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Abstract

The nuclear potential, the transfer-induced energy dissipation, and the mass
diffusion coefficient in heavy-ion collisions are investigated in a proximity formu-
lation. An energy-dependent nuclear potential is calculated in the frozen wave
function approximation using two slabs of symmetric nuclear matter, each
described by Hartree-Fock single-particle wave functions. Corrections to the
inertia parameter are also evaluated from this potential. The flux entering the
window formula for the friction between two heavy ions is calculated in a simple
barrier penetration model. The classically forbidden flux is found to make a
significant contribution. The transfer flux arising from both the relative motion
and finite temperature of the nuclei is calculated and the latter is used to esti-
mate the mass diffusion coefficient. Using the mean trajectories from time-
dependent Hartree-Fock calculations the charge variance is calculated for the

reaction #Kr (712 MeV) + ?%9Bj and is found to be in agreement with experiment.
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1 Imtroduction

1.1 Heavy-lon Collisions

The outcome of the collision of two heavy ions depends on the incident
energy, the impact parameter and the size of the nuclei involved. The motion of
the ions can be described classically to a very good approximation, since the
deBroglie wavelength is typically an order of magnitude smaller than the
nuclear surface thickness and the Sommerfeld parameter is large. In Fig (1.1.1)
the broad classes of interaction are summarized. For very large impact param-
eters only Coulomb repulsion is important and one deals with Rutherford
scattering and Coulomb excitation. For sméller impact parameters, character-
ized by the grazing value, by, the short range nuclear interaction becomes
important and leads to a modification of the elastic Rutherford scattering. In
addition, there are inelastic excitations to low-lying states in the target and pro-
jectile. As the impact parameter decreases further the interpenetration of the
ions increases, the contact time becomes longer, and sizable fractions of the
kinetic energy and angular momentum of relative motion are transferred into
intrinsic excitations of the two nuclei. For sufficiently small impact parameters
the two ions become a deformed lump of hot nuclear matter which rotates for
some fraction of a complete rotation before fusing or being broken apart by the
centrifugal and Coulomb forces. The prabability that the composite system will
fuse depends strongly on the relative angular momentum and the charges on

the ions.

It is the goal in this thesis to gain a better understanding of, and estimate,
some of the important ingredients which must be incorporated in a model to
describe such collisions. In particular, attention is given to the nuclear poten-
tial, the energy dissipation arising from nucleon transfer and the rate of mass

transport between the ions.
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These guantities are calculated in the context of the proximity formulation
(Blocki et al 1977), whereby a physical quantity of interest, for example, the
nuclear potential between two ions, can be written as the product of a simple
geometrical factor and a universal function of separation. The universal func-
tion is found by evaluating the quantity of interest for a system consisting of two
parallel surfaces of nuclear matter separated by a small distance. This is often
an easier calculation to perform than in the more complex geometry of two
spherical (or deformed) nuclei. The motivation for adopting this approach is
that all of the essential physics is contained in the universal function, which
need be calculated only once. It is then a simple matter to apply the result to a
particular pair of nuclei. The proximity formulation can also be used in the
reverse direction to remove the inessential geometry from the experimental
data. Thus, information from a wide range of systems on a certain physical
quantity, for example, the nuclear potential, can be displayed in one place and

easily compared with theoretical predictions.



1.2 The Nucleus-Nucleus Potential

The nuclear potential, which plays an important role in all classes of heavy-
ion collisions for which b = bg,., is considered in Chapter 2. Experimental infor-
mation on the nuclear potential is obtained from both elastic scattering data
and fusion excitation measurements.

Experimental cross sections for elastic nucleus-nucleus scattering are gen-
erally analysed in the framework of the optical model, which assumes that the
wave function describing the relative motion of the two nuclei satisfies a

Schrédinger equation (Hodgson 1963);
ha
[- 'ép'—'-va+(v+‘lW)]’¢ = Evy, (1.2.1)

where u is the reduced mass of the two ions and (V+iW) is a phenomenologi-
cally parameterized complex nucleus-nucleus potential. The parameters of this
potential are fitted by requiring that the solution of the Schridinger equation
reproduce as closely as possible the measured scattering cross section. The
cross section is only sensitive to the real potential near the strong absorption
radius, Fg,, the separation at which half the flux from the elastic channel is
removed; more distant collisions are insensitive to the nueclear potential, while
closer collisions are dominated by the imaginary potential. Elastic scattering
data typically give information on the potential in the range s =2.5—-5.0 fm,

where s is the distance between the facing surfaces of the two nuclei.

Fusion cross sections are principally determined by the height and position
of the potential barrier (see Sect 2.3) and analyses of fusion excitation functions
yield values of the potential in the neighborhood of the barrier. This gives infor-

mation on the nuclear potential in the range s =0—3 fm.

A reduction of the elastic scattering and fusion data to the universal prox-

imity form is presented in Sect 2.3 (see Figs 2.3.1 and 2.3.2). The data are seen
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to show a systematic behaviour, but there is a sizable scatter in the points.

A commonly used approach to calculate the potential is to determine the
difference between the potential energy of the system at separation R and its
value at infinite separation. For example, the system might be described by the
antisymmetrized product, ®(R), of the ground state wave functions of the
separated nuclei (frozen wave function approximation), in which case the energy

of the system would be given by
U(R) = <B(R)|H|B(R)>/ <B(R)|B(R)>. (1.2.2)

and the potential would be identified with the interaction energy, E(R), defined
by

E(R) = U(R) — U(). (1.2.3)
Alternatively, the combined system can be formed by the superposition of the
densities of the isolafed slabs (frozen density approximation) and the energy of
this configuration found from a density-dependent energy functional. The
interaction energy calculated in this way by Blocki et al (1977) is also shown in
Figs (2.3.1) and (2.3.2).

The scatter in the points in Figs (2.3.1) and (2.3.2) might be due to an
energy dependence of the nuclear potential. To test this possibility the interac-
tion energy was calculated as a function of relative velocity in the frozen wave
function approximation. The results are presented in Sect 2.6. In this approxi-
mation, at low relative velocities there is a substantial contribution to the
energy of the composite system from the Pauli principle, which requires that
the wave function of the entire system be antisymmetric. At higher relative
velocities the single-particle states of the target and projectile become partially
separated in momentum space and the effect of the Pauli principle is dimin-

]

ished. On this basis one would expect a strong energy dependence in the
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nucleus-nucleus potential; The scatter in the experimental points is, however,
larger than can be attributed to an energy dependence of the petential, at least
within the approximations made in this model. An energy dependence also

arises if the basic nucleon-nucleon force is velocity dependent (see Sect 2.6).

Although the identification of the potential with the interaction energy is
legitimate in atomic physics, it is not obvious that this is true in heavy-icn colli-
sions. In atom-atom collisions the potential energy essentially comes from the
light orbital electrons and the internuclear Coulomb repulsion, while the‘collec—
tive kinetic energy is associated with the heavy atomic nuclei. In nucleus-
nucleus collisions, on the other hand, this clear distinction is absent and the
interaction energy could also contain a contribution from the relative motion of
the two ions. Thus, to interpret the interaction energy as the nucleus-nucleus
potential, it is also necessary to define an F-dependent mass whose motion is
governed by this potential. In this spirit, the velocity;dependent potential calcu-
lated in Sect 2.6 can be used to calculate a mass increment in the proximity pic-
ture (see Sect 2.7). However, the percentage change from the reduced mass for

specific systems turns out to be quite small.

A complete microscopic theory will not assume Eq (1.2.1), but will provide
an equation of moticn and a prescription for calculating the potential in that
model. Attempts to derive a Schrédinger-type equation using the Generator
Coordinate Method (GCM) have recently been reviewed by Friedrich (1981). To
date, the study has been confined to light systems. For ©0+ %0 it was found
that the effective potential closely follows the interaction energy at separations
larger than 6 fm (s>1 fm). However, at smaller separations the effective poten-
tial is considerably deeper (Friedrich 1981). It has been conjectured that the
difference between the effective potential and the energy surface decreases with

heavier systems (Reinhard 1978), but this is not substantiated from the stand-



point of the GCM analysis.

Phenomencological interaction energies have been constructed in many
different ways using a variety of forces. A survey of the various approaches can
be found in the review by Schréder and Huizenga (1977). The frozen wave func-
tion and frozen density approximations mentioned already fall into the general
class of calculations performed in the sudden approximation. Alternatively, the
wave function (or density) could be allowed to adjust to the lowest energy at
each internucleus separation so that an adiabatic interaction energy is
obtained. Using this approach, Flocard (1974) and Zint and Mosel (1976) have
used the constrained Hartree-Fock method to calculate the interaction energy.
In Sect 2.8 it is shown that the adiabatic potential is not amenable to the prox-
imity treatment. However, it is generally believed that deformation is negligible
during the early Stages of the collision, although some rearrangement of the
nuclei almost certainly occurs by the time the overlap density reaches a sizable

fraction of the bulk density.
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1.3 Energy Dissipation in Heavy-Jon Collisions

Heavy ion reactions at several MeV/amu above the Coulomb barrier are
characterized by a large loss of kinetic energy of relative motion. An under-
standing of this energy dissipation is of vital importance in explaining Deep Ine-
lastic Collisions (DIC), which are considered in more detail in the next Section.
In a classical analysis (Weidenmiiller 1979) the equation of motion of the separa-

tion coordinate, K, is

W (L) + zﬁ:'yaﬁ(ﬁ)i:ﬁ(t) + a:a:_a V(R) = 0, (1.3.1)

where R ={z,], a=1,2,3. In this equation V(R) is the conservative potential, u is
the mass and 7,g is the friction tensor. Usually, 7,s is taken to be diagonal in
polar coordinates so that radial and tangential friction can occur independently
and ¥ is written as the product of a friction constant (or a friction tensor) and
an K-dependent form factor. Because of the difficulty in deriving ¥ theoreti-
cally, a form factor is often chosen arbitrarily and the scaling constant is found

by fitting to the fusion and DIC experirmnental data.

The principal methed available to check the predictions of various friction
models is to compare the experimental cross sections do/dTKEL or
dao/ dTKEL, where TKEL is the relative total kinetic energy loss, with the cross
section obtained from a semi-classical calculation incorporating the friction
model. The fusion cross section also depends on the friction force, but less sen-

gitively than does the energy loss distribution in DIC.

The use of different form factors by different authors makes a direct com-
parison of the various friction strengths impossible. A survey of the many
approaches employed can be found in the reviews by Schréoder and Huizenga
(1977) and Weidenmiiller (1978). Following Tsang (1974), several authors have

used the density overlap of the two nuclei as form factor so that the friction



force is given by
F =k [dp,pa R, (1.3.2)

where p, and pp are the density distributions of the two nuclei and k& is the fric-
tion constant. This formula assumes a delta function type of friction, that is, the

volume element due to one nucleus rubs that due to the other only when they
are at the samme location. Perhaps the simplest possibility for including frie-
tional effects in heavy ion reactions is the assumption of the onset of infinite
radial or tangential friction at a critical separation in the entrance channel.
Based on the microscopic model of Beck and Gross (1973), Gross and Kalinowski
(1974) used the square of the gradient of the nucleus-nucleus potential as the
form factor. Another choice has been the fourth power of the gradient of the

nucleus-nucleus potential (De 1977; De and Sperber 1978; De et al 197Ba).

There are two important mechanisms eontribu_ting to the energy dissipa-
tion. First, there is the energy loss associated with excitations within a given
nucleus and, second, there is the loss associated with nucleon transfers betﬁveen
the target and projectile. Denoting the friction coefficient due to processes
such as particle-hole excitation without nucleon transfer by 7n: and the

coefficient due to transfers by 7., the total friction force can be written as
F = ~(Ynr +70r) |R] (1.3.3)

In Chapter 3 the contribution from the second process, the energy loss
associated with nucleon transfers, is investigated in the context of the window
formula (Blocki et al 1978). In this model, to first order in the relative velocity,
the friction tensor ¥ is simply proportional to the flux of nucleons from one
nucleus to the other. Randrup (1978) has identified this flux with the exchange
Aux, that is, the passage of nucleons from one nucleus to the other, where the

probability of a transfer is independent of whether or not the final state in the
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second nucleus is already occupied. This result, in conjunction with the window
formula, has been widely used to describe the friction in classical dynamical cal-
culations (Beck et al 1978; Broglia et al 1980). In this treatment, however, cnly
the classical flux of particles through the window is calculated. In Sect 3.3 a
model is presented in which the exchange flux is calculated using the quantum
mechanical penetration probability for nucleons to pass through the single-
particle potential barrier between the nuclei. The classically forbidden flux is

found to make a significant contribution, especially at large separations.

However, it is not legitimate to neglect the Pauli blocking to already occu-
pied states and the flux appearing in the window formula should be identified
with the fransfer flux, that is, the passage of nucleons to unoccupied states in
the second nucleus. The calculation of the transfer flux in the barrier penetra-
tion model is presented in Sect 3.4. It should be kept in mind that the window
formula describes only one contribution to the eneréy dissipation and classical
dynamical calculations which rely solely on the window formula to describe the

friction must necessarily underestimate the energy loss.
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1.4 Deep Inelastic Collisions

Deep inelastic collisions were discovered in the early 1970's during efforts
to produce superheavy elements through heavy ion collisions. For light projec-
tiles such as %0, where a pocket forms in V(R) even for relatively large values of
the angular momenturn, the projectile and target fuse with high probability.
However, for heavier systems such as Kr + Bi, the strongly repulsive Coulomb
potential prevents a pocket from forming for any I and deep inelastic scattering

dominates over fusion in the reaction cross section.

Deep inelastic (or dissipative) heavy-ion collisions have a number of charac-
teristic features. Projectile and target are both heavy ions with mass numbers
usually greater than 40. The incident kinetic energy at the Coulomb barrier (or
when the spheres are touching) is typically 1-3 MeV per nucleon. Several hun-
dred MeV of relative kinetic energy and up to 50 units of angular momentum can
be transferred into intrinsic excitation. The net transfer of up to 20 nucleons is
observed. From the angular distribution, the interaction time, Ty, is known to
be relatively short (1072% — 10?0 sec) and at the point of closest approach the
separation is approximately equal to the sum of the central radii of the two
nuclei. In the latter stages of the collision there is considerable shape deforma-

tion, but the identities of the projectile and target are essentially preserved.

The range of interaction times (107%? — 1072% sec) is an important reason
why deep inelastic collisions (DIC) have received so much attention. A number of
macroscopic quantities have relaxation times between these limits and so it is
possible to study their time evolution towards equilibrium. Thus the dynamics
leading up to the formation of the composite system and its subsequent frag-
mentation are very important. This is to be contrasted with compound nucleus
formation, for which the entrance channel dynamics after the Coulomb barrier

has been penetrated cannot be probed.
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It is the slow, macroséopic degrees of freedom which are measured by
experiment. The fast, intrinsic degrees of freedom play the role of a heat bath
for the collective modes. Only one intrinsic property is indirectly aceessible to
experiment: the temperature, which is related to the excitation energy of the
composite system. Thus, in order to gain insight into DIC it is necessary to iden-
tify the collective degrees of freedom involved and understand their time evolu-
tion. Often, however, a model is necessary to extract these relaxation times and

so, to a certain extent, the deduced values are model dependent.

The cdllective process with the shortest relaxation time is the charge equili-
bration. Gatty et al (1975 and 1975a) have measured the N/Z ratio for the light
fragments produced in a number of different systems and found that, within a
given system, the N/Z ratio of the fragment does not vary much over a wide
range of. Z. The angular distribution is peaked at forward angles, so that the
fragments are not the result of compound nucleus formation. The N/Z ratios
are the same for the entire angular distribution. It is observed that a neutron-
poor projectile becomes enriched by a neutron-rich target and a neutron rich
projectile becomes less neutron-rich when interacting with a neutron-deficient
target. Such reactions offer a method of preducing new neutron-rich and
neutron-deficient isotopes. Théir most important observation is that the most
probable N/Z ratio has a tendency to follow the N/Z ratio of the composite sys-
tem, being rather insensitive to the N/Z ratio of the target or projectile. Devia-
tions of the fragment N/Z ratio from that of the composite system are thought
to be understood by inclusion of the effects of the Coulomb potential and of
light-particle evaporation from the fragment after the collision. A comparison of
N/Z ratios of fragments with those of the target, projectile and composite sys-
tem for a wide range of reactions can be found in the review by Schroder et al

(1977). The relaxation time of the N/Z ratio is estimated to be 1 -2 x 107** sec.
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Alihough the relaxation times for collertive variables can only be estimated
in the context of a model, consistency checks can be made such as comparing
predicted y-multiplicities (a measure of the intrinsic angular momentum) and
deflection functions with the experimental data available. Large uncertainties
still exist in these estimates, however, and values quoted are only accurate at
best to within a factor of two. Smaller impact parameters (and hence smaller
angular momenta) lead to greater interpentration of target and projectile and
to longer interaction times. The interaction time can be as high as several times
107! sec. The relaxation time of the relative radial kinetic energy is short (0.3 -
0.5 x 107! sec) and so the total relative kinetic energy loss (TKEL) serves as a
clock to monitor the duration of the interaction. The relative angular momen-
tum is partially transformed into intrinsic angular momentum of the two nuclei
on a time scale of 1-2 x 107%! sec. It is only in the latter stages of the interaction

that shape deformations occur (2-4 x 107%! sec).

Nérenberg (1974) has shown that the transfer of nucleons between the pro-
Jectile and target can be described by a transport theory and that the variance
of the elemental distribution as a function of interaction time can be repro-
duced by a diffusion equation. The drift and diffusion coefficients appearing in
this equation are related, under certain assumptions, to the current of nucleons
between the two nuclei. In Sect 4.4 this current is calculated in the proximity
approximation in a simple semi-classical model similar to that used in Chapter 3
for calculating the transfer flux for nuclei in relative motion. This is a statistical
model and a basic assumption is that the mass exchange arises from the
incoherent transfer of single nucleons. The flux important in the calculation of
the diffusion coefficient, however, is principally determined by the transfers

between states whose probability of occupancy or vacancy is determined by the

lelrer. TDHF calculations indicate that deformation occurs on a time-scale of less than
1 x 107 gec. (See Sect 4.5).
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Fermi-Dirac distribution at termnperature 7T, the temperature of the composite
system. Pauli blocking, which plays a critical role in determining the magnitude
of the flux, has been neglected in many calculations. The significance of this
model is that it allows all of the essential features to be easily incorporated and

their relative importance studied.

The diffusion coefficient for a given system depends critically on the size of
the window between the fragments and a knowledge is needed of the overlap and
deformation of the ions throughout the collision. Many claé:aical dynamical cal-
culations neglect deformation or else provide a parameterization for neck for-
mation that may not accurately predict the neck evolution. Time-dependent
Hartree-Fock (TDHF) calculations, on the other hand, do not contain such res-
trictions and for this reason may be more likely to reliably reproduce the details
of the overlap region. The TDHF results of Davies and Koonin (1981) for the reac-
tion 8Kr (712 MeV) + ?®Bi were used in conjunction with the model to calculate
the variance of the elemental distribution as a function of energy loss. Agree-
ment with the experimental data was achieved. This result lends support to the
belief that the assumptions made in arriving at the theoretical prediction, in
particular, the incoherent exchange of nucleons and the Pauli blocking, are

indeed correct.
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2 The Nucleus-Nucleus Potential

2.1 Intreoduction

In this Chapter the nucleus-nucleus proximity potential is investigated in
the frozen wave function, the frozen density and the adiabatic approximations.
The proximity formulation of the potential, which permits all of the essential
physics for any system to be contained in a single universal fun.ction. is
presented in Sect 2.2. In Sect 2.3 the reduction of the experimental values of
the potential from the elastic scattering and fusion data to the universal prox-
imity form is given. To calculate the potential in the frozen wave function
approximation, two semi-infinite slabs of nuclear matter aré constructed using
the force of Brlanche. Koonin and Negele (1977) (hereafter referred to as the BKN
force). The slabs are described by the Hartree-Fock single-particle wave func-
tions. The Skyrme force, on which the BKN force is-based, is discussed in Sect
2.4. The construction of the slabs is described in Sect 2.5 and the calculation of
the velocity-dependent potential is described in Sect 2.6. From the velocity-
dependent potential a proximity inertia parameter is calculated in Sect 2.7. In
Sect 2.B the adiabatic potential is studied, while in Sect 2.9 the neutron excess
dependence of the interaction energy in the frozen density approximation is dis-

cussed.



2.2 The Proximity Potential

The proximity theorem (Blocki et al 1977) leads to a formula for the
interaction polential between leptodermous (or thin surface) systems close to
each other. The potential is expressed as a product of a simple geometrical fac-
tor and a universal function of separation. This universal function depends on
the material of which the objects are made and is intimately related to the sur-
face energy coefficient. This decomposition is legitimate provided the principal
radii of curvature of the surfaces are much larger than the thickness of the sur-

face region.

The proximity potential, Vp, associated with a curved gap of gently variable

width D can be written as (see Fig 2.2.1)

Ve = [ [ e(D)do + corrections. (2.2.1)

Here e(D) is the interaction energy per unit area of two parallel surfaces at
separation D. The integral is over the area of the gap and the correction term
becomes negligible as the curvatures of the surfaces defining the gap become

small.

Consider a mean gap surface which is sufficiently gently curved that the
cartesian coordinates x and y specify a position on the surface and z may be
taken as the normal coordinate. Further, consider a gap width D(z,y) which has
a least value J=s at z =y =0 and the width in the vicinity of this point is given

by the Taylor expansion

Dlzy) = s +1/2Dx%+1/2 Dwyz + - (.2.2)

Here D, and D, are the second derivatives of D with respect to z and y
evaluated at the point of least gap width. The directions of £ and y have been
chosen to be along the principal axes of the quadratic form of D{z,y) so that

there is no zy term in Eq (2.2.2). Writing the derivatives in terms of the
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principal radii of curvature, K, and K, one obtains
D(zy) = s +1/2(z% R.)+1/2 (yz/Ry) + .- (2.2.3)

Changing variables to ¢ =z/~/2R, and nn=y/V2FK,, D may be written as

D = s + p® where p? = £ + 1. The proximity energy becomes

Ve(s) = [ [dz dy e(D) (2.2.4)

2VEE, [ [d¢dne(D)

1

2VE R, ] 2mwpdpe(D)
(]

211'?‘;/:- dD e(D)

R R E(s), ' (2.2.5)

i

where F = VR R, is the geometric mean of the two principal radii of curvature.
Here it has been assumed that the gap width grows beyond the range of the
force such that the integral is essentially independent of the upper limit which

has been extended to infinity.

The proximity formulation reduces the problem of calculating the interac-
tion energy between two nuclei to that of finding e(s), the interaction energy
per unit area between two parallel slabs of nuclear matter at separation s. For s
greater than 2 or 3 fm, e (s) tends rapidly to zero. At s =0 the two density distri-
butions add up, approximately, to the bulk value and so the net effect of bring-
ing the slabs together is to destroy the two surfaces. In this case e(0)~—27v,
where 7 is the surface energy coefficient (y & 1 MeV/fm?). For negative values of
s the density in the overlap region is greater than the bulk value and this leads

to a substantial increase in g(s).
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It is clearly important to be precise in defining the relative positicns of the
surfaces of the two interacting leptodermous systems. It is advantageous to use
an integral quantity in defining the surface position since finding the lccaticon of
a particular value of the density, say, the half-density point, is subject to greater
uncertainty. Let f(n) be the density profile across the surface, dropping from
unity in the bulk region to zero outside the nucleus. Stissmann (1973) defines
the central radius to be located at a value of n, denoted by n;, such that the
first moment of the profile bump function (—df /dn) taken with respect to n, is

zero:
j(n —ng)(—df /dn)dn = 0. (2.2.8)

The central surface may be used to specify the location of the diffuse surface.
The effective sharp surface, ng, is the surface bounding a uniform distribution of
matter. For a surface of zero curvature the effective sharp surface and the cen-

tral surface are coincident. In general, they are related by
N, = n,—-;—fcbz+ (2.2.7)

where k is the curvature and & (b » 1.0 fm) is the root mean square width of the

profile bump function:
b = [ f{n~-n;)¥~df /dn)dn V2 (2.2.8)

For a sphere, £ = 2/ R, where R is the effective sharp radius, and the central

surface C is located at
C=R-b%R+ - (2.2.9)

It is the radius of the sharp surface, R, which scales approximately as AY3

(Myers and Swiatecki 1969). The radius of the central surface is smaller by the
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amount %/ R and it is this surface which most closely corresponds to the half-
density radius, R,z (see below). This explains the difficulties encountered by
some authors in trying to scale the half-density radius with AY? (Myers and
Swiatecki 1969). It has been found that experimental proton density surface
profiles and Hartree-Fock surface profiles can be very well approximated by a

Fermi (or Woods-Saxon) function:

1
1+ exp(ﬂ -n.)/a

fn) = (2.2.10)

With this parameterization the central surface and the half-density surface are
coincident. The distance over which f({n) falls from 0.9 to 0.1 is denoted by

t 10-po (the 10-907% distance). For the Fermi function (Eq 2.2.10),

b =an/V3 - (=10fm), (2.2.11)
tio-g0 = 2aln9 (= 2.4-fm) - (2.2.12)

and on eliminating @ between these two equations one obtains
tio—o = [RIn9V3/ 7] b . ‘(2.2.13)

The values of & = 0.99 fm and £,p-go = 2.4 fmm were obtained from the analysis of
experimental data by Myers (1973). Thus the Woods-Saxon parameter o has the

value of 0.55 fm.

Blocki et al (1977) have suggested measuring e (s) in units of twice the sur-
face energy and the separation in units of the surface width, b, to obtain the

dimensionless proximity function
9(¢) = a(¢b)/ 2y, (2.2.14)

where ¢ =s/ b. Similarly, the incomplete integral of this quantity becomes

3(¢) = ; p(O)de = E(¢b)/(27b) (2.2.15)
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and Eq (2.2.5) can be rewritten as

Vp = 4nyR b &(¢). (2.2.18)

The motivation for introducing these dimensionless functions is that the thecret-
ical predictions become insensitive to certain quantitative shortcomings of the
model of the nuclear surface used in calculating e(s) and its integral. Thus a
model may inaccurately reproduce the surface energy and surface diffuseness,
but, nevertheless, generate accurately the functions ¢ and . Blocki et al have
also suggested using the surface energy coefficient from the Lysekil mass for-

mula (Myers and Swiatecki 1987) according to which

¥ = 0,9517(1—1.78286 I?) MeV/ fm? (2.2.17)

where I = (N-Z)/A and N, Z and A refer to the combined system of the two
nuclei. In this way some allowance is made for the dependence of the proximity
potential on the neutron excess, even though ¢ and ® are calculated for a
neutron-proton symmetric system. The value of F and the separation
s =r —(C,; — C, are calculated using Stissman's central radius, C. The sharp sur-

face, R, can be calculated from

R = 1.2BAY3-076 +08A47Y3 fm. (2.2.18)

In this formula allowance is made for the squeezing of light ions by the surface

tension and the dilation of larger ions caused by the repulsive Coulomb force.

Blocki et al have tested the proximity formulation for a number of simple
forces by comparing the exact interaction energy as a function of separation for
two spheres with the prediction of the proximity potential. They found that good
agreement persists down to very small nuclei. A comparison using a more com-
plicated force was made by Ng& and Ng& (1980) and again the proximity formula-

tion was found to give good agreement.
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The proximity functions ¢ and ® were calculated by Blocki et al using the
nuclear Thomas-Fermi model with the Seyler-Blanchard phenomenological
nucleon-nucleon interaction (Randrup 1976). Their results appear in Figs (2.2.2)
and (2.2.3). To calculate e(s), the frozen densities of two semi-infinite slabs of
nuclear matter were placed so that their surfaces were at a separation s. The
energy of this configuration was determined and the interaction energy per unit

area was calculated according to
e(s) = Uls.,pi1tpa) — U(=.p,) — U(=.p2). (2.2.19)

where U is the total energy per unit area of the configuration. This calculation

corresponds to the frozen density approximation.
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2.3 Summary of the Experimental Data

Both elastic heavy-ion scattering cross sections and fusion excitation funec-
tions are sensitive to the real part of the nuclear potential and can be used to

test the prediction of & in Sect 2.2. The separation, or range of separations,

important for elastic scattering is characterized by the strong absorplion
radius, Rs, (or interaction radius, Ry,;). In the Fresnel diffraction model of elas-
tic heavy ion scattering, Ry, is related to the angle, 4,,4 (the quarter point
angle), at which the elastic-to-Rutherford cross section assumes the value 1/4

(Schréder and Huizenga 1977):

Tgl

4 1
P | 174 : s
Ry = = 7 (1 +c:osec———-)2 with oz o, i

(2.3.1)

Here n=Z,Zze%/hw is the Sommerfeld parameter and k& is the wave vector of
the system of the two interacting heavy ions. In the optical model, the strong

ebsorption radius is defined by (Schréder and Huizenga 1977)

Fsa = ,lc—ﬂ * ;l,,—{ﬂz"'L(L HIFE, (2.3.2)

where I is chosen such that T; =1-|5;]?=0.5. These two particular
definitions lead to very similar results. Trajectories with a closer approach than
Rg, will probably be absorbed while more distant trajectories are insensitive to
the nuclear potential. It is only in a small region around Kg,. where phenomeno-
logical potentials capable of reproducing the cross section are observed to
cross, or come very close, that the potential can be unambiguously determined

(Lozano and Madurga 1980).

Christensen and Winther (1976) adopted a slightly different approach. They
concluded that the elastic scattering data principally determine the real part of
the optical potential at a point slightly inside the distance of closest approach

for a trajectory leading to the rainbow angle. On this basis they have analysed
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the data for a number of systems to find the potential at this distance. Their
results appear in Table (2.3.1). For the system #Kr (712 MeV) + ?®Bi their
method predicts that the potential is best determined at a separation of 13.421
fm. However, the strong absorption radius is 14.25 fm (Schroder and Huizenga
1977) and it is a rather surprising result that the elastic scattering data are
most sensitive to the nuclear potential at a separation where the classical tra-
jectory is very strongly absorbed. Clearly, the radial sensitivity of the elastic
scattering cross section to the real potential is an important problem. It has
recently been examined by Cramer and DeVries (1980) for the system %0 + *8Si
using perturbation theory and it will be interesting to see what results they

obtain for heavier systems.

The nuclear potentials obtained by Christensen and Winther were converted
to the dimensionless form ®(¢) using Eq (2.2.16). lele location of the sharp sur-
faces were calculated from Eq (2.2.18) and the value of ¥ = 1.0 MeV/fm? was
used throughout instead of the prescription Eq (2.2.17) favoured by Blocki et al
(1977). In Sect 2.9 it is shown that Eq (2.2.17) is inadequate to describe a sys-
tem of two nuclei with different neutron-proton asymmetries and that the
correction to 7y is less than 4% for a wide range of systems. The values of $(¢)
obtained are given in Table (2.3.1) and are displayed in Fig (2.3.1). The experi-
mental points are seen to follow the same trend as Randrup's curve, but lie
slightly below it. It is not clear to what extent the scatter of the points is
significant. The systematic deviation, however, could be removed by a small
(approximately 2%) increase in the radii of the ions given by Eq (2.2.18). But this

is not necessarily the cause of the deviation.

The fusion cross section can be written as

Opus = (1/K%) Z‘;(zz +1) /™ (2.3.3)
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and meodels for fusion must predict the quantity T{m. the probability that a
given partial wave will fuse. In a classical approximation, T{ ¥ is either unity or
zero depending on whether Egy is less than or greater than V = Vp{R3) +

#P1%/ 2, where Vg is the height of the barrier and Rjp its position. In this case,
Trus = ‘ﬂ'R_g (l— VB/ Em) (23‘5:)

In the derivation of this formula, as is often done, the change in the location of
the barrier with [ has been neglected. As an example of the magnitude of this
shift, for 3Cl + ®Ni, the barrier radius Rj (1) decreases 0.6 {m going from I = 16
to I = 45 (Scobel et al 1978). This introduces some uncertainty into the
analysis. The sharp cut-off approximation used to derive Eq (2.3.4) can easily be
relaxed and the probability of fusion Tf " can be specified as the probability for
the ions to penetrate the barrier (for example, see Wong 1973 and Stokstad
1980). However, Eq {2.3.4) still emerges as a good approximation for a certain
range of Egy.

Eq (2.3.4) allows one to extract Bz and Vp from the experimental data from
a plot of sy vs 1/ Fgy. Birkelund and Huizenga (197B) have collected the
results of 26 such analyses and inverted Eq (2.2.16) to obtain ¢ using the values
of R, b and 7 suggested by Blocki et al. However, a constant value of ¥ = 1.0
MeV/fm? is favored here (see Sect 2.9) and the modified values are given in Table
(2.3.2) eand Fig (2.3.2). These points agree reasonably well with the theoretical
curve of Blocki et al (1977). Error bars on a few selected points indicate the typi-

cal uncertainty in the extracted values.

The effect of frictional forces was ignored in the derivation of Eq (2.3.4). If

radial friction is included, then Eq (2.3.4) is modified to

Vg + Ep

7 % (2.3.5)

Oprus = ﬂ'Rg (1 =



P -

where Er is the dissipated energy on that part of the trajectory leading up to
the barrier. In general, Er will be a function of the projectile energy. However,
the effect of radial friction on the derived nuclear potential may be seen qualita-
tively by assuming £r to be independent of the bombarding energy. In this
case, plotting 0., vs 1/ Egy for Eq (2.3.5) yields an intercept of V3 + Ep and a
slope of -—n'RBg (Vg + Er). Thus, the effect of neglecting radial friction in the
analysis of the fusion cross section data is to overestimate the barrier height
and hence, to underestimate the magnitude of the nuclear potential. The effects
of tangential friction on the measured fusion barriers is more difficult to esti-
mate since tangential friction reduces not only the kinetic energy, but also the
relative orbital angular momentum. An error in the position of the barrier is also
reflected as an error in the nuclear potential since Kp is used in evaluating the
strongly radially-dependent Coulomb potential. The barrier radius Rp is
extracted from the slope of 0y, vs 1/ Egy which is not measurable to the same
accuracy as the intercept. Thus, serious limitations exist in the analysis of the
fusion data, both in the neglect of the frictional effects and from the difficulty in

extracting #p and Vp with sufficient accuracy.
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2.4 The Skyrme Force

In order to calculate the nucleus-nucleus potential in a microscopic basis, a
model of the nucleon-nucleon interaction is required. In the frozen wave func-
tion approximation, the slabs are described by the Hartree-Fock single-particle
wave functions, which are calculated using the BKN force (see Sect 2.5), a
modified Skyrme interaction. The Skyrme force is used in Sect 2.9 and in
Chapters 3 and 4 to describe the interacting nuclei in the frozen density approx-

imation.

The phenomenclogical Skyrme interaction (Skyrme 1956 and 1959; Vauthe-
rin and Brink 1972), which is essentially just an expansion to second order in the
transferred momentum of the effective two-body interaction, reproduces very
well the binding energies, radii and single-particle energy levels of nuclei.
Negele and Vautherin {1972 and 1975) have established the connection between
the Skyrme force and microscopic many-body theory based on a realistic two-
body interaction. In what follows only spin-saturated systems will be considered
and the Coulomb potential will be neglected. (For semi-infinite slabs the

Coulomb potential is infinite). The two-body interaction can be expressed as

Vg = tg (1 +zpP,) 6(ry—73) + Lo k' 6(r —T3)k
+ 3£, [8(r1—T2) k? + KR 8(r ~72)] (2.4.1)

where k denotes the operator (V; —Va)/2i acting to the right and k' is the
operator —(V; —Vz)/ 2i acting to the left. P, is the spin exchange operator. For

the three-body part Skyrme assumed the zero-range force
Vigg = t3d(ry—7g)6(rz—73) (2.4.2)

which, for Hartree-Fock calculations of even-even nuclei, is equivalent to a two-

body density dependent interaction:
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T +T
Vyz = ;—t3(1+P,) 5("'1""2)1"(%- (2.4.3)

This term describes the way in which the interaction between two nucleons is
influenced by the presence of other nucleons and provides a simmple phenomeno-

logical representation of many-body effects.

The ground state wave function 9 is represented by a Slater deterrninant of

single-particle states ¢;:
1
®(z,,z2,...T4) = Wdet | pi(x5) (2.4.4)

and the Hartree-Fock equations are obtained by requiring that the total energy
F i3 stationary with respect to individual variations of the ¢; subject to the sub-

sidiary condition that the ¢; are normalized:
5(:,. (£ - e[ loi(r)|%dr) = 0. (2.4.5)
* i

Here, the e; are Lagrange multipliers. The equation each g; must obey is

[ ‘V?mr;_r)v + Wo(r) 1 o0 = &gy, (R.4.6)

where g stands for the charge of the single-particle state i. This has the form of
a Schrodinger equation with an effective mass m* which depends only on the

density:
ha ha

- 1 2lh e
-é—nT;—— = z'—"'"m— + I—-(tl'i'tz)p + 8 (tg tl}pq . (247)
The single-particle potential is
1 1 1
Wy = tol(1+ 3-zo)p — (zo+ F)pg) + 71a(0®—p§)

—g (81 —£2)V% + L-(3t, +£)V%, +

Tty +E)T + g (ta—t)7g. (2.4.8)
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The particle densities p, and kinetic energy densities 74 are given by

pe(T) = Z‘_Hm(f-q)lz (2.4.9)

and
Te(r) = ;Ivm(f.q)la- (2.4.10)

The expectation value of the energy is
E = [H(r)d, (2.4.11)
where the energy density H(r) is an algebraic function of pg and 74:

h2
H(r) = z—1(r) + 3to(1+ 3z0)p? = (zo+ 5)0F +p2)] + 1-tspnppp

1
+ - (t, +ia)pT + é—(fz—ti)(PnTu +ppTp)

+ (£ —8E)pWp + 5-(3t1+ £2)(0n Vopn +pp VPpp) (2.4.12)

For symmetric nuclear matter where p, =p,=p/2 and T, =Tp=7/2, the

expressions for H(r), ¥y and m° reduce to

h? 3
H(r) = S T ¥ E—tup2+ ']']B_tapa & ]%(Stl*'stE)PT

+ o (9, —5t2)(Vp)?, (.4.13)

W(r) = Stop+ 2-tap? + (Bt +5t)T + L (5£2—0)p  (2.4.14)

and
n? . e
2m*(r) T 2m

+ (3t +5t5)p (2.4.15)

In bulk nuclear matter Vp=0 , p= (g—*vr)kﬁ and 7= g—kﬁ so that the binding
energy per nucleon £/ A is given by

E _ H
= g—Tp + 3450+ tgp? + %(3t1+5tg)pkﬁ (2.4.18)
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and the incompressibility X is

P (E/A
K=kf J.%?Lz %Tp + g—tgp + —lé-‘s-tapz + %“—(st1 +5tp)pkf. (R.4.17)

From the above equations one observes that there is a correspondence between

the set of Skyrme parameters (£, £,, £z, £3) and the set of nuclear matter pro-

perties (%—. mm_' K, Tr). From Eq (2.4.15) it is seen that the combination of

parameters (3¢, + 5¢;) determines the effective mass and thus is important in
determining the single-particle energy levels. The combination (5f;—9¢,)
appears in the coefficient of the V?p term in Eq (2.4.15) and, thus, is important

for surface properties.

Five sets of Skyrme parameters SII-SVI (see Table 2.4.1) were introduced by
Beiner et al (1975). The nuclear matter broperties associated with each set are
listed in Table (R.4.2). The symmetry coefficients 8.1 and gz are defined as the
first two coefficients in the expansion of £/ A4 in powers of the asymmetry
coeflicient | = (N-2)/ A:

%m = %(0) 800 4 mg PV von (2.4.18)

In fitting the binding energies for the different Skyrme forces it was found that
the parameter ig effectively determines the non-locality of the Hartree-Fock
field and the non-locality provides a way of discriminating between the different
Skyrme interactions. SIII best reproduces the binding energies of magic nuclei
while SVI gives the best agreement with the experimental single-particle energy
spectra. SV most closely reproduces the electron scattering dat;a which are sen-
sitive to the surface width. It is not possible to adjust the parameters to simul-
taneously fit all the experimental data, however. For example, changing the
value of (9f; —5t;) which determines the surface width also changes the binding

energy, but it is not possible to compensate this change by adjusting the
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remaining parameters (Beiner et al 1975). The force SIII seems to provide the

best overall agreement with the experimental data.
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2.5 Construction of the Semi-Infinite Slabs

In order to calculate e(s) it is necessary to construct two parallel surfaces
of nuclear matter. This is done in the way described by Bonche, Koonin and
Negele (1978) using the modified Skyrme force introduced by these authors.
The system to be constructed is a semi-infinite slab of symmetric nuclear
matter, infinite in the £— and y — directions and of finite extent in the z— direc-
tion.

For this essentially one-dimensional system great simplification arises from

the use of an interaction which yields a-local HF potential, that is,

Wir.r) = W(r)é(r —7). (2.5.1)

The force SVI with %= 0.95 (see Table 2.4.1) is very close to being local and a

small adjustment of the parameters yields a Skyrme force with the same satura-

.
m

tion density, volume energy, surface energy and with =1.0. Bonche et al

chose to replace the surface term describing the finite range of the direct
interaction with a finite range Yukawa interaction. This procedure offers the
technical advantage that the integration of the HF equations is more stable than

with the gradient term. The Yukawa potential is

e—f/ﬂ

Um(f) = Vo r/a P. (2.5.2)

where Vy=(5t;—3t,)/64ma5 The operator P=%—+ %P,. where P, is the

space exchange operator, restricts vy, to contribute only to the direct term
and the range o =0.45979 fm is obtained by fitting to a realistic direct interac-
tion. The volume contribution of Eq (2.5.2) requires an adjustment of ¢y The

parameters for the BKN force are given in Table (2.5.1).

The slabs constructed are of sufficient thickness that the two surface
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regions are separated by at least several surface widths. Thus the density profile
p{z) contains a large central region of almost constant density pg. The thickness

of a slab is measured by the number of nucleons per unit area in the = —y plane:
a = f p(z) dz. (2.5.3)

The meodifications made to the Skyrme force to produce the BKN interac-
tion mean that Eq (2.4.14) for the single-particle potential for symmetric
nueclear matter must be changed to

g-ir-r’l/a

W("j = %‘tcp("') + %tapa("') * ngp(r'} md’r' ; {2.5.4)

The density is a function of 2 only and so the potential also depends only on =.

Integrating over the transverse coordinates one obtains
w(z) = -E—:—-top(z) + %tapz(z) + zﬂaaVofdz'p(z') g-la-2’l/e  (255)
¥ith this potential the time-independent Hartree-Fock equation (see Eq 2.4.8),
hE
[= 2V 4 W(2) 1ulr) = & tlr). (2.5.6)

is separable. Each spatial wave function 9; is a product of a plane wave in the

transverse coordinates, 7,, and a wave function in the z coordinate:
Yi(r) = Yo (1) = =™ Py HH(z) (2.5.7)
i nk,, = 7 Yn . He B

The subscript i labels both the quantum number n for the z —component and

the transverse wave vector k. The ¢;'s are normalized to
S ofz)|? = 1. (2.5.8)

From Eq (2.5.6) the single-particle energies are given by
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K2 =
Ey = Enkp = e, + Bq'kpa. (209)

where the e, are determined by the eigenvalue equation

» 4°

2m dz? T =) = en pi(2). (2.5.10)

The ground state corresponds to the occupation of all states Prky below the

Fermi energy £p:

sﬂp = e, + zﬁﬂ'b_kpz = &p
or
[ 2 (er—£n) Y2 = kpa(n) (2.5.11)

Therefore, each qa,{”’ is associated with plane waves of transverse momentum
within a circle in the k, plane of radius kmex(n). The Fermi energy is determined

implicitly by @, the size of the slab to be constructed, The density is

p(z) = 4 E | Y, |2
k. .(n)
max'™ g%
= HF, e N
) 4:.%:: o '{ (’m)?
P> pire) 2 Khex)
= Ea,. lo |2, (2.5.12)
UGC
where
_ kEx(n) _ 2m Er—e,
B = - = oy = . (2.5.13)

Thus each orbital carries an eflective normalization @, proportional to the

difference between its eigenvalue, e,, and the Fermi energy, £z. If a non-local
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HF potential were used (m # 1) the transverse plane waves would be coupled

to the longitudinal wave functions and one would have to solve for ¢,(k,,z).
Therefore, a substantial simplification is achieved by employing a local HF
potential where the transverse plane waves enter the problem only through the

weighting factors. The slab thickness is given by

i =

HMZ

a.n E (sp e,) . (2.5.14)

where N is the number of occupied bound orbitals. For a given @ and spectrum
of eigenvalues e,, Eq (2.5.14) determines the Fermi energy ¢r. The solution for
a given @ is found by solving self-consistently the set of equations Egs (2.5.5),
(2.6.10), (2.5.12), (2.5.13) and (2.5.14). The details of the iterative numerical
solution are described in Appendix 1L bnce a solution has been obtained the

energy per unit area is caleulated from

N
= = Eanfl-———l‘“’“ )2d+2 a’

n=1
b2 to [P e+ B to JA%e) de

+ ma?Vy fdz [dz'p(z) p(z)e 11/ (2.5.15)

The description of a slab of substantial thickness requires a surprisingly
small number of wave functions. For example, for a slab of mass @@ =1.4 fm%,

corresponding to a thickness of 10 fm, N =4 and for a slab of mass @ =3.0 fm—=

corresponding to a thickness of 20 fm, 9 wave functions are required.

The density profile for a slab of @ =2.2 fm™® is shown in Fig (2.5.1). The
density oscillations in the interior region are very small and the density is

essentially constant at the nuclear matter value of pg=0.145 fm™3. Also shown in
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Fig (2.5.1) are the location of the half-density and and central surfaces. Typically
they are found to be the same to within an accuracy of 0.01 fm. The 10-90% dis-
tance and the surface width, b, are consistent with a Fermi distribution with a
Woods-Saxon parameter of a =0.49 fm. For very large slabs, the energy per unit

area, £/ (), is given by

::>|l:a

- % a + 2y, (2.5.18)

where E/ A is the binding energy per nucleon in bulk nuclear matter and 7 is
the surface energy per unit area. A plot of £/ vs @@ produces a straight line
with an intercept of 2y=2.18 MeV/fm®. The surface characteristics of a number

of different mass slabs are given in Table (2.5.2).



-35 -

2.6 The Velocity-Dependent Proximity Potential

In analysing the elastic scattering data for a given pair of ions at different
energies some authors have been led to the conclusion that the depth of the
real potential increases with energy (for example, see Huffman et al 1980 and
Siemssen et al 1970), some observe a decrease in the depth with energy (Cramer
et al 1976), while others have been able to find a potential which fits the data
over a wide range of energies. For example, for the reaction %0 on ?®Si, Cramer
et al (1978) were able to fit the data with the same Woods-Saxon potential for
bombarding energies in the range 33-215 MeV. However, a given pair of ions may
not be capable of probing the energy dependence of the potential. In Sect 2.3 it
was pointed out that the potential is only well determined in a small region near
the strong absorption radius, Fg;, but Ks4 itself is energy dependent. For
example, for the system '°0 on **®Pb, Rs, decreases from 12.75 fm to 12.43 fm
as the energy increases from 130 Me\f to 192 MeV (Lozano and Madurga 1980).
Therefore, at each energy, the potential is probed at a different distance and it
may be possible to fit the data at a number of different energies with a single

potential even if the potential is genuinely energy-dependent.

The dimensionless proximity potential ®(¢) (see Fig 2.3.1) provides a con-
venient way of comparing the results of a wide variety of systems and may possi-
bly reveal any velocity-dependence of the potential. Theoretical curves of $(¢)
as a function of relative velocity (or relative nucleon momentum) are con-

structed in order to gauge the magnitude of these effects.

The two nuclei are represented in the proximity formulation by semi-
infinite slabs of nucle;r matter. In the CM system the motion of the two slabs
toward each other is approximated by plane waves and, at each separation, the
wave function is given by a Slater determinant of the single-particle states. The

proximity potential calculated in this way corresponds to the frozen wave func-
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tion approximation, rather than the frozen density approximation employed by

Blocki et al (1977).

The two slabs are placed such that their facing surfaces are located at

* -;~Z along the z-axis. In the CM system the slabs approach each other with

momenta per unit area of +K. The wave function is constructed from the

single-particle states of both the left and right slabs:

6, = iqpn(z +;—Z)e""“; and &p = 2:;:,,(2—«—;:—2)3"”" ; (2.6.1)

where k = K/@. For finite Z this basis is non-orthogonal. In order to calculate
the interaction energy from the Skyrme energy functional both the nucleon den-
sity and the kinetic energy density are needed. These are calculated using the
prescription given by Lowdin (1955 and 1955a) (see also the appendix of Brink
1885), whereby the expectation value of the one-body operator {2 in the many-

body wave function is given by

<> =Y (k|01) d7Y(), (2.6.2)
kl
where
(k1211) = fulz) Qu(z) dz (2.6.3)
and
d(e) = fuf(z) w(z) dz. (2.6.4)

The calculational details are given in Appendix II. Only identical slabs were con-
sidered, but the computer program was written to accommodate an arbitrary

number of wave functions.

The density profile of two overlapping slabs each of mass @ =1.4 fm™ at
separation ¢ =0.77 and with k =0.0 is compared in Fig (2.6.1) with the density
profile of two superposed slabs of the same mass and at the same separation.
The expulsion of matter from the overlap region is a general feature of these

calculations. The excluded matter reappears as a small increment to the density
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of the bulk region. From the standpoint of the proximity formulation it is some-
what disturbing that the rearrangement of the density is not confined to the sur-
face region, but curves of ¢ for a given k calculated using slabs of different mass
were found to be very similar even for {~0 and were indistinguishable in the tail.
For the situation shown in Fig (2.6.1) the increase in the kinetic energy over the
superposed case (k ==) is some 10 times the change in the potential energy.

This is a typical result for positive separations.

Curves of ¢(¢) for a number of different k& are shown in Fig (2.6.2). The
curve for & =« is the potential of two superposed slabs. The potential is
observed to get deeper with increasing k. For k>kr=1.3 fm™! the states of
each slab become distinct in momentum space and the curves g(k >kp) are
identical with ¢(k =«=). Fig (2.6.3) shows in more detail the behaviour of ¢ in the
region 2.5=< ¢ =4.5 and in Fig (2.6.4) &, ﬁhe incomplete integral of ¢, is plotted.
.These curves are to be compared with the experime-ntal data in Fig (2.3.1). For
reference, the potential of Blocki et al follows closely the cﬁrve for k =0.5fm 7%

The last column of Table (2.3.1) gives the value of k for each reaction calculated

according to the formula

ko= [(Bou —Wl0) - Vo)) S5-12. (2.6.5)

where u is the reduced mass number of the ion pair. For practically all of the
points shown in Fig (2.3.1), 0.05<k <0.15 fm™!, and the large scatter cannot pos-
sibly be explained by an energy-dependent potential, at least, not on the basis of

the results shown in Fig (2.8.4).

It is interesting to see where the points lie for a given pair of ions at
different bombarding energies. From Table (2.3.1), for ®0 on ?%€Pb at Ej,, = 129.5
and 192 MeV, the values of k are 0.19 and 0.29 fm™, respectively. The values of

¢ for these two reactions are virtually the same, but the potential is some 15%
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deeper at the lower energy. This direction of change in the potential is opposite
to that predicted in Fig (2.6.4). If, instead, the potentials are calculated at the

strong absorption radii of 12.75 fm and 12.43 fm (Lozano and Madurga 1980), cne
obtains (¢, )=(3.51, —0.0483) and (3.19, -0.0649) for the 129.5 and 192 MeV
reactions, respectively. The values of &k are unchanged at 0.19 and 0.29 fm™.
These points are represented by the open circles in Fig (2.3.1). Plotted in this
way they do not so obviously viclate the direction of the energy dependence

found in Fig (2.8.4).

Similar calculations have been performed by Brink and Stancu (1975) for
180+ 180 and by Goritz and Mosel (1978) for 80+ !0 and *°Ca+“°Ca. In each
case the Skyrme energy functional Eq (2.4.13) was used. When the nuclei are in

relative motion the term p7 in Eq (2.4.13) must be modified to p7 —j%, where

= Dl Vo= Ve ). (2.6.6)

This term is absent in the BKN force since there the coefficient 3¢, +5¢, is set to
zero and this has important consequences in high energy collisions. At k =0.65
fm™! this extra term begins to dominate and it introduces a repulsion propor-
tional to the relative kinetic energy. The potential becomes entirely repulsive
beyond k ~1.74 fm™! (Brink and Stancu 1975). These authors did not, however,
compare their energy-dependent potentials with the phenomenological poten-

tials.

In interpreting these results it is important to remember that the frozen
wave function approximation should only be applied in the elastic scattering
region. It is almost certain to be inadequate at smaller separations where the
wavefunction would be expected to adjust in such a way as to lower the large
antisymmetrization energy. At these smaller separations, important in deter-

mining the fusion barrier, the frozen density approximation may be more reli-
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able, provided that the time scale for the polarization of the nuclei is sufficiently

long.
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2.7 The Proximity Inertia Parameter

The results of the preceeding Section can be used to calculate the inertia
parameter of two colliding slabs in the frozen wave function approximation.
Although the mass of the colliding ions is infinite, the change per unit area of
the inertia from its value at infinite separation is derivable from the velocity-

dependent interaction energy per unit area, E:
Vel =0 - (2- 7. 1)

Noting that muw,g = 2%k, where m is the nucleon mass and k is defined as in Sect

2.8, Eq (2.7.1) can be recast in the dimensionless form

62

ak? Ek.¢) k=0 (2.7.2)

wo = I, =

where wu(¢) is the incremental mass per unit area measured in units of the
nucleon mass. This expression was evaluated for identical slabs of mass @ =2.0
fm~2 by plotting F(k,¢) vs k2 for small & and measuring the slope of the line
through the points. The result is shown in Fig (2.7.1). The mass increment pu(¢)
is negative for separations ¢ >0 which arises primarily from the decrease with
increasing k of the kinetic energy antisymmetrization energy. For separations
¢ <0, pu(¢) is dominated by the very energetically unfavorable build-up of density
in the overlap region above that of bulk nuclear matter. In Fig (2.6.1) it is
observed that matter from the overlap region is redistributed throughout the
bulk region of the slab. This is an energetically favorable effect at negative

separations and is enhanced with decreasing k.

o«

For two ions the mass increment, d M, is given by

% = 2nRb M($), (2.7.3)
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where M(¢) is the incomplete integral of wu(¢):
M) = { u(¢) d¢ . (2.7.4)

The curve M(¢) is plotted in Fig (2.7.2).

Using Eq (2.2.18) for the radius of the sharp surface and b =1.0 fm, Eq
(2.7.3) was used to calculate the mass parameter as a function of the inter-
nucleus separation, R, in the CM frame for the collision of '®0 on '20. The result
is shown in Fig (2.7.3) and corresponds approximately to the range of separa-
tions —0.5<¢<5.5. The touching separation ¢ =0, for which F is equal to the
sum of the central radii of the two ions, is marked by an arrow. For large
separations it is seen that the mass is little changed from its infinite separation
value, being smaller by only about 0.1% at £ =9 fm. At £ =5.5 fm the reduction

is still only 2%. Tor heavier systems the percentage change is even smaller.

The effective mass of the %0+ 80 system has recently been calculated by
Flocard et al (19B0) using the adiabatic time-dependent Hartree-Fock formal-
ism. These authors found a very different behaviour of the mass parameter with
separation. They found that the reduced mass is very close to the asymptotic
value of 8 down to R ~8.5 fm (¢ =3.9) whereupon it increases rapidly to a peak
value of 20 at # =7.75 fm (¢£=3.15). A second peak is located at £ =6.35 fm
(¢ =1.75). These peaks correspond to the points where the overlap of the unper-
turbed wave functions becomes so large that a drastic rearrangement of the
orbitals occurs. Such a rearrangement requires a finite amount of time during
which the internucleus separation remains almost constant. Since the potential

V(R) is smooth, the kinetic energy 3- M#? is almost unchanged and the decrease

in the velocity R is offset by an increase in the mass. Each peak can be assigned

to specific subsets of single-particle wave functions.
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On the basis of the results of Flocard et al it appears that the use of unper-
turbed wave functions to calculate the interaction energy and mass parameter
may be a reasonable approximation at large separations. However, it is likely to
be a bad approximation at small separations, particularly at distances impor-
tant for fusion, if, indeed, a drastic rearrangement of the single-particle wave

functions does occur.
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2.8 The Adiabatic Proximity Potential

In addition to the frozen wave function potential described in the preceed-
ing Sections an attempt was also made to find the interaction energy between
two slabs, where, at each separation, the energy of the system is given by the
ground state Hartree-Fock solution. In such a treatmment the wave function is
assumed to have adequate time at each separation to adjust to the new ground

state. This is the adiabatic approximation.

The ground state wave function of two ions is generally found using con-
strained Hartree-Fock tecniques; the constraint, for example, a quadrupole
term added to the Hamiltonian, is necessary to keep the ions separated. For the
simple one-dimensional geometry of the semi-infinite slabs this coﬁstraint can
be elegantly imposed by the use of periodic boundary conditions. This method is
illustrated in Fig (2.8.1). For slabs of a given mass, the separation is determined
by the positioning of the right-hand boundary of the mesh. The density is nor-
malized at the beginning of the calculation to ensure that the mass in the region
0<z <1 (see Fig 2.8.1) is /2. As before, the calculation need only be done in
one half of the slab, but now the wave functions are odd or even about both the
left and right boundaries. This leads to a doubling of the number of wave func-

tions to be found.

This procedure was implemented for a slab of mass @ =3.0 fm™2. At large
separations the density at the midpoint between the slabs was found to be
greater than that for two superposed slabs and a convergent density profile was
obtained. The corresponding interaction energy is shown in Fig (2.8.2). For
separations less than {=4.5, however, the ground state is given by a cell of con-
stant density. In this case, the lowering of the energy achieved by the destruc-
tion of the surface more than compensated the increase in energy caused by

skimming of some of the matter in the interior. A non-trivial density profile
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could be obtained for {<4.5 by using slabs of smaller mass. However, the
interaction between the slabs is not confined to a modification of the surface
profile and thus the interaction energy at a given separation is dependent on @&@.
This is an unsuitable situation from which to derive a proximity potential since a
quantity suitable to be cast into the proximity form must be independent of the
slab size from which it is derived. Thus the adiabatic interaction energy must be

calculated explicitly for each pair of ions.
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2.9 Neutron Excess Dependence of the Proximity Potential

The results in the preceeding Sections were obtained for symmetric nuclear
matter, but real nuclei may have a considerable neutron excess. In neutron-
rich nuclei the neutron density is greater than the proton density in the bulk
region and, additionally, a thin neutron skin may be present. The BKN force was
constructed for the special case of identical neutron and proton densities and is
not capable of dealing with asymmetric systems. In order to investigate the
effect of the neutron excess on the interalction energy the following procedure is
adopted. The neutron and proton density profiles of the two isolated slabs are

represented by Fermi distributions:

- Po
P = TieGare Ba)

and the composite system is given in the frozen density approximation as the
overlap of these two distributions at a given separation. The interaction energy

per unit area, e (s), at separation s is
e{s) = Ulpi+pe) ~ Ulpr) — Ulpa) . (2.9.2)

where U(p) is the energy of a given configuration and is calculated using the
Skyrme energy functional (Eq 2.4.12). It is also necessary to find a prescription
for calculating T as a function of the density. This is discussed below. The force
SII1, which gives the best overall agreement with experiment, is used. In order
to construct the slabs, the bulk densities, the Woods-Saxon parameter a and the

sharp surface Z of both the neutron and proton distributions must be specified.

The neutron and proton densities pg, and pg, are determined by minimizing

the energy in the bulk region for a given bulk asymmetry, 8, where

3 = fi"P_T""’E—- (2.9.3)
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The bulk asymmetry is identical to the total asymmetry, /, where

1 = ' | (2.2.4)

when the neutron skin thickness, t, is zero.

Whereas good agreement is obtained between experiment and theory for 7,
the root-mean-square radius of the proton distribution, there are discrepancies
between experiment and theory regarding neutron radii. This is illustrated in
Table (2.9.1) where both theoretical and experimental values of 7, ~7p for aBes
and *°®Pb are given. The experimental values are consistent with 0.1 fm for *8Ca
(/ =0.1687) and 0.0 fm for *%8Pb ( =0.2115). In general, the experimental values
in neutron-rich nuclei are found to be significantly smaller than predictions
(Shlomo and Friedman 1977). On the basis of these results a good first approxi-

mation is to set £ =0.0 fm.

Krivine and Treiner (1979) have constructed a kinetic energy density writ-
ten in terms of the particle density which, upon solving the Euler equations, very
well reproduces the Hartree-Fock binding energy and density profiles. These
authors have used this procedure to extrapolate the Hartree-Fock results to
very massive nuclei and for the SIII force obtain a value of ¢ =0.57 fm for their
surface parameter. This parameter is not the usual Woods-Saxon surface
diffuseness, but is equal to it in the special case that the density profile is a
Fermi distribution. Substituting @ =0.57 fm into Eq (2.2.10) gives a value of b
very close Lo the nuclear matter value, b =1.0 fm. A slight simplification results
from setting b =1.0 fm exactly, which was done, since the distance scale in fm is
then just the same as the dimensionless separation {. The Woods-Saxon parame-

ter a is then defined by Eq (2.2.10).

The kinetic energy density is calculated according to the formula given by

Brink and Stancu (1978), rather than with the prescription of Krivine and
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Treiner. Brink and Stancu attempted to reproduce as closely as possible the
Hartree-Fock kinetic energy density for the SIIl force. They observed that the

density

T = = Y P (R.9.5)

is very well approximated by the expression
Tk = T+ 2 (W) p — g V. (2.9.8)

where the Thomas-Fermi density for each nuclear species is given by -

Trr = %(311‘2)2/3 pv3, (2.9.7)

The kinetic energy density

T = NIvk|? (2.9.8)

which appears in the Skyrme energy functional is related to 7 by

T=T+ -;—Vep : (2.9.9)

Thus the approximation employed is

T8 Tr + :;—é—(Vp)afp + -;—Vzp : (2.9.10)

Before presenting the results of the calculation of the interaction energy it
is instructive to look at the behaviour of the surface energy as a function of the

neutron excess. For a slab without a neutron skin the surface energy is simply

7 = Ulp) - -ﬁ'— a, (2.9.11)

where F/ A is the average binding energy per nucleon in the bulk region. For a
system with £ # 0, however, there is an excess of neutrons in the surface region

and Eq {2.9.11) must be generalized to (Ravenhall et al 1972)
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7 = UP) —AQn — A0y, (2.9.12)

where A, and A, are, respectively, the neutron and proton Fermi energies. In
Fig (2.9.1) the surface energy coefficient ¥ is plotted against §%, the square of
the bulk asymmetry, for £ =0.0 fml and £ =0.1 fmm. For i =0.0 fm a straight line

is obtained:

¥ = 1.136 (1—1.08686%) MeV. (2.9.13)

Except for very small values of 8%, the effect of the neutron skin is to lower the

surface energy.

In Fig (2.9.2) the interaction energy is shown for slabs with a selection of
different bulk asymmetries, but in each case with £ =0.0 fm. At (=0, e(s)=-y
for identical slabs since the two surfaces are exactly cancelled and the density
in the overlap region is just that of the bulk region.. The shapes of these curves
are the same and differ from the symmetric case only by the scaling factor
(1~1.0863%). The curve for §,=35,=0.2 lies 4% below that for 3, =8,=0.0. These
results confirm the form of the correction given by Blocki et al (1976) in Eq
(2.2.18), but the coefficient of §% obtained here is 40% smaller. For non-identical
slabs or nuclei, however, the validity of Eq (2.2.18) is questionable. For example,
Eq (2.2.18) predicts an almost identical interaction energy for the system 80
(f =0.0) +2%®Pb (I =0.2115) ([gmp =0.196) as for the system 2%Pb + 208pp
(Jcomp =0.212). This prediction is in spite of the fact that only the surface pro-
perties are assumed to be important in determining the interaction energy in
the frozen density approximation and the bulk structure of the nuclei is used in
Eq (2.2.16). The surface characteristics of these two systems are very different

and one might expect the correction term

7 = (n+72)/2 (2.9.14)
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to be a better approximation. The interaction energy of the system
(81, 62) =(0.0,0.2) is also shown in Fig (2.9.2) and is almost identical to the curve
for 8, =082 =0.0, except at very small separations where it lies almost 2% below it.
Thus the formulae Eqgs (2.2.18) and (2.9.14) do not even predict the correct sign

of the change in this case.

In Fig (2.9.3) the interaction energies for a number of systems with neutron
skins of £ =0.1 fm are compared with the interaction energy for symmetric
nuclear matter. The results are similar to those for systems with no neutron.

skin, but the magnitude of the interaction energy is slightly smaller.

On the basis of these results and the small experimentally determined neu-
tron skin thickness, one is led to conclude that the interaction energy is rela-
tively insensitive to the neutron excess of either ion. For the systems studied in
Sect 2.3 the deviation should be no greatér than about 4%. Similar results were
obtained using the SVI interaction. In view of the uricerta.inty in predicting the
scaling factor for arbitrary §,; and §, and the fact, at least in this analysis, that
such corrections are small, it is proposed that the surface energy coefficient for

symmetric nuclear matter, y= 1.0 MeV/fm?, be used for all systems.
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3 TransferInduced Energy Dissipation in Heavy-lon Collisions

3.1 Introduction

In this Chapter the energy dissipation associated with the transfer of
nucleons between two nuclei is investigated. To first order in the relative velo-
city the friction force is given by the window formuia (Blocki et al 1978), which is
described in Sect 3.2. The friction coefficient in this formula is, in the proximity
approximation, proportional to the flux of nucleons between the two nuclei.
Randrup (1978) identified this flux with the passage of nucleons between the two
nuclei without including the Pauli blocking to final states (the exchange flux).
The exchange flux is investigated in Sect 3.3 in the context of a simple barrier
penetration model. However, it is not correct to neglect the Pauli blocking and
the flux appearing in the window formula should be identified with the transfer

flux, which is calculated in Sect 3.4.
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3.2 The Window Formula

The window formula (Blocki et al 1978) provides a means of calculating the
energy loss associated with the transfer of nucleons between two ions. In this
model the single-particle potentials of the two nuclei are viewed as containers
which enclose the nucleon gases. As the two potentials overlap, a window cpens
between the two containers and particles in one nucleus may move freely into
the other. Since the two potentials are in motion relative to each other, the flow
of momentum associated with the transfer of particles transforms kiﬁetic
energy of relative motion into intrinsic excitation, and vice versa. This transfor-
mation of energy becomes irreversible if particles from one nucleus, having '
reached the other, equilibrate through either two-body collisions or interaction

with the one-body potential before they return.

The expression for the dissipation rate can be obtained as follows. Consider
two fragments A and B in relative motion and connected through a window of
area Ac (see Fig 3.2.1). The force F,; acting on the fragment A is given by the
rate of change of momentum of the particles in A. It consists of three parts: (i}
The rate of change of momentum due to collisions with the surface of A, exclud-
ing the window Ag, {ii) The momentum flux Pg, from container B into container
A and (iii) The negative of the momentum flux P, from container A into con-

tainer B. Thus,

Fy = [ p2do+ (Ppa—Pup)ha, (3.2.1)
A—Ao

where p is the pressure exerted by the gas on the walls of container A and % is
the unit vector pointing outward along the direction normal to the surface. Let
the intrinsic nucleon velocity distribution be given by f (%) and, for later con-
venience in the application of this model, let the window be only partially tran-

sparent so that only nucleons with certain restricted values of the velocity » can
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pass through. In the following only nucleons belonging to this class are con-
sidered. Denote by g{u;)dz the fraction of particles with a velocity component
in the z-direction between v, and v, + dv;. To find the pressure p one nctes that
the flux of particles with z-component of the velocity between v; and v, +dv, is
g (v, )dv, pv,, where p is the nucleon density. The normal momentum

transferred to the wall by each particle of mass m is 2muv, and, hence,

b = fg (vg)du, pu, (Bmu,) = zmpfg (v )vfdv, . (3.2.2)

Particles in B with z-component of v between v, and v, +dv, pass through the

window into A with a frequency per unit area given by

Vaa = pY(va)dv, (v +ug)(-2) (v +up)(-2)) . (3.2.3)

where the theta function ensures that only those nucleons moving toward the
window can pass through. Each nucleon passing through the window carries with

it 2a momentum

Pps = m(v +ug) (3.2.4)

and hence the momentum flux from B into A is
Ppy = fVBA Ppadu, = mp{g ('vz)d'uz'uz (_”z£ +up +uB'££)- (3'2-5)

Here it has been assumed that the velocity distribution f (v) is isotropic so that
the term depending on the transverse components of v averages to zero and

can be neglected. For particles passing from container A into container B one

obtains
vag = pgluz)du, (v +uy) 2 9{(v +u4)2), (3.2.8)
pap = m{v +uy) (3.2.7)
and
Pap = mp [g(w,)dv v, (v, 8 +uy +uy £8) . (3.2.8)
0
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This analysis assumes that the velocities u4 and up are small compared to typi-
cal nucleon velocities. Substituting Eqs (3.2.2),(3.2.5) and (3.2.7) into Eq (3.2.1)

and writing w =wg —u,4 one obtains

Fy

Aampfg (v, )dv v, (2 +u-22)
o

Aomn(Ru, +1) . (3.2.9)

Here n denotes the particle flux per unit area from one system to the other. The
symbol u, denotes the component of u parallel to the normal of the window, -
while %, is the component of u in the plane of the window. It is observed that
the radial friction coefficient is twice the tangential one. The reason for this is
that the component of motion normal to the window effects the rate of transfer

of particles, while the parallel one does not.

The extension of Eq (3.2.9) to complex geometries can be made using the
proximity approximation (Randrup 1978). In the limit of small curvature the
local flux from one system to the other depends only on the separation s
between the local elements of the two surfaces. To leading order, do=g2nRds,
where all quantities have the same meaning as in Sect 2.2, and the integral of
the flux per unit area over the area of the window can be reduced to a one-

dimensional integral over the surface separation:
Jndo = 20K [n(s)ds = 2nRN(s). (3.2.10)
L4

The function N(s) is the incomplete integral of n(s), the flux per unit area from

one semi-infinite system to another positicned with a surface separation s.

The functions n(s) and N(s) can be expressed in dimensionless form using

the surface diffuseness b as the unit of length, as before, and using the flux in
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bulk nuclear matter, ng, as the unit of flux. Thus {=s/b is the dimensionless

separation, the proximity flux function is defined by

Y(&) = n({b)/ no (3.2.11)
and its incomplete integral is
He) = [Hac. (3:2.12)

In terms of ¥(¢) the total flux across the curved gap is

Snde = 2rngRb¥(¢) (3:2.13)

and the friction force becomes
F = 2nngR b ¥({) m(Ru,. +u) . (3.2.14)

To evaluate % and ¥ a nuclear model describing the transfer of nucleons
between two parallel semi-infinite surfaces of nuclear matter is required. This
has been done by Randrup (1978) using the nuclear Thomas-Fermi model in con-
junction with the phenomenological Seyler-Blanchard nucleon-nucleon interac-

tion. A description of this method is given in the next Section.

It is important to decide for what velocities the window is open. For two
identical ions or slabs at rest the two Fermi spheres of momentum stales are
coincident and a particle from one ion is prevented from passing to the other by
the Pauli principle. If, however, the ions are in relative motion then nucleons
from one container may pass to unoccupied states in momentum space in the
other. The process whereby the Pauli principle is taken into account is called a
transfer. If Pauli blocking is neglected there is a current from one identical ion
to another. This passage of nucleons without reference to whether the state to
which the nucleon passes is already occupied is called the exchonge current.

The quantity ¥ calculated by Randrup has been used extensively in classical
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dynamical calculations to describe the friction between heavy ions. However,
~ Randrup has associated ¢ with the exchange flux between the semi-infinite sur-
faces, which is not correct. The window formula describes the energy dissipa-
tion arising from the passage of real particles between the containers, which

excludes from consideration the passage of particles to Pauli forbidden states.

The window formula deoes not account for the energy dissipation associated
with particle-hole formation in one ion induced by the time-dependent single-
particle potential. Hence this contribution to the friction is not taken inte

account when the proximity window friction alone is used.
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3.3 The Proximity Exchange Flux

To calculate the dimensionless exchange flux function, ¥, the Thomas-Fermi
model is utilized. Two semi-infinite systems of (symmetric) nuclear matter are
positioned at a certain separation s and the potential generated by the super-
posed frozen matter distributions is calculated. The Hamiltonian corresponding
to this situation varies only in the direction normal to the surfaces and is of the

general form

Hiz) = + W(=z), (3.3.1)

2m *(z)
where m *(z) is the effective mass and W(z) is the single-particle potential.

In the model employed by Randrup (1978 and 197Ba) the combined system
is imagined to be filled with particles up to the Fermi energy ep and the local

Fermi wave number kz(z) is determined from the relation
Ep = —% + W(z). (3.3.2)

VWith four particles per unit of phase space the nucleon density, p, is

Rk (z)
z) = ———. 3.3.3
p(z) e (3.3.3)
The average nucleon velocity is
= _ 3
v = 4— 'UF 5 (3-3.4)

where vp is the Fermi velocity and the average value of the magnitude of the z-

component of the velocity is

Ty = 5T = up, (8.3.5)

From Eqgs (3.3.3) and (3.3.5) it follows that the flux of particles transmitted from

one system to the other over the barrier is given by
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2k 3(=
% = F—(g‘)—- 1_35‘ vp(z,) | (3.3.8)

ar

where =z, is that value of 2 which minimizes the expression. A similar formula is

obtained for the bulk flux, ng, and for the function ¥(¢) one obtains

(3.3.7)

Y= g T krg Upg

n [kf-'(zz) ¥ up(z)
Tig

where kg and vpp denote the Fermi wave number and Fermi velocity in the bulk
region. The curve of ¥(¢) calculated by Randrup using the Seyler-Blanchard
nucleon-nucleon interaction is shown in Fig (3.3.1). The function ¥(¢) goes to
zero at a finite separation, {= 3.6, corresponding to the separation at which the

top of the potential barrier coincides with the Fermi level.

This method, however, neglects the effect of barrier penetration and to
investigate its importance the following medifications are made to the picture
just described. The local Fermi wave number is no longer considered; instead,
the nucleons from the bulk region are viewed as striking the single-particle bar-
rier with the flux per unit area and velocity distribution of the bulk region. The
transmitted flux is then calculated using the quantum-mechanical barrier pene-

tration probability. The BKN force, described in Sect 2.5, is used.

In Fig (3.3.2) the single-particle barrier is shown for the separation ¢=2.71.
The Fermi energy, &£z, is indicated by the horizontal line. In Fig (3.3.3) the
potential at the midpoint between the slabs is shown. This is equal to the poten-
tial at the top of the barrier except for 0<¢ <1, where the single particle poten-
tial at the midpoint drops slightly below the value in the bulk region. The top of

the barrier coincides with the Fermi level at ¢ =3.3.

Approximating the barrier in the neighborhood of its maximum by an
inverted parabola the penetration probability is given by the Hill-Wheeler for-

mula (Ford et al 1959, Huizenga and Igo 1962):
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pHY (3.3.8)

s 1 .
1+ exp| zﬁ(fw—E 1

where B is the barrier height and F is the particle energy measured from the

single-particle potential in the bulk region. The gquantity fw is given by

Ve
n2 g2yl
B dz—a’ . (3.3.9)

where d®V/ dz? is the second derivative of the potential evaluated at the value of

ho =

2 for which V(z) is a maximum. Eq (3.3.8) is exact for a truly parabolic poten-

2
tial. Writing the potential as V(z)= V(1 — :?). Eq (3.8.8) becomes

HY = —-‘——];--— = il - i ;
P Trof where 2L = V2mV; (1 Vu) {3.3.10)

Let f(v)d3% be the probability of finding a particle with velocity
V% +v,§ +7v,Z in the element dv du,du, such that v =[v?+v?+vF]? and
g (v;)du, be the fraction of particles with z-component of the velocity between

v, and v, +dv,. For a Fermi gas at zero temperature

3 [0. v >up

Fw) = g | 1. wswp .(3.3.11)
and
glw)dv, = [fw)2rudy,.du, (3.3.12)
0
= -3 wE-uPHduy (3.3.13)
= po Fvg)duy . 3.
The flux from one container to the other is given by
n(¢) = [gw:)dv, pov,s P(¢s) (3.3.14)

where pg is the nucleon density in the bulk region. It is pg which incorporates

the fact that there are four particles in each unit of phase space.
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It is instructive to evaluate Eq (3.3.14) for a classical transmission probabil-
ity function. In this case
1, v>VBB/m =uy

P = (3.3.15)
0, v,<sV2E/m

and the flux is

= 3 v 20
z
" = f 4 E] ('UF —Uz ) d’Uz Povz = 710(1 il P )2 ’ (3316)
'U yF

where ng= %vppg is the flux per unit area in the bulk region. In terms of these

same quantities, the flux in Randrup's model, Eq (3.3.7). is

_ (V”P—'Ufo ) VUF —Vzp  _ vi 2
n = ng = mg(l— ¥=, (8.3:17)
3 v 2
v v vE

which is exactly the same as Eq (3.3.16). The states contributing to the flux in
the two pictures are indicated in Fig (3.3.4). The two situations are not simply

related and it is perhaps surprising that they lead to the same flux.

Evaluating Eq (3.3.14) using the Hill-Wheeler formula one obtains

- 2 Tr 1 o
ﬂ((’) = Tig '2—_,;'— [TFEz + T—ln:u. P E—Ezz - —gé-lnu

2b= L (nu)? + Lo 3 Z=I =T ]ﬁ,u. (3.3.18)

~bE,

where o = ——\/ . B *, The total flux is

m/ Vo

obtained by setting £¥*= T and Ei =0, whereas the contribution from particles
passing through the barrier (classically forbidden region), for example, is found
by setting E¥ = FE,o and EL =0. Both of these quantities are plotted in Fig (3.3.1).
It is observed that the flux through the barrier makes the dominant contribution

to the total flux down to a separation of {=2.1. Also shown in Fig (3.3.1) is
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Randrup's 9. As mentioned, this corresponds to the classical flux, that is, Eq
(3.3.18), where the transmission probability has been defined in Eq (3.3.15). This
is also plotted in Fig (3.3.1) and the difference between these two curves is pri-
marily a consequence of the different forces used!. It should be noted that in
the barrier penetration model the_ flux over the barrier is considerably less than
the classical flux and this tends to compensate for the additional flux passing
through the barrier. In Fig (3.3.5) ¥, the incomplete integral of ¥ is plotted. The
values of ¥ obtained in the present calculation are significantly larger than .
those obtained by Randrup. However, some of the increase at separations ¢<2

is due to the different forces used.

The exchange flux has also been calculated by Ko et al (1978). For simpli-
city, these authors constructed the single-particle potential barrier by adding
the potentials of each ion. This proceciure corresponds to a frozen potential
approximation. In Fig (3.3.3) the potential at the n‘ﬂdpoint of the slabs calcu-
lated in this way is comi)ared to the potential calculated in the frozen density
approximation with the BKN force. The two methods agree remarkably well for
¢>2; however, at smaller separations the potential calculated as the sumn of the
two asymptotic potentials drops far below that of the overlapping densities. Ko
et al use the WKB penetration formula:

Za

P¥B(¢) = exp[-2f (mW(z.¢)/P-kH2dz ], (3.3.19)
%1
which, for an inverted parabola potential becomes
& =8

PYEB - { 2L . E, < B (3320)

T - ; :

In the present calculation with the BKN force the barrier has essentielly disappeared for
§ <1, that is, when the potential at the midpoint between the slabs has dropped below ¥y, the
potential in the bulk region. Thus 1 is teken to be unity for §<1.
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Thus the WKB transmission probability is larger than that given by the Hill-
Wheeler formula for all energies. For incident energies coincident with the top
of the barrier PY®8 =1 and PHY = ;— - The error introduced by using the WEB
approximation is discussed further in Chapter 4 in connection with the calcula-
tion of the diffusion coeflicient.

The differences between the results of Ko et al and the present calculation
can be understood in terms of the different barrier heights as a function of
separation in the two models and the different transmission probability func-
tions used. In spite of the differences in the two methods the curves for ¥;=380

MeV, T=0 MeV and a =0.5—0.8 given by Ko et al are remarkably similar to the

present calculation.

.In both the present work and that of Ko et al the effective mass was
assumed to be constant. However, this condition can be relaxed and a force
with a density dependent effective mass employed if the frozen wave function
approximation is used. It then becomes necessary to calculate the integral in Eq
(3.3.19). In Chapter 4 such a procedure is used with the Skyrme III force to cal-

culate the diffusion coefficient.



3.4 The Proximity Transfer Flux

The passage of nucleons from one container to another, where the occu-
pancy of the final state in the second container determines whether or not the
passage can occur, leads to the transfer flux. Pauli blocking causes the transfer
current between identical containers at rest to be zero. However, if the two sys-
tems are in relative motion, unoccupied levels appear in the second ion which
are occupied in the first and a transfer of particles is possible. In the language

of Sect 3.2, the relative motion opens the window for such transfers to occur.

To calculate the transfer flux in such a case consider two identical systems
each characterized by a Fermi velocity v and, in the window frame, let the ions
approach with radial velocities u; and u; along the z-axis. This situation is illus-
trated in Fig (3.4.1). To first order in %, and %, the flux is independent of the
window velocity and depends only on the relative velocity 2 =u; —up. The flux
appearing in the window formula, Eq (3.2.9), is the flux from system A to system
B, for example, calculated in the frame in which A is stationary. The shaded
area in Fig (3.4.1) represents states in A with v, >0 which are unoccupied in B.
The number of states in this region with velocity in the z-direction between v,

and v, + dv, is given by g (v, )dv,, where

f(u)ﬂ(zuzur'l'ura)l 0=y, sup—u,

90D = | r)n@i-vd),  ve-ursvisvp (3.4.1)
and f (v) is defined in Eq (3.3.11). The flux from A to B is
up
n(¢) = _{ 9 (vs Ydv, povy P(Evz) (34.2)

where P is the barrier penetration probability. At ¢=0, P(v,)=1 and the flux

becomes
8 Ur u? g
n({=0) = ng|o-——-8 —+ = . 4,
n(¢=0) ol3 o - 3—]1}; (3.4.3)
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where ng= %—pn'u 7 is the flux in bulk nuclear matter. For %0 on %0 at £, =100

MeV, for example, w,./ v = 0.4 with the BKN force and n({=0)=0.76 ¢, a sizable
fraction of the flux in bulk nuclear matter. Egs (3.4.1) and (3.4.3) are conly vaiid
in the range O=w,<vp. For u.=vp, Pauli blocking no longer occurs and the
transfer flux becomes equal to the exchange flux. Curves of 4 calculated from
Eq (3.4.2) using the BKN force and the Hill-Wheeler penetration formula are
shown in Figs (3.4.2) and {3.4.3) for a range of velocities u,. In calculating the
curves in Fig (3.4.2) the motion of the barrier with respect to the inertial frame
of A has been neglected. In calculating the curves in Fig (3.4.3) the motion of

the barrier towards A at speed -;-—u,. has been taken into account in determining

the transmission probabilities. This has the effect of increasing the flux and is
most pronounced in the tail. For u./vr=0.1 at ¢=5.0 the increase is 100%,
while at higher velocities the increase is still larger: However, for large relative
velocities the validity of the model becomes doubtful since the barrier can only
be considered to be of a fixed shape if, on average, the relative velocity . is
very much smaller than the velocity in the z-direction of nucleons for which the
window is open. The curve for u,./vp=1.0 in Fig (3.4.2) is identi.cal with the

exchange flux calculated in Sect 3.3.

If the relative velocity is purely tangential as shown in Fig (3.4.4) one

obtains

J (v)[nR*-2R%arcos( :‘? +i, VR —ufs 4],

glv;) = Osv, = Vw}—u,z/‘i (3.4.4)
f(v)rR?, VERE*~uf/4 =v, svp

where R°®=v£-v2? and the flux from one container to the other is given by Eq

(3.4.2). At separation ¢ =0, P{v,)=1 and the flux is

) = g B ¥ 1 uft
n({=0) = '"»og-,UF o 3o 3 +o('uﬁ

). (3.4.5)
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Thus, to first order in ©#/vp, the flux is independent of whether the relative

motion of the ions is radial or tangential.

It is instructive to calculate the flux for a relative radial velocity in a frame
in which the barrier is stationary. This is the frame in which the ions appreach
with velocities j:%-u,. along the z-axis. In this case

nf (v)2v,u, , O<v, svp—u./2
Flve) = nf (V)[vi-vituw, —u2/ 4], vr—U /RS U; sUptU /R ' (3.4.8)

vptu. /2
ﬂ.(ﬂ') = { g('uz)d'”z Polz P(frvz) (3.4.7)

and

n({=0) = ng 5 vi (3.4.8)

Eq (3.4.8) is in accordance with the geﬁeral result stated earlier that, to first
order in ./ vp, the flux is independent of the winciow frame. This frame is of
special significance as it is the one which is applicable in calculating the transfer
flux between ions used to determine the diffusion coeflicient, which is the sub-

ject of Chapter 4.
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4 Mass Transfer in Deep Inelastic Collisions

4.1 Introduction

In this Chapter, in the context of the transport theory described in Sect 4.2,
the proximity diffusion coefficient is calculated. In Sect 4.3 the method used to
deduce the transport ccefficients from the experimental data is described and
in Sect 4.4 a simple quantum-statistical model is presented in which the
diffusion coeflicient is given in the proximity formalism as a function of separa-
tion between the nuclei and the temperature of the composite system. The
results of the application of this model to a particular system are reported in

Sect 4.5.
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4.2 Transport Theory and the Fokker-Planck Equation

By employing a simple model which identifies the interaction time with the
difference between the deflection angle and the grazing angle for the systems
232Th + %CAr (297 and 388 MeV), Nérenberg (1974) showed that the variance of
the elemental distribution grew approximately linearly with time, as is charac-
teristic of a diffusion process. A diffusion process can be described by the
Fokker-Planck equation for the probability, P(z,t), that the variable z takes a

value between r and xz+dx at time £:

aP(z,t) _ _, 8P(z.t) 8%P(z.t)
=7 w S g B RS, (4.2.1)

In this equation, v and D (assumed constant) are, respectively, the drift and
diffusion coefficients. If at £=0 the collective variable z=0: P(z,0) = §(x), then

the solution of the Fokker-Planck equation is:

Va4 Dt

P(z,t) = o exp[—%]. - (4.22)

The position of the maximum of the gaussian is

<z>=wvt (4.2.3)
and the square of the FWHM of the distribution also increases linearly with time:
I'2 = 16 (In2) Dt = 8 (in2) o2, (4.2.4)
while the area under the gaussian remains constant:
[ P(zt)ds =1. (4.2.5)

The time which enters Eq (4.2.3) and Eq (4.2.4) is usually deduced from a classi-
cal phenomenological model which introduces sizable uncertainties into the
drift and diffusion coefficients extracted from the experimental data (see Sect

4.3). All analyses to date have been been performed with fixed » and D,
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although there is no reason why this should be the case. There is some indirect
evidence from these analyses that taking D as constant is not such a bad
approximation, but it is very unlikely to be the case that v is constant. If the
coefficients depend on time the Fokker-Planck equation becomes (Nérenberg

1974)

apa(:;.tz = Lo\ t)P(z.0)] + 63; lea(z )P(z.8)].  (4.2.6)

The Fokker-Planck equation is not the most general way of describing relax-
ation phenomena and is only valid when the change in the macroscopic vari-
ables proceeds in infinitesimal steps. A more general description is provided by

the master equation
d ,
S HE) = =Y, Woom Ps(t) + 3, Winas Prm(t) (4.2.7)
m m

originally introduced by Pauli in 192B. P,(¢) denotes the occupation probabili-
ties of the states in group s and W;.,, is the average transition probability from
any state in group s to all states in group m, averaged over the states in group
s. Thus the change of occupation probabilities of group s with time is deter-

mined by the balance between transitions ), Wy, »s Pn(t) feeding the group s and
m
transitions =3 Ws.m P (t) depleting the group s. The Fokker-Planck equation
m

can be derived as an approximation to Eq (4.2.7) (see, for example,

Weidenmiiller 1979).

Trémsport equations have properties which are different from the
Schrodinger equation. These arise from the fact that the evolution of the system
is described in terms of probabilities rather than amplitudes. It is assumed that
phase information quickly averages out and the internal degrees of freedom can

be described by a heat bath. In the model to be described in Sect 4.4 the heat
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bath enters in the form of a Fermi-Dirac occupation function dependent on tem-
perature. In other models the heat bath enters through the use of random
matrices, that is, averages over coupling matrices. Theories using randem
matrices or a heat bath need not provide a randemizing method, but collisions
with the walls and nucleon-nucleon eollisions have been proposed as being the
randomizing agent. However, Weidenmiiller (1979) estimates that the time
between collisions with the walls is an order of magnitude smaller than the time
between nucleon-nucleon collisions, thus making the former the more attractive

candidate.

For a transport description to be valid, the time scales ‘governing the
behaviour of the equilibrating system must fall within certain limits. In particu-
lar, the time it takes non-collective degrees of freedom to reach internal equili-
brium T¢; much be very much less than the time Teour it takes for collective vari-

ables to attain equilibrium:

Tag K Teall -

The interaction between collective and non-collective degrees of freedom deter-
mines the fype of transport description. Normally during the equilibration of the
collective variable the interaction will act many times. Let 7 be the time scale
for the duration of a single action, for example, the time it takes to create a
particle-hole pair, and T, be the time between subsequent actions of the interac-
tion. The coupling between collective and non-collective degrees of freedom is

strong or weak according to:
Ta K T (weak coupling)
Tp 2> Ta (strong coupling)

Using the kinetic energy relaxation time from a phenomenological analysis of

the experimental data, Weidenmiiller (1979) obtained estimates for these time
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3 sec and T,=3-4 x 107® sec. These estimates indicate

scales: 74=15-20 x 10
strong coupling. Since T, is larger than 7, by about a factor of 5, one must con-
clude, for example, that several particle-hole pairs are in the process of being
formed at any given time. If the system can equilibrate after one or two internal
collisions (Weidenmuller 1979) then T,m5-10 x 107*® sec. These estimates
Teg™Ta<Ta indicate that the systemn does not quite have time to equilibrate
between subsequent hole-pair creations, but it is clearly better to assume equili-

bration after each collision than disregard it altogether, except in the initial

stages of the collision.

The drift and N/Z equilibration can be understood in terms of a simple pic-
ture where the composite system consists of two spherical drops in contact.

The potential energy can be written as

312232

Voot (Z1.Z2,..) = Epp(Zy.A1) + Epp(ZaAg) + P Ww(R)
L+ 1K
g BOAL 2.8
where Eyp is the liquid drop energy of an ion:
— 73
Eip(Z.A) = o,A + i, A + apZRA V3 ¢+ ;—asym -(%l— (4.2.9)

A commonly used set of values are those of Green and Engler (1953): a,=15.56
MeV (volume), a;=17.23 MeV (surface), apc=0.696 MeV (Coulomb) and gy, =96.57
MeV (symmetry). The third term in Eq (4.2.8) is the Coulomb potential between
the ions and the last terms are the nuclear and the centrifugal potentials; % is
the distance between the centers of the two ions. Since the total number of pro-
tons and neutrons is fixed the potential can be written as a function of (Z,.4,)
without reference to (ZzAz). Usually the initial system is not situated at the

minimum of the potential energy surface in the N-Z plane and therefore it would
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be expected to move in the direction which minimizes V. The most probable
value of <Z,> is that which minimizes the potential energy of the composite

system for the initial mass asymmetry; that is, for fixed 4. It is the solution of

8 Vpot =0 (4.2.10)

0Z, |a,=A,(initiat) B

The dominant contribution comes from the symmetry energy. A particular sys-
tem may evolve towards this minimum, for example, by exchanging a neutron
and a proton in opposite directions. The short time necessary for charge equili--
bration suggests that this process may not be a statistical relaxation
phenomenon. Some information on this possibility can be obtained from a study
of charge fluctuations for fixed mass asymmetry as a function of the tempera-
ture. In the liquid drop model ¥,,(Z,.4,) is a parabola and it is tempting to
describe the charge equilibration model by a harmonic oscillater coupled to a
heat bath of temperature T. In such a model (Berlanger et al 1979) the variance
of the neutron excess is linear in T when the phonon energy is much smaller
than the temperature (statistical fluctuations), and independent of T when the
phonon energy is much greater than the temperature (quantal fluctuations).
Although the experimental analysis is made difficult by the effects of evapora-
tion, most systems are found to exhibit behaviour comnsistent with quantal
fluctuations (Mignerey et al 1980). It has been suggested that the giant dipole
resonance may be an important factor in determining the N/Z equilibration and
on this assumption Brosa and Krappe (197B) have estimated that the typical
time for charge equilibration would be 1-2 x 107% sec. Recently, however,
Schréder et al (1981) have questioned the conclusion that experiment is incon-
sistent with statistical fluctuations and have shown that the observed isobaric
and isotopic fragment distributions can be quite well accounted for by an

incoherent transport mechanism.
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It is important to establish the connection between the total number of par-
ticle exchanges N,; and the variances of the mass and charge distributions o
and o%. Often it is only o which is measured experimentally and so o must be

inferred. If the probability for a given transfer were independent of whether the

nucleon were a neutron or a proton then of = (4/ Z)o%, where the factor A/Z
arises from the relative abundance of nucleons and protons. However, experi-
ments in which the mass and charge are measured simultaneously show that the
fragments lie along a narrow valley consistent with the predictions based on the
liquid drop potential energy surfaces. This valley is almost coincident with the

trajectory of exact charge equilibratiocn. Thus, to a good approximation,

2
o2 = [g—] o2 . (4.2.11)

Assuming that nucleons are transferred sequentially and that the probability for
a given transfer depends only on the present state of the system the process of
mass transfer can be described as a random walk and the mass variance is equal

to the number of exchanged nucleons:

2
N =0f = [%—] o2 . (4.2.12)

This result refers to a correlation between the transfer neutrons and protons.
Although o3 is equal to the total number of nucleons transferred, o2 is not equal
to the total number of protons transferred. In this sense it is 6%, rather than o2,
which is the more fundamental quantity. If the strict adherence to the N/Z ratio
of the the composite system were not observed experimentally, then the

transfer of neutrons and protons may be uncorrelated, in which case
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Nz (protons) = of

Although Nérenberg (1974) was able to deduce the interaction time from
the scattering angle in the particular reaction he studied, this is certainly not
easy in many other systems which exhibit strong forward focussing. Instead, it
is the Total Relative Kinetic Energy Loss (TKEL) which best measures the
interaction time. For the ¥%Xe(1130 MeV) + ?%°Bi system (Schrader et al 1978),
the elemental distribution is gaussian for each specific TKEL interval, as would
be expected from the diffusion model. However, for the %¢Kr(703 MeV) + '%Er
reaction (Rudolf et al 1979), the distribution for a specific TKEL interval exhibits
a distinct skewness. Rudolf et al showed that this may be removed by redifining
TKEL. In dissipative collisions a wide range of elements is produced and thus the

energy available above the potential energy surface at each instant

By = TEE — Vel Z AR 1) (4.2.13)

is the relevant quantity to describe the dynamics of the the reaction. Thus an

improved parameter to select events is

TKEL® = [TKE(in) — Vpo (in)] — [TKE(out) — Vpeout)].  (4.2.14)

Here TKE(in) is the initial center of mass energy and, as a first approximation,

Voot may be identified with the Coulomb potential V¢(Z,Ro).

Time-dependent Hartree-Fock (TDHF) calculations are able to provide the
variances of the mass and charge distributions (Brandt and Kelson 1969). How-
ever, the TDHF variances are a full order of magnitude too small (Dhar et al
1981, Davies et al 1978) which Dasso et al (1979) trace to deficiency in the use of
a single Slater-determinant wave function. Furthermore, TDHF calculations yield
0% = 0% + of. Thus the necessary correlation between neutrons and protons to
ensure that fragments lie in the narrow valley in the N-Z plane is absent. How-

ever, the results of TDHF calculations are used in Sect 4.5 for properties of the
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collision, such as the neck characteristics and the kinetic energy loss, for which
TDHF is expected to be more reliable.

In the remainder of this chapter the applicability of the transport theory
and the Fokker-Planck equation is assumed and the focus is on the calculation

of the transport coefficient.
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4.3 Empirical Interaction Times and Transport Coeflicients

In this section the method by which diffusion coefficients have been

deduced [rom the experimental data is outlined.

As was indicated in Sect 4.2, the basic information provided by experiment
is the variance of the charge distribution, o2, as a function of TKEL or, prefer-
ably, TKEL®. It is TKEL® which serves as the clock during the collision, but in
order to find the transport coefficient it is necessary to convert TKEL' into an
actual interaction time to calibrate the clock. To do this, a reaction model must
be emloyed. This will give the interaction time as a function of angular momen-
tum (or impact parameter). (For example, see Schréder et al 1978). Assuming
that the kinetic energy loss is a monotcnically decreasing function of I, a rela-
tively simple procedure can be used to convert the experimental energy loss
distribution, do/ dTKFE/, to an angular momentum.scale. This is done using a
sharp cut-off model in which the cross section up to an angular momentum [ is
proportional to 12 for 0= =l,,, Starting at {=I,,, where TKEL is zero, a

range of I can be calculated for each energy-loss window.

A slightly different approach is to use the reaction model to deduce the
interaction tirne as a function of scattering angle 9. In this case, the experimen-
tal quantity of interest is the variance of the charge distribution, ¢Z, as a func-
tion of . This method is suitable for certain reactions, for example, %Kr (714
MeV) + %5Ho (Wolschin and Nérenberg 1978), but becomes less reliable for reac-

tions like 1%Xe (1130 MeV) + #9Bi which exhibit strong focussing.

For constant transport coefficients, the light fragment charge distribution

is (Sect 4.2)

1 _ (Zp—ugt)?

P(Zt) = _JE—ETTEXP[ aD,t 1

(4.3.1)
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where the diffusion coefficient Dz is the average over the whole trajectory for a
given impact parameter. In the former method, the variance of the charge dis-

tribution is given by

o2(l) = 2Dg(l) 7(1). (4.3.2)
while in the latter it is given by
oZ(B8) = 2 Dz(%) (V) , (4.3.3)

where 7 is the interaction time. Dz(l) is found to be constant over a wide range
of I, except for the peripheral collisions. Assuming correlation between the neu-
tron and proton transfers, this value can be multiplied by (A/Z)? to obtain D,
the experimentally deduced diffusion coefficient. This is just an apparent value,

however, because the mass distributions were not measured in the experiment.

To determine the angular momentum dependent interaction times a model
along the following lines is used (Schréder et al 1978). The projectile approaches
the target on a trajectory which is essentially Coulombic up to a distance of
closest approach which is the larger of the touching separation and
e®ZpZy/ Ecy. At this point the remaining radial kinetic energy is dissipated
instantly. The intermediate system rotates through an angle A and due to cen-
trifugal and Coulomb repulsion it stretches and ﬁﬁally breaks apart at a separa-
tion corresponding to the observed TKEL for that particular angular momentum.
In this picture the radial kinetic energy during stretching is neglected. The
angle through which the system rotates is

A = 7 —Bp —Vegp (4.3.4)
where 3¢ = (34—¢*)+(8£—p/) is the sum of the Coulomb deflection angles in the

entrance and exit channels and can be calculated analytically (Bondorf et al

1975). The total interaction time is then calculated from
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L) = ML) L)/ (Bly)  (435)

where the changing moment of inertia of the system /(4 ,t) is approximated by
its average value I(%;) (see below). If [, =4;, that is, if the orbital angular momen-
tum is not changed one has the non-sticking (NS) limit. In the sticking (5) limit,

the angular momentum is reduced to iy =I;// Is where

Is = I+ 2MpRE + 2 0:RE . (4.3.8)

Here the system is assumed to have clutched at a certain separation. An (-
independent value of the moment of inertia of the system is used, for example,

I=pRE, where p is the reduced mass of the two spherical ions.

For the system '3®Xe (1130 MeV) + *°Bj, the deduced values of T are well

approximated by the function (Schrader et al 1978)
) = Toexp(-L/1o) .. (45.7)

where T5=1.B8 x 10™2° sec and I§=102.7 in the sticking approximation and
T89=2.18 x 107%® sec and I§°=B4.B in the non-sticking case. The deduced

diffusion coefiicients are D{*=7.0 x 10%*® sec™! and Di=4.4 x 10 sec™..

Different versions of this model have been used. Wolschin (1977 and 1977a)
and Wolschin and Nérenberg (1978) have considered a gradual transfer of rela-
tive angular momentum into intrinsic angular momentum of the nuclei. For the
system in the preceding paragraph, they deduced 04=4.0 x 10 sec™!. Riedel et
al (1979) allow not only for angular momentum dissipation, but alse introduce a
parameterization to allow for deformation, which is assumed to occur on a time
scale of 5 x 1072! sec. They found that inclusion of deformation leads to an
increase in the interaction time by 20-30%. A summary of empirical diffusion

coefficients for a number of reactions is given in Table (4.3.1).

In the analyses quoted above, the interaction time increases approximately
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exponentially with decreasing angular momentum. This is to be contrasted with
the results of Sventek and Moretto (1976), who deduce a linear relation from the
experimental data for the system %Kr (620 MeV) + ®7Au. TDHF calculations
predict yet another shape for T(l) (see Sect 4.5).

Classical dynamic calculations often fail to reproduce satisfactorily thé
angular distributions and TKEL distributions. Refinements, such as the adjust-
‘ment of the friction forces and satisfactorily allowing for deformations, are
being made to these models in order to obtain better agreement (for example,

see Mathews et al 1981).
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4.4 The Proximity Diffusion Coeflicient

Nucleons transferred between two colliding ions transfer mass, charge,
linear and angular momentum and energy. Thus, all of these macroscopic vari-
ables are fundamentally related since they arise from the same mechanism and
it is desirable to develop a unified treatment of all of the transport phenomena
induced by nucleon transfer. This is the task undertaken by Randrup (197Ba
and 1979). It must be remembered that other mechanisms, such as excitation
of collective modes which may act as drains of relative kinetic eneréy and angu-
lar momentum or the process of neck formation and rupture, may also be

important.

The intrinsic temperature produced in ordinary dissipative collisions is typ-
ically of the order of a few MeV, which is relatively small in comparison with the
Fermi energy, Tr® 37 MeV. At such low temperatures the many-body system is
still very degenerate and Pauli blocking remains effective in inhibiting direct
two-body collisions between the nucleons. In this case, the mean-field approxi-
mation is expected to be valid and the systemm may be pictured as a time-
dependent one-body field in which the individual nucleons move almost indepen-

dently.

One complication is the basic two-component nature of nuclei. Fundamen-
telly, one should consider a two-dimensional process in the N-Z plane, but the
very fast charge-equilibration observed due to the large restoring force associ-
ated with the nuclear symmetry energy may permit the one-dimensional treat-
ment of the Fokker-Planck equation to be a reasonable approximation except, of

&

course, in the very early stages of the collision.

Randrup (1978) considers the case of two weakly interacting gases of
independent fermions and derives quantum-mechanical expressions for the drift

and dispersion in mass number induced by the opening of a small window
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between the gases:

vg = [ de (Fo(e) — 5 (ENN'(e) : (4.4.1)

2Dy = [ de[(1—F2(e)) Fo(e) + f2(e) (1-FO (D] N'(e) . (4.4.2)

Here, f2%(¢) and f®(s) are the occupation probabilities of each gas for the
single-particle orbitals of energy £ and N'(g) is the rate of transfer from one
system to the other between orbitals of energy . These expressions show that
while the Pauli exclusion principle is immaterial to the calculation of the mass
drift, it is necessary to take account of the blocking explicitly in the calculation
of the mass dispersion. This may be understood qualitatively by requiring that if
a forced transfer were made to an already occupied orbital then it would be
necessary for a simultﬁneous transfer to take place in the opposite direction.
Although two particles would be transfered in this process there would be no
change in the total particle number of either system. The drift velocity can be

cast in a form to exhibit only transfers to unoccupied states:
vg = [ de[r(e)(1-52(=)) — ()1 (D] N'(z) = N® —N°, (4.4.3)

where N®° = fdef“-" (e)N'(e). The mass drift coeflicient, being a pure one-
body quantity, can be calculated without explicit reference to the Pauli princi-

ple. However, this is not the case for the diffusion coeflicient.

Ko et al (1978) also consider the transfer of nucleons between two Fermi

gases to find Dy, but ignore the Pauli principle and thus calculate N® + N°.

Ignoring barrier penetration and utilizing the Sommerfeld expansion to
expand the occupation function (Eq 4.4.6) in powers of the temperature, T,
Randrup (1978a) calculates D, in the proximity picture using the nuclear

Thomas-Fermi model. He obtains

= T Tet| R
Dy=2rngRb "—‘;’TI—“[—X'((D) . (4.4.4)
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where X', (&) = j'x'((‘){“d{ and x'(¢) = l—Tpa—v(('). Here Fy~ ez —ep is
- @ 277 8Tr(2y) i
the driving force acting on the mass asymmetry degree of freedom. By employ-
ing the same method as presented in Chapter 3 Randrup finds

2
o)

s Lo
& '?'TpaTF(zt)
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(4.4.5)
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In Chapter 3 it was seen that barrier penetration is very important in calcu-
lating the friction coefficients and one is led to ask if the same holds true for the
diffusion coeflicient. It is clear from the foregoing that the occupation probabili-
ties of the two systems and the relative levels of the Fermi energies play a criti-
cal role. With this in mind, the collision is viewed as follows. Initially, the N/Z
ratios of each nucleus are, in general, different and there is a mismatch between
the proton and neutron Fermi energies in each nucleus. This leads to a rapid
exchﬂ.ﬁge of nucleons on a time scale of the order of the charge equilibration
time until the Fermi levels become equal (or close). In this model, a non-zero
drift coefficient would result if, on average, a small difference exists between the
Fermi levels of the two systems. This involves additional difficulties. After the
rapid charge equilibration, the proton and neutron Fermi levels in the two sys-
tems remain coincident (or very close) for the duration of the collision. In cal-
culating the diffusion coefficient, any contribution from the charge equilibration
process is ignored, which leads to an wunderestimation of the diffusion
coeflicient by a small amount. This is a static calculation, which is probably a
good approximation, as the relative velocity of the two nuclei is small after the
Coulemb barrier has been surmounted. An estimation of the error involved in

neglecting kinematic effects can be found from the results of Sect 3.4.
The occupation probability for a neutron or proton with energy £ is

1
1+ E(E—?}-"’)/T

Fre(E) = (4.4.8)
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and it is assumed that the temperature of each system is the same. For each
species of nucleon g (v,) as defined in Chapter 3 must be generalized to accom-
modate a non-zero temperature and also the Pauli blocking. Clearly the

required quantity is

g (ws)dvs = 55 dve f () (1-F (v))d,

37 1
= d " 4.,
zvigm i e’“{"tz_”ﬁ)/zT Az (4 4 7)
and the flux from one nucleus to the other is
3T 1
n(s) = x(s)no = f Vet PP 8) ——
1

Here, ng = %quo is the flux of neutrons or protons in nuclear matter and the
variable of integration has been changed to the energy of a nucleon in the z-
direction. In terms of the function x(¢, 7)., the diffusion coeflicient in the proxim-

ity formulation becomes

Dy = 2n R b noX(¢o.T) . (4.4.9)
where
X(¢0T) = { x(¢) d¢. , (4.4.10)

Eq (4.4.9) is evaluated using the Hill-Wheeler penetration formula and the
single-particle barrier characteristics provided by the BKN force, just as in
Chapter 3. This expression is also evaluated using the WKB formula in order to
determine the sensitivity of the flux on the barrier penetration formula used.

For systems with an excess of neutrons, the single-particle potentials and
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nuclear matter properties are described by the SlII force and, for computational
convenience, the WKB barrier penetration formula is used. First, however, con-
sider the classical flux between the nuclei. Using the classical penetraticn for-
mula, Eq (3.3.15), one obtains

(B ~Te)/ T

n(s) = x(s)ng = %nu [Tp — B, + T ln (L+e M. (44a11)

F
It £;,=0 (which occurs at s=0), one has simply, to an excellent approximation,

n(s=0) = x(s=0)ng = %nu. (4.4.12)
which is just what Randrup calculates (Eq 4.4.5) since the definition of x used

Ty+Tg

in Eq (4.4.4) is included in
Ty

here is the same as Randrup's if the factor

the definition of X'. The definition of x used here is exactly the same as that of ¢
employed for the proximity friction, except that the transfer flux now arises
from the finite temperature of the system rather than the relative motion of the

nuclei. The flux is linear in 7 in Randrup's model and he was motivated to

extract the dimensicnless factor 3,—7'30 that a universal function of magnitude
F

unity at ¢=0, independent of temperature, could be constructed. This is not
possible in the present formulation and all the temperature dependence has
been left in x. Thus, a different x is needed for each temperature. It should be
noted, however, that the term contributing to this nonlinearity is just the loga-
rithmic term in Eq (4.4.11) and its presence marks the only difference with the
approximate expression derived by Randrup. Itz contribution is small unless the
barrier height is equal to the Fermi energy, in which case it entirely determines

the transmission over the barrier.

Using the BKN force for symmetric nuclear matter and the Hill-Wheeler for-

mula for barrier penetration, x(¢) is evaluated from Eq (4.4.8) in exactly the
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same way as was the proximity flux ¥(¢) in Chapter 3. The results for three
different temperatures are shown in Fig (4.4.1). Once again the disappearance
of the barrier for (<1 leads to a constant flux in this region. The arrow
corresponds to ¢=3.3 and marks the point where the barrier coincides with the
Fermi level. Randrup's approximate expression for the flux over the barrier
goes to zero at this point since the logarithmic term is absent and no account is
taken of barrier penetration in his model. The relative importance of barrier
penetration can be seen in Fig (4.4.2) where, for T=3.0, both x(¢) and the contri-
bution to x{¢) from the flux penetrating the barrier are plotted. This contribu-
tion reaches 50% at ¢=2.7 and dominates at larger separations. In Fig (4.4.1) for
¢>3.5 the relative flux at different temperatures is no longer simply in the ratio

of the temperatures. At ¢=5.0 the ratio of the fluxes has already grown to
x(T=1.0): x(T=R.0): x(T=3.0) = 1 : 25: 6

It is instructive to compare these results with those for ¥(¢) (exchange
flux) calculated in Chapter 3. (See Fig 3.3.1). The overall shape of the curves is
the same, but there are some differences. For the zero-temperature flux ¢, the
sole contribution comes from barrier penetration for ¢{=3.3. However, for the
Pauli restricted flux x at T=3.0 MeV, there is a contribution from nucleons going
over the barrier in this region. More importantly, at a given separation ¢, the
contribution from barrier penetration to the total flux is significantly greater for
the urnrestricted flux 4 than for the restricted flux y. However, this is to be
expected since the calculation of y involves only nucleons at the Fermi surface
in contrast to %, which gets contributions from the entire gas. Quantitatively,

this may be understooed in terms of the average energy per particle in the +z-

direction T, = %-Tp for the whole gas and the same quantity restricted to

nucleons at the Fermi surface T, = ;—Tp. In the latter case, therefore, a
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nucleon approaches the barrier with an energy which, on average, is some 70%
larger than in the case for the unrestricted flux. Thus, for the restricted flux at
a given separation (or barrier height}, relatively more flux is able to pass over
the barrier.

The dotted curves in Fig (4.4.2) are the same quantities as the full curves,
but calculated using the WKB formula instead of the Hill-Wheeler pentration pro-
bability. At a given separation this leads to a significantly larger flux, but the
curve is sufficiently steep that points on the two curves corresponding to the-
same flux are never separated by more than 0.4 fm. Randrup’'s results are also

displayed in Fig (4.4.2). The Fermi energy Tr for the BKN force was used in pro-

viding the overall scale factor of ?,—Tby which Randrup's results must be multi-
F

plied to make the comparison. This was done in order that the two methods
agree at ¢{®m0. Using Tr from the Seyler-Blanchard force one would obtain
x{¢=0) = 0.162, marginally smaller than the x(¢é=0) = 0.174 obtained from the

BKN force. However, it is important to realize that although the magnitude of x

is proportional to TLand thus is larger in a nuclear model which produces a
F

small T, the flux in nuclear matter, ng, for such a model is reduced. This
trade-off occurs when the diffusion coefficient is calculated. Since Randrup's
model neglects barrier penetration it is more meaningful to compare its predic-
tions with the classical flux (see Fig 4.4.3). This is just the same quantity
Randrup calculates except for the small logarithmic term in Eq (4.4.11), which
produces the exponential tail. The differences between the two methods are pri-

marily a result of the different forces used. The lower curve is calculated using

' the Hill-Wheeler formula.

The incomplete integral, X(¢), of x(¢) is shown in Fig (4.4.4). Except for the

extreme lail, the relative magnitude of the curves are simply the ratio of their



-85 -

ternperatures. Thus it is tempting to extract the dimensionless factor % just

as Randrup does, to produce a universal curve independent of temperature.
For example, ¥ and X could be calculated at a characteristic temperature for a

physically interesting process (say, T=2.0 MeV for typical deep inelastic colli-

T
sions) and the resultant curve multiplied by —2—‘;—to produce the universal curves

x' and X'. Then the diffusion coefficient would be given in terms of Eq (4.4.4).

For a non-symmetric system it is necessary to treat the neutrons and pro-
tons separately. In general, the neutron excess in each nucleus will be different
and this will lead to the neutron flux through the window being larger in one
direction. This is just the situation during charge equilibration in the early
stages of the collision. However, only the charge equilibrated system is studied
here. The barrier ch;racteristics and nuclear matter properties are deter-
mined from the SIII force and, for convenience, the barrier penetration proba-
bility is described by the WKB formula. The potential at the midpoint between
the slabs as a function of separation for /=6 =0 and /=6 =0.1877 is shown in
Figs (4.4.5) and (4.4.8), respectively. Fig (4.4.7) shows the neutron and proton |
flux form factors x* and »® for two nuclei, each with J =& = 0.1877 (which
corresponds to the charge equilibrated 8Kr+?%Bi system). In the absence of a
barrier ({~0) it is observed that x? is significantly larger than x™,but this is to be
expected from Eq (4.4.13) where it is seen that x(¢~0) is inversely proportional

TF,n
Tep

to the Fermi energy and from Fig (4.4.6) one finds = 1.2. Fig (4.4.8) also

shows thatl the single-particle barrier for protons rises to the Fermi surface at a
separation of only ¢=2.7 (in contrast to symmetric nuclear matter where this
occurs at ¢=3.3) while for neutrons the corresponding distance is ¢=4.2. This is
why x* decays rapidly compared to x™ at large separations. The solid curve is

the appropriate average of x™ and x* calculated according to
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1o X({) = ngy X(O) + Mgy x (£) - (4.4.13)

For T=1.0 MeV and T=2.0 MeV the incomplete integral X(¢) of x(¢) is plotted
in Fig (4.4.B). Once again, to a very good approximation, X scales with tempera-
ture. The dashed curve is for a system with 6=0.0 and T=2.0 and it is observed
to lie just below the curve for 6=0.1877 and T=2.0. The difference arises pri-
marily from the substantial flux of neutrons able to pass over the barrier at
large separations ¢>3.3 in the 6=0.1877 system. In view of the very different
barrier characteristics in Figs (4.4.5) and {4.4.6) which result in flux form fac-
tors as in Fig {4.4.7) it is perhaps surprising that there is so little difference
between these curves. Even the particle fluxes in bulk nuclear matter are

remarkably similar.

Finally, a comparison of y for symmetric nuclear matter calculated with the
BKN force is made with x calculated using SIII. (See Fig 4.4.9). The WKB pene-
tration formula is used. Apart from an overall scale factor the two curves are
remarkably similar. In both cases the top of the barrier coincides with the
Fermi level at {=3.3. The scale difference arises from the very different Fermi
energies T in the two forces. SII has an effective mass m°/m =0.76 and Tr=45
MeV while the BKN force has m*/m=1 and Tr=35 MeV. This ratio 45/35=1.3 is
just the scale factor by which the curves differ. However, an important point
regarding the temperature should be mentioned. In a Fermi gas the tempera-
ture depends on both the excitation energy per particle and the level density at
the Fermi surface which is different in the two forces. Thus, for a given excita-
tion energy, each force leads to a different temperature and the comparison

made in Fig (4.4.7) at the same temperature is misleading. However, if the fac-
tor ?,—Tis removed from y, the resulting curve ' is found to be almost identical
F

for the two forces.
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From this analysis one may conclude that the Pauli restricted flux through
the barrier contributes significantly to the total flux x, but not quite to the same
extent as does the Pauli unrestricted flux through the barrier to 7. In both
cases it was found that applying a realistic penetration probability, rather than
assurning unity, the flux over the barrier is considerably reduced. The proximity
flux function X appears to be insensitive to the neutron excess of the system in

spite of the strong dependence of X™ and X? on the neutron-proton asymmetry.
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4.5 Calculations for %Kr(712 MeV) + *%Bi

The goal of this section is to apply the results of Sect 4.4 to the system
84Kr (712 MeV) + ?°°Bi to obtain the variance of the charge distribution as a fune-
tion of kinetic energy loss TKEL. The results can be compared directly with the
experimental data. The mean trajectory method is used, whereby the diffusion
coeflicient calculated in Sect 4.4 is integrated over the TDHF trajectory. TDHF is
chosen as the mean trajectory since, in this model, deformation is not res-
tricted by some arbitrary parameterization and it- is hoped that the neck evolu-
tion, of critical importance in performing the integration, is accurately repro-

duced.

In general, there are two methods available for calculating the mass or
charge variance: the mean trajectory method and the method of dynamical

gimulation.

In the mean trajectory method, the dynamical equations for the macro-
scopic variables are integrated along the most probable path and the accumu-
lated dispersions are obtained by simultaneously integrating the various
diffusion coefficients along this mean trajectory. This method may be expected
to give accurate results provided that fluctuations in the macroscopic variables
do not lead to trajectories very different from the mean trajectory. It is impor-

tant to determine how well this condition is satisfied in heavy-ion collisions.

In direct dynamical simmulations, one starts with an ensemble of similarly
prepared dinuclear systems. For each system the conservative motion of the
macroscopic variables is followed until a nucleon transfer takes place, the time
and character of which is determined stochastically. The macroscopic variables
are slightly modified as a result of the transfer, but evolve conservatively again
until the next transfer. This procedure is continued until the fragments

separate. If a sufficiently large ensermnble of separate dynamical trajectories is
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studied, a multi-dimensional distribution function can be constructed. This
method corresponds to solving the dynamical master equation rather than the
Fokker-Planck equation. The simulation automatically takes into account
dynarmical fluctuations and provides a way of testing approximate solutions such
as the mean trajectory method. One drawback, however, is that many trajec-
tories must be followed and the required computation is substantially larger
than for the mean trajectory method. The method of dynamical simulation has
been applied by De and Sperber (1978), De et al (1978 and 197Ba) and Sherman
et al (1978) to study transport in nuclear collisions. These authors were able to
obtain fairly good agreement with the experimental data by the adjustment of a
few arbitrary parameters. However, the Fermi-Dirac statistics of the transferred

nucleons were ignored.

A dynamical simulation calculation recently undertaken by Mathews et al
(1981) for the system %8Kr (620 MeV) + '%7Au for =220 sets out to directly test
the validity of the mean trajectory approximation, in which the macroscopic
variables are assumed to evolve deterministically according to average friction
forces. Fermi-Dirac statistics are properly taken into account. In this model,
the dinuclear complex is described crudely as two spheres joined by a cylindri-
cal neck through which the two ions exchange nucleons. The potential energy
consists of the self-energies of the two ions and the neck, computed according
to the Lysekil mass formula (Myers and Swiatecki 1987). The neck motion is
damped by the dissipation generated by the moving cylinder wall according to
the wall formula (Blocki et at 1978). The transfer of nucleons transports charge,
mass and momentum between the ions and causes an increase in the excitation
energy because of particle-hole excitations in the dinuclear system. Prelim-
inary results indicate that the characteristics of the neck play a critical role in

determining all of the macroscopic properties of the collision, especially the
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excitation energy. Caution is therefore called for when comparing the results of
Mathews et al to the experimental data because of the rather crude parameteri-
zation they have employed for the neck. However, their results provide impor-
tant information on the validity of the mean trajectory method.

Mathews et al found that simple estimates from the mean trajectory
approximation agree reasonably well with those of the dynamical simulation,
although significant discrepancies exist for some important macroscopic vari-
ables. In particular, the simulation exhibits a much more rapid drift in charge
and mass, a somewhat smaller rate of energy loss, an increased angular momen-
tum exchange, and a slightly different behaviour of the neck radius near the end
of the collision than found for the mean trajectory. These differences are attri-
buted to the influence of discrete nucleon transport, since the predictions of the
two models converge as the mass of t.hé exchanged nucleon is diminished and
the transition probabilities are appropriately resce-xled. Since the radial and
angular cecordinates do not fluctuate much from their mean values, the mean

trajectory approach is probably a good approximation for these quantities.

The angular and radial coordinates and the neck radius, except in the final
stages of the collision, appear to be well represented by the mean trajectory.
Thus, it is tempting to believe that Time-Dependent Hartree-Fock (TDHF) trajec-
tories for different angular momenta will accurately reproduce these gquantities,
at least within the approximations inherent to TDHF. Moreover, TDHF has been
found to reproduce guantitatively the experimental angular distributions (Dhar
et al 1981). Thus mean trajectory estimates of the mass and charge variances
can be found by integrating the diffusion coefficient of Sect 4.4 over the trajec-
tory. The system chosen for this purpose was &®Kr (712 MeV) + %08Bj
(EZcu = 509 MeV) for which both the the experimental variances (Huizenza et al

1976; Huizenga 1981) and the TDHF trajectories (Davies and Koonin 1981; Davies
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1981) are available.

The interaction time in the TDHF results is taken to be the time interval
during which the minimum density along the symmetry axis exceeds one-half of
nuclear matter saturation density. The l-dependence of the interaction time is
shown in Fig {(4.5.1) and it is seen to increase smoothly from zero for =350 to
2.15 x 107! sec for 1=150, except for the point 1=250. Single-particle effects
are probably responsible for the anomalous behaviour for this particular trajec-
tory. Also shown in Fig (4.5.1) are the deduced interaction times for the non-
sticking model calculated by Schréder et al (1977) by the method described in
Sect 4.3. The values for the sticking model, which may be a better approxima-
tion, are larger by almost a factor of two. Although TDHF and these models
predict the same magnitude of the interaction time, their predictions are very
different for the rate at which the time increases with decreasing angular
momentum. In particular, for the lower angular momenta TDHF predicts an
almost constant value, whereas in the phénomenological model the interaction
time increases exponentially. Clearly, some independent determination of the
interaction time, such as the atomic interference method (Mathews et al 1981a),
would be useful in deciding between these two predictions. In Fig (4.5.2), the
total relative kinetic loss (TKEL) is plotted as a function of angular momentum.
Again a smooth variation is seen except for 1=250 and TKEL increases with
decreasing angular momentum, that is, increasing interaction time, as would be
expected. The filled circles in Fig (4.5.2) are obtained from the histogram of
do/ dTKEL vs TKEL in Fig 3 of Huizenga et al (1976) by the method described in
Sect 4.3, The grazing angular momentum used in this analysis is I;,.,,=350
(Schrider et al 1977), which fortunately coincides with the angular momentum
at which TKEL goes to zero in the TDHF calculation. The shape of this curve is

typical of such analyses. While good agreement exists between the TDHF results
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and the experimentally deduced values for the lower angular momenta, there is
a substantial discrepancy for higher L. This may be attributable, at least in part,
to the clutching approximation made in order to apply the rotating frame
approximation in the TDHF calculation. Clutching was invoked as socn as the
minimum density along the symmetry axis exceeded one-half of the saturation
density. (See Sect 4.3). This procedure almost certainly overestimates the
transfer of relative angular momentum into the intrinsic modes for peripheral
collisions and consequently may, in this region, lead to longer interactions and

also an overestimation of the kinetic energy loss.

Figs (4.5.3) and Figs (4.5.4) show the density profiles for the collisions 1=300
and l=150, respectively. Even for the peripheral collision [ =300 the fragments
are seen to distort markedly and there is a substantial overlap of the nuclear
densities. For I =150 the overlap becomes so great that it is quite impossible to
distinguish between the fragments and the separatian coordinate ceases to be a
meaningful quantity. The incompressibility of nuclear matter in this model® is
sufficiently large that the density betwen the ions never grows beyond the
saturation density. Furthermore, the density in the neck is essentially that of

the bulk region.

With these observations in mind the following method was employed to
integrate the diffusion coefficient over each trajectory. For each time step
At=0.05 x 107! sec the radius of the window R, was determined by measuring
out from the symmetry axis to the half-density radius. The values of R, as a
function of time for several trajectories are shown in Fig (4.5.5). Since the den-
sity of the neck is essentially that of saturated nuclear matter, x{¢=0) was used
as the flux per unit area through the window. The remaining problem is the

determination of the temperature, or the excitation energy, at each time step

1A modified Skyrme II force is used where K=342 MeV.
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during the collision. The excitation is essentially given by
E' = EF“—Vcou;—th—VN—Ek. (4—.5.1)

‘where Vg, is the Coulomb potential, at least at large separations, between two
point charges. For small overlap, the Coulomb potential drops slightly below this
value {for example, see Birkelund et al 1979), while for deformed configurations
the problem is more complicated. ldeally, a mass formula capable of dealing
with such highly deformed systems would be used. Vy is a measure of the
nuclear patential energy, which would be negative in the early stages of the col-
lision as the nuclear surface area decreases. The rotational energy depends on a
knowledge of the moments of inertia of the composite system and of the indivi-
dual fragments and also of the apportionment of the angular momentum among
the available degrées of freedom. As a first approximation, the rotational energy
may be calculated in the sticking model where clutching occurs when the ions
reach some minimum separation or the minimum density along the symmetry
axis reaches some predetermined value. The moment of inertia could be
estimated using the reduced mass of the fragments at the instantaneous separa-

tion.

Using the Coulomb potential between point charges, the nuclear potential
energy from the reduction in surface area because of neck formation and the
clutching approximation in calculating the rotational energy, a crude estimate
for the excitation energy could be obtained. It was found to remain small up
until the point of closest approach, whereupon it dropped off rapidly to the final
asymptlotic value as the fragments separated. With the observation that the
dominant contribution to the mass variance comes from the slow separation of
the fragments accompanied by a substantial neck, it was found to be a reason-
able approximation to use the asymptotic excitation energy for the entire colli-

sion. The approach phase leading to the distance of closest approach accounts
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for only a small fraction of the interaction time. Furthermore, the calculation is
relatively insensitive to the excitation energy since only the square root of this
quantity appears in the integrand. With these approximations, the mass vari-

ance is calculated according to:
t
02 (1) = 2x(T.¢=0)mo 3 m RE(t) At , (£5.2)
t=At

where x(7,{=0) is obtained from (see Eq 4.4.12)

nox(T) = ng, %4— Top % (4.5.3)

with the temperature given by T =+BE /(4,+4z). The values of

Tpn, Trp. To. Mg, @0d g, used are from the Skyrme III force and are given in

Fig (4.4.8). The charge variance is calculated from the relation (see Sect 4.2)
z|? '
af () = [A—] o? (1). (4.5.4)

Using the data of Fig (4.5.2), the resuits of this analysis can be plotted as a func-
tion of TKEL. This has been done in Fig (4.5.6). Also shown are the experimental
points (Huizenga 1981). The large discrepancy for small o2 was to be anticipated
from the poor agreement between the TDHF TKEL and the experimentally
deduced values. This effect can be removed by using the experimental values of
TKEL(l) instead of the TDHF results in calculating the temperature and in plot-
ting the points. When the data are modified in this way much better agreement
is obtained. (The triangles indicate the data recast in this form). The agreement
for small g2, that is, for peripheral collisions, may be somewhat fortuitous if it is
indeed the case that the use of the clutching approximation has increased the

interaction time in the peripheral collisions.

The information in Fig (4.5.2) can be used to show the dependence of the

experimental charge variance on angular momentum. (See Fig 4.5.7).
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Agreement is achieved within the experimehtal uncertainty. For small I, how-
ever, one must question the applicability of the diffusion model described here,
as the transfer of nucleons is assumed to take place through a small window
between the fragments. For l=150, Fig (4.5.4) shows that near the point of
closest approach the interpenetration of the ions is substantial and it is quite
impossible to distinguish a neck. Il:. may well be that a more complex model is

needed to properly take account of such situations.

It is interesting to compare the average mass diffusion coefficients (Fig
4.5.8) with the prediction of the model of Ayik, Nérenberg et al (Ayik et al 1976,
1978a and 1978; Schilrmann et al 1978) (see Table 4.3.1). In Fig (4.5.8) it is
observed that D4 (1) increases to a value of 1.6 x 10?® sec™! at L=150. This is to be
compared with the value of Ayik, Nﬁrenb_erg et al of 3.2 x 10?2 sec™!. The deduced
values using the phenomenological non-sticking and sticking models are
5.3 x 10* sec™! @d 3.7 x 10® sec™!, respectively. Thus the average mass
diffusion coefficient in this analysis is a factor of two smaller than values
obtained elsewhere. In performing the summation in Eq (4.5.2), it was found
that the variance was most sensitive to the neck radius. The three trajectories
1=200, 1'?5 and 150 are almost identical (and have very similar interaction
times) and the increase in the variance for decreasing angular momentum arose
almost solely from the slightly larger neck radius. For the more peripheral col-
lisions, the neck size was still the most important feature, but the time for which
the neck exists (the interaction time) was also important. The excitation energy,
entering only through its square root as the temperature, had least effect from

one trajectory to the next on the variance.

It is plausible, therefore, that the experimental mass and charge variances
can be explained in terms of a diffusion equation, where the diffusion coefficient

is given as the rate of transfer of nucleons through a small window from one
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Fermi-Dirac gas to another. Theré are no adjustable parameters in this treat-
ment. It should be remembered that it is essential to include the efifects of
Pauli blocking in the calculation of the diffusion coefficient; this has been
neglected in many models. An accurate description of the neck characteristics
was found to be of critical importance in this analysis. This means that in the
classical dynamical calculations and the simulation method particular attention
should be given to finding an adequate parameterization which is able to account

satisfactorily for the neck evolution.

It would be interesting to see if the agreement achieved between experi-
ment and the model presented here persisted for other systems. More precise
experimental data exist for the systems '3%Xe + #°Bj (940 and 1130 MeV) and
TDHF calculations have recently been performed by Dhar et al (1981). It is anti-
cipated that a similar analysis will be undertaken for these systems in the near
future. It must be remembered, however, that the fnean trajectory approxima-
tion was employed here and it remains to be shown how valid this procedure is.
Finally, there is the question of how well TDHF approximates the mean trajec-

tory and, in this case, how severe is the clutching approximation.
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Appendix 1 Numerical Solution of the Statie Hartree-Fock Equations

The slab is constructed by solving self-consistently the set of equations Egs
(2.5.5), (2.5.10), (2.5.12), (2.5.13) and (2.5.14) for a given @. By symmetry, the
eigenfunctions are alternatively even and odd about the center of the slab and

therefore it is only necessary to find the solution in one half of the slab.

The Schradinger equation, Eq (2.5.10), is solved directly in coordinate space
by the Numerov method (Froberg 1965). The mesh points are located at

z;=(F— -g-)/_\z , 1=j=<M. The boundary condition at the crigin for even states is

that ¢, =0 and is itﬂposed by setting ¢;-2 =¢;=;. The boundary condition for odd
states is imposed by setting ¢;-2=—p;=). The points j=1 and j=2 are located at
a distance ;—Az each side of the origin. The boundary condition at the far end of
the mesh is that g, =~ exp[—z(zmen/hé)lfz]. This is implemented by setting
vu =0 and ¢y_; equal to a small number. The wave functions ¢,, are found by
integrating out from the origin and in from the end of the slab to a point just
inside the surface region of the slab. The trial value of e, is increased until the

logarithmic derivatives of the inside and outside solutions match.

The iteration procedure is begun from a Fermi density distribution
corresponding to a slab thickness of @/py and a surface width characterized by
the Woods-Saxon parameter a =0.489 frn, normalized to the total mass @. Given
the density p(z), the single-particle potential #(z) is calculated from Eq (2.5.5).
The eigenvalues e, and eigenfunctions ¢, are then calculated as described
above. The integration algorithm for the Yukawa potential given by Bonche et al
was not used here. With the much smaller mesh spacing of Az =0.05 fm
employed sufficient accuracy is obtained by a simple point-by-point summation.

The Fermi energy, ¢r, and number of occupied orbitals, N, are found by

solving the equation
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o = iﬂ(sp—en) i%(s;-—en). (A1.1)

n=l1

Given £z and the weighting factors @, the new density can be constructed. The
convergence of this procedure is improved by using the average of the two most
recent solutions to construct the new density. The convergence of the density

and the energy eigenvalues can be specified quantitatively by pgn and egg,,

where
pi—p; "
Pion = max l——"——-—;’i——-— I, (A.12)
2sjsM-5 Pj
N ei__ei—l
el = 3 | 22— e | (A13)
n=1 n

and the superscript i refers to the iteration number. For a slab of mass @ =3.0
fm™, for example, 9 wave functions are required. With M =300, after 40 itera-
tions, pgen =1 x 107™ and e,,, =5 x 1075, After only 20 iterations, however, p ., = 1
x 1072 and ey, =6 x 107* and the total energy has converged to cne part in 108,
quite sufficient for present purposes. The major contribution to pg,, comes
from points in the extreme tail and the small amount of matter here has a
negligible effect in determining the macroscopic properties of the slab. The

main contribution to e, comes from ey.

In calculating the positions of the the central surface, 2., from Eq (2.2.6)
and the surface width, b, from Eq (2.2.8) the range of integration was restricted
to a region of about 6 fm enclosing the surface. The reason for doing this was to

exclude contributions from the density oscillations in the interior of the slab.
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Appendix II Calculation of Observables in the Non-Orthogonal Basis

In order to calculate the nucleon and kinetic energy densities via Eq (2.6.2)
it is necessary to determine d™!, the inverse of the matrix of overlaps, d. For

simplicity, two identical slabs were considered. The product wave function is

written as
® = gpip2 - pnV¥2 0 Y (AIL1)

where ¢ and ¢ refer to the single-particle wave functions in the left and right
slabs, respectively. Each ¢, for example, represents an infinite number of wave

functions:
Pn = Pnlk)) ¢alkz) - Pnlkmax) (A.ILR)

where k; = |k}|. For N =3, d becomes

1 0 0 P1¥1 e1¥2  ¢1¥s

0 1 0 Ya¥1  $2¥2  @2¥s
0 0 1 wa¥:s ws¥z  @3¥s
d = ] (AII.B)
iv1 Yivz  Yaivs 1 0 0
Vo1 Va¥z VYaes 0 1 0
Ya¥:y Yspz Yaps 0 0 1

The simplification in the upper-left and lower-right corners results from the fact
that all wave functions within a given slab are orthonormal. Each entry in Eq

(A.IL.3) is a shorthand for the appropriate scalar product. For example,
ypi1¥) = f(?’lewz)'("pi e ™) dz = fga;(z) Piz) e B dz, (A11.4)

The states in the right slab, ¥,, were formed by reflecting the states in the left

slab, ¢,, through a plane at the origin.

The procedure involved in calculating the inverse can best be illustrated by
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considering a discrete spectrum for k,. Let ¢, be associated with k,,kz and kg,

@2 with k,...k4 and g3 with k,,...k5. The upper-right corner of d becomes

a b . c
a b . c
a . b c
b* e . d
b* e . d
o = . . b v v B 5 e o & o w ‘ (AIL5)
ey wm b ow o ow = B s oa s B g
c* d® . bi
¢’ i’ I
¢’ a’ r .
d* i s
J
where
a = fga,(z) ¥1(2) cosRkz dz,
and .
b = [oi(z) ¥a(z) e 2= dz, ete. (AILB)

Only non-zero entries are shown in Eq (A.IL.5); all overlaps between states of

different k, are zero. The overlap matrix d is given by

_ I M
g [ ) (AILT)

where [ is the identity matrix. For the case of a continuous spectrum of k, the
number of states associated with ¢, is represented by &,. There are six
columns {or rows) in M with a different set of elements, the number of columns

with the same set of elements being proportional Lo the weighting factors

a’ =a, a, Q,-0, @, Q—-0Q, Ay—Q;. (A.ILB)

The inverse of d can be found by replacing al/s by a ete. and inverting the 12x12

matrix d. However, only the inverse (7 — #?)~! need be calculated since

d-l = (I - M2 [_IM 4 ] (AIL9)
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For a slab described by the N wave functions ¢,. ¢a ' - ¢y, 2 P =;—N(N+1)-

dimensional matrix must be inverted. For N=4, p =6 and for N=6, p =21. To
invert the complex matrices the IMSL subroutine LEQRC was used. This routine
applies iterative improvement until the sclution is accurate to machine preci-

sion.

The nucleon and kinetic energy densities are calculated according to Eg

(2.8.2):
p = (ki) a’@) d k) (A_Il.loj
ki
and
=Y (k|T)a’@) d (), C(AIL11)
kL
where
(k1) = fudz)w(z)dz, (AIL1R)
(k|Tit) = [ Vu(z) Vu¥(z) dz , (A.11.13)

f] ={p,¥] and O'.'(l) are the appropriate weighting factors.
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Table 2.3.1

The proximity potential ®(¢) for elastic scattering. The values were
obtained from the nuclear potentials tabulated by Christensen and Winther
'(1978) by the method described in the text. References to the experimen-
tal papers can be found in this article. The values of $(¢) are plotted in Fig
(2.3.1). The quantity k appearing in the last column is a measure of the
relative velocity of the ions in the CM frame at the separation ¢ and is

defined in Eq (2.8.5).
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Table 2.3.1
Eygp ¢
(MeV)
=0.0 4.570
11.0 4.648
2B.0  4.534
14.0 3.719
21.0 4.118
15.0 3.987
'26.0 4.079
27.0 4.004
80.0  4.227
60.0 4.231
60.0  4.122
40.0 3.937
8B.0 4.115
30.0 3.583
36.0 3.448
50.0 3.984
60.0 3.877
100.0 3.839
36.0 3.089
40,0 3.213
48.0 3.828
43.0 3.543
440 3.077
60.0 3.505
36.0 2.951
42.0  3.4B7
44.0 3.202
60.0 3.597
56.0 8.781
42.0 8.429

.0oe7
.0033
.0071
.0385
.0128
.0189
.0132
.0198
0126
.0123
.0150
..0245
.0178
.0543
.0478
0196
.0226
.0316
.0887
.0527
.0286
0486
0772
.0449
.0839
.0504
.0698
.0370
.0297
.0483

(continued next page)

(fm™)
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14
.05
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.07
A7
.16
.18
13
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.08
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.05
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.13
.04
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.05
AR
.12
.07
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Table 2.3.1 (cont’d)

Zz

32
32
32
32
32
40

XL 8B

38
38

40
38
50

50
62
60
82
82
B2
82
82
82
83
92
B3
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Ehap
(MeV)

45.0
38.0
45.0
50.0
58.0
38.0
45.0
50.0
51.0
54.5
49.5
52.0
60.0
54.0
60.0
65.4
54.0
68.0
65.8
68.0
70.0
72.2
96.0
104.0
129.5
182.0
161.2
340.0
340.0
712.0

¢

3.613
2.833
3.378
3.419
3.688
3.624
2.914
3.232
3.578
3.624
3.422
3.287
3.512
3.302
3.403
2.821
2.504
3.314
3.443
3.690
3.200
3.554
3.407
3.433
3.281
3.254
2.9086
2.230
1.914
1.764

.0388
.0900
.0513
.0877
0435
0461
.1030
.0656
.0416
0376
.0539

0696
0494
.0760
.0599
1175
1444
.0568
.0547
.0341
.0991
.0308
0512
0484
.0693
.0589
.0958
0893
.1300
.1466

(fm™)

.09
.02
.09
.08
i
.00
.04
.0B
add
.13
.08
.06
.10
.06
.09
.06
.05
.08
.09
.13
.07
.16
.19
14
.19
29
.19
21
.19
.20
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Table 2.3.2

The proximity potential ®(¢) extracted from fusion excitation measure-
ments. This is a modified version of the table given by Birkelund and
Huizenga (1978), where references to the E};:perimental papers can be
found. Details of the method used to extract ®(¢) are given in the text. The

data in this Table are plotted in Fig (2.3.2).



=111 =

Table 2.3.2
Reaction ) —&p
He + Dy R2.63+0.2 0.185+0.007
‘He + ®3U 1.61+0.6 0.435+0.02
Wi+ b 0.79+0.2 0.557+0.008
2c 4+ 12 241 0.110
12c + 1825m 2.73+£0.3 0.116+0.02
180 + 2¢  3.01 0.103
180 +27A1  2.63+0.15 0.141+0.04
180 + ¥8Ngd  1.37+0.2 0.59+0.03
180 +208pp  2.14+0.8 0.32+0.08
180 +12C 3,19 0.088
180 4+ ¥BNg  0.71+0.2 0.73+0.04
19p +22¢ 2,90 . 0.142
BS + Mg 23+0.3 0.25+0.02
%25 + %Al 1.98+0.3 0.35+0.01
%25 +40Ca  2.14+0.3 0.37+0.01
3BCL+27A1  1.95+0.2 0.36+0.02
BCL+4Ti  1.43+0.3 0.56+0.03
BCl +¥Fe  2.0+0.4 0.32+0.05
ClL+%Ni 1.43+0.2 0.64+0.01
ClL+%Ni  1.57+0.2 0.57+0.01
BClL+%Ni  1.91+0.2 0.44+0.01
BCL+Ni  1.96+0.2 0.43+0.01
0L+ ¥Zr  1.44+0.3 0.83+0.01
3C1+ 1183n  0.93+0.4 0.86+0.04
3Cl+ ™sn  1.09+04 0.65+0.03
OAr + 10975 1,27 0.32
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Table 2.4.1

Parameters of the Skyrme interactions SII-SVI. (From Beiner et al 1975)



Force tg
(MeV-fm?)
SII -1169.9
SIII -1128.75
SIV -1205.6
SV -1248.29
SVl -1101.81
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Table 2.4.1,

t,

588.8
395.0
765
970.56
R_71.87

ty

(MeV-fm®) (MeV-fm®)

-27.1

-85.0

35.0
107.22
-138.33

Ly
(MeV-fm®)

9331.1

14000.0
65000

0.0
17000

Zg

0.34
0.45
0.05
-0.17
0.583
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Table 2.4.2

Binding energy per particle E/ A, Fermi momentum, kz, incompressibility
coeflicient, K, eflective mass ratid m°/m, and symmetry coefficients &,
and £z in nuclear matter calculated with the ékyrme interactions SII-SVI.
The interactions have been ordered in decreasing value of the parameter tg.

(From Beiner et al 1975).



Force

Shi
Sh
SIv

E/A
(MeV)

-15.77
-15.87
-16.00
-15.98
~16.06

kg
(fm™)

1.29
1.29
1.30
1.31
1.32
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Table 2.4.2
K m°*/m
(MeV)

364 0.95
356 0.76
342 0.58 -
325 0.47
3086 0.38

£;

(MeV)

26.89
2B.16
34.2

31.22
32.72

gz

(MeV)

0.67
0.83
1.10
1.37
1.70
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Table 2.5.1

Parameters and nuclear matter properties for the Skyrme VI force, the
Skyrme force with m°/m =1 described in the text and the finite range

Yukawa interaction (BKN force). (From Bonche et al 1976).



tg (MeV-fm®)
t, (MeV-fm®)
t 5 (MeV-fm®)
tg (MeV-fm®)
a {fm)
aVp (MeV-fm)
E/ A (MeV)
kp (fm™)
K (MeV)

-117-

Table 2.5.1

SVI S (m°/m)

-1101.81  -1089.0
R71.67 251.11
-138.33 -150.68

17000 17270
-15.77 -15.77

1.29 1.29
362 368

Yukawa

-497.726

17270
0.45979
-168.9239
-15.77
1.29
368
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Table 2.5.2

The mass, @&, surface width, b, 10-90% distance, %;9_gp, central surface, 2z,
and half-density surface, z,,5, for different slabs. In each case a mesh

spacing of Az =0.05 fm was used.



(fm~2)

1.8
2.2
2.8
3.0

b
(fm)

0.89
0.89
0.90
0.89
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Table 2.5.2

£ 1050
(trm)

1.84
1.87
1.88
1.87

(fm)

8.21
7.61
B.99
10.37

Zy/2
(fm)

6.21
7.61
8.99
10.37
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Table 2.9.1

Experimental and ti:eoretical values of 7, —7,, the difference between the
root-mean-square radii of the neutron and proton distributions, for the
nuclei *®Ca and *°®Pb. This is an expanded version of a table given by
Shlomo and Friedman (1977), where the references to the experimental

papers can be found. The values are from:
1 Shlomo and Friedman (1977),

2 Beiner et al (1975) and

3 Myers and Swiatecki (1969).



Nucleus

480y

=epy,

Tn —7p (fm)

0.08 +0.05
0.12+0.05
0.03 +0.08
0.17+£0.05

0.14
0.17
0.20
0.24

0.0+0.1
-0.05+0.1
-0.05 £ 0.05
0.00+£0.1

0.0+0.1

0.13
0.19
0.23
0.38
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Table 2.9.1

Method

7t total cross section (90-240 MeV)
p elastic scattering (1 GeV)

a elastic scattering (79 MeV)

a elastic scattering (1.37 GeV)

STII Hartree-Fock
SIV Hartrere-Fock
SV Hartree-Fock

droplet model

n* reaction cross section (20-60 GeV)
7* reaction cross section (1-2 GeV)

p elastic scattering (1 GeV)

a scattering (104 MeV)
bremsstrahlung-weighted cross section

SIII Hartree-Fock
SIV Hartree-Fock
SV Hartree-Fock
droplet model

Ref

B S e e [+ B . B o B o [T T e T

(o7 B AV B o I A
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Table 4.3.1

Thecretical and deduced diffusion coefficients for a number of different sys-

tems. (See Sect 4.3 for details).

a) Riedel et al (1979)

b) Schrider et al (1978)

c) Wolschin (1977)

d) Wolschin and Nérenberg (1978)
e) Gobbi and Nérenberg {1980)

f) Schrader and Huizenga (1977)
g) Wolschin (1977a)

h) Ayik et al (1976a)

i) Moretto and Schmidt (1978)

j) Riedel and Nérenberg {1979)



Reaction

138Xe + 209B;j

B4Kr + ?0%B;j

B4y 4 1851g

BBKI. + IGBEI.

Z38y 4 ey

1Y + 12050

208py, 4 R0BpH

208py, 4 28
“UAr + 10‘?—-109Ag

88Kr + 197Au

Eap
(MeV)

1130

900

712

714

703
619

015

1766

779
1560
1456
1560
288

620
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Table 4.3.1

DiMi)

(10?2 sec™1)

2.84:)

2.3°

2.5d.ﬂ)

2.4%9)

2.3¢)
2.1

1.6
2.9°)

2.0%°)
2.6°)
2.8°)
2.9°)
1.63%

2.439%)

DiMii)
(10%2 sec™?)

4.0°)

2.7%)

3,2¢)

3.3¢)

2.89)

219

3.1°)

2.29)
3.1°)
3,7°)

3.9¢)

Dg=p
(10°2 sec™?)

4.0°9)
4.5%)
4.4-7.0%)

3.5%

2.9%)
3.7-5.37)

2.49)
5.9%)

- 8,2-4.37)

4.0%)
2.7°)

2.0%)
1.9¢)

7.5°4)
6.09)

1.6°9)
2.59)
R.9%)
3.9¢)
1.39

2.0%)
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Figure 1.1.1

Distant, grazing and close collisions in the classical picture of heavy ion col-

lisions (after Nérenberg 1980).



grazing collisions
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distant collisions
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Figure 1.1.1

elastic scattering
direct reactions

compound nucleus
formation

dissipative
collisions

Ruther ford scattering
Coulomb excitation
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Figure 2.2.1

Illustration of the proximity method. The total interaction energy of the
two surfaces is approximated by the integral, over the surface of the gap, of

the interaction energy between two semi-infinite surfaces.
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Figure 2.2.2

The proximity function ¢(¢) calculated in the frozen density approximation
using the nuclear Thomas-Fermi model with the Seyler-Blanchard

phenomenological interaction. (From Blocki et al 1977).
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Figure 2.2.3

The proximity potential $(¢), calculated as the incomplete integral of the

proximity function p(¢) of Fig 2.2.1. (From Blocki et al 1977).
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Figure 2.3.1

The nuclear potentials of Christensen and Winther (1976) for elastic scatter-
ing cast in the dimensionless form &(¢) by the method described in the text
(filled circles). The open circles represent the nuclear potential for two
reactions, but evaluated instead at the strong absorption radii (see Sect

2.8). The curve is the proximity potential of Blocki et al (1977).
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Figure 2.3.2

Elastic scattering and fusion data cast in the dimensionless form $(¢). The
filled circles are the elastic scattering data shown in Fig (2.3.2). The open
circles and triangles are from an analysis of the inelastic reaction data
tabulated by Birkelund and Huizenga (1978) and are deduced by the
method described in the text. The open circles are based on excitation
function measurements of fusion cross sections by counter-telescope meas-
urements of evaporation residuals or fission fragments or both, while the
triangles are from excitation functions based on summing measured partial
fusion cross sections. The curve is the proximity potential of Blocki et al

(1977).
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Figure 2.5.1

The density profile for a slab of mass @ =2.2 fm™. Also shown are the sur-
face characteristics £,5-gp, the distance over which the density drops from
90% to 10% of the bulk value, z,,5, the position of the half- density surface,
Z;, the position of the central surface and b, the surface thickness. The

center of the slab is located at z=0.
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Figure 2.6.1

The density profile of two overlapping slabs each of mass & =1.4 fm™® at
separation ¢=0.77. The solid line is calculated in the frozen wave function
approximation with k =d.0 fm~!, while the dashed curve is the density

profite in the frozen density approximation.
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Figure 2.8.2

Curves of ¢(¢) for a number of different k calculated in the frozen wave
function approximation. The curve for k =« was calculated from the den-
sity of two superposed slabs. For reference, the dotted curve is the proxim-
ity potential of Blocki et al (1977). Identical slabs of mass @ =2.0 fmm~? were

used in each case.
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Figure 2.6.3

Expanded view of Fig (2.6.2) for the range of éeparations 2.5=¢(=<4.5. For
reference, the proximity function of Blocki et al (1977) lies between the

curves for k =0.5fm™! and k = ca.
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Figure 2.6.4

The proximity potential ®(k,¢), calculated as the incomplete integral of the

proximity function ¢(¢) in Fig (2.6.83). For reference, the potential of Blocki

et al follows very closely the curve for k =0.5 fm™.
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Figure 2.7.1

The proximity mass function u(¢) calculated for two identical slabs of mass

a=20fm™>%
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Figure 2.7.2

The proximity mass function M(¢), the incomplete integral of u(¢), calcu-

lated from the curve in Fig (2.7.1)
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Figure 2.7.3

The mass parameter as a function of separation in the CM frame for the col-
lision of 0 on 0. The reduced mass of B is indicated by the horizontal

line. The arrow marks the touching separation ¢ =0.
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Figure 2.8.1

Illustration of the method of periodic boundary conditions used in the
attempt to derive an adiabatic proximity potential. The calculation is done
in the region denoted by the full line. For fixed @, the position of the right

boundary determines the separation of the slabs.
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Figare 2.8.2

The proximity function ¢(¢) calculated using the ground state solution
obtained from the method of periodic boundary conditions for a slab of
mass =3.0 fm™2. For comparison, the curve of ¢(¢) calculated in the frozen

density approximation is also shown.
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Figure 2.9.1

The surface energy coefficient, 7, vs the square of the bulk asymmetry, 62,
for no neutron skin and for a neutron skin thickness of £ =0.1 fm. The SIII

energy functional is used.
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Figure 2.9.2

The interaction energy e(¢) for slabs with different bulk asymmetries, but

with no neutron skin. The Skyrme IIl energy functional is used.
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Figure 2.9.3

The interaction energy e (¢) for identical slabs with each with a neutron skin
thickness of 0.1 fm for a range of bulk asymmetries. For comparison, the

interaction energy of symmetric nuclear matter with no neutron skin is

also shown.
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Figure 3.2.1

Two systems in relative motion communicating through a small window of
area Ac. In the window frame the systems are characterized by the average

drift velocities 14 and 2.
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Figure 3.3.1

The exchange flux function ¥(¢). The upper solid curve is the total flux
penetrating the barrier calculated from Eq (3.3.18), while the lower solid
curve is the contribution from particles passing through the barrier, that
is, from particles with E; = B, The dashed line is the flux calculated using
the classical transmission probability function, Eq (3.3.15). The dotted

curve is the result obtained by Randrup (197B).
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Figure 3.3.2

The single-particle barrier calculate-d using the BKN force in the frozen den-
sity approximation for two semi-infinite slabs -at separation {=2.71. The
bulk region values of the Fermi energy, £r, and the single-particle potential,
W, are indicated by the horizontal lines. On the right-hand side d+/ dE, is

plotted for this separation. The quantity E, = é—mvf is the z-component of

the nucleon kinetic energy and is measured from Wo.
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Figure 3.3.3

The single-particle potential at the midpoint between the slabs as a function
of the slab separation calculated in the frozen density approximation (solid
line). The dashed curve is the same quantity, but calculated instead in the

frozen single-particle potential approximation.
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Figure 3.3.4

Comparison between the picture of Randrup and the barrier penetration
model. The single-particle potential is shown in {(a). The quantity W; is the

single-particle potential in bulk nuclear matter, & is the Fermi energy,

i

= mv% is the height of

Tp= %—mv} is the Fermi kinetic energy and E;g=
the single-particle barrier, measured from Wy The quantity Tp(z) =
Tp—FEyp = %—m(v,? —v%) is the local Fermi kinetic energy from which the
flux is calculated in Randrup’'s model. The states contributing to the flux in

Randrup's picture (b) and the barrier penetration picture (c) are indicated

by the shaded region.
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Figure 3.3.5

The incomplete integral, ¥, of ¥ for the barrier penetration model. The
dashed curve is the result obtained by Raﬁdrup (1978). The arrows
represent the breakthrough distance in each model, that is, the separation
at which the top of the single-particle barrier coincides with the Ferrﬁi

level



_173-

S ¢t oIndig
q Jo s3Tun UF § uorjeiedas ay3l ‘g
} £ c

1""

80uBlsIp
ySnoayieaiq

dnaipuey =-----

uoTIBINOTED JUISVIJ

0°0
1'0
¢ 0
=]
= o
£ @
o
1
[=]
»
1'0 &
T..
rt
L
S0 =
&
Iu
=
9'0 &
T
a4
o
=
L0 ey
80
60
01



- 174 -

Figure 3.4.1

Two identical systems each characterized by a Fermi velocity vp approach-
ing with a relative radial velocity u, along the z-axis. This situation is illus-
trated in (a) in configuration space and in (b) in momentum space for a
frame in which A is stationary. The shaded area represents states in 4 with

v, >0 which are unoccupied in 5.
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Figure 3.4.1
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Figure 3.4.2

Curves of 9 calculated from Eq (3.4.2) using the BKN force and the Hill-
Wheeler penetration formula for a range of relative radial velocities, u,,
measured in units of the Fermi velocity, vp. The motion of the barrier with

respect to the inertial frame of A has been neglected.
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Figure 3.4.3

Same as Fig (3.4.2), but the motion of the barrier towards A at speed é—'u.,.

has been taken into account in determining the transmission probabilities.
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Figure 3.4.4

Two identical systems with a purely tangentia] relative velocity, ;. The
shaded area in (b) represents states in A with v, > 0 which are unoccupied

in B.
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Figure 4.4.1

The proximity flux form factor x as a function of separation for the three
temperatures T=1.0, 2.0 and 3.0 MeV. The BKN force was used in conjunction
with the Hill-Wheeler penetration formula. The arrow marks the point at

which the top of the single-particle barrier coincides with the Fermi level.
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Figure 4.4.2

The proximity flux form factor x for T=3.0 MeV. The solid line was calculated
using the BKN force and the Hill-Wheeler formula while the dotted line was
calculated with the WKB penetration formula. The lower curves are the con-

tribution to y from barrier penetration. The dashed line is Randrup's

result, multiplied by %Fim order to make the comparison. Here Tr from

the BKN force was used. The arrow corresponds to the point at which the

top of the barrier coincides with the Fermi level.
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Figure 4.4.3

The contribution to thé proximity ﬂux form factor x for nucleons able to
pass over the barrier. The solid curve was calc‘ulated using the BKN force
and the Hill-Wheeler formula, while the dashed curve was calculated using
the WKB formula. Randrup's results are represented by the dashed curve.

The comparison is made at T=3.0 MeV.
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Figure 4.4.4

The proximity flux function X calculated for the three temperatures T=1.0,
2.0 and 3.0 MeV using the BKN force and the Hill-Wheeler penetration for-
mula. Again the arrow corresponds to the point at which the top of the bar-

rier coicides with the Fermi level.
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Figure 4.4.5

The single-particle potential at the midpoint between the slabs as a function
of separation for symmetric nuclear matter. Tllle SIII force was used. The
Fermi energy, e, and the value of the single-particle potential in the bulk
region, W, are indicated by the horizontal lines. The top of the barrier

coincides with the Fermi energy at ¢ =3.3. T is the Fermi Kinetic energy.
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Figure 44.8

The. same as Fig (4.4.5), but for a system with a neutron-proton asymmetry
I=86=0.1877. The solid lines refer to neutron properties, whereas the
dashed lines refer to proton properties. The top of the proton single-
particle barrier coincides with the proton Fermi energy at ¢=2.7. The
corresponding separation for neutrons is ¢{=4.2. The effective mass and
Aux of the neutrons and protons in the bulk region are: m.“/m=0.79,

m?/m =0.74, no, =0.176 x 10?2 fm*sec™! and Np =0.113x 10?2 fm?-sec™),
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Figure 4.4.7

. The proximity flux form factors x™ and x? at T=2.0 MeV calculated using the
SIII force and the WKB penetration formula. The neutron excess for this
system is /=6=0.1877. The curve labeled x is the weighted average of }®
and x" (see text). The arrow marks the point at which the top of the single-

particle proton barrier coincides with the proton Fermi level.



-195-

"R f oang81g

q 30 situn uj s uoijeaedes soegans 9yl ‘J

g

1

ASK O°2=1
Wy 0'T=4 L/81°0=I

ad104

i

ITIS

am s e g st

.

00°0

c0°'0

0°0

90°0

B80°0

01'0

cl*0

H1°C

X uorjouny xnl3y L3Twixoxd syg



- 196 -

Figure 4.4.8

The proximity flux function X for the temperatures T=1.0 and 2.0 MeV calcu-
lated using the SIII force and the WKB penetration formula. The full curves

are for a system with a neutron-proton asymmetry 7=6=0.1877 while the

dashed line is for a system with /=6=0.0.
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Figure 4.4.9

The proximity flux form factor for symmetric nuclear matter at T=3.0 MeV
calculated with both the BKN and SIII forces. The WKB penetration formula
was used in each case. The arrow marks the point at which (for both forces)

the top of the single-particle barrier coincides with the Fermii energy.
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Figure 45.1

The interaction time as a fu.nctioﬁ of angular momentum for the system
84Ky + 209Bj (F,, =712 MeV). The open circles a.;:'e from the TDHF results of
Davies et al (1981) and Davies {1981). The full line is deduced from the
experimental angular distribution using the phenomenological non-sticking

model (Schréder et al 1977).
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Figure 4.5.2

The total relative kinetic energy loss (TKEL) as a function of angular
momentum for the system #Kr + ?°®Bi (E,, =712 MeV). The open circles are
from the TDHF results of Davies et al (1981) and Davies (1981). The full cir-
cles are deduced from the energy loss distribution do/dTKEL (Fig 3 of
Huizenga et al 1976) by the method outlined in Sect 4.2. The full line serves

only to guide the eye.
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Figure 4.5.3

Density contours from the TDHF calculation for the reaction %Kr(712 MeV)
+ 208Bj with { =300. The frames are spaced at intervals of 0.2 x 107! sec,

(From Davies 1981).
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Figure 4.5.4

Density contours from the TDHF calculation for the reaction ™Kr(712 MeV)
+ 209Bj with I = 150. The frames are spaced at intervals of 0.35 x 107! sec.

(From Davies 1981).
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Figure 4.5.5

The neck radius, R,, as a function of time for the reaction ®Kr(712 MeV) +

209Bi for the trajectories I =150, 275, 300 and 325. The interaction time for
each trajectory is taken te be the time interval during which K, exceeds

Zero.
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Figure 4.5.6

Charge variance ¢Z versus the totaﬁ relative kinetic energy loss TKEL for
the system ®*Kr (712 MeV) + ®°°Bi. The filled c‘ircles are the experimental
data (Huizenga 1981) and the open circles are obtained from Eqs (4.5.4) and
(4.5.2) and the TDHF calculations. The triangles are obtained by using the
experimentally deduced excitation energy instead of the TDHF value for

each trajectory.
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Figure 4.5.7

Charge variance 0% as a function of angular momentum for the system 8*Kr

(712 MeV) + 2®Bi. The open and filled circles have the same meaning as in
Fig (4.5.8).
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Figure 4.5.8

The average mass diffusion coeflicient D4 versus angular momentum for the
system %Kr (712 MeV) + ®°Bi. The circles and triangles have the same

meaning as in Fig (4.5.8).
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