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(21. 5) COROLLARY. Let ip: 1\1 -+ 1\ be a homorphism. Then 

(i) Tip is 1:l. 

(ii) Tip* maps L oc (u.) onto L oc and L 1 (\.l) onto L 1 
(14

1
), 

* PROOF. T<p Tip = the identity mapping on L 1 (\.lI) and 

oc oc 
Tip: L .... L (14)· 

(21. 6) THEOREM. Let if?: 1\1 .... 1\ be a homorphism. Then the 

following are equivalent. 

(i) * Tip is 1 = 1. 

(ii) T <p T iJ?* is the identity mapping on L 1 (fJ.) 

(iii) The range of Tip is all of L 1 (14) 

(iv) if? is an isomorphism. 

* (v) T is induced by a homorphism of 1\ .... 1\1' 

(vi) Tip is unitary. 

PROOF. (i) (ii). * * * Then Tip (TiJ? TiJ? f) = Til? f so 
)'( 

T iJ? TiJ?' f = f. 

(ii) (iii). Obvious. 

(iii) (iv). Let A E 1\. Then there is an fA E L 1
(fJ. 1 ) such that 

oc 2 * ! 2 TiJ?fA = CA' For all g EL (14) we have !fA Tipg dlJl = g TipfA dlJ 

Since TiJ?* maps Loc(IJ) onto L oc (I-!l) (this is implied by (Zl. 5)(ii» we 

2 
have fA = fA so fA = C B where B = [fA = I}. Then CiJ?(B) = TiJ?fA = C A 

soiJ?(B) =A [u.]. 
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-1 
(iv) ~ (v). 11 : 1\ ..... 1\1 is a hom.orphism., and 

* * * T~ = T~ (Tq, Tq,_I) = (Tqi Tgi)T~_1 = Tqi_l . 

~, * 
(v) =:> (vi). If Tq, == T,¥ then Tq, is isom.etric so Tq, is unitary. 

(vi) ~ (i). * If T<l? is unitary, then Tq, is isometric and hence 

induced by a hornonlOrphisrn, and it follows from. (21.5) that it is 1: 1. 

REMARKS. 1. Let 0: X ..... X I be measure preserving and let 

Tn bedefinedonM(XI,\JI) by Tof::::£(o). 

all E E Al so To = Tq, where 1> (E) = a-I (E). 

ThenT C
E 

==c _l(E) for a 0 

2. The relationship between m.ultiplicative unitary operators 

(which are necessarily d. s. ) and the operators Td where a: X .... X 

is m.easure preserving, was studied as early as 1932 by von Neum.ann 

[33, p. 6I8J, who assumed that X is a complete separable metric 

space with a finite Borel measure kJ, such that spheres have positive 

measure and every measurable set is contained in a Go with the same 

measure. 

3. With (X, 1\,1../.) and a as in 2, Paul R. Halmos has used the 

operators To to find necessary and sufficient conditions for the 

existenceofa square root of a. [13J 

4. It follows from (20.2) that the operators Tq, are extreme 

points of ~(XI' X) (another proof can be gleaned from [34, p. 269, 

Theorem 1. 4 J ). * It is easy to see that T E ~(Xl' X) is extrem.e iff T 

is extreme in fi.X, Xl)' * Hence the operators T ~ such that ~: A. ..... 11.1 

is a homomorphism are also extreme in fi.X l' X). A complete 

characterization of the extreme points of .19 (X l' X) does not seem to be 

known. 
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22. The Weak Closure of fg: g "-' f}. As always let (X, fl. IJ) and 

(Xl' Al,U I ) be finite measure spaces with IJ(X),:: 1J1(X 1 ):::" <l. Hccal1 

that if f ELI (Xl' U
1

) then Of (X, IJ) = fg ELI (X, IJ): g -< f} and 

6
f
(X, U) = [g ELI (U): g ....., £}. The problem is to determine the o(L

l
, L:X:) 

closure of 6r The case 6
f 

= 0 is easy, while if 6
f 

::j: C/J and fo E 6f 

then Of = O(f
o

) and 6
f 

= 6(f
o

)' Hence from the beginning we work only 

with the sets 0 (f) and 6(f) where f EL
I 

(X, IJ). 

J. V. Ryff has shown the following result which we state as a 

lemma. For the p roof see [43, p. 432 J . 

(22.1) LEMMA . .!! FE Ll[O, IJ then O(F) = fGE Ll[O, 1J: G -< F} 

is the o(L I , Lex:) closure of 6(F) = [G E Ll[O, 1]: G,....., F}. 

(22. 2) THEOREM. O(f) is the o(L 1, L oc) closure of 6(f) for all 

f ELl (X, u) iff (X, A, bJ.) is non-atomic or X is an atom. 

PROOF. Suppose (X, 1\, \,1) is non-atomic. Let g E O(f) and let 

0: X -+ [0, a] be measure preserving such that 6 0 G = g. Let 
g 

F(t) = 0f(at) and G(t) = 0g(at) on [0, 1J. Then G <: F so there is a 

net [Hale 6(F) such that HO! -- G in the O(Ll[O, IJ, Loc[O, 1J) topology. 

Letting h (t) = H (t/a) on [0, aJwe have h ,....., 6
f
, and for all v ELoc [0, a], 

a O! 1 a 
a 1 a 

! h v cit = a ! H (t) v(at)dt -+ a ! G(t) v(at )dt = f 6 v dt, i. e. , 
OO! OO! 0 og 

h --6 intheo(L
1
[0,a], LOC[O,a]) topology. SinceT isweakly 

O! g G 

continuous, T h .... T 6 = g and ThE 6(£). Hence 6(f) is weakly 
GO! og GO! 

dens e in 0(£). 
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If X is an atom, then 6. (f) = {f} = O(f). 

For the converse, suppose X is not an atom and (X, A, 1-1) is not 

non-atomic. Then X = Al U A2 where Al and A2 are disjoint sets 

of positive H1Casure, and X has an atOTIl B. Let f = 2eA + C A ' 
1 1 2 

let g = - f f dl-J = 1 + ~(Al)/f,.L(X) so I < g < 2, and let g = g eX' o a . 0 0 

so g E O(f). If h E 6(f) then h = 2C
B 

+ C
B 

where \.I. (B. ) = w.(A.) i = 1, 2, 
I 2 1 1 

so !(g-h)C B dw. = go U(B) - 2u(B
I

nB) - U(B 2 nB) and u,(BnB
i

) = 0 or 

u,(B) since B is an atom. Hence for E: = IJ(B) min (g -1,2-g ) there 
o 0 

is no h E 6.(f) such that I ! (g-h)C
B 

dU 1< E: so lI(£) is not dense in 0 (f). 

(22. 3 ) COROLLARY. 
1 

For any finite m. s. (X, fl., IJ) and £ E L (X, U) 

£1 "'£} . 

PROOF. Let g E (2 (f). Since (X#,I,i) is non-atomic, there is a 

net [£1 } cL I (X~IJ*) such that £1 -- g in a(L 1(14#), L ~ (J)). Since Til 
a a ~ 

is weakly continuous (see ~I7 or use (9.2)), T £1 -- T . .e: = g in 
U a ~ 

1 ~ 
a(L (\.I.), L (\.I.)). 

1£ (X, A, IJ) consists only o£ atoms o£ equal measure then lI(£) is 

finite and hence weakly closed. We will now determine the weak 

closure o£ 6(£) when X consists only o£ atoms, or X has only finitely 

many atoms, or when X is separable. 

Let Xo be the non-atomic part o£ X, let (An}nEP be the atoms 

o£ X and let A = U A; also let a = \J.(X ) (see ~ 9). 
nEP n 0 0 
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(22.4) DEFINITION. If f EL
I 

(X, ~) let Z (f) be the sct to which g 

b~~longs iff there is an h ...... f such that g I Xo ~ h Ixo and g IA:::h IA. 

(22.5) LEMMA. For all £ ELI we have ~(f) CZ(f) eMf). 

PROOF. 6. l.~ Z is easy. For the other inclusion, let g E Z so 

tll\~n.~ is an h...., f Ruch that glXo -<hlxo and glA::.: hiA. Since Xo is 

non -atomic the re is a net (h } eLl (X ,~) with h ...... h I X and 
0( 0 0( 0 

h -, glX weakly. Extend eachh to X byh IA:::hIA. Thenh -h-f 
0( 0 a 0( 0( 

(see (3. 3)(x)) and for each vE Loc(X,~) we have vlx ELoc (X ,~) 
o 0 

so Ix hO( v dj..l-+!X g v dj..l, but since ~hO( v dj..l::: fA gv d~ we have 
o 0 

finally that I X hO( v dj..l -+ ! X g v dj..l, i. e., ha .... g weakly. Hence g EX. 

(22. 6) THEOREM. If (X, 1\, j..l) consists only of atoms, then ~(f) ::: Z (£) 

f()r all f ELI (X, ~). 

PI~OOF. We have onLy to show that D.(O C Z(O. Let g E ~(f) . 

Then there is a net {h } c 6(f) with h .... g weakly. Let B be an atom. 
a a 

Now ~(B) S;~(h -l(h IB))::: ~(f-l(h IB)) and f-1(h IB)) nf-1(hAIB)::: cP 
a 0( a 0( ~ 

whenever hO( I B =1= h~ I B so \J.(X) < oc implies there are only finitely 

rnany different values ha I B. But ha I B -+ g I B, so for some a O' a ~aO 

implies h I B ::: g I B. Hence there is an increasing sequence a such a n 

that a 2a implies h IAk ::: glAk' k ::: 1, "', n. 
n a . 

g ·~f and hence g EMf) ::: Z (f) in this case. 

I can now prove 6(f) = Z(f) in general. 

Then IIha -gill -+ 0 so 
n 



-119-

(22. 7) THEOREM. If (X, fI, IJ) has only a finite nUITlber of atoms, 

then t.(f) = Z (f). 

PROOF. We have only to show that 6(f) C Z(f). It is easy to see 

that the condition hilA = h21A defines an equivalence relation on t.(f). 

Since there are only finitely ITlany atoITls, there are only finitely ITlany 

equivalence classes, HI'····' Hn say. t.(f) == H 1U·.·. UHn so 

t.(f) == HI U· ... U Hm' Let g E 6(f). Then g EHk for SOITle 1 ~k ~ ITl, 

so there is an h E Hk and a net [h } CH
k 

with h - g weakly. Since 
o a a 

h ,h EH
1

, h IA = h IA for all a. Let B be an atOITl of (X, fI, u,) 
a 0 '- a 0 

(so B cAl. g is constant on B so (gl B )IJ(B)= IgCBdU=liITlafhaCBd\.L 

== (h IB)U(B) and thus g IB = h I B since k!(B) > O. This holds for all o . 0 

atoms B, so g I A = h I A. Let v E Lac (X ,IJ) and extend v to all of 
o 0 

X by vIA == 0, so v E Loc(X, fJ)· Then Ix g v dfJ = Ix g v du, 
o 

== liITl tx h v dU = liITl /,X h vd~ so h IX -+g Ix weakly. But a a QI a a 0 0 
o 

h IA == h IA and h "" f '" h so (3. 4)(ii) iITlplies h IX -h Ix . 
(}' 0 0' 0 a 0 0 0 

Hence glX E t.(h Ix ) = n(h Ix ), i. e., glX ~ h Ix . 
10 00 00 000 

(22.8) PROPOSITION. If f, gEL 1 (X, u,) and g ~ f and g IA == flA 

then g I X ~ fIX . 
---- 0 0 

PROOF. Define F n' G
n 

inductively by G l == g, F 1 == f, 

G n +1 == Gn C X _A ' F n +l == Fn C X _A ' Since g -< fwe have G I -< Fl' 
n n 

Since flA == glA we have by induction using (8.7) that G -< F , n EP. 
n n 
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Ii X has only a finite number of atoms, then for some n E P, 

= G ~F = f C and (8.7) implies glX ~ fix. 
n n X 0 0 

Otherwise, 
o 

G n ~ g C x and F n~ f C x and IIF -fCX II = IF n -f C x dIJ. 
o 0 n 01 0 

= f £ C ~ A. d~ .... ° as n -+ oc 
i=n 1 

Hence (12. 5) implies g eX 
o 

since f ELI. 

so g Ix ~ fix. o 0 

REMARK. If f & geL 1 
then (22.8) may fail since we could have 

flo ao 
! £ dlJ = J g d~ = +oc with J ° I x < J ° f I X 
A A 0 goo 0 

(22. 9) LEMMA. If f ELI (X, IJ) then Z (f) is o(L 1, L oc} sequentially 

closed. 

PROOF. Let the sequence [g } c Z (f) with g -+ g weakly. Then 
n n 

g I A -+ g I A pointwise, and there are functions h "" £ such that 
n n 

gnlxo~ hn\XoandgnlA =hnIA, n=1,2,3, ... Lettcan' bn[}nEP be 

pairwise disjoint intervals such that U [a , b [::: [a
O

' a [ and 
nEP n n 

b -a = U(A }, n EP(see §9}. For each n = 1,2,3, .. , let 
n n n 

H = 0h Iv C [0 [+ z::; (h I Ak ) C r b [ 
n n r 0 ' a ° kEP n La k' k 

Then tEn} c [-oc, oc J[ 0, a [ which is compact in the product topology, 
oc 

so there is a subsequence IHn} which converges pointwise 
l' k k= 1 

everywhere to a function H. HI [0, a O [ is the limit of a sequence 

of decreasing functions so it is decreasing, and X is non-atomic, so 
o 

there is an h E M(Xo ' IJ} such that 0h Ix = HI [0, a O[ a. e.. Extend 
o 

h to X by h IA = g I A. Now H "" h "" f and Hn .... H pointwise so 
n n k 
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H"" f. Also HI [0, a O[ = bh IX ""' hi X O' and since 
o 

1 

.H I [a O' a [ 

pointwise, we have HI [a O' a[-- h!A. 
1 

Hence h", H ,..... f ELand thus 

Since O(f) is weakly closed, g E O(f) so g -< f...., h and hence 

g -< h. SincegIA=h!A, we have using (22.8) that glX -<hIX. 
o 0 

Thus g E Z (f). 

Recall that the metric space associated with a finite rn. s. 

(X, A, \,j) is (A(\.I), d) where A (IJ) is A modulo the sets of measure 

zero and d(A, B) = \.dA-B) + IJ(B-A). A(IJ) will be viewed as A with 

the equality A = B[~J iff C A = C B ~ -a. e. A finite m. s. is 

said to be separable if its as sociated metric space is separable. 

Note that Lebesgue measure on bounded subsets of Rk and Stieltjes-

Lebesgue rneasure on bounded subsets of Rare separable [47, p. 69J. 

(22. 10) PROPOSITION. (i) (X , A nx ,\.I) is separable iff (X, 1\., IJ) 
o 0 

is separable. 

1 
(ii) If (X, /I., \.I) is separable then for each f E L (X, 1..1) the 

1 oc 
relative a(L ,L ) topology on O(f) is rnetrizable. 

PROOF. (i) (A n X (\.I), d) is a subspace of (A(IJ), d) so (!I. (1-/.), d) 
o 

separable implies (A n X (lJ), d) is separable. Conversely, if 
o 

(I\. n X (\.I), d) is separable, then the union of the atoms of X and a o 

countable dense subset of (A n X (U), d) is countable and dense in 
o 
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(/I (~), el). 

1 
(ii) Let a be a countable dense subset of (1\(\J.), d) an! let f E 1.. . 

Then 0 (f) is weakly compact. so according to [20, p.143, TheoreU1 

16. 7J we have only to show there is a countable subset of 1.. oc which 

separates points of L 1 Let f; = teE: E E d3}, so f; is countable. To 

show that f) separates points of L 1 let g, h ELI If f (g -h)C
E 

db!, = 0 

for all C
E 

Ef) then JE(g-h)db!, = 0 on a dense subset of (A(~), d). 

Since g-h EL
I

, E -> JE(g-h)du, is continuous on (A(~, d) and hence we 

conclude that JE(g-h)dw, = 0 for all E E II(bt) so g = h. 

(22. 11) THEOREM. If (X , An x ,bt) is separable then for every 
- 0 0 

1 -
f E L (X, ~ we have 6(f) = Z (f). 

PROOF. Now the weak topology on O(f) is metrizable so Z (f) 

is closed and thus 6(f)c Z(f)C6(f) iU1plies 6(f) = Z(f). 

Now suppose p is a saturated Fatou norm on M(X, IJ) such 

that L oc cL P, L P ' eLI and L P is u. r. i. If f E L P then 6(f) cL P and 

the problem is to deterU1ine the a(L P, LP')-closure of 6(f). If 

A c L P we denote its o(L P, L P ') closure by P A. Since 

o(LP,Loc)ca(LP,LP')we see that P A cA. 

By examining the proof of (22.10)we see that if £ E L P and 

(X ,1\ nx ,uJ is separable, then the relative a(L P, L P') topology on 
o 0 

0(£) is metrizable. 
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(22. 12) PROPOSITION. If the simple functions are dense in L p 
, 

then for every f E L P and Ac O(f), the a(L P, L
PI

) closure of A 

1 ac 
equals the o(L ,L ) closure of A. 

PROOF. Now O(f) is p-bounded so there is an M> 0 such that 

p(g) < M for all g E O(f). We have only to show that A c Px . Now 

p- . 
A c 0(0 by (J 7.4). Let go EA. Then there is a net {gO'} C A with 

1 ac pI 
in o(L ,L ). Ifh E L , Fh(g) = J g h dU defines a con-

tinuous linear functional on LP. It suffices to ",how that F h (gQl) ..... F h (go) 

for all hELP'. Hence let hELP' and let IS > O. Then there is a 

simple function v such that pI (h-v) < e, so for all g E O(f), 

IFh(g)-F)g)1 = I J (h-v)g d~ I ~ p(g)pl(h-v) ~ M 8. Now there is 

an 0' such that 0' 2 0' implies IF (g ) - F (g ) I < e. Hence for 
o a vO' va 

0' 20' , IFh(g )-Fh(g )1 ~ lF
h

(g )-F (g )1 + IF (g )-F (g )1 
a 0' 0 0' VO' vO'vo 

(22. 13) THEOREM. If the simple functions are dense in L P ' and 

f E LP then the a(L P, L P ') closure of (I.(£) equals the a(L 1
, LO())~losure 

of !\(f). 

REMARK. The intuitive idea behind the definition of Z is that 

every member of 6(f) can be reached by a net in which eventually 

the rearrangements of f are formed by rearrangements on X and 
a 

rearrangements on A. This means that if g E tJ(f) there is a net 

(h } ctJ(f) and an index 0' such that for 0', p 2 QI we have 
0' 0 a 
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h IX '" hAlx and h IA,.....,bAIA. In this vase h IX ..... glX 
Q' 0 t-' 0 Q' t' 0:' 0 . 0 

lmpliesglX -<b Ix and h IA ..... gIAimplicsgIA"'-,h IA. 
o Q' 0 Q' Q' 

o 0 

Hencedefiningh by hlX =h IX and hlA=glA we have o Q' 0 
o 

h ,....., f, g I Xo -< h I X 0 and g I A = hi A. 
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