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Abstract

Fiber composite material panels and sandwich panels possess both a high resistance to

weight ratio and a high stiffness to weight ratio. Due to these features, fiber composite

panels are used widely in aeronautic and marine structures, where the improvement of

the structural performance while keeping a low weight is crucial. Sandwich structures,

consisting of a foam core enclosed by two external layers of fiber reinforced material, seem

to be promising in minimizing the total weight, maintaining structural rigidity and im-

proving the resistance under exceptional loads, such as those due to explosions. Full scale

experiments to test the performance of real fiber composite sandwich structures subjected

to underwater explosions would be very complex and extremely expensive. Therefore, the

capability to numerically simulate the response of sandwich structures undergoing explo-

sive loading will provide a powerful and unique tool to analyze and optimize their design

by investigating the influence of different parameters. Obviously, small scale laboratory

tests will still be essential to validate and calibrate the computational model before its

use.

The present research focuses on the development of a computational scheme to model the

behavior of large sandwich panels subjected to underwater explosions. The description

of the sandwich requires the definition of the material behavior of the components, i.e.,

the foam core and the external sheets, of the structural behavior of the thin shell struc-

ture, and of the interaction with the surrounding fluid. Several finite kinematics material

models taken from the recent literature have been used, and a new simple model for fiber

reinforced composite has been developed and validated. The thin shell structure is mod-

eled with an existing in-house built non-local shell finite element code (SFC), equipped

with fracturing capabilities. The coupling between the behavior of the shells and the

action of the fluid as a consequence of an underwater explosion is modeled here with

the aid of an existing fluid-solid interaction (FSI) code. In this study, the FSI code has
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been expanded in order to include the possibility of simulating fiber composite materials.

New algorithms and new control indicators, such as global measures of energy dissipation,

have also been developed. The new capabilities of the fluid-solid coupled solver have been

verified and validated before applying the solver to realistic problems. In the applications

part of the present research, two different methods for applying the pressure load due

to an underwater explosion are compared. The first method is simpler, and consists in

applying a prescribed pressure profile without considering FSI. In the second method,

the explosive charge is modeled as a spherical energy deposition and the full FSI is con-

sidered. The simpler method is used to assess the role of different design parameters of

the face sheets on the overall response of sandwich panels when subjected to impulsive

loads. Subsequently, the best sandwich design obtained from these initial simulations is

used for the evaluation of the mechanical performance of the hull section of an existing

Argentinean navy vessel. The final application of the proposed computational scheme is

a parametric analysis of the hull section, considering different weights of the explosive

charge and different distances of the explosion location from the hull wall.

Finally, with awareness of the limits of the adopted approach, several alternative schemes

to improve the dynamical analysis of sandwich panels impulsively loaded are presented

and discussed. In particular, two different kinds of shell finite elements are introduced.

The proposed shell elements are based on alternative approximation schemes, which may

model in a more realistic way the behavior of sandwich structures under extreme loads.
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Chapter 1

Introduction

1.1 Sandwich structures

A first and simple way to understand what is a sandwich structure is by analogy to an

I shape beam: most of the material is placed in the flanges situated farthest from the

neutral axis and only enough material is left in the connecting web to allow the flanges

to work together.

A sandwich panel is indeed formed by three parts (Figure 1.1):

• two faces that are usually thin if compared to the thickness of the entire sandwich

panel. The external layers confer high flexural and in-plane stiffness to the sandwich

panel.

• a central core that is usually thick, light and weaker than the external faces (the

core typical thickness varies between 3 mm and 60 mm)

• two adhesive layers between the sandwich external faces and the internal core.

Face sheet

Core 

Adhesive layer

Figure 1.1: Typical cross section of a sandwich panel formed by two external face sheets

and an internal core connected by adhesive layers.
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The requirements for the materials forming the sandwich external faces depend on the

specific structural application but the most common specifications are (Battley, 2010):

high stiffness to achieve high flexural rigidity, high tensile and compressive strength, im-

pact resistance, surface finish, environmental resistance (chemical, UV, heat, etc.), wear

resistance. Composite materials, metals, wood and polymers are among the most com-

mon materials used to build the external face sheets of sandwich structures.

The properties required for the core material depend on the structural applications and

vary. Typical requirements can include low density, high stiffness and strength perpendic-

ular to the sandwich faces, energy absorption, high shear modulus and strength, thermal

and acoustic insulation, thermal and chemical stabilities for manufacturing. Many dif-

ferent materials are currently employed in the core of sandwich panels: among these the

most common are balsa wood, polymers (PVC, SAN), and metals (aluminum). Also, dif-

ferent core morphologies have been applied, such as: homogeneous foam core, corrugated

core, honeycomb (Figure 1.2).

3

Introduction
Core Types

Figure 1.2: Examples of different common core types. Figure taken from Carlsson (2010).

One of the first structures in which sandwich panels were used is the De Havilland

Albatross aircraft, which completed its first flight in 1937. Its fuselage was made of
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plywood-balsa-plywood to decrease the airplane weight while preserving stiffness and

strength. The same concepts employed in its fuselage were later used in designing the

famous Mosquito bomber during World War II, and this was the first example of sandwich

panel mass production (Gdoutos, 2010). From these early applications the use of sandwich

structures in modern engineering grew very rapidly. Sandwich structures are today heavily

employed in the military navy industry, in common and racing cars, recreational and

racing sailboats, aircrafts for military and civilian purposes, wind turbines blades, space

shuttle fuselage, among other applications (Figure (1.3) shows a few examples of structures

in which the sandwich materials are heavily used).

Figure 1.3: Examples of modern structures that use sandwich composite materials to

reduce weight and enhance performance and life span. From left to right, top to bottom,

Boeing 787, Ferrari F1 2004, 61.5 m - 17.7 tons wind turbine blade, JR-Maglev high speed

train (figures source: Wikimedia Commons and Thomsen (2010)).

The use of sandwich panels has improved the performance of many structures, as it

has allowed the realization of larger and lighter applications. The aircraft industry is a

clear example where the use of sandwich panels leads to extended lifetime and weight

saving (Crump et al., in press).

The wind turbine industry is another example where fiber composite sandwich configu-

rations are increasingly used to improve performances and to extend the limit on the di-
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mension of the present wind blades (Thomsen, 2010). Present day designs mainly employ

glass and carbon fiber reinforced composites, but they also include substantial amounts of

sandwich materials. It is likely that even more sandwich elements may be used in future

for very large blades to further reduce their weight and to provide additional buckling

capacity.

The naval military and civilian industries have also been increasingly using sandwich fiber

composite materials to effectively design structures that need to operate in severe environ-

mental conditions. Sandwich material configurations are used to improve the resistance

of boat hulls to cyclic operational loading (i.e., repeated wave slamming) and exceptional

loads (i.e., underwater explosion). Moreover, fiber composite sandwich panels offer other

advantages such as low radar and magnetic signature and are therefore ideal for building

the hulls of mine hunters and combat vessels. Also, the reduced weight due to the use of

sandwich composite configurations implies a higher top speed and better maneuverability.

Figure 1.4: Swedish HMS Helsingborg: its hull is constructed with a sandwich design

consisting of a PVC core and vinyl external faces reinforced with carbon fibers (figure

source: Wikimedia Commons).
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Nowadays there are many challenges associated with the use of sandwich panels in

structural applications. Among them, two seem to be of particular relevance:

• a better understanding of the behavior of sandwich structures under normal and

exceptional loads is required to employ them in a safe manner. Experiments as well

as simulations have a great importance in filling the gap of confidence in the use of

sandwich material configurations with respect to more traditional and longer used

construction materials such as steel, aluminum and concrete.

• a better understanding of the damage tolerance of sandwich structures as well as the

development of methods to detect and correct the damage in operative structures

(Thomsen, 2010, Hayman, 2010).

1.2 Modeling of sandwich and composite structures

subjected to explosions

A material to be employed in the hull of military vessels must possess the capability to

sustain explosive loads. Fiber composite materials and sandwich material configurations

have been studied by many researchers as a promising possibility to sustain the load due to

underwater explosions. Some authors (i.e., Tekalur et al. (2008)) studied experimentally

the response of fiber composite face sheets alone subjected to blast loads. Another area

of research focuses instead on studying the behavior of the complete sandwich structures

subjected to explosive loads. Particular attention is dedicated to the experimental study

of the effect of different core topologies and densities on the final damage and residual

properties of the structure. For instance, Mouritz (1995) studied the damage in sandwich

panels with foam core and fiber glass external panels with and without Kevlar thread

stitches through the thickness: no relevant differences in the damage pattern were found

between the stitched and unstitched panels. Wang et al. (2009) investigated the effect

of varying the foam core density through the thickness (while keeping the overall weight

constant) and discovered that a lighter foam layer on the side of the explosion improves

the overall sandwich structure response. Kazemahvazi et al. (2010) analyzed instead a

more sophisticated corrugated carbon fiber core that shows superior compressive perfor-
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mance. Also very relevant to understanding the behavior of sandwich structures are the

experimental campaigns conducted by Ivanez et al. (2010) and Dear et al. (2010). Ivanez

et al. (2010) compared the high velocity impact response of a foam core sandwich plate

and of the same structural configuration without the internal foam core (in the latter

case only the external face sheets are present and there is no connection between them).

Unexpectedly, the resistance of the foam core sandwich plate is only slightly higher. Dear

et al. (2010) presented instead full scale experiments involving sandwich composite plates

(1.3m × 1.6m) subjected to air blast. The complete set of experiments, to appear shortly

in the literature, is expected to be of great value for the validation of numerical models.

A different area of research focuses on damage mechanisms that develop in the sandwich

structures under explosive loads. Among others, the most important and studied failure

mechanisms are core compression, shear crack formation, face sheet-core delamination,

matrix and fiber cracking (i.e., Klaus and Reimerdes (2010), Wang and Shukla (2010),

Espinosa et al. (2010)).

Many experimental studies are coupled with numerical simulations that, once validated

using the experimental results, are employed to expand the experimental findings via

parametric studies (i.e., Zhu et al. (2008, 2009), Avachat and Zhou (2010)).

Other authors prefer an analytical approach in studying the behavior of sandwich struc-

tures to explosive loads. These studies are usually restricted to two dimensional beams

but provide nevertheless a detailed description of damage evolution (Cavicchi and Massab,

2010) and of the sandwich response as a function of core geometry and blast characteris-

tics (Deshpande and Fleck, 2004).

Wider attention is given to numerical approaches such as finite element analyses since they

are more flexible and easily applied to different situations. Some authors (i.e., Batra and

Hasssan (2007, 2008)) studied the damage and energy absorption in fiber reinforced com-

posites exposed to an underwater or in-air explosion. In particular fiber matrix debonding,

matrix cracking and fiber breakage are considered and the energy absorbed in each failure

mechanism is examined giving preliminary information on how to optimize the design of

fiber composite structures to increase blast resistance. Other researchers focused on the

full sandwich structure (i.e., Librescu et al. (2006, 2007)) investigating contemporaneously

the effect of core and face sheet construction on the sandwich panel behavior.
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Among other areas of research relevant to the study of sandwich panels subjected to ex-

plosive load, the understanding of the fluid-structure interaction is very important. The

effect of cavitation reload (Xie et al., 2007), shock bubble interaction (Xie et al., 2009)

and interaction between deformable bodies and multiphase flow (Young et al., 2009) are

some of the aspects to be better captured during simulations.

1.3 Present research

As briefly reviewed in the previous section, many researchers have been studying in detail

the behavior of sandwich and fiber composite structures subjected to underwater explo-

sions. The damage formation and propagation in the sandwich core as well as in the fiber

composite sheets have been extensively investigated together with the characterization of

the overall behavior of the sandwich panels.

However there has not been much attention given to the analysis of large sandwich pan-

els subjected to underwater and in-air explosions. Experiments regarding a full scale

structure are both difficult to realize and very expensive. On the other hand, numerical

analyses may be used to model the response of a full size sandwich panel after the experi-

mental results have been used for validation and for a better understanding of the damage

and failure mechanisms. The present work focuses on developing a computational method

to study large size sandwich structures in a general framework without imposing restric-

tions on the material models to be used, on the sandwich structure geometry and on the

loading conditions. Even if the same level of detail obtained in a small scale simulation

may not be attained, the proposed scheme is able to capture the failure of the analyzed

sandwich structure assuming that failure may be fully accounted for through fracture and

fragmentation.

The description of the material models for the foam core and the external face sheets is

introduced in Chapter (2) together with the cohesive law that governs fracture propaga-

tion and therefore the failure mode. Subsequently the finite element model used in the

analyses of large sandwich panels is described in Chapter (3). Chapter (4) contains the

verification and validation of the newly developed computational tools. The application

of this computational model to foam core sandwich structures with different face sheets
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is illustrated in Chapter (5). The possibility to use the presented capability to optimize

the sandwich shell response to underwater explosions is also shown. Ideas for improv-

ing the efficiency and predictive capability of the code are presented in Chapter (6). As

part of the future developments, two new numerical approximation schemes for shells are

discussed in detail and have been further investigated outside the present research. A

summary of the achieved results is finally presented in Chapter (7).
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Chapter 2

Material modeling of soft core
composite shells

The sandwich structure is modeled using standard shell elements and multiple integration

points across the element thickness are used to capture the sandwich material configu-

ration. Each integration point belongs to a different material layer and has assigned a

correspondingly different material model. This discretization scheme across the thickness

does not model phenomena such as interlayer delamination but it is able to capture the

interaction between different materials in the sandwich structure. It is also very flexible,

allowing to change the material arrangement across the thickness by simply modifying

the material properties and material model at each integration point.

Since the work presented in this thesis is focused on the response of sandwich structures

composed of fiber reinforced external layers and soft foam core, the models for these

particular materials are discussed in detail in the next sections.

2.1 Material model for foam core

The material behavior of the foam core in uni-axial compression has three distinct regimes

as shown in Figures (2.1) and (2.2). At low compression the foam elastically deforms with

a low Young’s modulus; in this stage the foam cells resist the load without collapsing.

Subsequently, when a critical compressive stress is reached, the foam cells collapse and

the material undergoes very large deformations at almost constant load. Figure (2.3)

shows the cells’ collapse process during a foam uni-axial compression test. Finally, when

all the internal cells are collapsed, the foam response approaches that of the bulk material
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and a high gain in stiffness is observed (Deshpande and Fleck, 2001, Patel and Finnie,

1970, Mines and Alias, 2002, Thomas et al., 2004). On the contrary, the foam response in

tension may be modeled, to a good approximation, as linear elastic until fracture occurs.

Figure 2.1: Uni-axial compression test for Divinycell H200 foam: experiment shows the

three different deformation regimes for different strain rates. Figure taken from Deshpande

and Fleck (2001).

First stress peak

Foam behavior at large 
compressive strain

Figure 2.2: Elastic behavior of a polyurethane foam in uni-axial loading. After the first

stress peak is reached, the deformation advances at roughly constant stress due to the

cell collapse. The middle deformation regime is more pronounced at lower foam densities.

Figure taken from Patel and Finnie (1970).
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Figure 2.3: Photograph of an H200 foam specimen sectioned along its mid-plane: un-

deformed specimen (a) and specimen compressed uni-axially to 10% overall axial strain

along the rise direction (b). The foam cells’ collapse is clearly visible during the uni-

axial compression test once the first stress peak has been reached. Figure taken from

Deshpande and Fleck (2001).

In order to capture this complex and highly non-linear behavior of the foam, the

model proposed by ElSayed et al. (2008a) was used. This constitutive model is formu-

lated in finite kinematics and includes Ogden-type (Ogden, 1984) hyper-elasticity (able to

reproduce both Neo-Hookean and Mooney-Rivlin type materials ElSayed et al. (2008a)),

deviatoric and volumetric plasticity, viscosity and a different response in tension and com-

pression. The basic equations of the model follow below. A more complete description

and other applications of the model may be found in ElSayed et al. (2008a), ElSayed et al.

(2008b) and ElSayed et al. (2009).

The free energy at the base of this model is given by the sum of an elasto-plastic Aep and

a visco-elastic Ave contribution (Eq 2.1).

A = Aep (F ,F p,Zp, T ) + Ave (F ,F v
i ,Z

v
i ) = (2.1)

We

(
FF p−1

, T
)

+Wp (Zp, T ) +
M∑

i=1

[
W e
i

(
FF v−1

i , T
)]

+ ρCvT

(
1− log

T

T0

)

where F , F p, F v are the deformation gradient, its plastic and viscous parts, respectively,

where the multiplicative decomposition F = F eF p = F e
1F

v
1 = ... = F e

MF
v
M has been

used. W e and W e
i are the elastic strain energy densities; W p is the plastic stored energy; T

and T0 are the current and reference temperatures; ρ is the mass density; Cv is the specific
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heat at constant volume and Zp and Zv are internal variables related to the plastic and

viscous mechanisms. The model allows for the presence of M in parallel viscous mecha-

nisms, which may be activated depending on the complexity of the material behavior to

be captured. Figure (2.4) from ElSayed et al. (2009) shows the rheological representation

of the presented model consisting of an elasto-plastic mechanism and several visco-elastic

mechanisms acting in parallel.526 Comput Mech (2009) 43:525–534

solutions for the deformation, penetration, and perforation
of composite plates and sandwich panels subjected to quasi-
static punch indentation and projectile impact. A general-
ized solution methodology for the projectile impact on such
structures was developed based on the contact load duration,
the through-thickness and the lateral transit times [8]. These
methods, however, lack comprehensive contact and fracture
models. The ballistic properties of Kevlar 29/Polivnyl Butyral
and Polyethylene fiber composites used in the light armor
design were analyzed experimentally and numerically by
Colakoglu et al. [2]. Higher elastic modulus and strength
of Polyethylene composite resulted in a better ballistic per-
formance [2].

In the following sections we describe the finite-element
simulation and experimental validation of the ballistic impact
of a high speed projectile on a composite plate comprised of
high strength structural steel and polyurea. We start in Sect. 2
by describing the constitutive equations used in the mater-
ial modeling of the metal and polymer. We then proceed in
Sect. 3 to outline the fracture model utilized in the validation.
In Sect. 4, we detail the equations used in the non-smooth
contact approach to model the impact forces. Then, in Sect. 5,
we describe the experimental setup and results of the ballis-
tic impact on the metal/polymer composite plate which we
validate quantitatively and qualitatively in Sect. 6.

2 Constitutive modeling

2.1 Polymer modeling

A useful characterization of the mechanical behavior of
polyurea is supplied by the constitutive model recently
proposed in [3,4] for large deformation of soft materials.
This model examines the inelastic behavior of such materials,
admitting that the mechanical response can be decomposed
into equilibrium and non-equilibrium components,
representable through an elastoplastic network and several
viscoelastic mechanisms (Fig. 1). The elastoplastic compo-
nent describes long term behavior and permanent material
damage, while the viscoelastic components account for time-
dependent viscous dissipation.

A variational approach to the constitutive equations (cf.
Ortiz and Stainier [12], Yang et al. [19]) is adopted, intro-
ducing the following free energy

Aep(F ,F p,Z p, T ) + Ave(F p,F v
i ,Z

v
i )

= W e(FF p−1, T ) + W p(Z p, T )

+
M∑

i=1

W e
i (FF v−1

i , T ) + ρCvT

(
1 − log

T

T0

)

(2.1)

Fig. 1 Analogy between the proposed constitutive model and a
one-dimensional rheological network

where W e is the elastic strain-energy density associated with
the elasto-plastic branch of the developed model; W p is the
plastic stored energy; M is the number of viscoelastic mecha-
nisms; W e

i (i = 1, . . . , M) are the elastic strain-energy den-
sities corresponding to the viscous relaxation mechanisms
(Fig. 1); ρ0 is the mass density per unit undeformed volume;
Cv is the specific heat per unit mass at constant volume and
T0 is the reference temperature. The variables F p, Z p and
F v

i , Zv
i are related to each other by the means of suitable

differential equations (flow rules). The reader should refer to
[3,4] for a detailed description of the soft material constitu-
tive model summarized herein.

3 Shear bands

Due to the high strain rate imposed by the ballistic impact,
we propose the use of a class of finite elements developed by
Yang et al. [18] for capturing sub-grid localization processes
such as shear bands and void sheets. The elements take the
form of a double surface and deform in accordance with an
arbitrary constitutive law. In particular they allow for the
development of displacement and velocity jumps across vol-
ume element boundaries (Fig. 2).

The thickness of the localized zone is set by an additional
field variable which is determined variationally. The local-
ization elements are inserted, and become active, only when
localized deformations become energetically favorable. The
implementation is three dimensional and allows for finite
deformations.

Strain localization are strictly regarded as a sub-grid
phenomenon and, consequently, the bands of strain local-
ization are modeled as displacement discontinuities. These
displacement discontinuities are confined to volume-element
interfaces and are enabled by the insertion of specialized
strain-localization elements. These elements consist of two
surfaces, attached to the abutting volume elements, which

123

Figure 2.4: Analogy between the presented model and a 1D rheological model. Figure

taken from ElSayed et al. (2009).

The first Piola-Kirchhoff stress tensor P and the thermodynamic driving forces Y p

and Y v
i are derived from the free energy A as reported in Equations (2.2), (2.3) and (2.4).

P =
∂A

∂F
(2.2)

Y p = − ∂A

∂Zp (2.3)

Y v
i = − ∂A

∂Zv
i

(2.4)

The variables F p, Zp and F v
i , Z

v
i are related to each other by the flow rules reported in

ElSayed et al. (2008a) and ElSayed et al. (2008b).

The elastic, plastic and viscous energies are expressed in terms of logarithmic strains
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computed from the deformation gradient F as shown in Equation (2.5).

ε =
1

2
log
(
F TF

)
(2.5)

Using logarithmic strains, the elastic Ogden-type deformation energy may be written as:

W e
(
eej , θ

e
)

=
3∑

j=1

N∑

r=1

µr
αr

([
exp

(
eej
)]αr − 1

)
+
k

2
(θe)2 (2.6)

where eej is the jth eigenvalue of the elastic logarithmic deviatoric strain, θe is the elastic

logarithmic volumetric strain, N is the number of Ogden terms considered, µr and αr are

the shear moduli and the stretch exponents regarding the r Ogden function, and k is the

bulk modulus.

The strain energy density W e
i has the same structure.

The plastic stored energy has the form:

W p (ep, θp) =
nσ0e

p
0

n+ 1

(
1 +

ep

ep0

)n+1
n

+
nσ0e

p
0

n+ 1
Nv

4πa3

3
g (θp, n) (2.7)

where σ0 is the yield stress, ep0 is the reference plastic strain, ep is the effective deviatoric

plastic strain, n is the hardening exponent, Nv is the void density per unit undeformed

volume, a is the void radius, θp is the effective volumetric plastic strain. The first term

on the RHS of Equation (2.7) represents the deviatoric part of the plastic energy density

whereas the second term represents the volumetric contribution. The function g (θp, n)

(Equation 2.8) describes the volumetric plastic behavior due to the expansion or collapse

of spherical voids.

g (θp, n) =

∫ 1
f

1

(
1 +

2

3εp0
log

ξ

ξ − 1 + f0

f0 exp θp−1

)n+1
n

dξ (2.8)

where f0 and f are, respectively, the initial and current void volume fractions.

2.1.1 Validation

Given a set of experimental data, the material model discussed in the previous section

has been calibrated using genetic algorithms as presented in ElSayed et al. (2008a) and
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ElSayed (2008). The problem of finding the material parameters required for the pre-

sented foam material model is highly non-linear and may have many different minima.

Genetic algorithms have proved to be very efficient in solving this type of problem. Figure

(2.5) and Figure (2.6) show the agreement between the experimental material behavior

and the calibrated material model during uni-axial compression and tension tests. The

chosen material model captures well the three distinct deformation stages during the foam

compression test.

-40

-30

-20

-10

0

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

Experimental data
Calibrated material model

Engineering extensional strain

St
re

ss
 [M

Pa
]

Figure 2.5: Experimental and numerical uni-axial response of PVC foam H100 under

uni-axial compression.
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Figure 2.6: Experimental and numerical uni-axial response of PVC foam H100 under

uni-axial tension.
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2.2 Material model for the external fiber reinforced

layers

The new fiber reinforced material model used in the analyses is formulated in finite kine-

matics as large deformations are expected when a sandwich shell is subjected to explosive

loading. The energy density function of this model is composed of two parts: the energy

density due to the matrix and the energy density due to the fibers.

W (F ) = vepWep (F ) +

nf∑

i=1

vifrW
i
fr (F ) (2.9)

In Equation (2.9) W (F ) is the total energy density, a function of the deformation gradient

F . vep and vifr are, respectively, the volume fraction of the matrix and that of the ith

group of fibers, while Wep (F ) and W i
fr (F ) are the energy density of the matrix and of the

ith group of fibers. As seen in Equation (2.9) the proposed model allows for the presence

of nf different groups of fibers with different material properties and orientation.

The matrix material behavior is captured using a compressible Neo-Hookean material

model. The expression of its energy density is written in Equation (2.10) where µ and λ

are the Lamé material constants:

Wep (F ) =
µ

2

(
tr
(
F TF

)
− 3
)

+
λ

2
(log (det (F )))2 − µ log (det (F )) (2.10)

The fiber contribution to the total energy density is due to the fiber deformation along

its own axis. This contribution is captured in Equation (2.11) where N i and Ei
fr are,

respectively, the fiber direction and Young’s modulus:

W i
fr (F ) =

1

2
Ei
fr

(
log

√
NT

i F
TFN i

)2

(2.11)

It is important to note that to correctly describe the response of fiber composite materials

using the presented model, the material properties of the matrix must be adjusted to

consider the presence of the fibers and represent correctly the stiffer response of the matrix

itself. Similar observations are common to other fiber reinforced material models used,

for instance, in bio-mechanics (Pandolfi and Manganiello, 2006, Pandolfi and Holzapfel,
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2008).

2.2.1 Validation

The simple model presented in Section (2.2) requires only a few parameters: the Lamé

constants of the matrix and the Young’s modulus of each set of fibers. As mentioned

above, the Lamé constants of the matrix need to be calibrated in order to take into

account the presence of the fibers and to represent the isotropic part of the response of

the matrix and fibers ensemble. The calibration of these two material constants may be

performed starting from uni-axial tension tests of fiber reinforced specimens in which the

direction of the load varies with respect to the direction of the fibers.

Figure (2.7) shows a comparison between the experimental data of Yokozeki et al. (2007)

and the presented model. Once the material properties of the matrix are calibrated using

these experimental data, the model captures well the material response under different

loading directions with respect to the fiber orientation.

Carbon
fiber

Fibers increase composite material

stiffness by resisting in traction

Fibers increase material

stiffness by constraining

lateral deformation

u

Epoxy 
matrixa

computed elastic moduli

experimental values

Figure 2.7: Comparison between experimental and computed initial elastic moduli ob-

tained in uni-axial tensile tests with different load/fiber orientation.

Using the material properties corresponding to the fiber reinforced material tested in

Yokozeki et al. (2007), two basic numerical experiments are carried out. First the response

in uni-axial tension is analyzed as a function of the angle α between the load and the

fiber direction. As seen in Figure (2.8) and confirmed in Figure (2.7), the more the load
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is aligned with the fiber direction, the stiffer the material response is in general. However

the fiber contribution is minimal for an angle α roughly equal to π/3 when a different

mechanism is activated to carry the load. Indeed for angles α between π/3 and π/2 the

fibers’ contribution to load bearing is through resisting the lateral deformation of the

specimen (the specimen loaded in the longitudinal direction tends to contract laterally

due to the Poisson effect). In order to better understand this aspect, a second numerical

uni-axial tension test is performed where the fiber direction is constant and at π/2 with

respect to the load direction. As shown in Figure (2.9) the response of the material is

stiffer with a greater Poisson ratio of the matrix and therefore when the ratio between

lateral and longitudinal deformations is larger. A larger lateral deformation per unit

longitudinal load corresponds to a larger fiber deformation, which thus can better help

to sustain the load. During this second numerical test only the matrix Poisson ratio is

varied and all the other material properties are kept constant.

Material Properties
vmatrix 0.43

Ematrix [MPa] 2.85E+04

νmatrix 0.25

vfr 0.57

Efiber [MPa] 2.10E+05

u

Epoxy 
matrix

α

Carbon
fiber

Figure 2.8: Response of epoxy matrix reinforced with carbon fibers under uni-axial ten-

sion: dependence on load/fiber angle.
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u

Epoxy 
matrix

Carbon
fiber (α=π/2)

Figure 2.9: Response of fiber (carbon) reinforced epoxy loaded orthogonally to the fiber

direction during an uni-axial tension test: dependence on matrix Poisson ratio.

2.3 Cohesive model

In order to describe the fracture propagation in the foam core we use the isotropic cohesive

model developed by Camacho and Ortiz (1996) and Ortiz and Pandolfi (1999). According

to this cohesive model the fracture formation is a gradual process and is governed by a

cohesive potential Φ (δ, q), which is a function of an effective opening displacement δ and

of a suitable set of internal variables q. The definition of the potential Φ as a function

of δ and q only assumes that the cohesive response of the material is independent of the

stretching and shearing of the cohesive surface as well as of the direction of sliding (Ortiz

and Pandolfi, 1999).

The effective opening displacement δ is computed as:

δ =
√
β2δ2

s + δ2
n (2.12)
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where

δn = δ · n (2.13)

δs = ‖δ − δnn‖ (2.14)

and n is the normal to the fracture surface, δ = [|u|] is the opening displacement and β is

the shear to normal cohesive strength ratio, which therefore accounts for mode coupling

during the fracture process. The parameter β can be also understood as the ratio between

mode II and mode I fracture toughness of the material (Yu et al., 2002).

Ortiz and Pandolfi (1999) also showed that the cohesive traction T , which is the conjugate

stress measure of the opening displacement δ, is given by:

T =
∂Φ

∂δ
=
T

δ

(
β2δs + δnn

)
(2.15)

where:

T =
∂Φ

∂δ
(2.16)

The form of the cohesive law assumed in the present research is shown in Figure (2.10); no

opening displacement is present until the cohesive strength σc is reached. Subsequently,

the cohesive tractions decrease linearly to reach zero at δ = δc. Assuming a linear cohesive

law, the critical opening displacement δc is computed from the mode-I fracture energy

density Gc and the cohesive strength σc of the material as δc = 2Gc

σc
.

The irreversibility of the cohesive law is achieved by defining the unloading path toward

the origin from the envelope shown in Figure (2.10). The unloading/reloading process

is characterized by δ < δmax or by δ = δmax and δ̇ < 0. The scalar effective traction T

during unloading/reloading is given by T = Tmax

δmax
δ.



20

σc

δc

Gc= σcδc/2

Loading path

Unloading-
reloading  
path

0

0
δmax

σ

δ

Figure 2.10: Linearly decreasing cohesive law with loading-unloading rules. Another

convenient form of the cohesive law is given by Smith and Ferrante and is reported in

Ortiz and Pandolfi (1999).

This isotropic model has been adapted by Yu et al. (2002) to describe cohesive fracture

propagation in anisotropic fiber reinforced materials. They redefine the cohesive strength

σc to account for the difference between the direction of the fibers and the direction of

fracture propagation. If the fracture propagates along the fibers’ direction, the fibers do

not increase the strength of the isotropic matrix, but if the fracture propagates normal

to the direction of the fibers they greatly increase the cohesive strength of the composite

material and consequently its fracture energy. We slightly modify the expression for σc

proposed in Yu et al. (2002) in order to account for multiple fiber directions to be:

σc = vepσcep +

nf∑

i=1

vifrσ
i
cfr

cos2
(
αi
)

(2.17)

where σcep is the cohesive strength of the composite matrix, σicfr is the tensile strength of

the ith fiber group, and α is the angle between the fiber direction and the normal n to

the fracture surface.
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Chapter 3

Numerical modeling of composite
shells subjected to underwater
explosions

In this chapter the shell finite element model for thin sandwich structures is presented

together with two strategies to apply the load due to an underwater explosion: a prescribed

pressure profile and a full fluid-solid coupled simulation.

3.1 Numerical modeling of sandwich structures

In the literature it is possible to find many alternative approaches for modeling the behav-

ior of sandwich composite shells. Approaches range from analytical studies to different

levels of numerical discretizations. Although able to provide complete solutions, analyti-

cal methods are usually limited to specific cases by the assumptions under which they are

derived (Li et al., 2000a). In view of practical applications that involve different scenar-

ios, including the interaction with fluids, finite element shells are chosen here, since they

represent one of the most versatile approaches. Within the known finite element approx-

imations, some authors (i.e., Moreira et al. (2010), Tan and Vu-Quoc (2005)) model each

layer of the sandwich shell with a different set of shell elements. These approaches are

very flexible, since each material layer is modeled independently; there is no constraint on

the number of layers included, and multilayer plates with ply drop-offs may be modeled.

However, they are computationally very expensive. As an alternative, other authors (i.e.,

Han et al. (2008), Jeung and Shen (2001)) include different material layers in a unique

element, and evaluate the global shell properties by integrating different material proper-
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ties across the shell thickness. The method adopted in the present research, as described

in Section (3.1.2), falls in the latter category.

It is worth mentioning that more sophisticated approaches take a microstructural point

of view, by considering both distinct material layers and higher order shell theories. Thus

they are able to describe the displacement field across the thickness in a more realistic way

(i.e., Tabiei and Tanov (2002), Vu-Quoc et al. (2000), Yong and Cho (1995), Millikarjuna

and Kant (1992)). A further extension of high order theory shell elements can be found

in Sulmoni et al. (2008), where an additional “zig-zag” degree of freedom is introduced

to enhance the displacement field across the thickness and improve the description of

strains and stresses. Although such models contain many important features that render

them more realistic, they require a large number of degrees of freedom per node, which

makes them very costly from a computational point of view. Moreover, there is usually

no guarantee that such finite elements converge properly in the limit of the thin shells,

since they do not satisfy the inf-sup condition (Brezzi and Fortin, 1991).

In the present investigation, the nonlocal shell finite element developed by Cirak et al.

(2000) has been adapted to the sandwich shell structure. The nonlocal shell approach is

computationally efficient and flexible regarding the insertion of different material layers; it

guarantees convergence in the thin limit, it can use linearized as well as finite kinematics,

and it can be enriched with inter-element cohesive elements to model fracture propagation

across the thickness. Regrettably, the displacement field across the thickness cannot be

modeled as accurately as when higher order shell theories or “zig-zag” displacement terms

are employed.

An important remark is necessary concerning the assumption of the Kirchhoff-Love kine-

matic hypothesis used in this study, which assumes that plane sections remain plane after

deformation. The choice made here is mainly dictated by the need to model wide sandwich

panels, characterized by a high length to thickness ratio, undergoing extreme loading due

to explosions. The panel is designed in such a way that the internal and the external faces

work together in sustaining the external load. Under impulsive conditions that lead to the

rupture of the structure, the actual kinematics of the deformations across the thickness

appear to be of minor relevance with respect to the global response of the system. In the

present study, the choice of the nonlocal shell finite elements allows limiting substantially
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(by more than 60%) the number of degrees of freedom per node with respect to richer

kinematics models. The reduced computational effort is crucial for analyses that include

fracture and fragmentation. It is clear that for alternative applications, e.g., to study the

dissipative properties of the soft core with respect to standard impacts, the Kirchhoff-Love

kinematic hypothesis needs to be replaced with a more realistic assumption.

3.1.1 Subdivision shell finite elements

The core of the shell finite element approximation scheme used in the analyses has been

developed and described in Cirak et al. (2000), Cirak and Ortiz (2001) and Cirak et al.

(2005). This section offers a brief description of this approximation scheme including the

hypotheses and main advantages that motivated its use.

The finite element for thin shells developed by Cirak et al. (2000) obeys Kirchhoff-Love

theory and is based on subdivision surfaces that are used to describe the shell geome-

try in the undeformed and deformed configurations. The motivation behind the use of

subdivision surfaces resides in the nature of Kirchhoff-Love energy for thin shells, which

contains the first and second derivatives of the displacement field. Therefore, in order to

ensure that the shell internal energy is bounded, the interpolant for the displacements

must have square integrable second derivatives or, in other words, the interpolation func-

tion must belong to H2 giving rise to C1 finite elements. Subdivision surfaces satisfy this

requirement and therefore are optimal to model the shell deformation process.

3.1.1.1 Brief description of subdivision surfaces

Subdivision surfaces are smooth surfaces constructed through repeated refinement of an

initial control mesh. During a subdivision step new vertices are added to the previous

mesh. The present method is based on a triangular mesh and each triangle is quadrisected

during a refinement (or subdivision) step. The nodal positions of the newly created

vertices are computed by a weighted average of the nodal coordinates of the already

existing vertices. If during a subdivision step only the nodal coordinates of the new

vertices are computed, the subdivision scheme is called an interpolating scheme. On the

other hand, if all the vertices’ nodal positions are recomputed following a subdivision

step, the scheme is called an approximating scheme. Consequently, an approximating
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scheme does not interpolate the nodal positions of the initial or control mesh but only

approximates them. However, only an approximating scheme produces limit surfaces

that have square integrable curvatures as required to be used in the analysis of thin shells

obeying Kirchhoff-Love theory. The approximation scheme adopted by Cirak et al. (2000)

is the Loop scheme, which has been developed for triangular meshes.

As opposed to classic finite elements, the interpolation functions derived from subdivision

schemes are non-local. Therefore the value of a function to be evaluated inside a triangular

element of the mesh (i.e., at a quadrature point) does not depend only on the nodal

quantities of the considered triangle but also on the nodal values of other elements in the

mesh. However, if the vertices of a triangular element are all regular 1, then the value

of a function inside that element depends only on the nodal values in the 1 − ring 2 of

elements around the considered triangle (Figure 3.1). Indeed the interpolation function

derived from Loop’s subdivision scheme over a regular triangle 3 coincides exactly with a

quartic box-spline described by 12 basis, or shape, functions.

2

3

1

6

10

7

11
12

9

5 4

8

Figure 3.1: Regular patch for the solid filled triangular element. The displacement field

inside the solid filled triangle is determined only by the nodal values of the 12 vertices

represented above. Figure adapted from Cirak et al. (2000).

1A vertex is regular if the number of edges incident on it is equal to 6.
21-ring of an element is defined as the set of elements incident on the considered element.
3A triangle is regular if all its vertices are regular.



25

Inside each regular triangle the limiting surface in the reference or deformed configu-

ration may be approximated as:

x̄
(
θ1, θ2

)
=

12∑

I=1

N I
(
θ1, θ2

)
x̄I (3.1)

x
(
θ1, θ2

)
=

12∑

I=1

N I
(
θ1, θ2

)
xI (3.2)

where θ1 and θ2 are local barycentric coordinates that span each triangular element, N I

is the basis shape function at node I, x̄I and xI are, respectively, the nodal coordinates

of node I in the reference and deformed configuration. (Analytical expressions for the

basis functions N I may be found in Cirak et al. (2000)).

If the function of interest must be evaluated at a location that does not reside inside a

regular element, then the mesh has to be subdivided until such location resides inside a

regular triangle. To this extent, any mesh to be used in the present finite element scheme

is subdivided once a priori in order to separate all the irregular vertices. Following this

first subdivision step, all the triangles in the mesh contain at most one irregular vertex.

Since only one surface Gauss integration point is used per triangular element, only one

further subdivision step is necessary to evaluate the field of interest inside an irregular

element. Indeed, after this second subdivision step, each Gauss point which was at the

center of an irregular triangle will reside on the edge of a regular triangle.

It is important to mention that, even if the interpolation scheme deriving from subdivi-

sion surfaces is non-local, the displacement field and the shell limit surface defined over

overlapping patches of elements are defined unequivocally.

Given the non-locality of the interpolation functions, ghost nodes are necessary at the

shell boundary in order to apply Dirichlet-type boundary conditions.
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3.1.1.2 Shell kinematics and equilibrium equations

The Kirchhoff-Love kinematic ansatz for shell theory is expressed with the following equa-

tions:

ϕ̄
(
θ1, θ2, θ3

)
= x̄

(
θ1, θ2

)
+ θ3ā3

(
θ1, θ2

)
− h̄

2
≤ θ3 ≤ h̄

2
(3.3)

ϕ
(
θ1, θ2, θ3

)
= x

(
θ1, θ2

)
+ θ3λ

(
θ1, θ2

)
a3

(
θ1, θ2

)
− h̄

2
≤ θ3 ≤ h̄

2
(3.4)

where (θ1, θ2, θ3) are the curvilinear coordinates that describe the shell domain. θ1 and θ2

span the shell middle surface while θ3 identifies the position along the normal to the mid-

dle surface. ϕ̄ (θ1, θ2, θ3) is the position of the material point identified by the curvilinear

coordinates (θ1, θ2, θ3) in the shell reference configuration. Correspondingly, ϕ (θ1, θ2, θ3)

is the material point position in the deformed shell configuration. x̄ (θ1, θ2) and x (θ1, θ2)

represent the shell middle surface in the undeformed and deformed configuration, re-

spectively. λ is the thickness stretch and is equal to the ratio between the current shell

thickness h and the undeformed shell thickness h̄
(
λ = h

h̄

)
.

The shell directors ā3 and a3 in the undeformed and deformed configuration are given

by:

ā3 =
ā1 × ā2

‖ā1 × ā2‖
a3 =

a1 × a2

‖a1 × a2‖
(3.5)

where the surface basis vectors āα and aα are:

āα = x̄,α aα = x,α (3.6)

Greek indices α and β assume values 1 and 2. As described in Equation (3.4) and Equation

(3.5) the shell sections remain plane and normal to the shell middle surface during the

deformation process (Kirchhoff-Love kinematic ansatz).

The covariant basis vectors needed to derive the deformation gradient F may now be
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computed as:

ḡα =
∂ϕ̄

∂θα
=

∂x̄

∂θα
+ θ3∂ā3

∂θα
= āα + θ3ā3,α (3.7)

ḡ3 =
∂ϕ̄

∂θ3
= ā3 (3.8)

gα =
∂ϕ

∂θα
=

∂x

∂θα
+ θ3∂ (λa3)

∂θα
= aα + θ3 (λa3),α (3.9)

g3 =
∂ϕ

∂θ3
= λa3 (3.10)

The controvariant basis vectors follow from the relations:

ḡi · ḡj = δij gi · gj = δij (3.11)

where δij is the Kronecker delta. The deformation gradient F is finally expressed as a

function of the controvariant basis vectors:

F =
∂ϕ

∂ϕ̄
=
∂ϕ

∂θi
⊗ ḡi = (3.12)

=
[
aα + θ3 (λa3),α

]
⊗ ḡα + λa3 ⊗ ḡ3 (3.13)

The deformation gradient F is necessary to evaluate the internal part of the potential

energy of the shell:

Πint [ϕ] =

∫

Ω̄

∫ h̄
2

− h̄
2

W (F )µdθ3dΩ̄ (3.14)

where Ω̄ and h̄ are respectively the shell middle surface and the shell thickness in the

undeformed configuration, W (F ) is the strain energy density per unit undeformed volume

and µ (Equation 3.15) accounts for the curvature in computing the shell volume.

µ =
| (ḡ1 × ḡ2) · ḡ3|
| (ā1 × ā2) · ā3|

(3.15)

If only distributed loads q per unit area and axial forces N per unit length are considered,

the external part of the potential energy may be written as:

Πext [u] = −
∫

Ω̄

q · udΩ̄−
∫

Γ̄

N · udΓ̄ (3.16)
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where Γ̄ = ∂Ω̄, u = x− x̄ and it has been assumed that the loads are applied to the shell

middle surface (θ3 = 0).

If no inertial or cohesive forces are present, the shell equilibrium configuration corresponds

to a stationary point of the shell potential energy Πshell = Πint + Πext over the space of

all admissible configurations V , i.e.,

δΠshell = δΠint + δΠext = 0 (3.17)

Equation (3.17) is also a statement of the principle of virtual work.

In a dynamical problem, the equilibrium Equation (3.17) is augmented by the addition

of the virtual kinetic work:

δΠkin [ϕ] =

∫

Ω̄

∫ h̄
2

− h̄
2

ρ̄ϕ̈ · δϕµdθ3dΩ̄ (3.18)

The equilibrium equation in a dynamical problem is therefore:

δΠint + δΠext + δΠkin = 0 (3.19)

Equation (3.19) is the basis on which to construct the finite element approximation

once the space of admissible shell configurations V is determined. In the discretized

setting of the finite element approach, the space Vd is given by:

xd
(
θ1, θ2

)
=

NP∑

I=1

N I
(
θ1, θ2

)
xI (3.20)

where d characterizes the size of the finite element mesh, NP is the number of all the

nodes in the mesh, N I is the node I shape function and xI is the shell middle surface

position at node I. In the present context, N I are computed using the subdivision surface

technique described in Section (3.1.1.1) and therefore belong to H2. As a consequence of

the Kirchhoff-Love kinematic ansatz, the equilibrium Equation (3.19) may be expressed

in terms only of the position x (θ1, θ2) of the shell middle surface.

Introducing Equation (3.20) into the weak form expressed symbolically in Equation (3.19)
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the classical system of equations to be solved in a finite element program is obtained:

M dẍd + f intd (xd) = f extd (t) (3.21)

where M d is the mass matrix (in the numerical simulations M d is lumped through the

row-sum procedure), f intd is the internal force vector, f extd (t) is the external force vector

and t represents time. Each term in the discrete Equation (3.21) is computed by using

one surface Gauss quadrature point per triangular element and Simpson’s rule across the

thickness. The time discretization of Equation (3.21) is obtained by recourse to the Ex-

plicit Newmark scheme (Hughes, 2000).

Additionally, the plane stress condition is enforced, since the presented finite element

method is developed for thin shells. Enforcing the plane stress condition is equivalent to

requiring that the stress τ 33 normal to the shell middle surface in the deformed configu-

ration is equal to zero as shown in Equation (3.22):

τ 33 = 2
∂W

∂g33

= 0 (3.22)

where τ = PF T is the Kirchhoff stress tensor, and its components are expressed in the

deformed covariant basis (τ = τ ijgi⊗ gj). Equation (3.22) may efficiently be imposed at

the constitutive level where the value of g33 is evaluated using a Newton-Raphson iterative

scheme. The current thickness of the shell may then be computed as a consequence of

imposing the plane stress condition:

h =

∫ h̄
2

− h̄
2

√
g33dθ

3 (3.23)

If incompressible materials are considered, the shell thickness in the deformed config-

uration derives immediately from the incompressibility condition, and the plane stress

condition is imposed through computation of the correct pressure p, a priori unknown

when incompressible materials are used.
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3.1.1.3 Final remarks

The only degrees of freedom in the shell finite element described in Sections (3.1.1.1) and

(3.1.1.2) are nodal displacements. This aspect greatly simplifies the use of this element

in finite kinematics since no rotation degrees of freedom are present.

In general, for an unstructured mesh and an arbitrary geometry, it is not possible to

construct a C1 conforming finite element discretization when polynomial shape functions

are used and only displacement and displacement first derivatives are defined at the mesh

nodes. In contrast, the shell finite element described here possesses H2 shape functions

and does not require displacement first derivatives to be defined as unknown at the ele-

ment nodes. Moreover, the subdivision surface shell element may be used with any shell

geometry and may be constructed based on a general triangulation of the analysis domain.

The low order quadrature rule required for optimal convergence (only one surface Gauss

point per triangular element) makes the element very attractive from a computational

point of view.

Finally, the chosen element has been extensively validated in linearized kinematics (through

the challenging Belytschko obstacle course, Cirak et al. (2000)), in finite kinematics sim-

ulating the inflation of a spherical balloon and of circular and square airbags (Cirak

and Ortiz, 2001) and in fracture cases i.e., simulating the perforation of a circular plate

impacted by a bullet (Cirak et al., 2005).

3.1.2 Extension of the subdivision surface shell element to sand-

wich shells

The shell finite element presented in Section (3.1.1) was originally derived assuming a

uniform material across the shell thickness. However a simple modification allows it to

approximate sandwich shells as well.

Equations (3.14) and (3.18) are numerically integrated across the shell thickness using,

for instance, Simpson’s integration rule. In the original formulation, all the integration

points correspond to the same physical material. On the other hand, if the shell cross

section is made of layers of different materials, different constitutive laws and material

properties may be assigned accordingly at each thickness integration point. In this sense,
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each integration point across the thickness represents a different material point. Figure

(3.2) shows an example in which a sandwich shell with foam core and fiber reinforced

external layers is modeled using the approach just described. Due to this approxima-

Fiber reinforced epoxy

PVC H100

Fiber reinforced epoxy h

h/2

h

h

h/2

…. = t

Integration and material point

Figure 3.2: Typical sandwich shell cross section and corresponding layout of the integra-
tion/material points in the shell thickness. Integration/material points are placed at the
center of each interval of length h in which the thickness t is subdivided.

tion through the thickness, the response of the sandwich shell depends on the averaged

properties of the materials forming the cross section and no interfaces between layers of

different materials are modeled. Thus delamination and interlayer cracking may not be

considered employing the extension presented here. Despite this drawback, the proposed

method possesses great flexibility since different material layouts may be tested by simply

changing the material models and properties associated with the integration points across

the thickness. At the same time the efficiency of the shell finite element method is pre-

served since no new displacement degrees of freedom are introduced. Indeed, to introduce

an additional material layer there is no need to insert a new layer of elements in the shell

thickness with the consequent increase in the number of nodes and corresponding nodal

displacements.

3.1.3 Cohesive elements

In order to capture the possible fracture of sandwich shell structures subjected to under-

water explosion, the cohesive element developed by Ortiz and Pandolfi (1999) is coupled
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with the subdivision surface element as proposed by Cirak et al. (2005). The following

section focuses on the application of the cohesive elements in analyses involving shell el-

ements and the use of cohesive elements with fully 3D finite elements is not described,

although the two approaches are very similar.

A cohesive element is a surface-like element that directly embeds the cohesive law pre-

sented in Section (2.3). Each cohesive element consists of two surface elements called by

convention S+ and S−. S+ and S− coincide in the shell reference configuration but may

separate during the deformation process forming a surface of discontinuity or fracture

(Figure 3.3).

Using the previous kinematic assumptions (2.3), the jump in the deformation can be written as

sut ¼ sxtþ h3ska3t: ð2:8Þ

Note that the first term describes the discontinuity in the middle surface deformation and the second term

the discontinuity in the shell normal. The discontinuities in the deformations can also be interpreted as the

‘‘opening displacement’’ of the crack.

For the subsequent derivations, we decompose the jump sub into a normal and a shear component with
respect to a local coordinate frame attached to the crack. To that purpose we first define an average unit

normal n to the crack flanks Cþ
C � ½�hþ=2; hþ=2� and C�

C � ½�h�=2; h�=2�

n ¼
1
2
ðnþ þ n�Þ

j 1
2
ðnþ þ n�Þj : ð2:9Þ

The crack surface normal vectors n± are computed from the tangent vectors t± and the shell directors a3

n ¼ t � a3 : ð2:10Þ
The tangent vectors are computed from the parametric location of the crack flanks (2.6) and the deforma-

tion mapping

t ¼ ou

oha

oha

on
: ð2:11Þ

Thus, the jump in the deformations sub, here and henceforth denoted with d, can be decomposed into the

normal and tangential components dn and ds, given respectively by

dn ¼ d � n; ds ¼ d � dnn ¼ ðI � n	 nÞd; ds ¼ jdsj: ð2:12Þ

2.2. Weak form of the equilibrium

A standard semi-inverse approach is followed for deriving the shell equilibrium equations in weak form.

The assumed reduced kinematic equations for the shell body (2.1) and (2.3) are introduced into the virtual

work expression for the three-dimensional body

dPint � dPext ¼ 0; ð2:13Þ

ϕ– ϕ +

a+

−
3

a3

Fig. 1. Fractured shell body: Opposite crack flanks and corresponding directors a3.

F. Cirak et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 2604–2618 2607

Figure 3.3: Fracture propagating in a shell: opposite crack flanks and jump in deformation

mapping (figure taken from Cirak et al. (2005)).

Considering a shell of thickness h the crack flanks S± are equal to Γ±C × [−h/2, h/2],

where Γ±C are the curves on the cracked shell middle surface. In the parameter space

(θ1, θ2) defined on the shell middle surface, the curves Γ±C have the same parametric

representation θ1 = θ1 (ξ), θ2 = θ2 (ξ) with ξ ∈ R.

Across a crack surface the deformation mapping is discontinuous: [|ϕ|] = ϕ+ − ϕ− 6= 0.

Using the shell kinematic assumption written in Equation (3.4) the deformation jump

may be written as:

[|ϕ|] = [|x|] + θ3[|λa3|] (3.24)

The jump [|ϕ|] may be regarded as the crack opening displacement δ on which the cohesive

law presented in Section (2.3) is based. However, the crack opening displacement needs

to be decomposed into its normal and tangential components so that the effective opening
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displacement expressed in Equation (2.12) may be computed. In the discrete finite element

setting, the normal to the crack surface is not defined unequivocally if the crack is open.

Indeed the unit normal to the surface S+ may differ from the unit normal to the surface

S−. In order to define a unique unit normal, the following average normal to the crack

surface is defined:

n̄ =
1
2

(n+ + n−)

‖1
2

(n+ + n−) ‖
(3.25)

n± = t± × a±3 (3.26)

where a±3 is the shell director computed on the two different sides of the crack (Figure

3.3). The tangent vectors t± are computed as:

t± =
∂ϕ±

∂θα
∂θα

∂ξ
(3.27)

All the components needed to apply the cohesive law described in Section (2.3) have

now been derived. The final step to couple the shell element with the cohesive element

consists in modifying the equilibrium Equation (3.19) to include the virtual work of the

cohesive forces T (Equation 2.15) in addition to the virtual work of the bulk material.

The equilibrium equation which also includes cohesive forces is:

δΠint + δΠext + δΠkin + δΠcoh = 0 (3.28)

where

δΠcoh [ϕ] =

∫

Γ̄C

∫ h̄
2

− h̄
2

T · δδµdθ3dΓ̄C (3.29)

Given the very short time scale on which the explosion and the structural response occur,

dissipative terms related to the heat exchange between the structure and the surrounding

water and related to the heat diffusion inside the structure itself are not considered.

Since the interpolation used in the shell subdivision element is non-local, the topology of

the mesh and the corresponding shape functions need to be modified to describe a fracture

propagating in the shell. Indeed, once a fracture starts to propagates, the displacements on

each side of the crack are still interdependent given the non-locality of the shape functions
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unless they are modified together with the underlying mesh. In order to circumvent the

need to modify the topology of the mesh to allow for a discontinuous displacement field

across a fracture, Cirak et al. (2005) proposed to pre-fracture all the element patches4 at

the beginning as shown in Figure (3.4). Before a fracture starts to propagate the pre-

fractured elements are held together through a penalty approach. Once a fracture starts to

propagate, the element patches on each side of the crack are free to move independently

without the need to modify either the mesh or the non-local interpolation functions.

Indeed the displacement field on each element on either side of the crack depends only on

the displacements of the nodes belonging to its own independent pre-fractured patch.

3. Subdivision thin-shell elements

The reference (�x) and deformed (x) shell middle surfaces are discretized with smooth subdivision shape
functions, as introduced in [6]. The interpolation within one element is accomplished with shape functions

which have support on the element as well as on the one ring of neighboring elements (see Fig. 2)

�x ¼
XNP
I¼1

NI�xI ; x ¼
XNP
I¼1

NIxI : ð3:1Þ

The number of the control points NP involved in the interpolation of each element depends on the local

connectivity of the mesh. For example, for regular patches where each of the three element vertices are inci-

dent to six elements the interpolant derived from the Loop�s subdivision scheme has NP = 12 control points
[16,31]. The overlapping local interpolations, each over one patch, combined lead to a global interpolation

with square integrable curvatures.

In presence of fracture, the smoothness and/or continuity of the interpolation has to be relaxed. In our

implementation, we assume that cracks can only nucleate and propagate along element edges. Furthermore,

once fracture nucleates, the element patches on the left and right side of the cracked edge interact only
through cohesive tractions. The cohesive tractions are self-balanced internal forces derived from a cohesive

fracture model (see Section 4.2). The topological changes necessary to the non-local subdivision functions

and the underlying control mesh in order to describe the propagation of a single crack are rather compli-

cated. Therefore, we chose to pre-fracture all the element patches, so that each patch possesses its own

nodes and acts independently for the purpose of interpolation. Each element patch consists of a triangular

element and all the nodes in the one neighborhood of that element (see Fig. 2). The resulting interpolation

of the shell middle surface is always smooth over one triangle and allows discontinuities along the edges

depending on the positioning of the control nodes. Prior to crack nucleation, we propose two alternative
approaches to enforce the coupling between the distinct elements. In the first approach the interaction

of the elements is enforced by a stiff elastic cohesive interface model applied at all non-cracked edges. Once

a crack nucleates, the interface model on that edge is replaced with a conventional cohesive model (see Sec-

tion 4.2). In the second approach, all the vertices which have the same coordinates in the reference config-

uration are initially algorithmically forced to have the same displacements. In the explicit dynamic case the

related algorithmic procedures can easily be implemented with a pointer based data structure provided by,

e.g., C/C++. Once a crack nucleates along an edge, all the vertices in the domain of influence of that edge

are allowed to move independently (see Fig. 3). Furthermore, on all the edges connected to the two vertices
of the cracked edge a cohesive interface is activated.

The discretization of the cohesive internal virtual work (2.17) with the subdivision shape functions gives
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Z
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Fig. 2. One cohesive edge and the two elements with their one neighborhoods.

F. Cirak et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 2604–2618 2609

Figure 3.4: Independent element patches associated with the two dark triangular elements

on each side of the crack (figure taken from Cirak et al. (2005)).

The penalty approach to enforce element compatibility consists in a slight modification

of the cohesive law (Figure 3.5). For stresses less than the cohesive strength σc the

tractions T across the element boundaries are equal to:

T = kδ (3.30)

where k is a penalty parameter. For k → ∞ element compatibility is enforced exactly.

In dynamic analyses, Cirak et al. (2005) suggest the practical choice k = 100E/d where

d is the element size, and similar values are used in all the analyses in the present study.

Equation (3.30) is also used to enforce the non-compenetration of adjacent elements in

compression. In particular, since multiple integration points are used across the shell

thickness and each point may be under a different state of stress, in a bending mode-type

fracture, part of the shell thickness may be in compression and thus uncracked whereas

the rest of the shell cross section may be fractured. This scheme, associated with the

4The patch of elements associated with a chosen element el is defined by all the neighbors that share
a node with el.
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cohesive law described in Section (2.3), enables the modeling of shell fracture in a tearing

mode, shearing mode or bending mode.

σc

δc

Original
cohesive law

0
0

σ

δ

Modified cohesive law
with penalty parameter k

k

Figure 3.5: An initial branch with slope k is introduced to modify the original cohesive

law when a penalty approach is chosen to enforce element compatibility before fracture

propagation.

3.2 Numerical simulation of an underwater explosion

The response of sandwich structures subjected to underwater explosions is studied using

two main analysis settings: in the first setup, the load due to an underwater explosion

is reproduced by applying a pressure profile whereas in the second analysis setup a fully

coupled fluid-solid simulation is carried out. In this latter case, the load due to the

explosion is modeled by including, at time t = 0, a sphere of hot air at the location of the

explosive charge. The air properties depend on the explosive type and characteristics.

3.2.1 Applied pressure profile

The application of a pressure profile to simulate the explosion generated pressure load has

been widely used in the literature (see for instance Deshpande and Fleck (2004), Batra

and Hasssan (2007), Batra and Hasssan (2008)) and has proven to be an efficient tool to

determine the resistance of sandwich composite panels subjected to blast and underwater
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explosions.

As proposed by Cole (1948) the peak pressure p0 due to an explosive mass m at distance

r from the explosion center is given by:

p0 = K1

(
m

1
3

r

)A1

[MPa] (3.31)

Subsequently the pressure decays in time at an exponential rate following:

pt = p0 exp

(
−t
θ

)
[MPa] (3.32)

θ = K2m
1
3

(
m

1
3

r

)A2

[ms] (3.33)

The values of the parameters K1, A1, K2 and A2 depend on the explosive considered (See

Table 3.1).

Explosive type TNT HBX-1 PETN

K1 52.12 (52.4) 53.51 56.21
A1 1.18 (1.13) 1.144 1.194
K2 0.0895 (0.084) 0.092 0.086
A2 -0.185 (-0.23) -0.247 -0.257

Table 3.1: Values of the parameters K1, A1, K2 and A2 as given in Cole (1948) and
reported in Batra and Hasssan (2007). The values in parentheses are taken from Swisdak
(1978) and reported in Deshpande and Fleck (2004).

3.2.2 Numerical modeling of fluid-solid interaction

A fluid-solid coupled simulation is, however, more accurate, as often pointed out in the

literature (see for example Xie et al. (2007), Xie et al. (2009), Tilbrook et al. (2009)).

Correct modeling of the fluid-structure interaction is particularly important in the case

of sandwich shells subjected to underwater explosions given the relative large flexibility

of sandwich panels.

In the present research, the fluid structure interaction is modeled numerically by coupling

an Eulerian fluid solver with a Lagrangian shell solver. The shell solver is based on the

shell finite element described in Section (3.1.1) whereas the fluid governing equations and



37

the fluid-solid coupling are briefly described in the present section following Deiterding

et al. (2008).

The shell and the fluid solvers are combined inside the code VTF (Virtual Test Facility)

developed at the California Institute of Technology under the ASC program (Deiterding

et al., 2006).

The simulation of the response of sandwich structures subjected to underwater explo-

sions requires accounting for the fluid compressibility whereas the fluid viscosity may be

safely neglected. The governing equations for the fluid solver are therefore the Euler

Equations:

∂tρ+∇ · (ρu) = 0 Mass conservation (3.34)

∂t (ρu) +∇ · (ρu⊗ u) +∇p = 0 Momentum conservation (3.35)

∂t (ρE) +∇ · ((ρE + p)u) = 0 Energy conservation (3.36)

where ρ is the fluid density, u is the fluid velocity vector and E is the specific total energy

equal to the sum of the specific internal energy e and of the specific kinetic energy 1
2
uuT

(
E = e+ 1

2
uuT

)
. In order to solve the fluid problem, an equation of state p = p (ρ, e)

needs to be added to Equations (3.34)−(3.36). The simulation of very high pressure

waves, such as the ones caused by an underwater explosion, may be modeled using a

stiffened gas equation of state as given in Equation (3.37);

p = (γ − 1) ρe− γp∞ (3.37)

where γ = cp
cv

is the adiabatic index and p∞ is a constant representing the attraction

between fluid molecules.

The fluid governing equations are discretized using the finite volume approach as described

in Deiterding et al. (2008) and references therein.

Of primary importance in fluid structure coupled simulation is the possibility to enforce

immersed moving boundary conditions in the fluid domain. In VTF, at every point in the

fluid Cartesian grid a scalar function φ stores the distance to the immersed thin walled

structure. Moreover, the normal n to the fluid domain boundaries may be computed at
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any point as n = −∇φ/‖∇φ‖. Considering only topologically open surfaces for simplicity

(for topologically closed surfaces a signed distance needs to be used (Deiterding et al.,

2006) to identify the inner, negative, and outer, positive, volume), a fluid cell is considered

a ghost cell if φ evaluated at the cell center is less than h/2 where h is the thickness of the

immersed thin structure. φ = h/2 represents the immersed boundary for the fluid solver

and the pressure on the immersed thin structure is computed as the differences between

the pressure at φ = h/2 in the positive and negative normal directions (Figure 3.6). Mesh

refinement is used near the immersed thin shell to improve the staircase approximation

of the fluid boundaries.

n
p+

p-

Figure 3.6: The ghost cells (shaded gray) around the immersed thin structures (blue) are

represented together with the line (red) corresponding to the level set φ = h/2 (figure

reproduced from Deiterding et al. (2008)).

The variables inside each ghost fluid cell are set equal to the values of the nearest real

cell in the fluid interior. Following this approach, if a ghost cell becomes active due to

the movement of the immersed boundary, its variables are set to the correct state.

In order to couple the fluid and the shell solvers the compatibility conditions between these

two systems need to be considered. In the case of an inviscid fluid, as the one considered

to model shocks due to underwater explosion, there are two compatibility conditions:
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• continuity of the velocity component normal to the immersed boundary;

• continuity between the fluid pressure and the normal component of the traction at

the immersed boundary.

Using these compatibility conditions, the fluid and shell solvers are coupled through the

following algorithm:

• update the immersed boundary by updating the level set function φ(t).

• Impose velocity compatibility by setting ufluidn = usolidn .

• Update fluid solver.

• Impose (σn) · n = pfluid.

• Update shell solver.

• Advance in time: t = t+ ∆t.

3.3 Characteristics of the code and computational re-

sources

The assembled computational capability is composed of mainly two parts: the shell finite

element solver sfc originally developed by Fehmi Cirak and the fluid solver AMROC devel-

oped by Ralf Deiterding. These two modules are mainly written in C and C++ language

and are combined together with the STLIB modulo (auxiliary algorithms) in the Virtual

Test Facility code (VTF) developed at the California Institute of Technology under the

ASC program.

As part of the present research the sfc code has been further developed to:

• model fiber composite materials (material model, shell and cohesive elements with

different fiber orientations);

• adapt its already present parallel and restart capabilities to work in analyses with

sandwich material configurations and fiber composite materials;
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• compute and collect the internal and external energies used both to verify the code

convergence and to characterize the analyses’ results as shown in Section (5).

The parallel implementation of the code is based on the open source message passing

library Open MPI (http://www.open-mpi.org/) and the open source parallel partitioning

library Zoltan (http://www.cs.sandia.gov/Zoltan/). Both the sfc code and the VTF

code are compiled and run on the shc cluster, part of the Caltech Center for Advanced

Computing Research (CACR). The shc cluster is composed of 229 8-core and 4-core nodes

with 2.2 GHz processors.

http://www.open-mpi.org/
http://www.cs.sandia.gov/Zoltan/
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Chapter 4

Verification and validation of the
proposed computational scheme

Individual parts of the presented computational scheme have been verified separately by

different authors: i.e Cirak and Ortiz (2001) verified the subdivision shell finite element in

linearized and finite kinematics and Deiterding et al. (2008) verified the fluid solver. Here

the verification of the computational scheme regards two aspects important to modeling

the failure of sandwich fiber composite panels subjected to underwater explosions:

• the capability to capture fracture propagation in fiber reinforced material;

• the energy balance during simulations to assess the good functioning of the com-

plex computational scheme, which includes fracture, fluid structure interaction, the

presence of different material models across the shell thickness, etc.

Subsequently the developed computational scheme is used to simulate the experiments

conducted by Inaba and Shepherd (2009a) in order to validate its capability to model

the fluid-structure interaction and the structural response of fiber composites subjected

to underwater shock conditions.

4.1 Fracture propagation in fiber composite sand-

wich structures

As discussed in Section (2.3), if fibers are oriented only in one direction, this direction

constitutes a preferential path for fracture propagation since fibers cannot increase the co-

hesive strength of the material along their direction. On the other hand if two orthogonal
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families of fibers are present no preferential direction for fracture propagation is present

and the fragmentation is expected to be isotropic.

In order to test the capability of the proposed scheme in capturing fracture propagation,

two plates and a cylindrical shell with different fiber orientations are considered. Fibers

are aligned in one direction only in the first plate, in two orthogonal directions in the

second plate and at 45o with respect to the cylinder axis in the cylindrical sandwich shell.

The plates were subjected to an underwater explosion due to a TNT charge equal to 0.1

kg at a distance of 0.20 m from the plate center whereas the pressure load acting on the

cylindrical shell was caused by a 0.5 kg TNT charge placed at 0.52 m from the structure

outer surface. The results from three test cases are shown in Figure (4.1) and it is possi-

ble to identify the preferential direction for fracture propagation in Figures (4.1(a)) and

(4.1(c)) and the absence of such direction in Figure (4.1(b)).

4.2 Energy balance

The balance between the total internal energy and the work done by the applied external

load is a requirement for the global convergence of a computational scheme. The present

computational scheme is particularly complex since the total internal energy is the sum

of the deformation energy, the kinetic energy and the dissipated cohesive energy. The

balance between the work done by the applied external load and the sum of the accumu-

lated or dissipated energies guarantees convergence and equilibrium at every time step.

Moreover, the energy convergence assures that each energy term is computed correctly

and may be used as an indicative factor of the total deformation or damage (and therefore

performance) of the analyzed structure. The magnitudes of the different energy contribu-

tions may also be used to understand how the energy due to an underwater explosion is

redistributed once the generated pressure wave hits the target structure. For instance, the

comparison between the dissipated cohesive energy and the stored elastic energy indicates

the amount of deformation accomodated in fracture and in the bending/stretching mode

during the explosion.
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(a) Sandwich plate with fibers in the external layers

oriented along the X axis.
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(b) Sandwich plate with fibers in the external layers

oriented along the X and Y axes.
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(c) Sandwich cylindrical shell with fibers in the exter-

nal layers oriented at 45o with respect to the cylinder

axis.

Figure 4.1: Onset of fracture propagation in shell sandwich structures subjected to a

pressure load due to an underwater explosion. The kinetic energy contour plots are also

shown.
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As an example, the energy balances for two plate analyses similar to the ones shown

in Figure (4.1) are reported in Figure (4.2). In both analyses the equilibrium between the

applied external work and the internal energy is verified with a maximum error of 1.7%.

This error is due to the complexity of the dynamic simulations that are carried out using

a Newmark explicit time integration scheme and include fracture and fragmentation.
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Figure 4.2: Energy convergence plots for two sandwich square plates with fibers in the

external layers oriented along one (upper) and two (bottom) directions.
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4.3 Elastic response of water filled composite tubes

under impulsive loading

Inaba and Shepherd (2009a) subjected several resin-fiber composite tubes filled with water

to a water hammer load. Figure (4.3) shows the experimental setup. The water hammer is

induced by a 1.5 kg steel projectile that impacts a plastic buffer on the top of the vertical

fiber reinforced tube. The steel projectile falls from a constant height and this guarantees

that the speed at the time of impact on the plastic buffer is constant in subsequent

experiments 1 (the speed of the steel projectile at the time of impact is equal to 5.3 m/s).

A gland seal is placed between the plastic buffer and the tube so that no water may exit

the tube and the buffer only impacts the water surfaces and not the tube upper edge.

This experimental setup guarantees that at the time of impact stress waves are generated

only in the water and not in the tube. Therefore the measured stress waves in the tube

will be only due to the water-tube interaction. The bottom of the tube is fastened to a

fixed aluminum bar. The tube is instrumented with axial and hoop strain gages 100 mm

apart and with a pressure gage placed at the bottom. The tube specimens are 0.9 m long,

1.66 mm thick and have an inner diameter equal to 38.3 mm.

steel projectile

plastic buf fer

water

specimen tube

strain gage
stress
waves

Vp

pressure gage

ΦΦΦΦ
winding angle 
of  f iber

Figure 1: Schematic diagram of axi-symmetric water-in-tube configuration for generation of tube flexural waves
coupled with stress waves propagating in the water.

and solid properties and geometry. The Korteweg waves travel at a speed (Lighthill [4])

c =
af√
1 + β

(2)

which, depending on the magnitude of β, can be significantly less than the sound speed af in the fluid or the bar

wave speed
√
E/ρs in the tube. The parameter β is sufficiently large in our experiments that we obtain significant

fluid-solid coupling effects. Previous experiments in our laboratory [5] on flexural waves excited by gaseous detonation
are superficially similar to the present study but these have all been in the regime of small β.

The current study reports results for elastic wave propagation generated by low-speed impacts. In a companion
study [6], we report the results of high-speed impact tests that created damage or complete failure of the composite
tubes. The present work extends in a systematic fashion our previous studies [2, 3] in which we used metal tubes or
commercial composite tubes which were consisted of an axial fiber core with a woven cloth over-wrap and vinylester
resin. In that work, we found [3] that the axial strain is a much smaller fraction (1/10) of the hoop strain than for
the aluminum tubes. In the present study, we used filament wound specimen tubes so that a much larger coupling
between hoop and axial motion is anticipated and also the fiber and matrix properties were better known than in the
previous testing. We have interpreted our results using laminate models composite to predict effective tube modulus
(hoop and axial) as a function of the fiber winding angle.

Experimental apparatus and test procedure

Gas gun

As part of our research program on fluid-structure interaction, we designed and built an air cannon (Fig. 2) that is
capable of projectile exit velocities more than 200 m/s and a barrel diameter of 50 mm. The air cannon is mounted
vertically above a specimen tube filled with water. The 1.5 kg steel projectile is accelerated by a combination of
gravity and compressed air using reservoir pressures, up to 16 MPa. In the present phase of our study, we did not use
the air reservoir but simply dropped the projectile from the top end of the barrel to obtain an average buffer speed
of 5.3 m/s immediately after the impact. This approach results in more reliable low speed impacts since the gland
seals between the projectile and tube can be removed, greatly reducing the effects of friction on terminal projectile
speed.

The projectile is not completely ejected from the barrel when it impacts a polycarbonate buffer placed on the
water surface (see Fig. 2). A gland seal is used to prevent water moving through the clearance space between the
buffer and specimen tube. In this fashion, the stress waves due to the impact of the projectile are transmitted
directly to the water surface inside the specimen tube. This prevents the projectile from impacting the specimen
tube directly and enables us to measure the wave velocities without interference from axial waves created by the
projectile impact on the tube itself.

The impact-generated stress waves in the water cause the tube to deform and the resulting coupled fluid-solid
motion propagates along the tube and within the water. The deformation of the tube is measured by strain gages
oriented in the hoop and axial directions and the pressure in the water is measured by a piezoelectric transducer
mounted in an aluminum fitting sealed to the bottom of the tube. The bottom of the tube is fastened to an aluminum
bar mounted in a lathe chuck that is placed directly on the floor. A speed of 5.3 m/s is sufficient to obtain peak
hoop strains of up to 5 mstrain (.005) and pressures of 10-15 MPa at the bottom of the tube.

Figure 4.3: Experiments’ setup used in the validation analyses: specimen geometry, load-

ing conditions and instrumentation. Figure taken from Inaba and Shepherd (2009a).

During subsequent experiments, tubes with different fiber winding angles were tested

in order to study the effect of this design parameter on the tube response to the generated

water hammer. During the following validation, two fiber winding angles equal to 45o and

1The piston movement is directly incorporated in the simulations by using a signed distance level set
function and by integrating the piston equation of motion as explained in Deiterding et al. (2008).



46

60o are considered (Figure 4.4).

strains. A single piezoelectric pressure transducer recorded the pressure wave reflected from the aluminum plug at
the bottom of the specimen. A high-speed video camera (Vision Research Phantom v7.3) is used to observe the
buffer motion due to the projectile impact and determine the buffer speeds by postprocessing the images.

(a) (d)

(b)

(c)

(e)

(f)(c) (f)

Figure 3: Test specimen tubes (a) CFC#7, roll-wrapped sheet with ply angle of 45◦, (b) CFC#8,9, Φ = 60◦, pattern
I, (c) CFC#4-1, Φ = 45◦, pattern I, (d) CFC#5-1,2, Φ = 45◦, pattern II (e) CFC#6-1, Φ = 45◦, pattern III, (f)
GRP#3, Φ = 50◦.

2 Results and discussion

Dynamic response of composite tubes

Figure 4 shows hoop and axial (labeled longitudinal in the figures) strain histories measured at locations g1 (bottom
trace) to g7 as given in Fig. 2. The top trace in Fig. 4a is the pressure history and since this is obtained in the solid
end wall, the pressure values are enhanced over those for the propagating wave due to the effects of reflection at the
aluminum-water interface. In Fig. 4, the strain signal baselines are offset proportional to the distance between the
gages so that we can also interpret the trajectories of signal features by considering the ordinate as a space location
as well as a signal amplitude. The lines labeled 3686 m/s and 675 m/s indicate the leading edge of the precursor
wave and the primary (main) stress wave fronts, respectively. The subsequent reflection of the primary waves from
the bottom and re-reflection from the buffer can be observed as distinct strain pulses. The averaged peak strains
at the primary wave front from all seven 7 hoop and axial gauges in shot 075 are 3.3 mstrain and -2.7 mstrain (1
mstrain = 10−3). The values of the peak strains gradually decrease as the wave moves from the impact point toward
the bottom. In comparison with the results for metal tubes [2], the hoop strains histories are similar for metal and
composite tubes but axial strains are much larger relative to the hoop strains for the composite case. As in the case of
water-metal filled tubes, the hoop strains are less oscillatory than observed in the case of gaseous detonation-excited
flexural waves [7, 8].

The increased axial strain can be explained by considering how the applied internal pressure load is supported
in the composite tube wall. Neglecting the effects of tube wall inertia (a standard assumption in water hammer
models [1]), the radial force balance implies that the internal pressure must be balanced by the hoop tension. Due
to the winding angle of the fibers being less than 90◦, the stress in the hoop direction is transmitted along the fibers,
resulting in an axial contraction accompanying the radial expansion. The computations of radial and axial strain
as a function of winding angle by Spencer and Hull [9] show that in the case of unconstrained axial motion (they
treated the static case and did not consider wave motion), significant axial strain of the opposite sign to the hoop
strain will occur for angles between 45◦ and 60◦. This explains why the peak amplitude of the hoop and axial strains
are very close in magnitude but of opposite sign in Fig. 4. Although the wall-thickness slightly varies for each woven
pattern, the wall-thickness variations within patterns I to III are too small to result in noticeable differences in wave
speed. However, as anticipated from previous static failure studies [9], these patterns exhibit very different failure
modes and thresholds for tests [6] at higher projectile velocities.

Figure 4.4: Sections of the carbon fiber reinforced tubes used in the experiments with

winding angle equal to 60o (upper image) and 45o (bottom image). Figure taken from

Inaba and Shepherd (2009a).

The material properties of the tubes’ carbon fibers and epoxy resin are given in Table

(4.1).

Fiber

Young’s modulus 238 GPa

Density 1770 kg/m3

Matrix

Young’s modulus 2.83 GPa

Density 1208 kg/m3

Poisson’s ratio 0.28

Composite

Fiber volume fraction 0.7

Table 4.1: Material properties for the fiber composite tubes used in the experimental

campaign.

Inaba and Shepherd (2009a) extract five quantities as representative of the experi-

mental results during the tests of fiber composite tubes with different winding angles:

precursor wave speed, primary wave speed, average of hoop and longitudinal strain peaks

at the primary wave front, and pressure recorded at the bottom of the tube. These quan-

tities are used to compare the simulation results with the experimental ones.
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As discussed by Inaba and Shepherd (2009a), fluid-structure interaction plays a major

role in determining the tube structural response in these experiments; therefore the exper-

iments are optimal for validation of the coupled fluid-solid code’s capabilities. The used

numerical model contains 33280 shell finite elements, corresponding to 50076 degrees of

freedom, and the fluid domain is discretized using a 16 x 16 x 264 grid for a total of 67584

cells. A section of the finite element mesh together with the locations of the experimental

strain gages are reported in Figure (4.5).

100 m
m

Figure 4.5: Strain gage locations (figure taken from Inaba and Shepherd (2009a)) and

section of the mesh used in the simulations.

Once the steel projectile impacts the buffer at the top of the tube, the buffer transmits

the impulse to the water inside the tube. After this point in time the load is transmitted

from the water to the tube and back from the tube to the water due to the elastic expan-
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sion and contraction of the tube itself. A first wave starts traveling inside the tube due

to the first deformation imparted from the water onto the tube but it does not cause the

main deformation in the tube; this wave is called the precursor wave and mainly travels

along the fibers that possess the highest Young’s modulus to density ratio with respect to

the epoxy matrix. In order to compute the precursor wave speed during the simulations,

the displacement histories in the direction of the tube axis at seven strain gages’ locations

were measured.

The precursor wave passes from a given location when a displacement different than zero

is first registered. The longitudinal displacement versus time plots are reported in Figure

(4.6). The displacement profiles in Figure (4.6) are offset based on the strain gage location

so that it is possible to interpret the signal to capture the precursor wave moving along

the tube.

The precursor wave speeds computed in the numerical simulations with fiber winding

angle equal to 45o and 60o are, respectively, 4754 m/s and 3186 m/s. The experimental

values are 3686 m/s and 2777 m/s, which correspond to errors of 29.0% and 14.7%, re-

spectively. The errors computed between the experimental and numerical precursor wave

speeds are higher than those relative to all the other parameters compared between sim-

ulations and experiments. The material properties are considered to be the main cause

of this discrepancy since the ones given for the composite tube correspond to the mean

values reported in the literature and from the tube manufacturer. No tests on the real

tube specimens have been performed to determine the real specimen material properties.

The precursor wave speed is highly influenced by the fiber material properties since it

mostly travels along them. A calibration process could be undertaken to calibrate the

fiber and matrix material properties and obtain a better agreement between simulations

and experiments. However, the scope of the present validation was not to fine-tune the

model to these specific examples, which are anyway relative to only two single experi-

ments.

The precursor wave speed is greater in the tube with winding angle equal to 45o because

it travels principally along the fibers; a smaller winding angle corresponds to a shorter

distance to travel along the tube.

The primary wave speed (Korteweg wave, Lighthill (1978)) is defined as the speed at which
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the main deformation wave travels. With respect to the precursor wave speed, a different

time and displacement scale are needed to capture the primary wave speed. Indeed the

primary wave speed is slower and involves larger displacements than the precursor wave

speed. For this reason, two displacement versus time plots are used, which are different

from the ones presented in Figure (4.6). The displacements in the radial direction versus

time are plotted in Figure (4.7) at the gage locations along the tube. As in the case of

the precursor wave speed, the displacement traces are offset based on the gage location

in order to highlight the motion of the primary wave front along the tube. The primary

wave passes at a given location when the radial displacement increases significantly (the

first sharp increase in radial displacement corresponds to the peak of hoop strain at the

primary wave front). The primary wave speeds computed in the simulations with fiber

winding angle equal to 45o and 60o were, respectively, 709 m/s and 1015 m/s. The re-

spective experimental values are 675 m/s and 1062 m/s. These correspond to errors equal

to 5.0% and −4.4% for the 45o and 60o winding angle tubes.

Figure (4.8) shows the longitudinal strain histories at the strain gage locations during

the beginning of the simulations. The first peaks of longitudinal strain at different strain

gage locations correspond to the passage of the primary wave front. The averages of the

first peaks of longitudinal strain computed in the simulations are equal to −2.86 × 10−3

and −2.41 × 10−3 for fiber angles equal to 45o and 60o, respectively. The corresponding

experimental value for both fiber angles is −2.7× 10−3 and the relative error is 5.9% and

−10.7% in the case with fiber angle equal to 45o and 60o, respectively. Another aspect

observed in the experiments is the presence of a longitudinal strain precursor, which is

initially in tension: Figure (4.8) shows that the same tension precursor is computed in

the numerical simulations. The greater amplitude of the tension precursor in the 60o case

is due to a stronger coupling between hoop and longitudinal strains with respect to the

45o winding angle case.

Figure (4.9) shows the hoop strain histories at the strain gage locations during the be-

ginning of the simulations. The averages of the first peaks of hoop strain computed in

the simulations are 3.51× 10−3 and 1.67× 10−3 corresponding to the fiber winding angle

equal to 45o and 60o, respectively. The corresponding experimental values are 3.3× 10−3

and 1.9× 10−3, which lead to errors of 6.4% and −12.1%, respectively.
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Figure (4.10) shows the pressure histories at the top, middle and bottom of the fiber com-

posite tube. In the case with fiber angle equal to 45o, the pressure wave traveling down

the tube and being reflected back from the bottom of the tube is clearly visible. The 60o

angle case simulation was too short to capture the reflection. The maximum pressure at

the bottom of the tube computed in the simulations is 8.74 MPa and 13.07 MPa, respec-

tively, for fiber winding angle equal to 45o and 60o. The experimental pressure values at

the bottom of the tube are 8.04 MPa and 13.25 MPa, respectively, and the corresponding

errors between experiment and simulations are equal to 8.8% and −1.3% .

The energy balance during the simulations is reported in Figure (4.11) and the convergence

of the code is once more verified even during complex fluid-solid coupled simulations.

Finally a summary of the comparison between experimental and simulation results is

presented in Tables (4.2) and (4.3).
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(b) Numerical simulation with fiber angle equal to 60o.

Figure 4.6: Onset of vertical displacements at subsequent strain gage locations used to

determine the precursor wave speed. Each measurement is offset based on the strain gage

location.
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(b) Numerical simulation with fiber angle equal to 60o.

Figure 4.7: Onset of radial displacements at subsequent strain gage locations used to

determine the primary wave speed. Each measurement offset is based on the strain gage

location.
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(b) Numerical simulation with fiber angle equal to 60o.

Figure 4.8: First peaks of longitudinal strain at subsequent strain gage locations.
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(b) Numerical simulation with fiber angle equal to 60o.

Figure 4.9: First peaks of hoop strain at subsequent strain gage locations.
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Figure 4.10: Pressure history at three different locations along the tube axis.
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Figure 4.11: Balance between external work and internal energy during the validation

analyses.
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Experimental Computed Error %

Precursor wave speed [m/s] 3686 4754 29.0

Primary wave speed [m/s] 675 709 5.0

Averaged first peak hoop strain 3.3×10−3 3.51×10−3 6.4

Averaged first peak longitudinal strain -2.7×10−3 -2.86×10−3 5.9

Ratio between axial and hoop strain -0.82 -0.81 -0.5

Pressure at tube bottom [MPa] 8.0 8.7 8.8

Table 4.2: Comparison among experimental and computed results (fiber angle equal to

45o).

Experimental Computed Error %

Precursor wave speed [m/s] 2777 3186 14.7

Primary wave speed [m/s] 1062 1015 -4.4

Averaged first peak hoop strain 1.9×10−3 1.67×10−3 -12.1

Averaged first peak longitudinal strain -2.7×10−3 -2.41×10−3 -10.7

Ratio between axial and hoop strain -1.42 -1.44 1.6

Pressure at tube bottom [MPa] 13.3 13.1 -1.3

Table 4.3: Comparison among experimental and computed results (fiber angle equal to

60o).

As Inaba and Shepherd (2009a) found in the experiments, the anisotropy of fiber com-

posite tubes leads to a significantly different relation between axial and hoop strains with

respect to metal tubes. Since the fiber winding angle is less than 90o, the stress in the

hoop direction is transmitted in the longitudinal direction. Therefore a longitudinal con-

traction is caused by the radial expansion due to the pressure wave induced by the water

hammer. For this reason the hoop and longitudinal strains are of similar magnitude but

opposite in sign. The longitudinal to hoop strain ratio ( εA
εH

) obtained in the experiments

with fiber angle equal to 45o and 60o is equal to −0.82 and −1.42. The longitudinal

to hoop strain ratios computed in the simulations are, respectively, equal to −0.81 and

−1.44 and agree very well with the experimental ones. In the tube with winding angle

equal to 60o, a given hoop strain generates a greater axial contraction than in the tube
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with winding angle equal to 45o.

4.4 Failure of water filled composite tubes under im-

pulsive loading

Inaba and Shepherd (2009b) repeated the experiments described in the previous section

with higher initial projectile velocities. With respect to the tests described in Section

(4.3), the experimental setup only differs for the presence of two circumferential clamps

at the top and bottom of the tube to prevent radial expansion and fluid leakage. As

before, two fiber winding angles equal to 45o and 60o are considered in the experimental

setup and in the simulations. The tube characteristics and the buffer initial velocity in

each experiment are reported in Table (4.4)

Winding angle Wall thickness Inner diameter Buffer speed

45o 1.59 mm 38.3 mm 40.8 m/s

60o 1.65 mm 38.3 mm 43.9 m/s

Table 4.4: Specimens’ characteristics and initial buffer velocity for the considered exper-

iments.

Table (4.5) contains strength material properties to characterize the failure of the fiber

composite material.

Fibers

Elongation at break 1.8 %

Tensile strength 4620 MPa

Matrix

Elongation at break 5.5 %

Tensile strength 68.95 MPa

Table 4.5: Material properties to characterize the failure threshold of the fiber composite

tubes used in the experiments.

Due to the high initial buffer speed, fracture occurs in the fiber composite tubes and
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therefore the numerical models used to replicate the current experiments are quite different

from the ones used in the analyses of Section (4.3). In particular, the shell finite elements

that discretize the tube are now allowed to separate if the maximum cohesive strength

of the material is locally reached. This requires that all the shell elements need to be

pre-fractured at the beginning and that a penalty formulation is used to ensure element

compatibility until a crack starts to propagate as explained in Section (3.1.3). Moreover,

the fluid model is composed of two parts; one represents the water inside the tube and the

other the air outside it. If the tube fractures, water is allowed to spill from the tube: this

aspect of the model is particularly complicated. The used computational model contains

600,912 degrees of freedom and 399,360 elements in the shell solver. The fluid domain is

discretized using a 24 x 24 x 264 grid for a total of 152,064 cells.

Primary and precursor wave speeds together with the pressure at the bottom of the tube

are reported in the experiments and are used to compare experimental and simulation

results. Contrary to the previous set of experiments with lower buffer speed, the hoop

and longitudinal strains are not reported for the present experiments and therefore cannot

be used in the following comparison.

Tables (4.6) and (4.7) report the experimental and simulated results together with the

respective error.

Experimental Computed Error [%]

Precursor wave speed [m/s] 3586 4444 23.9

Primary wave speed [m/s] 663 710 7.1

Pressure at tube bottom [MPa] 23.0 54.8 138.3

Table 4.6: Comparison between experimental and computed results (fiber angle equal to

45o).
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Experimental Computed Error [%]

Precursor wave speed [m/s] 2862 3077 7.5

Primary wave speed [m/s] 1059 1000 -5.6

Pressure at tube bottom [MPa] 83.1 83.4 0.4

Table 4.7: Comparison between experimental and computed results (fiber angle equal to

60o).

The precursor and primary wave speeds reported in the experiments with high initial

buffer speed do not differ significantly from the values reported in Tables (4.2)−(4.3),

which were obtained for lower buffer initial velocity. Given the distinctly different nu-

merical setup, it is noteworthy that the numerically predicted wave speeds still agree

reasonably well with the experimental values. In the case of winding angle equal to 60o,

the pressure computed at the bottom of the tube agrees very well with the reported ex-

perimental value but a large difference is present in the case of winding angle equal to

45o. However, just as in the experiments, the pressure value at the bottom of the tube

with winding angle equal to 45o is significantly smaller than the value reported for the

tube with winding angle equal to 60o.

The discrepancy between experimental and computed pressure value may be due to an

over-idealized modeling of the experimental boundary conditions. The pressure value at

the bottom of the tube has been found to be very sensitive to the boundary conditions

imposed at the top and bottom of the tube. Different boundary conditions may trigger

the fracture of the tube in different places and influence the pressure profile inside the

tube. Moreover, a more accurate material model to describe fiber composite failure may

be necessary including components such as: fiber-matrix debonding, fiber-fiber sliding,

and fiber-fiber interaction. Additionally Inaba and Shepherd (2009b) report the pressure

value in only one isolated experiment with fiber winding angle equal to 45o. A consis-

tently repeated result would be helpful to understand the full nature of the problem. A

priori, a higher pressure value should be expected in the experiments with fiber winding

angle equal to 45o. In a similar experiment made using a glass fiber reinforced tube and

fiber angle equal to 50o, the bottom pressure value is equal to 79.3 MPa. Moreover, the

experimental response of the tube with fiber angle equal to 45o is more elastic than that
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of the tube with winding angle equal to 60o. Indeed, the 45o tube bursts only when the

pressure wave reflected from the bottom reaches the buffer, while the 60o tube bursts

when the pressure wave first reaches the bottom of the tube. A more elastic behavior

should contribute to an increase in the pressure value registered at the bottom of the

tube. A better understanding of the behavior of the tube with winding angle equal to 45o

is left for future research as at the moment more experimental results are also needed.

Moreover, current work is also focused on simulating the fracture pattern observed in the

experiments with fiber winding angle equal to 60o.
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Chapter 5

Results and applications

A brief comparison is first carried out to assess the use of an applied pressure profile versus

a fluid-solid coupled simulation in modeling the response of shell structures to underwater

explosion. Subsequently, the simpler and computationally less expensive approach which

consists of applying an equivalent pressure profile is used in two sets of analyses. First,

the role of fiber volume fraction and fiber orientation in the face sheets of a sandwich

panel is addressed through a factorial design. Then, the resistance of sandwich panels

composed of aluminum face sheets and fiber reinforced face sheets is compared. The best

cross section design is finally applied to the hull of a real Argentinean navy vessel. An 8

m long section of the vessel hull is subjected to an underwater explosion and its response

is studied with respect to varying charge mass and charge distance.

5.1 Applied pressure profile versus FSI simulations

As described in Section (3.2), two methods are available in the present computational

scheme to simulate the load due to an underwater explosion: a pressure profile applied

to the solid structure or a fluid-solid coupled simulation. A fluid-solid coupled simulation

models more realistically the physics of the problem. However, a prescribed pressure

profile results in a less complex numerical setup and also in a faster simulation. Before

choosing which method to use in different analyses, a brief comparison is carried out to

capture the main differences between these two methodologies.

The simulation of the experiment performed by Ashani and Ghamsari (2008) is chosen to

compare the two approaches since:
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1. The coupled fluid-shell code VTF has also been validated by Deiterding et al. (2008)

using this experiment and the agreement with the experimental results is very sat-

isfactory.

2. The experiment focuses on the response of a small aluminum plate subjected to an

underwater explosion. Therefore the comparison may be restricted to the methodol-

ogy for applying the explosive pressure load and does not involve other new variables

such as the response of a sandwich material configuration.

3. The comparison between the loading methods may be carried out with respect to a

real experiment and not only between two numerical simulations.

During the experiment, a 0.02 kg charge of C4 (1.34 x TNT) explosive is detonated in-

side a water filled pool at distance of 0.25 m from the air-backed aluminum plate. The

aluminum plate of radius 150 mm is fixed to the top of an immersed air filled cylinder

and the exposed radius is equal to 85 mm. The plate thickness is equal to 3 mm (Figure

5.1). The plate finite element model contains 8,148 triangles, which are constrained for

r ≥ 85mm.

Aluminum plate

150 mm
65 mm 85 mm

20 g  C4 charge

250 m
m

Air

Water filled 2.9 m x 
1.9 m x 2.2 m pool

Figure 5.1: Schematic experimental setup.
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The aluminum material behavior is described using a J2 plasticity model (Lubliner,

2008) with power law hardening and rate dependency and the material properties em-

ployed in the simulations are listed in Table (5.1).

Mass density 2719 kg
Young’s modulus 69000 Mpa

Yield stress 275 MPa
Poisson ratio 0.33

Reference plastic strain 0.001
Hardening exponent (1/n) 0.07

Reference plastic strain rate 0.6
Rate sensitivity exponent (1/m) 0.01

Table 5.1: Aluminum material properties used in both simulations.

The first analysis performed reproduces the validation made by Deiterding et al.

(2008); in this analysis the C4 charge is modeled as an energy deposition uniformly

distributed over an initial 5 mm radius sphere of air at a temperature equal to 1, 500o C.

In the second analysis performed, the effect of the C4 charge is modeled using an applied

pressure profile, which is described by the equations presented in Section (3.2.1).

Figure (5.2) shows the history of the displacement at the center of the plate obtained in

both the simulations.
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Figure 5.2: Central plate deflection versus time obtained in the simulations with an

applied pressure profile and considering fluid-structure interaction (FSI).
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The maximum central deflection computed in the fluid-solid coupled simulation is

equal to 28.10 mm while the maximum central deflection obtained by applying a pre-

scribed pressure profile is equal to 27.35 mm. The maximum central deflection recorded

in the experiment is equal to 28.83 mm and agrees well with the results of both the

numerical simulations. However, as expected, the fluid-solid coupled simulation better

approximates the experimental result.

Besides the computed maximum deflection, also the maximum plastic deformation (repre-

senting the irreversible damage suffered by the plate) is very similar in both the numerical

simulations. However, the deformation time scale in the two analyses is quite different:

the maximum displacement is reached in 3.35×10−4s during the simulation in which a

pressure profile is applied and is reached in 4.92×10−4s during the fluid-solid coupled

simulation. If the fluid-structure interaction (FSI) is considered, the deformation process

is divided in mainly two parts: when the first shock wave hits the plate, the plate starts

moving away from the water, which is unable to immediately follow it and therefore cav-

itates. This phase corresponds to the lower slope of the first part of the deformation

history obtained in the fluid-solid coupled simulation. Subsequently, a second pressure

wave reaches the plate and this event coincides with the sharp gain in slope observed in

the displacement history during the fluid-solid simulation. Another difference between

the two displacement histories concerns the final oscillations of the plate, which are due

to the remaining elastic part of the energy. These oscillations are slower, as expected, if

water is present on the back side of the plate and are otherwise completely unconstrained

and faster if only the solid shell is present (once the applied pressure has decayed to zero).

Figure (5.3) shows the complete deformed shape of the plate corresponding to the instant

when the maximum deflection is reached in both analyses and it is possible to see the

good agreement between the two.
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(a) Contour plot for the plate deflection obtained in the analysis

which uses an applied pressure profile at time 3.35×10−4 s.
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(b) Contour plot for the plate deflection obtained in the fluid-

solid coupled analysis at time 4.92×10−4 s.

Figure 5.3: Deformed configuration of the plate corresponding to the instant of maximum

deflection.

The final applied total work is another global measure that can be used to assess

the differences between the two loading methods. Figure (5.4) shows the external work

applied to the plate using a prescribed pressure profile and a fluid-solid coupled simulation.

Although the two methodologies are very different, the maximum difference in the applied

external work is only equal to 6.9%.



67

1000

1500

2000

2500

3000

3500

4000

E
xt

er
na

l w
or

k 
[J

]
Applied pressure

FSI

0

500

1000

1500

2000

2500

3000

3500

4000

0.E+00 1.E-04 2.E-04 3.E-04 4.E-04 5.E-04 6.E-04 7.E-04 8.E-04

E
xt

er
na

l w
or

k 
[J

]

Time [s]

Applied pressure

FSI

Figure 5.4: External work applied to the circular plate versus time during a shell-only

and a fluid-shell coupled analysis.

It appears that an applied pressure profile may be used to approximate the load due

to an underwater explosion during preliminary analyses aimed, for instance, at the opti-

mization of different design parameters. These analyses must in general be repeated many

times in order to explore the entire space of the design parameters of interest. A reliable

but efficient computational tool is thus desirable to perform those optimization and first

order analyses. However, a more accurate modeling of the fluid structure interaction is

necessary to study the response of the final structure of interest (i.e., the boat hull that

will be, or has been, fabricated). In this work the same approach has been followed: first

a prescribed pressure profile is used to assess the role of chosen design parameters on the

sandwich external face sheets and then the optimized design, together with fluid-solid

coupled simulations, is used in the study of the final structure of interest.

5.2 Design optimization of fiber reinforced composite

panels using a parametric study

The role of fiber volume fraction and fiber orientation in the design of the sandwich panel

external faces is investigated. A square plate with side length equal to 4 m and thickness

equal to 40 mm is considered. The applied pressure profile represents the detonation of
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a 50 g TNT charge placed under the center of the plate at a distance equal to 0.2 m.

According to the equations reported in Section (3.2.1) the maximum pressure applied

when the shock wave hits the plate is initially equal to 104.5 MPa. The computational

mesh and the sandwich material configuration are shown in Figure (5.5). The finite

element mesh is composed of 2,048 shell elements with 3,267 displacement degrees of

freedom. The mesh is pre-fractured at the beginning to locate cohesive elements between

shell elements in order to allow for fracture and fragmentation if these occur due to the

explosive load.

X Y

Z

(a) Plate finite element mesh.

Fiber reinforced epoxy

PVC H100

6 mm Fiber reinforced epoxy

6 mm

28 mm

(b) Sandwich material configuration.

Figure 5.5: Geometry setup used in the factorial design analyses.

The sandwich panel is composed of a foam core made of PVC H100 and two exter-

nal fiber composite layers made of carbon fibers and epoxy resin. Two groups of fibers

are included in the composite material. The foam material properties have been taken

from ElSayed (2008) while the fiber composite material properties have been taken from

Yokozeki et al. (2007), Yu et al. (2002) and Inaba and Shepherd (2009a). The material

behaviors of the foam core and of the fiber composite are described using the material

models discussed in Sections (2.1) and (2.2) while the material properties used in the

analyses are listed in Tables (5.2) and (5.3).
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Foam core

Mass density 100 kg/m3

Initial Young’s modulus before cell collapse 0.105 Gpa

Poisson ratio 0.32

Final Young’s modulus after cell collapse 1.0 Gpa

Tensile strength 3.5 MPa

Compressive strength before cell collapse -2.0 MPa

Final compressive strength -50.0 MPa

Critical opening displacement 4.4e-5 m

Table 5.2: Material properties for PVC H100 foam core. The foam material behavior in

uni-axial compression is represented in Figure (2.5).

Epoxy resin

Mass density 1208 kg/m3

Young’s modulus 2.83 Gpa

Poisson ratio 0.25

Tensile strength 68 MPa

Carbon fibers

Mass density 1780 kg/m3

Young’s modulus 215 Gpa

Tensile strength 3800 MPa

Composite

Critical opening displacement 2.65e-5 m

Table 5.3: Material properties for epoxy resin reinforced with carbon fibers.

In the following analyses geometry, loading conditions and all but two material pa-

rameters remain constant. The fiber volume fraction of the external face sheets varies

between 0.2 and 0.7 assuming 5 equally spaced values. The angle between the two fami-

lies of fibers that compose the sandwich external layers also varies from 0o (all the fibers

are aligned in one direction) to 90o (fibers are divided in two equal fractions and oriented

in orthogonal directions) assuming 5 equally spaced values.
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At the end of the analyses, the performance of the analyzed plates is evaluated on the

basis of two global measures: the total elastic energy stored in the sandwich panel and

the elastic energy stored in the foam core only. These energies have been chosen as pri-

mary indices to evaluate the plate performance because higher elastic energy stored in the

material means that more energy due to the explosion has been absorbed and less energy

has been dissipated through fracture and fragmentation induced structural damage.

The values of the elastic energy stored in the entire sandwich panel and in the core only

are reported in Tables (5.4) and (5.5), respectively, and are plotted in Figures (5.6) and

(5.7).

@
@
@
@@

Vf

θ
0o 22.5o 45o 67.5o 90o

0.2 2239 2472 5024 8100 9030

0.325 2515 3180 6782 12301 13023

0.45 3072 3554 8105 15066 16454

0.575 4116 4080 10136 15920 17989

0.7 4324 4322 11730 17289 18970

Table 5.4: Total elastic energy stored in the sandwich panel as a function of fiber volume

fraction Vf and fiber angle. θ represents the angle between two families of fibers.

@
@
@
@@

Vf

θ
0o 22.5o 45o 67.5o 90o

0.2 220 310 473 749 857

0.325 280 305 662 1156 1192

0.45 358 369 809 1476 1499

0.575 472 441 1089 1575 1676

0.7 560 561 1394 1766 1928

Table 5.5: Elastic energy stored in the sandwich core as a function of fiber volume fraction

Vf and fiber angle. θ represents the angle between two families of fibers.

As clearly visible in Tables (5.4) and (5.5), the computed values of the elastic energy

stored in the entire sandwich plate or in the foam core alone vary by up to an order of
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magnitude depending on fiber volume fraction and fiber orientations. This confirms that

both fiber volume fraction and fiber orientation have a significant effect in determining the

energy absorbed by the sandwich panel subjected to an explosive load. The optimization

of these design parameters is therefore meaningful to improve the sandwich structure final

response when subjected to an underwater explosion.
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Figure 5.6: Total elastic energy stored in the sandwich plate as function of fiber angle

and fiber volume fraction.
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Figure 5.7: Elastic energy stored in the sandwich foam core as function of fiber angle and

fiber volume fraction.

The elastic energy stored in the entire sandwich panel increases, although non-linearly,

with the increasing volume fraction and angle between two families of fibers. The elastic

energy absorbed in the panel is maximized if the fiber volume fraction is equal to 0.7

and if the fibers are divided equally into two orthogonal families. A greater fiber volume

fraction corresponds to a higher local cohesive strength of the composite materials in

the face sheets. Moreover, if two orthogonal families of fibers are present, there is no

preferential direction for fracture propagation. Therefore, the design that corresponds

to the maximum stored elastic energy also corresponds to the design with the highest

resistance to fracturing. When the explosive load is applied to the sandwich plate, fracture

and fragmentation are reduced if this design is used, and a greater part of the explosion

energy may be converted into elastic energy.

The increase in stored elastic energy does not depend equally on the fiber volume fraction

and on the angle between two families of fibers. Figures (5.8) and (5.9) represent the
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absorbed elastic energy as a function, separately, of fiber volume fraction and fiber angle.

Figures (5.8) and (5.9) are obtained by averaging respectively over the columns and over

the rows of Table (5.4). It can be seen that the stored elastic energy increases almost

linearly with respect to fiber volume fraction and non-linearly as a function of fiber angle.

As written in Equation (2.17), the final cohesive strength of the material depends in the

same linear way on fiber volume fraction and non-linear way on fiber angle. This aspect

confirms that sandwich external layers with higher cohesive strength and therefore greater

resistance to fracturing will absorb more elastic energy and sustain less structural damage.
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Figure 5.8: Total elastic energy stored in the sandwich plate as function of fiber angle.
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Figure 5.9: Total elastic energy stored in the sandwich plate as function of fiber volume

fraction.

Qualitatively, the amount of elastic energy stored in the foam core depends on fiber

volume fraction and fiber angle in the same manner as the total stored elastic energy

does. Figure (5.10) shows the foam core elastic energy as a non linear function of fiber

angle and Figure (5.11) reports the almost linear dependence on fiber volume fraction.

Similarly to the observations relative to the total stored elastic energy, stronger external

face sheets also enable higher elastic energy to be stored in the foam core. It can therefore

be concluded that the foam core contributes more to the total resistance of the sandwich

panel if stronger face sheets are used.

In order to optimize the role of the foam core in absorbing part of the energy due to

an explosion, orthogonal fibers and high fiber volume fraction in the face sheets are

recommended.
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Figure 5.10: Elastic energy stored in the sandwich foam core as a function of fiber angle.
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Figure 5.11: Elastic energy stored in the sandwich foam core as a function of fiber volume

fraction.

Figure (5.12) shows the final deformation and damage for the two limiting cases of the
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factorial design: in the first analysis, one family of fibers is present in the external face

sheets and a fiber volume fraction equal to 0.2 is used. In the second analysis, the opposite

limit is considered: two orthogonal families of fibers are considered in the external face

sheets and the fiber volume fraction is equal to 0.7. In Figure (5.12), it is clearly visible

that greater damage is present when only one family of fibers with volume fraction equal

to 0.2 is used.

X

Y

Z

KE[J]

650
600
500
400
300
200
100
50

(a) Fibers oriented only along the X axis and fiber

volume fraction equal to 0.2 .
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(b) Fibers oriented along the X and Y axes and

fiber volume fraction equal to 0.7 .

Figure 5.12: Final deformed configuration and kinetic energy contour plot relative to the

plates with design parameters at the extremes of the parametric study.

The results of the presented parametric study are confirmed in the analysis of the

response of two sections of a cylindrical shell subjected to an underwater explosion. The

thickness of the considered cylindrical shell is 20 mm: the foam core is 14 mm thick and

each fiber composite face sheet is 3 mm thick. The mass of the TNT charge is equal to 0.2

kg and is placed at 0.4 m from the cylinder surface. The fiber volume fraction is constant

in the two analyses and is equal to 0.4; however in analysis A all the fibers are oriented

along the cylinder axis, whereas in analysis B half of the fibers are oriented along the

axis of the cylinder, and the remaining are oriented in the circumferential direction. The

material properties used in the analyses are the same as the ones reported in Tables (5.2)

and (5.3).

Once the pressure load due to the underwater explosion has been completely applied:

• The damage is greater in analysis A as can be seen qualitatively in Figure (5.13).
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• The total elastic energy stored in the structure is equal to about 8,000 J and 14,000

J in analyses A and B, respectively. If two orthogonal families of fibers are present, a

greater part of the external work due to the TNT explosion is converted into elastic

energy and minor damage is observed.

• The dissipated cohesive energy is equal to 3,985 J and 2,304 J in analyses A and B,

respectively (Figure 5.14). The dissipated cohesive energy is directly proportional

to the extent of fracture and fragmentation and therefore to the present structural

damage. This confirms that the shell with two orthogonal families of fibers better

sustains the underwater explosion.
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cylinder axis and in the circumferential di-
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Figure 5.13: Final deformed configuration.
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Figure 5.14: History of dissipated cohesive energy.

PPPPPPPPPPPPPP
Energies

Analysis
A B

Elastic energy [J] 8000 14000

Dissipated cohesive energy [J] 3985 2304

Table 5.6: Final elastic energy and dissipated cohesive energy computed in the analyses

A and B.

5.3 Capability of different hull cross sections to con-

tain explosive loads

The use of metal face sheets constitutes an alternative to the use of external layers made

of fiber reinforced composites. In view of maintaining a low weight of the sandwich panel,

aluminum face sheets are considered and compared to fiber reinforced external layers.

In a first set of analyses, square sandwich plates with side length equal to 4.0 m are

considered. The core thickness is constant in all the analyses and is equal to 70 mm while

the thickness of the external face sheets varies in order to maintain a constant weight of

the sandwich panel. The total weight of the sandwich panel represents a crucial factor in

designing naval structures, and it is therefore important to compare the performance of



79

different sandwich panels normalized with respect to the panel weight. The characteristics

of three different plates used in the analyses are summarized in Table (5.7).

Fiber composite
and foam

Aluminum and
foam

Fiber composite
only

Total thickness [mm] 100.0 88.7 34.0

Face sheet thickness [mm] 15.0 8.9 -

Core thickness [mm] 70.0 70.9 -

Specific weight [kg/m2] 55.3 55.3 54.7

Table 5.7: Plate sandwich material configurations.

The mesh used in the analyses is the same as the one represented in Figure (5.5(a))

and consists of 2,048 shell elements. The elements are pre-fractured at the beginning to

allow for fracture and fragmentation. The material properties for the epoxy resin and the

carbon fibers are the same as the ones reported in Tables (5.2) and (5.3). The employed

material models have been discussed in Sections (2.1) and (2.2). The material behavior

of aluminum is described by a J2 plasticity model with power law hardening and rate

dependency. The aluminum material properties are taken from Cirak et al. (2005) and

are reported in Table (5.8).

Mass density 2719 kg
Young’s modulus 69000 Mpa

Yield stress 90 MPa
Poisson ratio 0.33

Reference plastic strain 0.001
Hardening exponent (1/n) 4.0

Reference plastic strain rate 0.0001
Rate sensitivity exponent (1/m) 0.01

Cohesive strength 180 MPa

Table 5.8: Material properties for aluminum Al2024-0.

The sandwich panels are simply supported on the boundaries and are subjected to

the pressure load corresponding to the detonation of an underwater 0.2 kg TNT charge

placed at 0.4 m vertically under the center of the plate. The maximum pressure generated

by the underwater explosion is equal to 89.9 MPa.

If fiber reinforced face sheets are used as opposed to aluminum face sheets:

1. the kinetic energy of the plate is lower indicating a lower structural damage. More-

over, as visible in Figure (5.15) the kinetic energy of the sandwich plate with fiber
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composite face sheets reaches a maximum and then markedly decreases, meaning

that the plate has contained the pressure due to the explosion and is slowing its

motion. On the contrary, the kinetic energy of the aluminum sandwich shells does

not decrease markedly after reaching its maximum. This is due to the presence

both of fragments detached from the main plate and of cracks in the sandwich panel

which reduce the structural stiffness of the sandwich plate.

2. The elastic energy stored in the sandwich core is higher, indicating that a greater

part of the explosion energy has been absorbed in the core (Figure 5.16).

3. The fractured cross section area is lower (Figure 5.17). The surface of the fractured

cross section is computed by dividing the dissipated cohesive energy by the mean

fracture energy of the sandwich cross section which is computed averaging the frac-

ture energy of the external face sheets and of the internal foam core based on their

relative thickness. The average fracture energy for the sandwich cross section with

fiber composite and aluminum face sheets is equal to 10708 N/m and 1850 N/m

respectively.
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Figure 5.15: History of the kinetic energy of simply supported 4 m × 4 m sandwich plates

with different face sheet materials subjected to an underwater explosion.
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Figure 5.16: Evolution of the elastic energy stored in the foam core of simply supported 4

m × 4 m sandwich plates with different face sheet materials subjected to an underwater

explosion.
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Figure 5.17: Fracture propagation history for simply supported 4 m × 4 m sandwich

plates with different face sheet materials subjected to an underwater explosion.



82

The analyses just described have been repeated using a smaller square sandwich panel

with sides of length equal to 2.0 m and thickness equal to 70 mm. In this second set of

analyses the applied pressure profile corresponds to a TNT charge equal to 0.15 kg placed

at 0.25 m below the plate center. The maximum pressure applied to the plate is equal to

126.9 MPa, and larger structural damage is inflicted. Figures (5.18), (5.19), and (5.20)

confirm the observations relative to the first set of analyses.
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Figure 5.18: History of the kinetic energy of simply supported 2 m × 2 m sandwich plates

with different face sheet materials subjected to an underwater explosion.
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Figure 5.19: Evolution of the elastic energy stored in the foam core of simply supported 2

m × 2 m sandwich plates with different face sheet materials subjected to an underwater

explosion.
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Figure 5.20: Fracture propagation history for simply supported 2 m × 2 m sandwich

plates with different face sheet materials subjected to an underwater explosion.

Although interlayer delamination between the foam core and the external face sheets

is not simulated and addressed in the present work, it is worth mentioning that fiber

reinforced sandwich panels are expected to offer also a greater resistance to delamination

in comparison to sandwich panels with aluminum external layers. Indeed, it is expected

that the inner surface in contact with the foam core is, in general, more rough in the

case of fiber reinforced external layers, therefore offering a greater interlocking between

the foam core and the external face sheets and consequently a higher interlayer cohesive

strength.

As it is possible to see from Figures (5.17) and (5.20), a plate made exclusively of fiber

composite material sustains the load as well as a sandwich plate with fiber composite face

sheets and of equal weight. However, as it appears from Figure (5.21), the plate made

of only fiber composite material undergoes a larger deflection if subjected to the same

pressure load than a sandwich plate of equal weight (the pressure load used in this last

set of analyses is due to a small TNT charge equal to 0.1 kg placed 1.0 m below the plate

center and does not cause structural damage). Usual structural applications require the

maximum deformation to be limited. Therefore, even if both the sandwich fiber composite

plate and the fiber-only composite plate sustain an explosive load equally well, the first

is preferred in structural applications.
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Figure 5.21: Simply supported 4 m × 4 m square plates subjected to a small underwater

explosion: deflection history.

5.4 Fluid-solid coupled simulations of fiber reinforced

sandwich hulls

As a final application, the present computational capability is used to investigate the

response to an underwater explosion of a hull section of a Meko 140 corvette ship used

by the Argentinean navy. The geometry of the hull section is taken from ElSayed (2008)

and is shown in Figure (5.22).

An 8.3 m long hull section is modeled using 2,880 shell finite elements which are pre-

fractured at the beginning to allow fracture and fragmentation. The fluid domain is

discretized using 344,400 finite volume cells and contains the entire solid domain. A

sandwich material configuration is considered for the hull cross section. The total thick-

ness of the hull is equal to 100 mm and is composed of two external fiber-composite face

sheets and a foam core. The finite element mesh and the sandwich material configuration

are shown in Figure (5.23).
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Figure 5.22: Side view of the Meko 140 corvette ship and geometry of the hull section

used in the numerical simulations.

X

Y

Z

(a) Hull finite element mesh.

Fiber reinforced epoxy

PVC H100

15 mm Fiber reinforced epoxy

15 mm

70 mm

(b) Sandwich material configura-

tion.

Figure 5.23: Analysis geometry.

The fiber composite external layers are made of epoxy resin and carbon fibers for which
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the material properties are reported in Table (5.3) and the material model is described

in Section (2.2). The foam core is made of PVC H100 with material properties listed in

Table (5.2) and material model described in Section (2.1) .

The hull section is simply supported at its boundaries and is subjected to five different

loading conditions with varying mass of the TNT charge and its distance from the vessel

hull as reported in Table (5.9)

Analysis ID TNT mass Charge distance
Hull-m1-d05 1 kg 0.5 m
Hull-m1-d1 1 kg 1.0 m

Hull-m10-d05 10 kg 0.5 m
Hull-m10-d1 10 kg 1.0 m
Hull-m20-d05 20 kg 0.5 m

Table 5.9: Loading conditions considered in the simulations of the hull section subjected
to an underwater explosion.

Figure (5.24) reports the dissipated cohesive energy at the end of each analysis; the

hull damage is directly proportional to the dissipated cohesive energy. As expected, the

damage inflicted on the hull increases with increasing charge mass and decreasing distance

from the vessel. Moreover, the damage is contained for the analyses with charge mass

equal to 1 kg and for the analysis with charge mass equal to 10 kg placed at a distance

equal to 1.0 m from the hull. The underwater explosions caused by 10 kg and 20 kg of

TNT placed at 0.5 m from the hull are instead able to cause major damage and fracture

of the hull as seen in Figures (5.25) and (5.26). The damage caused by the 10 kg TNT

mass is more extended than the one caused by the 20 kg TNT charge which is able to

perforate the hull at the location where the shock wave first impacts the hull. The higher

pressure due to a 20 kg TNT charge punctures the hull limiting the extension of fracture

and fragmentation.
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Figure 5.24: Dissipated cohesive energy during each analysis for which the mass and offset

of the TNT charge are reported in the legend of the plot.
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Figure 5.25: Final damage sustained by the hull subjected to the underwater explosion

of a 10 kg TNT charge placed at 0.5 m from the vessel. The contour plot of the kinetic

energy [J] is also shown.
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Figure 5.26: Final damage sustained by the hull subjected to the underwater explosion

of a 20 kg TNT charge placed at 0.5 m from the vessel. The contour plot of the kinetic

energy [J] is also shown.

Figures (5.27) - (5.30) show the fluid-solid coupled domain (viewed from inside the

hull) during a sequence of time steps of the analysis in which a 20 kg TNT charge is

detonated at 0.5 m from the hull. In Figure (5.27) the initial high pressure gas sphere

representing the TNT explosion is shown together with the vessel hull in the initial con-

figuration. Subsequently, the high pressure sphere expands, reaches the hull (Figure 5.28)

and damages it (Figures 5.29 and 5.30).

Figure (5.31) shows, for the same analysis, the density contour plot at different times in

the central section of the computational domain taken at x=0. The initial gas bubble

formed by the TNT explosion reaches the vessel and breaks the hull connecting the water

(red) and air (blue) parts of the fluid domain.
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Figure 5.27: Hull mesh and pressure contour plot at time t = 0.0 s for the analysis in

which a 20 kg TNT charge is detonated at 0.5 m from the vessel (Pressure unit = Pa).

Figure 5.28: Hull mesh and pressure contour plot at time t = 4.2 ×10−4s for the analysis

in which a 20 kg TNT charge is detonated at 0.5 m from the vessel (Pressure unit = Pa).
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Figure 5.29: Hull mesh and pressure contour plot at time t = 6.5 ×10−4s for the analysis

in which a 20 kg TNT charge is detonated at 0.5 m from the vessel (Pressure unit = Pa).

Figure 5.30: Hull mesh and pressure contour plot at time t = 10.0 ×10−4s for the analysis

in which a 20 kg TNT charge is detonated at 0.5 m from the vessel (Pressure unit = Pa).
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(a) Time = 0.0 s . (b) Time = 10.0 ×10−4 s .

(c) Time = 23.6 ×10−4 s .

Figure 5.31: Density contour plot at different time steps for the analysis in which a 20 kg

TNT charge is detonated at 0.5 m from the vessel (Density unit = kg/m3).
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Chapter 6

New approaches and improvements

Several detailed paths for future research are presented in the following sections. In par-

ticular, three areas of future research are recognized as particularly important to improve

the predictive capability of the computational scheme: the study of a new shell finite

element, a better description of the displacement field in the thickness of the sandwich

shell finite element and a more detailed characterization of the damage occurring in the

sandwich panel. Additionally, the coupling of the presented method with uncertainty

quantification techniques is briefly discussed.

6.1 Beyond subdivision elements

One of the major drawbacks of the presented computational scheme is the need to pre-

fracture the finite element mesh a priori. This not only increases greatly the number of

degrees of freedom of the model but also requires a penalty approach to enforce elements’

compatibility before any cracks start to propagate. A penalty approach often causes the

ill-conditioning of the system of equations to be solved during the analysis and requires

a reduction of the time step in dynamic analyses to avoid instabilities of the solution

algorithm. Moreover, elements’ compatibility is never enforced exactly before crack prop-

agation and this contributes to the error in the analysis.

In order to improve the simulation of sandwich shells subjected to underwater explosions,

a different finite element is needed that does not require prefracturing of the mesh. At

the same time, the new shell finite element must retain optimal convergence properties
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and therefore should not lock 1 in the thin limit.

In this spirit, two different approaches are currently under investigation and are presented

in the following sections as candidates to improve the present computational capability.

The first approach is based on the Mindlin-Reissner theory for shell/plate bending and

uses the diamond approximation scheme introduced by Hauret et al. (2007) in incom-

pressible elasticity. The diamond approximation scheme guarantees optimal convergence

in the thin limit while the element interpolation functions remain local. Therefore there

is no need to pre-fracture the mesh to handle complex topology changes, but cohesive

elements may be inserted only when the crack starts to propagates.

The second approach presented is based directly on the three dimensional elasticity equa-

tions and utilizes the local maximum entropy interpolation scheme proposed by Arroyo

and Ortiz (2006). As discussed by many authors (i.e., Noguchi et al. (2000), Krysl and

Belytschko (1996), Li et al. (2000b)), meshless schemes greatly alleviate the locking prob-

lem in thin shells and are able to describe very large deformations such as the ones likely

to be caused by an underwater explosion.

6.1.1 Diamond plate finite element

The concepts presented in Brezzi and Fortin (1991) and Ortiz and Morris (1988) are re-

viewed at the beginning of this section and serve to introduce the diamond approximation

scheme presented later. Finally, the diamond plate finite element is described together

with some preliminary results.

1A finite element is said to lock when its response is overly stiff. If not properly implemented, internal
kinematic conditions may overconstrain a finite element, making it worthless. Examples of internal
kinematic constraints are:

• in incompressible elasticity problems: (div(u) = 0) where u represents the displacement field.

• in thin plate problems: (∇w − θ = 0) where w represents the displacement normal to the plate
middle surface and θ are the plate middle surface rotations.
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6.1.1.1 The Mindlin plate problem in the continuum setting

The potential energy Π of a plate described by Mindlin theory and subjected to a dis-

tributed load q may be written as:

Π =
t3

2
a (β,β) +

λt

2

∫

Ω

(∇w − β)2dxdy −
∫

Ω×]−t,t[
qwdxdydz (6.1)

where Ω×] − t, t[ defines the plate domain, β and w represent the plate rotations and

transversal displacement, respectively, λ = kE
2(1+ν)

, and k is a shear correction factor. The

bilinear form a (β,β) is given in Equation (6.2):

a (β,β) =
E

12(1− ν2)

∫

Ω

[

(
∂βx
∂x

+ ν
∂βy
∂y

)
∂βx
∂x

+

(
ν
∂βx
∂x

+
∂βy
∂y

)
∂βy
∂y

+ (6.2)

1− ν
2

(
∂βx
∂y

+
∂βy
∂x

)2

]dxdy

As it possible to see from Equation (6.1), only the first derivatives of rotations and dis-

placements appear in Mindlin potential energy. As a consequence, the solution of the

Mindlin plate problem must belong to H1 since rotations and displacements must be

square integrable functions together with their first derivatives. In contrast, if Kirchhoff

equations for thin plate bending are directly implemented imposing the kinematic con-

straint β = ∇w, then the second derivatives of the transversal displacements appear in

the expression of the plate potential energy requiring that the solution belongs to H2. As

already discussed in Section (3.1.1), requiring that the solution belongs to H2 leads to

several problems in the finite element discretization.

In the present case, considering Mindlin plate theory and assuming homogeneous dis-

placement/rotations boundary conditions, the space V of admissible solutions is defined

as:

V = H ×W H =
(
H1

0 (Ω)
)2

W = H1
0 (Ω) (6.3)

Every element of V will be denoted v = (η, ζ) with η = (ηx, ηy) ∈ H and ζ ∈ W .

Setting q (x, y, z) = t2

2
g (x, y) with g (x, y) independent of t, and dividing Equation (6.1)
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by t3 the plate potential energy may be rewritten as:

Π =
1

2
a (β,β) +

λt−2

2

∫

Ω

(∇w − β)2dxdy − (g, w) (6.4)

It is now clear from Equation (6.4) that, as the plate thickness goes to zero, the plate

potential energy may become unbounded unless the constraint ∇w−β = 0 is enforced. In

other words, in the thin limit, Mindlin theory converges to Kirchhoff plate theory and the

Kirchhoff constraint has to hold. If the solution spaces for displacements and rotations

are not chosen properly, then the trivial zero solution is the only case when the Kirchhoff

constraint is satisfied. On the other hand if the so called inf-sup condition (Brezzi and

Fortin, 1991) is satisfied, then the correct solution is recovered. In the present case, the

inf-sup condition is indeed satisfied using the solution space V as proved in Brezzi et al.

(1991) and Duran (1991).

In order to rewrite the Mindlin plate problem in a more convenient form, the following

auxiliary variable γ, related to the shear stress, is introduced:

γ = λt−2 (∇w − β) (6.5)

Moreover, using Helmholtz decomposition, every γ may be written in a unique way as:

γ = ∇ψ + rotp (6.6)

where ψ ∈ H1
0 (Ω), p ∈ L2(Ω)/R and the rotor rot of a scalar function is defined as:

rotφ = {∂φ
∂y
,−∂φ

∂x
} (6.7)

The Euler Equations for Π may now be written in the form:

a (β,η) + (γ,∇ζ − η) = (g, ζ) ∀ (η, ζ) ∈ V (6.8)

Using the decomposition of γ, Equations (6.8) and (6.5) may now be rewritten as the
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sequence of three staggered problems:

(∇ψ,∇ξ) = (g, ξ) ∀ξ ∈ H1
0 (Ω) (6.9)

a (β,η)− (rot(p),η) = (∇ψ,η) ∀η ∈
(
H1

0 (Ω)
)2

(6.10)

− (β, rot(q)) =
t2

λ
(rot(p), rot(q)) ∀q ∈ L2(Ω)/R

(∇w,∇χ) = (β,∇χ) +
t2

λ
(∇ψ,∇χ) ∀χ ∈ H1

0 (Ω) (6.11)

The Mindlin plate problem has therefore been rewritten as three staggered problems:

Equations (6.9) and (6.11) are Poisson-type problems, and Equation (6.10) is a Stoke-like

problem.

As underlined by Brezzi, the decomposition of γ clearly shows that it is the p component

that depends on t. To better see that Equation (6.10) is a Stoke-like problem, the variable

η⊥ = {−η2, η1} is defined and Equation (6.10) is rewritten as follows:

a⊥
(
β⊥,η⊥

)
+
(
p, div(η⊥)

)
=
(
−rot(ψ),η⊥

)
∀η⊥ ∈

(
H1

0 (Ω)
)2

(6.12)

(
div(β⊥), q

)
=
t2

λ
(∇p,∇q) ∀q ∈ L2(Ω)/R (6.13)

where:

a⊥
(
β⊥,β⊥

)
=

E

12(1− ν2)

∫

Ω

[

(
∂β⊥y
∂x
− ν ∂β

⊥
x

∂y

)
∂β⊥y
∂x
−

(
ν
∂β⊥y
∂x
− ∂β⊥x

∂y

)
∂β⊥x
∂y

+ (6.14)

1− ν
2

(
∂β⊥y
∂y
− ∂β⊥x

∂x

)2

]dxdy

As in the continuous setting, in the finite element discrete approach the space of displace-

ment and rotations must be chosen such that they satisfy the inf-sup condition. In the

thin limit, an element based on Mindlin theory will lock unless it satisfies the inf-sup

condition. Since the limiting case t → 0 is the most severe condition under which the

inf-sup condition must be satisfied, the following analysis focuses on Equations (6.15) and
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(6.16), which are obtained from Equations (6.12) and (6.13) with t = 0:

a⊥
(
β⊥,η⊥

)
+
(
p, div(η⊥)

)
=
(
−rot(ψ),η⊥

)
∀η⊥ ∈

(
H1

0 (Ω)
)2

(6.15)

(
div(β⊥), q

)
= 0 ∀q ∈ L2(Ω)/R (6.16)

Equation (6.16) is equivalent to the Kirchhoff constraint ∇w − β = 0.

6.1.1.2 Discretization of the Mindlin plate problem

As discussed in the previous section, the Mindlin plate problem has been divided into

three staggered problems: a Poisson problem to compute ψ (Equation 6.9), a Stoke-like

problem to compute the plate rotations β (Equations 6.15 and 6.16) and a Poisson prob-

lem to compute the plate deflection w from the plate rotations (Equation 6.11). The first

and the last Poisson problems are discretized using quadratic triangular elements and do

not require any special treatment.

The Stoke-like problem represented by Equations (6.15) and (6.16) needs instead to be

discretized carefully so as to satisfy the inf-sup condition in the discrete setting and guar-

antee optimal convergence properties to the plate finite element. Equations (6.15) and

(6.16) are of the same type as the equations that govern two-dimensional problems in in-

compressible elasticity. Indeed, by analogy, the rotation field β⊥ in Equations (6.15) and

(6.16) has the same role as the displacement field u in linear elasticity, and the Kirchhoff

constraint div(β⊥) = 0 is equivalent to the incompressibility constraint div(u) = 0. For

these reasons, the diamond element approximation scheme introduced by Hauret et al.

(2007) to satisfy the inf-sup condition in incompressible elasticity is used to solve Equa-

tions (6.15) and (6.16) in the discrete setting. The proof of the inf-sup condition for the

present plate problem follows the same steps as the ones descibed in Hauret et al. (2007)

and is based on the macroelement technique proposed by Stenberg (1990) and Boland

and Nicolaide (1983).

Each diamond element is formed by two linear triangular elements. In the present prob-

lem, the rotations β are interpolated linearly on each of the triangles forming the diamond

element, whereas the p component of the shear γ is assumed piecewise constant on each

diamond element (Figure 6.1). The interpolations functions are therefore local and their
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first derivatives do not need to be continuous across the element boundaries (this element

belongs to the class of C0 elements). These facts greatly simplify the element implemen-

tation and its use both in general and in fracture problems without compromising the

optimal convergence properties assured by the fullfillment of the inf-sup condition.

p

β

ββ

β

Figure 6.1: Plate diamond element (shaded grey) formed by two linear triangular elements.

Rotations are linearly interpolated on each subtriangle (black primal nodes and grey dual

nodes) whereas pressure is constant on each diamond element (white central node).

Every diamond mesh is based on a Delaunay triangulation of the two-dimensional

plate surface resulting in a completely general method that places no requirements on

the analysis domain. After the initial triangulation of the domain has been computed,

the node set is enlarged by adding the set of dual nodes. A dual node is placed at the

barycenter of every triangle generated by the initial triangulation. Each two-dimensional

diamond element is then created based on the faces of each triangle. If the considered

face is on the boundary of the domain, the diamond element is simply the triangle defined

by the selected face and the dual node at the barycenter of the triangle to which the

face belongs (this kind of diamond elements are called degenerate). Otherwise, if the

considered face is not on the boundary of the domain, the two-dimensional diamond

element is the quadrilateral based on the two nodes that define the selected face and the

two dual nodes at the barycenter of the triangles that share the selected face. Figure

(6.2) shows the creation of a simple diamond mesh with degenerate and regular diamond

elements starting from an initial triangulation of the analysis domain.
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Figure 6.2: Initial triangulation of the domain (left), insertion of dual nodes at the

barycenter of each triangle (center), diamond mesh generation (right). Degenerate di-

amond elements are shaded whereas regular diamond elements are white.

The discussion in the present section has been limited to diamond elements for plates,

but the same concepts may be extended to shell problems and this approach will be

pursued in future research.

6.1.1.3 C0 plate finite element for Kirchhoff’s equations of thin plate bending

Ortiz and Morris (1988) developed a plate finite element based on concepts very similar

to the ones presented in the previous section. The only difference in the method of Ortiz

and Morris (1988) is that they start directly from Kirchhoff’s theory of thin plate bending

and therefore the Kirchhoff constraint (∇w − β) = 0 does not appear in the initial plate

potential energy but is enforced through a penalty term. Therefore the potential energy

to be minimized in classical Kirchhoff’s plate problem is augmented by a penalty term as

shown in Equation (6.17).

a (β,β) +
λ

2
(curl(β))2 − forcing terms (6.17)

where λ is a penalty parameter. Imposing curl(β) = β1,2 − β2,1 = 0 is equivalent to

enforcing the Kirchhoff constraint ∇w − β = 0 since it implies that β may be derived

from a gradient field. The diamond element approach may be applied to the Kirchhoff

theory based formulation of Ortiz and Morris (1988) by enforcing the penalty term on

each diamond element. This application is considered a valid preliminary test of the plate

diamond approach even if the original formulation of the plate diamond element does not
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require a penalty term and is valid also when the plate thickness does not go to zero.

The diamond approach applied to the plate element of Ortiz and Morris (1988) was tested

with different plate geometries, loading conditions and boundary conditions. Reported

here is the example of a thin circular plate subjected to a uniformly distributed load

and with clamped boundary conditions. The deformed plate configuration is shown in

Figure (6.3), and the results of the convergence study are illustrated in Figure (6.4). Both

the deformed configuration and the convergence plots show the good performance of the

diamond approach applied to the plate element of Ortiz and Morris (1988) and motivate

further development of the method.

X
0 1 2 3 4Y 0

2
4

Z

-4

-3

-2

-1

0

XY

Z
Clamped - Circular plate - Uniform load

Figure 6.3: Deformed configuration of a thin clamped circular plate subjected to uniformly

distributed load. The underlying diamond mesh obtained from an initial triangulation of

the domain is also shown.
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Figure 6.4: Convergence plot for the plate central displacement and the plate energy

norm. The predicted theoretical rate of convergence is equal to 2 and to 1 for the plate

central displacement and energy norm, respectively. Such rates of convergence have been

recovered in the present test.

6.1.2 Local Max-Ent meshfree method for shells

In this approach the shell domain, including the shell thickness, is directly modeled in

3D and the equations of three-dimensional elasticity are used. As the shell thickness

approaches the thin limit, the governing equations approach Kirchhoff-Love’s equations

for thin shells and locking would occur if the shape functions were not C1 continuous with

respect to the curvilinear coordinates θ1 and θ2, which span the shell middle surface. Local

maximum entropy (Max-Ent) interpolation functions are C∞ (under easily met conditions

to be presented in the following section) and are used in order to prevent locking.

The local Max-Ent interpolation functions also possess a weak Kronecher delta property at

the boundary, which greatly facilitates the enforcement of Dirichelet boundary conditions

as opposed to other meshless methods such as the ones based on the moving least squares
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method of Krysl and Belytschko (1996). Moreover local Max-Ent approximation functions

are robust with respect to the parameter that controls the width of the shape function

as opposed to moving least squares schemes, which are nevertheless used extensively to

model shells in small and large deformation regimes (Li et al., 2008).

The local Max-Ent interpolation scheme introduced by Arroyo and Ortiz (2006) is briefly

reviewed followed by its application to plate and shell problems.

6.1.2.1 Local maximum entropy approximation scheme

The local Max-Ent approximation functions belong to the general class of convex approx-

imation schemes and possess the following characteristics: they are positive, interpolate

linear functions exactly and have a weak Kronecker delta property at the boundary. Local

Max-Ent shape functions are defined by two competing requirements:

• least width;

• unbiased statistical inference of the nodal data.

The shape functions of least width are the linear shape functions; only the closest nodes

contribute to the value of the approximation functions in the point of interest. On the

other hand, the least biased shape functions are the ones that maximize an appropriate

entropy function such as the one proposed by Arroyo and Ortiz (2006):

H(p) = −
N∑

a=1

pa log(pa) (6.18)

where pa is the shape function at node a. H(p) is non-negative, symmetric, continuous

and strictly concave. The least biased approximation schemes are therefore the ones that,

maximizing the entropy function (6.18), are solutions of the following convex optimization
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problem:

For fixed x maximize H(p) (6.19)

subject to pa ≥ 0, a=1, ... , N (6.20)

N∑

a=1

pa = 1 (6.21)

N∑

a=1

paxa = x (6.22)

Conditions (6.20) and (6.21) guarantee that the shape functions may be regarded as

probabilities for which an entropy function such as the one defined in Equation (6.18) is

valid. Moreover, conditions (6.21) and (6.22) assure that the linear shape functions are

interpolated exactly.

The convex optimization problem (6.19)−(6.22) has a solution p(x) if and only if the

point x at which the shape functions pa are evaluated belong to the convex domain

convX defined by the nodes a = 1, ..., N .

If no additional constraints are added, the support of the Max-Ent shape functions is

highly non-local and extends to the entire convex hull defined by the nodes set. This

motivates the introduction of the second competing requirement that characterizes the

local Max-Ent interpolation scheme: locality. To define the locality of an approximation

scheme, the shape function width is defined as:

w [pa] =

∫

Ω

pa (x) |x− xa|2dx (6.23)

where Ω is the convex hull defined by the nodal set.

The most local approximation scheme may then be defined as the one that minimizes the

total width of the shape functions:

W [p] =
N∑

a=1

w [pa] =

∫

Ω

N∑

a=1

pa (x) |x− xa|2dx (6.24)

Since Equation (6.24) does not contain derivatives of the shape functions, its minimization

may be performed pointwise as done in problem (6.25)−(6.28).
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As already mentioned, unbiased statistical inference and locality are competing objectives

and they are combined together by seeking a Pareto optimum, which corresponds to the

solution of the following convex problem:

For fixed x minimize fβ (x,p) = βU (x,p)−H(p) (6.25)

subject to pa ≥ 0, a=1, ... , N (6.26)

N∑

a=1

pa = 1 (6.27)

N∑

a=1

paxa = x (6.28)

where U (x,p) =
∑N

a=1 pa (x) |x − xa|2 and the parameter β ∈ (0,∞) sets the relative

contributions of locality and unbiased inference in determining the approximation scheme.

The convex optimization problem (6.25)−(6.28) has a solution pβ(x) if and only if the

point x at which the shape functions pa are evaluated belong to the convex domain de-

fined by the nodes a=1, ... , N. The convex approximation scheme defined by pβ(x) is

called the local Max-Ent approximation scheme.

Figure (6.5) shows pβ(x) evaluated at the center of a simple square convex domain:

the locality of the approximation scheme increases as the value of the parameter β in-

creases, clearly showing the role of β in balancing locality and unbiased statistical infer-

ence. Arroyo and Ortiz (2006) used the dual formulation of the minimization problem

(6.25)−(6.28) for the analysis of the local Max-Ent approximation scheme and to provide

a practical way to compute the local Max-Ent shape functions and their spatial deriva-

tives. In this context, few results are reported in view of the application of the Max-Ent

approximation scheme to plates and shells. At first it is important to note that a local

Max-Ent shape function related to a node a in the convex domain decays exponentially

with the distance from node a. Moreover, the rate of the exponential decay depends

on the parameter β, which, as discussed above, sets the locality of the approximation

scheme.

A key motivation for the application of local Max-Ent approximation scheme to plate

and shell problems regards the smoothness of pβ(x) with respect to x. If β : convX →

[0,∞) ∈ Cr in int(convX) then the local Max-Ent shape functions are of class Cr in
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Figure 6.5: Max-Ent local shape functions for a square convex domain shown in the left
upper corner. The shape function relative to the node at the center of the convex domain
(red point) is represented for different values of the parameter β.

int(convX). Therefore the local Max-Ent shape functions may be easily constructed so

that they are C1 over all the domain and may be employed to describe the deformation

of shell-like bodies.

Local Max-Ent shape functions are also continuously differentiable with respect to the

parameter β. If the solution of the considered problem corresponds to the minimum of

a given functional, then β may vary inside the analysis domain and may be selected so

that it minimizes the governing functional. In other words, the given functional may be

minimized with respect to both β and the problem unknowns. This minimization problem

is largely facilitated by the fact that local Max-Ent shape functions are differentiable with

respect to β and that such derivatives may be computed explicitly.

Although the local Max-Ent interpolation scheme has been constructed for convex do-
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mains, non-convex domains may be considered as well. Indeed, it is sufficient to decom-

pose them into convex subdomains that may be glued together in a fully conforming way

by taking advantage of the weak Kronecher delta property of the local Max-Ent approxi-

mation scheme.

Finally it is important to underline that no meshing of the domain is needed to construct

the local Max-Ent interpolation scheme, which therefore is a meshfree method.

6.1.2.2 Local maximum entropy approximation scheme for plates

As previously mentioned, the three-dimensional plate domain is directly considered and

the governing equations for three-dimensional elasticity are employed without introducing

any kinematic assumptions. The plate domain is discretized by inserting a set of nodes

on the boundary of the domain as well as in its interior. These nodes carry information

about the plate displacements that are the only unknowns of the problem. In order to

interpolate the displacement field over the entire plate starting from the nodal displace-

ments, the Max-Ent approximation scheme is used on the plate surface together with

linear or quadratic polynomial shape functions across the plate thickness. More precisely

the plate displacement field u (X) is given by:

u (X) =

p∑

i

uiNi (X) (6.29)

where p is the total number of nodes in the plate domain, ui is the displacement of node

i in the plate domain and Ni (X) are the nodal shape functions reported in Equation

(6.30).

Ni (X, Y, Z) = Mi (X, Y )Pi (Z) (6.30)

Mi (X, Y ) is the local Max-Ent shape function for node i, Pi (Z) is a polynomial shape

function dependent on Z only, and it has been assumed that the Z axis is perpendicular

to the plate middle surface. Therefore, each nodal shape function is given by the product

of two shape functions: Mi (X, Y ), which only depends on the surface coordinates (X, Y )

and Pi (Z), which only depends on Z (Figure 6.6). It is important to note that the nodal

shape function Ni (X, Y, Z) is defined in the plate reference domain directly and there are

no standard domains in contrast with classical finite elements.
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Figure 6.6: Example of 3D plate domain discretization using the Max-Ent approximation
scheme. An example of nodal shape functions with linear interpolation L across the
thickness is also shown. Across the thickness the plate domain is defined by − t

2
≤ Z ≤ t

2

and u stands for upper node while b refers to a bottom node.

Another fundamental aspect of this approximation scheme is that the weak Kronecker

delta property is valid only at the boundary of the domain (where, as previously men-

tioned, greatly facilitates the application of essential boundary conditions). Inside the

domain, particular care needs to be exerted to apply nodal forces and to compute dis-

placement at a given location. Indeed the displacement at the location of node a is

not equal to ua since Ni(Xa) 6= δai. Instead the displacement at node a must be com-

puted as
∑p

i uiNi(Xa). Analogously, to apply a local force F at the location of node

a, a force F i equal to FNi(Xa) is applied to all the nodes i in the domain so that

F (Xa) =
∑p

i FNi(Xa). Since the local Max-Ent shape function Mi decays exponen-

tially with distance from node i, the nodes involved in the application of the local force

F are only the ones close to node a (the extension of the domain of influence depends on

the parameter β).

The exponential decay of local Max-Ent shape functions may also be exploited to reduce

the number of nodes needed to compute the shape function at a given location. In other

words, the problem (6.25)−(6.28) may be solved not considering all the nodes in the anal-

ysis convex domain but only those inside a circle of radius R from the location at which

the shape function needs to be evaluated. Reducing the number of nodes implies that the

minimization problem (6.25)−(6.28) may be solved faster and that the resulting stiffness

matrix of the plate problem will be banded.

This approximation scheme for plates has been tested in a simple example regarding
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a clamped square plate subjected to a concentrated load applied at its center. The plate

thickness is 0.01 and the length of the plate side is 4. The high side length to thickness

ratio equal to 400 implies that the plate deformation is well described by Kirchhoff theory.

However, locking does not occur because the proposed shape functions based on the local

Max-ent approximation scheme are continuously differentiable with respect to the plate

surface coordinates. In the presented test the value of the parameter β is chosen so as

to minimize the plate problem potential energy, but it is kept constant throughout the

analysis domain. Moreover, a quadratic interpolation across the thickness was chosen to

avoid membrane locking (Hauptmann and Schweizerhof, 1998, Li et al., 2005) since no

plane stress condition is enforced. Figure (6.7) shows the plate deformed shape whereas

Figure (6.8) shows the convergence of the energy error with respect to node distance.

Figure 6.7: Deformed configuration of a clamped square plate subjected to a centered

concentrated load. The nodes used to describe the analysis domain are shown.

1

En
er

gy
 e

rr
or

 [%
]

Node distance (h)

err = -25.1 h 2.35

Figure 6.8: Convergence of energy error versus node distance relative to the presented

plate example.
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It is important to notice that using the present approximation scheme, thin plate do-

mains and general three-dimensional solid domains may be joined in a seamless way, with

no need for transitional elements or any other special treatment.

There is a potential modification that may speed up the calculation of local Max-Ent

shape functions by more than 30 times (the gain in computational speed increases ad-

vantageously with the number of nodes in the domain). In the case of rectangular do-

mains the interpolation functions N (X) may be computed from the product of three

one-dimensional shape functions. Using the previous convention, N (X) may be written

as N (X) = M(X)M(Y )P (Z) where M(X) and M(Y ) are one-dimensional Max-Ent

shape functions and P (Z) is, as before, a polynomial shape function in the direction per-

pendicular to the plate middle surface. The calculation of 1D versus 2D local Max-Ent

shape functions greatly decreases the computational time to calculate N (X). Moreover,

taking advantage of the local Max-Ent weak Kronecker delta property, rectangular sub-

domains may be glued together with other shape domains to form larger plate-like bodies.

The extension of the presented method to shell-like structures is under investigation,

and here only a few preliminary results are reported to show the very promising perfor-

mance of this scheme. In order to represent the shell deformation as a function of nodal

displacements, the Max-Ent interpolation scheme is, as before, combined with a polyno-

mial shape function in the thickness direction. The most important challenge to apply

the same scheme developed for flat plate-like bodies to shells is the fact that Max-Ent

shape functions are only defined for convex domains and shell domains are not convex

with respect to a 3D coordinate system. To overcome this challenge, Max-Ent shape

functions are first defined in a flat reference domain and successively are mapped to the

shell domain using an isoparametric map.

A second intrinsic challenge in the study of shell-like bodies is related to the correct rep-

resentation of the curved analysis domain (Krysl and Belytschko, 1996). For instance, the

use of flat finite elements introduces an unavoidable error in the approximation of curved

analysis domain. Max-Ent shape functions seem better able to approximate curved anal-

ysis domains as shown in a first example reported in Figure (6.9). This example compares

the ability of the Max-Ent approximation scheme with that of quadrilateral finite elements
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in approximating a quarter of a hemisphere. The pointwise error computed at the finite

element quadrature points shows the better performance (by an order of magnitude) of

the Max-Ent approximation scheme.
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(a) Color map of the approximation error (%) due
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Figure 6.9: The approximation error err is computed at the finite element quadrature

points as: err = (Rapp−Rhem)·100

Rhem
where Rhem is the radius of the hemisphere and Rapp is

the radius computed from the approximation scheme.

As a second preliminary result, the application of the Max-Ent approximation scheme

for shells to the pinched hemisphere problem proposed in the obstacle course of Belytschko

et al. (1985) is chosen. Figure (6.10(a)) shows the example setup while Figure (6.10(b))

shows the energy convergence plot obtained using the Max-Ent approximation scheme for

shells.
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Geometry:  R = 10.0
h = 0.04

Material properties:  E = 6.825e7
= 0.3

Concentrated load:  F = 2.0

Boundary conditions:  free edgeF F R = 10

F

F

(a) Geometry and loading conditions in the pinched hemisphere example.
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(b) Energy error =
(Ecomputed−Eexact)·100

Eexact
versus nodal

spacing. The high rate of convergence equal to 6.2 is

noteworthy.

6.2 Improving damage characterization and kinematic

description of sandwich shells

The present computational scheme has been used to analyze large sandwich structures and

to capture the response of full size hull sections and navy vessels. In order to achieve this

goal and contain the overall computational cost, shell finite elements based on Kirchhoff-

Love’s theory have been used. This model may describe the global behavior of large shell

sandwich structures subjected to underwater explosions, but it needs to be improved in

order to better characterize the damage occurring in the sandwich core and between the

core and the external face sheets.
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One possibility would be to use three layers of 3D shell finite elements across the sandwich

thickness to model separately the sandwich core and face sheets. In this case, the dis-

placement field across the shell thickness would be better described since it may include a

“zig-zag” term and higher order terms if multiple nodes are placed across the thickness of

each 3D shell element. Moreover, the crushing of the core may be better captured since

the 3D shell finite element used to model the core may independently change its thick-

ness. Delamination between the sandwich core and the external fiber composite layers

is another failure mechanism that cohesive elements inserted between the layers of shell

finite elements across the sandwich thickness may be able to capture. The cohesive law

presented in Section (2.3) may be calibrated to represent the material properties of the

interface between the sandwich core and the face sheets. Using shell finite elements with

local shape functions such as the ones discussed in Section (6.1.1) would greatly reduce

the computational cost since cohesive elements would be introduced only when the local

cohesive stress of the material is reached.

The use of 3D shell finite elements would also facilitate the transition to full three-

dimensional elements and therefore the modeling of three-dimensional joints between the

sandwich shell and the rest of the structure or between two adjacent panels. Joints may

be critical in understanding the failure of the overall sandwich structure and they may

need to be carefully modeled.

An additional aspect that may lead to future research is the improvement of the model

for fiber composite materials in finite kinematics. Possible modifications of the model are

to account for matrix-fiber debounding and for fiber-fiber sliding and interaction. These

aspects are particularly important to take into account the material texture and better

predict the failure mechanisms of fiber composites.

6.3 Uncertainty quantification

The performance of fiber composite sandwich structures may be affected by material

imperfections or by damages deriving from exceptional or cycling loading during the

structure service. Defects and damages may reduce the maximum load that the structure

is able to sustain, as well as its life cycle. As mentioned in Section (1.1), one of the
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reasons for which sandwich material configurations are not widely employed in structural

engineering is the lack of knowledge of how reliable sandwich shells are, especially if defects

or damages are present.

In this regard the developed computational scheme may be combined with uncertainty

quantification techniques (Lucas et al., 2008, Leyendecker et al., 2010) to assess the failure

probability of sandwich structures subjected to underwater explosions. The material

defects in the sandwich core and in the face sheets and the damage due, for instance, to a

previous explosion may be characterized probabilistically and their effect on the structure

loading capability may be assessed.
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Chapter 7

Concluding remarks

An existing computational scheme for the study of shell structures has been further de-

veloped to study the behavior of shell fiber composite sandwich structures subjected to

underwater explosions. The computational scheme has been verified, validated and used

in representative test scenarios.

This scheme includes material models for the sandwich core and fiber reinforced face

sheets that have been validated and calibrated. A cohesive material law is used to de-

scribe the fracture process if this occurs. The structural sandwich shells are described

using non-local shell finite elements with optimal convergence properties and which have

been developed and tested in both linearized and finite kinematics. Moreover, cohesive

elements are included in the finite element code and enable the study of fracture propa-

gation and fragmentation due to an explosive load.

The finite element code has been further verified to test its convergence and fracture prop-

agation in fiber composite materials. Water-hammer experiments are used to validate the

shell solver coupled with a fluid solver inside the VTF (Virtual Test Facility) code. Two

different methods for applying the pressure load due to an underwater explosion are con-

sidered: the use of an applied pressure profile or that of a fluid-solid coupled simulation

in which the charge is represented by an energy deposition. These two methods have

been briefly compared, and an applied pressure profile has been chosen to perform pre-

liminary analyses while a full fluid-solid coupled simulation is used in the final analyses.

An applied pressure profile has been used in the analyses to assess the role of fiber volume

fraction and fiber orientation in the external face sheets. The effect of these design pa-

rameters has been investigated through a parametric study. Moreover, sandwich panels
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with fiber composite or aluminum external layers are compared based on their capability

to resist explosive loading. Among the designs considered, the best sandwich configu-

ration is composed of fiber composite face sheets with two orthogonal families of fibers

and a fiber volume fraction equal to 0.7. Finally a hull section of an Argentinean navy

vessel is considered, and the optimized sandwich design is used as the hull cross section.

The hull section is subjected to an underwater explosion modeled in a fluid-solid coupled

simulation and the effect of charge mass and charge distance from the hull is investigated.

The flexibility of the presented method is noteworthy; it can be applied to any geome-

try and can model various sandwich material layouts. This research shows how the role

of different design parameters in resisting underwater explosions may be analyzed and

optimized. The analysis process started from the materials’ calibration followed by a pre-

liminary optimization of certain design parameters and the final analysis of the structure

of interest.

Future improvements, including two new shell finite elements, are finally discussed to-

gether with the possibility to combine the proposed computational scheme with uncer-

tainty quantification techniques.
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