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Abstract

Voids are observed to be generated under sufficient loading in many materials, ranging

from polymers and metals to biological tissues. The presence of these voids can have

drastic implications at the macroscopic level including strong material softening and more

incipient fracture. Developing tools to appropriately account for these effects is therefore

very desirable.

This thesis is concerned with both, the appearance of voids (nucleation process) and

the modeling and simulation of materials in the presence of voids. A particular nucle-

ation mechanism based on vacancy aggregation in high purity metallic single crystals is

analyzed. A multiscale model is developed in order to obtain an approximate value of the

time required for vacancies to form sufficiently large clusters for further growth by plastic

deformation. It is based on quantum mechanical results, kinetic Monte Carlo methods

and continuum mechanics estimates calibrated with quasi-continuum results. The ulti-

mate goal of these simulations is to determine the feasibility of this nucleation mechanism

under shock loading conditions, where the temperature and tensions are high and vacancy

diffusion is promoted.

On the other hand, the effective behavior of materials with pre-existent voids is ana-

lyzed within the general framework of continuum mechanics and is therefore applicable to

any material. The overall properties of the heterogeneous material are obtained through a

two-level characterization: a representative volume element consisting of a hollow sphere

is used to describe the “microscopic” fields, and an equivalent homogeneous material is

used for the “macroscopic” behavior. A variational formulation of this two-scale model

is presented. It provides a consistent definition of the macro-variables under general

loading conditions, extending the well-known static averaging results so as to include mi-

crodynamic effects under finite deformations. This variational framework also provides

a suitable starting point for time discretization and consistent definitions within discrete
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time. The spatial boundary value problem resulting from this multiscale model is solved

with a particular spherical shell element specially developed for this problem. The ap-

proximation space is based on spherical harmonics, which respects the symmetries of the

porous material and allows the representation of the fields on the sphere with very few

degrees of freedom. Numerical tools, such as the exact representation of the boundary

conditions and an exact quadrature rule, are also provided. The resulting numerical

model is verified extensively, demonstrating good convergence results, and its applicabil-

ity is shown through several material point calculations and a full two-scale finite element

implementation.
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Chapter 1

Introduction

Voids are observed to be generated under sufficient loading in many materials (see 1.1),

ranging from polymers (Gent and Lindley, 1958, Huang and Kinloch, 1992, Azimi et al.,

1996) and metals (Tvergaard, 1990) to biological tissues (Pishchalnikov et al., 2003). Even

materials that are nominally “pure” are seen to develop voids in order to accommodate

the applied deformation (Bauer and Wilsdorf, 1973).

The presence of initial microscopic defects in the form of voids can have drastic impli-

cations at the macroscopic level. In the case of elastomers, the maximum pressure that

the solid can sustain changes from a theoretical infinite value for an undamaged material,

to a well defined finite value when those defects are considered (Ball, 1982). This critical

pressure is associated to a sudden increase in the void volume fraction, a phenomenon

called cavitation, which weakens the material and ultimately leads to the fracture of the

specimen. In the case of metals, small void volume concentrations can also substantially

alter the plastic behavior. The usual assumption of plastic incompressibility does not hold

from a macroscopic perspective in the presence of voids. An effective change in volume

occurs by void growth and incompressible plastic deformation of the matrix surround-

ing the cavity. As a result, both, the yield surface of the porous material and fracture

initiation, become sensitive to volumetric stress states (Hancock and Mackenzie, 1976,

Johnson and Addessio, 1985b). Developing modeling tools to appropriately account for

these effects is therefore very desirable. This thesis is concerned with the appearance of

the voids in the material (the nucleation process), which is treated in Chapter 2, and the

modeling and simulation of material with voids (porous material), which is the subject of

Chapter 3. The nucleation process is very material specific. The present study is limited
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(a) (b)

(c) (d)

(e)

Figure 1.1: Presence of voids in different materials. (a) Plastically deformed zone sur-
rounding an incipient void. Belak (2005). (b) Scanning electron micrograph of the fracture
surface of rubber-modified epoxy polymers. Azimi et al. (1996). (c) Quasi-static rupture
of a copper sample. Curran et al. (1977). (d) Experimental observation of kidney tissue
subjected to shock-wave lithotripsy. Bailey et al. (2003). (e) Partial spall on a 5 mm
aluminum plate of commercial purity. Curran et al. (1977).
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to a particular nucleation mechanism of interest in ductile failure. It is based on vacancy

diffusion in high-purity metallic single crystals under extreme conditions. Damage evolu-

tion under preexistent voids, on the other hand, is treated within the general framework

of continuum mechanics and is therefore applicable to any material.

Throughout this thesis a multiscale approach is adopted so as to root the behavior

of the material at a given scale in the response at the lower scales. In the classical de-

scription of materials, the effective response is characterized by a few numbers, called

“material parameters”, which allow us to describe the behavior in a simplistic way, hiding

the underlying complexity that is ultimately responsible for such behavior. This includes

parameters such as Young’s modulus, Poisson’s ratio, strain hardening or critical energy

release rate at the macroscopic level, and diffusion coefficient or cohesive energy for in-

stance, at an atomistic level. This simplification is very appealing. The problem relies

on the fact that these “material properties” are not really intrinsic. Rather, they can

be highly dependent on the load history of the material in question, and a single set of

numbers is unable to describe the response under varying conditions. This is particularly

true in the presence of damage, which is the situation of interest in the present study. The

ultimate goal of this type of multiscale models is to enable numerical simulations with pre-

dictive capability. This would be very desirable as a design tool, reducing tremendously

the experimental costs, and would also allow us to be predictive in situations where ex-

periments are not possible. Current limitations of multiscale models lie in validation at

the lower scales, which is of great experimental difficulty. However, recent experimental

developments, such as X-ray tomography (Maire et al., 2005, Morgeneyer et al., 2008)

or high-angle annular dark-field imaging in a scanning transmission electron microscopy

(Voyles et al., 2002, Kaiser et al., 2002) hold great promise for generating accurate models.

Ductile failure, which is of high interest in industrial applications and in this work, is

an example of a complex process that is inherently multiscale. More particularly, this type

of failure occurs via nucleation, growth, and coalescence of voids (Garrison and Moody,

1987) both under quasi-static and dynamic loading conditions. Classical fracture theory

describes the growth of a flaw based on the critical value of the stress intensity factor K

(Irwin and Washington, 1957) or of the J-integral (Rice, 1968). See for instance Kanni-

nen and Popelar (1985) for a comprehensive treatment of fracture mechanics. In general,
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as previously mentioned, such critical values are not really material parameters. This

is especially the case for ductile materials, in which the the crack advance is governed

by the nucleation and growth of voids, a phenomenon that is dependent on the com-

plete load history (Curran et al., 1977). This observation has lead to the development of

more physically based descriptions of fracture (see review paper Pineau (2006)). Due to

its importance, a large number of authors have contributed to the field with more phe-

nomenological continuum damage mechanic theories (Tuler and Butcher, 1968, Chaboche,

1988), micromechanically based models (Gurson, 1977a, Curran et al., 1977, Koplik and

Needleman, 1988, Tvergaard, 1990, Pardoen and Hutchinson, 2000, Rudd and Broughton,

2000, Antoun et al., 2003, Weinberg and Ortiz, 2009) or molecular dynamics simulations

(Rudd and Belak, 2002, Seppälä et al., 2004, Marian et al., 2004, 2005, Ahn et al., 2007,

Potirniche et al., 2006, Zhu et al., 2007, Dvila et al., 2005). A complete review of the

different proposed approaches is out of the scope of this manuscript. Only the relevant

background for the work presented here is summarized in the corresponding chapters.

The goal of this thesis is to develop nucleation and growth models that could ultimately

be included in a complete multiscale model of failure. These two phenomena are treated

independently here. The rigorous connection between them and the study of the final

stage of failure remains an open problem that requires further analysis. In the following,

a brief introduction to the nucleation in ductile materials is presented and an outline of

the work developed in each chapter is provided.

It is well known that void nucleation in ductile materials occurs mainly at second-phase

particles by interfacial decohesion or particle fracture (Puttick, 1959, Goods and Brown,

1979). See for instance, Fig.1.2(a), where the growth of voids within an inclusion colony

is shown. Models for this type of nucleation exist and are usually based on the stresses

or the strains at the interface (Gurson, 1977b, Neddleman, 1987). In polycrystals, grain

boundaries and triple points are also weak points that supply preferred nucleation sites

(Hull and Rimmer, 1959, Christy et al., 1986, Belak, 1998, Rudd and Belak, 2002). Fig.

1.2(b) shows experimental evidence of this nucleation process. Although neither of these

two mechanisms can operate in high-purity single crystals, void growth and coalescence is

still observed experimentally (Bauer and Wilsdorf, 1973). Lyles and Wilsdorf (1975) sug-

gested that, in such cases, nucleation may take place by clustering of vacancies produced
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during plastic deformation, irradiation, quenching, or by other means (Cawthorne and

Fulton, 1967). Chapter 2 addresses this latter mechanism. In particular, the attempt is

to estimate critical times required for the nucleation of nanovoids via vacancy aggregation

in high-purity single crystals and to determine if it is fast enough to operate under shock

loading conditions.

(a) (b)

Figure 1.2: Various nucleation sites. (a) Void growth within an inclusion colony in a low-
alloy, quenched and tempered steel. Hancock and Mackenzie (1976). (b) Nucleation of
spherical voids at grain boundary and grain boundary triple point. Christy et al. (1986).

In the vacancy-diffusion problem, many spatial and temporal scales can be identified

(Phillips, 2001). The smallest scale is associated with the electronic degrees of freedom, a

subject of quantum mechanics. The next scale corresponds to the thermal vibration of the

atoms around their equilibrium position, which is followed by the time span associated

with the jump frequency of the atoms towards empty neighboring positions. The last

identifiable time scale emerges from the accumulation of sufficient discrete jumps, resulting

in a local concentration change. The methodology employed in this thesis takes advantage

of this separation of time scales to build a model in which parameters are obtained from
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results at the lower scales. In particular, a kinetic Monte Carlo approach is used to

describe the discrete atomic jumps. Such a model uses jump rates that emanate from

statistical mechanics, and the parameters involved are taken from quantum mechanical

calculations, in particular orbital-free density functional theory. Finally, this atomistic

model is used to determine the time required for vacancies to aggregate into clusters

of a size that is visible macroscopically under shock loading conditions. The proposed

nucleation criterion is based on the critical size for subsequent growth by dislocation-

mediated plasticity (see Meyers et al. (2009) for a review of the role of dislocations on void

growth). A continuum mechanics estimate calibrated with quasi-continuum models of void

growth (Marian et al., 2004) is developed to determine such critical size. The computed

nucleation times resulting from the analysis suggest that vacancy aggregation and cluster

coarsening is a feasible mechanism of nanovoid nucleation in high-purity aluminum single

crystals over pulse durations, temperatures and tensile volumetric strains typical of, for

example, spall tests.

In Chapter 3, an attempt is made towards defining the overall dynamic behavior of

materials where voids have already nucleated. This is done through a two-level repre-

sentation of the material. The lower scale, termed “microscopic”, is treated through a

representative volume element (RVE) composed of two phases: a homogeneous matrix

and voids. The behavior of the RVE is then suitably averaged to provide the so called

macroscopic behavior of the material, which is now treated as homogeneous. The connec-

tion between the two scales is well understood for the static case under infinitesimal (Hill,

1963, 1967) and large strains (Hill, 1972, Ogden, 1974, Castañeda, 1991, Nemat-Nasser,

1999). However, the connection between the micro and macro levels is less well understood

under dynamic loading, and little can be found in the literature in that respect (Molinari

and Mercier, 2001, Wang and Sun, 2002). The work presented in the first part of Chapter

3 is an effort towards building such a connection. In particular, fully consistent macro-

scopic quantities are derived that behave exactly as the local counterparts under dynamic

conditions. The extension to dynamics is made by taking a variational perspective of the

two-level problem and by selecting suitable boundary conditions to impose over the RVE.

This variational structure also allows us to take advantage of the variational integrators

for time discretization and the macro-variables are immediately defined within discrete
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time. The formulation presented is not restricted to this particular case of heterogeneity.

The range of applications is very wide and extends to composites and materials with

evolving microstructure.

The second part of Chapter 3 is dedicated to the spatial discretization. The RVE

chosen to represent porous materials is the hollow sphere, as thought of by Gurson (1977a).

A particular type of finite element, adapted to the considered geometry, is developed. It

consists of an approximation space based on spherical harmonics. This set of functions

constitutes a complete orthogonal space on the sphere, and is therefore suitable for a finite

element discretization. Two specific properties make this discretization advantageous with

respect to more standard finite element formulation. First, it allows a representation of the

different fields on the sphere with a very low number of degrees of freedom, and secondly

and most importantly, the symmetries of the porous material, if existent, are respected

upon discretization. The necessary tools for solving boundary value problems on the

hollow sphere are also provided. This includes a quadrature rule that integrates exactly

the stiffness matrix, the mass matrix and the void volume fraction under the proposed

discretization; and an explicit analytic formula for imposing the boundary conditions that

emanated from the consistent two-level representation of the porous material.

The resulting finite element procedure has been verified extensively. Comparisons

with several analytic solutions are performed and convergence analyses indicate close to

ideal convergence rates for different materials under arbitrary loading conditions. This

work is then concluded by the multiscale simulation of a real example problem in order to

demonstrate its applicability. The example consists of a high speed Taylor test of polyurea

material. A material model for polyurea is proposed and the results are compared with

experimental observations.

Finally, some conclusions about the work presented are provided in Chapter 4, where

some ideas for future directions are also discussed.
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Chapter 2

Nucleation of voids

2.1 Introduction

This chapter is concerned with the nucleation of voids via diffusion-mediated vacancy

aggregation in high-purity metallic single crystals. This is an accepted nucleation mech-

anism in failure under creep at elevated temperatures (Raj and Ashby, 1975, Cocks and

Ashby, 1982). More debate exists, though, in the literature as to its viability as a nucle-

ation mechanism in fast failure processes under extreme conditions. The present work is

concerned with the latter. More precisely, a multiscale model based on first principles is

developed. It allows the determination of the time required for the voids to attain a size

that can alter the macroscopic behavior.

Qualitatively, the diffusion of an atom to a empty neighbor position in the lattice

evolves in the following manner. By thermal excitation, the atom is in permanent vibra-

tion around its equilibrium position. These vibrations can be seen as attempts to cross

the saddle point separating the two neighboring potential wells. If one of these attempts

is successful, the system evolves to a new configuration characterized by different vacancy

positions. This process is commonly referred to as vacancy movement, although, obvi-

ously, the atoms are the entities in motion. By this mass transport process, vacancies can

find each other to form aggregates or clusters. The energy of such clusters is in general

smaller than the energy of the system with isolated vacancies. Therefore, the system

tends to evolve towards vacancy aggregation. This process of vacancy condensation and

cluster coarsening is diffusion-limited, and therefore sensitive to temperature, pressure

and microstructure, e.g., dislocation density and grain boundaries.
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The details of these diffusion processes can be computed accurately by means of molec-

ular dynamic calculations (Sinno et al., 1996, Hastings et al., 1997, Belak, 1998, Rudd

and Belak, 2002), in which the classical equations of motion for the system of atoms

are propagated in time. Such computations require the use of very small time steps in

the numerical analyses (∼ 10−15) and resolve the atomic vibrations, which are not of

interest in the present study. Another methodology widely used in diffusive processes is

the kinetic Monte Carlo method (Young and Elcock, 1966, A. La Magna, 1999, Haley

et al., 2006). In this approach, only the discrete jumps of the vacancies are considered,

but an a priori knowledge of the microscopic motions and their rates is required. This

is not always trivial, as demonstrated by examples found in the literature of complex

non-intuitive transitions occurring in surface and bulk diffusion (Liu and Adams, 1992,

Uberuaga et al., 2004). Failure to consider some physically possible motions can lead to

an erroneous evolution of the system. Within kinetic Monte Carlo (KMC), the rates of

the motions are commonly obtained with transition state theory (Vineyard, 1957), which

borrows elements from statistical mechanics. A third alternative to describe the vacancy

diffusion process relies on continuum descriptions (Seitz, 1948, Penrose, 1997, Weinberg

and Böhme, 2009). The concentration of vacancies is thought of as a function of space

and time, and evolution equations are used to describe its progression. This constitutes a

more phenomenological description of the diffusion process, but allows the study of very

large systems over a long period of time.

As a compromise between accuracy and size of the domain and time span that can

be explored computationally, a lattice kinetic Monte Carlo (LKMC) approach is used in

this work. A brief review of the algorithms used in the simulations (Bortz et al., 1975,

Martinez et al., 2008) is presented in Section 2.3. The required rates of the possible

motions are computed by transition state theory with parameters obtained from Orbital

Free Density Functional Theory (OFDFT) calculations (Gavini, 2009a, Ho et al., 2007);

and by approximating the energy through an Ising Hamiltonian that considers first and

second nearest neighbor interactions. The vacancy cluster kinetics are then examined in

Section 2.5 with particular regard for the effect of temperature and volumetric strain.

Finally, in Section 2.6 the feasibility of this diffusion-mediated vacancy aggregation

and cluster coarsening as a void nucleation mechanism under shock-loading conditions
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is discussed for the case of aluminum. Towards that goal, the critical time required for

nanovoid nucleation over the range of temperatures and volumetric strains of interest

is computed. A void will be considered nucleated when it attains a size sufficient for

subsequent growth by dislocation-mediated plasticity. Simple continuum estimates cal-

ibrated with quasi-continuum calculations (Marian et al., 2004) are used to determine

such critical cavitation sizes. Based on this estimate, together with the LKMC results,

the sought-after nanovoid nucleation times as a function of temperature and volumetric

strain are computed.

Models of the type just described have been extensively used in the past to simulate

vacancy aggregation in metals (A. La Magna, 1999, Lo and Skodje, 2000). These mod-

els suffer from several limitations, most notably: the rigid lattice approximation, which

neglects elastic interactions between vacancies; the simplified Ising Hamiltonian, which

tends to break down for complex cluster geometries and at void surfaces; and limitations

attendant to the use of harmonic transition state theory. Because of these and other

limitations, it is expected that the results presented in this chapter are mostly qualitative

and to mainly provide a preliminary assessment as to the feasibility of nanovoid nucle-

ation by vacancy aggregation at high tensile pressures and temperatures. A number of

improvements of LKMC simulations have been proposed (e.g., Dai et al. (2006)) but they

will not be considered here in the interest of simplicity.
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2.2 Physical model

The model system under consideration consists of a face-centered cubic (fcc) aluminum

crystal containing a random distribution of vacancies at prescribed temperature, volume

and concentration. The system is analyzed in the canonical nV T ensemble, where n is

the number of vacancies, V is the periodic cell volume and T is the equilibrium absolute

temperature of the sample. The state of the system is taken to be characterized solely

by the spatial distribution of vacancies on a frozen lattice. The relaxation of the atoms

surrounding the vacancies is partially taken into account through the energies considered.

For computational purposes, though, each atomic position is mapped to its ideal lattice

position.

The system is assumed to evolve according to the master equation

dpi
dt

=
∑
j 6=i

[
rjipj − rijpi

]
(2.1)

where pi is the probability of finding the system in state i and rji is the transition rate

from state j to i. The objective of the simulations is to track the diffusion of the vacan-

cies through the lattice and the attendant formation of clusters of various sizes. As it has

previously been mentioned, the master equation 2.1 is solved by means of lattice kinetic

Monte Carlo (LKMC), i.e., by allowing the vacancies to execute first nearest-neighbor ran-

dom jumps. More specifically, the rejection-free, n-fold algorithm (also known as “BKL”),

both in serial (Bortz et al., 1975) and parallel (Martinez et al., 2008) implementations, is

used. These algorithms are reviewed in the following section.

2.3 Kinetic Monte Carlo

The “BKL” algorithm is a Monte Carlo method that gives the temporal evolution of

Markovian processes through a sequence of Monte Carlo steps. An introduction to the

KMC method can be found in Sickafus et al. (2007). The steps consist of the following:

1 Identification of all the possible atomistic motions and their corresponding rates ri.

According to the assumptions previously stated, a possible motion consists of the
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BKL algorithm:

• t = 0

• Calculation (update) of the rates of all possible events 

• Choose a random event with probability 

• Carry out the chosen event 

• Update time:                   ,                     ,

ir

max Ru

BKLttt 
tot

BKL R
t ln



(Bortz, Kalos and Lebowitz, 1975)

 1 ,0u

 1 ,0

IV. IMPLEMENTATION IN SERIAL

1r 2r

Figure 2.1: Frequency line (aggregate of the individual rates) and schematic representation
of the procedure for selecting a vacancy movement with probability pi = ri

Rmax
.

movement of a vacancy to a first nearest-neighbor position not occupied by another

vacancy. The details of the calculations of the rates are provided in the next section.

2 Computation of the cumulative rates Ri =
∑i

j rj and total rate Rmax =
∑

i ri.

3 Evolution of the system by carrying out event i satisfying Ri−1 ≤ uRmax < Ri,

where u is a uniform random number in the interval (0, 1). A schematic illustration

of this procedure is shown in Fig. 2.3.

4 Update of the time with a random time step from the exponential distribution for

the rate Rmax. Equivalently, ∆t = − log ξ
Rmax

, ξ being another uniform random number

in the interval (0, 1). Once the system is in the new state, the list of rates needs to

be updated.

5 Repeat the cycle from step 2 until the desired time is reached.

The temporal evolution of the diffusing vacancies is intrinsically sequential, and there-

fore very difficult to parallelize. The two main issues that arise are the time synchro-

nization between domains and the conflicts between neighboring partitions. However, a

parallel implementation is very desirable to analyze larger systems for longer periods of

time. There have therefore been significant efforts in the literature towards the objective

of parallelization (Lubachevsky, 1988, Johnson and Addessio, 1985a, Shima and Oyane,

2005, Martinez et al., 2008).

The parallel implementation used in this work is the one developed by Martinez et al.

(2008). As in any parallel implementation, the computational cell Ω is divided into

several subdomains Ωk, each of which is provided to a different processing unit. The

main characteristic of the algorithm is the perfect synchronicity, which is achieved by

the introduction of “null” events (see Fig. 2.3). The rate of the null processes is such
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V. SYNCHRONOUS PARALLEL KINETIC MONTE-CARLO

k

maxR

0kr
Null events

...

k ikr

(Martinez, Marian, Kalos, Perlado, 2007)

Figure 2.2: Schematic representation of the null events in the synchronous parallel Kinetic
Monte Carlo proposed by Martinez et al. (2008)

that Rmax is equal in all the domains. If one of such events is chosen in a Monte Carlo

step, no action is taken. The null processes therefore slow the system down if compared

with perfect speedup, but the partition of the global domain can be performed so as to

minimize those null events. Aside from these considerations, the algorithm proceeds in a

manner very similar to the serial version. Fig. 2.3 shows the speedup of the parallel code

versus the serial one for two different concentrations. It is computed as η = ts
Ktp

, where

ts and tp are the computational times for the serial and parallel code respectively, and K

is the number of processors. Close to ideal speedup is obtained.

Details on the serial implementation are provided in Section 2.7, whereas the parallel

code was implemented by Enrique Martinez, author of the algorithm used.

2.4 Rate catalog

The requisite event rates rij in Eq. (2.1) are assumed to obey harmonic transition state

theory (HTST) (Vineyard, 1957). TST assumes that there exists a critical surface be-

tween two neighboring potential wells, with the property that if such a surface is crossed,

complete transition occurs. It fails to account for those cases in which an atom crosses

the surface and returns before complete transition, and therefore tends to overestimate

the true rates. Although dynamical corrections exist to recover the exact rates (Keck,

1962), those will not be used in this work. The harmonic assumption, on the other hand,

is based on a second order approximation of the potential energy landscape at the bottom

of the energy wells (equivalent to harmonic vibration modes) and at the saddle points
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V. RESULTS IN PARALLEL
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Figure 2.3: Speed improvement obtained with the parallel implementation as a function of
the number of processors K. Both codes ran on 2.4GHz processors with 16GB of memory
per node. Version 1 MPI was used for the parallel implementation. The system analyzed
consists of 105 vacancies at T = 728 K and εvv = 0.

in between them. Such approximations tend to be very accurate in solid-state diffusive

processes up to at least half the melting temperature, and higher errors are incurred as

the temperature increases (Sorensen and Voter, 2000).

Under these assumptions, the rates read (see Weiner (2002), for instance, for a com-

plete derivation)

rij =

 νe−β(Em+∆Eij), if ∆Eij > 0,

νe−β(∆Eij), if ∆Eij < 0,
(2.2)

where ∆Eij = Ej − Ei is the difference in energy between states i and j, Em is the

corresponding migration energy, ν is the attempt frequency and β = 1/kBT , where kB

is Boltzmann’s constant and T is the temperature. A schematic representation of the

two cases considered is shown in Fig. 2.4. The energy of a distribution of vacancies is

assumed to be well approximated by an Ising Hamiltonian with first (1NN) and second

nearest-neighbor (2NN) interactions, namely,

E = −J
∑
〈m,n〉

σmσn, J =


E1, if 〈m,n〉 1NN,

E2, if 〈m,n〉 2NN,

0, otherwise,

(2.3)



15

8

II. PHYSICAL MODEL

- Vacancy rates are computed locally:

mE

E 0E

mE

E 0E

Figure 2.4: Schematic representation of the movement of a vacancy (red color) to a
neighboring position with a higher energy (left figure) or lower energy (right figure).

where σm ∈ {0, 1} is the occupation state of site m of the lattice. The calculations pre-

sented here use the di-vacancy binding energies, E1, E2, and the migration energy, Em,

computed by Gavini (2009a) using zero-temperature quasi-continuum orbital-free den-

sity functional theory calculations (QC-OFDFT). As shown in Fig. 2.5, the di-vacancy

binding energies are positive, which promotes vacancy aggregation and subsequent cluster

coarsening. The nearest-neighbor binding energy decreases with volumetric strain, regard-

less of sign, whereas the second nearest-neighbor binding energy decreases monotonically

with increasing volumetric strain. Therefore, nearest-neighbor binding is dominant under

positive volumetric strain (expansion) whereas both nearest and second-nearest neighbor

interactions play a roughly equal role under negative volumetric strain (compression).

The migration energy decreases monotonically with increasing volumetric strain, which is

expected to accelerate the kinetics. Additionally, the pre-exponential factor ν calculated

by Ho et al. (2007) using OFDFT is used. Fig. 2.4 shows that the jump-attempt fre-

quency decreases monotonically with increasing volumetric strain, which is expected to

decelerate kinetics.

The number of possible transition rates for a given temperature and volumetric defor-

mation are finite and comprise a “rate catalog” that can be tabulated and looked up in

the simulation.
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(b)

Figure 2.5: QC-OFDFT calculations for aluminum (Gavini, 2008). (a) Di-vacancy binding
energies versus macroscopic volumetric strain. (b) Migration energy versus macroscopic
volumetric strain.
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Figure 2.6: OFDFT calculations for aluminum (Ho et al., 2007). Jump frequency as a
function of the volumetric deformation.
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Figure 2.7: 118 nm cubic periodic cell of fcc aluminum (∼ 108 atoms) containing at 0.1%
concentration (∼ 105 vacancies), T = 728 K, and εvv= 0.

2.5 Clustering kinetics

Of primary interest in the present study is the time evolution of vacancy-cluster statistics

by size. In particular, the purpose is to ascertain whether nanovoids capable of cavitating

plastically can be nucleated in sufficiently short times for the mechanism to operate under

shock-loading conditions. A vacancy cluster is defined as a connected component of the

graph defined by connecting first and second nearest-neighbor vacancies. In particular, a

cluster of size l is a cluster consisting of exactly l vacancies. It is of note that this working

definition of cluster is topological in nature and does not take the geometry of the cluster

into account, e. g., whether the cluster is globular or linear.

The time evolution of cluster-size statistics in a 118 nm cubic periodic cell of fcc

aluminum (∼ 108 atoms) at 0.1% concentration (∼ 105 vacancies), T = 728 K, and

εvv = 0 is shown in Figs. 2.7 and 2.8. Nominally identical calculations over larger periodic

cells using the parallel LKMC algorithm of Martinez et al. (2008) reveal that a periodic-

cell size of 118 nm suffices to provide converged statistics. As expected from the attractive

character of di-vacancy interactions, the cluster-size evolution exhibits an overall trend

towards vacancy aggregation into clusters and a subsequent coarsening of the cluster
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Figure 2.8: 118 nm cubic periodic cell of fcc aluminum (∼ 108 atoms) containing at 0.1%
concentration (∼ 105 vacancies), T = 728 K, and εvv= 0. Evolution of histogram of cluster
sizes.

distribution. Thus, clusters of a certain size appear after an incubation time and their

densities initially grow at the expense of smaller clusters, later decreasing as even larger

clusters become established. Predictably, the effect of increasing vacancy concentration

is to decrease incubation times and accelerate the overall kinetics of aggregation and

coarsening, as shown in Fig. 2.10.

The influence of volumetric strain and temperature on the evolution of cluster statis-

tics up to 1 µs is shown in Fig. 2.9. As expected, temperature accelerates the kinetics,

resulting in shorter incubation times and faster cluster coarsening. The net effect of pos-

itive volumetric strain (expansion) is also a marked acceleration of the kinetics. Thus, at

900 K, clusters of size 10 nucleate at ∼ 10−2 µs for a volumetric strain of εvv = −0.13,

whereas the same clusters nucleate at around ∼ 10−4 µs for a volumetric strain of εvv =

0.28, or a two order-of-magnitude acceleration of the kinetics.
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2.6 Application to spall fracture

The LKMC calculations summarized in the foregoing reveal that nanovoid nucleation by

vacancy aggregation and cluster coarsening is sensitively dependent on both temperature

and volumetric deformation. In particular, both temperature and volumetric expansion

accelerate the kinetics markedly. Finally, the question of whether the mechanism is fast

enough to operate under shock-loading conditions is addressed.

First, estimates of typical vacancy concentrations in aluminum at high temperatures

and volumetric deformations in the range T > 800 K and εvv > 0.075 (Kanel et al., 2001,

Dalton et al., 2007) are performed. The calculations of Gavini (2009a) show that, in this

range of volumetric strains, the vacancy-formation energies are exceedingly small or even

negative, which suggests that vacancies may be generated nearly spontaneously. This

conclusion is in agreement with the molecular dynamics calculations of Strachan et al.

(2001), who observed profuse cavitation in shocked metallic samples and showed that

such cavitation may be understood as a critical phenomenon. In view of this observation,

the vacancy concentration is assumed to be at or near its equilibrium value, neglecting

other vacancy sources such as dislocation activity (Cuitino and Ortiz, 1996). Such value

is determined by the minimum of the free energy. Two competing factors exist. The first

one is related to the energy of formation of the vacancies Efv, while the second factor

is dependent on the configurational entropy of the system and can be approximated by

the entropy of mixing between atoms and vacancies. The total free energy per atom as

a function of defect concentration cv then reads (Porter and Easterling, 1981, Phillips,

2001)

A(cv) = cv(Efv − T∆Sv) + kT [cv ln cv + (1− cv) ln(1− cv)] (2.4)

where ∆Sv is the change in vibrational energy. A dilute approximation is made, both by

presuming a value of the energy of formation that is independent of vacancy interactions

and by neglecting any possible correlation in the position of the vacancies in the entropic

term.

The resulting equilibrium concentration of vacancies is obtained through differentiation
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Figure 2.11: Equilibrium concentration of vacancies versus volumetric strain at different
temperatures.

(∂A/∂cv = 0) resulting in

cv =
e

∆Sv
kB e

−
∆Efv
kBT

1 + e
∆Sv
kB e

−
∆Efv

kBT

(2.5)

By the assumptions made, this expression constitutes an estimate of the current con-

centration. The values of Efv computed by Gavini (2009a) as a function of volumetric

deformation using QC-OFDFT are used in the calculations. In addition, e
∆Sv
kB ' 3 is

assumed (Porter and Easterling, 1981). Fig. 2.11 shows that the resulting equilibrium

concentration of vacancies exhibits a sharp upturn in vacancy concentration at volumetric

deformations of the order 0.2, at which the vacancy-formation energy becomes vanishingly

small.

A nanovoid is said to have been nucleated when it attains the critical size at which

it can emit dislocations and subsequently grow by dislocation-mediated plasticity. The

process of dislocation emission from nanovoids has been studied by Marian et al. (2004,

2005) using quasi-continuum molecular statics. For purposes of the present discussion,

a simple continuum estimate of the critical radius for plastic cavitation will suffice. To

this end, a void with inner radius a in an infinite medium expanding under an outer
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tensile pressure P is considered. The material is assumed to obey isotropic von Mises

ideal elasto-plasticity. Under these assumptions, the critical radius ac for which yielding

starts at a given pressure P (see Section 2.6.1.1) follows from the relation

P =
2

3
σY +

2γ

ac
(2.6)

where σY is the yield stress and γ is the surface energy. In order to account for the

temperature-dependence of the yield stress, a simple linear thermal-softening relation is

assumed

σY = σ0
T − Tm
T0 − Tm

(2.7)

where σ0 is the yield stress at the reference temperature T0, and Tm is the melting tem-

perature. Due to the small sizes of the voids at nucleation time, the attendant dislocation

activity is confined to very small volumes. Under these conditions, the strength of the

material may be expected to be greatly in excess of bulk macroscopic values. In order to

account for this effect, a hardness law of the Hall-Petch type is assumed

σ0 = C/
√
ac (2.8)

where the constant C is calibrated so as to match the critical volumetric deformation

computed by Marian et al. (2004). Similar scaling relations have been used elsewhere

to describe nanoscopic plasticity, e.g., at the tip of a nanoindentor (Gao et al., 1999).

In the calculations γ = 0.98 J/m2 (Murr, 1975), T0 = 0K, C = 22.77 GPa
√

nm and

Tm = 933.5K (Cardarelli, 2008) are used as being representative of aluminum.

In order to relate pressure to volumetric deformation and temperature a Mie-Grüneisen

equation of state (e.g., Meyers (1994)) is used

P (εvv, T ) = P0K(εvv)−
γ̄

V

∫ T

0

Cv(T ) dT (2.9)

In particular, the 0K isotherm P0K(εvv) computed by Gavini (2009b) using QC-OFDFT
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is adopted. It is further assumed (Meyers, 1994)

γ̄

V
≈ 3α

Cv κ


T=298.1K

≈ 2.232 10−5 ≈ constant (2.10)

The heat capacity Cv at constant volume is assumed to depend solely on the temper-

ature (see Fig. 2.12(a)). It is obtained via a Cv−Cp relation (Giauque and Meads, 1941)

and experimental values of the heat capacity at constant pressure Cp (National Institute

of Standards and Technology and Giauque and Meads (1941)). The resulting equation of

state for aluminum at several values of the temperature is shown in Fig. 2.12(b).
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Figure 2.12: (a) Heat capacity at constant pressure versus temperature. (b) 0 K equation
of state extended to positive temperatures through a Mie-Grüneisen equation of state.

Fig. 2.13 shows the dependence of the critical cluster size lc on volumetric deformation

and temperature predicted by the model just described. As may be seen from the figure,

the critical cluster sizes become very small at high temperatures and tensile volumetric

strains.

A combination of the plastic cavitation model and the LKMC simulations described

in the foregoing finally enables the calculation of the times required for the nucleation of a

critical nanovoid. The critical times thus predicted for aluminum are shown in Fig. 2.14.

The remarkable conclusion afforded by the figure is that the critical nucleation times can

be exceedingly small at high temperatures and tensile volumetric strains. In particular,

such critical nucleation times are well within pulse duration times typical of plate-impact
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experiments (Antoun et al., 2003), which establishes the feasibility of diffusion-mediated

vacancy aggregation and subsequent vacancy cluster coarsening kinetics in high-purity

metallic single crystals under conditions typical of, e.g., spall tests.

2.6.1 Critical pressure for plasticity induced void growth

In this subsection a preexistent spherical void of radius a in an infinite medium is con-

sidered, and the required stress applied at infinity in order for plasticity to initiate at the

surface of the cavity is computed. The theory of continuum mechanics is used in order to

obtain such estimate.

Due to the spherical symmetry, the stresses obey the following equilibrium and com-

patibility equations in spherical coordinates

dσrr
dr
− 2

r
(σθθ − σrr) = 0

d

dr
(σrr + 2σθθ) = 0 (2.11)

which have as general solution

σrr = A+
B

r3

σθθ = A− B

2r3
(2.12)

A and B are constants to be determined by the boundary conditions. The stress

imposed at infinity is σrr(r → ∞) = P , while the effect of the surface energy γ on the

inner surface will be proven to be σrr(r = a) = 2γ
a

in Section 2.6.1.1. The resulting stresses

then are

σrr = P

(
1− a3

r3

)
+

2γ

a

a3

r3

σθθ = P

(
1 +

a3

2r3

)
− γ

a

a3

r3
(2.13)

Applying the von Mises yield criterion, plasticity will occur in the inner surface when
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σθθ(a)− σrr(a) = σY . Equivalently

P =
2

3
σY +

2γ

a
(2.14)

which is the desired relation.

2.6.1.1 Pressure induced by the surface energy

In order to obtain the pressure at the surface of the cavity
(
σrr(r = a) = 2γ

a

)
, the matrix

surrounding the void is first assumed to be finite with radius b and made of isotropic

homogeneous material. The desired analytical result is then evaluated as the external

radius and the stiffness of the material tend to infinity. A Hookean constitutive law with

parameters λ and µ is used

σrr = λ (εrr + εθθ + εφφ) + 2µεrr

σθθ = σφφ = λ (εrr + εθθ + εφφ) + 2µεθθ (2.15)

where εrr = du
dr

and εθθ = εφφ = u
r

under spherical symmetry; u(r) being the radial

displacement.

The potential energy of the hollow sphere, assuming a surface energy γ at the inner

surface and a pressure P on the outer surface, is

W (u) =

∫ b

a

2π (σrrεrr + 2σθθεθθ) r
2 dr − 4πb2Pu(b) + 4πγ (a+ u(a))2 (2.16)

By the principle of minimum potential energy, the solution needs to satisfy dW (u+εη)
dε

|ε=0

for every admissible variation η(r).
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0 =
∂W

∂ε

∣∣∣
ε=0

=

∫ b

a

2πr2 [σrr(u)εrr(η) + 2σθθ(u)εθθ(η) + σrr(η)εrr(u) + 2σθθ(η)εθθ(u)] dr

− 4πb2Pη(b) + 8πγ (a+ u(a)) η(a)

=

∫ b

a

2πr2

[
2σrr(u)

dη

dr
+ 4σθθ(u)

η

r

]
dr

− 4πb2Pη(b) + 8πγ (a+ u(a)) η(a)

= −
∫ b

a

4πr2

[
dσrr
dr

+
2

r
(σrr − σθθ)

]
η

+ 4πb2 (σrr(b)− P ) η(b)− 4πa2σrr(a)η(a) + 8πγ (a+ u(a)) η(a)

(2.17)

The equilibrium equation and the boundary conditions are recovered.

dσrr
dr

+
2

r
(σrr − σθθ) = 0, a < r < b (2.18)

σrr(b) = P

σrr(a) = 2γ
a+ u(a)

a2

In the limit of a rigid material, the inner boundary condition can be simplified to

σrr(a) =
2γ

a
(2.19)

and the sought-after result is obtained. This pressure difference emanating from a curved

surface characterized by a surface energy is very well known in fluids and the same relation

holds for solids.

2.7 Notes on the numerical implementation of the

serial code

In this section a few details concerning the implementation of the serial code are provided.

Special attention is given to the memory allocation, which was designed for a fast update
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of the stored information after each Monte Carlo step. As has been mentioned throughout

the chapter, the code aims to follow the position of a given number of vacancies in an fcc

lattice using a kinetic Monte Carlo algorithm with an Ising Hamiltonian that considers

first and second nearest-neighbor interactions. The domain of the simulation is a periodic

cubic cell of side nside and the coordinate system is chosen to have its origin at one of its

corners with the axes oriented along the sides of the cubic domain. The side of a unit

cube representative of the fcc structure is taken to be of size 2, so that the positions of

the vacancies can always be determined by a triplet of integers. It is of note that the sum

of the coordinates of each vacancy needs to be even for a position to be plausible. An odd

value of this sum corresponds to the center of a unit cube in the lattice, which cannot be

occupied by any atom in an fcc structure.

In view of the low concentrations that are simulated, a sparse representation is used

to store the vacancy positions. This reduces the size of the data stored in the memory,

but obviously adds complications to the task of finding the neighboring entities. Memory

structures were designed for storing the information in a way that is advantageous for the

search process. It consists of 3 independent matrices, called X, Y and Z, of length equal

to the number of vacancies and with width 4, 2 and 2 respectively. The first column of

each of these matrices contains the x, y and z coordinates of the vacancies in increasing

order. A given row of the three matrices therefore corresponds, in general, to three dif-

ferent vacancies. The second column of matrices Y and Z indicate the index of the row

in X associated to the same vacancy and the second and third column of X contain the

indices of the rows in Y and Z of the corresponding vacancy. Finally, the last column

of X contains a pointer, where other information about the vacancy, such as neighbors

or rates of the possible jumps are stored. As an example to illustrate the structures just

described, the following four vacancies are stored in such a manner: (1, 5, 8), (7, 2, 4),

(4, 4, 6) and (3, 5, 1). The resulting matrices are
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X Y Z

xcoord jindex kindex vacancies ycoord iindex zcoord iindex

0 1 2 3 p1 2 3 1 1

1 3 3 0 p2 4 2 4 3

2 4 1 2 p3 5 0 6 2

3 7 0 1 p4 5 1 8 0

where pi are the pointers to the vacancy structures. As will be seen, this structure proves

to be advantageous for the neighbor search and the update of the position of the vacancies

after each Monte Carlo step.

The code starts with the following sequence of initialization steps

1 Reading from an input file the initial configuration of vacancies to be analyzed and

storage of their position in the matrices previously described.

2 Calculation of the rates of all possible motions for the given volumetric deformation

and temperature. There are 12 nearest-neighbors and 6 second nearest-neighbors in

an fcc structure, which leads to at most 25 × 13 different rates, stored in a matrix

data structure. Position (i, j) in the matrix (i ∈ [0, 24], j ∈ [0, 12]) corresponds to a

change of ∆n1 = i − 12 and ∆n2 = j − 6 in number of first nearest-neighbors and

second nearest-neighbors respectively. Some of the rates correspond to impossible

situations, but are left in the matrix for simplicity.

3 Initial neighbor search. Each vacancy structure contains an array (of total size

78) with pointers to the 18 first and second nearest-neighbors and the remaining

60 first and second nearest-neighbors of the first nearest-neighbors not previously

included. If a position is not occupied by a vacancy, a null pointer is stored. The

neighbors can easily be found by examination of the entries below and above the

vacancy in question in matrix X. Only vacancies for which the difference in the

xcoord is less or equal than 3 are possible neighbors. The actual coordinates indicate

the type of neighbor and its relative position. As can be seen in the example

of the storage structure, it is possible to have several vacancies with a common

coordinate. For randomly generated vacancies, there are on average N
nside

vacancies

per coordinate. For the case of N = 10000 vacancies and a concentration of 2%,
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there are 500000 atoms. Each unitary cube nominally contains 4 full atoms (8 on

the corners, shared between 8 cubes each, and 6 on the centers of the faces, shared

between two cubes each), which indicates that the domain is composed of 125000

of such unitary cells, 50 per side and nside = 100. In this example, there are then

100 vacancies with a same given coordinate . In general, for a given concentration

C, N
nside

=
C(

nside
2

)34

nside
= C

2
n2

side. Therefore the algorithm of neighbors search becomes

slower as the size of the system is increased at a constant concentration of vacancies.

This is due to the fact that the proposed method is based in an orthogonal range

search over the projection of the coordinates in a given plane. If larger systems are

to be solved, search trees algorithms would be advantageous with respect to the

procedure just described.

4 Initial rate calculation. Additionally, each vacancy structure contains an array of

size 12 with the rates of its 12 possible movements. If a first nearest-neighbor is

occupied by a vacancy, the rate corresponding to the associated movement is taken to

be zero. The rates are computed according to Eq. 2.4, where ∆E = ∆n1E1+∆n2E2.

The values of ∆n1 and ∆n2 can easily be computed from the neighbor information

obtained in the previous step. In the notation used, ∆n > 0 indicates an increase

of the number of atoms surrounding the vacancy if a given movement is considered.

This indicates that the vacancy is moving away from a cluster of vacancies and

therefore there is an increase in the energy barrier.

5 Computation of the rate histogram and total rate. The number of events with a

given rate are stored in increasing rate order so as to accurately compute the total

maximum rate. Numerical errors occurred if an unordered sum of the individual

rates is performed.

6 Cluster computation. Each vacancy contains the pointer to the cluster it belongs to,

and each cluster structure contains the pointers of the vacancies that composes that

cluster. The storage of the cluster information is organized in double linked lists,

where each list corresponds to clusters of the same number of vacancies. The first

cluster of each list is stored in an array of clusters. The first element of the array is

a pointer to the first cluster of the list of clusters of 2 vacancies (if they exist, a 0
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otherwise); the second element, is a pointer to the first cluster of the list of clusters

of 3 vacancies, and so on. The size of this array can be increased dynamically if

necessary. Since the number of clusters of all sizes tends to increase monotonically,

the size of the array is never decreased. The algorithm for the cluster search is done

in the following manner

6.1 Initialization of cluster pointer of every vacancy to zero; the variable containing

the number of single vacancies is set to 0.

6.2 The first time the clusters are computed, their size is going to vary very often.

Therefore, first, a simple linked list of clusters is used, where all the clusters

are in the same unordered list independently of their size. For each vacancy:

6.2.1 If the vacancy has not had a cluster assigned to it (pointer to the cluster

still at zero)

- If it does not have any neighboring vacancies then it is isolated, and

the number of single variables is increased.

- If it does have neighbors and they do not have any cluster assigned

yet, a new cluster is created and the vacancy and all its neighbors are

included.

- If a neighbor belongs to a cluster, the vacancy is added to that cluster,

as well as all the other neighbors that did not have a cluster.

6.2.2 If the vacancy has a cluster assigned, the first and second nearest-neighbors

that do not have a cluster are added to the cluster. If one of the neighboring

vacancies belongs to a different cluster, the big cluster is made to contain

the small one, and the number of vacancies contained in the small one is

set to zero.

6.3 If a cluster has size zero, nothing needs to be done, since it is the same as if it

did not exist. Otherwise, geometrical information such as the cluster’s center

of mass and scalar moment of inertia can be computed. These magnitudes

need to be calculated carefully due to the existence of the periodic boundary

conditions. The center of mass is therefore not the simple arithmetic average

of the positions of the vacancies contained in the cluster. The center of mass
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is calculated with respect to the first vacancy of the cluster, from which the

absolute position of the center of mass is then inferred. It has been assumed

that there is no percolation of clusters and that the size of the clusters in

any direction is smaller than half of the side of the cubic domain, so that

the distance between vacancies can be computed from their coordinates and

without needing to examine their connectivities.

Once this initialization has been performed, each Monte Carlo step consists of the

following

1 Selection of the event that is going to be carried out. A binary tree is used to select

the corresponding rate.

2 Update the matrices X, Y , and Z according to the movement of the vacancy. When

a vacancy moves, two of its coordinates are increased or decreased by a value of 1.

As will be explained, each of these simple processes involves at most, the exchange

of two rows in the matrices X, Y or Z, resulting in a fast update. The 6 possible

cases are summarized in the table below

0 y++

1 x++

2 y– –

3 x– –

4 z++

5 z– –

Cases 0, representative of cases 0, 2 and 4, and case 1, equivalent to case 5, are

summarized

Case 0:

The first step consists on checking the y coordinate in the next element of the array

ycoord of the structure Y . If a difference in the values is encountered, the update

simply consists of increasing the value of the y coordinate of the moving vacancy.

In case that the two y coordinates are equal, the last element with the same y

coordinate is identified and the two rows in the structure Y are then exchanged.
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The corresponding value of jindex in the structure X needs to be updated as well.

Due to the boundary conditions, the matrices need to be looked at as cyclic, and

the end of the array is followed by the first element of the array. A flag can be

included for the improbable situation in which all the vacancies are aligned, so as

to avoid an infinite loop.

Case 1:

This case is similar to the previous one. If the next position in the array xcoord is the

same as the current x coordinate (otherwise the update simply consists of changing

its value), the last element with the same value is searched for. The two rows of

the structure X are then interchanged and the corresponding elements of the array

iindex of the structures Y and Z are updated.

3 Update of the neighbors information of the neighbors of the moving vacancy. This

task can be performed efficiently with the stored neighbor information of each va-

cancy.

4 Calculation of the new neighbors of the vacancy that has moved. This is done in a

manner very similar to the initial neighbor search.

5 Update of the rate of the moved vacancy and its old and new neighbors. Update as

well the rate list and total rate.

6 Cluster information update. When a vacancy that belonged to a cluster moves, the

cluster can become bigger, get separated into two or more clusters or remain the

same. In order to take all these possibilities into account, the cluster pointer of all

the vacancies in such cluster is set to zero, the old cluster is deleted and the number

of single vacancies is increased. For these vacancies, the cluster search is performed

in a similar manner to the initialization stage. As the clusters are now ordered,

the new clusters need to be positioned in the appropriate location. When a vacancy

forms part of a cluster, the number of single vacancies is decreased. Also, if a cluster

has changed, its geometrical information needs to be updated.

7 Update time.
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Chapter 3

Material response under void
damage

In this chapter a self-consistent micromechanical model for void growth based on a repre-

sentative volume element is developed. The first section is dedicated to reviewing existing

models based on the response at the microscopic level. Two other approaches can be found

in the literature, although they will not be followed in this study. The first one, more

phenomenological, sits in the theory of continuum damage mechanics and is based on

internal variables that evolve according to the thermodynamics of irreversible processes

(Pineau, 1982, Germain et al., 1983, Lemaitre, 1986, Rousselier, 1987, Pineau, 2006). The

second approach is based on variational bounds for nonlinear composites (Castañeda and

Zaidman, 1994, Castañeda and Suquet, 1998).

As will be discussed in the following, most of the previously proposed micromechanical

models for porous materials are based on representative volumes, such as a hollow sphere

or a matrix with a periodic distribution of voids. The relation to the macroscopic behavior

is then established through the introduction of simplifying assumptions, required to obtain

tractable analytic solutions. The resulting models are often complemented with additional

parameters that require fitting to experimental results.

Thanks to growing computing capabilities, a recent trend has emerged where multi-

scale finite element simulations are performed with resolution of several scales (see for

instance Smit et al. (1998) in the context of voided materials). One of the goals of this

type of effort is to root the macroscopic behavior directly in models that sit at a lower

scale, and ultimately derive the overall behavior uniquely from fundamental physics and

no experimental inputs. This is very appealing from a scientific understanding point of
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view as well as for its application as a design tool. Further, one of the most important

applications lies in the prediction of fracture initiation. Full simultaneous resolution of

the lower scales produces quantitative information on the local deviations, which cannot

be derived from the average values used at the scale immediately above them in the hi-

erarchy. These deviations could correspond, for instance, to local stress concentrations

due to heterogeneities that can initiate failure at the microscopic level, and then evolve

into macroscopic damage and final failure of the system. Without resolution of the lower

scales, such deviations cannot be captured in the simulations. The stochastic character

of the lower scales could also allow us to recover the statistical aspects of fracture by a

bottom-up approach.

In this work, a consistent two-level model is developed to define the behavior of porous

media under general loading conditions, including dynamics. A classical representative

volume element (RVE) consisting of a single hollow sphere is chosen to characterize the

lower scale governed by damage in the form of voids. Results from this heterogeneous scale,

termed “microscopic”, are then suitably averaged to provide the so called “macroscopic”

behavior of the material, which is treated as homogeneous. The connection between the

two scales is based on the fact that some averaged quantities depend exclusively on the

values of the corresponding microscopic field at the boundary of the RVE. These quantities

therefore set a basis for defining a boundary value problem at the microscopic level that

is physically meaningful. This is well understood for the static case, both in infinitesimal

strains and finite kinematic framework (Hill, 1963, 1967, 1972, Ogden, 1974, Nemat-

Nasser, 1999), where the governing balance equations are seen to be the same at both

scales. Less information is found in the literature concerning the dynamic case (Molinari

and Mercier, 2001, Wang and Sun, 2002), especially under large strains. In Section 3.2

and 3.3 the choice of the RVE, together with the appropriate definition of the boundary

conditions and macro variables, is discussed. In particular, the well known averaging

results under static conditions are revisited from a variational perspective, providing the

necessary abstraction for obtaining analogous results under dynamic conditions. The

results here obtained are not limited to the case of a hollow sphere as a choice of the

RVE. The range of applications is very wide and extends to other heterogeneous media

such as composites or polycrystals. As will be discussed in Section 3.4, the variational
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structure of the resulting multiscale model also provides a basis for the time discretization.

The spatial discretization needed to numerically resolve the solution is treated in Sec-

tion 3.5. An approximation space based on spherical harmonics is employed so as to

preserve the rotational symmetries of the problem. This basis is also capable of repre-

senting the fields on the domain with far fewer degrees of freedom than more standard

finite element discretizations. The potential difficulties arising from the boundary condi-

tions and the spatial integration scheme to be used are also addressed in detail. As will

be shown, the boundary conditions can be represented in an exact and explicit fashion,

and a quadrature rule is proposed that provides exact integration of the stiffness matrix,

mass matrix and void volume fraction.

Numerical verifications are performed in Section 3.6. Several analytical solutions of

the elastic deformation of the hollow sphere under static conditions are found. Conver-

gence analysis for these simple cases, and for other more general ones, show a close to

ideal convergence rate for linear and nonlinear materials in elastic and plastic regimes

undergoing general deformations.

The following section is dedicated to material point calculations. The damage result-

ing from the presence of voids is discussed for a wide variety of materials and loading

conditions. Some comparisons with previous and well established models are also per-

formed.

This chapter concludes with Section 3.8, where the applicability of developed model

is demonstrated with a complete multiscale simulation (FE2) and some comparisons to

experimental results.

3.1 Previous micromechanical models of void growth

Pioneering micromechanical studies of void growth were performed in the late 1960’s by

McClintock (1968) and Rice and Tracey (1969). They analyzed the growth of preexistent

cylindrical and spherical cavities, respectively, in an infinite plastic medium. In both stud-

ies, an exponential growth of the void is observed as a function of the stress triaxiality1,

when such measure of stress is high.

1The stress triaxiality is defined as σm/σe with σm = σkk/3 being the mean stress, σe =
√

3sijsij/2
the effective stress and sij the deviatoric part of the stress tensor.
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These theoretical investigations were compared to experimental observations by Marini

et al. (1985). The exponential dependence of the void growth on the stress triaxiality was

confirmed by the experiments, although the theoretical studies seemed to underestimate

the void growth, especially at large values of the void volume fraction.

The effect of the void volume fraction was first included analytically in the macroscopic

behavior by Gurson (1977a), leading to what has been the most popular porous material

model so far. Gurson obtained an upper bound approximation of the yield function for

porous materials based on the response of a hollow sphere (or hollow cylinder) under

a macroscopic deformation rate imposed on the outer boundary. The matrix material

containing the void was assumed to be a homogeneous rigid perfectly plastic material

obeying the von Mises yield criterion. By making use of approximate forms of the velocity

field and upper bound inequalities of the macroscopic stresses, Gurson then obtained

analytic formulas that approximated the yield locus. For the more realistic case of a

hollow sphere the expression found for the yield surface was

Φ(σij, σY , f) =

(
σe
σY

)2

+ 2f cosh

(
3

2

σm
σY

)
− 1− f 2 = 0 (3.1)

where σij is the macroscopic stress tensor, σe = (sijsij)
1/2 is the Mises equivalent macro-

scopic stress, sij = σij −σmδij = σij − σkk
3
δij is the deviatoric part of the stress tensor, σY

is the yield stress of the matrix material containing the voids, and f is the void volume

fraction.

The resulting yield surface is represented in Fig. 3.1 for different values of the void

volume fraction. As can be noted in the figure, the yield function reduces to the von

Mises criterion (J2 flow theory) when the void volume fraction vanishes, and shrinks to

the origin as the void volume fraction increases towards unity.

The model is completed with a normal flow rule and an evolution law for the void

volume fraction. Gurson (1977b) showed that normality of the plastic flow rule for the

matrix material leads to macroscopic normality, and therefore, the plastic strain rate

tensor can be determined as follows

ε̇p = Λ
∂Φ

∂σ
(3.2)
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Figure 3.1: Yield function as a function of the hydrostatic stress for several values of the
void volume fraction. (Tvergaard, 1982)

where the yield function is used as plastic potential and Λ is a proportionality factor that

can be determined by the equivalence of macroscopic and microscopic plastic work.

The rate of growth of the void is decomposed by Gurson (1977b) into the contribution

due to nucleation of new voids and the contribution due to growth of existing voids

ḟ = (ḟ)nucleation + (ḟ)growth (3.3)

The change in porosity due to void growth, by mass conservation and plastic incom-

pressibility of the matrix, can be expressed as a function of the volumetric component of

the macroscopic plastic strain rate

(ḟ)growth = (1− f)ε̇pkk (3.4)

Gurson’s criterion was derived from a single spherical void, and therefore the inter-

action between voids and coalescence was neglected by the model. Such interaction was

first studied numerically by Neddleman (1972) and Tvergaard (1981a) using a doubly

periodic square array of circular cylindrical holes in an elastic-plastic material. It was

then included into Gurson’s model in a rather phenomenological manner by Tvergaard

(1981a) and Tvergaard and Needleman (1984). A complete presentation of the model,

usually called the GTN model, can be found in Tvergaard (1990). The modified yield



39

condition is

Φ(σij, σY , f) =

(
σe
σY

)2

+ 2q1f
∗ cosh

(
3q2

2

σm
σY

)
− [1 + (q1f

∗)2] = 0 (3.5)

It is of note that the model reduces to the original Gurson model when q1 = q2 = 1

and f ∗(f) = f . The constants q1 and q2 were introduced in order to give a better

approximation to experimental results or numerical computations of periodic distribution

of voids. The values q1 = 1.5 and q2 = 1.0 are often used, although many different values

can be found in the literature. As already indicated by the authors (Tvergaard, 1981a),

these parameters seem to be material dependent. Faleskog et al. (1998) related them to

the plastic hardening exponent and the ratio of yield stress over the Young’s modulus.

The function f ∗(f) was introduced by Tvergaard and Needleman (1984) in order to

account for the effect of coalescence. According to Eq. 3.1 (see also Fig. 3.1), the material

loses its load carrying capacity when the void volume fraction reaches the value of unity,

which is unrealistic. Experimental observations (Brown and Embury, 1973, Goods and

Brown, 1979) show that coalescence occurs approximately when the spacing between voids

is approximately equal to their size at a void volume fraction of the order of f = 0.15,

which is far below unity. The function f ∗(f) was chosen to be equal to the void volume

fraction until a critical void volume fraction fc is reached, after which the damage process

is accelerated.

f ∗(f) =

 f, forf ≤ fc,

fc −
f∗U−fc
fF−fc

(f − fc), forf > fc,

fF is the void volume fraction at fracture and f ∗U = f ∗(fF ) = 1/q1. Values of fc = 0.15

and fF = 0.25 were chosen by the authors based on comparison with experiments (Brown

and Embury, 1973). The value of fc can also be determined from unit cell calculations

(Zhang et al., 2000).

The GTN model has been proven to be very successful in many applications, although

it suffers from several limitations, as can be seen from the fact that the parameters involved

in the model do not have a fixed value. These limitations include, among others, the lack

of representation of strain hardening, kinematic hardening, strain rate sensitivity, plastic

anisotropy, void shape effects or evolution of damage under shear. This has motivated
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further improvements of the model, detailed in the following subsections.

3.1.1 Strain hardening and kinematic hardening

Good prediction of plastic instabilities cannot be achieved with classic J2 flow theory

due to the low curvature of the yield surface (Hutchinson and Tvergaard, 1981). This is

especially true for materials with high strain hardening. Better approximations can be

achieved by considering kinematic hardening into the model, which increases the curvature

of the flow potential surface and accelerates the occurrence of failure (Tvergaard, 1978).

In the case of porous ductile materials, Mear and Hutchinson (1985) developed a

dilatant plasticity model that has as two limiting cases Gurson’s isotropic hardening

model and a pure kinematic hardening model, both coinciding for proportional loading

histories2. Mear and Hutchinson performed numerical flow localization experiments using

their model and obtained, similarly to nonporous materials, a high sensitivity of the

strains at localization with the curvature of the yield surface.

Their model was subsequently extended by Tvergaard (1987) to account for void

nucleation, and by Becker and Needleman (1986) to introduce strain rate dependency.

Other extensions that include kinematic hardening in addition to strain hardening to

the porous media have been proposed by Leblond et al. (1995). FE calculations show

that kinematic hardening accelerates the occurrence of failure.

3.1.2 Strain rate sensitivity

The micromechanics underlying the GTN model assume that the matrix containing the

voids in a porous material is rigid perfectly plastic, without accounting for rate dependency

of the material behavior. Similar to Rice and Tracey (1969), Budiansky et al. (1982)

performed micromechanical studies of an initial spherical void in an infinite medium of

isotropic incompressible viscous material with an arbitrary hardening exponent under

remote axisymmetric loading. The void growth rate obtained reduces to the formula

provided by Rice and Tracey (1969) for the case of rigid perfectly plastic solid and high

triaxiality. Based on these results, Duva and Hutchinson (1984) formulated a potential

2Proportional stressing implies no rotation of the principal axis and proportional increase of the
principal stresses.



41

function for a matrix material containing a dilute concentration of voids.

Other interesting approaches have been proposed by Michel and Suquet (1992) based

on variational bounds applied to a viscous material matrix containing several voids. The

potential resulting from their formulation has a quadratic form.

Another model that takes into account strain rate sensitivity is the one developed by

Leblond et al. (1994). It has as two limiting cases the GTN model for the case of an ideal

plastic behavior (strain rate hardening exponent n = ∞) and a quadratic form of the

stress tensor in the case of a linear Newtonian viscous material (n = 1).

Other authors have maintained Gurson’s potential and account for strain rate sensi-

tivity by representing the inelastic part of the deformation in terms of a nonlinear viscous

behavior. Pan et al. (1983) have used such an approach to study localization of the

deformation, finding that rate sensitivity has a retarding effect on the localization.

3.1.3 Void shape anisotropy

One of the major limitations of the Gurson model is that it is based on the growth

of a spherical cavity that remains spherical throughout the loading history. However,

experiments show that under low values of the stress triaxiality voids tend to become

elongated. Also, manufacturing processes such as rolling can lead to initially anisotropic

inclusions.

Similar to the investigations of Rice and Tracey (1969) and Budiansky et al. (1982),

Lee and Mear (1992) studied an ellipsoidal cavity in an infinite plastic or viscoplastic

medium; and parallel to the work of Gurson, Gologanu et al. (1993, 1994) developed a

macroscopic yield criterion based on an ellipsoidal void located inside a confocal matrix

loaded axisymmetrically (prolate and oblate configuration). The resulting yield surface

introduces an additional parameter that accounts for the void shape. An evolution law

for the shape parameter is also provided.

Models proposed by Castañeda and Zaidman (1994), Kailasam and Castañeda (1998),

Kailasam et al. (2000) consider 3D ellipsoidal pores (not limited to axisymmetric cavities)

and pore orientation. However, the formalism employed is more suitable for linear viscous

solids than for plastic solids (Besson, 2010).
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3.1.4 Plastic anisotropy

Anisotropy in a metal can arise as a result of forming. Its influence on void growth and

material failure has been observed experimentally (Hancock and Mackenzie, 1976). Also,

anisotropy is expected to influence plastic localization (Steinmann et al., 1994).

Plastic anisotropy of the matrix containing the voids has an effect on the effective

constitutive relation and the damage evolution law. Benzerga and Besson (2001) have

derived an upper bound of the yield surface in a manner similar to Gurson. The matrix

material in this case is assumed to be rigid perfectly plastic, obeying Hill’s yield criterion,

and the load is assumed to be triaxial and aligned with the material symmetry axis. The

obtained yield surface is identical to the one developed by Gurson, with the difference

that the von Mises equivalent stress in Eq. 3.1 is replaced by Hill’s equivalent stress (Hill,

1948).

σH =

√
3

2
s : H : s (3.6)

where s is the stress deviator and H the Hill anisotropic fourth-order tensor.

The evolution law for the void volume fraction provided is similar to the one proposed

by Gurson. It depends on the anisotropy of the material, although the damage parameter

remains a scalar, and therefore isotropic damage is assumed.

The work of Gologanu et al. (1993) has also been recently extended to account for

anisotropy by Monchiet et al. (2008).

3.1.5 Influence of shear on damage evolution

The single damage parameter in the GTN model is the void volume fraction. Its evolution

law, neglecting nucleation, only considers the volumetric component of the strain. There-

fore, no damage evolution is predicted by the model in the case of pure shear, under zero

stress triaxiality. This is in contrast to experiments (Barsoum and Faleskog, 2007a) where

fracture is shown to be susceptible to voids at low stress triaxiality. Bao and Wierzbicki

(2004) have also shown a non-monotonic behavior of the effective plastic strain at fracture

as a function of stress triaxiality. On the numerical and theoretical side, micromechanical

studies (Zhang et al., 2001, Kim et al., 2004, Barsoum and Faleskog, 2007b, Gao and
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Kim, 2006) have confirmed the insufficiency of the stress triaxiality to study the damage

evolution. Most of these analyses use the Lode parameter3 as a second measure of stress.

In order to overcome this limitation of the GTN model, Xue (2007) proposed a new

damage plasticity model. It is a completely phenomenological model in which the evolu-

tion law of the damage variable depends both on the hydrostatic pressure and the Lode

parameter. The fracture envelope resulting from the model is “blossom” shaped and con-

tains four material parameters that need to be calibrated with experimental observations.

More recently, Nahshon and Hutchinson (2008) have proposed a modification of the

Gurson model that accounts for damage in shear dominated states. The yield surface

remains unchanged, but the damage parameter (effective void volume fraction) evolves

according to the volumetric component of the plastic strain rate plus an additional term

that allows the damage to increase in cases of pure shear, leaving it unchanged for axisym-

metric stress states. The model introduces a new parameter that sets the rate of damage

development in shear. The measure of stress used by the authors is ω(σ) = 1−
(

27J3

2σ3
e

)2

At low stress triaxiality, the evolution of the voids also depends on their origin. If

voids are nucleated from inclusions, those inclusions could prevent the radial contraction

of the void at low values of the stress triaxiality. This effect is usually not considered in

the analyses.

3.1.6 Inertia effects

All the previously mentioned micromechanical models neglect inertia at the microscale.

However, they have been shown to be non negligible in high strain rate processes. Pioneer-

ing studies were done by Carrol and Holt (1972) who considered the dynamic evolution

of a void in a bounded matrix of plastic material. These results were extended by Cortes

(1992a,b) and Tong and Ravichandran (1993) to account for hardening and strain rate

sensitivity. On the other hand, Ortiz and Molinari (1992) considered a void in an in-

finite media and demonstrated the importance of inertia in void growth, especially in

the long-term behavior. Based on this work, a variational constitutive model for porous

viscoplastic media was derived by Weinberg et al. (2006).

3The Lode parameter is defined as L = 2σII−σI−σIII

σI−σIII
= 3(σII−σm)

σI−σIII
. |L| = 1 in axisymmetric stress

states (σI ≥ σII = σIII or σI = σII ≥ σIII) and L = 0 for a pure shear superposed to a hydrostatic
stress state (σI = σm + τ , σII = σm, σIII = σm − τ).
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More recent analysis (Molinari and Mercier, 2001) have also shown the instantaneous

impact of microinertia in the macroscopic stresses, when the voided domain is treated

as homogeneous. This model was applied to the case of a plate impact test (Czarnota

et al., 2008) where comparison of the numerical results with the experiments indicated

that micro-inertia was one of the key features for the accuracy of their finite element

simulation.
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3.2 Micromechanical model for void growth

Analytical consideration of damage for materials that exhibit hardening, strain rate sen-

sitivity or plastic anisotropy, under general loading histories is inviable. It is therefore

desirable to have a framework where arbitrary constitutive laws and loading conditions

can be considered, as well as other effects such as temperature or surface energies. The

goal of this work lies on the development of a numerical, physically sound and mathemat-

ically consistent constitutive framework for porous materials that is able to account for

such general conditions.

A self-consistent two level finite element model is derived from a variational perspec-

tive, and a time discretization scheme together with a special finite element construction

adapted to the problem is proposed. The continuous derivation of the formulation is

treated in Section 3.3, whereas the time and space discretization are treated in Section

3.4 and 3.5, respectively.

This section is concerned with the choice of the appropriate representative volume el-

ement (RVE) that is used to describe the behavior of the porous material and allows the

decoupling of the macroscopic and the microscopic scale. A domain can be considered an

RVE if it is large enough compared to the size of the heterogeneities, but with a charac-

teristic length smaller than the macroscopic length scale. For the following developments,

the smaller length scale inside the RVE is also required to be sufficiently large for the

theory of continuum mechanics to apply. The representative volume element considered,

in view of its application to the characterization of porous materials, is a hollow sphere

where the matrix is treated as a homogeneous continua.

The hollow sphere has been chosen as a simplification of a space-filling construction

of packed hollow spheres. In Figure 3.2 a two-dimensional schematic representation is

shown as well as a three-dimensional illustration of the construction. The existence of

this construction is a direct result of the Vitali covering lemma (Gordon, 1994).

In a self-consistent multiscale model, certain macroscopic quantities are provided to

the microscale, usually through the boundary of the RVE, and an appropriate averag-

ing technique is defined allowing the recovery of the effective or macroscopic properties,

including the imposed quantities.

So as to appropriately define the choice of the boundary conditions, a summary of the
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Figure 3.2: Space filling construction.

notation that is used throughout this chapter is given. Of particular interest in this work

is the finite deformation case. The analysis is based on the Lagrangian formulation of the

field equations with the initial unstressed state taken as reference. The material points

of the microstructure are labeled X, and the reference configuration is identified with

B0 ⊂ R3. The superscript M is employed to identify the macroscopic fields in contrast

to the microscopic quantities, for which no superscript is used. By this notation, the

macroscopic material points in the reference configuration BM
0 are then denoted by XM .

The motion of the RVE is described by the deformation mapping x = ϕ(X, t), where

x is the location of particle X at time t. The material velocity and acceleration fields

are ϕ̇ and ϕ̈, respectively, and the deformation gradient is denoted by F = ∇ϕ, where

∇ represents the material gradient. The motion of the body is required to satisfy linear

momentum balance

ρ0ϕ̈−∇ ·P = ρ0B, inB0 (3.7)

where ρ0(X) is the mass density per unit undeformed volume, B are the body forces per

unit mass and P is the first-Piola Kirchhoff stress tensor. The solution in equilibrium is

also required to satisfy the boundary conditions

ϕ = ϕ̄, on ∂B0,1

P ·N = T̄, on ∂B0,2

(3.8)

where ϕ̄ and T̄ are the prescribed deformation mapping and the prescribed tractions

respectively, and N is the outward normal to the domain. As usual, it is required that
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∂B0 = ∂B0,1 ∪ ∂B0,2, and ∂B0,1 ∩ ∂B0,2 = ∅.

In the literature three types of boundary conditions have been seen to be useful (see

for instance, Besson et al. (2010)) and are here summarized

- Kinematic uniform boundary conditions (Hill, 1972, Ogden, 1974): x = FMX, X on

∂B0, where FM is the macroscopic deformation gradient, and therefore, independent

of X.

- Static uniform boundary conditions (Ogden, 1974): PN = PMN, X on ∂B0.

- Periodic boundary conditions (Kwon et al., 2008). Examples relevant to the present

study are Abeyaratne and Triantafyllidis (1984) and Bolzon and Vitaliani (1993).

In view of the desire to formulate the multiscale problem in the finite kinematic frame-

work and with dynamic considerations, the first type of boundary condition is considered.

A complete dual formulation under finite strains offers difficulties in general due to the

lack of global convexity. The existence of a complementary energy, dual of the strain en-

ergy density, based on local convexity is discussed by Ogden (1974), Hill and Rice (1973)

and Castañeda (1991). Therefore, the present work deals exclusively with kinematic uni-

form boundary conditions. However, as is proven in the next section, consistency between

the two scales is achieved by essential boundary conditions that are dependent not only

on the macroscopic deformation gradient, but also on the macroscopic displacement field.

M ,
MF

Figure 3.3: Deformation of the representative volume element according to the macro-
scopic deformation mapping ϕM and the macroscopic deformation gradient FM .

Under static conditions, and the simplifying assumption that all the spheres in the

space-filling packing of a given macroscopic material point have the same void volume

fraction, the problem can be reduced to the analysis of a single sphere due to scale

invariance and the symmetries of the hollow sphere. By contrast, the dynamic case



48

lacks scale invariance and the response of each hollow sphere depends on its size, which

necessitates consideration of the entire range of sizes present in the material. The same

would occur if one were to introduce length scales in the problem by consideration of

surface energies. In the computations, though, a single hollow sphere will be treated for

each macroscopic quadrature point. The resulting boundary value problem is represented

in Figure 3.4. On the left, the undeformed hollow sphere is represented, with inner radius

a and outer radius b. On the right, the deformed configuration together with the boundary

conditions are shown. Stress-free boundary conditions are assumed for the inner radius.

1

1X

2X

3X

1x

2x

3x

a
b

XFx MM 
)(Xx 

Figure 3.4: Boundary value problem over a hollow sphere of inner radius a and outer
radius b.
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3.3 Effective constitutive behavior

This section is concerned with the definition of the macro-constitutive law from the re-

sponse of a representative volume element under appropriate boundary conditions. This

RVE is assumed to be composed of several homogeneous phases which are perfectly

bonded. Some of this phases can be vacuous material as is the case of the hollow sphere

introduced in the previous section. It is further assumed that the surface effects are neg-

ligible, so that the bulk macroscopic behavior depends exclusively on the bulk response

of the different constituents. Extensions can be made to account for surface energies,

although such treatment is not considered in the present work.

The boundary conditions required for a full consistent model will be shown to be

ϕ(X) = ϕM +∇MϕMX, on ∂B0 (3.9)

The first term, consisting of the macroscopic displacement, is not included in standard

boundary conditions. Under static loading with no body forces, it represents a rigid

translation that is constant in time. Therefore, it can be disregarded recovering the

standard geometric boundary conditions

ϕ(X) = ∇MϕMX, on ∂B0 (3.10)

In the presence of body forces, the macroscopic displacement is the dual variable of

the macroscopic body forces. Therefore, in order to recover all macro-variables from the

formulation, the RVE needs to be informed about the macroscopic translation ϕM . More-

over, even if the macroscopic stress is the only field of interest, it is physically meaningful

to inform the RVE with the temporal evolution of the macroscopic displacement field, the

rotations already being included in the deformation gradient. Two equivalent options can

be followed, either considering a displacement of the microscopic reference frame, which

therefore becomes non-inertial under general loading; or informing the RVE through the

boundary conditions. The later will be pursued for the analytical derivations. However,

from a numerical point of view, it might be favorable to have a non inertial representation

of the equations if the material is undergoing large displacements.

It is worth mentioning that the origin of the material reference frame of the RVE needs
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to be positioned such that ∫
B0

XJ dX = 0 (3.11)

For the case of a hollow sphere, B0 is the domain enclosed by the outer surface, and

therefore includes the interior cavity. The results here obtained are general and apply to

any domain subjected to the defined boundary conditions. The force and displacement

fields are assumed to be continuous in the interior of the RVE.

The theoretical basis for the results here presented lies in the work of R. Hill and other

authors that have subsequently contributed to the field (Hill, 1963, 1967, 1972, Ogden,

1974, Hill, 1984, Nemat-Nasser, 1999, Molinari and Mercier, 2001). Hill (1972) made the

following interesting observation:

“Experimental determinations of mechanical behavior rest ultimately on mea-

sured loads or mean displacement over pairs of opposite faces of a representa-

tive cube. Macro-variables intended for constitutive laws should thus be ca-

pable of definition in terms of surface data alone, either directly or indirectly.

It is not necessary, by any means, that macro-variables so defined would be

unweighted volume averages of their microscopic counterparts. However, vari-

ables that do have this special property are naturally the easiest to handle

analytically in the transition between levels.”

One such variable, whose average depends uniquely on the values at the surface, is

the deformation gradient. Under the kinematic boundary conditions defined by Eq. 3.10

(Hill, 1972) the following result holds

FM =
1

|B0|

∫
B0

F dX =
1

|B0|

∫
∂B0

x⊗N dX (3.12)

making it a suitable variable to set the boundary conditions of the RVE.

The correspondence between the macroscopic deformation gradient and the average of

the corresponding microscopic quantity is also valid for the proposed boundary conditions.
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By repeated use of the divergence theorem

1

|B0|

∫
B0

ϕi,J dX =
1

|B0|

∫
∂B0

ϕiNJ dX

=

[
1

|B0|

∫
∂B0

NJ dX

]
ϕMi +

[
1

|B0|

∫
∂B0

XPNJ dX

]
ϕMi,P = ϕMi,J

(3.13)

where |B0| is the volume of the RVE. This result is also applicable to the case where B0

contains smooth holes. The deformation mapping can be extended to the interior of the

voids by use of the extension lemmas of Cioranescu and Paulin (1979).

Based on the results of (Hill, 1972, Hill and Rice, 1973), Ogden (1974) identified a con-

ceptually essential result for the approach that will be followed here. If the constituents of

the RVE are elastic materials with a well defined strain energy density, then the average of

the strain energy over the RVE is a function only of the average deformation gradient, and

the effective stresses derive from such energy density. In view of the potential structure of

the homogenized macroscopic media, also pointed out by Castañeda (1991), a variational

perspective will be used, providing a suitable framework for extending the averaging re-

sults to dynamic conditions. When inertia effects are accounted for, the volume average

of the Lagrangian density will be taken as an effective Lagrangian density for the homo-

geneous solid, from which the macroscopic balance equations can be obtained by recourse

of the principle of stationary action. Under the assumption of separation of length and

time scales, the effective Lagrangian density, defined in this case as the spacetime average

of the corresponding mircoscopic quantity, will be shown to be a function of the averaged

four-dimensional deformation gradient and act, analogously to the static case, as a poten-

tial for the energy-momentum tensor. These energetic relations between the micro and

macro scale will be shown to be compatible with the definition of the macroscopic stress

tensor and deformation gradient as surface integrals over the boundary of the RVE, as

suggested by R. Hill. Furthermore, by this definition of the macroscopic Lagrangian den-

sity, the symmetries of the microscopic system and the corresponding conserved quantities

during the motion are preserved through the homogenization process, providing a strong

physical motivation for the proposed model. Consideration of variational structures of

models with two different length scales haven been used previously under static condi-
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tions within the formal theory of homogenization (Sanchez-Palencia, 1980, Müller, 1987,

Terada and Kikuchi, 2001) and also in the context of RVE’s where a finite microscale is

assumed (Castañeda, 1991). However, the averaging technique here presented for finite

kinematics together with the proposed boundary conditions for the RVE is new to the

best of the author’s knowledge.

It will be assumed throughout this section that the constituents of the RVE are hy-

perelastic and therefore posses a strain energy density W = W (F) from which the first

Piola-Kirchhoff stress tensor can be derived (see for example, Marsden and Hughes (1993))

P =
∂W

∂F
(3.14)

It will further be assumed that the undeformed configuration is stress free, i.e., W,F (I) = 0.

Consideration of more general materials for the different phases of the RVE can be in-

cluded in the variational structure via the Lagrange-d’Alembert principle (Marsden and

S.Ratiu, 1999). The application of this principle in the field of continuum mechanics,

and particularly for materials with viscosity and other internal processes, is described in

Zielonka (2006). The approach that is followed in this work is that of Radovitzky and

Ortiz (1999) in which incremental energy densities can be defined at each time step that

are able to account for viscous and plastic effects. This is explained in further detail in

Section 3.4.

3.3.1 Static case without body forces

Under static conditions, the solution in equilibrium satisfies the principle of minimum po-

tential energy (Marsden and Hughes, 1993). In the absence of body forces, the microscopic

potential energy Π reads

Π[ϕ(·)] =

∫
B0

W (∇ϕ,X) dX (3.15)

where the first Piola-Kirchhoff stress tensor obeys P = ∂W
∂F

, and the deformation mapping

ϕ is required to satisfy the geometric boundary conditions on ∂B0 (Eq. 3.9).

The macroscopic strain energy density is defined as the average of the corresponding

microscopic quantity at equilibrium W ∗(∇ϕ,X) with the boundary conditions defined by
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Eq. 3.9.

WM(FM ,XM) =
1

|B0|

∫
B0

W ∗(∇ϕ,X) dX (3.16)

In the following derivations the superscript ∗ will be omitted, although it will always be

assumed that the macroscopic Lagrangian density (strain energy density in this case) is

the volumetric average of the corresponding micro-variable when in equilibrium with the

corresponding boundary conditions. Therefore W ∗(∇ϕ,X) can be seen as a function of

FM .

Taking variations of WM(FM ,XM) with respect to FM gives

|B0|δWM(FM) =

∫
B0

PiJδϕi,J dX

=

∫
∂B0

PiJNJδϕi dX

=

[∫
∂B0

PiJNJ dX

]
δϕMi +

[∫
∂B0

PiJNJXP dX

]
δϕMi,P

=

[∫
B0

PiJ dX

]
δϕMi,J

(3.17)

∂WM

∂ϕMi,J
=

1

|B0|

∫
B0

PiJ dX (3.18)

The macroscopic potential energy can therefore be written as

ΠM [ϕM(·)] =

∫
BM0

WM(∇MϕM ,X) dXM −
∫
∂BM0,2

T̄M ·ϕM dXM (3.19)

where T̄M are the tractions imposed on the boundary of the macroscopic domain.

By making the macroscopic potential energy stationary, the macroscopic equilibrium
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equations and boundary conditions are recovered. If sufficient differentiability

δΠM =

∫
BM0

∂WM

∂ϕMi,J
δϕMi,J dX

M −
∫
∂BM0,2

T̄Mi δϕMi dXM

=

∫
BM0

[
1

|B0|

∫
B0

PiJ dX

]
δϕMi,J dX

M −
∫
∂BM0,2

T̄Mi δϕMi dXM

= −
∫
BM0

[
1

|B0|

∫
B0

PiJ dX

]
,J

δϕMi dXM

+

∫
∂BM0,2

[(
1

|B0|

∫
B0

PiJ dX

)
NM
J − T̄Mi

]
δϕMi dXM

(3.20)

[
1

|B0|

∫
B0

PiJ dX

]
,J

= 0, in BM
0 (3.21a)[

1

|B0|

∫
B0

PiJ dX

]
NM
J = T̄Mi , on ∂BM

0,2 (3.21b)

where the divergence of the averaged microscopic stress tensor is performed with respect

to the macroscopic coordinates.

A consistent definition of the macroscopic stress tensor is therefore

PM =
1

|B0|

∫
B0

P dX (3.22)

recovering the results of Hill (1972).

3.3.2 Static case with body forces

When body forces B are included, the microscopic potential energy has the following

expression

Π[ϕ(·)] =

∫
B0

(W (ϕ,X)− ρ0B ·ϕ) dX (3.23)

Equivalently to the previous case, the macroscopic potential energy is defined as

ΠM [ϕM(·)] =

∫
BM0

[
1

|B0|
Π[ϕ]

]
dXM −

∫
∂BM0,2

T̄M ·ϕM dXM (3.24)
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where, again, the micro-variables are in equilibrium under the appropriate boundary

conditions.

Taking variations of Π[ϕ] with respect to ϕM leads to

δΠ[ϕ] =

∫
B0

(PiJδϕi,J − ρ0Biδϕi) dX

=

∫
B0

(−PiJ,J − ρ0Bi) δϕi dX +

∫
∂B0

PiJNJδϕi dX

=

[∫
∂B0

PiJNJ dX

]
δϕMi +

[∫
∂B0

PiJNJXP dX

]
δϕMi,P

=

[
−
∫
B0

ρ0Bi dX

]
δϕMi +

[∫
B0

(PiJ + PiP,PXJ) dX

]
δϕMi,J

=

[
−
∫
B0

ρ0Bi dX

]
δϕMi +

[∫
B0

(PiJ − ρ0BiXJ) dX

]
δϕMi,J

(3.25)

∂Π

∂ϕMi
= −

∫
B0

ρ0Bi dX (3.26a)

∂Π

∂ϕMi,J
=

∫
B0

(PiJ − ρ0BiXJ) dX (3.26b)

By rendering the macroscopic potential energy stationary

δΠM =

∫
BM0

1

|B0|

(
∂Π

∂ϕMi
δϕMi +

∂Π

∂ϕMi,J
δϕMi,J

)
dXM −

∫
∂BM0,2

T̄Mi δϕMi dXM

=

∫
BM0

 1

|B0|
∂Π

∂ϕMi
−

(
1

|B0|
∂Π

∂ϕMi,J

)
,J

 δϕMi dXM

+

∫
∂BM0,2

[
1

|B0|
∂Π

∂ϕMi,J
NM
J − T̄Mi

]
δϕMi dXM

(3.27)

the following Euler-Lagrange equations are obtained

[
1

|B0|

∫
B0

ρ0Bi dX

]
+

[
1

|B0|

∫
B0

(PiJ − ρ0BiXJ) dX

]
,J

= 0, in BM
0 (3.28a)[

1

|B0|

∫
B0

(PiJ − ρ0BiXJ) dX

]
NM
J = T̄Mi , on ∂BM

0,2 (3.28b)

where the divergence operation is performed with respect to the macroscopic coordinates.

The macroscopic body follows the standard equilibrium equations, where the macro-
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scopic stresses and body forces are defined as

PM =
1

|B0|

∫
B0

(P− ρ0B⊗X) dX (3.29a)

ρM0 BM =
1

|B0|

∫
B0

ρ0B dX (3.29b)

For the particular case of a hollow sphere as choice of RVE, if the body forces and

density are constant over the matrix, the macroscopic stresses can be simplified to

PM =
1

|B0|

∫
B0

P dX (3.30)

and the macroscopic body forces are immediately defined as

ρM0 BM = (1− f)ρ0B (3.31)

where f is the void volume fraction.

3.3.3 Dynamic case without separation of time scales

First, the more general case in which only separation of length scales is assumed will be

analyzed. Under these conditions it is expected a contribution of the inertia forces in the

macroscopic definition of stresses resulting from the mass movement within the RVE.

The underlying variational principle in dynamics is Hamilton’s principle of stationary

action (Marsden and Hughes, 1993). The action takes the form

A[ϕ(·, ·)] =

∫ t2

t1

L(ϕ, ϕ̇, t) dt (3.32)

where L(ϕ, ϕ̇, t) is the Lagrangian of the body, defined as the difference between the

kinetic energy of the body T [ϕ̇] and the potential energy Π[ϕ], here defined

T [ϕ̇(·, t)] =

∫
B0

1

2
ρ0|ϕ̇|2 dX

Π[ϕ(·, t), t] =

∫
B0

(W (∇ϕ,X)− ρ0B(t) ·ϕ) dX dt−
∫
∂B0,2

T̄ ·ϕ dX dt
(3.33)
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Hamilton’s principle postulates that the motion ϕ(X, t), which is required to satisfy

the essential boundary conditions on ∂B0,1 and is presumed known at times t1 and t2,

renders the action stationary. Stationarity demands

d

dε
A[ϕ+ εη]

∣∣∣
ε=0

= 0 (3.34)

for all admissible virtual displacements η, satisfying η(t1,X) = η(t2,X) = 0 and

η(t,X) = 0, in ∂B0,1 (3.35)

For the boundary value problem considered at the microscopic level, where no tractions

are imposed on the boundary, a Lagrangian density can be defined

L[ϕ,X, t] =
1

2
ρ0|ϕ̇|2 −W (∇ϕ,X) + ρ0B(t) ·ϕ (3.36)

Under the proposed definition of the macro-Lagrangian density as the volumetric av-

erage of the micro-Lagrangian density, the microscopic and the macroscopic action have

the following expressions

A[ϕ(·, ·)] =

∫ t2

t1

∫
B0

L[ϕ,X, t] dX dt (3.37a)

AM [ϕM(·, ·)] =

∫ t2

t1

∫
BM0

1

|B0|

[∫
B0

L[ϕ,X, t] dX

]
dXM dt (3.37b)

+

∫ t2

t1

∫
∂BM0,2

T̄M ·ϕM dXM dt (3.37c)

Variation of the microscopic action with respect to the macroscopic deformation map-
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ping gives

δA =

∫ t2

t1

∫
B0

(ρ0ϕ̇iδϕ̇i − PiJδϕi,J + ρ0Biδϕi) dX dt

=

∫ t2

t1

∫
B0

ρ0ϕ̇iδϕ̇i dX dt+

∫ t2

t1

∫
B0

(PiJ,J + ρ0Bi)δϕi dX dt

−
∫ t2

t1

∫
∂B0

PiJNJδϕi dX dt

=

∫ t2

t1

∫
B0

ρ0(ϕ̇iδϕ̇i + ϕ̈iδϕi) dX dt−
[∫ t2

t1

∫
∂B0

PiJNJ dX dt

]
δϕMi

−
[∫ t2

t1

∫
∂B0

PiPNPXJ dX dt

]
δϕMi,J

=

∫
B0

ρ0(ϕ̇iδϕi)
∣∣∣t2
t1
dX −

[∫ t2

t1

∫
∂B0

(ρ0ϕ̈i − ρ0Bi) dX dt

]
δϕMi

−
[∫ t2

t1

∫
∂B0

PiPNPXJ dX dt

]
δϕMi,J

= −
[∫ t2

t1

∫
∂B0

(ρ0ϕ̈i − ρ0Bi) dX dt

]
δϕMi

−
[∫ t2

t1

∫
∂B0

(PiJ + ρ0ϕ̈iXJ − ρ0BiXJ) dX dt

]
δϕMi,J

(3.38)

It has been assumed for simplicity that each phase within the RVE has a density which

is constant in time.
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Stationarity of the macro-action results in

δAM = −
∫ t2

t1

∫
BM0

[
1

|B0|

∫
B0

(ρ0ϕ̈i − ρ0Bi) dX

]
δϕMi dXM dt

−
∫ t2

t1

∫
BM0

[
1

|B0|

∫
B0

(PiJ + ρ0ϕ̈iXJ − ρ0BiXJ) dX

]
δϕMi,J dX

M dt

+

∫ t2

t1

∫
∂BM0,2

T̄Mi ϕMi dXM dt

= −
∫ t2

t1

∫
BM0

[
1

|B0|

∫
B0

(ρ0ϕ̈i − ρ0Bi) dX

]
δϕMi dXM dt

+

∫ t2

t1

∫
BM0

[
1

|B0|

∫
B0

(PiJ + ρ0ϕ̈iXJ − ρ0BiXJ) dX

]
,J

δϕMi dXM dt

+

∫ t2

t1

∫
∂BM0,2

[
T̄Mi −

(
1

|B0|

∫
B0

(PiJ + ρ0ϕ̈iXJ − ρ0BiXJ) dX

)
NM
J

]
ϕMi dXM dt

(3.39)

leading to the following balance equations

[
1

|B0|

∫
B0

ρ0ϕ̈i dX

]
−
[

1

|B0|

∫
B0

(PiJ + ρ0ϕ̈iXJ − ρ0BiXJ) dX

]
,J

=

[
1

|B0|

∫
B0

ρ0Bi dX

]
, in [t1, t2]×BM

0

(3.40)

[
1

|B0|

∫
B0

(PiJ + ρ0ϕ̈iXJ − ρ0BiXJ) dX

]
NM
J = T̄Mi , on [t1, t2]× ∂BM

0,2 (3.41)

It is notable that the standard equilibrium equations have been recovered at the macro-

scopic level. This is not always the case when averaging is performed on a representative

volume element.

The macroscopic stresses and body forces can be identified with

PM =
1

|B0|

∫
B0

(P + ρ0ϕ̈⊗X− ρ0B⊗X) dX (3.42)
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ρM0 BM =
1

|B0|

∫
B0

ρ0B dX (3.43)

which reduce for the particular case of the hollow sphere of homogeneous material

with constant body forces to

PM =
1

|B0|

∫
B0

(P + ρ0ϕ̈⊗X) dX (3.44)

ρM0 BM = ρ0(1− f)B (3.45)

where f is the void volume fraction.

This later definition of macroscopic stresses coincides with the one obtained by Moli-

nari and Mercier (2001) by recourse to the principle of virtual work. The value of the

microscopic fields, though, are obtained from a different boundary value problem. In the

proposed formulation, the macroscopic displacements are passed through the boundary of

the representative volume element, in addition to the macroscopic deformation gradient.

This allows the microstructure to experience the macroscopic acceleration, which might

influence the microstructure evolution and therefore the final value of the macroscopic

stresses. Wright and Ramesh (2008) reviewed the work of Molinari and Mercier (2001)

with explicit use of composition of velocities stating therefore the non inertial character

of the reference frame associated to the RVE.

These results were obtained under the assumption of separation of length scales, but

no a priori assumption on the separation of time scales. Under these conditions, no

averaging equivalence exists between the microscopic and macroscopic linear momentum

and the following macroscopic equilibrium equation

ρM0 ϕ̈
M −∇M ·PM = ρM0 BM (3.46)

is an approximation. However, it can be regarded as exact, if the macroscopic body forces
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contain an additional term resulting from the microinertia

ρM0 BM =
1

|B0|

∫
B0

ρ0

(
B + ϕ̈− ϕ̈M

)
dX (3.47)

In the following it will be seen that Eq. 3.46 is recovered exactly in the event of

separation of length and time scales.

3.3.4 Dynamic case with separation of time and length scales

When separation of time scales holds in addition to separation of length scales, the macro-

scopic quantities can be defined as an average over a four-dimensional representative

volume element, where time is included. Some conditions in which this situation is en-

countered are shown in Section 3.6.6.

Instead of proceeding with the derivations in the usual three-dimensional space with

time as a separate dimension, a four-dimensional perspective is adopted. In order to do

so, the equations of elastodynamics are first rewritten in a spacetime framework following

closely the Continuum Mechanics Course Notes of Ortiz (2010). As will be seen, there is

an astonishing resemblance with the three-dimensional static equations. By this observa-

tion, it is predictable that a fully consistent multiscale dynamic model can be obtained

when applying affine spacetime boundary conditions to the four-dimensional representa-

tive volume element (RVE4).

3.3.4.1 The spacetime formulation of nonlinear elastodynamics

Within the Lagrangian description of the motion of a body, time will be regarded as an

additional variable. The reference configuration in this four-dimensional space is identified

with Ω0 = [t1, t2] × B0 ⊂ R4. The boundary of such a domain has the structure Γ0 =

∂Ω0 = ([t1, t2]× ∂B0)∪ ({t1}×B0)∪ ({t2}×B0), where the four-dimensional unit normal
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N is defined as

N = {0,N}, on [t1, t2]× ∂B0 (3.48a)

N = {−1,0}, on {t1} ×B0 (3.48b)

N = {1,0}, on {t2} ×B0 (3.48c)

with N being the outward normal to ∂B0. The boundary ∂Ω0 of Ω0 is partitioned into

∂Ω0,1 and ∂Ω0,2 where essential and natural boundary conditions are, respectively, im-

posed. As usual, we require ∂Ω0 = ∂Ω0,1 ∪ ∂Ω0,2, and ∂Ω0,1 ∩ ∂Ω0,2 = ∅.

Material points will be labeled as

X = {t,X} (3.49)

and the corresponding Eulerian position four-vector x and deformation mapping y are

defined as

x = {t,x} = y(X) = {t, ϕ(X)} (3.50)

The spacetime Lagrangian velocity then follows as

V =
∂y

∂t
= {1,V} (3.51)

The spacetime deformation mapping is then

F = Grad y =

 1 0

V F


and its inverse follows as

F−1 =

 1 0

−ϕ∗V F−1


where ϕ∗V = F−1V is the pullback of the Lagrangian velocity field. Its spacetime analog
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is

y∗V = F−1V = {1,0} (3.52)

The generalization of the stress tensor in the spacetime framework is the energy-

momentum four tensor

S = ρ0V⊗ y∗V− P =

 ρ0 0

ρ0V −P


where

P =

 0 0

0 P


is the spacetime extension of the first Piola-Kirchhoff stress tensor.

The Lagrangian body force four-vector per unit mass is

B = {0,B} (3.53)

and the four-vector traction applied on ∂Ω0,2 has the structure

T̄ = {0, T̄}, on [t1, t2]× ∂B0 (3.54a)

T̄ = ρ0{1, V̄1}, on {t1} ×B0 (3.54b)

T̄ = ρ0{−1,−V̄2}, on {t2} ×B0 (3.54c)

In this notation, the mass and linear momentum conservation laws and the boundary

conditions can be written in the following compact form

Div S = ρ0B, in Ω0 (3.55a)

SN = −T̄, on ∂Ω0,2 (3.55b)
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The time component leads to mass conservation

∂ρ0

∂t
= 0, in Ω0 (3.56a)

0 = 0, on [t1, t2]× ∂B0 (3.56b)

− ρ0 + ρ0 = 0, on {t1} ×B0 (3.56c)

ρ0 − ρ0 = 0, on {t2} ×B0 (3.56d)

(3.56e)

and the spatial components to the corresponding linear momentum conservation equations

∂

∂t
(ρ0V)−DivP = ρ0B, in Ω0 (3.57a)

PN = T̄, on [t1, t2]× ∂B0 (3.57b)

− ρ0V + ρ0V̄1 = 0, on {t1} ×B0 (3.57c)

ρ0V − ρ0V̄2 = 0, on {t2} ×B0 (3.57d)

(3.57e)

Extensions of this formulation to account for other effects such as non Euclidean

domains, variable local time scale or mass erosion and accretion are possible, although

they have not been pursued here.

Principle of stationary action. Under dynamic conditions, the motion of the solid

obeys the principle of stationary action. The action takes the form

A[ϕ(·, ·)] =

∫ t2

t1

∫
B0

(
1

2
ρ0|ϕ̇|2−W (∇ϕ,X)+ρ0B ·ϕ) dX dt+

∫ t2

t1

∫
∂B0,2

T̄ ·ϕ dX dt (3.58)

when ϕ is presumed to be known at times t1 and t2 and satisfies the essential boundary

conditions.

If instead of the deformation mapping ϕ, the initial and final velocity fields are pre-
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scribed at times t1 and t2 to V(t1,X) = V̄1(X) and V(t2,X) = V̄2(X), then the action

takes the form

A[ϕ(·, ·)] =

∫ t2

t1

∫
B0

(
1

2
ρ0|ϕ̇|2 −W (∇ϕ,X) + ρ0B ·ϕ) dX dt+

∫ t2

t1

∫
∂B0,2

T̄ ·ϕ dX dt

+

∫
B0

ρ0

[
V̄1(X) ·ϕ(t1,X)− V̄2(X) ·ϕ(t2,X)

]
dX

(3.59)

Both of this cases can be considered in a joint manner in the spacetime formalism,

through the observation that initial and final linear momentum can be treated as tractions

in the four-dimensional domain.

A[y(·)] =

∫
Ω0

(
1

2
ρ0(|ẏ|2 − 1)−W (F, X) + ρ0B · y

)
dX +

∫
∂Ω0,2

T̄ · y dX (3.60)

Disregarding the traction boundary conditions, the Lagrangian density reads L[y, X] =

1
2
ρ0(|ẏ|2 − 1)−W (F, X) + ρ0B · y, and the energy-momentum tensor satisfies

S =
∂L

∂F
(3.61)

From these relations it is therefore clear that the energy-momentum tensor generalizes

the concept of stress as to account for inertia.

3.3.4.2 Spacetime averaging

In this section, a four-dimensional averaging is performed over a representative space-

time domain, under the assumption that separation of time scales holds in addition to

separation of length scales. The representative volume element in the four-dimensional

space (RV4) for the example of the hollow sphere is shown in Fig. 3.5. Again, the results

obtained are completely general and independent of the RVE used.

In analogy to the static case, essential spacetime affine boundary conditions are con-

sidered

y = yM + GradMyMX, on ∂Ω0 (3.62)
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Figure 3.5: Representative spacetime domain at the macroscopic and microscopic level.

where Ω0 = [−τ/2, τ/2] × B0 and B0 is the entire volume enclosed by the outer surface

of the RVE. Equivalently,

y =

 tM

XM

+

 1 0

VM FM

 t

X

 =

 tM + t

XM + VM t+ FMX


Affine boundary conditions in the four-dimensional space also require that the origin

of the spacetime material reference frame is positioned such that

∫
Ω0

X dX = 0 (3.63)

Satisfaction of this relation is essential for the full consistency of the considered two-

scale model. Under these conditions, by repeated use of the divergence theorem, the

spacetime gradient of the four-vector deformation gradient is equal to the macroscopic
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spacetime deformation gradient.

1

|Ω0|

∫
Ω0

yα,B dX =
1

|Ω0|

∫
∂Ω0

yαNB dX

=

[
1

|Ω0|

∫
∂Ω0

NB dX

]
yMα +

[
1

|Ω0|

∫
∂Ω0

XPNB dX

]
yMα,P = yMα,B

(3.64)

Therefore, the proposed four-dimensional boundary conditions seem suitable to estab-

lish the connection between micro and macro-variables in this spacetime framework.

In view of the static results we expect the macroscopic action AM to be defined as

AM [yM(·)] =

∫
ΩM0

1

|Ω0|
A dXM +

∫
∂ΩM0,2

T̄M · yM dXM (3.65)

where ΩM
0 = [tM1 , t

M
2 ]×BM

0 and the microscopic action is

A[y(·)] =

∫
Ω0

LdX (3.66)

where L is the Lagrangian density.

Taking variations of the microscopic action with respect to the macroscopic field

δA =

∫
Ω0

(SαBδyα,B + ρ0Bαδyα) dX

=

∫
Ω0

(−SαB,B + ρ0Bα) δyα dX +

∫
Ω0

(SαBδyα),B dX

=

∫
∂Ω0

SαBNBδyα dX

=

[∫
∂Ω0

SαBNB dX

]
δyMα +

[∫
∂Ω0

SαBNBXP dX

]
δyMα,P

=

[∫
Ω0

SαB,B dX

]
δyMα +

[∫
∂Ω0

TαXP dX

]
δyMα,P

=

[∫
Ω0

ρ0Bα dX

]
δyMα +

[∫
Ω0

(SαB + SαP,PXB) dX

]
δyMα,P

=

[∫
Ω0

ρ0Bα dX

]
δyMα +

[∫
Ω0

(SαB + ρ0BαXB) dX

]
δyMα,P

(3.67)



68

∂A
∂yMα

=

∫
Ω0

ρ0Bα dX (3.68a)

∂A
∂yMα,B

=

∫
Ω0

(SαB + ρ0BαXB) dX (3.68b)

(3.68c)

By rendering the macroscopic action stationary

δAM =

∫
ΩM0

1

|Ω0|

(
∂A
∂yMα

δyMα +
∂A
∂yMα,B

δyMα,B

)
dXM

+

∫
∂ΩM0,2

T̄Mα δy
M
α dXM

=

∫
ΩM0

( 1

|Ω0|
∂A
∂yMα

)
−

(
1

|Ω0|
∂A
∂yMα,B

)
,B

 δyMα dXM

+

∫
∂ΩM0,2

[(
1

|Ω0|
∂A
∂yMα,B

)
NMB + T̄Mα

]
δyMα dXM

(3.69)

the macroscopic equilibrium equations and boundary conditions are derived

(
1

|Ω0|
∂A
∂yMα,B

)
,B

=

(
1

|Ω0|
∂A
∂yMα

)
, in ΩM

0 (3.70a)(
1

|Ω0|
∂A
∂yMα,B

)
NMB = −T̄Mα , on ∂Ω0,2 (3.70b)

In order to identify the suitable definition of the macro-variables in the more conven-

tional three-dimensional space, the previous equations will be rewritten as

S + ρ0B⊗ X =

 ρ0 0

ρ0V + ρ0Bt −P + ρ0B⊗X





69

The equilibrium equations and boundary conditions read

d
dtM

[
1
τ

1
|B0|

∫ τ/2
−τ/2

∫
B0

(ρ0Vi + ρ0Bit) dX dt
]
−
[

1
τ

1
|B0|

∫ τ/2
−τ/2

∫
B0

(PiJ − ρ0BiXJ) dX dt
]
,J

=[
1
τ

1
|B0|

∫ τ/2
−τ/2

∫
B0
ρ0Bi dX dt

]
, in [tM1 , t

M
2 ]×BM

0

1
τ

1
|B0|

∫ τ/2
−τ/2

∫
B0
ρ0 dX dt = ρM0 , on ({tM1 } ∪ {tM2 })×BM

0[
1
τ

1
|B0|

∫ τ/2
−τ/2

∫
B0

(ρ0Vi + ρ0Bit) dX dt
] ∣∣∣

tM=tM1

= ρM0 V̄
1M
i , on {tM1 } ×BM

0[
1
τ

1
|B0|

∫ τ/2
−τ/2

∫
B0

(ρ0Vi + ρ0Bit) dX dt
] ∣∣∣

tM=tM2

= ρM0 V̄
2M
i , on {tM2 } ×BM

0[
1
τ

1
|B0|

∫ τ/2
−τ/2

∫
B0

(PiJ − ρ0BiXJ) dXdt
]
NM
J = T̄Mi , on [tM1 , t

M
2 ]× ∂B0,2

Under constant body forces in time , the equations simplify to

d
dtM

(
ρM0 VM

)
−∇MPM = ρM0 BM , in [tM1 , t

M
2 ]×BM

0

1
|B0|

∫
B0
ρ0 dX = ρM0 , on ({tM1 } ∪ {tM2 })×BM

0

ρM0 VM(tM = tM1 ) = ρM0 V̄1M , on {tM1 } ×BM
0

ρM0 VM(tM = tM2 ) = ρM0 V̄2M , on {tM2 } ×BM
0

PMNM
J = T̄M , on [tM1 , t

M
2 ]× ∂B0,2

where the macroscopic stress tensor and macroscopic body forces are identified with

PM =
1

|Ω0|

∫
Ω0

(P− ρ0B⊗X) dX dt (3.71)

ρM0 BM =
1

|Ω0|

∫
Ω0

ρ0B dX dt (3.72)

and the following relation has been used

1

|Ω0|

∫
Ω0

ρ0Vi dXdt =
1

|Ω0|

∫
B0

∫ τ/2

−τ/2
ρ0ϕi,t dX dt

=
1

|Ω0|

∫
B0

ρ0V
M
i τ dX dt = ρM0 V

M
i

(3.73)

These expressions can be simplified for the particular case of the hollow sphere of

homogeneous material with constant body forces to

PM =
1

|Ω0|

∫
Ω0

P dX dt (3.74)
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ρM0 BM = ρ0(1− f)B (3.75)

where f is the void volume fraction.

An interesting conclusion that is obtained from these derivations is the fact that the

instantaneous effect of the microscopic accelerations cancels out when averaged over time,

in the event of separation of timescales.
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3.4 Time discretization

In order to solve numerically the initial boundary value problem resulting from the multi-

scale dynamic evolution of porous materials, the approach of Radovitzky and Ortiz (1999)

is followed. The methodology consists of a two stage discretization. First the discretiza-

tion in time is performed, under which an equivalent incremental static problem can be

defined, and then the discretization in space is carried out. This initial time discretization

allows the consideration of a wide variety of materials by use of an incremental energy

density. Internal variables Z are used to describe the inelastic processes (Lubliner, 1973),

such as viscoelasticity or plasticity, and the kinetic relations that provide the evolution

law of such internal variables are assumed to derive from a potential. With these consid-

erations, the incremental energy density at time tn+1 is defined as

W (Fn+1; Fn,Zn) = min
Zn+1

[
A(Fn+1,Zn+1)− A(Fn,Zn) + ∆tψ∗

(
Zn+1 − Zn

∆t
,Zn

)]
+ ∆tφ

(
Fn+1 − Fn

∆t
; Fn

) (3.76)

where A(F,Z) is the Helmholtz free energy density, φ(Ḟ,F) is the potential from which

the viscosity stresses derive (Pv = φ,Ḟ), and ψ∗ is the Legendre transform of the inelastic

potential ψ, which provides the flow rule and rate equations attendant to the plastic

process follow. In the case of hyperelastic materials A = W (F) and the incremental

energy density reduces to

W (Fn+1; Fn) = A(Fn+1)− A(Fn) (3.77)

By this procedure, the results obtained in the previous section for hyperelastic mate-

rials are readily applicable under discrete time to materials exhibiting internal processes

such as viscoplastic materials.

In this section, the more general case in which no assumption is made on the micro

and macro time scales is considered, the other case being analogous. Therefore, time is a

common variable to the microstructure and the macroscopic material, and the temporal

discretization is the same for both scales. The spatial discretization is discussed in Section
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3.5.

The time discretization used is based in the theory of variational time integrators (see

for example Lew et al. (2004)). The main idea behind this theory is the approximation

of the action integral as a sum of discrete Lagrangians

A =

∫ t2

t1

L dt ≈
N−1∑
n=0

Ln (3.78)

from which the equations discretized in time are directly obtained. This type of time

integrators has demonstrated great accuracy and superior conservation properties in com-

parison with standard time integration schemes.

For definiteness, Newmark’s algorithm is used to obtain the solution at times t0, ..., tn, tn+1 =

tn+∆t, ... (Newmark, 1959). This scheme derives from a discrete Lagrangian for the New-

mark parameter γ = 1
2

and any β (Kane et al., 2000).

ϕn+1 = ϕn + ∆tϕ̇n + ∆t2
[
(1/2− β)ϕ̈n + βϕ̈n+1

]
ϕ̇n+1 = ϕ̇n + ∆t

[
(1− γ)ϕ̈n + γϕ̈n+1

]
ρ0ϕ̈

n+1 −∇ ·Pn+1 = ρ0B
n+1

(3.79)

For the particular case where β = 0, the method becomes explicit. Both the explicit

case and the implicit are treated in the following subsections.

3.4.1 Implicit dynamics

Equations 3.79 can be rearranged to obtain the following static problem

ρ0

β∆t2
ϕn+1 −∇ ·Pn+1 = ρ0B̄

n+1 (3.80)

where B̄ is the effective body force field.

B̄n+1 = Bn+1 +
1

β∆t2
[ϕn + ∆tϕ̇n + (1/2− β)∆t2ϕ̈n] (3.81)

Radovitzky and Ortiz (1999) reformulated this static problem, resulting from the time

discretization via Newmark’s algorithm, as the minimum of the following potential energy:
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Π[ϕn+1(·)] =

∫
B0

[
1

2

ρ0

β∆t2
|ϕn+1|2 +W (∇ϕn+1)] dV0

−
∫
B0

ρ0B̄
n+1 ·ϕn+1 dX −

∫
∂B02

T̄ n+1 ·ϕn+1 dX

(3.82)

provided the constitutive update of the internal variables, if present, posseses a potential

structure.

Based on this variational structure, spatial averaging of the microscopic potential

energy at equilibrium can be performed to obtain the macroscopic potential at the same

time step. It is of note that essential boundary conditions are assumed on the external

surface of our representative volume element, and therefore the last term attendant to the

imposed tractions is not present at micro level. The macroscopic potential energy then

follows as

ΠM [ϕM,n+1(·)] =

∫
BM0

1

|B0|
Π[ϕ] dXM −

∫
∂BM02

T̄M,n+1 ·ϕM,n+1 dXM (3.83)

Following the same strategy as in the continuous setting, the variations of the micro-

scopic potential energy with respect to the macroscopic quantities are computed

δΠ =

∫
B0

[
ρ0

β∆t2
ϕn+1 · δϕn+1 + Pn+1 : δ∇ϕn+1 − ρ0B̄

n+1 · δϕn+1

]
dX

=

∫
B0

[
ρ0

β∆t2
ϕn+1 −∇ ·Pn+1 − ρ0B̄

n+1

]
· δϕn+1 dX

+

∫
∂B0

Tn+1 · δϕn+1 dX

=

[∫
∂B0

Tn+1 dX

]
· δϕM,n+1 +

[∫
∂B0

Tn+1 ⊗X dX

]
: δ∇MϕM,n+1

=

[∫
B0

∇ ·Pn+1 dX

]
· δϕM,n+1 +

[∫
B0

Pn+1 +∇ ·Pn+1 ⊗X dX

]
: δ∇MϕM,n+1

(3.84)

∂Π

∂ϕM,n+1
=

∫
B0

ρ0

β∆t2
ϕn+1 dX −

∫
B0

ρ0B̄
n+1 dX (3.85)
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∂Π

∂∇MϕM,n+1
=

∫
B0

[
Pn+1 +

(
ρ0

β∆t2
ϕn+1 − ρ0B̄

n+1

)
⊗X

]
dX

=

∫
B0

[
Pn+1 +

(
ρ0ϕ̈

n+1 − ρ0B
n+1
)
⊗X

]
dX

(3.86)

By taking variations of the macroscopic potential energy

δΠM =

∫
BM0

[(
1

|B0|
∂Π

∂ϕM,n+1

)
−∇M ·

(
1

|B0|
∂Π

∂∇MϕM,n+1

)]
· δϕM,n+1 dXM

−
∫
∂BM0 2

[
T̄M,n+1 −

(
1

|B0|
∂Π

∂∇MδϕM,n+1

)
·NM

]
· δϕM,n+1 dXM

(3.87)

the corresponding balance equations and boundary conditions can be obtained

1

β∆t2

[
1

|B0|

∫
B0

ρ0ϕ
n+1 dX

]
−∇M ·

[
1

|B0|

∫
B0

[
Pn+1 +

(
ρ0ϕ̈

n+1 − ρ0B
n+1
)
⊗X

]
dX

]
=

[
1

|B0|

∫
B0

ρ0B̄
n+1 dX

]
, in BM

0

(3.88)

[
1

|B0|

∫
B0

(
Pn+1 + ρ0(ϕ̈n+1 −Bn+1

)
⊗X) dX

]
·NM = T̄M,n+1, on ∂BM

0,2 (3.89)

The macroscopic stresses can be identified as

PM,n+1 =
1

|B0|

∫
B0

(
Pn+1 + ρ0(ϕ̈n+1 −Bn+1)⊗X

)
dX (3.90)

which for the case of the hollow sphere of homogeneous material under constant body

forces reduces to

PM,n+1 =
1

|B0|

∫
B0

(Pn+1 + ρ0ϕ̈
n+1 ⊗X) dX (3.91)

The expected result in the discrete setting is therefore recovered.
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3.4.2 Explicit dynamics

For the case in which β = 0, the explicit discretized equilibrium equations become

2ρ0

∆t2
(
ϕn+1 −ϕn+1,pre

)
−∇ ·Pn − ρ0B

n = 0 (3.92)

where ϕn+1,pre = ϕn + ∆tϕ̇n. The equations can also be written in variational form, as

the stationary point of the following potential energy

Π[ϕn+1(·)] =

∫
B0

[
ρ0
|ϕn+1 −ϕn+1,pre|2

∆t2
+ Pn : ∇ϕn+1 − ρ0B

n ·ϕn+1

]
dX (3.93)

Similarly to the static continuous derivations, the macroscopic potential energy reads

ΠM [ϕM,n+1(·)] =

∫
BM0

1

|B0|
Π[ϕ] dXM −

∫
∂BM02

T̄M,n+1 ·ϕM,n+1 dXM (3.94)

By taking variations of the microscopic potential energy with respect to the macro-

scopic quantities

δΠ =

∫
B0

[
2ρ0
ϕn+1 −ϕn+1,pre

∆t2
· δϕn+1 + Pn : δ∇ϕn+1 − ρ0B̄

n · δϕn+1

]
dX

=

∫
B0

[
2ρ0
ϕn+1 −ϕn+1,pre

∆t2
−∇ ·Pn − ρ0B̄

n

]
· δϕn+1 dX

+

∫
∂B0

Tn · δϕn+1 dX

=

[∫
∂B0

Tn dX

]
· δϕM,n+1 +

[∫
∂B0

Tn ⊗X dX

]
: δ∇MϕM,n+1

=

[∫
B0

∇ ·Pn dX

]
· δϕM,n+1 +

[∫
B0

Pn +∇ ·Pn ⊗X dX

]
: δ∇MϕM,n+1

(3.95)

the following relations are obtained

∂Π

∂ϕM,n+1
=

∫
B0

2ρ0
ϕn+1 −ϕn+1,pre

∆t2
dX −

∫
B0

ρ0B̄
n dX (3.96)

∂Π

∂∇MϕM,n+1
=

∫
B0

[
Pn + ρ0

(
2
ϕn+1 −ϕn+1,pre

∆t2
− B̄n

)
⊗X

]
dX (3.97)
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Rendering the macroscopic potential energy stationary results in the Euler-Lagrange

equations of the motion of the macroscopic body

[
1

|B0|

∫
B0

2ρ0
ϕn+1 −ϕn+1,pre

∆t2
dX

]
−

∇M ·

{
1

|B0|

∫
B0

[
Pn + ρ0

(
2
ϕn+1 −ϕn+1,pre

∆t2
− B̄n

)
⊗X

]
dX

}

=

[
1

|B0|

∫
B0

ρ0B̄
n dX

]
, in BM

0

(3.98)

[
1

|B0|

∫
B0

(
Pn + ρ0

(
2
ϕn+1 −ϕn+1,pre

∆t2
− B̄n

)
⊗X

)
dX

]
·NM = T̄M,n+1, on ∂BM

0,2

(3.99)

The macroscopic stresses can be identified as

PM,n+1 =
1

|B0|

∫
B0

[
Pn + ρ0

(
2
ϕn+1 −ϕn+1,pre

∆t2
− B̄n

)
⊗X

]
dX (3.100)

recovering again the expected result.
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3.5 Spatial discretization of the hollow sphere

The solution of a boundary value problem defined on a hollow sphere cannot be obtained

in a closed analytical form except in very simplified situations. The central objective of

this section is to develop an efficient method of discretization adapted to the analysis of

hollow spheres enabling consideration of general materials and loading conditions.

To resolve the fields in space, a Ritz-Galerkin method is adopted (Brenner and Scott,

2000). The specific approximation space that is employed relies on the use of local spher-

ical coordinates. Piecewise polynomials are used for the interpolation of the radial de-

pendence of the fields and real spherical harmonics for the angular dependence (Sansone,

1959). The final position in cartesian coordinates of a material point of coordinates

(R,Θ,Φ) is approximated by

xi(R,Θ,Φ) =
∑
a

xiaNa(R,Θ,Φ) =
Nr∑
r=0

Nl∑
l=0

l∑
m=−l

xirlmRr(R)Ylm(Θ,Φ) (3.101)

where Na is the shape function corresponding to coefficient a, and xa is the value of

such coefficient. By the multiplicative decomposition of the shape function according to

the method of separation of variables, the final discretization of the sphere results in an

ensemble of spherical shell layers. The position of each layer is readily determined by the

δ-Kronecker property of the radial shape functions, while inside each individual layer, the

coefficients xa do not represent the displacement of any particular material point. Each

coefficient xa is identified with a triplet of integers [r, l,m]. The first integer is indicative

of the spherical shell while the other two define the shape function Ylm (real spherical

harmonics) over the surface of the layer.

A similar interpolation can be used for the displacement field in linearized kinemat-

ics, which will be carried out for numerical verification purposes. The derivations here

presented are limited though to the finite strain formulation, which is the case of interest.

The real spherical harmonics have the following expression (Sansone, 1959)

Ylm(Θ,Φ) =


Nl0P

0
l (cos Θ) m = 0

√
2NlmP

m
l (cos Θ) cos(mΦ) m > 0

√
2Nl|m|P

|m|
l (cos Θ) sin(|m|Φ) m < 0
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where Pm
l are the associated Legendre functions and

Nlm =

√
(2l + 1)

4π

(l −m)!

(l +m)!
(3.102)

Real spherical harmonics constitute a complete orthogonal basis of the Hilbert space of

square-integrable functions on the sphere (Sansone, 1959), which is an essential property

for the formulation ∫ π

Θ=0

∫ 2π

Φ=0

YlmYl′m′ sin ΘdΘdΦ = δll′δmm′ (3.103)

In addition, finite rotations are exactly represented within the interpolation, which

results in material-frame indifference and preserves the symmetry groups of the material.

By contrast, a conventional finite-element discretization breaks material symmetries in

general. This result is based on the following rotation property of the spherical harmonics

(Byerly, 1893, Su and Coppens, 1994)

Ylm(Θ′,Φ′) =
l∑

m′=−l

Ylm′(Θ,Φ)Dm′m(α, β, γ) (3.104)

where Dm′m is a matrix that depends on the rotation, represented for example by means

of the Euler angles α, β and γ.

In Fig. 3.6, different final configurations that can be obtained with the spherical

harmonics representation are shown. The deformation mapping results in a translation of

the undeformed configuration for degree l = 0 and in an affine transformation for degree

l = 1. Higher values of the degree lead to less intuitive deformations.

The number of degrees of freedom of the proposed discretization, as a function of the

number of layers in the radial direction Nr and the order of the expansion in the spherical

harmonics Nl, is shown in Fig. 3.7

Typical meshes that are used in the computations involve an expansion of the spherical

harmonics of degree 1 or 3, which allow representation of the deformation within each

layer with only 4 and 7 nodes, respectively. Similar numbers of degrees of freedom for

more standard finite elements would lead to a discrete representation of the deformed

spherical surface by a tetrahedron or a cube.



79

l =  1

l =  3

l =  2

Figure 3.6: Examples of deformed shapes that can be obtained through a spherical har-
monic expansion of the displacement field until degree l.
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Figure 3.7: Number of degrees of freedom of the finite element formulation of the hollow
sphere as a function of the number of layers in the radial direction and the order of the
expansion in spherical harmonics.
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3.5.1 Boundary conditions

The spherical harmonics do not have the Kronecker-δ property. However, an explicit ana-

lytical expression of the coefficients of the external layer as a function of the macroscopic

deformation mapping ϕM and deformation gradient FM is derived. As can be seen, affine

boundary conditions, which are the ones of interest (see Eq. 3.9), can be represented

exactly by using coefficients solely related to the spherical harmonics of degree 0 and 1.

These expressions are here provided

xirlm =



√
4πϕMi [r, l,m] = [Nr, 0, 0]

−
√

4π
3
b FM

i2 [r, l,m] = [Nr, 1,−1]

√
4π
3
b FM

i3 [r, l,m] = [Nr, 1, 0]

−
√

4π
3
b FM

i1 [r, l,m] = [Nr, 1, 1]

0 otherwise

By uniqueness of the values of the coefficients, a forward proof suffices to show that the

above values of the coefficients recover the boundary conditions exactly. The derivation

makes use of the Kronecker-δ property of the radial shape functions and the orthogonality

of the spherical harmonics.

xi(b,Θ,Φ) = xiNr00Y00 + xiNr1−1Y1−1 + xiNr10Y10 + xiNr11Y11

= ϕMi P
0
0 (cos Θ)− bFM

i2 P
1
1 (cos Θ) sin Φ + bFM

i3 P
0
1 (cos Θ)− bFM

i1 P
1
1 (cos Θ) cos Φ

= ϕMi + FM
i2 b sin Θ sin Φ + FM

i3 b cos Θ + FM
i1 b sin Θ cos Φ

= ϕMi + FM
ij Xj(b,Θ,Φ) (3.105)
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3.5.2 Quadrature rule

In order to perform numerical evaluations over the hollow sphere, a special quadrature

rule that provides exact integration of the stiffness matrix, the mass matrix and the

void volume fraction has been developed. The proposed integration scheme consists of

the cartesian product of three quadrature rules, one for each of the three directions in

spherical coordinates.

- For the radial direction (R), the usual Gauss Legendre quadrature rule is used to

integrate polynomials exactly (Stroud, 1974).

- For the azimuthal direction (Φ), equally spaced quadrature points with even weights

are employed. This quadrature rule is exact for trigonometric polynomials in the

interval [0, 2π], due to the discrete orthogonality of the exponentials (Stroud, 1974).

∫ 2π

0

eimΦdΦ =
2π

n

n−1∑
k=0

e
2πikm
n , |m| < n (3.106)

- For the polar angle (Θ), a Gauss Legendre quadrature rule under the transformation

x = cos θ is used. This quadrature rule cannot integrate exactly all associated

Legendre functions in the polar direction over the interval [0, π]. However, the

cartesian product of the three quadrature rules gives exact integration of the stiffness

matrix, mass matrix and void volume fraction. The proof is based on the observation

that when integration along the polar coordinate is not exact, integration over the

azimuthal direction results in a zero value. The details of the proof can be found in

appendices A, B and C.1.

The number of quadrature points needed along each coordinate for exact integration

of the stiffness matrix is

Nqr = 2Nr

NqΘ = Nl + 2

NqΦ = 2Nl + 3

(3.107)

where the use of piecewise linear shape functions for the radial direction has been assumed.

Nr is the number of elements in the radial direction and Nl the highest degree of the
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spherical harmonics employed in the expansion. If polynomials of degree d were to be

used in the radial direction, a total number of quadrature points Nqr ≥ Nr
d+1

2
would be

required for exact integration.

On the other hand, exact integration of the mass matrix requires

Nqr = 3Nr

NqΘ = Nl + 1

NqΦ = 2Nl + 1

(3.108)

and exact integration of the void volume fraction demands

NqΘ ≥
3Nl

2

NqΦ = 3Nl + 1

(3.109)

3.5.3 Elastic moduli

If an implicit method is used for the time discretization or if a static problem is to be

solved, it is then desirable to have an expression of the macro-tangent moduli in order

to use non-linear solvers such as Newton-Raphson. In the following, an exact formula

of the tangent moduli is provided for the static case under no body forces. It is of note

that Newton-Raphson can be used with an approximate tangent moduli, and therefore

the obtained result is also of practical use under dynamic conditions. The derivation uses

a similar strategy than the one employed by Ortiz and Stainier (1999).

In the discrete setting, the micro-energy is a function of a priori unknown coefficients

Q belonging to the interior of the RVE and the macro-deformation gradient FM through

the boundary conditions. Under sufficient differentiability, the degrees of freedom in

equilibrium Q∗ satisfy
∂W

∂Q
(Q∗,FM) = 0 (3.110)
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Therefore, the desired tangent moduli can be obtained as follows

d2WM

dFMdFM
=

1

|B0|

∫
B0

d2W

dFMdFM
dX

=
1

|B0|

∫
B0

d

dFM

[
∂W

∂Q

∂Q∗

∂FM
+

∂W

∂FM

]
dX

=
1

|B0|

∫
B0

d

dFM

(
∂W

∂FM

)
dX

=

[
1

|B0|

∫
B0

∂2W

∂Q∂FM
dX

]
∂Q∗

∂FM
+

[
1

|B0|

∫
B0

∂2W

∂FM∂FM
dX

]
(3.111)

By differentiating Eq. 3.110, the value of ∂Q∗

∂FM
can be obtained

[
1

|B0|

∫
B0

∂2W

∂Q∂Q
dX

]
∂Q∗

∂FM
+

[
1

|B0|

∫
B0

∂2W

∂FM∂Q
dX

]
= 0 (3.112)

leading to the desired final expression

d2WM

dFMdFM
=

[
1

|B0|

∫
B0

∂2W

∂FM∂FM
dX

]
−
[

1

|B0|

∫
B0

∂2W

∂Q∂FM
dX

] [
1

|B0|

∫
B0

∂2W

∂Q∂Q
dX

]−1 [
1

|B0|

∫
B0

∂2W

∂FM∂Q
dX

] (3.113)

The required second derivatives can be obtained from the micro-tangent moduli

∂2W

∂FM
iJ ∂F

M
kL

=
∂2W

∂FmM∂FnN

∂FmM
∂FM

iJ

∂FnN
∂FM

kL

∂2W

∂Qia∂FM
kL

=
∂2W

∂FmM∂FnN

∂FmM
∂Qia

∂FnN
∂FM

kL

(3.114)

where the subindex a is associated with the coefficient xa,
∂FiJ
∂Qja

= δijNa,J and ∂FiJ
∂FMkL

can

readily be derived from the boundary conditions (Eq. 3.5.1).
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3.6 Verification

This section examines the convergence of the macroscopic energy derived from the hollow

sphere model presented in the foregoing. Three cases for which an analytic solution is

found are analyzed as well as three more general ones. In all the calculations shown, linear

interpolation is used in the radial direction. The expected rate of convergence in such

direction is then expected to be quadratic. It is noteworthy that the rate of convergence

of the spherical harmonics is extremely fast, and that the global convergence rate of the

method is controlled by the radial interpolation. Therefore, only convergence with respect

to the number or radial elements is represented in the following. This suggests that using

spectral interpolation in the radial direction might result in a super-convergent method.

However, this enhancement is not pursued here due to the lack of the Kronecker-δ property

of such shape functions and the desire to use the model for the volumetric expansion of

porous plastic materials.

3.6.1 Static volumetric deformation of a porous Hookean mate-

rial

The first case to be investigated is the volumetric deformation of a hollow sphere of

Hookean isotropic material under static conditions. The analytic solution is first obtained

and the convergence results follow.

3.6.1.1 Analytic solution

By symmetry, the displacement field is of the form

u1 = f(R)X1

u2 = f(R)X2

u3 = f(R)X3

(3.115)

where R2 = X2
1 + X2

2 + X2
3 . This implies that the solution can be represented exactly

with an expansion in spherical harmonics up to degree 1.

The equilibrium equations under static loading with no body forces are σij,j = 0, where
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σij = λεkkδij + 2µεij

εij =
1

2
(ui,j + uj,i)

(3.116)

for the material chosen. Under the kinematic assumption 3.115, the equilibrium equations

reduce to

4f ′(R) + f ′′(R)R = 0 (3.117)

which has a general solution of the form

f(R) = A− 1

BR3
(3.118)

The constants A and B can be obtained by imposing stress free boundary conditions on

the inner surface (R = a) and uR(R = b) = ε̄b on the outer surface

B =
1

a3ε̄

[
1− a3

b3
− 3

λ+ 2µ

3λ+ 2µ

]
A = ε̄+

1

Bb3

(3.119)

The microscopic energy density can then be computed exactly by

W =
1

2
λ(Tr(ε))2+µεijεij =

λ

2
[3f(R) + f ′(R)R]

2
+µ
[
3f 2(R) + 2f(R)f ′(R)R + f ′2(R)R2

]
(3.120)

and the corresponding macroscopic quantity by

WM =
1

|B0|

∫
B0

W dX =

(
1− a3

b3

)[
9
λ

2
A2 + 3µ

(
A2 +

2

B2a3b3

)]
(3.121)

3.6.1.2 Convergence analysis

In Fig. 3.8 the error of the macroscopic energy with respect to the analytic value just

derived is represented against the number of nodes in the radial direction. The numerical

values are computed using an expansion of degree 1 of the spherical harmonics, which

was previously shown to be sufficient to represent exactly the volumetric deformation.
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The linear fit to the points in the asymptotic regime indicates the expected quadratic

convergence rate in the energy.

15
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- Infinitesimal deformations
- Hookean isotropic material (λ, μ)
- Volumetric deformation
- Static and no body forces
- Analytic solution
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Figure 3.8: Error in the energy as a function of the number of elements in the radial
direction. Parameters a = 1, b = 2, λ = 1, µ = 1, Nl = 1, ε11 = ε22 = ε33 = 0.05

3.6.2 Static axisymmetric deformation of a porous Hookean ma-

terial

The second case to be analyzed is the axisymmetric deformation of a hollow sphere of

Hookean isotropic material, for which an analytic solution was also found.

3.6.2.1 Analytic solution

Taking X3 to be the axis of symmetry, the displacement field is expected to be of the

form

uR = f(R) cos2 Θ + g(R) sin2 Θ

uΘ = h(R) sin Θ cos Θ

uΦ = 0

(3.122)
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which in cartesian coordinates reads

u1 =

[
f(R) + h(R)

R
cos2 Θ +

g(R)

R
sin2 Θ

]
X1

u2 =

[
f(R) + h(R)

R
cos2 Θ +

g(R)

R
sin2 Θ

]
X2

u3 =

[
f(R)

R
cos2 Θ +

g(R)− h(R)

R
sin2 Θ

]
X3

(3.123)

The solution therefore only involves an expansion in spherical harmonics up to degree 3.

The linear independent equilibrium equations in spherical coordinates are

∂σRR
∂R

+
1

R

∂σRΘ

∂Θ
+

cot Θ

R
σRΘ +

1

R
(2σRR − σΘΘ − σΦΦ) = 0

∂σRΘ

∂R
+

1

R

∂σΘΘ

∂Θ
+

3

R
σRΘ +

cot Θ

R
(σΘΘ − σΦΦ) = 0

(3.124)

which provide three linearly independent equations for f(R), g(R) and h(R)

λ

[
d2f

dR2
+

2

R

df

dR
− 2

R2
f +

2

R

dh

dR
− 2

R2
h

]
+ 2µ

[
d2f

dR2
+

2

R

df

dR
+

1

R

dh

dR
+

2g − 4f − 3h

R2

]
= 0

λ

[
d2g

dR2
+

2

R

dg

dR
− 1

R

dh

dR
+
h− 2g

R2

]
+ 2µ

[
d2g

dR2
+

2

R

dg

dR
− 1

2R

dh

dR
+
f − 3g + 3h/2

R2

]
= 0

2λ

R

[
dg

dR
− df

dR
+

2g − 2f − 3h

R

]
+ µ

[
d2h

dR2
+

2

R

dh

dR
+

2

R

dg

dR
− 2

R

df

dR
+

8g − 8f − 12h

R2

]
= 0

(3.125)

Stress free boundary conditions on the inner surface and displacement boundary con-

ditions on the outer surface are applied

λ

(
df

dR
+

2f + 2h

a

)
+ 2µ

df

dR

∣∣∣
R=a

= 0

λ

(
dg

dR
+

2g − h
a

)
+ 2µ

dg

dR

∣∣∣
R=a

= 0

dh

dR
+

2g − 2f − h
a

∣∣∣
R=a

= 0

f(b) = bε̄2

g(b) = bε̄1

h(b) = b(ε̄1 − ε̄2)

(3.126)
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As expected, the equilibrium equations for the volumetric case are recovered when

ε̄1 = ε̄2. The effective energy density of the representative volume element can be com-

puted with

WM =
1

10b3
(λWM

1 + µWM
2 ) (3.127)

where

WM
1 =

∫ b

a

R2

[
3

(
df

dR
+

2f

R
+

2h

R

)2

+ 8

(
dg

dR
+

2g

R
− h

R

)2
]
dR

+

∫ b

a

R2

[
4

(
df

dR
+

2f

R
+

2h

R

)(
dg

dR
+

2g

R
− h

R

)]
dR

WM
2 =

∫ b

a

R2

[
6

(
df

dR

)2

+ 16

(
dg

dR

)2

+ 8
df

dR

dg

dR
+ 12

(
f + h

R

)2

+ 16

(
g − h
R

)2
]
dR

+

∫ b

a

R2

[
16
( g
R

)2

+ 8
f + h

R

2g − h
R

+ 2

(
dh

dR
+

2g

R
− 2f

R
− h

R

)2
]
dR

(3.128)

3.6.2.2 Convergence analysis

The convergence analysis is performed by using an expansion to degree 3 in the spherical

harmonics and a varying number of nodes on the radial direction. The error in the energy

with respect to the derived analytic energy, versus the number of spherical layers used in

the radial discretization is represented in Fig. 3.9. The figure shows a convergence rate

which is very close to quadratic.

3.6.3 Static volumetric deformation of a porous neo-Hookean

material

The third analytically solvable problem presented here is the volumetric deformation of

a hollow sphere of neo-Hookean material.



89

16

Case 2:
- Infinitesimal deformations
- Hookean isotropic material (λ, μ)
- Axisymmetric deformation
- Static and no body forces
- Analytic solution

Parameters:

a=1, b=2, λ=1, μ=1, (Nl =3)


















1.000
005.00
0005.0


10 -2

10 -1

100

101

E
rr

o
r 

en
er

g
y 

(%
)

100 101 102

Nr

Numerical
WM = 6.26N r

-1.97

VI. Verification

b
a

LINEAR ELASTICITY

Figure 3.9: Error in the energy as a function of the number of elements in the radial
direction. Parameters a = 1, b = 2, λ = 1, µ = 1, Nl = 3, ε11 = ε22 = 0.05, ε33 = 0.1.

3.6.3.1 Analytic solution

By symmetry, the deformation mapping is expected to be of the form

x1 = f(R)X1

x2 = f(R)X2

x3 = f(R)X3

(3.129)

The constitutive equation used for the compressible neo-Hookean material is

P = (λ log J − µ)F−T + µF (3.130)

where J = det(F ).

The equilibrium equation (PiJ,J = 0) results, then, in

[
(λ+ µ)− λ log(f 3 + f 2f ′R)

]
(4f 2f ′+2ff ′2R+f 2f ′′R)f 2+µ(f 3+f 2f ′R)2(4f ′+f ′′R) = 0

(3.131)

Stress free boundary conditions on the inner surface and displacement boundary con-
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ditions on the outer surface give

P11 =
λ log[f 3(a) + f 2(a)f ′(a)a]− µ

f 3(a) + f 2(a)f ′(a)a
f 2(a) + µ[f(a) + f ′(a)a] = 0

f(b) = F̄

(3.132)

Once the function f(R) has been computed, the macroscopic energy density is

WM =
1

4
3
πb3

∫ b

a

∫ π

0

∫ 2π

0

W (R)R2 sin ΘdRdΘdΦ =
3

b3

∫ b

a

W (R)R2dR (3.133)

with

W (R) =
1

2
λ(log J)2 − µ log J +

1

2
µ(TrC − 3)

=
1

2
λ[log(f 3 + f 2f ′R)]2 − µ log(f 3 + f 2f ′R) +

1

2
µ(3f 2 + f ′2R2 + 2ff ′R− 3)

(3.134)

3.6.3.2 Convergence analysis

Convergence towards the analytic solution is shown in Fig. 3.10. The results indicate

close to ideal convergence also for this nonlinear test case.
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3.6.4 Static arbitrary deformation of a porous neo-Hookean ma-

terial

The next case to be investigated is the arbitrary deformation of a porous neo-Hookean

material. Fig. 3.11 shows the numerical results together with the fit in the asymptotic

regime. Again, close to ideal convergence is recovered. The converged energy used for the

computation of the error is a result from the fit.
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3.6.5 Static deformation of a porous J2-plastic material

The last static convergence analysis under static conditions is for a porous plastic material

in the finite kinematic framework. In particular, aluminum with power law hardening

and J2 isotropic plasticity law is used (K = 67.5 GPa, σy = 276 MPa, n = 0.075). An

uniaxial deformation is applied to the hollow sphere. Fig. 3.12 shows close to quadratic

convergence rate.
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3.6.6 Dynamic volumetric deformation of a porous neo-Hookean

material. Explicit dynamics formulation.

In this section the convergence of the explicit dynamic code is examined both in time and

space, without separation of temporal scales. The spherical expansion of a hollow sphere

under a constant true strain rate with fixed origin is the test case considered.

In Fig. 3.13 the chosen time step is shown to provide convergent results, when com-

pared with the solution obtained with a lower value of the time step. The time step was

selected as to satisfy the CFL condition, necessary for convergence (Courant et al., 1928).

In the event of volumetric deformation, the mesh size is unambiguous and given by the

radial mesh size h = b−a
Nr

.

The expansion is performed at a true strain rate of 650000 s−1, and the material of

choice is a neo-Hookean porous material with parameters listed in Table 3.1. It is of note

that in dynamics the problem lacks scale invariance and both, the void volume fraction

and the void size, are important parameters.

With a time step proportional to the CFL condition, and therefore to the mesh size, the

number of elements in the radial direction is increased in order to obtain the correspondent

convergence curve. Fig. 3.14 shows the expected rate of convergence.
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Table 3.1: Material properties of the porous neo-Hookean material.

E (MPa) ν a(µ m) b(µ m) ρ0 (kg/m3)
69 0.48 1 2 1104.72
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Figure 3.13: Stress-strain curve for a porous neo-Hookean material (Table 3.1) subjected
to volumetric deformation. Comparison of two mesh sizes and two time steps.
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Due to the fact that the expansion is performed at constant true strain rate, the

radial acceleration of the outer nodes is zero. Therefore, the acceleration of the inner

material points is expected to oscillate around zero leading to a stress-strain curve that

oscillates with respect to the static solution. Fig. 3.15 shows the material behavior for

three different strain rates compared to the static definition of macroscopic stress. The

oscillations have an amplitude that decreases, as expected, when the applied velocity is

reduced. The material is assumed to be fully elastic, and therefore the oscillations do not

decay with respect to time.
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Figure 3.15: Material response under spherical expansion at constant strain rate. Com-
parison to static solution.



95

3.7 Material point calculations

In this section the influence of porosity in several materials under various types of loading

is analyzed.

3.7.1 Static

First the static problem, which is characterized by scale invariance, will be considered.

Therefore, the void volume fraction is the only quantity needed to identify the geometry

of the problem.

3.7.1.1 Elastic material

The process of sudden formation of voids, called cavitation, in rubber and elastomers

has been the source of many studies. Experimentally Gent and Lindley (1958) observed

the existence of a critical value of the hydrostatic tension above which cavitation occurs.

The observed instability is attributed to the growth of preexistent defects in the material

and is here shown numerically with the hollow sphere model. As a common hyperelastic

model for rubber-like materials, a neo-Hookean material is used for the matrix of the

hollow sphere. The following strain energy density for the compressible extension is used

W =
λ

2
(log J)2 − µ log J +

1

2
µ(Tr(C)− 3) (3.135)

leading to the following relation between the first Piola Kirchhoff stress tensor and the

deformation gradient

P = (λ log J − µ) F−T + µF (3.136)

The value of λ
µ

= 24 is chosen, which corresponds to an almost incompressible material

with Poisson’s ratio of ν = 0.48.

The porous material response under varying initial void volume fraction is explored for

several cases of monotonic loading: volumetric deformation, uniaxial strain, uniaxial stress

and simple shear. It is of note that cavitation is not only dependent on the hydrostatic

component of the load but it depends on the entire state of applied load (Chang et al.,
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1993).
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Figure 3.16: Volumetric expansion response for different void volume fractions. The
numerical solutions are obtained with Nr = 10 and Nl = 1. (a) Evolution of the pressure.
(b) Evolution of the void volume fraction.

The results for the volumetric expansion are presented in Fig. 3.16. The true stress is

represented versus the true strain. Computations are done though in the finite kinematic

framework. As can be observed, the response of the material differs remarkably if one

allows for the material to cavitate or not. The blue curve labeled as f = 0.0% represents

the constitutive law for the non-porous neo-Hookean material considered (Eq. 3.7.1.1).

The remaining continous curves correspond to the numerical solutions of the hollow sphere

domain with non-vanishing initial void fraction, indicated in the legend. As expected,

the material softens as the initial void volume fraction increases. A less intutitive fact

is the existence of the critical pressure, reported experimentally, that the material can

sustain. If this value is surpassed, the cavity would simply burst. In reality, cracks

develop at the inner surface when the maximum extensibility of the rubber is attained

(Gent, 1990). This phenonmenom becomes abrupt as the void volume fraction tends to

zero (see Fig. 3.16(b)), and has mathematically been explained via a bifurcation model

(Ball, 1982, Williams and Schapery, 1965, Chou-Wang and Horgan, 1989, Henao, 2009,

Lopez-Pamies, 2009, Henao and Mora-Corral, 2010). See for example the review paper

of Horgan and Polignone (1995). Physically, the bifurcation corresponds to a transition

between the load being carried out by incompressibility (or quasi-incompressibility in our

case) and the accommodation of the deformation by void growth. For an incompressible
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material, the analytic solution for a finite void in an infinite medium, or equivalently, an

infinitesimal void in a finite incompressible sphere (recall the scale invariance of the static

problem), can easily be found (see for instance Henao (2009))

σM11

µ
=

2

FM
11

+
1

2(FM
11 )4

(3.137)

where FM
11 = FM

22 = FM
33 by spherical symmetry, and σM11 = σM22 = σM33 . The well known

critical value of the normalized stress 5/2 is recovered at the origin.

The same numerical experiments for uniaxial strain, uniaxial stress and simple shear

are shown in Fig. 3.17. Cavitation occurs, as expected, under uniaxial strain. The void

volume fraction does not experience such a sudden increase under uniaxial stress or simple

shear. However, its initial value plays a non-negligible softening role for high values of

the void fraction.

3.7.1.2 Plastic material

In the previous section it was highlighted that a critical pressure of value σMm /µ = 5/2, or

equivalently σMm /E = 5/6, would make an incompressible neo-Hookean material cavitate.

A simple calculation indicates that a sphere of perfectly plastic material with an infinites-

imal void would start yielding in the inner surface according to the von Mises criterion

when σMm = 2
3
σY (Lubliner, 1990). For the plastic material to cavitate elastically, the

yield strength would therefore need to exceed the critical value σY /E = 5/4. Engineering

metals, though, have a Young’s modulus that is several orders of magnitude higher than

the yield strength, and therefore plasticity plays a crucial role in the growth of incipient

voids. Cavitation in elastic-plastic solids has been studied by Huang et al. (1991) and

Hou and Abeyaratne (1992) amongst others.

Similarly to the static case, the material response under several loading conditions

is analyzed for several void volume fractions. Material properties of a typical aluminum

(see Table 3.2) are used for the matrix of the hollow sphere, where E, ν, σY and n are,

respectively, the Young’s modulus, the Poisson’s ration, the yield stress and the hardening

exponent.

Fig. 3.18 shows the true stress versus true strain response under a volumetric expan-

sion. Plasticity starts in the interior of the void and then propagates outwards. Only after
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Figure 3.17: Response for different void volume fractions and different loading conditions.
The numerical solutions are obtained with Nr = 10 and Nl = 1. (a) Uniaxial strain
response. (b) Evolution of the void volume fraction under uniaxial strain. (c) Uniaxial
stress response. (d) Evolution of the void volume fraction under uniaxial stress. (e)
Simple shear response. (f) Evolution of the void volume fraction under simple shear.
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Figure 3.18: Volumetric expansion response for different void volume fractions. The
numerical solutions are obtained with Nr = 10 and Nl = 1. (a) Evolution of the pressure.
(b) Evolution of the void volume fraction.

the hollow sphere becomes fully plastic (point indicated with an ‘x’ in the corresponding

curves), it can expand with low stress. However, at this point, the void would be under

the influence of the plastic zone of the neighboring void, and interaction between voids

would become important. Such an influence cannot be captured by the present model in

which a single cavity is considered, and another type of model would be more suitable to

appropriately capture the last stage of growth and coalescence.

The material response under uniaxial strain, uniaxial stress and simple shear is shown

in Fig. 3.19. As can be observed, the presence of voids has an important impact on the

yield surface under all loading conditions. Particularly, volumetric stresses, which do not

influence the yield of an undamaged material, produce yielding in the material when voids

are present.

Gurson (1977a) provided an approximate analytical expression of the yield function

for porous material with a rigid perfectly plastic matrix. Gurson’s analytical expression

is compared in the following with the yield locus determined numerically with the hollow

sphere model. First, a rigid perfectly plastic material is used, and the macroscopic stresses

leading to initial yield in the domain are shown in Fig. 3.20. Gurson’s yield surface is

represented in a continuous line, while the numerical computations of initial yield for

different values of triaxiality are represented with discrete circles. The theoretical value

of initial yield under volumetric deformation of the representative volume element can
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Figure 3.19: Response for different void volume fractions and different loading conditions.
(a) Uniaxial strain response. (b) Evolution of the void volume fraction under uniaxial
strain. (c) Uniaxial stress response. (d) Evolution of the void volume fraction under
uniaxial stress. (e) Simple shear response. (f) Evolution of the void volume fraction
under simple shear.
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easily be computed, giving

σMm =
2

3
σY (1− f) (3.138)

Such value has been represented with a red diamond in the figure, verifying the numerical

results.
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Figure 3.20: Initial yield of the representative volume element with zero and finite void
volume fraction, compared to Gurson’s yield surface. Parameters a = 1, b = 2, Nr =
10, Nl = 1. The red diamond on the x-axis indicates the analytical solution for initial
yield of a rigid perfectly plastic hollow sphere.

However, Gurson assumed in his analytical derivations that the hollow sphere had fully

yielded. This definition of macroscopic yield is used in the following although initial yield

occurs much earlier as is seen from the previous figure. Due to the numerical instabilities

arising from perfect plasticity, material properties of a typical aluminum, shown in Table

3.2, are used. In Fig. 3.21, Gurson’s yield surface (continuous line) is compared with the

macroscopic stresses in the event of full yielding of the hollow sphere. Due to the strain

hardening, the yield stress varies through the thickness. In order to account for that effect,

the macroscopic equivalent stress and pressure are normalized with the minimum (‘x’

symbols) and the maximum (‘o’ symbols) microscopic yield stress of each configuration.

The colors indicate the void volume fraction in a stress-free configuration. When full

yielding is attained, the void has grown with respect to its initial size. The final void
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volume fraction is dependent on the axisymmetry of the deformation, and the values

range for most of the performed numerical examples (for initial f = 12.5%) from 13% to

17%. The two points that clearly stand out of the theoretical prediction correspond to

conditions close to uniaxial strain and have a final void volume fraction of 30%. Gurson’s

estimate has been plotted as a dotted line for this value, showing in this case, as well,

reasonable agreement with the numerical calulations.
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Figure 3.21: Gurson’s model (continuous lines) versus numerical predictions (discrete
symbols) of complete yield of the hollow sphere. Stress measures normalized with respect
to the minimum (‘x’ symbols) and the maximum (‘o’ symbols) microscopic yield stress
attained in the domain.
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Figure 3.22: Evolution of a hollow sphere of 12.5% void volume fraction under uniaxial
strain.
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3.7.2 Dynamic

3.7.2.1 Explicit dynamics

As was seen in Section 3.6.6, when the material point corresponding to a hollow sphere is

subjected to a volumetric deformation under a constant true strain rate, the time average

of the macroscopic stresses correspond to the static definition of macro-stress. In order

to view the effects of microdynamics on void growth, the hollow sphere is here deformed

under constant ε̈ = 1012s−2. The imposed deformation gradient on the boundary is then

F11 = F22 = F33 = exp
(

1
2
t2ε̈
)
.

The material of choice is of neo-Hookean type with properties indicated in Table 3.3.

The hollow sphere is expanded until ε = 0.1, a value that is reached in 0.3 µs. If such

deformation were to be obtained at a constant strain rate, that would imply a speed of

6.7m/s, which is far below the speed of sound of the material (249 m/s).

In Fig. 3.23, the dynamic evolution is shown for varying density. For this case of an

accelerating boundary, the dynamic stresses oscillate around a value that is higher than

the static value. This effect is accentuated when the density is increased.
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Figure 3.23: Material response under spherical expansion at constant ε̈ with varying
density. Comparison to static solution.

Not much difference can be observed in the evolution of the void volume fraction, since

the deformation is the controlling parameter. Big differences are reported in the literature

(Carrol and Holt, 1972, Molinari and Mercier, 2001), and are expected to be obtained,

under stress controlled conditions, for which the static and dynamic deformations differ.
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Table 3.2: Material properties of a typical alluminum alloy.

E (GPa) ν σY (MPa) n
68.9 0.33 276 0.075

Table 3.3: Material properties of the porous neo-Hookean material.

E (MPa) ν a(µm) a(µm) ρ0 (kg/m3)
69 0.48 10 20 1104.72
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3.8 Numerical example

In this section a full numerical simulation of the two-level porous material described

throughout the chapter is implemented. In particular, the impact of a polyurea bar is

chosen as a test case. Polyurea is an elastomer that is derived from the chemical reaction

of an isocyanate and a synthetic resin blend, and it has shown to have great properties

as a shock mitigation material. In particular, it is characterized by a high strain rate

sensitivity, large maximum deformations and good adhesion properties to many materials.

These characteristics make them suitable as protective coatings on structures and has

motivated their experimental characterization (Chakkarapani et al., 2006, Roland and

Casalini, 2007, Roland et al., 2007, Knauss and Zhao, 2007, Sarva et al., 2007).

In the first part of this section, the experiments simulated in the present study are

described. This is followed by a careful material model of the polyurea used in the

experiments (polyurea 1000). It is of note that depending on the actual composition,

the properties of a polyurea sample can vary significantly, motivating the development

of a material model, rather than making use of existent ones in the literature (Amirkhizi

et al., 2006, ElSayed et al., 2009, Li and Lua, 2009). The resulting model is then validated

against the experiments, showing a very good prediction, and is used as test case for the

multiscale porous model.

3.8.1 Experiments

The experiments used in this section were performed by Mock et al. at the Naval Surface

Warfare Center. They consist of the impact of a polyurea bar of initial length L0 =

25.7353 mm and initial radius R0 = 6.29603 mm by an anvil of high stiffness at speeds

of v = 245 m/s and v = 332 m/s. The bar deforms significantly and then bounces back.

Fig. 3.24 shows a sequence of captions of the deformation during the impact for the lower

velocity. The recovered bars, for the two cases, with different void damage on the lower

part, can be observed in Fig. 3.25.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.24: Taylor anvil test of polyurea rod. Experiments performed by Mock et al. at
NSWC. R0 = 6.29603 mm, L0 = 25.7353 mm and v = 245 m/s.

(a) (b)

Figure 3.25: Post impact images of the polyurea rod. Experiments performed by Mock
et al. at NSWC. (a) v = 245 m/s. (b) v = 332 m/s.
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3.8.2 Material modeling without porosity

The model employed for the polyurea 1000 is based on its uniaxial characterization under

compression at a wide range of strain rates made by Sarva et al. (2007). The model is

then generalized to multiaxial conditions by fixing a value for the Poisson’s ratio. Due to

its almost incompressible behavior, a value close to 0.5 is chosen.

The experiments show that polyurea stress-strain relation is strongly dependent on

the strain rate, has a rubbery behavior at low strain rates and does not undergo signifi-

cant plastic deformation. Based on these observations, the chosen constitutive model is

composed of a hyperelastic part and several viscoelastic mechanisms. The strain energy

density can then be decomposed as follows

W (C) = W e(C) +W v(C, εp) (3.139)

where C is the left Cauchy-Green deformation tensor and εp is an ensemble of internal

variables characterizing the different viscoelastic mechanisms. Each of the terms of the

energy density is examined independently in the following subsections.

In order to obtain the material parameters, full incompressibility of the material is first

considered. This initial assumption allows the derivation of tractable analytic expressions

of the uniaxial material response, providing a ground for comparison with the the exper-

imental results. The incompressibility condition is then relaxed in order to account for

small volumetric changes.

3.8.2.1 Hyperelastic model at low strain rates

The stress-strain relationship from Sarva et al. (2007) at a true strain rate of ε̇ =

0.0016 s−1 is used to determine the most appropriate hyperelastic model. Due to the

low value of the strain rate, the viscoelastic stresses are neglected and the response of the

material is assumed to be fully elastic.
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Table 3.4: Fitting parameters of the Ogden model.
1 2

µi (MPa) 13.9277 12.9279
αi 6.0351 -3.0608

Several hyperelastic models are examined under the assumption of incompressibility

Neo-Hookean: W e =
µ

2

(
λ2

1 + λ2
2 + λ2

3 − 3
)

Mooney-Rivlin: W e =
µ1

2

(
λ2

1 + λ2
2 + λ2

3 − 3
)

+
µ2

2

(
λ−2

1 + λ−2
2 + λ−2

3 − 3
)

Ogden: W e =
M∑
i=1

µi
αi

(λαi1 + λαi2 + λαi3 − 3)

(3.140)

where W e is the strain energy density, λi are the principal stretches and µ and µi are

material parameters.

The stress-strain relationships for a uniaxial compression experiment (λ1 = λ, λ2 =

λ3 = λ−1/2) are

Neo-Hookean: P e =
µ

λ

(
λ2 − λ−1

)
Mooney-Rivlin: P e = µ1

(
λ− 1

λ2

)
+ µ2

(
1− 1

λ3

)
Ogden: P e =

M∑
i=1

µi
λ

(
λαi − λ−αi/2

) (3.141)

where P e = P e
1 is the component of the first Piola-Kirchhoff stress tensor in the loading

direction.

The optimal fit obtained for each of the models is shown in Fig. 3.26. In view of the

results, a two-term Ogden constitutive law is chosen to represent the elastic behavior of

the polyurea. The parameters resulting from the fit are listed in Table 3.4.

The corresponding elastic modulus at small strains is E = 3
2

(µ1α1 + µ2α2) = 66.73

MPa, very close to the value of 69 MPa found by Knauss and Zhao (2007) in their

experimental tests at small strains.
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Figure 3.26: Fit of the quasi-static behavior of the polyurea (ε̇ = 0.0016 s−1) with different
hyperelastic material models.

3.8.2.2 Viscoelastic model for polyurea

The several viscoelastic mechanisms present in the polyurea are represented by means of

a Prony series. The viscoelastic strain energy density can be written in the linearized

kinematic version as

W̃ v(ε, εp,α) =
N∑
α=1

µα(εdev − εp,α) : (εdev − εp,α) (3.142)

where the internal variables εp,α obey the following evolution law

ε̇p,α =
εdev − εp,α

τα
(3.143)

with τα = ηα
2µα

being the relaxation times associated to each viscoelastic mechanism.

This model can be extended to large strains through the logarithmic strain relation
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ε = 1
2

log C, leading to

W v(C, εp,α) = W̃ v(
1

2
log C, εp,α) =

N∑
α=1

µα

(
1

2
log C− εp,α

)
:

(
1

2
log C− εp,α

)
(3.144)

Note that in the incompressible limit

(log C)dev = log C− Tr(log C)

3
I = log C− log(det C)

3
I = log C (3.145)

The experiments done by Sarva et al. (2007), shown in Fig. 3.27, are performed

at almost constant true strain rate (see Fig. 3.29). The material model is therefore

particularized to the case of uniaxial compression at constant true strain rate (ε(t) = ε̇t)

for comparison. Under the assumption of incompressibility (λ1 = λ, λ2 = λ3 = λ−1/2)

stressestrain curves are observed to transition from a compli-
ant rubber-like behavior at the lowest strain rates to a leathery-
regime behavior at the high strain rates (as indicated by the
increased flow stress magnitudes) consistent with the DMA
data of Fig. 1 and its shift with rate as reported in [1].

Recently, Roland et al. [2] have reported uniaxial tension
data for this polyurea at true strain rates ranging from
w0.1 s�1 to 300 s�1 using a newly developed drop weight
test instrument. Using this instrument, the samples were elon-
gated until failure; the sample force was calculated after com-
pensating for the inertial effects of the instrument and the
strain in the sample was measured by monitoring fiducial
marks through high-speed photography. Fig. 5 shows a plot
of the Roland et al. tensile data together with the compression
data (in terms of the magnitude of true stress versus the

magnitude of true strain) of this study (noting that our low
and high rate data are coincident with those in the Yi et al.
study). Fig. 5A shows the data sets out to the largest strains
tested for each case; Fig. 5B shows a ‘‘zoom-in’’ of these
data to a maximum true strain of 1.0. As seen in Fig. 5B,
the tensile test data [2] are in good agreement with the com-
pressive test data at similar strain rates. Note that Roland
et al. [2] report their strain rate in terms of the average engi-
neering strain rate over the course of a test. Due to the large
deformations incurred in these tests, it is also appropriate to
examine the true strain rate history over the course of a test.
Roland et al. report one typical engineering strain rate ð _eÞ
history as a function of engineering strain, reproduced here
in Fig. 6. These data are easily converted to true strain rate
ð_3 ¼ _e=ð1þ eÞÞ as a function of true strain (3¼ ln(1þ e))
and are shown in the plot of Fig. 5, giving the true strain
rate versus true strain history that corresponds to the tensile
true stressetrue strain data of the ‘‘average engineering strain
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W v(λ) =
N∑
α=1

µα

[
(log λ− εp,α11 )2 + 2

(
−1

2
log λ− εp,α22

)2
]

(3.146)
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and the stress in the loading direction is

P v =
dW v(λ)

dλ
=

N∑
α=1

µα
λ

[3 log λ+ 2 (εp,α22 − ε
p,α
11 )] (3.147)

where λ = eε̇t.

The evolution law for the internal variables becomes, for this case of uniaxial com-

pression,

ταε̇p,α11 = log λ− εp,α11

ταε̇p,α22 = −1

2
log λ− εp,α22

(3.148)

Defining εp,α = εp,α11 − ε
p,α
22 , these two equations can be combined, reducing the number

of internal variables and kinetic relations to a single one

ταε̇p,α =
3

2
log λ− εp,α =

3

2
ε̇t− εp,α (3.149)

The solution to this first order ordinary differential equation with initial conditions

εp,α(t = 0) = 0 is

εp,α =
3

2
ε̇t− 3

2
ε̇τα

(
1− e−t/τα

)
(3.150)

The stretch-stress relation for the complete model then becomes

P =
M∑
i=1

µi
λ

(
λαi − λ−αi/2

)
+

N∑
α=1

3µα
λ
ε̇
(
1− e−t/τα

)
(3.151)

with t = ε/ε̇. The true or Cauchy stress can easily be computed as σ = λP .

This relation leads to a different curve for each true strain rate. However, they can

all be reduced to a single master curve if the lower strain rate response is assumed to be

fully elastic. This master curve is obtained by representing σc
ε̇

= σ−σ0

ε̇
versus β = ε

ε̇
, where

σ0 = σ(ε̇ = 0.0016s−1). The result is analog to a relaxation curve with the input being a

ramp function instead of a step function.

σc
ε̇

=
N∑
α=1

3µατ
α
(

1− e−
β
τα

)
(3.152)
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This transformation has been performed to the experimental curves in Fig. 3.28. As

can be seen in this figure, the experimental points all fall into the same curve, which in

logarithmic scale results in an almost straight line. This confirms the applicability of the

proposed model to describe the polyurea behavior in such range of deformations. Only the

initial points of each curve (corresponding to the lower strains) do not fall into the master

curve. This can be explained by the fact that the true strain rate is not exactly constant.

Fig. 3.29 from Sarva et al. (2007) shows that the true strain rate is initially lower, leading,

according to the proposed normalization, to a higher value of the normalized true stress.
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Figure 3.28: Master curve resulting from normalizing the experimental stress-strain rela-
tion of Sarva et al. (2007).

This master curve only depends on the viscoelastic parameters, and can therefore be

used to obtain the desired values of the parameters. This fit has been performed by fixing

the values of the relaxation times as previously done by other authors (Knauss and Zhao,

2007). The parameters obtained by this procedure are then optimized with use of the

actual experimental stress-strain curves. The resulting model and its comparison to the

experimental data are shown in Figs. 3.30 and 3.31.

The parameters involved in the Prony series are summarized in Table 3.5. Lower
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Figure 3.29: Evolution of the true strain rate in the uniaxial compression experiments
performed by Sarva et al. (2007).
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Figure 3.30: Comparison of the developed material model and the experimental results
of Sarva et al. (2007) at different strain rates.
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Table 3.5: Parameters involved in the viscoelastic representation of polyurea 1000.
3µi (MPa) αi
15.4933 1.0e-5
16.2 1.0e-4
7.5863 1.0e-3
7.5747 1.0e-2
4.3520 1.0e-1
3.3033 1.0
0.8980 10.0
0.9958 100.0
1.7333 1000.0
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values of relaxation times did not seem to have a significant influence on the response of

the material at the strain rates examined, and are taken to be equal to the values reported

by Knauss and Zhao (2007). We recall that Knauss and Zhao provide the values of the

Young’s modulus for each relaxation time. These values are related to the shear modulus

in the incompressible limit through the usual relation

µα =
Eα
3

(3.153)

as is proven in Appendix D.

Later on, the material is considered to be slightly compressible. In that case, it is

proven by contradiction in Appendix E that the material cannot have a constant Poisson’s

ratio. The relation between the shear modulus and the Young’s modulus is obtained in

Appendix F, and simplifies in the case of a quasi-incompressible material to the usual

relation for elastic isotropic homogeneous materials.

µα =
Eα

2(1 + ν)
(3.154)

In the following, the assumption of uniaxial compression under constant true strain

rate is verified. In particular, the material response under the conditions labeled as

ε̇ = 6500s−1 and ε̇ = 9000s−1 by Sarva et al. (2007) are examined (see Fig. 3.29).

From the provided true strain rate versus the true strain, one can numerically obtain

the true strain evolution with respect to time. The following discretization has been

employed.

∆tn+1 =
εn+1 − εn
ε̇n+1

tn+1 = tn + ∆tn+1

(3.155)

The resulting temporal evolution can be approximated by a second order polynomial

in time. The results are shown in Fig. 3.32.

An analytical solution for this type of load history can also be easily obtained. In
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Figure 3.32: Strain history obtained from the experimental true strain rate versus true
strain history and fit to the curve with a quadratic polynomial. (a) ε̇ = 6500s−1. (b)
ε̇ = 9000s−1.

particular, the evolution of the internal variables is given by

ταε̇p,α =
3

2
ε− εp,α (3.156)

with ε(t) of the form ε(t) = At + Bt2. The internal variables then follow the evolution

law

εp,α = −3

2
τα(A− 2Bτα)

(
1− e−t/τα

)
+

3

2
(A− 2Bτα)t+

3

2
Bt2 (3.157)

and the stress in the loading direction becomes

σ =
2∑
i=1

µi
(
λαi − λ−αi/2

)
+

N∑
α=1

3µατ
α
[
(A− 2Bτα)

(
1− e−t/τα

)
+ 2Bt

]
(3.158)

The previously shown stress-strain curves in Fig. 3.30 and the predicted ones at higher

strain rates are shown in Fig. 3.33 demonstrating a reasonably accurate prediction.

The assumption of exact constant strain rate in the model can now be verified to be

a good approximation, despite a slight initial deviation of the strains. In Fig. 3.34 the

model prediction under the assumption of a constant strain rate and the experimental

strain history are shown, and almost identical results are obtained.
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Figure 3.33: Comparison of the stress-strain response of the material model and the
experiments performed by Sarva et al. (2007) at several strain rates.
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3.8.2.3 Complete model for polyurea

The complete model previously derived under the assumption of incompressibility is

W =
M∑
i=1

µi
αi

(λαi1 + λαi2 + λαi3 − 3) +
N∑
α=1

µα

(
1

2
log C− εp,α

)
:

(
1

2
log C− εp,α

)
(3.159)

with the parameters summarized in Tables 3.4 and 3.5.

This model is extended to the compressible range with a Blatz-Ko equation of state,

which is widely used for compressible rubbery materials (Blatz and Ko, 1962). The strain

energy density results in

W =
1− 2ν

2ν
µ
(
J−

2ν
1−2ν − 1

)
+

3

2
µ(J2/3 − 1)

+
M∑
i=1

µi
αi

(
λ̄αi1 + λ̄αi2 + λ̄αi3 − 3

)
+

N∑
α=1

µα

(
1

2
(log C)dev − εp,α

)
:

(
1

2
(log C)dev − εp,α

) (3.160)

where ν is the Poisson’s ratio and µ = 1
2

(µ1α1 + µ2α2).

3.8.3 Material modeling with porosity

The hollow sphere model can now be combined with the polyurea model so as to demon-

strate the effect of void growth. First, a comparison in Fig. 3.35 between the non-porous

and porous material response at high strain rate is shown. Two different meshes at the

microscopic level have been used to assess the accuracy of the results. The macroscopic

stresses represented correspond to the static definition so as to consider a single micro-

scopic parameter: the void volume fraction.

3.8.4 Comparison with experiments

In this section, the non-porous material model described in the foregoing is validated

against the experiments of they Taylor test at lower velocity and is then used together

with the hollow sphere element to analyze the void evolution in the experiment at higher
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Figure 3.35: Comparison of the uniaxial material response between experiments (Sarva
et al., 2007), non-porous material model, and porous material model with two void volume
fractions.

velocity. A value for the Poisson’s ratio of ν = 0.48 is chosen in the finite element

simulation.

Numerically, tetrahedral elements based on mean volumetric deformation under fi-

nite kinematics with of bubbles in the faces of the simplicial elements, are used at the

macroscopic scale. They are chosen so as to overcome the locking problems that might

arise due to the fact that the material is nearly incompressible. Two different mesh sizes,

represented in Fig. 3.36, were used in order to guarantee convergence of the numerical

result. Regarding the temporal discretization, an explicit dynamic method is used for the

time evolution of the system. A constant time step proportional to the CFL condition

is employed. Several proportional factors were used in order to assess the convergence in

time for a given mesh.

Fig. 3.37 shows the temporal evolution of the length and maximum radius com-

pared with the experiments, demonstrating convergence. The shape evolution is shown

in Fig. 3.38, where very good agreement is observed during the compression stage. The

differences attendant to the expansion phase and to the contour of the bar close to the

contact surface, could be due to friction or adhesion, effects that have not been included
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Mesh

Fine CoarseFigure 3.36: Fine mesh ( 48000 nodes and 20000 elements) and coarse mesh ( 6000 nodes
and 2500 elements) used in the finite element simulation of the Taylor test.

in the simulations.

Next, the porous material is used on the lower 90% of the bar for the simulation at

higher velocity. In order to have a single parameter describing the micromechanical model,

the static definition of the macroscopic stresses is used. Aside from these considerations,

the macroscopic model evolves with an explicit dynamic algorithm, similar to the non-

porous case. A parallel implementation of the Optimal Transportation Meshfree method

(OTM) (Li et al., 2010) is used to resolve the fields in space. In particular, the results

shown are performed with 1500 nodes.

The determinant of the deformation gradient is represented over the central cross

section of the bar at different times during the compression stage in order to perform

comparisons with respect to the non porous case at lower velocity. As can be observed

from Fig. 3.39, there is a marked dilatation at the bottom part of the bar. The void

volume fraction of the material points also increases significantly as is observed in Fig.

3.40. This region of high increase in void volume fraction corresponds qualitatively with

the damaged zone in the recovered polyurea samples. Although further simulations and

analyses are required to asses the predictability of the model, the feasibility of the proposed

two-scale finite element model was demonstrated.
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Figure 3.37: Comparison between experiments (Mock et al.)and simulations with two
different mesh sizes. (a) Evolution of the normalized length versus time. (b) Evolution of
the normalized radius versus time.

8 s 16 s0 s

32 s

24 s

48 s40 s

64 s56 s

Figure 3.38: Comparison between experimental (Mock et al.) and numerical digitized
shapes of the bar at different times for the velocity of v = 245 m/s. Non-porous material
model.
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Figure 3.39: Numerical evolution of the Taylor bar experiment at v = 332 m/s with the
porous material model at initial porosity of 1.5 %.

Figure 3.40: Void volume fraction distribution at 32 µs.
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Chapter 4

Concluding remarks and further
directions

This thesis was devoted to multiscale modeling and simulation of nucleation and growth

of voids. In the first part, a complete multiscale model, temperature and pressure depen-

dent, has been formulated for the nucleation of voids via vacancy aggregation. Quantum

mechanical results at different volumetric deformations were employed to parametrize a

lattice kinetic Monte Carlo model that describes the vacancy diffusion. Additionally, a

continuum mechanics estimate was developed to assert when voids can grow by plas-

tic deformation, establishing the transition between void growth controlled by diffusion

and void growth dominated by plasticity. A very interesting conclusion drawn from the

study was the size effect on plastic void growth, which was a necessary ingredient in the

continuous estimate so as to match the quasi-continuum calculations. Most of the ele-

ments composing the atomistic model can be found in previous publications. A complete

multiscale model that provides nucleation times from ab-initio calculations was, though,

unknown to the author. These results were possible through the introduction of many

simplifying assumptions, which leaves room for further improvements. Amongst those,

more accurate calculations of energetics of big clusters of vacancies can be considered

by means of interaction potentials. Interesting comparisons can also be performed be-

tween the proposed estimate for nucleation criteria and studies of dislocation emissions

from voids (Stevens et al., 1972, Meyers and Aimone, 1983, Wolfer, 1988, Lubarda et al.,

2004).

The second part of the thesis was dedicated to the development of a consistent two-level

finite element description of porous materials under general loading conditions. The first
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step consisted of extending the well known averaging results over representative volume

elements, so as to include microdynamic effects within the finite kinematic framework.

Two cases were considered in the continuous setting. The first case involved separation

of length scales with time as a common variable between the two levels; and in the

second one, separation of time scales is further assumed. By performing averages on the

variational principles of mechanics at local equilibrium, the sought-after macro-variables

and balance equations were obtained. The required space and time discretization for

numerical purposes was then analyzed. Advantage was taken of the variational framework

previously established, to base the discretization in the theory of variational integrators.

On the other hand, the space discretization of the hollow sphere (RVE chosen to describe

the porous material), was performed with an element especially developed for a spherical

geometry. It consisted of spherical shell elements with an approximation space based on

spherical harmonics. The resulting constitutive law, after such discretization, has the

property of respecting the symmetries of the material. This property is generally not

satisfied by standard finite element formulations. A quadrature rule was also developed,

which allows exact computation of the stiffness matrix, mass matrix and void volume

fraction; and an exact analytic expression is provided to impose affine boundary conditions

on the boundary of the domain.

The averaging results obtained are applicable to any heterogeneous material in which

a representative volume can be identified. The range of applications is therefore very wide

and comprises the design of composites or materials with microstructure. An interesting

direction for further studies is the careful determination of the size of the representative

volume element for nonlinear elastodynamics. In the event of microscopic instabilities,

the size of the RVE needs to be sufficient to capture the critical bifurcation mode (see for

instance Geymonat et al. (1993) and Saiki et al. (2002)). An example of such an instability

is the necking phenomena between neighboring voids responsible for their coalescence or

the formation of shear bands and subsequently void sheet between voids at a distance

comparable to their size (ans J. A. Psioda, 1975, Tvergaard, 1981b). To capture this

latest stage of damage, an RVE that contains multiple voids is therefore necessary. The

recent work of Henao and Mora-Corral (2010) holds promise for constructing such type

of RVE.
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Concerning the modeling of ductile failure, much remains to be done in order to have

a full multiscale model from quantum mechanics to macroscopic fracture. There are two

points of major difficulty which were not addressed in this thesis: the formal derivation

of the statistical aspects of nucleation in a form ready to be input to the upper scales in

the hierarchy; and predictive models of coalescence.
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Appendix A

Exact integration of the stiffness
matrix

In the case of linear elasticity for an isotropic and homogeneous material, exact integration

of the stiffness matrix implies exact integration of

∫
∂Nrlm

∂Xi

∂Nspq

∂Xj

R2 sin Θ dR dΘ dΦ i, j = 1, 2, 3 (A.1)

with

∂Nrlm

∂X1

= R′r(R)Ylm(Θ,Φ) sin Θ cos Φ +Rr(R)
∂Ylm(Θ,Φ)

∂Θ

cos Θ cos Φ

R

+Rr(R)
∂Ylm(Θ,Φ)

∂Φ

− sin Φ

R sin Θ
∂Nrlm

∂X2

= R′r(R)Ylm(Θ,Φ) sin Θ sin Φ +Rr(R)
∂Ylm(Θ,Φ)

∂Θ

cos Θ sin Φ

R

+Rr(R)
∂Ylm(Θ,Φ)

∂Φ

cos Φ

R sin Θ
∂Nrlm

∂X3

= R′r(R)Ylm(Θ,Φ) cos Θ +Rr(R)
∂Ylm(Θ,Φ)

∂Θ

− sin Θ

R

(A.2)

Separation of variables in the approximation space allows separate integration along

each coordinate. The radial direction involves standard polynomials and the azimuthal

direction trigonometric polynomials. For both of these cases there exist quadrature rules

that provide exact integration, as described in Section 3.5.2. This appendix is devoted

to the integration along the polar direction. It will be proven that a Gauss-Legendre

quadrature rule under the transformation x = cos Θ integrates exactly the non-zero values

of the stiffness matrix. In the cases in which the quadrature rule in the polar direction

is not exact, integration along the azimuthal direction results in a zero value, giving an
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overall exact quadrature rule.

All the different integrals appearing in the computation of the stiffness matrix are

analyzed in the following.

Case 1 ∫ π

0

∫ 2π

0

Ylm(Θ,Φ)Ypq(Θ,Φ) sin3 Θ cos2 Φ dΘ dΦ (A.3)

Integration along Θ results in

∫ π

0

Pm
l (cos Θ)P q

p (cos Θ) sin3 Θ dΘ =

∫ 1

−1

Pm
l (x)P q

p (x)(1− x2) dx (A.4)

under the transformation x = cos Θ. When m + q is even, the integrand is a

polynomial of degree at most of 2Nl + 2, and can therefore be integrated exactly

with the proposed quadrature rule. When m+ q is odd, integration along Φ is zero.

∫ 2π

0

cos(mΦ) cos(qΦ) cos2 Φ dΦ = 0∫ 2π

0

sin(mΦ) sin(qΦ) cos2 Φ dΦ = 0∫ 2π

0

cos(mΦ) sin(qΦ) cos2 Φ dΦ = 0∫ 2π

0

sin(mΦ) cos(qΦ) cos2 Φ dΦ = 0

(A.5)

Case 2 ∫ π

0

∫ 2π

0

Ylm(Θ,Φ)
∂Ypq(Θ,Φ)

∂Θ
sin2 Θ cos Θ cos2 Φ dΘ dΦ (A.6)

Using the recurrence formula of the associated Legendre functions of varying degree

(Abramowitz and Stegun, 1965), integration along Θ results in

∫ π

0

Pm
l (cos Θ)

dP q
p (cos Θ)

dΘ
sin2 Θ cos Θ dΘ =

∫ 1

−1

Pm
l (x)P q′

p (x)(x2 − 1)x dx

=

∫ 1

−1

pPm
l (x)P q

p (x)x2 dx−
∫ 1

−1

(p+ q)Pm
l (x)P q

p−1(x)x dx

(A.7)

When m + q is even, the integrands are polynomials of degree 2Nl + 2 at most.

When m+ q is odd, integration along Φ is zero (equivalent to Case 1).
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Case 3 ∫ π

0

∫ 2π

0

Ylm(Θ,Φ)
∂Ypq(Θ,Φ)

∂Φ
sin Θ sin Φ cos Φ dΘ dΦ (A.8)

Integration along Θ results in

∫ π

0

Pm
l (cos Θ)P q

p (cos Θ) sin Θ dΘ =

∫ 1

−1

Pm
l (x)P q

p (x) dx (A.9)

When m + q is even, the integrand is a polynomial of degree 2Nl. When m + q is

odd, integration along Φ results in a zero value.

∫ 2π

0

cos(mΦ) cos(qΦ) sin Φ cos Φ dΦ = 0∫ 2π

0

sin(mΦ) sin(qΦ) sin Φ cos Φ dΦ = 0∫ 2π

0

cos(mΦ) sin(qΦ) sin Φ cos Φ dΦ = 0∫ 2π

0

sin(mΦ) cos(qΦ) sin Φ cos Φ dΦ = 0

(A.10)

Case 4 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Θ

∂Ypq(Θ,Φ)

∂Θ
sin Θ cos2 Θ cos2 Φ dΘ dΦ (A.11)

Integration along Θ results in

∫ π

0

dPm
l (cos Θ)

dΘ

dP q
p (cos Θ)

dΘ
cos2 Θ sin Θ dΘ =

∫ 1

−1

Pm′

l (x)P q′

p (x)(1− x2)x2 dx

(A.12)

When m and q are even, we need to integrate exactly polynomial of degree 2Nl + 2.

When m and q are both odd

∫ 1

−1

Pm′

l (x)P q′

p (x)(1− x2)x2 dx =

∫ 1

−1

d(p(x)
√

1− x2)

dx

d(q(x)
√

1− x2)

dx
(1− x2)x2 dx

=

∫ 1

−1

p′(x)q′(x)x2(1− x2)2 dx+

∫ 1

−1

x4p(x)q(x) dx

−
∫ 1

−1

x3(1− x2)(p′(x)q(x) + p(x)q′(x)) dx

(A.13)

where p(x) and q(x) are polynomials of degree at most Nl − 1. The integrands are
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polynomials of degree at most 2Nl + 2. When m + q is odd, integration along Φ

results in a zero value (equivalent to Case 1).

Case 5 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Θ

∂Ypq(Θ,Φ)

∂Φ
cos Θ cos Φ sin Φ dΘ dΦ (A.14)

Integration along Θ results in

∫ π

0

dPm
l (cos Θ)

dΘ
P q
p (cos Θ) cos Θ dΘ = −

∫ 1

−1

Pm′

l (x)P q
p (x)x dx (A.15)

If m and q are even, polynomials of degree 2Nl need to be integrated exactly. If

they are both odd

∫ 1

−1

Pm′

l (x)P q
p (x)x dx =

∫ 1

−1

d(
√

1− x2p(x))

dx

√
1− x2q(x)x dx

=

∫ 1

−1

−x2p(x)q(x) dx+

∫ 1

−1

(1− x2)p′(x)xq(x) dx

(A.16)

where p(x) and q(x) are polynomials of degree at most Nl− 1. In this case, polyno-

mials of degree 2Nl need to be integrated exactly . If m+ q is odd, then integration

along Φ is zero (equivalent to Case 3)

Case 6 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Φ

∂Ypq(Θ,Φ)

∂Φ

sin2 Φ

sin Θ
dΘ dΦ (A.17)

Integration along Θ results in

∫ π

0

Pm
l (cos Θ)P q

p (cos Θ)
1

sin Θ
dΘ =

∫ 1

−1

Pm
l (x)P q

p (x)
1

1− x2
dx (A.18)

If m and q are both odd, polynomials of degree 2Nl − 2 need to be integrated

exactly. If they are both even and non-zero (otherwise the integral is zero), from

the definition of the associated Legendre functions as a function of the Legendre

polynomials (Abramowitz and Stegun, 1965), it is easy to see that the integrand is

a polynomial of degree at most of 2Nl − 2. If m + q is odd, integration along Φ



130

results in a zero value ∫ 2π

0

cos(mΦ) cos(qΦ) sin2 Φ dΦ = 0∫ 2π

0

sin(mΦ) cos(qΦ) sin2 Φ dΦ = 0∫ 2π

0

sin(mΦ) sin(qΦ) sin2 Φ dΦ = 0∫ 2π

0

cos(mΦ) sin(qΦ) sin2 Φ dΦ = 0

(A.19)

Case 7 ∫ π

0

∫ 2π

0

Ylm(Θ,Φ)Ypq(Θ,Φ) sin3 Θ sin2 Φ dΘ dΦ (A.20)

Integration along Θ results in

∫ π

0

Pm
l (cos Θ)P q

p (cos Θ) sin3 Θ dΘ =

∫ 1

−1

Pm
l (x)P q

p (x)(1− x2) dx (A.21)

If m+ q is even, we need to integrate exactly polynomial of order 2Nl + 2. If m+ q

is odd, then integration along Φ results in a zero value (equivalent to Case 6).

Case 8 ∫ π

0

∫ 2π

0

Ylm(Θ,Φ)
∂Ypq(Θ,Φ)

∂Θ
sin2 Θ cos Θ sin2 Φ dΘ dΦ (A.22)

Integrations along Θ and Φ are equivalent to Cases 2 and 6, respectively.

Case 9 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Θ

∂Ypq(Θ,Φ)

∂Θ
cos2 Θ sin Θ sin2 Φ dΘ dΦ (A.23)

Integrations along Θ and Φ are equivalent to Cases 4 and 6, respectively.

Case 10 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Φ

∂Ypq(Θ,Φ)

∂Φ

cos2 Φ

sin Θ
dΘ dΦ (A.24)

Integrations along Θ and Φ are equivalent to Cases 6 and 1, respectively.

Case 11 ∫ π

0

∫ 2π

0

Ylm(Θ,Φ)Ypq(Θ,Φ) cos2 Θ sin Θ dΘ dΦ (A.25)
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If m+q is even, polynomials of order 2Nl+2 need to be integrated exactly. If m+q

is odd, integration along Φ results in a zero value.

∫ 2π

0

cos(mΦ) cos(qΦ) dΦ = 0∫ 2π

0

sin(mΦ) sin(qΦ) dΦ = 0∫ 2π

0

cos(mΦ) sin(qΦ) dΦ = 0∫ 2π

0

sin(mΦ) cos(qΦ) dΦ = 0

(A.26)

Case 12 ∫ π

0

∫ 2π

0

Ylm(Θ,Φ)
∂Ypq(Θ,Φ)

∂Θ
cos Θ sin2 Θ dΘ dΦ (A.27)

Integrations along Θ and Φ are equivalent to Cases 2 and 11, respectively.

Case 13 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Θ

∂Ypq(Θ,Φ)

∂Θ
sin3 Θ dΘ dΦ (A.28)

Integrations along Θ and Φ are equivalent to Cases 4 and 11, respectively.

Case 14 ∫ π

0

∫ 2π

0

Ylm(Θ,Φ)Ypq(Θ,Φ) sin3 Θ cos Φ sin Φ dΘ dΦ (A.29)

Integrations along Θ and Φ are equivalent to Cases 1 and 3, respectively.

Case 15 ∫ π

0

∫ 2π

0

Ylm(Θ,Φ)
∂Ypq(Θ,Φ)

∂Θ
sin2 Θ cos Θ cos Φ sin Φ dΘ dΦ (A.30)

Integrations along Θ and Φ are equivalent to Cases 2 and 3, respectively.

Case 16 ∫ π

0

∫ 2π

0

Ylm(Θ,Φ)
∂Ypq(Θ,Φ)

∂Φ
sin Θ cos2 Φ dΘ dΦ (A.31)

Integrations along Θ and Φ are equivalent to Cases 3 and 1, respectively.

Case 17 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Θ

∂Ypq(Θ,Φ)

∂Θ
cos2 Θ sin Θ cos Φ sin Φ dΘ dΦ (A.32)
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Integrations along Θ and Φ are equivalent to Cases 4 and 3, respectively.

Case 18 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Θ

∂Ypq(Θ,Φ)

∂Φ
cos Θ cos2 Φ dΘ dΦ (A.33)

Integrations along Θ and Φ are equivalent to Cases 5 and 1, respectively.

Case 19 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Φ
Ypq(Θ,Φ) sin Θ sin2 Φ dΘ dΦ (A.34)

Integrations along Θ and Φ are equivalent to Cases 3 and 6, respectively.

Case 20 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Φ

∂Ypq(Θ,Φ)

∂Θ
cos Θ sin2 Φ dΘ dΦ (A.35)

Integrations along Θ and Φ are equivalent to Cases 5 and 6, respectively.

Case 21 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Φ

∂Ypq(Θ,Φ)

∂Φ

1

sin Θ
cos Φ sin Φ dΘ dΦ (A.36)

Integrations along Θ and Φ are equivalent to Cases 6 and 3, respectively.

Case 22 ∫ π

0

∫ 2π

0

Ylm(Θ,Φ)Ypq(Θ,Φ) sin2 Θ cos Θ cos Φ dΘ dΦ (A.37)

Integrations along Θ results in

∫ π

0

Pm
l (cos Θ)P q

p (cos Θ) sin2 Θ cos Θ dΘ =

∫ 1

−1

Pm
l (x)P q

p (x)x
√

1− x2 dx (A.38)

If m+q is odd, polynomials of degree 2Nl+1 need to be integrated exactly. If m+q

is even, integration along Φ results in zero value

∫ 2π

0

cos(mΦ) cos(qΦ) cos Φ dΦ = 0∫ 2π

0

sin(mΦ) sin(qΦ) cos Φ dΦ = 0∫ 2π

0

cos(mΦ) sin(qΦ) cos Φ dΦ = 0∫ 2π

0

sin(mΦ) cos(qΦ) cos Φ dΦ = 0

(A.39)
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Case 23 ∫ π

0

∫ 2π

0

Ylm(Θ,Φ)
∂Ypq(Θ,Φ)

∂Θ
sin3 Θ cos Φ dΘ dΦ (A.40)

Integrations along Θ results in

∫ π

0

Pm
l (cos Θ)

dP q
p (cos Θ)

dΘ
sin3 Θ dΘ = −

∫ 1

−1

Pm
l (x)P q′

p (x)(1− x2)
√

1− x2 dx

(A.41)

If m+q is odd, polynomials of degree 2Nl+2 need to be integrated exactly. If m+q

is even integration over Φ is equivalent to Case 22.

Case 24 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Θ
Ypq(Θ,Φ) cos2 Θ sin Θ cos Φ dΘ dΦ (A.42)

Integrations along Θ results in

∫ π

0

dPm
l (cos Θ)

dΘ
P q
p (cos Θ) cos2 Θ sin Θ dΘ = −

∫ 1

−1

Pm′

l (x)P q
p (x)x2

√
1− x2 dx

(A.43)

If m is even and q is odd, polynomials of degree 2Nl+2 need to be integrate exactly.

If m odd and q even

∫ 1

−1

Pm′

l (x)P q
p (x)x2

√
1− x2 dx =

∫ 1

−1

d(p(x)
√

1− x2)

dx
q(x)x2

√
1− x2 dx

=

∫ 1

−1

x2(1− x2)p′(x)q(x) dx−
∫ 1

−1

x3p(x)q(x) dx

(A.44)

where p(x) and q(x) are polynomials of degree at most Nl − 1 and Nl respectively.

The integrands are then polynomials of degree at most of 2Nl + 2. If m+ q is even,

integration along Φ is equivalent to Case 22.

Case 25 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Θ

∂Ypq(Θ,Φ)

∂Θ
cos Θ sin2 Θ cos Φ dΘ dΦ (A.45)

Integration along Θ results in

∫ π

0

dPm
l (cos Θ)

dΘ

dP q
p (cos Θ)

dΘ
cos Θ sin2 Θ dΘ =

∫ 1

−1

Pm′

l (x)P q′

p (x)(1− x2)
√

1− x2x dx

(A.46)
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If m+ q is odd, it results in

∫ 1

−1

dp(x)
√

1− x2

dx
q′(x)(1− x2)

√
1− x2x dx

=

∫ 1

−1

p′(x)q′(x)(1− x2)2x dx−
∫ 1

−1

p(x)q′(x)x2(1− x2) dx

(A.47)

where p(x) and q(x) are polynomials of degree at most Nl − 1 and Nl, respectively.

The integrands are then polynomials of degree at most 2Nl + 2. If m + q is even,

integration over Φ leads to a zero value (equivalent to Case 22).

Case 26 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Φ
Ypq(Θ,Φ) cos Θ sin Φ dΘ dΦ (A.48)

Integration along Θ becomes

∫ π

0

Pm
l (cos Θ)P q

p (cos Θ) cos Θ dΘ =

∫ 1

−1

Pm
l (x)P q

p (x)x
1√

1− x2
dx (A.49)

If m+ q is odd, need to integrate exactly polynomial of degree 2Nl. If m+ q is even,

integration along Φ leads to a zero value

∫ 2π

0

cos(mΦ) cos(qΦ) sin Φ dΦ = 0∫ 2π

0

sin(mΦ) sin(qΦ) sin Φ dΦ = 0∫ 2π

0

cos(mΦ) sin(qΦ) sin Φ dΦ = 0∫ 2π

0

sin(mΦ) cos(qΦ) sin Φ dΦ = 0

(A.50)

Case 27 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Φ

∂Ypq(Θ,Φ)

∂Θ
sin Θ sin Φ dΘ dΦ (A.51)

Integration along Θ becomes

∫ π

0

Pm
l (cos Θ)

dP q
p (cos Θ)

dΘ
sin Θ dΘ = −

∫ 1

−1

Pm
l (x)P q′

p (x)
√

1− x2 dx (A.52)

If m is odd and q is even, polynomials of degree 2Nl need to be integrated exactly.
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If m is even and q odd

∫ 1

−1

q(x)
d(p(x)

√
1− x2)

dx

√
1− x2 dx

=

∫ 1

−1

q(x)p′(x)(1− x2) dx−
∫ 1

−1

q(x)p(x)x dx

(A.53)

where p(x) and q(x) are polynomials of degree Nl − 1 and Nl, respectively. The

integrands are polynomials of degree at most 2Nl. If m+ q is even, integration over

Φ is equivalent to Case 26.

Case 28 ∫ π

0

∫ 2π

0

Ylm(Θ,Φ)Ypq(Θ,Φ) sin2 Θ cos Θ sin Φ dΘ dΦ (A.54)

Integrations along Θ and Φ are equivalent to the Cases 22 and 26 respectively.

Case 29 ∫ π

0

∫ 2π

0

Ylm(Θ,Φ)
∂Ypq(Θ,Φ)

∂Θ
sin3 Θ sin Φ dΘ dΦ (A.55)

Integrations along Θ and Φ are equivalent to the Cases 23 and 26 respectively.

Case 30 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Θ
Ypq(Θ,Φ) cos2 Θ sin Θ sin Φ dΘ dΦ (A.56)

Integrations along Θ and Φ are equivalent to the Cases 24 and 26 respectively.

Case 31 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Θ

∂Ypq(Θ,Φ)

∂Θ
cos Θ sin2 Θ sin Φ dΘ dΦ (A.57)

Integrations along Θ and Φ are equivalent to the Cases 25 and 26 respectively.

Case 32 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Φ
Ypq(Θ,Φ) cos Θ cos Φ dΘ dΦ (A.58)

Integrations along Θ and Φ are equivalent to the Cases 26 and 22 respectively.

Case 33 ∫ π

0

∫ 2π

0

∂Ylm(Θ,Φ)

∂Φ

∂Ypq(Θ,Φ)

∂Θ
sin Θ cos Φ dΘ dΦ (A.59)

Integrations along Θ and Φ are equivalent to the Cases 27 and 22 respectively.
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Exact integration of the stiffness matrix requires an exact integration of polynomials

of degree 2Nl + 2 in the Θ direction and trigonometric polynomial of degree 2Nl + 2 in

the Φ direction. This can be achieved with

NqΘ = Nl + 2

NqΦ = 2Nl + 3
(A.60)
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Appendix B

Exact integration of the mass matrix

In the case of linear elasticity, for an isotropic and homogeneous material, exact integration

of the mass matrix implies exact integration of

∫
∂Nrlm∂NspqR

2 sin Θ dR dΘ dΦ =(∫ b

a

Rr(R)Rs(R)R2 dR

)(∫ π

0

∫
0

2πYlmYpq sin(Θ) dΘ dΦ

) (B.1)

Similar to the analysis for the stiffness matrix, integration along each coordinate is

analyzed independently. The radial direction requires the integration of polynomials of

order 4, if linear shape functions are used, requiring 3 quadrature points per layer. This

leads to a total number of Nqr = 3Nr for the entire hollow sphere.

In direction Θ, the integrals are of the type

∫ π

0

Pm
l (cos Θ)P q

p (cos Θ) sin(Θ) dΘ =

∫ 1

−1

Pm
l (x)P q

p (x) dx (B.2)

where the change of variables x = cos(Θ) has been used. If m+ q is even, the integrand is

a polynomial of degree at most 2Nl, requiring NqΘ = Nl + 1. If m+ q is odd, integration
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along Φ results in a zero value

∫ 2π

0

cos(mΦ) cos(qΦ) dΦ = 0∫ 2π

0

sin(mΦ) sin(qΦ) dΦ = 0∫ 2π

0

cos(mΦ) sin(qΦ) dΦ = 0∫ 2π

0

sin(mΦ) cos(qΦ) dΦ = 0

(B.3)

These integrals can be performed exactly. The highest degree of the trigonometric

polynomials encountered in the integration of the mass matrix is 2Nl. The number of

equally spaced quadrature points required for exact integration is NqΦ = 2Nl + 1
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Appendix C

Void volume fraction

A common damage parameter in porous material models is the void volume fraction. It

is therefore desirable to evaluate that quantity with a bounded error. It will be proven in

this section that the proposed quadrature rule allows its exact evaluation, as well.

The void volume fraction is the ratio between the volume enclosed by the outer surface

and the inner surface in the deformed configuration. The final volume enclosed by a surface

of initial radius R̄, for all cases in which r(θ, ϕ) = r
(
θ(R̄,Θ,Φ), ϕ(R̄,Θ,Φ)

)
is a function,

is (see Fig. C )

V =

∫ π

θ=0

∫ 2π

ϕ=0

∫ r

r′=0

r′2 sin θ dr′ dθ dϕ =

∫ π

θ=0

∫ 2π

ϕ=0

r3

3
sin θ dθ dϕ (C.1)

One can express this integral using the coordinates from the undeformed configuration
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

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Figure C.1: Final configuration of an initially spherical surface.
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using the relations

θ(Θ,Φ) = arccos

(
x3(Θ,Φ)√

x2
1(Θ,Φ) + x2

2(Θ,Φ) + x2
3(Θ,Φ)

)

ϕ(Θ,Φ) = arctan

(
x2(Θ,Φ)

x1(Θ,Φ)

) (C.2)

where xi(Θ,Φ) = xi(R̄,Θ,Φ), as defined in Eq. 3.101.

The final volume enclosed by the surface is then

V =

∫ π

Θ=0

∫ 2π

Φ=0

x2
1(Θ,Φ) + x2

2(Θ,Φ) + x2
3(Θ,Φ)

3

√
x2

1(Θ,Φ) + x2
2(Θ,Φ)|J(Θ,Φ)| dΘ dΦ

=

∫ π

Θ=0

∫ 2π

Φ=0

1

3

[
∂x3

∂Φ

(
−x2

∂x1

∂Θ
+ x1

∂x2

∂Θ

)
+ x3

(
∂x2

∂Φ

∂x1

∂Θ
− ∂x1

∂Φ

∂x2

∂Θ

)
+
∂x3

∂Θ

(
x2
∂x1

∂Φ
− x1

∂x2

∂Φ

)]
dΘ dΦ

(C.3)

where |J(Θ,Φ)| = | ∂(θ,ϕ)
∂(Θ,Φ)

|

C.1 Exact integration

The terms involved in the computation of the void volume fraction (C.3) are of the type

∫ π

Θ=0

∫ 2π

Φ=0

∂Yrs
∂Φ

Ypq
∂Ylm
∂Θ

dΘ dΦ (C.4)

Integration along the Θ direction under transformation x = cos Θ results in

∫ π

0

P s
r (cos Θ)P q

p (cos Θ)
dPm

l (cos Θ)

dΘ
dΘ = −

∫ 1

−1

P s
r (x)P q

p (x)Pm′

l (x) dx (C.5)

- If m and s+q are even, polynomials of degree 3Nl−1 need to be integrated exactly.

- If m and s+ q are odd, the integrand is a polynomial of degree at most of 3Nl − 2.
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Note

Pm
l (x) =

√
1− x2p(x)

Pm′

l (x) =
1√

1− x2

[
(1− x2)p′(x)− xp(x)

]
P s
r (x)P q

p (x) = q(x)
√

1− x2∫ 1

−1

P s
r (x)P q

p (x)Pm′

l (x) dx =

∫ 1

−1

q(x)
[
(1− x2)p′(x)− xp(x)

]
dx

(C.6)

where p(x) and q(x) are polynomials of degree at most of Nl − 1 and 2Nl − 2,

respectively.

- If m is even and (s + q) is odd, or vice versa, then integration along Φ results in a

zero value ∫ 2π

0

cos(sΦ) cos(qΦ) cos(mΦ) dΦ = 0∫ 2π

0

cos(sΦ) cos(qΦ) sin(mΦ) dΦ = 0∫ 2π

0

cos(sΦ) sin(qΦ) cos(mΦ) dΦ = 0∫ 2π

0

cos(sΦ) sin(qΦ) sin(mΦ) dΦ = 0∫ 2π

0

sin(sΦ) sin(qΦ) cos(mΦ) dΦ = 0∫ 2π

0

sin(sΦ) sin(qΦ) sin(mΦ) dΦ = 0

(C.7)

Exact integration of the void volume fraction requires an exact integration of a poly-

nomial of degree 3Nl−1 in the Θ direction and trigonometric polynomial of degree 3Nl in

the Φ direction. This can be achieved with the proposed quadrature rule and the following

number of quadrature points

NqΘ ≥
3Nl

2

NqΦ = 3Nl + 1

(C.8)



142

Appendix D

Viscoelastic parameters in a
relaxation test. Incompressible case

This appendix is concerned with the determination of viscoelastic parameters from ex-

perimental uniaxial relaxation tests in the limit of infinitesimal strain. In particular for

this section, the material is assumed to be incompressible and to follow the following

stress-strain relation

σij = 2µ∞ + pδij +
∑
α

2µα
(
εij − εp,αij

)
(D.1)

where εp,αij are internal variables associated to the viscoelastic processes.

The parameters of the model are obtained by term to term comparison with the

relaxation behavior, represented as

E(t) = E∞ +
18∑
α=1

Eαe
−t/τα (D.2)

where E∞ and Eα are given by fitting to experimental relaxation curves (see for instance

Knauss and Zhao (2007))

The relaxation curve for the constitutive law in Eq. D.1, is derived by imposing a

constant strain (step function) on a given direction (ε11 = constant), leaving σ22 = σ33 =

0. By incompressibility

ε = εdev =


ε11 0 0

0 −1
2
ε11 0

0 0 −1
2
ε11

 (D.3)
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The evolution equations for the internal variables are

ε̇p,α11 =
ε11 − εp,α11

τα

ε̇p,α22 =
−1

2
ε11 − εp,α22

τα

(D.4)

Integration with respect to time leads

εp,α11 = ε11

(
1− e−t/τα

)
εp,α22 = −1

2
ε11

(
1− e−t/τα

) (D.5)

On the other hand, the constitutive law on the two directions give

σ11 = 2µ∞ε11 +
1

3
σ11 +

∑
α

2µα (ε11 − εp,α11 )

0 = −µ∞ε11 +
1

3
σ11 +

∑
α

2µα

(
−1

2
ε11 − εp,α22

) (D.6)

Both equations combined with the temporal evolution of the internal variables provide

the desired uniaxial material behavior

σ11 = 3µ∞ε11 +
∑
α

3µαε11e
−t/τα (D.7)

By comparison with equation (D.2) the expected values are obtained

µ∞ =
E∞
3

µα =
Eα
3

(D.8)
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Appendix E

Non-constant value of the Poisson’s
ratio for a compressible viscoelastic
material

In this section it will be proven by contradiction that the Poisson’s ratio, if different from

0.5, cannot be a constant for a material with constitutive law given by

σij = 2µ∞ + λ∞εkkδij +
∑
α

2µα
(
εij − εp,αij

)
(E.1)

Let’s impose in a similar manner as in Appendix D a step function as a strain on a

given direction (ε11). If the Poisson’s ratio of the material is a constant ν, then

ε =


ε11 0 0

0 −νε11 0

0 0 −νε11

 , εdev =


2(1+ν)

3
ε11 0 0

0 − (1+ν)
3
ε11 0

0 0 − (1+ν)
3
ε11

 , (E.2)

The temporal evolution of the internal variables are

ε̇p,α11 =
2(1+ν)

3
ε11 − εp,α11

τα

ε̇p,α22 =
− (1+ν)

3
ε11 − εp,α22

τα

(E.3)
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which integrated with respect to time give

εp,α11 =
2(1 + ν)

3
ε11

(
1− e−t/τα

)
εp,α22 =

−(1 + ν)

3
ε11

(
1− e−t/τα

) (E.4)

The constitutive law can now be written as

σ11 = 2µ∞ε11 + λ∞(1− 2ν)ε11 +
∑
α

2µα

[
2(1 + ν)

3
ε11 − εp,α11

]
0 = −2µ∞νε11 + λ∞(1− 2ν)ε11 +

∑
α

2µα

[
−(1 + ν)

3
ε11 − εp,α22

] (E.5)

Equivalently,

σ11 = 2µ∞ε11 + λ∞(1− 2ν)ε11 +
∑
α

2µα
2(1 + ν)

3
ε11e

−t/τα

0 = −2µ∞νε11 + λ∞(1− 2ν)ε11 −
∑
α

2µα
(1 + ν)

3
ε11e

−t/τα
(E.6)

The second equation cannot hold for a finite value of ε11. This indicates that sat-

isfaction of the stress-free condition on directions 2 and 3 necessitates a Poisson’s ratio

that is time dependent, so that the temporal evolution of the internal variables can be

accommodated. This case is treated in the following appendix.
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Appendix F

Exact viscoelastic parameters for a
compressible material

In this section, the case of a compressible material with a non-constant Poisson’s ratio

is considered. The material is assumed to obey the constitutive law given by Eq. E.1,

where µ∞, λ∞ and µα are constants.

Let’s impose the following deformation

ε =


ε11 0 0

0 −νε11 + δε22 0

0 0 −νε11 + δε22

 , (F.1)

εdev =


2(1+ν)

3
ε11 − 2

3
δε22 0 0

0 − (1+ν)
3
ε11 + 1

3
δε22 0

0 0 − (1+ν)
3
ε11 + 1

3
δε22

 (F.2)

where ν and ε11 are constant and δε22 is time dependent.

The constitutive law in two of the principal directions, under uniaxial stress, is

σ11 = 2µ∞ε11 + λ∞ [(1− 2ν)ε11 + 2δε22] +
∑
α

2µα

[
2(1 + ν)

3
ε11 −

2

3
δε22 − εp,α11

]
0 = 2µ∞(−νε11 + δε22) + λ∞ [(1− 2ν)ε11 + 2δε22] +

∑
α

2µα

[
−(1 + ν)

3
ε11 +

1

3
δε22 − εp,α22

]
(F.3)

The exact values of µα can be computed from the value of the stresses at t = 0+. At
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that time, εp,α11 = εp,α22 = 0, and therefore

δε22(t = 0+) =
(1+ν)

3

∑
α µα + νµ∞ − λ∞

2
(1− 2ν)

µ∞ + λ∞ + 1
3

∑
α µα

ε11

σ11(t = 0+) =

[
2µ∞ + λ∞(1− 2ν) +

4(1 + ν)

3

∑
α

µα

]
ε11 +

[
2λ∞ −

4
∑

α µα
3

]
δε22(t = 0+)

(F.4)

The value of σ11(t = 0+) can be compared to

σ11(t = 0+) =

[
E∞ +

∑
α

Eα

]
ε11 (F.5)

which provides the desired relations

E∞ = 2µ∞ + λ∞(1− 2ν)

0 = νµ∞ −
λ∞
2

(1− 2ν)

Eα =
2(1 + ν)

3
µα

2µ∞ + 3λ∞
µ∞ + λ∞ + 1

3

∑
β µβ

(F.6)

From the first two equations it is obtained that

λ∞ =
E∞ν

(1 + ν)(1− 2ν)

µ∞ =
E∞

2(1 + ν)

(F.7)

Note that if the material is quasi-incompressible

2µ∞ + 3λ∞
µ∞ + λ∞ + 1

3

∑
α µα

→ 3

Eα → 2(1 + ν)µα

(F.8)

the standard relation between the material parameters hold.
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F.0.1 Exact relaxation curve with one term of the Prony series

In this subsection the exact relaxation curve is derived for the case in which a single term in

the Prony series is considered. The same procedure can be applied for multiple relaxation

mechanisms, although the equations are highly coupled and the analytic solution increases

in complexity.

The constitutive law in the transverse direction is

0 = (2µ∞ + 2λ∞) δε22 + 2µα

[
−(1 + ν)

3
ε11 +

1

3
δε22 − εp,α22

]
(F.9)

Taking derivatives, it is readily obtained that

ε̇p,α22 =
µ∞ + λ∞ + 1

3
µα

µα
δε̇22 (F.10)

which combined with the evolution law of εp,α22 and the transversal equilibrium equation,

leads to

δε22 = δε22(t = 0+)e
− t
τα

µ∞+λ∞
µ∞+λ∞+

µα
3 = δε22(t = 0+)e

−t
τ̄α (F.11)

with τ̄α = τα
µ∞+λ∞+ 1

3
µα

µ∞+λ∞
. Note that in the incompressible limit τ̄α → τα.

The evolution law for εp,α11 can now be derived

ταε̇p,α11 =
2(1 + ν)

3
ε11 −

2

3
δε22 − εp,α11 (F.12)

Integrating with respect to time,

εp,α11 =
2(1 + ν)

3
ε11

(
1− e−t/τα

)
+

2

3

δε22(t = 0+)(
τα

τ̄α
− 1
) (

e−t/τ̄
α − e−t/τα

)
(F.13)

The evolution of the stresses can finally be obtained by combining all these results

into the constitutive equation in the first principal direction

σ11(t)

ε11

= E∞ +
4(1 + ν)

3
µαe

−t/τα +

(
2λ∞ −

4

3
µα

)
δε22(t = 0+)

ε11

e−t/τ̄
α

− 4

3
µα

1(
τα

τ̄α
− 1
) δε22(t = 0+)

ε11

(
e−t/τ̄

α − e−t/τα
) (F.14)
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In the incompressible limit

τ̄α → τα

δε22(t = 0+)→ 0

2λ∞δε22(t = 0+)→ 2(1 + ν)

3
µα

1(
τα

τ̄α
− 1
) δε22(t = 0+)

ε11

→ −(1 + ν)

(F.15)

and σ11 evolves according to the expected equation

σ11(t)

ε11

= E∞ + 2(1 + ν)µαe
−t/τα (F.16)
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