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iv) = (v). & —1: A /\1 is a homorphism, and
% %

*
T(§ = T§ (TQTQ)‘l)-(Té T@)T@-l "T@—l .
% *
(v) = (vi). If T(§ = T‘P then T(§ is isometric so T‘§ is unitary.
P
(vi) = (3). 1f Tq; is unitary, then TQ is isometric and hence

induced by a homomorphism, and it follows from (21.5) that it is 1:1.

REMARKS. 1. Leto: X = X1 be measure preserving and let

Io be defined on M(Xl’ u,l) by To_f = f(o). Then TOC = (,O_l(E) for

E

all E ¢ Ay so TQ: T. where 3(E) = o-1(E).

¢

2. The relationship between multiplicative unitary operators
(which are necessarily d. s. ) and the operators To‘ where 0: X - X
is measure preserving, was studied as early as 1932 by von Neumann
[33,p.618], who assumed that X is a complete separable metric
space with a finite Borel measure | such that spheres have positive
measure and every measurable set is contained in a G6 with the same
measure.

3. With (X, A, i) and ¢ as in 2, Paul R. Halmos has used the
operators TO to find necessary and sufficient conditions for the
existence of a square root of g. [13]

4. It follows from (20. 2) that the operators Tq, are extreme
points of ;Q(Xl, X) (another proof can be gleaned from [34, p= 269,

*
Theorem 1.4]). It is easy to see that T € S(Xl, X) is extreme iff T

*
$

is a homomorphism are also extreme in ;SXXI, X). A complete

is extreme in §X, Xl)' Hence the operators T, such that¢: A - AI

characterization of the extreme points of ,)Q(Xl, X) does not seem to be

known.
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22. The Weak Closure of {g: g ~ f}. As always let (X, A, 1) and

(Xl’ /\1, ul) be finitec measure spaces with (U(X) = My (X]) = a. Recall
that if f € Ll(Xl, ul) then Qf(X, M) = {g ELl (X, 1) g < £} and
Af(X, w) = {g € Ll(u): g ~ f}. The problem is to determine the O(Ll, )

closure of Af. The case Af = § is easy, while if Af + @ and fo EAf

then Q, = Q(fo) and A, = A(fo). Hence from the beginning we work only

£
with the sets 0 (f) and Aff) where £€ L1 (X, ).

J. V. Ryff has shown the following result which we state as a

lemma. For the proof see [43, p.432].

(22.1) LEMMA. If F €L'[0,1] then Q(F) = {GE L'[0,1]: G < F}

is the O(Ll, LX) closure of ME)Y = {G € Ll[O, 17: G~ FJ.

{22, 7} THEOREM. Q) is the o, L0 closure of A(f) for all

fe Ll(X, ) _1_f_f (X, A, 4) is non-atomic or X 1is an atom.

PROOF. Suppose (X, A, 4) is non-atomic. Let g € Q(f) and let
o X = [0,a] be measure preserving such that 5g o0 =g. Let
F(t) = 6f(at) and Gf{t) = 6g(at) on [0,1]. Then G <F so there is a
net {HQ}C A(F) such that H, - G in the CI(L.I (o, 117, L*[0,17) topology.
Letting b (t) = H (t/a) on [0,a]we have h ~ &, and for all v €L*[0,a],
a 1 1 2 .
/o ha vdt = a fo Ha(t)v(at)dt - a fo G(t)v(at)dt = '[o 6g v dt, i.e.,
h, —vég in the O(LI[O, al], LC[0,a]) topology. Since TO is weakly
continuous, Tcha - TO 6g = g and Toha € A(f). Hence A(f) is weakly

dense in Q(f).
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If X is an atom, then A(f) = {f} = Q(f).
For the converse, suppose X is not an atom and (X, A, 1) is not

non-atomic. Then X = A1 U A2 where Al and A_ are disjoint sets

2

of positive measure, and X has an atom B. Let f=2C, + C, ,
e g

-1 e 4 &
let g_ = ;ffdu =1+ WA )/ uX)sol<g <2 andletg=g Cy

so g €Q(f). If h € A(f) then h = ZCB + CB where u(B.) = y(A,)i=1, 2,
1 > i i

so f(g—h)CB du = g, WB) - Zg(BlﬂB) - g(BzﬂB) and u(BﬂBi) =0 or
WB) since B is an atom. Hence for ¢ = 4(B) min (g0~1, Z—go) there

is no h € A(f) such that l f(g—h)CB du | < ¢ so A(f) is not dense in Q (f).

1
(22.3) COROLLARY. For any finite m.s. (X, A, ) and f € L. (X, W)

we hroe that Q) is the oL, L) slosyure of (T g £ erlxtu?) and

£ ~f} .

PROOF. Let g € Q(f), Since (X#, g#) is non-atomic, there is a
net {1 } et x*.#) such that £l -gin ot wh), L= o). Since )
is weakly continuous (see §17 or use (9. 2)), Tuf'a - Tug =g in
H

oL (), LT W) .

If (X, A, u) consists only of atoms of equal measure then A(f) is
finite and hence weakly closed. We will now determine the weak
closure of A(f) when X consists only of atoms, or X has only finitely
many atoms, or when X is separable.

Let X be the non-atomic part of X, let {An}né be the atoms

P

of Xand let A = U A ; alsoleta = u(X ) (see §9).
nep D o o
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(22.4) DEFINITION. Iff € Lix, W) let Z(f) be the set to which g

belongs iff there is an h ~{ such that g|X0 % h‘XO and g‘A=h|A.

(22.5) LEMMA. For all f € L} we have A(f) cZ(f) <E{.

PROOF. A« Z is easy. For the other inclusion, let g € Z so
there is an h ~ { such that g‘XO <h|XO and g‘A = h|A. Since XO is
non-atomic there is a net (h }JC LI(X , 1) with h ~h|X and

o o a 0
ha ¥ g|Xo weakly. Extend each ha to X by ha |A=h|A. Then ha ~h~f
(see (3.3)(x)) and for each v € L® (X, u) we have V!XOEL“C (X, 1)
so /.

e havdu-‘fx g v di, but since '/;Xhan“: ngvdu we have

O lo]

finally that [y h vdu = [y gvady, i.e., h, =g weakly. Henceg € 3.

(22.6) THEOREM. If (X, A, 4) consists only of atoms, then A(f) = Z(f)

for all f € LY, u).

PROOK. We have only to show that A(f) © 4(f). Let g €A(f) .
Then there is a net {ha} C A(f) with ha -~ g weakly. Let B be an atom.
- - - -1

Now u(B) <uh, ' (b, |B) = uie™ t, |B) and £, |B) nE g |B) =
whenever ha‘B * hﬁl.B so W(X) <o implies there are only finitely
many different values ha|B' But ha\B - g|B, so for some @y @ 2ag
implies ha‘B = g‘B. Hence there is an increasing sequence . such
that o ‘:an implies ha‘Ak = glAk, k=1,..., n. Then ”han —g”l - 0so

g ~f and hence g €A(f) = Z (f) in this case.

T can now prove A(f) = Z(f) in general.
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(22.7) THEOREM. Lf_ (X, A, 4) has only a finite number of atomns,

then A(f) = Z(f).

PROOF. We have only to show that A(f) € Z(f). It is easy to sece
that the condition h, \A = hz‘A defines an equivalence relation on A(f).
Since there are only finitely many atoms, there are only finitely many

equivalence classes, H H say. A(f) =HU----UH so

l,....’ -

AMfy=H U ---UH_. Letg€A(f). Theng eﬁ; for some | £k €m,

$0 there is an h0 € Hk and a net {ha} CH, with ha - g weakly. Since

k
h,h €H, h |A=h |Aforalle. Let B be an atom of (X, A, u)
o o K Ta o

(so B A). g is constant on B so (g'B)u(B)= [e CBdg=1imaﬂlaCBdu
= (hO IB)L,&(B) and thus g]B = ho‘B since WB) > 0. This holds for all
atoms B, so glA = ho|A. Let v € L° (Xo, M) and extend v to all of
X by v|A=0, so vEL (X,u). Then [y gvdu = [y gvdu

o
=lim, [ h_ vdu= limafxohavdu so h |X_-g[X weakly. But

h,A=h_[A and h ~f~ h so (3.4)(ii) implies h [X_~h_|X .

Hence g|X_ € 'A(ho‘]x‘ J o= Q(holxo), i.e., glxo <h, ]xo.

(22.8) PROPOSITION. If f g eLl(x,u) and g<f and gla=tla

then gIXO < f]Xo.

PROOF. Define Fn’ Gn inductively by Gl =g, F1 = f;

Since g < f we have G, < F,.

- = kit 1 1

n+l B = FnC

A’ "n+l X-A
n n

Since flA = g]A we have by induction using (8. 7) that Gn < Fn’ n €P.
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If X has only a finite number of atoms, then for some n € P,

g CXO =G _<F_-=f CXO and (8.7) implies g|X_ < f|x_. Otherwise,

G +gCy and F I £Cy and||[F _-fCy || = [F -fCy, dy
o o ol o
= [f C.OS A, du— 0 as n ~« since f € Ll. Similarly, HGn—g CXOHI-* 0.

1=n

Hence (12.5) implies gCXO < fCXO §0 g|X0 < fIXO.

REMARK. If f&g ¢ L! then (22.8) may fail since we could have

J fdu=/ gdu =+ with faob

<[5
A A 0 o flX

g|X

o ¢}

(22.9) LEMMA. If f LY. u) Phem ZE) is gtk T sequentially

closed.

PROOF. Let the sequence {gn} C Z(f) with g, "8 weakly. Then

g, ' A-g lA pointwise, and there are functions hn ~ f such that

g [x_<h |X and g lA =h A n=1,2,3,... Let{[a, b [} ep be

pairwise disjoint intervals such that U [a ,b [=[a, a[ and
nep BN 0

l)n—an = u(An), n €P(see §9). For each n=1,2,3,... let

= 8
Hn hn‘XoC[O,aO[ T Eep(hnlAk)c[ak, bk[

Then {Hn} < [-oc, ][ 0 af which is compact in the product topology,
so there is a subsequence {an }Zzl which converges pointwise
everywhere to a function H. Hl [o, a0[ is the limit of a sequence
of decreasing functions so it is decreasing, and Xo is non-atomic, so

there is an h € M(Xo, M) such that 6 = HI o, ao[a.e. .  Extend

hix
h to X by hlA = g[A. Now Hn~hn~ f and an - H pointwise so



-121-

H~f. AlsoH|[0,a,[ = 6h' ~h|X,, and since

X
o
H ‘[‘aO’aENhn 'A=gn lA

"k k k
! !

H|[ayal ¢|A =hla
pointwise, we have HI [ao, al~h|A. Hence h~H~fE€ L! and thus
h ELI. Since ((f) is weakly closed, g €Q(f) so g <f~h and hence
g <h. Since g|A = hIA, we have using (22.8) that ngo <h|XO.

Thus g € Z({f).

Recall that the metric space associated with a finite m.s.
(X, A, 1) is (A(M), d) where A(d) is A modulo the sets of measure
zero and d(A, B) = W(A-B) + B-A). A(M) will be viewed as A with

the equality A = B[] iff C :CB M-2.e. A finite m.s. is

A
said to be separable if its associated metric space is separable.
Note that Lebesgue measure on bounded subsets of Rk and Stieltjes-

Lebesgue measure onbounded subsets of Rare separable 47, p. 69].

(22.10) PROPOSITION. (i) (XO, AOXO, W) is separable iff (X, A W)

is separable.

(ii) If (X, A, u) is_separable then for each f € LI(X, i) the

relative O(Ll, Loc) topology on Q(f) is metrizable,.

PROOF. 1) (AN Xo(u,), d) is a subspace of (A(W), d) so (A(W), 4)
separable implies (AﬂXo(u), d) is separable. Conversely, if
(AN Xo(u), d) is separable, then the union of the atoms of X and a

countable dense subset of (AN Xo(u), d) is countable and dense in
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(A (), d).

(ii) Let 8 be a countable dense subset of (A(Y), d) an:!{ let f € Ll.
Then Q (f) is weakly compact, so according to [20, p. 143, Theorem
16. 7] we have only to show there is a countable subset of L% which
separates points of L', Let 8 = {CE: E € R}, so § is countable. To
show that § separates points of Ll let g, h ELI. 1f f(g-h)CEdu =0
for all Ci. €8 then fE(g-h)du = 0 on a dense subset of (A(W), d).
Since g-h € Ll, E - fE(g -h)dy is continuous on (AW, d) and hence we

conclude that fE(g~h)du = 0 for all E € N4) so g =h.

(22.11) THEOREM. If (X , [\ﬂXO, 4) is separable then for every

o
f& LI(X, {) we have A(f) = Z(f).

PROOF. Now the weak topology on ((f) is metrizable so Z(f)

is closed and thus A(f)c Z(f) cA(f) implies A(f) = Z(f).

Now suppose p is a saturated Fatou norm on M(X, ) such
that L cLP, LP c L' and L is w.r.i. 1ff € LP then A()cLP and
the problem is to determine the O(Lp, Lpl)-closure of A(f). If
A c LP we denote its G(Lp, Lp|) closure by PA . Since
O(Lp, LOC) c o(Lp, Lpl) we see that PA cA.

By examining the proof of (22.10)we see that if f € LP and
(Xo, /\ﬂXo, i) is separable, then the relative O(Lp, Lp‘) topology on

QUf) is metrizable.
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1
(22.12) PROPOSITION. If the simple functions are dense in LP

1
then for every f € LP and Ac Q(f), EI_}E o(Lp, 1, ) closure of A

equals the o(Ll, L°c) closure of A.

PROOF. Now Q(f) is p-bounded so there is an M > 0 such that
plg) < M for all g € Q(f). We have only to show that AcPA . Now

A cC Q) by (17.4). Let g, € A . Then there is a net {ga} c A with

oc)'

!
g, 8, in o(Ll, L Ifth e LP, Fh(g) = [ g h dy defines a con-

s

tinuous linear functional on LP. It suffices to show that Fh(ga)th(go)
| 1

for allh € L. Hence leth € L. and let ¢ > 0. Then there is a

simple function v such that p'(h-v) < g, so for all g €Q(f),

|Fh(g)-F @] =1]/b-vIgdu| = plg)p'(h-v) < M e. Now there is

v

an a_ such that ¢ = @ implies va(ga) - Fv(go)\ < e. Hence for

aza, |F (g,)-Fyle )| < |Flg)-F (g )]+ |F _(g,)-F (g )]

+|Fv(go)-Fh(go)| sMe+e+Me. Thus F, (g )~ F, (g )

1
(22.13) THEOREM. If the simple functions are dense in L? and
1

1
f € L then the o(Lp, LP ) closure of A(f) equals the o(L", L% closure

of A(f).

REMARK. The intuitive idea behind the definition of Z is that
every member of A(f) can be reached by a net in which eventually
the rearrangements of f are formed by rearrangements on XO and
rearrangements on A. This means that if g € m there is a net

{ha} cA(f) and an index @ such that for e, = @ we have
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h,[X ~hg|X_  and b |A~hi|A. Inthis case b, [X =u|X,
implies g|X_<h_ [X_ and h |A~g|A implics gl]A~h [A.
O O

Hence defining h by hfX =h_[X and h|A = g|A we have
3 Qo 0(0 (o]

h~f g|X_ =<h|X and glA =h[A.
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