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bh bn TUC CFC (0: = 0.9) 
0.0904 0.1829 n max = 6 T = 1.0,7 = 0.00 
0.0769 0.1900 n max = 4 T = 0.5 , 7 = 0.05 
0.0412 0.2335 n max = 3 T = 0.5,7 = 0.12 

Table 5.4: TUC and CFC comparison (.\ = 0.75, , = 10, UT) 

then given as 

(5.26) 

The threshold value n max = Nmax corresponds to the parent unprioritized CAS. This 

scheme cannot assign a different number of accept states to cells with different cell pa-

rameters, so 

TUC is parameterized by n max only; it therefore cannot yield all the state classifications 

that are possible with the CFC scheme. 

5.9.1 Performance of TUC 

Figure 5.14 plots the number of accept states with respect to n max . 

Uniform Traffic 

Figure 5.15 plots bh , bn , and cost for the high mobility (, = 10) case with failed hand-off 

calls returned to the system. As n max increases, the hand-off failure probability increases 

and the new call blocking probability decreases, since a greater fraction of new call requests 

are accepted by the CAS. Closed form solutions for the hand-off failure probability and new 

call blocking probability exist for the uniform traffic case when rejected hand-off requests 

are returned to the system, as shown in Appendix 5.B. Table 5.4 lists the parameters of the 

CFC scheme (T, 7) and the TUC scheme (nmax) for which their performance is the same. 
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Figure 5.14: TUC: accept state count 

TUC Scheme: UT, y = 10, Failed Hand-Off Re1umed 

" .. ..• ....... ... .... .... ..... ~. 0.4 r· 
::L __ .. __ ----' ____ .....J.. ... !!!! .• !!!! •• !!:~::i.·:::. = •• = •• ::: •• =··;;:;· :, •• =.·=··=.·d •• = •• = •• =··=.= •• J. •• "';;J. l,;:5~·. = .• ,= •• =.·= •• = •• = •• ~~,~~· =·=~~=:::'::~'===-:==-:=d 

1 1.5 2 2.5 3.5 4 4.5 5 5.5 

!~:rL __ · ~ .. ~. ----l. ...... ·~<~ •• ~.~ •••• == ••• ~ ••• ·.::::: •• ·===· ·. ·='= •• ·= •• · ·=·· . b;;Jl,;2:5~ ...• '== •••• = ••• • =I.:~.= ... =· ==-==: 
1 1.5 2 2.5 3.5 4 4.5 5.5 6 

Figure 5.15: TUC: bh and bn (failed hand-off returned, I' = 10, UT) 



136 

bh bn TUC CFC (a = 0.9) 
0.1334 0.2183 nm ax = 6 T = 1.0, 7 = 0.00 
0.1231 0.2234 n max = 4 T = 0.4, 7 = 0.42 
0.0849 0.2539 n max = 3 T = 0.4,7 = 0.16 

Table 5.5: TUC and CFC comparison (.\ = 0.75 , '"Y = 10, HS) 

Tue Scheme: HS, y= 10, Failed Hand-Off Returned 
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Figure 5.16: TUC: bh and bn (failed hand-off returned, '"Y = 10, HS) 

Hot Spot Traffic 

Figure 5.16 plots bh , bn , and cost for the high mobility ('"'( = 10) case with failed hand-off 

calls returned to the system. Since the behavior of the low mobility case is similar, its plots 

are not shown here. Table 5.5 lists the parameters of the CFC scheme (T,7) and the TUC 

scheme (nm ax ) for which their performance (bh and bn ) is the same. 

5.10 Conclusions 

The new cal1 access control criteria affect the quality of service perceived by users in the 

cellular system. We measure this quality of service by the hand-off failure probability and 

the new call blocking probabiilty. In general, it is better to block a new call than to drop 



137 

an existing call that requests a hand-off. This should be taken into account by the channel 

assignment scheme. 

We investigated two criteria for modifying the new call access criteria in unprioritized 

channel assignment schemes to prioritize the acceptance of hand-off calls. In these crite­

ria, the set of accept states, with respect to the cell in which the new call request occurs, 

is a function of the user mobility rates in the cells. The MLS criterion adapts to non­

uniform mobility traffic by assigning different sets of accept states to cells with different 

traffic parameters. The look-ahead parameter T needs to be chosen for implementing the 

required trade-off between the hand-off failure probability and the new call blocking proba­

bility. High weighting factors like a = 10/11 in the cost function, which penalize rejecting 

hand-off requests much more than rejecting new call requests, lead to conservative new 

call acceptance criteria. The CFC scheme offers a way of directly incorporating the cost 

function that is to be minimized into the design of the accept state space. This scheme can 

be easily modified to incorporate more complex cost functions which accommodate, for 

example, different user priorities. 

The increase in the number of possible future states of the system, which makes the cal­

culation of the maximum likelihood state or the likely future cost function computationally 

expensive, is a drawback of both MLS and CFC schemes. 
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Appendix 

S.A Steady State Probability Evaluation 

Given the set of accept states G i for a CAS, the transition rate from one system state to 

another is as given below. The transition rate depends on whether a failed hand-off calI 

request is dropped from the system or is just returned to the system. 

Failed hand-off returned For states J1, ~ E 0 (J1 -=J ~) , the transition rate from J1 to ~ is 

given by 

if ~ = J1 + f.i' J1 E Gi for some i 

R(~,J1) = 
n(ihip(i,j), if ~ = J1- f.i + f.j for some i,j (i -=J j) 

(5.27) 
n(i)pi, if ~ = J1 - f.i for some i 

0, otherwise 

Failed hand-off dropped For states J1, ~ E 0 (J1 -=J ~), the transition rate takes the form 

n( ihiP( i, j), 

n( i) Pi + Di (nJ, 
0, 

if ~ = J1 + f.i' J1 E Gi for some i 

if ~ = J1 - f.i + f.j for some i -=J j 

if ~ = J1 - f.i for some i 

otherwise 

, (5.28) 

where Di (J1) is an additional transition rate from J1 to J1 - f.i due to rejected hand-off 

calls getting dropped from the system. It is given by 

c 
D i (J1) = L n(ihip(i, k)J [J1 - f.i + f.k tJ- OJ. (5.29) 

k=l 

The indicator function J [.j has been defined earlier in (5.24). 
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The steady-state flow equations for a state 11 E 0 are then given by 

L 1f(§.)R(11, §.) 
~E!1\{!!.} 

1f(11) L R(§.,11), 
~E!1\b} 

1, (S.30) 

where 1f(11) is the steady state probability of state 11. Solving the above linear equations 

yields 1f(11), for all 11 E O. 

S.B Total User Count Scheme Analysis 

Closed-fonn solutions for the hand-off failure and new call blocking probabilities exist for 

the unifonn traffic case, as we show below. These are obtained by using modified A and ~ 

matrices. 

The TUC scheme does not accept a new call if 

c 

L n(i) > n max · (S.31 ) 
i=1 

Since hand-off call requests from one cell to the other do not increase the total number of 

mobiles in the system, the above criterion is satisfied automatically by the state reached by 

the system after a hand-off call request is accepted or rejected. Thus the same criterion can 

be used for both hand-off and new call requests. The TUC scheme can thus be described 

completely by means of augmented matrices A' and c' which contain (S.31) in addition to 

the CAS constraints given in (S.l). The new call blocking and hand-off failure probabilities 

can then be obtained by applying the formulae in (5.25) as follows: 

G(A' c' - A'e ) 1 _ ,- -1 

G(A', min(c' - A'~1' c' - A'~2))' 
G(A' c') 1- ,-

G(A', c' - A'~1)' 

where G(A', c') is the probability of the system being in the all-zero state 11 = Q. 

(S.32) 
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s.c Simulations 

Simulations were carried out for the Markov model for traffic in the cellular system de­

scribed in Section 5.7. The system, which executes a first order continuous time Markov 

process, remains in a state '!l for a length of time that has an exponential distribution with 

parameter q('!l) = I:.§.EO\{!!} R(Q, '!l). Here, q('!l) is the net rate at which the system departs 

from its present state. Given that the system leaves state '!l, its next state will be Q with 

probability 

p(QI'!l) = R(Q, '!l) / q('!l). (5.33) 

Since only the time instants where a new call request, a call termination, or a hand-off 

call request occur are of interest, the continuous time Markov process can be converted 

into a discrete time Markov chain using the Jump Chain concept [94]. The simulation re­

sults so obtained match, as expected, with the results obtained from the numerical analysis 

described in Section 5.7.2. 
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Chapter 6 Conclusions 

Future generations of wireless cellular mobile systems are being designed to facilitate a 

range of voice and data services while remaining highly spectrally efficient. The ability to 

provide mobile communication services is an important reason for the popularity and bright 

outlook for wireless systems today. However, user mobility also gives rise to a host of 

interesting technical challenges that need to be tackled. It must be realized that the impact 

of mobility is a function of the type of resource allocation scheme under consideration. This 

dissertation has focussed on analyzing the impact of user mobility on different resource 

allocation schemes. In particular, we have looked at the following issues. 

In Chapter 3 we studied a link adaptation scheme in which a user chooses the modula­

tion and error correction coding for transmitting his packet(s) based on the SIR estimate of 

the wireless link between him and his serving BS. A user may even choose not to transmit 

in case he estimates that the channel condition is below an acceptable threshold. The per­

formance of such schemes is dependent on the adaptation thresholds and the accuracy of 

the estimate itself. Link estimate accuracy is a function of the user speed and the delay in 

feeding back estimates. For the scenario in which the users' queues are stable, we derived 

expressions for the average packet waiting time in terms of the basic system parameters like 

packet arrival statistics, channel fading statistics, adaptation thresholds, etc. We also ana­

lyzed a simpler saturated queues scenario in which users always have packets to transmit. 

For this scenario, we derived expressions for the system throughput, measured in terms of 

the number of packets successfully transmitted per slot, as a function of the given basic 

system parameters. The results show that the optimum SIR threshold below which a user 

should not transmit is a function of the channel correlation for the stable queues scenario. 

While the no-transmission mode succeeded in reducing the average packet delay for a chan­

nel with high correlation, it provided no such gains for a channel with low correlation. This 

is not so for the saturated queues scenario where the optimum SIR thresholds were found 

to be insensitive to the channel correlation and the Nakagami fading parameter. An analy-
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sis of link adaptation schemes which can take into account unequal scenarios where some 

users face more favorable link conditions than others is an interesting and untackled prob­

lem. The issue of ensuring fairness among different users when the no-transmission mode 

is used in such unequal scenarios is another pertinent issue. 

In Chapter 4, we looked at a multiple access scheme where the base station does not 

playas active a role as in link adaptation. In particular, we looked at the Packet Reservation 

Multiple Access (PRMA) protocol which was proposed to simultaneously handle periodic, 

delay intolerant (voice) traffic as well as aperiodic, delay tolerant (data) traffic. We de­

veloped an approximate analytical technique, based on signal flow graphs, to compute the 

voice packet dropping probability as a function of the user mobility rate (measured in terms 

of the cell hopping probability). We also used the technique to analyze the effect of packet 

errors on PRMA. This approximate analysis can be applied to the case where the error rates 

are fixed a priori as well as to the case where the error rates and the co-channel interference 

are inter-dependent. We showed that contention, and not user mobility, is the main reason 

for dropping voice packets. On the other hand, packet errors do have a significant impact 

on the system performance. The signal flow graph based technique avoids many of the 

approximations made in previous approaches, and was found to match well with the sim­

ulation results. Analysis of the general case where users are randomly distributed over the 

entire cell area, and thereby encounter significantly different channels, is an open research 

problem. Another interesting issue to study is when link adaptation, in which terminals 

use assigned channels for transmitting data and feed-back information, is combined with 

PRMA (or another access protocol), which assigns the channel(s) to users. 

In Chapter 5, we investigated new call access control techniques that utilize statistical 

information about user mobility to introduce hand-off prioritization in unprioritized chan­

nel assignment schemes. We analyzed two heuristic prediction based criteria: cost function 

criterion and maximum likelihood state criterion, in which the new call access control is 

based on estimates of the future system configuration. Using mobility based statistics en­

ables them to handle geographically non-uniform mobility traffic. The complexity of using 

the entire system state, even in its simplest form where it is completely determined by the 

number of users in each cell, is the main drawback of these criteria. An explicit characteri-
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zation of the optimal call admission control criteria remains an open problem for investiga­

tion. Integrating call access criteria with the resource allocation schemes discussed in the 

previous chapters is another potentially rewarding problem. 
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