
From Elementary Excitations to Microstructures: 

The thermodynamics of metals and alloys across length scales 

Thesis by 

Michael Edward Manley 

In Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California 

2001 

(Defended April 25, 2001) 



To the memory of my father, Edward W. Manley 

© 2001 

Michael E. Manley 

All Rights Reserved 

11 



111 

Acknowledgements 

I would like to begin by acknowledging the love and support I have received from my 

wife, Ann, without which I could never have made it this far. Ann, who has been by my side 

the whole the way through graduate school, has made it all worthwhile. I would also like to 

acknowledge the love support I received from my entire family, both by blood and by my 

marriage into the Lee family. 

It gives me great pleasure to acknowledge the guidance and support I received from 

my advisor, Brent Fultz. Despite the fact that I spent the second half of my graduate student 

career at Los Alamos, he managed to boost my spirits and my scientific career through regular 

communication. I would also like to acknowledge support from the entire Fultz group and 

from the Materials Science option. In particular, I received essential help with theoretical 

and/or experimental ideas from Channing Ahn, Peter Bogdanoff, and Laura Nagel. Special 

thanks go to my officemates, Haein Choi-Yim, Jay Hannan, and Nathan Good, who where 

always willing to listen. 

This would not be complete without acknowledging the guidance and support I 

received from my mentor at Los Alamos National Laboratory, Rob McQueeney. There were 

many others who helped at Los Alamos including, Jim L. Smith, Larry Hults, Dan Thoma, 

and Jason Cooley. I also benefited from the expertise of scientist at various user facilities 

including, Ray Osborn of Argonne National Laboratory, Lee Robertson of Oak Ridge 

National Laboratory, and Craig Brown and Dan Neumann of NIST. 



iv 

Abstract 

An experimental investigation has been made into the components that determine the 

phase stability of metals and alloys. Contributions were found to be important across many 

length scales from electronic excitations to atomic vibrations and finally microstructural 

strains at the continuum level. The metals and alloy that have been studied are U, Ce, and 

Pd3V. 

Time-of-flight (TOF) inelastic neutron scattering spectra were measured on the three 

crystalline phases of uranium at temperatures from 50 K to 1213 K. Phonon density of states 

(DOS) curves were obtained from these spectra. For the a-phase, a large decrease in phonon 

energies with increasing temperature was observed over the entire temperature range. 

Analysis of the vibrational power spectrum showed that the phonon softening originates with 

continuous softening of a harmonic solid, as opposed to vibrations in anharmonic potentials. 

Without anharmonicty, it must be that thermal excitations of the electronic structure are 

changing the interatomic forces. State-of-the-art electronic band structure calculations are 

based on the assumption that temperature effects on the electronic structure can be neglected 

when compared to volume effects (where the volume effects are just a manifestation of 

anharmonicity). The present results turn that problem upside down by showing that 

temperature effects are actually more important than volume effects. Vibrational entropies of 

the phase transitions were (SfJ-Sa)Vib = (0.15±0.1) kB/atom and (sr-sfJ)Vib = (0.36±0.1) kB/atom. 

The former accounts for about 35% and the latter 65% of the total entropy of the phase 

transition. The remaining entropy must be electronic. 
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TOF inelastic neutron scattering spectra were measured on cerium at temperatures 

near the fcc (y) to bcc (8) transition temperature. Phonon DOS curves were extracted from 

data acquired over a wide range of momentum transfers. A large softening of the phonon DOS 

was found in going from y-cerium to 8-cerium, and this accounts for an increase in vibrational 

entropy of (0.71 ± 0.05) ksfatom. To be consistent with the latent heat of the y-8 transition, 

this increase in vibrational entropy must be accompanied by a large decrease in electronic 

entropy. The results not only confirm the recent discovery of a significant electronic 

contribution to the y-8 transition but also suggest that it may be twice as large as previously 

reported. 

TOF inelastic neutron scattering spectra were measured on ~-cerium (dhcp) and y­

cerium (fcc) near the phase transition temperature. Phonon densities of states (DOS) were 

extracted from the TOF spectra. A softening of the phonon DOS occurs in the transition from 

~-cerium to y-cerium, accounting for an increase in vibrational entropy of flS;';P = (0.09 ± 

0.05) kB/atom. Crystal field levels were extracted from the magnetic scattering for both 

phases. The entropy calculated from the crystal field levels and a fit to calorimetry data from 

the literature was significantly larger in ~-cerium than y-cerium below room temperature. The 

difference was found to be negligible at the experimental phase transition temperature. There 

was a contribution to the specific heat from Kondo spin fluctuations that was consistent with 

the quasielastic magnetic scattering, but the difference between phases was negligible. To be 

consistent with the latent heat of the ~-y transition, the increase in vibrational entropy at the 

phase transition may be accompanied by a decrease in electronic entropy not associated with 



VI 

the crystal field splitting or spin fluctuations. At least three sources of entropy need to be 

considered for the ~-y transition in cerium. 

Differences in the heat capacity and thermal expansion of cubic (fcc-disordered) and 

tetragonal (D022-ordered) Pd3V were measured from 40 K to 315 K. Below 100 K the heat 

capacity difference was consistent with harmonic vibrations. At higher temperatures, 

however, the data show significant anharmonic effects. Measurements of elastic constants, 

densities, and thermal expansion showed that the anharmonic volume expansion contribution 

(Cp -Cv) could account for only about one-third of this anharmonic heat capacity difference. 

The remainder may originate with elastic and plastic deformation of the polycrystalline 

microstructure. Strain energy from anisotropic thermal contractions of grains in the tetragonal 

ordered phase contributes to the heat capacity, but some of this strain energy is eliminated by 

plastic deformation. The vibrational entropy difference of disordered and ordered Pd3 V was 

estimated to be Sdis - sord = (+0.035± 0.001) kB/atom at 300 K, with 70% of this coming from 

anharmonic effects. 

The microstructural contribution to the heat capacity of a-uranium was determined by 

measuring the heat capacity difference between polycrystalline and single crystal samples 

from 77 K to 320 K. When cooled to 77 K and then heated to about 280 K, the uranium 

microstructure released (3±2) llmol of strain energy. On further heating to 300 K the 

microstructure absorbed energy as the microstructure began to redevelop microstrains. 

Neutron diffraction measurements on polycrystals predicted the total strain energy stored in 
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the microstructure to be (3.7±O.5) J/mol at 77 K and (1±O.5) J/mol at room temperature in 

good agreement with the calorimetry. 
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Chapter One Introduction 

Predicting the most stable phase of a solid at a given temperature, pressure, and 

composition is a long standing goal of materials science. Predictions are important because in 

many cases, direct measurements of the most stable phase are impractical or impossible. 

Consider all possible combinations of elements, extreme pressures and temperatures. Only by 

understanding the relevant degrees of freedom (vibrational, configurational, electronic, 

magnetic, etc.) can phase stability be predicted reliably in regions of thermodynamic 

parameter space where data are unavailable. 

Theoretical and experimental work has been done in recent years to improve the 

reliability of first principle phase stability predictions for the d-electron transition metals and 

their alloys [1-4]. In some cases these advances have even proved useful in engineering 

applications [5, 6]. However, for the f-electron bonded systems there has been less success 

because the underlying physics is poorly understood. The electronic structure of f-electron 

bonded systems remains one of the last frontiers in solid-state physics. Results presented in 

Chapter 2 of this thesis shows why a theoretical understanding must account for how 

thermally induced electronic excitations affect interatomic interactions. State-of-the-art 

electronic structure theory treats atomic interactions and electronic excitations as separate 

problems. This is the first example presented in this thesis of how working across length 

scales sheds new light on problems. 

The importance of vibrational entropy to solid-state phase transitions has become 

well established over the past decade. Considerable experimental [3,7 -11] and theoretical [11-
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16] work has gone into investigating the vibrational entropy of phase transitions in metallic 

alloys. In alloys, the vibrational entropy is often compared with a significant configurational 

contribution. For elements, however, entropy can only be vibrational, electronic and 

magnetic. In Chapters 2 and 3 it is shown that vibrational entropy makes a significant 

contribution to phase transitions in uranium and cerium. 

Electronic entropy is not normally expected to make a significant contribution to high 

temperature phase transitions. Electronic entropy is, therefore, often neglected in phase 

stability calculations. However, results presented in Chapters 2 and 3 show that the electronic 

entropy of uranium and cerium is thermodynamically significant. Furthermore, a detailed 

study of the electronic contribution in two phases of cerium (Chapter 3.3) shows that the 

electronic entropy of cerium can be broken down into a contribution from localized electrons 

and spatially extended conduction band electrons. The conduction band contribution comes 

from the usual excitations of electrons across the Fermi-energy. Localized electronic states of 

an atom, which are degenerate for isolated atoms, are split into various crystal field levels 

when the atom is in a crystal. It is shown that changes in crystal symmetry at phase 

transitions can change the crystal field entropy. In addition, hybridization of the spins of the 

localized f-electrons with the conduction band electrons causes Kondo-type fluctuations of 

the localized f-electron spins. The effect on the measured crystal field levels is a smearing 

out of the states in energy. It can also be viewed as an enhancement of the effective mass of 

the conduction band electrons. Regardless of the view taken, this hybridization results in 

another contribution to the electronic entropy. 
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A scale often neglected in first principle phase stability calculations is the 

microstructural scale. Nevertheless, a connection can be made between the anharmonic 

components of thermal vibrations and the elastic energy stored in a polycrystalline 

microstructure. The anharmonic component of vibrations leads to thermal expansion. If a 

polycrystalline microstructure is made up of crystallites having anisotropic thermal 

expansion, then changes in temperature lead to a build-up or release of microstructural strain 

energy due to the forces that crystallites exert on one another. As shown in Chapters 4 and 5, 

the elastic microstructural contribution can make an important contribution to the 

thermodynamics. Additionally, the forces between crystallites can become large enough to 

induce plastic deformation. The onset of plastic deformation cuts off the buildup of elastic 

strain energy stored in the microstructure. Plasticity causes irreversible changes in the state of 

the strain energy stored in the microstructure. 

Figure 1.1 shows the different areas of research that should be combined to develop a 

more complete understanding of the thermodynamics of metals and alloys. The top two 

experimental areas are dealt with in this thesis. As will be demonstrated, it is the connections 

between these areas that tum out to be most interesting and promising for future work. For 

clarity the interesting connections are highlighted at the beginning of each chapter with a few 

italic sentences. Also the chapters are ordered so that the problems move from the smallest 

scales (electronic and atomic) to the largest scales (from atomic to microstructural). It is 

hoped that this thesis will help stimulate further study between the areas shown in Figure 1.1. 

Specifically, as the computational methods become more accessible, it would make sense for 

a single research group to complete the triangle. It is my belief that this will lead to a rapid 
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development of accurate equations of state of metals and alloys and hence more reliable 

predictions of materials properties. 

Thermodynamics 
of metals and 

alloys 

Figure 1.1. This diagram shows how efforts in many different disciplines can be used to 

improve our understanding of the thermodynamics of metals and alloys. The work of this 

thesis bridges the top of this diagram. 
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Chapter Two The nature of vibrational softening in uranium 

In this chapter the study of vibrational softening in uranium reveals a surprising connection 

between electronic excitations and atomic vibrations. Thus, we begin with a study connecting 

electronic to atomic scale contributions to the thermodynamics of uranium. 

2.1 Introduction 

Although first known for its unusual nuclear properties, uranium exhibits several 

unusual solid-state properties that may originate with electronic instabilities. The thermally 

induced softening of the phonon density-of-states (DOS) for most elements originates with 

anharmonicity [1, 2]. For the actinides, however, a distinction between the normal 

anharmonic softening and harmonic softening arising from a temperature-dependent 

harmonic potential has been suggested [3]. In a detailed assessment of the thermodynamic 

data on the six crystalline phases of Pu, it was concluded that the anharmonic and electronic 

contributions to the equation of state could not be separated [4]. The origin of this phonon 

softening is a fundamental issue for the equation of state. In this Chapter we use the power 

spectrum of atom motions to show that the thermal softening of the phonon DOS in a-U 

originates with the weakening of force constants in a harmonic solid, as opposed to the 

typical softening in an anharmonic potential. Temperature alters the electronic structure 

sufficiently to change the lattice dynamics. This chapter also addresses the entropy of 

phonons, and by deduction the entropy of electrons, for the three low-pressure phases of 

uranium metal. 
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Previous lattice dynamics studies on uranium have been performed at room 

temperature and below [5, 6], motivated in part by the discovery of several charge density 

wave transitions at low temperatures [7, 8]. Independently, there has been a recent interest in 

the vibrational entropy contribution to the high temperature phase stability of metals and 

alloys [9-11], motivated by the discovery that vibrational entropy plays a larger role in phase 

stability than previously expected [12]. Other experimental and theoretical work has shown 

that electronic contributions to the entropies of high temperature phase transitions can also be 

significant [13-15]. 

Diffraction measurements on a-U at ambient pressure have shown that the Debye 

temperature decreases dramatically with increasing temperature [3, 16]. This softening is 

consistent with decreases in the elastic constants [17, 18]. Specifically, the Debye 

temperature was expressed by 8 == (306 - 0.1581) K, where T is temperature [3]. The 

magnitude of this softening suggests that the Debeye temperature decreases by about 40% 

between 300 and 940 K. This corresponds to a vibrational entropy of !1S = 3kB In( 830OJ18940K) 

= 1.5 kB/atom beyond that of the room temperature phonon DOS. 

The usual thermodynamic argument for thermal expansion is that although thermal 

expansion generates elastic energy, a larger crystal has lower phonon frequencies and hence a 

larger vibrational entropy. The quasiharmonic approximation assumes these vibrations to be 

those of a harmonic solid [1]. In this approximation the entropy due to phonon softening 

equals the entropy from volume expansion, consistent with the thermodynamic prediction 
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940K C - C 
Sp - Sv = f p v dT = 9BT Va 2 (640K) = 0.16 ksfatom, 

300K T 
(1) 

where the bulk modulus B = 100 GPa, the molar volume V = 12.49 cm3/mol, and the linear 

thermal expansion coefficient a = 1.39 x 1O-5/K are all values at 300 K [8]. (Their 

temperature dependencies are not expected to change the results below by more than a few 

percent.) The entropy change of 1.5 kB/atom predicted with Debye-Waller factors is thus 

about an order-of-magnitude larger than what is expected from the volume expansion. This 

substantial inconsistency suggests that the phonon softening has a different origin. 

2.2 Experimental 

All experiments used uranium powder of 99.84% purity with particle sizes of 20-100 

Ilm. For safety reasons the particles were passivated with a uranium dioxide surface layer 

that made up about 20% of the total volume. For the high temperature measurements about 

80 g was loaded into a vanadium can of 1.5 cm diameter and 7.6 cm in length. The sample 

can was mounted in a furnace that was kept under high vacuum throughout all 

measurements. Neutron energy gain spectra were measured at high temperatures with the 

FCS time-of-flight spectrometer at the NIST Center for Neutron Research. The spectrometer 

was operated with an incident neutron energy of 3.55 meV (A. = 4.8 A). Spectra were 

obtained on a-U at 300 K, 433 K, 645 K, and 913 K; ~-U at 1013 K; and y-U at 1113 K and 

1213 K. For the low temperature measurements, 157 g of powder was loaded into a 6 x 10 

cm flat plate aluminum can of depth -2.5 mm. The low temperature measurements were 

performed with the LRMECS time-of-flight chopper spectrometer at the Intense Pulsed 

Neutron Source at the Argonne National Laboratory. The spectrometer was operated with 
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incident neutron energies of 25 meV and 15 meV, and measurements were made at 50 K, 250 

K, and 300 K. The data were corrected for empty can scattering and time-independent 

backgrounds, and summed over a wide range of scattering angles to obtain the phonon 

density of states. Some weak inelastic intensity from the uranium dioxide surface layer was 

observed. However, since most of this intensity was at energies higher than the uranium 

phonon cut off energy (-15 meV), it was easily fit and subtracted from the elemental 

uranium scattering using a previously measured uranium dioxide phonon density of states 

[19]. The scattering from the oxide accounted for about 10% of the total inelastic intensity in 

the energy range of the metallic uranium phonon DOS. 

2.3 Results and analysis 

2.3.1 Multiphonon correction and the phonon DOS 

After the empty can runs were subtracted from each data set, the resulting spectra 

contains both I-phonon and multi phonon contributions. To separate out the I-phonon density 

of states the incoherent multiphonon scattering was iteratively determined to all orders in the 

harmonic approximation (the calculations in this section were performed on Mathcad using 

the files in Appendix A). The procedure involved using a trial phonon DOS to calculate the 

mean square atomic displacement <u2> and time dependent self correlation function defined 

as 

G(t) = foo dOJ Z(OJ)n(OJ)e- iOX 

-00 OJ ' 
(2.1) 
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where Z( ro) is the phonon density of states and n( OJ) is the thermal occupancy factor. Then 

this was used to calculate the total incoherent dynamic structure factor summed over the 

detector angle (28) range 

where 

Q(8,ev) = 2M( Hev J - 2E-nev -2E l--cos(28) 
n2 E' 

(2.3) 

and M is the neutron mass. The anisotropy in the Debye-Waller factor, <u2>, was neglected 

because the resulting errors can be shown to be negligible (see Appendix B). The expression 

in square brackets in Equation 2.2 includes a gaussian instrument energy resolution of 

variable width, /1E( ro), and minimizes cut off errors in the numerical Fourier transform. 

By expanding the exponential in Equation 2.2 containing G(t), the incoherent single 

phonon and elastic scattering was determined. This was subtracted from the total scattering to 

give the multi phonon-angle-averaged dynamic structure factor 

Sine Sine Sine Sine 
m,eale = calc - O,cale - l,eale . (2.4) 

Although the previous result was calculated for incoherent scattering, the angle-averaged 

result is also a good approximation for the multiphonon coherent scattering since the 

interference terms in the coherent cross section cancel each other to a large extent. 18 The 

coherent elastic scattering is just a delta function convoluted with the instrument energy 

resolution and thus was easily fit and subtracted. 
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The measured total dynamical structure factor minus the elastic peak was averaged 

over the detector angles, 28, and scaled to match S::I~(W) - S~n:alc(W). Then the 

multi phonon part, Equation 2.4, was subtracted to give an estimate of the one phonon 

scattering plus a small nearly constant background (-5%) from multiple scattering. After a 

background subtraction this was then used to determine a new phonon DOS that was in turn 

used to recalculate the multiphonon contribution. The procedure was repeated until the 

phonon DOS converged to within statistical errors (three iterations). 

Figure 2.1 shows the phonon DOS obtained from the measured spectra. The 

agreement of the FCS and the LRMECS results at 300 K is encouraging. Both measurements 

show intensity at -15 meV above the phonon DOS calculated (DOS_calc) from the force 

constant model of Crummet, et al. [5]. With this model, the fully coherent one phonon 

scattering function, SlIQI, OJ), was calculated and summed over the appropriate kinematic 

IQI and OJ ranges for each instrument. The results for both LRMECS (LRMECS_calc) and 

FCS (FCS_calc) show that the difference is not a result of insufficient Q-sampling. In the 

a-phase there is a redistribution of intensity in the main features at -8 and -12 meV, with 

the higher energy peak gaining extra weight with increasing temperature. These features also 

show an overall decrease of about 1 me V per 200 K. 
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Figure 2.1. The phonon density of states of uranium. Data from 300 K and above were 

obtained from spectra acquired with the Fermi-Chopper Spectrometer (FCS) at the NIST. 

Data from 300 K and below were measured on the Low Resolution Medium Energy Chopper 

Spectrometer (LRMECS) at ANL. The curves labeled DOS_calc, LRMECS_calc and 

FCS_calc were all calcuated from the force constant model of Crummett et al. [5] as 

described in the text. The 913 K a-uranium DOS is superimposed on all curves above 300 K 

and the 300 K data is superimposed on all curves below 300 K. The three solid state phases, 

orthorhombic (a), tetragonal (~) and body centered cubic (y) are compared at the top. 
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Figure 2.2. Comparison of the mean square displacement calculated from phonon DOS in 

this work and that determined by diffraction by Lawson et al. [3]. 

The temperature dependence of the <u2> calculated from the phonon DOS was 

compared to those determined from diffraction [3], Figure 2.2. The results from diffraction 

show a more rapid increase with temperature and hence a larger vibrational softening. The 

diffraction results predict that the Debye temperature decreases by about 40% from room to 

the transition temperature where, as our phonon DOS shows, it may only be 30%. 
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At low temperatures there is a broadening of the features in the phonon DOS that 

could arise from shortened phonon lifetimes, perhaps related to the charge density wave 

(CDW) transition at 43 K [8]. At low temperatures a broad peak appears in the phonon DOS 

at about 4 meV. This could support Yamada's suggestion [20] that a whole sheet of the 

phonon spectrum starts to soften as the temperature is lowered toward the 43 K CDW 

transition - a single soft mode would involve a volume in reciprocal space too small to be 

observed in the phonon DOS. 

2.3.2 Testing for harmonic behavior 

Most standard methods of measuring vibrations in solids are immediately interpreted 

in terms of harmonic models. However, it turns out that a more general view can be taken. In 

the case of inelastic neutron scattering, the dynamical structure factor can be interpreted in 

terms of the mean-square power spectrum and hence the potential energy can be extracted. 

For a single component system the incoherent scattering function, SlQ, w), is given by the 

Fourier transform of the autocorrelation function [21] 

Si (Q, W) = 2~ j ~ t (e -iQ'T
j 
(0) eiQ

'
Tj (t»)e -iOlt dt, 

~ J-I 

(2.5) 

where rj represents the instantaneous atomic position of atomj. By taking the classical limit, 

the scattering from a crystal in an arbitrary orientation with respect to Q can be simplified by 

expanding the exponentials in powers of the magnitude of Q, denoted Q, and integrating over 

time, t. Taking the classical approximation 

(e -iQTQ,j (0) eiQrQ,j (t)) = ( eiQ(rQ,j (t)-rQ,j (0))), 
(2.6) 

where r Q,j is the projection of rj along the direction of Q. Then expanding in the small Q limit, 



(eiQ(rQ,j (t)-rQ,j (0))) == 1 + iQ( (rQ)t)) - (rQ,/O»)) - ~ Q2 ((rQ,/ (t») + (rQ,/(O»)) 

Subtituting (2.7) into (2.5) the following results are found per atom (j): 

First term: 

Second term: 

1 foo -iWld _ 8(w) - e t---
2nli -00 Ii . 

;;. j ((rQ./t») - (rQ./O»))e -;,a dt 
-00 

= ;;. [ lirQ./ r - t)dre -iw< dt - (rQ./O) )2n8( ill) ] 

= ;;. [ ( IrQ,/t' lei",' dt' ]Ie -;,,,, dr - (rQ)O) )2n8 (ill) ] 

= ;;. [ RQ,j (0)2n8( w) - (rQ,j (0) )2n8( w)] 

=0 
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(2.7) 

(2.8) 

(2.9) 

The change of variables t' = r -t was used. RQj(O) is the Fourier transform of rQj(t) evaluated 

at zero frequency. It equals <reO»~ because both <reO»~ and RQj(O) give the deviation from a 

zero average (if there is such a deviation). To get the delta function, the limit on the time 

average, ~, was set to infinity. 

Third term: 



Last term: 

-;; It (rQ/(t)) + (rQ./(O)))e-i~dt 

= - ;; [(1rQ./«( )ei@dt')le-i~dr + (rQj 2 (0))2n-8((O) ] 

= _ ~2 (rQ/(O»)8(m) 

Combining terms gives the classical incoherent scattering function at low Q: 
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(2.10) 

(2.11) 

(2.12) 

For a powder, Equation (2.12) is averaged over all orientations. Hence, the modulus square 

power spectrum averaged over all atoms (j's) and directions, denoted IR(w)1 2
, can be 

extracted from the measurement. The average potential energy per degree of freedom can 

then be determined by integrating the average power spectrum using 

(2.13) 

where M is the mass of the vibrating atom. In the case of harmonic phonons in the high 

temperature limit, the power spectrum is related to the phonon density of states by 

(2.14) 
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Integrating both sides with respect to w gives the expected result that <U>h=k8TI2. This 

result holds true even if the harmonic potential is temperature dependent, i.e., if the 

temperature dependence of the phonon DOS is the result of a continuous change in a 

harmonic potential. Equipartition of potential and kinetic energy is expected for harmonic, 

but not anharmonic oscillators. If the potential is constant and the softening originates with 

anharmonicity, the potential energy can be expressed as 

(2.15) 

where the coefficients A and B can be related to true anharmonic terms in the interatomic 

potential. 

The Q-summed one phonon scattering function, SlIQI,w), was used with Eqs. 2.12 

and 2.13 to calculate a quantity proportional to < U> for a-Vat the four highest 

temperatures. The result shown in Figure 2.3 was scaled so the points at the lowest 

temperatures were at the harmonic energy k8T12. Anharmonicity will appear as a nonlinearity 

in a plot of < U> vs. T. For comparison, attempts were made to calculate the temperature 

dependence of the potential energy of a Morse and a Lennard-Jones potential. Because the 

vibrational softening in a-V is so large in spite of its low thermal expansion and elastic 

stiffness, no standard potential could match all properties. For the potential energy curves 

labeled "Lennard-Jones" and "Morse_I" in Figure 2.3, the correct thermal expansion, 

nearest-neighbor distance and vibrational softening (-30%) were used with an elastic 

stiffness about two times too large. For the potential labeled "Morse_2" in Figure 2.3, the 

correct elastic stiffness was used, but the thermal expansion was about two times too large. 

The nonlinearity in the plot of < U> vs. T is obviously too large in all cases. The phonon 
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softening in a-U occurs while the potential remains primarily harmonic. Evidently the 

interatomic force constants are temperature dependent. Since the force constants originate 

with the sensitivity of the electronic energy to atom displacements, it follows that thermal 

excitations of the electronic states are altering the force constants. This contradicts the 

assumption, used in state-of-the-art band structure calculations, that temperature effects can 

be neglected compared to anharmonic volume effects. 

The thermodynamic implications of harmonic versus anharmonic phonon soften can 

be understood most easily by considering Figure 2.4. The upper graph in Figure 2.4(b) shows 

a harmonic oscillator with the same energy E and mean-square displacement <u2> as those 

of the anharmonic oscillator shown in Figure 2.4(a). However, the anharmonic phase-space 

trajectory contains a smaller area (lower graph). In the classical limit (kBT » the energy 

spacing of quantum states), a unit of phase-space area of size tl.ptl.u -Ii (set by the uncertainty 

principle) contains one quantum state. A system exploring the smaller area therefore accesses 

fewer quantum states. Entropy is proportional to the log of the number of accessible quantum 

states. Thus, the anharmonic oscillator with its smaller phase-space area must have less 

vibrational entropy. A similar argument can be made for equal temperatures, but in that case 

the entropies are the same and the energy of the anharmonic oscillator is larger. At equal 

temperatures, the vibrational free energy (F = E - TS) is therefore larger for the anharmonic 

oscillator. Although this is an oversimplification of a real solid, it does make it clear that 

distinguishing between anharmonic and harmonic behavior is essential to understanding the 

vibrational part of the equation of state of uranium (more on the differences between 

harmonic and anharmonic oscillators can be found in Appendix C). 
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The phonon density-of-states of the three solid-state phases of uranium, orthorhombic 

(a), tetragonal (f) and body-centered cubic (y) are compared at the top of Figure 2.1. The y­

uranium phonon density of states was statistically the same at 1113 K and 1213 K, showing 

no evidence of the thermal softening seen in a-phase. The f)-phase is not stable over a 

sufficient temperature range to obtain the temperature dependence of its phonon DOS. The 

change in phonon DOS at each phase transition accounted for vibrational entropy changes of 

(Sf3-Sa)Vib = +(0.15±0.1) kiatom and (sY-Sf3)Vib = + (0.36±0.1) kiatom. The errors arise mainly 

from the uncertainty in the Q-sampling estimated from the difference between the calculated 

phonon DOS (DOS_calc) and calcuated Q-summed coherent scattering for the FCS 

instrument (FCS_calc). Both these values are significantly smaller than the total entropy 

obtained from latent heat measurements; (Sf3-Sa)tot = (0.35-0.37) kB/atom and (sY-Sf3)tot = 

(0.54-0.55) kB/atom [22, 23]. The remaining entropy of the phase transitions must be 

electronic in origin. Not only does the phonon softening disappear in the high temperature y­

phase, but it does so with a large increase in electronic entropy. Electronic entropy evidently 

makes a major contribution to the stabilities of the f)- and y-phases. 

2.4 Concluding remarks 

The results from these experiments were surprising for a number of reasons. Perhaps 

the greatest significance of these results is that they challenge the way we think about the 

strength of interatomic bonding. With very few exceptions, changes in the stiffness of a bond 

between two atoms or a collection of atoms in a crystal are first related to atomic distances 
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and/or the symmetry of the arrangement in the case of a crystal. It is typical to ignore the 

effects of electronic thermal excitations that are found to be so important in the present work. 

The temperature dependence of the electronic structure in a-U plays a major role in 

its thermodynamics, being comparable to the phonon entropy and overwhelming the usual 

anharmonic behavior. Present state-of-the-art electronic band structure calculations used to 

predict properties such as phonon frequencies are based on the assumption that thermal 

effects on the electronic structure can be neglected when compared to volume effects. The 

actinides, however, show the need for more sophisticated treatments of the role of 

temperature on interatomic interactions. Specifically, the affect of the excited electronic 

states on the atomic vibrations must be understood. 
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Chapter Three Vibrational and electronic entropy of cerium 

In this chapter it is shown that, like for uranium, the electronic entropy of cerium is 

thermodynamically significant. It is also shown that the electronic contribution can be 

separated into a localized and delocalized electron contribution. The connection between 

scales in this chapter is the coupling of the localized and de localized electronic states. 

3.1 Introduction 

Cerium is endowed with several fascinating structural phase transitions between its 

SIX known solid phases shown in Figure 3.1. For example, there is a structural phase 

transition, driven by increasing pressure or decreasing temperature, where fcc y-cerium 

collapses to fcc a-cerium with a 15% volume reduction at room temperature. This difference 

in volume becomes smaller at higher temperatures, and cerium is the only element to exhibit 

a critical point in a solid-solid phase transition. Because cerium undergoes a significant 

change in valence in the y-a transition (from 3 towards 4), recent studies have focused on the 

electronic structure of cerium [1-6]. 

In this chapter the vibrational and electronic entropy of two solid-state cerium 

transitions are studied. The first (Section 3.1) concerns the high temperature fcc (y) to bcc (8) 

transition. In this transition the electronic contribution is deduced by comparing the measured 

phonon contribution to the total determined from the latent heat of the transformation. In the 

second case (Section 3.2) the electronic contribution to the dhcp (~) to fcc (y) transition is 

considered in more detail. Specifically, electronic entropy contributions from crystal field 
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splitting, Kondo spin fluctuations, and the usual excitations at the Fermi energy are treated 

separately. 
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Figure 3.1. Phase diagram of cerium. 
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3.2 Phonon densities of states of y-cerium and 8-cerium measured by TOF 

inelastic neutron scattering 

3.2.1 Introduction 

Recent inelastic neutron scattering measurements on the HB3 triple axis spectrometer 

at ORNL were used to estimate the vibrational entropy of the cerium fcc (y) to bcc (8) 

transition [7]. The value found, /j.S;~r = (0.51 ± 0.05) kB/atom, was so large that a 

thermodynamically significant electronic entropy of the opposite sign was required to explain 

the latent heat. This was an important result because electronic entropy is not normally 

expected to make a significant contribution to a high temperature structural phase transition. 

There was, however, some uncertainty in the result. Because cerium scatters neutrons 

coherently, interference of the neutron wave function modulates the inelastic scattering 

intensity as a function of momentum transfer (Q). Thus, to determine a phonon DOS it is 

necessary to sum over all Q in the Brillouin zone. The uncertainty in the triple axis 

experiments came from the fact that only three or five values of Q were used to estimate the 

sum. The work of this section on the cerium fcc (y) to bcc (8) transition was performed to 

check the result using a time of flight (TOF) instrument that allows a sum to be taken over a 

wide range of Q. 

3.2.2 Experimental 

Cerium metal of 99.9% purity was obtained from Johnson-Matthey. Under an inert 

atmosphere, the metal ingot was cut up into pieces of typically 1 g mass. About 35 g was 
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loaded into a vanadium can of 1.5 cm diameter and 7.6 cm in length. The sample can was 

mounted in a furnace that was kept under high vacuum throughout all measurements. 

The high temperature measurements were performed on the Fermi Chopper Time-of­

Flight spectrometer at the NCNR (NIST Center for Neutron Research). The spectrometer was 

operated with an incident neutron energy ofE = 3.55 meV (A = 4.8 A). Spectra were obtained 

at 795 K (y), 984 K (y), 1006 K (0), and 1021 K (0). The phases were verified by observing 

the first few diffraction peaks in the elastic scattering. Empty can runs were also performed at 

each temperature. 

3.2.3 Data analysis 

The empty can runs were subtracted from each data set. Then the incoherent 

multiphonon scattering was iteratively determined to all orders using the procedure described 

in Section 2.3.1 of this thesis. On the FCS instrument there were 40 detector angles that went 

from 35° to 135°. The Q sampling of the Brillouin zone is compared to that of the triple axis 

measurements of Robertson et al. [7] in Figure 3.2. Clearly, the TOF measurements in the 

present study give a more complete sum over the Brillouin zone. The out-of-plane Q 

projections not shown in Figure 3.2 improve the Q-sampling of both the TOF and triple-axis 

measurements. 
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Figure 3.2. Q-space measured. Top picture shows the first Brillouin zone for the fcc structure 

and a cross section plane for the pictures below. On the left the Q values from the 

measurements of Roberston, et al. [7] (3.924 kl, 4.292 kl, and 4.432 kl) are shown cutting 

through a plane and then the in-plane parts are projected into the first zone (bottom left). On 

the right the equivalent TOF Q-space is shown for an energy transfer of 3.55 meV. For scale, 

the lattice parameter, a, was taken to be 5.18 A. 
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The multiphonon part, Equation 2.4, was subtracted from the data to give an estimate 

of the one-phonon scattering plus a small nearly constant background (-5%) from magnetic 

and multiple scattering. After a constant background subtraction this was then used to 

determine a new phonon DOS that was in turn used to recalculate the multi phonon 

contribution. The procedure was repeated until the phonon DOS converged to within 

statistical errors (three iterations). Figure 3.3 is a calculation showing the size of the magnetic 

scattering relative to the one-phonon scattering. The magnetic scattering was extrapolated 

from low temperature measurements of the temperature dependence of the magnetic spectra 

[8]. The one-phonon scattering was calculated with a Born von Karman model using the 

force constants of Stasis, et al. [9]. Since the sample was designed for approximately 10% 

scattering, the multiple scattering should be of order 1 %. 

There were no statistically significant differences between the y-cerium at 795 K and 

984 K or between the 8-cerium at 1006 K and 1021 K, so to improve statistics each pair of 

curves was added together. The resulting average phonon DOS for the y and 8 phases are 

shown in Figure 3.4. Because data were analyzed on the neutron energy gain side of the 

spectrum, the energy resolution in the phonon DOS decreases with increasing energy from 

0.14 meV (at the elastic line) to 1 meV (at 10 meV). The measured result for the fcc phase is 

in good agreement with the DOS calculated with a Born von Karman model using the force 

constants of Stasis et al. [9]. For direct comparison, the calculated Sf (ro) was convoluted 

with the instrument resolution function and then multiplied by a thermal factor to obtain the 

calculated phonon DOS. 
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Figure 3.3. Magnetic contribution relative to the one-phonon scattering. 
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Figure 3.4. Phonon DOS of 8-cerium at 1006 K and 1021 K and y-cerium at 795 K and 984 

K. Solid dark curve: phonon DOS of y-cerium, calculated using force constants of Stasis, et 

al. [9], and convoluted with the instrument resolution function. 

Integration of the difference in the measured phonon DOS gave /)"S!~r = (0.71 ± 0.05) 

kB/atom. The error is based mainly on the uncertainty in the background subtraction (Figure 

3.3). Other errors include counting statistics and the energy resolution. The resolution 

broadening of measured features in S( (0) tends to cause a slight underestimate of entropy 
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differences calculated from the phonon DOS. The underestimate comes from both the 

apparent increases in measured cutoff energies due to broadening, and from a smoothing out 

of sharp differences in the measured S( ro). Fortunately, most of the difference in vibrational 

entropy of the y and 8 cerium originates with the difference in DOS curves below 7 meV 

where the experimental energy resolution was best. 

3.2.4 Discussion 

The phonon DOS of cerium shows a large increase in low energy modes (up to 7 

me V) when it transforms from fcc (y) to bcc (8), Figure 3.4. This was similar to the triple 

axis results of Robertson et al. [7], although this previous work reported an enhancement of 

the low energy modes only up to 4 meV rather than 7 meV. The triple axis results are shown 

in Figure 3.5. The additional enhancement of the low energy modes increases the calculated 

vibrational entropy difference at the transition temperature from !1S:~r = (0.51±0.05) kB/atom 

[7] to !1S:~r = (0.71±0.05) ksfatom. The discrepancy suggests that the Q-sum in the triple 

axis measurements may not have been adequate to average out coherence effects. This higher 

value is slightly less than what Robertson et al. [7] obtained from diffraction measurements, 

!1S:~r = 0.84 ksfatom, although these Debye-Waller factor measurements were affected by 

crystallographic texture in the sample. 

The thermodynamic implications of the increase in low energy modes were noted by 

Robertson, et al. [7]. The most significant result is that the derived vibrational entropy of the 

transition, !1S~~r = (0.71±0.05) ksfatom, is much larger than that expected from the latent 

heat 0.35-0.36 kB/atom [10, 11]. To account for this difference, it was suggested that the 
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electronic entropy of 8-cerium is lower than y-cerium. The present results increase the 

estimate of the electronic entropy from 0.14 kB/atom to 0.35 kB/atom. It is surprising that 

electronic entropy can be significant in a high temperature structural phase transition, but this 

seems plausible in light of recent calculations of the electronic DOS of fcc and bct cerium by 

Ravindran et al. [12] and Eriksson et al. [1]. Further evidence that electronic changes are 

important in high temperature cerium is given by the argument that the contraction of 8-

cerium upon melting is caused by an electronic transition [13]. 
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3.3 Detailed study of the vibrational and electronic entropy of ~-cerium 

and y-cerium 

3.3.1 Introduction 

Electronic states of an atom, which are degenerate for isolated atoms, are split into 

various crystal field levels when the atom is in a crystal. If this crystal field splitting of 

electronic levels is of order kaT, there is a contribution to the specific heat associated with the 

partial occupancy of the electronic states. This is seen as the "Schottky anomaly" in the 

specific heat. These levels can also be determined from measurements of crystal field 

excitations in the neutron magnetic scattering. Magnetic scattering can be effectively isolated 

from phonon scattering because it dominates at low angles, whereas phonon scattering 

dominates at high angles. A phase transition can change the local symmetry and the strength 

of the crystal field splitting and hence change the entropy. In the present chapter we compare 

the 4f-electron level splitting of ~-cerium and y-cerium to determine the change in crystal 

field entropy. We also consider the contribution from spin fluctuations of the 4f-electrons 

seen as a broadening of the measured crystal field energy levels. To identify any remaining 

entropy contribution, we compare the vibrational and crystal field splitting entropy with the 

latent heat measured at the ~-y transition temperature. We deduce that there is a third 

contribution to the ~-y transition, probably electronic in origin. 

3.3.2 Experimental 

Two different cold-rolled and annealed plates (approximately 100 grams each) of 

99.9+% pure cerium in the y-phase were prepared for inelastic neutron scattering 
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measurements at 300 K. For ~-cerium measurements at 150 K and 300 K, one of the y­

cerium plates was transformed to more than 95% ~-cerium using a thermal cycling technique 

similar to that described by Koskimaki, et al. [14]. The procedure involved cycling from 

room temperature to 77 K 20 times, annealing at 345 K for 6 days, and cycling another 20 

times. 

Neutron scattering measurements were performed on the LRMECS spectrometer at 

the Intense Pulsed Neutron Source of the Argonne National Laboratory. The samples were 

mounted in a closed-cycle helium displex refrigerator. Inelastic measurements were made 

with incident neutron energies of E j = 45 and 25 meV. The raw data were corrected for self­

shielding, sample environment background, detector efficiency, and k/kf phase space factor. 

The data were normalized in absolute units of millibams/(steradian . Ce atom) by comparison 

to a vanadium standard measured under identical spectrometer conditions, giving the 

scattering function S( e, w), where e is the scattering angle and 11 w the energy transfer. 

3.3.3. Data analysis 

The analysis of the magnetic scattering is described in detail elsewhere [8]. The 

procedure involves summing experimental data from detector banks in the low angle range 

from 1.95°-51.6° to increase statistics and minimize the contribution from phonon scattering, 

which increases with e. Figure la shows the magnetic and phonon contribution for the low 

angle sum at 300 K and E j = 45 meV. The higher resolution data obtained with E j = 25 meV 

did not reveal any additional information on the magnetic scattering at 300 K because the 

lifetime broadening was much greater than the instrument resolution. The magnetic peak 

positions were fit using the peak positions inferred from low temperature measurements and 
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accounting for thermal broadening [8]. The phonon contribution was approximated using a 

measured La spectra and accounting for the relative cross sections. 
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Figure 3.6. Phonon and magnetic contributions to S (w) for ~-Ce at 300 K; (a) Ei = 45 meV 

and summed over the low angle range 1.95°-51.6°, (b) Ei = 25 meV and summed over the 

high angular range 55.3° -118.5°. The relatively constant phonon contribution above the 

phonon cut off (about 14 meV) is from multiphonon scattering. 

The phonon scattering was studied by summing over the high angle range 55.3° -

118.SO where the phonon scattering was largest. The 300 K data were appropriate for phonon 

scattering determinations because the magnetic excitations were broadened and 

comparatively weak. Using the magnetic form factor, the magnetic scattering was 

extrapolated from the low angle data to the high angle range and subtracted from the phonon 

scattering. The size of this magnetic correction is shown in Figure 3.6b. The good separation 

of phonon and magnetic scattering is evident by comparing their relative 3.6a and 3.6b. 



39 

The incoherent multi phonon scattering was iteratively determined to all orders using 

the procedure described in Section 2.3.1 of this thesis. The final phonon DOS are shown in 

Figure 3.7. The y-cerium (fcc) and B-cerium (dhcp) phonon DOS were essentially identical to 

the corresponding fcc and dhcp phonon DOS measured for lanthanum [15]. 
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Figure 3.7. Phonon DOS curves for B-cerium and y-cerium at 300K. 
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3.3.4 Discussion 

The measured phonon DOS (Figure 3.7) was used to calculate the phonon part of the 

specific heat. The constant volume (harmonic) part of the phonon specific heat was 

calculated using: 

C T = 3k O).!.!!!!...- kBT dO) 
00 (fA J2 exp[ tUiJ ] 

V,.ib () 8! g( ) kBT (exp[ f;'t ]-1)2 (3.1) 

The size of the anharmonic contribution from volume expansion, Cp - Cv = 9BvciT, 

was estimated using the specific volume, v, bulk modulus, B (0.20 Mbar) [16], and thermal 

expansion coefficient, a (8.1 x 1O-<i K-1
) [7] , of y-cerium. This contribution was less than the 

error on the specific heat (-0.1 J/mol-K) over the temperature range used in this analysis, 

Figure 3.8, and was thus neglected. It is assumed that anharmonic contribution to f)-cerium 

and y-cerium are similar in magnitude since they have similar densities and are both close-

packed structures differing only in stacking sequence. 

The y-cerium (fcc) has a well-defined crystal field excitation at 17 meV [8]. For a 4f 

electron with fcc symmetry this corresponds to a transition from a doublet (17) to quartet (18) 

[17]. The f)-cerium (dhcp) data did not show all of crystal field peaks because some were too 

weak and broadened to separate from the quasielastic scattering. The details of this problem 

are discussed in a separate report on the magnetic scattering in this data set [8]. The basic 

problem seems to be a fairly strong hybridization of the f-states with the conduction band. 

This makes accurate predictions of thermodynamic quantities from simple crystal field 

models difficult without supporting measurements. Fortunately, calorimetry measurements 

were made on f)-cerium at low temperatures by Koskimaki, et al. [18], Tsang, et al. [19], and 
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Gschneidner and Pecharsky [20], After subtracting the phonon part using Equation 5 we fit 

the remaining heat capacity by assuming three contributions from the electronic degrees of 

freedom; (1) crystal field, (2) spin fluctuations, and (3) the usual electronic excitations at the 

Fermi energy. The phonon-subtracted specific heat is shown in Figure 3.8. 
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Figure 3.8. Phonon-subtracted heat capacity of ~-cerium (0). Phonon contribution was 

calculated from the ~-cerium phonon DOS shown in Fig. 2. The crystal field (Schottky) 

contribution was calculated from the level scheme determined using the inelastic neutron 

scattering spectra [8]. The spin fluctuation (Kondo) contribution was calculated with the 

Coqblin-Schrieffer model [21]. The thick curve shows the sum of the crystal field, spin 

fluctuation, and electronic contributions. The linear electronic contribution was adjusted such 

that the sum matched the specific heat at high temperatures. Peak at around 10 K is due to an 

antiferromagnetic transition. The heat capacity data are those from measurements of 

Koskimaki et al. [18], Tsang et al. [19], and Gschneidner and Pecharsky [20]. 
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The ~-cerium dhcp structure has an equal number of sites with cubic local symmetry 

and hexagonal local symmetry. The cubic site has the same doublet (r7) to quartet (rg) 17 

me V crystal field excitation as the fcc structure [8]. As discussed by McQueeney et al. [8], it 

is possible to predict the hexagonal level scheme from the measured cubic levels by 

following the assumptions of the Superposition Model [22]. Briefly, the relevant crystal field 

scaling parameters depend only on the polar coordinates of the ligands. Because the only 

difference between the local environments of the cubic and hexagonal sites is a rtf3 rotation 

of the closed-packed plane above the site, the relevant scaling parameters are identical on 

both sites. Based on the cubic splitting, the crystal field level scheme on the hexagonal sites 

was I ± 112> at 0 me V, I ±512> at 1.9 me V and I ±312> at 9 me V [8]. Thus, if we neglect the 

effects of lifetime broadening, the mean crystal field energy can be determined using 

U --- E ex __ n 1 L [-E J 
CF - Z(T) n n P ksT ' 

(3.2) 

where 

Z(T) = Lexp(-EnJ, 
n ksT 

(3.3) 

and n is summed over all levels (half on cubic sites and half on hexagonal sites). The crystal 

field specific heat is then given by 

The crystal field specific heat calculated from this level scheme is shown in Figure 3.8. It 

should be noted that the lifetime broadening of the crystal field levels is significant [8]. A 

justification for using the simple model of the sharp levels is that the specific heat is an 
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integral quantity, so the details of the broadening are smoothed out to a large extent. We do, 

however, include the broadening in the ground state separately below. 

The interaction of the localized 4f-electrons with the conduction electrons provides an 

energy spread for the ground state doublet (I ±1I2> on the hexagonal sites and r7 on the cubic 

sites). This can be seen as quasielastic spin fluctuations in the neutron inelastic magnetic 

spectra [8]. The spread of these states contributes an additional term to the electronic specific 

heat. The simplest way to treat this problem is with the Kondo impurity model as is often 

done with heavy fermion systems [23]. The problem is in fact very similar, but with a much 

higher Kondo temperature (TK - 40 K [22]) and a much weaker enhancement of the 

electronic specific heat at low temperatures. Further support for this approach is that a 

resistivity anomally in ~-cerium at around 50 K has been interpreted successfully in terms of 

a quenched Kondo scattering mechanism [24]. Raj an calculated an exact expression for the 

specific heat using the Coqblin-Schrieffer Model [23]. For the doublet ground states the 

specific heat from Kondo spin fluctuations is given by [23] 

C (T) = k foo &F(E)(EI2kBT)2 dE 
SF B -00 COsh2(EI2kBT) , 

(3.5) 

where gs~ E) is the spin fluctuation density of states that modifies a standard result for a 2-

level system. We approximate the spin fluctuation density of states as a lorentzian with a 

half-width determined from the neutron quasielastic width extrapolated to zero temperature, 

- 4 me V [8]. The calculated specific heat for this contribution is labeled "spin fluctuation" in 

Figure 3.8. We did not attempt to fit the specific heat at the lowest temperatures because of 

the anti ferromagnetic transition at - 10 K. 
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If we assume temperatures well below the Fermi temperature, Tf , and that the energy 

derivatives of the electronic DOS can be neglected, the electronic specific heat in the free 

electron model can be expressed in terms of the electronic DOS at the Fermi level, CelT) = 

g( Ef )( rr:/3 )k/T. Therefore, with these approximations just one adjustable parameter, the 

electronic specific heat constant, r = g( Ef)(n2/3)kB
2 ,was required to fit the remaining 

electronic contribution to the specific heat data. The fit, shown in Figure 3.8, gives r = 

(7.0±0.1) mJ/mol-K2. With this it is confirmed that temperatures are well below the Fermi 

temperature since Tf = (rr:12)(kEl'r) = 6060 K. Since the narrow 4f-bands result in the largest 

derivative, our second assumption depends mainly on the location of the 4f-bands with 

respect to the Fermi level. According to Baer and Busch [25] the 4f-bands lie - 900 meV 

below the Fermi energy in y-cerium and thus should not affect the derivatives. More recent 

results suggest it may be in the 1 to 2 e V range [26]. In any case, if the next term in the 

Sommerfeld expansion were large, an additional T3 term would need to be added to the 

electronic specific heat. The data do not warrant such a correction. 

Despite the simplicity of the models used, the sum of the various electronic 

components fit the data surprisingly well above the antiferromagnetic transition as shown in 

Figure 3.8. However, it should be pointed out that many assumptions were not quite correct. 

In fact, it seems unlikely that crystal field picture is even correct in a strict sense since the 

hybridization with conduction electrons is so strong [8]. A more accurate model would 

include the hybridization of each crystal field state with the conduction electrons. On the 

other hand, since the specific heat is adequately reproduced, the entropy associated with an 

effective crystal field can be calculated accurately. 
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The calculated contributions to the specific heat were used to calculate the entropy 

difference between y-cerium and rJ-cerium as a function of temperature using 

(3.6) 

where i indicates the entropy contribution (i = el, vib, and CE). Although the spin fluctuation 

part was significant, it made no measurable contribution to the entropy difference since the 

quasielastic scattering of y-cerium was nearly identical to rJ-cerium [8]. The crystal field and 

vibrational entropy differences are compared in Figure 3.9. At the experimental transition 

temperature (420 K), the crystal field contribution is negligible compared to the vibrational 

contribution. The latent heat measured at -420 K implies an entropy change of only 0.05 

kslatom [27], which is smaller than the vibrational entropy. Thus, by setting the sum of the 

entropy differences equal to the latent heat, Figure 3.9 implies an electronic entropy 

difference of t1S~-f3 = - (0.04 ± 0.05) ks/atom. This difference is similar to predictions at 420 

K using the electronic specific heat constants of Koskimaki et al. [18] for low temperature 

calorimetry measurements on y-cerium and rJ-cerium (-0.096 kslatom). However, Koskimaki 

et al. [18] noted significant uncertainty in the electronic specific heat constant for rJ-cerium 

and attributed it to the low temperature anti ferromagnetic transition (near 11 K in Figure 3.8). 

Perhaps more significant was the fact that Koskimaki et al. neglected the spin fluctuation. 

(This is not surprising, since at the time of this publication (1974) heavy fermions were 

unknown and the calculations of Rajan [23] did not exist.) This latter point probably explains 

why they found such an unusually large value for the electronic specific heat constant, y, at 

low temperatures (-46 mJ/mol-K2) but could not reconcile it with the high temperature trend. 
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Based on the Kondo impurity model with a TK - 40 K, the low temperature limit of the 

specific heat is of order C (T ---70)IT = Y = 1.29nkJ6TK - 100 mJ/mol-K2 [23]. Thus, it is not 

surprising that Koskimaki, et al. found a significantly enhanced electronic specific heat 

constant at low temperatures. 
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Figure 3.9. Crystal field, vibrational and electronic contributions to the entropy difference 

between y-cerium and j3-cerium. Thick curve shows the sum of the three components. The 

electronic component was adjusted so that the sum equaled the value obtained from the latent 

heat measurement of Gschneidner et aI., [27]. 

Because of this uncertainty in the electronic specific, the electronic specific heat 

constant of j3-cerium (dhcp) was assumed to be equal to that of dhcp-Ianthanum [18]. The 

present results make no such assumption, and thus imply independent estimates of the 
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electronic specific heat constants; (7.0±0.1) mJ/mol-K2 for B-cerium from the fit in Figure 

3.8 and (6.2±0.8) mJ/mol-K2 for y-cerium accounting for the latent heat and other entropy 

terms. Compared with the values used by Koskimaki et al. [18],9.4 mJ/mol-K2 for B-cerium 

(which is actually just the lanthanum value) and 7.5 mJ/mol-K2 for y-cerium, our values are 

both slightly smaller but their difference is similar. 

The crystal field and electronic entropy tend to stabilize the y-phase with respect to 

the B-phase at low temperatures. Although the crystal field entropy difference is negligible at 

the measured transition temperature (420 K), it becomes important at the lower (true) 

transformation temperature, 283 K, determined in a 20 year study by Gschneidner, et al. [27]. 

Of course in a 20 year study it is not possible to measure the latent heat and, thus, determine 

the total entropy change. However, inspection of Figure 3.9 shows that the entropy difference 

is essentially the same in magnitude as at 420 K but that the crystal field entropy assumes a 

more significant role with respect to the electronic entropy (from continuous excitation of 

electrons across the fermi energy.) 

3.3.5 Summary 

The relative contributions of the vibrational and electronic degrees of freedom to the 

entropy of the B- and y-phases of cerium were determined. Many competing sources of 

vibrational and electronic entropy need to be included in the equation of state of cerium. 

Their different temperature dependencies change their relative importance. However, at the 

experimentally observed transition temperature (-420 K) a vibrational entropy difference of 

I).S:;13 = (0.09 ± 0.05) kB/atom is dominant followed by the electronic contribution I).S~-13 = -
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(0.04 ± 0.05) kB/atom and a negligible crystal field contribution. The crystal field entropy 

difference dominates at low temperatures and is comparable to the electronic contribution at 

the true transition temperature, 283 K. A contribution from quasielastic fluctuations from 

Kondo scattering was significant, but showed no difference between the two phases. 
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In this Chapter a connection is made between anharmonic atomic scale vibrations and a 

microstructural scale contribution to the specific heat. It is also found that the 

microstructural contribution to the specific heat is restricted by plasticity. 

4.1 Introduction 

It is now accepted that crystallographic differences between phases cause differences 

in vibrational entropy. It is less clear, however, if microstructure can affect the heat capacity 

of a phase, and hence its stability. Nanocrystalline Fe and Ni3Fe exhibit changes in their 

phonon DOS that alter somewhat their stability with respect to large grained material [1-3]. 

A recent experimental study of anharmonic effects in Ni3V [4] suggested that some of the 

heat capacity of Ni3V could originate with internal stresses that develop during anisotropic 

thermal expansion, but such effects were not shown conclusively. The present study was 

designed to test if such microstructural stresses could affect the heat capacity of Pd3V, which 

has the same D022 ordering phase transition as Ni3V, 

The difference in entropy of two states or phases of a material, a and {3, is found by 

measuring differences in heat capacities at constant pressure, I:1C/-a= C/ _Cpa, as a function 

of temperature and integrating 

T I:1Cf3-a 
I:1Sf3-a = f PdT' 

T' o 
(4.1) 
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For measurements of vibrational entropy, the atomic arrangements in the two states, a and {3, 

must remain unchanged throughout the differential calorimetry measurements. This is 

usually not a problem because most of the harmonic vibrational entropy difference comes 

from the low temperature range of the integrand where there is no significant atomic 

diffusion. 

The standard relationship between the thermal expansion coefficient, a, and the heat 

capacity at constant pressure, C
P

' is with the Grtineisen relation [5] 

a=-Y-C 3B V p , 
s 

(4.2) 

where B s is the adiabatic bulk modulus, V is the volume and Y is the Grtiniesen constant. This 

relationship can be derived from the anharmonic contribution to the vibrational specific heat 

by assuming a quasiharmonic model (cf. Chapter 2.1 and Chapter 6.1). In this case the 

Grtiniesen constant is given by the volume sensitivity of the phonon frequencies 

Yi = -~ ~Wi , appropriately averaged over all phonons (typically, Y == 2). For small changes 
Wi V 

between states, the differential thermal expansion coefficient is given by 

!:1af3 -a (T) = _Y_!:1Cf3-a (T) + C (T)!:1(_Y_Jf3-
a 

(4.3) 
3B V p p 3B V ' s s 

where the notation, !:1(xt-a
, means the difference in the quantity, x, between the two phases, 

a and {3. At low temperatures, where a and Cp vary more strongly than the other parameters, 

it seems reasonable to assume that a and Cp are proportional. It is often easier to measure 

differential thermal expansion, !:1a, than differential heat capacity, !:1Cp ' and we use both 

methods in the present investigation. Thermal expansion measurements were used previously 
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to obtain differences in vibrational entropy [7], but a comparison was not made with the more 

direct differential calorimetry measurements. In the present work we find excellent 

agreement between the temperature dependence of ~a and ~Cp. This agreement extends to 

higher temperatures where significant anharmonicity is observed. We attribute the 

anharmonicity to both the conventional thermodynamic source of Equation 4.2 and 4.3, but 

also to strain in the microstructure. 

4.2 Experimental 

Ingots of Pd3V were prepared from elemental Pd (99.9%) and V (99.9%) by induction 

melting in an argon atmosphere. For calorimetry, a pair of disks (188.7 mg) were cut from 

ingots with a slow speed saw. The edges were ground so that the masses were matched to 

within 0.1 mg. Samples for differential thermal expansion measurements were made by cold­

rolling ingots to about 0.1 mm thickness and cutting out two strips (40 mm by 4 mm). A solid 

cylinder (8.63 mm diameter and 8 mm long) was also machined for ultrasonic sound velocity 

measurements and for absolute thermal expansion measurements. All five of these pieces 

were annealed in evacuated quartz ampoules at 1100 DC for 2 h, and quenched by breaking 

the ampoules in iced brine. One of the strips and one disk were used directly in this state, 

which was confirmed to be disordered fcc by X-ray diffractometry. The remaining strip and 

disk were transformed to the ordered D022 state by annealing in evacuated quartz ampoules 

at 780 DC for 10 days. The annealing of the cold-rolled strip also induced recrystallization 

and reduced the rolling texture. X-ray diffractometry was performed with an Inel CPS-120 

diffractometer using Co Ka radiation with an Al filter to suppress the V Ka fluorescence. 
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Differential heat capacity was measured with a Perkin-Elmer DSC-4 differential 

scanning calorimeter (DSC) that had been modified by installing its sample head in a liquid­

helium dewar [8]. The sample disks, one disordered and one ordered, were placed in the two 

sample pans of the DSC. Heat capacity measurements comprised pairs of runs, with the two 

samples interchanged in the sample pans between runs. The difference in heat capacity was 

found from the difference of these two sets of runs. Ten matched runs were performed to 

ensure reproducibility. To counteract instrumental drift, runs comprised two pairs of scans 

over temperature intervals of 30 K, which overlapped by 10K. 

Two strips, one disordered and one ordered, were spot-welded to make a bi-Iayer 

sample for differential thermal expansion measurements. The spot welds were estimated to 

have melted < 5% of the total sample volume. The difference in thermal expansion was 

determined by cantilevering the bi-Iayer and measuring the deflection of its free end with an 

optical lever. Assuming the elastic constants are similar, the deflection of the laser beam is 

8 == ( ~) L !1adis-ord !1T (4.4) 

where D is the distance from the sample to the optical sensor, 2h is the thickness of the bi­

layer, and L is the length of the sample as shown in Figure 4.1 (see Appendix D for a detailed 

derivation of Equation 4.4). The difference in thermal expansion coefficients of the 

disordered and ordered strips, !1 adis-ord, causes a difference in their lengths over a 

temperature range of !1T that is L!1c/is-ord!1T. The measured deflection, 8, is Dlh times the 

expansion difference of isolated strips. Since Dlh == 5000 for our experiment, thermal 

expansion differences as small as 2.5x10-8 could be measured. No attempt was made to 
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measure the precise sample geometry, so absolute thermal expansion coefficient differences 

were not measured. We sought to measure the functional form of t1dis-Ord(T), and compare it 

to results from calorimetry or t1C/s-ord. 

Temperature was controlled by clamping the bi-Iayer to a cold copper finger in a 

vacuum chamber. As shown in Figure 4.1, the copper finger was cooled by flowing 

cryogenic fluid (liquid N2 or He), and the finger was heated resistively. A steady-state 

temperature was maintained for 1 to 2 minutes before recording the deflection. Five runs 

were made with the laser reflection from the ordered side and one run was made with the bi­

layer turned over. 

Absolute thermal expansion measurements were performed from 300 K to 770 K with 

a Perkin Elmer TMA-7 thermomechanical analyzer. To ensure reproducibility, two heating 

and three cooling cycles were measured. Ultrasonic measurements of longitudinal and 

transverse wave velocities were performed using 10 MHz transducers of 0.6 cm diameter. A 

disordered cylindrical sample (8.63 mm diameter and 8 mm long) was measured first. The 

same sample was annealed to develop D022 chemical order and measured again. 
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Figure 4.1. Schematic of differential dilatometer. 
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Metallography was performed on the ordered calorimetry sample through a procedure 

of thermal cycling. The sample was annealed at 780 (C for ten days, after which the surface 

was polished and etched with a 3:1 hydrochloric to nitric acid solution. A digital image of the 

microstructure was then taken. The sample was subsequently immersed in liquid nitrogen for 

about a minute, warmed to room temperature, and a second image was taken. The sample 

was cycled ten more times in liquid nitrogen, and an image was taken after each cycle. To 

ensure reproducibility, the same experiment was performed again after a second anneal. 

4.3 Results 

X-ray diffractometry was performed on all samples. Figure 4.2 presents X-ray 

diffraction patterns for both the quenched (fcc-disordered) sample and the annealed (D022-

ordered) sample. The presence of D022 order was shown by the formation of superlattice 

diffraction peaks and a slight splitting of the "fcc" peaks owing to the development of some 

tetragonality of the unit cell. The tetragonality, cIa = 2.01, was the same as that observed by 

Maldonado and Schubert [9] but slightly smaller than that observed by Dwight, Downey, and 

Conner [10] (cIa = 2.015). The diffraction data were used to calculate molar volumes of 

8.63_10-6 m3/mol for the D022-ordered state and 8.69_10-6 m3/mol for the fcc disordered 

state. 

Results from an average of ten pairs of differential scanning calorimetry (DSC) runs 

are shown in Figure 4.3. Error bars are the standard deviations of the data from the different 

runs. The positive sign of the data shows that the disordered state has a larger heat capacity 
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than the ordered state. The magnitude of the difference was less than 1 % of the typical heat 

capacity of a solid (25 J mol-lK-l) and was a challenge for calorimetric measurement. The 

data are qualitatively similar to those observed for Ni3V [4]. 

Figure 4.2. X-ray powder diffraction pattern of the disordered and ordered Pd3V. Inset shows 

peak splitting of the (220) "fcc" fundamental peak. Small unlabled peaks were from a surface 

oxide. 

Results from an average of six differential thermal expansion (DTE) runs were scaled 

to match the calorimetry results and are presented in Figure 4.3. Error bars are the standard 

deviations of the data from different runs. The scaled errors were 10 to 30 times smaller than 

the DSC results. Note that near 150 K, Cdis-ord ( 0 and (Cp-.!iis-ord_( O. Since Cp must be 

greater than zero, Equation 4.3 implies that (((l3BSV)dis-ord is zero. Assuming 

(((I3BSV)dis-ord remains zero at all temperatures, the DTE and DSC results should be 

proportional to each other. This assumption is supported by the experimental data, since the 

DSC results and scaled DTE results have no discern able differences over the full range of 

temperature. The consistency of the thermal expansion data and calorimetry data gives more 

credibility to both, including the unexpected dip at 150 K. 
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Figure 4.3. Differential heat capacity (_, DSC) and differential thermal expansion coefficient 

scaled by 500,000 J mol-1K-1 (., DTE). Curve L1Cv dis-ord was fit to data using the difference 

in two Debye curves. Curve L1(Cp_Cv)diS-ord is the anharmonic volume expansion contribution 

calculated from measured properties. The curve labeled "fit" is the sum of L1Cv, L1(Cp_Cv)diS-Ord 

and the microstructural contribution including plasticity (as described in the text). 

The high temperature thermal expansion coefficient was obtained by differentiating 

the measured displacements in the TMA scans. These results, shown in Figure 4.4, indicate 

that the thermal expansion coefficient increases gradually with temperature. The contraction 

on cooling was slightly larger than the expansion on heating. This irreversibility is discussed 

below. 
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Figure 4.4. Thermal expansion coefficient of ordered Pd3 V. 
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The longitudinal sound velocity increased from 5064±5 m/sec in the disordered state 

to 5137±5 rn/sec in the ordered state. The transverse sound velocity was more sensitive to 

ordering; the transverse velocity was 2547±5 rn/sec in the disordered and 2664±5 rn/sec in 

the ordered state. Since the sample length (8 mm) was several times the wavelength, the 

adiabatic elastic constants were calculated using the long bar approximation with densities 

obtained from diffraction data, and assuming an isotropic polycrystalline average. The 

results, presented in Table 4.1, indicate that although elastic constants change by a significant 

amount, the bulk modulus is essentially unchanged. 



Table 4.1. Measured adiabatic elastic constants. 

fcc-disordered Pd3V 2.71±0.01 

D022-ordered Pd3V 2.81±0.01 

0.685±0.003 1.797±0.006 

0.755±0.003 1.803±0.006 
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Images of the microstructure showed an unrecovered microstrain of about 3% after 

the first liquid nitrogen thermal cycle (see Figure 4.5). The strain was determined by first 

removing any rotations by aligning a small part of the microstructure (e.g., grain boundaries 

on the left in Figure 4.5b). The remaining bend in the microstructure gave the net 

unrecovered microstrain. To test the consistency of the image alignment, additional cycles 

were performed and the images were aligned with the uncycled sample. Ten additional cycles 

showed no new unrecovered microstrain when aligned with the sample that received one 

cycle. These results were repeated for another sample with a full set of images. Further 

evidence for plastic strains during thermal excursions was found in X-ray lineshapes, which 

broadened slightly from their room temperature widths when the material was heated to 

temperatures of less than 400 K. The additional line broadening was difficult to assess 

quantitatively, however, since the individual crystallites were too large to provide a good 

polycrystalline average in the diffraction pattern. 
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(a) (b) 

Figure 4.5. Metallography of ordered Pd3V. (a) Image taken after annealing. (b) Trace of 

grain boundaries in images taken before and after the first liquid nitrogen cooling cycle. The 

images were overlain so that the grain boundaries on the left-hand side were aligned. 

4.4 Discussion 

Following the work of Nagel, Fultz, Robertson and Spooner [4], we explain the 

measured shape of the differential heat capacity in Figure 4.3 by assuming three 

contributions; (1) harmonic vibrations, (2) the anharmonic C p - Cv term, and (3) a 

microstructural strain energy contribution from anisotropic contractions of the D022 

structure. When the harmonic contribution was approximated as the difference between two 

Debye curves with Bdis = 290 K and Bord = 291 K, harmonic vibrations account adequately for 

the low temperature, constant volume contribution to the heat capacity difference in Figure 

4.3 and give the peak at 60 K. The anharmonic C p - Cv term accounts for the energy 

expended when thermal expansion works against the bulk modulus of the material. The 
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specific volumes calculated from diffraction data, v, measured thermal expansion 

coefficients, a, and the bulk moduli from ultrasonic measurements, B, were used to calculate 

this anharmonic contribution to the heat capacity: 

Figure 4.3 shows that this anharmonic term accounts for only a small part of the anharmonic 

contribution to the heat capacity at 300 K. 

The microstructural contribution, first suggested by Nagel, Fultz, Robertson and 

Spooner [4], is a consequence of the anisotropy of the thermal expansion of the DOzz-ordered 

phase in a polycrystalline sample. As the material is cooled, anisotropies in its contraction 

cause a buildup of elastic strain energy. An irregular microstructure of tetragonal grains can 

be free of strain at one temperature, To, but changes in temperature cause a buildup of 

microstructural strain. We expect no such effect in the disordered phase because the structure 

is cubic. When thermal expansion is anisotropic, however, this can be represented as an extra 

term in the difference in the Gibbs free energies of the two phases, I1E~:~;ord, 

A Gdis-ord = /)Jjdis-ord _ T~sdis-ord _ /1Edis-ord 
L.l v,b JlSlr' 

The difference in vibrational and "microstructural" entropies is then 

where 

. T ~Cdis-ord + ~(C _ C )diS-ord - ~C . 
~sd,s-ord = f v p V JlSlr dT' 

vlb,J,lstr T' , 
o 

~{)rd 
_ U. I.lslr 

~CJlSlr -~ 

(4.6) 

(4.7) 

(4.8) 
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A detailed calculation of the microstructural contribution is not practical. However, 

assuming linear elasticity (with fixed elastic properties), and assuming that the ordered 

microstructure formed in a state of minimum strain energy at temperature To, the 

microstuctural strain energy will have the form 

(4.9) 

where To is a reference temperature where the internal stress is zero, such as the temperature 

of the ordering treatment (780 °C). Here a is an averaged thermal expansion coefficient. 

The temperature derivative of Equation 4.9 gives 

7'0 

C}.JStr oc -CiCT) f Ci(T')dT'· (4.10) 
T 

The negative sign accounts for the fact that the strain energy increases when the temperature 

decreases below the temperature To. Thus, Cllstr makes a positive contribution in Figure 4.3. 

Assuming that the average thermal expansion coefficient has the same shape as a Debye heat 

capacity curve (Grtiniesen's law), Cllstr was calculated from Equation 4.10, with the results 

shown as "Elastic" in Figure 4.6. This microstructural contribution combined with the 

anharmonic and Debye contribution can partially account for the heat capacity data. 

However, it cannot account adequately for the dip in the differential heat capacity near 150 

K. 
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Figure 4.6. Microstructural contribution to heat capacity with and without the effects of 

plastic flow. Plastic flow begins to the right of the dashed line in the elastic-plastic model (as 

described in text). 

The above analysis assumed elastic strains. The microstructural images, Figure 4.5, 

showed that plastic strain was imparted to the sample during thermal cycling. The simplest 

way to include plastic behavior into the heat capacity is to assume that as the material is 

cooled, internal stresses build up to a yield stress and then remain constant (i.e., no work 

hardening or softening). The microstructural stress-temperature curve for this process (Figure 

4.7) shows how plastic deformation leads to a decrease in the reference temperature, TO-7Tj, 

upon cooling, and an increase in the reference temperature on heating, Tj-7T2 • The reference 
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temperature lags T by a characteristic temperature !::.Ty• The !::.Ty is the temperature difference 

that provides sufficient thermal expansion to induce local yielding. More realistically, 

inhomogeneities in the microstructural stress would lead to a distribution for !::.Ty , but 

determining the actual distribution is impractical. As a first approximation we assumed a 

single average !::.Ty • 

a 
j.!str r-Hy 

-E: a , y 

T 
2 

, T T 
0 

;> 

Figure 4.7. Simplified temperature (n versus microstructural stress (alL'"tr) diagram. The 

parameter ay is the microstructural yield stress. The parameter !::. Ty is the change in 

temperature from the minimum stress state to the yield stress. 

We tested a microstructural heat capacity model that included the elastic and plastic 

response of the material induced by thermal expansion. The elastic part was calculated using 

Equations 4.9 and 4.10. For the plastic part, we assume that once steady state-p1astic flow is 
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achieved, there is no net generation of defects and dislocations to alter the internal energy of 

the material. With this assumption, the work required for plastic flow will equal the heat 

evolved by the plastic flow. A microstructural heat capacity was then determined for heating 

from 90 K, Figure 4.6. By adjusting I::.Ty , it was found that I::.Ty = 30_gives a dip at 150 K 

similar to that observed in the measurements, Figure 4.3. The dip at 150 K corresponds to a 

microstructural yielding that is expected outside the range 21::.Ty• At temperatures around 150 

K, the plastic response dominates over the elastic response. The transition from initial 

yielding at 150 K to steady-state plastic flow at about 250 K was adjusted to match the data. 

In this model the "Elastic-Plastic" heat capacity (Figure 4.6) above 150 K is from a net 

formation of defects. For temperature changes of more than 160 K, the defect density is 

assumed steady-state so our model of a fixed I::.Ty therefore predicts zero microstructural 

contribution to the heat capacity of the material. 

To check if I::.Ty =30 K is reasonable, a simple comparison was made with the 

observed microstrains in the thermal cycle experiments. For a given temperature change, the 

average microstrain, Cw is given approximately by a constant, A, times the relevant 

temperature change I::.T, as CJJ- = AI::.T. The proportionality constant, A, is a material property 

and should be similar for the thermal cycle, the thermal expansion, and the calorimetry 

measurements. The yielding micros train in the ordered phase is then estimated from 

Cy =(I::.~{T )CCycle =0.004, 
/ I::. cycle 

(4.11) 

where I::.Tcycie is the temperature range of the thermal cycle (223 K), and the observed 

unrecovered microstrain (0.03) from Figure 4.5 was used for ccycle' We expect the cycle 

microstrain to be greater than the unrecovered microstrain used in the calculation. The 
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temperature dependence of A was neglected. Using the unrecovered strain tends to cause an 

underestimate of cY' while neglecting the temperature dependence causes an overestimate of 

about a factor of two. Thus, the predicted yield strain at !1Ty = 30 K is at least 0.002, which is 

reasonable for a metal. 

It is expected that the microstructural contribution to the heat capacity should be 

observed in the high temperature thermal expansion measurements, Figure 4.4. The low 

temperature range does show a difference in the heating and cooling curves, indicative of a 

microstructural elastic response, but the response is not seen at high temperatures. The lack 

of response at the high temperatures suggests that the effective yield strength has decreased. 

This could be caused by creep. As the temperature is decreased, the increase in yield strength 

gives a gradual microstructural elastic response. For this reason it is not possible to 

determine an accurate value for !1Ty from these data. However, from the observed difference 

between the thermal expansion coefficient on heating and cooling, 0.5x10--{j/K, the magnitude 

of the response is found. When this value is scaled by the same factor relating the 

differential thermal expansion to the differential calorimetry (500,000 J/mol), C listr = 0.1 J 

mor1K-1, which is similar to the differential calorimetry measurements. 

Figure 4.3 shows the final calculated curve labeled "fit," which combines all terms 

for the differential heat capacity - the elastic-plastic Clistr (from the ordered alloy only), the 

harmonic Debye curves (for both phases), and the anharmonic Cp - Cv terms (for both 

phases). The agreement with experimental data is reasonable, but the high temperature 

anharmonic effects are underestimated. This extra heat capacity difference could not 
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originate with the ordering of the disordered phase because this would provide a contribution 

of the wrong sign. The deviation at high temperatures is likely caused by our 

oversimplification of the microstructural plastic flow. Deformation processes with ATy > 30 

K probably contribute to the heat capacity at higher temperatures. The important point is that 

it was necessary to include plastic flow to account for the dip in the data at 150 K in Figure 

4.3. 

The microstructural contribution appears in the scaled thermal expansion data without 

the use of any new scale factor at high temperatures, Figure 4.3. The standard expression 

relating thermal expansion and specific heat, Equation 4.2, is derived without considering the 

effects of microstructure [5]. From classical thermodynamics the linear thermal expansion 

that results from energy stored in the microstructure can be expressed by 

1 ( d (dE J-l'lr J J 
aJ1..llr = 3V aT -;;;- T p 

(4.12) 

For clarity we assume a simple expression for the energy stored in the microstructure: 

(4.13) 

where c is the average compliance coefficient and (82
) is the mean square strain stored in 

the microstructure (this energy is considered in more detail in Chapter 5). Substituting 

Equation 4.13 into Equation 4.12, a relationship is found between the thermal expansion 

coefficient and the specific heat due to strain energy stored in the microstructure: 

ex = _1 (de] .!.c(d(8
2

)] = _1 (de] C 
J-l'lr 3 VC dp T 2 aT p 3 VC dp T J-l'lr 

(4.14) 
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The pressure derivative in Equation 5.3 can be written in terms of a volume derivative using 

the bulk modulus, B, resulting in a familiar form, 

_ r )lslr C 
a }LIlr - 3BV }LIlr· 

(4.15) 

This is exactly the same form as the standard Grtiniesen relation (Equation 4.2) only with a 

Grtiniesen constant given by 

vac 
r )lslr = - c (IV . (4.16) 

This gives the volume sensitivity of the elastic constants rather than the usual volume 

sensitivity of the phonon frequencies. Of course, these quantities are directly related and thus 

it is expected that r }LIlr "'" r . Therefore, it is not surprising that only one scale factor was 

needed to relate the thermal expansion and heat capacity over the entire temperature range. 

Evaluating the three terms in the integrand of Equation 4.7, we obtain three 

contributions to the entropy difference between ordered and disordered Pd3V. The harmonic 

and anharmonic vibrational entropy differences are ~S:~~:~~l~C = O.OIka/atom and 

tlS:~~~::!oniC = 0.025 kalatom at 300 K. It is expected that at the ordering temperature (l088 K) 

the anharmonic effects will be larger. The third part of the heat capacity comes from defect 

formation, which provides an effective entropy of ~S:~;~.~rd = -O.OIka/atom at 300 K. This 

plastic microstructural contribution to the heat capacity is highly temperature-dependent, and 

becomes zero at high temperature. These three contributions to the entropy are all expected 

to be smaller than the configurational entropy of the order-disorder transformation, which 

could be as large as 0.56 kalatom if there is no short-range order in the fcc phase. 
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Since a significant portion of the entropy comes from the microstructure, it is 

expected that the stability of the D022 ordered phase will be different in a single crystal. Both 

theoretical [11] and experimental [12] studies have suggested that coherency stresses can 

have a significant effect on the phase diagram. In the present study a temperature-dependent 

strain energy within the microstructure of the ordered phase was observed over a range of 

temperature. The type of strain energies observed here are expected to be at least as large as 

the coherency strain energies since the elastic limit is exceeded. A consequence of including 

plasticity, as was done here, is that the effects on phase stability are expected to be dependent 

on thermal history. 

4.5 Conclusion 

A polycrystalline alloy of Pd3 V was prepared in states of D022 chemical order and as 

a disordered fcc solid solution. Differences in the heat capacity and thermal expansion of 

these two materials were measured, as were the density, bulk moduli, and thermal expansion 

coefficients that are needed to assess anharmonic contributions to the heat capacity. When 

scaled by a positive constant factor, the differential thermal expansion coefficient and the 

differential heat capacity were the same over the temperature range from 80 - 300 K. The 

heat capacity was larger for the chemically disordered Pd3 V at both the lowest and highest 

temperatures in this range. The differential heat capacity curve and ancillary measurements 

were used to assess the harmonic and the anharmonic contributions to the vibrational 

entropy, which at 300 K was Sdis - sord = (+0.035± 0.001) kiatom, with 70% of this coming 

from the anharmonic contribution. 
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The conventional anharmonic contribution, f).(Cp-Cvts.ord, was too small to account 

for the measured differential heat capacity. This anharmonic contribution was also unable to 

account for a peculiar behavior in the differential heat capacity and differential thermal 

expansion at 150 K, where both differential curves were nearly zero. We argue that this dip 

originates with the elastic/plastic response of the polycrystalline microstructure of the 

ordered alloy during thermal expansion. We propose a model where elastic energy is stored 

in the polycrystalline microstructure owing to anisotropies in thermal expansion, but this 

energy is limited by plastic flow of the material. 
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Chapter Five Microstructural strain energy of a-uranium 
determined by calorimetry and neutron 
diffractometry 
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In this Chapter we take what was learned about the microstructural contribution to the 

specific heat in Pd3 V and design better experiments to isolate the contribution in uranium. 

This Chapter focuses on the largest length scale in this thesis. 

5.1 Introduction 

We report the first direct measurement of the microstructural effects on the heat 

capacity of a-uranium. Results from prior work imply that microstructure can affect the 

charge density wave (CDW) transitions in a-uranium. Distinct CDW transitions at 23 K and 

37 K can clearly be seen in calorimetry measurements on single crystal uranium, but these 

transitions are broadened severely in measurements on polycrystalline samples [1]. Work by 

Hall [2] shows that the constraints on anisotropic thermal expansion in uranium polycrystals 

either partially inhibit or prevent the CDW transformations, as evidenced by the diminished 

effects on thermal expansion, specific heat, and electron transport properties. 

Recently it has been proposed that an anomaly in the specific heat of Ni3 V and Pd3 V 

alloys was the result of a microstructural contribution [3,4]. However, in these experiments, 

the microstructural contribution was mixed with contributions from both harmonic phonons 

and anharmonic volume expansion. In this chapter the microstructural contribution in 

uranium is isolated by subtracting a single crystal specific heat directly from a mass matched 

polycrystal. In addition, neutron powder diffraction experiments are used to measure the 
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distribution of elastic strains in the polycrystalline material along various crystallographic 

directions. The strain distribution data were used to calculate the microstructural strain 

energy. We find good agreement between the elastic strains that develop in polycrystalline a­

uranium during thermal expansion and the reduction in the measured heat capacity as this 

energy is released. The temperature and energy scales of these phenomena are consistent 

with measured distortions of the CDW transitions in polycrystalline a-uranium. 

5.2 Experimental 

Uranium crystals were grown by electro-transport through a molten salt bath of LiCI­

KCI eutectic containing on the order of 3 wt. % UCl3 [5]. The uranium was deposited onto a 

stainless steel cathode as dendrites in the form of parallelogram-edged platelets. The 

individual platelets are high purity single crystals of a-uranium. The residual resistivity ratio 

(RRR) of 115 was about three times higher than any RRR reported previously [1]. Because 

the uranium was deposited below the a-B transformation temperature, single crystals are 

strain-free. Strips were cut by spark-erosion cutting, and were cleaned in concentrated HN03 

and electropolished in H3P04 . 

Uranium polycrystals were prepared by induction melting the dendritic electro­

refined product described above in a BeO crucible under an inert atmosphere. The ingot was 

melted only once to minimize the risk of contamination from the crucible or the atmosphere. 

The samples were sectioned directly from the cast ingot with a diamond saw. 
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Differential heat capacity measurements were performed with a Perkin-Elmer DSC-4 

differential scanning calorimeter (DSC) that had been modified by installing its sample head 

in a liquid-helium dewar [5]. Mass matched -200 mg samples, one single crystalline and one 

polycrystalline, were placed in the two sample pans of the DSC. Heat capacity measurements 

comprised pairs of runs, with the two samples interchanged in the sample pans between runs. 

The difference in heat capacity was found from the difference of these two sets of runs. Four 

matched runs were performed to ensure reproducibility. To counteract instrumental drift, 

runs comprised two pairs of scans over temperature intervals of 30 K, which overlapped by 

10K. 

Neutron diffraction patterns were obtained on the Neutron Powder Diffractometer 

(NPD) at the Lujan Center, Los Alamos National Laboratory. To reproduce the thermal 

history of the calorimetry measurements, the -150 g sample was first cooled to 77 K. 

Diffraction patterns were then obtained at 77 K, 90 K and in steps of 10 K up to 290 K. The 

sample was equilibrated at each temperature for 10 minutes before acquiring each diffraction 

pattern. Each diffraction pattern was acquired for 20 minutes. The sample was re-cooled to 

check for irreversibilities, and measurements were then performed at lower temperatures (40 

K, 30 K, and 20 K). 

5.3 Results and analysis 

The shape of the microstructural contribution showed the basic form expected from 

the "Elastic-Plastic Model" described by Manley, et al. [4], Figure 5.1. The material showed 

the release of microstructural strain energy upon heating from liquid nitrogen temperature. 
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The minimum in strain energy appears to be at about To = 280 K. The temperature change 

associated with yielding, as defined by Manley, et al. [4], is about !1Ty = 150 K (see Figure 

4.7). Both of these values are much larger than for Pd3V [4], reflecting the higher yield strain 

of uranium metal. The low temperature range, however, showed a significant difference from 

the "Elastic-Plastic Model." With constant thermal and elastic properties, the model predicts 

linear behavior until about half the Debye temperature (-150 K for uranium), where the 

thermal expansion coefficients decrease owing to a depopulation of phonons. The data, 

however, show nonlinear behavior at much higher temperatures. This is probably a result of 

the strong temperature dependence of the elastic properties of uranium. A more detailed 

analysis, including the temperature dependence of the thermal and elastic properties, is 

discussed below. 
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Figure 5.1. Microstructural contribution to the specific heat of uranium. The "Elastic-Plastic 

Model," described by Manley et al. [3], was scaled arbitrarily and a Debye temperature of 

250 K was used. The error bars come from the standard deviation between an average of 4 

pairs of runs. 

The strain energy per unit volume in an arbitrary stress state is given in matrix 

notation by [7] 

(5.1) 
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where cij is the compliance matrix and Cj is the strain matrix. The total energy per unit volume 

in a polycrystal is obtained by averaging over the entire volume. Neutron diffraction provides 

a sampling of the strain distribution in crystallites in specific orientations determined by 

Bragg's law. We assume that Ef in the set of all crystallites in selected by Bragg's law, have a 

gaussian distribution characterized by 

(5.2) 

where 8j~ = a 2
( E;). the variance of Ej. By multiplying Equation 5.2 by cij , considering the 

2 

appropriate sums, and rearranging terms, a general expression for the average strain energy 

(Equation 5.1) of this set of crystallites is given by 

(5.3) 

where the relation between the stress and strain matrix, a j = CijEj' has been used. The first 

term in Equation 5.3 originates with the average distortion, and the second term originates 

with deviations from the average. For a polycrystal with random crystallite orientations the 

average of this set of crystallites is equivalent to any other orientation and hence it is 

equivalent to a volume average. Experimentally, each component of Equation 5.3 is 

determined by an average over a different set of crystallites. 

We now show that for an unconstrained polycrystal, the first term in Equation 5.3 

vanishes. Consider a plane normal to the Xl axis cut through an arbitrary polycrystal as shown 

in Figure 5.2. The force normal to the plane on an area dx2dx3 cut by the plane at position Xl 

equilibrium requires 



80 

F;(x,) = f f a,(X"X2,X3)dx2dx3 = o. (5.4) 

Since this condition must hold true for all x, in the polycrystal, it follows that 

(aJ = ~f f f a,(x"x2,x3)dx,dx2dx3 = 0, (5.5) 

where V is the total volume of the polycrystal. Similar arguments can be made for all of the 

stress matrix elements, so in general <q> = O. Thus, the first term in Equation 5.3 is zero in 

the case of an unconstrained polycrystal. The microstructural strain energy can then be 

reduced to 

(5.6) 

Like the compliance tensor, the strain-broadening tensor is fourth rank because it connects 

two second-rank tensors. 

Figure 5.2. Planar cut through an arbitrary unconstrained polycrystal. 

Since we need to know only the deviations from the average strain to determine the 

microstructural strain energy, we have to consider only the strain broadening in the neutron 
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diffraction data. This is an important simplification because the average strains can be 

determined accurately only with precise knowledge of the free crystal lattice parameters, 

which are often sensitive to impurities, defect concentrations, etc. 

A measure of the strain-broadening matrix can be extracted from neutron diffraction 

data using a formalism developed by P. W. Stephens [8]. In this formalism the variance of 

the diffraction peak widths are fit using [8] 

(J2(hkl) = LSHKLhHkK1L, 
HKL 

(5.7) 

where the coefficients SHKL are restricted by symmetry (6 for orthorhombic) and h, k, and 1 

are the Miller indices. In the following discussion we convert this into strain using 

S(hkl) = ~(JZChkl) 
d ( hkl) C diffraction 

(5.8) 

where d(hkl) is the spacing of (hkl) planes and Cdiffraction is the diffraction constant (converts 

time-of-flight to A). The Stephens formalism has been incorporated into the well-known 

GSAS (General Structure and Analysis Software) Rietveld refinement package [9]. 

Refinements were fit to all neutron diffraction data in the Le Bail mode [10]. In this mode the 

diffraction peak intensities are treated as free parameters. Only the peak positions and 

profiles are fit. A typical fit is shown in Figure 5.3. Using profile function 4 in the GSAS 

software, the appropriate Stephens strain broadening parameters (6 unique SHKL) were 

extracted at each temperature. From these parameters the microstrain broadening was 

calculated as a function of direction using the Mathcad file in Appendix E. The function, 

S(hkl), fits the strain broadening in all of the peaks simultaneously. To check for consistency, 

the peak broadening from this function was compared to single peak fits for some easily-
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separated peaks, Figure 5.4. The fair agreement was reassuring, although it fell short of what 

Stevens obtained using much higher resolution synchrotron radiation [8]. The temperature 

trend of a single peak, shown in the inset of Figure 5.4, was much better. 

Three-dimensional representations of the strain broadening function at several 

temperatures are shown in Figure 5.5. The strain broadening is strongly anisotropic as is 

expected from the anisotropic elastic and thermal expansion properties of a-uranium [1]. The 

largest strain broadening is in the [010] direction. This is expected since the Young's 

modulus is lowest in this direction. Strain broadening increases in the [100] direction at low 

temperatures, consistent with the softening of ell below about 250 K [11]. The magnitude of 

the strain broadening decreases with increasing temperature. This agrees with the 

microstructural specific heat. The microstructural specific heat is negative at low 

temperatures, implying a decrease in strain energy with increasing temperature. 
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Figure 5.3. GSAS refinement of a uranium diffraction pattern at 290 K. 
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Figure 5.4. Comparison of strain broadening at 190 K calculated from refinement of the 

entire diffraction pattern, open symbols CO), and from single peak fits, filled symbols ce). 

Inset shows the temperature dependence of one peak. Units are in rnicrostrain (1000 = 0.1 % 

strain). 



-1000 

-1000 

-1000 

290 K 

...---­
[010] 

200 K 

77 K 

85 

- 1000 
- 500 

- 1000 

-1000 
-500 

Figure 5.5. The shapes represent the anisotropic microstrain broadening in uranium at several 

temperatures. Units are in microstrain (1000 = 0.1 % strain) and all axes are on the same 

scale. 
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5.4 Microstructural strain energy 

To determine the strain energy stored in the microstructure we need to determine the 

strain broadening matrix elements, 8i~' corresponding to the nine compliance constants, cij' 

allowed by orthorhombic symmetry. The first six components correspond to the variance of 

the three pure normal strains and the three pure shear strains. They can be written down 

directly as 

8;1 = S2(100) 

8;2 = S2(01O) 

8;3 = S2(001) 

8~ = S2(011) 

8;5 = S2(101) 

8~6 = S2(110) 

(5.9) 

where the numbers in parentheses correspond to the crystallographic hkl indices. The 

remaining non-zero components (corresponding to CI2,CI3,C23) contain subscripts with i:f:. j 

and thus represent connected variances between strain components (Equation 5.2). The six 

coefficients obtained in the Stephens formalism cannot be used to determine these strain 

components. However, these strain components can be estimated using some additional 

information. 

The connected variance terms have the individual strain components subtracted away 

leaving only the strains in different directions that occur together. Thus, it is a measure of the 

correlation between strain components in different directions averaged over the volume of 

the sample. For random intergranular stresses, the strain in direction 1 due to the stress in 

direction 1 is uncorrelated with the strain in direction 2 due to the stress in direction 2. 
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However, the strain in direction 1 due to the stress in direction 2 (determined by the Poisson 

ratio V12) is correlated with the strain in direction 2 due to the stress in direction 2 and thus 

contributes to 81
2
2 , Therefore, assuming the only correlations between strains in different 

directions comes from the Poisson effect, the remaining components can be written 

(5.10) 

Fisher and McSkimin [12] measured all the single crystal elastic constants at room 

temperature. Some of the resulting properties are most unusual. For example, there is an 

extraordinarily strong coupling between strains in the [010] direction and the [001] direction 

with V32= 0.548. On the other hand, the strains along the [100] direction and the [001] 

direction are almost uncoupled with V31 = -0.017. This results in the unusual property that 

[010] is most compressible in uniaxial compression, while [100] is most compressible under 

hydrostatic compression. Thus, it is important that the coupling terms, Equation 5.8, be 

included in the strain energy calculation. Fisher [11] measured the temperature dependence 

of the shear and normal compliance coefficients. The temperature dependence of the off­

diagonal components (C I2, C 13 , and C23 ) is unknown and was thus neglected. Substituting 

Equation 5.9 and 5.10 into Equation 5.6 with the temperature dependent elastic constants, the 

strain energy stored in the microstructure was calculated as a function of temperature, Figure 

5.6. 

For comparison, the microstructural specific heat shown in Figure 5.1 was integrated 

to give a measure of the strain energy using 

(5.9) 
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where Eo is an arbitrary constant set to match the strain energy determined from the strain 

broadening in the diffraction pattern, Figure 5.6. The origin of Eo is probably from residual 

strain fields. The agreement between the neutron diffraction and calorimetry results gives 

more credibility to both measurements. Errors in the total energy integral are not shown in 

Figure 5.6 because they depend on the uncertainty in Eo and the systematic accumulation of 

errors through integration. For example, if Eo is known exactly at some temperature, say To, 

then the error in energy by integrating away from To is given by I1EJ.lSlr = I1CJ.lSlr (T- To) where 

I1CJ.lSlr = 0.01 J/mol-K the error in the specific heat measurement. Thus, assuming Eo = 1 

J/mol at 280 K, then the energy at 77 K would be (4±2) J/mol-K. The strain energy 

calculated from the diffraction measurements give a more precise measure at 77 K of 

(3.7±0.5) J/mol-K. 

Attempts were made to measure how the strain energy stored in the microstructure 

changed below the CDW transitions by measuring the diffraction pattern at 40 K, 30 K and 

20 K. However, there was no clear indication that the CDW transition had occurred. 

Specifically, Barrett et al. [13] observed a sudden increase in the a (0.2%) and b (0.05%) 

lattice parameters and a decrease in c (-0.09%) in single crystals. Our measurements, on the 

other hand, showed no significant changes (other than the usual continuous thermal 

contractions). Our results, therefore, agree with earlier measurements suggesting that the 

CDW transformations are either suppressed or completely smeared out in temperature in the 

presence of the microstructural constraints on the anisotropic thermal 

expansions/contractions [1,2]. 
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5.5 Elastic strains and the charge density wave transitions 

The magnitude of the strain energy stored in the microstructure, (3.7±0.5) J/mol-K at 

77 K, is comparable to the latent heats of the CDW transitions. The latent heats of these 37 K 

and 22 K transitions are 2.08 and 1.38 Jlmol, respectively [14]. Since these transitions are 

accompanied by lattice strains, it is therefore not surprising that the transitions are either 

smeared out in temperature or suppressed by constraints imposed by the microstructure. 

The expansion of the a-axis and b-axis during the CDW transformations [13] would 

tend to undo some of the strains that built up on cooling because the strains that build up on 

cooling originate with contractions along these directions. Specifically, in single crystals the 

CDW transformation strains cause the lattice parameters to recover to their values at about 

180 K for the a-axis and about 300 K for the b-axis [13]. Therefore, one would expect that in 

regions dominated by thermal strains along [100] and [010], the strain energy would favor 

the transformations. Therefore, these regions may in fact transform at a higher temperature 

than in the single crystal. On the other hand, the contraction of the c lattice parameter during 

the transformation would tend to further increase the strain energy. Therefore, the opposite 

affect would be expected in grains dominated by strains along [001]. Of course, the actual 

strain energy depends on all of the strain components in a given region. In a polycrystal with 

randomly oriented grains we would expect a distribution of strain energies either gained or 

lost in the transitions and therefore a distribution of transition temperatures. This has the 

effect of smearing out the effective CDW transition temperature seen in the polycrystal. 
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The spread of the transition temperatures depends on the strain energy gained or lost 

in the transition and the free energy change in the free crystal. To predict the range of this 

spread, we would need to add the strain energy gained or lost in a region to the free energy 

difference between the phases in the single crystal and then recalculate a new local 

equilibrium temperature (if there is one). Presently, we do not have enough information to do 

this because we do not know how the free energy difference of the single crystal scales with 

temperature. For example, if the entropy difference was primarily electronic, then the 

difference would scale linearly with temperature. If it where vibrational, the entropy 

difference would scale roughly as T 3 in the lower temperature range. 

The elastic energy in the polycrystalline microstructure depends on the thermal 

history of the material. We have made the above arguments based on the strains induced by 

our particular thermal path. It is conceivable that different results could be found with 

different heat treatments. In particular, it would make sense to try and find a way to minimize 

the strain energy stored in the microstructure near the phase transition. This may allow these 

transitions to be studied in more detail in polycrystalline samples. 

5.6 Concluding remarks 

The results presented in this Chapter not only confirm the mechanism for 

microstructural specific heat described in Chapter 4, but also show that it is possible to 

deduce the same results from neutron diffraction. Estimated strain energies stored in the 

microstructure showed good agreement between calculations from the diffractometry and 
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calorimetry. It is now clear that the strain energies stored in the microstructure of uranium 

have a significant affect on the temperatures of the low temperature charge density wave 

transitions. 
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Chapter Six Future work 

At this point it is clear that the thermodynamics of metals and alloys depend on 

phenomena across a wide range of length scales. We have found many interesting 

contributions to phase stability from electronic excitations to strain energy produced at the 

microstructural scale (from the forces that grains exert on one another). There is still 

considerable work remaining. In this Chapter some future work is outlined. 

6.1 Phonon softening in the absence of anharmonicity 

In Chapter 2 the search for the nature of the vibrational softening in uranium was 

motivated in part by the failure of the quasiharmonic approximation to explain the phonon 

softening from thermal expansion. Specifically, there was about an order of magnitude more 

entropy from phonon softening than needed to account for the elastic energy generated from 

volume expansion. This argument can be reformulated in terms of the specific heat. First, 

express the entropy as 

(6.1) 

Then take the temperature derivative at constant pressure, 

(6.2) 

where 



Dp = L __ 1 (d{J)j) 
. ill ar 

J J p 
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(6.3) 

Considering only the vibrational contribution, the constant pressure specific heat can be 

written, 

(6.4) 

Comparing Equation 6.4 and Equation 6.2 it is clear that under the assumptions of the 

quasiharmonic approximation 9Bva 2 = 3kB 8p • These terms were calculated for several 

different materials and are shown in Table 6.1. The first three elements (Pd, Ni, and Cu) were 

calculated using the temperature dependence of the phonon DOS published in the Landolt-

Bomstein series [1]. The remaining Pu phases and a-V were calculated using the temperature 

dependence of the Debye temperature extracted from neutron diffraction data [2]. For both 

Pu and V the discrepancy is quite large, suggesting further study of the phonon contribution 

to the equation of state of both materials. 

Table 6.1. Excess specific heat above 3kB from volume expansion (column 1) and from 

phonon softening (column 2). 

Material 9Bvd (10-4kB/atom-K) 3kB8p (10-4kB/atom-K) 

Pd 2.4 3.2 
Ni 2.3 2.7 

Cu 2.8 3.2 
a-Pu 6.2 11.8 

8-PUo.9sAlo.os 2 10.6 

a-V 2.5 23.4 

In the case of V, the effects of pressure on the vibrational spectrum could be 

explored. At ambient pressure the vibrational and electronic entropy have been shown to be 

significant. However, the origin of the electronic entropy is not understood. The origin of 
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the electronic contribution could be explored by measuring the partial electronic density of 

states using photoelectron spectroscopy (PES). For Pu the temperature dependence of the 

vibrational spectra in all of its phases should be measured. Measured vibrational spectra 

measurements could be used to determine the vibrational entropy, and this could be 

compared with calorimetry measurements in the literature. The electronic contribution to the 

entropy will be the difference between the vibrational entropy and the total entropy 

determined by calorimetry. It is expected that a significant electronic contribution will also 

be found in Pu and could be explored using the same techniques as with U and Ceo 

This work will help lay the groundwork for more accurate first principles calculations 

of the behavior of these metals. For example, PES may give the information needed to take 

into account the temperature-dependence of the force constants. The understanding of such 

complex materials will also lead to a more general understanding of other materials. 

6.2 Crystal-field splitting and Kondo spin-fluctuations 

We have shown that both the crystal-field splitting and Kondo spin-fluctuations 

make a significant contribution to both B-cerium and y-cerium at low temperatures. 

However, both were small at the transition temperature so the difference made only a minor 

contribution to the transition. In the case of a-cerium, however, the transition is at a much 

lower temperature (100 K). Also, a-cerium has no localized f-electron and thus both the 

spin fluctuation and the crystal field contribution should be zero in this phase. Therefore, it 
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seems likely that a detailed study of the entropy change of these transitions (a- to ~-cerium 

or a- to y-cerium) will reveal a significant contribution from these degrees of freedom. 

6.3 Strain energy stored in microstructures 

The strain energy stored in the microstructure of uranium was large enough to affect 

the low temperature CDW transitions. However, the range of transition temperatures could 

not be worked out without prior knowledge of the components of the free energy differences 

between the low temperature phases. Unfortunately, it is the spread in the transition 

temperatures seen in polycrystals that makes it so difficult to study these transitions. We 

could not, for example, perform the kind of detailed analysis that was performed for cerium 

in Chapter 3.2 because in polycrystalline uranium we are likely to have some mixture of 

transformed and untransformed uranium well below the transition temperature. In cerium the 

strain problem was overcome by thermal cycling the sample (although it is not entirely clear 

why this works). A more detailed study including microstructural modeling and modeling of 

the electronic and phonon contributions is likely to contribute to an understanding of, and 

possibly allow the control of, the CDW transitions in uranium. 

References 

[1] P. H. Dederichs, H. Schober, and D. J. Sellmyer, in Numerical Data and Functional 

Relationships in Science and Technology, edited by K. -H. Hellwege and J. L. Olsen, 

Landolt-Bomstein, New Series, Group III, Vol. IIU13a (Springer-Verlag, Berlin, 1981). 

[2] A. C. Lawson, B. Martinez, J. A. Roberts, and B. I. Bennett, Phil. Mag. B 80, 53 (2000). 



Appendix A Mathcad files used to determine multiphonon 
scattering 

1 Phonon Scattering Calculation 
Z :=REAOPRN(UOOS) inn,,' DOS 
Se :=REAOPRN(U300KS) data to be compared with 

r :=0, 1.. rows(Z) - 1 

[ 

rows(z) - 2 ]_1 
Z := Z . Z - Z ·Z r.1 L m,l! m+l.O m,O) r,l 

m=O 
normalizes the DOS 

h := 1 M :=238 atomic mass 

E := 3.55 meV incident energy 

AE(W) :=[(1- 0·0.0753·h.w) + 0·0.00195· (h.w)2] meV insturment resolution function 

kT :=25 meV temperature 

81 :=0.61 to 92 :=2.32 detector angle range (radians) 

rows(Z) - 2 Z [Z] 

L m 1 m 0 ! ) (mean square displacement) *2M/h1\2 msd := -'-·coth h·-'- . Z - Z 
Z 2.kT m+ 1,0 m,O 

m = 0 m,O 

time-dependent correlation function 
b,-~ ____ ~n ____ __ 

,- !Zl,O - Zo, 0)' 606.5 

ott) := rows(Z) i: 2 

:m, 1 [i . sin!Zm, o·t) + cos!Zm. O· t)'COth[h. ~:;]l !Zm+ 1,0 - Zm.O) 

m = 0 m,O 

n :=0, 1.. 1214 

tn :=b· (n - 606.5) 

single phonon dynamic structure factor convoluted with resolution function 

0(8,00) :=_1_. exp[-1.008 E.[2 - h.~- 2.J1- h'~'COS(2.9)].msd] 
2·,,·h M E E 

m:=10 

SI(w) :=82~91' i: S[81+n. (92:81) ,w} (82:81) 

n= 0 

Output data 

r :=0, 1 .. rows (Se) - 1 
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Total Scattering Calculation 
Z :=READPRN(UDOS) 
Se :=READPRN(U300KS) 
r :=0, 1.. rows(Z) - 1 

inout DOS 
data to be compared with 

[ 

rows(Z)- 2 ]_1 
Z := Z . Z - Z ·z "I L m.1 (m+I.O m.O) ,.1 

m=O 

M :=238 atomic mass 

E := 3.55 meV incident energy 

~E(w) :=[(1- 0.0.0753.h.w) + 0·0.00195· (h.w)2] 

kT :=25 meV temperature 

SI := 0.6110 S2:= 2.32 detector angle range (radians) 

rows(z) - 2 Z [Z] 
msd:= ~ ~,colh h.~ .(z +1 o-z 0) 

~ Z 2.kT m. m. 
m = 0 m.O 

time-dependent correlation function 

normalizes the DOS 

meV insturment resolution function 

(mean square displacement) '2M/h"2 

G(I):= rowS(Z)~2 :m.I.[i .sin(Zm.o.tl+cos(Zm.o'll.colh[h'~~~;]l(Zm+l.o-Zm.ol 
m = 0 m.O 

n :=0, 1.. 1214 

In :=b· (n- 606.5) 

Gn :=G(lnl 
total dynamic structure factor convoluted with resolution function 

D(S,w) :=_I_. exp[-l.008 'E.[2- h'~- 2.Jl- h'~'COS(2'S)].msd] 
~n·h M E E 

m:=lO 

Output data 

r :=0,1.. rows(Se)- 1 

E, :=Se,.O 

SI, :=St(E,l 
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Appendix B Anisotropy error in phonon DOS measurement 

The only error from anisotropy in experiments on isotropic polycrystals comes from a 

Debye-Waller factor weighting of the measured phonon DOS. It is well-known, however, 

that an isotropic Debye-Waller factor is a good approximation [1], especially at low 

temperatures and modest Q where the Debye-Waller factor is close to 1 for all directions of 

Q. 

To settle definitively this point about the anisotropy of the Debye-Waller factor, we 

have obtained results from our lattice dynamics calculation. The anisotropic Debye-Waller 

factor second rank tensor in orthorhombic symmetry has three independent coefficients with 

principal axes parallel to the crystallographic a, b, and c axes. The three diagonal components 

«u/>, <u/>, and <u/» can be determined from the projection of the partial phonon DOS 

along each of the principal directions. Using the force constant model of Crummett et al. [2] 

the partial DOS projected along each of the principal axes was calculated and the resulting 

components are <u/> = 0.015 A2, < u/> = 0.0047 A2, and < u/> = 0.0056 A2 at room 

temperature. The Q-range varies with energy and angle, but has a range from about Q = 1-3 

kl for the FCS instrument. The resulting Debye-Waller factors at the average Q = 2 kl are 

exp(-Q2<u/» = 0.941, exp(-Q2<u/» = 0.981, and exp(-Q2<u/» = 0.978. The average in 

the isotropic approximation is exp( _Q2<u2>/3) =0.967. In the low energy range the true 

average weighting for anisotropic a-U is about 0.960. This anisotropic weighting is a mere 

0.7% lower than the isotropic value. At the highest energies where the x-component goes to 

zero, the result is only 1.3% higher than the isotropic value. Assuming the same lattice 

dynamics, this error is 3% at the highest temperature of the a-phase (913 K). 
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The error in the DOS itself is also negligible, as shown in the attached Figure A.I. 

Although the anisotropy of the phonons is not known for the tetragonal I)-phase, we can say 

that the Debye-Waller factors themselves are close to 1, based on the measured DOS. The 

high temperature y-phase is cubic, so there can be no anisotropy error for y-U. 
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Figure A.I. Phonon DOS of a-uranium and the effect of anisotropic Debye-Waller factor 

weighting on the experimentally measured DOS. The difference between the black curve and 

the other two is the error of assuming isotropic Debye-Waller factors. The typical error bar 

was taken from the FCS instrument around 10 meV at 433 K. 
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Appendix C Comparison of harmonic and anharmonic oscillators 
I 

Runge - Kutta (Order Four) 

Potential Coefficients: 

c:=5 eV/A"2 
gl :=28 eV/A"3 

f:= 10 eV/A"4 Eanh :=0.025 eV 

Y~h:=[~] initial conditions 

M :=1 

to :=-40 

tf :=40 

npoints := 1000 r :=0, 1 .. npoints I := 0, 1 .. npoints 
6 

Solanh :=rkfixed(yanh, to, tf, npoints, Dl} 

npoints 

kT :=M· L 
n = 0 

npoints 
Determines Temperature 

Yh:=[~] 
02(t, y} .-[ Yl Y 1 

-2·c· ~ 
Harmonic problem 

Solh := rkfixed(yh, to, tf, npoints, 02) 

Phase Space 

Area I 

Solanh C> Solh 
r,2 0 t- - r,2 

I 

-0.2 0 0.2 
Solanh 

r, 1 

Anharmonic problem 

01-

-0.2 

kT = 0.019 

Note: 

Eanh > kT 

Eh = kT 

I 

a 
I 

0 
Solh 

r, 1 

-

0.2 



1 

"" Solanh 2' (Solanh + 1 1 - Solanh 1) ~ 11, n. 11, 

n= 0 

Ah :=1l'---KL.. 

J'~ 
0.4 ,..------.-------, 

Ah = 0.037 

Phase space entropy difference calculation: 

Position Versus Time 

0.2 

Solanh
r

• I 0 

-0.2 
-10 

Velocity Versus Time 

Solanh 
r,2 

100 
I 

0 
SOlllllh

r
, 0 

200 

10 

'-3 1 [.07396 - .01816J l1Sps.- . n ------
Ah 

l1Sps = 1.25 

-10 

o 

o 
Solh 

r,O 

-10 o 
Solanh 

r,O 
10 

-0. 2 '-"--"-.!....",;'--''--'-'----!......!-....!....~ 
-10 

0:=15 w :=0,1.. 200 

Power Spectrum Analysis 

npoints - 1 

Zh(w) .- r . [-(SOIhn 0)2] (tf-tO) 
SoIh

n 
2·exp(-1 ·w·SoIhn O)·exp , '--.-

, , 02 npomts 
n= 0 

e~ :=0.05.w 

ghw := (IZh(e~1112 rows (eh) - 2 

. 1 
ghw·=-·ghw 

Nh 

npoints- 1 

Nh .-.-

Zanh(w) ,- r SOlanhn,2· exp (-i 
n = 0 

r ghm · (ehm + 1 - ehm) 

m=O 

,w,SoIanh
n 

).exp[- (Solanhn, 0) 2]. (tf~ to) 
,0 2 npomts 

o 

rows(eh) - 2 

o 
Solh 

r,O 

. 1 anh 
Nanh := r g~. (ehm+ 1 - e~) kT = 0,019 

ganh .=--.g 
Nanh m= 1 

10 

10 
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5 - -
~ 

'\ 
" , \ , , . , \ 

i\ 

I ~ I I 
o 

o 2 4 6 8 10 

Entropy difference based on power spectra interpreted in the harmonic approximation: 

rows(eh) - 2 

liS := L -3.[(ganhm- ghml· (ehm+ 1- ehm)·ln(ehmIJ 

m = 1 
liS = 0.795 k/atom 

True entropy difference: liSps = 1.25 k latom ( from phase space) 

Error comes from additional peak(s) at higher energies. Correct value is given in the quasi harmonic 
approximation by using first dashed peak only (renormalized)! 



Appendix D Analytic solution to the deflection of a bi-metallic 
strip 
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Binding two states of a material together into a bi-metallic strip makes it possible to 

measure very small differences in thermal expansion between the two states. A small thermal 

expansion difference induces a curvature in the bi-metallic strip. Here we derive an 

expression for the curvature and show how this can be further amplified using an optical 

lever. 

/y ~ 
hh r-____________ ~o-rd-e~re-d~(O~)~----------------4~ 

disordered (d) V 
L ------------------~~~ 

Figure D.l. Bi-metallic strip dimensions. 

I. Start by constraining the beam shown in Figure 1 to be flat. 

For equal cross sections, force balance requires the stresses to balance: 

o d 
all = -all 

o d a33 = -a33 

(D.l) 

Strain compatibility requires 

1 (0 0 ) 0 AT 1 (d d ) d => EO all - va33 + a ti = Ed all - va33 + a !:l.T 

!:l.wo = !:l.w d 
(D.2) 

1 (0 0 ) 0 AT 1 (d d ) d A => EO a33 - vall + a ti = Ed a33 - vall + a tiT 

where we have neglected differences in the Poisson's ratio, v. 
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Solving for the stresses 

o d (l+v) 
all = -all = ll.a!:l.TE ( 2) 

I-v 

o _ d _ (1 + v) , 
a 33 - -a33 -ll.a!:l.TE ( 2) 

I-v 

(D.3) 

where 

(D.4) 

II. Superimpose bending strains. 

Can define a neutral bending axis (where stresses are zero): 

(D.S) 

then the bending strains can be written in terms of an imposed curvature, 1(, as 

(D.6) 

where 

(D.7) 

III. Minimize strain energy with respect to curvature, 1(. 

The strain energy from strain along the xrdirection is given by 



Substituting in the strain components, 

Minimize with respect to curvature by setting 

dU =0 
dK . 

Solving for the curvature and simplifying gives 

In general this gives a constant times !1a!1T. In the special case where 

the curvature simplifies to 

3 
K = - ( ) !1a!1T. 

4 I-v h 

Furthermore, if we let v=0.25 then we simply get 

!1a!1T (d d .. ) K = - . ownwar curvature set posItIve 
h 
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(D.S) 

(D.lO) 

(D.ll) 

(D.12) 

(D.l3) 

(D.14) 

Now if we use an optical lever as shown in Figure 2, then the beam deflection angle is given 

by 

L e = KL = -!1a!1T. 
h 

The deflection of the optical beam is then 

(D.15) 
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0= Dtane == De = ( ~)LL\aL\T (for postive curvature up in Figure D.2). (D.16) 

For free strips the thermal expansion difference is LI1aL\T. Therefore, the bi-metallic strip 

and optical lever arrangement amplifies the observed displacement by ( ~) . 

I PSD 

< 8 

o 

Figure D.2. Optical lever. 



Appendix E Mathcad file for calculating microstrain from Peter 
Stephens' coefficients (orthorombic case only) 

Lattice parameters: 

a := 2.909 

1t 
ex:= 90·-

180 

b := 5.849 

1t 
f3 := 90·-

180 

Inverse metric tensor: 

[ 

a2 a' b· cos ( y ) 

f:= a' b· cos (y ) b2 

a· c· cos (f3) b· c· cos ( ex) 

0 1,2 
ca : = --;::::====== 

'0 ·0 Aj 1.12.7. 

c := 5.043 

1t 
Y := 90·-

180 

a' c· cos (f3) I 
b· c· cos (ex) 

c2 

Define crystal to cartesian transformation matrix: 

[

a 0 0] [1 0 
A:= 0 bOB:= cos (y) sa' sin (y) 

o 0 c cos (f3) 0 

Define d-spacing: 

Enter Shkl coefficients: 

- ca' s~n ( y) 1 
sin (f3) 
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S400 := 1.1 S040 := .22 S004 := .23 S220:= - .33 S202:=.44 S022:= - .086 

Define Peter Stephen's function for microstrain broadening: 

crM(H):= h+-Ho,o 

k+-Ho,l 

1+-Ho,2 

S400· h4 + S040· k4 + S004·14 + 3· (S220. h2. k2 + S202· h2'12 + S022· k2.12) 



The H dependent strain is (in units of 10"-6): 

.laM(R) 
difC := 16532.8 S (R) ,- _'V.:..----'-_=__ 

,- M(R)' difC 

7t 
i := 0, 1..60 <\>. := 6·i·- j := 0, 1..60 

1 180 

7t 

\lfj := 3· j- 180 

X .. := sin (<\>.). sin (\If.) Y..:= cos (<\>.). sin (\If.) 
I, J 1 J I, J 1 J 

Z. . : = cos (\If.) 
I, J J 

I .. := [X .. Y.. z.. J.L 
I,J I,J I,J I,J 

P. . := S (I. .). 106 
I,J I,J 

X .. := (X) .. ·P .. 
I,J I,J I,J 

Y. . := Y. .' P .. 
I, J I, J I, J 

z .. := (Z) .. ·P .. 
I,J I,J I,J 
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