of the rates of

expression) as a function of the number of repressors for different realizations of the simple repression motif

where the strength of the operator is changed systematically. The data corresponding to each construct can

be fit to equation 8.2 in order to obtain an in vivo binding energy. Interestingly, we can compare the values

obtained for the binding energies to our previous measurements obtained in bulk using immunoblotting to

quantify the number of repressors per cell. The comparison between the results from both techniques reveals

a non-negligible systematic difference between them of about 2 to 3 kBT . Additionally, the binding site O3

appears to be too weak to exert any considerable repression. As a result we are unable to determine its

binding energy.

One potential explanation for the systematic discrepancy between the two techniques could be related

to an error in the calibration of the absolute fluorescence of a single LacI-CFP molecule. From equation

8.2 we see that a difference in energy between 2 and 3 kBT would correspond to an underestimation of

the number of repressor molecules by a factor of 7 to 20. Though there is an uncertainty associated with

the calibration factor α from equation 8.1, we view it as unlikely that there would be such a systemic

shift in the calibration. Another plausible explanation is that the binding activity of Lac repressor is

quantitatively affected by the fact that it is fused to a fluorescent protein. This conclusion is also supported

by the steady-state characterization of the regulatory network shown in the Supplementary Information
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Figure 8.3: Repression as a function of concentration of LacI. By fitting the data corresponding to each
construct to equation 8.2 we can obtain the corresponding binding energy. Those fits are denoted by solid
lines and their results are shown in the table. In that table we also show the binding energies obtained
recently by counting repressors using immunoblots in bulk [14] rather than fluctuations in single cells. Notice
a systematic difference of about 2 to 3 kBT between the two methods. The binding energy for O3 cannot be
determined because there is not a significant repression over the range of repressor concentrations assayed.

(“Steady-state characterization of the regulatory circuit”). Finally, it is also feasible that the binding energies

obtained through immunoblots have been overestimated. This could occur if the measurement of the Lac

repressor concentration done using immunoblots were only detecting a percentage of the total real amount of

intracellular Lac repressor. As a result we would conclude that the few repressors that were detected repress

very strongly, leading to the overestimation of the binding energies. All these different effects could certainly

conspire to give the observed difference between the binding energies obtained through immunoblots and the

fluctuation method.

8.2.4 Variability in expression

In the previous sections we saw how the fluctuation method is useful in providing an absolute count of

the number of transcription factors. Such an absolute calibration is key for experimental efforts aimed at

validating the input-output functions for the mean level of gene expression predicted by thermodynamic

models [10, 12–14]. However, the circuit utilized in this work also presents a significant advantage when

measuring higher moments of the protein distribution.

One strategy to quantify the variability in the protein expression is to measure the steady-state levels of

gene expression of our network as a function of the concentration of aTc in the media. Each aTc concentration

results in a different steady-state mean level of LacI-CFP in the cells. As a result of such an experiment we

can quantify the variability in gene expression as a function of the concentration of repressor. However, such

an approach has a potential inherent drawback related to the fact that there is variability in the expression of

the repressor itself. Not only is each cell continuously producing LacI-CFP, but variation in this production
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rate is to be expected from cell to cell. As a result, the variation in the levels of the downstream YFP level

is not only related to the inherent “intrinsic” stochasticity of the transcription process itself, but also to

“extrinsic” factors related, among others, to fluctuations in the repressor concentration. An approach to

decouple the intrinsic fluctuations from their extrinsic counterparts based on measuring correlations between

identical constructs has been recently developed and used on many occasions [17, 30, 31, 40, 56].

An alternative scheme for decoupling the fluctuations in repressor concentration from fluctuations in the

downstream production of YFP is to shut down the production of repressor such that its level stays constant

over a cell cycle. This is precisely the scenario we have over the course of one of our movies. For each

one of these two scenarios, the steady-state and the video microscopy measurement, we can calculate the

fold-change in the variance with respect to a strain lacking repressor. For the first scenario, the fold-change

will be calculated using the steady-state level of expression whereas for the second scenario the fold-change

is calculated based on the rates of YFP expression as discussed previously in relation to equation 8.5. In

figure 8.4 we show a comparison of the fold-change in the variance with respect to the fold-change in mean

levels of gene expression for both approaches. We observe what seems to be a slight systematic shift of the

data obtained through the steady-state approach or no more than 25 %. As a result we estimate that the

contribution of fluctuations in repressor copy number in the steady-state approach to the “extrinsic” noise

will be of order 25 %.

Though variability in gene expression has been widely regarded as a common strategy used in decision

making in bacteria [57–61], to our knowledge there is only a very limited set of examples where the tran-

scriptional noise has been systematically characterized as a function of the promoter regulatory architecture

[37]. We perform such a characterization by measuring the fold-change in the variance as a function of the

fold-change in mean gene expression for our different simple repression architectures. In figure 8.5(A) we

show the results of such measurements, where a slight systematic effect can be appreciated. For the same

fold-change in mean level the resulting fold-change in the variance is related to the strength of the binding

site in question. Qualitatively we can account for this trend through the use of stochastic models of gene

expression [39, 40], as shown in figure 8.5(B). The model used to generate the theoretical curve in figure

8.5(B) is extremely simple in its nature. It assumes that the rate of transcription and translation is constant

when the repressor is not occupying its operator and that when it is bound transcription gets completely

shut down. As such, it does not incorporate any “extrinsic” sources of noise that could lead to a variability

in the rates of transcription and translation themselves. Another approximation in this model is that we

assume that there is one copy of the promoter of interest inside the cell. This will certainly be true for the

initial stages of the cell cycle, but once the chromosome is replicated the cell will have two promoters. Our

failure to account for these issues implies that the comparison between theory and experiment must for now

remain largely qualitative. Nevertheless, it is intriguing that the same trend seems to be observed in both

the experimental data and the theoretical expectation.
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Figure 8.4: Contribution of fluctuations in repressor concentration to the steady-state variation of the
network. The fold-change in the variance in the rate of expression measured with respect to a strain lacking
LacI is plotted as a function of the fold-change in the mean of the rate of expression for data obtained through
video microscopy. This is compared to the fold-change in variance in the steady-state levels of expression
measured as a function of the fold-change in the mean steady-state level of gene expression. This comparison
reveals that fluctuations in repressor can at most increase the variability in the downstream levels of YFP
by 25 %.
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Figure 8.5: Noise in the simple repression motif. (A) The fold-change in variance in the rate of expression
measured with respect to a strain lacking LacI is plotted as a function of the fold-change in the mean of the
rate of expression for different operators. A small systematic difference between the operators is observed,
where the strongest operator, Oid, has a larger fold-change in variance than the weaker O1 and O2 for the
same fold-change in mean gene expression. (B) The qualitative trends observed in (A) can be reproduced
using a stochastic model of transcriptional regulation. The parameters used for generating this plot are
presented and discussed in [40].
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8.2.5 Limits and generality of the method

Though the method described here is elegant, it also suffers from several key limitations. In particular, since

the measurements depend upon tracking lineages of cell division there are bounds on both the maximal initial

concentrations of transcription factors and on the limits of detectability as the number of repressors continue

to decrease as a result of successive cell divisions. On the other hand, for high enough number of repressors,

the fold-change in gene expression will be so low that the absolute rate of expression of the downstream

YFP gene will be below the detection limit. These two limitations are illustrated in figure 8.6. In fact, as

discussed in more detail in the Supplementary Information, these issues impact the range over which one

can actually hope to use this method as a general tool for the quantitative analysis of gene expression.

In addition, it is rarely feasible to completely “shut off” production of the transcription factor during

dilution. If production events are common between the division event and the subsequent fluorescence

measurement, the measured fluorescence in the daughters is not entirely the result of binomial partitioning.

We confirmed the existence of such “leakage” in the repression of the production of LacI-CFP by comparing

the rate of YFP production in a strain without Lac repressor to the rate corresponding to our dilution

circuit in the absence of the inducer aTc. We observed a small fold-change in gene expression which can be

attributed to a production of 3 to 5 LacI-CFP molecules per cell cycle.

As a result of this production, the fluorescence in the daughters will be the result both of the partitioning

and the production of new labeled proteins. If the variance associated with the production is relatively small

(compared with the mean), the calibration factor takes a new form,

〈
(I1 − I2)2

〉
= Itot + 2(σ2

p− < Np >), (8.6)

where < Np > and σ2
p are the first and second moments of the protein production distribution and full details

can be found in the Supplementary Information (“Accounting for repressor production in the calculation of

the calibration factor”). The linear relationship in equation 8.1 is preserved since Itot still equals αNtot,

but now the y-intercept of the linear fit is related to the specific details of the production mechanism. If we

fit the data in figure 8.2 with the new model posed by equation 8.6 allowing for a non-zero y-intercept we

obtain α = (23 ± 4) au/LacI and 2(σ2
p− < Np >) = (7200 ± 7900) au. Clearly, if there is a production of

LacI-CFP this method is not able to detect it in a reliable manner.

8.3 Discussion

The advent of governing equations that are purported to describe both the mean levels of expression as well

as the noise for a host of different regulatory architectures has placed new demands on the theory-experiment

interplay in regulatory biology. An interesting case study to test these approaches is afforded by the simple

repression motif in bacteria. By changing architectural parameters such as the binding affinity of repressors



244

101 102 103

10−2

10−1

100

Fo
ld

−
ch

an
g
e

 

 

Number of repressors

Figure 8.6: Limitations of the fluctuation method. Our method is limited in terms of the detection of the
repressor fusion by the autofluorescence. This establishes a minimum number of repressors we can measure
reliably denoted schematically by the red shaded region. When the number of repressors reaches a certain
threshold the rate of expression of the downstream gene will be below what can be detected reliably, resulting
in a maximum fold-change that can be measured. This limitation is denoted schematically by the gray shaded
region. The data and fits correspond to those shown in figure 8.3.

for their DNA target sites, we have a family of predictions (and associated strains) which can be tested

directly. One of the other key tuning variables in eliciting different regulatory responses is the number of

repressors that mediate repression. To test these ideas, we need to explicitly count the number of repressors.

In earlier work, we showed how quantitative immunoblots can be used to effect such a count. However, true

confidence in these results requires independent measurements on the same regulatory motifs.

To that end, in this paper we have made systematic use of a recently introduced fluctuation method for

taking the repressor census and thereby checking the governing equation for the simple repression regula-

tory motif. The outcome of this analysis is once again consistent with the governing equation for simple

repression that emerges from the thermodynamic models. In particular, the scaling of the fold-change with

repressor number appears to follow the trends dictated by that equation. On the other hand, there are

also interesting numerical discrepancies between our two independent schemes for quantifying the simple

repression motif. These discrepancies are manifested in the fact that the in vivo binding energies obtained

using the fluctuation scheme are systematically shifted with respect to those obtained using immunoblots.

One possible explanation for the discrepancy in binding energies could be that the binding of LacI-CFP is

just different from the binding of wild-type Lac repressor. This by no means reduces the applicability of

the methods presented here for dissecting gene regulatory networks at the single-cell level. However, is it

important to keep in mind that we are potentially characterizing a transcription factor fusion that could

have different properties from the its wild-type version.

We also go beyond previous applications of the fluctuation method to explore variability in gene ex-

pression. In particular, we characterize the noise in transcriptional regulation as a function of a systematic



245

modification in the regulatory architecture through changes in the binding site strength. Though our simple

model based on stochastic models of transcriptional regulation [39, 40] cannot yet account for the quantita-

tive differences in the noise of each architecture, it predicts trends that are consistent with our measurements.

To our knowledge, this is one of the first characterizations of transcriptional noise in bacteria to explore the

effect of systematic variation in promoter architecture on the resulting noise profile. In order to achieve

a quantitative understanding of the observed behavior the model will have to be improved to include the

contribution of extrinsic noise and the variation in promoter copy number throughout the cell cycle. Alter-

natively, the contribution from extrinsic factors to the noise could be factored out by correlating fluctuations

in two identical promoters each expressing a different color of fluorescent protein [30].

8.4 Materials and Methods

8.4.1 Plasmids and strains

For an independent control of the repression system, the wild-type lac operon, including the lacI gene

controlling Lac repressor were deleted from wild-type E. coli (MG1655) to create HG105 as described in [14].

Plasmids pZS3*1-lacI expresses Lac repressor off of a pLtetO-1 promoter [62]. We follow the notation form

Lutz and Bujard for the antibiotic resistance (3 corresponding to chloramphenicol resistance). However, in

the 3* version we have replaced the original chloramphenicol resistance gene with the same resistance gene

coming from plasmid pKD3 [63]. The advantage of the latter gene is that it is flanked by FRT sites which

can be recognized by FLP recombinase in order to excise the resistance if needed. A lacI-CFP fusion was

obtained from plasmid pLAU53 ([64], kindly provided by Paul Wiggins) and ligated into a pZS3* vector

between its KpnI and HindIII restriction sites. This repressor cannot tetramerize due to the deletion of the

last 11 amino acids of its sequence. Additionally, it has a C-terminal fusion to CFP.

Our simple repression constructs have been described elsewhere [14, 51]. In short, they consist of a

lacUV5 promoter with only one binding site. This binding site can either be O1, O2, O3 or Oid as shown in

figure 8.10.

Explain the chromosomal integration. The YFP gene was chromosomally integrated by transduction

with the PlacUV 5 promoter and a single repressor binding site (operator O1, O2, O3, or Oid).

The TetR repressors that were responsible for the regulation of the LacI-CFP repressors were expressed

from the plasmid pZS3*pN25-tetR. This consists in a PN25 promoter controlling the TetR gene and was

obtained by PCR from the chromosome of DH5αZ1 [62].

8.4.2 Gene expression measurements

Steady-state measurements are performed as described in [51]. For the movies, cultures were grown overnight

in 5 ml of LB in the presence of 20 µg/mL of chloramphenicol at 37◦C and diluted 1 : 4000 in M9 + 0.5%

glucose minimal media with 100 ng/mL anhydrotetracycline (aTc) to induce the production of LacI-CFP.
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The diluted cultures were grown at 37◦C until they reached an OD600 ≈ 0.6−0.8 and then they were washed

three times with in media to remove the inducer. They were then diluted to give about 1 cell per field of

view when placed on a 1.5% low melting point M9+0.5% Glucose agar pad. Growth of cells was observed

by fluorescence microscopy at 37◦C. The cell doubling time was 67 min with a standard deviation of about

21 min. An automated Olympus fluorescent microscope was controlled by the software Micro-Manager, and

multiple fields of view were recorded simultaneously. An exposure of 800 ms for both the CFP and YFP

channels was used. A total of 40 frames of subsequent exposures were programmed to be taken at an interval

of 12 minutes. Fluorescence images of the CFP channel were acquired only on alternate frames to reduce

photobleaching.

8.4.3 Data analysis

Data analysis was performed using the Matlab code “schnitzcells” kindly provided my Michael Elowitz [17].

This code segments cells in a movie and tracks their lineages.

8.5 Supplementary Information

8.5.1 Derivation of calibration factor

It is of interest to have a simple derivation of the relation between fluorescence intensity and repressor

number. In particular, to exploit the connection of partitioning to the binomial distribution, we need some

key averages. For example, we have

< N1 >= Np, (8.7)

where p is the probability of a protein partitioning into cell 1, and which in the present context we assume

has the value p = 1/2. By similar reasoning, we can arrive at

var(N1) = Np(1− p) (8.8)

which can be used to rewrite this as

var(N1) =< N2
1 > − < N1 >

2⇒< N2
1 >= Np(1− p) +N2p2. (8.9)
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As a result of these expressions for the averages, we have

< (N1 −N2)2 > = 4 < N2
1 > −4N < N1 > +N2 (8.10)

= 4(Np(1− p) +N2p2)− 4N(Np) +N2 (8.11)

= 4
(
N

1
4

+N2 1
4

)
− 4N

(
N

1
2

)
+N2 (8.12)

= N. (8.13)

How can we use this to relate the measured fluorescence intensity of a cell to the number of fluorescent

proteins in that cell? Let’s assume that the intensity in a cell I can be written as I = αN , where α is some

calibration factor that converts from number of proteins to intensity. Now we can exploit the assertion that

I = αN to write

< (N1 −N2)2 >= N ⇒<
(
I1
α
− I2
α

)2

> =
Itot
α

(8.14)

1
α2

< (I1 − I2)2 > =
Itot
α

(8.15)

⇒
√
< (I1 − I2)2 > =

√
αItot. (8.16)

This gives us the relationship between the fluctuations in the difference between the intensities of two

daughter cells and the total intensity in the original mother cell, Itot = I1 + I2. We can determine the

unknown calibration factor α by taking time-lapse movies of dividing bacteria, tracing lineages to determine

which pairs of daughter cells came from which mother cells, and for each mother+daughters set plotting√
< (I1 − I2)2 > vs. Itot, the intensity of the mother cell.

8.5.2 Steady-state characterization of the regulatory circuit

Though the method described here is predicated upon the measurement of the level of gene expression as

a function of time by tracking cell lineages, we first wanted to ensure that the relation between inducer

concentrations and the fluorescence in the two channels corresponded to our expectations. Here we charac-

terize the steady-state behavior of the regulatory circuit. The simple repression construct characterized here

corresponds to having the binding site O2.

Steady-state measurements are performed as described in the Materials and Methods section by growing

the cells at different concentrations of aTc over multiple generations. The resulting profile of the level

of LacI-CFP as a function of the concentration of aTc is shown in figure 8.7(A). The level of LacI-CFP

determines the level of YFP, which is shown in figure 8.7(B) as a function of the aTc concentration.

One of the most convenient ways to characterize the quantitative response of a circuit like that used

here is by appealing to the fold-change or the repression. Effectively, these quantities provide a measure

of the extent to which the transcription factor of interest, in this case Lac repressor, alter the expression
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profile of the circuit. In particular, the fold-change in gene expression is computed as the ratio of the level

of expression in the presence of the repressor of interest to its level in the absence of the repressor. Since

our readout of the state of the circuit is in terms of fluorescence, this ratio is constructed as

Fold-change =
Fluorescence of YFP([aTc])
Fluorescence of YFP(R = 0)

. (8.17)

In this equation we are dividing the level of YFP expression for a given concentration of aTc by the fluores-

cence of a strain bearing no LacI-CFP. By using the data shown in figure 8.7 and measuring an additional

strain without LacI-CFP we can then plot the fold-change in gene expression as a function of the LacI-CFP

concentration measured in arbitrary fluorescence units. The results are shown in figure 8.8.

From the governing equation for the simple repression regulatory circuit [12, 13], we expect that the

fold-change in gene expression will be described by the equation

Fold-change =
[
1 +

R

NNS
e−β∆εrd

]−1

, (8.18)

where R is the number of LacI-CFP molecules per cell and NNS is the number of non-specific binding sites

available to the repressor. We take this to be the size of the E. coli genome of 5×106 bp. ∆εrd is the in vivo

binding energy of Lac repressor to its operator DNA. In a recent study we determined this in vivo binding

energy of wild-type Lac repressor to O2 to be (−13.7± 0.2) kBT .

The functional form predicted by equation 8.18 cannot be compared directly to the data shown in figure

8.8 due to the fact that we do not know the absolute number of LacI-CFP molecules per cell. We only

know the resulting fluorescence determined in the CFP channel. However, we can rewrite the equation in

the following form

Fold-change =
[
1 +

α−1I

NNS
e−β∆εrd

]−1

. (8.19)

Here, we have replaced the absolute number of repressors by α−1I. I is the measured intensity in the CFP

channel, while α is the calibration factor relating absolute number of molecules and fluorescence. Notice

that since we know the binding energy we can now fit the data in figure 8.8 in order to obtain the value of

α. We obtain a calibration factor of (1.0± 0.2)× 103 arbitrary fluorescent units per LacI-CFP molecule. We

can now use this calibration factor to go back to the LacI-CFP data expressed in arbitrary units in figure

8.8 and convert it to an absolute number of repressors. This is shown as an alternative top x-axis in figure

8.8.

Once we calibrate the data in figure 8.8 in terms of the absolute number of LacI-CFP molecules using

the value we determined for α we find an interesting outcome. The calibration predicts that we can reliably

detect two LacI-CFP molecules per cell. Since LacI-CFP is a dimer this would correspond to the detection

of four individual CFP molecules. It is highly unlikely for this to be the case, as recent measurements using

similar microscopy conditions have shown a lower detection limit of about ten fluorescent proteins per cell
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Figure 8.7: Response of the regulatory circuit as function of aTc concentration. Cells are grown in the
presence of various concentrations of aTc and their levels of LacI-CFP and YFP quantified using microscopy.
aTc determines the intracellular concentration of LacI-CFP which, in turn, determines the intracellular
concentration of YFP.

[51]. These measurements in question were performed using YFP as a reporter. The autofluorescence of the

cell at the CFP wavelengths is expected to be even larger than at the YFP wavelength [65]. As a result we

would expect the lower bound for YFP of ten molecules per cell to be even higher for CFP.

This potential discrepancy could be easily solved if we consider a different binding energy. For example,

if the binding energy was lower by 2 kBT such that ∆εrd = −11.7 kBT the calibration α would increase such

that now the lowest absolute level of LacI-CFP detected would be on the order of 15, which would correspond

to the detection of 30 CFP molecules. We conclude that if we adopt a view where there is a difference in

the binding energies obtained for wild-type Lac repressor and for the LacI-CFP fusion we can account for

the behavior and concentrations obtained from our regulatory circuit in steady-state. Interestingly, we will

draw similar conclusions when inferring the in vivo binding energies from the dilution experiment.

8.5.3 Accounting for repressor production in the calculation of the calibration

factor

The above formulation provides the basis for measuring the calibration factor between fluorescence counts

and number of proteins for an experiment where the production of protein is completely suppressed through

tight regulation. Now we derive a general method where the production of protein during the dilution process

is accounted for and a measure of the absolute production can be obtained along with the desired calibration

factor. For now, we will treat the production process generally, assuming we know both the average number

of proteins produced and the variance in this production. Using this general formalism, we would like a

similar expression to equation 8.1, however the total number of proteins in each daughter is now the result

of a combination of the initial partitioning upon division and the production process. We begin with the
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Figure 8.8: Fold-change as a function of the LacI-CFP fluorescence. The fold-change in gene expression is
shown as a function of the corresponding LacI-CFP fluorescence (lower x-axis). Using previous knowledge of
the in vivo binding energy [14] we can fit the data to equation 8.19 in order to obtain an absolute calibration
between the arbitrary fluorescent units and the absolute number of LacI-CFP molecules. The result of such
a calibration is shown as an alternative x-axis on the top. It is interesting to note that the calibration factor
obtained from these measurements implies that we can see on the order of two LacI-CFP molecules per cell.

same statement of the variance in the number of proteins found in daughter 1,

σ2 = < (N1− < N1 >)2 > . (8.20)

The average is now < N1 >= N b
T /2+ < Np

1 > where Np
1 is the number of proteins measured which were a

result of production. Making this substitution, the above equation can be rewritten,

σ2 = <

(
N1 −

N b
T

2
− < Np

1 >

)2

> . (8.21)

With a bit of manipulation,

σ2 = <

(
N1 −N2

2
+
Np

1

2
+
Np

2

2
− < Np

1 >

)2

> . (8.22)

The average production in both daughters is the same so we write < Np
1 >=< Np

1 > /2+ < Np
2 > /2 and

then distribute the square,

σ2 = <

(
N1 −N2

2

)2

+
(
Np

1− < Np
1 >

2

)2

+
(
Np

2− < Np
2 >

2

)2

>, (8.23)
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since the cross terms cancel out; the mixed N and Np terms are equal and opposite while the Np
1 and Np

2

terms are statistically independent. Each Np term contributes a factor of the variance due to the production

process, σ2
p, divided by 4, and thus we find,

σ2 =

〈(
N1 −N2

2

)2
〉

+
σ2
p

2
. (8.24)

Now, we can also write the variance for the entire processes as the sum of the variances from each statistically

independent process,

σ2 = σ2
b + σ2

p, (8.25)

σ2 =
N b
T

4
+ σ2

p. (8.26)

From equations 8.24 and 8.26 we arrive at,〈(
N1 −N2

2

)2
〉

=
N b
T

4
+
σ2

p

2
. (8.27)

Now, this formulation is not yet useful to experiments because it contains N b
T which is the total number of

proteins which were distributed to the daughters through binomial statistics and does not equal the measured

quantity N1 +N2. Instead, the measured N1 +N2 = N b
T +Np

T . We do not know Np
T and without taking more

data, it is inaccessible to us, so we approximate it with the average production. Thus the final expression is,〈(
N1 −N2

2

)2
〉

=
NT
4

+
σ2

p− < Np
1 >

2
. (8.28)

We now need a realistic model for the first two moments of the protein production distribution. The gamma

distribution is used to represent a process where events occur randomly, uncorrelated in time (i.e., they are

Poissonian), but the number produced during each event (often called a “burst”) follows an exponential

distribution. Such a distribution is characterized by two parameters: a is the Poissonian parameter which

characterizes the number of production events per time and b is the average number of proteins produced

in each burst. The average number of proteins produced in this model is < NP
1 >= ab and the variance is

σ2
p = ab2. Putting this information into equation 8.27 we arrive at,

〈(
N1 −N2

2

)2
〉

=
NT
4

+
ab(b− 1)

2
. (8.29)

We now have a means to measure both the calibration factor AND the separate production parameters a

and b; the slope of the plot when fitting data such as shown in figure 8.2 would correspond to the calibration

factor, the y-intercept would be equal to ab(b− 1)/2 and the steady-state protein level would be (3/2)ab (on
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Figure 8.9: Contribution of differences in cell size to the fluorescence partitioning. In cells bearing LacI-CFP,
but no production of the transcription factor, the relative difference in the fluorescence of the two daughter
cells upon cell division is measured. These measurements are shown as a function of the relative difference
in the cell area of the daughter cells. The lack of a strong correlation suggests that the partitioning of
fluorescent is indeed determined by a binomial distribution and not to the particular fluctuations in cell size
upon cell division.

average ab right after division and 2ab immediately preceding the subsequent division).

8.5.4 Supplementary figures
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XhoI -35 -10 Oid EcoRI

EYFP

kanamycin resistance

t0
terminator

SC101 Origin
(Approx Position)

T1
terminator

EcoRI (747)

HindIII (1491)

KpnI (772)

XhoI (685)

AvrII (1619)

SacI (3956)

AatII (614)

RBS

lacUV5 promoter

aattgtgagcggataacaattO1
aaatgtgagcgagtaacaaccO2
ggcagtgagcgcaacgcaattO3pZS25Oid+11

YFP (4298bp)

Figure 8.10: Plasmid diagram and promoter sequence. The main features of the plasmids pZS25O1+11-
YFP are shown flanked by unique restriction sites. The particular promoter sequence based on the lacUV5
promoter is shown together with the sequences of the different Lac repressor binding sites used.



253

Bibliography

[1] W. A. Lim. The modular logic of signaling proteins: Building allosteric switches from simple binding

domains. Curr Opin Struct Biol, 12(1):61–8, 2002.

[2] M. Ptashne and A. Gann. Genes and signals. Cold Spring Harbor Laboratory Press, New York, 2002.

[3] R. P. Bhattacharyya, A. Remenyi, B. J. Yeh, and W. A. Lim. Domains, motifs, and scaffolds: The

role of modular interactions in the evolution and wiring of cell signaling circuits. Annu Rev Biochem,

75:655–80, 2006.

[4] D. Kentner and V. Sourjik. Use of fluorescence microscopy to study intracellular signaling in bacteria.

Annu Rev Microbiol, 64:373–90, 2010.

[5] H. G. Garcia, A. Sanchez, T. Kuhlman, J. Kondev, and R. Phillips. Transcription by the numbers

redux: Experiments and calculations that surprise. Trends Cell Biol, 2010.

[6] V. Sourjik and H. C. Berg. Binding of the escherichia coli response regulator chey to its target measured

in vivo by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A, 99(20):12669–74, 2002.

[7] J. E. Keymer, R. G. Endres, M. Skoge, Y. Meir, and N. S. Wingreen. Chemosensing in escherichia coli:

Two regimes of two-state receptors. Proc Natl Acad Sci U S A, 103(6):1786–91, 2006.

[8] Y. Tu, T. S. Shimizu, and H. C. Berg. Modeling the chemotactic response of escherichia coli to time-

varying stimuli. Proc Natl Acad Sci U S A, 105(39):14855–60, 2008.

[9] D. Greenfield, A. L. Mcevoy, H. Shroff, G. E. Crooks, N. S. Wingreen, E. Betzig, and J. Liphardt. Self-

organization of the escherichia coli chemotaxis network imaged with super-resolution light microscopy.

PLoS Biol, 7(6):e1000137, 2009.

[10] N. E. Buchler, U. Gerland, and T. Hwa. On schemes of combinatorial transcription logic. Proc Natl

Acad Sci U S A, 100(9):5136–41, 2003.

[11] J. M. Vilar and S. Leibler. DNA looping and physical constraints on transcription regulation. J Mol

Biol, 331(5):981–9, 2003.

[12] L. Bintu, N. E. Buchler, H. G. Garcia, U. Gerland, T. Hwa, J. Kondev, and R. Phillips. Transcriptional

regulation by the numbers: Models. Curr Opin Genet Dev, 15(2):116–24, 2005.



254

[13] L. Bintu, N. E. Buchler, H. G. Garcia, U. Gerland, T. Hwa, J. Kondev, T. Kuhlman, and R. Phillips.

Transcriptional regulation by the numbers: Applications. Curr Opin Genet Dev, 15(2):125–35, 2005.

[14] H. G. Garcia and R. Phillips. Quantitative dissection of the simple repression input-output function.

Proc Natl Acad Sci U S A, 2011. (Under review).

[15] S. Oehler, E. R. Eismann, H. Kramer, and B. MÜLler-Hill. The three operators of the lac operon
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Chapter 9

Concentration and Length
Dependence of DNA Looping in
Transcriptional Regulation

This chapter is a reproduction of reference [1].

In many cases, transcriptional regulation involves the binding of transcription factors at sites on the DNA

that are not immediately adjacent to the promoter of interest. This action at a distance is often mediated

by the formation of DNA loops: Binding at two or more sites on the DNA results in the formation of a

loop, which can bring the transcription factor into the immediate neighborhood of the relevant promoter.

These processes are important in settings ranging from the historic bacterial examples (bacterial metabolism

and the lytic-lysogeny decision in bacteriophage), to the modern concept of gene regulation to regulatory

processes central to pattern formation during development of multicellular organisms. Though there have

been a variety of insights into the combinatorial aspects of transcriptional control, the mechanism of DNA

looping as an agent of combinatorial control in both prokaryotes and eukaryotes remains unclear. We use

single-molecule techniques to dissect DNA looping in the lac operon. In particular, we measure the propensity

for DNA looping by the Lac repressor as a function of the concentration of repressor protein and as a function

of the distance between repressor binding sites. As with earlier single-molecule studies, we find (at least)

two distinct looped states and demonstrate that the presence of these two states depends both upon the

concentration of repressor protein and the distance between the two repressor binding sites. We find that

loops form even at interoperator spacings considerably shorter than the DNA persistence length, without

the intervention of any other proteins to prebend the DNA. The concentration measurements also permit us

to use a simple statistical mechanical model of DNA loop formation to determine the free energy of DNA

looping, or equivalently, the J-factor for looping.
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9.1 Introduction

The biological significance of DNA is primarily attributed to the information implicit in its sequence. Still,

there are a wide range of processes for which DNA’s physical basis as a stiff polymer also matters [2]. For

example, the packaging of DNA into nucleosomes appears to select for sequence motifs that are particularly

flexible [3, 4]. In the setting of transcriptional regulation, there are a host of regulatory architectures both in

prokaryotes and eukaryotes which require the interaction of sequences on the DNA that are not adjacent [5–8].

These interactions are mediated by DNA-binding proteins, which have to deform the DNA. In eukaryotes,

action of transcription factors over long distances seems the rule rather than the exception. One of the

most transparent examples of DNA looping is in bacteria where some repressors and activators can bind

at two sites simultaneously, resulting in a DNA loop. This effect was first elucidated in the context of the

arabinose operon [9]. It is an amusing twist of history that the two regulatory motifs considered by Jacob

and Monod, namely, the switch that makes the decision between the lytic and lysogenic pathways after phage

infection [10] and the decision making apparatus associated with lactose digestion in bacteria [6, 11], both

involve DNA looping as well.

To understand the physical mechanism of the biological action at a distance revealed by DNA looping,

it is necessary to bring both in vitro and in vivo experiments as well as theoretical analyses to bear on

this important problem. Over the last few decades there have been a series of impressive and beautiful

experiments from many quarters that inspired our own work. In the in vivo context, it is especially the work

of Müller-Hill and coworkers that demonstrates the intriguing quantitative implications of DNA looping for

regulation [12]. In their experiments, they tuned the length of the DNA loop in one base pair increments

and measured the resulting repression. More recently, these experiments have been performed with mutant

bacterial strains that were deficient in architectural proteins such as HU, IHF and H-NS [13, 14]. On the

in vitro side, single molecule experiments using the tethered-particle method [15–23] have also contributed

significantly [24–29]. The idea of these experiments is to tether a piece of DNA to a microscope coverslip

with a bead attached to the end. The DNA construct has the relevant binding sites (operators) for the

protein of interest along the DNA and when one of these proteins binds, it shortens the length of the tether.

As a result of the shorter tether, the Brownian motion of the bead is reduced. Hence, the size of the random

excursions of the bead serves as a reporter for the status of the DNA molecule (i.e., looped or unlooped,

DNA-binding protein present or not).

In addition to single-molecule studies, in vitro biochemical assays have also shed important light on

the interactions between transcription factors and their DNA targets. Both filter binding assays and elec-

trophoretic mobility shift assays have been widely used to study how variables dictating DNA mechanics

such as length and degree of supercoiling, alter the looping process [30–34].

One of the missing links in the experimental elucidation of these problems is systematic, single-molecule

experiments which probe the length, repressor concentration and sequence dependence of DNA looping.

Such experiments will complement earlier in vivo work, which has already demonstrated how DNA length
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and repressor concentration alter repression [12]. Our view is that such systematic experiments will help

clarify the way in which both length and sequence contribute to the probability of DNA looping, and begin

to elucidate the mechanisms whereby transcription factors act over long genomic distances. Further, such

experiments can begin to shed light on broader questions of regulatory architecture and the significance of

operator placement to transcriptional control. To that end, we have carried out experiments that probe the

DNA looping process over a range of concentrations of repressor protein and for a series of different loop

lengths. In addition, intrigued by the sequence preferences observed in nucleosomal DNA, we have made

looping constructs in which these highly bendable nucleosomal sequences are taken out of their natural

eukaryotic context and are inserted between the operators that serve as binding sites for the Lac repressor

(the results of those experiments will be reported elsewhere). The point of this exercise is to see how the

looping probability depends upon these tunable parameters, namely, length, repressor concentration and

sequence.

Our key results are: (1) The concentration dependence of looping as a function of repressor concentration

(a “titration” curve) can be described by a simple equilibrium statistical-mechanics model of transcription

factor-DNA interactions. The model predicts a saturation effect, which agrees with our experimental ob-

servations. (2) By measuring this effect, we were able to isolate the free energy change of looping (that is,

separate it from the binding free energy change), obtaining an experimental measurement of its value for a

range of different lengths in an uncluttered, in vitro, setting. (3) Systematic measurement of looping free

energy as a function of interoperator spacing hints at the same modulations seen in analogous in vitro work

on cyclization [4, 35], and in vivo work on repression [12, 13]. (4) Clear experimental signature of multiple

looped states, consistent with theory expectations [36–39] and other recent experiments [27, 29]. In the

remainder of the paper, we describe a series of experiments that examine both the length and concentration

dependence of DNA looping induced by the Lac repressor. A companion paper gives extensive details about

our theoretical calculations [40].

9.2 Results

As argued above, one of our central concerns in performing these experiments was to have sufficient, sys-

tematic data to make it possible to carry out a thorough analysis of the interplay between theories of

transcriptional regulation (and DNA looping) [41–44], and experiment. To that end, we have carried out a

series of DNA looping experiments using the tethered-particle method [24] for loop lengths ranging from 300

to 310 bp in one base pair increments as well as several representative examples for lengths below 100 bp.

The experiments described here use DNA constructs harboring two different operators, symmetric operator

Oid and primary natural operator O1 as Lac repressor binding sites. In addition, we have explored how the

looping trajectories depend upon the concentration of Lac repressor. The particular experimental details are

described in the “Materials and Methods” section.
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A typical experimental trace resulting from these measurements is shown in figure 9.1. (Representative

examples of experimental traces from all of the lengths and concentrations considered throughout the paper

as well as examples of rejected traces are shown in the Supporting Information.) As seen in the figure, as

with other recent work [27, 29], there are clearly two distinct looped states as seen both in the trajectory

and the histogram. Control experiments with one of the two binding sites removed show only the highest

peak, which further supports the idea that the two lower peaks indeed indicate looped configurations. One

hypothesis is that these two looped states correspond to two different configurations of the Lac repressor

molecule and its attendant DNA, which we will refer to as the “open” and “closed” configurations. Direct

interconversion between the two looped species suggested the two distinct looped states are indeed due to

different conformations of Lac repressor protein [27]. An alternate hypothesis is that the two peaks reflect

different DNA topologies [45–47]. Although this hypothesis does not obviously accommodate the apparent

observation of direct interconversion, nevertheless we will present data from Monte Carlo simulations of DNA

chain conformations that show that it can quantitatively explain the observed multi-peak structure observed

in the data.

9.2.1 Concentration dependence

In order to extract quantities such as the free energy of looping associated with repressor binding (or equiv-

alently, a J-factor for looping, essentially the concentration at which in a solution of DNA with sticky ends,

the probability of forming circles and dimers is equal) and to examine how the propensity for looping depends

upon the number of repressors, we needed looping data at a number of different concentrations. At very low

concentration, we expect that there will be negligible looping because neither of the operators will be bound

by Lac repressor. At intermediate concentrations, the equilibrium will be dominated by states in which

a single repressor tetramer is bound to the DNA at the strong operator, punctuated by transient looping

events. In the very high concentration limit, each operator will be occupied by a tetramer (see figure 9.2

below), making the formation of a loop nearly impossible.

This progression of qualitative behavior is indeed seen in figure 9.3, which shows data from eight distinct

concentrations of Lac repressor, as well as a single-operator control in which the DNA lacks a secondary op-

erator. Throughout this work we define sequence length or loop length as the end-to-end distance between the

operators as shown in figure 9.15. These curves correspond to a sequence length of 306 bp and are generated

by summing the normalized histograms from all of the individual trajectories for each concentration that pass

our bead selection criteria (bead selection criteria are discussed in detail in the Supporting Information). A

key feature of these data is the way in which the two looped states are turned off as the concentration of Lac

repressor is increased to very high levels. This phenomenon is expected since the Lac repressor exists always

as tetramers under the conditions used here [48, 49], and competition for binding at the second operator

between loose Lac repressor and Lac repressor bound to the other operator is stronger as the concentration

of Lac repressor increases. However, the two different looped species have slightly different responses at high
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repressor concentrations. For example, at 1 nM concentrations, the intermediate looped state has become

very infrequent, whereas the shortest looped state remains competitive. Similar concentration dependence

of Lac repressor-mediated DNA looping was studied previously [25] at 4 pM, 20 pM and 100 pM. Those

experiments revealed that looping is suppressed as the concentration goes up.

One way to characterize the looping probability as a function of concentration is shown in figure 9.4.

There are various ways to obtain data of the sort displayed in this plot. First, by examining the trajectories,

we can simply compute the fraction of time that the DNA spends in each of the different states, with the

looping probability given by the ratio of the time spent in either of the looped states to the total elapsed time.

Of course, to compute the time spent in each state, we have to make a thresholding decision about when

each transition has occurred. This can be ambiguous, because trajectories sometimes undergo rapid jumps

back and forth between different states; it is not unequivocally clear when an apparent transition is real,

and when it is a random fluctuation without change of looping state. A second way of obtaining the looping

probability is to use figure 9.3 and to compute the areas under the different peaks and to use the ratios of

areas as a measure of looping probability. This method, however, does not properly account for possible

variation between different beads, because they are all added up into one histogram. A third alternative is

to obtain the looping probability for each individual bead, by plotting its histogram and calculating the area

under that subset of the histogram corresponding to the looped states. We used this last method to calculate

the mean looping probability and the standard error for each construct, which is shown in figure 9.4.

These results can also be explored from a theoretical perspective using the tools of statistical mechan-

ics [43, 44, 50]. The goal of a statistical mechanical description of this system is to compute the probability

of the various microstates available to the repressor-DNA system as shown in figure 9.2. The simplest model

posits 5 distinct states [24, 25, 27]: Both operators empty, Oid occupied by repressor without looping, O1

occupied by repressor without looping, Oid and O1 separately occupied by single repressors and the looped

state (the subtleties associated with the statistical weight of the looped state are described in the Supporting

Information). The model does not take into account the effect of non-specific binding of Lac repressor to

non-operator DNA, because a simple estimate reveals that the vast majority of repressors are free in solution

rather than bound nonspecifically to the tethered DNA. We argue that this effect is negligible because the

equilibrium association constant of Lac repressor to non-operator DNA at conditions similar to ours is around

106 ∼ 107 M−1 [51–57], which is roughly six orders of magnitude less than the corresponding quantity for

specific binding [31, 58–63]. Given such association constants, the ratio between non-specifically-bound Lac

repressor and the free Lac repressor in solution is given as

[RD]
[R]

= KNS × [D]

≈ 2× 10−5,

where [RD] is the concentration of non-specifically-bound Lac repressor, [R] is the concentration of Lac
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repressor in solution, and [D] is the DNA concentration, which is around 2 pM in our experiment. For

[R] = 200 nM, we have [RD] ≈ 4 pM, which is far smaller than the concentration of Lac repressor in

solution.

It is convenient to describe the probability of the various states using both the language of microscopic

binding energies (and looping free energies) and the language of equilibrium constants (and J-factors). From

a microscopic perspective, the key parameters that show up in the model are the standard free energy

changes for repressor binding to the two operators, ∆εid and ∆ε1, the looping free energy ∆Floop and the

concentration of repressor [R]. The binding energy here contains two components. One is the standard

positional free energy required for bringing one Lac repressor molecule to its DNA binding site at 1 M

concentration of Lac repressor. The other is the rotational entropy loss times −T , plus the interaction

free energy due to the physical contact upon protein binding [43, 44, 64]. The associated free energy with

each configuration gives the statistical weights of the equilibrium probability (listed in the middle column of

figure 9.2). For example, to obtain the probability of the looped state, we construct the ratio of state (v) in

the figure to the sum over all five states, as given by

ploop =
[
8

[R]
1 M

e−β(∆ε1+∆εid+∆Floop)

]
(9.1)[

1 + 4
[R]
1 M

(
e−β∆ε1 + e−β∆εid

)
+ 16

(
[R]
1 M

)2

e−β(∆ε1+∆εid)+

8
[R]
1 M

e−β(∆ε1+∆εid+∆Floop)

]−1

,

where β = 1/kBT and the temperature is in degrees Kelvin. As detailed in the Supporting Information and

can be read off from the right column in figure 9.2, this microscopic description is conveniently rewritten in

terms of the equilibrium constants and J-factor for looping as

ploop =
1
2

[R]Jloop
K1Kid

1 + [R]
K1

+ [R]
Kid

+ [R]2

K1Kid
+ 1

2
[R]Jloop
K1Kid

. (9.2)

Here Jloop is the average of the individual J factors corresponding to different loop topologies. These

topologies can be classified according to the orientation of each one of the operators with respect to the two

Lac repressor binding heads as shown in figure 9.5. We define the state variables α and β that describe the

orientation of O1 and Oid, respectively, and that can adopt a value of either 1 or 2. The average Jloop is

then

Jloop =
1
4

∑
α,β

Jloop,α,β . (9.3)

An alternative to this scheme is to construct the ratio punloop/ploop. In the limit where the strongest operator,
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Oid, is always occupied, this ratio takes the simple, linear form

pratio =
2K1

Jloop
+

2[R]
Jloop

. (9.4)

This permits the determination of the J-factor as the slope of a linear fit of the form without necessarily a

need to obtain K1. Below we discuss the validity of this particular model. For the remaining data points at

loop lengths L other than 306 bp, where no titration was done, we can use the relation

Jloop(L) =
pratio(306 bp)
pratio(L)

Jloop(306 bp). (9.5)

Just like in the titration case, this relation allows to obtain Jloop without knowing K1, as long as we know

at least one value of Jloop and its corresponding pratio.

The data shown in figure 9.4 can be fit in several different ways as suggested by the three different

formulae characterizing the looping probability given above. The fit shown in figure 9.4 is a full non-linear

fit in which the parameters K1, K2 and Jloop are treated as fitting parameters. Alternatively, using this

same data of figure 9.4, we can actually obtain the looping free energy, as well as the binding energies by

fitting the data to equation 9.1. Note that these two descriptions are equivalent and each depends upon three

unknown parameters. Once one set of parameters is known, in principle, the complementary parameters are

also known. We find it convenient to work in terms of both languages because in some discussions it is useful

to talk in terms of looping free energies, and in other contexts, in terms of the looping J-factor. Finally,

we can fit the data corresponding to LacI concentrations of 10 pM and higher using the linear model from

equation 9.4. The results of these different fits are shown in table 9.1. These results are usefully contrasted

with results of other experiments on the lac operon, which are also summarized in table 9.1. We see from

the table that the non-linear model fails to constrain the value of Kid reliably. In the case of the O1 binding

constants we see a difference of almost two orders of magnitude with published dissociation constants, which

translates into a difference of roughly 4 kBT in the binding energy.

One of the challenges of single-molecule experiments like those described here is that the concentration

of protein introduced into the system may not correspond to the actual concentration “seen” by the DNA

that is tethered to the surface. For example, some of the protein might be lost as a result of nonspecific

binding to the microscope coverslip. From the linear model shown in equation 9.4 it follows that any error

in the concentration will translate linearly into an error in Jloop and K1. Therefore, in order for the above

discrepancy to be explained solely by surface effects on the LacI concentration we would have to have a

difference of between one and two orders of magnitude between the concentration of the stock that flowed

into the chamber and the actual free concentration within the chamber.

Once the parameters that characterize the model are in hand, we can plot the probability of all five

possible states as a function of the Lac repressor concentration as shown in figure 9.6. This figure reveals

that at the concentrations we normally use ([R] = 100 pM), the system is dominated by the looped state and
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the state with single occupancy of Oid. A detailed discussion of the significance of the looping free energies

(or the J-factors) will follow later in the paper once we have explored the question of the length dependence

of DNA looping in the lac operon.

9.2.2 Length dependence

9.2.2.1 1bp resolution for a whole helical turn: Lloop = 300 bp to 310 bp

The beautiful in vivo repression experiments of [12] demonstrate that the length of the DNA loop formed by

Lac repressor strongly affects the probability of loop formation (especially for loop lengths less than 150 bp).

In particular, those authors (and others) [13, 14, 65, 66] have observed “phasing”: The relative orientations

of the two operators changes the ease with which repressor can loop. Similar phasing effects have been

observed in in vitro cyclization assays [4, 35, 67, 68]. What has not been clear is how to concretely and

quantitatively relate these results on DNA mechanics from the in vivo and in vitro settings. Our idea was to

systematically examine the same progression of DNA lengths that have been observed in vivo, but now using

TPM experiments. To that end, we have measured TPM trajectories for a series of interoperator spacings

measured in 1 bp increments. The results of this systematic series of measurements for DNAs harboring

operators spaced over the range Lloop = 300 ∼ 310 bp are shown in figure 9.7 (as are the results for several

shorter lengths to be discussed in the next section). Each plot shows the probability of the three states for

a particular interoperator spacing.

The data can be converted into a plot of the dependence of the looping probability on interoperator

spacing as shown in figure 9.8. This figure shows ploop as a function of the DNA length between the two

operators. The looping probability shows a weak dependence on the interoperator spacing but reveals no

conclusive signature of phasing; to really detect such phasing with confidence, however, would require more

measurements in single basepair increments. The maximum looping is achieved when the two binding sites

are 306 bp apart, suggesting that at this distance, the two sites are in an optimal phasing orientation for

binding of the two heads of Lac repressor. The ability to form stable out-of-phase (two binding sites are

on the opposite side of the DNA) loops with only a small reduction in stability is consistent with previous

studies [27]. The relatively stable looping over the entire helical repeat is also consistent with the relatively

constant repression level in vivo for similar interoperator spacing [12].

As already indicated in table 9.1, the looping probability can be converted into a corresponding looping

free energy based on the statistical mechanics model described above and culminating in equation 9.1. The

results of such calculation are shown in figure 9.9. The measurements on length dependence permit us to

go beyond the concentration dependence measurements by systematically exploring how the phasing of the

two operators impacts the free energy of DNA looping. One might expect that when the two operators are

on opposite sides of the DNA, additional twist deformation energy is required to bring the operators into

good registry for Lac repressor binding. Our results show that the phasing effect imposes an energy penalty

∆Floop that differs by only about 1.5 kBT between the in-phase and out of phase cases. An alternative
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interpretation of these same results on looping probability is offered by the J-factor for looping as shown in

figure 9.10.

To get a feel for the energy scale associated with twist deformations, we perform a simple estimate.

Twisting DNA for a torsional angle θ requires energy

∆Ft = kBTξtpθ
2/2L (9.6)

where ξtp is the torsional persistence length for double stranded DNA, which is around 250 bp [69–71]. L is

the DNA length. For half a helical turn twist, θ = π and L = 300 bp. The energy introduced for half a helical

turn is around 4.11 kBT . Our experimentally determined looping energy difference between in-phase and

out-of-phase DNA, about 1.5 kBT , is indeed comparable in magnitude to this estimate. Our simple estimate

is high, in part because it neglects the fact that in addition to twisting, a loop can writhe to accommodate a

non-ideal operator phasing. Additionally, the observed small magnitude of our observed phasing modulation

may reflect partially canceling out-of-phase contributions of different topologies [40], not a low free energy

cost for twisting. Finally, the Lac repressor itself is flexible, and so can partially compensate for non-ideal

phasing.

9.2.2.2 Sub-persistence length loops

One of the intriguing facts about the architecture of regulatory motifs that involve DNA looping is that

often the loops formed in these systems have DNA lengths that are considerably shorter than the persistence

length of DNA (i.e., 150 bp). For example, in the lac operon, one of the three wild-type loops has a length of

92 bp. However, this trend goes well beyond the lac operon as is seen for a variety of different architectures

found in E. coli, for example [2]. As a result, it is of great interest to understand the interplay between

transcriptional regulation and corresponding mechanical manipulations of DNA this implies.

So far, we have considered loops that are roughly twofold larger than the persistence length through

our investigation of one full helical repeat between 300 and 310 bp. To begin to develop intuition for the

mechanism of loop formation in the extremely short loops exhibited in many regulatory architectures, we

have examined three different lengths: 89, 94 and 100 bp. One of the reasons that the examination of these

loops is especially important is that it has been speculated that the in vivo formation of these loops either

requires special supercoiling of the DNA or the assistance of helper proteins that prebend the DNA [2].

However, as indicated by the TPM results shown in figure 9.7(B), even in our controlled in vitro setting,

where neither of these mechanisms can act, Lac repressor is nevertheless able to form DNA loops. The

essence of these experiments is identical to those described earlier in the paper except that now the overall

tether lengths are shorter so as to ensure that the loops are detectable. (Representative TPM trajectories

for these lengths are shown in the Supporting Information.) It is clear from the histograms that of the

three lengths we have investigated, loop formation is most favorable at 94 bp. Interestingly, it also appears

that different loops are being formed for the in-phase and out-of-phase cases as evidenced by the changes of
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relative strengths among the looping peaks for the different constructs. The looping free energy and J-factor

for looping for these short constructs are shown in figures 9.9(A) and 9.10(A).

9.2.3 Analysis of the TPM experiment

Both the observed length and sequence dependence of the formation of a repression complex are intriguing

from the perspective of DNA mechanics. In particular, DNA is not a passive mechanical bystander in the

process of transcriptional regulation. To better understand the experiments carried out here and how they

might shed light on the interplay of transcription factors and their target DNA, we have appealed to two

classes of models: i) statistical mechanics models of the probability of DNA-repressor complex formation

which depends upon the looping free energy (these models were invoked earlier in the paper to determine

the looping free energy) and ii) Monte Carlo simulations of the TPM experiment itself which include the

energetics of the bent DNA and excluded volume interactions of the bead with the coverslip. Our Monte

Carlo calculations allow us to compute how easily loops form, based on a mathematical model of DNA

elasticity. For illustration, we have chosen a linear-elasticity model, that is, a model in the class containing

the wormlike chain, but any other elastic theory of interest can be used with the same calculation strategy.

Details of these calculations appear in [40].

One of the puzzles that has so far been unresolved concerning DNA mechanics at short scales is whether in

vivo and in vitro experiments tell a different story. In particular, in vivo experiments, in which repression of

a given gene is measured as a function of the interoperator spacing [12, 13], have the provocative feature that

the maximum in repression (or equivalently the minimum in looping free energy) correspond to interoperator

spacings that are shorter than the persistence length. Some speculate that this in vivo behavior results from

the binding of helper proteins such as the architectural proteins HU, H-NS or IHF [2, 13, 14] or the control

of DNA topology through the accumulation of twist. In the TPM measurements reported here, there are

neither architectural proteins nor proteins that control the twist of the DNA. As a result, these experimental

results serve as a jumping off point for a quantitative investigation of whether DNA at length scales shorter

than the persistence length behaves more flexibly than expected on the basis of the wormlike chain model.

To address this question, we performed a series of simulations of the probability of DNA looping for short,

tethered DNAs like those described here using, a variant of the wormlike chain model to investigate the

looping probability. Our theoretical model used no fitting parameters; the few parameters defining the

model were obtained from other, non-TPM, experiments.

The fraction of time spent in the looped configuration is controlled by several competing effects. For

example, suppose that a repressor tetramer is bound to the stronger operator, Oid. Shortening the interop-

erator spacing reduces the volume over which the other operator (O1) wanders relative to the second binding

site on the repressor, increases the apparent local “concentration” of free operator in the neighborhood of

that binding site, and hence enhances looping. But decreasing the interoperator spacing also has the opposite

effect of discouraging looping, due to the larger elastic energy cost of forming a shorter loop. Moreover, a



268

shorter overall DNA construct increases the entropic force exerted by bead–wall avoidance, again discour-

aging looping [72]. To see what our measurement of this looping equilibrium tells us, we therefore needed

to calculate in some detail the expected local concentration of operator (the “looping J factor”) based on

a particular mathematical model of DNA elasticity. Traditionally, DNA has been modeled mathematically

as a thin, elastic solid body with a classical Hooke-law elastic energy function. Because classical elasticity

theory assumes that energy is a quadratic (“harmonic”) function of strain, such models are collectively called

“harmonic-elasticity” models; one example is the wormlike chain model. Accordingly, we used a harmonic-

elasticity model, to see if it could adequately explain our results, or if, on the contrary, some non-harmonic

model (for example the one proposed in [73, 74]) might be indicated.

To perform the required calculation, we modified the Gaussian sampling method previously used in

[72, 75–77] (see section S6 and [40]). Our code generated many simulated DNA chains, applied steric

constraints [72], and reported what fraction of accepted chain/bead configurations had the two operator

sites at the correct relative position and orientation for binding to the tetramer, which was assumed to be

rigidly fixed in the form seen in PDB structure 1LBG [78]. Once this fraction has been computed, it is

straightforward to relate it to the looping J factor [40]. Note that the beauty of the looping J factor is that

it is independent of the particular binding strengths of the different operators. To generate the simulated

chains, we assumed a linear (harmonic, or wormlike-chain type) elastic energy function at the junctions in

a chain of finite elements. Our energy function accounted for the bend anisotropy and bend–roll coupling

of DNA, and yielded a value for the persistence length ξ = 44 nm appropriate for our experiment’s buffer

conditions [79, 80]. Our model did not account for sequence dependence. We assume that this simplification

is appropriate for comparison to our experimental results for the case of the 300 bp constructs and the 90 bp

constructs with the sequence E8, but not with the sequence TA. The simulation treated the bead and the

microscope slide as hard walls and accounted for bead–wall, bead–chain and wall–chain avoidance; we did

not consider any interactions involving the repressor tetramer other than binding.

The symmetry of each LacI dimer implies four energetically equivalent ways for the two operators to

bind when forming a loop, and hence four topologically distinct loop configuration classes [36–40]. We

first asked whether this multiplicity of looped states could explain the general structure of the excursion

distributions seen in figure 9.7. Accordingly, we made histograms of the distance between wall attachment

point and bead center for our simulated chains. Figure 9.11 shows a subset of the same experimental data

seen in figure 9.7, together with the simulation results. Although the correspondence is not perfect, it is

clear that the simple physical model of looping outlined above can account for many features of the data,

for example the locations of the looped peaks and their relative strengths, including the variation as loop

length is changed. We acknowledge that we have no definitive reply to the argument that the apparent direct

transitions between the B and M peaks of our distributions seem to require an open-to-closed conformational

switch in the tetramer [27]. We merely point out that the existence of three peaks in the distribution, with

the the observed locations, is not by itself conclusive evidence of such a switch. (Indeed, Villa et al. have
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argued that the opening transition does not occur [81].)

We were also interested to see if the high incidence of looping observed in our experiments on short (sub-

persistence-length) loops was compatible with the hypotheses of harmonic DNA elasticity and fixed repressor

geometry, or if on the contrary it demanded some modification to those hypotheses. Accordingly, we asked

the simulation to compute the average J factor for loop lengths near 305 bp, and also for loop lengths near

95 bp. As discussed in reference [40], the result of the simulation was that the ratio of these quantities is

J̄loop(95 bp)/J̄loop(305 bp) ≈ 0.02. In contrast, figure 9.10 shows that the experimental ratio is ≈ 0.35± 0.1,

roughly 20-fold larger than the theoretical value. Our experimental results and those interpolated from our

MC calculations for J̄loop as a function of loop length are shown in figure 9.12.

We conclude that the hypotheses of linear elasticity, a rigid protein coupler and a lack of non-specific

DNA–repressor interactions cannot explain the high looping incidence seen in our experiments. (Special

DNA sequences loop even more easily than the random sequences reported here.) One possible explanation,

for which other support has been growing, is the hypothesis of DNA elastic breakdown at high curvature

[73, 74, 82]. An alternative hypothesis is that for our shorter loops, both the lower and the intermediate

peaks in our distributions of bead excursion correspond to the some alternative, “open” conformation of the

repressor tetramer [36, 37, 46, 83–86]. To be successful, however, this hypothesis would have to pass the

same quantitative hurdles to which we subjected our hypotheses.

9.3 Discussion

The regulatory regions on DNA can often be as large as (or even larger than) the genes they control. The

relation between the biological mechanisms of transcriptional control and the physical constraints put on

these mechanisms as a result of the mechanical properties of the DNA remains unclear. One avenue for

clarifying action at a distance by transcription factors is systematic single-molecule experiments, which

probe the dynamics of loop formation for different DNA architectures (i.e., different sequences, different

transcription factor binding strengths, different distances between transcription factor binding sites) to

complement systematic in vivo experiments that explore these same parameters. In this paper, we have

described an example of such a systematic series of measurements, which begins to examine how the formation

of transcription factor-DNA complexes depend upon parameters such as transcription factor concentration

and the length of the DNA implicated in the complex.

In the case of the lac operon, our in vitro measurements demonstrate that the formation of the looped

repressor-DNA complex does not require any helper proteins, nor does it call for supercoiling of the DNA

(as appears to be required in other bacterial regulatory architectures [6, 7]). Further, we find that even in

the absence of these mechanisms, which can only enhance the probability of loop formation, the formation

of DNA loops by Lac repressor occurs more easily than would be expected on the basis of traditional views

of DNA elasticity. A summary of the various measurements of short-length DNA cyclization and looping
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is shown in figure 9.12. The idea of this figure is to present the diversity of data that weighs in on the

subject of short-length DNA elasticity. In particular, several sets of controversial measurements on DNA

cyclization present different conclusions on the ease of this process at lengths of roughly 100 bp. Note that

in addition, we have included both the theoretical cyclization J-factor and looping J-factor. The looping

J-factor reveals that because of the less restrictive looping geometry (end points are not at same point in

space and the tangents are not constrained to be equal), looping costs less free energy than does cyclization.

TPM experiments like those presented here offer another avenue to resolve this issue, one that does not

involve the complex ligase enzyme, the need to ensure a specific kinetic regime, nor other subtleties of the

ligation reaction inherent in cyclization measurements. However, as seen in the figure, even here there are

unexplained discrepancies between different TPM experiments which call for continued investigation. One

observation from our own work that could have an important bearing on the differences in TPM results

between different groups is that there is a substantial temperature dependence to the looping probabilities

and different groups may be working at different temperatures.

Several intriguing mysteries remain which demand both further experimentation as well as theoretical

analysis, e.g.: i) Why are the probabilities of DNA loop formation systematically higher than would be

expected on the basis of traditional arguments about DNA elasticity, and ii) what is the significance of

three repressor binding sites in the wild-type lac operon? To explore these questions, TPM experiments

with different DNA sequences between the two operators, as well as with Lac repressor mutants that are

less flexible, would go a long way towards clarifying the mechanisms at work and would provide a basis for

examining the even richer action at a distance revealed in the eukaryotic setting.

9.4 Materials and Methods

9.4.1 Plasmid DNAs

Plasmid DNAs, bearing two Lac repressor binding sites spaced at a designed distance, are created using a

point mutation method (QuikChange site-directed mutagenesis, Stratagene) on plasmid pUC19. Plasmid

pUC19 was chosen as a starting template because it is not only a high copy plasmid but also contains two Lac

repressor binding sites: O1 and O3. The procedure for creating two binding sites separated by the desired

distance from template pUC19 is illustrated in figure 9.13(A). We first mutate six basepairs in the O3 site

converting it to O3∗ in a way that eliminates the binding affinity for this site [87]. The resulting plasmid is

called pUC19O1 indicating it only has a single O1 site. To construct another binding site on the pUC19O1

plasmid, we replace 20bp with the Lac repressor binding sequence Oid at a series of locations differing by

1bp increments in their distance from O1 using the mutagenesis method again. For some of the secondary

site construction, we have to use either deletion or addition from already made plasmids with two designed

binding sites. The details on primers and templates used in this process are listed in table 9.2. The final

product contains two binding sites O1 and Oid spaced at the desired distance.
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The short-loop DNA (89, 94 and 100 bp) was constructed in the following way. Plasmid pZS22-YFP

was kindly provided by Michael Elowitz. The main features of the pZ plasmids are located between unique

restriction sites [88]. The YFP gene comes from plasmid pDH5 (University of Washington Yeast Resource

Center [89]).

A variant of the lacUV5 promoter [11] was synthesized and placed between the EcoRI and XhoI sites of

pZS22-YFP in order to create pZS25’-YFP. This promoter included the -35 and -10 regions of the lacUV5

promoter, an AseI site between the two signals and a O1 operator at position -45 from the transcription

start as shown in figure 9.14(A).

The random sequence E8-89 [35] was obtained by PCR from a plasmid kindly provided by Jonathan

Widom. The primers used had a flanking AatII site and Oid operator upstream and a flanking O1 operator,

-35 region and AseI site downstream. This PCR product was combined with the appropriate digest of pZS25’-

YFP to give raise to pZS25’Oid-E89-O1−45-YFP. This is shown schematically in figure 9.14(B). Finally, the

different lengths used by Cloutier and Widom [4, 35] were generated from this template using site directed

mutagenesis.

9.4.2 Construction of labeled DNAs

In TPM experiments, DNA is linked between the substrate and a bead. Two pairs of linkers: biotin-

streptavidin and digoxigenin-anti-digoxigenin, are chosen to permit specific linkage of the DNA to a polystrene

microsphere and glass coverslip, respectively. As illustrated in figure 9.13(B), PCR was used to amplify such

labeled DNA with two modified primers. Each primer is designed to be about 20 bp in length and linked

with either biotin or digoxigenin at the 5’ end (Eurofins MWG Operon). In the case of the long sequence

constructs, in order to optimize the PCR reaction linearized plasmids with an AatII cut are used as the

template. Detailed information concerning the design of our PCR reactions is listed in table 9.3 and the

constructs are shown schematically in figure 9.15. The PCR products were then purified by gel extraction

(QIAquick Gel Extraction Kit, QIAGEN) and the concentration of the DNA was measured using quantitative

DNA electrophoresis.

9.4.3 TPM sample preparation

TPM sample preparation involves assembly of the relevant DNA tethers and their associated reporter beads.

Streptavidin-coated microspheres (Bangs lab) of diameter 490 nm served as our tethered particle. Prior to

each usage, a buffer exchange on the beads was performed by three cycles of centrifugation and resuspension

in TPB buffer (20 mM Tris-acetate, pH=8.0, 130 mM KCl, 4 mM MgCl2, 0.1 mM DTT, 0.1 mM EDTA,

20 µg/ml acetylated BSA (Sigma-Aldrich), 80 µg/ml heparin(Sigma-Aldrich) and 0.3% biotin-free casein.

Biotin-free casein colloidal buffer (5% casein colloid with 0.001% Merthiolate, RDI, Flanders, NJ) was used

as a cassein source. This combination of reagents was chosen in an attempt to maximize sample yield and

longevity, while minimizing non-specific adsorption of DNA and microspheres onto the coverslip.
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Tethered particle samples were created inside a 20–40 µl flow cell made out of a glass slide with one

hole near each end, glass coverslip, double-sided tape and tygon tubing. The coverslip and glass slide were

cleaned with plasma cleaning for 4 minutes and then the flow cell was constructed as shown in figure 9.16(A).

Two tygon tubes serving as an input and output were inserted into the holes on the glass slide and sealed

with epoxy. A reaction chamber was created by cutting a channel on the double-sided tape, which glues

the coverslip and glass slide together. Making the end of the channel round and as close to the holes of the

glass slide as possible is important to avoid generating bubbles. The flow cell was then heated for about 20

seconds to seal securely.

For DNA tether assembly, the flow chamber was first incubated with 20 µg/mg polyclonal anti-digoxigenin

(Roche) in PBS buffer for about 25 minutes, and then rinsed with 400 µl wash buffer (TPB buffer with no

casein) followed by 400 µl of TPB buffer. 250 µl of labeled DNA in TPB buffer with about 2 pM concentration

was flushed into the chamber and incubated for around 1 hour. After washing with 750 µL TPB buffer to

remove any unbound DNA, a 10 pM solution of beads were introduced into the chamber and incubated for 20

minutes. Finally, unbound microspheres were removed by flushing the chamber with 1 mL TPB buffer. For

looping experiments, 0.5 mL∼ 1 mL LRB buffer (10 mM Tris-Hcl, pH 7.4, 200 mM KCl, 0.1 mM EDTA, 0.2

mM DTT, 5% DMSO and 0.1% biotin-free casein) containing the desired concentration of Lac repressor (a

kind gift from Kathleen Matthews’ lab) was then flushed into the chamber and incubated about 15 minutes

before observation. Although we were able to measure the overall concentration of Lac repressor used in the

experiments, the more important quantity is the concentration of active repressor which we were unable to

successfully measure other than through the looping assay itself. Each flow cell preparation would typically

allow to acquire data on ten tethers.

9.4.4 Data acquisition and processing

The motion of the bead is recorded through a Differential Interference Contrast (DIC) microscope at 30

frames per second. The position of the bead is tracked in the x-y plane using a cross-correlation method

[90] and recorded as raw data for further analysis. Such raw positional data are subject to a slow drift

due to vibrations of the experimental apparatus. A drift correction is then applied using a high pass first-

order Butterworth filter at cutoff frequency 0.1Hz [25]. From the filtered data, R2(t) is then calculated as

x(t)2 +y(t)2 and a running average
√
< R2(t) > is obtained using a Gaussian filter at cutoff frequency 0.033

Hz [25, 91], which corresponds to the standard deviations of the filter’s impulse response time of 4 s. The

traces shown in this paper are all obtained in this way.
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Figure 9.1: Different representations of TPM data. (A) Schematic of the TPM experiment. (B) Scatter
plot of drift-corrected positional data. Each dot corresponds to the instantaneous projected position of the
bead at a particular instant in time. (C) Running average of Gaussian filtered RMS motion over an effective
window of 4 seconds. R is the distance from the bead center (dots in panel (B)) to the tether attachment
point (centroid of all dots in panel (B)). Red (solid) and green (dashed) lines represent naively expected
motion, based on calibration measurements [92] in the absence of any DNA binding protein, for 901 bp
DNA and an imagined DNA for which 305+20.5 bp (the center to center distance between operators) are
subtracted off of the full length 901 bp tether. (Figure 9.11 gives a more precise prediction of the expected
excursions in looped states.) (D) Histogram of the RMS motion. Different peaks correspond to looped
(labeled B, bottom, and M, middle) or unlooped (labeled U) states. The lines shown here are the same as
those shown in (C). The presence of Lac repressor results in a shift of the excursion of the unlooped state
with respect to the excursion expected from the protein-free calibration curve. This is reflected in the fact
that the U peak does not coincide with the red line. The DNA used here is pUC305L1 (see Materials and
Methods section) with 100 pM Lac repressor. A detailed discussion of how to go from microscopy images of
beads to traces and histograms like those shown here is given the Supporting Information.
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Figure 9.2: States and weights for the Lac repressor-DNA system [43]. Each of the five state classes shown
in the left column has a corresponding statistical weight given by the product of the Boltzmann factor and
the microscopic degeneracy of the state. All of the weights have been normalized by the weight of the
state in which the DNA is unoccupied. State (v) is treated as a single looped state, even though there are
multiple distinct looped configurations. The third column shows how to write these statistical weights in the
language of equilibrium constants and J-factors. The derivation of these weights and the relation between
the statistical mechanical and thermodynamic perspectives can be found in the Supporting Information.
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Figure 9.5: Schematic showing the different looping topologies associated with binding of Lac repressor.
(A) Orientation of the two operators on the DNA. Choice of labeling orientation is arbitrary. (B)–(E) two
parallel (P1 and P2) and antiparallel (A1 and A2) orientations of the DNA when subjected to Lac repressor
mediated looping. We adopted the naming conventions given in references [37, 38].
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probabilities of the five classes of microscopic states used in the statistical mechanics model based upon
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experiments in the remainder of the paper are performed.
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magnitude. For more information see Supporting Information.

Sequence length (bp) Sequence length (bp)

Lo
op

in
g 

en
er

gy
 (k

B
T)

Lo
op

in
g 

en
er

gy
 (k

B
T)

A B

300 302 304 306 308 310
16.5

17

17.5

18

18.5

19

19.5

89 94 100
16.5

17

17.5

18

18.5

19

19.5

Figure 9.9: Length dependence of free energy of looping, defined via equation 9.1 with choice of reference
concentration 1 M. (A) Looping free energy for short constructs. (B) Looping free energy for a full helical
repeat.

89 94 100

10-9

10

10

Sequence length (bp)

J e
ff 

(M
)

300 302 304 306 308 310

10-9

10

10

Sequence length (bp)

J e
ff 

(M
)

-8

-7

-8

-7

A B
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Figure 9.14: Promoter regions of the different short loop constructs. (A) Promoter region of pZS25-YFP
which has a variant of the lacUV5 promoter and an O1 operator upstream overlapping the -35 region. (B)
Final construct that allows to insert arbitrary DNA sequences between a Oid and O1 operators.
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Tables

Table 9.1: Results from the LacI titration experiments.
Parameter Non-linear fit Linear fit Literature value
Jloop 8.6± 6.3 nM 52± 40 nM See figure 9.12

∆Floop 18.6± 0.7 kBT 16.8± 0.8 kBT N/A
K1 0.49± 0.45 nM 3.0± 2.5 nM 10 ∼ 22 pM [31, 58–63]
∆ε1 −20.0± 0.9 kBT −18.2± 0.8 kBT −23.2 ∼ − 24.0 kBT
Kid 0.2± 2.3 pM N/A 2.4 ∼ 8.3 pM [93]
∆εid −28± 9 kBT N/A −24.1 ∼ − 25.4 kBT

The probability of looping as a function of Lac repressor concentration shown in figure 9.4 was fitted to the
two non-linear models from equations 9.1 and 9.2. Both models were fit independently as a ways to check
the robustness of the least-squares methods with respect to data reparametrization. A subset of the data
corresponding to concentrations of LacI 10 pM and higher is fitted to the linear model shown in
equation 9.4 and its statistical mechanics counterpart. See section S4 in the Supporting Information for a
discussion of the different data fitting approaches. The literature values of the dissociation constants for
O1 and Oid correspond to bulk binding assays performed in concentration ranges close to our TPM buffer
conditions. The corresponding values for the binding energies of these operators are obtained from the
dissociation constants using equations 9.11 and 9.17.
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Table 9.2: Materials used in the mutagenesis process for creating plasmids with two Lac repressor binding
sites.

Molecule Primer Template Action Resulting Molecule
pUC19O1 Mut0 pUC19 Replace O1
pUC300 Mut1 pUC301 Delete 1bp O1-300bp-Oid
pUC301 Mut2 pUC19O1 Replace O1-301bp-Oid
pUC302 Mut3 pUC19O1 Replace O1-302bp-Oid
pUC303 Mut4 pUC19O1 Replace O1-303bp-Oid
pUC304 Mut5 pUC19O1 Replace O1-304bp-Oid
pUC305 Mut6 pUC19O1 Replace O1-305bp-Oid
pUC306 Mut7 pUC19O1 Replace O1-306bp-Oid
pUC307 Mut8 pUC19O1 Replace O1-307bp-Oid
pUC308 Mut9 pUC19O1 Replace O1-308bp-Oid
pUC309 Mut10 pUC308 Add 1bp O1-309bp-Oid
pUC310 Mut11 pUC308 Add 2bp O1-310bp-Oid

Primer sequences(5’ -> 3’):

Mut0: ctaactcacattaattgcgttgAgctcGAGgTTcgctttccagtc

Mut1: catacgagccggaa (G) cataaagtgtaaagc

Mut2: ctcggaaagaaca AATTGTGAGCGCTCACAATT aaggccaggaacc

Mut3: ctcggaaagaacat AATTGTGAGCGCTCACAATT aggccaggaaccg

Mut4: cggaaagaacatg AATTGTGAGCGCTCACAATT ggccaggaaccgt

Mut5: ggaaagaacatgt AATTGTGAGCGCTCACAATT gccaggaaccgta

Mut6: gaaagaacatgtg AATTGTGAGCGCTCACAATT ccaggaaccgtaa

Mut7: cggaaagaacatgtga AATTGTGAGCGCTCACAATT caggaaccgtaaaaag

Mut8: ggaaagaacatgtgag AATTGTGAGCGCTCACAATT aggaaccgtaaaaagg

Mut9: gaaagaacatgtgagc AATTGTGAGCGCTCACAATT ggaaccgtaaaaaggc

Mut10: catacgagccggaag [C] cataaagtgtaaagc

Mut11: catacgagccggaag [CG] cataaagtgtaaagc

The capital letters in the primer sequences indicate the mutations. “()” indicates bp deletion and “[ ]”
indicates bp addition. The inter-operator distance indicated here is the distance between two inner edges of
the operators instead of the center-to-center distance that is commonly used in in vivo experiments
[12–14, 87, 94].
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Table 9.3: Materials used in amplifying labeled DNA using PCR.
Molecule Template Length(bp) Resulting

pUC300L1 pUC300 900 Dig - 427bp-O1-300bp-Oid-132bp - Bio
pUC301L1 pUC301 901 Dig - 427bp-O1-301bp-Oid-132bp - Bio
pUC302L1 pUC302 901 Dig - 427bp-O1-302bp-Oid-131bp - Bio
pUC303L1 pUC303 901 Dig - 427bp-O1-303bp-Oid-130bp - Bio
pUC304L1 pUC304 901 Dig - 427bp-O1-304bp-Oid-129bp - Bio
pUC305L1 pUC305 901 Dig - 427bp-O1-305bp-Oid-128bp - Bio
pUC306L1 pUC306 901 Dig - 427bp-O1-306bp-Oid-127bp - Bio
pUC307L1 pUC307 901 Dig - 427bp-O1-307bp-Oid-126bp - Bio
pUC308L1 pUC308 901 Dig - 427bp-O1-308bp-Oid-125bp - Bio
pUC309L1 pUC309 902 Dig - 427bp-O1-309bp-Oid-125bp - Bio
pUC310L1 pUC310 903 Dig - 427bp-O1-310bp-Oid-125bp - Bio

E8-89 pZS25’Oid-E89-O1−45-YFP 445 Dig - 144bp-Oid-89bp-O1-171bp - Bio
E8-94 pZS25’Oid-E94-O1−45-YFP 450 Dig - 144bp-Oid-94bp-O1-171bp - Bio
E8-100 pZS25’Oid-E100-O1−45-YFP 456 Dig - 144bp-Oid-100bp-O1-171bp - Bio

Primer sequences(5’ -> 3’):

Plen901F: Dig - ACAGCTTGTCTGTAAGCGGATG

Plen901R: Bio - CGCCTGGTATCTTTATAGTCCTGTC

PF1: Dig - ATGCGAAACGATCCTCATCC

PR1: Bio - GCATCACCTTCACCCTCTCC

The inter-operator distances indicated here are the distance between two inner sides of the operators
instead of center-to-center distance. Primers Plen901F and Plen901R were used for the long distance
constructs. Primers PF1 and PR1 were used for the short distance constructs.
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9.5 Supporting Information

9.5.1 Bead selection, data rejection and “representative data”

One of the most important challenges of these experiments (and perhaps any single-molecule experiment

based upon watching the motions of beads tethered to single molecules) is devising systematic methods

for deciding which beads are “qualified” and how to reject trajectories that are anomalous without biasing

the results [18–20, 75]. To that end, we have attempted to institute a number of criteria for performing

data selection that are indicated schematically in figures 9.17 and 9.18. The first attempt to “objectively”

select qualified beads takes place by excising segments of the traces corresponding to the unlooped state and

examining whether their motions are symmetric (i.e., jiggle in the x- and y- directions in the same way) as

evidenced by the probability distribution for the x- and y- excursions. This screening permits us to select

beads within a given field of view that are ostensibly properly tethered. Examples of these selection criteria

are shown in figure 9.17 for the particular case where no protein is present. Typically, a fraction of roughly

20 ∼ 30% of the beads are rejected as a result of failure to exhibit proper symmetry or because they are

stuck.

A more tricky question arises when we have to assess whether something went wrong during data acqui-

sition that requires either all or part of a given TPM trajectory to be rejected. In some cases, the offending

behavior is evident at the level of the bare images of the jiggling beads. For example, a given bead can

become stuck to the surface or the DNA can break and the bead will disappear from the field of view. These

events have a signature of spikes in the RRMS traces as shown in figure 9.18.

Figure 9.18 also shows an example of data that was kept with an offending region highlighted that was

removed. Note that if the spike regions in trajectories were actually kept, it would have no bearing on

histograms like those shown in figures 9.3 and 9.7 since the spikes will show up as features on the tails

of the histograms. On the other hand, by excising certain pieces of trajectories, there can be some effect

on the kinetic claims we would be able to make since these anomalies will cause errors in the dwell time

measurements.

In none of the cases considered in this work were sticking events observed in any significant number.

Assuming that sticking is mainly due to nonspecific interactions with the bead and the surface one would

expect the shorter constructs to show the most sticking events. In order to control for this we performed TPM

experiments using tethers of 351 bp in length in the absence of Lac repressor. This length is comparable

to the length the short constructs (E889, E894 and E8100) would have if the sequence between the lac

operators was removed. Out of 18 tethers characterized only 5 showed any sticking events. In those 5 traces,

the sticking events corresponded to less than 4 % of the observation time for each bead (data not shown). In

order to discard any contribution to the sticking events from the presence of the protein, Lac repressor was

flowed in in the presence of 1 mM IPTG which serves to eliminate the binding of Lac repressor to the DNA

(or at least drastically reduce it). The goal of this control is to see whether the presence of unbound protein
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Figure 9.17: Conceptual description of data selection. All traces in this case are taken in the absence of
Lac repressor and are used as the basis of choosing qualified beads for the looping study. (A) Experimental
traces for a bead exercising symmetric motion (blue) and for a stuck bead (green). (B) Trajectory for a
bead that exhibits non-symmetric motion. (C) Trajectory for a bead that exhibits a transient sticking event.
(D) Positional data for a bead that exhibits symmetric motion. (E) Positional data corresponding to the
trajectory shown in (B) and for which the motion is not symmetric.
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Figure 9.18: Transient sticking events and tether breaking. (A) A transient sticking event is revealed by a
dramatic reduction in the movement of the bead and is associated with a spike in the RRMS trace. These
“offending” regions of the traces can be excised out and will not affect the resulting histogram, but might
present an issue for any kinetic analysis as discussed in the text. (B) Signature of a tether breaking. Each
movie frame is rescaled based on its maximum and minimum pixel value, which leads to overall differences
in intensity between frames.

somehow induces unwanted sticking events. Out of the 7 tethers characterized all showed sticking events,

but these corresponded to less than 1% of the time. Finally, there is still the chance that Lac repressor that

is specifically-bound to the tether might contribute to sticking. In order to test this hypothesis we used

a construct of this length with only one binding site. Here too (data not shown), there was no significant

sticking lending further support for the idea that even for the short tethers, we are able to detect looping.

In order to produce histograms like those shown in figures 9.3 and 9.7 we have to sum over the histograms

resulting from many individual trajectories. Figure 9.1 shows the connection between an individual TPM

trace for a single bead and its corresponding motion histogram. However, since each trajectory has its own

unique features, it is of interest to see how the smoothed histogram resulting from many individual trajectories

emerges from the averaging process. Figure 9.19 shows the motion histogram obtained by averaging over

the histograms from progressively larger numbers of individual trajectories.
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numbers of beads in determining the overall average. Data obtained with pUC306L1 DNA in the presence
of 10 pM Lac repressor.
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Figure 9.20: Concentration dependence of TPM trajectories. Representative examples of TPM trajectories.
Typical TPM trajectories of the DNA tethered beads in the presence of different concentrations of Lac
repressor varying from 1 pM to 100 nM. The total DNA length is 901 bp and the interoperator spacing is
306 bp.

Now that we have seen some of the pitfalls associated with TPM trajectories, we show “representative”

examples of the individual trajectories culminating in figures 9.3 and 9.7. Figure 9.20 shows multiple examples

of trajectories resulting from different concentrations of Lac repressor. Even at the level of visual inspection

of these individual trajectories, it is evident that there are two distinct looping states and that the relative

occupancies of the different looped and unlooped states depend upon the concentration of repressor. Similar

results are shown in figures 9.21 and 9.22 which illustrate multiple individual trajectories for the case in

which the interoperator spacing (rather than the Lac repressor) concentration is the experimental dial that

we tune to vary the looping stability.

9.5.2 Data analysis and probabilities calculation

The data shown in figures 9.3 and 9.7 characterizes the results of many different TPM trajectories for

each condition (Lac repressor concentration or interoperator spacing). We are interested in obtaining the

probabilities associated with each state and to that end, we have tried a variety of different approaches to

examine the sensitivity of the results to method of data analysis.

The first analysis we explored is based on directly looking at histograms such as those shown in figures 9.3

and 9.7. As mentioned in the main text, these histograms are the result of adding up the normalized

contribution from each bead. One scheme for carrying this out is to fit the histogram to the sum of three

Gaussians. The idea of such a fit is that there is a main peak associated with the unlooped state and then
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Figure 9.21: Length dependence of TPM trajectories. Typical TPM trajectories of the DNA tethered beads
with interoperator spacing from 300 to 310 bp in 1 bp increments. The concentration of Lac repressor used
in this set of experiments was 100 pM. The distance between the two operators is indicated in the naming
of the construct.
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Figure 9.22: Typical TPM trajectories for DNA tethered beads with interoperator spacing of 89 bp, 94 bp and
100 bp. E8 refers to the particular sequence used in these experiments. The concentration of Lac repressor
used to generate these trajectories is 100 pM. The red and green lines indicate the expected excursion for
the unlooped and looped states, respectively, where the expected length of the looped state is based upon
subtracting the interoperator spacing from the overall tether length.
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two separate looping peaks, each of which is fit with its own Gaussian. With the fitting results in hand the

area under each Gaussian can be computed, which leads to a probability assignment. We call this scheme

“Gaussian Integral”.

An alternative scheme is to define thresholds between the different states. The bins on either side of

the thresholds are then added, giving the different probabilities. We explore two ways of calculating the

thresholds: i) Finding the minimum between adjacent Gaussians from the fit described previously (“Gaussian

Minimum”), and ii) finding the minimum in the histograms between peaks (“Histogram Minimum”).

Finally, we have also explored the use of alternatives such as the Diffusive Hidden Markov Model

(“dHMM”). The Diffusive Hidden Markov Model (DHMM) method is applied to do the kinetic analy-

sis [95, 96] and for our present purposes permits us a different way to determine the looping probability by

telling us the fraction of time spent in each of the distinct states. This method employs the concept of HMM

and customizes it in a way suitable for TPM data, through which the rate constants are directly derived

from the positional data obtained in the TPM experiments. To characterize the dynamical information of

the beads in each state, control experiments are performed in the following ways: i) To obtain the informa-

tion for the unlooped state, the bead’s motion is observed in the absence of the DNA looping protein Lac

repressor. ii) For the looped state, we monitor the bead’s motion in the presence of a Lac repressor mutant

V52C instead of Lac repressor itself. This mutant is designed to permit disulfide bond formation, which

makes important contacts that are critical to DNA binding. As a result, V52C has increased affinity for

DNA operators [97], leading to a measurement of primarily looped states. Such data containing only one

type of looped state is selected to obtain the information that serves as input to the HMM model. One of

the outcomes of the HMM analysis is an explicit statement about the amount of time spent in each of the

states which can be used in turn to compute the looping probability.

One argument against the previously mentioned schemes is that they do not capture the variability

inherent in single molecule experiments. Each tether will behave in a slightly different way, as is illustrated

in figure 9.23 for construct pUC300L1. Notice that even though the two looped states were overlapping in

figure 9.7 they are discernable in most individual traces. Figure 9.23(F) also shows a case where no call on

the identity of the looped state could be made. For the long length constructs where this happened only a

small fraction of the beads, between 2% and 6% would show this type of histogram. Identification of the

individual loops becomes more problematic in the short length constructs. In this case around 10% of the

beads would show this behavior.

The looping probabilities obtained using all these methods are shown in figure 9.24. We conclude that

there is no significant variation in the results from any of the different approaches. In section 9.5.4 we

show that the quantitative parameters extracted from these different looping probabilities do not differ

significantly. Finally, figures 9.25 and 9.26 show the looping probability for each individual state in the cases

where both states were discernible. Ultimately, it would be of great interest to use experiments like those

described here to determine the looping free energies (or Jloops for the different states. This is presented in
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Figure 9.23: Rogues gallery of individual bead histograms. Three Gaussian fit to individual bead traces
corresponding to the pUC300L1 construct. The vertical dashed lines correspond to the locations of the
peaks as revealed by a three Gaussian fit to the corresponding histogram of figure 9.7. The black dashed line
are the individual Gaussians, while the solid red line is their sum. (A–E) The peaks are labeled B (bottom
loop), M (middle loop) and U (unlooped state). In the small fraction of cases that no decision about the
identity of the looped state could be made the label L (looped state) is used.

section 9.5.5.

9.5.3 Theoretical analysis of looping

Statistical mechanics provides a powerful tool for dissecting the DNA-protein interactions that take place

during transcriptional regulation. We find it convenient to derive the various expressions for binding proba-

bilities using simple lattice models of DNA binding proteins and their DNA targets. These models can then

be reinterpreted in the familiar language of equilibrium constants and effective J-factors. In this section, we

sketch the derivations of the formulae used in the main body of the paper. An alternative derivation appears

in [40].

9.5.3.1 Simple binding of Lac repressor

In a lattice model, we imagine the solution as discretized into a set of Ω boxes of volume v. The R repressors

are free to occupy any of these distinct boxes which provide a simple and convenient basis for computing

the entropic contribution to the overall free energy. A repressor in solution has an energy εsol which appears
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Figure 9.24: Different approaches for calculating the looping probability. The looping probability as a
function of (A) concentration and (B) sequence length, calculated using the approaches described in the
text.
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Figure 9.26: Individual loops vs. phasing. Probability of each looped state as a function of sequence length.
(A) Short loops, (B) a full cycle at 300 bp.



296

in the Boltzmann factor. The configurational degrees of freedom (both translational and rotational) in this

model are taken care of by assigning the molecules to one of the Ω boxes available in our lattice model of

the solution and by noting that there is a factor of 8π2

δω associated with its rotational degrees of freedom (4π

for the directions in which the molecule can point on the unit sphere and 2π for the rotation around the

protein’s axis). The partition function of R repressors in the solution is

Zsol =
(

Ω
R

)
e−βRεsol

(
8π2

δω

)R
. (9.7)

Now we introduce a DNA molecule with one binding site. This case is appropriate when LacI is in

excess of the DNA. When one Lac repressor from the solution binds to the operator it now has an energy

εb associated with the binding itself and a “tether” energy εt associated with the extra binding head that

is still in the solution. Next, we exploit the fact that we can choose either head to bind to the operator of

interest and this head can bind in two distinct orientations, yielding a factor of 4 degeneracy in this state.

The total partition function is

Z = Zsol(R) + 4Zsol(R− 1)e−β(εb+εt). (9.8)

This translates into the following probability of binding

pbound =
4 δω

8π2
R
Ωe
−β∆ε

1 + 4 δω
8π2

R
Ωe
−β∆ε

, (9.9)

where we have defined ∆ε = εb + εt − εsol.

We recover the usual formula when characterizing binding using dissociation constants

pbound =
[R]/Kd

1 + [R]/Kd
, (9.10)

if we make the identification

Kd =
1
4v

8π2

δω
eβ∆ε. (9.11)

With this result in hand we are ready to address the more complex case of DNA looping.

9.5.3.2 DNA looping by Lac repressor

We now have two operators, each one with a binding energy ε1 and εid, corresponding to the operators O1

and Oid, respectively. We consider the usual five classes of states that include: i) free operators, ii+iii) one

of the operators occupied, iv) both operators occupied by different LacI molecules, and v) LacI looping both
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operators, which can happen in multiple configurations. The partition function is

Z = Zsol(R) + 4Zsol(R− 1)e−βεt
(
e−βε1 + e−βεid

)
(9.12)

+16Zsol(R− 2)e−β(ε1+εid+2εt) +

+
∑
i

Zsol(R− 1)e−β(ε1+εid+Floop,i).

The factors of 4 in the second and third term correspond to the degeneracy described above. The factor of

16 in the fourth term accounts for all of the different ways of binding two repressors independently. Here we

defined Floop,i as the looping free energy associated with a particular configuration (orientation of operators

with respect to the molecule). The sum in the last term includes all four possible loop topologies [37, 47] and

the fact that we are thinking of the two binding heads of LacI as being distinguishable. Defining α and β as

state variables that describe the orientation of O1 and Oid with respect to the binding heads (see figure 9.5,

respectively, we can write the sum as ∑
i

=
∑

heads

∑
α,β

. (9.13)

The sum over the heads results in a factor of two, since none of the terms inside the sum actually depend

on that choice. We next define the overall looping energy ∆Floop by

e−β∆Floop =
1∑
α,β 1

∑
α,β

e−βFloop,α,β =
1
4

∑
α,β

e−β∆Floop,α,β . (9.14)

Using the calculations and definitions from section 9.5.3.1 we arrive at the looping probability

ploop =
[
8
R

Ω
δω

8π2
e−β(∆ε1+∆εid+∆Floop+2εt−εsol)

]
(9.15)[

1 + 4
R

Ω
δω

8π2

(
e−β∆ε1 + e−β∆εid

)
+ 16

R(R− 1)
Ω2

(
δω

8π2

)2

e−β(∆ε1+∆εid)+

8
R

Ω
δω

8π2
e−β(∆ε1+∆εid+∆Floop+2εt−εsol)

]−1

.

Notice that the term that corresponds to looping has the energy ∆Floop + 2εt − εsol. In principle this is

the parameter associated with looping, but it also includes information about the energetics of LacI when

it is in solution and when it has only one head bound to the DNA. However, we can make the assumption

that the energy associated with having half a LacI in solution, εt is half the energy of having a full LacI in

solution, εsol. This is equivalent to saying that there is no change in the energetics of binding if the other

head is already bound, that there is no allosteric cooperativity. If this is true then the parameter obtained

from an experiment where ploop is measured will actually be ∆Floop.

Since we measure concentration of Lac repressor rather than absolute number of repressor molecules we
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want to rewrite this formula as a function of [R] using the lattice definitions

R

Ω
=

R

Ωv
v = [R]v. (9.16)

The parameter v corresponds to the volume of a lattice site, which means that Ωv corresponds to the whole

volume. We now make the choice of a standard concentration

1
v

8π2

δω
= 1 M, (9.17)

which turns the looping probability from equation 9.15 into equation 9.1 which we repeat here for complete-

ness

ploop =
[
8

[R]
1 M

e−β(∆ε1+∆εid+∆Floop)

]
[

1 + 4
[R]
1 M

(
e−β∆ε1 + e−β∆ε2

)
+ 16

(
[R]
1 M

)2

e−β(∆ε1+∆εid)+

8
[R]
1 M

e−β(∆ε1+∆εid+∆Floop)

]−1

.

Finally, we make the connection to the thermodynamic formalism using equations 9.11 and by defining

that

Jloop =
1
v

8π2

δω
e−β∆Floop . (9.18)

The point here is to use simple binding to define the parameters K1, Kid and cyclization to assign the

parameter Jloop [98]. Here, we use a looping Jloop factor rather than the regular factor J factor to emphasize

the fact that the boundary conditions are different from those present in cyclization, where J is clearly

defined [99]. In this way, we appeal to these other experiments semantically and plug their definitions into

the expression for the looping probability derived above. This results in equation 9.2, namely

ploop =
1
2

[R]Jloop
K1Kid

1 + [R]
K1

+ [R]
Kid

+ [R]2

K1Kid
+ 1

2
[R]Jloop
K1Kid

,

where Jloop is the average of the individual Jloop factors over α and β as defined in equation 9.3.

In the case where we distinguish between bottom and middle looped states we can split Jloop into their

corresponding looping J factors

Jloop =
1
2

(Jloop,B + Jloop,M) . (9.19)

In this case, for example, the probability of looping into the bottom state can be written as

ploop =
1
4

[R]Jloop,B
K1Kid

1 + [R]
K1

+ [R]
Kid

+ [R]2

K1Kid
+ 1

2
[R]Jloop
K1Kid

. (9.20)
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Figure 9.27: Alternative methods for fitting the looping probabilities. (A) Different schemes for determining
the looping probability from the data result in slightly different fits for the concentration dependent data.
(B) Results of the various fits performed in (A). Notice how the model cannot constrain the binding energy
of Oid very accurately.

9.5.4 Comparison of theory and experiment

One of the important goals of this work is to demand a rich interplay between theories of transcriptional

regulation and corresponding experiments. To that end, the entirety of the data presented in the paper is

viewed through the prism of the statistical mechanics model described above.

One of the questions that we have examined is how the statistical mechanics fit depends upon the

choice of how we analyze the data to determine the looping probability. Examples of different schemes for

determining the looping probability and their allied fits are shown in figure 9.27. In the main body of the

paper, we presented looping probabilities based upon Gaussian fits to the looping peaks. However, we have

also explored the use of alternatives such as the Diffusive Hidden Markov Model.

Another point of curiosity concerns the extent to which our fits for the equilibrium constants and effective

J-factor depends upon which points from figure 9.4 are actually used to make the fit. Figure 9.28 shows the

fit to both K1 and Jloop as a function of the particular model (non-linear or linear) and range of data points

from figure 9.4 that are used in the fit. The key observation is that the final two data points (i.e., those at

the largest concentrations of Lac repressor) lead to a systematic shift in the values for both K1 and Jloop

when fitting using the linear model from equation 9.4. Another interesting point revealed by figure 9.28(A)

is that the full non-linear model fit results in a value for K1 that is too large relative to the literature value

by roughly a factor of 10, corresponding to a difference in binding energy of roughly 2 kBT.

The dependence of our fits on the choice of data points included is also revealed in figure 9.29. In this

case, we show the result of using equation 9.4 as the basis of the fit and including different subsets of the

data from figure 9.4.
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Figure 9.31: Individual loops energies as a function of sequence length. (A) Results for short constructs, (B)
results for long constructs.

9.5.5 Individual looped states

In figures 9.25 and 9.26 we showed the looping probabilities corresponding to each individual loop: the bottom

and middle loops. In order to analyze these results we can construct an individual loop ratio analogous to

the one defined in equation 9.4. For the case of the bottom loop, for example, this is

pratio,B =
ploop,B

punloop
=

4K1

Jloop,B
+

4[R]
Jloop,B

. (9.21)

Using an approach analogous to the one leading to equation 9.5 we obtain the looping J factors associated

with each individual loop as shown in figure 9.30. In figure 9.31 we show their corresponding looping energies.
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9.5.6 Monte Carlo simulation

Our mathematical model built on our previous work [72, 77, 100], which showed that a Gaussian-sampling

simulation could accurately model the experimentally observed relation between DNA tether length and TPM

bead motion by including an effective entropic stretching force from bead–wall repulsion. This technique is

essentially a Monte Carlo evaluation of the equilibrium partition function of a chain. Instead of a Metropolis

implementation, we simply generated many discretized chains using Gaussian distributions for each link’s

bending and twisting angles, then discarded any such chains that violated the global steric constraints. To

compute looping J factors, we modified our previous code to monitor the separation and relative orientation

of the operator centers in the generated chains, and found the fraction of all chains that met the conditions

needed for looping. See [40] for more details.

To obtain the distributions of bead excursion shown in figure 9.11, we needed to make a correction before

comparing to the experimental data. Our video camera gathers light for almost the entire 33 ms video frame

time. This time scale is an appreciable fraction of the bead’s diffusion time in the trap created by its tether,

leading to a blurring of the bead image and an apparent reduction of bead RMS excursion. We measured

this effect by looking at the apparent RMS excursion for a bead/tether system with many different shutter

times, then corrected our numerically generated values for the position of the bead center to account for

blurring [40].

In addition, we reduced our simulation data in a way that parallels what was done with the experimental

data. The experiment takes data in the form of a time series for the projected location of the bead center

(relative to its attachment), that is, (x(t), y(t)). We found the length-squared of these position vectors, R2,

then applied a Gaussian filter that essentially averaged over a 4-s window. To simulate equilibrium averages in

this context, we harvested batches of Nsamp independent simulated chains and found the standard deviation

of excursion within each batch. From the resulting series of values for RRMS =
√
〈R2〉Nsamp , we made a

histogram representing the probability density function of RRMS. To choose an appropriate value for Nsamp,

we found a characteristic time scale for bead diffusion from the time autocorrelation function of RRMS, then

divided the 4 s window into Nsamp slots corresponding to the larger of the frame time, 33 ms, or the bead

diffusion time [40].



303

Bibliography

[1] L. Han, H. G. Garcia, S. Blumberg, K. B. Towles, J. F. Beausang, P. C. Nelson, and R. Phillips. Con-

centration and length dependence of DNA looping in transcriptional regulation. PLoS One, 4(5):e5621,

2009.

[2] H. G. Garcia, P. Grayson, L. Han, M. Inamdar, J. Kondev, P. C. Nelson, R. Phillips, J. Widom,

and P. A. Wiggins. Biological consequences of tightly bent DNA: The other life of a macromolecular

celebrity. Biopolymers, 85(2):115–30, 2007.

[3] E. Segal, Y. Fondufe-Mittendorf, L. Chen, A. Thastrom, Y. Field, I. K. Moore, J. P. Wang, and

J. Widom. A genomic code for nucleosome positioning. Nature, 442(7104):772–8, 2006.

[4] T. E. Cloutier and J. Widom. Spontaneous sharp bending of double-stranded DNA. Mol Cell,

14(3):355–62, 2004.

[5] S. Adhya. Multipartite genetic control elements: Communication by DNA loop. Annu Rev Genet,

23:227–50, 1989.

[6] R. Schleif. DNA looping. Annu Rev Biochem, 61:199–223, 1992.

[7] K. S. Matthews. DNA looping. Microbiol Rev, 56(1):123–36, 1992.

[8] R. W. Zeller, J. D. Griffith, J. G. Moore, C. V. Kirchhamer, R. J. Britten, and E. H. Davidson. A

multimerizing transcription factor of sea urchin embryos capable of looping DNA. Proc Natl Acad Sci

U S A, 92(7):2989–93, 1995.

[9] T. M. Dunn, S. Hahn, S. Ogden, and R. F. Schleif. An operator at -280 base pairs that is required

for repression of araBAD operon promoter: addition of DNA helical turns between the operator and

promoter cyclically hinders repression. Proc. Natl. Acad. Sci. USA, 81(16):5017–20, 1984.

[10] M. Ptashne. A genetic switch: Phage lambda revisited. Cold Spring Harbor Laboratory Press, Cold

Spring Harbor, N.Y., 3rd edition, 2004.
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