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Abstract

The bifurcation structure of Kolmogorov and Taylor-Vortex flows was computed with the
aid of the Recursive Projection Method; see Schroff and Keller [32]. It was shown that
RPM significantly improves the convergence of our numerical method while calculating
steady state solutions. Moreover we use RPM to detect bifurcation points while continuing
along solution branches, and to provide the required augmentation when continuing around
a fold, or along a travelling wave branch.

The bifurcations to two and three-dimensional solutions from the shear flow solution of
Kolmogorov flow are calculated both numerically, by solving an ordinary differential equa-
tion, and analytically, using an approximation method. Our results for the two-dimensional
bifurcations agree with the work of Meshalkin and Sinai [26].

We also explain how the branches of Kolmogorov flows observed by Platt and Sirovich
[29] are connected together, and observe that our solutions have worm like structures even at
relatively low Reynolds numbers. Various statistics of our flows are calculated and compare
with those from isotropic trubulence calculations.

Additionally various solution branches of the Taylor Vortex flow were computed, includ-
ing spiral vortices. Furthermore, it was discovered that the Wavy Taylor Vortex branches
arise from sub-critical Hopf bifurcations, and they undergo a fold close to their bifurcation

point.
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Chapter 1 Introduction

The objective of his research is to study in detail some of the bifurcations that occur in
Kolmogorov and Taylor-Vortex flows. As the Reynolds number is increased we show the
different flows that occur to aid in the understanding of how stable flows become turbulent.

Naturally occuring turbulent flows, like jets and mixing layers, are typically anisotropic;
however, most theoretical turbulence work has concentrated on isotropic flows. Kolmogorov
flow was initially introduced as a simple example of a linear stability problem. We define
Kolmogorov flow to be any steady-state, periodic or quasi-periodic solution of the incom-
pressible Navier-Stokes equations with the forcing suggested by Kolmogorov, see equation
(2.1). Meshalkin and Sinai [26] analytically found the locations of the two-dimensional
bifurcations from the shear flow solution of Kolmogorov flow using a continued fractions
approach. This result was also obtained by Green [17]. Later we find both the two and
three-dimensional bifurcations using an approximation method. Additionally we check our
results by numerically solving the linear stability problem.

It is shown that the wavelength in the x-direction of an unstable mode is greater than
the wavelength of the forcing. Yakhot and Sivashinsky [36] showed that the instability of
a flow to long-wavelength disturbances may be interpreted in terms of a negative effective
viscosity of the corresponding large-scale flow.

The long-wavelength instability has also been analyzed by Libin and Sivashinsky [22] for
a more general variant of Kolmogorov flow called Arnold-Beltrami-Childress (ABC) flow.
They show that for a certain class of long-wave, perturbations the ABC flow is always
unstable.

A brief overview of the work of related to Kolmogorov flow was given by Armnold [3].
Arnold mentions that in a finite parameter region it has been proved, for the two-dimensional
case, that there cannot be an infinite number of bifurcations. It is believed that this result
is also true for the three-dimensional case. However experiments are unable to establish
whether observed turbulent solutions have a large finite number of modes or an infinite
number of modes.

As the Reynolds number of these flows is increased, we observe numerous bifurcations.
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When the Reynolds number is sufficiently large, the flow is in a turbulent state. We believe
that the transition from the shear flow to turbulent flow is due to the many bifurcations
that exist. Platt et al. [29] computed various different Kolmogorov flows; however, they did
not explain how one flow bifurcates from another.

An intriguing problem of hydrodynamic turbulence is the presence of large scale struc-
tures in a fluid that is turbulent at small scales. These large scale structure where observed
by Platt et al. [29]; however, they do not explain how they originate.

Kolmogorov flow has been studied numerically at high Reynolds numbers by Borue and
Orszag [7]. To achieve high Reynolds numbers they replace the normal Laplacian viscosity
term with the hyperviscosity term (—1)"*'A". This gives the solution a larger inertial
range, enabling them to show that the energy spectrum obeys Kolmogorov’s 5/3 scaling
law. Additionally they demostrate that the anisotropic large-scale flow may be considered
locally isotropic at scales approximately ten time smaller than the scale of the flow.

Extensive calculations of isotropic turbulent flow have been performed by Jiménez
et al. [18]. They compute various distribution and probability density functions of flow
properies, such as velocity gradients, stress and strain.

Many previous numerical and experimental studies have concentrated on Taylor- Vortex
Flow. From experimental work we know that when the outer cylinder is stationary, the flow
bifurcates from Couette flow to Vortex flow, through wavy vortex flow to modulated vortex
flow. A diagram showing the stability regions of the various types of flows can be found in
Andereck, Liu and Swinney [1]. Interesting flows, such as spiral vortices, occur when the
cylinders are counter-rotating, while for co-rotating flows, twists have been observed.

An important study of wavy vortex flow was the experimental work by Coles [9], in
which he showed the transition between wavy Taylor vortices of different azimuthal and
axial wavenumbers. Additionally he found a hysteresis loop in which the axial wavelength
remains constant while the number of waves around the cylinder changes.

Meyer-Spasche and Keller [27], and Dinar and Keller [11], numerically studied how
changing the aspect ratio effected the location of the bifurcation points from Taylor-Couette
flow to Taylor-Vortex flow. Additionally Meyer-Spasche and Keller examined the solutions
around the point where two branches of solutions of different wavenumbers bifurcated from

the same point. In this case they found additional branches with flow patterns different

from the usual Taylor-Vortex flow configuration.
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Most numerical work has focused on using periodic boundary conditions in the axial
direction; however, Dinar and Keller studied Taylor-vortex flow on finite length cylinders
for which they found anomalous mode solutions. These are solutions which have an odd
number of vortices or additional small vortices adjacent to the end plates.

Numerical results have often concentrated on determining the wave speed of the Wavy
Taylor Vortices, and how this speed varies as the Reynolds number and aspect ratios are
altered. As noted by Marcus [25] the wave speed is sensitive to numerical inaccuracies. We
show later that our computed wavespeeds agree with those computed by King et al. [20], and
Schroder and Keller [30]. Additionally we show that the eigenvalues at the Hopf bifurcation
point give an accurate prediction of the wavespeed on the bifurcating branch, and we study
the behaviour of the wavy Taylor vortex flows near their bifurcation points.

Spiral vortices have been observed in experiments for counter-rotating cylinders, by
Andereck et al. [1], but they are unstable when the outer cylinder is stationary. They have
been computed in this case by Moulic and Yao [28], who also find that these flows have a
net mass of fluid moving in the axial direction.

In computing these solutions we make extensive use of the Recursive Projection Method,
see Schroff and Keller [32], to accelerate the convergence and to detect bifurcation points.
The idea of RPM is to accelerate the convergence of a fixed point iteration by using Newton’s
method on the unstable and slowly convergent subspace. Although RPM can maintain the
convergence of any fixed point itertion it is important, for efficiency reasons, to use an
iteration with a small unstable subspace, and well seperated eigenvalues.

Davidson [10] suggested preconditioning the RPM iteration to improve the performance;
however, the same result can be achieved by using a better numerical method to which RPM
is applied.

The Recursive Projection Method was also used effectively by Keller and Von Sosen [19]
to aid in the convergence of Taylor-Vortex solutions. We extend this research to higher
resolution three-dimensional calculations. In particular we are interested in how the perfor-
mance of RPM is effected by higher resolution calculations. Also we use RPM to detect bifu-
cation points during numerically continuation. This inherent bifurcation detection property
allows us to cheaply estimate the eigenvalues of the Jacobian during continuation, whereas
when other iterative method extensive additional calculations are normally required.

Variants of the Recursive Projection Method have been proposed by Lust et al. [24],
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and Lust and Roose [23]. Instead of thinking of RPM as a way to stabilize a fixed point
iteration, they derive it by using a Picard iteration to approximate Newton’s method. This
approach allows them to derive Gauss-Seidel style variants which have better convergence

properties. However, they do not explain how to determine the unstable subspace for their

methods.



Chapter 2 Kolmogorov Flow

2.1 Derivation of Equations

The dimensional incompressible Navier-Stokes equations with the specific forcing, of strength

X, suggested by Kolmogorov are:

8 / v/ /
_ul TR vAZYUSSRI & ) v e x sin(ky')ey,
ot p (2.1)

Vu=0

Solutions of these equations subject to periodic boundary conditions on a box are known
as Kolmogorov flows. We consider these equations on a domain of length L in the z direction,
M in the y direction, and N in the z direction. Since the flow is defined to be periodic it

is necessary that k = 2mrm /M, where m € N.

Figure 2.1: Domain of the Dimensional Equations for Kolmogorov Flow

An exact steady state solution of this system is the shear flow:

u = VLkQ sin(ky') ey, p' = const. (2.2)
Our formulation of the non-dimensionalized equations is the same as used by Platt and

Sirovich [29]. We define a Reynolds Number for this system by using the maximum speed
of the shear flow x/(vk?), and k~! as a length scale, so that Re = 53



6

To obtain the non-dimensionalized Navier-Stokes equations, we use following scalings,

for any arbitrary ¢ > 0:

z'c y'c e
T=7 V=3 2=
t'xc u'vk? P2k
= R u= =" @Y
N Mk
Re:y2—k3, n-—'T, anRe

To simplify the non-dimensionalized momentum equations, we introduce two aspect

ratios A= M/L and B = M/N. This yields the z-momentum equation:

ou ou  Ou ou Bp 1( ,0%°u 8% 5 0%u n? .
Au— — +Bw—=—-A— B? — .
ot T e Ty TP, T e Q(Aa e TP az) T i)
(2.4)
Similarly the y and z-momentum equations become
v ov O0v ov _ Op 1 82 82’0 5 0%
ow aw ow ow Op 282 82 5 0%w
and the continuity equation becomes
Oou Ov ow
A~8—ZE—+5-?;+B—5;—O. (2.7)

In this thesis we study both the steady state and time periodic solutions of the system
(2.4)-(2.7). This system has the following steady state shear flow solutions, for arbitrary

choices of ug,vg,wq, and pg:

u = u, cos(ny) + ug sin{ny) + uo,

(2.8)
v = Yo, w = wo, P = po-
The scalars u, and u, are obtained by using the above in (2.4) to get
Q 2
u o " (2.9)

gl Uy = =
¢ Va2 + n?’ s V302 + n?
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We choose to study Kolmogorov flow in a frame of reference that has no net flow:

///u(m,y, z)dzdydz = 0, ///U(iﬂ»%z)dﬂ?dydz =0, ///w(m,y, 2)dzdydz = 0.
BOX

BOX BOX
(2.10)

Here BOX is the periodic domain: 0 < z,y,2z < 2wx. This implies that in the shear flow
ug, Vo, wo = 0. Additionally we choose the mean pressure to be equal zero.

We now show that the momentum equations do not impose a forcing that causes a net
flow. Hence if the initial condition has no net flow of fluid, then there will be no net flow
at any future time.

We counsider the conservation form of the Navier-Stokes equations, and define

1 2 2 2 2
Fe(u,v,w,p) = (ﬁgﬁ+a“+3@ﬂ)+ﬁﬂMw)

Q 27" 942 2
Q , Oz %y 828 Q , (2.11)
A2 - Liw) - B AP
Aax (u®) 6‘y(uv) Baz (uw) A@x’
c 1 ,0% 0% 5 0% 0 0, 0 Op
G(u,v,w,p) = R <A 5-3—7—2——%5?;2--}-3 32 ——Aax(uv) — E—y—(v )—Bg(vw) ~ oy
(2.12)
c 1 5 0%w 0w 5 0w 0 0 0, 5 dp
H(u,v,w,p) = a (A 52 + oy B 5.2 -—Aax(u ) — a—(vw) —ng( ) — %
(2.13)

These functions are defined on a Hilbert space, H of 27 periodic smooth functions with the

standard inner product.

Theorem 2.1 Given u,v,w,p € H which satisfy the continuity equation, we have

///Fc(u,v,w,p)dacdydz =0, (2.14)

BOX
// G(u,v,w, p)dzdydz = 0, (2.15)
BOX
// H(u,v,w,p)dzdydz = 0. (2.16)

BOX
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Proof: We note that the terms in functions F¢, G¢, and H® are derivatives, except for

the sin(ny) term. It is easily shown that:

/ / / sin(ny)dzdydz = 0. (2.17)

BOX

Given any 27 periodic function f(z), we have that

27 df
Zdr = 0. 2.1
/0 Liz=o (2.18)

Consider the term —a%(uz). Integrating over the y and z directions gives a function, say

g(z), that is periodic in the z direction.

0

2 2
g(x) .Z_/O i EE(UQ)dydz. (2.19)

Hence the integration of B% (u?) over the entire cube is equal to zero. The same argument
applies to the other terms with = derivatives. Similar arguments give the results for the

terms with y and z derivatives.

2.2 Bifurcations from Shear Flow

The “first” bifurcation from the shear flow was evaluated by Meshalkin and Sinai [26] for
the two-dimensional case of an infinite plane. We determine the bifurcations from the shear
flow on a periodic cube rather than an infinite plane. A major difference is in the evaluation
of the bifurcation curves; whereas Meshalkin and Sinai use continued fractions we require
that a sequence of minors of an infinite matrix be singular to get a sequence of approxima-
tions to the bifurcation points. We solve the minors computationally to obtain a curve of
bifurcation points. Additionally we solve an ordinary differential equation numerically to

get an independent check on the approximation method.

2.2.1 Derivation of Linearized Equations

To determine the possible bifurcations points from the shear flow u = sin(ny), v = 0,

w =0, and p = 0, we examine the steady state linearized problem about this flow and find
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the parameter values for which this system is singular (i.e., has nontrivial solutions.) The

linearized equations are

Asin(ny)% + 9 cos(ny) = —A%;z + é(AQ% + -(;—Z—: + B? g;) (2.20)
Asin(ny)—g—z— = —-gg + % (AQ% + g-zi’ + ng_ig) (2.21)
Asin(ny)%% = —ng + %(AQ% + 8271;3 + 322—2;;3>, (2.22)

Ag% + g—z + B%—if = 0. (2.23)

To carry out the analysis, we reduce the above system to a single partial differential
equation. Later we assume a particular form of the solution to further reduce it to an
ordinary differential equation.

The first stage is to eliminate the pressure terms from (2.20) and (2.21) by cross differ-

entiation to get

~ 2~ ~ 2~
An cos(ny)g-g + Asin(ny) 88 g g—qn cos(ny) — on?sin(ny) — A sin(ny)w
1, Pu | PPu, , Ou 3 O35 3% 5 0%
- "( 520y Vo TP ager L om  Aamae AP awaz) @Y

We now differentiate with respect to z, multiply by A, and use the linearized continuity

equation (2.23) to eliminate @. After simplification we get

3 32 2,7 3.7,
Asin(ny) <A2a v, 28”) + ABn cos(ny) L2 v

255 T ozo? T oz gz, T AP 55 s
2 2 2 2 2 2 2 2 2
= Q<A2 o .9 )(,é128—+8—+B2(9 >”+§L<A28—+%+BQ%—)w.

ox?  oy? 0x2 = Oy? 022 Q Oyoz or?  Oy? 022
(2.25)
Similarly we eliminate the pressure terms from (2.21) and (2.22) to get
%o 9w O
AB?si -
B sm(ny)(9 5.2 — AB sm(ny)(9 907 ABncos(n y)(?:vaz
B? 9? 0? 0? B2 0? B ? 5 02 o2 5 02
_ 29 2 2 B2 e (2
Q 022 (A 522 a2 8z2> Q dydz (A 02 " Oy? * 8z2)w (2.26)
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Finally we add (2.25) and (2.26) to get the linearized equation for o:

#Bi B , 0% 2av>_1<AQa2 5?2 282)273_

- 2
Asin(ny) <A 853 " dxdy? +B 92022 " 0z Q

Given the above partial differential equation, we approximate (z,y,z) by using the
assumption that the periodicity in the z and z directions is of a simple form, specifically

o(z,y,z) = €%e*V (y). We set o = Ar and 8 = Bs, which reduces (2.27) to

2 2 2
iasin(ny) (%{— +[n? —o? - AV ) =5 ( ddyQ [0 +62]> (2.28)

Now we use this ordinary differential equation both numerically and analytically to get

the curve of bifurcation points from shear flow.

2.2.2 Numerical Calculation

To determine the bifurcation curves numerically we use the AUTO package by Doedel,
which requires that we formulate our ordinary differential equation as an autonomous first
order system of ordinary differential equations. Furthermore, since AUTO calculates the
solution to ordinary differential equations on the domain [0, 1], we assume that we had set
¢ = 1 in the previous analysis, section 2.1, where we non-dimensionalized the Navier-Stokes
equations.

To numerically solve this bifurcation problem using real variables, we substitute V (y) =

o(y) +i7(y), to get the pair of differential equations:

asin(ny)<-zll2—2+n 7 —oPr — g1 >_ é<(012+52)2 (a +I82) +;i‘;or)
20 2 4.

(2.29)
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We rewrite this in the form of an autonomous system of first order differential equations:

doy _ doy _ . dos_
dy = 09, d'y — 03, dy — U4,
dc% = 2(042 +8Ho3 — (a® + ﬂQ)Qal + Qasin(nv) (3 + (n? —a? — %)),
d’l‘1 dTQ d’rg
dn _ dry _ i _ 2.30
dy T2, dy 3, & T4 (2.30)
62—7; = 2(042 + 52)7'3 - (a2 + 52)27'1 — Qasin(nv) (o3 + (n2 —a? - ﬂQ)al),
dv
— =1.
dy

With boundary conditions

01(0) = 01(1),  02(0) =02(1),  03(0) =03(1),  04(0) = g4(1),

(2.31)
7'1(0) 27'1(1), ’1'2(0) =T2(1), 7'3(0) :7‘3(1), ’7'4(0) =7'4(1),

This system inherits two degrees of freedom from the magnitude and phase of V(y).
These are resolved by adding constraints to the system; an integral condition on the norm

resolves the degeneracy in the magnitude:

1 4
/ S (0? + r)dy = 1. (2.32)
0 i=1

To remove degeneracy due to the phase, we introduce an unfolding parameter u, and add

the term psin(27v) to (2.30), which yields:

%of —- 2(a2 + ﬁ2)03 - (a2 + ,82)201 + Qasin(nv) (3 + (n2 _a?— ﬁz)ﬁ) + psin(2m).

(2.33)
We have nine ordinary differential equations, and nine boundary conditions as well as

one integral condition, which requires that we have an additional free parameter during

continuation.
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We compute the bifurcation curves using the same method that Dinar and Keller per-
formed to compute the bifurcation curves on Taylor-Couette flow. First we start with o = 1,
B=0,n7=0and p = 0.001, and continue in Q with 1 as a free parameter. We cannot con-
tinue with o = 0 since the system has no solution, and when p = 0 the system is singular.
Also choosing p # 0 breaks apart the bifurcation points so that when € approaches a value
at which the Navier-Stokes equations have a bifurcation, the free parameter 7 increases.

At this point we reduce the size of p by continuing in p with « as the free parameter.
As mentioned before the system is singular when p = 0 so we typically reduce i to approx-
imately 10~5. We did not use this smaller value of y in the first continuation to ensure that
AUTO switched branches.

Finally we continue in «, with Q as a free parameter, to trace out the bifurcation curve.
Figure 2.2 shows the curves obtained when 8 = 0. From this calculation we find that the
smallest parameter value at which bifurcation occurs is when Q = nv/2. We define Q. to
be this value.

The curves obtained for 8 =1 and 8 = 2 are shown in figures 2.3 and 2.4 respectively.
To get the curves for 3 # 0, either we can perform the whole continuation process again
starting with a different value of 3, or we can start from a solution where 8 = 0 and continue

in 8 with Q as the free parameter.

2.2.3 Analytic Calculation

To analytically determine the bifurcations points of the shear flow, we expand V(y) in (2.28)

as a Fourier series:
Viy)= D cme™, (2.34)

and use the complex exponential definition of the sin function to derive a recurrence relation

in ¢

2
Cmﬁa(a2+m2+/B2)2+Cm—n((m—n)2*n2+a2+ﬁ2)

—emin((m4+n)? —=n? +a*+ 5% =0. (2.35)
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This recurrence relation is similar to the one derived in Meshalkin and Sinai [26].

We consider the recurrence relation in {... , Ck—2n, Ck—n; Ck, Ck+ns Ck+2n, - - - |, and write
this as a linear system. Bifurcations from the shear flow occur when the coefficient matrix
of this system is singular. We use the idea of H.B. Keller to approximate this infinite matrix
by a convergent sequence of its centred principal minors, and we prove that a convergent
sequence of parameter values at which the minors are singular, converges to a parameter

value at which the infinite matrix is singular.

Convergence for Singly Infinite Matrix

Given the singly infinite matrix:

iz m

ay  Poxr o (2.36)

a3 Bz

we use the idea of H.B. Keller to approximate the value of z for which this matrix is singular

by a sequence {z,} for which the n’th leading minor is singular. We prove convergence with

— On41%n
"7 Bng1fn”

Assuming that z # 0, and for all 7, 3; # 0, we divide the matrix by its diagonal, leaving:

the condition that > o ; ky, is absolutely convergent, where &

Oz
(¢ %] 1 2
Paz paz : (2.37)
L SO T
Bax
With the above conditions we have that
iz m 1 gL
ay P o L2 1 2
is singular if and only if faz Baz
o q

as  Psr - A

is singular.
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For z € C we define the polynomial P, : C — C by

bz m

az Pz 72
P,(z) = (2.38)
n-1 Bn-1T Yn-1

Qn, Brnx

and provided z # 0, and for all j, 8; # 0, we define @, : C — C by

i
1 ﬂllév
Q2 1 2
B2z B2z
Qn(z) = : (2.39)
Qp—1 Tn—1
ﬁn—l z 1 ﬁn——lm
he L

Lemma 2.2 Assuming © # 0 and for all j, B; # 0, we have P,(z) = 0 if and only if
Qn(z) =0.

Proof: Clearly

piz M Bz 1 g4
a Phr _ P e 1 . (2.40)
on Puz foz o
Taking the determinant yields
n
Pu(z) = 2" Qn(x H (2.41)

Therefore, using the assumption that z # 0 and for all j, 8; # 0, we have the result that
P, (z) =0 if and only if Q,(z) = 0.
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We make the assumption that for all n > 1, P,(x) # z". Then P, has a non-zero root,

and hence @, has a non-zero root. Thus it follows that there exists a sequence {z,} with

Qn(zn) =0 and z, # 0.

Lemma 2.3 If the series > .- | ky is absolutely convergent, then for all © # 0 the sequence

{Qn(z)} converges. We define Q(z) to be this limit.

Proof: From the definition of @, (z) we derive the recurrence relation Qpn41(z) = Qn(z)—
Z—g‘Qn_l(:c), with starting values Q1(z) = 1 and Qa(z) = 1 + % To show convergence of
{Qn(z)}, we define the recurrence relation Ry41(z) = Ry(z) + Jﬁ—g‘}Rn_l(x), with starting
values R1(z) = |Q1(z)| and Ra(z) = |Q2(x)|. It is easily proved by induction that for all n,
R, (z) > |Qn(z)|, and that R,(z) > Rp_1(z).

Using R, (z) > R,—1(z) we obtain

Fasi@) < (15 5 muto) < o) [T (1 + 2. (2.42)
j=1

Since > k; is absolutely convergent implies that the above product converges for all
z # 0 as n — oo (see Apsotol [2] p. 381,) we have that {R,(z)} is bounded, and therefore
{|Qn(z)|} is bounded.

Let Q(z) be a bound on {|Qy(x)|}. Then

kn

Q1) < Q). (2.43)

|Qni1(2) = Qn(2)] =

Now using the absolute convergence of ) k;, we get the result that {Qn,(z)} converges for

all z # 0.

O

Theorem 2.4 For all € > 0, if {Q,} converges pointwise to Q in D, = {x € C: |z| > €},

then {Qn} converges uniformly to Q in De.
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Proof: In the domain D, Q,(z) has no poles and Q,(z) — 1 as |z| — oo, from (2.41).
Thus |Qni1(z) — Qn(z)] is bounded by M, = sup,cp, J%ll@(x) Now given that Yk, is
absolutely convergent, clearly > M, converges. Therefore, by Weierstrass’ M-test, {Qn}

converges uniformly to @ in D..

O

Theorem 2.5 If {z,} is a convergent sequence with Qn(z,) = 0 and z = lim,_, o z,, # 0,

then Q(z) = 0.

Proof: Since z # 0 we can pick ¢ sufficiently small so that z € D,. Then given that {Q,}

converges uniformly to @ on D,, we have that @) is continuous on D,.

O

Theorem 2.6 We assume that (2.36) is a real matriz. If Q(z) = 0 and Q is invertible
with a continuous inverse in a neighbourhood of x, then there exists a sequence {z} that

converges to x with Qn{z,) = 0.

Proof: Since () is invertible with a continuous inverse, there exists an €¢; such that Q is
injective on B, (z). We also choose €; small enough so that 0 ¢ B, (z).

We choose §; small enough such that |Q(z — €1)] < 2§ and |Q(z + €1)| < 26;. Without
loss of generality we assume that Q(z — €1) < —28; and Q(z + €1) > 26;.

Since {Qn} converges uniformly to @, for all §; > 0 there exists Ny such that for all
n > Nj and for all y € D,, we have |Qn(y) — Q(y)| < 1. This implies that |Qn(z —€1) —

Q(z — €1)| < §1. Therefore, we have

Qun(z —€1) — Qz —€1) < d1,
Qn(.’E — 61) < 01+ Q(CE — 61), (244)

< 6 — 28 < 0.
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Similarly we can show that @, (z+e€1) > 0. Therefore, by the intermediate value theorem
there exists x,, € B, (z) such that Qn(z,) = 0.

Now we use the triangle inequality to get

1Q(zn) — Q)] < |Qn(zn) — Qzn)| + |@nlzn) — Q)] < d1. (2.45)

The definition of Q! continuous at z, gives that for all o > 0 there exists d; such that for
all y, |Q(y) — Q(x)| < d implies |y — z| < €. Therefore, given e;, there exists an NV so that

for alln > N, |Q(zs) — Q(z)| < d2, and hence |z, — z| < €g.

a
Convergence for Doubly Infinite Matrix
Now we consider the doubly infinite case. Suppose we have the matrix
B-1z Y1
a oz Yo : (2.46)
ar Bz

As in the singly infinite case, we assume that for all j, 8; # 0, and z # 0. Then we divide

the matrix by its diagonal which leaves

-1
1 B-1z
Q Jo_
s 1 g% . (2.47)
&
B?Lz 1

Recall that we want to determine the values of z for which this matrix is singular. This is

achieved by locating where the determinant is zero.
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The determinant of this matrix is said to converge if the determinant of

Y—-m
1 B—mx
O—_m41 ..
Bmie (2.48)
T . Yn—1
Bn-1T
a1

converges as m — oo and n — 0o.
We consider the sequence of minors that are centred, i.e., have m = n, and we expand

the determinant about the central row.

1 Y-2
1 Y-1 B2
A1z a-1 0
@ ] 0 = Bz
Box ﬁoa} e
0 1 "
o
Bz
[?2_235 1
Y-3
1 B-sz
o
e L] O
_ﬂ Q-1 Y-1 0
Box B-1z  B-1z
o ] o
Bz Bix
or L
Y-2
1 B-2z
a_y Y-1
o fB-1z 1 B-12
0
~ %o 0 L = (2.49)
2
0 1 ﬁ;x
&
ﬂse;v 1
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We note that each term in the above equation is the determinant of a block triangular

matrix, which is equal to the product of the determinant of the diagonal blocks.

Hence we have

Q% (z) = QM (#)QL ™ (2) — L QM (2)Q% (2) — — L Q2H(@)QL (). (2.50)

 Bofiz? Cm  Bopra?
Where
e Y-—n
1 Bz 1 B-nz
1 ;—2 1 . E‘J‘_—_nﬁi 1
o) = [P L arw=|ee N
Bn17 ) - B2z
Qn Q_1
BnT 1 B-1x 1
and
2 J—n
1 ﬂ?x 1 B_nt
Bqa_ 1 ._. 0 ﬁa-n+1 1
2 — — — —n
n+($) = |7 . . _— 3 n (.’13) = L -
Boiz : o Bow
(o7
oy 1 Fas |

By the analysis of the singly infinite matrix, if both the series Y - | ky and Y2 | k_, are
absolutely convergent, then the sequences {Q.*}, {Q2F}, {QL~}, and {Q2~} all converge
uniformly in D, to the continuous functions Q'*, Q?T, Q'~, and Q?~ respectively.

Hence the sequence {Q%} converges uniformly in D, to the continous function Y, where:

0(p) = Ol (2 1_$__040’Y—1 I+ (g 2—03_04170 24 (YO (2). )
Q(z) =Q " (2)Q (2) —ﬂoﬂ_leQ (z)Q° () Boﬂlo:?Q ()@ (z) (2.51)

Theorem 2.6 also holds for the case of the doubly infinite matrix.

2.2.4 Results

We now find the curve of singular points of the infinite matrix. This shows how the bifur-
cations points vary as the aspect ratio is altered.
First we consider the recurrence relation in the variables {... ,c_2,,¢_n,co,Cn, Con, ... }.

We note that the entries in our matrix are real so the assumption of theorem 2.6 holds.
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The first approximation to f/(y) is the 3x3 minor, which we simplify by setting d* =

a?+ 32, and k = Q‘?—a, to give

k(d? +n?)? —(d®>—-n?) C_n 0
d? r(d?)? —d? o | =101 (2.52)
d>—n?  k(d®+n?)? Cn 0

The coeflicient matrix is singular when its determinant is zero, which yields the equation
r(k2d*(d? 4 n?)* 4 2d%(d® + n?)*(d? — n?)) = 0. (2.53)

By definition the Reynolds number €2 and the aspect ratio « are both real and positive;
therefore, the only physically relevant solutions of x are when it is real and positive. Solving
for k gives the positive real solution:

/ 2

n? —d
K= \/im. (2.54)

Therefore, a first approximation to the bifurcation points is

(A27’2 + BQSZ)(AQ’I‘Q + B282 + 'I’L2)

0 =
Arv/n? — A2r2 — B2g2

. (2.55)

The smallest value of Q at which a bifurcation occurs is when € = n1/2; this corresponds
tor =0 and s = 0. We define €, to be this value.
Better approximations are obtained by using larger centred principal minors. For the

next approximation we use the 5x5 minor:

K(d? + 4n?)? —d?
d?>+3n?  k(d*+n?? —(d*-n?)
d? Kk(d?)? —d? . (2.56)
d>—n?  k(d®+n?? —(d®+ 3n?)
d? k(d? + 4n?)?

The determinant of a minor is calculated using an algebraic manipulator, and the re-

sulting polynomial is solved to give the locations of the bifurcation points. We choose to do
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the expansions centred around zero, although it is possible to use asymmetric expansions.
In table 2.1 we show the computed locations of the bifurcation points for various sizes of

the minor when A = B = 1.

r|s Q/Q

3x3 minor | 5x5 minor | 7x7 minor | 9x9 minor
1.09735 1.09756 1.09756 1.09756
1.44338 1.44882 1.44879 1.44879
2.36228 2.43895 2.43686 2.43687
1.70084 1.70224 1.70223 1.70223
1.76977 1.78108 1.78100 1.78100
2.79715 2.92942 2.92425 2.92431
3.53955 3.56215 3.56200 3.56200
3.00000 3.06699 3.06570 3.06570
5.03069 5.96945 5.82213 5.82773
8.39146 8.78827 8.77275 8.77294
7.54604 8.95418 8.73319 8.74159

N H QOB W = W=
W WD~~~ OO O

Table 2.1: Bifurcation Points for A = B =1

We find the location of the bifurcation points as the aspect ratio A is varied. This gives
us the same bifurcation curves as we found with AUTO; see figures 2.2-2.4. These figures
are for s = 0,1, 2 respectively, with B = 1, and r = 1,... ,10. The curves obtained from
this approximation method and from AUTO tend to the same result as the accuracy of
both methods is increased.

The two-dimensional bifurcation curves all approach Q. = nv/2 as A — 0. This agrees
with the result due to Sinai.

The bifurcation curves to three-dimensional flow are of a similar form to those found by
Dinar and Keller [11], for bifurcation from Taylor-Couette flow. Their results show how the
Reynolds number of bifurcation points to Taylor-Vortex flows vary as the aspect ratio of
the system is changed. Likewise, we vary the aspect ratio of our system and obtain similar
results.

For n # 1 we observe that there exist other recurrence relations that are not centred
around the zero wavenumber, i.e., in the variables {... , ck_on, Ck—n, Cks Cktn, Ck+2n, - - - }, fOr
k # 0. The same analysis can be applied; however, we observed that the first few minors

are not singular for any real non-zero parameter value.
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Figure 2.2: Bifurcation Curves for B=1, s=0
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Figure 2.3: Bifurcation Curves for B=1, s=1
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Figure 2.4: Bifurcation Curves for B=1, s=2
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Chapter 3 Numerical Method

We compute solutions of the Navier-Stokes equations (2.4)-(2.7), in order to examine the
behaviour of Kolmogorov flow along the bifurcating branches as the Reynolds number is
increased.

We discretize the partial differential equation using spectral methods rather than finite
differences, to give spectral accuracy. Leonard and Wray [21] have proposed a new set of
basis functions for discretizing divergence free flows. These basis functions are divergence
free, so that any vector function expanded in them automatically satisfies the divergence
free condition. Some benefits of their expansion are that the pressure is eliminated from
the dynamics, and there are only two unknowns per “mesh point.” However, the matrices
required to solve a system are complicated to construct, and there is some additional effort
required in converting back to the original variables.

In our approach we also have only two unknowns per “mesh point.” However, we use
standard basis functions and instead of eliminating the pressure and one velocity component,
we regard them as being dependent on the other two velocity components.

We briefly explain our use of the pseudospectral Fourier-Collocation method, full details
of which can be found in Gottlieb and Orszag [16]. Then we discuss the details of the method

that we use to solve the Navier-Stokes equations.

3.1 Discretization

Since we are studying Kolmogorov flow on a periodic domain, it is natural that we approx-
imate the velocity and pressure fields using finite Fourier series, since these basis functions
already satisfy the periodic boundary conditions.

If we use Ny, Ny, and N, basis functions in the z, y, and z directions respectively, then

we approximate the function u(z,y, z), which is defined on a three-dimensional 27 periodic
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domain by

u(z,y,z) = m kﬁ%:,kz ﬂkmkykze*ik”e“ikyye_ikzz, (3.1)
where —N;/2 < k; < Ng/2,—Ny/2 < ky < Ny/2, and —N,/2 < k, < N,/2. We define
similar expansions for all of the velocity components and the pressure.

We approximate the Navier-Stokes equations using collocation, which means that we
evaluate the non-linear advective terms at a set of collocation points in physical space.

To compute the product s of two functions v and v using collocation, given their coeffi-
cients from the expansion (3.1), we introduce NyNyN, collocation points. These collocation
points are arranged on an equally spaced Cartesian grid of N, by Ny by N, points. In order
to use the standard fast transform method, we impose the restriction that N,Ny, and N,
are powers of two.

First we calculate the value of the two functions u and v at all of the collocation
points using (3.1). This gives the values um,m,m, = u(2wmy /Ny, 2mmy /Ny, 2mm;/N,)
and vm,m,m, = v(2mmg/Ng, 2mmy /Ny, 2mm, /N, ) for 0 < mg < Nz, 0 < my < Ny, and
0 < m, < N,. Then at each collocation point we take the product of the two functions and
define sm,m,m, = Umymym,Vmym,m.- Finally, we determine the coefficients 8kyky k. Of the

Fourier expansion of the product s from its values s, m,m, at the collocation points with

Skokyk, = Z Smymym. e'hetma gikymy gthszms (3.2)
M MMy M
We define col(u,v) to be the product of the two functions u and v evaluated using the above
procedure.

However, this procedure introduces aliasing errors, which get introduced because on a
finite grid a high wavenumber mode is indistinguishable from a lower wavenumber mode.
The solution to this problem for quadratic non-linearities is to set the coefficients of the
largest third of the wavenumbers of col(u,v) equal to zero.

Derivatives in the Navier-Stokes equations are evaluated directly from the coefficients
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of the Fourier expansion (3.1), so that differentiation with respect to x is given by

ou 1

S T —tkgx —tkyy ,—ik:2
—(z,y, 2 — E —tkp g g g€ e WY eV 3.3
8:1:( 97) Nz NyN, 4~ & Ry B ’ (33)
THyvy vz

and the other derivatives are defined similarly.
The z-momentum equation, excluding the pressure term, evaluated using Fourier Col-
location is given by
Born. = ~(—A2K2 — k2 — B2k2)i NP (Okon — O—k.m)
kokyk, = r — K 2)Ukakyk: + 520 Okr00k:0(Okyn = O—kyn

ou ou ou
_ col(u,A%-)kmkykz - COl(’U, b-g;—)kmkykz - COl(’w,B%)kwkykz, (34)

2

where §;; is the Kronecker Delta. The other momentum equations and the continuity
equation are defined similarly.

Theorem 2.1 implies Fooo = Gooo = Hooo = 0. Therefore, instead of numerically inte-
grating the differential equations for Gggg, 0o, and wWoeg, We set Ggpo = Vooo = Wooo = 0.

Discretization leaves the following system of differential algebraic equations:

dak{;% = Fonyk. + 1 AkgPr,ky b,
fj-@ixi——%ﬁ = G,k + ikyDrok, k. » (3.5)
dilz;-y—ki = Hi,kyk, + iBkoProky k.

i Akyiig, g, + iky Oy b, + iBho gk, = 0, (3.6)

for the range of kg,ky, and k, mentioned earlier, and the equations for k; = k, = k, = 0 are
absent. We observe that the coefficient pggg does not appear in any of the equations. This

corresponds the the normal indeterminacy of the pressure which is resolved by requiring

2 2% p2w
/ / / p(z,y, z)dzdydz = 0; (3.7)
o Jo Jo

this is equivalent to setting pogo = 0.
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3.2 Conversion from a DAE to an ODE

The spatially discretized Navier-Stokes equations yields a system of 3N, N, N, — 3 ordinary
differential equations and N;N, N, — 1 algebraic equations, with 4N; N, N, — 4 unknowns.
Following the work of Keller and Von Sosen [19], we use the Implicit Function Theorem to
reduce this DAE to a system of 2N, N, N, —2 ordinary differential equations in 2N N, N, —2
unknowns.

This is achieved by using the knowledge that any solution to the Navier-Stokes equations
must satisfy both the continuiﬁy and pressure equations. Therefore, we use these equations
to make one velocity component and the pressure be functions of the other two velocity
components.

For Kolmogorov flow, we use the continuity equation to calculate the values of the

velocity coefficients that are in the set:

Y = {'wkzkykz tky #0} U {'[)kzkykz ky #0Ak, =0}
U {akzkykz s kg ;ﬁ OA k)y =0Ak, = 0}, (38)

and we use the pressure Poisson equation to calculate all of the pressure coefficients.

For the remaining velocity coeflicients, i.e., those in the set:

Xz{ﬂkzkykz :km=0\/ky#0sz#O}U{@kzkykz :kyZOsz#O}

U {Dk, bk, : k2 = 0} \ {000, Doo0; Wooo}, (3.9)
we have a system of ordinary differential equations that governs their behaviour.

3.2.1 Continuity Equation

Since we are looking for solution to the incompressible Navier-Stokes equations, we need to

ensure that the continuity equation

ou Ov dw
Aee + ~ + B~ = 1
5 + 9y + 5 0 (3.10)

is satisfied throughout our domain. The common approach for solving the incompressible

Navier-Stokes equations in Computational Fluid Dynamics is to use Green’s functions to



28
determine the pressure such that the flow remains divergence free at the next time step.
However, we achieve this directly by using the continuity equation to calculate the last
velocity component given the other two. Specifically we use the continuity equation to

determine the velocity coefficients in the set Y, defined in (3.8), by using the following

formulas:
. —iAky g bk, — Ry Ok, bk,
Wrohkyk, = - ;{Bkz e for k, # 0; (3.11)
—1Aky T
Deohyp, = i for &, # 0 and k, = 0; (3.12)
Y
Ukykyk, = 0, for ky # 0 and ky = k, = 0. (3.13)

3.2.2 Pressure Poisson Equation

We take the divergence of the momentum equations to give a Poisson equation for the
pressure, with periodic boundary conditions. Since we are on a periodic domain, we have
none of the usual problems relating to implementing Neumann boundary conditions at the
walls.

There is no time evolution equation for the pressure, so the pressure is chosen such that
the momentum equations are satisfied under the condition that the flow remains incom-
pressible.

Recalling the definitions of F,G, and H from (3.4), the pressure is computed by

—1Aky Fe kb, — thyGroky k. — 1Bk Hy, pyk,

e k. = 14
Phakyk: —A%Z — k2 — B7K? (3.14)

Note that there is no equation for Pggg, which is consistent with the earlier assertion

that due to the normal indeterminacy in the pressure, we set pogg = 0.

3.3 Obtaining Steady State Solutions

The above use of the continuity and pressure Poisson equations means that we only have to
consider the best method for finding steady state solutions of a differential equation, rather
than of a differential algebraic equation. Note that to compute steady state solutions in both
cases, we are only required to solve a system of non-linear algebraic equations. However the

ODE formulvation has half the number of unknowns, and the different formulations allows
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us to consider different methods for finding these solutions.

There are many methods that can be used to solve algebraic non-linear systems, which
include Newton’s Method, Full Approximation Storage Multi-grid, or by integrating the
differential equation until it reaches a steady state. Our choice of method needs to take into
account that during continuation we need to be able to follow unstable branches, detect
bifurcation points, and switch branches. Additionally we need to be able to augment the
system by adding constraints, so that we can traverse folds and follow travelling wave
solutions.

Most of the theory for numerical continuation assumes the use of Euler-Newton for
following the branch, in particular factorizing the Jacobian while solving Newton’s method.
This factorization is used to give information about the location of the bifurcation points,
along with the null vectors needed to switch branches. Additionally factorizing also allows
the efficient use of the bordering algorithm to solve augmented systems. However, since we
have a three-dimensional domain and have spatially discretized it using Fourier series, the
Jacobian is dense; therefore, factorizing the Jacobian is not practical.

To solve the non-linear equations, we use Newton’s method as an outer iteration. We
solve the linear system for each Newton step with an inner iteration.

However, using an iterative method instead of factorizing the Jacobian to determine the
correction at each Newton step means that we lose the benefits of the factorization, although
branch switching can still be done easily by using the method of perturbed bifurcation. The
bordering algorithm can no longer be used efficiently since we now have to solve two linear
systems. Also, the right-hand side of the additional system is large, so there is the problem
of round-off errors affecting how accurate a solution it can give. Therefore, we need to use
alternative methods to determine the location of the bifurcation points, and to augment
the system.

Methods for performing continutation while using preconditioned conjugate gradient
type methods have been proposed by Tuckerman and Barkley [34]; however, these methods
require additional work to determine the location of the bifurcation points. Additionally,
their technique for determining bifurcation points assume that you have a good initial guess
for location of the bifurcation points and the direction of the bifurcating branch.

The iterative methods we consider to solve the linear system in Newton’s Method,
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SuAu = —§, are suggested by the numerical integration of the ordinary differential equation:
dA

92U _ = Au+3. (3.15)
dr

We note that steady state solutions of this ordinary differential equation are solutions of
the linear system §,Au = —F.

Convergence to a steady state requires that all the eigenvalues of §, are in the left half
plane of C. However, this is not always possible since at a bifurcation point an eigenvalue
crosses the imaginary axis. We use the Recursive Projection Method on this inner iteration,
which regains convergence on unstable branches, as well as accelerating convergence on
stable branches.

Additionally RPM is used to provide the augmentation to the system and it gives ap-
proximations to the eigenvalues with largest real parts, so giving the approximate locations
of the bifurcation points. Furthermore, if the solution is randomly perturbed at the be-
ginning of each continuation step, then we can be assured that RPM will isolate all of
the eigenvalues with largest real part, therefore giving the approximate locations of all the

bifurcations points.

3.4 Solving For Newton Iterates

We solve the linear system §,Au = —§ by iteration. The iteration schemes that we use are

suggested by numerically integrating the initial value problem:

ddA—T“ —FAu+F,  Au(0) =0 (3.16)

in the dummy variable 7 until it reaches a steady state, although in practice we stop the
integration when the residual has been reduced to a predetermined amount. We integrate
this ordinary differential equation by using a mixture of implicit and explicit schemes,
thereby giving a large stability region while avoiding having to solve a large linear system
at every time step.

Consider the ordinary differential equation:

-Z—g = f(y) +g(v)- (3.17)



31
We examine two integration methods for integrating this ordinary differential equation to
its steady state solution. In the first method we integrate the f(y) portion using explicit
Euler and the ¢g(y) portion using implicit Euler, while in the second method we integrate the
f(y) portion using second order Runge-Kutta and the g(y) portion using the Trapezoidal
Rule.

These methods yield the following schemes:

vt =y o 107 + o), (3.18)
and
y:y”+A4y@ﬂ+9@w;g@ﬂ)
3.19
o =g (LLELW) 7)ot 319

Note that both of these are iterative methods for solving f(y)+g(y) = 0. The first procedure
is first order accurate in A7, while the second one is second order accurate in Ar. However
neither the order of accuracy in A7t nor the size of A7 affects the accuracy of the steady
state solution. Also the accuracy as solutions of the ordinary differential equation system
is not relevant; only the steady states are significant.

These choices of time-stepping methods are also based on results from the next chapter
on RPM that indicate that it is preferable to use an implicit method, so that the eigenvalues
of the resultant fixed point iteration are smaller and well-separated.

To investigate the stability of these schemes we use the following test problem:

fy) =Xy,  gly) =py; AueC (3.20)

Substituting these definitions for f and g into the above iterations gives:

Yy = (1 — Arp) N1+ AT, (3.21)
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and
AT ATA Arp ATp -1 ATp -1
nt+l _ a7 AT 1— — "
Yy [1+2<)\+u>+ 5 (1+ TA+ 2)( 2) 1 5 Yy
(3.22)
Therefore, for the test problem, the first iteration converges when:
(1= Arp) M1+ AT < 1, (3.23)
while the second iteration converges when:
AT AT AT AT -t ATy -1
— e — A — 1-— 1
H[1+ Q(AM)JF ! (1+ S )(1 : ) ) <
(3.24)

Looking at the eigenvalues of the terms in the Navier-Stokes equations, we note that
the diffusive terms have negative real eigenvalues, while the advective terms have pure
imaginary eigenvalues. Using this information and that we integrate the diffusive terms
implicitly and the non-linear advective terms explicitly, we assume that I'm(u) = 0 and
Re(X) = 0. Now setting o = Re(u), and 8 = Im()), the iterations are stable in the region
to the left of the lines shown in figure 3.1.

Both regions extend to infinity, and the boundaries for large « and (3 are given by
(BAT)? = —(aAT7)?, and (BAT)* = —2(aA7)? for the first and second methods respectively.
However, the stability region for the second order problem stays closer to the imaginary
axis. Therefore, it is more efficient to use on systems that have many Hopf bifurcations,
such as Taylor-Vortex flow.

To accelerate the speed of convergence to the steady state, the Recursive Projection
Method is used, details of which can be found in the next chapter. We also consider the
differences in the accuracy of the approximate eigenvalues obtained through RPM whilst
using the two methods.

The first iteration can be compared with the matrix that Tuckermann and Barkley [34]
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Figure 3.1: Stability Regions for the Iteration Schemes

solve using a conjugate gradient style algorithm. The matrix equation from Tuckerman is
(I = Argy)™ (I + ATfy) = Iy = [(I = Arg(Y)) " (I + AT f(Y)) - 1]V, (3.25)

where Y is the initial guess and y is the correction. We obtain iteration (3.18) from the

above by converting it into the fixed point iteration:
(I = A7gy) ™ (I + AT fy)yn — Y1 = [(I = Arg(YV)) ' (I + ATf(Y)) = 1]Y.  (3.26)

The right-hand sides of these equations is just the forcing term § from equation (3.16)
multiplied with the matrix (I — A7g(Y)) A7, since:

[(I = Arg(Y))THI + ATf(Y)) = []Y = (I = Arg(Y)TTAT(f(Y) +g(Y))Y.  (3.27)
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3.5 Parallelization

To improve the speed of these calculations, we implement the algorithm on a distributed
memory computer. Information about how to implement numerical methods efficiently on
a distributed memory computer can be found in Van de Velde [35].

The main communication between nodes is during the collocation process when we
perform a fast Fourier transform, which is a variant of the standard recursive doubling
technique. To reduce the amount of communication, the bit reversal part of the fast Fourier
transform is not done. This means the physical domain is distributed across the nodes in a
bit reversed form.

The only other communication required is by the Recursive Projection Method which

needs to compute inner products.

3.6 Obtaining Time Periodic Solutions

Frequently when following steady state branches we encounter Hopf bifurcations. It is
more difficult to follow these bifurcating time dependent branches. However, we find that
travelling wave solutions also bifurcate and they can be easily followed with the aid of a
phase condition.

We explain how we follow branches of travelling wave solutions, then we examine two

methods for finding general periodic solutions.

3.6.1 Travelling Wave Solutions

Travelling wave solutions can be easily computed as steady state solutions by changing
variables so that we are in a frame of reference that is moving at the same speed as the
wave.

For Kolmogorov flow, where we have a travelling wave moving in the z direction, say
u(z,y,z,t) = u(z — ct,y, z), we replace the z-momentum equation by

ou ou

Frie Flu) — o (3.28)
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and solve for the steady state solution. The wave speed ¢ is determined by requiring

27
| ey ) = o,y 2o = (3.20)
0 X

where ug_)(z,y,z) is the solution at the previous continuation step. Having introduced
a new unknown scalar, ¢, we can introduce a new scalar constraint and that is how the
addition of (3.29) is justified.

When integrating the non-linear differential equation directly, we have an alternative
method for determining the wave speed. This is to keep track of the phase of the largest

coefficient and to adjust the wave speed so that this phase remains constant.

3.6.2 Discretization In Time

One approach for obtaining general time periodic solutions is to discretize the equations in
time as well as in space, and solve the resulting algebraic system. This is the same approach
as described in Doedel et al. [12], and used in the AUTO package. However, we discretize
in time using Fourier series. We can then find time-periodic solutions by using the same
iterative scheme described in sections 3.3 and 3.4.

Since the period of the solution is unknown, we call it 7" and fix the interval of periodicity
by rescaling time using ¢ — /T and look for solutions of period 1. The new unknown 7T is
determined by introducing the constraint:

/1 u(t)%(t)dt = 0. (3.30)
; dt

This phase condition is the same one that is used while following travelling wave solutions,
except that the derivative is with respect to time rather than space.

We now study the structure of the eigenvalues of the enlarged system to determine the
effectiveness of RPM in accelerating convergence to a solution. For clarity in the following

analysis, we use centred finite differencing in time rather than Fourier series.

Lemma 3.1 Given the ordinary differential equation

du
— 31
o Au, (3.31)
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with A € C**™ and u € C*. Additionally we assume that A is similar to the diagonal matriz
A. Assume without loss of generality that the period of the solution to the above ordinary
differential equation is 2w = mA¢t. If X is an eigenvalue of A € R"*™ | then A+ Alt sin(kAt),

ke {—m/2,... ,m/2} are eigenvalues of:

A I/(2A%) —I/(2A%)
—I/(2At) A I/(2A¢)
B = € Rrmxnm (3.32)
—I/(2At) A I/(2At)
I/(2A%) —I/(2At) A
Proof
Since we assume that A is similar to A, we have that B is similar to
A I/(2At) —I/(2A¢)
—I/(2A¢) A 1/(2A%)
(3.33)
—I/(2At) A 1/(2A%)
I1/(2A%) —1/(2At) A

Permuting the rows and columns of this matrix gives a block diagonal matrix. Each

block is of the form:

A 1/(2At) —1/(2At)
—1/(2A¢) A 1/(2A¢)
, (3.34)
—1/(2At) A 1/(2A¢)
1/(2A¢) —1/(2A%) A
where X is an eigenvalue of A.
Now given k € {—m/2,... ,m/2}, consider the vector
T
(eikAt o2ikAL enikAt) _ (3.35)
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This is an eigenvector of the preceding matrix, with eigenvalue A + —Ai—t sin(kAt).
a

This lemma shows if Jacobian of a differential equation is the same at every point on a
periodic solution and we discretize it in time, then the resulting enlarged system has many
eigenvalues that cross the imaginary axis simultaneously. Therefore, RPM is ineffective in
identifying the bad subspace and in accelerating the convergence to the periodic solution.

In reality for non-linear equations the Jacobian is different at different points on the
periodic solution, and the analysis for this case has not been done. However, the preceding

lemma is applicable close to the Hopf bifurcation point.

3.6.3 Poincare Map

As suggested by Lust et al. [24], another approach for finding periodic solutions is to find
fixed points of the Poincare Return Map, and then use the Recursive Projection Method
on the Return Map to accelerate convergence. However, this is only useful in following the
first Hopf bifurcation branch, since subsequent branches bifurcating from Hopf bifurcations
lie on an invarient torus and do not yield fixed points on the Poincare Map.

Care needs to be taken when accelerating the Poincare map using RPM, since when
approximating the Jacobian of the bad subspace using finite differences we have a large
round off error as we cannot simply compute the difference directly as in the steady state
case, but take the difference of two successive iterates.

A major disadvantage of using the Poincare Return Map is that to obtain accurate
solutions requires the use of a high order time stepping method, and a small time step.
However, for efficiency reasons, we need a method that allows a large time step. Therefore,
we use a second order time stepping method described in section 3.4, and Richardson

extrapolation to get enhanced accuracy.
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Chapter 4 Recursive Projection Method

The Recursive Projection Method (RPM) invented by Schroff and Keller [32] accelerates
the convergence rate of fixed point iterations by using Newton’s method on the slowly
convergent and unstable subspaces. However, RPM becomes less efficient as the dimension
of the unstable subspace increases, or when the eigenvalues of the system are not well
separated.

In this chapter we study the performance of RPM when used to help find the solutions
of high resolution discretizations of multidimensional partial differential equations. Most
previous studies of RPM have only considered its performance on coarse one-dimensional
boundary value problems.

Keller and Von Sosen [19] used RPM to accelerate convergence while computing solutions
of the Taylor-Vortex flow. Although their calculations were on a three-dimensional grid,
their perturbation did not break the symmetry in the azimuthal direction; therefore, many
of the eigenvectors were orthogonal to the iterates and hence they were not detected.

A common way to find the steady state solutions of partial differential equations is to
integrate them forward in time until they converge. RPM is useful in accelerating this
convergence, as well as for enabling convergence to unstable solutions. Moreover, RPM is
easily implemented on distributed memory computers that are typically used to solve high
resolutions problems. The only additional communication imposed is in the calculation of
some inner products.

We use the same RPM algorithm as originally devised by Schroff and Keller, except that
we replace the Modified Gram Schmidt orthogonalization with Householder orthogonaliza-
tion. This change reduces the errors that are generated by the orthogonalization process

while updating the unstable subspace and finding the orthogonal basis of the Krylov space.

4.1 RPM Algorithm

Here we give a brief description of the RPM algorithm, full details of which and convergence

proofs can be found in Schroff and Keller [32].
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Suppose we have the fixed point iteration:
2Vt = G (z™)) ), (4.1)

where G : RY x R = R¥ is smooth.

Given some § > 0 we define the unstable subspace P to be the span of the eigenvectors
of G that have eigenvalues which lie outside of the disk K5 = {|z] < 1 — 4}.

We write the space RV as the direct sum of the unstable subspace P, and its orthogonal
component (§, and introduce the orthogonal projection operators P, and @, respectively.

Using these projection operators, for each z € RY, we have the unique decomposition:
) p

p=Pz el g=QzeQ,
T=p+gq, (4.2)
dimP = m, dimQ =N —m.

It is assumed that m < N.
Now applying a Lyapunov-Schmidt decomposition to the system z = G(z, \) gives the

coupled system:

p=f(p,q,\) = PG(p+q,), (4.3)
q=9»,q,\) =QG(p+q,N). (4.4)

The idea of RPM is to use Newton’s method to solve for p which is in the low dimensional
unstable subspace P, and to continue using the fixed point iteration for q. This yields the

new iteration:

(I = f YT —pW) = f(p), g™, 2) — p), (4.5)
gt = g™, ¢™), ). (4.6)

For efficiency in the computation we introduce coordinate variables z to represent p € P

with the orthonormal basis Z:

2=2p=2%,  zeR™, (4.7)
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Using these coordinate variables we rewrite (4.5) as
(I-ZTGW2)(z*+) — ;) = ZTG (™), ) — 2. (4.8)

The use of coordinates variables reduces the size of the matrix that we need to invert from

N x N to m x m. This is why we are willing to use Newton’s method to compute p.

4.1.1 Addition of Vectors to Unstable Subspace

To determine which vectors should be added to the unstable subspace, we use the Krylov

space of the difference of the previous iterates:
K= {Aq(”), AU Aq2 ,Aq(”_k+l)}, Ag¥) = g®) — g1, (4.9)

Schroft and Keller showed that asymptotically Aq lies in the dominant eigenspace of g,.

We compute the QR. factorization of K using Householder transformations, so K = KT,
with T' € R¥**¥ upper triangular, and K e RVxk orthogonal. We examine the matrix T and
if for some i: |Tj;| > |Tit1i+1] then we add the vectors {Kl, e ,K’i}, the first ¢ columns of
the matrix K , to the unstable subspace. In our computations we use an acceptance ratio
of 80, which gives the test: |Tj;| > 80|T;11541]-

Since all of the vectors in the Krylov space are almost in the same direction, the use
of the Householder transformation, instead of the Modified Gram-Schmidt algorithm as
originally proposed by Schroff and Keller, means that the orthogonalization is much more
accurate.

For RPM to perform efficiently, it needs to be able to identify the unstable subspace
quickly. This is only a concern at the beginning of the continuation procedure since we
keep the unstable subspace as we progress along the branch. However, on very unstable
branches we experience problems starting the continuation procedure. By the time RPM
has identified the divergent vectors, the error in the current solution has grown too large.

The size of the acceptance ratio greatly affects how quickly vectors are added to the
unstable subspace, especially when the eigenvalues are not well separated. In the following
chapter we give an example of how the performance is affected when the acceptance ratio is

altered. If the acceptance ratio is too small, then the unstable subspace that is constructed
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is not invariant. This causes convergence problems. Conversely if the acceptance ratio is
too large, then it takes too many iterations to isolate the vectors to be added.

Increasing the size of the Krylov space improves the speed at which the unstable subspace
is constructed, since it allows us to add more vectors simultaneously. Round off errors do
not cause a problem with the accuracy of the unstable subspace. The orthogonalized vectors
of the Krylov space that are contaminated by round off error are all of the same order of
magnitude. Therefore, they do not pass our acceptance test.

During our use of RPM we found occasions when only one vector relating to a complex
conjugate pair of eigenvalues is added to the unstable subspace. This causes convergence
failure due to the loss of invariancy of the unstable subspace. To correct this problem we
use the idea of H.B. Keller to introduce a new test to determine whether the eigenvalues
are complex or real.

For large v the iterates Ag(¥) asymptote to the sum of the eigenvectors of the largest

two eigenvalues, A\; and Ay. This gives the equations:

Ag¥) = Mey + Meo, (4.10)
Aq(u_l) = A1c1 + Agco, (4.11)
Aq¥ 7D = ¢ + . (4.12)

Eliminating ¢; and co from these equations yields the same quadratic equation for either

AL OT Ag:
AAg 2 —22A¢" D 4+ Ag™W) =0, (4.13)
We now take the inner product with Ag(¥), leaving:
XHAGY™D, Ay — 2X(Ag¥ ™Y, AgW)y + (Ag™), Ag)y = 0. (4.14)

This quadratic equation is easily solved for A:

(A=Y, Ag")) £ /(Aq—D, Ag))2 — (Ag=2D, Ag))(Ag1), AgW))
(Ag(v=2), Ag)) '

\ = (4.15)

If (Aq=D, A2 < (AgV=2) Ag™)(Agt), Ag) then the two largest eigenvalues are
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a complex conjugate pair, so we forbid RPM from only adding one vector to the unstable
subspace. We could use the components of any fixed coordinate in (4.13), or several of

them, in place of (4.14).

4.1.2 Maintaining Accuracy of Unstable Subspace

As described in Schroff and Keller, while continuing along a branch of solutions the domi-
nant eigenspace of G, changes. Therefore, we need to periodically update the basis of the
unstable subspace. This is achieved by performing one step of a power iteration and then

orthogonalizing:
Z « orth(G,Z). (4.16)

Note that this power iteration is effectively free, since we have already computed G,Z for

the stabilized iteration (4.8).

4.2 Bifurcation Techniques

The use of RPM to detect bifurcations and to provide pseudo arc length continuation was
described in the paper by Schroff and Keller. In this section we explore the use of RPM to
perform bifurcation theory in the particular case that the fixed point iteration approximates
the time integration of a differential equation.

We assume that we are following branches of steady state solutions of the differential

equation:

du

o= F(u,A). (4.17)

To obtain the steady state solutions, we integrate this in time, with a time step of A7,

yielding the fixed point iteration:
Tns1 = G(an, V), (4.18)

with z, = u(nA7). RPM is used to accelerate the convergence of this fixed point iteration.

The relationship between F' and G depends on the method of integration and the size of
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A7. For the moment we assume that the differential equation is integrated exactly in 7.

4.2.1 Detection of Bifurcations

To find the bifurcation points of (4.17), we need to detect when an eigenvalue of F,, crosses
the imaginary axis; however, from RPM we obtain an approximation to the dominant
eigenvalues of G.
Since we assume that we integrate the differential equatioﬁ exactly, we have the following
relation between the eigenvalues v of F,, and the eigenvalues u of G,:
_ lop (4.19)
= AT’ '
This transformation converts the interior of the unit circle in C, the stability region for a
fixed point iteration, into the left half plane, the stability region for a differential equation.

To show an argument for the correctness of the above relation, consider the case when:
F(u) = yu. (4.20)

Integrating the differential equation (4.17) for this function yields the exact relation:
u((n+ 1)AT) = "> u(nAr). (4.21)

Now since we had assumed that the fixed point iteration z,4+1 = G(zn,A) was obtained
by integrating the differential equation exactly, we get that the relationship between the

eigenvalues v of F,, and the eigenvalues u of G is
AT = . (4.22)

This is trivally rearranged to give the desired relation (4.19).

However, in reality we are not integrating the differential equation exactly so the loca-~
tions at which we detect a bifurcation will be perturbed. Additionally the stability regions
of our integration methods, see figure 3.1, are not equal to the left plane, the stability region
of a differential equation. This also results in altering the locations at which we detect the

bifurcation points.
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Our time integration differs significantly from previous studies which have used a high
order Runge-Kutta method with a small time step. Although this theoretically provides
better estimates for the locations of the bifurcation points, it requires a lot more iterations
to obtain high resolution solutions.
As also noted in Schroff and Keller, an unstable eigenvector will not be added to the
unstable subspace if it is orthogonal to the iterates. This is easily overcome by adding a

small random perturbation to the initial guess at the start of every continuation step.

4.2.2 Branch Switching

Once we have detected a bifurcation point, we require a method of switching to the new
branch. Since only the right null vectors are available from RPM, we have the option to use
either the parallel search or perturbed bifurcation method when switching branches. The
other methods for switching branches require knowledge of the left null vectors; however,
we are unable to obtain these from RPM unless the matrix G, is symmetric.

Since we do not know the exact location of the bifurcation points, using the parallel
search method may cause convergence problems if our initial guess is too far away from the
solution. These problems are avoided when using the perturbed bifurcation technique to
switch branches.

Switching branches using the perturbed bifurcation approach involves adding a small
perturbation to the system, so we find solutions of F(u,)) = ev, for some v, instead of
F(u,\) = 0. The effect of this for a generic choice of v is that the branches are broken

apart as shown in figure 4.1, where the solid lines are perturbed to the dashed lines. Then

Figure 4.1: Breaking of Branches with Perturbed Bifurcation

we continue in A past the bifurcation point and remove the perturbation, which leaves a

solution of F(u,A) = 0 on the other branch.
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4.2.3 Augmentation

When the linear system in Newton’s method is solved directly, an efficient way for also
satisfying constraints that are augmented to the problem is with the bordering algorithm.
The bordering algorithm involves solving two or more linear systems which is inefficient
when an iterative procedure is used. Additionally the extra systems need to be solved to a
high degree of accuracy to prevent truncation errors from affecting the convergence.
Schroff and Keller showed how to implement pseudo arc-length continuation efficiently
with RPM by projecting the constraint onto the unstable subspace. Instead of requiring

the solution u to satisfy the constraint
N(u,u*,A) =0, (4.23)
we make u satisfy the projection of the constraint onto the unstable subspace:
N(Pu, Pu*,)) = N(p,p*,\) =0, p,p" €P. (4.24)

Schroff and Keller did not address what happens when vectors are added to the unstable
subspace during the iteration. However, this changes the constraint that is being satisfied,
which we take into account in the present work.

We extend this idea to include augmentating with a phase condition, and to the general

case where there are many constraints.

Phase Condition

We follow the same idea for augmenting the system as Schroff and Keller. That is we only
require that the phase condition is satisfied on the unstable subspace. Lust et al. also use
a phase condition but they do not restrict it to the unstable subspace. They introduce an
iterative process so that the phase condition is satisfied on the entire space.

Recall from chapter 3 that to determine the wave speed we chose to use the phase

condition derived by Doedel [12]:

2m  p2w  p2m
/ / / u(z,y, z)%(w, Y, z)dzdydz = 0, (4.25)
0o Jo Jo z
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where ug_1 is the solution from the previous continuation step. This condition minimizes the
distance between two consecutive solution point with respect to translation. The advantages
this condition has over the classical orthogonality conditions is that is keeps the sharp fronts
or peaks in the same position during the continuation.

Projecting this condition onto the unstable subspace yields:

2 p2m p2m duk—l
/ / / P(u(z,y,2))P( . (z,y, 2))dzdydz = 0. (4.26)
o Jo Jo

As in Schroff and Keller the actual computation is done using coordinate variables for the
unstable subspace.

Projecting the phase condition onto the bad subspace still produces a convergent itera-
tion for the same reasons as given by Schroff and Keller, namely the restriction of I — G,

to Q, the orthogonal complement to the unstable subspace, is non-singular.

Many Parameter Continuation

RPM is easily adapted to solve problems that have more than one constraint by projecting
all of them onto the unstable subspace.

In our numerical experiments we have used two parameters to perform continuation
when a travelling wave branch has a fold, a pseudo arc length condition and a phase con-
dition. Both of these constraints are projected onto the unstable subspace; therefore, the

Newton iteration inside the RPM algorithm has two additional rows.

The RPM algorithm is easily extended for n constraints, N!,..., N*, in n unknown
parameters, Ay, ..., Ap, which yields the iteration:
n
¢ = g(p¥), ™), /\g'/), Ay Zg/(\’:)A)\Z(-V) (4.27)
1
I- £ —fil:) -fﬁ? Ap®) FEW, gAY - p)
Nl NL ... NI AN N p® AW AW
oo ST = WA A g
NP NP .. N ) \Aaxy ~ N (W) AW A

Again, as described in section 4.1, we introduce coordinate variable z to represent the

unstable subspace. Therefore, the size of this matrix is only (m + n) X (m +n), where m is
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the dimension of the unstable subspace. Since the size of the matrix is small, we solve the

entire linear system directly using LU-decompostion.

4.3 Convergence Behaviour of Solutions Using RPM for Kol-

mogorov Flow

To study the convergence behaviour of RPM for continuation in Kolmogorov flows, we
generally used the secant approximation along the branch to get the initial guess. However,
for the higher resolution solutions we simply used the lower resolution solution as the initial
guess. The solutions branches and bifurcations are described in detail in the next chapter.

On the following plots the numbers above the lines indicate how many vectors were
added to the unstable subspace at that point. Recall from chapter 3 that we use Newton’s
method to obtain the solution, and for each Newton step we use an iterative procedure
to determine the correction. The different lines on each plot correspond to the different
Newton steps that were used in calculating the solution. Each Newton step was stopped
when the residual norm of the correction had been reduced by a factor of 1074,

The typical convergence behaviour when a vector is added to the unstable subspace of
RPM is that there is a large drop in the error. An example of this behaviour is shown in
figure 4.2, which is computed on branch A, see figure 5.7, at 2/Q, = 2.20. Further examples
of the standard RPM behaviour can be seen in most of the following plots.

Additionally we notice in figure 4.2 that there is a large drop in the residual error at the
beginning of the second Newton step since we keep the unstable subspace from the first step.
Since we keep the unstable subspace between steps, we do not waste effort in determining
it again and therefore we achieve faster convergence for the second Newton step.

In addition to keeping the unstable subspace for the different Newton steps, we use an
updated version of the unstable subspace at the subsequent continuation steps. In figures
4.3 and 4.4 we show the convergence plots while continuing along branch G; see figure
9.16. In this case we kept the unstable subspace from our calculation of the solution at
/9. = 3.20, updated it with a power iteration and used it to help compute the solution
at /9, = 3.40.

Some unusual behaviour occurred during the second Newton step to find the solution at

Q/Q. = 3.40, figure 4.4. When a vector was added to the unstable subspace, we observed
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Figure 4.2: Convergence on branch A at Q/Q, = 2.20

that the residual norm increased. The first increase was due to RPM adding an inaccu-
rate vector to the unstable subspace. The resulting loss of invariancy caused a failure in
convergence. However, shortly afterwards the invariancy was restored with the addition of
another vector. Unfortunately, by this point the error in the current solution was relatively
large so a large correction to the solution was required. Although this reduced the error,
it increased the residual norm. After this point we see that the residual norm is decaying
faster than before the first vector was added.

To compute solutions along branch Gt, which is similar to branch G, see figure 5.16,
we need to augment the system with a phase condition to determine the wave speed; see
section 4.2.3. The convergence for branch Gt at 2/Q, = 3.20 is shown in figure 4.5.

We also observed an increase in the residual norm after vectors are added to the unstable
subspace. This was due to the error of the current solution being too large. The large error
is mainly due to the phase condition that we imposed. This condition changes when vectors
are added to the unstable subspace.

The error jump can be observed in figure 4.6 where we plot the computed wavespeed

correction during the second Newton step. At the position where a vector is added to the
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unstable subspace, we see a large jump in this wavespeed correction.

In figure 4.7 we show the convergence for the same /Q. value on branch Gt but the
wavespeed fixed. We still get slight increases when vectors are added to the unstable
subspace this is again due to the current solution being relatively far away from the correct
value. Compare figures 4.5 and 4.7.

Figure 4.8 shows the convergence for branch H, see figure 5.17, at Q/Q, = 4.00. After
about 40 iterations we see that the scheme is becoming unstable. However, RPM detects
the divergent subspace, corresponding to a pair of complex conjugate eigenvalues, adds two

vectors to the basis and thereby regains convergence.
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Figure 4.3: Convergence on Branch G at £/, = 3.20

Figures 4.9 and 4.10 also show increases in the residual norm when vectors are added
to the unstable subspace. These figures are computed on branch J at Q/Q, = 4.70. How-
ever, another vector is quickly identified and added to the unstable subspace to cause the
residual to decrease significantly. This occurs when RPM adds only one vector relating
to a pair of complex conjugate eigenvalues into the unstable subspace. The effect of this
is that the unstable subspace is no longer invariant and does not contain the basis for

the two-dimensional space corresponding to the complex eigenvalues, thus causing a loss
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Figure 4.8: Convergence on Branch H at 2/Q, = 4.00

of convergence. However, due to this RPM isolates a second vector quickly and recovers
convergence.

To correct this problem we test the dominant eigenvalues, as described in section 4.1.1,
to determine whether they are real or a complex conjugate pair. With this test we do not
allow RPM to add only one vector when we have a complex conjugate pair of eigenvalues.
However, the vectors of the Krylov subspace are not accurate enough for this test to work.

In section 3.4 we considered two methods for integrating an ordinary differential equa-
tion, a first order accurate implicit/explicit Euler method, and a second order accurate
Runge-Kutta/Trapezoidal rule. Figures 4.9 and 4.10 show the difference in performance be-
tween these two methods. We observe from these figures that the Runge-Kutta/Trapezoidal
rule method requires fewer iterations, which is due to the larger time step that we are
able to use. However, each iteration requires twice as much work compared with the im-
plicit /explicit Euler method. The higher order accurate method seems more efficient.

Figure 4.11 is also computed using the Runge-Kutta/Trapezoidal rule; however, it uses
a larger Krylov space. This larger Krylov space allows more vectors to be added to the

unstable subspace simultaneously. On the first Newton step of figure 4.10, six vectors
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are added in quick succession, whereas with the larger Krylov space they are all added
simultaneously. The benefits of using a larger Krylov space are more apparent when the

eigenvalues of the system being solved are not well separated.
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Figure 4.9: Convergence on Branch J at /€, = 4.70 Using Euler Time Stepping

Figures 4.12 and 4.13 show the convergence plots while continuing along the three-
dimensional flow of branch S, at /0, = 6.50, and 2/, = 7.00 respectively. (Branch
S is similar to branch K, figure 5.4, except it has twice as many modes in the x and z
directions.) These figures show that it takes a few continuation steps for RPM to detect all
of the vectors to be included in the unstable subspace. Figure 4.13 shows a good example
of RPM detecting divergent vectors on the second Newton step. These vectors are added
to the unstable subspace which results in the iteration regaining its stability.

In figures 4.12, 4.14 and 4.15 we show the convergence for the solution of branch S at
2/Q. = 6.50 using 32, 64 and 128 modes respectively. The calculations for the 64 and 128
mode solutions used the 32 mode solution, instead of a secant approximation, as the initial
guess. We note that the convergence plots of the 64 and 128 modes solutions are the same.
This is due to performing the same time integration from the same initial guess at both

resolutions. Additionally we were able to keep the time step the same at all resolutions.
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Figure 4.13: Convergence on Branch S at 2/Q, = 7.00
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This shows that the higher wavenumber modes do not effect the convergence of our
scheme, although using them still produces a substantial improvement in the accuracy of
the solution. Note that if we had used an explicit time stepping method to keep the iteration

stable, we would have needed to reduce the time step for the higher resolution solutions.
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Figure 4.14: Convergence on Branch S at 2/, = 6.50 With 64 Modes in Each Direction

4.4 Convergence Behaviour of Solutions Using RPM for Tay-

lor Vortex Flow

For Taylor Vortex flow we observe the same behaviour as in Kolmogorov flow. The Taylor-
Vortex solutions and bifurcations are described in chapter 7. The convergence while con-
tinuing along the Taylor-Vortex branch is shown in figures 4.16 and 4.17. Keeping the
unstable subspace at the end of one Newton step yields sharp drops in the residual norm
at the beginning of the next Newton step.

We also examine the effect on convergence rate when calculating higher resolution so-
lution of the Taylor-Vortex flow; compare figures 4.16 and 4.18. When we increase the

radial resolution we need to make a reduction in the time step to maintain stability. We see
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Figure 4.15: Convergence on Branch S at 2/, = 6.50 With 128 Modes in Each Direction
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Figure 4.16: Convergence on Taylor Vortex Flow Branch at Re = 140, q=4, With 32 Radial
Points
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Figure 4.17: Convergence on Taylor Vortex Flow Branch at Re = 145, q=4, With 32 Radial
Points

that the number of iterations also increases, and recall that each iteration takes more com-
putational effort. For Kolmogorov flow, with periodic boundary conditions, the increased
resolution did not require smaller timesteps.

When computing the solution for Wavy Taylor Vortex branches, we see an increase in
the residual norm just as in computing travelling wave solutions of Kolmogorov flow. These
increases occur for the same reason as before. A phase condition is introduced and the
error is relatively large since the phase condition changes when vectors are added. The
large error is indicated in figure 4.20; a large jump in wavespeed occurs when vectors are

added at iteration 100.
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Chapter 5 Continuation Results for Kolmogorov

Flow

We use the methods described in chapters 3 and 4 to find the various solution branches of
Kolmogorov flow. In the next chapter we compare the statistics of the solutions from some

of these branches to those obtained from turbulence calculations.

5.1 Bifurcations from Shear Flow

Bifurcations from branches of solutions of the Navier-Stokes equations occur when an eigen-
value of the linearized system crosses the imaginary axis as the parameter value is varied.
As described in chapter 4, we use the Recurrsive Projection Method to approximate these
eigenvalues.

The major error in the eigenvalues obtained through RPM originates from adding eigen-
vectors before the Krylov space approximation of them is accurate enough. The accuracy

of the unstable subspace is monitored by evaluating the matrix:
e=QF,P, (5.1)

which vanishes for exact eigenvectors determining P and Q).

The accuracy is increased by increasing the acceptance ratio which, as described in
chapter 4, is used to decide if a vector of the orthogonalized Krylov space is to be added to
the unstable subspace of RPM.

Figures 5.1 and 5.2 show the eigenvalues obtained while continuing along the shear flow
solution branch. Figure 5.1 has an acceptance ratio of 80, while in figure 5.2 the acceptance
ratio is 200. These figures show that the locations at which the eigenvalue traces cross the
axis are within one continuation step of the analytical bifurcation results shown in table
2.1.

The obvious discontinuity in the graphs is due to the continuation being stopped and

then restarted at /. = 3.0. At this restart point the difference between these two plots



62
is most noticeable. We observe that with an acceptance ratio of 200 the traces of multiple
eigenvalues start closer together.

This was to observe the performance of RPM in starting continuation at an unstable
location of a branch. Notice that some eigenvalue traces do not restart immediately after
this discontinuity, because it takes a few continuation steps to obtain all of the divergent
eigenvalues since some of the eigenvectors are orthogonal to each other and we converge to
the solution before RPM has had time to detect all of them. Additionally we find that the
accuracy of the invariant subspace for those eigenvectors with eigenvalues greater than zero
is approximately ten times that of the remaining eigenvectors. In figures 5.1 and 5.2 we see
that an effect of greater accuracy is that the eigenvalue traces for positive eigenvalues are
more clearly defined.

The discontinuites in some of the eigenvalue traces, as they approach the axis, are due
to the eigenvectors not being accurate enough. This manifests itself most prominently
when the eigenvalues are near zero. A good example of this can be seen in figure 5.1 at
Q/Q, = 2.3, where we see eigenvalues traces disappearing as they approach the axis. In
this situation RPM detects that the iteration is not converging and adds additional vectors
to the unstable subspace.

Due to the translation invariance in the Navier Stokes equations and the shear flow
solution, at a bifurcation point multiple real eigenvalues change sign. The eigenvectors
corresponding to a multiple eigenvalue are the same except that they are translated in the
x and/or z directions. When a two-dimensional branch bifurcates, such as the one shown in
figure 5.3, two real eigenvalues change sign. Whereas for a three-dimensional branch, such
as that shown in figure 5.4, four real eigenvalues change sign.

In figures 5.1 and 5.2 we notice that there are eigenvalue that are close together. These
are actually multiple eigenvalues, but due to various errors they split in the calculations.
However, as the continuation progresses the approximations converge to the same value.

Figure 5.3 shows the bifurcated solution which has one wave in the x direction near its
bifurcation point. We compare the two-dimensional bifurcating solution, figure 5.3, to the
three-dimensional bifurcating solution, figure 5.4. The three-dimensional solution has layers

that look similar to the two-dimensional flow interspersed with shear flow layers.



63

Real Part of Eigenvalue

Figure 5.1: Eigenvalues of the Shear Flow, Acceptance Ratio=80

Real Part of Eigenvalue

Figure 5.2: Eigenvalues of the Shear Flow, Acceptance Ratio=200
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Figure 5.3: Streamfunction: Branch A at 2/, = 1.10

5.2 Accuracy of Solutions

We compare the accuracy of the solutions obtained from using different numbers of Fourier
modes to determine the optimal number of modes to use to get the most efficient accurate
solutions. Since we are integrating the diffusive term using an implicit method, we are
able to use the same time step for each resolution, therefore obtaining the solution at each
resolution required approximately the same number of iterations.

In tables 5.1 and 5.2 we show how the error reduces as the number of modes is increased,
for branch R at 2/Q, = 5.0 and branch Gt at 2/, = 50.0, respectively. When calculating

the errors we use as the “exact” solution, the 128 mode numerical solution.

Modes 2-Norm Error in Norm
16 0.577230584301 | 2.44 x 1073
32 | 0.574713737592 | 7.97 x 107°
64 | 0.574793408635 | 9.86 x 10~1°
128 | 0.574793409621

Table 5.1: Convergence of Kolmogorov Solutions on Branch R at Q/Q. = 5.0
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Wavespeed Error

2.79 x 10~°
2.18 x 10~ 7

Wavespeed
0.00153153086037
0.00155925852322
0.00155947682411

Error in Norm
1.34 x 1073

4.44 x 1077

2-Norm

0.334950931635
0.333615163732
0.333615607799

Modes

32
64
128

Table 5.2: Convergence of Kolmogorov Solutions on Branch Gt at Q/Q. = 50.0
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These tables show that the error decreases exponentially as the resolution is increased,
indicating that discretization is spectrally accurate.

We observe that 32 modes gives good accuracy especially at the lower Reynolds numbers.
Ideally 64 modes should be used to get very accurate results; however, there is additional
work required to obtain this more accurate solution. We could not get the 16 mode solution
to converge on branch Gt at /Q. = 50.0, using the 32 mode solution as the initial guess.

To examine the convergence in greater detail in figures 5.5 and 5.6, we plot the engergy

spectrum function:

2, (5.2)

k—1/2<|ki<k+1/2

The energy spectrum function is used more in chapter 6 where we use it to compare our
solutions with those from turbulence calculations.

These plots jiggle because we only compute the energy spectrum function at integer val-
ues. These figures have a different jiggle frequency because figure 5.5 is for branch R, which
has not had a y-symmetry breaking bifurcation and therefore the dominant wavenumbers
are multiples of the forcing frequency.

The energy associated with each wavenumber remains almost exactly the same for each
resolution, until the wavenumber is larger than two-thirds of the largest wavenumber for
the least number of modes. This corresponds with our anti-aliasing technique where we set
the largest third of the wavenumbers of the non-linear advective term equal to zero. From
these figures we find that the energy exponentially decreases with wavenumber, which again
indicates that our solutions have spectral accuracy.

By comparing the errors in tables 5.1 and 5.2, we observe that at higher Reynolds
numbers our solutions become less accurate. This can also be seen by comparing the energy
spectrum functions for both of these solutions. For the higher Reynolds number solution
there is more energy associated with the higher wavenumbers but some energy is lost at the

lower resolutions.
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Figure 5.6: Energy vs. Wavenumber for Various Resolutions, Branch Gt, 2/Q. = 50.0
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5.3 Continuing Along the Bifurcating Branches

Continuing along the two-dimensional branches that bifurcate from the shear flow, figures
5.7 and 5.8, we observe that as the Reynolds number is increased, the flow changes from
being mainly horizontal to mainly vertical. This was also observed by Platt and Sirovich,
and agrees with the experimental results of Bondarenko et al. [6].

Again we use the approximations of the eigenvalues given by RPM to approximate the
locations of the bifurcating branches. These secondary bifurcations are categorized into a
number of different forms depending on what is the largest mode of the null vector.

A large number of the branches we followed are unstable. The full bifurcation diagram
is shown in figure 5.9, and the locations of the bifurcation points are listed in table 5.3.
Figure 5.10 shows a pictorial representation of the bifurcation diagram to make it easier to
understand the structure of the bifurcations.

During the remainder of this chapter, we explain the bifurcations to the different
branches and the transitions between various solutions observed by Platt and Sirovich.
However, Platt et al. started the calculation for each Reynolds number at a perturbed
shear flow; therefore, the solution they obtained also depends on the domain of attraction,
in addition to the stability of the solution. The initial condition they used for all their

calculations was

1/ - mo
Uy = -(—2- (sm(4y) + 10 4 Z . —m[
my,mz<

cos(miz + meoy) — sin(myx + mgy)]>, (5.3)

and the y velocity is such that this initial condition is divergence free. The domain of
attraction for a particular steady state solution is the set of all initial conditions for the
partial differential equation that converge to that particular solution as you integrate in
time.

This is not an effective method of determining the nature of the bifurcations since it
does not give a clear explanation of where a branch bifurcates from. Additionally it requires
more computational effort since the initial guess is far away from the solution.

Platt et al. observed that the solution they obtained suddenly changed from branch A
to branch B at /Q, = 1.97. This location corresponds to the Reynolds number on branch

B where the solutions become stable when branch D, figure 5.11, bifurcates from it.
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Figure 5.7: Streamfunction (Left) and Vorticity: Branch A at Q/Q, = 1.12,1.50, 3.00, From
Top to Bottom
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Figure 5.8: Streamfunction (Left) and Vorticity: Branch B at 2/, = 1.45,2.00,4.00, From

Top to Bottom
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Branch | Bifurcates At Q/Q. | Largest Mode of Null
From Branch | (to 2 d.p.) Vector (kz, ky, k)

A 0 1.10 (1,4,0)

B 0 1.45 (2,4,0)

C 0 2.44 (3,4,0)

D B 1.96 (1,4,0)

E C 4.35 (1,4,0)

F C 3.97 (2,4,0)

G A 2.25 (1,1,0)

Gt A 2.25 (1,1,0)

H B 2.10 (2,1,0)

Ht B 2.10 (2,1,0)

I C 2.64 (3,1,0)

J G 3.40 (1,4,1)

Jt Gt 3.61 (1,4,1)

K 0 1.70 (1,4,1)

L 0 1.78 (2,4,1)

M G 5.27 (1,4,2)

Mt Gt 5.37 (1,4,2)

N K, L 1.82, 1.98 (2,4,1), (1,4,1)
p K, L 1.83, 1.98 (2,4,1), (1,4,1)
Q 0 2.93 (3,4,1)

R 0 3.57 (1,4,2)

S 0 3.07 (2,4,2)

T 0 (3,4,2)

\Y% H 4.14 Periodic
Wt Gt Periodic

Xt Wt Period Doubling
a CK 2.80, 4.17 (3,4,0), (1,4,1)
bt Jt Periodic

Table 5.3: Kolmogorov Flow Bifurcation Points
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Figure 5.11: Streamfunction (Left) and Vorticity: Branch D at Q/Q, = 2.20,2.50,5.00,

From Top to Bottom
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5.4 Interconnecting Branches

We have observed some branches that connect between the branches that bifurcate from
the shear flow. There is a connection between branch K and branch L, a close up of which

is shown in figure 5.12. There are two similar branches that connect between branch K and

0.71

0.7

Norm

0.69 p~

0.68r\|\11\|\|1111|||r|4|
1.7 1.8 1.9 2 2.1

Figure 5.12: Connection Between Branches K and L

branch L; the difference between them is displayed in figure 5.13. Notice that the phase of
the top, central and bottom planes has been shifted between the two branches, whereas the
other two planes are at the same phase. We have only been able to find these two branches,
and there does not appear to be a continuum of branches between these two.

Also a connection between branch C and branch K was found, which is shown in figure
5.15.

We conjecture that there are many other branches that form connections between dif-

ferent primary bifurcating branches.

5.5 Y-Symmetry Breaking Bifurcations

As we continue along both branches A and B, we encounter a point where a real double

eigenvalue changes sign. At each of these points we find a bifurcation from which two
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branches emerge, a stationary branch and a travelling wave branch. We note that we have
a pitchfork bifurcation for each branch. From branch A we obtain branches G and Gt, while
from branch B we obtain branches H and Ht. Figures 5.16 and 5.17 show for branches G
and Gt, and H and Ht respectively, the difference between the stationary and travelling
wave branches.

After the symmetry in the direction of the forcing is broken by a bifurcation, large scale
structures develop.

The two null vectors associated with the bifurcation differ by only a translation in the
y direction. In order to determine the number of distinct branches bifurcating from this
point, we applied the method of perturbed bifurcation numerous times, each time using a
different perturbation from this two-dimensional null space. Although this process does not
prove that there are only two branches emanating from the bifurcation point, every time
we followed this process we obtained either the stationary or travelling wave branch.

Immediately after the bifurcation there is a small difference in the sizes of the vortices.
These differences then grow and the cells merge to form large scale structures. Previous
studies, such as those by Yakhot and Sivashinsky [36], have suggested that these large
scale structures like those in branches G and Gt, figure 5.16 (bottom), form due to a
negative-viscosity phenomena. They show that the instability of a flow to long-wavelength
disturbances can be interpreted in terms of a negative effective viscosity in the large-scale
flow.

Platt et al. first observed a y-symmetry breaking bifurcation on branch B when it
loses its stability to branch H. Our parameter value for this bifurcation is at Q/Q, = 2.10,
whereas they observe it at 2/Q, = 2.2. This discrepancy it probably due to their use
of a time-stepping method and not allowing enough time steps for the instability to grow
sufficiently.

However, since we were not using a time-stepping algorithm, we did not observe the
sudden random horizontal shifts of the solution that Platt observed in the range 3.53 <
Q/Q. < 3.6.

When Platt et al. started from the perturbed shear flow, they first found large-scale
structure of branch Gt at /Q. = 4.72. Altough in an attempt to find a hytersis loop
back to some choatic flows they observed below this Reynolds number, they discovered

that the large scale branch Gt solutions connect to the small scale branch A solutions
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at Q/Q, = 2.2. This is in good agreement with where we found the branch G and Gt
bifurcation at /. = 2.25.

5.6 Travelling Wave Solutions

Travelling wave solutions have been observed by She [31], and Platt et al [29]. However,
they have not explained how these flows originate. As shown in figures 5.16 and 5.17, these
solutions are similar to steady state solutions, except that they have an asymmetry in the
y-direction in the size of the vortices. A careful look shows that branches G and H are
symmetric about y = m, while branches Gt and Ht are not.

We find that speed of the branch Gt travelling wave, when it bifurcates from branch A,
is equal to zero. As we continue along this branch, we plot how the speed of the travelling
wave changes with Reynolds number, figure 5.18. Interestingly we find that the direction
of the travelling wave changes at two locations along the Gt branch, whereas for branch Ht
we only observe motion in one direction.

Platt et al. noted that there was a slow drift in their large-scale structure solutions;
however, they did not identify them to be travelling wave solutions. The first stationary
travelling wave solution at /€. = 5.924 was also observed by Platt et al. [29]. They refer
to it as a spatially chaotic but temporally stable solution. Figure 5.19 shows how the energy
of this solution varies with the wavenumber.

We note that wave speed of branch Gt is not asymptoting to the value shown in figure
5.18 but starts decreasing again. However, the wave speed of both branches Gt and Ht
might asymptote to some value as the Reynolds number tends to infinity.

The difference in the wave speed between using 64 modes instead of 32 is of the order
of 1%. This causes the Reynolds Number at which the wave speed first changes sign to be
slightly reduced from 2/, = 5.924 to 2/Q. = 5.918.

5.7 Secondary Bifurcations to Three-Dimensional Flows

As noted in section 5.1, there are three-dimensional solutions that bifurcate directly from
the shear flow solution. As we continue along branch G or Gt, we find other bifurcations

to three-dimensional flows, with either one or two waves in the z direction.
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Figure 5.16: Streamfunction: Branches G (Left) and Gt at /Q, = 2.30,3.00,5.00, From
Top to Bottom
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Figure 5.17: Streamfunction: Branches H (Left) and Ht at Q/Q, = 2.20,3.00,5.00, From

Top to Bottom
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Figure 5.20: Streamfunction (Top) and Vorticity: Branch Gt, 2/Q, = 5.924
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Figure 5.21 shows the slight difference between the two three-dimensional flows, labeled J
and Jt, with one wave in the z direction that originate from branches G and Gt respectively.
The difference in the vortex sizes of these two solutions originates in the difference in the
branches from which they bifurcate, as shown in figure 5.16.

Also we found similar solution branches M and Mt that have two waves in the z direction.
A solution from branch M is shown in figure 5.22. Additionally we find that the three-
dimensional branches Jt and Mt that bifurcate from the two-dimensional travelling wave
branch Gt are also travelling wave solutions. Figure 5.23 shows the wave speed of these
three-dimensional travelling wave branches, along with the average wave speed of a periodic
branch Wt which is described in the next section.

It is seen in figures 5.21 and 5.22 that these solutions contain vortex tube structures.
We conjecture that these tubes are the beginning of the worms that are present at higher
Reynolds numbers in turbulent flow. During this transition the solution goes though many
bifurcations which shear and stretch the vortex tubes into worms.

Strangely on branches H and Ht, which differ from branch G and Gt only by the number
of waves in the x direction, we did not find any bifurcations to steady three-dimensional
flows. We believe that this phenomenon is similar to the behaviour along the shear flow
branch where there are only a finite number of bifurcation points, and at the higher aspect
ratios the number of bifurcation points decreases. It would be interesting to follow the

three-dimensional bifurcation points on branch G as the aspect ratio is changed.

5.8 Periodic Solutions

As the Reynolds number is increased further, we encounter Hopf Bifurcations which yield
time periodic solutions. These branches are continued by finding the fixed point of a
Poincare map as described in section 3.6.3. To compute this Poincare map we use the second
order time-stepping method described in section 3.4. Thus only second order accurate so-
lutions result. However, increased accuracy is achieved by using Richardson extrapolation,
as shown in table 5.4.

We have followed two two-dimensional periodic solutions, V and Wt, that arise from
Hopf bifurcations on branches H and Gt respectively. They are shown in figures 5.25 and

5.26. Figure 5.24 shows how the period of the solution varies along these branches. We have
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AVARANANAW N ANAWAWAN A A A W)

LT

Branch M at 2/, = 5.50

At Norm Period Error Extrapolated
1/10 | 0.555066395533 | 13.3497703977 | 2.96 x 1072

1/20 | 0.555046581214 | 13.3276095830 | 7.42 x 1073 | 13.3202226448
1/40 | 0.555041916099 | 13.3221653154 | 1.98 x 1073 | 13.3203505595
1/80 | 0.555040267633 | 13.3206589615 | 4.71 x 10~* | 13.3201568435
1/160 | 0.555039944093 | 13.3203081731 | 1.21 x 10~* | 13.3201912436
1/320 | 0.555039853934 | 13.3202176506 | 3.02 x 1075 | 13.3201874764

Table 5.4: Convergence of Period With Time-step on Branch V at ©/Q, = 4.50
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Figure 5.23: Wave Speed vs. 2/,

not followed any other periodic branches resulting from any of the other Hopf bifurcation
points because we are unable to switch to them as they are unstable.

Branch Wt is a periodic travelling wave solution. During one orbit the solution shifts
horizontally, and this wave speed is shown in figure 5.23. Furthermore, we find that branch
Wt undergoes a period doubling bifurcation at /Q, =~ 6.1, the result of which is shown
in figure 5.27. The small effect of the period doubling bifurcation can be observed by
comparing the vortex sizes of the ¢ = 0.0 and ¢ = 37.5 pictures which are taken at the same
phase in the orbit.

Additionally, there are three-dimensional time periodic branches. We follow the branch
bt that bifurcates from branch Jt, figure 5.21. Figure 5.28 shows the two extremities of the
movement of the vortex tubes for this periodic solution.

We find that the velocity of the travelling wave for periodic solutions on branch bt,
unlike all other travelling wave solutions, is no longer in the x direction but has a small
component in the z direction as well. Unfortunately, we are unable to follow this branch

far, since it becomes unstable quickly and RPM has trouble in maintaining convergence.
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Figure 5.25: Streamfunction: Branch Wt at 2/, = 8.80,¢ = 0.0, 6.0, 12.0, 18.0, 24.0, 30.0.
Period=36.0113, dt=0.1
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Figure 5.26: Streamfunction: Branch V at Q/Q, = 5.00,¢t = 0.0,2.5,5.0,7.5,10.0,12.5.
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Figure 5.27: Streamfunction: Branch Xt at Q/Q. = 9.30,¢ = 0.0,12.5,25.0, 37.5, 50.0, 62.5.
Period=75.1436, dt=0.1
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5.9 Chaotic Flow

Although we are unable to follow chaotic flow, we know that it occurs due to many Hopf
bifurcations. The instantaneous flow shown figure 5.29 was obtained by integrating the
partial differential equation in time; we did not follow the many Hopf bifucations to reach
this flow. This figure shows how the vortex tubes have been altered by those many Hopf
bifurcations. Kolmogorov flow at high Reynolds numbers has been studied by Borue and
Orszag [7]. They demonstrate that the flow is isotropic on small scales.

This flow is used in the next chapter to compare the statistics obtained from the other

branches we have followed.

Figure 5.29: Vorticity Isosurface: Chaotic Flow at ©/Q. = 20.0

We did not observe the regions of meta-stable chaotic flow that were found by Platt et
al. at relatively low Reynolds numbers in the range 4.47 < 2/Q, < 4.71. Their chaotic flow

appears to originate from branch V; however, since we found branch V to be stable until
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Q/Q, = 5.0, we believe that they were observing transient flow.
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Chapter 6 Comparison of Kolmogorov Flow with

Turbulence Calculations

Turbulence is said to occur when the kinematic viscosity of a fluid is sufficiently small so
that there are observed apparently random small scale fluctuations in the velocity field. We
compare the statistics of our steady state flows with those from turbulence calculations. The
macroscopic difference between these two types of flows is that the steady state branches
we have found are very structured.

A major difference to note while comparing these flows is that turbulence calculations
are typically done with an isotropic forcing, whereas Kolmogorov flow has an anisotropic
forcing.

The statistics referred to in this chapter as “Chaoctic Flow” are the statistics from the
instantaneous flow shown in figure 5.29. The “Chaotic Flow” does not give good statistics
of turbulent flow; however, it serves as a useful comparison between our flows and turbulent
ones. To obtain good statistics of turbulent flows, the averages need to be computed over

many eddy turnover times.

6.1 Taylor Reynolds Number

There are two methods for computing the Taylor Reynolds number: by using the longi-
tudinal velocity correlation function or the energy spectrum function. In this section we
consider the use of the longitudinal velocity correlation function. The energy spectrum
function is considered in the following section.

The statistics of the flow are defined using average values of the appropriate quantities.

We define @ to be the spatial average velocity of the flow:

_ 1/
U= — udV. 6.1
v/ (6.1)

With this averaging our flow is homogeneous, although it is not isotropic since our forcing

is only in one direction.
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We calculate this average numerically using the trapezoidal rule:

(6.2)

_ 1
TSR, o

Mz, My,M2

We note that using the trapezoidal rule on periodic functions with equally spaced grid
points yields spectrally accurate results.
We use this definition of the average to compute the various statistics of our flows. The

root mean squared velocity v’ is defined as

"=Vl = L u2dV;
o = Va2 ’/IVI/V 24V; (6.3)

and the longitudinal velocity correlation function in the x-direction is

f(r)= %—Q (6.4)

u
Due to our anisotropic forcing, we are also able to define longitudinal velocity correlation
functions in the y and z-directions. In the infinite domain the correlation tends to zero
as the separation tends to infinity; however, in our case this does not occur due to the
periodicity of our domain. To get accurate results in the periodic case, it is desirable that

the correlation is small when the separation is not close to being a multiple of the period.

The Taylor Reynolds number is defined as

>

!
Ry = 22, (6.5)

v

where the Taylor Microscale A is defined by

1
A= - . 6.6
2 (0) o0

In our system the kinematic viscosity v is equal to 1/, and therefore we calculate the

Taylor Reynolds number as

Ry = u/AQ. (6.7)
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Recall that due to the anisotropy of our flow we define three different Taylor Reynolds
numbers, one in each of the coordinate directions.

In infinite domains it is also possible to define an integral scale:

L= /0 f(r)dr. (6.8)

This measures the linear extent of the region within which velocities are appreciably corre-
lated. However, this definition does translate into the case of periodic domains. In the next
section we use the Energy Spectrum function to define an integral scale.

The velocity correlation for the two-dimensional branch Gt at ©/Q, = 20.0 is shown in
figure 6.1. The correlation can be compared with the figure 6.2, which shows the stream-
function of that solution. We note that the longitudinal velocity correlation function in the
y-direction stays close to unity. The Taylor Reynolds numbers computed for all the flows

are listed in table 6.1.
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Figure 6.1: Longitudinal Velocity Correlation: Branch Gt, 2/Q. = 20.0

The velocity correlation for the two-dimensional branch Ht at ©/Q, = 100.0 is shown
in figure 6.3. The streamfunction of this solution is shown in figure 6.4. This flow has a

substantially lower velocity correlation compared to branch Gt.
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Figure 6.3: Longitudinal Velocity Correlation: Branch Ht, Q/Q. = 100.0



In figure 6.5 we show the correlation on the three-dimensional branch Mt, see figure 6.6,
at Q/Q, = 10.0. We note that compared to branch Gt, which branch Mt bifurcates from,

the correlation for this branch is significantly lower. Furthermore, the Chaotic flow has an
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X

Figure 6.4: Streamfunction: Branch Ht, /Q. = 100.0

even smaller correlation, as can be seen in figure 6.7.

In table 6.1 we list the Taylor Reynolds numbers for these various flows. Although
there are concerns about the accuracy of this method, given that we retain a large degree

of correlation, these numbers are in good agreement with those obtained from the Energy

Spectrum function; see table 6.2.

Table 6.1: Taylor Reynolds numbers computed from the Longitudinal Velocity Correlation

Function

Branch Gt | Branch Ht | Branch Mt | Chaotic
Q/Q, 20.0 100.0 10.0 20.0
Ry x direction 33.602 70.897 18.427 21.030
R, y direction 80.260 79.231 17.736 13.514
R) z direction - - 1.198 7.622
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Figure 6.7: Longitudinal Velocity Correlation for Chaotic Flow

6.2 FEnergy Spectrum

The Energy Spectrum function is also to determine the Taylor Reynolds number of the
flow. On an infinite domain the Energy Spectrum function E(k) is a continuous function.
However, we follow the standard approach for periodic domains and group the wavenumbers

to get

E(k) = % > ug | (6.9)

k—1/2<|kl<k+1/2

Since our Taylor Reynolds number is too low, we are unable to observe the Kolmogorov
scale that describes the scaling of the Energy Spectrum function in the inertial range.
Using the Energy Spectrum function we are able to compute various quantities of the

flow. The derivations of these equations can be found in Batchelor [5]. The root mean

b (2%
W = ,/3/0 E(k)dk. (6.10)

Note that due to the grouping of the wavenumbers, we obtain a different value for the root

squared velocity is equal to
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mean squared velocity when computing it from the Energy Spectrum function rather than

directly from the solution, in 6.3.

We can use the Energy Spectrum function to define two different length scales, the

integral scale L:

31 [ kLE(k)dk
o0

L= X E(k)dk

and the Taylor microscale A:

v=. /5 0°° E(k)dk
- f0°° K2E(k)dk
Now in the same manner as before, we define the Taylor Reynolds number by
Ry = u' )\,

where the kinematic viscosity is equal to 1/4.

Also we can define a Reynolds number based on the integral scale:

Ry =4 LQ.

(6.11)

(6.12)

(6.13)

(6.14)

The energy spectrum function for branches Ht at /Q, = 100.00, Mt at Q/Q, = 10.00

and Chaotic flow are shown in figure 6.8. In table 6.2 we show the Reynolds numbers

obtained from those Energy Spectrum functions. Interestingly, we find that the Taylor

Reynolds number of the Chaotic flow is smaller than that of branch Mt. This is due to the

smaller structures in the Chaotic flow.

Branch Gt | Branch Ht | Branch Mt | Chaotic

Q/Q, 20.0 100.0 10.0 20.0
u’ 0.2629 0.1635 0.2702 0.1701
A 1.4469 0.7401 0.9041 0.5840
L 2.2252 0.9821 1.7626 0.8356
R 43.036 68.454 13.821 11.236
Ry 66.186 90.843 26.945 16.077

Table 6.2: Reynolds Numbers Computed From the Energy Spectrum Function
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Figure 6.8: Energy Spectrum: Branch Ht, Q/Q, = 100.0, Branch Mt 2/Q, = 10.0 and
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6.3 Distributions of Various Quantities

We now look in detail at the distributions of various quantities in the flows. Due to the
number of unstable eigenvectors on the three-dimensional branches, we were unable to follow
them to as high a Taylor Reynolds number as would be desired.

First we consider the distribution of the longitudinal velocity gradients. We define the

nth-order skewness or, when n is even, flatness in the x-direction F}? to be

R.l&.
s

. (&)
FP = W (6.15)
dz

The skewnesses and flatnesses in the y and z directions are defined similarly.

In three-dimensional isotropic turbulent flow the skewnesses are negative, while the
flatnesses are positive. In two-dimensional flow the continuity equation implies that the
two skewness in the x and y directions are of equal magnitude but opposite sign. We see in
the following tables that the three-dimensional flow also has some positive skewness values;
however, they change sign as the flows become more chaotic.

In figures 6.9 - 6.11 we plot flow statistics for the two-dimensional flow of branch Ht at



/9. = 100 (solid line), the three-dimensional flow of branch Mt at /€, = 10.0 (dashed
line), and the chaotic flow shown in figure 5.29 (dotted line). Following the example of
Jiménez, the independent variables are scaled by the root mean squared vorticity «'.

The probability density function of the longitudinal velocity gradient in the x-direction
is shown in figure 6.9. The moments of the distribution of the two-dimensional flows are
listed in table 6.3, along with those obtained by Jiménez at Ry = 62. The large discrepancy
in this table is due to our results being for two-dimensional solutions, and we see better

agreement in the later tables when we compare three-dimensional solutions.

Figure 6.9: One-Dimensional Probability Density Function for the Longitudinal Velocity

Gradient

Table 6.3: Comparison of Turbulence Statistics for Two-Dimensional Flows: Branch Gt at

Probability Density Function
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1

Branch Ht

{  Chaotic Flow

0
(dw/dx)/w’

Jiménez | Branch Gt | Branch Ht
R 61.1 43.036 68.454
—F3 0.495 0.09846 0.2475
Fy 4.6 3.593 2.666
- Iy 8.0 0.9257 1.436
Fy 55 18.160 9.784

Q/Q. = 20.0 and Branch Ht at Q/€Q, = 100.0

In tables 6.4 and 6.5 we compare the skewnesses and flatnesses of the three-dimensional



104
branch Mt and Chaotic flow with those found by Jiménez for turbulent flow. The skewness
can also be observed in figure 6.9, especially for the chaotic flow, by noting that the curves
are not symmetric since they extend further out to the right on the graph.
Although our Taylor Reynolds number is lower than that of Jiménez, we can still see
that our solutions are non-Gaussian, and the magnitudes of the skewnesses and flatnesses
are approaching those observed in turbulent flow. We note that the affect of the anisotropic

forcing is reduced in the Chaotic flow.

Gaussian | Jiménez | Current x | Current y | Current z
Ry 35.1 18.427 17.736 1.198
—F3 0 0.490 0.2847 -0.2238 0.006644
Fy 3.0 4.2 3.159 3.310 3.519
—F5 0 6.5 2.707 -1.896 0.4445
Fy 15 40 15.466 17.095 19.575

Table 6.4: Comparison of Turbulence Statistics for Branch Mt at /Q. = 10.0

Gaussian | Jiménez | Current x | Current y | Current z
Ry 35.1 21.030 13.514 7.622
—F3 0 0.490 0.5220 0.06254 0.2333
Fy 3.0 4.2 3.674 3.471 3.250
—F5 0 6.5 5.528 0.9849 2.370
Fy 15 40 26.271 21.143 19.360

Table 6.5: Comparison of Turbulence Statistics for Chaotic Flow

The vorticity histogram, figure 6.10, shows that our steady state solutions have a larger
region with high vorticity than the chaotic flow that we are comparing our data with. This
appears to be contrary to the findings of Jiménez who shows that as the Taylor Reynolds
number of the turbulent flow is increased, the histogram extends further, indicating larger
regions of high vorticity.

In figure 6.11 we show the histogram of the volume fraction for the strain. Unlike
the vorticity histogram, this histogram behaves in the manner observed by Jiménez. The
volume occupied by large strain forces increases as the flow becomes more chaotic.

In figure 6.12 we show the joint probability densities of vorticity verses strain for branch

Mt and chaotic flow. The density contours in these joint probability density functions are
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Figure 6.10: One-Dimensional Histogram of the Volume Fraction Occupied by Points Above
a Certain Threshold of Vorticity for Branch Mt, 2/Q, = 10.0, and Chaotic Flow
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spaced logarithmically by a factor of 10.
We note the large difference between these two plots. Branch Mt extends further in
vorticity direction; however, the strain is lower than that of the chaotic flow. Also branch
Mt drops off much faster than chaotic flow, and we fail to observe the tails on probability

density functions that are present in high Taylor Reynolds number turbulent flows.
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Mt (Top) and Chaotic Flow. Density Contours Are Spaced Logarithmically by a Factor of
10.
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Chapter 7 Flow Between Concentric Rotating
Cylinders

We consider the non-dimensionalized incompressible Navier-Stokes equations, which in

cylindrical coordinates are

%Jr(u.V)u—vr—z:—%%—%(VQ -%—%g—g), (7.1
%+(uV)v+yE——%—g—§+%<V2 +%—g-g :2) (7.2)
%q—tg—i-(uV)w:—%-l-%VQ , (7.3)

where
(W) = u% + g% + w;%, (7.5)

We look for solutions of these equations on a domain between two concentric rotating
circular cylinders. This domain is defined with two aspect ratios, the ratio of the cylinder

radii, n, and the ratio of the gap width to the axial wavelength, I', yielding

i 1
=——<r{—= .
Rl 1_77_..7.__1_,'7 R?a (77)
0<6<2n, (7.8)
0<z<T (7.9)

We assume the ratio of the angular speed of the outer cylinder to the inner cylinder is
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given by w. On the cylindrical surfaces, r = Ry, Ro, we impose no slip boundary conditions:

uw(R1,0,2) = u(Re,0,2) =0, (7.10)
v(R1,0,2) =1, v(R2,0,2) = w, (7.11)
w(R1,0,2) = w(Ry,0,2) =0, (7.12)

where 0 < 8 < 27 and 0 < z < T. In the 6 and z directions, we have periodic boundary
conditions.

Throughout this chapter we set n = 0.875, I' = 2.54 and w = 0. This allows us to
compare our results with the experimental work of Coles [9], and the numerical results of
Schréder and Keller [30].

An exact solution for this system when w = 0 is Couette flow:

u=w=0, (7.13)
n R2 r
— ke 14
v 1-— 7’]2 ( T R2>, (7 )
dp  v?
- (7.15)

7.1 Numerical Implementation

We use the same numerical method of solving the linear system in Newton’s method as
described in chapter 3 to compute Taylor-Vortex flows. However, the discretization and
reduction from a DAE to an ODE is altered slightly to take into account the non-periodic
radial boundary conditions.

We improve efficiency by computing solutions on the smaller domain:

0<0<Z,  geN (7.16)
q

on which periodic boundary conditions are imposed. The advantages of doing this are
that we require less azimuthal modes to get an accurate solution of a flow that has ¢ waves
around the cylinder, and there are fewer bad eigenvalues for RPM to detect when computing
these solutions. Furthermore, it also allows us to obtain solutions similar to existing ones,

but with a different number of waves around the cylinder, by numerically continuing in g.
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During this chapter the number that we append to references of Spiral and Wavy Taylor
Vortex flows is ¢ which is equal to the number of waves the solution has around the cylinder.

We approximate the velocity and pressure fields with finite Fourier series in the az-
imuthal and axial direction. The radial direction is discretized using finite differences rather
than Chebyshev polynomials since they are simpler to implement and they impose a less
stringent time step criterion.

We introduce N, equally spaced points {r,,} in the radial direction at which we approx-
imate the velocity and pressure fields. Furthermore, we use Ny and N, basis functions in
the azimuthal and axial directions respectively to approximate the velocity and pressure

fields. This yields the expansion

u(rp,0,2) = NglNz Z Bko, e Fo0e a2 (7.17)
kg k2
where —Nyp/2 < kg < Ng/2, and —N,/2 < k, < N, /2.
The approximations to radial derivatives use centred finite differences in the interior.
At the boundaries second order one-sided differences are used. The approximations at the
inner boundary are

Ou  —3up + 4uy — ug 0%y _ —Tug +8u; —uy

Or 2Ar ’ or? 2Ar? ( )

The approximations at the outer boundary are similar.
The azimuthal and axial derivatives are computed in the same way as described in
chapter 3. The non-linear terms are evaluated using collocation as described there.

Using these approximations the terms in the r-momentum equation, excluding the pres-

sure, are
2. N 2 - .
[ ok, = l a unk9kz launk(?kl _ _IE._Q_,a kok, — kz,a ok, — unkokz _+_ szeﬁ ok
nreR: TR or? r Or p2 TR z Tnken: r2 p2 THReR:
du 1 Ou

U 1
— col(u, E)nkﬁkz — ECOI(U’ %)nkakz — col(w, E)nkekz + acol(v,v)nkekz. (7.19)

The terms in the other momentum equations and the continuity equation are evaluated

similarly.
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7.1.1 Integrating the Continuity Equation

We use the continuity equation to compute the radial velocity. For each pair of az-
imuthal/axial wavenumbers, we have a first order boundary value problem; however, there
are two boundary conditions.

We consider different methods of solving this boundary value problem. Firstly we use
centred differences which where also used by Keller and Von Sosen [19]. Centred differences

yield the following discretization of the continuity equation:

Unt1,kk, — Un—1,kgk. + Unkgk, . 1kgOnkgk, ik, = 0. (7.20)
2Ar o Tn 6%
We note that with centred differences we are able to enforce both boundary conditions,
o kek, = 0 and 4w, gk, = 0. The matrices resulting from this discretization are non-
singular, but they become more ill-conditioned as the resolution is increased.
By integrating the boundary value problem from one boundary using one-sided differ-

ences, we get the trapezoidal rule:

Tn+1Un+1kok. — Tnlnkok, k6 (Ont1 kok, + Vnkgks) + itk (Wnt1 kgk, + Wnkgk,)

=0. (7.21
Tn—}—l/? Ar 2Tn+1/2 2 ( )

This integration does not enforce both boundary conditions. However, we can integrate
from both boundaries which yields two values for the radial velocity: w;(r) and u,(r), the
radial velocity integrated from the inner and outer boundaries respectively. We consider
the cases when in the interior we take either u;(r), uo(r), their average (u;(r)+ uo(r))/2, or
a weighted average [(r — ro)u;(r) + (r — r3)uo(r)]/(ro — r;). At both boundaries we always
set the radial velocity equal to zero.

Tables 7.1-7.3 show the relative errors of the different methods. The exact solution in
table 7.1 is Couette flow (7.15), while in tables 7.2 and 7.3 the ’exact’ solution is the Richard-
son extrapolation of two high resolution numerical solutions. The different discretizations
also have different constraints on the time step we can take while still maintaining stability.

From these tables we observe that using the one-sided average method to calculate the
radial velocity gives the smallest error, particularly with regard to the wavespeed of the
wavy Taylor vortices. For Couette flow all the 2-Norm errors are the same because the

radial velocity is zero.
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Method 2-Norm Norm Error

Exact Solution 0.566993369875
Centred Differences 0.567147904071 | 1.55 x 10~
One-Sided Averaged 0.567147904071 | 1.55 x 10~*
One-Sided Weighted Average | 0.567147904071 | 1.55 x 1074

Table 7.1: Comparison of Different Methods for Integrating the Continuity Equation for
Couette Flow, 32 Radial Points, Reynolds Number=150

Method 2-Norm Norm Error

"Exact’ Solution 0.553776604290
Centred Differences 0.555266256559 | 1.49 x 103
One-Sided Averaged 0.554255692691 | 4.79 x 10~*
One-Sided Weighted Average | 0.555544124990 | 1.77 x 1073

Table 7.2: Comparison of Different Method for Integrating the Continuity Equation for
Taylor-Vortex Flow, 32 Radial Points, Reynolds Number=150

Method 2-Norm Wavespeed Wavespeed Error
"Exact’ Solution 0.548840092843 | 0.0619259124247
Centred Differences 0.551444646295 | 0.0626897820008 7.64 x 1074
One-Sided Averaged 0.549163307741 | 0.0619635860646 3.77 x 1072
One-Sided Weighted Average | 0.551715796450 | 0.0625491778658 6.23 x 10~*

Table 7.3: Comparison of Different Method for Integrating the Continuity Equation for

Wavy Taylor-Vortex-4 Flow, 32 Radial points, Reynolds Number=200
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7.1.2 Computing the Pressure

As in Kolmogorov flow a Poisson equation for the pressure is obtained by taking the diver-
gence of the momentum equations (7.1)-(7.3).

The equation at each interior point in the radial direction is given by

- . . . . 2
Prtlkok: — 2Pnkgk, T Pn—Llkek: . Pnilkeks — Pn—lkok, Kb .

2 A
+ - —k
Ar? o AT T%pnkgkz 2 Dnkak,
Friikob, = Focthpr.  Fokgr, kg 4 .
= Ko A L LI re = o Gnkgk. — ikyHykgr,. (7.22)
n n

Neumann boundary conditions are obtained by requiring the r-momentum equation to

be satisfied on the boundary:

—3Pokgk, + 4D1kgk, — D2kyk ~
= z 2 = F . 7.23
SAT Okghs (7.23)

There is a similar equation for the outer boundary.

Now for each pair of azimuthal/axial wavenumbers, we have an almost tridiagonal system
for the pressure. This is solved by LU decomposition. However, when both the azimuthal
and axial wavenumbers are zero, the system is singular. For this case we set the variables
Proo equal to zero, since the # and z derivatives, which are used in the 6 and z-momentum
equations respectively, are equal to zero. Additionally the radial derivative of the pressure
is not used during our calculation, since we do not determine the radial velocity using the

r-momentum equation.

7.1.3 Order of Convergence

In table 7.4-7.6 we show that our solutions are second order accurate in Ar. Note the exact
figure in table 7.4 is computed by integrating the analytic solution (7.15), while in tables
7.5 and 7.6 we take ’exact’ solution to be the Richardson extrapolation of the two highest
resolution solutions.

We observe from table 7.6 that 32 radial points determines the wavespeed with sufficient
accuracy. In section 7.3.1 we show that our computed wavespeeds are in good agreement

with those from other studies.
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Radial Points 2-Norm Error in 2-Norm
16 0.567611244294 6.18 x 1072
32 0.567147904071 1.55 x 1074
64 0.567032007527 3.86 x 1075
128 0.567003029541 9.66 x 10~
Exact 0.566993369875

Table 7.4: Second Order Convergence for Couette Flow, Re=150

Radial Points 2-Norm Error
16 0.555755476188 | 2.0 x 1073
32 0.554255692691 | 5.2 x 10~*
64 0.553896376391 | 1.6 x 10~*
128 0.553778714431 | 3.9 x 107°
'Exact’ 0.553740160443

Table 7.5: Second Order Convergence for Taylor-Vortex Flow, Re=150

Radial Points Norm Wavespeed Wavespeed Error
16 0.550791085190 | 0.0623586172114 4.3 x 107%
32 0.549163307741 | 0.0619635860646 3.8 x107°
64 0.548920896568 | 0.0619353308347 9.4 x 1076
"Exact’ 0.548840092843 | 0.0619259124247

Table 7.6: Second Order Convergence for Wavy Taylor Vortex 4 Flow, Re=200
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7.2 Bifurcations from Couette Flow

Bifurcations from Couette flow to Taylor-Vortex flow have been calculated both computa-
tionally and experimentally.

Meyer-Spasche and Keller [27], as well as Dinar and Keller [11], calculated the bifurcation
points for many different Taylor-Vortex flows, with different numbers of vortices in the radial
and axial directions, and various aspect ratios.

In figure 7.1 we observe the use of RPM to detect bifurcation points. The small squares
represent real eigenvalues, while the small diamonds represent the real part of a complex
conjugate pair of eigenvalues. We randomly perturb the solution at the beginning of every
continuation step to break the symmetry so that RPM detects all of the bifurcation points.
The large symbols indicate the location of the bifurcation points.

Without this random perturbation RPM fails to detect those eigenvalues belonging to
eigenvectors which are orthogonal to the solution. This is due to the method we use to find
the bad subspace, which examines the iterates of the time-stepping iteration. Therefore, if

an eigenvector is not present in the time-stepping iteration, it will not be detected by RPM.
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Figure 7.1: Eigenvalues for Couette Flow
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Figure 7.2: Norm vs. Reynolds Number for Taylor Vortices and Spiral Vortices Bifurcating
from Couette Flow

Figure 7.1 shows one real eigenvalue appearing at about Re = 124. This agrees with
the bifurcation diagram, figure 7.2, where the Taylor-Vortex flow branch bifurcates from
the Couette flow branch at Re ~ 124. This eigenvalue was not observed by RPM before it
became unstable because at each step we converged to the solution before it was necessary
to add that eigenvector. A second eigenvalue appears three continuation steps later. This
is the second of the eigenvalues that correspond to the bifurcation of Taylor-Vortex flow.

Additionally there are bifurcations to Spiral Vortices. In experiments these branches are
only observed for counter-rotating cylinders, since they are unstable when the outer cylinder
is stationary. The spiral vortices bifurcate when two equal pairs of complex conjugate
eigenvalues cross the imaginary axis. There are two pairs due to the translation invariance of
the solution in the azimuthal and axial directions. The spiral vortex branches are travelling
wave solutions. As discussed in section 5.6, the angular speed, w, of a bifurcating travelling
wave branch can be determined from the imaginary component 3 of the eigenvalue using

BL
w= P

= .24
= (7:24)
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where L is the wavelength of the travelling wave solution. In our case when there are k
waves around the cylinder L = 2x/k, we have

B
.

w =

(7.25)

The bifurcating branches in figure 7.2 are not shown to join the Couette branch, because
the Recursive Projection Method fails to give convergence when the eigenvalues of the fixed
point iteration are too near to unity. However, we are able to continue close enough to
the bifurcation points to observe that the eigenvalues in figure 7.1 do not change sign at
the same location as we find the bifurcations points. This is due to the inaccuracy of the
unstable subspace of RPM.

The other eigenvalues that can be seen in figure 7.1 correspond to bifurcation to Spiral
Vortices with larger pitch angles, and to Taylor Vortices with more vortices in the axial
direction.

As shown in table 7.7, the wavespeed estimated using (7.25) is in reasonable agreement
with the wavespeed observed from the numerical solution. The accuracy of the predicted

wavespeed is limited by the accuracy of the invariant subspace of RPM.

Branch Jé] Estimated Wavespeed | Observed Wavespeed
Spiral-1 | 0.0687 0.0687 0.0684
Spiral-2 | 0.1388 0.0694 0.0688
Spiral-3 | 0.2088 0.0696 0.0693

Table 7.7: Comparison of Predicted and Computed Wavespeeds for Spiral Flows

The difference between Taylor-Vortex flow and Spiral-Vortex flow is shown in figure 7.3.
In this two-dimensional projection of the velocity field of the spiral flow, the bottom vortex
is a sink while the top vortex is a source.

In figure 7.4 we show the pitch angles for different spiral flows. For each spiral branch
there is another similar branch that has the spirals going up the cylinder rather than down.

Following Moulic and Yao we observe, see figure 7.5, that the spiral vortex solutions

have a net axial flow of fluid. This is defined as

T 2 Ro
/ / / w(r, 0, z)drdfdz. (7.26)
o Jo JR
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Figure 7.5: Net Axial Flow of Fluid for Spiral Vortices

7.3 Bifurcation to Wavy Vortices

As the Reynolds number is increased there are various symmetry breaking Hopf bifurcations
from Taylor Vortex flow, that produce travelling wave solutions. The difference between
these bifurcating branches is the number of waves around the cylinder, as shown in figure
7.6. Figure 7.7 shows how the wavy flow, with period #/2, varies around the cylinder.
Figure 7.8 shows that there are vortex tubes in the Wavy Taylor Vortex flow. These tubes
remain attached to the walls of the cylinder.

As in the previous section, we again use RPM to detect the bifurcations to wavy vortices.
This can also be done while continuing along the Taylor-Vortex and the Spiral-Vortex
branches.

We find that there are many Hopf bifurcations along the Taylor-Vortex branch. They
each correspond to the bifurcation of a Wavy Taylor Vortex solution branch. The bifurcation
diagram for these branches is shown in figure 7.9, while table 7.8 lists the locations of the
bifurcation points.

In figure 7.10, we observe that initially after the bifurcation point the wavespeed along
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Figure 7.8: Vorticity Isosurface for Wavy Taylor Vortex 1 Flow, Re=200

Branch

Reynolds Number (to 2 d.p.)

WTV-3
WTV-4
WTV-5
WTV-6

143.91
149.41
155.61
162.53

Table 7.8: Bifurcation Points for Wavy Taylor Vortices
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Figure 7.10: Wavespeed vs. Reynolds Number for Wavy Taylor Vortex Flow
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the wavy Taylor vortex branch increases as the Reynolds number is increased. However, it
shortly reaches a maximum and starts decreasing. Experimentally and analytically it has
been shown that, as the Reynolds number is increased, the wavespeed decreases monotoni-
cally asymptoting to an 1 dependent value. However, we have not followed these branches
far enough to be able to compare with these results.

There are also Hopf bifurcation points along the Spiral-Vortex flow branches. However,
we are so far unable to follow these Wavy-Spiral flows. They are no longer travelling wave
solutions as the wavy portion moves at a different speed from the spiral flow.

Figure 7.11 shows some detail of the behaviour of the bifurcated Wavy Taylor Vortex
flow branches near their bifurcations. Branches with 3, 4 or 5 waves around the cylinder
arise from subcritical Hopf bifurcations. The bifurcating branch has a fold on it close to the
bifurcation point. However, branches with 6 (or more) waves around the cylinder come from
supercritical Hopf bifurcations. Note that for the 5 wave solution, with 32 points radially,
the fold is not detected, but with 64 radial points the fold is barely apparent.

Also note that the fold persists as we increase the resolution. In fact the difference in
Reynolds Number between the fold and the bifurcation point increases as the resolution is
increased.

The same formula used for spiral flow, (7.25), to determine the wavespeed of the bi-
furcating travelling waves, is again used to determine the wavespeed of the wavy Taylor

vortices.

7.3.1 Comparison of Wave Speeds by Various Authors

Marcus [25] claims that the best way to show the accuracy of a numerical simulation is to
compare wave speeds. So we do that with our results and those of King et al. [20], and
Schréder and Keller [30].

Table 7.9 shows that our wavespeeds agree with those found by King who discretized
radially with Chebyshev polynomials while we used finite differences. The accuracy of our
finite difference discretization can be improved by using Richardson Extrapolation. To
compare wavespeeds we multiplied ours by the inner radius to agree with their scaling.
Recall that 7 is the ratio of the cylinder radii, and ¢ is the number of azimuthal waves.

In table 7.10 we see that there is a larger difference between the wavespeed from these

calculations and those observed by Schroder and Keller. We believe our results are more
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Figure 7.11: Bifurcations to Wavy Taylor Vortex Flows

i r Re q | King | Present
0.868 | 2.40 | 458 | 6 | 0.3443 | 0.3494
0.868 | 3.00 | 458 |6 | 0.3344 | 0.3385
0.875 | 3.00 | 243.5 | 4| 0.401 | 0.4075
0.875 | 3.00 | 243.76 | 5 | 0.3893 | 0.3899
0.875 | 3.00 | 243.76 | 6 | 0.3757 | 0.3768
0.875 | 3.00 | 348.69 | 6 | 0.352 | 0.3540
0.875 | 3.00 | 459.8 | 6 | 0.342 | 0.3460

Table 7.9: Comparison of Wavespeeds with King et al. [20]
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accurate since they did not use spectral methods in the azimuthal and axial directions.

Furthermore, Schréder and Keller only used 16 grid points in the radial direction.

i T Re
0.875 | 2.54 | 180
0.875 | 2.54 | 190
0.875 | 2.54 | 201

Schroder | Present
0.421 0.4409
0.415 0.4377
0.410 0.4333

QNSO e

Table 7.10: Comparison of Wavespeeds with Schréder and Keller [30]
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Chapter 8 Conclusions

From this research we have observed that the Recursive Projection Method provides an
excellent method for performing numerical continuation on the incompressible Navier-Stokes
equations. We successfully used RPM to calculate many branches of both Kolmogorov and
Taylor-Vortex flows. Performance only depends on the structure of the eigenvalues of the
differential equation, and on the iterative method used to find the steady state solutions.
Therefore, when a good implicit method is used, the efficiency of RPM is unchanged.

Furthermore RPM provides a good basis for augmenting systems, especially with itera-
tive where the bordering algorithm is less efficient. We augmented the Navier-Stokes equa-
tions with both a pseudo arc-length and a phase condition. We observed that the phase
condition gave accurate results for the wave speed. However, the augmentation method
needs to be improved to take into account that the system being satisfied changes when
vectors are added to the unstable subspace.

We believe that turbulent flow originates from Kolmogorov flow through a series of
bifurcations. We followed a few of these bifurcating branches and observed the existence of
worm like structures in Kolmogorov flow at relatively low Reynolds numbers. We believe
these transform into the worms that are present in turbulent flow.

To provide more accurate locations of the bifurcation points the accuracy of the eigen-
values provides by RPM needs to be improved. This lack of accuracy prevented us from
explaining the hysteresis loop in the wavy Taylor-Vortex solutions which was observed by
Coles [9].

One of the drawbacks of using RPM is the number of iterations required to isolate the
unstable subspace. The current method can cause convergence problems when continuation
is started on a branch with a large number of unstable eigenvectors, or when the dominant

eigenvalues are not well separated.
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