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“Forming an embryo is the hardest thing you will ever do.  To become an embryo you had 

to build yourself from a single cell.  You had to respire before you had lungs, digest before 

you had a gut, build bones when you were pulpy, and form orderly arrays of neurons before 

you knew how to think” ~Scott Gilbert, Developmental Biology 8th ed.
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ABSTRACT 

The exciting Fibroblast Growth Factor (FGF) field lies at the crossroads of cell signaling, 

development, evolution, trafficking, physiology and human disease.  A current challenge is 

to understand the mechanisms used by this signaling pathway to accomplish its myriad 

tasks in patterning the embryo, forming organs, and maintaining systems in the adult 

animal.  My thesis work has focused on tackling this challenge in the model system of 

Drosophila melanogastor, the vinegar fly.  By examining functional domains of Thisbe and 

Pyramus, FGF ligands in the fly, we have begun to understand the properties of Drosophila 

FGFs and the way in which they may contribute to regulation of FGF signaling. 

FGF ligands in vertebrates are small molecules that bind to a corresponding receptor 

through two immunoglobulin domains.  The FGF ligands in Drosophila are predicted to be 

much larger molecules than their vertebrate homologs. Whether Drosophila FGFs bind to 

the receptor as full-length proteins or are first cleaved to smaller molecules was previously 

unknown.  My thesis work addressed this question through experiments in Drosophila 

embryos and Drosophila cell culture.  I found evidence that the N-terminal FGF-domain 

alone is capable of signaling by itself in the embryo.  In addition, experiments in cell 

culture showed that Thisbe and Pyramus are secreted as small forms, presumably as a result 

of intracellular proteolytic cleavage.  Cleaved forms for Thisbe and Pyramus were detected 

in embryonic extracts as well.  The Ths ligand is also present outside the cell as a full-

length form and this form may act to regulate the diffusion or activity of the ligand.  

Addition of the Thisbe C-terminus to the Pyramus N-terminus to make a Pyramus-Thisbe 

chimeric protein creates a protein that has reduced activity compared to Thisbe alone.  The 
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opposite Thisbe-Pyramus chimera creates a protein that has increased activity compared 

to Ths alone. 

Over the course of animal evolution the FGF superfamily has diversified in many ways.  

Understanding the mechanism of FGF signaling in Drosophila and comparing this to other 

Drosophilids, insects, and more distantly related animals will reveal the likely makeup of 

the ancestral FGF signaling system. 
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C h a p t e r  1  

[part of this chapter was published in Birth Defects Research Part C: Embryo Today as: 
Tulin S, Stathopoulos A, 2010. Extending the family table: Insights from beyond vertebrates 
into the regulation of embryonic development by FGFs. Birth Defects Research Part C: 
Embryo Today 90: 214-27.] 

INTRODUCTION TO FIBROBLAST GROWTH FACTOR 
SIGNALING 

One of the most basic needs for cells in a developing embryo is to be able to communicate 

with each other to coordinate growth and morphogenesis.  Intercellular communication is 

achieved through cell-to-cell signaling.  One type of cell signaling involves ligand 

molecules being sent from one cell and received by receptor proteins on another cell.   

 

Cell signaling by Fibroblast Growth Factors (FGF) is essential to the development and 

maintenance of animals.  From their discovery to today, researchers have continued to 

uncover the details of how FGF signaling contributes to developmental and adult metabolic 

processes.  It has become clear that FGF signaling is not limited to a few uses, but has 

many functions both in the developing embryo and the adult.  One way FGF signaling has 

adapted to these many varied roles is through the subfunctionalization of many 

homologous ligands created and lost in multiple rounds of gene and genome duplication 

and by expanding the possible ligand-receptor combinations through splice variants of both 

receptors and ligands.  Complex regulatory steps have also evolved to mediate the effects 

of FGF signaling, which is highly potent.  As more genomes are sequenced and more FGF 

superfamily members are found, the amount of structural and functional variety within the 
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family is becoming apparent and FGF signaling appears to be highly adaptable, helping to 

make possible the great variety of life forms (detailed further in Chapter 4).   

 

Historical perspective 

A prelude to the discovery of FGFs was the finding in 1939 that bovine brain extracts could 

cause proliferation of fibroblast cell lines in vitro (HOFFMAN 1940; MOHAMMADI et al. 

2005; TROWELL OA 1939).  Biochemical characterization of this mitogenic activity did not 

come for another 34 years.  In 1973, Hugo Armelin showed a factor in pituitary extracts 

could stimulate growth of 3T3 mouse fibroblast cells and he characterized the molecule as 

being thermolabile, sensitive to proteases and enhanced by hydrocortisone (ARMELIN 

1973).  In 1974, Denis Gospodarowicz purified the mitogenic factor from pituitary extracts 

and found it was also likely present at higher concentrations in brain extracts.  He termed 

this molecule Fibroblast Growth Factor and showed that with hydrocortisone, FGF could 

stimulate DNA synthesis as effectively as crude serum (GOSPODAROWICZ 1974).  Another 

important finding from these early studies was the incredible potency of FGF: the minimal 

effective dose was only 0.1 ng ml-1.  A year later Gospodarowicz and Moran found FGF 

could induce proliferation of diploid human foreskin fibroblasts and mouse fibroblast cells, 

showing that FGF lacks species specificity (GOSPODAROWICZ and MORAN 1975).  FGF 

activity was found to be due to a ~15 kDa molecule and was called basic FGF (bFGF) 

because of its high isoelectric point (GOSPODAROWICZ 1975; GOSPODAROWICZ 1978).   

Another molecule with FGF activity was also isolated from brain extracts and was called 

acidic FGF (aFGF) because of its lower pI as compared to bFGF (MACIAG et al. 1979). 
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A number of other mitogenic proteins named for the cell types they had activity on were 

subsequently found to be chemically identical to either aFGF or bFGF (BURGESS and 

MACIAG 1989; BURGESS et al. 1986; LEMMON et al. 1982; LIBERMANN et al. 1987).  More 

members of the FGF family were found using a variety of approaches and eventually a 

numbering-scheme was established in which aFGF and bFGF were renamed as FGF1 and 

FGF2, respectively.  FGF3 (INT-2) (DICKSON et al. 1984), FGF4 (K-FGF/HST) (DELLI 

BOVI and BASILICO 1987; SAKAMOTO et al. 1986), and FGF5 (ZHAN et al. 1988) were all 

discovered as oncogenes.  FGF6 was identified based on sequence homology to FGF4 

(MARICS et al. 1989).  FGF7 was found as a keratinocyte-specific growth factor (KGF) by 

classical protein purification from human embryonic lung fibroblasts and importantly, this 

study showed for the first time that FGFs are necessary for tissue homeostasis by enabling 

communication between mesenchymal and epithelial compartments (RUBIN et al. 1989).  

FGF8 was discovered as an androgen-induced growth factor (TANAKA et al. 1992).  FGF9 

was found to be able to stimulate growth of glia cells (MIYAMOTO et al. 1993).  Between 

1996 and 2003, other FGFs were found through a combination of bioinformatic tools and 

homology-based PCR: FGF10 (LU et al. 1999), FGF16 (MIYAKE et al. 1998), FGF17 (XU 

et al. 1999), FGF18 (OHBAYASHI et al. 1998), FGF19 (NISHIMURA et al. 1999), FGF20 

(KIRIKOSHI et al. 2000), FGF22 (NAKATAKE et al. 2001), FGF23 (YAMASHITA et al. 2000), 

FGF24 (DRAPER et al. 2003). FGF11-FGF14 make up a subfamily of intracellular FGFs 

that were found by searching cDNA databases for sequences with homology to the 

conserved core region of FGF (ITOH and ORNITZ 2008; LAEZZA et al. 2009; ORNITZ and 

ITOH 2001a).  It has since been found that these iFGFs are not secreted and do not bind to 

FGFR1-4, but instead to an intracellular kinase scaffold protein, islet brain-2 (IB2) 
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(COULIER et al. 1997; SMALLWOOD et al. 1996).  iFGFs can also bind to heparin with high 

affinity like the canonical FGFs, yet despite striking structural similarity, iFGFs have 

diverged toward interaction with a separate set of target proteins and do not share 

functional homology with FGFs (OLSEN et al. 2003).  Today, the FGF family represents 

one of the largest signaling families in vertebrates, with 24 known ligands in total, although 

not every member is present in every vertebrate species.  

 

The first FGF receptor (FGFR) was identified as a member of the Tyrosine Kinase family 

of receptors (LEE et al. 1989; OLWIN and HAUSCHKA 1986), and since then 4 FGFRs have 

been found in vertebrates (COUMOUL and DENG 2003a). FGFR1 is expressed almost 

exclusively in the mesoderm and is essential to mediating early developmental functions 

and organogenesis (DENG et al. 1994).  FGFR2 is detected mainly in epithelial lineages 

during gastrulation and later during organogenesis mediates reciprocal signaling between 

FGFs in the epithelium and mesenchyme.  FGFR2 mutants uncouple the reciprocal 

regulatory loop between FGF8 and FGF10 in limb development (XU et al. 1998).  FGFR3 

is expressed mainly in the central nervous system and bone rudiments where it is a negative 

regulator of bone development (COLVIN et al. 1996; DENG et al. 1996).  FGFR4 is 

expressed in the definitive endoderm and somatic myotome and cooperates with FGFR3 to 

control lung development and liver functions (WEINSTEIN et al. 1998). 

Structure of FGF ligands and receptors 

Most of the work on the structural characteristics of FGF ligands, receptors, binding to 

heparin compounds, mechanisms of dimerization and signal transduction has been carried 
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out on vertebrate FGFs 1-23 (MOHAMMADI et al. 2005).  FGF ligands share a homologous 

core domain consisting of 120-130 amino acids ordered into 12 antiparallel β-strands (β1-

β12) that are arranged into three sets of four-stranded β-sheets that fold to form a β-trefoil 

structure.  Additionally, they have variable length N- and C-terminal tails, which largely 

account for the specific biology of different FGF family members.  Most FGFs (except for 

FGF1, 2,9,16,20) have traditional signal peptides and are secreted as soluble signaling 

molecules.  Vertebrate FGFs are also known to bind to polysaccharide-protein complexes 

called heparan sulfate glycosaminoglycans (HSGAG) through the HSGAG binding site 

(HBS), located in the FGF core within the β1-β2 loop and the region between β10-β12.  

The elements of the HBS form a contiguous, positively charged surface.  Invertebrate FGFs 

are also thought to require heparin sulfate proteoglycans (HSPGs) for activity (LIN and 

PERRIMON 2000). 

FGF ligands bind to the FGFR family of tyrosine kinase receptors in an HSPG-dependent 

manner.  In vertebrates there are 4 FGFRs (FGFR1-FGFR4) which bind to the 24 ligands 

with varying degrees of promiscuity.  The structure of the FGFR consists of three 

extracellular immunoglobulin domains (D1-D3), a transmembrane domain, and an 

intracellular tyrosine kinase domain.  A unique feature of FGFR is the presence of an 

acidic, serine-rich sequence in the linker between D1 and D2, which is known as the acid 

box.  The FGF ligands bind to the D2-D3 region of the FGFR ectodomain (Figure 1).  The 

D1 and acid box are thought to play a role in receptor autoinhibition. 
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Figure 1 | Structure of Fibroblast Growth Factor receptor (FGFR) signaling. Figure 

from (BEENKEN and MOHAMMADI 2009).  The structure of the receptor-ligand-HSPG 

complex is shown, with the HSPG fitting in the “basic canyon” and the FGF ligands 

binding to both the HSPG and the FGFR in between the D2 and D3 domains.  The 

intracellular domains of FGFR are shown as well along with the major downstream 

signaling pathways utilized, which will be covered in the next section.  The FGF ligands 

are shown by gold ribbons, the FGFR is shown in blue, green and red ribbons, and the 

HSPG is represented with a ball-and-stick model. 
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A functional FGF-FGFR signaling unit consists of two 1:1:1 FGF-FGFR-HSGAG 

complexes that are bound together into a dimer.  The ligand of each complex binds to both 

receptors to allow interaction with each other through a region in the D2 domain.  The 

HSGAG incorporates into the dimer through a positively-charged “basic canyon” and 

contributes to dimerization by binding both the ligands and the receptors (Figure 1) 

(BEENKEN and MOHAMMADI 2009).  Additionally, HSGAGs stabilize FGFs against 

degradation, act as a storage reservoir, and can affect the radius of ligand diffusion 

(HÄCKER et al. 2005).   

Dimerization of FGFR allows the cytoplasmic kinase domains on A loop tyrosines to 

become activated.  A loop phosphorylation results in phosphorylation of tyrosines in the C 

tail, the kinase insert and juxtamembrane regions (Figure 1) (MOHAMMADI et al. 1996).  

 

Signal Transduction Pathways Downstream of FGFR 

The phosphorylation of FGFRs triggers the activation of cytoplasmic signal transduction 

pathways.  In addition to the catalytic core domain, the cytoplasmic domain of FGFR 

contains several regulatory sequences.  The juxtamembrane domain of FGFRs is 

considerably longer than that of other receptor tyrosine kinases, and this region contains a 

highly conserved sequence that serves as a binding site for phosphotyrosine binding 

domains of the two members of the fibroblast growth factor receptor substrate 2 (FRS2) 

family of docking proteins: FRS2α and FRS2β (ESWARAKUMAR et al. 2005; THISSE and 

THISSE 2005).  FRS2α contains four binding sites for the growth factor receptor-bound 
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protein 2 (Grb2), an adapter protein, and two binding sites for src homology protein 2 

(Shp2), a protein tyrosine phosphatase.  FGFR-stimulation leads to tyrosine 

phosphorylation of Shp2 resulting in complex formation of additional Grb2 molecules.  

Grb2 and its associated nucleotide exchange factor son-of-sevenless (Sos) are thus 

recruited directly and indirectly via Shp2 upon phosphorylation of FRS2α (BÖTTCHER and 

NIEHRS 2005).  Grb2/Sos recruit and activate the Ras GTPase, which then activates the 

mitogen-activated protein kinase (MAPK) pathway.  The final protein in the MAPK 

pathway is extracellular signal-regulated kinase (ERK) and it enters the nucleus to activate 

transcription factors that will affect FGF target genes.  One of the transcription factors used 

by FGF signaling in Drosophila is the Ets transcription factor.  FRS2α can also be used to 

degrade FGF receptor molecules to result in signal attenuation and fine-tuning of activity 

by recruiting negative regulators (ESWARAKUMAR et al. 2005).  FRS2α/Grb2 can form a 

ternary complex with Cbl, which results in ubiquitination of FGFR and FRS2α.  Cbl is a 

multidomain protein that posseses an intrinsic ubiquitin ligase activity. 

The MAPK pathway is not the only pathway used by FGF signaling.  Mutational analysis 

of tyrosine766 has shown that the phosphorylation of this tyrosine residue is essential for 

complex formation with and tyrosine phosphorylation of phospholipase C gamma (PLCγ) 

(ESWARAKUMAR et al. 2005). PLCγ activation results in the hydrolysis of 

phosphatidylinositol-4,5-diphosphate (PIP2) to inositol-1,4,5-triphosphate (IP3) and the 

generation of two second messengers: IP3 and diacylglycerol (DAG).  Recruitment to the 

membrane of PLCγ is mediated by binding of the Pleckstrin homology domain of PLCγ to 

IP3 molecules.  IP3 causes a release of calcium within the cell, which stimulates GEFs that 
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activate the Rap1 GTPase. Rap1 can assist in the maturation of intercellular junctions and 

mediate adhesion through the recruitment of cadherins and integrins to the plasma 

membrane.  Signaling through the FGFR can thus result in multiple responses: cellular 

differentiation through Ras GTPase and cell adhesion/migration through PLCγ/Rap1 

(RAAIJMAKERS and BOS 2009). 

The PI3 kinase/Akt pathway can be activated three ways after activation of FGFR 

(BÖTTCHER and NIEHRS 2005).  First, Gab1 can bind to FRS2 indirectly via Grb2, 

resulting in tyrosine phosphorylation and activation of the PI3-kinase/Akt pathway via 

p85. Second, the PI3 kinase-regulatory subunit p85 can bind to a phosphorylated tyrosine 

residue of the FGFR, which was shown in Xenopus cell extracts and the in the Xenopus 

embryo where a dominant negative form of the p85 subunit interfered with mesoderm 

formation. Finally, activated Ras can induce membrane localization and activation of the 

p110 catalytic subunit of PI3 kinase. 

 

The different downstream signal transduction pathways used by FGF signaling can lead to 

specific cellular response in a cell-type dependent manner (DAILEY et al. 2005).  For 

instance, the ERK kinases are generally thought to be responsible for the mitogenic 

response of cells to FGF, while alternate MAPKs, p38 and JNK MAP kinase are usually 

associated with inflammatory or stress-response.  Further studies will be necessary to 

pinpoint which downstream pathways are used in specific contexts and to understand how 

specific ligand-receptor combinations trigger specific downstream pathways. 
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Figure 2 | Intracellular signaling pathways activated through FGFRs. Figure from 

(BÖTTCHER and NIEHRS 2005).  Receptor autophosphorylation and activation of 

intracellular signaling cascades, including the Ras/MAPK pathway, PI3 kinase/Akt 

pathway, and the PLCγ/Ca2+ pathway.  Proteins in two pathways are striped. 

FGF Developmental Functions in Vertebrates 

Research on the functions of the FGF signaling superfamily in the last 36 years has 

unveiled crucial functions of FGF signaling in developing embryos from many different 

animals.  FGFs are key regulators of developmental processes including mesoderm 

induction, gastrulation, cell migration, midbrain-hindbrain patterning, limb development, 
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heart development and bone formation.  Specific FGF ligands are produced in either 

epithelial or mesenchymal tissue and usually activate receptors expressed in the opposite 

tissue type; i.e. normally, a ligand produced in the epithelium will activate a mesenchymal 

receptor and vice versa.  Additionally, alternatively spliced receptor variants will be 

expressed in either the ectoderm or mesoderm and only respond to ligands expressed in the 

opposite germ layer. 

Gastrulation 

In the mouse, FGF4 and FGF8 are required for proper migration of epiblast cells through 

the primitive streak.  In the absence of both FGF4 and FGF8, epiblast cells move into the 

streak and undergo an epithelial-to-mesenchymal transition, but then most cells fail to 

move away from the streak.  This disruption of migration leads to the loss of embryonic 

mesoderm- or endoderm-derived tissues, but extraembryonic tissues still form (SUN et al. 

1999; THISSE and THISSE 2005). FGFR1-/- mouse mutants are also gastrulation defective 

and embryonic lethal with severe reductions in paraxial mesoderm formation and an 

expansion of axial mesoderm (CIRUNA et al. 1997; DENG et al. 1994; SUN et al. 1999; 

YAMAGUCHI et al. 1994).  FGFR1 orchestrates the epithelial-to-mesenchymal transition 

and morphogenesis of the mesoderm at the primitive streak by controlling expression of 

snail and E-cadherin (CIRUNA and ROSSANT 2001). 

FGF induction of mesoderm has also been studied in Xenopus laevis, where basic FGF 

(FGF2) was first shown to have mesoderm inducing activity equivalent to the ventrovegetal 

signal (SLACK et al. 1987).  Interestingly, in this case, heparin inhibits the binding of bFGF 

to its receptor and reduces the effectiveness of bFGF as an inducer.  More recently, the 
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specific roles of different splice forms of FGF8 on mesoderm induction were examined. 

FGF8a and FGF8b have been found to have different activities in the early specification of 

mesodermal and neural tissue in the frog.  FGF8b is a potent mesoderm inducer in both 

explants and whole embryos while FGF8a has little effect on the development of 

mesoderm.  Human FGF8b and mouse Fgf8f also had similar activities to X. laevis FGF8b 

(FLETCHER et al. 2006). 

Limb Patterning 

The development of the vertebrate limb has been very well studied and FGFs have been 

found to play key roles in the process.  Vertebrate limbs grow out from a bud of thickened 

lateral plate mesenchyme.  Three key areas are then formed with specialized growth and 

patterning functions: the AER, the progress zone and the ZPA.  The ectoderm surrounding 

the distal tip of the bud is induced by the mesenchyme to become a specialized structure, 

the apical ectodermal ridge (AER).   The mesenchyme underlying the AER is termed the 

progress zone, which contains undifferentiated precursor cells.  Additionally, proximal and 

posterior to the progress zone lies the zone of polarizing activity (ZPA), responsible for 

setting up the anteroposterior limb axis (the thumb to little finger in humans).  

Formation of limb buds and their successful outgrowth is dependent upon FGF signaling 

and a FGF positive-feedback signaling loop between the limb mesenchyme and the 

overlying ectoderm. Removal of the AER causes a cessation of growth and truncation of 

limb, resulting in a varying amount of limb structures depending on when the AER was 

removed  (SAUNDERS 1948; SUMMERBELL 1974).  This result led to an initial hypothesis 
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termed the progress zone model that described the progressive development of more 

distal limb structures.   

FGFs are the key molecules mediating the activity of the AER.  In 1993, Niswander and 

colleagues found that placing two heparin-linked FGF4 beads at the ZPA and apical 

mesenchyme, following removal of the AER, restored development of all limb structures, 

although the digits were still abnormal.  These results lead to the hypothesis that FGFs 

could induce both growth and the polarizing activity. 

FGF4, FGF8, FGF9 and FGF17 are all expressed in the AER.  Recent combinatorial 

mutant studies resulted in the loss of intermediate skeletal structures while the most distal 

and the most proximal structures remained intact.  This has led to a new hypothesis termed 

the ‘two-signal model,’ which describes limb mesenchyme initially being influenced by 

one signal (likely Retinoic Acid) that influences proximal cell fates and while the distal 

domain is established by FGF signals from the AER.  The intermediate domain would then 

form as a result of interactions at the boundary between the distal and proximal domains. 

Sonic hedgehog (Shh) is expressed in the ZPA and is thought to be responsible for 

anterior/posterior patterning.  A positive feedback loop is established between Shh in the 

ZPA and FGFs in the AER.  Shh is required for the induction and maintenance of Fgf4, 9, 

17 and the maintenance of Fgf8, and, reciprocally, FGF signaling from the AER is required 

to maintain Shh expression (DUBOC and LOGAN 2009). 
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Figure 3 | Limb Patterning.  Figure from (DUBOC and LOGAN 2009).  The zone of 

polarizing activity (ZPA) is in the most posterior position in the limb bud and expresses 

sonic hedgehog (SHH).  FGFs from the AER signal to the proximally located progress 

zone and establish a feedback loop and also signal to the ZPA.  Lhx2, Lhx9, Lmx1b are 

Lim-domain homeobox transcription factors that, along with their cofactor Ldb1, mediate 

signal integration and feedback loops in the developing limb. 

 

 

Mid-hindbrain Patterning   

Patterning of the midbrain-hindbrain (MHB) analage depends on the activity of an 

organizer located at the MHB junction, also known as the Isthmus.  In vertebrates, FGF8 is 

expressed in the MHB and is a key component of its organizing activity (CROSSLEY et al. 
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1996).  Loss of midbrain and cerebellar tissue results from a mouse with a severe 

hypomorphic allele of Fgf8 (MEYERS et al. 1998).  Conditional Cre-mediated mutants were 

subsequently used to rule out the role of FGF8 in gastrulation and it was determined that 

FGF8 in the Isthmus is part of a gene regulatory network essential for cell survival and 

cerebellum proliferation (CHI et al. 2003).  FGF17 and FGF18 are also expressed in the 

mid/hindbrain in a broader domain than that of FGF8 that includes posterior midbrain 

(MARUOKA et al. 1998).  The loss-of-function of FGF17 in the mouse results in the 

truncation of posterior midbrain and reduced proliferation of the anterior cerebellum.  Loss 

of one copy of fgf8 in an fgf17 mutant background results in an exaggerated cerebellum 

phenotype (XU et al. 2000).  Ectopic FGF8 studies in the chick showed that only ectopic 

FGF8 leads to the expression of Engrailed-2, an early marker of mes/rhombencephalic 

development, Wnt1, and Fgf8 (CROSSLEY et al. 1996).  Ectopic FGF8 can also lead to the 

expression of other marker genes: Engrailed-1, Pax2 and Pax5, and suppression of Otx2 

expression (LIU et al. 1999; MARTINEZ et al. 1999; SHAMIM et al. 1999; SHEIKH and 

MASON 1996).   

FGF8 is differentially spliced to generate FGF8a and FGF8b isoforms, which are both 

expressed at the Isthmus/MHB and they differ in only 11 amino acids that are included in 

FGFb (SATO et al. 2001).  In the chick, ectopic FGF8a causes expansion of the midbrain 

whereas misexpression of FGF8b transforms the midbrain into a cerebellum (SATO et al. 

2001).  Similarly, in the mouse, ectopic FGF8a results in expansion of the midbrain and 

ectopic expression of Engrailed2, whereas ectopic FGF8b leads to exencephaly and a rapid 

transformation of the midbrain and diencephalon into an anterior rhombomere1 fate (LIU et 
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al. 1999).  After FGF8b is induced in the presumptive rhombomere1 territory it induces 

FGF18 in the surrounding tissue.  FGF8b also maintains two negative feedback loops by 

inducing the expression of the negative feedback FGF inhibitors Sprouty1 and Sprouty2 

and repressing FGFR2 and FGFR3 (LIU et al. 2003).  Interestingly, it was also determined 

that the Fgf8b signal is 100 times stronger than the Fgf8a signal (SATO et al. 2001).  Loss-

of-function studies confirmed the relative importance of the FGF8 spliceforms and FGF8a 

mutants had no discernable defect in the midbrain and cerebellum (GUO et al. 2010). 

In Zebrafish, FGF8 is also present at the MHB and acts as a morphogen to pattern the 

midbrain.  A mutant called acerebellar in which FGF8 is missing its second exon and 

prematurely stopped, lacks a functional MHB and also lacks a cerebellum (REIFERS et al. 

1998).  Studies in zebrafish embryos showed that endocytosis is a likely mechanism 

controlling the rate of FGF8 diffusion (SCHOLPP and BRAND 2004).  Inhibition of 

internalization causes FGF8 to accumulate extracellularly, spread further, and activate 

target genes over a greater distance.  Enhanced internalization increases FGF8 uptake and 

shortens its effective signaling range.  The mechanism of FGF8 diffusion was further 

explored by tracking GFP-tagged FGF8 molecules with fluorescent correlation 

spectroscopy (FCS) as they diffuse into their target tissue (YU et al. 2009a).  The results 

support a simple source-sink mechanism as the driving force behind setting up the FGF8 

gradient where uptake by the target cells is regulated by receptor-mediated endocytosis.  

Additionally, HSPG-linked FGF8 molecules were found to diffuse slower, indicating a role 

for HSPGs in restricting the signaling range of FGF proteins. 
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Bone Formation 

Bones form through two major processes: intramembranous ossification and endochondral 

ossification.  Intramembranous ossification occurs when mesenchymal cells directly 

differentiate into osteoblasts.  All flat bones, including the calvarias bones of the skull, use 

intramembranous ossification.  In endocondral ossification, mesenchymal cells first 

differentiate into cartilaginous tissue and later the cartilage is replaced by bone.  Bones of 

the vertebral column, face, medial clavicles and the long bones of the limb are all formed 

through endocondral ossification. 

FGF signaling is capable of regulating genes at all steps of osteogenesis.  The involvement 

of FGFs in bone formation was first realized when a point mutation in the transmembrane 

domain of FGFR3, causing a dominant mutation, was found to be the etiology of 

Acondroplasia, the most common genetic form of human dwarfism (ROUSSEAU et al. 1994; 

SHIANG et al. 1994).    Missense mutations have since been found in more than 15 human 

bone disorders, from skeletal dysplasias to short stature.  FGF2, FGF9, and FGF18 are all 

found in osteoblasts. Overexpression of FGF2 in mouse causes abnormal bone formation 

and loss-of-function of FGF2 leads to inhibition of bone formation (COFFIN et al. 1995; 

MONTERO et al. 2000).  The activity of FGF signaling is dependent on the spatiotemporal 

pattern of expression of FGFRs including FGFR1 and FGFR2 which are in mesenchyme 

during condensation prior to deposition of bone matrix at early stages of long bone 

development and in cranial structures.  FGF signaling seems to positively regulate cell 

proliferation and differentiation in osteogenesis.  Additionally, FGFs can control apoptosis 
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in osteoblasts when high levels of FGF signaling can reduce apoptosis in immature 

osteoblasts and increase the total osteoblast population.   

 

Figure 4 | FGFs in Bone Development. Figure from (MARIE 2003).  Depiction of the role 

of FGFs at all stages of bone formation.  Osteoblasts develop from mesenchymal cells that 

are induced to turn on the Runx2 transcription factor and begin the transition to mature 

osteoblasts. 

 

 

Other Developmental Functions in Vertebrates 

Other developmental functions for FGFs in vertebrates have been described as well, 

including: neural induction, epidermis development, lung development, mammary glad 

development, central nervous system development, heart development, ear development, 
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kidney development, liver development, pancreas development (COLEMAN-KRNACIK and 

ROSEN 1994; DELAUNE et al. 2005; KOBBERUP et al. 2010; LAVINE and ORNITZ 2008; 

LAVINE et al. 2005; SAWADA et al. 2001; THISSE and THISSE 2005; WILKIE 2005). 

FGF Signaling in Drosophila 

In vertebrates, the large number of FGF ligands, the varied range of their activities and 

complex signaling networks have made the precise understanding of FGF signaling 

difficult.  Drosophila is a model system with reduced cellular and anatomical complexity 

compared to mammals and its genetics are very well understood and easily manipulated.  

The FGF/FGFR network is also much less complex in Drosophila, which allows for 

different insights. 

Discovery of Breathless and Heartless receptors 

The study of FGF signaling in Drosophila began with the discovery of the breathless (btl) 

FGFR gene in 1992 (KLÄMBT et al. 1992).  A second FGFR was found 4 years later in 

1996 and called heartless (htl) (BEIMAN et al. 1996; GISSELBRECHT et al. 1996).  To date, 

one ligand has been found for the btl receptor and two ligands have been found for the htl 

receptor.  This brings the current totals for the FGF family in Drosophila melanogastor to 

two receptors and three ligands.  No other ligands or receptors are predicted in the current 

genome annotation. 

Branchless ligand 

Branchless (bnl), the ligand for btl, was discovered in 1996 (SUTHERLAND et al. 1996).  

Together, bnl and btl control the branching of the developing trachea and glial migrations 
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in the developing CNS.    Bnl is expressed in clusters of epidermal cells that surround the 

branching tracheal tube.  These clusters prefigure where branches will form.  The 

expression of bnl is highly dynamic, turning off in some cells and on in others rapidly to 

accommodate the generation of secondary and tertiary branches.  It appears that bnl is a 

chemoattractive molecule that guides the formation of trachea in the correct position as 

localized misexpression of bnl can cause the formation of branches in ectopic positions.  

Studies of btl mutants also revealed a phenotype in the CNS.  In btl mutants the posterior 

pair of midline glial cells do not complete their migration toward the posterior commissure 

of the adjoining segment (KLÄMBT et al. 1992).  In both the developing trachea and the 

developing CNS signaling through bnl/btl is important for correct cell migration. 

Pyramus and Thisbe ligands 

Signaling through the htl FGF receptor was studied for eight years before the ligands for 

the receptor were found.  Traditional searches for the ligands failed due to the partially 

overlapping functions of two FGF ligands and because there was a mistake in the 

Drosophila genome annotation that omitted the first exon, which contains the FGF-

homologous domain.  One ligand for the Htl receptor was identified in a microarray screen 

for targets of the Dorsal (Dl) transcription factor present in the neurogenic ectoderm and 

was originally known as Neu4 (STATHOPOULOS et al. 2002).  Subsequent analysis of Neu4 

revealed it was most likely a ligand for Htl and an additional, related ligand was then found 

as well.  These ligands were named Thisbe (originally Neu4) and Pyramus after the 

heartbroken lovers described in Ovid’s Metamorphoses (STATHOPOULOS et al. 2004).  The 

same genes were also identified in a screen of large deficiency mutants that affect the 
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migration of the mesoderm during migration and called FGF8-like1 and FGF8-like2 due 

to their similarity to the vertebrate FGF ligand FGF8 (GRYZIK and MÜLLER 2004b).  

The htl mutant phenotype is pleiotropic but the most striking defect is the massive loss of 

heart cells as revealed by the markers Eve (antibody against the Even-skipped protein), 

DMef2 (expressed in all myogenic lineages) and Ab.3 (a monoclonal antibody recognizing 

all pericardial cells) (BEIMAN et al. 1996).  The earliest defect is a failure of the mesoderm 

to undergo its usual dorsolateral migration along the ectoderm to create a monolayer.  It is 

thought this migration is crucial to later differentiation of the mesoderm because only cells 

reaching the dorsolateral margin are able to receive the differentiating Decaplentaplegic 

(Dpp) signal from the dorsal ectoderm.  Ectopic activation of Dpp in htl mutants partially 

rescues the loss of visceral and cardiac mesoderm, as determined by expression of bagpipe 

(bap).  The bap gene is normally restricted to segmentally repeated patches of dorsal 

mesoderm, but when dpp is expressed throughout the mesoderm, bap is seen throughout 

the ventral mesoderm (GISSELBRECHT et al. 1996). 

Double mutants for thisbe (ths) and pyramus (pyr) [Df(2R)BSC25] phenocopy the htl 

mutant phenotype (STATHOPOULOS et al. 2004).  The early mesoderm, visualized with an 

antibody to the Twist protein, which marks all the mesoderm, does not migrate to form a 

monolayer, but remains in a clump after invaginating through the ventral furrow and 

forming an epithelial tube.  Df(2R)BSC25 and htl- embryos also have lost all Eve-positive 

pericardial cells at stage 11.   
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Subsequently, individual mutants for ths and pyr were generated to identify the 

individual and overlapping functions of these ligands thought to have originated through an 

ancient dipteran-specific gene duplication (KADAM et al. 2009; KLINGSEISEN et al. 2009a).   

Both ligands were found to influence mesoderm spreading, whereas pyr is the dominant 

player controlling Eve-positive cell specification in the dorsal mesoderm.  The precise 

spatial positions of the ligands were also found to be important for their function.  In 

contrast to vertebrate FGF biology where many ligands use the same receptor, it was found 

that bnl could not act in htl-dependent functions (KADAM et al. 2009). 

Specification of pericardial cells 

One of the key functions of signaling through Htl is the specification of the mesodermally 

derived pericardial cells, which are non-contractile cells that support the myocardial cells of 

the heart tube.  These cells derive from dorsal mesodermal cells that express Eve.  Each 

embryonic hemisegment contains a pair of Eve-expressing pericardial cells (EPCs) and a 

single Eve-positive dorsal somatic muscle, DA1, (FRASCH and LEVINE 1987) for a total of 

three Eve-positive cells per hemisegment.  The two EPCs come from a common 

progenitor, P2, whereas a second progenitor, P15, gives rise to muscle DA1 (BUFF et al. 

1998; CARMENA et al. 1998b).  P2 develops from cluster 2 (C2) and comprises the 

dorsalmost cells of the preC2 precluster.  The formation of EPCs and DA1 is dependent on 

multiple signaling pathways, including Wg, Dpp, EGF and FGF (FRASCH 1995; 

LAWRENCE et al. 1995; MICHELSON et al. 1998b; PARK et al. 1996; WU et al. 1995) and the 

expression lethal scute (l’sc), a neurogenic gene (CARMENA et al. 1995).   
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Previously, it was unclear if Htl was necessary for mesodermal cell fate specification or 

if it was only important for mesoderm migration. Htl was shown to play a direct role in 

mesodermal cell fate specification when a dominant negative form of Htl was expressed in 

the embryonic mesoderm and although migration was normal, there was loss of the C2 

cluster, leading to loss of Eve-positive cells (CARMENA et al. 1998a). 

The ligand thought to be primarily responsible for activation of Htl during Eve-positive cell 

specification is Pyr.  Pyr transcripts are present in the ectoderm overlying the 

differentiating mesoderm during this stage, whereas ths transcripts are not (STATHOPOULOS 

et al. 2004).  Analysis of single mutants of ths and pyr revealed that loss of pyr resulted in 

abnormal numbers of Eve-positive clusters (KADAM et al. 2009; KLINGSEISEN et al. 

2009b).  However, overexpression of both pyr and ths ectopically in the ectoderm led to 

supernumerary Eve-positive cells, indicating that although ths is not normally expressed in 

this location, it can still bind Htl in this context and affect Eve cell specification (KADAM et 

al. 2009). 

Glial cell migration and axonal wrapping in eye disc 

Within the Drosophila eye imaginal disc, FGF signaling through Htl coordinates glial 

proliferation, migration and then axonal wrapping (FRANZDÓTTIR et al. 2009).  Glial cells 

originate from a pool of central-nervous-system-derived progenitors and migrate onto the 

eye imaginal disc where they switch from glia-glia interactions to glia-neuron interactions 

and then form a glial membrane around axonal trajectories.  Htl expression is found in the 

eye disc glia and most strongly at the front of the migratory glial cell population.    Htl 

protein is expressed widely in the glia and decorates glial projections following the 
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photoreceptor axons.  A dominant-negative form of Htl or RNAi against htl caused a 

40% reduction in glial cell number, impaired migration and a lack of differentiation.   Also, 

an activated form of Htl resulted in an eightfold increase in glial cell number and also 

impaired glial migration. 

The switch from glial cell proliferation and migration to differentiation and axonal 

wrapping seems to be dependent on a switch in signaling from the Pyramus FGF ligand to 

the Thisbe FGF ligand.  Expression of pyr is seen in the eye disc anterior to the 

morphogenetic furrow and the glia, whereas ths is only expressed in photoreceptor neurons.  

A hypomorphic pyr p-element allele leads to a 50% reduction in glial cell number 

(FRANZDÓTTIR et al. 2009).  Ectopic pyr-expressing cells are able to direct glial cells to 

migrate across the morphogenetic furrow, which normally they never do.  These data 

suggest Pyr initially acts as an auto- or paracrine signal to regulate glia cell number and 

then facilitates glial migration 

Ths, on the other hand, seems to be important for stopping glial migration and induces 

differentiation and axonal wrapping.  Loss of ths results in an overmigration phenotype for 

glial cells. A reduction of neuronal ths leads to a severe differentiation phenotype where 

photoreceptor axons form abnormal fascicles and are less associated with wrapping glial 

processes.  Neuronal overexpression of Ths caused increased glial cell membrane 

formation (FRANZDÓTTIR et al. 2009).   

The key to the different signals is complex because both Pyr and Ths can cause axonal 

hyperwrapping and neuronal expression of pyr in a ths mutant eye disc rescues the glial 
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wrapping phenotype.  This is similar to the ability of Ths to cause additional Eve-

positive cells during mesoderm differentiation even though Pyr is the ligand normally 

expressed in the ectoderm overlying developing heart cells and thought to be solely 

responsible for Htl-mediated FGF signaling at that time and location in development.  

Perhaps the different ligands do have different properties but when ectopically expressed 

they are able to compensate for the loss of the other ligand. 

Specification of adult muscles 

Signaling through Htl is also important for the specification of adult muscle fibers in 

Drosophila (DUTTA et al. 2005).  Over-expression of dominant-negative Htl (UAS-dnhtl) 

in all adult myoblasts using the 1151-GAL4 driver resulted in a decrease in the number of 

muscle founder cells per hemi-segment.  Complementarily, over-expression of an activated 

form of Htl (UAS-λhtl) with the same 1151-GAL4 driver led to an increased number of 

muscle founders and consequentially, an increased number of muscle fibers in the 

abdomen.  The mechanism of localized htl activation seems to be dependent on a positive 

regulatory loop with the stumps activator and the action of inhibition by the Sprouty protein 

(see Sprouty under “Regulation of FGF signaling”). 

Recruitment of cells to developing male gonad 

Another important function of FGF signaling in Drosophila that is conserved in vertebrates 

is the recruitment of cells to form the male gonad.  In flies, bnl expression, likely controlled 

by the doublesex transcription factor, in the ectoderm-derived cells of the male gonad, 

recruits btl-expressing mesodermal cells into the disc where they transform into cells of 
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epithelial character that will eventually give rise to the paragonia and vas deferens 

(AHMAD and BAKER 2002).  In the female gonad bnl expression is repressed by the female 

form of doublesex, DsxF.  In vertebrates, FGF9 plays a similar role in the development of 

the male testis (COLVIN et al. 2001).  In the absence of FGF9, XY mice undergo male-to-

female sex reversal.  FGF9 causes the migration of the mesonephric cells, which are also 

mesodermal in origin, into the male gonad and ectopic expression of FGF9 can induce 

mesonephric cells into the female gonad.  Ectopic expression of bnl is likewise sufficient to 

cause btl-expressing cells to migrate into the female primordium of a dsx disc. 

Stumps / Downstream-of-FGF / Heartbroken 

An important member of the FGF signaling cascade in Drosophila was found by three 

independent research groups, and called Stumps (IMAM et al. 1999) / Downstream-of-

FGFR (Dof) (VINCENT et al. 1998)/ Heartbroken (Hbr) (MICHELSON et al. 1998a).  Stumps 

mutant embryos have normal determination of tracheal cell fate and cell division but 

tracheal cells do not migrate and therefore the tracheal network fails to form.  Additionally, 

in stumps mutants, the mesoderm does not spread normally on the underlying ectoderm and 

this leads to missing heart precursor cells, disrupted musculature, and an insufficient 

amount of visceral mesoderm.  These phenotypes are the combination of htl and btl 

mutants, and therefore it is thought that Stumps is required for all FGF signaling in 

Drosophila. 

Stumps is not expressed ubiquitously like other RTK signaling components including Ras 

and ERK.  The expression pattern of stumps RNA and protein is identical to the combined 

expression patterns of the two FGFRs, revealing it is only present in the cells where FGFR-
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mediated signaling will take place.  Htl and btl expression is not affected in Stumps 

mutant embryos and stumps expression is not affected in Htl and Btl mutant embryos. 

In order to position Stumps correctly in the FGF signaling pathway, activated forms of the 

receptors and activated Ras were used to see which could overcome the defects in Stumps 

mutants.  Activated Ras is able to compensate for loss of Stumps, but activated Btl cannot, 

indicating that Stumps is downstream of the FGF receptor but upstream of Ras.  A 

monoclonal antibody for the dual phosphorylated form for MAPK (dpMAPK) reveals high 

levels of activated MAPK at the leading edge of migrating mesoderm cells.  This 

expression is dependent on htl and is completely gone in htl mutants.  Activated Htl causes 

a low, uniform dpMAK signal throughout the mesoderm in htl mutants and is able to 

partially rescue mesoderm migration.  This effect of activated Htl is dependent on Stumps, 

as dpMAPK signaling is gone when Stumps function is reduced and mesoderm migration 

is not rescued.  These results are also consistent with Stumps function being upstream of 

MAPK. 

Stumps is specifically required for FGFR signaling, as Stumps mutants do not have any 

defects in other RTK signaling pathways, like EGF signaling.  This suggests that Stumps is 

a key molecule in mediating specificity of signaling through multiple RTKs during 

development.  When the intracellular domains of Btl and Htl were replaced with the EGFR 

or Torso domains, signaling was no longer dependent on Stumps (DOSSENBACH et al. 

2001). 
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Summary of Drosophila FGFs 

Drosophila continues to be a model for functions and mechanisms of FGF signaling in 

invertebrates.  There are other uses of FGF signaling in Drosophila that remain to be 

characterized in detail.  For instance, it is known that Htl is involved in the migration of the 

caudal visceral mesoderm, but the details of this interaction are still being worked out 

(MANDAL et al. 2004).  Work on FGFs is also being carried out in another invertebrate 

model, C. elegans.  

FGF Signaling in C. elegans 

FGF signaling has also been characterized in another important invertebrate model, the 

nematode, Caenorhabditis elegans (C. elegans).  C. elegans and a related species, C. 

briggase, have two ligands, LET-756 and EGL-17 and a single receptor, EGL-15 

(BIRNBAUM et al. 2005).  Despite the small number of FGF family members, several 

interesting properties of FGF signaling are present in this model, including alternative 

splicing of the receptor and nuclear localization of one of the ligands. 

EGL-15 is located on the X chromosome and encodes two isoforms, EGL-15(5A) and 

EGL-15(5B), which result from alternative splicing of exon 5.  Goodman et al. (2003) have 

shown that the different isoforms mediate signaling through different modules, involving a 

specific ligand: EGL-15(5A) interacts with EGL-17 to mediate sex myoblast 

chemoattraction and EGL-15(5B) carries out an essential function required for viability 

(GOODMAN et al. 2003). 
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EGL-17 is a member of the FGF8/17/18 family.  The egl-17 gene is located on the X 

chromosome and encodes a protein of 216 amino acids and predicted molecular mass of 

~25 kDa.  EGL-17 is functionally important for the migration of the sex myoblasts (SMs) 

(BURDINE et al. 1997; LO et al. 2008; STERN and HORVITZ 1991).  The SMs begin as a pair 

of muscle precursor cells born at the posterior of L1 larvae. In the hermaphrodite they 

migrate anteriorly to functional positions flanking the central gonad and developing vulva 

where they differentiate into uterine and vulval muscles required for egg laying.  Mutations 

in EGL-17 (and EGL-15) cause the SMs to be severely posteriorly displaced.  EGL-17 is 

expressed in developing gonad and vulva and is thought to serve as a chemoattractant to 

EGL-15-expressing SMs expressing the EGL-15(5A) while EGL-15(5B) has a repulsive 

function, blocking anterior migration in the absence of EGL-15(5A) (BURDINE et al. 1998; 

LO et al. 2008). 

LET-756 is a member of the FGF9/16/20 family, which was determined not only by 

sequence similarity, but through ‘functional phylogeny’ where only the core of vertebrate 

FGF 9, FGF16, and FGF20 could replace the core of LET-756 and rescue lethality in a 

LET-756 mutant (POPOVICI et al. 2004).  Let-756 encodes protein of 425 amino acids and a 

predicted molecular mass of ~50kDa.  Uniquely, LET-756 contains several nuclear 

localization signals (NLS) and an atypical secretion sequence dependent on a six-residue 

motif (EFISIA) and a Golgi-associated secretion mechanism also used by the FGF9 family 

in mammals (POPOVICI et al. 2004).  Nuclear localization and secretion of LET-756 is 

balanced in wild type worms.  This balance is disrupted in mutants lacking the various 

NLSs, a stretch of glutamines and histidines (POPOVICI et al. 2006).  A severe loss-of-
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function allele of let-756 causes arrest in early larval stages, whereas a partial mutant that 

truncates the C-terminal quarter of the protein allows some worms to develop to adult 

stages (ROUBIN et al. 1999).  LET-756 is involved in axon outgrowth at the ventral midline.  

In C. elegans, axons use a special substratum composed of hypodermis and muscle located 

at the midline of the ventral cord.  LET-756 is produced by the muscle and signals to 

hypodermally expressed EGL-15(5B) to provide the necessary substratum for axon 

outgrowth.  FGF signaling through LET-756/EGL-15 negatively regulates muscle 

membrane extension.  Body wall muscles in the worm have plasma membrane extensions 

called muscle arms that are guided to the motor axons to form the postsynaptic element of 

the neuromuscular junction.  Too little FGF signaling in this context results in ectopic 

membrane extensions and too much signaling prevents membrane extension (DIXON et al. 

2006). 

LET-756 is also involved in tissue homeostasis and fluid balance in the adult worm through 

paracrine signaling to EGL-15.  Increased EGL-15 signaling leads to fluid accumulation 

and leads to a Clr phenotype, in which animals display accumulation of clear fluid within 

the pseudocoelomic space.  Decreased EGL-15 signaling results in a Soc (suppressor of 

clr), Scr (scrawny, meager body size) or Let (lethal, animals die prematurely) phenotype 

(HUANG and STERN 2004). 

Downstream RTK components are conserved in C. elegans, including SEM-5/GRB2, LET-

341/SOS, LET-60/RAS, LIN-45/RAF, and MPK-1/MAPK.  However, a homolog of FRS2 

has not been found.  Phospholipase C-γ or PLC-3 has a homolog in the worm but it may 
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not function in EGL-15 signaling.  Specific to C. elegans, CLR-1 phosphatase negatively 

regulates FGF signaling through EGL-15, but has no equivalent in mammals. 

The worm has managed to pare down its FGF repertoire to just two ligands and a single 

receptor, yet retains the seemingly vital functions of cell migration, axon growth and tissue 

homeostasis.  Studying this relatively simple system in great detail has led to an 

interactome with many connections that may prove valuable to the larger FGF field 

(POLANSKA et al. 2009). 

 

FGF Functions in the Adult 

FGFs do not cease to be important when development is finished, but instead they continue 

to be vital to the adult animal.  FGFs are involved in homeostatic regeneration, wound 

healing, hepatic function, angiogenesis and serum phosphate level regulation. 

Vertebrate organs use homeostatic regeneration to regularly replace cells lost through 

apoptosis, daily wear and aging.  Studies in zebrafish found that the same molecules that 

function during regeneration after injury are involved in homeostatic regeneration and daily 

cell turnover.  Long-term inhibition of FGFRs in uninjured zebrafish led to the progressive 

loss of distal fin structures (WILLS et al. 2008).  The specific ligand FGF20a was 

implicated in this process as it is expressed in the intact fin and mutants displayed the 

progressive loss of distal fin structures phenotype.  FGF signaling has also been shown to 

play a major role in the maintenance of vascular integrity in the existing adult vasculature 

(MURAKAMI et al. 2008).  Suppression of FGF signaling can be accomplished with a 
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dominant negative FGFR that inhibits signaling through all 4 FGFRs or with a soluble 

FGFR-IgGFc chimera that acts as a FGF trap.  Suppression of FGF signaling results in the 

loss of endothelial cell-cell contact due to decoupling of p120-catenin from VE-cadherin 

and the subsequent disruption of adherens and tight junctions in both arteries and veins.  

Through these studies and others it is clear that adult animals depend on FGF signaling to 

maintain their adult structures through cell turnover and repair. 

The role of FGFs in wound healing has focused on the ligands FGF2, FGF7 and FGF22. 

Kurita and colleagues examined the localization of FGF2 during wound healing in the skin 

and found that during mouse skin wound healing the basal layer keratinocytes and hair 

bulbs at the wound edge are strongly stained with anti-FGF2 antibodies (KURITA et al. 

1992).   Additionally, the role of FGF2 in wound healing was highlighted by the finding 

that FGF2 mutant mice have delayed wound healing as compared to their wild-type 

littermates (ORTEGA et al. 1998).  FGF2 has been implicated in a wide range of activities, 

yet surprisingly FGF2 mutant mice are viable, fertile, and grossly indistinguishable from 

their wild type littermates.  This finding points to a problem with trying to understand FGF 

function by ectopic expression alone because many times the ectopic FGF can interact with 

receptors it doesn’t use in vivo.  However, on the other hand, FGFs can function 

redundantly and therefore knocking out just one at a time will not reveal all the functions 

taken over by redundant FGFs.  FGF2 was studied with both methods in the context of 

wound healing.  Topical application of FGF2 accelerates healing of skin wounds, as well as 

of eye, retina and corneal wounds (BIKFALVI et al. 1997).  Loss of FGF2 in FGF2-/- mice 

results in a 3-day delay in wound healing and at day 11 after wounding the mean wound 
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diameter was twice that of controls, the scab thickness 30% greater, and the percentage 

of reepithelialization was only 60% (ORTEGA et al. 1998).  FGF7 (Keratinocyte Growth 

Factor) is the only FGF whose action is restricted to a single cell type, epithelial cells, in 

the adult mouse, and is thought to act in a paracrine manner as it is expressed in 

mesenchymal cells.  FGFR2-IIIb, the only known high affinity receptor for FGF7 is 

expressed in keratinocytes of the epidermis and hair follicles.  FGF7 is expressed weakly in 

mouse and human skin, but upon skin injury there is a striking induction in dermal 

fibroblasts (MARCHESE et al. 1995; WERNER et al. 1992).  FGF7 mutant mice do not appear 

to have any defects, even in wound healing.  It is likely then that several ligands function 

cooperatively and redundantly to orchestrate wound repair.  FGF22, which is homologous 

to FGF7 and FGF10 is also thought to be used in wound repair (BEYER et al. 2003).  It is 

expressed especially highly in hyperthickened wound epidermis and is therefore positioned 

well to be used in later stages after injury when a strongly hyperthickened epidermis is 

covering the wound, and this is the time FGF22 transcripts are found to be upregulated. 

Angiogenesis, or new blood vessel growth, is essential to the repair process of wound 

healing because it allows for the delivery of nutrients and oxygen to support the energy-

consuming process of tissue remodeling.  FGF1, FGF2, FGF8b and FGF4 are all potent 

pro-angiogenic growth factors which stimulate new vessel formation and vessel maturation 

by driving endothelial cell proliferation, promoting extracellular matrix degradation, 

altering intercellular adhesion and affecting communication through cadherins junctions, 

gap junctions and integrin expression (PRESTA et al. 2005). 



 34 
The adult liver is also dependent on FGF signaling.  FGF4 is found in mature 

hepatocytes and its disruption leads to abnormal liver function including depleted 

gallbladders, elevated bile acid pool and elevated excretion of bile acids (COUMOUL and 

DENG 2003a; YU et al. 2000). 

FGF23 is important for the regulation of serum phosphate levels in adult animals (BAI et al. 

2004).  The mechanism of FGF23 regulation is explored in detail in the next section, but it 

is essential for proper kidney function and mutations in FGF23 lead to renal phosphate 

wasting disorders. 

Regulation of FGF Signaling 

Uncontrolled FGF signaling can lead to developmental abnormalities and disease, 

necessitating multiple layers of regulatory mechanisms to keep its activity in check. 

Proteolytic Cleavage 

One of the most notable stories of FGF regulation and its ties to disease comes from 

FGF23, which controls phosphate homeostasis in humans.  FGF23 was originally identified 

as the mutated gene in patients with autosomal dominant hypophosphatemic rickets 

(ADHR), the phosphate wasting disorder and also as the causative factor of tumor-induced 

osteomalacia.  In ADHR reabsorption of phosphate by the kidneys is impaired and leads to 

rickets, which is a softening or weakening of the bones.  Osteomalacia is also a softening of 

bone tissue and it has been found that some tumors can induce this condition by causing an 

overproduction of FGF23. 
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 FGF23 is produced as a full-length protein of 251 amino acids. It signals by binding to a 

complex of FGFR and Klotho, an obligate co-receptor.  Cleavage of FGF23 at the 

176RXXR179 site, located at the boundary between the FGF core homology domain and the 

72-residue C-terminal tail, results in inactivation of FGF23 and the production of a non-

functional N-terminal fragment.  Mutations in the proteolytic cleavage site lead to an 

accumulation of bioactive FGF23 and increased phosphate excretion resulting in 

hypophosphatemia. 

Recent work has shown that the C-terminus of FGF23 is responsible for binding the full-

length ligand to the FGFR/Klotho complex (GOETZ et al. 2010).  The cleaved C-terminus 

can also compete for binding to further regulate signaling by FGF23.  A minimal FGFR-

Klotho binding epitope was identified which includes residues 180 to 200 of FGF23.  

FGF2328-200, which is missing the last 51 C-terminal amino acids, still retains function and 

FGF23180-200 is able to inhibit binding of FGF23 to the binary FGFR-Klotho complexes.  

Goetz and colleagues were also able to show that there was therapeutic potential to the 

inhibitory C-terminal domain.  Treatment of Hyp mice, a mouse model of human X-linked 

hypophosphatemia, with the C-terminal FGF23180-251 resulted in a decrease in phosphate 

excretion by the kidney.   

Alternative splicing 

An important aspect of FGF signaling in vertebrates is that many FGFR isoforms are 

generated by alternative splicing of fgfr transcripts (ESWARAKUMAR et al. 2005).  

Alternative splicing of the fgfr transcript gives rise to more than 48 major receptor 

isoforms. Alternative splicing in the D3 Ig-like extracellular domain exists in FGFR1, 
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FGFR2 and FGFR3 but not FGFR4.  For FGFR, exon 7 encodes the N-terminal half of 

D3 (‘a’) and exon 8 and 9 alternatively encode for the C-terminal half of D3 (‘b’ or ‘c’).  

This is diagramed in Figure 4.  Splicing in the D3 domain profoundly alters ligand-binding 

specificity (MIKI et al. 1992; YAYON et al. 1992).  For instance, FGFR2b binds FGF7 and 

FGF10 but not FGF2.  FGFR2c will bind FGF2 and FGF18, but not FGF7 and FGF10.  

Different isoforms are often expressed in different tissues: while the FGFR2b isoform is 

exclusively expressed in epithelial cells, the FGFR2c isoform is expressed exclusively in 

mesenchymal cells (ORR-URTREGER et al. 1993).  The tissue-specificity allows 

communication between epithelial and mesenchymal tissues during development through 

the use of different FGF ligands. Alternative splicing has not been found for FGFR in 

invertebrates. 

 

Figure 5 | Alternative Splicing of FGFR.  Figure from (ESWARAKUMAR et al. 2005).  The 

two forms of FGFR3 are generated by alternative splicing of exon 8 and 9.  The C-terminal 

half of D3 is encoded by exon 8 to generate the ‘b’ isoform while exon 9 is used to 

generate the ‘c’ form. 
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Sproutys 

FGF signaling is regulated by Sprouty proteins.  Sprouty was discovered in a screen for 

mutations that affect tracheal branching in Drosophila (HACOHEN et al. 1998). In wild type 

embryos, FGF signaling through Bnl/Btl guides outgrowth of primary tracheal branches 

and induces cells closest to the FGF signaling center to form secondary branches.  In 

sprouty (spry) null mutants, the FGF pathway is overactive and produces ectopic secondary 

branches that are induced in cells farther from the FGF signaling source.  Overexpression 

of spry during primary branch outgrowth causes the opposite phenotype, inhibiting the 

FGF pathway and blocking all secondary branching.  Therefore, Spry antagonizes FGF 

signaling in the trachea.  Additionally, FGF signaling induces the expression of spry, and 

thereby regulates the expression of its own antagonist.  This allows the embryo to regulate 

the range over which FGF signaling is active.  Spry also regulates EGF signaling and other 

RTK signaling pathways. 

A family of Spry homologs was identified in vertebrates and the mechanism of negatively 

regulating the FGF signaling pathway was found to be conserved (MINOWADA et al. 1999). 

Heparan Sulfate Proteoglycans 

The important role of Heparan Sulfate Proteoglycans (HSPGs) in developmental signaling 

in general, and FGF signaling in particular, is becoming more understood and appreciated.  

Heparin, an oversulfated intracellular variant of the ubiquitous Heparan Sulfate, was first 

discovered in 1916 for its ability to inhibit coagulation (WHITELOCK and IOZZO 2005).  It 

was further developed over the next 20 years and was first tested in patients as an 
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anticoagulant drug in the mid 1930’s.  It was named ‘hepa’rin/’hepa’ran after a common 

and abundant source of the molecule, hepatic tissue, from which it was first isolated and 

studied.  Heparan sulfate was originally found as an impurity in heparin preparations.  It is 

a complex and highly active biopolymer, which is synthesized as an alternating copolymer 

of hexuronic acid and glucosamine and modified at various positions with sulfate. 

 

As RTKs, FGFRs can only activate themselves when they are brought together as dimers, 

and this dimerization requires the ligand to be either a multimer itself or large enough to 

bind two receptors at once.  FGF ligands are small; as a result, they multimerize themselves 

by binding to HSPGs, either on the cell surface or in the extracellular matrix, and in this 

way can cross-link adjacent FGF receptors to produce the autophosphorylation of their 

cytosolic tails.   The role of HSPGs in FGF signaling in vivo has not been studied in great 

detail (especially in Drosophila).  HSPGs consist of a core protein with glycosaminoglycan 

(GAG) chains attached.  All heparan GAG chains undergo some N-deacetylation/N-

sulfation and O-sulfation in the Golgi and are therefore referred to as heparan sulfate (HS).  

Sulfation is responsible for most of the structural diversity of HS chains, and this 

heterogeneity could lead to binding specificity. 

  

There are three types of proteoglycans: syndecans, glypicans, and perlecans (LIN and 

PERRIMON 2002).  Syndecans and glypicans are both integral membrane proteins, and 

while glypicans have exclusively HS chains, syndecans have both HS and chondroitin 

sulfate attachments.  Perlecans have only HS chains, are not membrane-attached, and are 

secreted into the extracellular matrix.  In Drosophila, one syndecan gene, two glypican 
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genes, and a perlecan gene have been identified (LANDER and SELLECK 2000; PERRIMON 

and BERNFIELD 2000).  Drosophila homologs have also been identified for genes encoding 

enzymes required for HS modifications: sugarless, sulfateless and tout velu, which encode 

homologs of UDP-D-glucose dehydrogenase, HS N-deacetylase/N-sulfotransferase and HS 

polymerase EXT-1, respectively (LIN and PERRIMON 2002).  The Drosophila perlecan is 

encoded by the terribly reduced optic lobe (trol) gene.  Mutations in trol reduce FGF 

signaling activity and cause cell-cycle arrest of neuroblasts in the larval brain.  This 

phenotype can be rescued by adding human FGF2 to mutant brains in culture (HÄCKER et 

al. 2005).   

  

Sulfation of HS has been shown to be important for FGF signaling.  Inhibiting sulfate  

modification abolishes FGF signaling in cell culture (RAPRAEGER et al. 1991).  

Subsequently, 6-O-sulfation of N-acetylglucosamine was shown to be the key feature in 

HS that determines efficient binding of FGF1 and FGF2 to the FGF receptor (PELLEGRINI 

et al. 2000).  A Drosophila 6-O-sulfotransferase (6-OST) was shown to be involved in 

tracheal development when RNAi-mediated inhibition of 6-OST activity disrupted tracheal 

development and showed similarity to Breathless mutants (KAMIMURA et al. 2001). 

 

HSPGs are also important for Wnt signaling and they are thought to maintain the solubility 

of hydrophobic Wnt proteins by preventing their aggregation in the extracellular 

environment, thus stabilizing their signaling activity (FUERER et al. 2010).   
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FGF Signaling in Cancer 

A screen looking at somatic mutations in 210 different human cancers found that mutations 

in components of the FGF signaling pathway were more common than mutations in any 

other signaling family (GREENMAN et al. 2007).  The relationship between FGF signaling 

and cancer is complex as FGF signaling can drive tumorigenesis but in different contexts it 

can also mediate tumor protective functions.  Due to the fact that FGF signaling regulates 

many cell behaviors including proliferation, differentiation, migration and survival, it is 

easy to see how uncontrolled FGF signaling can lead to cancerous cell behaviors. 

Bladder cancer has the most established link to FGFR mutations.  Approximately 50% of 

bladder cancers have somatic mutations in the FGFR3-coding sequence (CAPPELLEN et al. 

1999).  Most of the mutations in FGFR3 occur at a single position in the extracellular 

domain (S249C).  This mutation leads to the formation of a new intermolecular cysteine 

disulphide bridge, leading to constitutive dimerization and activation of the receptor 

(TURNER and GROSE 2010).  FGFR3 mutations are also linked to cervical cancers, multiple 

myeloma, prostate cancer, spermatocytic seminomas, oral squamous carcinomas, and in 

seborrhoeic keratosis (a benign wart-like growth that does not progress to malignancy).  

FGFR2 mutations have been described in endometrial carcinomas where the cancer cells 

are highly sensitive to FGFR inhibitors reflecting an oncogenic addition to the mutant-

activated FGFR. 

Amplification of the chromosomal region 8p11-12, which is the genomic location of 

FGFR1 is one of the most common focal amplifications in breast cancer, predominantly in 

oestrogen receptor-positive cancers.  Overexpression of wild-type FGFR1 occurs in cancer, 
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yet it is unclear whether the higher levels of FGFR1 lead to tumors with an aberrant 

response to paracrine FGF ligands, like FGF2, or whether at higher levels of FGFR1 

expression ligand-independent signaling takes over. 

Cancer can also result in the upregulation of FGF ligands while the switch of FGFR 

splicing can lead to the expression of a different receptor isoform.  FGF2 and FGF6 are 

upregulated in prostate cancer and FGFR1-IIIc is upregulated while FGFR1-IIIb is 

downregulated.  Loss of negative regulators of FGF signaling, like Sprouty2 and Sprouty2 

and SEF can also increase FGF signaling in prostate cancer. 

The mitogenic, cell-proliferation effects of FGF signaling can be enhanced by pro-survival 

signaling.  FGF signaling has the potential in some cell types to activate anti-apoptotic 

pathways through the activation of the P13K-AT or STAT signaling pathways.  This cell 

survival effect has been linked to resistance to chemotherapy.  In addition to effects on 

proliferation and survival, FGF signaling can promote cell migration, leading to tumor 

invasion, and epithelial-to-mesenchymal transition (EMT), which is important in cancer 

cell metastasis.  FGFR1 is thought to mediate these effects in breast cancer model mice by 

upregulation of the FGF target and pro-EMT gene Sox9.  

There is unequivocal evidence from mouse models for a tumor suppressive role of FGFR2 

in some cellular contexts.  Mice lacking FGFR2-IIIB in keratinocytes are sensitive to 

carcinogenic insults to their skin.  Studies on a rat model of prostrate cancer showed that 

when non-malignant cells expressing FGFR2-IIIb were mixed with cancer cells they 

formed non-malignant tumors.  In bladder cell lines, expression of FGFR-IIIb blocks 
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proliferation, and it is also downregulated on progression in bladder cancers, prostate 

cancer, and salivary adenocarcinomas.  How the tumor-suppressive function of FGFR2-IIIb 

is mediated is not clear.  One proposal is that FGF signaling may induce cytoprotective 

pathways in epithelial cells and help them to maintain genomic stability following 

carcinogenic insult. 

Therapeutic efforts are currently focused on FGFR specific tyrosine kinase inhibitors 

(TKIs).  One complication that has already developed from using TKIs is that pan-

inhibition of all FGFR leads to hyperphosphataemia-mediated tissue calcification through 

blockage of FGF23 signaling.  More specific therapeutic antibodies have been made to 

reduce toxicity.  Antibodies targeting FGFR3 have been shown to have an anti-proliferative 

effect on bladder cancer cells.  A third approach has been to develop FGF ligand traps by 

making soluble fusion proteins that consist of the FGFR extracellular domain fused to the 

Fc domain of IgG1. 

Summary 

The field of FGF signaling has grown to 34,410 papers on PubMed as of September 2010.  

So many exceptions have now been found to characteristics that were once thought of as 

rules that there are few remaining “defining” features that fit all known FGF interactions, 

but many detailed mechanisms are still not understood.  The importance of FGF signaling 

in development and medicine has now been firmly established and future research 

directions are now centered on carefully working out the details of mechanisms, cross-talk 

networks, evolutionary history and therapeutic applications. 
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C h a p t e r  2  

INTRODUCTION TO PROTEOLYTIC PROCESSING IN 
DEVELOPMENTAL SIGNALING 

Proteolysis is a powerful mechanism for the posttranslational control of cell signaling 

pathways.  Some proteolytic events like the action of the proteosome result in the 

wholesale destruction of target proteins, but many involve only “limited proteolysis” at 

one or a few specific cleavage sites in the substrate.  These specific cleavages can lead 

to activation or inactivation of proteins and often involve conformational changes or 

separation of interacting domains.  Unlike phosphorylation, proteolytic cleavage is 

irreversible, but sometimes an activating cleavage is followed by a secondary cleavage 

that serves to inactivate the protein.  Due to the dramatic effect proteases have on 

protein function, complex regulatory mechanisms are also in place to control their 

substrate specificity, catalytic activity, localization, and timing of activity (LEMOSY 

2006). 

Although my thesis work was the first description of proteolytic activity on FGF 

ligands in Drosophila, cleavage is a common mechanism for regulation of 

developmental signaling and in this introductory chapter I will introduce other signaling 

families and organisms where the process has been described in detail.  The systems I 

will highlight are TGF-β (including Dpp), Notch/Delta, EGF, the Cysteine Knot 

Growth Factor family (Spätzle), and FGF23. 
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Cleavage of TGF-β ligands by proprotein convertases 

TGF-β ligands, including BMPs in vertebrates and their homolog Decapentaplegic 

(Dpp) in Drosophila are all initially produced as inactive proproteins precursors.  The 

proproteins are subsequently cleaved by proprotein convertase enzymes of the Furin 

family to generate the active ligand (AONO et al. 1995; CUI et al. 1998).  Furin, the first 

member of this family to be characterized, is a membrane-associated, calcium-

dependent serine endoprotease that proteolytically activates at the C-terminal side of a 

consensus site consisting of basic Arg-X-X-Arg residues (MOLLOY et al. 1992). 

BMP signaling is required for proper development and one of its earliest and best-

documented roles is in the establishment of the dorsoventral axis, reviewed in (GRAFF 

1997).  In Xenopus embryos, expression of BMP-4 is restricted to cells on the ventral 

side of gastrula-stage embryos, where it specifies ventral mesoderm.  Also, BMP is 

necessary for the induction of epidermal fate at the expense of neural tissue.  BMPs are 

powerful molecules able to induce ectopic bone in non-bony tissue.  It is therefore 

imperative that BMP activity be tightly controlled. 

It was first shown that BMPs were cleaved by proprotein convertases when an inhibitor 

engineered to block endogenous proprotein convertase activity was injected into 

Xenopus embryos and the result phenocopied the effect of blocking BMP activity (i.e. 

dorsalizing ventral marginal zone cells) (CONSTAM and ROBERTSON 1999; CUI et al. 

1998).  Further analysis showed that BMP4 is cleaved sequentially at two sites: first at 

a site adjacent to the mature ligand domain (S1 site) and then at an upstream site in the 

prodomain (S2 site) (CUI et al. 1998).  Mutant forms of BMP4 lacking this second site 
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cleavage revealed that the cleaved prodomain remains associated with the mature 

ligand and the complex is targeted for rapid degradation in the absence of the secondary 

cleavage (DEGNIN et al. 2004).  This mechanism of regulation is not unprecedented.  

The propeptide of Furin itself is excised at a Furin site but remains noncovalently 

associated and functions as an autoinhibitor of the active zymogen until a secondary 

cleavage releases the active enzyme (ANDERSON et al. 1997).  BMP-4 (and Dpp) can 

function as either short-range or long-range signals depending on the tissue in which 

they are expressed (NEUMANN and COHEN 1997), and alternative cleavage strategies 

could mediate this decision.  Cleavage at both the S1 and S2 sites generates a stable 

ligand that possesses long-range signaling properties, whereas cleavage at the S1 site 

alone creates a ligand that is rapidly degraded and can only signal to adjacent cells 

(DEGNIN et al. 2004).  The mechanism for the tissue-specificity is thought to be 

mediated by Furin family members that are localized to distinct post-trans Golgi 

network compartments with different levels of acidity (DEGNIN et al. 2004). 

Processing of Decapentaplegic and Glass bottom boat in Drosophila 

Drosophila proteins Dpp and Glass Bottom Boat (Gbb), like their vertebrate BMP 

homologs, are produced as inactive preproproteins and cleaved by Furin1 and Furin2 to 

release the mature, active protein (KÜNNAPUU et al. 2009). Dpp is the ortholog of 

vertebrate BMP-2/4, but is cleaved in a different manner, indicating that even though they 

are functional orthologs, Furin-cleavage sites are tolerant to mutations acquired through 

evolution.  Dpp is produced as two molecular forms in both cell culture and the embryo.  

The production of these forms requires a multi-step process using the Furin site II and 
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Furin site III to make the large form (Dpp26) and Furin site II and Furin site I to make 

the small form (Dpp23) (KÜNNAPUU et al. 2009).  Cleavage at the Furin site II is critical 

and sufficient for long-range Dpp signaling in wing development (KÜNNAPUU et al. 2009).  

Recent studies have revealed that tissue-specific differential cleavage is important for 

the activity of Dpp during Drosophila development.  Dpp is processed in a tissue-

dependent manner and different cleavage products are required to provide sufficient 

function for wing and leg versus gut development (KÜNNAPUU et al. 2009; WHARTON 

and DERYNCK 2009). 

Glass bottom boat (Gbb), the homolog of BMPs 5, 6, 7, and 8, is also subject to Furin 

processing in a tissue-dependent manner.  Unlike Dpp, however, one of the two 

resulting forms has a long N-terminal extension, which is capable of signaling.  

Receptor binding of an incompletely processed ligand is not unprecedented, as the 

TGF-β Nodal is secreted as a full-length, uncleaved precursor in the mouse embryo 

where it binds the activin receptor to maintain expression of proprotein convertases) 

(BEN-HAIM et al. 2006).  The Furin-like proteases then act at the cell surface to cleave 

nodal. 

Notch undergoes multiple cleavage events 

The family of Notch receptors mediates binary cell fate decisions through short-range 

signaling during development across the metazoa.  Through binding to Delta, Serrate, and 

Lag-2 ligands, Notch signaling participates in what is known as “lateral inhibition” where a 

field of cells have equal potential to adopt a certain fate over a secondary fate and once a 



 47 
cell has made the decision it activates Notch in neighboring cells to suppress those cells 

from adopting the same cell fate (EHEBAUER et al. 2006).  Processing of the Notch receptor 

is essential to the functional roles it plays in development. 

Notch is produced as a single polypeptide but is then processed multiple times to mediate 

the presentation of the receptor and to facilitate signaling (Figure 1). Cleavage at a site 

designated S1 happens in the secretory pathway by a Furin-like protease within the trans-

Golgi vesicles (BLAUMUELLER et al. 1997; LOGEAT et al. 1998).  This cleavage produces 

two fragments, one of which contains most of the extracellular domain and the other 

contains the remaining extracellular domain and the membrane-tethered intracellular 

region.  These two polypeptide fragments remain non-covalently associated in a Ca2+ 

manner (RAND et al. 2000).   Upon ligand binding, Notch is further processed by two 

different proteases at sites S2 and S3.  

Cleavage at S2 is catalyzed by an ADAM/TACE/Kuzbanian family metalloprotease and it 

releases the extracellular domain from the receptor, leaving behind the membrane-tethered 

intracellular domain (BROU et al. 2000; LIEBER et al. 2002; MUMM et al. 2000).  Cleavage 

at S3 takes place inside the nicastrin-transmembrane helix and is catalyzed by the γ–

secretase activity of the presenilin-Aph1-Pen2 protein complex (FORTINI 2002).  This last 

cleavage event releases the intracellular domain, which then enters the nucleus and 

interacts with members of the CSL family of transcription factors to turn on downstream 

genes. 
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The Delta transmembrane ligand also undergoes three proteolytic cleavages induced by 

Notch and one of these cleavages is dependent on the ADAM metalloprotease Kuzbanian 

(BLAND et al. 2003). 

 

 

Figure 1 | Processing of Notch.  From (FORTINI 2002). Notch is synthesized as a 300-kDa 

precursor that undergoes three distinct cleavages. In the trans-Golgi vesicles the Notch 

precursor is cleaved by a Furin-like convertase to generate separate extracellular and 

transmembrane/intracellular domains. These segments are joined by a noncovalent 

attachment to create a heterodimeric form of Notch, which is the main form detected at 
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the cell surface.  Notch binding of ligands of the Delta/Serrate/Jagged family results in 

ectodomain removal due to extracellular cleavage mediated by the TACE/ADAM 

metalloproteinases.  The membrane-anchored carboxy-terminal fragment that is left after 

this cleavage event is subsequently processed by the γ-secretase complex, which contains 

presenilin.  This intramembrane cleavage liberates the Notch intracellular domain, which 

translocates to the nucleus to regulate the expression of target genes in association with 

other CSL family nuclear factors. 

 

Cleavage of EGF ligand Spitz by Rhomboid 

The EGF signaling pathway plays multiple roles during development: the establishment 

of ventral ectodermal fates, differentiation of midline glial cells, Malpighian tubule 

development, germ-band retraction, head development, and proliferation of imaginal 

disc development.  In Drosophila, the Spitz (Spi) protein is the ligand for the DER 

(Drosophila Egf Receptor).  Spi is cleaved in its transmembrane domain to release a 

secreted form (sSpi) that can bind to DER (LEE et al. 2001; URBAN et al. 2001).  The 

protease that cleaves Spi is Rhomboid and although it was known for many years that spi 

and rhomboid had a genetic interaction, the description of the processing took ten years to 

figure out.   

In 1992, Rutledge et al. gave a phenotypic and molecular description of Spi showing that it 

is most similar to TGF-α with a transmembrane domain and a potential cleavage site of a 

dibasic Arg-Lys between the EGF domain and transmembrane domain (RUTLEDGE et al. 
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1992).  The isolation of cDNAs allowed them to say the spi gene is capable of producing 

a 26kB protein (unmodified).  Then, in 1994, Matthew Freeman used eye disc 

photoreceptor mosaic genetics to suggest that Spi had a diffusible form (FREEMAN 1994).  

In 1995 Schweitzer and colleagues transfected S2 cells with full length Spi and a short 

form of Spi containing all amino acids up until the putative cleavage domain.  This short 

form was able to activate DER in S2 cells (shown with an antibody against 

phosphotyrosine) and when overexpressed in embryos using Kr-GAL4, it caused a 

ventralization phenotype (SCHWEITZER et al. 1995).  

 

Conclusive evidence came from the Freeman lab in 2001 by Lee et al.  They show that Star 

is required to transport Spi from the ER to the Golgi and Rhomboid is localized in the 

Golgi, where it promotes cleavage of Spi (LEE et al. 2001).   Co-transfection of Rhomboid 

and Star with Spi causes relocation of Spi to the Golgi and plasma membrane (there is no 

Spi at the surface when Star is not present).  Sequential degylcosylation revealed Spi is 

glycoslyated in the ER (N-linked sugars) and the Golgi (O-linked sugars).  A series of 

deletion and chimera proteins demonstrated that the lumenal domain of Spi is important for 

relocalization of Spi.  Finally, by Western blot, it was determined that the transmembrane 

domain of Spi is essential for cleavage.  

 
Concurrently, also from the Freeman lab, Urban et al. showed the mechanism of Rhomboid 

cleavage of Spi.  Rhomboid is a novel serine protease that cleaves Spi in its transmembrane 

domain (URBAN et al. 2001).  To determine the cleavage domain, mutations were made in 

Rhomboid at the eleven non-glycine conserved residues.  Only six mutations affected 

Rhomboid’s ability to cleave Spi.  The sequence between two of the conserved amino acids 
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is a motif shared with other serine proteases, and the amino acids making up the 

predicted catalytic triad are all essential. To show that Spi is cleaved in an equivalent 

position in its transmembrane domain to that of the Rhomboid active site, truncated forms 

of Spi were compared to Rhomboid-mediated cleaved Spi.  Rhomboid was tagged with a 

KDEL motif to retain it in the ER, so Spi would be cleaved before being glycosylated 

(which would change the molecular weight).  Cleaved Spi was larger than a truncation just 

before the transmembrane domain at residue 139 but smaller than a truncation 2/3 of the 

way in the transmembrane domain at residue 149.  The resolution ability of the gel assay 

was about 5 residues, so the cleavage site was determined to be close to residue 144, on the 

side of the lumenal face.  A series of class specific protease inhibitors were used to show 

that Rhomboid was indeed a serine protease, sensitive to TPCK and DCI inhibitors. 

Rhomboids are very well conserved proteins and a human Rhomboid can also support Spi 

cleavage. 

 

Spätzle and the formation of the dorsal-ventral axis in Drosophila 

Cleavage of signalling ligands plays an important role in the well-characterized process 

of dorsal-ventral axis specification in the Drosophila oocyte (Figure 2).  Different 

territories along the D/V embryonic axis are specified by graded nuclear localization of 

the Dorsal transcription factor.  The translocation of Dorsal to the nucleus is a 

consequence of the activation of the Toll receptor by the ligand Spätzle.  Although the 

Toll receptor is uniformly distributed, the Spätzle ligand is only modified into its active 

form on the ventral side of the embryo where a proteolytic cascade is activated by Pipe.  
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Pipe is inhibited on the dorsal side of the embryo by Torpedo signalling activated by 

the Gurken protein.  The Gurken protein is synthesized from gurken mRNA transcripts, 

which are produced by the nucleus after it has travelled to the dorsal-anterior corner of 

the oocyte. 

Clearly, the correct timing and location of activation of the Spätzle ligand is essential 

for a normal D/V axis to develop.  The Spätzle ligand has a C-terminal cysteine knot 

present in many growth factors and only the C-terminal 106 amino acids is required to 

activate the Toll receptor. Spätzle is activated when cleaved away from an unstructured, 

inhibitory N-terminal domain by the Easter protease (DELOTTO and DELOTTO 1998; 

MORISATO and ANDERSON 1994; WEBER et al. 2003).  Easter is a member of the trypsin 

family of serine proteases (CHASAN and ANDERSON 1989).  The cleavage reaction is 

also hypothesized to produce a diffusible inhibitor of Spätzle, which contributes to the 

shaping of the Dorsal gradient (MORISATO 2001).  This inhibitor may be the N-terminal 

domain of Spätzle.  The detailed understanding of this process is technically difficult 

because it takes place in the perivitelline space and the vitelline membrane is a barrier 

to detection reagents and is usually removed during fixation of Drosophila embryos. 

Spätzle is also active in the Toll-mediate immune response in flies.  Possibly studies on 

the method of Spätzle processing during the immune response can bypass the technical 

barriers of the oocyte and provide insight into the general mechanism necessary for 

proper production of active Spätzle form.   
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Figure 2 | Proteolysis in generating dorsal-ventral polarity in Drosophila. From 

(GILBERT 2006). (A) The oocyte nucleus travels anteriorly and secretes gurken mRNA 

which is translated into Gurken protein.  Gurken protein causes follicle cells adopt a 

dorsal fate by inhibiting the production of Pipe.  The production of Pipe in ventral 
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follicle cells causes the secretion of an unknown factor which works with Nudel to 

split Gd. Gd then cleaves snake which then goes on to cleave Easter.  Easter cleaves 

Spätzle and allows it to bind Toll receptor.  

 

Processing of FGF ligands 

Regulation of ligand activity by cleavage has only been described for one member of 

the FGF family, FGF23.  The details of this regulation were detailed in Chapter 1 under 

the “Regulation/Proteolytic Cleavage” section.  From the many examples of regulatory 

cleavage events described here for other signaling molecules, it should be clear that this 

is a very common mechanism of regulating cell signaling in development.  We have 

found that two FGF ligands in Drosophila are cleaved and our evidence is detailed in 

Chapter 3. 
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C h a p t e r  3  

[This chapter was published in BMC  Developmental Biology as: Tulin S, Stathopoulos A, 
2010. Analysis of Thisbe and Pyramus functional domains reveals evidence for cleavage of 
Drosophila FGFs.  BMC Developmental Biology 10:83] 
 
 

ANALYSIS OF THISBE AND PYRAMUS FUNCTIONAL 

DOMAINS REVEALS EVIDENCE FOR CLEAVAGE OF 

DROSOPHILA FGFS 

Abstract  

As important regulators of developmental and adult processes in metazoans, Fibroblast 

Growth Factor (FGF) proteins are potent signaling molecules whose activities must be 

tightly regulated.  FGFs are known to play diverse roles in many processes, including 

mesoderm induction, branching morphogenesis, organ formation, wound healing and 

malignant transformation; yet much more remains to be learned about the mechanisms of 

regulation used to control FGF activity.  In this work, we conducted an analysis of the 

functional domains of two Drosophila proteins, Thisbe (Ths) and Pyramus (Pyr), which 

share homology with the FGF8 subfamily of ligands in vertebrates.  Ths and Pyr proteins 

are secreted from Drosophila Schneider cells (S2) as smaller N-terminal fragments 

presumably as a result of intracellular proteolytic cleavage.  Cleaved forms of Ths and Pyr 

can be detected in embryonic extracts as well.  The FGF-domain is contained within the 

secreted ligand portion, and this domain alone is capable of functioning in the embryo 

when ectopically expressed.  Through targeted ectopic expression experiments in which we 

assay the ability of full-length, truncated, and chimeric proteins to support cell 
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differentiation, we find evidence that (1) the C-terminal domain of Pyr is retained inside 

the cell and does not seem to be required for receptor activation and (2) the C-terminal 

domain of Ths is secreted and, while also not required for receptor activation, this domain 

does play a role in limiting the activity of Ths when present.  We propose that differential 

protein processing may account for the previously observed inequalities in signaling 

capabilities between Ths and Pyr.  While the regulatory mechanisms are likely complex, 

studies such as ours conducted in a tractable model system may be able to provide insights 

into how ligand processing regulates growth factor activity.   

 

Background  

Fibroblast Growth Factors (FGFs) comprise a large family of signaling molecules that are 

key regulators of developmental processes including mesoderm induction, gastrulation, cell 

migration, midbrain-hindbrain patterning, limb induction and bone formation (CIRUNA and 

ROSSANT 2001; CROSSLEY et al. 1996; NISWANDER et al. 1993; REIFERS et al. 1998; 

SHIANG et al. 1994; SLACK et al. 1987; THISSE and THISSE 2005).  FGFs continue to 

function in adult tissue homeostasis and wound healing; when improperly activated they 

can also contribute to many human diseases and cancer (CHEN and DENG 2005; COUMOUL 

and DENG 2003b; ESWARAKUMAR et al. 2005; THISSE and THISSE 2005).  Most of the 24 

known FGF ligands in vertebrates are small proteins with a molecular mass of 17-34 kD, 

whereas the three known Drosophila FGF ligands are all predicted to be much larger 

proteins with molecular masses of approximately 80 kD (DRAPER et al. 2003; ORNITZ and 

ITOH 2001b).  Vertebrate FGFs and Drosophila FGFs share homology within their FGF 
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domains, but Drosophila FGFs have an additional long, low-complexity sequence of 

unknown function. 

 

The FGF ligands in Drosophila are Branchless (Bnl), Thisbe (Ths), and Pyramus (Pyr), and 

they bind to FGF receptors (FGFR), which are receptor tyrosine kinases (RTKs).  FGF 

signaling is used pervasively throughout development.  Bnl-mediated activation of the 

Breathless (Btl) receptor controls branching of the developing trachea (SUTHERLAND et al. 

1996), while Ths and Pyr activate the Heartless (Htl) receptor to control movement of the 

mesoderm cells (GRYZIK and MÜLLER 2004b; KADAM et al. 2009; MCMAHON et al. 2008; 

STATHOPOULOS et al. 2004; WILSON et al. 2005), pericardial cell specification (GRYZIK and 

MÜLLER 2004b; KADAM et al. 2009; KLINGSEISEN et al. 2009a; STATHOPOULOS et al. 

2004), and caudal visceral mesoderm migration (MANDAL et al. 2004; SHISHIDO et al. 

1997).  Pyr and Ths ligands also function later in development within the nervous system to 

control glial cell proliferation, migration and axonal wrapping (FRANZDÓTTIR et al. 2009).  

Ths and Pyr are thought to share one receptor, which makes Drosophila an ideal model to 

study FGF signaling specificity and differential regulation.  Initial work on the individual 

functions of Ths and Pyr in the embryo was recently described using genetic approaches, 

where it was found that although both ligands play a role in mesoderm spreading, Pyr is 

more important for pericardial cell specification (KADAM et al. 2009; KLINGSEISEN et al. 

2009a). 

 

In order to achieve a better understanding of how Ths and Pyr proteins are adapted to their 

particular roles, it is necessary to first understand the mechanism by which signaling with a 
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particular FGF ligand occurs, and the way this signaling is regulated.  Signaling ligands 

can be intracellular, membrane-bound, or secreted, and are often modified and processed in 

many different ways.  Understanding these basic properties of a signaling ligand provides 

important clues for any further mechanistic studies.   

 

Proteolytic processing is a common regulatory mechanism of growth factors and other 

signaling pathways in both vertebrates and Drosophila.  Examples from Drosophila 

include the EGF ligand Spitz (Spi), TGF-β ligands Decapentaplegic (Dpp) and Glass 

Bottom Boat (Gbb), Spätzle, Notch, and Delta.  Spi is cleaved in its transmembrane domain 

to release a secreted form (sSpi) that can bind to the Drosophila EGF Receptor (DER) (LEE 

et al. 2001; URBAN et al. 2001). The Spätzle C-terminal cysteine knot is activated when 

cleaved away from an unstructured, inhibitory N-terminal domain (DELOTTO and 

DELOTTO 1998; MORISATO and ANDERSON 1994; WEBER et al. 2003).  Dpp and Gbb, like 

their vertebrate BMP homologs, are produced as inactive preproproteins and cleaved by 

Furin1 and Furin2 to release the mature, active protein (KÜNNAPUU et al. 2009).  Notch is 

produced as a single polypeptide but is then processed in the secretory pathway by a Furin-

like protease within the Golgi to produce two fragments that remain non-covalently 

associated (BLAUMUELLER et al. 1997; LOGEAT et al. 1998; RAND et al. 2000).  Lastly, 

Delta undergoes three proteolytic cleavages and one of these cleavages is dependent on the 

ADAM metalloprotease Kuzbanian (BLAND et al. 2003).  Uncovering the proteolytic 

processing events of these growth factors and signaling molecules has led to a deeper 

understanding of their signaling mechanism and regulation.   
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Here we have found evidence for (1) the proteolytic cleavage of Ths and Pyr full-length 

precursor proteins and (2) the secretion of the FGF-domain-containing N-terminus.  The 

role of proteolytic processing in FGF signaling is currently limited to one vertebrate FGF 

ligand, FGF23, which is part of a subgroup of endocrine FGFs.  Full length FGF23 is 251 

amino acids and is cleaved by subtilisin-like proprotein convertases between amino acids 

179 and 180. In humans, failure of this cleavage step results in secretion of additional full-

length FGF23, which can cause hypophosphatemia leading to autosomal dominant 

hypophosphatemic rickets/osteomalacia (BENET-PAGÈS et al. 2004; FUKUMOTO 2005).  

These studies support the view that a delicate balance is necessary to control the level of 

secreted bioactive FGF proteins (BAI et al. 2003).  We also show that after processing, Ths 

and Pyr are similar in size to their vertebrate homolog FGF8 (~30 kD) suggesting that 

studying regulation of FGF signaling in Drosophila could provide useful insights for the 

FGF field in general. 

 

In addition to understanding the processing of Ths and Pyr, we sought to link the structural 

domains to the function of the ligands.  From embryonic stage 10 to 11, the developing 

dorsal mesoderm requires activation of the Htl receptor to specify two even-skipped (eve) 

expressing progenitor cells, which give rise to three Eve-positive founder cells (BEIMAN et 

al. 1996).  Two of these Eve-positive founders will become Eve-positive pericardial cells, 

and the third founder will give rise to dorsal somatic muscle (BUFF et al. 1998; CARMENA 

et al. 1998a; CARMENA et al. 1998b).  When either Ths or Pyr are ectopically expressed 

throughout the neurogenic ectoderm using a 69B-GAL4 driver, the Eve-positive cell cluster 

increases from three cells to as many as 20 cells (KADAM et al. 2009; STATHOPOULOS et al. 
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2004).  In this work we used these supernumerary Eve-positive cells as a functional 

readout of Ths and Pyr activity. By analyzing a series of truncation, deletion, and chimeric 

constructs, our results collectively suggest that the N-terminal FGF domain alone is 

sufficient to support function, but only when properly folded and secreted.   

 

If the N-terminus alone is able to activate the receptor and allow downstream signaling, 

then what is the role of the long C-termini of Ths and Pyr?  We addressed this question 

with another GAL4 driver, ZenKr-GAL4, which drives expression only in a subset of the 

dorsal ectoderm of the early embryo (i.e., zenVRE.Kr-GAL4 (FRASCH 1995)).  Limiting 

the source of protein production to this restricted domain allowed us to assay differences in 

the range-of-action of different Ths and Pyr constructs.  Our results suggest that the Ths C-

terminus is inhibitory and the Pyr C-terminus is not.  Collectively, these findings 

demonstrate that post translational processing is important for FGF signaling during 

embryonic development of Drosophila and suggest that processing of signaling ligands 

may be widespread. 

Results  

Comparison of predicted protein characteristics for Thisbe and Pyramus  

A screen to uncover genes expressed during patterning the dorsal-ventral axis of 

Drosophila, identified expression of the thisbe gene (ths: previously called Neu4) in the 

neurogenic ectoderm (STATHOPOULOS et al. 2002).  Results from additional genetic 

experiments were consistent with the hypothesis that Ths and Pyr are two FGF ligands for 

the Htl FGF receptor (GRYZIK and MÜLLER 2004b; STATHOPOULOS et al. 2004).  To 
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understand the mechanism of FGF signaling through Htl on a molecular level, we 

characterized Ths and Pyr proteins by analyzing their functional domains.  We first 

considered predictions about the size and homologous domains of Ths and Pyr. 

 

The ths cDNA contains a 2,247 basepair open-reading frame and is predicted to encode a 

protein of 748 amino acids (aa) with a molecular weight of 82.2 kD.  Thisbe is predicted to 

have an N-terminal signal peptide followed by a 122 aa FGF domain composed of 12 

predicted β-strands separated by coiled-coil domains, which presumably support a trefoil 

structure like vertebrate FGFs.  Beyond the FGF domain, however, the C-terminal domain 

of Ths exhibits only limited homology within deuterostomes, to other uncharacterized 

“immunoglobulin-like proteins” or proteins that are known to be highly glycosylated (data 

not shown).  The Ths protein sequence also contains several dibasic and multi-basic motifs 

characteristic of the recognition site for Furin proteases (RHOLAM and FAHY 2009; SEIDAH 

and CHRÉTIEN 1999) and several predicted N-linked glycosylation sites (Fig. 1). 

 

The pyr cDNA contains a 2,301 basepair open-reading frame and is predicted to encode a 

protein of 766 aa and ~87 kD.  Pyr also has an N-terminal signal peptide followed by an 

FGF domain of 128 aa (Fig. 1).  Ths and Pyr share 39% amino acid identity in the FGF 

core domain.  C-terminal to the Pyr FGF domain, there are many repeats and regions of 

low complexity.  From amino acids 399 to 426, Pyr has a string of hydrophobic amino 

acids  
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Figure 1 | Comparison of Ths and Pyr Proteins to other signaling ligands 

thisbe and pyramus genes encode proteins of 748 and 766 amino acids (aa), respectively, 

making them far larger than their vertebrate homolog FGF8, which is 204 aa.  Branchless, 

another FGF ligand in Drosophila, is also a relatively large protein of 770 aa. The C-

terminus is cleaved from FGF23, the only FGF family member known to be cleaved 

(BENET-PAGÈS et al. 2004; FUKUMOTO 2005).  Dpp is produced as a 588 aa precursor, but 

is cleaved to primarily the TFG-β-homologous domain alone (KÜNNAPUU et al. 2009; LEE 

et al. 2001; PANGANIBAN et al. 1990; SHIMMI et al. 2005).  Spitz is processed within its 

transmembrane domain and, like Thisbe and Pyramus, binds to a RTK receptor to signal 

(LEE et al. 2001; URBAN et al. 2001).  Known cleavage sites are marked with a black 

inverse triangle.  In the Drosophila FGFs, potential cleavage sites consisting of multi-basic 

amino-acid motifs are marked with a white inverse triangle.  Predicted N-glycosylation 

sites are marked with an asterisk and predicted O-glycosylation sites are marked with a 

vertical line.  
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that weakly qualifies as a potential transmembrane domain when assayed by topology 

prediction programs using the Kyte-Doolittle Scale (KYTE and DOOLITTLE 1982).  Pyr also 

has sites of predicted N-linked and O-linked glycosylation and putative dibasic and multi-

basic protease recognition sites (see symbols in Fig. 1). 

 

Ths and Pyr are secreted from S2 cells and detectable as cleaved forms 

To confirm the ability of the full-length ths and pyr cDNAs to support the production of 

~80 kD proteins as predicted by their sequence, we expressed Ths and Pyr proteins in vitro 

using a rabbit reticulocyte transcription/translation system that incorporates S35-labeled 

Methionine.  Full-length proteins were detected at ~80 kD, as predicted (Fig. 2A).  

 

We compared the size of Ths and Pyr proteins with other ligands (e.g., Bnl, FGF8, Dpp, 

Spi, and FGF23; see Fig. 1), and found Ths and Pyr to be much larger than FGF8 and 

closer in size to other cleaved growth factors in Drosophila like Dpp.  Therefore, we 

hypothesized that Ths and Pyr may also be regulated by cleavage.  Dpp (588aa) is activated 

by cleavage into much smaller molecules consisting primarily of the TGFβ-homologous 

domain (KÜNNAPUU et al. 2009; PANGANIBAN et al. 1990; SHIMMI et al. 2005).  Spitz is an 

EGF ligand that, like Ths and Pyr, uses a high-affinity RTK receptor to signal.  Spitz is 

cleaved within its transmembrane domain to release the EGF domain as a small, secreted 

ligand (LEE et al. 2001; URBAN et al. 2001).  All FGFs in vertebrates, even the cleaved 

FGF23, are small molecules consisting mostly of the FGF domain alone.  These 

comparisons led us to consider the hypothesis that Ths and Pyr may not signal as long, full-

length proteins, but as small molecules consisting primarily of the FGF domain.  
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First, we sought to verify whether Ths and Pyr were indeed secreted proteins by 

transiently expressing ths and pyr from a metallothionine promoter in S2 cells, a cell line 

derived from Drosophila embryonic cells.  Mutants deficient in both the  ths and pyr genes 

(i.e. Def(2R)BSC25 STATHOPOULOS et al. 2004) phenocopy the htl mutant phenotype, but 

in the early Drosophila embryo Ths and Pyr proteins are expressed in the ectoderm while 

Htl is limited to the abutting mesoderm cells.  Thus, for Ths and Pyr to influence the 

activity of the Htl FGFR in the mesoderm, our working hypothesis had been that the FGF 

ligands are secreted from the ectoderm to activate the FGFR present in the mesoderm.  

Consistent with this view, signal sequences are predicted at the N-terminus within the 

identified protein sequences (STATHOPOULOS et al. 2004).  Nevertheless, we sought to 

examine secretion directly.  In order to follow both the N- and C-termini separately, we 

constructed epitope-tagged constructs with a single hemagglutinin (HA) tag at the N-

terminus after the signal peptide and a 6X Myc tag at the C-terminus (diagrams in Fig. 2B).  

UASt.HA-Ths-Myc and UASt.HA-Pyr-Myc plasmids were co-transfected into S2 cells 

along with the metallothionine-inducible Gal4 plasmid and ectopic expression of the tagged 

proteins was achieved by copper induction.  Using anti-HA antibody, we were able to 

immunoprecipitate N-terminally tagged Ths and Pyr from the culture medium,  

demonstrating directly that the proteins are indeed secreted (Fig. 2B, lanes 2 and 3).  

Instead of identifying secreted proteins at the predicted full-length molecular weights, we 

found the predominant secreted forms consisted of multiple bands running at ~35 kD for 

Ths and ~50 kD for Pyr (Fig. 2B, lane 2 and 3, respectively), indicating that the cleaved N-

terminus of each protein is secreted.  
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Figure 2 | FGFs are cleaved in S2 cell culture and embryonic extracts 

(A) In vitro transcription/translation incorporating S35Met into Pyr (left) and Ths (right) 

supports production of ~80 kD proteins, as predicted from the sequence.  (B) Schematics of 

HA-Pyr-Myc and HA-Ths-Myc constructs showing the position of the signal sequence 

(orange box), N-terminal HA-tag (blue box), FGF domain, and C-terminal Myc tag (green 

box).  Upon transfection of S2 cells, HA-Pyr-Myc and HA-Ths-Myc are secreted from 

cells as multiple bands around 50 kD for Pyr (lane 2) and 35 kD for Ths (lane 3), as 

detected by immunoprecipitation and immunoblot with anti-HA to track N-termini.  Lane 1 

and 4 are supernatant and cell pellet controls transfected with empty vector (i.e., pUASt).  
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Lane 5 and 6 are immunoprecipitations of HA-Pyr-Myc and HA-Ths-Myc from the cell 

pellet, showing cleaved forms are already detectable inside the cell.  (C) Extracts from 

wildtype embryos (yw) or embryos overexpressing HA-Ths (Ths) or HA-Pyr (Pyr) with the 

69B-GAL4 driver, immunoprecipitated with rat anti-HA and detected with mouse anti-HA 

reveal cleaved bands around 35kD for Ths and around 45kD for Pyr.  (D) (Left Blot) 

Supernatant (i.e., cell culture medium) from HA-Pyr-Myc and HA-Ths-Myc, without 

immunoprecipitation, blotted with anti-HA antibody, shows a full-length band in the 

supernatant for Ths but not Pyr; the full-length Ths protein is present at much lower levels 

than the cleaved form and is only observable upon longer exposure; for instance, in (B), 

lane 3, it is not detected.  (Right Blot) Immunoprecipitating with anti-Myc and blotting 

with anti-HA shows that the 150 kD band in Ths supernatant and cell pellet has both the N- 

and C-terminus connected.  

 

Cleaved forms of Ths and Pyr are detected in embryonic extracts 

To investigate whether Ths and Pyr proteins are also cleaved in the animal, we expressed 

tagged versions of these proteins (i.e., pUASt-HA-Ths and pUASt-HA-Pyr) in the embryo 

using the pan-ectodermal driver 69B-GAL4.  Embryonic extracts were prepared from 1 

gram of collected embryos, age 0-24 hour, and N-terminal protein species were isolated by 

using an anti-HA antibody for immunoprecipitation.  Cleaved forms of both Ths and Pyr 

were detected in these samples, at ~35kD for Ths and ~45kD for Pyr (Fig. 2C).  The ability 

to detect cleavage products from embryonic extracts of approximately the same size as 

those secreted in S2 cells suggests our analysis of Ths and Pyr processing in S2 cells may 

also be relevant to FGF function in the Drosophila embryo.   
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The C-terminal domain of Ths can be secreted, but not that of Pyr 

Our ability to detect cleaved products in the S2 cell culture system, similar in size to those 

present in the animal, gave us confidence that we could use cell culture to obtain additional 

insights into these proteins. Therefore, we also examined the cell pellet fractions and found 

that cleaved N-terminal domains of Ths and Pyr are present inside the cell as well (Fig. 2B, 

lane 5 and 6).  This result suggests that cleavage occurs inside the cell. To examine this 

possibility more closely, we assayed for the presence of full-length forms of Ths or Pyr 

inside and outside the cells. 

 

In the HA-Ths-Myc cell pellet sample, in addition to the smaller potentially cleaved forms 

of Ths, we also detected a polypeptide of 150 kD, one that is much larger than the predicted 

size for Ths protein (~80kD) or that is observed when the cDNA is translated in vitro (Fig. 

2B, lane 6, compare with Fig. 2A). To confirm that this protein species represented the full-

length form of Ths, we immunoprecipitated with anti-Myc and blotted with anti-HA to 

identify both the C- and N-termini simultaneously.  We observed that both N- and C-

termini were connected in the 150 kD band in both the supernatant and cell pellet (Fig. 2D).  

Therefore, the 150 kD band probably represents full-length Ths, likely modified by 

glycosylation or other modifications that retard its mobility when assayed by SDS-PAGE 

and Western blot.  Collectively, these results are consistent with the idea that the majority 

of Ths is cleaved intracellularly and secreted, while some full-length form is also secreted 

at lower levels.   
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Subceullular Localization of Pyr and Ths 

We were not able to immunoprecipitate the predicted full-length Pyramus protein from the 

cell pellet or supernatant using a combination of anti-HA and anti-Myc antibodies, nor 

could we detect the cleaved C-terminus of Pyr by Western blot using an anti-Myc antibody; 

in contrast, full-length Ths could be detected in the supernatant at 150kD even in the 

absence of immunoprecipitation (Fig. 2D).  Possible interpretations of these results are that 

(1) Pyr protein is processed from full-length to cleaved very quickly intracellularly leaving 

very little full length form available for detection, (2) that in S2 cells Pyr protein is never 

made as a “full-length” form, or alternatively, (3) the Myc epitope is not accessible.  To 

address this question, we stained S2 cells expressing HA-Pyr-Myc constructs with either 

anti-HA or anti-Myc antibodies (Fig. 3).  The stainings provided support that the N-

terminus of Pyr (marked by the HA-tag) is secreted from the cell, as staining at the cell 

periphery was observed even in the absence of cell permeabilization (Fig. 3A, D). In 

contrast, the anti-Myc staining suggested that the C-terminus of Pyramus is present solely 

within cells, within an unidentified organelle, possibly an endosome (Fig. 3B).  No anti-

Myc staining could be observed for HA-Pyr-Myc in the absence of permeabilization (Fig. 

3E).  As a control for the accessibility of the Myc epitope, we used a C-terminally fused 

Pyr-GFP construct and anti-GFP antibody to confirm the location of the Pyr C-terminus.  

The anti-Myc and anti-GFP stainings of HA-Pyr-Myc and Pyr-GFP, respectively, exhibit 

the same intracellular staining that is lost in the absence of permeabilization (Fig. 

3B,C,E,F).  These data suggests that the C-terminus of Pyramus is translated, but that the 

full-length and C-terminus of the protein stays within the cell and is not secreted.  Stainings 

for Ths confirmed what was seen in Western blots.  The N-terminus was present both 
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inside the cell (Fig. 3G) and at the membrane in non-permeabilized cells (Fig. 3J).  

Stainings marking the C-terminus of Thisbe with anti-Myc and anti-GFP support the idea 

that the C-terminus Thisbe protein is secreted, although this could represent either a full-

length or cleaved form (Fig. 3H,I,K,L).  Therefore, we propose that there may be a 

difference in the number of forms secreted for Ths versus Pyr: Ths may be secreted as both 

a full-length and a cleaved form, whereas Pyr is only secreted as a cleaved form with the C-

terminus being retained intracellularly. 

  

Figure 3 | Visualization of N- and C-termini in S2 cells shows a difference in the 

subcellular localization of Ths and Pyr C-terminus. 
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S2 cells were transfected with the indicated pUASt.HA-Pyr-Myc, pUASt.Pyr-GFP, 

pUASt-Ths-GFP or pUASt.HA-Ths-Myc constructs (see methods), and 

immunofluorescence was conducted using anti-HA, anti-Myc, or anti-GFP antibodies (all 

“red”). HA-Pyr-Myc was stained with anti-HA to see the N-terminus (A,D) where 

predominant ER staining was seen inside the cell (A) while only membrane staining was 

seen under non-permeabilizing conditions (D).  The C-terminus of Pyr was visualized with 

anti-Myc for HA-Pyr-Myc (B,E) or anti-GFP for Pyr-GFP (C,F).  The C-terminus of Pyr 

inside the cell was localized to small, non-nuclear vesicles, which may be endosomal in 

character (B,C).  No Pyr C-terminus was visualized outside of the cell (E,F).  Anti-HA was 

used to visualize the HA-Ths-Myc N-terminus under permeabilizing (G) and non-

permeabilizing conditions (J), revealing ER staining around the nucleus inside the cell (G) 

and proteins attached to the cell membrane (J).  Anti-Myc (H,K) and anti-GFP (I,L) were 

both used to visualize the Ths C-terminus of either HA-Ths-Myc or Ths-GFP.  Again, ER 

staining was seen inside the cell (H,I) and membrane staining was observed under non-

permeabilized conditions (K,L).   

 

Truncation constructs reveal the FGF domain alone is sufficient for function 

In order to reconcile the biochemical evidence for cleaved forms with the endogenous 

function in the embryo, we made a series of N-terminally, HA-tagged truncation constructs 

and used the site-directed transgenic method to insert all transgenes in the same genomic 

location on the third chromosome, 86FB, to minimize positional effects (BISCHOF et al. 

2007).  We cannot be sure that the act of truncation itself does not impart differences in the 

stabilities of the produced proteins; in fact, stability of the proteins (possibly regulated by 
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cleavage events) may be one mechanism by which their activities are regulated. 

However, by minimizing positional effects on the transgene, we standardized expression 

levels for each of the constructs to the best of our abilities.   

 

During stage 10 to 11, FGF signaling through Htl contributes to differentiation of the 

mesoderm into specific cell types, including the pericardial cells of the future heart tube 

and dorsal somatic muscle (BEIMAN et al. 1996).  At this stage, pyr, and to a lesser extent 

ths as well, is expressed in the ectoderm overlying the developing heart cells 

(STATHOPOULOS et al. 2004).  Signaling through Htl, presumably by wild type endogenous 

levels of Pyr/Ths, supports the generation of three Eve-positive cells per hemisegment (Fig. 

4A and (MICHELSON et al. 1998b)), while overexpression of either Ths or Pyr leads to the 

expansion of this cluster up to 20 cells (KADAM et al. 2009).   

 

We used the expansion of the Eve-positive cell cluster as a functional readout to test the 

function of Ths or Pyr tagged, truncated proteins when overexpressed in the ectoderm with 

69B-GAL4.  First, addition of HA and Myc tags to Ths and Pyr did not affect the ability of 

Ths and Pyr to cause an expansion of the Eve-positive cluster (Fig. 4B, F).  Furthermore, of 

three truncation constructs engineered for Ths, two were functional (HA-Ths1-158 and HA-

Ths1-403) and one was not (HA-Ths1-261).  The two that were functional were also secreted, 

as confirmed by expression in S2 cells, while the construct that was not functional was not 

secreted (Fig. 4C, D, E); the non-functional truncation may disrupt an essential secondary 

structure required for proper folding and in turn secretion.  Remarkably, the small HA-

Ths1-158 was secreted and functional, yet this polypeptide contains little more than the FGF 
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domain alone.  Together, these data suggest that the FGF domain alone is sufficient for 

function of Ths and that secretion is also required for function. 

 

Three truncated constructs were engineered for Pyr as well: Pyr1-220, Pyr1-348, and Pyr1-466.  

Similar to the results from Ths, the two Pyr truncations that were secreted were also 

functional (Pyr1-348 and Pyr1-466) (Fig. 4H, I), while Pyr1-220 was neither secreted nor 

functional (Fig. 4G).  Unlike Ths, the fact that Pyr1-220 was not functional suggests that the 

shortest functional Pyr construct requires additional sequence besides the FGF domain.  It 

may be possible to make a shorter functional construct of Pyr; the Pyr1-220 construct may 

have been terminated in a location critical for proper folding.  Nevertheless, the 

functionality of Pyr1-348 suggests aa residues 349-766 are not required for activity. 

 

Differential range-of-action resulting from limiting the source of FGF 

Previous studies on the function of Ths and Pyr have speculated that a possible difference 

in their signaling capacity is due to either a differential range-of-action of the ligands 

diffusing from their source of expression or due to an unequal potency of activating the 

receptor (e.g., receptor-binding affinity) (KADAM et al. 2009).  In order to address these 

unanswered questions and to gain more sensitivity than was possible with the pan-

ectodermal 69B-GAL4 Eve-positive cluster assay (Fig. 4), we used a different driver, 

ZenKr-GAL4, which drives expression in a subset of the embryonic dorsal ectoderm 
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Figure 4 | Ths and Pyr truncation constructs that support the production of secreted 

proteins in cell culture are also functional in the embryo 

(A) Stage 11, wild type embryos, lateral view, stained with anti-Eve antibody show Eve-

positive staining in three cells per hemisegment.  The enlargement of the Eve-positive area 

is 1.8x.  (B-I) pUASt-HA-Ths and pUASt-HA-Pyr full-length and truncated construct 

schematics; assay for secretion was conducted in S2 cell culture. Embryos overexpressing 

indicated constructs with 69B-GAL4 were stained with anti-Eve antibody to score for FGF 

activity. (B) Overexpression of full-length Ths results in more Eve-positive cells (Eve+++). 

(C, E) HA-Ths1-158 and HA-Ths1-403 are both secreted and Eve +++, but (D) HA-Ths1-261 is 
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not secreted and does not support more Eve-positive cells. (F) Overexpression of full 

length Pyr also results in Eve+++. (G) HA-Pyr1-220 is not secreted and does not give more 

Eve-positive cells, but (H, I) HA-Pyr1-348 and HA-Pyr1-466 are both secreted and exhibit the 

Eve+++ phenotype. 

 

starting just before stage 9; at this stage embryos have undergone 50% of germ band 

elongation and expression supported by the driver is localized to the posterior (Fig. 4A and 

zen.VRE.Kr-GAL4 FRASCH 1995)).  For each construct, the number of Eve-positive cells 

per cluster in each hemisegment of 25 embryos was counted, averaged and compared.  The 

clusters were tracked within embryo hemisegments as indicated by the numbers on Fig. 

5A.  ZenKr-Gal4 supports expression in clusters 4-7 (as seen in inset Fig. 5G’) and this 

domain is represented on the graphs by a shaded gray box in the background.   

 

ZenKr-GAL4 driving full length HA-Ths-Myc and HA-Pyr-Myc both resulted in extra 

Eve-positive cells outside the expression domain supported by the ZenKr enhancer (i.e., 

clusters 1-3 and 8-11) (Fig. 5A, D).  Furthermore, expression of HA-Pyr-Myc resulted in 

more Eve-positive cells within every hemisegment as compared with expression of HA-

Ths-Myc (Fig. 5G).  One interpretation of this result is that Pyr may be more potent in its 

activation of the Htl receptor and another is that the Pyr protein is secreted at higher levels 

or is more stable than Ths.  Both HA-Pyr-Myc and HA-Ths-Myc supported more Eve-

positive cells at the source (i.e., clusters 4-7; gray box) and tapered off in a graded manner 

to more distant clusters (Fig. 5G).   
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Expressing HA-Ths1-158 in the ZenKr domain resulted in a surprising result: when 

compared to full length HA-Ths-Myc, HA-Ths1-158 supported the expression of many more 

Eve-positive cells in each hemisegment, even those farthest from the source (Fig. 5B, H, 

especially clusters 1 and 11).  Compared to full-length HA-Ths-Myc, HA-Ths1-158 also had 

a dramatically different profile of Eve-positive cell numbers; instead of peaking at the 

source and dropping off in a graded manner, there was close to maximum expression of 

Eve supported in almost every hemisegment (Fig. 5H).  In contrast, the other truncated Ths 

construct, HA-Ths1-403 showed an increase of Eve positive cells as compared to HA-Ths-

Myc within clusters at the source yet tapered off in activity in more distant clusters, a 

profile similar to that of the full length construct (Fig. 5 C, H).  In summary, two changes in 

trend were associated with constructs HA-Ths1-158 and HA-Ths1-403 compared with full-

length Ths: (I) flattened profile versus (II) increase peak yet graded profile, respectively.  

 

With the overexpression of the ligands limited to the domain of ZenKr-Gal4 expression, we 

favor the idea that supernumerary Eve-positive cells in hemisegments outside this domain 

would most likely result from an increase in diffusion of the ligands from their source of 

ectopic expression or decreased receptor-mediated endocytosis; however we cannot 

dismiss an alternate scenario in which this result is supported by the Ths1-158 protein being 

more stable than other constructs.  In either case, our results suggest the C-terminus of Ths 

has an inhibitory function (for example, either affecting stability, endocytosis or diffusion) 

and possibly that cleavage of Ths plays a regulatory role in increasing the ability of this 

protein to support activation of FGFR.   
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Figure 5 | Restricting the source of full-length and truncated Ths and Pyr constructs 

reveals a functional difference  

(A-F) Immunohistochemistry on stage 11 embryos, lateral view, all constructs driven with 

ZenKr-GAL4; embryos were stained using an anti-Eve antibody.  (A) White numbers 

indicate position of numbered Eve-positive clusters; ZenKr-GAL4 supports expression in 

clusters 4-7. (A-F) Eve staining reveals additional Eve-positive cells outside the ZenKr 
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domain for (A) HA-Ths-Myc (B) HA-Ths1-158 (C) HA-Ths1-403 (D) HA-Pyr-Myc (E) 

HA-Pyr1-348 (F) HA-Pyr1-466. (G,H,I) Eve-positive cells per cluster were counted in each 

hemisegment for 25 embryos per construct tested and averaged.  Error bars indicate 

standard error.  (G) The hatched line at “3” represents the wild-type level of Eve-positive 

cells. The gray box represents the source of expression supported by ZenKr-GAL4.  Plot of 

Eve-positive cells generated by ZenKr-GAL4  pUASt-HA-Ths-Myc as compared to 

ZenKr-GAL4  pUASt-HA-Pyr-Myc shows that Pyr has greater functional activity than 

Ths.  Ths and Pyr both give a graded output of Eve-positive cells with the most cells in the 

source domain. (G’) ZenKr-GAL4 driving UAS-lacZ and stained with anti-βgal shows the 

domain of the driver in the posterior dorsal ectoderm of the embryo.  (H) ZenKr-GAL4  

pUASt-HA-Ths1-158 does not have the same Eve-positive profile, instead it results in more 

Eve-positive cells in clusters 8-11.  ZenKr-GAL4  pUASt-HA-Ths1-403 has increased 

activity locally but similar levels of function to HA-Ths-Myc at long-range  (I) ZenKr-

GAL4  pUASt-HA-Pyr1-348 and ZenKr-GAL4  pUASt-HA-Pyr1-466 both retain a 

graded profile of Eve-positive cells, although HA-Pyr1-348 supports more Eve-positive cells 

in distant clusters 8-11 as compared to HA.-Pyr1-466. 

 

 

We also expressed both functional truncations of Pyr with ZenKr-GAL4 and found that 

overexpression of both HA-Pyr1-348 and HA-Pyr1-466 supported additional Eve-positive cells 

(Fig. 5E, F).  For both HA-Pyr1-348 and HA-Pyr1-466 the profile was similar to trend II seen 

for HA-Ths1-403: increased peak levels but graded profile (Fig. 5I).  Our hypothesis is that 

only the N-terminal Pyr cleavage product is secreted and the C-terminus remains 
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intracellular so truncated Pyr would be expected to support a similar response to 

expression of full-length Pyr due to essentially the same net protein fragment being 

secreted.  We do indeed see a similar profile of expression (i.e., graded profiles).  However, 

the outputs observed for the two Pyr truncation constructs and full-length Pyr are not 

identical; we suggest these differences may be due to differences in protein production 

(e.g., stability, differential processing inside the cell, and/or rate of secretion).  

 

Pyr truncation constructs are modified 

In S2 cell supernatants, truncated Pyr constructs, HA-Pyr1-348 and HA-Pyr1-466 run at the 

same size on Western blots despite the larger construct containing 118 more amino acids 

(Fig. 6A).  To understand if this was due to post-translational modifications we expressed 

both truncated constructs in a cell-free transcription/translation system and compared them 

to the size of the bands immunoprecipitated with anti-HA from the S2 cell supernatant.  In 

S2 cells, HA-Ths1-158 and HA-Pyr1-466 ran similar to their predicted sizes (20kD and 50kD, 

respectively) but HA-Pyr1-348 ran larger than its predicted size (at 50kD instead of 35kD), 

indicating that it may be glycosylated or otherwise modified (Fig. 6A).  These 

modifications could correspond to the predicted O-glycosylation sites between aa 177 and 

201 in Pyr (Fig. 1).  When HA-Pyr1-348 was expressed in the cell-free system (without the 

opportunity for post-translational modifications including glycosylation), it ran at its 

predicted size of 35 kD (Fig. 6B).  HA-Pyr1-466  likely contains the same modifications (and 

would likely also run larger than predicted, possibly around 65kD), but we hypothesize it is 

subsequently cleaved to the smaller 49/50 kD size of secreted Pyr (Fig. 6C, predicted 

sequential steps 1-3).  Carbohydrate modifications such as glycosylation can significantly  
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Figure 6 | Post-translational modifications contribute to the observed molecular 

weight of Pyramus 

(A) Supernatants from S2 cultured cells, immunoprecipitated with anti-HA, blotted with 

anti-HA.   HA-Ths1-158 runs at the expected size of 20kD, but HA-Pyr1-348 runs larger than 

predicted, at the same size as HA-Pyr1-466.  (B) In vitro transcription/ translation of HA-

Pyr1-348 (left lane) and HA-Pyr1-466 (right lane) blotted with anti-HA, show HA-Pyr1-348  is 

likely post-translationally modified in vivo. (C) Schematic showing predicted events to 

explain the results in A and B:  1.)  HA-Pyr1-348  and HA-Pyr1-466 are both translated to their 

predicted sizes as seen in vitro in (B). 2.) HA-Pyr1-348  and HA-Pyr1-466 are both modified 

post-translationally, likely by the addition of carbohydrate chains which increase their 

molecular weight to 50kD and >50kD (unobserved).  3.) HA-Pyr1-466 is probably 

subsequently cleaved to decrease its molecular weight to 50kD.  Small branching trees 

represent modifications and the inverse triangle represents a predicted cleavage site. 

 

affect the secretion, diffusion and binding capabilities of ligand proteins and the difference 

in modifications between Ths versus Pyr could contribute to their individual capabilities. 
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Ths-Pyr chimeras reveal differences between Ths and Pyr C-termini 

Results from the truncation constructs showed that eliminating the C-terminus from Ths 

has a different effect than eliminating the C-terminus from Pyr (see Figure 5H,I).  To 

further address the differences in the N- and C-termini of Ths and Pyr, we made chimeric 

proteins containing the N-terminus from one ligand and the C-terminus from the other, 

ThsN-PyrC and PyrN-ThsC.  Both chimeras were secreted and functional, giving extra 

Eve-positive cells when driven by 69B-GAL4 (Fig. 7A).  In S2 cell culture, both chimeras 

were processed and secreted as cleaved forms.  When the N-terminus of each chimera is 

detected using an anti-HA antibody, we find that ThsN-PyrC is cleaved into a 50/52 kD 

doublet, and one band at 30 kD (Fig. 7B lane 4); as a result, it may contain cleavage sites 

and/or modifications derived from both Pyr and Ths.  PyrN-ThsC is present as a small 

doublet around 30/35 kD, indicating it is likely cleaved and modified according to 

information derived from its Ths sequence (Fig. 7B lane 3 compared with lane 2).  

Importantly, this result shows that the cleavage is dependent upon the specific Ths or Pyr 

ligand sequence used and swapping sequence outside the FGF-domain allows us to see 

how the FGF-domain of one ligand acts in the context of processing like the other ligand. 

 

The chimeras were also driven by ZenKr-GAL4 and the Eve-positive cells counted as was 

previously done for the truncated constructs.  ThsN-PyrC supported more Eve-positive 

cells than HA-Ths and furthermore had the same altered profile as HA-Ths1-158 (Fig. 7 C, 

E).  PyrN-ThsC had decreased Eve-positive cell clusters compared to the HA-Pyr1-348, and 

was similar to full-length Pyr (Fig. 7 D, F).  These results demonstrate that the Pyr C-
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terminus does not have the same inhibitory effect on the Ths N-terminus that the Ths C-

terminus does.   

 

  
Figure 7 | Ths-Pyr Chimeras highlight inhibitory activity of Ths C-terminus  

(A) Schematics of ThsN-PyrC and PyrN-ThsC chimeric constructs and stage 11 embryos 

with 69B-GAL4 driving expression and function monitored with anti-Eve.  Both chimeras 

give the +++Eve phenotype, meaning they support FGF activity.  (B) Both chimeras are 

secreted, but cleaved differently in S2 cells.  Supernatant immunoprecipitated with anti-HA 

and blotted with anti-HA, shows PyrN-ThsC is cleaved in a manner similar to Ths, while 

ThsN-PyrC may have both Pyr and Ths-derived cleavage sites.  (C,D) Anti-Eve in stage 11 

embryos with each chimera driven by ZenKr-GAL4 shows +++Eve cells in clusters outside 

the ZenKr domain for (C) pUASt-ThsN-PyrC and (D) pUASt-PyrN-ThsC.  (E,F) 
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Comparisons of Eve-positive cells per cluster in each hemisegment, scored and averaged 

as in Fig. 5. (E)  ZenKr-GAL4  ThsN-PyrC gives more Eve-positive cells than HA-Ths-

Myc, suggesting that the Pyr C-terminus does not inhibit the Ths N-terminus the way that 

the Ths C-terminus does.  (F) ZenKr-GAL4  PyrN-ThsC has fewer Eve-cells than 

ZenKr-GAL4  HA-Pyr1-348, and is similar to full-length HA-Pyr-Myc indicating the Ths 

C-terminus can likewise inhibit the Pyr N-terminus. 

 

Deleting putative cleavage region renders Ths non-cleavable 

In order to address whether the Ths cleavage is necessary for proper function, we attempted 

to engineer a Ths construct with a deletion of the putative cleavage sites to create an un-

cleavable form of the ligand.  To determine which region to delete, we considered the size 

of the 30-35 kD bands secreted in S2 cells and dibasic/multibasic Arginine/Lysine 

sequences characteristic of the recognition sites of Furin-like proteases responsible for 

processing proproteins of other growth factors like Dpp into mature forms (RHOLAM and 

FAHY 2009). Sequences underlined with a red line (Fig. 8A) contain basic amino acids 

stretches of [R/K]-[Xn]-[R/K] where X indicates any amino acid residue and n is 0, 2, 4, or 

6, which is the consensus recognition sequence for Furin-related proprotein convertases 

(RHOLAM and FAHY 2009).   

 

We deleted a 72 aa region containing 5 putative cleavage sites to generate the construct 

HA-Ths Δ261-333 –Myc (Fig. 8A).  When HA-Ths Δ261-333-Myc was immunoprecipitated from 

S2 cell culture with anti-HA antibody, the full-length band became much more prominent 

than that associated with HA-Ths-Myc (Fig. 8B, lane 3 vs. 2), although cleavage products 
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still remain.  We then extended the deleted region 23 aa further to remove one additional 

weak match to the Furin consensus sequence to make HA-ThsΔ261-356-Myc.  The cleaved 

bands were further diminished, although one band of ~35kD was still detectable (Fig. 8A 

and 8B, lane 4).  The simplest interpretation is that these 95 amino acids include most of 

the relevant cleavage sites for Ths, and deleting them results in a shift of the dominant Ths 

protein species to the full-length form.  

 

The function of HA-ThsΔ261-356-Myc was tested using both the 69B-GAL4 assay and the 

ZenKr-GAL4 assay.  We hypothesized that the drastic reduction of cleaved Ths and the 

presence of increased full-length Ths would result in either dramatically less function if 

cleavage were activating or dramatically more function if cleavage were inactivating.  

Surprisingly, the result was neither of these extremes, but instead HA-ThsΔ261-356-Myc was 

still able to generate supernumerary Eve positive cell clusters like the other constructs (Fig. 

8C) and when the source of expression was limited using ZenKr-GAL4, the graded output 

of Eve positive cells was flattened as compared to HA-Ths-Myc (Fig. 8D, E), similar to the 

profile of HA-Ths1-158, yet not as potent an activator (compare with Fig. 5H).   

 

Thus by deleting 95 aa, we can affect the proteolytic processing of the Ths protein such that 

the majority of the protein is present as full-length.  Because this construct supports 

detectable activity, we suggest it is unlikely that cleavage is required for this activity. 

However, we cannot dismiss this possibility as some cleaved product is detected and the 

effective dose of FGFs is often very small; the remaining cleaved products in HA-ThsΔ261-

356-Myc may be sufficient to function when overexpressed at high levels with GAL4 
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drivers.  Nevertheless, HA-ThsΔ261-356-Myc supports an expanded profile similar to HA-

Ths1-158; perhaps the flattened output is an indication that both of these proteins are not 

endocytosed properly (see Discussion).  It is possible that cleavage is required before 

ligands can be effectively endocytosed from the extracellular space.  

 

 

Figure 8 | Cleavage of Ths can be prevented through deletion of internal amino acids 

(A) Thisbe amino acid sequence deleted in ThsΔ261-333Myc, including 5 potential cleavage 

sites, underlined in red; below the dotted black line are the amino acids that differ between 

the two deletion constructs, ThsΔ261-333Myc and ThsΔ261-356Myc, including 1 additional 

potential cleavage site, underlined in red.  (B) Western blot of anti-HA 

immunoprecipitations from supernatant of cells transfected with pUASt-empty, HA-Ths-

Myc, HA-ThsΔ261-333Myc, and HA-ThsΔ261-356Myc.  HA-Ths-Myc was loaded 5x less than 

the other samples to equalize the exposure while resolving the double-band at 35kD.  
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ThsΔ261-333Myc (lane 3) is still partially cleaved but has increased full-length protein and 

(lane 4) ThsΔ261-356Myc has less cleavage and more full-length product, as compared to 

HA-Ths-Myc (lane 2).  (C) 69B-GAL4 driving ThsΔ261-356Myc results in more Eve-positive 

cells in every hemisegment, as compared to wildtype.  (D) ZenKr GAL4 driving ThsΔ261-

356Myc results in extra Eve-positive cells outside the source of expression.  (E) Eve-

positive cells counted in 11 hemisegments for 25 embryos and averaged as in Figure 5.  

The gray box represents the source of expression supported by ZenKr-GAL4.  As 

compared to HA-Ths-Myc, ThsΔ261-356Myc has a decreased gradient of functional output, 

resulting in a flatter profile. 

  

Discussion  

Proteolytic processing regulates many signaling molecules in both vertebrates and 

invertebrates, and unlocking the mechanisms behind regulatory cleavage events has been 

an on-going effort for each protein.  In 1990, Dpp was first reported to be cleaved in S2 

cells (PANGANIBAN et al. 1990), and recent studies have continued to piece together the 

details of the maturation of the Dpp protein (KÜNNAPUU et al. 2009).  Our current analysis 

is the first evidence for cleavage of Ths and Pyr FGF ligands for the Htl FGFR.  In this 

study we have shown that Ths and Pyr proteins are both cleaved and secreted from S2 cells 

and cleaved Ths and Pyr can be detected in embryonic extracts.  Truncated ligands with the 

N-terminal FGF-domain are functional.  Additionally, spatially restricting the source of 

FGF ligands and using domain-swapped chimeras revealed that the C-terminus of Ths has 

an inhibitory capability while the C-terminus of Pyr does not.  
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The roles of Ths and Pyr C-terminal domains are different 

The C-terminus of Ths, but not that of Pyr, can be detected extracellularly in tissue culture 

cells, suggesting that the processing situation for Ths is likely different to that for Pyr and 

raising the possibility that the function of the C-termini of these proteins has diverged.  

Even though we can detect cleaved forms of Ths inside the cell, indicating that cleavage 

likely occurs intracellularly, we can also detect both full-length and cleaved forms of Ths 

outside of the cell.  Why would both forms be secreted if only the cleaved form was 

necessary to participate in receptor binding?  In the case of Notch, two of the processed 

forms remain non-covalently associated and must be further processed for release (BLAND 

et al. 2003).  In the case of Ths, the presence of both the unprocessed form and the 

processed form outside the cell creates the opportunity for an interaction.  

 

While expression of full-length Ths has a graded range-of-action, we were surprised to find 

that truncated Ths has an extended range-of-action which suggests that the C-terminal 

domain is inhibitory. The mechanism by which the C-terminus of Ths accomplishes its 

inhibitory role remains an intriguing question.  Does the C-terminus affect the rate of 

cleavage, the diffusion range, the rate of endocytosis, or might it physically interact with 

the N-terminus to directly inhibit FGF binding to the receptor?  The Ths C-terminus has a 

similar effect on the Pyr FGF domain-containing N-terminus, as the PyrN-ThsC chimera is 

functionally restricted compared to the shorter Pyr1-348.  In contrast, the Pyr C-terminus 

does not have the same effect on the Ths N-terminus, as ThsN-PyrC is highly potent and 

diffuses in an unrestricted manner, similar to truncated Ths1-158.   
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Our data supports the view that Pyr is processed inside the cell and that only the N-terminal 

cleaved form is released; therefore the Pyr C-terminus may only have a cell autonomous 

effect and likely does not affect the secreted protein directly once it is released.  The local 

potency of HA-Pyr-Myc is less than the truncated Pyr constructs; so we propose cleavage 

of Pyr inside the cell may be a rate-limiting step.   

 

Our results are also consistent with the idea that Pyramus could contain a transmembrane 

domain, as predicted, although our inability to follow the Pyr C-terminus has prevented us 

from confirming this prediction.  Although we have not yet uncovered a specific role for 

the Pyr C-terminus, of note is the fact that the C-terminal domain of Pyr exhibits homology 

to the intracellular human protein Trinucleotide Repeat-Containing 15 (Tnrc15) implicated 

in Parkinson’s disease (18% identity vs. 38% similarity over an approximately 500 aa 

stretch; data not shown) (LAUTIER et al. 2008).  Tnrc15 interacts with Grb10, which, in 

turn, interacts with EGFR, MAP2K1 and many other signaling molecules (GIOVANNONE et 

al. 2003).  This homology suggests the Pyr C-terminus may function inside the cell to 

regulate signaling, a function that likely is distinct from that of the Ths C-terminal domain.   

 

 

Processing of FGF ligands: proteolytic cleavage and post-translational modification 

Further studies will be required to understand the role that processing of Ths and Pyr plays 

in the regulation of FGF signaling in Drosophila.  The proteases responsible for the 

processing may themselves be spatially or temporally regulated at the transcriptional level, 
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or separated into different subcellular compartments.  Additional regulation of FGF 

signaling activity by proteases, which alter ligand activity and/or diffusion, could explain 

how FGFs are able to perform so many distinct functions in animals.  For example, the 

diffusion range of Ths and Pyr, possibly regulated by proteolytic cleavage, could be 

important to support different functions. For instance, recently we have learned that during 

gastrulation Ths and Pyr guide the symmetric collapse of the mesoderm first and 

subsequently control intercalation of cells required for monolayer formation (AMY 

MCMAHON 2010).  For collapse, a long-range signal might be required, whereas to support 

the small cell movements of intercalation a short-range signal may be more effective.  In 

addition, findings from the TGF-β signaling family show in some cases ligands are 

differentially processed in a tissue-specific manner.  Differential processing of BMP-4 by 

Furin proprotein convertases results in multiple ligand forms that exhibit differences in 

stability and ability to act at a distance in Xenopus assays (CUI et al. 2001; DEGNIN et al. 

2004).  Recent results on the BMP-2/4 homolog, Dpp, have found not only is Dpp 

processed in a tissue-dependent manner but different cleavage products are also required to 

provide sufficient function for wing and leg versus gut development (KÜNNAPUU et al. 

2009; WHARTON and DERYNCK 2009).  These examples highlight the importance of ligand 

processing as a key mechanism used by the cell to control ligand presentation and tissue-

specific signaling. 

 

Range of action: diffusion and regulated endocytosis 

Diffusion range is very important for most secreted signaling molecules, and this range 

may be influenced by post-translational modifications, proteolysis, or interactions with 
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other secreted molecules.  Recent work from zebrafish has shown that the common 

homolog of Ths and Pyr, FGF8, can act as a morphogen and spread from its source in the 

mid-hindbrain boundary by simple diffusion (YU et al. 2009b). A slower-moving species of 

FGF8 was also detected, which is thought to be interacting with heparin sulfate 

proteoglycans (HSPGs) in the extracellular matrix.  HSPGs are extracellular matrix and cell 

surface macromolecules that consist of a protein core to which heparin sulfate (HS) 

glycosaminoglycan (GAG) chains are attached.  HSPGs are required as a co-receptor in 

vertebrate FGF signaling and might also be involved in Drosophila FGF signaling (LIN et 

al. 1999).  Alternatively, the excessive glycosylation implicated in the molecular weight of 

full-length Ths (150kD compared to the predicted size of 82 kD) implies that the fully 

modified Ths molecule may likely be slow diffusing even without binding to HSPGs.  

Cleaved Ths might be freed from such glycosylation-mediated “inhibition” and allowed to 

diffuse farther and faster. The full-length and fully modified form may be protected from 

proteolysis by glycosylation (VAN DEN STEEN et al. 1998), resulting in local FGF signaling, 

which may be preferred in some cases.  Future studies will explore whether Ths and Pyr 

have different diffusion rates, and if these rates are affected by post-translational 

modification.   

 

Furthermore, the gradient formed by the HA-Ths-Myc construct may be dependent on the 

uptake of ligand in a “source-sink” mechanism similar to what is observed for FGF8 

diffusion in the zebrafish developing midbrain-hindbrain region (YU et al. 2009b).  In this 

scenario, cleavage could produce a form of Ths that is recognized and endocytosed, and 

may explain the more long-range activity associated with HA-ThsΔ261-356-Myc.  Along these 
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lines, short Ths1-158 may be lacking such an internalization sequence to support the 

“flattened” output profile observed.  

 

In the embryo, the switch between secretion of truncated or full-length ligand could be 

tissue-specific or temporally regulated as a means to support differential activity/range of 

the ligands.  Once the proteases that process Ths and Pyr are uncovered, it will be possible 

to study the relationship between proteolysis and range-of-action.  

 

Implications for vertebrate studies 

Lastly, these new molecular data on Ths and Pyr raise questions about the evolutionary 

history of the FGF family.  All 24 FGF family members in vertebrates are relatively small 

proteins.  Did Ths derive its long C-terminus in the Drosophila lineage independently 

before it was duplicated to produce Pyr, or was the ancestral FGF a long protein with 

cleavage sites that were lost in the vertebrate lineage?  To obtain some insight into these 

questions, we can look to FGFs characterized in other animal models (TULIN and 

SATHOPOULOS 2010).  Worms have two FGF ligands, LET-756 and EGL-15.  EGL-17 is 

small and LET-756 is 425 aa, an intermediate size, but not known to be cleaved 

(BIRNBAUM et al. 2005; POPOVICI et al. 2006).  Additionally, Bnl, the other FGF ligand in 

Drosophila, is approximately the same size as Ths and Pyr (i.e., 84 kD), although it is not 

more related to them than Ths/Pyr are to FGF8 (POPOVICI et al. 2005).  Therefore, it seems 

most likely that the Drosophila genome tolerates the lengthening of proteins and has found 

secondary ways of processing them during post-translational regulation.  This theory of 

differential genome tolerance was also put forth by Schmid and Tautz regarding 
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Drosophila transcription factors, which are on average 30% longer than their Tribolium 

homologs (SCHMID and TAUTZ 1999).  Another possibility (which is not mutually 

exclusive) is that the Drosophila FGF ligands are multi-functional proteins, with the FGF-

homologous portions responsible for activation of FGFRs and with the low-complexity 

regions (i.e., C-termini for Pyr and Ths) supporting additional functions, other than 

receptor-binding, required to support FGF signaling.  Furthermore, while Ths and Pyr 

likely arose from an ancient duplication, (STATHOPOULOS et al. 2004), the C-termini of 

these proteins have diverged: the Pyr C-terminus is most similar to an intracellular protein 

(i.e., Tncr15 which interacts with the adaptor Grb10) and the Ths C-terminus exhibits 

homology to highly glycosylated proteins, likely found extracellularly.  In vertebrates, 

studies on the Klotho protein suggest that at least some endocrine FGFs interact with 

additional proteins to influence receptor binding and activity (URAKAWA et al. 2006).  

Perhaps the Drosophila FGFs are ancestral multi-functional ligands that combine ligand-

binding and Klotho-like adaptor or HSPG functions. In any case, whether these “long” 

FGFs are novel inventions of Drosophilids or ancient remnants of more ancestral FGFs, we 

contend that the modular nature of Drosophila FGFs may provide important insights into 

mechanisms that affect FGF activity, which is best examined by comparing the activities of 

the diverged ligands, Ths and Pyr. 

Conclusions 

In the present study we have provided evidence for the proteolytic processing of 

Drosophila FGF ligands Ths and Pyr in both S2 cell culture and the embryo.  Functional 

data was presented showing that truncated, FGF-domain-containing N-termini are capable 
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of functioning in the embryo without their respective C-termini.  Restricted ectopic 

expression in vivo demonstrated the difference in signaling capability between Ths and Pyr 

in embryos and domain-swapped chimeras highlighted the differences in the C-terminal 

domains of Ths and Pyr.  These findings advance our understanding of the mechanism of 

FGF signaling in Drosophila and also suggest FGF signaling in Drosophila may be even 

more similar to that in vertebrates. 

 

Methods 

Prediction Programs 

N-glycosylation sites in the Drosophila FGFs were predicted using the NetNGlyc Server 

version 1.0 at http://www.cbs.dtu.dk/services/NetNGlyc/ (BLOM et al. 2004).  O-

glycosylation sites were predicted using OGPET version 1.0 prediction tool, © University 

of Texas at El Paso (UTEP) El Paso, TX accessed at 

http://ogpet.utep.edu/OGPET/contact.php.  

 

Fly Stocks and Constructs 

69B-GAL4 (Brand and Perrimon, 1993) and zenVRE.Kr-GAL4 (Frasch, 1995) fly stocks 

have been previously described.  All Ths and Pyr truncation, deletion and chimera 

constructs were inserted into the pUASt-attB vector.  1X HA tags were inserted by fusion 

PCR just after the N-terminal signal peptide, between amino acid 22 and 23 for Ths (i.e., 

ALCTV – HAtag – EDYVI) and between amino acid 30 and 31 for Pyr (i.e., ASAAK – 

HAtag – NVLTL).  6X Myc tags were inserted with Xho1 sites at the C-terminus just 
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before the stop codon.  HA-Ths(1-158), HA-Ths(1-261), HA-Ths(1-403), HA-Pyr(1-220), HA-

Pyr(1-348), HA-Pyr(1-466) were all PCR amplified from full length ths or pyr template and 

cloned into pUASt-attB with Not1/Kpn1 sites (Ths constructs) or BglII/Xba (Pyr 

constructs) sites.  Of note is the fact that a full-length pyramus cDNA has not been isolated 

to date, neither from cDNA libraries nor when primers are utilized to PCR amplify the 

predicted full-length gene from cDNA directly.  Therefore, the pyr coding sequence in 

hand is a recombinant DNA molecule composed of 1 kB of cDNA sequence fused to ~1.3 

kB of genomic sequence, based on the current genome prediction (KADAM et al. 2009). 

 

S2 cell culture and transient transfection 

Schneider cells (S2) obtained from the Drosophila Genomics Resource Center (DGRC) 

were maintained in a 25°C incubator in Schneider’s Drosophila Medium (Invitrogen, 

#11720-067), supplemented with 10% Fetal Bovine Serum (USA Scientific, #9871-5200), 

Pencillin-streptamycin (dil 1:100), and Fungizone (Invitrogen, #15290018), and filter 

sterilized.  Cells were passed with a 1:10 dilution every 4-5 days.   

 

Effectene transfection reagent (Qiagen, #301425) was used to transiently transfect DNA 

into S2 cells.  10ul Effectene reagent and 3.4ul Enhancer were used with 1ug DNA in 

100ul EC Buffer.  Cells were seeded into 6-well culture dishes at a concentration of 2 x 106 

cells/well.  100uM CuSO4 was added the day after transfection to induce the expression of 

the vectors from the metallothionine promoter.  Supernatant and cell pellet fractions were 

harvested 2 days post transfection.  Cells were lysed with a denaturing lysis buffer (1% 
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SDS, 50mM Tris, 5mM EDTA, DTT, DNase and protease inhibitor cocktail).  Complete 

Protease Inhibitor Cocktail  (Roche) was added to the supernatant fractions. 

 

Immunoprecipitation and Western Blotting 

Avidin-conjugated beads from Pierce were used to pull down HA and Myc tagged FGF 

constructs with a HA-biotin or Myc-biotin antibody. 250ul of supernatant or cell pellet was 

combined with 50ul of avidin agarose beads (Pierce #20219), 25ul 10x RIPA buffer 

(500mM Tris pH8, 1.5M NaCl, 5% DOC, 1% SDS, 1-% NP-40, 10mM DTT, 10X Roche 

Complete protease inhibitors, pH to 8.0) and 0.5µg anti-HA-Biotin (rat, 3F10, Roche 

#12158167001) or .01ug anti-c-Myc biotin conjugated antibody (mouse, 9E10, Sigma # 

B7554) and rocked overnight at 4oC.  Beads were washed 3 times 5mins with 1X RIPA 

buffer, and proteins were released from the beads by boiling in 1x SDS sample buffer for 

5mins. 

 

Immunoprecipitation samples were run on 10% SDS-PAGE gels, transferred for 6mins 

with iblot (Invitrogen) and blocked for 1 hour at room temperature in 4% milk in TBS-T.  

Primary antibodies were used at the following dilutions: 1:1,000 anti-HA (mouse 

monoclonal, Covance, 16B12) or 1:10,000 anti-Myc (rabbit, AbCam 9106) 1 hour at room 

temperature.  Blots were then washed 3 times 15mins in 1X TBS-T. Secondary antibodies 

conjugated to HRP were anti-mouse (Upstate, 1 hr. RT, 1:10,000 ) and anti-rabbit (Biorad, 

20mins, 1:10,000 ).  Blots were washed again 3 times 15mins in 1X TBS-T, and once for 

5mins in H2O to remove Tween.  Visualizer (Upstate) was used to develop the blots. 
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Generating Site-Directed Transgenics and UAS-GAL4 mediated expression 

Ths and Pyr constructs were cloned into the pUASt-attB vector (BISCHOF et al. 2007).  

Proper folding/secretion was assayed in S2 cell culture and by Western Blot before 

injection.  Constructs were injected by site-directed transgenesis into the 86FB location on 

the third chromosome (BISCHOF et al. 2007); Rainbow Transgenics (Newbury Park, CA) 

performed most injections, some were done in-house. 

 

Immunostaining S2 cells 

No. 1 ½, 22mm x 22mm glass coverslips (Corning, #2870-22) were cleaned by soaking in 

HCl for 1hr. and rinsed thoroughly with dH2O.  The coverslips were air dried and treated 

with 50uL of 1mg/mL concanavalin A (MP Biomedicals, #195283).  Transiently 

transfected S2 cells were allowed to spread on the coverslips and attach to the ConA 

coating.  The cells were fixed in 4% paraformaldehyde for 15mins, rinsed 3X with PBT 

(1X PBS + 1% Triton), and blocked in 5% Normal Goat Serum (Invitrogen) for 10mins.  

Primary antibodies were added in 5% block for 1 hr at RT, and then rinsed off. Antibodies 

used were: rabbit anti-GFP (1:1000, Invitrogen, #A111-22), mouse anti-HA (1:1000, 

Covance #16B12) and rabbit anti-Myc (1:10,000, AbCam #9106).  Secondary antibodies 

(anti-rabbit 555, 1:500, Alexa Fluor, Invitrogen) were also added in 5% block for 1 hr at 

RT and rinsed off.  Triton was rinsed off with two washes in H2O.  Samples were mounted 

to slides with Vectashield Hardmount. 
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Immunostaining Drosophila Embryos 

3-6 hr embryos were collected and dechorinated in 50% Bleach for 3mins.  The embryos 

were fixed in Heptane Fixing Solution [0.4mL formaldehyde, 4ml Heptane, 3.6mL Fixing 

Buffer (10mM KPO4, pH6.8, 15mM NaCl, 45mM KCl, 2mM MgCl2)] for 12mins on an 

orbital shaker on high.  The Heptane/Formaldehyde was removed and replaced with 

MeOH.  The embryos were rinsed in MeOH 4 times and stored at -20oC for short term or -

80oC for long term.  Embryos were blocked in 1x western blocking reagent (Roche) for 

30mins RT, and primary antibody incubations were performed overnight.  Primary 

antibodies used were: anti-Even skipped rabbit (1:1000, M. Frasch) and anti-βgal rabbit 

(1:250, Molecular Probes).  Secondary antibody was applied for 1-2 hrs. at RT: anti-rabbit 

1:200 (Vectastain, Vector labs). 

 

In vitro transcription/translation 

TnT T7/T3 Coupled Reticulocyte Lysate System (Promega, #L5010) was used with pBS-

Pyr and pBS-Ths, incorporating S35 Methionine, to assay the unmodified, full-length size of 

the proteins.  TranscendTM Non-radioactive Translation Detection System (Promega, 

#L5070) containing biotinylated lysine in the Transcend tRNA was used in conjunction 

with the TnT Coupled Reticulocyte kit to transcribe and translate pUASt-HA-Pyr(1-348) and 

pUASt-HA-Pyr(1-466), which were subsequently run on 10% SDS-PAGE and detected with 

anti-HA by Western Blot. 
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C h a p t e r  4  

[part of this chapter was published in Birth Defects Research Part C: Embryo Today as: 
Tulin S, Stathopoulos A, 2010. Extending the family table: Insights from beyond vertebrates 
into the regulation of embryonic development by FGFs. Birth Defects Research Part C: 
Embryo Today 90: 214-27.] 
 

EVOLUTIONARY PERSPECTIVE OF THE FGF 

SUPERFAMILY 

 
An Introduction to non-vertebrate FGFs and FGFRs 

FGF signalling has now been described in a number of model systems outside of 

vertebrates including the echinoderm sea urchin Strongylcentrotus purpuratus, the 

urochordate ascidians Ciona intestinalis and Ciona savigny, the ecdysozoans 

Caenorhabditis elegans, Drosophila melanogastor, and Tribolium castaneum, and the 

anthozoan cnidarian, Nematostella vectensis.  The relationship of these models to each 

other is diagrammed in Figure 1. 

This list will surely expand in the near future, but it is worth surveying the current 

described members of the FGF family outside of vertebrates (Table 1).  In the sea urchin, 

they have identified one ligand, FGFA, and two receptors, FGFR1 and FGFR2 (LAPRAZ et 

al. 2006; MCCOON et al. 1996; MCCOON et al. 1998; RÖTTINGER et al. 2008).  The ligand 

was called FGFA because the predicted protein showed similarities to both the FGF8 and 

FGF9 subfamilies and phylogenetic analysis gave ambiguous results.  Ciona has 6 FGF 

ligands and 1 receptor: Ci-FGF8/17/18, Ci-FGF11/12/13/14, Ci-3/7/10/22, Ci-FGF4/5/6, 

Ci-FGF9/16/20, Ci-FGFL (FGF with large molecular mass), and Ci-FGFR (SATOU et al. 
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2002; SHI et al. 2009).  In Drosophila, there are three FGF ligands: Branchless (Bnl), 

Thisbe (Ths), and Pyramus (Pyr) (GRYZIK and MÜLLER 2004a; STATHOPOULOS et al. 

2004).  Ths and Pyr are most related to the FGF8 subfamily.  Additionally, there are two 

FGFRs: Bnl uses the Breathless FGFR (Btl), and Ths and Pyr signal through the Heartless 

receptor (Htl).  Tribolium has 4 FGF ligands and a single FGFR: Tc-FGF1a, Tc-FGF1b, Tc-

FGF8, Tc-Branchless (Tc-Bnl), and Tc-FGFR (BEERMANN and SCHRÖDER 2008).  In C. 

elegans, there are two FGF ligands, egl-17 and LET-756, and one FGFR, egl-15.  Egl-17 is 

most similar to the FGF8 subfamily and LET-756 to the FGF9 subfamily.  In the anthozoan 

cnidarian Nematostella vectensis, there are 4 ligands and 2 receptors: NvFGF8A, 

NvFGF8B, NvFGF1A, NvFGFa2, NvFGFRa, and NvFGFRb (MATUS et al. 2007; 

RENTZSCH et al. 2008).   

 

Figure 1 |  Simplified tree of metazoan phyla.   

Simplified tree of phyla with FGF family representatives discussed in the text.  Branch lengths are 

not to scale. 
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A probable FGFR, kringelchen, has been identified in the hydrozoan cnidarian Hydra 

(SUDHOP et al. 2004).  Two FGFRs, Dj-FGFR1 and Dj-FGFR2 have been found in the 

platyhelminthes planarian Dugesua japonica, rounding out representatives from all the 

major metazoan phyla (OGAWA et al. 2002). 

The role of FGFs in development is an ancient one 

FGF signaling is an ancient cell-to-cell communication system as evidenced by its presence 

in the Cnidaria, which split off from its sister group Bilateria an estimated 600 million 

years ago (Rentzsch 2008).  Nematostella vectensis, a sea anemone, is considered to be a 

representative of basal cnidarians and to have retained much of the genetic complexity 

contained in the cnidarian-bilaterian ancestor (BRIDGE et al. 1995; BRIDGE et al. 1992; 

CHOURROUT et al. 2006; COLLINS et al. 2006; MEDINA et al. 2001; PUTNAM et al. 2007; 

RYAN et al. 2006; TECHNAU et al. 2005).  The two FGFRs identified in Nematostella, 

NvFGFRa and NvFGFRb are thought to have arisen from a lineage-specific duplication, 

and therefore, it is thought likely that there was only 1 FGFR in the cnidarian-bilaterian 

ancestor (RENTZSCH et al. 2008).  As many as 15 homologous transcripts containing FGF 

domains were found in the Nematostella genome, but so far only 4 have been described: 

NvFGF1A, NvFGFa2, NvFGF8A, NvFGF8B (MATUS et al. 2007; RENTZSCH et al. 2008). 

In bilaterians, FGF ligands and FGF receptors are often expressed in separate germ layers 

or tissues and signal across epithelial-mesenchymal boundaries.  Yet, in cnidarians there is 

no mesoderm for FGFs to signal to/from, and so the ligands and receptors are expressed in 
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the same domain (NvFGF1A, NvFGFa2, NvFGFRa), or in abutting ectoderm/endoderm 

tissues of the aboral pole (NvFGF8A, NvFGFRb).   

Morpholino knockdown of NvFGF1A and NvFGFRa showed that they are required for 

formation of the apical organ (RENTZSCH et al. 2008).  Apical organs with a ciliated tuft are 

also present in both protostomes and deuterostomes: in the larvae of sea urchins, 

hemichordates, and the polychaete Platynereis, although the evolutionary relationship of 

cnidarian, protostomian and deuterostomian apical organs has not yet been determined.  

Intriguingly, FGFs or FGFRs are expressed in the region of apical organ formation in sea 

urchin, hemichordates and polychaetes, leading to the possibility of an ancient function in 

apical organ formation. 

A tyrosine kinase receptor with similarity to FGFR, kringelchen, has also been identified in 

the hydrozoan cnidarian Hydra, where it was shown to be essential for boundary formation 

and tissue constriction as a prerequisite for proper bud detachment which is essential for 

reproduction (SUDHOP et al. 2004).  It has yet to be shown that this receptor can actually 

bind FGFs, which haven’t been described yet for Hydra. 

 

Importance of tight regulation in FGF signaling 

Evidence from many systems has pointed to the importance for tight regulation of FGF 

signaling activity, and the loss of such regulation often leads to developmental disorders 

and disease.  A negative regulator of FGF signaling, Sprouty, was originally identified in 

Drosophila for its action during tracheal development (HACOHEN et al. 1998).  Sprouty is 
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thought to act in a negative-feedback regulatory loop during FGF and EGF signaling 

(CASCI et al. 1999; KRAMER et al. 1999; SIVAK et al. 2005).  There are 4 mammalian 

Sprouty proteins and three related Spreds (Sprouty-related EVHI domain proteins).  

Sproutys have been found in synexpression groups with FGFs and FGFRs in other 

nonvertebrate systems.  Nematostella Sprouty, Nv-Sprouty, is expressed in the same 

domain as NvFGF8A, NvFGF8B and NvFGFRa in the apical pole (MATUS et al. 2007).  

The expression of the sea urchin sprouty largely follows that of fgfA from the late 

mesenchyme blastula/early gastrula to pluteus stages in bilateral regions of the ectoderm, in 

the PMC clusters, and at the tip of the growing arms of the larva.  Two other probable FGF 

target genes, pea3 (Polyoma enchancer activator 3), an Ets domain transcription factor, and 

paired transcription factor pax2/5/8, were also expressed along with fgfA and sprouty.  

Sprouty proteins can have a therapeutic effect on some mouse models of disease by 

enhancing angiogenesis and neovascularization (formation of new blood vessels from 

preexisting ones) (TANIGUCHI et al. 2009).  Many of the studies in vertebrates relied on 

double mouse knockouts for combinations of different Sproutys and Spreds.  Studies in 

nonvertebrate models of the mechanism of Sprouty regulation may aid the advancement of 

its use in therapies for certain diseases. 

Regulation has also been found to come from co-expressed FGF ligands.  In Nematostella, 

NvFGFa2 negatively regulates FGF signaling at the apical pole, as a morpholino against 

NvFGFa2 causes the expansion of the apical tuft region along with the expansion of 

expression of NvFGF1A and NvFGFRa (RENTZSCH et al. 2008).  This may be related to 

the function of FGFRL1 molecules (see Survey Approach to FGFRL1). 
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Multiple isoforms of FGFs and FGFRs are generated by splicing 

The possible ligand-receptor combinations in vertebrates are numerous and increased by 

different receptor splice forms.  Multiple isoforms are thought to contribute to ligand-

receptor specificity and functional specificity.  Several examples are also present outside of 

vertebrates of alternate splice forms of FGFs and FGFRs contributing to functional 

specificity.  C. elegans has two ligands LET-756 and EGL-17 and a single receptor, EGL-

15 (BIRNBAUM et al. 2005).  EGL-15 is located on the X chromosome and encodes two 

isoforms, EGL-15(5A) and EGL-15(5B), which result from alternative splicing of exon 5.  

It has been shown genetically that the different isoforms mediate signaling through two 

different modules, each using a specific ligand. Egl-15(5A) interacts with egl-17 to mediate 

sex myoblast chemoattraction and egl-15(5B) carries out an essential function required for 

viability, presumably through signaling by let-756 (GOODMAN et al. 2003).  Perhaps 

multiple isoforms are especially important when a single receptor is required to mediate 

separate functions from two different ligands. 

Ciona FGF8/17/18 has two alternative forms of transcripts that differ in their N-terminal 

regions (SATOU et al. 2002).  However, one form is missing the N-terminal region of the 

FGF domain and whether it is used for signaling and/or regulation is not known. 

FGFs have been lost, duplicated and undergo subfunctionalization 

Surveying FGF genes from across metazoa provides several points on the map of evolution 

of FGF signaling.  It is clear that in some lineages FGF/FGFR genes have been lost, where 

in other cases they have been duplicated once or multiple times.  Comparisons of FGFs in 

Ciona to vertebrates reveals that at least two rounds of duplications of FGFs and FGFR 
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were necessary to account for the multiple subfamily members in vertebrate genomes.  

It is generally thought that this is consistent with the “2R hypothesis,” which       

 

Figure 2 | Phylogenetic relationships of FGF family members 

Relationships displayed according to the previously described eight group classification 

(POPOVICI et al. 2005).  The simplified tree and the positions of FGF family members are 

based on Fig. 1 in Matus et al. (MATUS et al. 2007).  Positions of Tribolium FGF genes are 

based on the analysis by Beerman and Schröder (BEERMANN and SCHRÖDER 2008).   
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maintains that two rounds of whole genome duplication occurred at the base of 

vertebrate ancestry (HOLLAND et al. 1994; OHNO 1970).  It has been proposed that the 7 

FGF subfamilies present in vertebrates (A-G) plus 1 additional subfamily lost in 

deuterostomes (H) represent what was once 8 proto-FGF genes in the protostome-

deuterostome ancestor (POPOVICI et al. 2005) (Figure 2).  Ciona has six FGFs, 2 of which 

were confidently assigned to FGF subfamilies D and F (Ci-FGF8/17/18 and Ci-

11/12/13/14) (SATOU et al. 2002).  Probable placement in subfamilies B, C, and E was 

made for an additional 3 FGFs in Ciona (Ci-FGF3/7/10/22, Ci-4/5/6, and Ci-9/16/20).  The 

last FGF in Ciona, Ci-FGFL is characterized by its large predicted molecular mass and 

could not be assigned to any particular FGF subfamily with confidence.  Possible 

assignments include grouping with other invertebrate FGFs like Branchless in subfamily H, 

or was a member of subfamily A, B or G (FGF1/FGF2, FGF3/7/10/22 and 

FGF15/FGF19/FGF21/FGF23, respectively) but its sequence has diverged beyond the 

similarity required for phylogenetic analysis (POPOVICI et al. 2005; SATOU et al. 2002). 

Over time duplicated genes can undergo subfunctionalization to take over different 

responsibilities.  In some cases the combined functions of the two genes equal the function 

of the original gene, and sometimes the presence of a “backup” gene allows the duplicate 

or original gene to explore new functional space.   

 

Ciona vs. vertebrate FGFs 

Many functional studies have been performed on FGFs in Ciona and comparisons to 

studies in vertebrates yield some important similarities (BEH et al. 2007; BERTRAND et al. 
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2003; DAVIDSON et al. 2006; IMAI et al. 2002; KOURAKIS and SMITH 2007; SHI et al. 

2009; YASUO and HUDSON 2007).  Ci-9/16/20 has been shown to be involved in the 

induction of notochord, induction of mesenchyme, and heart specification (DAVIDSON et al. 

2006; IMAI et al. 2002). Ci-9/16/20 is expressed adjacent to the heart-producing B7.5 

lineage and morpholino knockdown of Ci-9/16/20 results in the disruption of heart lineage 

markers Mesp, NoTrlc/Hand-like, Tolloid, and FoxF (DAVIDSON et al. 2006; IMAI et al. 

2006).  FGF9 and FGF16 are also known to be involved in heart development in the 

mouse.  Knockout mice for both FGF9 and FGF16 (but not a double mutant) have been 

generated and have a similar phenotype of reduced number of cardiomyocytes and smaller 

embryonic heart (HOTTA et al. 2008; LAVINE et al. 2005).  FGF9 and FGF16 are thought to 

act synergistically to promote the proliferation of embryonic cardiomyocytes.  Epicardial 

and endocardial FGF9/FGF16 signaling through FGFR1/FGFR2 is essential for myocardial 

proliferation and differentiation (LAVINE et al. 2005).  In this case it seems that the 

vertebrate paralogs FGF9 and FGF16 have retained some kind of function in heart 

development (although possibly not homologous) compared to FGF9/16/20 in Ciona.  

FGF9 and FGF16 seem to be still redundant at this stage of development with no 

subfunctionalization apparent.  

 

Ciona FGF3/7/10/22 is expressed in the ventral midline of the neural tube and is important 

for convergent extension movement in the developing embryo.  In the Xenopus neurula 

FGF signaling has been implicated in axial elongation as well and possibly a similar 

mechanism is at play, however the details are still unclear (SIVAK et al. 2005).   
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Ciona FGF8/17/18 is expressed in the nervous system of ascidian embryos and is 

thought to play a similar role to the patterning of the brain territories that 

FGF8/FGF17/FGF18 play in vertebrates (see midbrain-hindbrain section of introduction).  

Ci-FGF8/17/18 is expressed in the developing central nervous system (CNS) in a region 

analogous to the MHB of vertebrate embryos and has led to the hypothesis that a precursor 

to the organizing activity of FGF8 in the MHB in vertebrates was this region of Ci-

FGF8/17/18 expression between Otx and Hox genes in Ciona (IKUTA and SAIGA 2007; 

IMAI et al. 2002).  Interestingly, 3 other Ciona FGFs are also expressed in the developing 

CNS: Ci-9/16/20, Ci-3/7/10/22, and Ci-FGFL (IMAI et al. 2002).  Morpholino knockout 

analysis of Ci-FGF8/17/18 has revealed that this ancestor of FGF8/FGF17/FGF18 plays a 

central role in generating regional patterns of gene expression as morphants have altered 

expression of Otx, en, FoxB, Pax2/5/8, and Hox 1 (IMAI et al. 2009).  In vertebrates, FGF17 

and FGF18 are also expressed in the mid/hindbrain in a broader domain than FGF8 that 

includes posterior midbrain (MARUOKA et al. 1998).  Loss of one copy of fgf8 in an fgf17 

mutant background results in an exaggerated cerebellum phenotype (XU et al. 2000).  

Ectopic FGF8 studies in the chick showed that only ectopic FGF8 leads to the expression 

of Engrailed-2, an early marker of mes/rhombencephalic development, Wnt1, and Fgf8 

(CROSSLEY et al. 1996).  Ectopic FGF8 can also lead to expression of Engrailed-1, Pax2 

and Pax5, and suppression of Otx2 expression (LIU et al. 1999; MARTINEZ et al. 1999; 

SHAMIM et al. 1999; SHEIKH and MASON 1996).  It therefore appears that FGF8, FGF17 

and FGF18 have already undergone some degree of subfunctionalization in this territory 

and are not completely redundant. 
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Table 1 
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Table 1 | Survey of described invertebrate FGF ligands 

Summary of information available for non-vertebrate FGFs, with selected references. C. 

intestinalis (sea squirt), S. purpuratus (sea urchin), D. Melanogaster (fruit fly), T. 

castaneum (flour beetle), C. elegans (nematode worm), N. vectensis (sea anemone). 

 

Drosophila vs. Tribolium 

Recent analysis of the fully sequenced genome of the flour beetle, Tribolium castaneum, 

has revealed 4 FGF ligands (Tc-FGF1a, Tc-FGF1b, Tc-FGF8, Tc-Bnl) and 1 FGF receptor 

(Tc-FGFR) to be expressed (BEERMANN and SCHRÖDER 2008).  Tribolium and Drosophila 

are more than 300 million years diverged; yet there is some conserved microsynteny 

between FGF genes in the two species.  The gene adjacent to pyramus (CG13197, a 

predicted tyrosine phosphatase) is homologous to the gene upstream of Tc-FGF8, Tc-

00277.   

There is only one member of the FGF8 subfamily in Tribolium, Tc-FGF8, but two in 

Drosophila, thisbe and pyramus.  The duplication to produce thisbe and pyramus is thought 

to have occurred in the arthropod phylum before the radiation of insects because ths/pyr-

like sequences were found in one study to be represented in both dipterans and 

hymenopterans (POPOVICI et al. 2005).  However, the presence of only one FGF8 homolog 

in Tribolium supports a different scenario where the duplication occurred in Dipterans.  

Genes similar to thisbe and pyramus are present in all other Drosophila genomes 

sequenced so far (unpublished observations), and further investigation of other insect 
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genomes may allow us to point with greater accuracy to the time in which this gene 

underwent duplication.   

Ours and other labs are working on piecing together the overlapping and distinct functions 

of pyramus and thisbe to understand how much functional redundancy remains and how far 

the process of subfunctionalization has gone in Drosophila.  Pyr and ths both function 

during gastrulation, specification of mesodermal subtypes, migration of caudal visceral 

mesoderm, and in axonal migration and glial cell wrapping.  In the axon there is a clear 

separation of function for pyr and ths.  Glial-derived pyr modulates glial cell numbers and 

motility whereas neuronal-derived ths induces glial differentiation (FRANZDÓTTIR et al. 

2009). Both ligands were found to influence mesoderm spreading, whereas pyr is the 

dominant player controlling Eve-positive cell specification in the dorsal mesoderm 

(KADAM et al. 2009; KLINGSEISEN et al. 2009b).  It therefore seems that the 

subfunctionalization of pyr and ths from their insect FGF8-homolog ancestor is underway 

and pyr may either have some derived functions or taken over functions once performed by 

the single gene. 

Studies in Tribolium have shown the pyr/ths homolog, Tc-FGF8 to be expressed in largely 

the same domains as pyr/ths during embryogenesis and so likely also involved in spreading 

of the mesoderm, gut development and brain regionalization (BEERMANN and SCHRÖDER 

2008).  Tc-FGF8 is expressed in the developing brain during mid-segmentation.  A stripe of 

Tc-FGF8 expression in each head lobe divides the brain into a larger anterior and a smaller 

posterior region, in a manner possibly analogous to the MHB in vertebrates.  The 

Drosophila embryonic brain is also divided into a tripartite pattern with an anterior 
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orthodenticle (otd) and posterior Hox domain and an intervening domain.  Pyr and ths, 

however, are not expressed in this middle region, but are expressed in one neuroblast in the 

anterior compartment in each hemibrain (URBACH 2007).  Further functional 

characterization of Tribolium FGFs will undoubtedly provide even more interesting 

comparisons to Drosophila FGFs. 

There are two members of the FGF1 subfamily in Tribolium, yet there is no member of the 

FGF1 (A) subfamily in Drosophila.  This indicates that Drosophila has lost the FGF1 

subfamily.  This is corroborated by the fact that the neighbouring genes (sex-lethal 

interactor, sin, and seven-in-absentia, sina) to FGF1a and FGF1b in Tribolium have 

conserved gene order in Drosophila, but FGF1 is missing in Drosophila.  FGF1 is 

ubiquitously expressed and is known to play a developmental and maintenance role of 

neuronal tissue.  Possibly other genes in Drosophila have taken over this function. 

 

FGF variability and plasticity 

FGFs are most conserved in the “core” FGF domain, however the conservation is often 

weak, making phylogenetic analysis difficult.  Other properties of FGF ligands including 

secretion signals, homodimerization ability, glycosylation modifications, binding to 

HSPGs, and other nonconserved domains in N- and C-terminal tails, can vary from 

molecule to molecule.  There is clearly a high level of plasticity in FGF signaling, the 

reason for which is unknown but likely relates to the complex networks of regulation that 

these molecules are involved in (POPOVICI et al. 2005).  The 2nd and 3rd extracellular 

immunoglobulin (Ig) domains of the FGF receptor are involved in binding the FGF ligands.  
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The amino acid sequence constraints imposed on Ig domains are less than for other 

protein domains, like kinase domains (POPOVICI et al. 2005).  The variability in the amino 

acid sequence of Ig domains relates to the high degree of variability in the amino acid 

composition of FGF ligands (POPOVICI et al. 2005).   

The FGF core domain is thought to be largely responsible for receptor binding.  However, 

the N- and C-terminal tails of FGF molecules are also thought to participate in FGF ligand-

receptor specificity.  The N- and C-terminal tails can be of variable length.  Drosophila 

FGF have extraordinarily long C-terminal domains compared to the average FGF family 

member, rendering them ~80kD in molecular weight compared to 18-30kD for the average 

FGF ligand.  Ciona also has an FGF with a large molecular mass, called Ci-FGFL.  So far 

Ci-FGFL has not been assigned to a particular FGF subfamily.  Despite the evidence for 

the importance of the sequence at the N- and C- termini, the function of unconserved 

domains outside the FGF domain has received little attention in most FGFs.  Two notable 

exceptions are the study of FGF9/FGF20 and FGF23 in vertebrates. 

The crystal structures of FGF9 and FGFF20 were elucidated and, unlike other FGF ligands, 

the N- and C-terminal regions were found to be ordered and involved in the formation of a 

dimer, which obscures the receptor binding site (KALININA et al. 2009; PLOTNIKOV et al. 

2001).  The homodimerization and ratio of dimers to monomers appears to autoregulate the 

ligands receptor binding ability to diffuse through the ECM and bind to HSPGs (HARADA 

et al. 2009; KALININA et al. 2009). 

FGF23 is part of a subgroup of endocrine FGFs.  Full length FGF23 is 251 amino acids and 

is cleaved in the C-terminal tail by subtilisin-like proprotein convertases between amino 
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acids 179 and 180. In humans, failure of this cleavage step results in secretion of 

additional full-length FGF23, which can cause hypophosphatemia leading to autosomal 

dominant hypophosphatemic rickets/osteomalacia (BENET-PAGÈS et al. 2004; FUKUMOTO 

2005).   

The C-terminus of C. elegans LET-756 has been shown to contain several nuclear 

localization signals and the function of them appears to be shuttling LET-756 between 

several nuclear compartments (POPOVICI et al. 2006).  Additionally, some nuclear 

localization signals are redundant, highlighting the importance of nuclear localization for 

LET-756, which has a viability function in C. elegans.  Subnuclear localization is 

important for function and LET-756 may be implicated in mRNA splicing machinery and 

ribosome function (POPOVICI et al. 2006). 

Recently, our lab has also undertaken the task of elucidating the function of the C-terminal 

domains of Ths and Pyr in Drosophila (TULIN and STATHOPOULOS 2010).  We found that 

despite their long length, these domains are not required for activity as truncated constructs 

removing the C-terminus are functional in an overexpression assay.  Additional chimeric 

constructs revealed that the C-terminus might play a role in the rate of ligand diffusion 

and/or potency by an unknown mechanism.  We also provide evidence that Ths and Pyr are 

cleaved from their full-length forms into smaller FGFs in cell culture and these cleaved 

forms are detectable in the embryo as well.  The role of FGF processing in the embryo and 

its requirements for function are yet to be fully understood. 
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Use of the survey approach in FGFRL1 

The ability to survey genomes from all major metazoan phyla is a powerful tool that allows 

researchers to understand the degree of conservation of orthologous genes and to 

investigate questions about whether similar mechanisms are being used.  A good example 

of this approach being used to study FGF signaling is seen in the study of FGFRL1 

(fibroblast growth factor like 1). FGFRL1 or FGFR5 is the most recently discovered 

member of the FGFR family and has an ectodomain with high similarity to conventional 

FGFRs, but lacks the catalytic tyrosine kinase domain in the intracellular domain 

(SLEEMAN et al. 2001; WIEDEMANN and TRUEB 2000).  FGFRL1 mutant mice die 

immediately after birth with a hypoplastic diaphragm and also display skeletal alternations, 

craniofacial dysplasia, heart valve defects, embryonic anemia, and defective kidney 

development (BAERTSCHI et al. 2007; CATELA et al. 2009; GERBER et al. 2009). Initially it 

was thought that FGFRL1 was limited to vertebrates, but Bertrand and colleagues have 

shown that there are orthologs in all metazoan phyla and it may represent a conserved 

regulatory mechanism for attenuating FGF signaling (BERTRAND et al. 2009).  Some 

FGFRL1 orthologs have already been identified, such as FGFRL1 in sea urchin, and others 

remain to be further investigated, like the putative Drosophila ortholog CG31431 and the 

ortholog predicted in the cnidarian Nematostella.  Subsequent work on FGFRL1 in cell 

culture and Xenopus embryos has revealed that increasing amounts of FGFR1 ectodomain 

are shed from primary myoblast cells when they begin differentiating into myotubes 

(STEINBERG et al. 2010).  FGFRL1 was found to bind several FGF ligands in both its 

membrane bound soluble state with high affinity. The affinity of FGFRL1 for FGF3 is 1 

order of magnitude higher than the affinity of FGF3 for its cognate receptor, FGFR2b; 
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consistent with the model that FGFRL1 could act as a decoy receptor to sequester 

ligand and attenuate signaling through FGFRs.  Ectopic expression of FGFRL1 in the 

Xenopus embryo resulted in a similar defect to that of the known phenotype of a dominant-

negative form of FGFR1, XFD, and could be rescued by injection of FGFR mRNA.   

The mechanism of FGF regulation by FGFRL1 type molecules appears to be widespread. 

The platyhelminthes planarian Dugesua japonica, which has an FGFRL molecule called 

nou-darake, has been characterized as also having a similar phenotype as XFD in Xenopus 

embryos (CEBRIÀ et al. 2002). 

There are still several unknowns with respect to FGFRL1, including the identity of the 

protease responsible for shedding the ectodomain, the developmental processes and 

specific FGF receptors it acts on during normal development, and the biological importance 

of a polymorphism present in the human population affecting an amino acid involved in 

cleaving FGFR1 (STEINBERG et al. 2010).  It will be exciting to see if similar mechanisms 

of FGF regulation are present in phyla as far as Cnidaria and if work on orthologs in other 

models can help answer the lingering questions as to the role of FGFRL1 in regulating FGF 

signaling. 

 

Conclusions and Outstanding Questions 

In the context of the FGF superfamily, the mounting number of non-vertebrate FGFs is 

adding to our knowledge of the evolution of FGF signaling and the variety of mechanisms 

available to these growth factors to regulate embryonic development.  Important studies 
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from invertebrates have provided models of alternate splicing, subfunctionalization, 

regulation by Sprouty proteins, and structural plasticity. 

FGF signaling is important for human development and human health; therefore, research 

will undoubtedly continue to in all of the discussed areas and will likely provide targets for 

medical applications.  Importantly, FGF signaling is an ancient cell communication 

mechanism that has been utilized by animals at least since cnidarians first appeared, and is 

present in all the major modern surveyed phyla.  This allows for a wealth of varied 

information that can be used in a number of ways to complement the understanding of our 

own biology and answer questions about how growth factor signaling has evolved and 

what mechanisms of signaling and regulation are possible. 

Some invertebrate FGF studies have provided very specific functional information.  But 

many studies in recently sequenced models are still based on inferences from expression 

patterns or simply the presence of homologous domains in the genome.  Much work 

remains to be done to complete the details of the complex signaling and regulatory 

networks that are present in FGF signaling to orchestrate the grand events of 

embryogenesis. 
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  C h a p t e r  5  

DISCUSSION AND FUTURE DIRECTIONS 

Summary                                                                                                                                                                                               

The aim of my thesis research was to understand the regulation of Fibroblast Growth 

Factor signaling using Drosophila melanogastor as a model system and investigating 

the details of Thisbe and Pyramus FGF ligands activating the Heartless FGF receptor.  

Previous work from our group indicated that there might be a difference in the diffusion 

range or binding capabilities of Ths as compared to Pyr (KADAM et al. 2009; 

STATHOPOULOS et al. 2004), and these properties could contribute to differential 

regulation of the ligands.  To evaluate this possibility we undertook an extensive 

analysis of the functional domains of both Ths and Pyr using both Drosophila cell 

culture and Drosophila embryos.  We demonstrated for the first time that in S2 cells 

Ths and Pyr are not secreted at their predicted size but are detected as smaller forms, 

indicating they are cleaved in cell culture.  We also found cleaved forms present in 

embryonic extracts, demonstrating that cleavage may take place during normal 

development in the embryo as well.  This result was crucial because it demonstrates the 

relevance of the information obtained in cell culture to the assays performed in the 

embryo.  

To dissect the function of the N- and C-terminal domains of Ths and Pyr, we created a 

set of truncation, chimera and deletion constructs. The cleaved forms of Ths and Pyr in 

cell culture contain the FGF core domain and suggest the possibility that the N-terminal 
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domain is capable of signaling without the C-terminus. We used the truncated 

constructs to show that indeed the N-terminus of both Ths and Pyr containing the FGF 

core domain is able to function without the C-terminus.  We then asked if there was any 

function for the unconserved domain at the C-terminus of Ths and Pyr.  Using Thisbe-

Pyramus domain swapped chimeric constructs we were able to see that the C-terminus 

of Ths appears to be inhibitory while the C-terminus of Pyr is not.  The reason for the 

functional difference may be due to the differential subcellular localization of the C-

termini of Ths and Pyr.  While the C-terminus of Ths is detectable outside of the cell 

and appears to be secreted as part of full-length Ths constructs and possibly also as C-

terminal cleaved piece, the C-terminus of Pyr is retained within the cell, inside an 

organelle that may be lysosomal in character. 

Whether cleavage is a necessary step for some or all functions of Ths and Pyr is yet to 

be determined.  We engineered a Ths construct with the region containing putative 

cleavage sites deleted, and tested it in the same assays as the other truncation and 

chimera constructs.  Although there was a shift to more full-length product being 

secreted, some cleaved forms were still made.  In the embryo, the construct was still 

functional, leaving open the possibility that either the remaining cleaved forms are 

sufficient for function or that cleavage is not required for the particular function we 

were assaying (differentiation of mesodermal cells into Eve-expressing pericardial 

cells).  There are several other described functions for Ths and Pyr in the developing 

embryo: mesoderm migration, caudal visceral mesoderm migration and axonal 

migration/glial wrapping.  It would be interesting to assay the cleavage-compromised 
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construct in the context of these other functions.  To globally assay if cleavage is 

required for any function in the embryo rescue constructs of Thisbe and Pyramus could 

be engineered with a deletion of the cleavage sites. 

Future Directions 

My work was the first to show proteolytic processing of Ths and Pyr ligands, and the 

first case of processing among FGF ligands in a developmental context (FGF23 

function being limited to homeostatic regulation). Proteolytic processing is a very 

common mechanism to regulate the activity or activation of signaling ligands and has 

already been described in detail for other ligands in vertebrates and Drosophila, as 

discussed in Chapter 2.  My thesis work has formed a foundation for understanding the 

regulation of Ths and Pyr proteins through processing and understanding how 

regulation is related to functional specificity in a system with multiple ligands using the 

same receptor (which is always the case in vertebrates).  The results of my thesis 

research have opened several new paths of questioning.  Most importantly, “Is cleavage 

actively regulating the activity of Ths and Pyr and contributing to their developmental 

functions?”  This question can be addressed by using genomic rescue constructs with 

cleavage sites deleted for Ths and Pyr and testing them in Drosophila developmental 

contexts.  For instance, perhaps cleavage is regulative during mesoderm spreading and 

intercalation.  We can use Ths and Pyr single mutant backgrounds and supply only the 

deleted construct to see if mesoderm spreading is altered (single mutants described in 

(KADAM et al. 2009; KLINGSEISEN et al. 2009a)).   
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Another question to address would be, “Is Branchless also cleaved and processed in 

a manner similar to Ths and/or Pyr?”  Bnl, at 770aa, is predicted to be about the same 

size as Ths and Pyr (SUTHERLAND et al. 1996).  However, instead of its FGF core 

domain following immediately after the N-terminal secretion signal, Bnl has both N-

terminal and C-terminal tails with the FGF core domain closer to the middle (See 

Chapter 3, Figure 1).  There are predicted cleavage sites both on the N-terminal side of 

the FGF domain and in the C-terminus (inverted white triangles, Fig. 1, Ch. 3).  A 

similar analysis as we have performed for Ths and Pyr should be followed for Bnl to 

determine if cleavage is a common mechanism among all known Drosophila FGFs.  

Epitope tagging both the N- and C-terminal end of Bnl and transiently transfecting it 

into S2 cells and immunoprecipitating from the supernatant will reveal if similar 

cleavage mechanisms are working on Bnl.  In the embryo, Bnl is responsible for branch 

outgrowth in the developing trachea.  Overexpression phenotypes have already been 

documented for UAS-Bnl using C49-GAL4 (new, ectopic branches) and could be used 

to analyze different truncation constructs (SUTHERLAND et al. 1996). 

The processing events of Ths and Pyr should be further characterized.  We would first 

use S2 cells to screen known proteases in Drosophila for their ability to cleave Ths and 

Pyr.  Chemicals are available to inhibit specific classes of proteases to narrow down 

which class contains the responsible protease(s) in a manner similar to that of Urban et. 

al (URBAN et al. 2001).  Serine proteases are inhibited by 3,4-dichloroisocoumarin 

(DCI), and tosyl phenylalanine chloromethyl ketone (TPCK).  Cysteine proteases are 

sensitive to E64d and leupeptin (SALVESEN 2001); whereas calpain proteases are 

sensitive to PD150606 (WANG et al. 1996).  Aspartyl proteases are sensitive to the 



 120 
inhibitor pepstatin A and presenilin proteases are inhibited by γ–secretase 

(HARTMANN et al. 1997).  Metalloproteases are inhibited by batimastat and ilomastat 

(LEE et al. 2001).  Finally, Furin proteases are inhibited by Dec-RVKR-CMK 

(STIENEKE-GRÖBER et al. 1992) and this is the protease inhibitor we will test first 

because of the putative Furin-like proprotein convertase sites present in Pyr, Ths and 

Bnl.  Additional information about the cleavage of Ths and Pyr can be obtained by 

making smaller deletions and even single site mutations to determine the order of 

cleavage events and the identity of the sites that are recognized.  In the case of FGF23, 

identification of the site of cleavage was aided by the availability of human mutations 

present that disrupted the cleavage site, however the exact identities of the protease(s) 

responsible are still not known (BENET-PAGÈS et al. 2004).  To clearly define the 

cleavage mechanism, the responsible protease(s), their site(s) of cleavage and the order 

of cleaved sites all need to be specified. 

The aspect of Ths and Pyr signaling that we are most interested in is how the properties 

of the ligands relate to the function FGF signaling in the Drosophila embryo.  To fully 

understand the signaling abilities of both ligands, it is imperative that the binding 

kinetics of Ths and Pyr to the Heartless receptor are described in detail.  

Crystallography has already been performed for a number of FGFs including FGF1, 

FGF2, FGF9 and FGF20 (PLOTNIKOV et al. 2001).  The crystal structures were required 

to understand the amino acids involved in binding to HSPGs, the receptor, and in the 

case of FGF9 subfamily members, the regions involved in homodimerization.  No 

crystal structures have yet been determined for any non-vertebrate FGFs and this level 
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of analysis would aid in better comparisons of FGF between species and to 

understand mechanisms.  There is some evidence that HSPGs may be involved in FGF 

signaling in Drosophila, but it is not as well supported or documented as for 

vertebrates.  Drosophila HSPG mutants for the glypican Dally-like and HSPG 

modifying enzymes sugarless and sulfateless all show defects in either heartless or 

breathless-mediated signaling (LIN and PERRIMON 2002; YAN and LIN 2007).  Further 

studies on HSPGs in Drosophila are needed to understand their role and how it 

compares to the situation in vertebrates.  Crystallography with and without HSPGs for 

Pyr, Ths and Bnl would be valuable information for the field. 

More specific kinetic analysis for FGF binding could be obtained by using Biacore 

surface plasmon resonance based technology.  In this system either the ligands or 

receptors are fixed to chips through engineered immunological domains and the 

corresponding ligands or receptors are then washed over the surface while binding 

strength and duration is calculated.  We may find that Pyr binds more strongly to Htl 

but dissociates more quickly that Ths or vice versa.  These results could then be applied 

to our knowledge of the requirements for Ths and Pyr during developmental processes.  

An additional assay that would be helpful for this analysis would be to develop a cell 

culture assay in S2 cells where binding of the ligands to the receptor can be 

quantitatively measured, as they have done in vertebrate cells to compare the binding 

strength for different ligand/receptor combinations (ORNITZ et al. 1996; ZHANG et al. 

2006).  One barrier to developing this assay is the dependence of Htl signaling on the 

co-factor Stumps (as discussed on page 26-27).  Stumps will likely have to be 
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permanently transfected along with Htl in order to establish a cell line that will 

respond to FGF ligands.  The response could likely be measured by di-phosphorylated 

MAPK production.  This assay would be useful for comparing the response of both Btl 

and Htl to Bnl, Ths and Pyr.  

An aspect of FGF signaling that I proposed to work on, but did not get a chance to 

address during my thesis work, is the role of FGF signaling in the regulatory network of 

Drosophila development.  An early promoter for ths has been found, but lacks a 

complete analysis.  It is known that ths is turned on in the neurogenic ectoderm by the 

Dorsal transcription factor as part of a suite of targets to pattern the early dorsal/ventral 

axis (STATHOPOULOS et al. 2004). Additionally, it is known that there are multiple 

combinations of transcription factor sites that can produce a similar stripe of expression 

in the neurogenic ectoderm (LIBERMAN and STATHOPOULOS 2009).  The pyr 

enhancer(s) have not yet been described.  Understanding how the FGF ligands are 

activated and repressed at the level of cis-regulation is a key piece of the FGF signaling 

puzzle.  In order to address this, we need to make genomic constructs that recapitulate 

all of the expression of ths and pyr in the embryo.  There will likely be multiple 

enhancers for the different temporal and spatial regions of FGF expression.  

Additionally, the cis-regulatory analysis is likely to be a very rich study because the 

expression of ths and pyr is highly dynamic and likely requires the coordinated action 

of many activators and repressors.  The downstream targets of FGF signaling also need 

to be identified.  In order to understand if a different battery of genes is turned on in 

response to signaling by ths as compared to signaling by pyr or bnl, a microarray 



 123 
approach could be used along with single mutants for ths and pyr.  A study of genes 

turned on in response to Btl signaling has already been published (STAHL et al. 2007).  

It will be interesting to compare the downstream targets turned on for different 

functions to see the similarities and differences. 

Another mechanism discussed in Chapter 4 for generating FGF signaling specificity is 

the generation of multiple spliceforms of either FGF ligands or receptors.  It is 

currently thought that Htl exists in only one splice form; however, a careful analysis has 

not been undertaken to say this with certainty.  To understand the complete picture of 

FGF regulation, this possibility must be taken into consideration and tested. 

The continuation of work in this area will necessarily take place at the intersection of 

functional genetics, cis-regulatory analysis, and enzyme biochemistry.  All the tools 

available in Drosophila make the complete analysis of FGF signaling and regulation in 

the fly a realistic possibility and the likely gains to the FGF field as a whole are 

considerable. 
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