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Abstract 

This thesis examines the use of measured and inferred kinematic information in automatic speech 

recognition and lipreading, and investigates the relative information content and recognition perfor­

mance of vowels and consonants. The kinematic information describes the motions of the organs 

of speech-the articulators. The contributions of this thesis include a new device and set of algo­

rithms for lipreading (their design, construction, implementation, and testing); incorporation of direct 

articulator-position measurements into a speech recognizer; and reevaluation of some assumptions 

regarding vowels and consonants. 

The motivation for including articulatory information is to improve modeling of coarticulation 

and reconcile multiple input modalities for lipreading. Coarticulation, a ubiquitous phenomenon, is 

the process by which speech sounds are modified by preceding and following sounds. 

To be useful in practice, a recognizer will have to infer articulatory information from sound, 

video, or both. Previous work made progress towards recovery of articulation from sound. The 

present project assumes that such recovery is possible; it examines the advantage of joint acoustic­

articulatory representations over acoustic-only. Also reported is an approach to recovery from video 

in which camera placement (side view, head-mounted) and lighting are chosen to robustly obtain 

lip-motion information. 

Joint acoustic-articulatory recognition experiments were performed using the University of Wis­

consin X-ray Microbeam Speech Production Database. Speaker-dependent monophone recognizers, 

based on hidden Markov models, were tested on paragraphs each lasting about 20 seconds. Re­

sults were evaluated at the phone level and tabulated by several classes (vowel, stop, and fricative). 

Measured articulator coordinates were transformed by principal components analysis, and velocity 

and acceleration were appended. Concatenating the transformed articulatory information to a stan­

dard acoustic (cepstral) representation reduced the error rate by 7.4 'X), demonstrating across-speaker 

statistical significance (p = 0.(18). Articulation improved recognition of male speakers more than 

female, and recognition of vowels more than fricatives or stops. 

The analysis of vowels, stops, and fricatives included both the articulatory recognizer of chapter 3 

and other recognizers for comparison. The information content of the different classes was also es­

timated. Previous assumptions about recognition performance are false, and findings of information 

content require consonants to be defined to include vowel-like sounds. 
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Chapter 1 

Introduction 

This thesis reports the merit of augmenting sound with kinematic information for automatic speech 

recognition. The rationale for using such a representation is described in section 1.1; the question 

whether ideas about motor representations are used in human perception is discussed in section 1.2. 

The kinematic inputs describe the motion of points on the articulators (organs of speech). In one 

project, lip motion was recovered from video (chap. 2). In a second project (chap. 3), an existing 

data set of articulator motions and synchronized sound recordings was used as recognizer input. 

To evaluate how articulation data affects articulatory recognizers, separate error rates have been 

calculated in this project for vowel and consonants, using both the articulatory recognizer and some 

conventional recognizers (chap. 4). The information content of vowels and consonants in text has 

also been calculated. 

1.1 Why Use Articulation In Recognizers? 

This thesis uses an inverse-problem, motor representation approach to recognition. Proponents of 

the motor theory cite the following arguments and evidence (Liberman and Mattingly 1985). If 

the follOWing are true, then articulatory representations may be quite useful for engineered speech 

recognizers: 
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Invariance of motor representations 

Articulator configurations may be more invariant across contexts than acoustics. If so, such a rep­

resentation would make it easier to classify sounds as they occur in continuous speech and varying 

environments. 

For a given distinctive phonetic feature, there are a number of associated acoustic cues, each 

sufficient but not necessary for perception of the distinction (Liberman and Mattingly 1985). Articu­

lation, on the other hand, is the basis for linguists' primary description of the feature, and provides a 

clear criterion for the distinction: e.g., tongue is low (section 1.9.3; section 1.3.5). Years ago, acous­

tics were easier to quantify than articulation (Harshman et a1. 1977). More recently, tongue shapes 

were found to be less variable than previously supposed (Stone and Lundberg 1996). 

The above argument regarding invariance is particularly compelling for various simple acoustic 

analyses. For example, the power spectral density at a particular frequency depends on both vocal­

cord vibration and the vocal-tract resonances (section 1.12.3). 

Reconciliation of audio and video 

Converting auditory and visual inputs into a common articulatory representation might improve 

recognition by making it easier to compare them. 

An analogy can be made to the combination of auditory and visual cues for localization. The 

optic tectum (part of the nervous system) of owls includes an array of neurons which encode position 

based on both types of input (Knudsen 1982) (Liberman and Mattingly 1985). 

The McGurk effect is the classic demonstration of lipreading by listeners with normal hearing 

(section 1.3.1); its discoverers named the motor theory as a possible explanation (MacDonald and 

McGurk 1978). 

1.1.1 Acoustic Cues 

Some speech phenomena are readily observed in the acoustic domain. For example, voicing, the 

vibration of the vocal cords that distinguishes Izl from lsi, greatly increases overall sound level, and 

introduces a periodic or harmonic component to speech. Stop consonants such as Idl and Ipl, which 

involve touching two articulators together, cause a rapid change in acoustics, as airflow is interrupted 

or allowed to resume. Sibilants have a concentrated band of energy at 4 kHz and above. This helps 
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explain why the sounds /s/ and If! are so hard to distinguish on the telephone, since telephones 

attenuate frequencies above 3600 Hz. 

1.1.2 Describing Coarticulation in the Articulatory Domain 

The speed of controlled articulator motion is limited (figure 1.7), causing coarticulation: the blending 

of successive sounds of speech. The blending effect is not limited to adjacent phones (acoustic units 

of speech), but can occur over an interval of up to five phones (Kent and Minifie 1977). Recordings 

are intelligible even at 400 words per second (Orr et al. 1965), but when speech is synthesized by 

splicing 20 phones per second together without blending, it is perceived as a buzz (Harris 1953) 

(Liberman et al. 1967). This indicates that coarticulation is necessary for intelligibility. 

Coarticulation can be represented either in an acoustic analysis or by modeling articulator motion 

(the kinematic or motor representation). Which approach will ultimately work better is an open 

question. An acoustic account of coarticulation assumes that the smooth articulator motions translate 

into blending of acoustic parameters. Notably, some articulators change state much more quickly 

than others. For example, while the tongue moves gradually from position to position, the vocal 

cords may abruptly begin or stop vibrating. This voicing effect causes a dramatic change in acoustic 

signal strength. In speech synthesis, both types of blending have been used (section 1.12.3); for 

facial animation, kinematics is necessary (Parke and Waters 1996). 

Under some circumstances, listeners can see what sound a speaker is about to make (Cathiard 

et al. 1992). This is due to anticipatory articulation: a speaker moves his or her mouth in preparation 

to make a sound. 

In speech recognition, coarticulation has been modeled as a process of interpolation between 

acoustic targets (section 3.3.2) (Deng et al. 1992) or by enumerating and collecting separate statistics 

for sounds in different contexts (section 1.11.3). 

In recognition with a motor representation (section 1.4), coarticulation can be modeled as move­

ments are inferred from sound (section 3.3.6 and section 3.3.7) or in the back end recognizer ar­

chitecture (section 1.10.1). The present thesis skips the inference step and uses kinematic measure­

ments, directly observing motor variables subject to coarticulation (figure 1.7). 
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1.1.3 Motor-Space Reconciliation of Lipreading and Hearing Speech 

Another motivation for representing speech in a motor space is to use that space to reconcile audio 

and video inputs for lipreading by computer. This is the so-called motor recoding approach, defined 

in section 1.7.1. 

1.1.4 Sources of Kinematic Representations used in this Thesis 

This thesis is a step toward answering the question of what information can be extracted using an 

inverse-problem, articulatory approach to recognition. Such approaches can be summarized by the 

the hypothesis that "We lipread by ear" (Paget 1930); this was originally proposed as a mechanism 

for human speech perception (section 1.2). A recognizer trained with articulatory (chap. 3) data 

might better describe the process of coarticulation, in which a speech sound is modified its phonetic 

context, than a recognizer that uses only speech sounds. Articulatory recognizers might also improve 

lipreading performance (chap. 2) by using articulation as a target representation for both sound and 

video channels. Related work has made significant progress toward recovering articulator motions 

from both sound and video. Although this thesis describes a new technique for recovery from video, 

it uses measured articulator positions to see how recognition might be improved with exact recovery 

from sound. 

An assumption behind using articulatory data is that, eventually, a speech recognition system may 

be built that estimates articulator positions from sound and/or video. The motor theory of speech 

perception proposes that humans may use such representations when listening and watching speech. 

The present thesis does not present results for the process of human perception, but is concerned 

with the engineering of automatic recognizers. 

The kinematic measurements used for recognition in this thesis were taken as indicated in fig­

ure 1.1. In chapter 2, a side-view camera and light were used to determine motion of regions near 

the upper and lower lip. Recognition experiments in chapter 3 used data for tongue, lip, and jaw mo­

tion collected by other researchers at the University of Wisconsin with an x-ray microbeam technique 

(section 3.4.1 and appendix E) (Westbury 1991). Other ways to measure tongue motion directly are 

listed in section 3.4.2. 
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Figure 1 .1: Sources of data used for the experiments of th is thesis. Chapter 2: side-view I ipreading (a) 

and sound (c). Chapter 3 and chapter 4: x-ray microbeam tracking (b) and sound (c). 0 

1.2 Articulatory Theories of Human Speech Perception 

Many variations have been proposed of the basic idea that motor representations are used as an inter­

mediate stage in speech perception. The schools of thought about perception that are most relevant 

to the present thesis are the gesture theory (section 1.2.1) and the motor theory (section 1.2.2). 

1.2.1 Gesture Theory of Speech 

The gesture theory proposes that speech originated in gestures (Rae 1862), and that articulator mo­

tions are recovered from sound in the listener's brain (Paget 1930). Since the recognizer of chapter 3 

has access to direct articulatory measurements, no recovery from sound is used here. However, for 

the recognizer to be of practical benefit, direct measurement must be replaced by such a recovery 

step. The first claim of the gesture theory, regarding the evolutionary origins of speech in humans, 

has little to do with engineering automatic recognizers: 

Originally man expressed his ideas by gesture, but as he gesticulated with his hands, 

his tongue, lips and jaw unconsciously followed suit in a ridiculous fashion, "understudy­

ing" the action of the hands. (Paget 1930) 

The motor theory (section 1.2.2) narrows the scope of the gesture theory by omitting the above 

claim of language origins. The common claim of the two theories is that 

the significant elements in human speech are the postures and gestures, rather than 
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the sounds. The sounds only serve to indicate the postures and gestures which produced 

them. We lipread by ear. (Paget 1930) 

1.2.2 Motor Theory of Human Speech Perception 

6 

In the study of speech perception, the motor theory proposes that the gesture units of articulatory 

phonology (section 1.2.4) are explicitly represented in the listener's brain. The motor theory has 

been defined as follows: 

The first claim of the motor theory ... is that the objects of speech perception are the 

intended phonetic gestures of the speaker, represented in the brain as invariant motor 

commands ... for example, 'tongue backing,' 'lip rounding,' and 'jaw raising' ... 

The second claim of the theory is ... [the link between speech perception and speech 

production] is not a learned association .... Rather, the link is innately specified .... (Liber­

man and Mattingly 1985) 

Research results, described below, regarding language development in infants are part of the 

motivation for the second claim. 

1.2.3 Motor Phonetics 

Motor phonetics (Stetson 1988) differs from the approach of this thesis in that it uses the syllable 

as the fundamental organizational unit of speech analysis. There are so many possible syllables 

that recognizers are very rarely built which enumerate them all. Syllable-level analysis is discussed 

further in section 1.9.5. Motor phonetics describes how constraints on motion affect speech sounds; 

for example, limitations on acceleration and deceleration cause qualitative differences between fast 

and slow speech. This school of thought 

1.2.4 Articulatory Phonology 

Articulatory phonology (Browman and Goldstein 1992) describes the structure of speech systemati­

cally in terms of overlapping gestures. Unlike motor phonetics (section 1.2.3), it does not emphasize 

the syllable as a fundamental unit of speech. In contrast to the gesture theory (section 1.2.1) and mo­

tor theory (section 1.2.2), it does not require that the overlapping gestures be explicitly represented 

in a listeners' brain; it simply treats gestures as an expedient for phonology. 
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1.3 Evidence For and Against the Motor Theory 

Various proposed versions of the motor theory have been disproven over the years, and correspond­

ingly the theory has been revised . 

• Phonetic perception precedes speech production in infant development, so if this level of per­

ception requires motions to be inferred, that inference is not learned through speaking. 

1.3.1 Lipreading with Normal Hearing 

Lipreading by people with normal hearing and sight has been quantified and better understood 

over the past few decades; listeners use both auditory and visual information. Other researchers' 

results and a discussion of the number of degrees of freedom involved in human lipreading appear 

in section 2.2.1. 

Lipreading in Noisy Environments 

Since people without hearing loss understand speech quite well in quiet environments, the impor­

tance of lipreading is easier to demonstrate in a noisy environment (Sumby and Pollack 1954). This 

is certainly part of the cocktail-party effect, in which a person can selectively listen to one voice in a 

cacophony of other voices. 

McGurk Effect 

Severe contradictions between hearing and sight, such as mismatch of lip motion and soundtrack 

in dubbed foreign-language films, are obvious to the listener. However, subtle conflicts between a 

carefully chosen soundtrack and video result in subjects perceiving a sound other than that appearing 

on the soundtrack. For example, if someone hears Iba:1 ("bah") while seeing a face saying 19(1:1 

("gah"), the listener will perceive the sound to be Ida:1 ("dah"). This is known as the McGurk effect 

(McGurk and MacDonald 1976). 

Speech sound can also influence visual perception of the face, in a reverse McGurk effect (Easton 

and Basala 1982). Like the McGurk effect, it is true both for artificial cases (such as Ibu:/ versus 

/ga:/) and for actual words (Dekle et al. 1992). 

The discoverers of the McGurk effect suggested the motor theory as its possible explanation 

(MacDonald and McGurk 1978). 
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Magnetoencephalography (MEG) and McGurk Effect 

A recent magneto encephalograph (Cohen 1972) study of the McGurk effect suggests that the peri­

sylvian cortex plays a role in integrating audio and visual information (Sams and Levanen 1996). 

1.3.2 Likely Mechanisms for Human Lipreading Ability 

There is not yet agreement on how lipreading works in humans, and the present thesis does not 

claim to resolve the controversy. In section 1.7.1, a taxonomy of multimodal integration strategies 

for lipreading is listed (Robert-Ribes et al. 1996): 

• Direct identification 

• Separate identification 

• Motor-space recoding 

• Dominant recoding 

One school of thought is that visual cues dominate perception of manner (e.g., Ikl versus ItI) of 

articulation, while auditory ones dominate perception of manner (e.g., It! versus lsI) (McGurk and 

MacDonald 1976) (Summerfield 1987). 

A hybrid direct- and separate-identification model has been proposed (Massaro 1996), which has 

the disadvantage of being more complex than other models also consistent with the data (Robert­

Ribes et al. 1996). 

Noting that the auditory cortex is active during pure lipreading (i.e., without sound) (Calvert 

et al. 1997), some adhere to the dominant recoding theory, with the dominant modality being 

sound. This is not inconsistent with the above mentioned concept that some cues are more reli­

ably conveyed by each modality. It simply claims that reconciliation of the two modalities occurs 

with a fundamentally auditory representation, which could be augmented with an indication of the 

reliability or certainty of each feature extracted from each modality. 

1.3.3 Infant Language Development and Motor Representations 

If motor representations are an essential part of human speech perception, it would be expected 

that such representations would be present in infant development at the time speech perception 

emerges. Babbling, the predecessor to speech, does not typically appear until seven to eight months 
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(van der Stelt and Koopmans-van Beinum 1986) (Holmgren et al. 1986) (Locke 1992). It is tempting 

to think that babbling teaches the infant the relation between motor acts and sound, and that this 

relation is the basis for learning low-level language processing. Yet research on language development 

shows that infants have started learning the phonetic contrasts specific to their native language by 

six months of age (Kuhl et al. 1992). Other studies (Eimas et al. 1987) have demonstrated infants' 

categorical perception (Hamad 1987) of coarticulated speech sounds. Either the articulation-acoustic 

relation is not needed for phonemic discrimination, or it is not associatively learned through babbling 

(Liberman and Whalen 2000) (Petitto and Marentette 1991) (Jordan and Rosenbaum 1989) (Sereno 

et al. 1987). 

1.3.4 Magnetoencephalography (MEG) Studies 

Magnetoencephalography (Cohen 1972) is a state-of-the-art technique for observing the timing and 

location of the brain's response to stimuli. It has been used for some time to observe the response 

of the cortex to speech (Hari 1991). For example, presenting subjects with complex sounds similar 

to speech elicits a right-hemisphere response if the sounds contain slow acoustic transitions, or a 

response in both hemispheres if the transitions are fast. In contrast, presentation of syllables alone 

specifically activates the left hemisphere. The short latency of these responses suggests that they 

precede the brain's mechanisms for attention (Shtyrov et al. 2000). That the left hemisphere pro­

cesses many aspects of language was already known; the above results indicate that speech-specific 

low-level regions of the left hemisphere reject acoustically similar nonspeech sounds. Another study 

(Imaizumi et al. 1998) found that the right hemisphere predominated in word discrimination by 

intonation, while the left hemisphere dominated in discrimination by a phonemic minimal pair. 

Taken together, these results are consistent with the left hemisphere processing vocal tract, rather 

than vocal cord, (section 1.12.3) characteristics of speech. They do not indicate whether this pro­

cessing is based on an acoustic (formant) representation, or a motor (geometric) representation. 

A recent review of evidence, including brain imaging and aphasias, argues against the use of 

articulatory representations in human speech perception (Coleman 1998). The argument is based 

largely on the proximity of different types of processing in the cortex, and on the different contexts in 

which particular cortical regions are active. It also cites the functions during which certain structures 

are active: for example, Broca's area (Broca 1865) (Kandel et al. 1991) has a role in recognition of 

sentence structure, but not in recognition of individual words or spontaneous interjections. 
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1.3.5 Language Instruction 

Foreign-language instructors routinely use articulatory, rather than acoustic, explanations to describe 

sounds not present in a student's native tongue. For example, an advanced English-speaking student 

of Spanish might be instructed to make the intervocalic 1(31 sound (as in Spanish "ave") like an 

English lvi, but without touching the bottom lip to the teeth. 

1.4 Articulatory Recognition Proposed 

A paper on the prospect of artificial intelligence (MacKay 1951) described two different approaches 

to designing thinking machines: reception and replication. The reception approach would involve 

comparing incoming stimuli to templates of idealized objects; replication was described as follows: 

Let us... consider the way in which a blindfold man might seek to recognize a solid 

triangular figure, by moving his finger around the outline.... To the blindfold man, the 

concept of triangularity is invariably related with and can be defined by the sequence of 

elementary responses necessary in the act of replicating the outline of the triangle. Let 

us generalize this approach to the problem of recognition, and consider now an artefact 

whose response to incoming stimuli of any kind is an act of replication, in some formal 

sense, of the stimuli received. (MacKay 1951) 

The inverse-problem, articulatory approach to automatic speech recognition, an example of the 

replication approach, had already been proposed (Dudley 1940). Over the years, a number of re­

searchers have contributed to this eventual goal, as described in section 3.3. 

1.5 State-of-the-Art Automatic Speech Recognition 

Many speech recognition systems are commercially available. They do not typically incorporate 

articulatory representations, and they have a number of shortcomings. For best performance, large­

vocabulary systems require the user to wear a microphone headset. Accuracy degrades considerably 

with desktop microphones in an office environment. 

Another problem with large-vocabulary dictation systems is the correction interface. Text appears 

on the screen after a delay, so the user may have spoken several more words by the time an error is 
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evident. Even if the system flags the word as not understood, it is likely to get it wrong again even if 

the user repeats it very precisely. 

1.6 Measuring Error Rates 

An isolated-word recognizer is assessed by comparing each word label it guesses to the corresponding 

word in the true text of what was spoken; for such a recognizer, the error rate is simply the number 

of wrong guesses divided by the number N of total words. The chance rate, achieved by choosing 

words randomly, is (N - l)jN. In continuous speech, the recognizer may miss a word (a deletion 

error) or may output an extra word (an insertion error). It may output the right word in response 

to the wrong interval of speech; however, if the texts match such an error is not normally counted 

against the recognizer. The third type of mistake included in the error rate is a substitution error. 

Output from a continuous recognizer is evaluated by finding an optimal alignment between the 

guessed text 1 and the true text T that minimizes the total number of errors. An alignment is a 

sequence of pairs of matching words, one per pair coming from each text; it is generated using 

standard algorithms for approximate string matching (Sankoff and Kruskal 1983). The error rate E 

is then the total number of errors (deletion D, substitution 8, and insertion 1) divided by the length 

of the true text: 

E = D(T, I) + S(T, I) + I(T, I) 

IITII 

In general, a continuous recognizer's error rate may exceed 100 %. For example, the recognizer 

might output too many words, all of them wrong. 

Because of the alignment process, a recognizer that outputs the right total number of words but 

chooses them randomly will have a lower error rate than (N -l)jN. Predicting chance performance 

is nontrivial and has been analyzed for the special case of matching string lengths and counting each 

substitution error two errors (insertion plus deletion) (Deken 1979). 

In chapter 3, error rates are used instead of percent correct to evaluate recognition performance. 

This choice is motivated by the fact that the recognition task is continuous speech: i.e., the recognizer 

is presented with speech not previously segmented into linguistic units. In contrast, in chapter 2, each 

input example consists of an isolated audio or video sample of a single word. 
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1.6.1 Error Rates as the Only Metric: Shortcomings and Advantages 

In assessing recognition performance for conversations, it is worth noting that many of the most 

common words and phrases are vernacular interjections, which might reasonably be omitted in a 

transcript. By concentrating on these common words, the overall error rate may be reduced (Byrne 

et a1. 1998), but the intelligibility of the resulting transcript is not correspondingly improved. 

Error rates may be misleading. In the above-described case of conversations, it can be useful 

to think in terms of the information lost due to errors. The true prior distribution of utterances is 

needed to calculate information provided by the recognizer and entropy of the recognition task. Un­

fortunately, this distribution is not generally available and must be approximated by the recognizer. 

A theoretical framework exists for measuring the information provided independently by grammar 

and acoustic models, as well as by their joint operation in a recognizer (Ferretti et a1. 1990). Recog­

nizer parameters may be chosen during training to maximize mutual information (Bahl et a1. 1986) 

(Rabiner and Juang 1993). Still, the standard for recognizer assessment is error rate. 

1.6.2 Task Specificity 

In general, speech recognizers have always had problems generalizing from the specific task for 

which they were developed. It is now recognized that definitive assessment of recognizers requires 

that data be split into training, development testing, and evaluation testing sets. In the early years of 

ASR, data would sometimes not even be split into training and testing sets (Jelinek 1996). Since this 

type of experimental design revealed nothing about generalization, critics suggested that these early 

recognizers generalized poorly (Pierce 1969). 

A true evaluation set is used only once, to simultaneously compare the performance of different 

recognizers. The development testing set may be used repeatedly while making modifications to 

the recognizer architecture, while the training set is used to fit model parameters. The distinction 

between architecture and parameters is not absolute. Global parameters such as the grammar weight 

(section 3.11.2), fewer in number than model parameters and harder to optimize, may require that 

the development test be further subdivided for cross-validation. 

All of the above considerations in splitting the data set miss a larger point, which is that existing 

corpora are often homogeneous-consisting, for example, only of informal telephone conversations 

(Godfrey et a1. 1992), or of people reading from the Wall Street Journal, or of newscasts. A recog­

nizer trained on the latter two cases would have a great deal of trouble on conversations; a telephone 
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Figure 1.2: Different approaches to multimodal integration (Robert-Ribes et al. 1996). Chapter 3 uses 

the direct identification approach (a) to merge audio and direct articulatory measurements, and the 

analysis of chapter 2 is closely related to separate identification (b). D 

conversation transcriber would have trouble transcribing a discussion recorded from a single micro­

phone in the area, rather than close-talking microphones on the participants. 

1.7 Relation between Lipreading and Articulatory Recognition 

1.7.1 Approaches to Multimodal Input Integration 

There are several ways to combine different types of input in a speech recognizer. For lipreading, 

the approaches have been categorized as follows (figure 1.2; figure 1.3) (Robert-Ribes et al. 1996), 

but the framework also applies to other multimodal problems such as joint acoustic-articulatory 

recognition . 

• Direct identification (figure 1.2(a)), in which audio and video inputs are presented to the rec­

ognizer without transformation to a common space. This is the approach used in chapter 3 . 

• Separate identification (figure 1.2(b)), in which audio and video signals are separately classified 

as belonging to a particular linguistic unit (e.g., phoneme), and classifier outputs are combined. 

In general, the classifier's outputs may take on continuous values. This is the approach used, 

for a very small data set, in chapter 2. 
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Figure 1.3: Additional approaches to multimodal integration (Robert-Ribes et al. 1996), not imple­

mented in this thesis, but illustrated here for discussion purposes. 0 

• Motor-space recoding (figure 1.3(a)), in which both audio and video are used to derive articu­

latory parameters such as distance between the lips. As described below, this approach is the 

long-term goal of this thesis . 

• Dominant recoding (figure 1.3(b); figure l.3(c)), in which one modality is considered more 

important for recognition, and the second modality is converted to a similar representation. 

An example would be predicting cepstral coefficients (section 1.10.2) based on video. 

Direct and separate identification are the most widely used lipreading strategies because it is eas-

ier to build recognizers based on such principles than on motor-space or dominant recoding. To date, 

no approach has been conclusively demonstrated to outperform the others, so researchers' choices 

have been motivated by theoretical considerations such as simplicity or elegance. An advantage of 

either recoding technique over separate identification is the measurability of the intermediate repre­

sentation: in other words, motor recoding derives quantities, such as speed of jaw opening, that are 

easier to objectively define and measure than abstract category scores. The motor representation, as 

opposed to a category score, retains more information about the original signal, since articulatory 

parameters can reconstruct the original sound (speech synthesis) or image (facial animation) more 
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accurately. The retained information includes the detailed timing of individual speech sounds; in 

separate identification, the timing is discarded before the audio and video are merged. Direct identi­

fication retains timing information, but makes it difficult to model the correlations between the two 

(audio- and video-derived) parameter sets. 

The above approaches can be thought of as part of a taxonomy, in which three successive ques­

tions rule out alternatives (Robert-Ribes et al. 1996): 

• Are audio and visual stimuli converted to a single representation in which distances can be 

computed? If not, the strategy is direct identification 

• Is the common representation language-specific, or based on abstract linguistic processing? If 

so, separate identification is being used 

• The final decision is between motor space recoding and dominant recoding, as defined above 

Approach of this Thesis 

The work of this thesis represents a few steps toward the ultimate goal of motor-space recoding. 

Techniques are described that extract motion information from video signals (chap. 2), and results 

are reported for augmenting recognition from sound with motion information (chap. 3). Merging 

the two components (motion from video; recognition from motion plus sound) is outside the scope 

of this thesis. The preliminary lipreading results of chapter 2 were based on separate identification, 

and the merging of sound and articulation in chapter 3 is a hybrid of motor recoding and direct 

identification. 

A previous project implemented the dominant-recoding approach using a neural network, which 

was presented with raw image data (an array of pixel values) (Yuhas et al. 1989). The network 

predicted the sound spectrum from the image, and this prediction was averaged with the actual 

spectrum. 

Coarticulation, the process by which spoken sounds are dramatically changed by preceding and 

following sounds, seems to have more to do with getting from one mouth configuration to an­

other (articulatory smoothing) than the similarity of the resulting sounds (acoustic smoothing) (Stet­

son 1988). 



1.8 Timescales of a Recorded Word 16 

1.8 Timescales of a Recorded Word 

Many ideas about speech are inspired by the slow motion of the articulators compared to the oscil­

lations of the acoustic waveform. In figure 1.4, different timescales of speech have been extracted 

with a Haar wavelet decomposition. The comblike shape in the original waveform and finest scales 

of detail has a period of about 9 ms and represents the vocal cord vibration. For voiced sounds, the 

fundamental frequency is the reciprocal of this period. The plosives Idl and It! are also quite distinct 

at the finest levels of detail. 

In figure 1.4, each time series is normalized. Without normalization, the original signal equals 

the following sum of coefficients: 

10 

s(t) = alO(t) + 2:= di(t) 
;=1 

Two vocal cord (fundamental frequency) cycles from the first syllable of "dormitory" appear in 

figure 1.5. The oscillations within each individual cycle are due to the resonances of the vocal tract 

(section 1.12.3). 

The power spectmm for the voiced interval of figure 1.5 appears in figure 1.6, indicating which 

frequencies are most prominent. Harmonics of vocal cord vibration appear as a comb in the spec­

tmm. The local peaks around 500 and 1000 Hz are near formant frequencies-resonances of the 

vocal tract. 

An automatic procedure estimated the fundamental frequency of figure 1.6 to be 111 Hz. The 

spectmm was generated with a 93 ms (i.e., wider) interval centered at the same time as figure 1.5, 

Hanning windowed, and 211-point fast Fourier transformed. 

In figure 1.7, sound and articulator movements are plotted for the same word; the data are from 

the set used for chapter 3. 

One way of thinking about the relation between the two scales is that the vocal cords provide 

a carrier signal, which is then modulated by the changing resonances due to articulator motion 

(Dudley 1940). 

1.9 Linguistic Units of Speech 

Linguistics uses different units for the various timescales and levels of abstraction of speech; these 

include phonemes, allophones, gestures, distinctive features, syllables, words, and sentences. As 
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Figure 1.4: Haar wavelet decomposition showing the different timescales of a recorded word; word 

spoken was "dormitory" Even the shortest (fastest) timescales contain phonetically relevant informa­

tion: specifically, plosive bursts Idl and It!. The articulator motions of figure 1.7, in contrast, include 

only much longer timescales. D 
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...... t---- Cycle 1 -------t~~ ...... t----Cycle 2 -------t~~ 

Figure 1.5: Sound waveform for two cycles of vocal-cord vibration; spectrum appears in figure 1.6. 

The higher-frequency oscillations within each of the two cycles are due to the resonances of the 

vocal tract. Recogn it ion genera Ily requ ires an acoustic analysis of these signa Is; the pu re waveform 

representation depicted here is extremely hard to classify. D 

described below, although phonemes and allophones use the same symbols, they represent different 

levels of abstraction and are distinguished in writing by the delimiters between which they appear. 

The variation between allophones and the number of possible syllables present challenges in recog­

nition. 

1.9.1 Phonemes 

Phonemes are units in a particular language that differentiate words from each other. They are 

defined by analyzing semantically-distinct pairs of words that differ by a single minimal pair of 

sounds. Each language has a particular set of phonemes, with distinct phonemes of one language 

being merged in another. By convention, phonemes are enclosed in slash symbols-e.g., Ik/. 

1.9.2 Allophones 

An allophone is an acoustically but not semantically distinct version of a phoneme, presenting addi­

tional variability to be addressed in a speech recognizer. A word pronounced with the right phoneme 
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Figure 1.6: Speech spectrum: an easier representation for recognition than figure 1.5. In a typical 

recognizer, the cepstrum (section 1.10.2) is used instead of the spectrum. This plot is calculated over 

a slightly longer time window centered at the same time as figure 1.5. The regularly-spaced peaks are 

vocal-cord harmonics, and elevated parts of the overall spectral shape are formants. 0 

but the wrong allophone is generally intelligible but unnatural-sounding. The decision of which al­

lophone to use is generally based on the surrounding sounds. The English phonemes Irl and /11 are 

allophones of a single phoneme in Japanese. Whether a consonant will be aspirated-followed by a 

brief forceful exhalation-is determined by context in English, making it an allophonic distinction. 

In Hindi, aspirated and unaspirated versions of the same stop consonant are different phonemes. 

Allophones are conventionally written with bracket symbols-e.g., [ph]. 

1.9.3 Distinctive Features 

In linguistic analysis, sounds are described by sets of distinctive features. Initially, these sets were 

largely acoustic (Jakobson et a1. 1952) (Trubetozky 1939), but more recent systems of distinctive 

features are based on articulation (Liberman et a1. 1967) (Chomsky and Halle 1968). 
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Tongue tip 

Lower lip 

J r m I r i / 

Os 1.04 s 

Figure 1.7: Timescales of articulator movement and sound. The lip motion contains a great deal of 

phonetic information-especially when combined with tongue motion and detection of voicing. Mo­

tion occurs on a similar timescale to the sequence of phones, much slower than the fastest oscillations 

in sound. Speaker is saying "dormitory./I 0 

1 . 9.4 Gestu res 

Gestures are very similar to articulatory features-a gesture is essentially the realization of an artic­

ulatory feature (such as used in chapter 3) for some interval. The term is generally used by those 

concerned with the dynamic process of coarticulation, the relative timing and interaction of gesture 

sets for successive phonemes (section 1.2.3; section 1.2.4); or by those asserting a fundamentallink 

between perception of hand gestures and perception of speech (section 1.2.1). 
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1.9.5 Syllables 

Some analyses of speech-notably motor phonetics (section 1.2.3)-emphasize the syllable as an 

organizational unit. In a syllable, there are many possible combinations of releasing (initial) con­

sonants, vocalic (central) sounds, and arresting (final) consonants. In English, there are at least 61 

releasing consonant sequences (e.g., Iskrl as in "scratch") and at least 114 arresting consonant se­

quences (e.g., Itsl as in "rats") (Stetson 1988). As a result, there are an unwieldy number of distinct 

syllables of English, so the present thesis avoids explicit syllable modeling. For the same reason, few 

syllable-level recognizers have been developed by other researchers. 

1.9.6 Words 

For speech recognition purposes, it is important to recognize that unlike text, in which words are 

separated, spoken words are not acoustically disjoint. They flow together due to coarticulation. 

Also, the pronunciations listed in a dictionary do not capture the ways words are actually realized in 

speech. 

1.9.7 Importance of Pitch 

In the following discussion, "pitch" is used as shorthand for "fundamental frequency of vocal fold 

vibration." The claims do not necessarily apply to musical or perceptual notions of pitch. 

For tonal languages such as Chinese, words with the same phonemic pronunciation but different 

pitch have distinct semantics. In such cases pitch is retained for recognition (Yang et al. 1988). 

In other languages, the role of pitch is less significant in distinguishing words. Nevertheless, 

it may indicate a stressed syllable, and phonemically identical words may differ only in where the 

stress falls. In English pitch and loudness are both used to indicate stress, while Japanese only 

uses pitch. Information about syllable stress can improve recognition (Zue 1985), but most present­

day recognizers discard pitch information by using a truncated cepstrum (section 1.10.2). In word 

recognition by humans, prosody activates brain areas distinct from those activated by phonemes 

(Imaizumi et al. 1998). 

1.9.8 Sentences 

Sentence structure is beyond the scope of this thesis, and conversation analysis (Zue and Glass 2000) 

even more so. The work of chapter 2 involved only isolated words. Where grammar models were 
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used, they used only frequency and transition statistics: chapter 3 used a unigram model, while 

appendix B and chapter 4 used a trigram model (section 1.11.4). 

1.10 Front-End Algorithms in Conventional State-of-the-Art 

Recognizers 

1.10.1 Separation into Front and Back Ends 

Speech recognizers typically have two components operating in series: a front end that transforms 

sensor data (e.g., audio waveforms) into a set of continuous variables changing over time; and a back 

end that guesses what sequence of discrete textual units (e.g., words) was spoken. In the side-view 

lipreader of chapter 2, the video front end is a new processing pipeline (figure 2.7) and the back 

ends are conventional Hidden Markov Models (section 1.11.2) and maximum-likelihood Gaussian 

classifiers. The steps used in chapter 3 appear in figure 3.6. An optimization approach to selecting 

operating parameters of the front-end processor is the subject of appendix B. 

1.10.2 Acoustic Analysis Using the Cepstrum 

The cepstrum, used in both chapter 2 and chapter 3, is perhaps the most widely-used acoustic front 

end for speech recognition. It is generated, as described below, by inverse Fourier transforming 

the logarithm of a power spectrum (Bogert et a1. 1963) (Rabiner and luang 1993). One possible 

motivation for use of the cepstrum is that it is well suited to encoding the characteristic resonances 

(formants) of vowels; however, recognizers based on a cepstrum front end may perform just as well 

on consonants as on vowels (chap. 4). 

Basic Cepstral Transformation 

The cepstrum is based on the concept of homomorphic deconvolution-a technique that can, under 

certain circumstances, separate a signal into source and filter components. Consider a signal y that 

is generated by linear, time-invariant filtering of a source signal .r: 
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Equation 1.1: Source-filter model of speech, using a linear, time-invariant approximation 0 

In the classic model of vowel synthesis (section 1.12.3) h would represent the impulse response 

of the vocal tract. It would be determined in part by the shape of the mouth cavity, which in 

turn would be determined by tongue position. In practice, h would change over time, so this time­

invariant analysis is only an approximation (see section 1.10.2). For vowel synthesis, x would be a 

series of pulses due to the vocal cords. 

The filtering operation can be represented in the frequency domain as follows: 

Y(w) = H(w)X(w) 

where Y, H, and X are the Fourier transforms of y, h, and x. For example, 

Y(w) = I: .r(T)eiWT dT 

In speech recognition, the signal y is typically subdivided into short time intervals (for example, 

25 ms; see section 1.10.2), and phase information is discarded within those intervals. In the fre-

quency domain, the phase of Y at frequency w is given by the angle of the complex number Y(w); 

the power spectrum IY(wW discards phase by taking the magnitude: 

In homomorphic signal processing, filtering is represented by adding two quantities at each fre­

quency, rather than multiplying. This change of representation is accomplished by taking the loga­

rithm of each side of the above equation: 

log lY(w)1 = log IH(w)1 IX(w)1 2 ( 2 2) 

= log IH(w)12 + log IX(w)1 2 

The final step in taking the cepstrum is to take an inverse Fourier transform of the log power 

2 spectrum log IY(w)1 . 
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1 jX If· x 
. 12 C (q) = 27f ~= log ~= y (7) e'WT d7 e~lWlJdw 

Equation 1.2: Definition of the cepstrum C of a signal y 0 

Because the Fourier transform is a linear operation, the cepstrum of y will be the sum of the 

cepstra of It and .r: 

Computation of Discrete Cepstrum 

A typical signal-processing application will start with a sequence of sampled data and make use of 

the discrete cepstrum rather than the continuous form given above. The fast Fourier transform (FFT) 

is generally used as one step of the discrete cepstrum's implementation. 

In speech recognition, as in many applications, the acoustic signal is nonstationary: its frequency 

spectrum changes over time. The typical way of working around this problem is windowing, which 

involves picking a time scale on which the spectrum seems relatively constant, and analyzing a series 

of time intervals of the appropriate size. The precise definition of a time-varying power spectrum 

is a research area unto itself (Cohen 1995) (Loughlin et al. 1994) (Fonollosa 1996); for this thesis, 

the conventional windowing and time-derivative (section 1.10.2) approaches are used, despite their 

limitations. 

Truncation of Cepstrum 

In speech recognition, there is a tradeoff between (1) having enough input parameters (typically 

called "features" (Duda and Hart 1973)) to distinguish different categories, and (2) keeping the 

number of model parameters low enough that the latter can be trained from the limited set of 

examples. The present thesis uses HMMs with continuous emission densities and diagonal covariance 

matrices (section 1.11.2), in which the number of model parameters is directly proportional to the 

number of input parameters. 

To reduce input dimensionality, the recognizer uses only the first few coefficients of the cepstrum. 

These coefficients correspond to the smallest so-called quefrencies (see glossary) q in equation 1.2. 

For example, in chapter 3, the lowest 12 cepstral coefficients (not counting zero quefrency) are used: 



1.10 Front-End Algorithms in Conventional State-of-the-Art Recognizers 25 

C(nT) : 1 ::; n ::; 12; T = 46.0tls 

The use of 12 coefficients is a standard practice, motivated by their ability to retain the formant 

frequencies of vowels, while removing from the spectrum the detailed harmonic information which 

signifies pitch (Rabiner and luang 1993). 

Spectral Preemphasis 

Speech, like many signals of interest, has an approximately 1/ f frequency spectrum. Recognition 

performance is improved when the spectrum is equalized by a preemphasis step, implemented as 

follows: 

Y(w) = Y(w)w" 

Typically, in the above equation, " :::::: 1; for example, " = 0.g7 was used for chapter 3. 

Mel-Frequency Warp 

The Mel-frequency warp is an optional processing step used both here and in conventional recogniz­

ers. Inspired by the psychophysics of human pitch perception, it involves modifying the power spec­

trum to conform to the experimentally determined Mel scale of pitch (Stevens and Volkmann 1940) 

(Rabiner and luang 1993), and it improves recognizer performance (Davis and Mermelstein 1980). 

It might simply be a coincidence that the Mel warp improves the performance of automatic recogniz­

ers, or there may be some undiscovered fundamental principle responsible for both the recognition 

improvement and human pitch perception. A recent project tested whether the Mel scale was the op­

timal choice from a large class of monotonic frequency warps; the optimal warps looked qualitatively 

like the Mel scale (Kamm et a1. 1997). 

Energy Terms 

Concatenating energy terms to the front-end feature vector also improves recognition (Nocerino 

et a1. 1985). These terms are the logarithm of the sum of squares of signal values within an interval 

(Young et a!. 1997): 

t+w 

E(y. t. w) = L y2(T) 
T=t-tLJ 

The intervals are the same as those used for computation of the discrete cepstrum. 



1.11 Conventional Back-End Algorithms 26 

Figure 1.8: Example Markov model (MM) with two states. This model generates sequences of symbols 

such as "CT2CTICTICT2CTl ... " In a hidden Markov model, either state can produce either symbol, and Pl\l 

is split into PT and PE (figure 1.9). D 

Time Derivatives 

In front-end processing, the dynamic acoustic aspects of speech are represented by adding the time 

derivative of the spectrum or cepstrum. These features represent dynamics at the time scale of ar­

ticulator motion-other than vocal cord vibration, several cycles of which can appear in each time 

interval of spectral analysis. The utility of time derivatives for automatic recognition was demon­

strated decades ago (Fry and Denes 1958) (Denes and Matthews 1960), and as back-end architectures 

have evolved they have remained useful (Furui 1986). First and second time derivatives are com­

puted, via numerical differentiation, for both cepstral coefficients and the energy term (Rabiner and 

luang 1993). 

Complete Feature Vector 

The complete feature vector for a typical front end consists of 12 cepstral coefficients, one energy 

term, 13 first derivatives with respect to time, and 13 second derivatives, for a total of 39 dimensions. 

This parameterization was used throughout the present thesis. 

1 .11 Conventional Back-End Algorithms 

1.11.1 Markov Models 

Markov models are stochastic state machines that generate strings. They are used for higher-level 

processing in speech recognition-grammar modeling-in conventional recognizers such as the one 

analyzed in chapter 4. Hidden Markov models (section 1.11.2) are used for bottom-up processing. 

When used for recognition, instead of generation, strings are scored based on how likely it would 

have been that the model would have generated them. They have a set of states, one per symbol, 
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and a set of transition probabilities from state to state. Since they are stochastic, each generated 

string is chosen randomly. 

In automated musical composition, Markov models have been used as generators, starting in 

the 1950s (Pinkerton 1956) (Brooks et al. 1957) and continuing over the decades (Ames 1989). 

Computer music has also used hierarchical models (Polansky et a1. 1987). When text models are 

used as generators, the result is generally neither syntactically correct nor semantically coherent, but 

sounds vaguely plausible. An example, using models trained on the text of this dissertation, appears 

in appendix F. 

1.11.2 Hidden Markov Models 

Hidden Markov models (HMMs) were used to recognize audio in chapter 2 and both audio and 

articulatory data in chapter 3; HMMs are ubiquitous in speech recognition (Jelinek 1998b). One 

HMM represents each unit of speech (each word in chapter 2; each monophone in chapter 3). The 

recognition task helps determine what level of abstraction should be used for the units: for example, 

words versus individual phone-like units. 

The so-called three basic problems (Rabiner and Juang 1993) for recognition and training with 

HMMs are the following: 

1. The forward problem is useful for selecting among a small number of possible recognizer out­

puts (hypotheses). Given a model .'1 and an observation sequence u (section 1.11.2), what is 

the likelihood that the model would produce the sequence? For example, consider the problem 

of recognizing isolated digits. The recognizer would use a set of models Ju., : 0 :::: i :::: 9 for the 

digits. For an input utterance v, a score p( viM,) would be computed for each possible digit i, 

and the recognizer would guess the digit i whose model had the highest score. Section 1.11.2 

describes the computation in more detail. 

2. Viterbi decoding is used with continuous speech, for which the number of possible output texts 

grows exponentially as the input sound gets longer. To recognize a sequence of digits, a com­

posite model C would be formed including each of the digit models in a loopback configuration 

(section 1.11.2). Viterbi decoding gives the most likely state sequence A through the compos­

ite model; the sequence of digits whose models A passes through is the recognizer's output 

(section 1.11.2). 

3. Parameter estimation is the problem of training a model from data. Given a model M and 
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a set of observation sequences {v}, how can M be modified to maximize the likelihood of it 

producing {v}? Assuming that the training set {v} is large enough, the model's architecture 

and stochastic constraints prevent M from assigning arbitrarily high likelihood to all training 

examples, making it possible for training to converge. 

Discrete Acoustic Input for HMMs 

To simplify the following review of HMMs, sound recordings will be considered transformed into 

acoustic symbol sequences. These acoustic symbols will generally not correspond to a linguistic 

unit such as a phoneme, although they have occasionally been used as fenones, a substitute for 

allophones (Bakis 1974) (Jelinek 1998b). Usually, they represent purely acoustic categories, and 

describe a given interval of the sound recording (typically 25 ms long) with a single integer. The 

number of symbols would typically be of order 256. The symbols are determined for each interval 

by computing the cepstrum (section 1.10.2) and applying vector quantization (Jelinek 1998b); the 

latter is outside the scope of this thesis. Intervals are typically overlapping, each starting 10 ms after 

the start of the previous one. 

The discrete acoustic representation described above reduces a sampled waveform, which might 

have a 16-bit sample value every 45 IlS, to an 8-bit integer every 10 ms-a data compression ratio 

of 444:1. State-of-the-art recognizers have replaced discrete acoustic representations and discrete­

emission HMMs with a continuous representation and HMMs having continuous emission densities 

(section 1.11.2). 

Forward Problem for Isolated-Digit Models 

Setting aside the question of how to train models from speech data (section 1.11.2), assume that an 

HMM AI, has been appropriately trained for each of the ten digits i. Each model includes a set of of 

states Q. Assume that the states are numbered with state 1 being the start state, and state IQI being 

the end state; the model progresses through the states during the course of the word. 

For each pair of states qi, qj, a transition probability PT (qj Iq,) is defined, giving the probability 

that the model will go to state (jj at time step t + 1 if it was in state q, at time step t. The probabilities 

PI' can be thought of as a square matrix of values, with the number of rows and columns each equal 

to the number of states. For example: 
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Figure 1.9: Example of a hidden Markov model (HMM) with two states (j) and (j'2 and two possible 

observations CTI and (J'2. In this example, the states have feed-forward connections, and any symbol 

sequence can be generated, though perhaps with a low probability, by any state sequence. D 

The entry for PdIJI!r12) is zero in this case because the model of figure 1.9 is feed-forward, as are 

typical speech-recognition acoustic models. If this entry were nonzero, the model would be referred 

to as ergodic (see glossary). 

Time t is discretized, with each step moving forward one acoustic-analysis interval (10 ms; sec­

tion 1.11.2). Because PI' represents conditional probabilities, the following stochastic constraints 

apply: 

L Pr(CJ2IfJJ) = 1 
q2 

For each state IJ E Q and each possible acoustic symbol CT (section 1.11.2), an emission probability 

PdCTIIJ) is defined. Like PT, PE can be thought of as a matrix with as many rows as there are input 

symbols, and as many columns as model states; e.g.: 

Together, the states, emission probabilities, and transition probabilities define the model: 
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o(q.t) = PE(O"tlq) L [PT(qlej)o(q.t -1)] 
rjEQ 

30 

Equation 1.3: The update rule at the core of the forward algorithm. The acoustic input at 

time t is siYIIWt. D 

For the example of figure 1.9, the update rule in matrix-vector notation is 

Composite Model for Continuous Digit Sequences 

PdO"jlqJ) 

PE(0"2I e/J) 

0] [O(qj.t-l)] 

1 O(q2. t - 1) 

For continuous speech, models are combined in a loopback arrangement (figure 1.10). This con­

figuration allows a transition from the final state of each model into the start state of any other 

model. 

Viterbi Decoding for Continuous Speech Recognition 

,(q.t) = Pr.;(O"tlq) max [PT(qlej)r(q,t -1)] 

Equation 1.4: The update rule at the core of Viterbi decoding; the forward algorithm's sum 

is replaced by a max operation. D 

Parameter Estimation for HMMs 

Hidden Markov models are generally trained using the expectation-maximization (EM) algorithm 

(Baum 1972) (Dempster et al. 1977), which was used here as well. 

Continuous Emission Densities: CDHMMs 

Continuous emission densities, used in all the HMM-based recognizers of this thesis, are not to 

be confused with continuous-speech recognition problems. The latter refers to the lack of pauses 
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Figure 1.10: Composite model for continuous digit sequences: digit HMMs Mu through M'J are con­

nected in a loopback arrangement. From the final state of every digit model, a transition is possible 

into the start state of any other model. 0 

between words in natural speech. The former refers to continuous parameters passed between the 

front end and back end-implemented in practice with floating-point numbers. Typically there is a 

vector of continuous parameters for each acoustic-analysis frame. 

When each input frame is a vector instead of an integer-when the vector quantization step is 

skipped-the emission probabilities FE defined above are replaced by a set of emission PDFs PI';' 

Each PDF typically (and in this thesis) is modeled as a weighted sum of Gaussians. 

Equation 1.5: Mixture-of-Gaussians emission PDF for CDHMM. Each state ij includes G 

Gaussians in its mixture. The means ji, covariance matrices C, and mixture weights ware 

unique to each Gaussian. Each input vector 0 has D dimensions 0 

The weights are chosen such that 
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c 
LW(Q.,) = 1 
1=1 

11'('1. 1 ) ::: 0 

1.11.3 Engineering Units of Speech: Monophones and Triphones 

Most large-vocabulary continuous speech recognizers use a triphone representation of speech. A 

triphone L(J R is a context-dependent unit, representing a phone (J when the preceding sound belongs 

to the set L and the following sound belongs to the set R. An acoustic model is trained for each 

triphone defined in the recognizer. In theory, Land R could each consist of a single phone. Such 

a complete enumeration would result in too many models for the available data, so in practice they 

are sets defined by automatic clustering during training (Jelinek 1998b). 

In automatic speech recognition, the term phone-like unit is sometimes used instead of phone. 

The distinction is that it may be expedient to mix phonetic and phonemic categories when the goal 

is engineering rather than linguistics. Not every allophone needs to be enumerated. Still, the engi­

neering units tend to be closer to a phone level than a phoneme level. 

Monophone modeling, as used in chapter 3, refers to training models for each phone-like unit 

without regard to the neighboring sounds. It is considered a context-independent representation. 

1.11.4 Grammar Modeling 

Automatic dictation systems (large-vocabulary continuous speech recognizers) make use of simple 

top-down grammar models~based on bigrams and trigrams~during recognition. The recognizers 

created in this this do not use such models, but use unigram estimates of word frequencies (sec­

tion 3.9.1). Top-down models are commonly called "language models" by researchers, but the 

present thesis avoids this terminology because bottom-up processing is also a part of language. This 

thesis proposes no new techniques for modeling at the grammar level; articulatory representations 

and lipreading fit naturally into the bottom-up side of recognition. 

The state of the art in grammar modeling for recognition purposes is to estimate word-to­

word (bigram; figure 1.11) and word-pair-to-word (trigram; figure 1.12) transition probabilities (Je­

linek 1998b). The approach certainly does not capture all the grammar-level structure of natural 

language, but it has proven useful in the context of recognition. 
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Figure 1.11: Bigram state machine-simplified example. This is a special case of a Markov model 

figure 1.8 in which transition probabilities are either uniform (which appear in this figure) or O. 0 
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Figure 1.12: Trigram state machine. In a trigram Markov model (the simplified grammar generally 

used for speech recognition), all 30 word pairs would be allowed, and all 900 possible transitions. 

The transitions depicted here would have the highest probabilities. 0 

1.12 Historical Notes 

1.12.1 Origins of Automatic Speech Recognition 

In the nineteenth century, Alexander Graham Bell tried to solve the problem of enabling the deaf 

to understand speech sounds; a speech-to-text recognizer would have been ideal for the purpose, 

but with the technology of the time he could only build devices that presented the speech waveform 

visually. Such devices were known as phonautographs, and unlike the phonograph, could not play 

back sounds. Bell's phonautograph was unique in that the bristles that traced the waveform were 

connected to the bones of a human ear, which had been taken from a cadaver. 

The first machine to recognize and selectively respond to speech was probably the Radio Rex 

toy dog (Paget 1930), manufactured by the Elmwood Button Company circa 1918-1929. It was de-

signed to move when called-a binary decision. Improvements in signal processing made it possible 
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for automatic recognizers to distinguish multiple words (Davis et a1. 1952). Increased computer per­

formance enabled statistical models (Jelinek 1998b) to displace template-matching methods (Sankoff 

and KruskaI1983), and recognition of continuous speech instead of isolated words. 

1.12.2 Articulatory Symbols for Writing 

Korean han'gul writing depicts articulatory characteristics of consonants in their written shapes 

(Kim-Renaud 1997). It was introduced by King Sejong of Korea in 1446 as a way to write Ko­

rean (and Chinese, for which it never gained popularity) without Chinese pictographic symbols. The 

stated purpose of the alphabet was to make writing easier and increase the literacy rate. Each con­

sonant's letter form indicated which articulator was critical for producing the sound. For example, 

bilabial consonants were variations of a box shape, indicating the two lips, and dental consonants 

were based on an inverted V, indicating the bottom teeth. Each syllable was written by grouping 

vowel, consonant, and coarticulation symbols together in a box. 

Linguists have devised schemes for transcribing speech in terms of articulation (Pike 1943)-for 

example, place of and type of constriction, and organ involved (Jespersen 1914). Alexander Melville 

Bell's Visible Speech (figure 1.13), like the Korean alphabet, attempts to graphically represent the 

articulator configuration (Bell 1867) for each character. 

1.12.3 History of Speech Synthesis 

There is a long history of speech synthesis, both acoustic (von Kempelen 1791) and electrical (Stew­

art 1922). The acoustic synthesizer was preceded, in European music, by the vox humana stop 

(setting) of the organ. The latter produces an ethereal sound that resembles a voice or a chorus 

singing a single, sustained vowel sound; while the goal of synthesis is to produce intelligible speech. 

Synthesis has, from the start, been based on a source-filter model of speech. The filter represents 

the resonances of the vocal tract, and the source (in voiced sounds) represents the vibration of the vo­

cal cords (figure 1.14). Initially the filter was implemented in an acoustic resonator designed to have 

a single formant frequency (von Kempelen 1791). Later synthesizers used pairs of formants, either 

for a small subset of sounds (Stewart 1922) or for all sounds except Ihl (Paget 1922). In the twen­

tieth century, electrical synthesis largely replaced acoustic, and then digital electronic synthesizers 

succeeded analog. A milestone of synthesis was the demonstration of an electrical synthesizer, with 

a human operator controlling analog parameters in real time, at the World's Fair (Dudley et a1. 1939). 
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Figure 1.13: Visible Speech, an alphabet representing articulations graphically (Bell 1867); one of 

several alphabets designed on this principle to facilitate learning; predated by Korean han'gul alphabet 

(1446). Image digitally retouched from a U.S. Library of Congress scan. 0 
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Figure 1.14: Source-filter model of speech synthesis, used in various forms for hundreds of years (von 

Kempelen 1791). The vocal cords in isolation would produce a sound with a spectrum like (a) in the 

figure; different mouth shapes associated with the various phonemes (b) cause resonances as depicted 

in (c). The linear filtering of (a) by (c) gives speech signals whose spectra look like (d). Reprinted with 

permission (Bailey 1983); copyright 1983, Academic Press. D 
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Contemporary synthesizers use digital signal processing techniques (Breen 1992). 

1.13 Third-Party Assistance 

The author was the original grant author and principal investigator for the lipreading work (chap. 2), 

which was performed at Tanner Research, Inc. (Pasadena, CA, USA) under U.S. Air Force Small 

Business Innovation Research (SBIR) Contract F41624-97-C-6017 (Fain 1998). A patent is pending 

with Tanner Research as the assignee (Fain and Chinn 1999). The proposal described a customized 

face mask, high-contrast imaging, thresholding, edge identification, and centroid computation. Garry 

Chinn suggested some changes to the image processing pipeline: specifically, the median filter for 

noise, and the technique to find the corner of the mouth; he also did a considerable amount of 

implementation. layant Shukla modified Unix shell scripts for acoustic recognition; he also collected 

a second data set, results for which are not reported here, except for the raw waveforms pictured in 

figure 2.11. 

The author applied optimal feature extraction (appendix B) to large-vocabulary continuous 

speech recognition at lohns Hopkins University (Baltimore, MD, USA) as part of the 1997 Sum­

mer Workshop of the Center for Speech and Language Processing. Terri Kamm helped modify the 

baseline HMM training procedure to use the resulting feature transformation. The technique was 

proposed by Nagendra Kumar (Kumar and Andreou 1998). 

1.14 Summary of Results of Thesis 

The implications of the results of this thesis are discussed in chapter 5. One result presented here 

is that continuous speech recognition can be improved by augmenting acoustic recordings with di­

rect articulator measurement (chap. 3). Also reported is a new device and processing pipeline for 

side-view lipreading (chap. 2); the device and algorithms were designed together for robust feature 

extraction. The two types of kinematic data-direct measurement and extraction from video-both 

represent up-down and front-back motion of articulators. Lipreading fits naturally in an articulatory 

framework because it allows motion to be inferred, and because more-direct measurement is very 

invasive (appendix E). The present experiments did not involve inferring motor representations from 

sound, but other work has demonstrated the feasibility of recovering such information. 

Kinematic information was found to improve vowel recognition more than consonant recognition, 
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although vowels are often thought to be better modeled by existing recognizers (chap. 4). This result 

inspired a reexamination of the performance of some standard state-of-the-art recognizers, which 

revealed no advantage in recognizing vowels over consonants. The relative information content of 

vowels and consonants in text was calculated, and stops and fricatives together were found to convey 

about as much information as vowels. The information-content results are somewhat at odds with 

the common assumption about vowels and consonants; that assumption depends on including not 

only stops and fricatives, but also vowel-like sounds, in the category of consonant. 

A front-end optimization technique, heteroscedastic discriminant analysis, was found to scale 

from a smaller problem (continuous digit recognition), where it had been previously demonstrated, 

to transcription of telephone conversation. Theoretical difficulties were discovered in applying the 

technique to HMMs having mixture-of-Gaussian emission PDFs. 



39 

Chapter 2 

Side-View Lipreading Device and 

Algorithms 

2.1 Problem Description 

The goal of this chapter's project has been automatic lipreading: speech recognition from audio and 

side-view video (Fain 1997) (Fain and Chinn 1999). In order to simplify image processing-to make 

it more robust and less computationally demanding-a custom side-view input device was developed 

to acquire video of the mouth's motion. A new video processing pipeline is presented that segments 

the upper and lower lip regions and computes their centroids, which in turn are useful for recognition 

(see confusion matrix in table 2.2). 

Recognizers for the audio and video data were developed, and errors were analyzed across 

modalities (similar to the separate-identification technique for merging audio and video). The rec­

ognizer's errors in the two modalities were completely disjoint: the two categories confused by the 

video pathway were never confused in recognition from audio alone. This indicated that for a very 

small data set, audio and side-view video provided complementary information. 

The input device is a pilot's oxygen mask modified to include a miniature video camera and light. 

The approach is directly applicable to situations in which the user is required or willing to wear an 
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opaque mask (e.g., fire fighting, surgery, or piloting an unpressurized airplane). It might be possible 

to generalize the technique to a translucent mask or an open headset. 

2.2 Background 

2.2.1 Degrees of Freedom of Lip and Jaw Motion 

In designing a lipreader, it is worth considering how many independent degrees of freedom (DF) 

the lip and jaw have; this chapter uses 4 DF. The idea that there might be a tractable number of DF 

comes form the fact that there are a limited number of muscles in the face. However, motions may 

involve the coordinated action of several muscles, and some muscles may move in more than one 

way. The widely used facial action coding system identifies 19 possible movements of the lip and 

jaw (appendix D). Many of these motions are emotional expressions that are not required to make 

phonetic distinctions, so the number of effective DF related to speech is probably fewer. 

For front-view lipreading, the tongue is certainly relevant, since it can sometimes be seen when 

the mouth is open. This project's side views make the tongue harder to see. Raising and lowering 

the tongue to make different sounds is correlated to jaw motion, so even from the side it may be 

possible to extract some information about the tongue's motion. 

As described in section 2.5.6, the present project transforms the side-view video into four pa­

rameters per frame. These parameters are two pairs of coordinates, representing the center positions 

of regions around and including the upper and lower lip. 

Other researchers have attempted to determine how many degrees of freedom are sufficient for 

lipreading by humans (Benoit et a1. 1996). They presented listeners with speech in noise, either 

alone, with animation, or with video of the actual speaker. Intelligibility tests were repeated for 

animation of the lips alone, the lips superimposed on a skull with a moving jaw, or an entire face. 

The face and skull-plus-jaw models had the same 6 DF of motion; the lip model had only five. These 

motions were measured reliably from the speaker's face, which had blue makeup applied on the 

lips and three landmarks. For a 0 dB signal-to-noise ratio (SNR), the 6 DF models were as helpful 

for lipreading as the actual face. At -18 dB SNR, speech was essentially incomprehensible without 

video, and seeing the human (not synthetic) face reduced errors by 25 % relative to the 6 DF face 

animation. This discrepancy may be caused by the unnatural appearance of the animated face, or 

the specific choice of parameters. 
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Error rate by 

Video Audio noise level 

Type DF Quiet (0 dB SNR) Noisy (-18 dB SNR) 

None 39.74% 98.68% 

Animated lips 5 27.81 % 77.48% 

Animated skull, lips 6 21.85% 70.20% 

Animated face 6 20.53% 54.97% 

True speaker 23.18% 41.06% 

Table 2.1: Previous work (Benoit et al. 1996): I ipreading error rates by human I isteners for different 

face parameterizations by human listeners. Faces were animated with either 5 or 6 degrees of free­

dom (DF), and speech with 0 or -18 dB signal-to-noise ratio (SNR) was played back. At the latter 

SNR, comprehension from audio alone is almost impossible. The 6 DF model improves recognition 

considerably; only 4 parameters represent lip configuration in this chapter. 0 

2.2.2 Distinctive Phonetic Features Relating to Lips and Jaw 

Another way to estimate the degrees of freedom of the lip and jaw is to approach the problem 

phonetically, rather than physiologically. The tongue conveys a tremendous amount of phonetic 

information and its position may be inferred to some extent even from a side view, because tongue 

motion is correlated to jaw motion. 

2.3 Previous Work 

2.3.1 History of Machine Lipreading 

Forty years ago, a patent entitled Electronic Lip Reader was filed (Nassimbene 1965). That system, 

like the one described in the present thesis, was to be worn on the head. The device was intended 

for use with speech recognition, although the patent did not specify a classification technique. 

Lipreading has made considerable progress since then, with many projects concentrating on 

recognition from video under general lighting conditions and variable camera position (Hennecke 

etal.I996). 

Previous work helps illustrate the link between this chapter and chapter 3 (Westbury and 
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Figure 2.1: Lip shapes associated with different sounds of speech, as seen from the front as opposed 

to the side view of this thesis. Reprinted with permission (Parke and Waters 1996); copyright 1996, 

A. K. Peters. 0 

Hashi 1997). In that project, lip motion was found to be similar between English and Japanese 

speakers making comparable consonant sounds, and to convey considerable phonetic information. 

It used the same database of x-ray microbeam recordings of metal beads on the lips as used in 

chapter 3. 

2.3.2 Different Ways to Merge Audio and Video 

Different ways to merge audio with video for lipreading are defined in section 1.7: direct iden­

tification, separate identification, motor-space recoding, and dominant recoding (Robert-Ribes 

et a1. 1996). The present chapter uses the separate identification approach. In previous work, sepa-
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rate identification has been found to outperform direct identification (Adjoudani and Benoit 1996) 

(Massaro 1996), but motor-space recoding also shows promise (Robert-Ribes et al. 1996). Lipreading 

by humans is described in appendix C. 

2.3.3 Dynamic Contours (Snakes) 

Much recent work in lipreading has used dynamic contours, also known as snakes (Hennecke 

et al. 1996). A snake tracks a curved contour as it moves in a video input (Kass et al. 1987). 

After a snake is initialized to lie on an edge in an image, its subsequent motion is defined by energy­

minimizing differential equations, derived via the calculus of variations. When constraints apply to 

the contours-for example, the symmetry of the two edges of a finger-the equations of motion can 

be augmented so that the constraints will be asymptotically satisfied (Platt 1989). 

2.3.4 Camera Placement 

Although most previous work has considered the more general case of camera placed order 1 meter 

away from the subject (Hennecke et al. 1996), some other researchers have used wearable cameras 

to control the recognition problem (section 2.3.1) (Bass et al. 1997). 

A wearable, video-only lipreader was mentioned in passing in the summary of a research work­

shop (Bass et al. 1997); however, neither literature nor Web searches revealed any further informa­

tion on the system. 

2.4 Lipreading Face Mask 

In this chapter's project, the user wears an opaque mask, which includes a miniature camera, light, 

and noise-canceling microphone. Mounting the camera and light to the mask increased the total 

weight from 372 g to 394 g. The helmet kept the mask in place, which could alternately be accom­

plished by a strap. 

The camera and light are both placed to the side of the user's mouth. This results in a side-view 

image, instead of the front view common in lipreading research. 

Video data from the camera are passed through several sequential stages of processing. The initial 

front-end stages estimate the positions of regions of the face. The back end then classifies speech 

based on this position information. 
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Figure 2.2: Side-view lipreading face mask designed and built in this project. The light is inside the 

mask, and the video camera is on the mask's right side, covered in electrical tape. Three twisted wires 

lead away from the camera. The helmet keeps the mask in place. Image copyright Tanner Research; 

used with permission. 0 
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2.4.1 Design Issues 

The requirements for the face mask design were: 

1. Facilitation of simple, robust image processing-thus, high-contrast, side-view video acquisi­

tion 

2. Light weight 

3. Low profile-low polar moment of inertia with regard to the neck axis 

2.4.2 Alternate Designs Considered: Silhouette Imaging 

Other designs considered for the lipreading face mask were using an array or single point sensor 

(nonfocusing), or illuminating the mouth on the opposite side from the image sensor, producing a 

back-lighted silhouette (Fain 1997). In order to detect the shadow, either the light source or the 

sensor would have to be extended spatially. Some possible silhouette imager configurations would 

have been: 

• A diffuse illuminating panel with a video camera. 

• A set of light sources with low switching times (such as light-emitting diodes) lit in a repeating 

sequence, with a point sensor determining whether it was in shadow at a given time. 

• A spread-out array of sensors used in conjunction with a switching array could capture three­

dimensional information-the shadows produced on the opposite side of the mask from the 

switching array would show a parallax effect, which could be used to reconstruct shape. 

Ultimately, the easy availability of a small video camera-and the simplicity of using a single 

light bulb instead of a diffuse illuminator or an array-motivated placing the light on the same side 

as the camera. Even the parallax-sensing configuration mentioned above is arguably no better than 

simultaneous readout from multiple cameras. 

2.4.3 Implementation 

The lipreading face mask was constructed by cutting a hole in the side of the oxygen mask, inserting 

the lens of a compact video camera through the hole, and attaching a light to the inside of the face 

mask on the same side as the camera. The video camera was a commercially available part; its 
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Figure 2.3: Still image of subject saying Iii ("ee"). This and other images collected as part of this 

chapter's project are copyright Tanner Research and used with permission. 0 

circuitry fit on a single, small circuit board (figure 2.2) and it produced National Television Standards 

Committee (NTSC) output. The light was a small incandescent bulb. 

2.5 Front-End Feature Extraction Using Face Mask 

For this project's front end, a desktop computer acquires the camera's video signal using a video­

capture expansion board, which samples 30 frames per second at 320 (horizontal) by 240 (vertical) 

resolution. Examples of the video recorded by the camera appear in figure 2.3 through figure 2.6, 

for four different phonemes. The distinction of iii (figure 2.3) versus lui (figure 2.3) was chosen 

because it involves lip rounding and could hypothetically pose a problem for a side-view recognizer 

such as the one of this chapter. The labiodental sound If! (figure 2.6), on the other hand, involves a 

distinctive lip-tooth configuration. 

The front end developed in this project includes the following processing steps: 

• Noise removal; 

• Threshold to separate face from background; 

• Segment upper and lower regions; 

• Compute centroids for both regions. 
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Figure 2.4: Still image of subject saying lui ("00"). Compared to figure 2.3, the lips have moved 

together and forward. The use of the side view to distinguish these phonemes appears in figure 2.1 O. D 

Figure 2.5: Sti II image of subject saying Im/. As expected, the I ips are closed agai nst each other. D 
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Figure 2.6: Still image of subject saying If!. The lower lip has moved back to touch the bottom of the 

upper teeth. 0 

Image 

t 
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(Median filter; section 2.5.1) 

Foreground extraction 
(Threshold; section 2.5.2) 

Find both lip regions 
(State machine; section 2.5.3) 
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Distinguish lips from each other 
(At mouth corner; section 2.5.4) 

Generate kinematic parameters 
(Centroids; section 2.5.5) 

Lip region positions 

Figure 2.7: Video-processing steps for the lipreading experiments described in this chapter. 0 



2.5 Front-End Feature Extraction Using Face Mask 49 

The processing occurs independently on each video frame, so in the following discussion, a frame 

will be represented by I(x, v), which is defined for integers x and y in the field of view. 

2.5.1 Noise Removal with Median Filter 

The video acquired by the computer may contain speckled noise artifacts. To eliminate these, two 

median filters, one horizontal and one vertical, are applied in sequence. Each filter operates on 

three-pixel intervals. The center pixel of each interval is replaced by the median-valued pixel in the 

filter window. 

For the horizontal filter operating at (x, y), 

0: ~ I(x -l,y) 

f3 ~ I(x, y) 

r~I(x+1,y) 

Similarly, for the vertical filter, 

a~I(x,y-1) 

f3 ~ I(x, y) 

r ~ I(x, y + 1) 

The output of median filtering is as follows: 

h (x, y) = 0: if f3 ::; 0: ::; r or r ::; a ::; f3 

h(x, y) = f3 if 0: ::; f3 ::; r or r ::; f3 ::; 0: 

12 (x,y) = r if 0:::; r::; f3 or f3::; r::; a 

2.5.2 Thresholding Face from Background 

The prototype mask has produced high-contrast images of the speaker, so a threshold has been suf­

ficient to highlight the speaker's face against the background, while maintaining the border between 

the lips with the mouth closed (figure 2.5). The a priori threshold of one-half the maximum intensity 

worked well, resulting in a binary image for the next stage of processing. 

e = maxI2 (x, y) 
2 
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h(x, y) = 0 if h(x, y) < e 

h(x, y) = 1 if 12 (x, y) 2': e 

2.5.3 State Machine Distinguishing Upper and Lower Lips 

50 

A state machine was used to determine an upper and lower bound for each of the lip regions. These 

bounds give overlapping regions that are converted to distinct regions as described in section 2.5.4. 

The state machine is defined in figure 2.8. The boolean state variable a indicates whether the 

machine is currently (i.e., for a particular position x, y) inside a lip region; b is true if the state 

machine is at or past the the end of the region. The start (bottom edge) of the lower lip region, for 

a particular horizontal position x is SL(x); the start (top) of the upper lip region is Suo The ends 

of the two regions are ELand Eu. Therefore, the contour of the overlapping lower-lip region is the 

following set of points: 

{(:r, S L(:/:»)} U {(:r. EL(x))} 

2.5.4 Finding Corner where Lips Meet 

The corner where the two lips meet was defined as (:r, EL(:r)), in which :r was the farthest-left 

horizontal position for which the two overlapping regions did not overlap. This was very close to 

((.r). Eu(J'», as indicated in figure 2.9. 

2.5.5 Calculating Centroids of Lip Regions 

The final step of front-end processing is to compute the centroids (center of area) of the upper and 

lower regions. For the binary, sampled image representation of each lip's region, the centroid is 

computed as follows: 

xe = 2:~=1 2::=1 b(:/:, y)x 

Ye = 2:~=1 2::=1 b(:r, y)y 

Equation 2.1: Centroid coordinates (:re, yc) of a sampled, h x w binary image b 0 

The video processor's output is two coordinate pairs-(:r{j.YL;) and (xL.vd-the first pair ob­

tained by substituting l:;U for /) in equation 2.1, and the second by substituting lsL. 
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for:r := I. .. w 

if h(x.l) = 0 

q:= 0 

else 

q:= 1 

Sd.r) := 0 

Ii:= 0 

for y := L.h 

if Ii := 0 

if q : = 0 and h (:r. y) = 1 

q:= 1 

SL(.r):= y 

if q:= 1 and h(:r:,y) = 1 

q:= 0 

b:= 1 

Edx) := y 

51 

Figure 2.8: Pseudocode for segmentation of lower lip region. For upper lip, direction of inner for loop 

is reversed, from h ... l; and 5(.T and Eu are substituted for SL and E L . 0 

2.5.6 Features Generated by Front End 

Output of the front-end image processor is shown in figure 2.10 for a single frame from each of 

multiple experimental trials. In this case, the user repeatedly spoke the four sounds Iml, Iff, Iii 

("ee"), and luI ("ooh" as in "shoe"). The graph is oriented to represent a speaker facing right, and 

only the lower region's centroid is depicted. 

2.5.7 Robustness to Mask Placement 

The subject removed and replaced the mask repeatedly during data collection. Any inconsistency in 

position between the different mask placements was too small to interfere with classification. This 
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Su 
-----""' 

EL Su 

Eu ------_.../ 
SL 

Figure 2.9: Segmentation of lower, upper lips, as determined by state machine of figure 2.S. In the 

left part of the image the two regions are overlapping; the final step is to split them (see text). For 

illustration purposes, gaps have been drawn between contours which are immediately adjacent to 

each other. 0 

may be due to the fit of the mask to the face, or to the distinctiveness of the categories when mea­

sured with this feature set, or, most likely, both. Harder recognition tasks may require algorithmic 

calibration and different mask styles. 

2.6 Centroid Motion Versus Lip Motion 

Movement of the lower centroid is related but not identical to movement of the lower lip. The cen­

troid moves as predicted by phonetics. Compared to Iml, in which the lips are closed, the labiodental 

IfI is produced with the region shifted down and back, iii with the region shifted down, and lui with 

the region shifted forward (figure 2.10). 
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Figure 2.10: Position of centroid of the lower-lip region as the subject (facing right) makes the four 

sounds Iml, Ifl, Iii, and luI. See table 2.2 for classification results for these data. 0 

2.6.1 Aperture Effect 

Due to an aperture effect, the rate and direction of motion of the centroid will differ from the motion 

of the lips themselves, and from a landmark on the lips such as used in chapter 3. This effect can 

be illustrated with a couple of simple examples. It is not representative of the aperture effects seen 

in human perception; it is due to the combination of a finite image frame and the specific centroid 

calculation used for this project. Although the lips have the added complication of being nonrigid, 

the aperture effect is seen for rigid (i.e., nondeforming) shapes such as these examples. 

Aperture Effect on Rectangle 

Consider a rectangle that is only partially in an image frame to begin with, that is oriented parallel to 

the edges of the frame, and that starts moving parallel to an edge and out of the frame (figure 2.12). 

In this simple case, since the centroid is computed using only the visible portion of the rectangle, it 

will move at half the rate of the whole rectangle. 
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Figure 2.11: Changes in lip region coordinates over time, as a speaker says "east, west, north, south." 

Lower lip coordinates are (LLx, LLyl, and upper lip coordinates are (VLx, ULy). 0 

Aperture Effect on Parallelogram 

Not only the centroid's speed, but also its direction of motion differ from the same quantities mea­

sured at a landmark on the lips (such as the metal beads of chapter 3). A parallelogram moving 

out of the image plane illustrates this effect (figure 2.13). In this case, the centroid's upward speed 

is greater than half the parallelogram's; the centroid also moves left, although the parallelogram's 

motion is strictly vertical. 

2.6.2 Comparison to Previous Methods 

The front-end image processing of this project has several advantages over dynamic contours (sec-

tion 2.3.3): 

• It requires considerably less computation; 

• It acts on frames independently, which prevents errors from propagating from one frame to the 

next; 
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Figure 2.12: Aperture effect in centroid calculation with a rectangle moving upward from h to hi. The 

centroid moves from G to G I at half the rate of the rectangle, only part of which is visible. 0 

• No arbitrary parameter-setting experiments were required; 

• There is no separate initialization. 

One of the most closely related projects combined single-frame processing for the positions of the 

eyes and nose with frame-to-frame lip tracking (Petajan and Graf 1996). In that project, lip tracking 

was reset by single-frame calculations whenever the lips closed. Because frames were analyzed one 

at a time, and lip tracking was periodically reset, their video processor avoided the problems of poor 

initialization and indefinitely long propagation of tracking errors, and it performed well under a wide 

range of lighting conditions. 

2.7 Simple Back-End Classifier 

Two back-end classifiers have been implemented; one operates on single video frames, and the other 

on sequences of frames. However, problems with training data prevented evaluation of the frame-

sequence recognizer. 
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Figure 2.13: Aperture effect for a clipped parallelogram moving straight up from h to h'. The centroid 

moves left, and its upward rate is sl ightly faster than the rectangle's centroid in figure 2.12. 0 

2.7.1 Single-Frame Recognizer 

A maximum-likelihood Gaussian classifier section A.1 (Duda and Hart 1973), with diagonal covari­

ance matrices, was used to classify centroids from the front-end processor; recognition experiments 

and results are described in more detail below. 

2.8 Lipreading Recognition Results 

A pair of recognizers, one acoustic, one lipreading, were trained to determine whether the two 

modalities provided independent information about what was spoken. 

Classification experiments were performed which quantified the separation between categories 

seen in figure 2.10; results of these experiments appear in table 2.2. For each example, maximum­

likelihood Gaussian classifiers appendix Adefs were trained with that example omitted from the 

training set. Omitting the test example ensured a proper train/test split for evaluating generalization 

ability. 
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Figure 2.14: Lipreading architecture tested on a very small data set; results are reported in sec­

tion 2.8.3. This architecture is an example of the separate identification approach (section 1.7.1), 

as opposed to the direct identification approach of chapter 3 or the motor-space recoding approach 

(Robert-Ribes et al. 1996). 0 

2.8.1 Acoustic Recognizer 

Sound recordings were made of a single subject speaking four words: "north," "south," "east," 

"west." Twenty-five repetitions of each word formed the training set, and ten formed the test set. A 

conventional hidden Markov model acoustic recognizer was used, with continuous emission densities 

(CDHMM; section 1.11.2) and Mel-frequency cepstral coefficients (chap. 1) (Young et al. 1997). 

Each CDHMM had three emitting states; each of those states had a mixture-of-Gaussians emis­

sion PDF with a diagonal covariance matrix. The front end features were the standard Mel-frequency 

cepstral coefficients with delta, acceleration, and energy terms (section 1.10.2). Training lasted for 

two iterations of the expectation-maximization algorithm (section 1.11.2). 

The recognizer performed perfectly on the small data set, but in the target application, perfor­

mance would be degraded by considerable noise, speaker-to-speaker variability, continuous speech, 

and a larger vocabulary. Noise was added to the acoustic data, and the recognizer was trained with 
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Classifier output 

Iml If! Iii lui 

True category: Iml 21 0 0 0 

If I 1 18 0 1 

Ii! 0 0 20 0 

lui 0 0 0 20 

Table 2.2: Confusion matrix for classification of Iml, If/, Iii, and lui, using the video component only 

of the pipeline in figure 2.14. The error rate is 2%. See also figure 2.10. 0 

Error rate 

Audio 17% 

in noise 

Video 10% 

Combined 0% 

Table 2.3: Error rates of audio and video recognition. Note that the joint error rate was not verified by 

cross-validation, but by error analysis. See also table 2.2 which reports a lower video-only error rate 

for a slightly different problem. 0 

data having 0 dB SNR and tested with data having 5 dB SNR. In these circumstances, the acoustic 

recognizer guessed wrong 17% of the time. 

2.8.2 Still Image Recognizer 

Video images were captured of the same subject making the initial sounds-/n/, lsi, Ii!, and Iw/­

of the four test words. These images were used to train a maximum-likelihood Gaussian classifier 

(section 2.7). 

Training used 20 cases each of Inl, lsi, Ii!, and Iw/. Five separate cases for each category were 

used for testing; the error rate on this test set was 10 %. 
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2.8.3 Analysis of Errors by Modality 

Comparing the specific errors made by the recognizers is more instructive than comparing the error 

rate. The video recognizer only confuses lsi and /iI, while the acoustic recognizer never confuses 

"south" and "east." Thus the video recognizer can be used to decide whether a subject is speaking 

"north," "west," or something else, and then the audio recognizer can differentiate "east" and 

"south." 

Although errors in this small problem could be eliminated completely, such results should not be 

expected for larger problems. The analysis simply reflects that, with the present data set, the two 

modalities provide independent information. 

2.9 Side-View Lipreading: Conclusions 

Above, preliminary recognition results and an error analysis show that combining audio and video in 

side-view lipreading improves performance. A camera and light positioned for a side view, coupled 

with simple processing of individual frames of video, result in a robust tracker of upper-lip and 

lower-lip position. Since almost all previous lipreading work has used a front view, the initial data 

included distinctions that might hypothetically be easier to see from the front: rounded/unrounded 

(lui versus Ii!) and labiodental/bilabial (If! versus Im/). These distinctions remained clear in the 

parameters produced by this side-view lipreading front end; of the phonemes just mentioned, only 

If! was misclassified (table 2.2). 

2.10 Future Work 

The opaque mask is rather obtrusive for users who aren't required to wear a mask for other reasons, 

as, for example, fighter pilots are. 

Further data collection, for additional speakers and more complex utterances, would enable a 

thorough assessment of this side-view, threshold-and-centroid approach to lipreading. Ideally, such 

a data set would include front-view video recordings as well, for comparison. 
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Chapter 3 

Speech Recognition with Direct 

Articulatory Measurements 

The goal of the experiments described in this chapter was to determine the benefit of adding artic­

ulatory information to a hidden Markov model (HMM) based continuous-speech recognizer. The 

motivation for adding an explicit kinematic representation is described in section 1.1. 

The articulatory data used in these experiments were collected at the University of Wisconsin, by 

other researchers, using the x-ray microbeam technique described in section 3.4.1 and appendix E. 

This technique determines the back-to-front and bottom-to-top positions of points on the tongue, 

teeth, and lips. The Wisconsin data include a number of subjects reading words, sentences, and 

paragraphs while position information and sound are simultaneously recorded. 

In the project of this chapter, concatenating transformed articulatory information to a standard 

acoustic (cepstral) representation reduced the error rate by 7.4%. This demonstrated across-speaker 

statistical significance (p = 0.(18) for the first time in continuous recognition from articulatory data. 

The motion data improved recognition for male speakers more than female, and recognition of vow­

els more than fricatives or stops. The comparison between vowels and consonants is described in 

more detail in chapter 4, and the coordinate transform is analyzed further in appendix A. 

Speaker-dependent monophone recognizers, based on hidden Markov models, were tested on 
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Figure 3.1: Approaches to articu latory recogn ition, not implemented for th is chapter, but illustrated 

for discussion purposes only. The approach of chapter 2, depicted in detail in figure 2.14, is similar to 

(b). D 

paragraphs each lasting about 20 s. Results were evaluated at the phone level and tabulated by 

several classes (vowel, stop, and fricative). Measured articulator coordinates were transformed by 

principal components analysis (projection into the space of the first 4 principal components), and 

velocity and acceleration were appended. 

3.1 Long-Term Goal 

Consider the hypothetical recognizer architecture in figure 3.1(a). The computer would accept au-

dio and video inputs of a person speaking. The first stages of processing would be conventional 

speech-recognition and lipreading front ends. An intermediate stage would recover the motion of 

the speaker's articulators. Articulators include all the parts of the speaker's anatomy that are directly 

relevant to the acoustics of speech: for example, the tongue, teeth, lips, and vocal cords. 

The work described in the present chapter implements figure 3.2 and addresses how well a con­

ventional back end might perform if the articulatory inference functioned precisely. Results obtained 

here can be viewed as an upper bound for how this particular architecture would perform with mo-

tions recovered from sound. 
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Figure 3.2: The recognition architecture with direct articulatory measurements that was used for the 

results of this chapter and is shown in more detail in figure 3.6. 0 

3.2 Problem Statement 

The problem addressed in this chapter is, How much can a monophone HMM-based recognizer be 

improved by adding a representation of measured articulator motions to sound input? The recogni­

tion task is continuous speech (paragraphs read aloud), and improvement is measured by the relative 

reduction in error rate. 

3.3 Related Work 

3.3.1 Human Speech Perception 

The gesture/motor/articulatory theories of human speech perception are described in section 1.2. 

3.3.2 Interpolating Acoustic Models of Coarticulation 

A primary reason for using motor representations for recognition is to model coarticulation. Never-

theless, it is possible that coarticulation might be modeled acoustically, without explicit representa-

tion of articulator motion section 1.1.2. Previous work involved a variant of hidden Markov models 

that interpolated between acoustic targets (Deng et a1. 1992). Each phone had a target; interpolating 

these targets allowed coarticulation to be modeled with far fewer parameters than the usual approach 

of triphone modeling. 

The above project was inspired by studies of the interaction between consonants and vowels that 

follow them, in particular the so-called locus property (Delattre et a1. 1955) (Liberman et a1. 1967). 

Acoustic trajectory interpolation should not be confused with deleted interpolation, which is used in 

grammar modeling (Jelinek 1998b). 
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Another approach to modeling context acoustically is to make the emission PDF dependent on 

which state was previously occupied (Sitaram and Sreenivas 1997); this increases the number of 

model parameters required. 

3.3.3 Recognition with a Categorical Motor Representation: The Articulatory 

Feature Model 

Other researchers have built an articulatory recognizer using acoustic data without video or kine­

matic measurements (Erler and Freeman 1996) (Deng and Sun 1994). Their goal is to identify 

discrete actions that together define a sound. For example, the sound iii ("ee") is made by widening 

the lips and bringing the tongue up and forward. The relative timing of the lip and tongue motions 

will vary both randomly from trial to trial and systematically due to context. 

Their articulatory feature model (AFM) (Erler and Freeman 1996) used seven discretized param­

eters to represent the articulators' positions (table 3.1). This simplified representation, chosen for 

ease of implementation, does not describe certain tongue shapes or lip positions. Grooved fricatives 

such as lsi, lateral sounds such as 11/, and retroflex sounds involve more complex tongue shapes; and 

labial-dental fricatives (If!, Iv/) involve an excluded lip position. 

The AFM was not used for direct recognition-guessing a text string from sound-but was used to 

score text-string hypotheses. Given a hypothesis (text string), an appropriately connected HMM was 

created, as during training of a conventional recognizer (Rabiner and luang 1993). An emission PDF 

(chap. 1) was trained for each valid combination of AFM state values; static constraints (e.g., tongue 

tip cannot be behind tongue body) ruled out many state-value combinations. The connectivity of the 

HMMs was also subject to various dynamic rules; for example, articulators were required to move 

monotonically between each phoneme and the next. 

The AFM HMM experiments used examples of a single subject speaking single words at a time 

(2694 training cases and 458 test cases). The main finding was that the static and dynamic ar­

ticulatory constraints improved performance; even so, results were mixed when compared with a 

conventional baseline recognizer. 
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Feature Values 

Voicing No Yes 

Velic aperture Closed Open 

Lip rounding Spread Open Medium Narrow Closed 

Tongue tip Labial Dental Alveolar Palatal 

Constriction location 

Tongue tip Low Partial Closed 

Constriction degree 

Tongue body Alveolar Palatal Front-palatal Back-palatal Velar Uvular 

Constriction location 

Tongue body Open Low Partial High Closed 

Constriction degree 

Table 3.1: Discretized states of articulatory feature model (AFM) (Erler and Freeman 1996). The 

AFM was developed with acoustic data only, unlike this thesis project which uses direct articulatory 

measurement. 0 

3.3.4 Other Recognizers with Categorical Motor Spaces 

Finally, a U.S. patent (Sakamoto and Yamaguchi 1992) describes a recognizer that codes vowels 

according to their place of articulation; this is not articulatory in the sense of the other projects 

described here, since it involves a much coarser representation. 

3.3.5 Recovery of Positions from Sound 

A number of projects have attempted to recover articulator configurations from sound without mod­

eling the dynamics of articulator motion; when dynamics are neglected, geometric constraints can 

still improve performance (Yehia and Itakura 1996). 

In one motion recovery project, a lookup table was used to estimate articulator positions from 

recorded acoustics (Hogden et al. 1993). Articulator motions were measured using the electromag­

netic midsagittal articulometer (EMMA) (Perkell et al. 1992), a set of coils attached to the tongue 

and lips. Sound recordings were converted to sequences of cepstral components. Vector quanti­

zation (VQ) was used to group cepstral vectors, and within each VQ category, articulator positions 

were averaged across all examples. These average positions became the output of the lookup table, 
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with the acoustic input partitioned according to VQ. Because of the abrupt VQ category boundaries, 

and single estimated articulator position per category, the recovered motions were not continuous. 

Recovery was more successful for the tongue than for the lips. 

A number of projects have investigated the use of artificial neural networks for recovery of ar­

ticulator position from acoustics; a review of early efforts appears in a book (Rahim 1994). One 

such project used the same type of data (x-ray microbeam) as the present project, and investigated 

recovery for consonants (Papcun et a1. 1992). That project found that articulator positions were more 

predictable where acoustically relevant to the sound being produced. For example, when making a 

constriction with the tongue near the roof of the mouth, areas of the tongue farther from the con­

striction were more variable. The critical articulator positions were fairly well predicted, as measured 

with root-mean-square displacement, by the neural network. 

3.3.6 Articulatory Recovery with Kinematic Models 

Rather than analyze a short interval of time in isolation, other researchers have made dynamic mod­

els for articulatory recovery. Such projects have typically used self-organizing statistical techniques 

rather than physical principles; examples are neural networks (Bengio and de Mori 1988) (Shi­

rai 1993), genetic algorithms, and dynamically constrained hidden Markov models (Roweis 2000). 

The constrained HMM approach uses models with states connected in a lattice. Because states 

are connected locally within this lattice, the rate of motion from state to state is constrained. Each 

state represents an articulator configuration, and the emission distribution, as in a conventional 

recognizer, models the acoustics for the state. Because motion constraints are implemented with 

model topology, standard training and Viterbi decoding techniques can be used. 

Audiovisual databases have also been used to create two-dimensional HMMs having states that 

are a cross product of position variables (Welsh et a1. 1990). The primary difference between this 

approach and constrained HMMs is that the latter self-organize without position information in the 

training data. 

3.3.7 Incorporating Kinetics into Articulatory Recovery 

The accuracy of articulatory recovery can be further improved by extending the kinematic models 

described above to include a description of forces (kinetics). An enhanced codebook-based scheme 

(Sorokin and Trushkin 1996) recovered vocal tract shape from sound with explicit physical modeling 
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(articulatory synthesis), piecewise linear interpolation, and a final optimization step. The combined 

codebook-optimization approach to inversion had been previously proposed (Atal et al. 1978) and 

implemented without interpolation (Larar et al. 1988) (Schroeter and Sondhi 1994). The physical 

model (Sorokin 1992) used generalized coordinates and a system of second-order linear differential 

equations. Motor control was modeled by fixed damping coefficients and step-function generalized 

forces. A set of consonant-vowel, vowel-vowel, and vowel-consonant pairs were synthesized with 

this model, and the resulting articulatory trajectories were partitioned into approximately linear re­

gions. This set of regions formed a codebook for inversion from sound to articulation. The inversion 

scheme was tested on combined microbeam and sound data for vowels; the articulator positions 

determined with the x-ray microbe am were transformed into the generalized coordinates of the 

physical model, and formant frequencies were extracted from the sound. After picking the closest 

codebook examples and applying linear interpolation, optimization improved the match between 

measured formants and the physical model's prediction for the hypothetical articulator positions. A 

related project extended the physical model to fricatives (Sorokin 1994). 

3.3.8 Automatic Labeling of Articulatory Events 

A previous project (Parlangeau et al. 1996) involved automatically identifying the time and type 

of various articulatory events, using combined articulatory and acoustic data. That project was 

intended to facilitate phonetic research, not just automatic recognition. Synchronized recordings 

of laryngography, nasal airflow, oral airflow, electropalatography, and acoustics were used as input. 

Event times were defined as times when autoregressive coefficients changed rapidly (faster than a 

threshold). Events were then classified by a set of hand-coded rules based on the five measurement 

channels. The overall automatic labeling system agreed with hand labeling 80% to 90% of the time. 

A speech recognizer that explicitly modeled independent articulatory events (section 3.3.3) might 

be able to make use of such automatic label information. 

3.3.9 Previous Articulatory Recognition with Measured Data 

The closest related project to the present was performed simultaneously and independently and is 

described in section 3.14. 

Another similar project used a rescoring network (Blackburn 1997) to choose among recogni­

tion hypotheses in an n-best list. That project used the Wisconsin x-ray microbeam data to train a 



3.4 Direct Kinematic Articulatory Measurements 67 

speech production model that predicted acoustics for each phoneme. After a conventional recog­

nizer produced the n-best list, a sequence of spectra were predicted for each entry in the list. These 

predictions were compared to the actual acoustics; the discrepancy between predicted and actual 

acoustics was combined with the recognizer's log-likelihood output score, and the combination was 

used to reorder hypotheses. Error rates were reduced by 12 % to 20% relative to the original recog­

nizer. Search errors are normally present in an n-best list, because Viterbi scores (section 1.11.2) are 

not identical to forward-algorithm scores (section 1.11.2). Running the forward algorithm on entries 

in the n-best list can improve recognition, so a list reordered with the forward algorithm might have 

been a better baseline for comparing performance. 

Previous work included building a word-spotting recognizer using just the articulatory part of 

the Wisconsin data (Roweis 1999). Those experiments did not ask whether there was any advantage 

to using articulation instead of acoustics; instead, they were intended to confirm that there was 

sufficient information in the articulatory channels. 

Other projects performed speaker-independent recognition from articulation on isolated words 

(Zlokarnik et a1. 1995); and articulatory recognition of vowels using a neural network (Zacks and 

Thomas 1994). 

3.4 Direct Kinematic Articulatory Measurements 

3.4.1 Wisconsin X-Ray Microbeam 

The articulatory-recognition experiments described in this thesis make use of x-ray microbeam data 

from the University of Wisconsin (Westbury et a1. 1994). To generate this data set, experimenters 

attached metal beads to several points in subjects' mouths. During speech, bead positions were 

tracked and acoustics were recorded. A narrow x-ray beam was with feedback control to track the 

beads' positions. The x-ray microbeam technology is described in greater detail in appendix E. 

Using this apparatus for everyday speech-recognition applications is inconceivable. Aside 

from the problem of x-ray exposure, the beads were attached to the subjects using dental ce­

ment. Researchers who acted as subjects themselves reported significant discomfort (Sorokin and 

Trushkin 1996). 

Examples of articulator motion appear in figure 3.4 and figure 3.5. In both cases, the subject 

started in a resting position and then said a syllable repeatedly. Also plotted are the approximate 

locations of the roof of the mouth and the back of the throat. The trajectory is plotted for each bead 
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Tongue beads 

.- ------------------ Lip beads 

Beads on teeth 

Figure 3.3: Arrangement of beads on head for microbeam recording. Not pictured are three additional 

beads used to compensate for head motion. This figure also appears as figure A.l. D 

affixed to an articulator. In figure 3.4, the subject said "kuh," and as expected, tongue movement is 

especially prominent. The lower lip moves in figure 3.5 to make the consonant /p/ in "puh." 

3.4.2 Alternate Direct Measurement Techniques 

Other techniques for directly measuring articulator positions include magnetic resonance imaging 

(MRI), electropalatography, and cineradiography. 

Electropalatography uses an array of electrodes to determine where and when the tongue touches 

the roof of the mouth or the teeth. A custom acrylic palate, in which the electrodes are embedded, is 

created to fit each subject. Binary values (contact versus no contact) are recorded for each electrode 

at each time step. A typical example of array size is 96, and typical sampling rates are 100-200 Hz 

(Stone 1990) (Wrench 2000). 

One study used ultrasound for recovery of the three-dimensional shape of the tongue during 

steady-state sounds, and compared the results to simultaneous electropalatograhy (Stone 1990). A 



3.4 Direct Kinematic Articulatory Measurements 69 

+5 em 

iJ\~ Upper lip 

0 
~ Tongue V 

l ~ 

Jaw 
Jaw ~ 

Lower lip 

-10 em -5 em o 

Figure 3.4: Articulator motion as subject says "kuh" repeatedly. Trajectories of all landmark beads 

(each lip, two on jaw, four on tongue) appear along with the roof of the mouth and back of the throat. 

For each bead, the dense areas correspond to speech, and the stray traces represent motion from a 

resting position. D 

single subject made a variety of vowels and consonants (excluding stops), sustaining each sound 

for about 10 s. The researcher's interpretation of the results was that tongue shapes were relatively 

similar within certain groups of sounds whose regions of contact, determined by electropalatography, 

were quite different. 

Cineradiography involves filming the head with a rapid sequence of x-ray exposures. Due to 

health concerns, it has not been used for several decades. Fifty-five minutes of old cineradiograph 

films have been transferred to video and distributed on laserdisc to researchers (Munhall et al. 1994). 

Despite poor image quality and superposition of different articulators in the image plane, researchers 

in Japan (Tiede and Vatikiotis-Bateson 1994) and Germany (Hbwing et al. 1996) have had some 

success recovering motions from such data. The Wisconsin microbeam data were better suited to the 

present thesis work, because they are publicly available, more extensive (longer-duration) than the 

cineradiograph laserdisc, and include more-direct measurement of landmarks on articulators. 
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Figure 3.5: Articulator motion for "puh;" see caption for figure 3.4. D 

Far greater spatial detail may be obtained with magnetic resonance imaging (MRI) at the ex­

pense of time resolution. With MRI, the shape of the cavity formed by the articulators can be 

directly measured, and predictions of the resonances due to different cavity shapes (Fant 1970) can 

be tested. Almost all MRI studies have been concerned with steady-state sounds. Early work looked 

at vowels (Greenwood et al. 1992) (Baer et al. 1991), and a later study measured fricative produc­

tion (Narayanan et al. 1995). Fricatives were chosen for the latter study because, although they 

are steady-state sounds, they are not as well understood acoustically as vowels. In recent years, 

collection times have dropped from order 4 s (Lakshminarayanan et a1. 1991) to 0.25 s (Demolin 

et a1. 1997). The faster MRI uses a technique known as turbo spin echo. 

A new database for articulatory recognition, Mocha, is being collected at the University of Edin­

burgh and Queen Margaret University College (Wrench 2000). Unlike the Wisconsin data, which are 

better suited to speech science than speech technology, Mocha is explicitly designed to be useful for 

recognizer training. It includes electropalatograph data-a digitized representation of the region of 

contact between the tongue and the roof of the mouth, sampled on a roughly 8 x 8 spatial grid every 

5 ms. Instead of x-ray microbeam tracking, Mocha uses a set of coils attached to various articula­

tors, which are tracked electromagnetically: an electromagnetic midsagittal articulometer (EMMA) 
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(Perkell et a1. 1992). Nine points are tracked: the upper and lower incisors, upper and lower lips, 

three points along the tongue, one on the velum, and a reference point on the bridge of the nose. 

Had Mocha been available in time for the work of this chapter, it might well have been preferable to 

the Wisconsin microbeam data. In the meantime, data for two subjects have been publicly released. 

3.5 Preparation of Data for Recognition 

Because of problems in the raw positional data collected at Wisconsin, several preprocessing steps 

were performed before the recognition experiments. Previous work compensated for subjects' head 

motions (Westbury 1991) and filled in data lost by errors in bead tracking (Roweis 1999). In the 

present project, extraneous sounds such as cue tones and experimenters' feedback were removed, 

and the subjects' exact words were transcribed by hand. 

3.5.1 Tracking Correction (Previous Work) 

The experimenters in Wisconsin who collected the x-ray microbe am data anticipated that subjects' 

heads would move during speech. They affixed three reference beads to each subject's head in an 

attempt to compensate for rigid-body (six degree of freedom) motion of the head. The reference 

beads were intended to enable after-the-fact correction instead of immobilizing the head during the 

experiment. 

In practice, substantial tracking errors and suboptimal bead placement (Westbury 1991) pre­

vented correction of the full six degrees of freedom. Sagittal translation (up-down and front-back 

motion) and rotation (nodding) were corrected. Sideways shifting, head shaking, and tilting to the 

side were uncorrected. 

Also, the x-ray microbeam apparatus occasionally lost track of one or more beads. The original 

data contain the coordinates (1 m, 1 m) for any bead while it was lost. 

In a previous project, Sam Roweis established a technique for correcting tracking errors by guess­

ing a bead's most likely position based on the other beads' data (Roweis 1999). The present project 

starts with corrected data, which he provided for one third of the subjects in the database. 
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3.5.2 Removal of Extraneous Sounds 

The original Wisconsin recordings contain extraneous sounds, primarily cue tones and comments by 

the experimenter, recorded on the same channel as the subject. Fortunately, almost all such sounds 

occur at the start (cue tone) or end (experimenter comment) of a recording. 

In the present work, every sound file ultimately used in recognition was first opened in an audio 

editing program to verify transcriptions (section 3.5.4) and adjust the recording duration. New start 

times-after the end of the cue tone and before the experimenter's comments-were determined. 

For example, for speaker JW45, the start time was moved forward 689-1852 ms, depending on the 

file (median 899 ms). 

Often the sound recording ended while the subject was speaking. In such cases the end time was 

moved back to a pause in speech in order to give the file a subjectively plausible-sounding ending. 

3.5.3 Total Duration of Each Speaker's Usable Data 

After preprocessing, about 10 minutes of data for each speaker were left (for example, 685 s of the 

subject labeled JW27 in the Wisconsin data). The data for speaker JW45 includes 1673 words. As 

described in section 3.9.3, most of the recordings were used only for training. 

There is no precise theory for the number of examples required to train a speech recognizer. Rules 

of thumb, based on experience, appear in textbooks and recognizer-development manuals. A stan­

dard textbook suggests 40 examples per digit for a five-state, mixture-of-five-Gaussians continuous­

digit recognizer (Rabiner and Juang 1993); the manual for the leading software for recognizer de­

velopment recommends "several hundred utterances" for speaker-dependent monophone models 

(Young et al. 1997). 

The apparent discrepancy between the above suggestions comes from differences in number of 

models and in the method of counting examples. There are roughly four times as many monophones 

as digits, and a given utterance referred to in the second guideline above may not include all the 

monophones. The rules of thumb, then, are reasonably consistent. 

Monophones grouped by number of training examples per speaker appear in table 3.2. Because 

the most common ones occur far more often than the least common, they are grouped into pow­

ers of two. Based on the forty-example guideline above, problems with training can be expected 

for the four phones having less than 25 examples. The least-frequently occurring phone, "h," was 

accidentally combined with "hh," although it should have been merged with "g." 



3.5 Preparation of Data for Recognition 73 

Min Max Phones 

256 511 ax, n, s, t, r, I 

128 255 ih, d, iy, q, k, ah, m, dh, ao, b, ae, eh, Z, ow 

64 127 p, ux, w, ay, f, hh, aa, v, ey, g, axr 

32 63 ng, th, dx, er, y, aw, ch 

16 31 jh, oy, uh 

8 15 

4 7 h 

Table 3.2: Per-speaker phone counts (Westbury et al. 1994), grouped into powers of two. Roughly 

speaking, the four phones each having fewer than 32 training examples have insufficient data for 

training. Variability of pronunciation, deviations from the intended text, and truncation of recordings 

caused some discrepancy for individual speakers. Phones are represented with ARPABET symbols 

(Shoup 1980) (Rabiner and juang 1993). 0 

There are 5500-6200 separate instances per speaker of phoneme-level units in the training data. 

The variation in the number of instances is due to ambiguity about pronunciation and about whether 

short silences exist between the words. During training, the system chooses between alternate pro­

nunciations where they exist, and optionally appends a short silence at the end of each word. 

3.5.4 Hand Transcription 

What the subjects actually said occasionally deviated from what they had been asked to say. Also, 

as described above, subjects' speech was often truncated. Speech was transcribed by hand so that 

training data would be correctly described and recognition targets would be accurate. 

The hand transcription created in this project used conventionally spelled words, rather than 

phonemes, allophones, or syllables, because words are easier to objectively identify. The aid of a 

skilled phonetician was not readily available. As described in section 3.9.4, the recognition system 

automatically generated phone-like units from the word-level transcripts; this conversion happened 

during training and used the Viterbi algorithm with monophone models (chap. 1) and an ISO 8859-1 

(ASCII) encoded dictionary. 
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Subject ID Sex Age Dialect Base 

(Years) (All in USA) 

JW27 female 20.9 Blair, WI 

JW29 female 20.6 Milwaukee, WI 

JW502 female 34.0 Madison, WI 

JW12 male 21.1 Marinette, WI 

JW15 male 22.4 Milwaukee, WI 

JW45 male 21.2 Mishawaka, IN 

Table 3.3: Demographic information for subjects used in articulatory recognition. University of Wis­

consin researchers who collected the data assigned subject IDs and determined geographical origin 

of subject'S pronunciation. 0 

3.5.5 Criteria for Inclusion in Recognition Experiments 

The following were required for a subject in the Wisconsin data set to be included in the present 

experiments: 

1. Correction of tracking errors available (section 3.5.1; two-thirds of subjects excluded); 

2. All six paragraphs extant (to be used, three at a time, for testing); 

3. Relatively few truncated recordings (in contrast, some speakers had the majority of their utter­

ances cut short and were therefore rejected for recognition). 

Of 48 subjects in the complete data set, few met these criteria, and ultimately six were used for 

the recognition experiments. The six subjects included three male and three female speakers. 

Table 3.3 indicates the sex, age, and dialect base for each subject. The willingness of the Univer­

sity of Wisconsin undergraduates to participate and the requirement that the subject have no metal 

fillings resulted in a young group. Since subjects were recruited locally, most spoke with a dialect of 

the Wisconsin region. 

There are multiple dialects within Wisconsin. In particular, many urban speakers demonstrate 

the north inland cities shift (Labov 1996), an ongoing, radical reorganization of the short vowels of 

English. The severity of the shift can be demonstrated by the following word pairs: a speaker would 

pronounce "bus" in a way that would sound like "boss" to speakers of other dialects; and "block" 
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like "black." The "dialect base" judgments previously made by the Wisconsin experimenters are 

indicated in table 3.3. Subjective listening in the present project suggested that at least one of the 

speakers-JW27, a twenty-year-old female subject from Milwaukee-used shifted short vowels from 

time to time. No attempt was made to thoroughly analyze the speakers' dialects, nor to definitively 

test whether a given subject spoke consistently throughout the experiment. The dictionary also 

lacked any representation of the shift. 

3.6 Recognizer Training 

Sound and articulatory measurements were processed by separate front ends. Their outputs 

were combined and passed to a single back end that was trained using the standard expectation­

maximization algorithm. The articulatory front end was trained using principal components analysis. 

3.7 Front-End Processing of Sound Recording 

The sound recordings of the Wisconsin microbe am data set were processed according to a conven­

tional state-of-the-art procedure. The waveform (sampled at 21.7 kHz) was divided into a sequence 

of overlapping analysis frames, each lasting 25 ms and with a new frame occurring every 6.87 ms, to 

match the bead-coordinate sampling rate. For each frame, first 12 coefficients of the Mel-frequency 

cepstrum were generated with spectral preemphasis. Derivative and energy terms (section 1.10.2, 

section 1.10.2) were appended, and the resulting feature vector was passed on to the HMM recog­

nizer. 

3.8 Front-End Processing of Microbeam Articulatory Data 

Microbeam articulatory data were sent through a separate front-end process from acoustics (fig­

ure 3.6). The outputs of the two front ends were concatenated at each time step and passed along to 

the back-end recognizer (section 3.9); the performance of this joint acoustic-articulatory recognizer 

was then compared to acoustic-only. 

For this project, front-end processing of articulatory data included the following steps: 

• Coordinate transformation via principal components analysis (PCA) . 

• Concatenation of first and second time derivatives. 
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Figure 3.6: Microbeam articulatory recognition architecture, used for experiments described in this 

chapter. Concatenating microbeam data to acoustics improves recognition (section 3.13). D 
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• Between-channel normalization of mean and variance over time, where a channel is a front­

end output vector component. 

The data fed into the above pipeline already had tracking errors corrected as described in sec­

tion 3.5.1. 

3.8.1 Articulatory Parameterization and Constraints 

The motions of the articulators are constrained by physiology and phonology. The two beads at­

tached to the jaw are subject to the severe physiological constraint that the jaw is rigid. An example 

of a phonological constraint is that sticking the tongue out past the lips is not required for making 

any sound of English. The phonetically-relevant lip shapes illustrated in figure 2.1 represent only a 

subset of possible configurations. 

The constraints on articulator movement limit the number of independent degrees of freedom as 

well as the range of values they can have. For example, the lower jaw's motion might be described 

by the angle of its opening as well as the extent of its protrusion, rather than the two coordinate 

pairs for the two attached beads. Such a transformation would reduce four parameters to two. 

3.8.2 Principal Components Analysis (PCA) 

For the present project, the raw bead coordinates were transformed into a smaller number of pa­

rameters. For most experiments the new parameter set was obtained through principal components 

analysis (PCA). This technique is defined an analyzed in appendix A. 

In figure 3.7, the percentage of total microbe am coordinate variance explained by each successive 

principal component is plotted for each speaker. For all speakers combined, the cumulative variance 

explained is presented in table A.l. The first four components explain almost all the variance. This 

is borne out by a comparison of recognition results for one speaker with 2, 4, 6, or 8 principal 

components used for recognition (section 3.12.2). 

For recognition, the npc directions having the greatest variance were kept, while the other (16 -

npc) were discarded. The bead coordinates x(t) for each sample time were transformed by taking 

the dot product of the coordinate vector with each of the principal components having the largest 

npc eigenvalues: 

ni.;{t) = Pk . x(t) 
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Figure 3.7: Relative variance of principal components, suggesting that most information is retained by 

the first 4-8 components (when used as coordinate bases). The sex of each speaker is indicated, since 

recognition results differed by sex. 0 

The resulting features, odt) for 1 < k < T!PC, are then differentiated and normalized across 

different times t. 

3.8.3 First and Second Time Derivatives 

After microbeam data were reduced to npc parameters for each sample time, the first and sec-

ond time derivatives were added for each transformed parameter. These derivatives are analogous 

to the velocity and acceleration of the individual beads; however, since they are computed in the 

transformed space, they describe the coordinated motion of multiple beads. 

Adding the derivative parameters was partly inspired by the success of acoustic derivative pa-

rameters for recognition (Fry and Denes 1958) (Denes and Matthews 1960) (Furui 1986) (Rabiner 

and luang 1993). These acoustic time derivatives, often called delta and acceleration coefficients, 

are computed from the sequence of cepstral vectors (chap. 1). 

3.8.4 Normalization 

The articulatory and acoustic parameters were normalized across all utterances so that different pa­

rameters would have the same average and variance over time. The primary motivation for this 
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normalization was so that the variance floor (section 3.11.1) would be appropriate for all the param­

eters. 

3.9 Back-End Recognizer for Acoustics and, Optionally, Articulation 

The back-end recognizer was based on a set of monophone CDHMMs (section 1.11.2) and a unigram 

model for grammar (section 3.9.1). Training began with a flat start (section 3.9.4) and followed a 

sequence of E-M iterations, retranscriptions of the training data to better match actual pronuncia­

tion, and splitting Gaussians in each state's emission PDF (section 3.9.2). Unfortunately, there is no 

theoretical way to determine the optimal sequence of operations, so the sequence was established 

through trial and error. In addition to the many model parameters that were updated via EM (sec­

tion 1.11.2), three global parameters affecting all models were optimized by repeating experiments 

(section 3.11). 

Experiments were always run in pairs, representing two different splits of data into train and test 

(section 3.9.3). For each experiment in a pair, training examples never appeared in the test set­

except for the results reported in section 3.12.4, which compares performance on the two types of 

data. 

The number of model parameters for recognition was determined by gradually increasing the 

complexity of the models and noting the point at which generalization ability deteriorated (sec­

tion 3.12.2). 

A total of 45 models were trained for each speaker, for the 43 mono phones and two types of 

nonspeech intervals. The latter models are often, in other projects, referred to as silence models. 

3.9.1 Unigram Model for Grammar 

In this project, prior probabilities for words were approximated with a unigram model, in lieu of 

a grammar model. The probability estimates P( w) were obtained by dividing the number f w of 

occurrences of each word w by the length L, in words, of the transcript: 

p(w) = .~J : fw 2:: 10 

Words having fewer than 10 occurrences were all given the same probability estimate, which was 

equal to the total number of instances of all subthreshold words, divided by the number of distinct 

subthreshold words. 
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Count Words 

209 interword silence 

100 the 

55 a 

36 of 

29 in 

23 all 

22 had, to 

20 one, that 

19 two 

18 and 

17 he 

15 blend, five, house, school, sense, special, things 

14 his 

13 four, is, three 

12 back, eight, I, seven, six 

11 coat, long, nine, people, problem, you 

10 across, cash, children, country, dark, dormitory, light, make, moment, much, 

nothing, order, point, row, second, ship, shoot, street, told, wax 

Table 3.4: Word frequencies used to create unigram model. Only words with ten or more occurrences 

were included; all words falling below that threshold were given an equal share of their combined 

frequencies. 0 

~ .) ( 1) (L:i ji) P(w = L L:i
1 

:jw<lO.j,<lO 

3.9.2 Training Sequence for Articulatory Recognizer 

The recognizers for this project were trained by the following procedure. Section 3.9.6 reports 

recognition results for some variations that were rejected. 
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• Identify usable speaker; preprocess transcriptions, sound, and microbeam recordings as de­

scribed in section 3.5. 

• Split data into training and testing sets (section 3.9.3). 

• Flat start (section 3.9.4): 

- Initialize monophone HMMs with identical parameters. 

- Perform a forced alignment using the untrained HMMs. 

• Training iterations: 

- Reestimate model parameters. 

- Optionally, increase model complexity (number of Gaussians in emission distributions). 

- Optionally, test recognition performance (section 3.10). 

• Segment recordings into monophones using trained models (section 3.9.5). 

• Initialize a new set of monophone models using segmented recordings. 

• Repeat training iterations with new models. 

3.9.3 TrainfTest Split 

When data were split into training and testing sets, some recordings were discarded: nonspeech 

examples (e.g., swallowing) and awkwardly modified speech (e.g., in response to a request to speak 

extremely slowly). Each recognition experiment was repeated for two different train/test splits. 

For a given split, the text of the train and test sets would have been identical across subjects, 

had the Wisconsin data collection gone perfectly. However, because of problems such as truncated 

recordings (section 3.5.2) and mistakes by the subjects (section 3.5.4), there were slight differences 

between subjects. 

In the first split, the test set included tasks 11, 78, and 80 of section F.l. The second split used 

tasks 12, 79, and 81 for testing. In each case, the paragraphs not used for testing were included in 

the training set. 

Paragraphs were chosen for testing because of their duration, and because the other utterances­

words and sentences-were repeated throughout the data set in a way that made them difficult 

to separate (table 3.5). Each sound file (except for paragraphs) contained several utterances, and 
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• Task 10. "The other one is too big. 

Don't do Charlie's dirty dishes. 

She had your dark suit in greasy wash water all year." 

• Task 45. "The other one is too big. 

She always jokes about too much garlic in his food. 

If I had that much cash I'd buy the house." 

• Task 46. "The point of the program will be told before long. 

Across the street stands a country school. 

She had your dark suit in greasy wash water all year. " 

82 

Table 3.5: Examples of sentence tasks in microbeam data set. The data are difficult to partition into 

distinct train and test sets, because sentences are repeated across tasks and grouped within each task. 

Instead, paragraphs (appendix F) were used for testing. The repetition of sentences also makes training 

difficult by reducing the number of contexts in which each phoneme appears. D 

the grouping was permuted so that a given sentence/word would be spoken in several different 

combinations. If sentences had been used, either the recognizer would have seen several training 

utterances of each test sentence, those redundant utterances would have been thrown out (along 

with the other utterances in their sound files), or the data set would have needed to be divided into 

individual sentences and words. 

The test splits described above still left some redundancy between train and test data, because 

the paragraphs actually covered overlapping regions of the original text (see appendix F). Four of the 

paragraphs had overlap at one end (either start or end), while two overlapped at each end. If overlap 

were causing a significant improvement in performance, the doubly overlapping paragraphs should be 

easier for the recognizer than the singly overlapping examples. Contrary to this prediction, the error 

rate for doubly overlapping cases (~4 and ~5 in table 3.9) was no lower than for singly overlapping 

ones (~1-~3 and ~6). 

3.9.4 Flat Start 

The flat-start training procedure (Rabiner and Juang 1993) is used when training data have not been 

previously segmented into phoneme-level units. In the present project, as is often true, not only are 
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monophone start and end times lacking, but each recording was transcribed as a sequence of words 

rather than monophones. In this case, arbitrary pronunciations of each word are selected to create 

a monophone transcription. The flat start involves initializing all monophone models with the same 

parameters. 

3.9.5 Restarting Training with New Models 

Theoretically, information about start and end times of monophones should be useful for initiating 

training-starting with segmentation should outperform a flat start. 

In this project, the models that originated in the flat start were used to create a segmentation. 

New models were then initialized and training was restarted. The new models started with only one 

Gaussian in each emission distribution, while the old models had grown to have 16 Gaussians in 

each distribution by the time they produced the segmentation. Parameters were gradually added to 

the new models until they reached the same level of complexity as the old ones. 

3.9.6 Optimality of Recognizer Architecture 

Recognition results verified that restarting training as described above improved performance over a 

flat start. For example, the average error rate (across all speakers) of acoustic-only recognition was 

(29.7 ± 1.6)% with the models trained from a flat start; when these models were used to segment 

and initialize a new set, the average error rate dropped to (27.83 ± 1.5)% (after retraining). 

3.1 0 Recogn izer Testi ng 

Each recognition experiment involved repeated recognizer testing throughout the training procedure. 

Testing was performed for different untrained parameters (grammar weight and insertion bias) as 

well as different degrees of model complexity (number of Gaussians in each emission distribution). 

Testing was also performed before and after the flat-start models were discarded (section 3.9.5). 

The motivation for such extensive testing was to optimize both recognizers-acoustic-only and 

joint acoustic-articulatory-to ensure the fairest possible comparison between the two. 
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Speaker ID Sex Acoustic Only Joint Relative 

Error Rate Error Rate Improvement 

JW27 female 29.7% 30.0% -0.9% 

JW29 female 28.4% 26.9% 5.2% 

JW502 female 20.6% 20.0% 2.8% 

JW12 male 28.3% 25.4% 10.4% 

JW15 male 30.5% 26.4% 13.5% 

JW45 male 29.5% 25.2% 4.7% 

Table 3.6: Comparison of joint acoustic-articulatory to acoustic-only recognition, for each of the six 

speakers. Error rates are for monophone sequences, and articulatory improvement is reported as a 

fraction of the acoustic-only error rate. The improvement is statistically significant across all speakers 

(p = 0.018) and for males considered separately (p = 0.006) but not for females considered separately 

(p = 0.36). D 

3.11 Setting Global Parameters of Recognition 

Several global recognizer parameters, described in more detail below, needed to be determined. 

Grammar weight and insertion bias were jointly optimized during testing. Only a few settings were 

tested for the third parameter, variance floor. To test it completely would have increased the search 

space combinatorially, and required not just retesting but also retraining for each new setting; exper­

iments were already using considerable processing power and time. 

3.11.1 Variance Floor 

The variance floor (Rabiner and Juang 1993) works around the problem of estimating many parame­

ters (in a mixture-of-Gaussians CDHMM) from relatively little data. With large datasets, this problem 

arises when context-dependent (biphone or triphone) models are used. With small datasets, such as 

in the present project, parameter estimation is a potential problem even for monophone models. 

For each Gaussian in each state's emission PDF, no covariance matrix component is allowed 

to drop below the variance floor during training. In the case of diagonal covariance matrices, the 

off-diagonal elements are still set to zero. 

The units of the variance floor parameter are poorly defined. Each covariance matrix component 
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represents a product of two front-end output components. Even with a purely acoustic front end, 

this causes problems, because cepstral coefficients appear alongside derivatives and energy. Kine­

matic components introduce completely different units. Restricting the covariance matrix to diagonal 

elements does not solve the problem, because the same floor is typically applied to all the elements. 

In the present work, the problem of ill-defined units is addressed by normalizing each component 

of the feature vector to have zero mean and unity variance over time. 

Relative to each component's overall variance of 1, the variance floor was set at 0.01. Other 

tested values, which underperformed the chosen setting, were 10-4 , 0.005, 0.05, and 0.25. 

3. '11.2 Grammar Weight and Insertion Bias Defined 

Due to the inadequacies of the acoustic model and the grammar model, one of these models will be 

more reliable in recognition than the other. The grammar weight 9 adjusts the relative importance 

of the acoustic probability density PA and the grammar probability Pc for every output hypothesis 

A of length L (equation 3.1) (Young et al. 1997). Although it is theoretically unsatisfying (Bourlard 

et al. 1996), it is used ubiquitously in the best-performing recognizers (Jelinek 1996). 

Insertion bias b, also in equation 3.1, specifically compensates for a possible bias of the grammar 

model toward shorter-length strings (Young et al. 1997). 

( \) bL(Pc(A))9
L 

(1\) P V, /\ = e -L- PA v /\ 

Equation 3.1: Definition of grammar weight 9 and insertion bias I. 0 

The calculation is carried out in the log domain: 

Inp(v, A) = bL + gL (In Pc(A) ~ In L) + InpAvlA) 

3.11.3 Joint Optimization of Grammar Weight and Insertion Bias 

For each speaker and each train/test split, recognizer testing was repeated for 20 different combina­

tions of parameters; four settings of insertion bias and five of grammar weight were jointly tested. 

Performance as a function of the two parameters is displayed graphically in figure 3.8, in which the 

error rate is plotted on an inverted scale. 
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Figure 3.8: Error rate (inverted scale) as a function of grammar weight and insertion bias for speaker 

JW502 in the Wisconsin data. For this graph, error rates were averaged across the two train/test splits; 

elsewhere, cross-validation was used (see text). These parameters were optimized for recognition, but 

a range of settings give comparable results. 0 

Ideally, these parameters would have been optimized on a development test set and tested once 

on an evaluation test set. This would have ensured that the recognizer generalized correctly to new 

data and that after-the-fact parameter setting was not critical to performance. Due to limited data 

and time, strict separation and single-pass evaluation were not possible. However, a form of cross­

validation was used, in which the optimum grammar weight and insertion penalty for a particular 

trainltest split (section 3.9.3) were used to evaluate the other of two splits. An example illustrating 

this procedure appears in table 3.7. 

3.11.4 Comparison to Other Recognizers 

The phone error rates obtained in the present project are similar to the performance of one state­

of-the-art recognizer on the same data and to other recognizers on the TIM IT data set (Garofolo 

et al. 1993). However, those recognizers are all speaker-independent, and trained on much larger 

data sets, so the rates cannot be precisely compared. 

The paragraphs for speaker JW 45 were presented to the commercially available IBM Via Voice 
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Split 1 Split 2 

Grammar Insertion bias Insertion bias 

weight -60 -40 -20 0 -60 -40 -20 0 

1 22.2 21.2 23.3 26.2 18.6 19.4 21.2 22.8 

5 21.8 22.2 22.1 24.9 18.0 18.8 18.9 21.2 

10 21.1 21.6 21.2 21.6 19.6 18.6 17.5 19.0 

15 22.5 21.6 21.2 20.1 22.4 20.0 19.3 18.9 

20 22.6 21.8 21.5 21.6 24.9 23.5 20.9 21.1 

Table 3.7: Example of cross-validation of grammar weight and insertion bias, used to calculate error 

rates throughout the rest of this chapter and chapter 4. For each train/test split (section 3.9.3), the 

optimum value is indicated in italics. These parameter settings are then used to determine the error 

rate, indicated in boldface, for the other train/test split. 0 

Gold recognizer, which transcribed them with a phone error rate of 26.3% (29.9% on split 1, and 

22.7% on split 2) (section 3.9.3). Since speaker enrollment for that recognizer requires the user 

to read text prompts interactively, it was not possible to adapt the recognizer to the speaker. The 

vocabulary was not constrained to words in the Wisconsin test set; restricting the vocabulary would 

have also aided recognition. A breakdown of Via Voice's errors by phonetic class-vowel, stop, and 

fricative-appears in section 4.5. 

3.12 Increased Recognition Performance with Measured Data 

3.12.1 Recognition of Consonants versus Vowels 

Recognition results were examined for different sound classes (vowel, stop, and fricative). Chapter 4 

describes these results in detail, compares them to conventional recognizer errors, and includes a 

preliminary investigation of the information conveyed by each sound class. Fricatives had the lowest 

error rate, followed by vowels, with stop consonants having the highest. Inclusion of microbeam 

data improved recognition of fricatives and vowels much more than stops. 
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Figure 3.9: Test-set error as training progresses and parameters are added. Most of the results reported 

in this chapter use 16 Gaussians per state. D 

3.12.2 Number of Parameters Required 

Experiments addressed the number of model parameters and front-end features required for optimal 

recognition. Model parameters were increased by adding modes to the emission distributions in the 

HMM. These modes were additional Gaussians added to the mixture model for each state. Results 

are shown in figure 3.9; with or without microbeam channels, near-optimal performance is achieved 

with 16 Gaussians per mixture. 

3.12.3 Variability between Test Paragraphs 

Of the six paragraphs used for testing (appendix F), some were considerably easier to recognize than 

others (table 3.9). The error rates varied by roughly a factor of 2. 

3.12.4 Performance on Training Data 

Throughout this chapter, error rates are reported for test partitions of the data. This is the preferred 

way to measure performance because it requires the recognizer to generalize from training examples 

to unseen data. For completeness, table 3.10 reports recognizer testing on the paragraphs in the 
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Flat Start Realigned I 

Acoustic-only 32.4% 29.5% 

4 pes 27.9 28.1 

4PCS+~+~2 27.9 26.5 

6 PCs + ~ + ~2 27.9 N.A. 

8 PCs + ~ + ~2 28.1 N.A. 

Table 3.8: Phoneme error rate as a function of articulatory parameters used: number of principal 

components, and whether velocity and acceleration were included. Cases marked "N.A." were not 

tested. 0 

,1 ,2 ,3 ,4 ,5 ,6 

Error Error Error Error Error Error 

Rate Rate Rate Rate Rate Rate 

Acoustic-only 27% 33% 34% 39% 37% 23% 

4 PCs 26 24 29 32 35 21 

4 PCs + ~ + ~2 21 22 28 40 33 20 

Table 3.9: Phoneme error rate on individual paragraphs in the test set, with or without velocity and 

acceleration, and with or without articulation 0 

Acoustic-only 8.91% 

8 PCs + ~ + ~2 8.68 

Table 3.10: Phoneme error rate on paragraphs in training set, for speaker JW45 0 

training set. This experiment was performed for only a single speaker-JW45. As expected, the 

recognizer performs far better on the training paragraphs; the error rates for that set are about one 

third of the test-set rates. 

Articulatory information helps recognition of the training paragraphs, but only slightly. Perhaps 

the articulatory representation lends itself to generalizing between seen and unseen data. Testing 

this hypothesis properly is outside the scope of this thesis. 

The recognizer used to generate table 3.10 is essentially like the one reported in table 3.6 for 
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speaker JW45; however, the preprocessing steps of differentiation and normalization were swapped 

because of an implementation error. In the former recognizer, articulatory parameters (transformed 

by PCA) were normalized before first and second time derivatives were computed. In the latter, the 

first and second derivatives were concatenated to PCA output before normalization occurred. The 

normalization set the time average and variance equal across channels, as described in section 3.8.4. 

3.13 Summary of Results 

The experiments described in this chapter demonstrated that adding direct measurement of articu­

lator motion to acoustics, in a conventional HMM architecture, resulted in a relative reduction of 

7.4 % in the phone error rate. Articulatory information had a greater impact on vowel and fricative 

recognition than on stop consonants, by about a factor of 3 in relative error rate. The improvement 

due to articulation was statistically significant (and greater) for the three male speakers studied but 

not for the three female speakers. 

3.14 Recognition with Microbeam Data: Conclusions and 

Discussion 

The present project demonstrates, with across-speaker statistical significance for the first time, an 

improvement in continuous-speech recognition when direct articulatory measurements are concate­

nated to acoustics. 

A simultaneous, independent project built an analogous recognizer for electromagnetic midsagit­

tal articulometer (EMMA) data (Wrench and Richmond 2000). That project tested statistical signifi­

cance separately for only two subjects, unlike the present work which used a cross-speaker analysis 

to test generalization. Additional analyses are also presented here, showing differing results for male 

and female subjects and tabulating results for different phonetic classes. 

Previous work has formulated articulatory models without actual data (Erler and Freeman 1996), 

added articulatory modeling as a postprocessing step to conventional recognition (Blackburn 1997), 

used isolated fragments of speech (Papcun et al. 1992), or performed articulation-only recognition 

without comparing it to acoustic (Roweis 1999). 

It is reasonable that microbeam articulatory data improved recognition more for vowels than for 

stop consonants. Previous work, which looked at phonemes in the context of words, found that a 
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difference in the manner of production of consonants distinguished two words more often than a 

change in the place of production (Denes 1963). This obseIVation is applicable to the present work 

because the latter uses a dictionary, rather than a phone-loop recognizer. It means that consonant 

place is more redundant than consonant manner, in that place is easier to predict from the rest of the 

word. The positional data-neglecting delta and acceleration coefficients-directly represent place 

of production. A similar phenomenon has been obseIVed for audio and video, in which audio has 

a greater influence on perceived manner of articulation, and video on perceived place (MacDonald 

and McGurk 1978). 

3.15 Future Work 

The present results suggest the following next steps: 

1. Test the recognizer using articulatory positions reconstructed from acoustics, rather than di­

rectly measured. Such positions might be obtained using constrained HMMs (section 3.3.6), 

which have been demonstrated to work for the shorter utterances in the Wisconsin data set 

(Roweis 1999). 

2. When an adequate number of speakers become available, work with the Mocha data set (sec­

tion 3.4.2). Some preliminary recognition results were recently reported by the group that 

collected the data (section 3.14) (Wrench and Richmond 2000). 

3. Apply more-sophisticated parameter extraction, such as the heteroscedastic technique dis­

cussed in appendix B. 

4. Instead of introducing articulatory data to a conventional recognizer architecture, as described 

in this chapter, use the data to train recognizers that attempt to model articulation (section 3.3) 

but which have only been trained using acoustic data. 

3.15.1 Testing with Inferred Articulation 

The recognizer developed in this chapter could easily have used kinematic information inferred from 

acoustics. The constrained hidden Markov model technique has been demonstrated to work on 

short utterances in the Wisconsin data (Roweis 1999). Assuming it scales up to longer files-the 

paragraphs-it should show similar improvement in recognition rate over acoustics alone. This would 
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be a direct demonstration of the effectiveness of an intermediate motor representation for speech 

recognition. The separate demonstrations of the two stages of articulatory recognition-motion 

extraction and recognition from motion and sound-are nevertheless valuable. 

3.15.2 Applying Optimal Feature Extraction 

A straightforward and promising next step is to apply heteroscedastic feature extraction (HDA, ap­

pendix B) instead of principal components analysis (section 3.8.2; section B.4.1) to the kinematic 

representation. The case for using HDA on kinematic parameters is stronger than for using it with 

the acoustics, since acoustic front ends and conventional back ends have been jointly improved by 

many researchers over the years. 
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Chapter 4 

Recognition and Entropy of Vowels and 

Consonants 

It is often assumed that mainstream speech-recognition systems perform better on vowels than con­

sonants. For example, a leading textbook claims, 

The vowel sounds are perhaps the most interesting class of sounds in English. Their 

importance to the classification and representation of written text is very low; however, 

most practical speech-recognition systems rely heavily on vowel recognition to achieve 

high performance .... (Rabiner and luang 1993) 

The book does not quantify these claims, and it is rare, in the literature, for recognition results to 

be tabulated by broad phoneme classes. The present study considered separate classes of consonants; 

it empirically tested whether the vowels convey less information in text and whether several speech­

recognition architectures actually perform better on them. 

When only stops and fricatives are contrasted with vowels, and a phonetic transcript is used, 

the claim about vowels' importance no longer applies. The discrepancy, by the implied above quote, 

between vowel and consonant recognition is contradicted here by error analysis of several recognizer 

architectures. 
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4.1 Different Types of Consonants 

The stop, fricative, and affricate consonants are particularly interesting because they are the least 

similar to vowels. Other consonants, such as Ill, Iml, Inl, Irl, and most obviously Iyl and Iwl, are 

closely akin to vowels. Following is an example of a sentence with letters deleted except for stops, 

fricatives, and affricates: 

The textbook quoted above uses the same example, but includes all consonants: 

Th_y n_Ld s_gnJ_cnt _mpLv_nLnts L [sic] th_ cmp_ny's _m_g_,... (Rabiner and 

Juang 1993) 

Here are two more example sentences, one with stops and fricatives retained, and the second 

with only vowels retained: 

The sentences appear in full in appendix F. As these examples suggest, excluding vowel-like 

sounds from the consonant category evens out the information conveyed by vowels and consonants. 

When phonetic transcription is used instead of standard English orthography, the two categories have 

almost identical information content (figure 4.1). 

The scope of the consonant category matters less to the recognition results, because the recogni­

tion rates are averages across all the phones in the category, while entropy is an ensemble property 

that increases with ensemble size. 

4.2 Entropy of Vowels and Consonants 

Some rough estimates of the information content of vowels, stops, and fricatives were generated. The 

estimates were derived from English text, English phonetic transcription, and Basque text. Basque 

was included to test whether the findings were language-specific, because it is a non-Indo-European 

language, almost totally unrelated to English. Basque was chosen also because it uses Roman letter­

forms, making it easy to process. Symbol frequencies were used to compute the entropy of vowels, 

stops, and fricatives. 
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Symbol frequencies were obtained from the following sources: 

1. English text: a Web page listing letter and bigram frequencies in Charles Dickens' A Tale of 

Two Cities (Hahn 1994). 

2. English phonetic transcription: phone frequencies listed in the documentation accompanying 

the Wisconsin microbeam data set (Westbury et al. 1994). 

3. Basque: analysis of a 7312-character Web page with tourist information on the Basque region. 

This small sample cannot be used for precise comparison, but suggests that results are not radically 

different for this non-indo-European language. 

4.2.1 Categorization of Vowels, Stops, and Fricatives 

Finding occurrences of vowels, stops, and fricatives was straightforward for the phonetic English and 

for Basque; the conventional English text presented problems. 

Standard English Spelling, Dickens Sample 

Because English spelling is not phonetic, the letters of English were heuristically classified for this 

project. Fortunately, the source for letter frequencies in Dickens (Hahn 1994) also included bigram 

(letter pair) statistics. Bigram frequencies were used to differentiate between hard and soft "c:" in 

"ce" and "ci," the first phoneme was assumed to be the sibilant lsi, and in other contexts, "c" was 

equated with the stop Ik/. Although this rule is not universally applicable, it prevents egregious 

misclassification of "c." Similar bigram rules were used for "g," "th," and "ng" (table 4.1). 

The letter pair "th" presented problems: it may represent /01 (as in "that"), IHI (as in "south"), 

or the sequence It hi (as in "anthill"). The former two cases were lumped together, and the third 

case was neglected. 

No simple rule could precisely categorize "ng." The letter pair can signify lUi ("thing"), Illgl 

("anger"), or, particularly across word boundaries, In gl ("on guard"). All occurrences of "ng" were 

treated as lUi, which neglected Igl and reduced the frequency estimate of stop consonants. 

Engl ish Phonetic Transcription 

Classifying symbols in the Wisconsin transcription was straightforward, because it was phonetic 

(table 4.2). This transcription was idealized-it didn't represent the errors subjects and experimenters 

made in individual trials-and was not used in the recognition experiments of chapter 3. 
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Vowel a, e, i, 0, u 

Stop b,c,d,g,k,q, t 

Fricative ce, ci, f, h, s, th, v, Z 

Other ch, ge, gi, h, 1, m, n, ng, r, y 

Table 4.1: An approximate grouping of English letters and letter sequences into vowel, stop, and 

fricative categories, used to generate the results of figure 4.1. Specific letter combinations overrode 

the default classification of one (e.g., the "c" in "ce") or both (e.g., "n" and "g" in "ng") symbols. D 

Vowel aa,ae,ah,ao, aW,ax, axr 

eh, er, ey, ih, iy, oh, ow, oy, uh, ux 

Stop b, d, dx, g, t, k, p, q 

Fricative f, s, sh, th, Z 

Other h, hh, 1, m, n, r, w, y 

Table 4.2: Phonetic symbols grouped into vowels, stops, and fricatives. These symbols were used in 

the phonetic transcription and phone frequencies provided in the Wisconsin x-ray microbeam data. D 

Vowel a, e, i, 0, u 

Stop b, d, g, k, p, t 

Fricative f, h, s, x, Z 

Other c, j, 1, m, n, r, v, Y 

Table 4.3: Categorization of Basque letters into vowel, stop, fricative, and other. The letters "c," "v", 

and "y" are not native to Basque, but are used in writing foreign words. In the sample text of 7312 

characters, these number of occurrences of these letters were seven, one, and one, respectively. D 

Basque Text 

The Basque letters were also easy to classify (table 4.3), since spelling in that language is much more 

phonemic than English. Although it uses Roman letterforms and phonemic correspondences, it is 

essentially unrelated to other Indo-European languages. The categories were derived from a guide 

to Basque pronunciation for English speakers. 
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4.2.2 Measurement of Entropy 

Entropy, in the information-theoretic sense, can be used to measure the unpredictability of letters in 

a natural language (Shannon 1951). For example, if an English text is split at an arbitrary point, and 

only the first half is presented to an observer, what can be inferred about the first letter of the second 

half? There are many ways of estimating the entropy of English, including having subjects place 

actual bets on what letter will appear next. This gambling approach yielded an estimate of 1.3 bits 

per symbol (Cover and King 1978). More recently, an upper bound of 1.7 bits per symbol has been 

established (Brown et a1. 1992). Generally these studies do not consider vowels and consonants 

separately, except for an early study that counted the frequency of commonly-occurring symbol 

combinations, but did not calculate entropy (Denes 1963). 

4.2.3 First-Order Entropy Estimation 

A crude upper bound on entropy, used in this project and given in the following equation, is first­

order uncertainty based on symbol frequencies. It is an upper bound because the preceding context 

of symbols in English helps to predict what symbol will come next. 

1 F(a) 
1= -- """' F(a) log2 --

NL N 
IT 

Equation 4.1: Entropic information I from symbol frequencies F(a), measured in bits D 

The above quantity can be written as a sum of the contributions of different subsets of symbols: 

I = Iv + Is + IF + 10 

The subscripts V, S, F, and 0 represent the analysis categories of vowel, stop, fricative, and 

other. Each term has the same form; the following is the contribution of vowels: 

The percent of total entropy due to the vowels, plotted in figure 4.1, is lOO(Iv /1). 
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Figure 4.1: Percent of entropy in vowels and consonants for standard Engl ish spell ing, phonetic tran­

scription of English, and for Basque. Categories do not total 100% because vowel-like consonants 

have been excluded. 0 

4.3 Previous Work on Vowel Versus Consonant Recogn ition 

Occasionally, though rarely, researchers will tabulate recognition results separately for vowels and 

consonants (Shoup 1980). 

4.3.1 Conventional Recognition Architectures 

The Sphinx speech recognition system (Lee et al. 1990), which used discrete-emission biphone 

HMMs (chap. 1), had higher recognition rates for stops than sonorants (table 4.4) (Lee and 

Hon 1988). The latter category includes vowels as well as certain consonants such as liquids, which 

in the present project were left in the "other" category. 

4.3.2 Nonstandard Recognition Architectures 

Nonstandard architectures may have greater problems with vowels than consonants. For example, 

a recognizer designed to mimic normal and impaired human hearing was tested and compared to 
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Sonorant 66% 

Stop 70% 

Fricative 78% 

Closure 93% 

Table 4.4: Previous work examining the recognition rates of vowels and consonants (Lee and 

Hon 1988). These categories differ from those used in the present project, since the vowels are 

not separated out from the other sonorants. The recognition system used context-dependent discrete­

emission biphone HMMs and the cepstrum with delta and energy terms. 0 

human listeners (Giguere et al. 1997). That system's relative performance on vowels was worse than 

predicted by the abilities of the human subjects. 

For this project, the Recnet recurrent neural network was downloaded and tested on the standard 

Texas Instruments-MIT speech database (TIM IT) (Garofolo et al. 1993), in order to tabulate its errors 

by phonetic class. Its overall phone error rate, which had previously been reported (Robinson 1994), 

was here confirmed to be 26.3 %-coincidentally the same as Via Voice's performance on the Wis­

consin data (section 4.4). Examples from the literature of other phone-recognition error rates on 

TIMIT are 26.6% (Chang and Glass 1997) and 28.3% (Strom 1997). 

4.3.3 Prior Work on Text Analysis 

An early study on the statistics of spoken English (Denes 1963) tabulated minimal pairs of phonemes 

for words that differ by a single sound; for example, the "p" and "k" of "peep" and "keep." The 

study used phonetic transcriptions from books that teach English as a second language. There was no 

direct comparison of the importance of vowels and consonants, but for consonants the most common 

distinctions were based on manner (for example, "d" versus "z") of articulation rather than voicing 

(e.g., "f" I"v") or place of articulation. The above finding suggests that the microbeam data would be 

especially useful for vowel recognition, since the data directly encode place of articulation. Voicing 

would be more easily extracted from sound or measurement of laryngeal vibration. Manner could be 

determined from the dynamics of the microbe am data (as opposed to place, which can be determined 

on a frame-by-frame basis). 
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Phoneme Acoustic-only Error Rate for Relative 

Category Error Rate Acoustic and Improvement 

Articulatory Input 

Vowel 31.4% 23.6% 24.9% 

Stop Consonant 35.1 32.6 7.1 

Fricative 23.1 18.4 20.6 

Table 4.5: Error rate reductions for stop and fricative consonants and vowels, for recognizer trained 

and tested with Wisconsin X-ray microbeam data 0 

4.3.4 Human Listeners 

A related project at the Oregon Graduate Institute attempted to determine whether vowels or con­

sonants were more important to comprehension (Cole et a1. 1996). Those experimenters modified 

sentences from TIMIT (Garofolo et a1. 1993) by replacing either vowels or consonants with noise; hu­

man subjects were then asked to transcribe the sentences. Due to coarticulation, some portion of the 

vowel sound may be used for identifying the neighboring consonant (Strange and Verbrugge 1976). 

The listeners' baseline performance on the unaltered sentences was 94% of words correctly recog­

nized. Removal of consonant-like intervals reduced the word recognition rate to 57%, while removal 

of vowel-like intervals reduced the rate to 14 %. Because a sharp delineation of consonant and vowel 

time intervals is not possible, the experiment is a little difficult to interpret. 

4.4 Vowel and Consonant Recognition with Sound and Articulation 

Three baseline continuous-speech recognizers were used. Two were conventional cepstrum-and­

HMM systems: the acoustic-only recognizer of chapter 3, and a commercial large-vocabulary con­

tinuous speech recognizer, IBM Via Voice Gold. These conventional systems were tested on speaker 

JW45 of the Wisconsin microbeam data set. A third system, Recnet, was a recurrent artificial neu­

ral network publicly available for download (Robinson 1994). Recnet was trained and tested using 

disjoint subsets of TIMIT. 

The belief that vowels are better recognized seems based on the apparent compatibility of the 

cepstrum with the source-filter model of speech. 
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Figure 4.2: Phone error rates for vowels, stop consonants, and fricatives, for four recognizers: the 

acoustic-only baseline and acoustic-and-articulatory recognizer (both of chapter 3), IBM's ViaVoice 

Gold, and the Recnet recurrent neural network. The test data were six paragraphs spoken by subject 

JW45 in the Wisconsin microbeam data. Vowel recognition improved more than consonant recogni­

tion when articulation was added, and ViaVoice and Recnet performed at least as well on consonants 

(stops and fricatives averaged) as on vowels. 0 

4.5 Vowel and Consonant Recognition by the Commercially 

Available ViaVoice Recognizer 

In another experiment, paragraph recordings (appendix F) from the Wisconsin x-ray microbeam data 

set (section 3.4.1) were presented to the commercially available IBM Via Voice recognizer. Phone 

sequences were inferred from Via Voice's text output as described in section 4.7.1. 
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Phone 

Category Error Rate 

Vowel 36.7% 

Stop Consonant 20.9% 

Fricative 17.4% 

Overall 26.2% 

Table 4.6: Recnet's (Robinson 1994) phone error rates for vowels, stops, and fricatives. D 

4.6 Vowel and Consonant Recognition by Recnet Recurrent Neural 

Network 

Recnet, a recurrent artificial neural network, was downloaded and tested on the TIMIT recordings 

(Garofolo et al. 1993). Although the overall phone error rate on TIMIT had been published by 

Recnet's creator (Robinson 1994), it was not tabulated separately for vowels and consonants. Unlike 

Via Voice or the recognizer of chapter 3, Recnet performed far better on stops and fricatives than 

on vowels (table 4.6)-but since Recnet did not use a dictionary to constrain phone choice, the 

comparison is not straightforward. 

4.7 Vowel and Consonant Recognition on Switchboard Telephone 

Conversations 

The final stage of this work concerned errors made by a state-of-the-art recognizer transcribing tele­

phone conversations. The goal was to see whether the results of section 4.3.1 held for a newer (by 

nine years) large-vocabulary recognizer. 

Recognizer development and testing had been performed previously by other researchers, in the 

1997 Large-Vocabulary Continuous-Speech Recognition Workshop at Johns Hopkins University's 

Center for Language and Speech Processing (Jelinek 1998a). The baseline recognizer's text out­

put for the test data was provided by Joe Picone and Aravind Ganapathiraju of the University of 

Mississippi. 

The present analysis started with transcriptions of telephone conversations from the Switchboard 
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Vowel aa,ae,ah,ao, aW,ax, ay 

eh, ey, ih, iy, ow, oy, uh, uw 

Stop b, d,g,k, p, t 

Fricative dh, f, s, sh, th, z, zh 

Affricate ch, jh 

Nasal m, n, ng 

Other el, en, er, hh, I, r, sil, w, y 

Table 4.7: Switchboard phonetic symbols grouped into vowels, stops, fricatives, affricates, and 

nasals 0 

data set (Godfrey et al. 1992). Since the transcriptions were composed of words, rather than phone­

like units, additional processing was required to classify errors as vowel or consonant. 

4.7.1 Determination of Phonetic Errors from Word-Level Transcripts 

In general, a specific word sequence could correspond to multiple possible phonetic sequences. For 

each utterance in the present project, a pair of phonetic sequences was chosen-one for the rec­

ognizer's output, one for the hand transcription-having the minimum number of insertion and 

deletion errors (chap. 1). The procedure implemented was essentially the level-building algorithm 

(Myers and Rabiner 1981) (Rabiner and Juang 1993), but applied here to text-to-text correction 

instead of text-to-acoustic matching. 

In the present version of level building, for each word, alternate pronunciations were determined 

using the standard dictionary from the workshop (Jelinek 1998a). These pronunciations used a 

similar phone set to ARPABET (Garofolo et al. 1993) and the Wisconsin phonetic transcription 

(section 4.2.1). 

After the optimal pair of phonetic sequences was determined, deletion errors-phone present but 

missed by recognizer-were tabulated as vowel, stop, fricative, affricate, nasal, or other. Insertion 

errors were ignored, whether or not they were part of a substitution error; each substitution error 

was considered to be an insertion plus a deletion. The weights for substitution and deletion errors 

were therefore equal. A list of the phones in each category appears in table 4.7. The larger size of 

the present transcripts compared to those of section 4.2.1 gave an adequate sample size for more 

and finer categories. 
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Figure 4.3: Phoneme error rates on telephone conversations in the Switchboard data set, when tran­

scribed by a state-of-the-art large-vocabulary recognizer 0 

4.7.2 Vowel and Consonant Recognition: Switchboard Results 

The recognizer's errors on the Switchboard telephone conversations are broken down by phone class 

in figure 4.3. For the three main categories-vowel, stop, and fricative-errors are not dramatically 

different. Stops are recognized slightly better than vowels, and recognition is best on the default 

"other" category, which is fundamentally different because it includes pauses. An affricate (e.g., 

"ch") can be thought of as a stop ("t") followed by a fricative ("sh"), requiring two successful 

identifications in a row; this helps explain why the error rate was higher for affricates than stops or 

fricatives. 

4.7.3 Consequences of the Grammar Model and Dictionary 

The Switchboard results were based on recognition using a grammar model and dictionary. There­

fore, the variation in error rate across phone classes does not represent the relative difficulty of 

purely acoustic recognition. Instead, it represents the difficulty of recognizing the different sounds 

given a higher-level model of speech. In principle it is possible to test recognition with a triphone­

loop grammar, but the original triphone models were not available for this project-only recognizer 
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output. It might also be possible to extend an existing theory for the interaction of acoustic and 

grammar models (Ferretti et al. 1990) to isolate the acoustic problem. 

4.8 Recognition and Entropy of Vowels and Consonants: 

Conclusions 

State-of-the-art recognizers are not necessarily better at recognizing vowels than consonants. Fur­

ther, when only stop and fricative consonants are considered against the vowels, and a phonetic 

transcript is used, the entropy of consonants and vowels is comparable. This suggests that, since 

consonants are not the current weak point of recognizers, it may not be necessary to concentrate 

research efforts on them in order to obtain a dramatic recognition improvement. These two results 

call into question the vowel-consonant discrepancy identified in a standard text (see quote at head 

of this chapter) (Rabiner and luang 1993). 

4.9 Future Work 

Both information content and recognition performance for vowels and consonants can be better eval­

uated. Information-content estimates can be improved by entropy calculation, reading experiments 

with humans, or presentation of modified speech. Grammar model effects can be factored out of the 

recognizer, and nonstandard recognition architectures can be assessed. 

4.9.1 Calculation of Entropy from Text 

The calculated estimates of information conveyed by vowels and consonants would benefit from a 

more sophisticated predictive model (Brown et al. 1992), or at least the use of second-order transition 

statistics. 

4.9.2 Textual Experiments with Human Listeners 

Since humans outperform the best algorithms at predicting what letter will follow an initial sequence, 

the question of vowel versus consonant entropy in text should be tested with human listeners. Gam­

bling techniques have been successful for calculating overall entropy (Cover and King 1978), and 

should be readily adaptable to separate tabulation of vowels and consonants. 
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4.9.3 Audio Experiments with Human Listeners 

Previous studies of speech intelligibility with vowels or consonants removed (Cole et al. 1996) could 

certainly be removed. In particular, the problem of listeners being able to identify consonants from 

coarticulation with vowels (Strange and Verbrugge 1976) can be addressed by using synthetic speech 

instead of recordings of people. 

Some synthesis parameters could be derived from recordings, to give a more natural sound. 

However, the formant frequencies should be modified to eliminate transition cues: instead of delet­

ing intervals, the targeted phones can be replaced by canonical sounds (e.g., lal for all vowels). 

The surrounding phones would then coarticulate with the new, neutral phone, instead of retaining 

information about the missing one. 

4.9.4 Experiments with Other Recognition Architectures 

Speech recognizers have been built on rather different principles, such as neural networks (Bourlard 

et al. 1994). It is not clear that these other architectures have the same strengths and weaknesses as 

the standard cepstrum-and-HMM approach, so any general conclusions about vowel and consonant 

recognition should be tested on them as well. 

4.9.5 Analysis of Recognizer Performance 

As described above (section 4.7.3), it may be possible to factor out the effect of the grammar model 

on vowel and consonant recognition. 
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Chapter 5 

Discussion and Conclusions 

In this thesis, to improve speech recognition performance, audio signals were combined with dif­

ferent types of auxiliary kinematic information. Direct measurements of articulator position-x-ray 

microbeam data-improved continuous speech recognition accuracy (chap. 3). Preliminary results 

suggest that side-view lipreading with audio and video may outperform recognition with audio alone 

(chap. 2). A hypothesized shortcoming of existing systems-consonant recognition-was found to be 

less of a problem than previously supposed, both for the new recognizer presented here and for con­

ventional state-of-the-art systems (based either on the cepstrum and HMMs or on recurrent neural 

networks). It is not addressed whether consonants were a weak point in old approaches to recog­

nition, nor whether they will present problems for future recognizers. In the approach described in 

this thesis, kinematic information did not improve consonant recognition as much as vowel (chap. 4). 

The following sections address advantages and disadvantages of side-view lipreading and motor 

representations for speech recognition. The latter part of this chapter also discusses the following 

questions: 

How many articulatory degrees of freedom are important? 

Are state-of-the-art (cepstrum-and-HMM and recurrent neural network) speech recognizers less 

accurate at recognizing consonants than vowels, and do consonants convey more information? 
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5.1 Advantages and Disadvantages of the Side-View Approach to 

Lipreading 
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The preliminary recognition results in this thesis suggest advantages to using of side-view lipreading 

(section 2.8). For example, this approach requires far less computation than conventionallipreaders 

using dynamic contours (snakes). Another advantage is that it is stateless, so tracking errors do 

not propagate from one frame to the next. An analysis of errors made by the audio and video 

classifiers described in chapter 2 suggests that the two modalities are complementary (section 2.8.3). 

Combining audio and video reduced errors compared to either alone; this property of independence 

of the channels is true of front-view lipreading as well. The accuracy of the two approaches on the 

same example utterances has yet to be compared. The confusion matrix in table 2.2 suggests that 

the side-view video pipeline readily distinguishes important features of articulation. 

The side-view processing pipeline consists of a median filter followed by a threshold, state ma­

chine, and centroid calculation. Dynamic contours (snakes) involve blurring the image, using edge 

information to make forces along a contour, and a dynamic simulation of the snake's motion (Kass 

et al. 1987) (Platt 1989). If the image changes in an unexpected way or too quickly, the snake may 

fail to track the intended edge; such tracking errors propagate from frame to frame. 

A disadvantage to the approach reported here is that it uses a camera worn on the head­

currently in a mask, but perhaps in the future on a headest instead. Even for a modern lightweight 

camera on a single circuit board, this may be too obtrusive for certain applications. 

5.2 Advantages and Disadvantages of Motor Representations In 

Speech Recognition 

Another set of issues addressed in this thesis are the following: 

• Can recognition with joint acoustic-articulatory representations outperform recognition with 

acoustics alone? 

The above is closely related to the following question regarding the motor theory (section 1.2.2): 

• Are articulatory representations more invariant than acoustics, and therefore a good choice of 

an intermediate domain in speech recognition? 
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Using a joint acoustic-articulatory feature set, as in this thesis, hypothesizes a combination of the 

two strategies for perception. 

Advantages 

A statistically significant error rate improvement-7.4%-was obtained by appending articulation to 

acoustics (table 3.6). The improvement from adding articulation was greater for vowels and fricatives 

than for stops (section 5.4), and for male speakers compared to female. A hypothesis about the dis­

crepancy between the sexes is that because females' vocal tracts are smaller, the variability between 

different instances of a phone is large compared to the distance between different phone categories. 

Thus, the strategy of combining articulatory with acoustic representations outperformed the con­

ventional acoustic-only, cepstrum-and-HMM approach. 

Here, with only about 10 minutes of training data per speaker, a statistically significant improve­

ment was seen. If motions can be recovered from sound, large data sets such as the Switchboard 

corpus (section B.7) can be augmented with recovered articulatory representations. Training the 

recognizer with such data can be expected to further improve recognition. 

Disadvantages 

A negative aspect of the present results is that recovered motions will never be as exact as the 

actual measurements used here. Another unforeseen and unfortunate result is that articulation aided 

recognition of male speakers far more than female. 

The use of principal components analysis (PCA) in chapter 3 facilitates interpretation (section 5.3) 

and implementation. However, recognition may be more accurate with a different parameterization 

of motion. 

5.3 How Many Articulatory Degrees of Freedom Are Important? 

If, as described above, articulatory representations might aid recognition, how many degrees of 

freedom of the articulators are relevant to recognition? In this thesis, recognizer performance after 

the first round of training (flat start; section 3.9.4) was the same for 4, 6, or 8 articulatory features 

(section 3.12.2). The first 4 features describe 90.2 % of the variation in lip, tongue, and jaw position 

(table A.l), and qualitatively seem to capture a number of phonetic contrasts (section A.3.3). 
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The above results suggest that relatively few articulatory parameters may be sufficient. It is hard 

to conclusively determine the number of degrees of freedom because of the following considerations: 

1. Additional information-in the sense of independent measurements-never reduces the dis­

crimination ability of an ideal classifier. At worst, the new information might be irrelevant and 

discarded. At best, it might enable distinctions which were not possible from previous mea­

surements. In an intermediate case, it could simply be used to reduce measurement noise. The 

corollary to this is that reducing the number of degrees of freedom would not increase the per­

formance of an ideal classifier. These observations are strictly from an information-theoretic 

perspective. For a non-ideal classifier, different representations of the same information (for 

example, articulation recovered from sound versus the sound itself) can result in different levels 

of performance. 

2. What types of parameterizations are considered? Linear transformations of coordinates were 

used here, but nonlinear mappings could also be very useful. 

3. In what context, and with what data set, is classification ability to be measured? 

4. What level of performance is acceptable? Recognition accuracy comparable to humans would 

allow one to start making general claims. Such performance is probably a long way off. 

5.4 Are State-of-the-Art (Cepstrum-and-HMM and Recurrent Neural 

Network) Speech Recognizers Less Accurate at Recognizing 

Consonants than Vowels, and Do Consonants Convey More 

Information? 

It makes sense to concentrate speech-recognition research on the weak links of existing systems. Are 

consonants currently a problem-harder to recognize and more important than vowels? The results 

of chapter 4 suggest not. In that chapter, entropy of text was calculated separately for vowels, stop 

consonants, and fricatives. This showed that with a phonetic transcription, the latter two together 

conveyed about as much information as vowels. For the different phone classes, errors made by the 

following recognizers were tabulated: 
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• A conventional state-of-the-art recognizer, the baseline system used in the 1997 Large­

Vocabulary Continuous-Speech Recognition Workshop at Johns Hopkins University; 

• The joint acoustic-articulatory recognizer in chapter 3. 

• The acoustic-only recognizer of chapter 3. 

• A commercially available recognizer, IBM's Via Voice Gold; and 

• Recent, a recurrent neural network. 

In all cases, the average error rates for stop consonants and fricative were at least as low as the 

error rates for vowels. 

Among the consonants, only stop consonants and fricatives were considered here, since they are 

the least vowel-like. Phonetic transcriptions are more relevant than English orthography because dur­

ing recognition, words are treated as single symbols and mapped to sequences of phonetic symbols, 

not letters. 

Previous work suggested that people use vision to determine manner of articulation (e.g. It! ver­

sus lsi) and audition to determine place (e.g., Ikl versus It!) (MacDonald and McGurk 1978). Another 

researcher found that, in the statistics of spoken English, manner was more important than place for 

consonant contrasts (Denes 1963). X-ray microbeam measurements, which directly measure place 

of articulation, can therefore be expected to improve vowel recognition more than consonant; this 

prediction held true for the experiments of this thesis (section 4.4). 
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A.l.l Principal Components Analysis (PCA) 
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Given a sample set of vectors, the principal components are directions in which the sample set 

has its greatest variance. To be precise, the principal components are an orthogonal, ordered set 

of eigenvectors of the sample set's covariance matrix. If the sample set is represented as x(t) for 

integers 1 S t S N, the entries C I) of the covariance matrix are 

The principal components Pk satisfy the following characteristic equation: 

Each principal component describes a fraction of the total variance of the sample set. 
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A.l.2 Maximum-Likelihood Gaussian (MLG) Classifier 

A maximum-likelihood Gaussian (MLG) classifier is similar to the continuous emission density 

HMMs which are used in speech recognition. Specifically, an MLG classifier is equivalent to a single­

state HMM with a single Gaussian in its emission density. The following discussion describes MLGs 

for simplicity but these considerations apply to HMMs as well. For an input .r, the classifier gener­

ates a set of probability scores p,(x) for the categories 1 :Si :S N c • These scores are determined by 

the category means and variances. For one-dimensional inputs, the scores are computed as follows 

(Duda and Hart 1973): 

1 2 • '2 p,{.r) = ___ e-(x-/1,) /(217,) 

J27fIT; 

Equation A.l: Maximum-likelihood Gaussian classifier (MLG) for one-dimensional data: 

probability score p,{.r) for category i with input :c. 0 

The output of the MLG classifier, in response to an input .r, is the category index i which max­

imizes p,{.r). In practice, I' and IT above are estimated from training data. In the general case of 

HMMs, the statistics are iteratively estimated using expectation-maximization (E-M). 

A.l.3 Single Transformation Matrix for All Categories 

In the single-transformation-matrix approach, examples of all categories are pooled when computing 

the covariance matrix C defined in section A.1.1. A transformation matrix A is generated with N[) 

rows, each of which consists of one of the first N D principal components. This matrix transforms all 

inputs before presentation to the MLG (section A.l.2). This reduces the dimensionality of the input 

data to N D for recognition. 

x(t) = Ax(t) 

The means and variances for all categories are also projected into the subspace: 

fj.; = AI'., 

~ T 
C, =AC,A 
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In the one-dimensional case, the above values are scalar. The category scores are obtained by 

substituting the transformed values into equation A.l: 

A.1.4 Category-Dependent Transformation Matrices 

Alternately, separate transformations Ai can be used for the categoriesi. In this case, the input is 

partitioned and only examples of a particular category are used to calculate that category's covari­

ance matrix. Each input x( t) is then transformed Nc times to create intermediate representations 

x, (t) for each category. 

A.2 Previous Work on PCA of Speech Production Data 

A.2.1 Sagittal Factor Analysis of Tongue (Harshman et al. 1977) 

Other researchers have used factor analysis (closely related to PCA) to analyze sagittal tongue shape 

(i.e., in the front-back and up-down plane) (Harshman et a1. 1977). That project was meant to 

provide an objective, data-driven basis for describing the tongue's degree of freedom. The analysis 

used cross-sectional width of the vocal tract at 18 locations, and the correlation (96 'X,) between 

predicted and actual tongue configurations was used for assessment. Earlier projects had shown 

that two or three parameters were effective for describing the variations in tongue shape that were 

relevant to vowel production (Liljenkrants 1971). 

A.2.2 Cross-Sectional Tongue Shapes for Vowels (Stone et al. 1997) 

A previous study (Stone et a1. 1997) applied PCA to ultrasound cross-section images of the tongue 

as vowels were spoken. Five examples each of 11 vowels in 2 consonant contexts were pooled 

for a global PCA; all data came from a single speaker. 'nle first two principal components were 

found to account for 93 % of the variance of the cross-sectional shapes, and defined a transformation 

projecting the data into only two dimensions. This represented a dramatic reduction from the seventy 

curve parameters initially extracted from each ultrasound image. After projection of all examples 

using this global (across phones) transformation, the researchers showed that front, back, and high 

vowels could still be distinguished. 
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The results presented in this appendix are discussed in section A.4 in the context of the above­

cited study (Stone et al. 1997). 

A.2.3 Across-Class PCA in Wisconsin X-Ray Microbeam Data (Roweis 1999) 

The principal components of the tongue coordinates in the Wisconsin data have been previously 

calculated and plotted (Roweis 1999). That analysis showed the following when sagittal motion 

was considered separately from the other landmarks (beads): The first component, predominantly 

vertical, described tongue motion towards and away from the palate; the second, largely horizontal, 

described inward and outward motion of the tongue in the mouth; and the third described the tilt 

(front/back) of the tongue. 

The present thesis reports the application of PCA jointly to all the landmarks in the Wisconsin 

data. The first four principal components, using a single analysis for all phones, appear in figure A.2 

through figure A.5. The ordering of the components is different than found in the tongue-only 

previous work (Roweis 1999), but the first four components as a group seem qualitatively to describe 

the same tongue motions. 

A.3 Results 

A.3.1 Rationale for Using Single Transformation Matrix 

Chapter 3 presents recognition results for microbeam coordinates transformed by a global PCA 

matrix. Advantages of the global transformation over multiple, phone-dependent transformation 

matrices include: 

• Ultimately, it would be useful to know how many degrees of freedom of the articulators are 

necessary for classification. Although this thesis does not answer this general question, it does 

compare different numbers of degrees of freedom for a particular recognizer architecture. In 

the alternate approach-category-dependent input transformations-the input dimensionality 

is not reduced. For example, even if only one principal component were retained per category, 

the present project's use of 45 monophones would transform 16 position coordinates into 45 

before recognition. Previous work has similarly used a single transformation matrix across 

phones, in order to understand the number of degrees of freedom of the articulators (Stone 

et al. 1997). 
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.- ------------------ Lip beads 

Beads on teeth 

Figure A.l: Reference for figure A.2 through figure A.16: arrangement of beads on head for microbeam 

recording. This figure also appears as figure 3.3. 0 

• Fewer model parameters are required with a single transformation. With 45 categories, 16 

input coordinates (as used here), and 4 principal components retained, the category-dependent 

matrices would have a total of 2,880 entries, versus 64 for the global transformation. 

The disadvantage to implementing only a single transformation matrix is that mUltiple transfor­

mations could perhaps result in better performance. 

A.3.2 Percent of Variance Explained by Principal Components 

In figure 3.7, the percent of variance explained by the principal components is displayed for six 

speakers individually. This statistic pooled across speakers is shown in table A.l. 

A.3.3 Statistics for Individual Phonetic Classes 

The first principal component (direction of greatest variance) for each of eight phone classes and 

three speakers appears in figure A.14 and the following two figures. For each bead placed on the 
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Figure A.2: First principal component for JW12, calculated with pooled data from all phones. See 

figure A.l for a guide to landmark (bead) placement. 0 

• \ 
1.5 

• \ -6 2 

• 
I 

-2.5 

Figure A.3: Second pri ncipal component for JW12. 0 
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Figure A.4: Th ird principal component for JW12. D 
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Figure A.S: Fourth principal component for JW12. 0 
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Figure A.6: First principal component for JW1S, calculated with pooled data from all phones. 0 
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Figure A.7: Second principal component for JW1S. 0 
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Figure A.8: Third principal component for JW1S. D 
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Figure A.9: Fourth principal component for JW1S. D 
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Figure A.l 0: First principal component for JW27, calculated with pooled data from all phones. 0 
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Figure A.ll: Second principal component for JW27. 0 
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Figure A.12: Third principal component for JW27. 0 
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Figure A.13: Fourth principal component for JW27. D 
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npc Variance 

explained 

1 44.0% 

2 66.7 

3 80.3 

4 90.2 

5 93.6 

6 95.9 

7 97.2 

8 98.1 

9 98.7 

10 99.1 

11 99.5 

12 99.7 

13 99.8 

14 99.9 

15 100.0 

16 100.0 

Table A.l: Variance explained by first !LPC principal components, for all speakers combined. These 

components include lip, jaw, and tongue motion, so it is not surprising that more components (4) are 

required here to capture 90% of the variance than the 2 found in previous work on cross-sectional 

tongue shapes (Stone et al. 1997). D 

mouth during x-ray microbeam data collection, a line segment is plotted extending three standard 

deviations on either side of the mean, in the direction of the first principal component. Note that 

this principal component represents variance within the phone class, not between one class and the 

rest of the data. 

In figure A.17 and figure A.18, the first two within-phone principal components are projected by 

the single transformation matrix (per speaker) used for recognition in chapter 3. This transformation 

had a four-dimensional target space defined by the first four principal components of global, across­

phone PCA. 
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Figure A.14: First principal component for various phones as spoken by subject JW12. Line segments 

extend, in the same direction as the first principal component, for three standard deviations above 

and below the mean. See also table A.2. Non-critical articulators (e.g., the tongue for If I) vary more 

than critical (lower lip for If/), as observed in previous work (Papcun et al. 1992). 0 
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Figure A16: Same as figure A.14 and figure A15 (first principal component), but for speaker JW27. 0 
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Figure A.17: Each phone's mean and first two principal components (PCs), projected onto the space 

of the first four global PCs. Each phone PC line segment extends for one standard deviation on either 

side of the mean The phones seem easier to distinguish using global PCs 3 and 4 than with PCs 1 and 

2 (see discussion below). 0 
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Figure A.18: Same as figure A.17-phones projected by global PCs-plotted here for experimental 

subject JW1S. 0 
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Figure A19: Same as figure A17 and figure A18, plotted here for experimental subject JW27. D 
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From To Change 

If I lsi Lower lip moves down 

Tongue position changes 

lui /il Tongue moves up 

/b/ /g/ Lips open 

Tongue moves up 

/rl 101 Tongue moves down 

Tongue moves forward 

Table A.2: Articulatory-phonetic contrasts visible in figure A.14 through figure A.16. D 

AA PCA: Conclusions and Discussion 

In both the present thesis and the above-cited paper (Stone et al. 1997), PCA was performed globally 

across phonemes and a single transformation matrix was applied before classification. The primary 

differences (Stone et al. 1997) are: 

• That project looked at sections of the tongue in a plane orthogonal to the bead coordinates 

used here. 

• They considered only vowels, while this thesis considers 43 different phones induding conso­

nants as well. 

• They analyzed data for a single speaker; recognition results are presented here for 6 speakers 

(chap. 3) and category statistics are plotted for 3 of those subjects (section A.3.3). 

• This thesis compares joint acoustic-articulatory recognition to acoustic-only, whereas they con­

firmed that three broad classes of vowels could be distinguished from each other with articula­

tion alone. 

• Because this project uses longer continuous utterances instead of five-phone patterns, the pro­

cess of automatically determining start and end times is more susceptible to error. This align­

mentlsegmentation process should not be confused with recognition, which uses the same set 

of monophone models but lacks a priori information about the sequence in which they occur. 

In both cases, the top several principal components were useful for classification, but among those 

few, highest variance was not synonymous with best discriminability (figure A.17). In the previous 
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work, the second principal component was seen to be better for classification than the first (Stone 

et a1. 1997). In this project, qualitatively, the third and fourth together seem more useful than the 

first and second (figure A.17). 
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Appendix B 

Front-End Optimization 

As described in chapter 1, speech recognizers typically have a pipelined architecture consisting of 

a front end and a back end. Nagendra Kumar and Andreas Andreou have described a technique­

heteroscedastic discriminant analysis (HDA, section B.5)-for automatically optimizing front-end 

processing to improve performance of the back end (Kumar 1997) (Kumar and Andreou 1998). This 

chapter describes a successful application of HDA to large-vocabulary, conversational speech, and 

reports an unforeseen problem in applying HDA to most state-of-the-art recognizers (specifically 

hidden Markov models using a weighted sum of Gaussians for each state's emission PDF). 

B.l Optimization of Front-End Linear Processing 

Although recognizer front ends usually include both nonlinear and linear processing steps, linear 

optimization can be considerably easier than nonlinear. In the present project, only the linear pro­

cessing steps were optimized. The space of possible transformations included linear combinations of 

cepstral coefficients for a given analysis frame-representing the same discretized time. It also in­

cluded combinations of coefficients from different times over a wide window, special cases of which 

include first and second derivatives. Transformations were not constrained to be orthogonal. 
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B.2 Typical Front-End Components 

The typical state-of-the-art set of front-end features is the Mel-frequency cepstrum with first and 

second time derivatives appended. This front end is described in greater detail in chapter 1. In the 

present context, it is worth noting that many different front ends have been tried over the years, 

amounting to a collective, ad hoc optimization of the front end. The techniques described here 

make the optimization automatic and explicit. However, since they are all restricted to linear feature 

transformations, they do not cover all possible front ends, or even all that have been proposed and 

implemented by other researchers. 

B.3 Need for Dimensionality Reduction 

Reducing the number of parameters produced by the front end has the following advantages: 

1. Better matching of model architecture to reality, for example, by factoring out between­

parameter correlations (section B.4.1). 

2. Avoidance of overtraining/overfitting. 

3. Reduced computational requirements. 

B.4 Other Dimensionality Reduction Techniques 

Neither principal components analysis (PCA, section B.4.1) nor linear discriminant analysis (LDA, 

section B.4.2) were used for the project of this appendix. However, consideration of these techniques 

may aid in understanding the heteroscedastic technique (section B.S) that was used. 

8.4.1 Principal Components Analysis (PCA) 

Principal components analysis (PCA) is defined in chapter 3. The fundamental difference between 

PCA and the discriminant techniques described below is that the latter use category information. In 

other words, PCA acts on a single covariance matrix, typically derived from a single set of sampled 

vectors x(t) for 1 <:: t <:: T. The discriminant approaches add the requirement of class labels L(t) : 

1 <:: L(t) <:: C, identifying each sample as belonging to one of C classes. 
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An intermediate approach involves partitioning the data into different classes and performing 

PCA independently on them. Such an analysis may be used to constrain models to a subspace of the 

front-end parameter space. However, the dimensions perpendicular to the subspace must be treated 

carefully (Roweis 1999). 

B.4.2 Linear Discriminant Analysis (LOA) 

Linear discriminant analysis (LDA) (Fisher 1936) can be used with a labeled set of multidimensional 

data to find the principal directions in which the category labels differ. It is optimal, in the maximum­

likelihood sense, when the variances of the different categories are identical. It has previously been 

applied to continuous speech recognition (Yu et al. 1990) including scaling to large-vocabulary prob­

lems (Haeb-Umbach and Ney 1992). 

Equation 8.1: Linear discriminant analysis (LDA) (Fisher 1936), formulated as an eigenvalue­

eigenvector problem (Duda and Hart 1973). The eigenvectors ek are used to transform 

feature vectors; SB and Sw are the between-group and within-group scatter. 0 

B.5 Heteroscedastic Discriminant Analysis (HDA) 

In speech recognizers, multidimensional Gaussians are generally used to represent the statistics of 

sound classes. In particular, CDHMMs use a mixture of Gaussians to model each state's emission 

density (section 1.11.2). The Gaussians in the mixtures are typically constrained to have diagonal 

covariance matrices, but are distinct in their means and variances. A set of distributions with unequal 

variances are known as heteroscedastic. When optimizing front-end parameters for models based 

on such a distribution set, the technique of heteroscedastic discriminant analysis (HDA) is more 

appropriate than LDA. 

B.S.1 Statistics Required to Perform HDA 

In order to compute HDA, means and covariance matrices must be calculated for each of the cat­

egories of data, as well as for the entire data set-instead of just the two mean vectors and two 

covariance matrices (between-groups and within-group) which LDA requires. 
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The simplest way to assign classes and collect class statistics for HDA is to use a transcript with 

start and end times, and to assign each input frame to a particular category. Such a transcript would 

typically be generated via Viterbi alignment (section 1.11.2). 

B.S.2 Baum-Welch Training of HDA 

In order to fully integrate HDA into the HMM training procedure, the required means and covariance 

estimates can be borrowed from the parameter update (M) step of the EM algorithm. 

B.S.3 HDA and Weighted Sums of Gaussians 

Different levels of representation may be chosen for the classes which are to be differentiated by 

HDA. Whatever level is chosen, the class will be modeled with a Gaussian, so ideally the class 

should have truly Gaussian statistics. It is tempting, therefore, to assign each Gaussian in a mixture­

of-Gaussians emission PDF to a separate class. Two essential problems arise: 

1. HDA tries to find dimensions along which its classes differ. If mixtures are split into sepa­

rate classes, instead of choosing phonetically relevant dimensions, the procedure will try to 

distinguish individual elements in the mixtures. 

2. HDA cannot readily be extended to the mixture case, because the derivation of its objective 

function depends critically on statistical independence of neighboring frames and Gaussian 

class statistics. The former assumption allows frame probabilities to be multiplied. The latter 

assumption facilitates taking a logarithm, which makes frame probabilities additive, and turns 

the Gaussians into Mahalanobis distance calculations. Because Gaussians are combined lin­

early in a mixture model, taking a logarithm does not simplify the string-probability equation. 

8.6 Scaling Problems in Speech Recognition 

New approaches to speech recognition that show promise on small data sets often cannot be applied 

successfully to larger problems. The present project tested whether the HDA technique actually 

scaled to continuous, large-vocabulary speech recognition. 
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B.7 Switchboard Telephone Corpus 

The Switchboard data set (Godfrey et al. 1992), used for this project, includes roughly 250 hours 

of voluntarily recorded telephone conversations. The conversations took place between pairs of 

experimental subjects and were initiated by computer prompts suggesting a topic. A word-level (as 

opposed to phone-level) transcription is included with the data. The corpus has been modified over 

the years to correct errors in the text. 

B.7.1 Large-Vocabulary Continuous Speech Recognition Workshop 

The results reported in this chapter were obtained at the annual large-vocabulary speech recognition 

workshop at the Johns Hopkins University, which is attended by an international group of speech­

recognition researchers in academia, industry, and government. The workshop is a competition for 

the greatest reduction in error rate from an agreed-upon baseline (Jelinek 1996). The results reported 

here were the second best for that year's workshop (Andreou et al. 1998). 

B.8 Experimental Procedure 

Application of HDA to transcription of conversations involved the following steps: 

1. Generate overlapping context windows, each including feature vectors for nine successive 

cepstral-analysis frames; 

2. Collect monophone statistics from triphone alignment and overlapping-windowed data; 

3. Use HDA, implemented via numerical optimization, to find a dimensionality-reducing trans­

formation from monophone statistics; 

4. Use single-pass retraining to convert models to new feature set; 

5. Perform several additional E-M iterations; 

6. Test models. 

Training used approximately 114,000 utterances from the revised Switchboard data set. Each 

utterance represented one speaker's turn in conversation, so length varied from single-word interjec­

tions to multiple-sentence comments. 
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B.B.l Generation of Context Windows 

Along with each cepstral vector, the four preceding and the four following vectors were concate­

nated. This gave a sequence of overlapping context windows, each having nine times as many 

coefficients as the original front end. 

B.B.2 Segmentation per Triphone Alignment 

Transcripts with start and end times for each trip hone were provided by Dr. Bill Byrne. For HDA, 

triphone contexts were pooled so that the classes would represent monophones. Triphone HMMs 

remained distinct. 

The time-aligned monophone transcripts were used to collect all extended vectors corresponding 

to each monophone. From these sets, a mean and a covariance matrix were generated for each 

monophone. 

B.B.3 Running HDA 

The statistics were input to a numerical optimization implementation of HDA, which gave a transfor­

mation projecting the context windows into a 39-dimensional space. Due to software limitations, the 

latter number of dimensions had to match the number of features in the conventional front end (12 

Mel-frequency cepstral coefficients plus energy, and their deltas and accelerations). For comparison, 

a dimensionality-reducing transformation was also obtained using LDA. 

B.B.4 Retraining 

Models which had been partially trained using the conventional front end were converted to the new 

feature set using HTK's single-pass retraining (Young et a1. 1997). In this procedure, the forward­

backward (expectation) step is performed in the old parameter space, but the parameter estimation 

(maximization) step is performed for the new features. The forward-backward algorithm gives the 

probability Pn(q, t) that a state q will be occupied at each time t; these probabilities scale the con­

tribution of reparamcterized input vector t to the emission statistics of state q. After single-pass 

retraining, several additional E-M steps are performed in the new space. 
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Processing Word error rate 

Baseline 49.9% 

LDA 51.1 

HDA 49.1 

Table B.1: Word error rates on Switchboard data, for baseline recognizer, LDA transformation, and 

HDA transformation (Fain et al. 1997) D 

8.8.5 Problems with Variance Floor and Grammar Weight 

The new parameterization may have resulted in a new typical magnitude for the feature vectors. 

Since emission probability densities have units inversely proportional to feature-vector units, the 

probability densities would scale inversely. This, in turn, suggests that the variance floor (sec­

tion 3.11.1) and grammar weight (section 3.11.2) might no longer have been appropriate. Both 

parameters had been carefully tuned for the old feature set. So while the baseline recognition results 

represented optimal values, the HDA results may have been suboptimal-and the following estimate 

of the advantage of using HDA may be conservative. 

8.8.6 Results 

Results of applying LDA and HDA to transcription of telephone conversations appear in table B.1. 

Evaluation used a held-out test set, so no utterances used in training were used for testing. While 

LDA caused an increase in errors, HDA reduced the number of errors by 1.6% relative to the baseline 

(Fain et al. 1997). This improvement is typical of the most successful techniques at each year's 

workshop (section B.7.1). 

B.9 Concl usions 

Heteroscedastic discriminant analysis improves performance on telephone-conversation transcrip­

tion, compared to a conventional architecture. The observed improvement, a 1.6% reduction in 

error rate (section B.8.6) (Fain et al. 1997), is probably a conservative estimate due to suboptimal 

choice of some global parameters (section B.8.5). Further improvement is possible by integrating 

HDA fully into the E-M training procedure (section B.5.2). 
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Appendix C 

Lipreading Aids for the Hearing 

Impaired 

C.1 Lipreading by the Hearing Impaired 

It is widely known that the hearing impaired use lipreading to help understand speech, so facial 

animation or other visual cues, derived from sound, may compensate for some hearing loss. 

Hubert Upton built modified eyeglasses to aid the hearing impaired in lipreading (Upton 1968). 

The glasses included light-emitting diodes (LEDs), a microphone, and analog circuitry to determine 

what general class of speech sound was being picked up by the microphone. This category informa­

tion (voiced/unvoiced and fricative/stop/other) was displayed by LEDs in pOSitions related to speech 

production. For example, an LED placed near the bottom of the glasses (to represent the role of the 

vocal cords) indicated the voiced/unvoiced distinction. 

Another type of lipreading aid performs phone-level recognition from the telephone line and 

animates a lip image (Slager 1993) (Carraro et a1. 1989). A newer facial animation system for 

the hearing impaired was found to reduce recognition errors in hearing-impaired subjects (Agelfors 

et a1. 1998). With natural speech, the synthetic animated face reduced word errors by 21 'X, compared 

to sound alone. When video of the speaker was used, the reduction was 74%. In a restricted 
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context-recognition of isolated vowel-consonant-vowel sequences-the error rate reductions were 

36% and 40%, respectively. 



141 

Appendix D 

Parameterizations of Lip and Jaw 

Motion in FACS and MPEG-4 

Lipreading (despite the name) can also involve perception of tongue motion. In the side view project 

of chapter 2, the tongue is fairly hard to see, so the effective degrees of freedom for a particular 

speaker and context can be estimated by considering the lips and jaw. 

0.1 Facial Action Coding System (FACS) 

The facial action coding system (FACS) (Ekman and Friesen 1978) classifies motions of the face, 

including those used for speech and the expression of the emotions. Each action may involve multi­

ple muscles, and a facial expression may involve multiple actions. Those involving the lips and jaw 

appear in table D.1. This set gives a very rough estimate of the number of degrees of freedom of 

motion of those articulators-19. 



D.2 Motion Picture Experts Group (MPEG) 4, Synthetic-Natural Hybrid Coding (SNHC) 142 

0.2 Motion Picture Experts Group (MPEG) 4, Synthetic-Natural 

Hybrid Coding (SNHC) 

A newer standard for facial expression coding is part of the Motion Picture Experts' Group (MPEG) 

4 standard for Synthetic-Natural Hybrid Coding (SNHC) (MPEG-4 SNHC 1996). The goal of SNHC 

is to mix video and audio recordings with animation and synthesis. Initially, this might be as simple 

as overlaying computer-animated characters and a soundtrack of electronic music on a film of live 

actors. The synthetic component is very flexible, providing a programming language for representing 

and transmitting the decoding technique. 

The face and body definition parameters (FDP) and facial animation parameters (FAP) drive 

character animation, with FDP describing the geometry of a face, and FAP used to describe motion. 
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Articulator(s) Action Muscles 

Both lips: toward each other Orbicularis oris 

pull corner (left/right) Zygomatic major 

depress corner (left/right) Triangularis 

suck Orbicularis oris 

pucker Incisivii labii superioris 

Incisivii labii inferioris 

stretch Risorius 

funnel Orbicularis oris 

tighten Orbicularis oris 

press Orbicularis oris 

part Depressor labii or 

Relaxation of mentalis or 

Relaxation of orbicularis oris 

blow/puff 

Upper lip: raise Levator labii superioris 

Caput infraorbitalis 

Lower lip: depress Depressor labii 

bite 

Jaw/chin: raise Mentalis 

drop Masseter 

Temporal and internal pterygoid 

thrust 

move sideways 

clench 

Table 0.1: Lip and jaw motions in the facial action coding system (Ekman and Friesen 1978). 0 
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Appendix E 

X-Ray Microbeam Tracking Technology 

The articulator-motion data used in the experiments of chapter 3 were obtained, in previous work, 

using an x-ray microbe am tracking system at the University of Wisconsin (Westbury et a1. 1994). 

This system enables occluded movements (e.g., inside the mouth) to be observed with high time 

resolution-recording an updated position about every 10 ms. The Wisconsin system was based 

upon an earlier apparatus developed at the University of Tokyo (Fujimura et a1. 1973). 

E.1 Microbeam Tracking as a Substitute for Cineradiography 

Microbeam recording was developed in response to cineradiography (chap. 3), in which motion pic­

tures of subjects talking were filmed using x-rays. Cineradiography caused serious health concerns, 

since the subject's head was exposed on the order of every 15 ms. In microbeam tracking, radiation 

is concentrated in a small beam surrounding the target. This reduces radiation exposure by about 

three orders of magnitude (Fujimura et a1. 1973). In the Wisconsin experiments, the targets were 

gold beads of 2-3 mm diameter, and the irradiated beam had a cross section of about 6 mm square. 
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E.2 Tracking Algorithm 

The small irradiated areas follow the beads as they move. A computer determines the beads' posi­

tions within the irradiated areas and predicts their positions during the next time step. At the next 

sampling time, a search for each bead is performed in the predicted area. If a bead is not found near 

its predicted location, the search expands to cover a wider range of locations. 

E.3 Bead Placement 

The Wisconsin system tracks a number of beads simultaneously by alternating between them. Eight 

beads are placed in positions relevant to articulation-four on the tongue, one on each lip, and two 

on the lower jaw-and two (Westbury 1991) or three (Westbury et al. 1994) beads are used as a 

reference for head motion. 
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Appendix F 

Text Samples 

F.l Paragraphs used for Recognition Experiments 

The University of Wisconsin x-ray microbeam data set contains the following paragraphs (Westbury 

et al. 1994); they were used for the paragraph-recognition experiments of chapter 3. The task num­

bers given below are with reference to the entire data set, which also includes word and sentence 

tasks. 

F.l.l "Grandfather" Paragraphs 

The W. B. Saunders Company holds the copyright on the first two paragraphs used for recognition 

(Darley et al. 1975). They requested that the text not be distributed electronically. In light of 

that request, the fair use doctrine will not be invoked and the paragraphs have been omitted. The 

paragraphs appear as task 11 and task 12 in the database description (Westbury et al. 1994). 

F.l.2 "Hunter" Passage 

Reprinted with permission from T. H. Crystal and A. H. House (1982). "Segmental durations in 

connected speech signals: preliminary results." Journal of the Acoustical Society of America 72. 

p. 715. Copyright 1982, Acoustical Society of America. 



F.2 Example Sentences for Importance of Consonants and Vowels 

Paragraph 1 (Task 78) 

In late fall and early spring the short rays of the sun call a true son of the out-of-doors 

back to the places of his childhood. Tom Brooks was such a man. Each year at these 

times his desk seemed like a stone whose weight made him wish for the life he knew as 

a boy. In the five years since leaving college he had not revisited his old haunts before. 

But this March Tom found himself by a small stream with a gun. 

Paragraph 2 (Task 79) 

This March, Tom found himself by a small stream with a gun at rest in the crook of his 

arm. The desk that had tied him down was gone and his one thought was for quail. He 

had been on the trail since dawn, but not one bird had crossed his path. It seemed as 

though five years without hunting had made him lose touch with all the small signs that 

he once knew-signs that would tell for sure if an animal was near or not. 

Paragraph 3 (Task 80) 

Once he thought he saw a bird, but it was just a large leaf that had failed to drop to the 

ground during the winter. Tom stopped near a small stream to rest. Soon after he had 

laid down his gun, he heard the sound of wings from across the stream, and five large 

birds came out of the brush. They flew to the edge of the stream unaware of the hunter. 

Paragraph 4 (Task 81 ) 

The birds flew to the edge of the stream unaware of the hunter. Tom placed his hand on 

his gun quietly. Slowly he raised it to his shoulder and took aim. The seconds ticked off 

like hours, but still the birds drank. Quick shots rang out. The years of waiting seemed 

to disappear with the successful culmination of the hunt. 

F.2 Example Sentences for Importance of Consonants and Vowels 

147 

The sentences quoted in chapter 4 with letters removed were taken a textbook on Old English, 

where they appeared as examples of text grammatical in both Old and Modern English (Mitchell and 

Robinson 1991). In full, they read: 
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Grind his corn for him and sing me his song. 

He swam west in storm and wind and frost. 

F.3 Random Text Generated by a Markov Model 

A combined high-order and first-order Markov chain can be used as a text generator (Raymond 1993) 

(Stallman 2000). The high-order model repeats sections of training text, and periodically the first­

order model jumps to a new section based on word-to-word transition probability estimates. Trained 

on a draft of this thesis, such a generator results in the following nonsensical yet vaguely plausible 

random text: 

Coarticulation with vowels can be addressed by normalizing each component of the 

feature vector to the corresponding word in the true text of percent correct to evaluate 

recognition performance. This choice is motivated by the neck axis. 
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Glossary 

Acoustic model The low-level models used in speech recognition, which do not include a represen­

tation of sentence structure-the latter being part of the grammar model. Typically, acoustic 

models are hidden Markov models. 

Acoustic recognizer In this thesis, refers to a recognizer presented with sound but not video or 

articulatory measurements. 

Alignment, monophone/triphone A transcript of speech, composed of low-level units (monophones 

or trip hones) and start and end times for the intervals of the input which correspond to each 

symbol. 

Alignment, string-to-string Finding a correspondence between the letters in two strings which mini­

mizes the edit distance (e.g., phone error rate) between them. 

Allophones Acoustically distinct versions of a phoneme which are not semantically distinct. For 

example, the English phonemes Irl and II/ are allophones of a single phoneme in Japanese. 

Articulation The movement of body parts, such as the tongue, to produce the sounds of speech. 

Articulator A part of the body, such as the tongue, which is moved during speech and whose distinct 

motions produce distinct sounds of speech. 

Automatic speech recognition Speech recognition by computer or other machine. 

Back end The later stages of pipelined processing; in speech recognition, a typical back end is a set 

of hidden Markov models. 

Bigram A pair of speech units (e.g., phones or words), especially as used for estimating symbol-to­

symbol transition probabilities; purists criticize the term because it was coined by mixing Latin 

bi- with Greek -gram. See also trigram and unigram. 
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Cepstrum A signal-processing technique used as a front end for speech recognition; coined from 

"spectrum" by reversing the first syllable (Bogert et al. 1963), and thus idiosyncratically pro­

nounced with an initial /k/. The cepstrum is the inverse Fourier transform of the logarithm of 

the power spectrum of a signal (section 1.10.2). Its first few coefficients contain information 

about the filter resonances (formants) of the vocal tract, with source activity of the vocal cords 

(in vowels) or another constriction (in fricatives) factored out figure 1.14. The complex cep­

strum substitutes an ordinary Fourier transform for the power spectrum. Linear time-invariant 

filtering is equivalent to adding the complex cepstra of a convolution kernel and an input sig­

nal. 

Closure In phonetics, a stop consonant in which airflow is blocked by holding two articulators in 

contact. Depending on context, /d/ in English may be either a closure or a flap. 

Digram Synonym for bigram. 

Digraph A sequence of two letters producing a single sound, such as "th;" dates to 1788 

(OUP 1989). 

Feature set In pattern recognition (Duda and Hart 1973), the parameters such as coefficients of 

the cepstrum that are passed from a front end to a back end in pipelined speech recogni­

tion; in linguistics, a set of discrete characteristics which distinguish phone-like units (Jakobson 

et al. 1952) (Liberman et al. 1967). 

Fenones Data-driven substitutes for phones and phonemes in representing pronunciation. The 

fenone representation of an acoustic input is the output symbol sequence of a discrete front 

end such as vector quantization. The word was coined, according to a first-hand source, by 

combining "F.E.-" for "front end" with "none," the latter "intended to lend the term scientific 

respectability" (Jelinek 1998a). 

Flap In phonetics, a stop consonant produced by briefly flapping one articulator against another. 

Depending on context, /d/ in English may be either a closure or a flap. 

Fricative A consonant such as If! in which the tongue is held at a point of constriction close to 

another articulator. 

Front end The early stages of pipelined processing; in speech recognition, a typical front end includes 

the cepstrum and numerical differentiation. 
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Gesture In articulatory phonology and the gesture theory, refers to a motion which is part of the 

production of speech (Browman and Goldstein 1989). 

Gesture theory A hypothesis about the origins of speech and nature of its perception: that speech 

originated in gestures (Rae 1862) and that "we lip-read by ear" (Paget 1930). 

Grammar model A means for determining which symbol sequences are valid outputs of the rec­

ognizer. More generally, a scheme for estimating the a priori probability of different output 

sequences (e.g., n-gram language model). 

Han'giil A Korean alphabet whose consonant letter forms are based on the shape of the articulators 

critical to its pronunciation. 

Heteroscedastic Having different variances or nonuniform variance. 

Hidden Markov model (HMM) A probabilistic state machine used to model the process of speech, 

typically used as a back end for automatic speech recognition. 

Hidden Markov model toolkit (HTK) A commercial product which implements many algorithms for 

automatic speech recognition, including the cepstrum and continuous-emission-density HMMs. 

Inverse problem In speech recognition, refers to speech production by humans or synthesis by ma­

chine. 

Kinematics Geometric description of motion, without reference to mass or force. 

Labiodental A sound such as If! made with the lips and teeth (1669) (OUP 1989). 

Language model Commonly used term for grammar model, as contrasted with acoustic model. The 

term is avoided in this thesis since acoustic phonetics are a part of language as well. 

Lipreading Observing the face to recognize speech, with or without acoustic information; appears 

in print in 1874. Also called labiomancy, from 1686 (OUP 1989). 

Mixture In speech recognition, confusingly used to refer to a Gaussian in a weighted-sum mixture of 

Gaussians (Rabiner and Juang 1993) (Young et al. 1997); in this thesis, mixture always refers 

to the sum itself, not its constituent terms. Unlike radio engineering, in which a mixer com­

bines signals nonlinearly, mixtures in speech recognition are linear combinations of probability 

densities. 
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Monophone A single unit of speech used in a recognizer. Typically, and in this thesis, monophones 

are defined by engineering expediency, and may not meet the strict linguistic definitions of an 

allophone or a phoneme. A monophone recognizer is context independent in the sense that 

the monophone models do not change based on surrounding sounds-a trip hone recognizer is 

context dependent. 

Motor space A set of possible articulator states. 

Motor theory The idea that "the objects of speech perception are the intended phonetic gestures 

of the speaker, represented in the brain as invariant motor commands ... for example, 'tongue 

backing,' 'lip rounding,' and 'jaw raising' ... " (Liberman and Mattingly 1985). 

North inland cities shift A reorganization of the short vowels of English (e.g., "black" for "block" 

and "boss" for "bus"), displayed by some urban speakers from parts of the United States, 

including Wisconsin, where the data of chapter 3 were taken. 

Phone error rate (PER) Given a target sequence T of phone-like units which were spoken and a 

recognizer's guessed sequence" in this thesis the phone error rate E is defined as 

E = D(T, ,) + 5(T, ,) + I(T, ,) 

IITII 
where IITII is the number of symbols in T; and D(T, I), 5(T, I), and I(T, ,) are the number of 

deletions, substitutions, and insertions which convert T into" when the operations are chosen 

so as to minimize E. The numerator is a type of Levenshtein distance (Levenshtein 1966). 

Phone A minimal unit of speech defined acoustically and in a way not tied to any particular lan­

guage, in contrast to a phoneme. 

Phoneme A minimal unit of speech that distinguishes words in a specific language. See also allo­

phone and phone. 

Phone-like unit (PLU) A unit of speech used in a recognizer which is similar to a phoneme, and is 

expedient for engineering but may not meet precise linguistic criteria. 

Quefrency The independent variable of the domain of the cepstrum, just as frequency is the inde­

pendent variable of the domain of the power spectrum. Quefrency is measured in units of time. 

Small quefrencies correspond to coarse spectral shape; they are retained for automatic speech 

recognition, while cepstral coefficients at larger quefrencies are discarded. 
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Speechreading A term for visual speech perception reflecting the fact that one watches more than 

just the lips. The common word lipreading, which dates back 127 years, is used in this thesis 

because it is generally understood to include the observation of both "lip and facial move­

ments" (Merriam-Webster 1996). 

Speech recognition A type of voice recognition problem in which the goal is to determine what was 

said, rather than who was speaking. 

Stop (consonant) A sound of speech such as It! for which the tongue makes an abrupt transition 

towards or away from some other articulator. 

Trigram A general term for three units of speech in a row. In speech recognition, it typically refers to 

calculation of third-order statistics: symbol probabilities based on the two preceding symbols 

(Jelinek 1998b). In reference specifically to letter sequences, the word dates back to 1606 

(OUP 1989). 

Triphone A unit of speech consisting of three phones in a row: previous, current, and following. 

The previous and following phones may not be specifically identified, but instead described as 

belonging to a particular class. Such generalized triphones are used in state-of-the-art recog­

nizers. 

Unigram A single unit of speech, for which a prior probability is estimated without considering 

transition probabilities; used only in contrast to bigram and trigram language models. The 

word is a combination of the Latin uni- with the Greek -gram; the Greek prefix for "one" 

is mono-, but "monogram" commonly refers to "two or more letters interwoven together" 

(OUP 1989)-i.e., a bigram or trigram. 


