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Abstract

Gene expression is controlled by transcription factors that regulate the rates at which 

genes are expressed either by recruiting or inhibiting protein complexes that bind to the 

promoters or enhancers of target genes. Molecules that can specifically modulate these  

protein-DNA interfaces show promise as tools for understanding gene regulation pathways 

and may have application in human medicine. Hairpin pyrrole-imidazole polyamides 

are programmable oligomers that bind the DNA minor groove in a sequence-specific 

manner with affinities comparable to those of natural DNA-binding proteins. These  

cell-permeable small molecules have been shown to enter the nuclei of live cells, disrupt 

protein-DNA interactions, and downregulate endogenous gene expression. This thesis 

describes the use of polyamides to modulate gene expression in order to probe gene 

regulation mechanisms of several different biologically relevant systems. A polyamide 

is designed to target the glucocorticoid receptor transcription factor DNA binding site 

located in the promoter of the glucocorticoid-induced leucine zipper gene. This polyamide 

is shown to bind with high affinity to the promoter sequence, modulate the expression of 

this gene, and disrupt the binding of the protein to the gene’s promoter. Examination of 

the global effects of this polyamide on mRNA transcription is used to elucidate a list of 

genes that are regulated by a glucocorticoid receptor protein-DNA dependent mechanism. 

Also in this thesis, the specificities of a Cy3-labeled polyamide known to downregulate 

expression of the Vascular Endothelial Growth Factor is examined using DNA microarrays 

composed of hairpins harboring all 524,800 unique 10 base pair DNA sequences. We 

experimentally verify the correlation of Cy3 fluorescence intensity with quantitative  

DNase I footprint-derived binding affinities. Additionally, progress is made towards the 

polyamide-mediated inhibition of Myc/Max transcription factor gene regulation. 
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Cy3 Cyanine 3
Da Dalton
dATP 2’-deoxyadenosine triphosphate
DABA diaminobutyric acid
DCM dichloromethane
dex dexamethasone
DFO deferoxamine
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1.1 Gene expression and the central dogma 

In 1958 the means by which life as we know it persists and thrives was enumerated 

in the form of the central dogma of molecular biology.1 In its simplest form, the dogma 

states that each living cell holds the blueprint to life in the form of genes, and that this 

genomic information is transcribed from DNA to RNA, which is then translated into 

proteins. Over half a century later, innumerable advances in technology have expanded 

this simple view to include a host of mechanisms by which each step of this process is 

influenced and modulated in response to cellular needs. The genome is not a blueprint 

of a static cellular state but actually encompasses all the instructions needed for a cell to 

respond to environmental stimuli. Sequencing of the human genome estimates that humans 

possess 20,000 to 30,000 genes,2,3 all of which are maintained folded within chromosome 

structures and are accessed as needed by the cell to maintain normal function. Information 

encoding the structure, regulation, and expression of each of these genes as well as their 

expressed products is encoded in the nucleotide sequences of the base pairs of the DNA 

molecules that make up the genome. 

Gene expression is the process by which a gene’s coded information is converted from 

these nucleotide sequences into functioning gene products. This process is used by all 

known life forms to generate the RNAs, proteins, and various macromolecular machineries 

needed for life. In eukaryotic cells, gene expression is a complex process involving a variety 

of steps prior to the actual synthesis of a protein. These include the transcription of the gene 

into the primary RNA product, processing of this initial gene transcript to remove intron 

sequences and create the mature 3’ terminus, transport of the processed mRNA transcript to 

the cytoplasm, and then, finally, translation of the messenger RNA into protein. With very 

few exceptions, all of the genes that encode proteins follow this pathway.4
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1.2 Regulation of gene expression: transcriptional modulation

Any step of the gene expression process is subject to modulation, from the transcription 

of DNA into RNA all the way through the post-translational modification of the final 

protein.  Every cell in any given organism contains the exact same genes, yet the multitude 

of cell types in a human body each display a different phenotype, produce different 

proteins at different stages of the life cycle, and somehow display different programs of 

gene expression. At the most fundamental level, regulation of gene expression is what 

allows genotype to be converted into phenotype. Modulation of the amount and timing of 

the appearance of the final gene product allows the cell to maintain control over structure 

and function and provides the basis for the versatility and adaptability of a living organism.  

A cell’s ability to regulate and control the expression of each gene product allows the cell the 

flexibility to respond to environmental stimuli such as chemical signaling, environmental 

variation, cell damage, etc. 

Regulation at the transcriptional level is a key element in the regulation of gene 

expression and can be divided into three general categories of influence: 1) Regulation at 

the genetic level involves direct interaction of a control factor with the gene in question,  

2) Regulation via interaction of a control factor with the transcription machinery that results 

in modulation of gene expression, and 3) Epigenetic regulation involving global alterations 

in DNA structure that influence transcription. Direct interaction with DNA is the simplest 

and most direct method by which a protein can modulate the level of gene transcription. In 

general, genes harbor several protein binding sites specifically utilized for the regulation 

of transcription. These protein binding sites include enhancers, insulators, repressors, and 

silencers and the mechanisms for regulating transcription through these binding sites are 

complex and vary from activating transcription by recruiting RNA polymerase to blocking 

key RNA polymerase binding sites to hinder gene transcription. 
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Transcription Factors

Transcription factor proteins constitute a major class of DNA-binding molecules that 

participate in the transcriptional control of gene expression. Transcription factors bind to 

DNA in gene promoters or enhancer regions, generally upstream of the transcription start 

site, and modulate the frequency of RNA polymerase binding to the gene and subsequent 

transcription. Transcription factors vary widely in architecture, as the small sample of 

transcription factors shown in Figure 1.1 illustrates. While different transcription factors 

accomplish their tasks via different means, all transcription factors display two critical 

abilities—the ability to bind to DNA in a sequence-specific manner, and the ability to cause 

a modulation of transcription once bound.4 Most transcription factors possess a specific 

DNA-binding domain that is responsible for recognition and interaction with a specific 

DNA sequence, typically four to eight nucleotides in length, often located in an enhancer 

or promoter region of a given gene.

Myc/Max Glucocorticoid 
Receptor

NF-κB p50/p65

Lef-1 Oct4/Sox2TBP

Figure 1.1 X-ray crystal structures of transcription factor–DNA complexes

Myc/Max (PDB 1NKP),5 Glucocorticoid Receptor (PDB 1R40),6 NF-κB (PDB 1LE5),7 Lef-1 (PDB 2LEF),8 
TBP (PDB 1TGH),9 Oct4/Sox2 (PDB 1O4X).10
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1.3 Molecular recognition of DNA 

Deoxyribonucleic acid (DNA):

A single strand of DNA consists of four different bases linked by a phosphodiester 

deoxyribose sugar backbone. Two strands of DNA intertwine to form a double helix 

associated by hydrogen bonds between the Watson-Crick base pairs such that thymine (T) 

pairs with adenine (A), and cytosine (C) pairs with guanine (G) (Figure 1.2). In a DNA 

double helix the direction of the nucleotides in one strand is opposite to their direction in 

the other strand, thus the strands are antiparallel.  The helix of B-form DNA, the average 

conformation adopted by the majority of biologically active DNA sequences, is right handed 
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Figure 1.2 The structure of DNA

Left) X-ray crystal structure of B-form DNA. The phosphodiester-linked deoxyribose backbone is 
shown in blue, and the Watson-Crick base pairs are shown in gray (PDB 1BNA).11 Highlighted: 
adenine (red) thymine (blue) cytosine (magenta) and guanine (green). Right) Chemical structures of  
phosphodiester-linked hydrogen-bonded base pairs. Adenine (A) is bonded to thymine (T) and cytosine (C) is 
bonded to guanine (G) Dashed lines indicate hydrogen bonds. 
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and displays ten base pairs per turn with the plane of each hydrogen-bonded base pair 

lying perpendicular to the helical axis. This helix is not symmetrical, instead a wide major 

groove and a narrow minor groove line the helix and DNA sequences can be distinguished 

by the pattern of functional groups, e.g., hydrogen bond donors and acceptors, displayed 

on the edges of the base pairs in either groove.

Sequence-specific recognition of DNA:

Proteins and small molecules can recognize B-form DNA through interactions with the 

major groove, minor groove, and phosphate backbone, or a combination of these elements. 

These interactions can be mediated through electrostatics, hydrogen bonding, van der 

Waals interactions, and, in the case of intercalators, via base pair stacking. The DNA base 

pair edges in the major groove and minor groove provide a sequence-specific array of 

functionality for hydrogen bonding, hydrophobic interactions, and steric complementarity 

with proteins and small molecule binders.12-16 It is these patterns of hydrogen donors and 

acceptors that allow for sequence-specific recognition of DNA by proteins and small 

Figure 1.3 Major and minor groove hydrogen bonding patterns of the four Watson-Crick base pairs

Circles with dots represent lone pairs on purine N3 or pyrimidine O2, and circles with an H represent the 
2-aminogroup of guanine (G-NH2). A)Major and minor groove hydrogen bonding patterns of each base pair 
B) Hydrogen bonding pattern offered to the major groove by the sequence 5’-GTAC-3’. C)Hydrogen bonding 
pattern offered to the minor groove by the sequence 5’-GTAC-3’
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molecules that can form hydrogen bonds with the functional groups present in the grooves. 

In a formal sense, the four Watson-Crick base pairs can be differentiated on the groove 

floor by the specific positions of hydrogen bond donors and acceptors, as well as by subtle 

differences in molecular shape. Figure 1.3 depicts the differences in these hydrogen bond 

donors and acceptors as seen on the floor of each groove.

1.4 Sequence-specific DNA-binding small molecules

In addition to DNA-binding proteins such as the transcription factors described 

above, there are also small molecule natural products that recognize and bind specific 

DNA sequences. Four particular examples are shown in Figure 1.4: calicheamicin 

oligosaccharide, chromomycin, actinomycin D, and distamycin A. Calicheamicin 

oligosaccharide has been shown to recognize and bind the minor groove monomerically 

at 5’-TCCT-3’ sequences.17 Chromomycin targets the sequence 5’-GGCC-3’ and binds in 

the minor groove of DNA in a 2:1 ligand:DNA stoichiometry. Chromomycin’s biological 
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activity has been attributed to interference of replication and transcription.18 Actinomycin D 

intercalates DNA preferentially at 5’-GC-3’ sequences in a 1:1 ligand:DNA stoichiometry. 

Actinomycin D is known to inhibit transcription and potentially DNA replication 

and has been used as a chemotherapeutic as well.19,20 Distamycin A is an A,T-binding  

oligopeptide of three N-methylpyrrole (Py) carboxamide units. As can be seen in  

Figure 1.5, X-ray and NMR structural studies of Distamycin A reveal that this  

crescent-shaped molecule can bind DNA in either a 1:1 or 2:1 stoichiometry relative to 

DNA. The 2:1 complex forms in an antiparallel orientation and results in expansion of the 

minor groove relative to the 1:1 ligand-DNA complex.21-23

A B

Figure 1.5 X-ray crystal structures of distamycin bound to DNA
 
A) Distamycin bound with a 1:1 ligand:DNA stoichiometry to the sequence 5’-CGCAAATTGCG’   
(PBD 2DND) B) Distamycin bound with a 2:1 stoichiometry to the sequence 5’GTATATAC-3’(PDB 378D) 
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The simple A,T binding natural product distamycin A has evolved over the past 

two decades into a new class of programmable heterocyclic oligomers that demonstrate 

high affinity and sequence specificity for the DNA minor groove.12,13 Incorporation of 

alternative heterocycles such as imidazole (Im) or hydroxypyrrole (Hp) expanded the  

sequence-recognition capabilities of polyamides and a set of pairing rules has been 

developed to allow for the programmable targeting of desired DNA sequences.  

Sequence-specific recognition of the minor groove of DNA by polyamides arises from 

the pairing of three different aromatic amino acids, pyrrole (Py), imidazole (Im), and 

hydroxypyrrole (Hp).24-26 The targeted binding surface of a crescent-shaped polyamide 

may be programmed by the incremental change of atoms on the corners of the ring pairs 

presented to the DNA minor groove floor. Stabilizing and, importantly, destabilizing 

interactions with the different edges of the four Watson-Crick bases are modulated by shape 

complementarity and specific hydrogen bonds.27-29 An Im/Py pair distinguishes G•C from 

C•G, T•A, and A•T, and likewise a Py/Im pair distinguishes C•G from G•C, T•A, and A•T. 

Im presents a lone pair of electrons to the DNA minor groove and can accept a hydrogen 

bond from the exocyclic amine of guanine.5 Additionally, the Hp/Py pair distinguishes T•A 

from A•T, G•C, and C•G.4–6 Hp projects an exocyclic OH group toward the minor groove 

floor that is sterically accommodated in the cleft of the T•A base pair, preferring to lie over 

T not A.25 

As can be seen in Figure 1.6, in addition to developing the pairing rules, another key 

step of the evolution of Im/Py polyamides is the covalent linkage of the two antiparallel 

heterocyclic strands by a gamma amino butyric acid (GABA) unit, forming a “hairpin” 

polyamide, demonstrating a 100-3600-fold increase in affinity relative to to the unlinked 

homodimeric motif.30,31 Additionally, the incorporation of the turn linkage in the form of a 

GABA or substituted GABA turn allows the incorporation of unsymmetrical ring pairs for 

the targeting of non-palindromic DNA sequences.32  
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1.5 Polyamide inhibition of gene regulation in live cell culture

Given the fact that transcription is the key first step in gene expression, and the fact 

that the binding of trans-acting factors to promoter elements is critical for transcription, 

a key route to regulating gene expression lies in controlling the activity of these 

trans-acting factors. The programmability of Py-Im polyamides combined with the  

subnanomolar increases in affinity achieved by linking the two oligomeric strands 

provides polyamides with affinity competing with and often rivaling that of endogenous 

DNA-binding proteins.12,13 By using Py-Im polyamides to displace or prevent the binding of 
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transcription factors to their respective promoter DNA sequences, it is possible to modulate the 

expression of particular genes. Critical to this goal is the ability of polyamides to enter a live 

cell and permeate the nucleus in order to bind DNA and successfully regulate gene expression. 

Confocal microscopy studies have confirmed the positive nuclear uptake profiles of a variety of 

polyamide-fluorophore conjugates in a panel of cell lines.33,34 Additionally, the presence of an 

isophthalic acid (IPA) moiety in the tail region has been shown to yield high-affinity conjugates 

with improved nuclear permeability.35 
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Figure 1.7 Polyamides as regulators of gene expression in cell culture

A) Schematic diagram of the VEGF promoter showing inhibition of HRE binding by HIF-1 (shown as 
HIF-1α/HIF-1β heterodimer), binding sequence of the HRE enhancer shown with match polyamide 
1, and chemical structures and ball-and-stick models of match polyamide 1 and mismatch polyamide 2. 
B) Schematic diagram of the androgen receptor transcription complex, binding sequence of the consensus 
ARE targeted by match polyamide 3, and chemical structures and ball-and-stick models of match polyamide 
3 and mismatch polyamide 4.
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The culmination of the technological advances in this field has resulted in high affinity, 

sequence-specific, cell-permeable Py-Im hairpin polyamides that have successfully 

been utilized in several instances to modulate gene expression in cell culture. In a 

seminal example, a polyamide designed to bind to the hypoxia response element (HRE) 

was shown to disrupt the binding of hypoxia-inducible factor (HIF) to the HRE. Polyamide 

treatment was shown to decrease the transcription of vascular endothelial growth factor 

(VEGF) in cultured HeLa cells.35,36  In another example, a polyamide designed to target the  

androgen response element (ARE) has been shown to downregulate prostate-specific antigen 

(PSA) and other androgen responsive genes in prostate cancer cells.37

The hypoxia inducible factor 1α (HIF-1α) transcription factor drives the expression 

of many genes in response to a low oxygen environment. HIF-1α recognizes and binds 

a consensus sequence 5’-TACGTG-3’ termed the Hypoxic Response Element (HRE).  

Polyamide 1 (Figure 1.7A) targets a subset of known HREs. One particular gene whose 

modulation is particularly interesting is vascular endothelial growth factor (VEGF), a gene 

responsible for the vascularization of tumors.  When HeLa and U251 cells were treated with 

micromolar concentrations of polyamide 1, a reduction in the deferoxamine (DFO) induction 

of VEGF gene was noted, while dosing with a non-HRE binding polyamide 2 did not produce 

a statistically significant change in gene expression. On a global scale, microarray experiments 

have shown that polyamide 1 downregulates a subset of genes upregulated by DFO induction. 

Furthermore, chromatin immunoprecipitation (ChIP) experiments demonstrated a reduced 

occupancy of HIF-1α at the VEGF HRE in the presence of polyamide 1. 35,36,38 

The androgen receptor (AR) transcription factor binds as a homodimer to the androgen 

response element (ARE), 5’-GGTACAnnnTGTTCT-3’, in response to induction by steroid 

hormones such as testosterone. AR-regulated gene expression is critical in the development and 

progression of prostate cancer. One key AR-regulated gene is prostate specific antigen (PSA), 
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a well-studied marker gene that correlates highly with the presence of prostate cancer. LnCap 

(prostate cancer) cells treated with a Py-Im hairpin polyamide 3 (Figure 1.7B) targeted to 

the consensus ARE half-site 5’-WGWWCW-3’ demonstrate a suppressed dihydrotestosterone 

(DHT) induction of PSA mRNA transcription. This gene regulation modulation is not seen 

with treatment by a mismatch control polyamide targeting 5’-WGWCGW-3’. Microarray 

experiments assessing the global mRNA transcription in LnCap cells when treated with 3 

and 4 indicate that 3 is able to disrupt induction by DHT for a subset of the DHT induced 

genes in a manner that is differential from treatment by 4 and likely is sequence-specific. ChIP 

experiments on 3 and 4 again suggest the disruption of a protein-DNA interface as a potential 

mechanism for polyamide activity.37

1.6 An allosteric model for polyamide inhibition of steroid hormone receptors

Allosteric modulation of protein-DNA interactions

Both HIF-1α and AR are major groove-binding proteins, yet minor groove-binding 

Py-Im polyamides are able to successfully disrupt protein DNA-binding and alter the 

gene regulation of the given transcription factor. A likely model for this inhibition is that 

allosteric modulation of the DNA occurs upon polyamide binding that renders the major 

groove of the DNA no longer capable of binding the transcription factor.39,40 The process 

of promoter recognition and utilization involves a stepwise interaction of a complex 

series of transcription factors with the promoter to create a stable DNA-protein complex 

that allows RNA polymerase to initiate transcription. There are as many as 100,000  

protein-encoding genes in the mammalian genome, and rather than generate a unique 

transcription factor to regulate each gene, nature appears to have developed a limited 

number of transcription factors responsible for DNA recognition and that the high degree of 

specificity demonstrated is generated by specific protein-protein interactions that stabilize 

otherwise weak interactions on a promoter. Protein-DNA interactions are generally fairly 
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weak and will readily dissociate.41 The capacity to stabilize this otherwise weak interaction 

is likely a critical aspect of transcription control in which multiple factors must interact on 

the DNA to stabilize a functional complex.4

Transcription factors often posess domain that is critical for mediation of  

protein-protein interactions with other components of the transcriptional machinery.  

In addition, transcription factors are also known to communicate indirectly through allosteric 

modulation of DNA resulting in cooperative assembly with very little direct protein-protein 

interaction. In this model, the sequence-specific binding of a transcription factor induces 

5 ’ - T A A A T G A C A T A G G A A A A C T G A A A G G G A G A A G T G A A A G T G G G A A A T T C C T C T G - 3 ’
3 ’ - T T T A C T G T A T C C T T T T G A C T T T C C C T C T T C A C T T T C A C C C T T T A A G G A G A C A - 5 ’

ATF-2 IRF-3A IRF-3C

IRF-7D

p50

RelAIRF-7Bc-Jun

-1
02

-7
0

-5
1

Figure 1.8 Atomic model of the cooperative assembly of interferon-β enhancesome

A composite model of allosterically driven protein–DNA recognition created from overlayed X-ray crystal 
structures (PDB 2O6G, 2O61) showing 4-6 base pair transcription factor binding sites along the highly 
conserved composite DNA interface of 55 base pairs spanning approximately 160 Å in length.
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perturbations in the DNA that modulate the binding of the next transcription factor. An 

elegant example of allosterically modulated protein–DNA specificity on a gene enhancer 

is the interferon-beta enhanceosome (Figure 1.8). In this protein complex, eight different 

transcription factors (ATF-2/c-Jun, IRF-3A, IRF-7B, IRF-3C, IRF-7D, p50, and RelA) 

cooperatively assemble on the enhancer, yet there are no protein-protein contacts between any 

of the proteins on this DNA sequence. Thus, it has been proposed that structural alterations 

to the DNA, such as widening or narrowing of the major or minor groove by individual  

protein–DNA interactions, create optimum binding shape and structure for other proteins, 

in a cooperative interaction.42 Each transcription factor binds four to eight base pairs 

and inhibition of the binding of any one of the proteins may result in interruption of the 

transcriptional activation activity of the protein complex as a whole.

Allosteric modulation of DNA by Py-Im polyamides

A recent high-resolution X-ray crystal structure of a β-amino turn-linked  

eight-ring cyclic Py-Im polyamide bound to the central six base pairs of the steroid hormone 

receptor consensus sequence reveals that significant modulation of DNA shape occurs  

upon polyamide binding. Cyclic polyamide 5, comprised of two antiparallel ImPyPyPy 

strands capped by (R)-β-amino-γ turn units codes for the sequence 5′-WGWWCW-3’. 

The high-resolution crystal structure of the polyamide in complex with the  

10 base pair DNA oligonucleotide sequence 5′-CCAGTACTGG-3′, containing an  

ARE/GRE consensus DNA sequence demonstrates that structural alterations of DNA by 

these major groove-binding proteins and minor groove-binding cyclic polyamides operate 

in opposite directions.40 

Binding of cyclic polyamide 5 induces significant (>4 Å) widening of the DNA 

minor groove and compression of the major groove by more than 4 Å as compared to 

unliganded DNA (Figure 1.9 C, D).43 Additionally, polyamide binding induces bending of  
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Figure 1.9 Comparison of native DNA to polyamide/DNA complex

A) chemical structure of cyclic polyamide 5 which targets 5’WGWWCW-3’ B) ball-and-stick model 
superimposed over the binding site on the dsDNA oligonucleotide sequence used for crystallization.C) Native 
DNA crystal structure at 0.98 Å resolution (PDB 1D8G) D) DNA/polyamide co-crystal structure at 0.95 Å 
resolution. (PDB 3OMJ) E) Significant DNA bending is observed for polyamide-bound DNA (blue) versus 
unbound DNA (yellow). F) top: Comparison of the minor-groove width for DNA in the absence of polyamide 
(yellow) and in the presence of bound polyamide (blue). bottom: Comparison of the major-groove width 
for DNA in the absence of polyamide (yellow) and in the presence of bound polyamide (blue). In E and F, 
polyamide has been removed from the blue complex for clarity.39,40



36

the DNA helix by >15° towards the major groove, resulting in major groove compression 

(Figure 1.9E). A slice through the short axis of the DNA helix, showing the minor and 

major groove geometry at the center of the polyamide binding site for uncomplexed and 

complexed DNA shows this distortion clearly (Figure 1.9F).40 

Ultimately, the perturbation in the major-groove geometry that occurs upon polyamide 

binding converts the wide, shallow surface of the major groove from a functionally exposed 

protein recognition domain to a narrow, deep cleft too small to accommodate the width of a 

standard protein α-helical domain or β-sheet from a transcription factor. A detailed analysis 

of the structure of DNA bound by the androgen receptor and the related glucocorticoid 

receptor reveals that the cyclic polyamide 5 is an allosteric modulator that perturbs the 

DNA structure in such a way that nuclear receptor protein binding is no longer compatible. 

This allosteric perturbation of the DNA helix provides a molecular basis for disruption of 

transcription factor−DNA interfaces by sequence-specific DNA binding polyamides.39,40
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1.7 Scope of this work

The work presented in this thesis is focused on the further development of  

Py-Im polyamides as tools for understanding the mechanisms behind gene regulation.  

By perturbing gene regulation in endogenous systems we can begin to understand the 

molecular basis for the difference between normal gene function and those alterations 

in gene control events that underlie certain disease states. In Chapter 2, we utilize a 

Py-Im polyamide targeted to bind 5’-WGWWCW-3’ to probe the dual mechanism of 

transcriptional action displayed by the glucocorticoid receptor (GR) transcription factor. 

This sequence-specific small molecule probe is used to separate and identify a list of 

genes that are regulated by a protein-DNA interaction from those genes that are generally 

regulated by the GR in both DNA-binding-dependent and DNA-binding-independent 

mechanisms. In Chapter 3 we utilize polyamides to validate a new microarray-based tool 

for use in determining the DNA-sequence binding preferences of small molecules and 

proteins and in doing so examine the binding preferences of two polyamides that have 

been demonstrated to modulate gene expression in cell culture. The binding preferences 

for the polyamides assayed validate the polyamide pairing rules in an unbiased fashion. 

Chapter 4 presents progress towards divesting a group of genes regulated by the Myc-Max 

heterodimeric transcription factor. Our goal is to regulate genes bound at 5’-CACGTG-3’ 

Myc-Max heterodimer binding sites while leaving Max-Max homodimer binding sites 

unbound. We anticipate that this will modulate the expression of Myc-regulated genes 

without inducing a Myc-upregulation feedback loop. In this chapter, a library of small 

molecules is developed to target the binding site, demonstrate that they bind with high 

affinity and specificity to the targeted site, and have positive uptake properties in a variety 

of live cells. While modulation of gene expression was not demonstrated in these cell lines, 

work is ongoing to probe this system further.
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