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ABSTRACT
Seismidnversion and computational modebvie shown that earthquake ruptures may
propagate in one of two basic modes; the dileeknode andheslip pulse mode. In this
work we use analytical and numerical techniques to study the dynamics and implications of
pulselike ruptures propagating on sigwelocity-weakeningdrictional interfaces using

both discrete and continuum models of fracture.

Resultsof the study of the discrete spring block slider model suggest that strtmogfy-
weakenindriction might yield to the propagation of unsteady glulses and chaotic
dynamics. The prestress in most of these systems swalvereryheterogeneouspatial
distributionscharacterizedn generalby nonGaussian statistics and powaw spectral
properties. It is also shown that the combined etieslip pulse propagation arstirong
velocity-weakenindriction could yield tosizeeffects instrength with the strength

decreasing as a power law with increasing rupture length.

By examining the energy budget of slip pulses in the discrete model, welsdtots
possible to derive a nonlinear differential equation that could predict the final slip
distribution in an evengiven the prstress existing before that event and some information
about friction and pulse dynamics. The equation is successgplicating many of the
macroscopislip featurs, including the slip distributioand total rupture lengthcan also
match many longime statistics regarding the prestress evolution and the event size

distribution.
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Results from the continuum study gegt that the absence of steady pulses in previous

studies could be attributed to the details of the nucleation procedure. We show that steady
pulses could exist on stronglocity-weakeningriction and uniform prestress if bothe
prestress anducleaton procedures are correctly tuned. We find that steady pulses are
unstable to perturbations in the form of a step in the prestress and could arrest quickly in
regions of low prestress. Steady pulses are also found to adapt well to local fluctuations in
theprestresdeading to heterogeneous slip distributions. This result might have important

implications for the problem of slip complexityreal earthquakes.
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Chapter 1 Introduction
Thecurrent understanding of crustal earthquakes suggesthdiyaiLicleate as frictional
instabilities on preexisting surfaces of discontinuity, known as faults, under the action of
the slowly moing tectonic plates. Once initiated, earthquakes propagate as dynamic
shear ruptures along those interfaeeth rupture speeds close to the sheave speed
(subshear rupturesh some cases they may even exceed that speed (supershear
ruptures). As thearthquake propagates it leaves behind a permanent offset between the

two sides of the fault along which it is rupturing. We call this offset the earthquake slip.

This work uses analytical and numerical methods, in both the discrete and continuum
modelingframeworks, to study the dynamics of earthquake ruptures propagating on
strongvelocity-weakenindrictional interfaces in the pulselike mgdand explores the
possible implications for the longrimevolution of fault stress and strength. In this
chaptemwe summarize the main features of the earthquake problem relevant to this study

as well as introduce the basic tools we have been using.

1.1.0n the multiscale nature of the earthquakaroblem, friction and

prestress

Earthquakes are a perfect example oftivadale processes in nature. To understand them
fully we have to resolve mechanisms spanning spatial scales between a few millimeters,

corresponding to the size of the gouge particle in the fault zone, to hundreds or thousands



2
of meters, corresponding tee size of the process zone close to the rupture tip and

ultimately to tens or hundreds of kilometers corresponding to the overall size of the
rupture, the size of the faults netwprind the other processes that might be effective

over that scalesuchas fluid and heat transport. On the temporal stiailegs do not look
easier In order to understand the evolution of a fault system under the action of a
sequence of earthquaker to understand the correlation between different earthquakes
we need to bable to simulate porthermemechanical processes over tens to hundreds

of years while being able to resolve the fast dynamic episodes of fractures, i.e.
earthquakes, that usually sgamm afew seconds to less than a few minutes. Handling

the spatietemporal multi-scale nature of the rupture process is one of the current major
challenges in computational mechanics and this study attempts, in part, to present a new

paradigm to help solve this problem.

In addition to the challenges imposed by the nmdtle nature ahe earthquake rupture
process, there exiatnumber of fundamental questions that earthquake physicests

trying to answer. For example, how do earthquakes nucleate as frictional instabilities?
[Rubin and Ampuero, 2005 and Ampuero andiRu2007] how do earthquakes

propagate? [Heaton, 1990, Zheng and Ri®88, and Lapust2000] and how do
earthquakes arrest? [Husseini, 1975, and Aagaard and Heaton, 2008]. Unlike in classical
engineering fracture mechanics, the inaccessibility ofupaure procesm the

earthquake problerfwith earthquakes happening several kilometers deep in the earth)
makes answering those questions a bit diffj@art we have to rely entirely on

inferences from seismological observations and numerical sirmsato direct
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observation is currently possible exceptvery limited occasions [e.g. deep gold mines

in South Africa and the San Andreas Fault Observatory in Southern California].

Nonetheless the numerical simulations have their own challenges adsvellany
mechanics problemve need to specify geometry, boundary conditions, initial condjtions
and the governing stresgrain relationships. The geometry can range from simple

models of straightsingle smooth faults to more complicated ones sucineasal

networks of nonplanar fault surfaces. The more sophisticated the model is, the larger
computational time it takes to run and the larger memory requirements it asks for. As for
the governing constitutive laws for the material surrounding thedatftice, the choice
canincludelinear elastity, elasteplasticity andnonlinear elasticity with damage
mechanics. In this study we limit ourselves to dynamic ruptures on single fault surfaces

with the governing constitutive framework being linear etatsti

The boundary conditions represent one of the two most uncertain parts in the simulation
process thanks to what one might ¢dde mystery of the friction lawThe other major
uncertainty comes from the prestress. The debate over which typdiohftéav can be

used to describe the dependence of the frictional strength of the fault surface on the fault
slip and slip rate during rupture is not expected to come to an end soon. This unfortunate
fact is due to the lack of the technology that mighivalus to test frictional sliding of
surfaces at slip rates and normal stresses comparable tdhtatesdst in real

earthquakesand also due to the possibility of explaining many seismic observations with

totally different friction models. Since the wds of the numerical simulations are very
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sendive to the specific type dfiction law implemented in the numerical model, we

herein summarize the main characteristics of the different friction laws used in the

literature.

The first friction law to beised in earthquake simulatewvas the linear slip weakening
model. In this formulation the shear strengthat a point on the frictional interface has a

maximum value designated as the yield strengtlf the applied shear stress exceeds the

yield strengththe frictional strength will decrease linearly with the slip accumulated at

that point to a new lower level determined by a critical\&ilueD, , known as the slip
weakening distance. For slip values greater tharthe frictional strength remains
constamat the lowewaluet (D,) . Such frictional formulations have roots in nonlinear

fracture mechanics and in particulbe Barenblatt cohesive zone modBtoberg,1999]
Barenblatt assumes that a finite amount of work has to be done at the crack tip to break
down the atomic bonds in that region and allow for the separation of the crack surface.
Since the atomic bond strength is classically given as a function of atomic separation
distance, it follows that a displacemdratised description for the interface stréngight

be plausible.

The linear slip weakening model has several drawbacks. First, it was formulated for
mode | fractures and its adoption to mode Il and mode llI frictional cracks seem not to
have sound experimental support. Second, the dependemeefoétional strength on

slip alone let alone the linear dependentsevery simplistic. For example, it has been
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known since the early 50s that frictional sliding between metallic surfaces show

remarkable dependenca the sliding velocity [Bowden an@abor, 1950]. Finally the

slip weakening law does not allow naturally foe healing and regaining of interface

strength after the earthquake is over. This regaining of strength is essential for subsequent
earthquaksto occur. Despite these drawbacks tise othelinear slip weakening law

in numerical simulations facilitated the study of several aspects of earthquake dynamics

in the 70s and 80s including possible transition mechanisms to supershear propagation in
inplane ruptures [ e.gAndrews, 197pand rupture interaction with fault heterogeneities

[e.g, Day,1982]. Nonetheless, it was evident that a more comprehensive law was

required.

An important development in the field came with the introduction of rate and state

friction based on the experental work of Dieterich (1979) and Ruina(1983). In this
framework the frictional strength at a point is a function of the instantaneous slip rate at
that point plus a number of other parameters (state variables) that account for the history
of the slip rée. The state variable evolution is given as a differential equation relating the
rate of change of the state variable to the instantaneous values of the state variable and
slip rate. Usually the use of one state variable in numerical simulations iacatigf
However, to fully describe the results of friction experimgmi® or more state variables

are usually required.

The rate and state framework overcomes many of the drawbacks of the linear slip

weakening law. In particulathe dependence of thadtional strength on the slip rate
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allows for the description of the frictional behavior, observed experimentally, of both

velocity-weakeningsurfaces, where frictional strength decreases with slip rate, and
velocity strengthening surfaces, where fricabstrength increases with slip rate.

Moreover, this slip rate dependence of the friction can allow for interfacial healing once
the slip is overand hence provides a natural mechanism for regaining interfacial strength
and rerupturing in thenext fractre episode [Rice, 1982]. Other experimental
observations successfully described by the rate and state laws in¢helégarithmic
increase in static frictional strength with time, ii)the instantaneous increase (decrease) in
the frictional strength wit the abrupt increase (decrease) of the slip rate and iii) the
existence of a length scale, or a slip distance, over which the evolution of the frictional
strength to the steady state value dictated by the interface slip rate takes place. Unlike in
the slp weakening law, this length scale is generally a function of the slip rate and is not

apriori prescribed.

While it is true that the rate and state laws successtaigribe mangf the
experimentabbservations of frictional sliding, particularly anslip rates {0°i 10°

m/s), and while they made the simulationtbé sequence of earthquake ruptures on the
same fault surface possible by providing a natural restrengthening mechanism between
ruptureepisodesthe classical DietericRuina rate andtate formulation has a major
drawbackwhen applied to dynamic slip conditionkhis drawback is inherent in the
logarithmic dependence of the frictional strength on the slipwdtieh, given the small
values of the rate and state parameters of most knwaterials, allows for only a small

drop in the frictional strength even for orders of magnitude increase in slip rate. With the



frictional coefficient at low slip rates being between0.8, the classical Dieterieh

Ruina formulation will predict frictioal coefficients of the order 0®&.8, respectively at
seismic slip rates ~1m/ s). This small drop in frictional strength and the sustaining of
relatively high values of the dynamic frictional coefficient is inconsistent with the
absence of melting in the maity of mature faults. This inconsistency becat®ebe

known in the geophysics community as the heat flow paradoxpdiaelox arises from

the existencef two conflicting situations. Otheone hand many natural faults have very
thin sliding zones and arsubject to confining pressures of the order of200 MPa. If

one of those faults is to move in an earthquake episode for several meters at average slip
rates of few meters per seconds and at frictional coefficients predicted by the Classical
Dieterich-Ruina formulation (0.8.8), then the amount of heat generated will be large
enough to raise the average fault temperature by thousands of degfiegent to melt

any type of naturally occurring rocks that might be present in the fault zone [Ri&, 20
Noda et al., 2009 and Noda and Lapusta, 2010]. Yet no significant evidence of melting or
traces of pseudotachyylytes have been found in most major mature faults. This suggests
that the dynamic friction during seismic slip must be much lower than thesva

predicted by the classical Dieteri€tuina law and this thesis adopts the point of view

that this drop in the frictional coefficient takes place dynamically as the rupture
propagates. A possible mechanism is a dependence stronger than logarithineic for
frictional strength on the slip rate. This brings us to a more recent direction in friction
modeling for earthquake problems, which is the use of strelogity-weakeningtriction

laws.



In the strongrelocity-weakeningormulation, the frictional cdécient decreasewith
increasing slip ratat a rate fastehan logarithmico that the friction coefficient at

seismic slip rates is of the order of @2 [Tullis, 2003 and Beeler et al., 2008]. This

limits the rise in temperature to justew hundeds of degrees and rules out the

possibility of melting [Rice, 2006 possible mechanism fdne strong velocity
dependence of friction is flash heating [Bowden and Tabor, 1950, Rice, 1999 and Rice,
2006] at the contact asperities. The idea is thaingjidurfaces are rarely flat and when

two surfaces commto contactthis takes place at a limited number of points known as
asperities. Since the area of the asperities is much smaller than the gross area of the
sliding surfacesthe local normal stresg the level of those asperities will be much

higher than the average normal stress over the gross area. The rapid relative slip between
the two surfaces leado a local increase in temperature at the sites of the highly stressed
asperitieswhile the oveall average temperature remains low due to the inability of heat
to diffuse fast enough to the surrounding material. The rise in temperature at the asperity
level is high enough to cause local melting at the asperity witésh facilitates slip at a
relaively low frictional coefficient. Another possible mechanism is that the shear
modulus of the asperity neatal is temperature dependeté¢creasing as the temperature
increases. Since the shear strength is directly proportional to the shear modulus, the
strength of the interface will degrade as the local temperature at the asperities increase
even before themelt [Brownet al., 2009]. The faster the slip rate, the higher the increase
in the local temperature at the asperities level and the ldrgdeaease in its shear

modulus and shear strength. In this study we adopt the flash heating formulation that
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predicts al/V dependence of the frictional strength with shgeV . In the continuum

fault models presented in this study, we retain all the basicdiegts of the rate and

state formulation, such as positive direct and finite slip weakening distance [Dieterich
1979 Ruina, 1983, Tse and RicE84, but we modify the classical framework to allow

for additionalweakening at seismic slip rates motivabgdlash heating [e.gLapusta,

2001 and Noda et al., 2009]. In the discrete modeling part, however, we relax some of the
rate and state constraints and use a more simplified version of the friction law [e.g.

Bowden and Tabor, 1950].

So far we have d@sissed the challenges associated with the choice of the friction model
from the physics point of view. Challenges exist too from the computational point of
view. The use of more sophisticated rate and state laws with stetowty-weakening
character aseismic slip rates imposes great constraints on the grid size to be used in the
numerical simulatios. This is because in order tosere convergence of the numerical
solution with successive mesh refinemeve need to sufficiently resolve slip and stress
gradients in the process zone near the rupture tip. For values of frictional parameters
inferred from laboratory experiments, the process zone size could be as sofielas
meterswhich require grid sizes in the sulmeter range. With the current contational
resources we can only solve some simple 2D problems. In order to be able to solve full
3D problems the computational capabilities need to be increased by several orders of

magnitude or new innovative methods for solving elastodynamiosmoniform mesh
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need to be developed. Until then the full modeling of 3D earthquake rupture problems

will remain numerically impossible.

The physical and computational challenges associated with the choice of the appropriate
friction law that can be used to daberfault surface constitutive law have their
counterparts when it comes to the question of which prestress distribution can be used to
correctly describe the stress state of real faults. Due to the repeated rupturing of fault
surfaces with rupture episaglef different sizes and slip distributions, it is natural to

expect that residual stresses are built up in the fault zones and the surrounding medium.
The evolution of the residual stressesrngyenerala function of the fault slip history,

fault friction law, and spatiadlistribution and temporal evolution of the fauknaterial
properties. Given the geometric complexity of real fault systems and the nonlinear
dynamic nature of strongelocity-weakeningriction laws as well aghe inevitable

existene of spatial heterogeneities in fault material and frictional properties, it becomes
nearly impossible to have a uniform state of prestress under any realistic canditien
guestion then becomes: what are the statistical and spectral propertiesrettiesg

heterogeneous distribution?

Due to the unique nature of the earthquake problem and the inaccessibility of the rupture
process to direct observatigmmowever, no cleacut answer is readily available. We can
only use intuition, available numeaicproceduresand inferences based on indirect
observations to arrive at an approximate answer. One method is to design thought

experiments. Here is on€onsider a smooflsingle fault with homogeneous frictional
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and material properties that genesat@ower law earthquake magnituffequency

distribution consistent witthe Gutenberdrichter law andisk the question: what

possible stress state might be consistent with this event size distribution? Since the event
size distribution isapower law it hasio inherent length scale. With homogeneous

frictional and material properties this means that the prestress distribution has to have no
length scale as well. The only distributions thave no inherent length scale #re

uniform distribution and the fcdal distribution. A uniform prestress distribution is not
feasible since in a uniform prestress state and constant fracture,ehergyange in

potential energy for a propagating rupture will overrun the dissipated fracture energy and
hence ruptures wigrow indefinitely. This is inconsistent with the power law event size
distribution and the existence of events of different sizes. This leaves us with the fractal

prestress distribution as the only plausible state.

However, it is highlyunlikely that asingle fault can host a complete GutenbRighter

like event size distribution [See Page et al., 2009 for a counter hypothesis]. Consequently,
mathematical fractality, or in other words the complete absence of a characteristic length
scale, is not stritt required. Rather we might hypothesize that the prestress distribution

is strongly heterogeneous, but not completely fractal, and with the degree of
heterogeneity being consistent with the event size distribution generated by the fault. The
hypothesis oktrongly heterogeneous prestress is supported by a number of field
observationsincluding the occurrence of right lateral aftershocksh@mominally left

lateral SarAndreas fault, strong local variation in surface slip after some major
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earthquakes wht corresponding static strain of the orded6f, and the possibly

fractal spatial variatiom the change in angles between focal mechanisms [Smith, 2006
and Smith and Heaton, 2010]. It is a major theme of this study to investigate the
evolution of differat statistical and spectral properties of the heterogeneous prestress
distributions, their connection to the different event size distributions and their

implications for longérmfault behavior.

1.2.0n pulses vsracks:

Earthquake ruptures have beesurid to occur by two basic modes, the expanding
cracklike mode and the sdikaling mode. In the expanding cracklike mode the rupture
zone on the fault keeps expanding and the slip continues to grow everywhere until
information is received at respectiveiqts that the rupture has stopped. On the other
hand, in the selhealing mode the rupture occurs as a pulse of slip propagating along the
fault, with the slip stopping behind the pulse so that the slipping region occupies only a

small width at the frontfahe expanding rupture zone.

In early numerical simulations for earthquake ruptures, scientists were tempted to assume
uniform background stress and slip weakening friction laws in their models. As a result
the only mode of rupture observed in their medeés that of the expanding crack type.
Although there were some attempts along the way to describe the rupture as a
propagating pulse (Yoffel951, Broberg1978 and Freund 1979), these attempts were

dismissed due to their lack of a sound physical backgtolt was not until 1990 when
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Heaton (Heaton 1990) was able to preséming evidences for the existenceself

healing mode of rupture in realré@quakes along witla plausible physical mechanism

for their formation basedon strongvelocity-weakeningfriction. Heaton studied the
dislocation time histories of models derived from seven earthquakes with magnitudes
ranging from 5.9 to 8.1 and found that in all such models the rise time (or the duration of

slip at a given pot on the fault) wasiearly anorder of magnitude less than the overall

duration of the earthquake. That is contradictory with the-estlblished picture of

cracklike ruptures obtainedroim the numerical simulationpreviously described.
Neverthel ess, He at o neddlessanteigst im ¢ha pregposedrruptgrg e r e d
mode and now it is a widely accepted fact that slip pulses are an important mechanism for

real earthquakes and their existence have been proven numerously through appropriately

designed numerical simulations as valsomeecentiaboratory experiments.

An important lesson learned from the numerical simulations of dynamic shparas in

the last 15 years ithat slip pulses do not exist arbiitgr Certain combinatios of
conditions pertainingp the preexistingtressas well as the dynamic friction lalave to

exist to allow for the generation and propagation of these pulses. Various mechanisms
have been proposed that allow a 4$edaling versus a cracklike mode of rupture. These
mechanisms include stress dr@igeneity, existence of barriers along the fault [Day,
1982], strongvelocity-weakeningfriction together with low background stress [Zheng
and Rice, 1998] andinally, variation of the normal stress interacting with the rupture
propagation possibly de to the existence of a biomaterial interface [Andres and Ben

Zion, 1997]. Recently numerous laboratory experiments have been carried out, inspired
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by the pioneering work of Xia, Lykotrafitis and Rosakis (2005) and the later work of

Xiao, Lapusta and Ragkis (2007) to test the significance andle of the previously
mentioned mechanisms and to provide more insight towards the mechanics of the rupture

process.

The selfhealing rupture mode is believed to have significant implications on the

dynamics ancconsequences of earthquake ruptures. These implications might include,
but are not limited to, increasing difficulty of earthquake prediction [Heaton, 1990],

spatiectemporal complexity of earthquake ruptures [Aagaard and Heaton, 2008],
earthquake scalingalvs and numerical methods of earthquake simulations. Hence, a
deeper understandirgf the dynamics of slip pulses together with a better understanding

of the friction constitutive relatiomgps are among the most challenging tasksirig

earthquake scieists in the near future. This study aims to contribute in this direction.

1.3.0n discrete vs continuum fracture models

This work uses both discrete and continuum fault modeling to study the dynamics of
pulselike ruptures. The motivation here is that each e$e¢hmodeling approaches is
believed to have advantages and limitations. Hence with the appropriate combination of
both modelswe may gain better understandioigthe pulselike rupture processms both

the level of the detailed physics of a single rupepisode as well as on the level of the
long-time statistics of the system due to the collective action of a large number of rupture

episodes spanning over several orders of space and time scales.
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In the continuum approacthe fault is modeled as a 1D 2D surface embedded in 2D

or 3D bulk. The governing equations of motion are usually expressed in terms qf stress
which in turn can be expressed in terms of the particle displacement and particle velocity
through the appropriate constitutive lais the case of elastic continuum, we recover
Navi er 0s e u.pThe ioertia ajtie cantintium asnn the bulk dmone is
concentrated in the faulAccordingly the fault comes into action through the boundary
conditions assigned to its surface. The laarg condition is usually defined in terms of

a friction law that relates the shear stressgréicularpoint to the fault slip and slip rate

at this point. The fundamental characteristic of the continuum is the existence of long
range interactions; dinite displacement at a given point will generate stress and
displacement fields that influence other points far away from the source of the
disturbance. This communication between different points in the continuum takes place
through the propagating waveld that carries disturbances from the point source to

elsewhere. Based on the double couple model, the long range stress transfer in the

continuum typically goes as/r®where ris the radial distance between the source and
the receiver. For the continuunygothesisto be retained in the numerical simulations,
the computeddisplacement and stress fields should show convergence with further
refinement of the continuum discretization when using any of the classical numerical
methods such as finite element,iténdifference or boundary integral equation methods.
This imposes certain constraints on the admissible set of friction boundary conditions to

assure the stability of short wavelength perturbations [Rice, 1983 and Rice2601]. It
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has been shown ththe rate and state framework satisfies those constraints and assures

the existence of a wetlefined continuum limit.

On the other handn the discrete approactine focus is primarily on the fayulivhich is
discretized in 1D or 2D elements while thdkois totally ignored or replaced by some
simplistic representation. The system mass is usually concentrated in discrete sites and
not distributed as in the case of tentinuummodels. The equations to be solved for the
system ar e Newt ¢am fosce =engassaxtaccelaratioat feachmdiscrete
particle site. The elastic interaction in discrete models is typically short ranged extending
in most cases only tthe nearest neighbors. Unlike in continuum models, the stress
concentration for discrete adels is independent of the rupture size. In these models, a
failure of a single element independent of the surrounding ones is permitted and will
define the smallest event size. This failure pattern is excluded in the continuum by the
enforcement of theantinuum hypothesis and the correct representation of the long range

fields.

The previous discussion shows that the continuum models are usually more sophisticated
and pay more attention to the correct representation of the physical and mathematical
detaik. This is why continuum models are very useful in studying the physics of single
rupture episodesncluding howa rupture nucleates, propagates, interacts with systems
heterogeneities and arrests. However, continuum modelsave typically high
computatimal coss. In order to retain the continuum hypothesis and have
computationally stable results, the process zone near the rupture tip must be adequately

resolved. The process zone size might be as small as a few,metkirsg the grid size
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fall into the sib-meter scale. For any reasonably sized earthquake spanning a few

square kilometers, the computational requirement of the problem will simply overrun
the computational power of the biggest computer on Earth. This is why continuum
models stillfall shortof being able to analyze sequence of earthquake ruptures under

realistichigh speedrictional and geometric conditions.

The discrete models, on the other hand, cannot be used to describe the dynamics of
individual ruptures since they lack many of the atiaé physical characteristics of the
continuum. They, however, can providéool for the study ofong-time system statistics

in a way similar to what is done in statistical physics. This is because in many complex
systems, theitong-time behavior is idependent of the exact details of the underlying
individual events. This is whert@e discrete modelsnay provide an advantagas they

allow for the simulation of long sequence of events and hence the studyl@idgtane
evolution of the system statiséil and spectral properties in a reasonable computational
time. Also as the physics is more simple in the discrete models, this gives an opportunity
to explore surrogate strategies that can be used to simplify the computational
complexities of the continum models. Hence combining discrete and continuum
modeling tools can help us understand both of the microscopic and statistical properties

of rupturesas well as give insight into possible new numerical strategies

In this work two numerical fault mdels will be studied in detailspne continuum and
one discrete. The continuum fault model is a 2D-platne elastic fault embedded in a
linearly elastic whole space. Rate and state friction, with additi@iatity-weakeningat

the seismic slip rateareusedas the fault boundary conditions. The governing equations
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of motion are solved using the boundary integral equation method. On the other hand,

the discrete fault model we chose here is a 1D spring block slider representation of a 1D
elastic fault. The fdtiis represented bl discrete masses that are interconnected by
linear horizontal springs and being driven by a slowly moving plate, to simulate the effect
of far field tectonic loading, which transfers its loading to the masses through another
series oflinear vertical springs [See Fig. 2.1]. The blocks slide on a frictional surface
with a welldefined static friction limit and a dynamic friction law in which the friction
coefficient decreases hyperbolically with the block slip rate. The governing @ugiafi
motion are solved by a"2order explicit integration scheme. The dynamics of the

discrete and continuum models is described in chapters 2, eegbBctively.
1.4.The outline of this work

This outline of this thesis is as follows.

In Chapter 2we desdbe the dynamics of the spring block model with emphasis on
results pertaining to the spatiemporal distribution of eventthe statistical distribution

of event sizesthe evolution of the probabilistic and spectral properties of prestress, the
statistcal and spectral properties of slipnd the connection between the event size

distribution and the evolutionary properties of prestress and slip.

The use of strongelocity-weakeningfriction and the evolution of spatial heterogeneity
in the prestressistribution leads to interesting size effects in the evolutionary behavior
of the studied discrete system. @Ginapter 3 we discuss two major examples of-size

dependentffecs: the first is the dependence of the prestress averaged over the rupture
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size onthe respective event size and the second is the dependetiwecbainge in

potential energy per unit slip per unit rupture length on the event size. We argue that our
observations could be used to expl#e scale dependence of strength for frictional

interfaces failing under the influence of strorgjocity-weakeningtriction.

In Chapter 4 we outline the first steps in a promising new paradigm that can be used to
simulatethe dynamics of puléi&e ruptures andavhich can result in a huge computational
savng. The paradigm uses the energy balance of the propagating slip pulse to formulate a
nonlinear differential equation that relates the pulse slip to the presxisting stress given
some information about friction and pulse energy. The results both on thleadkev
individual events, and to some extent on the leveloofytime statistics, are very

promising.

We then make a switch to the continuum model in order to explore whether the
conclusions based on the discrete study can be carried over to the coragimtivwhat
modifications are required any. InChapter 5, we study a 2D aiane continuum fault
and discuss the problem of pulse formation, steady propagatohinteraction with
prestress heterogeneity. We examine how sensitive the pulse couldbbal teariations
in prestress and what implications this could have on earthquake complexity. We then

summarize our conclusions and present some future research directbrapiar 6.
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Chapter 2 The Spring Block Model

Systems failing at multiple lgith scales are abundant in nature. Examples range from
strain bursts in micrpillars due to collective dislocation movement to earthquakes on
major faults intheeartt® srust. We here present a parametric study for a 1D spring block
slider model as an @lization of such systems. ®to its discreteness and laaklong

range interaction, the spring block slider mocehnotrepresent accurately the dynamics

of a single rupture in a continuum. Nonetheless, the spring block slider can capture
reasonably wll the longtime statistics of complex systems with multiple repeated
ruptures since the collective behavior of those systems is independent of the physics of

individual evers (as long as ergodicity holdat least in an approximate sense).

Our parametc study includesinvestigating the effects on patterns of rupturesf
changingthe following parameterd) Loading speed of the driving plat&) Coil spring
stiffness and the leaf spring stiffness; and 3ndéunt of frictional weakening. In an
earthquak setting tese parameters are related to the rate of tectonic loading, the ratio of
the length to the depth of the seismogenic regiad the amount of steady statdocity-
weakening respectively. We find that smaller driving speeds and higher ratitesab
spring to coll spring stiffness favor the generation of smaller ruptamelsviceversa. The
influence of frictional weakening, however, is a bit more complicated and is not

monotonic. By tuning the different parametense can find a region in thparameter
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space where events of all sizes are produced with statistics similae Gutenberg

Richter scaling laywwith a bvalue between 0.4 and 1.

We studiedhe long-time properties of the prestress due to the accumulation of repeated
ruptures ofdifferent sizes andonclude that the prestress evolved into a heterogeneous
distribution with a power law Fourier spectrum and 4@aussian statistics. We also
studied the spectral and statistical properties of the slip distribution and show that we can

match the expected behavior for mature and immature faults.

2.10n models and ngins of earthquake complexity

The origin of complexity in natural systems is still an unresolved question. Since Pak et
al. (1987) introduced their ideaf selforganized critality, a lot of interest arose
looking for various systems that could lie within the spectrum seff-organized
phenomena. While it is possible to find many phenomena that have power law statistics
such as size distribution of landslides, magnitodeber statistics of earthquakesd

size distribution of strain bursts in miepillars, it is still a challenge to accurately
determine the physics behind this apparsgif-organization The field of earthquake
physics is no exception. There has beéot af debate about the origin of the Gutenberg
Richter scaling and its implications for the state of stress ieatib® crust. Historically,

two major schools of thoughts have emerged to explain what appearthsbaleless
character of earthqualgtatistics; one arguinfipr the dynamioorigin of complexity due

to nonlinear friction and the other tand to attribute it to the strong geometric and



2z
material discontinuities that exist in natural faults. The right answer to this problem is

probably acombination of both factors. It is important to mention, though, that having a
better understanding for the spat@mporal complexity of earthquakes is of great interest
as it has implications on our understandofgthe origin of highfrequency spectrani
earthquakes as well as our assessment of the stress state on major faultdeil lEsua

in turn may have important consequenfggsour modelof the strength of real faults or

more generallythe strength of systems with hiuscale fractures.

In order to address the complexity problem, we need a quantitative model for a system
that can fail over multiple length scales, like the Earthust, simulated for long enough
times so that we can carry out a systematic statistical evaluation for its tasgmp
behavior. We think that the rigorous way of doing this is to have a 3D continuum model
with astrong velocity dependent friction law and friction parameters that are extrapolated
from actual laboratory experiments. Unfortunately such an approadmigutationally
prohibitive with the current computational facilitiesd can only be done for simple 2D
antiplane model§Dunham et a).2008, and for a few earthquake cycles at most. An
attractive alternative is to study simple dynamical systembich bear some
relatiorships, at least inhe statistical sense, with the more complex real systémtsy to

learn the possible implications for complexity evolution that may be relevant to the
continuum as well as effective methods to do large scale contimiodel simulations.

The hope here is that the macroscopic behavidomgtime and large spatial scaleslw
notdependto some extent, on the details of the microscopic physics. Although this is not

rigorously proven for any real complex systenhat beenempirically justified in many
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cases, such as in turbulence. The dynamical system we choose to studyorkhss

the spring block slider model.

Although the spring block slider model was first introduced by Burridge and Knopoff
(1967) as a quamative modelof earthquakes, Carlson andniger (1989) were the first

to systematically study .itThey presented it as a model suppgrtthe dynamic
complexity viewof earthquakes. Further studies arguing along the same line of though
included Carlson rad Larger (1989), Carlson et al. (1991994, Shaw et al. (199

1993, Pepke et al. (1994and Erickson et al. (2007). Rice (1993) criticized such
approach, arguing that the purelocity-weakeningfriction used in Carlson and hger
simulations for exanple,is not suitable for continuum faults models due to itpaled
nature; short wavelength perturbations grow. He argued that systems showing self
organized criticality are inherently discrete, leading to results that are mesh size
dependent, and hemccould not be generalized to the continuum. In support of this
argument, Rice and Befion (1996) introduced a 2D cellular fault model in a 3D
continuum with long range static stress interactions included. They showed that there
exists a minimum length ate that needs to be well resolved in order for their results to
be mesh size independent. If the cell size they used was larger than this minimum length
scale, small events complexity was produced, whereas if this length scale was well
resolved complexiy disappeared andnly periodic large earthquakes are produced.
Although the RiceBen Zion model results suppdhte argument that complexibannot

exist on a smooth fault, we thirtkat an indirect implicatio of their cellular fault model

is that long ange fields, at least in the way they have introdubedin their cellular
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mode]| have little to do with the evolution of complexity if local conditions are strong

enough to control and arrest the rupture. These local conditions may be stress flgctuation
if the rupture is pulséke, and may not necessarilye limited to strong geometric or
material discontinuities. This point is importaaind we will come to it later in the

discussion.

In the field of continuum fault models, Cochard and Madariage6)1®@®@roduced a 2D
antiplane continuum fault model with a rate and slip friction law. They were able to
show that thelongtime behavior of such a model entails complexity if the rate
dependence character of the friction law is strong enough. Myers(&986) reached a
similar conclusion with a crustal plane model. Nonetheless, these two models were
criticized for employing an initial suddestrengthdrop in their friction law formulation

in order to initiate rupture. Such a procedure made their modhelraniy discrete
Recently, Aagaard and Heaton (2008) showed that complexity, in well resolved 3D
models, can be preserveat least over few earthquaket strong rate strengthening

friction law is employed.

Seltconsistenearthquake cycle simulatisnn continuum fault models started to appear

only a few years ago with the advance of computational facilities and modeling
procedures. Shaw and Rice (2000) presented some evidence for the existence of dynamic
complexity in a well resolved cycle simulati@f a crustal plane model. However, their
results suggest that complexity exists only for friction laws having two weakening, scales

and for a narrow range of frictional parameters. Lapusta (2000), on the other hand,
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presented a 2D cycle simulation forceustal plane model with DieteridRuina type

friction law and showed that complexity did not exist in her simulation if small enough

spatietemporal resolution is used.

In this manuscript we are not primarily concerned with the questiaheobrigin of
complexity, but rather on its different characteristics and implications if it exists. We
believe that both dynamic and geometric factors contribute to the evolution of complexity
on natural faults. However, we think that the role of rate dependentrrgitiould not be
underestimated. In particular we think that pulselike ruptures, which exist naturally on
faults with strong rate dependent friction (Heaton 1990, Zheng and Rice 1998), play an
important role in the evolution and preservation of stressrdgetaeities in the earth
crust, since they appear to be very sensitive to the local fluctuation in the preSgess (
Chapter %. In our version of the spring block slider model, werfd that all ruptures are
pulsdike and accordingly this study might b useful in giving some hints about what we
should expect, at least in a statistical sense, if a continuum model experience repeated

pulselike ruptures of different sizes.

The questios of interest to us here are: @hat are the different statisticabymptotic
behaviors of the spring block slider model as a function of its different param@gers?
What distributions of prestress are consistent withldhg-time behavior of our system
in the different parameter regimes discussed in (1) and whattlisesntail for mature

and immature faultsq3) What do the statistical and spectral properties of slip and the
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evolved prestress distributioomply for our understanding ofhe size dependent

dynamics of the system?

The outline of tis chapteris as folows: In sectior?2.2 we describe the main features of
the springolock slider model. In Sectich3we present our numerical scheme and assess
its validity for the problem. In SectioB.4 we discuss some features of the spring block
model that seem to béable and independent of the specific chamtéhe parameters. In
Section2.5we present the different size distributions of events we were able to get from
our simulations corresponding to different set of parameters. In Se2t@Bs and2.8

we discss the different statistical and fractal properties of the spring block models lying

in different parameter regimes. We summarize our discussion in s2@ion

2.2 The spring block slider model:

The setup of the spring block slider experiment is showmigare2.1.

Fig21: The spring block slider model. A chain of N blocks of identical masses (m) interconnect
stiffnesg (&driven by a loading plate moving at a very Tove \etmkisyféel the effectinng the load

plate through a series of leaf spring® &mstifffeedsigkstuck to the ground as long as the total el
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force acting on it is less that the static friction threshold. Once the static friction is exceedec

experiencemardic frictionlfaitat varies inversely with the block sliding velocity. The blocks are s
an initial stress distribution that is constant everywhere but is larger thaiftfee gtatic friction ti
middle three blocks in order to initidtearipdakemoves, it transfers stresses into neighboring block
them to subsequently move if the static friction level is exceeded. When all the blocks that hav

we designate this as the completion of one event.

The springblock slider model consists of a chain of blocks interconnected by one group
of springs and coupled to a slowly moving driving plate through another group of
springs. Frictional forces are assumed to operate between each block and hosting stratum.
As longas the total elastic force on each block is less than the static friction thréghold

the block is stuck in its place. Once the static friction threshold is exceeded, the motion of

thei™ block is given by the following differential equation:

my = Iﬁ(l'r|+1 2y 13'1) |k('Vt il’)_ Soi +sFif (2.1)
Wheres is the initial traction at the position of tH&block and all other parameters are

explained in Fig2.1 Equation 2.1) represents-ooupled ordinary differential equations
where n is the numbef blocks moving simultaneously. We use a second order accurate
predictorcorrector scheme for solving equatidhl(. The time step is controlled by the
ratio of leaf spring stiffness to coil spring stiffness as well as the rate of frictional

weakening(b). The time step is chosen just small enough to balance sufficient time
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resolution and reasonable computational cost. In all our simulations we assume m =1

and Kk = 50. We vary the other parameters according to the parametric study

requirements.

It may be useful to cast equatiq@.1) in a nondimensionalform asthis givesfurther
insight into the relative role of different parameters in controlling the nature of the

solution. We do this by introducing the following length and time scales:

F
D=—o (2.2)
K
t= (23)
where w= L is the natural frequency of the individual block when connected to the
m

leaf spring only. Normalizing displacements by D, time byand introducing the

. . k . . . .
stiffness ratiad ==, we can rewrite equation 1 in the following form:

S, 1

Ui =rU,,, -, U, g#U-—=> : ) (24)
Fst Ui
1+
VC
_u _ YV _ 1 . , .
whered =—, g=—= and1,=——. g is the normalized plate loading rate whereas
D wD bwD

n. is a characteristic velocity. It is worth to mention that a ratio |‘|I¢@Ec does appear

in continuum crustal plane fault models to represent a fingisnsgenic depth
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[Appendix A]. The ration, on the other hand gives a measure of the strength of

frictional weakening relative to the inertial and elastic properties of individual blocks. It
is analogous to the T paramef{@heng and Ricel1998] in continwm fault studies

which gives the ratio of the slope of the steady state friction curve to the radiation
damping line at a given slip rate. Hence similar parameters govern the behavior of both

discrete and continuum systems.

From the mechanics point ofew, the spring block model is characterized by the

following three features:

1- Short range of interactionEach block is connected only to its nearest neighbor

block; there are no long range stress fields.

2- Existence of a characteristic length scdlkis follows from the existence of the

leaf springs witmonzerostiffness k) , which introduces a natural length scale

given by D = i[See guation(2.2)]. The existence of this length scale breaks

theself-similar nature of the sought solution. In the limitiofinitely rigid leaf
spring, each block moves under a constant displacement boundary condition
whereas in the limit of zero leaf spring stiffngd®e block moves under constant
force boundary conditions within an infinitely large strain energy reseideince

we would expect dominance of single block events for cases with stiff leaf springs
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while we expect catastrophic systante events for cases with very flexible

leaf springs. Suchstatement is made more precisé&attiors 2.5, 2.6, 2.7and

2.8

3- Nonlinear rate dependent frictioihe friction law we are using is botkelocity-

weakeningand velocity strengthening. This is achieved by assuming a

constitutive law where the dynamic friction varies inversely with slip rate. Such

laws lead naturallyatthe formation and propagation of slip pulses, where only a
localized portion of the chain is slipping at any instant of time. The existence of

slip pulses has strong consequences on the nature of the stress state and the energy

scaling in our model as Wbe discussed i®ection2.5.

The spring block model with pure velocity dependent friction law was criticized for two

major things: discreteness and lack of long range interaction.

1- Lack of long range interactionsong range wave fields undoubtedlyisgxn

continuum smooth systems. Points far away from the rupture front can still sense
its effect through the wave field set up by the rupture even before the rupture front
has reached these points. In the spring block models, however, each block is
diredly connected to its nearest neighbor only. We hypothesize here that long
range wave fields may not change the nature of the complexity of the solution, but

may only affect fine details of individual events, provided that ruptures propagate
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in the pulsdike mode. We hypothesize that due to the local nature of the pulse

like ruptures, the major factors affecting the evolution of the propagating pulse

are the local fluctuations in the prestress field and not the perturbations introduced
by the long range we field. Since we are interested in theg-time statistical

nature of the solution, we think that the spring block model might be sufficient for

our purposes.

Discreteness: A linear stability analysis for the spring block slider model with
pure velociy dependent friction indicates that perturbations of all wavelengths
grow [Appendix A]. A similar analysis for 2D or 3D continuum systems further
indicates that not only perturbations of all wavelengths grow, but also that the
perturbation with the shortesavelength grows fasteiiRice, 2001] This signals

an ill-posed problem in the mathematical sense and renders the problem discrete
in the sense that individual blocks or cells can fail independently of other blocks.
While we acknowledge this, we alssad that the elastic continuum hypothesis
breaks at some length scale in real systems. We accordingly assume that the
spacing of the blocks in our model should correspond to this minimum length
scale and we are mainly interested in exploring the behaltbe system, in a
statistical sense, over scale lengths larger than this minimum scale. This is why
when we increase the number of blocks in our simulations; we alwaygylo
increasing the overall system length while keeping the-bitark distancehe

same.
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The spring block slider modebn the other handprovides an efficient tool for

studying thelong-time statistics of systems failing at multiple length scales. It has a
reasonable computational cost when compared to full elastodynamics contimadets
of the same size. It is also shown that it can reproduce correctly manylohg¢feme
statistics observed for different muditale physical systems such as earthquakes on real

faults if the model parameters are correctly tuned.

Finally, we stess that our main focus here is on the statistical properties of evolving
heterogeneity in systems with muditale failures and their implications rather than
debating the source of heterogeneity in our model and whether it is completely geometric
or competely dynamic. In the following section we discuss several results that support
the validity of usinghe spring block slider system as a model for ldrgg-time statistical

behaviorof systems failing at multiple length scales.

2.3Numerical scheme

We use an explicit time integration scheme for solving equafidr).(While this imposes
strict constraints on the size of the time step to be used, it is still computationally
advantageous when cgared to the implicit proceduras there is no need to solae
system of noflinear algebraic equations (which appears in the implicit scheme). To solve

for the displacement and slip rate we proceed as follows:
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At time t we assume we know the block displacemerand slip ratel, then the

displacement &t + gain beestimated through the following second order prediction:

u(t+ B g(t) ) %(ﬂ)z-l}l&) (2.5)

The slip rate prediction is a little more involved since the acceleration itself depends on

the slip rate. We proceed anpredictor corrector fashion.

Predictor step:
G+ B &)yl (2.6)
Corrector step:

We first calculate an estimate for the acceleratidn atgsing the updated value of

displacement (t+ E) and the predicted value of the slip g+ b):
G(t+ B £yt ot O 2.7)

A corrected value of the slip rate can now be estimated as:
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u(t+ B &Y %+ LY (e 9] (2.8)

The method is second order in slip rate and displacement. We do not rigorously estimate
the time step but we check the error in energy for large events and try to limit this to less
than 1% [Theenergy error is defined as the difference between the change in potential
energy in the event and the corresponding frictional dissipation, with the result being

normalized by either of them]. We apply our procedure to a test problem with 1000
blocks, systms parameters( = 2500,k =40 andb=10) and time ste =10°. The

result is shown in Fig. 2,2vhere the energy relative error is plotted as a function of the

event index. The error is well below the 1% threshold throughout the simulation.

10° T T T T T
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=
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Fig. 2.Zhe relative eremeigy as a function of the event index. The error is calculated as the diffel
the change in potential energy of the system due to an event and the frictional work dissipated |
result being normalized by the gy tEmiageneor the case shown, the relative energy error is well |

1%
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To test thdong-time performance, we calculate the cumulative energy error for the

whole sequence of events. This is done by calculating the total change in potential energy
due b all events, subtraag it from the cumulative frictionadlissipation and

normalizingthe result by the cumulative change in potergrargy.We repeat this

calculation with different time steps and show the resulisgn(2.3) Theenergy error is

amostquadratic in the time step size.

e =27 (Atf A

S

&

Log, cumulative error (er)

o
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Fig. 2.¥ariation of the relative cumulative energy error with the computational time step size.

Finally, it is worth noing that there are several characteristic time scales to which we
can compare the selectahe step size. These include the natural periods of the coil or
leaf springs and the characteristic weakening time of the friction law in use. We found
that a useful guide for the choice of the time step size is to keep it below 1% of the
natural periodf the stiffer spring. Also, for #sekinds of problems which are highly
nonlinear and possibly chaotic, it is not possible to achieve convergence based on
individual events or the exact sequence of eyevith reducing time step.Wat we can

hope for isthat the statistics convergentisingsome measures convergence
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2 4- Slip Pulses, Event Complexity and Stability of Rupture Speed:

While the spring block model with rate weakening friction is a higldglinearsystem

that is expected to depend sémsly on our choice of parameters and initial conditions,

we have found some stable features for our solutions that are preserved across most of
our smulations regardless of systarharacteristics. Before delving into the results of our
parametric studywe would like to summarize ¢be main features in the following
points:

(1) Events of different sizes are generat&die to the highly nonlinear, and possibly
chaotic, nature of the system, it is very hard to make the system settle in an ordered state
in the long run (e.g. produce periodic events). Even when we show a case for a system
failing primarily in small eventsand while it appears that those small events are periodic
and of the same size, variability across them is found when we look closehenoug
[However, for that particular case, the variabilisynot large] Contours for particle
velocity for some of the generated events in one of our simulations are shown in Fig.
(2.4).

(2) Events propagate as slip pulsdsgure (2.5) showone of the geerated events in
greater detailreflecting the pulselike naturéfhe slip duration at any block that has
moved in this event is much shorter than the total event time. This is the main
characteristic of slipulses. A deeper look into Fi¢R.4) reveals futher that all events,
spanning more than a few blocks, share this glikeecharacter. There are two reasons

for the generation of slip pulses in our model: i) The rate dependent frictiodungs a

rate dependent healing as the block slip rate deases the friction force the block
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experiences increases and ultimately become high enough to stop the; ijphiaaf

springs of finite stiffnesgxist which provides a finite reservoir of potential energy and
hence any bloclcannotslip forever Slip pulses have been found in continuum fault
models as wel[e.g. Das, 1982, Zheng and Rice, 1998} it might be useful to learn
from our simple dynamical system the implications of having repeatedIkdseptures

and see if we can generalize any of thierthe more complicated continuum case.
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Fig2.4 Contours for particle velocity in a number of generated events showing a variety of eve
existence of slip pulses, since the rupture duration at anygwialheshgizgdltrkisedotal rupture

time in the corresponding event. White color corresponds to a stuck state.
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Fig2.5A detailed look at the contours for particle velocity of one of the generated events (the |
theprewis figure). Note that the event consists of a solitary wave of slip (the maximum duration ¢
isonlyabout 5% of the total rupture time for the whole event). Colors correspond to different valt

red being the maxmchwhite being zero.

(3) Events have emarkably constant rupture spee@ihe spring block model is a
dispersive frictional dynamical system. Rte nondispersive non frictional version, we
can define a characteristic sound speed in the continuum limiisthelated to the square
root of the coil spring stiffness. When dispersion is added through the leaf sfiroays,

be shown that the dispersion relation takes the fofgee Appendix A]

C, = chl +k‘/(k<:$)2 , Where c is thephasevelocity of the perturbation with wavenumber

k, suggesting thahe system will propagate longer wavelengths faster than shorter ones



3¢
and both of the phase and group velocities will depend on the wavelength under

consideréion. The dispersion effects become stronger as the stiffness of the leaf springs
increass. When friction is introduced into the system, the rupture speed, away from the
discretization effects at the beginning and end of ruptures, exhibit a remarkasignton
value. This can be inferred from Fi@.4) where events can be approximated by straight
lines, in each propagation direction, in the sp@me diagramand the rupture speed is
proportional to the inverse of the slope of that line. The rupturedspeems to be
independent of the event sizes antbreover events seem to be propagating at the
characteristic sound speéithe introduction of friction to the system alters the dispersion
relation as we show in Appendix A and lsath both subsonic andupersonic
propagation of perturbations. Also thesults of this section suggehkat the evolution of

the prestress into a critical state due to the superposed action of repeated ruptures help
fine tune the rupture speed into the value observed hereprBpagation in uniform
prestress fields, with all material and frictional properties held constant, ruptures will

propagate fasten higherstress level{See Appendix A

In the next few sections we discuss the system behavior in different systenmeteasa

regimes and possible implications for real faults behavior.

2.5 Effect of model parameters on size distribution of events:

Thenondimensionakquation 2.4) reveals that the model behavior is controlled by three

main parameters: the stiffness oaff), the strength of theelocity-weakening(v;) and
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the normalized plate loading parameta (n this section we investigate the effect of

varying each of these parameters independently on the size distribution of events
generated in our simulatiorid/e use chains of 10000 blocks and simulate the system for

at least 50000 events.

2.5.1Effect of stiffness ratio (r)

The spring block slider model has two groups of springs of different stiffness; the coil
springs interconnecting the blocks)(land theleaf springs connecting each block to the

loading plate (R. The short range 1D elastic interaction is effective through the coll
springs, whereas the leaf springs stiffness controls the amount of available strain energy

to the system. The ratio of the ilcspring to leaf spring stiffness (r) controls the
proportion of small to |l arge events. We ex
chain of blocks is to behave as a rigid bar and all events become system wide events. On
the ot herd hgaoreds, taos zferr o, each individual b
events become single block events. Another way to lookeae thsymptotics is through
assessing the available strain energy for the system. Since in order to initiate rupture the
static friction threshold needs to be exceeded, the strain energy available for any block
through the | eaf spring is inversely propo
infinity, or equivalently as the leaf spring stiffness goes to zero, the aeaitain

energy through the leaf spring becomes very ldegading to very large events. On the

ot her hand as the ratio Aro goes to zero,

available strain energy through the leaf spring besanfmitely smal| leading to single
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block events. Hence wean expect an increase in the number of large events as the

sti ff neods sicerasedniThis isfEhown in Fig. (2w8here the maximum event size,
as well as the number of large events, increasésdas i ncr eases. 't i s i
t hat by tounriantgi ot,hewiit h ot her parameters ke

power law distribution for event lengths (r = 4).

Log Number N(L)

0 05 1 15 2 25 3 35 4
Log Event Length (L)

Fig.2.6 Distribution of event lengths for different vakds rob stiffiyes30:01265 and

9=1.2 310’ The horizontal axis represents the size of the event measured by log the numbe
have moved in this event whereas the vertical axis represents log of the number of events ha
stiffnesgion is increased, the distribution changes from one which is dondirigtenl doyesmall ever
which includes an increased proportion of large events and large2 00aximemassbiesimes (

t uni A gv & hee gnodelipardameterdkept foxed hteearrive at a distribution which is nearly

(r~5)
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Another way to look at the effect dfie increasing stiffness ratio on the distribution of
event lengths is to look at the cumulative event sizeiloligion. Thisis shown in Fig.
(2.7)wherethe event length is plottezh the horizontal axis whereas the vertical axis

the number of events havirsglength greater than a given length is depicted. The trend
previously shown in Fig(2.6)is preserved here as wellne advantage of looking at the
cumulative distribution is that it shows how the slopes of the linear gfathe
distributions compare to each other ifferent stiffness ratios ji an event moment
distribution diagram that will correspond to the GitergRichter bvalue]. It can be
inferred from the figure that the linear part becomes steeper as the stiffness ratio

decreaseseflecting an increased proportion of small events.

(o)

Log Cumulative Number N(L=)L

[ [

0 05 1 15 2 25 3 35 4
Log Event Length (L)

Fig2.7 Cumulative distribution of event lengths fay flifferent vafdds nfees0D79rarmdt i o C

g=1.2 310’ The horizontal axis represents the size of the event measured by log the numbe|
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have moved in this event whereas the vertical axis represents log of the number of events hay

tran a given value. The slopes of the linear part in different curves increase, in an absolute sen:

is reducegflecting an increase in the number of small events.

2.5.2.Effect of the velocityweakeningrate (vc)

Another importat parameter controlling the model behavior is the strength of the
velocity-weakeningn the friction law. This is measured in this study by the paramegter
which gives the ratio of the rate of weakening in the dimensional form of the friction law
to an ntrinsic velocity of the slider that depends on the inertial and elastic properties of
the system. We studied the influence of varymg @n the size distribution of events but
could not find a systematic trend. Figuf@s8) and(2.9) show an example ajur results

for two different stiffness ratia; = 100 andr = 5 respectively. Previous studies on two
block models [Turcotte 1992, Erickson 2007] have indicated the existence of complicated
Poincare maps with the system switching intermittently betweéndicity and chaos as
thevelocity-weakeningparameter\) is varied. We expect that for muhilocks systems,

this switching from periodicity to chaos would translate itself into a-systematic
variation in the proportion of the small events to laegents. Moreover, it should be
noted that while \() measures how fast the friction drops form its static value
dynamically, it also measures how fast itsteengthens as the rupture heals. The
competing effects of weakening and healing also play aimotkis observed complex

dependence of the event size distribution\@)y étronger weakening should favor larger



44
events whereas faster healing may allow for the healing tail to catch up with the rupture

front more quicklyand hence leads to the arrestrgbture. The balance between those
two factors will then control the ratio of small to large events in our model. It can be
inferred from Fig.(2.8) that the general trend for the size distributadnthe different
values ofv; is essentially the same;ig that of a characteristic earthquake distribution
and is analogous to the curve corresponding£0l100 in Fig. (2.6). This suggests that

the qualitative form of the event size distribution is controlled primarily by the stiffness
ratio frg for largevalues of irg as the available strain energy for the system in this case
is large enough to overwhelthe influence ofother parametersThe weakening rate
plays an increasingly important role, though,fiasis decreased. This is shown in Fig
(2.9) where different values of. are used but for = 5. This value ofrois close to the
value that corresponded to the nearly power law distribution in(Zi§) . Nonetheless

we observe that there are qualitative and quantitative differences in the event siz
distribution asv; is varied. If we focus on the intermediate sizege (events ranging
between 16100 blocks), we would see that there is an excess in their number for values
of v, > 0.0316. It is also interesting to note that we can find a neamyempdaw
distribution near:= 0.001265; this is different from the parameter set that yielded nearly

power law size distribution in Fig2.6)[r = 5 andv.= 0.01265]
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Fig2.8 Effeaif varying the rate of weakening parameter on thioavditestistdisitibns depicted
here represent a characteristic earthquake distributitine haagd\stitinasdieestiify=100), with

second order variations due to the weakening rate.



4¢

5 [ I [ I [ I
—=V = 0.001265
—*=V_ = 0.00632 |
3 v = 0.0316
z —EV = 0.0632
3 v =0.1265
£
5
Z i
(@)
(o]
|
0 VI [ i
05 1 15 2 25 3 35 4

Log Event Length

Fi@.9 Effedf varying the ratekeinimgpparamgten ¢he event size distribution for a case with stiffne
ratior = 5. The strong influence of the frictional weakening is clear in the range of intermedi
(betweenl00 blocks). It is also shown that povsribatiosszerd attainable in the vicinity of

V.= 0.001265.

Similar to our investigation ofthe influence of the stiffness ratizve can look at the
cumulative event size distribution. Fig2.10) shows the cumulative event size
distributionfor r =100 and different values of. As v, decreases, the slope of the linear
part increases reflecting an increase in the number of small events. However, the

differences are very small.
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Fig(2.10Cumulative event size distribL@iOrafdifferemélues pshowing thay decreases the

number of small events slightly increases.

For r = 5, the cumulative eventzsi distribution plotted in Fig(2.11) confirms that a
nearly power law distribution for event lengths is achieved,.at 0.001265. The
dependence of the number of small eventsds, however, not that clealhe number
of small events increases initially ag decreases. However, the system with=

0.001265 has a smaller number of small events than the system, with00632. This

complex dependence enis, however expected from the chaotic nature of our system.
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Fig. (2.10umulative event size distribbteomdfdifferent valyshoiving a nearly power law event

size distributiap+@.00136

2.5.3.Effect ofa normalized loading plate rateq)

The speed of the loading plate is the third parameter that controls the evolution of our
system. Although we set the plate rate to zero in the-avent period and stad the

next event in the segnce by adding the amount of stress required to just exceed the
static friction threshold at the most stressed block, we let the plate rate assume a finite
non zero value during the dynamic event. In earthgudideeapplications, the plate rate

is typicdly orders of magnitude smaller than the average slip rate during the dynamic
event. Nonetheless even when this is ttieyariation of the loading plate rate may have

a strong impact on the size distributidresents in our system. Figure (2.Xhowssome

results for the event size distribution when the normalized plate loading rate is increased
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through five orders of magnitude. We note that the faster the loading plate speed, the

larger the maximum event size and the larger the proportion of largeseaed vice
versa. We also note that below a certain threshold, the event size distribution becomes

insensitive to the plate loading rate. For the case in hand, we can see that the results for

g=1.2 310° and g=1.2 310’ are indistinguishable. Alsave can observe that @arly

power law event size distribution is achievedg® 1.2 310’ .[The other parameters are

held at r = 8 and #0.01265] The cumulative event size distribution for various plate
loading rate is shown in Fig(2.13) Once again we can see that the slope ofitiear

part in those curves increases as the plate loading rate decrefiseng an increase in

the number of small events. This shows that the faster we drive the system, the more
probable it is to rupture a longer portion of the systamin this ase we can initiate

ruptures at different points concurrently.
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Fig(2.12Fvent size distribution for different values of loading plate normalized speed. The fastel

iIs moving, the larger the maximum event size is srehtagdavtylargeegvents would be. By tuning tf
plate loading rategreb 3107 , andkeeping the other parametersiredif0.01265] , we

can generate an almost power law event size distribution.
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Fig(2.13Cumulative event size distitbetent f@lues of loading plate normalized speed.

We conclude this section by noting that we were able to obtain power law size
distributions for different combinatisrof model parameters,(v., g) This motivates us

to hypothesize the following.fIwe imagine that our systems phase space is
parameterized by the three parametersvd, g) , we hypothesize that there exists a
surface in this three dimensional space, B, g) = 0 for which combinations of

parameters satisfying the surface equatimuld yield a nearly power law distribution.
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The surface divides the phase space into two regions; one in which there is an

increased proportion of large events and the other in which there is an increased
proportion of small events. In the next sectioresimvestigate the different properties of

the systems that are consistent with the eactheflistinct regimesof the event size
distribution: the regime where large events dominate (Regime A), the neady self
organized critical regime (Regime B) and thgime dominated by small events (Regime

Q).

2.6 Major characteristics ofsystems ineégime A:

Systems operating in Regime A, according to our classification, are characterized by an

increased number of large events. We pick a system with the follonodgl parameters
(r = 200,v. = 0.01265 ang’=1.2 310") as the representative candidate of this regime. In

the following subsections we will discuss the major characteristics if this system
including the spatidemporal complexity of the generated events, the tsgdeand

statistical properties of the prestremsd the main characteristics of the slip distributions.

2.6.1 Event moment distribution and its spati@mporal characterization

The spatietemporal distribution of the events generated for the paramehees/under
consideration is shown in Fi¢2.14). It is clear that most of the events extend for more
than 1000 blockswith some even being systamde events. Occasionallymall and

intermediate sizeevents are generated. However, an interesting cdisenvis that the
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small events are not confined only to the locations of arrest of large events bt are

some extensparsely distrib@d Also small events seem to pest for some time and
thendisappear giving way to the propagation of larger rupturbs kind of behavior is

consistent with earthquake observations on mature faults.

Spatial Extent

L

065 47 475 48
Event Index

Fig(2.14 Spatiemporal distribution of events generated by a system with200@gdet parameters
0.01265 gmdl.2 3107). The horizontal axis represerntgiéixeneninthe vertical axis represents the
event spatial extent. Each event is represented by a vertical line with the lower end represen

locati@nd the upper end repiieseviamy arrest location. Most eventsl€jihbioales thansmaller
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events are also generated. This is an example of a system dominated by large events and is

behavior of mature faults rupturing.

The event size distribution for this case is depicted in (®id5) The increass number

of large events observed in F{@.14)is reflected in the event moment statistics through

the existence of a pronounced peak near event moments around M~1000. It can also be
inferred from the figure that the small events have a power law distrbwith a b

value close to 1.
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Fig(2.15Fvemoment distribution for a system dominated by large events. A ptbabunced peak
observed for characteristic earthquakeanddes)@Xisthe small event distributidvarmmh the othe

shows a power law behavabuevitiobe to 1.
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Concludingthis subsectionwe would like to discuss the statistics of event distion

in the time domain. Fig2.16)shows the distribution of the interwent timedor events

spanning 1000lbcks or more.
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Fig(2.16ptatistics of thevster time shavpegkt dt =10>°

The interevents time distribution shows a pronounced pealdtat10®® showing a
relatively characteristic long recurrence time. Howevbe peak is not very sharp
allowing for some variability in the recurrence period; the standard deviation is of the
orderof dt =10*. The shallow tail of the distribution towards the shorter recurrence times
reflects the increasingly smaller probability of having two large events separated by a
very slort period of time. This is analogous to the relatively long quiet times, where
vigorous earthquake activity is missirigatwe usually observe for mature faults such as

San Andreas fault. Nonetheless we stress here that the large events we are gmriting in
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simulation, while showing some characteristic time behavior, are still seatjporally

variable.

2.6.2- Statistical andspectralproperties of theprestress:

In our simulations we usually start with an ordered state: homogeneous material and
frictional properties and a prestress distributhatis uniform everywhere except for the
intermediate ten blocks where it is increased to just above the static friction threshold in
order to initiate the first rupture. Under the influence of the large nuwibepeated
fracturesthatare in general of different sizes, as was discussed in the previous section,
andof differentslip distributions, the prestress distribution evolves inte@rogeneous

one. The prestress distribution along the chain aft@0B0events is shown below in Fig.
(2.17) We note that the overall value of the average prestress jsofothie order of

0.2 K¢ ,and it is characterized by essentially a long wavelength variation due to the
dominance of large sized events (evetiteingth 1000 blocks or more). Nonetheless, the
prestress distribution is still quite rough, with srsadble fluctuations, and spiky,

possibly due to the influence of small and moderate sized events.
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Fig.(2.17)Prestress distribution existingtém thvdtls parameter200, i1 = 0.01265 and

g=1.2 310" after 5000(h&sveNote that the prestresis pasitive and negatyevithla doite

correlation letiggtttfoss points with the zero axis are sfarsely distributed

To assess the prestsedistribution from a statistical point of view, we binned the stress
values into a number of equally sized bins and aalifte number of points occupying
each bin. The result is shown in F{@.18) The actual data set represented by the blue
dots is best fitted with a Gaussian distribution. This is a consequence of the dominance of
the large sized eventahich tend to 1) smoothen the stress over long wavelengths, 2) let
the system settle in a state with almdsharacteristio events and 3) render the
fluctuations by small and intermediate sized events of secondary significance. We think
that this case might match the state of stress on mature majothattiave experieced

kilometers of slip througbut their history and are hence expected to helsitively






