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ABSTRACT

Let (X, A, 4) be a measure space and let M(X, ) denote the set
of all extended real valued measurable functions on X. If (Xl’ 1\1, ul)
is also a measure space and f € M(X, 1) and g € M(Xl’ U‘l)' then f
and g are said to be equimeasurable (written f ~ g) iff u(f_l [r,s]
= (g-1 [r, s]) whenever [r,s] is a bounded interval of the real
numbers or [r,s] = {+x} or = {-x}. Equimeasurability is investi-
gated systematically and in detail.

If (X, A, i) is a finite measure space (i.e. yu(X) < «) then for

each f € M(X, ;) the decreasing rearrangement 6, of f is defined by

f

8,(t) = inf {s: u( {f>s}) <t} 0 <t <y(X).

Then 6£ is the unique decreasing right continuous function on [0, 11(X)]
such that 6f~ f. If (X, A, u) is non-atomic, then there is a measure

preserving map o: X = [0, u(X)] such that 6_(0) = f w-a.e.

f
If (X, A, 1) is an arbitrary measure space and f € M(X, 1) then
f is said to have a decreasing rearrangement iff there is an interval
J of the real numbers and a decreasing function 6§ on J such that
f~ 6. The set D(X, Uu) of functions having decreasing rearrangements
is characterized, and a particular decreasing rearrangement 6. is

f

defined for each £ € D. If ess.inf f <0 < ess.sup f, then g is

obtained as the right inverse of a distribution function of f. If
ess.inf £< 0 <ess.sup f then formulas relating (6f)Jr to 6.4,
6

f)_ to 6. and & _;to 6 are given. If (X, A, y) is non-atomic

and O-finite and & 1is a decreasing rearrangement of f on J, then

f-

there is a measure preserving map 0: X = J such that 6(g) = f y-a.e.
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If (X, A u) and (Xl, /\1, ul) are finite measure spaces such that

a = y(X) =y (X

| ]). if f, g € M(X. ) UM(XI, i

. a .
l), and if f(‘ O and

a T . { . :
) are i E p =< rans 5. = : # g S LA
» (gl are {inite, then g f Imecans /;) o /() bl for all 0O -t (I

and g <f means g <<f and foil b, = foa 6g' The preorder rclations
< and << are investigated in detail. 7

TF £ € LK, W et 0} = [g SLOBE ul: g <47 amd
Af) = {g € Ll(X, u): g~ f }. Suppose p is a saturated Fatou norm on
M(X, u) such that LP is universally rearrangement invariant and
L cLPcr!. 1ff €LP then (f) LP and Q(f) is convex and
o (LP, Lpl)-compact. If & is a locally convex topology on LP in
which the dual of LP is Lp', then Q(f) is the E£-closed convex hull
of M) for all f € LP iff (X, A 1) is adequate. More generally, if
fernl(x), L)) let X, 1) = {g €L (X, u): g <£} and
Be(X, u) = {g € Ll(X, (): g ~f}. Theorems for Q(f) and A(f) are
generalized to Qf and Af, and a norm p, on M(Xl, ul) is given
such that Qlf‘ c LP iff feLP1,

A linear map T: LI(XI, ul) —'Ll(X,g) is said to be doubly stochastic
iff Tf<f forall f € Ll(Xl, U’l)' It is shown that g < f iff there is a
doubly stochastic T such that g = Tf.

iff€ Ll then the members of A(f) are always extreme in
Q(f). If (X, A, y) is non-atomic, then A(f) is the set of extreme points
and the set of exposed points of (f).

A mapping $: l\.1 - M is called a homomorphism if
(i) w(®(A)) = ul(A) for all A € /\,1; (i) (A B) = 3(A) U3 (B) (4] whenever

ANB =9 [yl and (iii) (A N B) =8A)N&B) [u] forall A BENA,



where A = B [u] means C,=Cp p-a.e. If& A, ~Aisa homo -
morphism, then there is a unique doubly stochastic operator
QCE = C@ (E) for 2all E. If
T: Ll(Xl, W) ~LY(X, u) is linear then Tf~ f for all f € Ll(xl, )

Tg: L' (X, 1) =~ L1(X, 4) such that T

iff T = T<§ for some homomorphism 3§.
Let X0 be the non-atomic part of X and let A be the union of

the atoms of X. If f € LI(X, () then the (J(Ll

,Lx)-closure of A(f) is
shown to be {g GLI: there is an h ~f such that ngo < hIXo and
glA = h‘A} whenever either (i) X consists only of atoms; (ii) X has

only finitely many atoms; or (iii) X is separable.
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1. Introduction. The decreasing rearrangement of a non-negative

measurable function has, since its treatment in Inequalities by Hardy,

Littlewood and Polya, played an increasingly important role in
analysis, because of its fundamental part in the structure of normed
spaces of measurable functions which are rearrangement invariant.
Examples of such spaces are the classical TP spaces, the Orlicz
spaces, and the spaces introduced by Halperin [14] and l.orentz [23].
These so-called rearrangement invariant Banach function spaces have
been shown by Boyd [2], Shimogaki[45], and Lorentz and Shimogaki
[257 to be well suited for studying problems related to Fourier analy-
sis and interpolation of operators.

Recently Luxemburg (28] gave a general account of the theory
of rearrangement invariant Banach spaces for measure spaces with
finite total measure. Such spaces provide a natural setting in which
to generalize a theorem of Hardy, Littlewood and Polya which gives
equivalent conditions that two vectors in R" be related by a certain
preorder relation <. J. V. Ryff [42] has given the generalization
for L [0, 1], while l.uxemburg [28] has given it in part in the re-
arrangement invariant Banach space setting. We will complete this
generalization in Chapter V.

With an eye to studying these topics when the total measure of
the space is not finite, in Chapter I we investigate the concept of
equimeasurability for arbitrary measure spaces, though we include
as well results which can only be proved in general for finite measure

spaces.
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In Chapter II we define the decreasing rearrangement for all
measurable functions if the measure space is finite. If the measure
space is not finite, we characterize the set of measurable functions
which have decreasing recarrangements, and define one for cach such
function. Of importance is the fact that we can prove a thcorem
relating a function to its decreasing rearrangement by a measure
preserving transformation when the measure space is non-atomic
and o-finite.

In Chapter III we introduce the generalization to measurable
functions on a finite measure space of the Hardy-Littlewood-Polya
preorder relation <, and investigate it and some associated inequali-
ties. In particular we give a new and careful proof of a theorem in
[28] about the values taken on by certain integrals, and we character-
ize adequate measures.

For completeness we include as Chapter IV Luxemburg's
treatment of rearrangement invariant Banach spaces. For the same
reason we include his resultsonSchur convex functions in Chapter V,
where we give finally a complete account of the generalization of the
theorem of Hardy, Littlewood and Polya referred to above. We also
extend Ryff's generalization of Muirhead's theorem to finite measure
spaces. Finally in Chapter VI we settle some extremal and related V
problems of some sets which arose in Chapter V.

Throughout we use the following abbreviations:

m.s. = measure space; m.p. = measure preserving; pwd = pairwise

disjoint.
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I. EQUIMEASURABILITY

2. Spectral Measures. Let (X, A, M) be a measure space (m.s.), i.e.,

X is a non-empty point set, A is a O-algebra of subsets of X, and Mis
a countably additive measure on A, Often we will write .l.“lu for the
integral of f over X with respect to Wwhen X is clear (rom the contexdt.
Also we let M = M(X, u) denote the set of all extended real valued
f-measurable functions on X, and if E is a set, then CE denotes the
characteristic function of E.

Let R denote the real numbers, let R# denote the extended real

numbers, and let S = S(R#) denote the Riesz space of all functions s

of the form

a
g =2 2 &, O
k=1 K Ik
where each ay € R and each Ik is a bounded interval of R#, i.e., Ik

is an interval of R of finite length or I, = {4+ } or Ik ={-w}. We call

k

the members of S step functions on R#.

For every s €S and f € M it is easy to see that s(f) is a simple

#

measurable function on X. If f € M, let I.:S = R" be defined by

f

I(s) = [s(f)dp

for all s €S. Suppose f has the property that u(f—l[u, v]) <« for every

bounded interval [u, v] of R#. Then If(s) is finite for every s € S and

in fact defines a positive linear functional which is continuous in the
sense that if 5 .L 0 then If(sn) l 0. Hence there is a measure L.lf on

i

r¥ such that for every s € S we have

js(f)du =1.(s) = j‘ sdg
r¥
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We call Mp the spectral measurce of f, or sometimes the U-spectral

measure of f. In probability theory be is known as the distribution
measure of f.

For many purposes, whether or not f takes the value 0 on a
set of finite or infinite measure is of no interest, so our conditions
under which e is defined may seem unduly restrictive. However, we
have only to let X' = {x € X:f(x) % 0} (called the carrier of f) N'=AN X!
and W' =y ] A' to see that if u(f wd [u,v]) < oo for all bounded intervals
[u, v] of R# - {0} then u,'(le'_l[u,v])< o for all bounded intervals of
R# and thus the ' -spectralmeasurc p.’f \Xx is defined. We may in a
similar manner ignore whether or not f takes the values +o or -oo
on sets of finite or infinite measure.

Observe that if [u,v] is a bounded interval of R#, then
gf([u, ¥]] = u(f—l[u, v]). If(X, A, i) is a finite m.s. (i.e. w(X) < o),
then My is defined for every f € M and can be represented by the distri-

bution function df defined for t €¢ R by

df(t) = u(f{x € X:f(x) >t}

Letting ef(t) = w({x € X:f(x) <t}) for every t € R we have that df+ef=u(X),

df is decreasing, € is increasing, both df and e, are right continuous,

dfn tq, and efn | e; whenever £ * 1, t11n30 d(t) = u({f = +oo}),
lim ef(t) = Wl 1 = =a6 ), df(t-) = u{{x:f(x) 2t}), and €r is continuous at
t— -0

t iff df is continuous at t iff u({f=1t}) = 0.

(2.1) PROPOSITION. If (X, A, ) is a finite m.s. and fn - { pointwise_

a.e. then df 4 df at every point of continuity of df, igdf - df
n n

pointwise a. e.




B
PROOF. Let E = {x:f (x) #f(x)}. Then W(E)= 0. Lett €R

and let .An = {fn >t}and A= {f>t}. Then A c E U lim inf AnCEU
lim sup A CEUAU {f=1t}. If d; is continuous at t, then {fe=tli=
so W(A)su(lim inf An) < lim inf u,(An) < lim sup u(An) <(lim sup An)

(t). Since d. is

< u(A) and hence df(t) = WA) = lim H’(An) = lim d £

f
n

decreasing on R, df has only countably many discontinuities.

REMARK. If f = g a.e. then s(f) = s(g) a.e. for each s € S.
Thus for each s € S we may define a mapping TS:LI(X, A Ll(X, A, W)

by Tsf = s(f). Let Sl = {5€8i15 = o u & v rational}. Then

T ¥

{TS:SGSI} separates points of Ll.
Foriff &g € Ll differ on a set of positive 4 -measure, then

at least one of {f < g} or {g < f} has positive measure. By symmetty

we may assume {f < g} has positive measure. If {5i}io-:1 is an
o)

enumeration of all rationals of R, then {f <g} =y {f< Bi < g} so there
i=1
is a rational v such that u ({f <v <g}) > 0. Sincef € Ll, u(if= -o}) =0

so there is a rational number u s.t. y(fu<f<v <g})>0. Letting

s = C]u so{s(f)¢s(g)}3{u<f<v<g}

o[ ve have s(f) = C{u <f{<v}

and thus s(f) and s(g) differ on a set of positive measure.

3

3. Spectral Equivalency. Let (Xl’ Al,ul) and (XZ’ AZ’ uz) be measure

spaces (m. s.) with fIEM(Xl’ ul) and fZEM(XZ, u,z). If both m. s. are

finite, then we say that fl and fZ are spectrally equivalent or equi-

measurable iff Me = uf and in this case we write fl ~f2. Then
1 2
=d,. iff y.(f _l[u, ¥]) = p, {f —lfu, v]) for every bounded
f1 f2 11 2V 2
interval [u, v] of r¥,

f1~ fZ iff d
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In case one of the m. s. is not finite we write f1~f2 iff
ul(fl-lfu, v]) = uz(fz—l\:u, v]) for every bounded interval [u, v] of R#.
Then f |~ f, iff ul(fl_l[B]) = uz(fz'l[B]) for every Berel set Bof RY,
Observe that if there exist fl € M(Xl’ ul) and f&E M(XZ’ uz)
such that f) ~f, then by (X)) =u,(X,) in the sensc that both are infinite

or finite and equal.

(3.1) LEMMA. If f~g and fis a simple function, then g is a simple

function. Two simple functions are equimeasurable iff they take the

same value on sets of equal measure.

n
PROOF. Let f =§l a, CEi where ay L e v ™ a, and {El} par-
titions Xl' Suppose g € M(XZ,L,LZ) and g ~f. Then uz({g = ai}) :ul(Ei).
uz({g é {alx LI S an}}) = uz(g—l [—m,al[)

n-1
+.2, Wylg-1Ta, o [Hu (g-1]a , too])

= uy (-, 0y 1)

n-1

5 -1
25 M LE

Ja,, a1+1[)+ul(f‘1]an,+ooj)
= ul({f¢ {ul’... ,an}) = Qs

n
Thus if A, = {g= a.} theng= 2 a. C a.e.
i g 1} g j=1 1 Ai n
Now let f be as above and suppose g = El a, C, where {Ai}
1= "
i

partitions XZ and uZ(Ai) = ul(Ei), i=1, ... ,n. If [u,v] is a bounded
interval of R#, then uz(g_l[u, v 1) = uZ(U{Ai:aiEEu, vlh

Zfu,(A):a, € [u, v]Y = 2Zfu (E)):a, €[u, v]]

ki

it

u (OB e, €T, vID = (7 T, v]) -
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(3.2) PROPOSITION. Let F be a Borel measurable function on an
#

interval 1."R™. If G € M{1) and r > 0 and F (1) = F(rt) and G (1) G(rt)

9_‘1% I then G ~ F iff Gl ~ Fl. In addition, cach of the following

functions is equimeasurable with F.

(i) H(t) = F(t-r) r €R, t € I+r

(ii) H(t) = F(-t) t € -1

(ii1) H(t) = F(t+) if F is monotonic

(iv) H(t) = F(t-) if F is monotonic

PROOF. Let m denote Lebesgue measure, and let [u, v] be a
%

bounded interval of R". In(Fl_l [u,v])=;1- rn(G_l[u, vl)
S0 m(F-l[u, v} = m(G_lfu, v]) iff m(Fl—l [u,v]) = m(Gl' l[u, v]) .
(1) m(H 'u, v]) = m(F [, vI4r) = mF  u, v])

(i) m(E 1w, v]) = m(-F o, v]) = m@E o, v]) .

i

(ii1) & (iv) H=F a.e.

(3.3) PROPOSITION. The following are true for all measure spaces.

(i) f~gimplies s(f) ~ s(g) for all s €8

(ii) f~ g implies rf ~ rg and f+r ~ g+r for all r €R
(iii) f ~ g implies |f| ~ |g]

(iv) f ~ g implies £ o g+ and f~g

(v) If cr:X1 - XZ. is measure preserving and f € M(Xz,uz) then

foo~f.

(vi) f ~ g implies ess.inf f = ess.inf gandess.supf=ess.sup g.

(vii) If f ~ g and £20 a. e.then g=0 a.e. andthere are sequences

{f,] and {gn} of simple measurable functions such that f ~g and

0 < fn ? fand 0 < g, ? g.- In addition, if f is essentially bounded

Ithen g is essentially bounded and fn ? f and 2 T g uniformly.
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(viii) It f EM(Xl,p.l) and f € M(X ) and f = 0 then f NfZ

2:H2 1o f
1mp11gs j‘f dul j'f du.& in the sense that both are finite and equal,

or both are infinite.

(ix) If £, € Ll(xl,ul) and f, € M(X,, 1) and {, ~ 1 then

1
1 . _
f, € L7(X,,K,) and jtldul = j‘fzduz.
(x) If f € M(X,u)and g € M(X', ') and {Xi}io-:l and {Xl' }i‘:l are

pairwise disjoint measurable subsets of X and X' respectively such

b ]
that W(X-U X;) = 0 = u'(X'-UX, ) then f\Xi ~gl X, 1= 1235 «
implies f ~ g.

In addition the following are true for finite m. s.

(xi) If f; ~g, and f, ~g, and inf { lfll, ‘le}= 0 = inf {lgll,lgzl}

then fl + fz ~g,t g,-
(xii) f~g iff £ ~g' and £ ~g .

(xiii) f —-fandg —ga.e. and fnrvgn n=1,2,3,...,then f ~g.

; 1 1
(xiv) If fn’ feL (Xl,ul) and gn,gEL (X ) andfn—’f and g,8

22 M2

inLl norm and fnf---«gn n=1,2,3,..., then f ~g.

——

(xv) If ¢ is Borel measurable on R# thenf~g implies o{f) ~ p(g).
2 g g

n
PROOF. (i) Letf~g and s = E ay CIk with {I, } pwd intervals
# PP i,
of R"., Then s(f) —kZ=>1 ay Cf"l[lk'l k‘/__:\/ a g'l[I 1° s(g) using

Lemma (3.1).

(ii) Let [u, v] be a bounded interval of R#. If r>0 then

My (rf)"! [y, v]= ul(f'lt-r‘f,ir’-]) = uz(g‘ [; Z1) =, ((rg)” v,
b 07, vy = (T v, —ul) = 0™ v, cu]) = (@) L, V).
Thus rf ~ rg if r>0 and -f~ -g,sorf~rg for allr € R. Letr € R.

ul((f+r)“1[u,vr)=u1<f‘1[u-r,v-ﬂ)=u2<g‘ltu-r,v—rl) =u2((g+r)'ltu, v]).
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(iii) Let f ~ g and let [u, v] be a bounded interval of R#. In case
ws0sv, w17 fu,v]) = wp ey, v = (g™t Ty, V)
uz(fgl_l[u, vi). If 0 <u, ul(lf‘-l‘:u; v]) = Lll(f_l[u,v])i-ul((-f)—l[u,v])

M (g Tu, v Db, () Tu, v]) = g1 T v ).

]

The case v < 0 is trivial.

(iv) Let f ~ g and let [u, v] be a bounded interval of R#' We wish to
prove that ul(f+' i [u, v]) = U.Z(g+-1[u, v]) which is clearly trueifv<Oor

u>0. Hence supposeus<0O<v. ’Ihenul(f+-l[L1, v} ® ul(f-l[—oo,v])
= le(g—l[—oo, v} = uz(g+-l[u, v]). For the rest, f~g = -f~ -g=f

(-0 ~ () =g,

il

(v) py(fo0)™ Cu, v = wyo™ £ e, v]) = (67 L, v]).

(vi) Recall that ess. sup f = inf {t:u({f > t}) = 0} and ess.inf f =
#

ess.sup (-f). If f~ g, thent € R ::u,l({f>t})=ul(f_l]t,+oo])

u,(g—ljt,+oo]) = Mu,({g >t}) soess.supf=ess.supg. f~g=-f~-g

4

¢ss.inf f = -ess. sup(-f) = -ess. sup(-g) = ess.inf g.
(vii) Let f~g and f 2 0 a.e. Then (vi) above = g > 0 a.e. To con-

struct {fn] and {gn] let

-1ri-1 i -1+ 1i-1 3 n
A .= e, = B .mg [ ,— [ lzign2
1, 4 on 7 o,n n, i o0 7 o
o P -1
n = { [n: (I)] Bn =g [D, m]
n2" ; n2".
f =) Z = C + nC g = E e C + nC
n =l g™ An, i Hy, "B isl P Bn, i By

Then Lemma (3.1) = fn ~g e Emgs l£] ~ ‘g‘ so if f is essentially
bounded, then ess.sup !gl = ess.sup [fl < @ so g is essentially

bounded. The rest is well known. See [17, p. 159, (11.35)].
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(viii) If f is a simple function and g ~ f then Lemma (3.1) » g is

simple andjfdul = Ygdg,a. Iff 20 and g~ {then g = 0 and there
are sequences {fn} and {gn} of non-negative simple functions s.t.
fn i -7 and fn T f and g, T g. 'I‘henjfd;.),1 = lim J‘fndu'l :hmjgnduz
= J‘gduz.

. 1 [ f -

(ix) Iff € LX), 1)) and g ~fthen [gl~ |£| so | |gldn, =|]f[du;

< o and thus g € Ll(X ). Finally g ~f = g+~ £ and g ~f so

2* 2
J'gdu =Ig+du o :Jf+du —If—d =ffdu
5C My 274 2 ! M 1

(x) Letting X0

w ',00 iy ;
,2,..., and {Xi}i:O and {Xi }1:0 are partitions of X and X

= X-UX, and x(; = X'- UX/ we have flxi ~g|x_1'
i=0,1
respectively. Let [r, s] be a bounded interval of R#. Since
£1X ~glX, i=0,1,2,- - -, we have w(E I, s1 N X) = u'(e™ r, sINX))
i=0,1,2,..., so summing from i= 0 to +m we get u(f-l[r, s])=
p'(g_l[r, s]). Hence f ~g.

. {xi) Let fl’fZ’gl‘gZ be as stated. Then p.l(Xl) = uZ(XZ). Let
E, = {fi $+ 0}, F, = {gi# Q} i=1,2, and E; = X, - (E;UE,),
F3 = XZ - (Fl U FZ). Then ul(Ei) = uZ(Fi) i= 1,2 and since the m. s.
are finite we may conclude thatul(E3) = uZ(F3). Let [u, v] be a
bounded interval of r* and let f = f1+f2, g=g,te, Then u.l(f-l[u, v])

3
_ < . el _ -1 -1
“??1 M (B, N f Lu,v]) = Mo (E) T, vt (f lu, vI) + 0 (E)

if 0 €[u, v] . _ ¢F3 if 0 € [u, v]
if 0 €[u,v]. Hence1fF4—{¢ if 0 ¢ [u,v]

where E4 = {?3
then u,(g-1 (o, v]) = wyle ) Lo, v, le, Lo, v]) + 0, (F))
= uy (£ [y, v])

(xii) Follows from {(iv) and (xi) .



(xiii) Using (2.1) we have

df = lundfr1 = hmdgn = dg on R so f~ g.

(xiv) fn = {f in norm implies {fn} has a subsequence fn - f

k
pointwise a.e. Theng - g innorm so {g 1} has a subsequence
T Tk
8, — g pointwise a.e. But then fnmk-* f pointwise a.e. so (3. 3)(xiii)

my
implies f~ g.
(xv) From the proof (vii) we see that each of cp+ and © 1is the
n
limit of a sequence of simple functions of the form 7. @, CE where
i= i

the sets {E1} are Borel sets. Hence ® is the limit of a sequence
{sn} of simple functions of the same form. Hence f~g ﬁsn(f)rv sn(g)

and since sn(f) = op{f) and sn(g) -=p(g) we have o(f) ~ o{g).

(3.4) LEMMA. (i) Suppose f € M(Xl’ Al’ ul), g € M(XZ’ AZ’ u,z),

E1 € Ay EZ & /\2, u.l(El) = p,z(Ez) <o and f and g have the same

constant value on E1 and E2 respectively. Then f~g = f‘Xl —E1

~g|X,-E,and fC, . ~gC, . .
2752 X -E, X,-E,
(ii) Suppose f, g € M(X, A, u), E €Ahas u(E) < oo and f|E = gl|E.

Then f~g = {|X-E~g|X-E and fC ~gC

X-E X-E’

PROOF. (i) Let f[=f{|X -E and g|=g|X,-E,, andleta = {|E

1
= g]EZ. Let [r, s]be a bounded interval of R¥. Then

_1 [0 ifao ¢ [r,s]
ul(f [1',5]nEl)“{ul(El)ifQEEI‘,S]
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and similarly for g, s0 W, “Lie, sINE|) = u,(g e, sINE,). Hence
(] Tx, 1) =u1<f‘1[r,sjn<x1-El))

= (7 x, 5]) - ‘1[r sINE,)
=y (g s - M, (& o, 570 E,) =i’ e s,

50 l'| 'vg‘ .
Let f1 = f CXl—El and g, =8 CXZ_EZ . Then ul(fl- {0)) =
b () UK -E ) NETH00) = ) () )+u (£]7(0) = 0, (B,) 41, (g] 7 0)) =

-1 -
Lt =

i, (g,71(0)). If1is an interval of R¥and 0 ¢ I, thenu
4 - -1

Hl(fl 1) = uz(g‘ (1)) = }..I.Z(g1 (I)). Hence fl ~g,-
(ii) Let f] = {|X-E and g| = g|X-E. Let [r, s] be a bounded

interval of R#. Since f‘E = glE, we have u(f—lfr, s]NE) =

l[r, s] NE) and the rest is similar to part (i).

(3.5) EXAMPLES. 1. The following functions are equimeasurable

with f(x) = x on [0, 1] and are measure preserving maps of [0,1]- [0,1].

(i) gl(x) = )= 0<x<l (ii) 1
W g,(x) = 2x mod 1
(iii) S —




-] ]

(iv)
l-x 0 <x<l-a
g (x) =€2(x-14a) l-a<x<l-3
a a
2(x-143) 1-Fsxs1

0<ac<l

I=a I-a/z2 1

> - - = B 5

2. Let C]-Oo, 0[ C]Z,OO[ and g C]-OO, 1[ C]Z,OO[ . Then
+ _+ - - [ o X -1 _
f = C]—oo, o[ C]-oo, [ = g and f ~ g but fAg since m(f "(0)) = 2
while milg” MO0 = 1,

3. Letf= C]_w, or + Zc[O,m[" m([0,0[)=m([1l,w ) and £
has the same constant value on [0, [ and [1, [ but f|R - [0, e[
A f‘R - [1,ef.

4. Let 3 be the collection of all finite subsets F of [0, 1] and let

¥ be directed by ©. Then {CF} is a net which converges pointwise

Fes

g C[o 1] (since if t€[0, 1] then Fy= {t} €% and F, © F implies

0

CF(t)z 1) but C_.~ 0 for all Fe & .

F

Fori=1,...,klet (Xi’ Ai’ ui) and (Yi’ Zi’ \)i) be finite m. s., let

X = X1 - xXk, Y:le...xYk, u,=u.lx...xukandvzle...X'\)k.

(3. 6) PROPOSITION. Let fi g M(Xi,ui) and g; = M(Y.l,\)i) i=L..., k
and let F(Xl’ e, xk) — (fl(xl)’ R § (xk)) for all (xl, e, xk) € X and
G(Yl: LA ] Yk) = (gl ‘Jrl): - E e gk(yk)) fOl‘ a_'_}l (Yl: sy Yk) e Y' E fl ~ gi
i=1,..., kthen F ~G.

PROOF. Let ?{k be the semi-algebra of all measurable
rectangles of Rk and let By be the og-algebra of all Borel subsets of Rk.

If Ais a set and § ¢ ZA let S(8) denote the g-algebra generated by §;



e
let C{®) denote the monotone class generated by §; and let R(8) be the
algebra generated by 8. If §is a semi-algebra we recall that R(8) is
the set of all finite pairwise disjount [pwd] unions of members of§.
Let 7= {B € ﬁk:u(F"l[mpv(G"l[B])}.
1f BIX- oo X BkE ﬁﬁ(, then

wF B x ... x B = (e TB Txe e x £ (B )

1

It

(€ B ) e T TBLD)

i

v,(e7 B, v les 'TB )

I

v (G'l(B1 Xo oo ka))

so )'Vk cd4. dis clearly closed under pwd unions so R(?{i) . Ais
easily seen to be a monotone class, so Bk = S(,Vk) 5 S(R(Nk)) = C(R(ifk))

a8

(3. 7) COROLLARY. Fori=1,...,klet <Xi’ Ai’ ui) and (Yi’ Zi, Vi)

be finite m.s., let f, € M(X., u.), g € M(Y.,v.), a. €R, and n. = 0
i 4 Mt By -l i i

integers. If fi ~ g i=1,..., k then for each of the following definitions

of Fand G we have F ~ G.

k n,
i
(a) F(xl, S Eiy Xk) —i§1 a, fi (xi)
k n,
_ i
G(yl:"':yk)"g ai gl (Yl)
k n
(B) Figy---,2 )= ] £ )
i=1
k n,
_ i
G(YI)"')yk) ".T[l gl (Yl)
PROOF. Use Props. (3.6) and (3. 3) {(xv) with ('o(tl, .y tk) =

n:1 k ni
a, ti and cp(tl,...,tk)= u ti

]
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REMARKS. (1) For finite m.s. (3.3) (xv) gives another proof of
(3.3) (ii), (iii), & (iv) by letting o(t) = rt, o(t) = t+r, ot) = |t]|, and
i(t) = max {0, t} oft) = - min {0, t]}.

(2) For finite m.s. if f ~af for somec number a s. t. ]a|+ 1, then
' f | = 0 or tw. For we have by induction that lfl ~la1n‘f‘- 0 or +oe

as n —og.
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II. DECREASING REARRANGEMENTS
If pis a decrecasing

The Right Inverse of a Decrcasing Function.

4.
function defined on an interval J of R, we can extend p to a decrecasing

function defined on R# by defining for t ¢ J,

<inf J

toe 1f t
t 2sup J

p(t) = {—oc if

If p is a decreasing function defined on R#, then its right continuous

inverse p is defined by

p (t) = inf {u € R: p(u) <t}

for each t € R#, where by inf § we mean to¢ and inf R = -x. If p is

1:1 then p’ = p—l
It is easy to see that p° is decreasing and right continuous,

and for every t € R#, pp)) st, p'lptt)) t, p'(pt)+te)-)st,
p (p(t)-€) 2 t whenever € > 0, and p(p(t)-) 2 t. Furthermore, for all
= sup furp(u-) > t} and

te R#, p (t) = sup{u € Rip(u) > t}
pt-) = inf{u € Rip(u) < t} = inf{uipu-) <t}.

(4.1) PROPOSITION. If p is a decreasing function on R#, then for

every t € R we have
p Tt) = (P () = p(tt).

PROOF. Letu € R. Since p(put)) € u we have p”'(u)
inf{t:p’(t) <u} <p(u+t). Since p’ is decreasing and right continuous
p (inff{t:p'(t) < ul}) = sup{p’t):p’(t) <ul} <u. Since

we have p'(p” " (u))
t = p(tt+) is also decreasing and right continuous we have similarly
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p’)t) = sup {p(r+):p(r) <t} <t forallt GR#. Hence

plut) =plp (p' (u) )+) < p' *(u).

(4. 2) PROPOSITION. Let 0 <a €R and let p be a decreasing function

defined on [0,a]. Then for every t €R,

p (t) =m({u€[0,alpu) > t}) = dp(t)

where m is Lebesgue measure.

PROOF. Now p'(t) = sup{ump(u) >t} sop(u)>t =
u <p (t) and thus fu €[0,alipu) >t} <= [0, p't)] .
Again, p'(t) = inf {u:p(u) st} so plu) s t =
p ) <u, i.e., u<pt) » plu)>t, so

0,p ) [c{u€l0,al:p)>t}.

(4. 3) PROPOSITION. Letop, By be decreasing functions on R# for

n=1, 2’; 3, ... and suppose P, P at all but countably many points

_q_g_R#. Then pn' —~p’ at every point of continuity of p°.

PROOF. Fixt €R. LetA = {u;pn(u) >t} , A= {upl)>t},
E = {u:pn(u) + p(u)} so that p;l (t) = sup An’ p(t) = sup A and E is
countable. Then
ANE® c lim inf An < lim sup An C{up) 2t} so
sup AN E€ < sup (lim inf An) < sup (lim sup An) < sup {u:p (u) 2t} .
Now the functions p,, are decreasing so the sets A have the form
[-¢, r [ or [-«, r] and thus sup(lim inf An) = lim inf(sup An) =

lim inf pr'l (t) and similarly sup(lim sup A ) = lim sup p (t) . Since
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E is countable and A is an interval, sup A N EC = sup A =p°(t). Hence
p'(t) < lim inf pr'1 (t) < lim sup pl;(t) < p°(t-). Thus if p'is continuous at

t, then lim pn'(t) =p"(t). Also see [47, p. 508, (18.21)].

5. Decreasing Rearrangements of Functions on Finite m.s. ILet

f:{0,1] = [0, 1] be Lebesgue measurable. It is natural to wonder
if the values of f can be rearranged to form a decreasing function
f*:[O, 17 = [0, 1] such that £ i, The affismative answer is well
known [15].
We now generalize this idea for a finite measure space
(X, A, 1) by showing that if f € M(X, 4) then there is a decreasing right
continuous Lebesgue measurable function 6f on [0, u(X)] s.t. 6f ~ f.
For the rest of this section let (X, A, 4 ) be a finite measure

space (m.s.).

(5.1) DEFINITION. If f € M(X, 1) we define & by 6(t) = d/(t) if

0 <t <uX).

(5.2) THEOREM. (i) If f € M(X, 1) then 6f is a decreasing right

continuous Lebesgue measurable function on [0, 4(X) ] satisfying

6f~f.

(ii) Conversely, if p is a decreasing right continuous Lebesgue

measurable function on [0, u(X)] satisfyingp ~f, thenp = 6f.

PROOF. Now 6f is by definition decreasing, right continuous

and Lebesgue measurable on [0, u(X)] and 6f = df'. Lemma (4.2) =
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d6f= 6£ and Lemma (4.1) = df = df so d6f = df and thus 6f~f.

Conversely, if p is right continuous decreasing and Lebesgue

measurable on [0, WX)] s.t. p ~ f, then df = dp =p using (4. 2) so

(4.1} = 8. =dg =p"" =p.

(5.3) PROPOSITION.
a
(i) fis integrable iff & is integrable in which case [fdu = [ &,
0

where a = U(X).
(ii) s(f) ~ s(6f) for all s €8S,

(1i1) £, <f, =28, <6, .
2 f1 fz

(iv) If each of f and g is a measurable function on a finite m. s.

1

then f~giff 6, =5 .

(v} 1f p is increasing on R# then 6p(f)(t) = p(6f(t)—) 0 <t =uX).

(vi) 1f r 2 O then 6rf = r6£, while if r is real, then 6f+r = 6£+r.

(vii) If fn —~ fa.e. then 6f = 6f at every point of continuity of 6f.
n

(viii) If £, = 0 in measure then 6, = O uniformly on every closed
n

subinterval of ]0, 4 (X)[.

PROOF. (i) This is an important special case of results ofj 2,
Similarly for (ii).

(iii) f, <f, =d, =<d, =6, =d, sd,” =68, .

1 2 fl f2 fl fl fz fz

(iv) f~g= 6f = df = dg = 6g. Conversely, 6f = 6g = df =9
§'=d =f~g.
g ‘g g

{v) Since f~ 6f we have p(f) ~p(6f) = p(éf-) a.e. Since t —*p(éf(t)—)

is decreasing and right continuous, Theorem (5. 2) (ii) implies

6p(f) = p(6f—).
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(vi) These are important special cases of (v) with p(t) = rt and
p(t) = t+r.

(vii) fn ={ a.c. =2d,.~d. atall but countably many points so

£, r
Lemma (4. 3) = Sf = df. = lim dg° at every point of continuity of dr' % bf.
(viii) Let [u, v] © J0, u(X)[ and let € > 0. Since u> 03 N, >0 s.t

u({lfn' > ¢}) < u whenever n 2 N, so dfn(e) = u({fn >¢})<u and thus
8f (u) < 6¢ (df (€)) = d¢ (d¢ (e)) < e whenever n =N,. Since v < u(X)
n n n n n
JN, >0 s.t. n2N, =u({|fn| >¢/2}) <uX) - v so
>— = - — [ 3N} - L]

veulg | serzd)y s (fg > -e}) = dg () =d{ *(-¢)so0 5¢ (v)=df (V)= -¢
whenever n 2 N,. Since 6fn is decreasing on [u, v] we have |6fn(t)l <e
for all t € [u, v] whenever n > N1 + NZ'

Recall that if f € M(X, u), then ess.sup f = inf{t: u({f>t}) = 0}.

Writing EC = X-E if E € A and £|E for f restricted to ES we have:

(5.4) PROPOSITION. If f € M(X,u) and 0 <t <u(X), then
& (t) = inf {ess. sup E|ES): w(E) <t}
5f(£-) = inf fess. sup (f|E®): W(E) < t}

where ess.sup f| § = -cc.

PROOF. Lett € [0, u(X)]. Ifu €R¥and E_={£>u} so that
delu) = u,(Eu), then d (u) <t = u(Eu) <t and ess. sup (flElc1 ) < u and thus
inf fess.sup (f|E®): W(E) <t} < 8 (t).

Conversely, if WE) <t, let u = ess. sup (flEC) so that {f > ulcE,

do(u) St, and thus &.(t) < inf {ess.sup (f|E®): u(E) st} .
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(5.5) THEOREM. Iff € M(X,u) and a = M(X) then

. + - LB
(i) (87" = 84+ and (6.) = -6_,
so that 6f, = 6f+ + 6_f_
and ‘6f‘ = 6f+ - & -
(i) 6_f(t) = -6£((a—t)-) 0 <t <a.

PROOF. (i) 6, ~f= (5 ~f" and ()7 ~ 1. Since(s,)’ is

decreasing and right continuous, (6f)+ = 6f+. (6f)— ~f o —(6f)_ ~ -f
and —(éf)_ is decreasing and right continuous, so —(6f)_ =&6_,- and
thus (6f) = -6_f-.

(i1) f ~ 6f 2 -f ~ -6f ~ a where a(t) = -6f((a—t)—) using Lemma (3. 2)

(iii). Since a is decreasing and right continuous, a = 6_f.

From now on we will use 6E to denote 6C , where E is a
E
measurable set. Statement (i) of the following lemma seems to have

been first used systematically by F. Riesz ([35], p. 164).

n

(5.6) LEMMA. (i) If f=7) f. Cp € M(X,u)and 0<f <--- <f
=" TiE 1 TEy == 1 n

n n
fhen 6{ - fl 6F1 +12=32( fi--fi_l)6Fi where Fi = kgi E

k

n
(ii) If =2, f. Cg, € M(X,\) with f, >0 and E, D+--D E_, then
— =11 TRy — == n’ ——

].
6 f. .

PROOF. (i) LetF ., = g . Now

0 stn
df(s) = u(Fi+1) fiSs<fH’1 i=1,...,n-1
MA(X) s <f

1
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il El b CruE,, ), uE!
n
= Z) 1 O - 2 [. 6
=1 b Ey 4=l Fyg
n
= £, 6F1 + 122 (f; fl_l)éFi.
n i
.. _ - = ¥ -
(ii) Let Gi Ei k:U'1+1 Ek and g; W21 fk’ By 0

n
Then f = El g, Ccriand0<g1 <+er<g o so

n
6f = ii/:l (gi‘gi_l)éf‘_ = 3, fi 6E_ since
- 1 i=1 1
n
Fi = kg.i Gk = Ei and gi"8 1 < fi

(5.7) PROPOSITION. If 0 <f € M(X, M) and E € A then 6f <0

Co
PROOF. First let = CF where FF € A. Then 6CECF = 6EOF
Lo, wENR)T * €10, min {w@,umB 1 = °
Letf—;[)lfc F_c-*cF, >0, so
b Ef 6EﬂF Zf 6p 8 ¥, = 6p 6, If0<f€M(X,uU) then

E
there is a bequcnce 0 < fn * f of s1mp1e functions, so 6f T 6f and

n
5 ) and hence § = lim 6 <1lim 6, 6. = 65
fnCE fCE fCE fnCE fn E f E
REMARKS. (1) It follows immediately from Prop. (5. 4) that
6f(0) = ess.supf and 6f(a—) = ess.inf f when a = W(X).
(2) If fn(x) = x" on [0,17 then fn - f= 0 in measure but

6fn(0) = ess.supf_ =1 so 6fn(0) # 6.(0) = 0.
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(3) We cannot prove Prop. (5.3)(vii) for nets. Direct the finite

subsets of[0, 1] by inclusion and let f_ = CE if E is a finite subsct of

E
0,1]. Thent € [0,1] and {t} @ E = f(t) = CL(t) = 1 so the net ffE]
converges pointwise everywhere to 1 but 6f}{;= 0 for every E since

fE = 0 a. e.

(4) If g = |6.], then 6, = 8|¢| since f~ 5= [£] ~ l6,1.

(5) Let p be decreasing and right continuous on R#, f € M(X, )
and a = W(X)., f~ -6_f so p(f) ~ p(-6__f) which is decreasing and right
continuous on [0,a], so for 0 €t < a, 6p(f)(t) = p(6f((a-t)-)).

(6) Let 0: X = [0,u(X)] be m.p and let a(t) = u(X)-t 0 <t <u(X).
Then g ~ a and a is decreasing and right continuous so 6c(t) = W(X)-t.

(7) Leta>0. If F € M[0,a] and Fl(t) = F(at) on [0, 1] then

6F (t) = 6F(at) on [0,1]. This follows immediately from (3. 2).
1

EXAMPLES. 1. Let f(x) = x on [a,b]. Since o(x) = b-x 15 a
m. p. map of [0,b-a]l = [a,b], foao~f (3.3)(v). Butfo ot)= b-t
is decreasing and right continuous on [0, b-a] so 6f(t) = b-t on
(o, b-a].
2. Suppose p is increasing on R, a > 0, and f(x) = p(ax) on [a, b].
Then 6f(t) = 6p(ax,)(t) = p(6ux(t)-) = pla 6x(t)-) = p((ab-at)-) on [0, b-a].

ab-at

* a>0, on [a,b]. Then 6g(t) = e on

3. Let g(x) = s
[0, b-a] using example 2.

4. Let g(x) = log ax, a >0, on [a,b], a > 0. 6g(t) = log(ab-at)
on [0, b-al.

5. Suppose p is increasing on R, @< 0, and f(x) = p(aex) on [a, b].
Since o(x) = xta is a m.p. map of [0,b-a] - [a,b], f o c~f. Thus

t = p(a(t+a)-) is decreasing and right continuous and equimeasurable
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with f so 6f(t) = p((at + 0a)-).

6. Let f(x) = sinx on [0, 7/2]. Then 6f(t) = cost on [0, w/2],
because cos x = sin(x+m/2) on [0, 7/2] and thus they are equimeasur -
able.

7. Let ¥ be decreasing on [0, al and extend ¥ to R by periodicity.
Let f(x) = F(x) on [0, na] where n > 0 is an integer. Then 6f(t): F(;ti +)
on [0, na]. To prove this, let Gft) = F(—:—l+) on [0,na]), and let [r, s]be
5 boynded inferval of RY, Then m(GQl[r, s]) = m(nF_1 [r,s]1N[0, nal)
= nm(F_l[:r, s1nf0,a]) = m(f_l[r, s]). Thus G~ f and since G is
decreasing and right continuous, G = 6f.

8. Let f(x) = sinx on [0, 7]. Then 6f(t) = cos t/2on [0, n]. For
if we let g(x) = cosx on [0, 7/2[ and g(x) = cos(x-w/2) on [7/2, n] then
g|lo, w/2[ ~£] [0, w/2[ and g|{w/2, w] = £|[n/2, 7] so g ~f by (3.3) (x)
and thus Sf(t) = 6g(t) = cos t/2 on [0, 7] using example 7.

9. Let f(x,y) = xty on [0, 1] x [0, 1]with product Lebesgue

measure. Then

1 t<0
1—%t2 0<t<l 2-J2u O0<uc<i
dplt) = —é(Z-t)Z l<t<2 Sglu) = JZu) $susl
0 t=2
by inverting | - %tz and %(Z—t)z

10. Let g(x,y) = (1-x)+ (1-y)on [0,1] x[0,1]. Then with f as
in example 9, 6g = 6, because g~ f by (3. 6).

1L, I gi(x,y)=+4/xty on[0,1] x [0,1] with f as in example 9,
£, = V6, using (5.3)(v).

12. The Hilbert Transform of a function f on R is defined by
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PP 1 f(t)
T =B & § g E
€ 't—x|>€

It is well known that if E has finite Lebesgue measure, then

d lCF‘(t) =2 m(E)/sinh mt so b o |(u) = Tlr 5in}1—1(211'1(]?:)/11) L [46 ]

E

At this point it is natural to wonder if, given a right continuous

decreasing function @ on [0, 4(X)], there is an f € M(X, 1) s.t. 6f = a.

(5. 7) PROPOSITION. Every right continuous decreasing function on

[0, 4(X)] is the decreasing rearrangement of a measurable function on

(X, A, ) iff there is a m.p. map o X = [0, u(X)]).

PROOF. Leto: X = [0, wX)] be m.p. and let g be a decreasing

right continuous function on [0, «X)]. Then g o 0 € M(X, it) and

goag~g so 6g00:g'
Conversely, let o € M(X, ) s.t 60(1:) = W(X) - t,0 <t <y (X). Then

60 and hence ¢ is m.p.

Recall that A € A is said to be an atom of (X, A, i) (sometimes
an atom of W) iff u(A)> O0Oand BCTA, B € A= WB) = 0 or u(B) = u(A).
If A is an atom of (X, A, ) and f € M(X, ) then ess. sup(flA) =
ess. inf(f‘A), i.e., fis essentially constant on A. (X, A, W) is said
to be non-atomic if it has no atoms. Any Borel subset of R with
Lebesgue measure is known to be non-atomic. The following is a

fundamental result about non-atomic measure spaces.
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(5.8) LEMMA. (A. Liapounoff, 1940) If (X, A,u) is a non-atomic

—

finite m.s. then {M(E): E € A} = [0, u(X)].

For a proof sce N. Dinculeanu [5,p. 257.

In order to state Liapounoff's result in another way we make the

following definition.

(5.9) DEFINITION. A mapping ¢: [0,1] = A is said to be a

M-resolution of A € A if it has the following three properties.

(i) ¢(t) c A for all 0 <t <I.
(1) 0 < t) <t, implies d(tl) c:qS(tz).
(iii) u( d(t)) = t(A) for all 0 <t < 1.

Observe that a M-resolution d of a set A € A is continuous in the
sense that W(d(u) - d(t)) = (u-t)u(A) -0 as u & t or as t T u. This is
equivalent to saying that ¢ is continuous as a mapping of [0, 1] into

the metric space associated with(X, A, ). (Also see [26].)

(5.10) THEOREM. The following four statements are equivalent for

the finite m.s. (X, A, u).

(i) (X, A, M) is non-atomic.

(ii) There is a p-~resolution of X.

(iii) There is a measure preserving map of X onto [0, W(X)].

(iv) Every right continuous decreasing function on [0, h(X)]

is the decreasing rearrangement of a measurable function on (X, i, ).




BB,
PROOF. (i) = (ii). Let a = u(X) and let X € X. Since {X, A, 1)

is non-atomic, u({xo}) = 0. Letg(0) = {xo} and ¢ (1) = X. If</>(m/2n)

is defined for each 0 < m < 2" so that d(n-lz_?l) cdé (__rr_rll_) and
2
m - m 2m-1 N
u(qﬂ(——-zn ) = on a, then there are sets ¢ (————2 AR ) €N s.t.
m-1] Zm-1 m. Zm-1 _2m-1 - n
¢ ( A ) @ (2‘thl )C¢(_£_I;_-)and “(¢(2n+l Bl = ntl a, 0 sm<2".

m

This defines ¢ on A = { :n20 0<m~ Zn}C[O, 1] so that for all
u, v €A we have g (u) Cd(v) when u < v and y(éd(u)) =au. Ift €[0,1]-A
we defined (t) = N { g(u): u 2 t}, which also holds for t € A.

Migt)) = inf{{d{u)): u =2t} =taandift, < t, there is a v ¢B s.t.

1
t; <v <t, and hence qS(tl) = N{gu):uz2ty} cgiv)cnf{gm): u= tz} = é(tz\-
Thus & is a u-resolution of X.

(ii) = (iii). Let ¢ be a p - resolution of X. Define
o(x) = a- inf {t: x €4(t) }. Then {x € X: o(x) > s} = U{d(t) : t>s/a} so
dO(s) =ufo>s}=limu (qS(t)C) = lim(a-ta)as t l, s/a
=aClJ_°c’ of +(a-s) C[O, al s0 6O(t) = a-t, 0 <t <€a, and hence 0 is m. p.
Any m.p. map is essentially onto.

(ii1) = (iv) This is (5. 7).

(iv) = (i) Let f € M(X, ) be s.t. 6f(t) =a-t, 0 <t <a. Then f

is not constant on any subset of X of positive measure so (X, A, i) has

no atoms.

EXAMPLES. 1. é(t) = [0, at] is an m-resolution of [0, a] with
L.ebesgue measure m.
2. Ifg: X—=[0,alis m.p. then ¢(t) = 0-1[0, at] is a g-resolution

. -1
of X, and for all x € X we have g(x) = inf{t: x € ¢~ " [0, at]].
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3. o(x) = b-x and T(x) = x-a are mecasure prescrving maps of

[a, b] onto [0, b-a].
The following theorem, proved by J. V. Ryff [40] for M[0, 1],
shows how each measurable function on a non-atomic m. s. can be

related to its decreasing rearrangement. First a lemma.

(5.11) LEMMA. If the finite m. s. (X, A, 1) is non-atomic and

((X) = b-a, then there is a m.p. map of X onto {a, b] and also one of

X onto [a, b{ .

PROOF. Letp: X = [0,b-a] be m.p. and let y(t) = t+a, t € R.

t €a, bl
t=b

o, =Po Yy op: X = [a,bl. Any m.p. map is essentially onto.

Then o =y ow: X = [a,b]is m.p. and if p(t) ={; then

(5.12) THEOREM (J. V. Ryff). If the finite m.s. (X, A\,M) is non-

atomic and f € M(X, i) then there is am.p. 0: X = [0, W(X)] s.t.

—

f= 6f00 M- a.e.

PROOF. Following Ryff [40, p. 96] let It = fs EI0, UlE)]: 6f(s):t}

and At = {x € X: f(x) =t} for each t € RJ}. Since f ~ 6f, there is an

f' = fu-a.e. s.t. {'and 6f have the same range B. Denote f' by f.

Also rn(It) = u(At) for each extended real t, and each It has the form

[a, b] or [a, b[ since 6, is decreasing and rt-ctn. Hence for each

onto
t € B there is a m.p. 0, A —> I’c' Define o by o(x) = ot(x) if x € A
Then clearly f = 6f 0 0. Now pu(X) <o = rn(It) > 0 for at most countably

many t. Let F be the set of all such t and letI = U I, which is
J ter t



= 2w
measurable since its complement is, and on which 6f is 1:1. Let

J < [0, u(X)] be measurable. Then J :tGUF J ﬂlt UJnl so

-1 - - .
e @) = T ueT @) +ue T @ND). Butwe @nL)) =
133 . .
Moy (TNL)) = m@I NI) and § is 1:1 on JNL, sof=6.00=26"' of=0

there, and hence u(o_l(J nI)) = u(f—] (6f(J niy) = m(éf"] (6f(J niy=

m(JNI). Hence o is m.p.

REMARKS. (1) In general we cannot always find a measure

preserving map é: [0,a] » X such that fo ¢ = 6, For example, let

£: [0,1] - [0,1] be m.p., suppose¢: [0,1]-~[0,1] is measure

preserving s.t. f 04=6_, and let g:[0,1] = [0, 1] be m.p. such that

£
6f oo =f. Then 6f(t) =l-t=fod(t)=1 -0o(d(t)) soag(d(t)) =t for all
t € {0, 1] and hence t) e t, = 0(425(1:1)) == 0(95(1:2)) = ¢ (tl) 2l ¢(t2)-
Since ¢ is m.p. it is essentially onto and it follows that ¢ 1. o, so
0 is an invertible m. p. map. Also 6f o0=fimplies f =1 - gso fis
necessarily 1:1. Thus if f is not 1:1, say f(x) = 2x mod 1, then there
is nom.p. ¢:00,1]=[0,1] suchthat fo ¢ = 6£. (see §20).

(2) Let (Xi’ Ai’ ui) be finite m.s. with a, = ui(Xi), i1 PR | 3
let (X, A, ) be their product m.s., and let J = [0, alj x+--x[0, ak]
with product Lebesgue measure. If 0.:X. = ro, ai] are m.p. i=l,..., k,
and o(xl, e }:k) = (Ol(xl)’ Sar ok(xk)) then g: X » J is m.p. To prove
this take fi =0, and g.l(t) =t for all t € [0, ai] in Prop. (3.6).

(3) Observe that Prop. (3.6) = (f ., f

)~(6f,..., 6f } so as

k
1 k
in (3.7) atthe end of § 3 we may conclude such things as

R

[t6) - g)] ~ 8 ) - 8 ()]
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(4) If £ e M[0, 17, and t € [0, 17 let ¢(t) =
m({f>£t)}) + m({f = £(t)} N [0, t]). Ryff [44] has shown that
¢: [0,1]7-[0,1] is m.p. and f = 6p 0.
(5) Actually Liapounoff proved a much stronger result in 1940

than the one stated above: The range of a countably additive finite

' . n . . .
measure taking values in R is compact, and if the measure space is

non-atomic, then the range is convex as well [22]. In 1947

Paul R. Halmos gave a simplified proof of this result [11]. In Lemma
7 he shows that a non-atomic m.s. (X, A, i), with U taking values in Rn,
is convex, i.e., for every E € )\ there is a functiond : E - [0, 1[ s. t.
HW({#<s}) =su(E) for every s € [0,1]. We may define a one-

dimensional vector valued Lebesgue measure ) on the line segment

[0, L(E) = {s WE): 0 <s <1} joining the zero vector and the vector
WE) as follows. Let m be Lebesgue measure on [0, 1]. If B c [0, 1[
we write B y(E) to denote {tu(E): t€ B}, and if B is Lebesgue measur-
able we define A(BpP(E)) = m(B)u(E). Thus ) is a vector valued
measure defined on the g-algebra § = {Bu(E): B< [0, 1[ is Lebesgue
measurable} of subsets of [0, u(E)[. Now let (X, A, 1) be convex, let

E € ANand let ¢ be as above. If we define o(x) = 4 (x) Y(E) then g is a

m.p. map of (X, A, ) onto ([0, u(E)[, s, \) .
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6. Decreasing Rearrangements on Not Necessarily Finite m.s.

Let (X, A, ) be a measure space (m.s.) and let m denote
Lebesgue measure. If f € M(X, i) and there is an interval I € R and
a decreasing function § € M(I, m) such that f ~. 6, then we will call §

a decreasing rearrangement of f. In this section we will character-

ize those functions which have a decreasing rearrangement in this

sense.

(6.1) DEFINITION. We denote by D(X, ) the set of all £ € M(X, )

which satisfy

(i) u(f_l[a, b]) <« whenever [a,b]c ] ess.inff, ess.sup f [;

(i1) p(f-ljc, ess.sup f [) <o whenever p,(f_l(ess. sup £))> 0
and ess.inf f < c < ess.sup f.

(iii) u(f_ljess. inf f, ¢[) <o whenever u(f_l(ess. inf f)) > 0 and

ess,inf f < ¢ < ess.sup f.

It is our purpose to show that D(X, u) is precisely the set of

all those functions which have decreasing rearrangements.

(6.2) LEMMA. If I is an interval of R and 6 € M(I, m) is monotonic,

then 6 € D(I, m).

PROOF. Assume & is decreasing; the proof when & is increas-
ing is similar. Let J = ] ess.inf §, ess.sup 6§ [, soJC}inf &, sup 6 [.
(i) Let [a,b] cJ. Thenb <sup § so there is a u €I such

that b<é6(u)and hence 6_1[a,b] c Ju,ec[. Sinceinf 6<athereisav €I such
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that 6(v) < a so 6_1[a, b]l]c ]-x,v[. Hence 6_1[a, bl < Ju, v[ so
m(6—1[a, b])< . (ii) Let ¢ € J. Then there are w, v € I such that
6(v) <c < &(w). If m(6_1(ess. sup 6)) > O then there is a t € I such that
5(t) = ess.sup 6, so 6-1]c, ess. sup 6[C[t, v]andthus m(6‘1]c,ess.sup &[)<ec .

The proof when m(6"l(ess. inf 8)) > 0 is similar.

(6.3) LEMMA. (i) If f € D(X, u) and f1€ M.(Xl, ul) then fl ~ f i.mgligi
fl € DX ug)-

(i) If f€ DX, ) thenf+r €DX, M for all r €R.

PROOF. (i) use (3.3) (vi) .

(ii) Let f € DX, d)and r € R. Then ess.inf (f+r) =r + ess.inf f§
and ess. sup(ftr) = r + ess.sup f. If [a, b]C] ess.inf (f+r), ess.sup(f+r)[
then [a-r, b-r] cJless.inf f, ess. sup f[ so u((f+r)_l[a, Ll¥ =

-1
U(f "fa-r.b-r])<«. The rest of the verifications are similar.

Thus we see that (6.2) and (6. 3) (i) imply that D(X, i1) contains
all measurable functions which have decreasing rearrangements. To
prove the converse we have to construct a decreasing rearrangement
for each function in D(X, 4). It is convenient to do this first for a

special subset of D(X, W), which we now define.

(6.4) DEFINITION. D'(X, M) is the set of all functions f € D(X, u)

which satisfy

(i) ess.inf f <0 <ess.sup f

(i) w(E"1(0))> 0if ess.inf £ = 0.



=3 =
E f € D'(X, i) we define a distribution function by
{ wE e 07) if t<o0

(710, £1) if 20

for allt € R#. Then df is decreasing and we define

6f(t) %= df'(t)

-1

forall t€1=17 -pE110,w7), wie [, 0L

(6.5) LEMMA. Let f € D'(X, ) and let

1w, 0D 1.

(1) |d£(t)| <o if ess.inf f <t < ess.sup f.

1=7-p170,<), wit

(i1) clf is right continuous

(183) 4 (t) = +oc 1ff £ < -u 67170, u]) forall 0 cu €R

(iv) A () = o it 2 p(E ] -ce, 01) .

PROOF. (i) Since f € D(X, 1), this is clear when ess.inf f # O.
If ess.inf f = O then u(f—l(ess. inf £)) > 0 so u(f_l]O, t])< o whenever
ess.inf £ = 0 <t < ess.sup {.

(ii) Now d_ is clearly right continuous at all t < 0, and also at

f
t =20 if ldf(u)l <o for some u>t. Hence lett z 0 and suppose
|df(u)| = o for allu >t. For such uwe have u> 0 2 ess.inf {, so
(1) implies ess.sup f £ u. Hence u(f"l]O, £1) = u(f—ljo, ess.sup f]) =
u(t™' 30, .

(iii) df' £
dif(t) = -oe iff {u: df(u) <t}> ] -cc, O] .

(t) = +oc iff {u: d (u) >t} > [0, +c[ and
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One would hope that df = dg on R# implies f ~ g. The following

example shows this is not the case. lLiet £(x) = x on Xl = [0, +ec ] andlet

x if 0 €sx <+«
gx) = {

too if -1 €x <0 on X, = [-1, +ec].

Then d; = dg on BT but m(f_1(+ o)) # m(g_1 (+oc)). We will be able to

prove 6f = 6g iff f ~ g, however, by using (6.5) (iii) & (iv) and the

following result.

(6.6) LEMMA. Let f €D'(X;, 1) and g € D'(X Ifd;=d_ on

2’ uz) .
R then ul(f_l[a, Bk = uz(g_l[a, b]) for all intervals [a, b] of R.

PROOF. This is equivalent to proving that flf-l [R] ~ g\g—l [R]
so we may assume (and we do) that f and g are essentially finite.
Let df = dg on R. Then (6.5) (i) says that tdf(t)l < oc and |dg(t)l <
whenever min {ess.inf f, ess.inf g} <t < max {ess.sup f, ess.sup g},
in which case Hz(g—l]-oc, ¢ ) = ul(f-l]—oc, t]) and uz(g_l:]t, cl) =
ul(f_l:]t,oc {). Then ess.inf f <t < ess.sup f implies uz(g_l]t,oc]) >0
and uz(g-lj—oc, t])> 0 so ess.sup g = ess. sup f and ess.inf g <ess.inf f.
The argument is symmetric in f and g so we conclude that they have
the same ess. inf, say u, and the same ess. sup, say v.

Now [a, b] Clu, v[ implies My (f-1 (a, b]) & L.iz(g_1 [a, b]) < in which

cmmE ul(f'lr_a, b]) = dgla-)-d,(®) = d_fa-)-d_(b) = uz(g‘l[a, Bk Alse if

£ g
fa,b] <] -, ul Ulv, +« [ then ul(f_l[a, Bli=0 = uz(g_l[a, bJ).

Now f, g € D' implies u < 0 <v. If p,l(f—l]O, v[) <o then
Lil(fnl(v)) = df(v—)-df(v) = dg(v—) -dg(v) = uz(gml(v)). Otherwise, since

f, g €D, ul(f‘l(v)) =0 = uy(g-1(v)). For the rest, if by (£-17u, 07) < «,
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then since , (£1(-0)) = 0 = u, (g~ 1 (-2)), we have u (£ ') =

(1] e, D) = w711 -0, 01) - W (£-1 ], 0])

Mo(g™l] -0, 01) - uy(g ! Tu, 01) = uy(g t]-20, ul)

1l

uz(g'l(u))-

Otherwise, w < 0 and ul(f_l(u)) =0 =4,(g" ().

(6.7) LEMMA. Let J be an interval of R#' suchthat inf J <0 < sup J.

fp€ D'(J, m) is decreasingand p(t) <0 iff t 20, then p' = dp on R,

PROOF. From the definition of p "’ and the condition on p it is
casy to see that we have:
] "1 .

if £ < 0, then [0,p " (t)[cInp 1t 01 = [0,p"(t)]

dt=0, then Jp° ), 0[«:an’1]0, t]cp), of.

Hencep® =4d .

P %

(6.8) DEFINITION. For each f € D (X, 1) define bf =0if f € D'(X, 1)

1
while if f € D (X, t) define

%(ess. inf f + ess. supf) if |ess.inf f! &less. sup f‘ <og

H
8

bf = -1 + ess.sup £ if |ess.supf| <oo & |ess.inf f|

1 + ess.inf { if !ess.inf fl <o & ‘ess.sup f] = +oo

I

(6.9) LEMMA. If f € D(X, i) is not essentially constant then

ess. inf f < bf < ess.sup f and f - bf € D'(X, W)
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{6.10) DEFINITION. For each f € D(X, ) define

. {of —bf+ b, if f is not essentially constant
. ess.sup f if f if essentially constant
onl=17 -u(f Yb, +ee ), 'l[wc,bf])[-

(6.11) THEOREM. Let f € D(X, 1) and let

I = ]-u(f'ljbf,x]), (e - e, b DL .

(i) Then infl <0 < sup I, 6f € D{I, m) is decreasing and right

continuous, 6f~ f, and for each t €1, 6f(‘c) < bf ifft = 0.

(ii) Suppose J is an interval of R such that inf J < 0 <sup J,

suppose p € D(J, m) is decreasing and right continuous, p ~ f, and for

cach t € J, p(t)sbfi_fftzO. ThenlcJandp = 6. 0nl.

PROOF. (i) The result is clearly true if f is essentially

constant since m{l) = y(X). If the result is true for f € D'(so b, = 0)

f

and f € D is not essentially constant, then

Splt) = 8, by (t) b, < bf iff 6f_bf(t) < 0iff t 2 0 for all t € Ju, v[ where
1= —((f-by)” 190, 7) ~w(f 1 by e ]) and

v = u({ fb) [ o, 0])= "1[-oc,bf]) so

I = ]u,v[; and f - bf~ 6f—bf 50 f~6f_bf+bf= 6f'

Hence suppose £ € D'.

If 0 < tER,thend(O)-‘-OStsod’ 0.

¢
Suppose 0>t € R*. For all 0 <u < ess. sup f{, df(u) is finite. Hence

A

t) = inf{u: df(u) <t}

df(u) T 0 as ul 0 so there is a g >0 s.t. t< df(uo). Then
‘ = e > >
df (t) = sup {u: of(u) t} = u, 0.
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Let q = (lf'. Then (lq =q° = df” =d.onR. But ‘(lf'(t)| <oo = t €1

(Lemma (6.5)) = 111(6;1 [a,b))= m(qllnl[a, b]) = rn(q_l [a, b]) '—‘u(f—l[a,b])

for all bounded intervals [a, b] of R. Now (6.5) implies

5.7 (-oe) = [l T, 01 (e e, O s0 u(E™ (- = 0 =

m(f’f_l(-x)) = 0. If u(" (-a)) > 0 then u(f"1J-e, 0]) < x and thus

m(ﬁf-l(-oc)) = Li(f_l(-oc)). Similarly, if u(f'l(+oc)) = 0, then

f

1 u(5 (+ee)) > 0, then wE™ 110, [) < so m(8,  (+x)) = pte ! (ree ).

w10, ul) § -1 10, 1) as u - sa (6.5) =m(s, (+a)) = O.

(ii) Again this is clearly true if p is essentially constant since
then f is, and p ~ f implies m(J) = u(X). If the result is true for all
p €D'(J, m) (so bf = 0), and p € D(J, m) is not essentially constant,
then p - bf € D'(J, m) satisfies all the conditions in (ii) for

! = = 1 = =
f—beD(X,u)soICJandp bf 6f-bf i.e. p Eif_berbjE éfonI.

Hence suppose f € D'. Since p~f,

de = dp =p” sodg=p’" =p. Also, because p ~f

ml A I0,%]) = wE 50, % ]] and
M, 07)

Jinf J,0 [cJ ﬂp-I]O,oc] c [inf J, 0] and

m(J Np u,(f_l[-oc,O]), and

0,sup I[ T ﬂp-l[—cc,O]C[O,sup J] so
inf J = -u(7170,c]) and sup J = wif 1[-e, 07)

and henceIcJ, andon ] p = df' =6, .
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(6.12) THEOREM. Suppose f € D(x, ) and ess.inf f < 0 < ess. sup f.
Let I = ]-u(f-1]0, 4c]), p-1l-«,0])[. Then

= M u(f‘l(O)) < ot and we have

on 1

(i) ) =84  on

(61,) (t) = 6f_((a—t)—) t €1

(ii) & _.(t)

r -5 ((a~t)-) t€a-I

PROOF. liet F(t) = (6f)_((a-t)-) . We prove that 6f_ = F on a-I.

Now f~6f so f~ ~ (éf

6f—1 (0)< [0,a] so F(t) < 0 iff 6f((a-t)-) =0 iff t=2 0 and hence

)" ~F. Now a =m(5;1(0)), & (6.11) (i) implies

F=6_onJ=1-w()"10,al), u((t) ' [-, 0 [=a - 1.

The rest is similar and easier.

We now show how to obtain an analog of Theorem (5.10) for
general m.s. Observe that unlike the situation for finite m.s., if
A is an atom and £ € M(X, i), it need not be the case that f is constant
on A, or even on a subset of A of positive measure. This can only
happen, of course, if H(A) = +oc. The situation is nicer if

f € D(X, u).

(6.13) LEMMA. If Ais an atom of (X, A, ) and f € D(X, ) then

m{x €A: f(x) € {ess.inf f, ess.sup f}} = 0. Hence f is constant on a

subset of A of positive measure.
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PROOF. LetJ = Jess.inf f, ess.sup f[. If g(A) <o« then f is
essentially constant on A, so assume M(A) = +oc. Since f € D,
u(f-l[r, s]) <o« whenever [r,s]cJ so }.‘l((flA)_1 (&, s]) = p(f-l e, s D NA)<4« =
u(A) and thusu(f|A~1[r, s]) = 0 for all [r, s] cJ, since A is an atom.
Since J is a countable union of closed intervals,
u{x €A: f(x) ¢ {ess.inf £, ess.sup £}} = p(f|A” lJ))—O.

0<u(A) = u(f—l(ess. inf f)) + u(f_l(ess. sup f)) shows the rest.

(6.14) LEMMA. If (X, A\,d)is a m.s. and I is an open interval of R

s.t. uX) = m(I) and {Xi}iil is a partition of X by measurable sets

s. t. U(Xi) <« i=1,2,3,..., then there are pwd open intervals

o S e - =
{jhn, bn[}n:1 s.t. w(X )=b -a n=1, 2,3,..., and

- x —
m(l - ntél:lan’ bn[) =

PROOF. Suppose first that I is bounded below, say a, =infl> -ec.
n-1 oc
Leta =a, +iz“> LJ.(Xi) and bn =a_+u (Xn). Then niil]an, bn[ =

I-fan:n= 2,

3,... }. Similarly if I is bounded above. Hence
oc
let I = R. Then Z} = U(X) = m() = +x so there is a partition
{Bk}]:il of the positive integers by finite sets B, such that
T {u(X.):i€B . }21foreachk=1,2,3.... Let {n}* and {p.
i k =1 ii=)]
oc oc
i &
enumerate kngZk andk:ul BZk-l respectively, let ry R, and let
~ % o o ¢
X, = iL:JI Xni, )\2 = igl Xpi, 11 & ]ro,oc [ and I2 = J-w, ro[ . We get

collections of intervals for I1 and Xl and for I2 and X2 as before, and

the union of these collections works for X.
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(6.15) THEOREM. Let (X, A, M) be a m.s. and let I be an open inter-

val of R with 0 € I. Then the following four statements are equiva-

lent.
(1) There is an f € M(X, 4) s.t. 6f(t) = =t for all t &€ 1.

(ii) There is a measure preserving map of X onto I.

(iii) If v € M(I, m) is decrecasing and right continuous and for

cacht €1, v(t) < bV iff t 2 0, then there is an f € D(X, M) s.t. 6f £ o5

on I.

(iv) (X, A, W) is non-atomic and O-finite and HX) = m(I).

PROOF (i) = (ii) Let 0 = -f. Then -0 = f~ 6,50 O~ —6f. Then

£

Jis m.p. and has the same essential range as -6, namely L.

I

(ii) = (iii). Now ess.inf 0 = inf I and ess.sup 0=supl. Let
f=vo0. Thenf~v so bf:bv‘
i Ibpee]) =m(v b, w]) = -inf1
(e (-, b)) = m(v [, b _J) = sup L.  Hence Theorem (6, 11)
implies 6f = v on L.

(iii) = (iv) Let f € M(X, ) s. ¢t. 5f(t) = -t for all t € 1. Then
% = U{f'I[i, i+1[: i is an integer} and u(f'l[i, it1[) = m(éf‘l[i,iﬂ[) <1
so X is o-finite. Since M(f™ (r)) = m(éf'l (r)) = 0 for all r € R, fis not
constant on any set of positive measure, so X has no atoms. m(I) =
m(6, " YR)= 1 R)= WX).

(iv) = (i) Let {Xi}:il be a partition of X by sets of finite measure.
Since X is non-atomic, so is each X].. Since m(I) = u(X) there are

o

w ;
pairwisc disjoint intervals {]ai, bi[}i:] s.t. m(l -.U, Ja,, bi[) = 0, and

b.-a. = u(X.).
1 1 1



-39
Let 1t) =t for allt € R, Now «a (t) = -(tta ) for 0 <t < b _-a is

n n n n
decreasing and right continuous on [0, u(Xn)] and hence there is an
In € M(Xn, M) s.t. fn ~a . Now for vn(t)zar{t-an)z -t (a.nst < bn) we
have f ~a_ ~v_~ -1|[a ,b [. Letf(x)=f (x)if x €X . Then

n n n n’ n n n
- —~ - !

f € M(X, 1) and flxn =f 1] la,b [sof +|I. Then f €D'(X, 1)
and Theorem (6.11) implies 6. = -t on L

f

(6.16) THEOREM. If (X, A, 1) is non-atomic and o-finite, if f€D(X, ),

and if 6 € M(I, m) is a decreasing rearrangement of f, then there is a

measure preserving map ¢: X = [ such that 6 o g= £ yj-a.e.

PROOF. LetJ = {s €1I: 6(s) = t} for each t €R". Each J, is an
interval, and since the topology of R has a countable base, we have

m(Jt) > 0 for at most countably many t. The rest of the proof is like

that of (5.12).
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REMARKS. 1. If (X, A,)is am.s. and 0 <f € M(X, ) aund
H({f 28] <« for some F, then we may define [[Jon [0, e[ to be
the right continuous inverse of df(t) =u({f>t}) [8] . Thisis
almost the same as the definition of f given by Hardy, Littlewood
and Polya [15] for X an infinite interval of R. Although
m({{f]>E})=u({f>E€}) for all Z€ R, in general [f] need not be
equimeasurable with f. If f € D(X, W) thena = u(f"1Jb,«]) <c
and for all 0 £ u <« we have

(flm) = Bf(u-a) .

2. If (X, A, u)is a finite m.s. and f € M(X, i) then the decreasing

rearrangement of f defined in this section is a translation of the
decreasing rearrangement defined in § 5 for finite m.s. Letting

£* denote the one defined in § 5, we have

6.(t) = ¥ (t+a)
forall t €1 = ]—u(f"l]bf,x]), u(f‘l[-ac,bf])[
where a = u(f'l]bf,ocj).

3. Suppose (X, A, u) is a finite m.s. and X is the union of a
finite number of atoms of equal measure, say X = A, U -*-U A .
Then M(X, i) is isomorphic with R"™ under the correspondence
fe—a-= (al, o .,an) € R™ where a, = IIA.I. For each f € M(X, u) let
6£ denote the decreasing rearrangement defined in §5. If f € M(X, u)
then 6f is constant on [«

* = ; n
e 5 Bf] [ak-l’ ak[ then a is the point of R© whose

k
k-1’ ak[ where @y zi}z:)l u(Ai) k=1, .... n, and

ifa «— f and a

components are the components of a arranged in decreasing order.
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4. G.F.D. Duff [6] has defined a generally multiple valued
decreasing rearrangement for each member of M(I, m) where I is an
infinite interval of R and m is l.ebesgue measure. The conditions
(6.1) on f € M(I, m) arc nccessary and sufficient that this decreasing

rearrangement be single valued.
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III. INEQUALITIES AND REARRANGEMENTS

7. A Theorem of Hardy . The following theorem of G. H. Hardy

will be used often in what follows.

(7.1) THEOREM. (Hardy) (i) Suppose f}, f, €M[a, bJ, £ EL¥ . £,
for all a <t <b and f: f ft for alla <t <b. If g is a non-negative

decreasing function on [a, b] s. t. fig eL![a, t](i=1,2) foralla <t <bh,

then ftflg < ft fzg for all a £t = b.
men g SE B

. 1 t t b. _ /b
(ii) Suppose f;, f, € L'[a, b], éfl séfz for alla <t < b, afL £ éf

and g € M[a, b] s.t. f,g €L'[a, b] (i=1,2). If g is decreasing then

2»

fbflg < fbfzg, while if g is increasing then /bflg 2 fbfzg
a a a a

PROOF. (i) Let F( = [t ¢ (i=1,2)ifa <t <b. Then for all
a
) t B _ t
a st b, é f,g-f,8 = 4 g d(F -F1 ) = glt) (F,-F )(t) - é (F,-F,)dg = 0.
(i1) 1s similar.

(7.2) THEOREM. If f € L'[0,a] is decreasing, then tl/tf s

(o]

decreasing function of t, while if f is increasing, then %— ft f is an
5 Slic

increasing function of t, 0 <t < a.

PROOF. Let0<t1<t25a. Thentltstztforall 0D<t<a

S0 min {t t, t t } <min {tzt, tltz} and hence

t 1 : 1 _ rt 1
c/> [O ¢ ] —_ m1n{t, tz}s E—l min {t ’c } /(; [0 t ]
for all 0 <t <a. Thus (7.1) (ii) implies
t t
1 / 2 a l a 1 1 L s ; ;
— f=/% = / C it — fif f is decreasing,
t, © o t, [0 t ] t) [O,tl] ty {)



-43.

and the reverse inequality if f is increasing.

8. A Preorder Relation. In this and in subsequent sections we will

use 6f to denote the decreasing rearrangement defined in § 5, since

the measure spaces will always be finite. In addition we will use

E)E to denote the decreasing rearrangement of CE'
In [15] Hardy, Littlewood and Polya introduced for the first

time an important preorder relation for n-tuples of real numbers

and later for integrable functions on a finite interval. We present

this relation for finite m.s. as follows.

(8.1) DEFINITION. Suppose (Xl’ 1\1, }Al) and (X,A,u)are finite m.s.

a a
with a = (X)) = (X)) and £, g EMOKW UMK k) and [6. and [ 6 .

are finite.
t

t
(i) g <<f means foégﬁfoéf forall 0 st<a;

a =1
(ii) g <f means g <<f{ and /o ég = fo 6£.

It is obvious that
(1) f~g iff g<<f and f=<<g iff g <f and f < g;
(1) g << f 1iff 6g << 6f

(1) g < £ iff 5 <&

(iv) << and < are reflexive and transitive

The reader should compare the conditions in Definition (8. 1)

with the hypotheses of Theorem (7. 1).
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The following are some other useful but less obvious properties

of these preorder relations.

(8.2) LEMMA. (i) If g << fthen g+r <<f+r for all r €R and
rg << rf if r = 0.
(ii) If g < fthen g+r < f+r for all r € R and rg < rf for all 0 « r € R.

If in addition f € Ll then -g < -f.

(iii) If rSszwherer,sER#andg<fthenrsgSs.

1

(v) £ f€L(X M) and E€A then f <Cp iff 0<f<1 and

fd“l = w(E). In partlcula.r, if £ < CX then f = CX1 Mp-a.e.

(iv) 1 £ € L' (X, 1)) then (——1(—}(—) [ £du)Cy <E
1

%y
+ 4+ - .-
(vi)Ifg <f andg <f then g<f.
(vii) If g << f then g+<< £+, If g < fEL1 then in addition g~ << {".

(viii)EOanTf,Os%qT g, and g, < fn’ n=1,2,3,..., then g < f{.

PROOF. (i) & (11) If g << f and r € R then

t b t gt B _ .
[ 8y =/ (0 4r) < [T(84x) = [76,  forall 0st=<a using (5.3)(vi).

If ¢ <f then in addition we have equality when t = a. Supposer 2 0.
; t t t t
] = < = <a.
Itg<<fthen_(/)6rg forag jorsf foérfforallOSt<a Ifg<f
then we also have equality when t = a. Now assume g <f. To prove

the rest it suffices to show that -g < -f. ft u)du = ft- &6 {a-u)du
a-t a-t a-t " © gt

=/ 5g=/ § - [25 sféf-fa‘{i f-6(au)du—f ((w)du
a o

o 8 o B ©o©
for all 0 <t < a with equality when t = a using (5. 5) (ii).
(iii) I.et g < f and suppose first that f 2 0. If g is negative on a
set of positive measure then there isa 0 <u<a s.t. Gg(u) < 0. Then

S )< 0forallusts<a so “ 8 = 28 <« " = %5 = 25 since
g( fofég{)gc{f{)f
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6f = 0, a contrd. Hence g 2 0. Now supposc r € R and r =~ {. Then
f-r=0and g-r <f-r so g-r 20, i.e. r £ g. Supposc s € R and
t < s. Then -f t s ® 0and -gis < -fts so -gis =0, t.¢c. g = s,
, 1 =
et v o= = ¥ . . 't . y < f.
(iv) Lt g (u———--——l (Xl) f f dul)( y SO we have to show g < f

1
t 1 1 ra

AT £ =ts /%5, 6 for all 0 st <
[og=ty (Xl)fx1 diy =t/ 5/ £ ot & B

by Theorem (7. 2), and we have equality when t = a.

(v) Suppose £ <C Then (ii1) > 0 < {f <1, and fodul =
1

/ CE du = y(E). Assume 0 <f <1 and /le dul = M(E). Then

E

6 <1 so fté <t, and 0 € 6, so fté S/aé = W(E). Hence
f & f f o £ o L

_/'t 6f < minf{t, WE)} = ft 6E for all 0 <t £ a and we have equality
o o

when t = a.
t t t t t
(vi) Now g= < f~ ¥ .g- < £~ so/O -f6++/6 S/6++j6f
é 6f for all 0 <t < a with equality whent = a, using (5 5)() .
(vii) Assume g eM(X, u) & fEM 1 pl Let b=({g=0}) =rn({6g20})
and by =y, ({20}). Then /05g+ / 3 sf 55 [ 6—f 5t , g fEL

then -g < -f so g = (—g)+ << (_f) = f.

fviii)) Use monotone convergence and (5. 3).

(8.3) LEMMA. Suppose f, g € L1 [0,a], fand g are decreasing,

Jr,s[&Juv[<c[0,a]l] =1 s-r =v-u, and fsfﬁfvg. Ifg=<<f
— £ u

then g|I-Ju, v[ <<f|1-Jr, s[ .
PROOF. The proof is essentially due to Ryff [ 43, p.433].
Let g| = g|I - Ju, v, £l =¢£|1-Jr, s and let h = s-r = v-u. Except at

most at countably many points of I,
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bl = g{x) 0 <x <u
. - g(xth) u<x <a-h

g

and similarly for f. We consider four cascs.

Case 1. t < min {u, r}.

t t t ;
o = < /f = )

[og - fesfee Do

Case 2. t> max {u, r} . Now
t t u t+h
fo,) = Ja+ [gxthyax = [ g+ [ ¢
o ® o u o v
and similarly for £f. Hence
t v t+h t+h t s
g@gl-}l{g:c{g:\({fzgf}f’%xjjf

v S
Since [ g - [f2 0 we obtain
u r
fo = fo +fe-15<]
) < 5 1+ - f )
A
v t+h
Case 3. r =t £u. Since g is decreasing, fu g =< ft g. Then

" v ¢ = t+h t+h
/6l+/g=fg+/ fg+f€:/g
o u E
t+th  t s t t
/O'f :/(;fl +{'f S0 {)ﬁgl s{)ﬁf' as before.
Case 4. u <t <r.

u t+h u t t t
/ﬁl"g*fg>fg+fg:/~s/f:frfl'

0 o o

Thus gl < < £l



-47-

(8.4) LEMMA. Supposc [, g TR [0,al, Jr, sl & Ju, vic {0, a] =1,
s-r = v-u, and gl|l - Ju, v[ <<f£|I - Jr, s[ . Then

gcl-]u,v[JraC] [<<fb [+ozC] [ for all « € R.

I-Jr, s

u, ’

PROOF. Let gl =g\I—]u,v[and fl=f!l—]r,s[, so g|<<fl,

let 2€ R, let g =gCI-]u v[+01C] v’ let

s

- -1 &
= + W c
fl iC ]r’s[ aC] ,s[, andlet] ,Z[ ) ) (01)

]p,q[C 6£'l(a/) s.t. z-w=q-p=h=s-r =v-u.
1
Then 6g|;—?a on [0 w], 6g|Saon [z,a-h ], and

except at most at countably many points of I,

& x) 0<x<w
gl
& (x) = a w<x <z
g1
5 |(x—h) z<x<a
g
t t
and similarly for f. The inequality [6& < [ 6f follows by
o®”l o 1

examining cases. Rather than go through them all we give the details
for three representative ones.

Case: w<p<t <min {q,z}. Nowa 56f| on[w,p]

t w t w t
s0 /E)yzf{),‘w‘-fa = /'6"+ fpa+ [ «
o Bl o ¥ w o © W )
W t P t t
« [oq+f6, +la = Jo, +fa =/ 6
£ £ £ f1
o w o) o P o

Case: psw<t <min {q,z}. Now 6flsa on{p,w] so

t w t w t W t
[o, = Lo+ fas [ t oz JBa+l o+ §a
o 81 o 8 w of| w of| P W
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Case: z =t 5 q. ftf) :fW6 | O ftég‘(x—h)dx

o gl o g W Z
fw /t.-h t-h t
=f &6 | +ah+ S 1 =) 6 (+ [ «a.
& gl W g‘ ey ‘ t-h
o, = (o4l as f6g+ o= o=/
Iftsp, /6 = 5 +/ a < 5. + S 1 = 6 =/ 6
o B e} glt—h o} fl t-h f' o fl o fl

since « §6f| on [t-h, t] .

If p <t, thent v q = t-h <p &a.<6f| on [t-h,p] LX)

t t-h ) t t-h P t t
ff)‘r = ] 6“‘+fa e /u/ < f 6f| + féf! + [o = /6f
o Pl o ®'t-h P 0 t-h P o 1

(8.5) LEMMA. Supposef, g € L! [0,a], Jr,s[&Ju vl <[0,a]=1
and s-r = v-u.

S v
(i) [J. V. Ryff] If f and g are decreasing and [f = [g and
r u

g < f then g! I-Ju, v] <£]1- Jr, sl .

(ii) If g]I-]u,v[ <f‘ I- Jr,s[ then for alla € R,

g CI-—]U, V[ + o C]u’ V[<f CI— ]r, S[ + o C]r’ S[.

PROOF. (i) Let f|,g|beasin the proof of (8.4). Then

a v a s a-h
=[5 - Js = Jt- fr= sy

u o

a-h
of 6g| I-‘][u,gv[
where h = s-r = v-u. Since we already have g! <<f| from (8. 3)
we conclude that g| < f| .

(1i) L.et B and f1 be as in proof of (8.4). Then

a a v a s a
fgl :/g - fg+ozh = ff = ff+ah = ffl
fo) o u o r o
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(8.6) LEMMA Suppose f € L1(x}, 1), g € LI(x, ),

f is constant on E, € /\1, g is_constant on E € A, flE1 <gi(E and

ul(El)zu(E). If g << f, then
i) glx-E <<i|X-E and

(11) gCX_E+a'CE~<<f(,X CE +01CE for all « € R.

PROOF. Letp =f|E|, y=g|E a=pX) =u,X)) ,
=[0,al, Ir,slcs '@) s.t. s-r = W (E) , and )
- -1 — —
Ju, L 6g (y) s.t. v-u=u (E). Then s-r = v-u and /r6£ < /u 6g.
If g < <f{ then 6g < < Gf so g‘ X-E ~6g‘1-]u,v[< < Sf‘l—]r, s[~£‘X1—El

~ ~
and gCy gt @Cp~8, G uul 10, v % 4 1r, s 01200, of fCXl El CEI

for all @ € R using Lemmas (3. 3) (xi), (3.4) (i), (8.3), and (8. 4).

(8.7) LEMMA. Suppose f € Ll(Xl, M), g € L1(X, u) and suppose

f and g have the same constant value on E1 E/\1 and E €A

respectively, where ul(El) =WE). If g <{ then

glX-E < £|X,-E, and
(ii) gCX—E + @ CE < f CXI__El + CEl for all @ € R .
REMARK. Letg i f mean g <f and g and f are not equimeasurable,
and define gfffsimilarly. Let (X, A, 4) be a non-atomic m. s. and let
f g € LY(X,n). Then g gf=thereisanh €LI(X, W) s.t. gghz £
and g -f f= there is an h € L. (X, ) s.t. g<+<hi< f for by Theorem (5. 10)

there is an b € M(X, 4) s.t. & = é—[6f+6g].
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We now pause to show how a finite m. s. can be embedded
in a non-atomic m.s. We will use this device to show which results

about non-atomic m.s. carry over the general m. s.

9. Embedding of a Finite m.s. in a Non-Atomic Finite m.s. Let

(X, A, M) be a finite m.s. We recall that a measurable set A € A is
called a u-atom or an atom of (X, A, 4) whenever U(A)> O and B © A
implies u(B) = 0 or W(B) = H(A). If A is a H-atom and f € M(X, i) then
f is essentially constant on A. If A and B are i - atoms, they are
equal or disjoint a.e., i.e., M(A AB) =0, where AAB = A-B UB-A,
or L{A N B)=0.

A finite (or o-finite) m.s. can have at most countably many

atoms. Thus X = X, U U A_ where P is {1, ..., k} for some natural
n€ P
number k or P is {1,2,3,...1}; each A is a M-atom; and

(XO, AN XO’ M) is non-atomic.
We may embed (X, A, ) in a non-atomic m. s. (X#, /\#, H#) as

follows. Let X#

=X U U 1fla ,b ] where the Ifa ,b_] are disjoint
0 7 nhep n’ 'n n’ 'n
intervals of R with end-points a_&b_ s.t. b_~a _ =u(A ). Then
n n n n n
4
X", & % 0F) ix the divest swm of (X ANX,, M) and the Lebesgue m. s.
. # . _ :
(IEan, bn], m), i.e., E€ A iff E=E, anEJP E_ where E €A, ECX,
and for each n € P, En is a Lebesgue measurable subset of I[:an, bn],
and in this case WF(E) = W(E ) + 2 m(E).
n
Clearly (X'#, A#, p#) is a non-atomic finite m. s. with u#(X#) = WM(X).

Eaxh £ € MEE B, 1] i Menbified with F = £, 25 gla jc
Xy n€pP 2y I{a_,b ]

in M(X#, x\#, u#) and it is easy to see that f ~ f# so (5f = 6£#. Of more
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importance is the fact that L1 (X, W) is a retract of Ll (X#, u#) under

the following mapping.

(9.1) DEFINITION. If f € L1x* of) umtxt u*)_]_e_t

1 bn
T f=£C. +3 (J' £) G
) XO nep bn—an ap An

(9.2) THEOREM. () T :nlech ut) -l .
(i) T f=fforall feLl(x, u)uM X u).
{(1i1) Tuf =20 forall 0 <feM(XHM).
Gv) [T fau=[tdu*for an £ el uM®) x* uf) ang
I 8l =l for an e nlx u¥) .
(v) ”Tu"”m < ||t , forall €L PSATSW
(vi) Forall fe (LluymM" o<t u*) ana g EM(X, H) s.t.
fg ¢ (Ll umT) x*, Y we have T, fe) = (T fg
The reader who is familiar with the concept of a conditional
expectation will recognize that Tgf is the conditional expectation of f
with respect to the O-ring generated by X0 N fand the intervals
I[an, bn]. n € P.
At the end of § 13 we will prove that Tuf <f for all

{ € (L1 U M+) (X#, u#). We will investigate transformations of this

type in detail in § 17.
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10. An Inequality of Hardy and Littlewood. In this section we prove

an inequality which was originally proved by Hardy and Littlewood
for non-negative functions ([15], Theorem 378). This inequality

will be fundamental for what is to follow.

(10. 1) THEOREM (Hardy & Littlewood). If f, g € M(X, 1), a = H(X)<e,

and if 6‘”6|g1 € L1{0,a], then fg € LI(X,4) and

a a a
[ 6.(a-t)6 (t)dt = [6.(t)6 (a-t)dt < [fgdus [ 6.6
o) £ g o £ g X o fg

PROOF. First suppose f = CE and g = C

a
Then /6f(t) 6g(a-t)dt = (W (E) + 4(F) - a)
o

F when E, F € A.

T e (W(EUF)HENF)-a) sw(ENF)=

a
[ fg dy € min {WE), WEF)} = [ afag.
o

Next suppose f and g are non-negative simple functions. Then

f and g can be written in the form

n

f = I EE £>»0 is1,.v.,n and E.Z - E
7 1 By i 1 n
i=1 i
m

g :fz—: 8 Cx. gj>0 j=1,...,m and F; 2+ 2> F_.
J=1 J
a a

Then [ 6f(t)6g(a-t)d’c = .Z. £ g / Sp (t) 64 (a-t)dt
o 1,) o 1 J

r .
& izj £ 8 CEiCF.d“ [fgadu

a a
< Z £ B / bp Op = faf & using (5. 6) (ii).
15 3 o 1 ] o

g
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If 0 < f, g € M(X, 1) then there are sequences {fn} and (gn} of
non-negative simple functions such that fn ff and g, f g everywhere.

a
_ lim
Then [ 6,(t) 6g(a-t)dt N~ / 6, (t) 6g (a-t)dt

o fs n
sélincc / f 8, d_u = ffg du
g, D /a s 5 = [ 6.5

n — o fn g, o f g

Let {, g € M(X, ) be arbitrary s.t. 6,” 6lg' e Ll [0,a].
Then by what we have already proved f‘f g‘dp, < éa5]f, 61g1 so

fg € LY(X w). Then using Theorem (5.5)
a

a a a
/ 5,(t) 5, la-t)dt = [ 84(t) 6 g (a-t)dt - /s, 6 [ 848

o o o o)

- + + -+ - - + -
+ [ 8- at)a_(t)dtsffg dy - [f g du+ [f g du- [f g du
o

a a a
= J - . - )
[fgdu < APt 6g+ /6f_ la-£] 6g+(t)dt / 6f+(t)6g_(a t)dt
(@) (o]
a
+ [ 8,86 - = [ 8
o [ 8 o g

REMARK. Observe that the inequalities in (10.1)are true for all

0 <f, g €M(X,M)even if &, 5g ¢ L0, a].

(10. 2) PROPOSITION. If F and G are measurable functions on

[0, a] such that 6\F| 6|G]€L1 [0,a] and G is decreasing, then the

convolution

F*G(u f F(t -t)dt

is a continuous function of u on [0,a].
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PROOF. First we show that IFI*\G‘ (u) is finite for every
u€l0,a]l]. Let u€[0,a] and let
G(u-t) on [0, u]
H(t) =

G(t) on Ju,al]

Then H|[0, u] ~ Gli[0,u]l and H| Ju,a]l ~ G| Ju,a] so
H ~ G and thus \H‘ ~ ‘C—\ so
IFl* 16l @ = [1F] ) |G |@-t)dt <[IF] (6) |G | (u-t)des Z\;*l | g

= [)‘F‘ ‘H‘ < fj&‘F‘61H1= Zﬁ‘F\ﬁ‘G‘<oc .

LetOSu<uOsa., so

u u
\F*G(uo) - F*G(u)| = jl'lolF(t)G(uO-t)\dt + _{)‘(G(u~t)—G(u0—t))F(t)\dt.

Let H(t) = G(uo—t) on [u, uo] and 0 elsewhere. Then

H~GCry 0] so (H| ~ |G| C[O,uo-u] and thus

=6 < ) =6 C
6\H‘ ‘G‘Cfo,uo—u] 6‘GI [O,uo-u.l |G| o, uo—u[. Hence

u -u

u g &
0 < {lolF(t)llG(uo"t)ldt:é |FHH| sfo 6lF|6|H| < foo 6|F‘5|Gl—’0

as u ?uo.
For the rest, let u Tuo n=12,3 ..., and let Hn(t) = G(un-t)F(t)
on [0, un] and 0 elsewhere and H(t) = G(uo-t)F(t) on [0,u] and O

elsewhere. Then Hn | Hpointwise a.e. since the discontinuities of

a
G form a set of measure 0, and lell = |F|*‘G|(ul)<cc, so
o
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u a
[ 7 (G -t)-Glu ) Fe)| de = ({ [H_-H|~0 asn~w« by

O

Dominated convergence.

The case 0 £ u, <u < a is similar.

0

11. The Values of an Integral . Letf, g €M(X, u). If 6|f|6|g|61}[o,a]
where a = W(X) and f' ~[and g' ~g then ']~ |f] and |g'| ~ lg| and we

a a
know that [[£'g![du < [ 810 \81p| = LB 81, 2nd

a a
- - ty! ‘
fo éf(t)ég(a t)dt < [ f'g' du < /o 6f5g'

(11.1) THEOREM. Letf g € M(X, W) and 8.5 | eLlfo,a],

where a = u(X). If (X, A, W) is non-atomic, then

a a
{[fg du:g'~g} = [/o 6f(t)6g(a—t)dt, fo 6f6g:].

PROOF. We already know that
a a
P oo S o
{[fg du: g'~g} c [/O 6f(t)6g(a t)dt, fo 6f6g], so
it remains to show that all the values are taken on.
Let 6\f‘6|g\ ELl[O,a], and for 0 €u <a let

u a
y(u) = fo 6f(t)6g(u—t)dt + j;). 6f6g. Then vy is a continuous function of

a a
u with ¥(0) = /o 6f6g and y(a) = /o 6f(t)6g(a-t)dt, so it suffices to

prove that for each 0 <u < a thereisa g' ~gs.t. [fg' du=y().

Fixu € [0,2]. We prove that there are sets X, €A and X, = X-X,

s. t. u.(Xl) =, 6f|X 2 6f on [0,ul and 6f]X2(t) = § _(t+u) on 0< t<a -u.

1 f
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To this end, ift ERY Lot F, = {x €X: f'’x) >t} and

F,_={x€X:f(x) 2t} so W(F, )= ﬁnt M(F_). Now W (F, )=0=% u

#: H(Ft) <ul . Then u(Fto) < u, and

so let to = inf{t € R
s <t = ME)>u sold(Fy ) fus<u(Fy ) Since (X, A, ) is non-
0 o
atomic, there is an X1 € A s.t. Fto C-ZX1

Nows<to=>df(s):u(FS)>u S0 df(s)<uﬂ52to=>FsCFt0CX1=9

C Fto_ and u(Xl) = u.

& b= frey < o
dfixl(S) u(FS ﬂXl) H(Fs) df(s). Conversely, s to =
xlthO_CFSadflxl(s)zu(Fs N X)) =uX)=u so

= 1 <t <
df‘XI(S)<u=>szto=> df(s) dflxl as before. Hence if 0 £t <u

we have {s: df(s) <t} ={s:d (s) £t} so éf(t) = BfIXI{t),

£1x,
Now let v(t) = 6£(t+u) on 0 £t <a-u. Then for each bounded
interval [r, s] of R# we have

-1
£1x,

n

(T In s1 N X)) = u(E] X)) e s D) = mi(s [r,s1)

n

xn(fif—1 [r,s] N Lo ul).
Subtracting this equation from u(f—lfr, s ] N X) =rn(6f-1 [r,slnflo al)

we get u(f—l[r, s] N (X-Xl)) = m(6f-l[r, s] N[y al), i; & ,

W {(( fiXZ)_l[r, s]) m((v-l[r, s] N[0, a-ul)+ uw)
=m(v ! r, 510 [0,a-ul).
Hence 6f‘X2(t) E= 6f(t+u) on 0 £t <a-u.

Recall that if T: (X, A, 4} = (Y, Z ,v) is a measurable
transformation and g € M(Y, ¥) then Y/:g(du,T-l) = 4g oT d4  in the
sense that either both integrals exist and are equal or neither exist
(12, p. 163, Theorem C] where (U T-l)(E) 2 u(T-l(E)) for all E €T .

If T is measure preserving, then u.T-l V.
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Let 0y Xl - [0,ul and OZ:XZ—‘ [0,a-ul be m.p. s.t. 6?
£]x, and e')flxzo o, = £]X,.
Also let Gl(t) = Gg(u—t) on 0t <u so Gl ~6g|[0, ul
and let Gz(t) = ég(tw"u) on 0 <t ga-u so G2~ 6g| fu,al .

u

u
Then /o Sf(t)ég(u—t)dt = fo 6f!X1 G, dm = )é(éfixlo CIl)(Cr1 o Ol) du

=}{ £G) 00 du and G1001~Gl~6g|[0,u[. Also

a 1 a-u a-u

5.6 = § (t+u)d (t+u)dt = 5 G, dm
'{1 f g /o f( g fo f|X2 2
= [f (6”}( 00,) (G, 0 0,)du = ff(Gzocz) di

X, 2 X,

and G, 0 0, ~G, ~ Sgl [u,al. Hence if we let

GIOOI(X) ifx€Xl
g'(x) = { then g' ~6 ~ g
GZ o Oz(x) if x € X2 g

and y(u) = ff g' du.

(11.2) COROLLARY If (X, A, 1) is non-atomic then for all

0 <f, g eM(X, ) we have
F-1

max{ [ g'du: f'~f, g'~g} =max {[fg' du:g'~ g}= fo 6f6g ,

in the sense that both are infinite or are finite and equal.

PROOF. As we observed, the inequalities of (10.1) hold for all
0 <f, g €M(X, ) even if 6f6g ¢ Ll[O, a]. To show that the sup is

attained, let 0: X = [0, a] be measure preserving s. t. 6f o 0= f. Then

a

= = ! L= ~
j'oéfég f(6foc)(6goc)du [ fg' du where g 6goo g.
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Many investigators have used g < f to mean lgl << |f|
([25] for example). Hence the following theorem is of interest.

It will also be very useful.

(11.3) THEOREM. Let (Xl’ Al’ ul) and (X, A, 4) be finite m.s. such

that W(X) = u](Xl) = a, and let f GLI(XI,HI) and g € M(X, 4). Then

g < f implies g ELl(X, M) and lg| << ‘fl .

1
PROOF. (8,2)(vii) =g€L. From §9 it follows that (11.2)implies

' 4 4 i
fo&lsl = [|glCg du” for some E € A7 with W(E) =t
= fg sgn(g)CE du.#

a
< fo 6g6h where h = sgn(g) Cg

a
< /o 6.6, since g < f

i

[ent du} for somen' e L'xF uf) st n~n

A

[ 1£] |n']aw¥ and |n'|~|n] =C so |n'| = c_ for

E
some F €A} st ufE) = p.l#(E) = %

#
= [ |f]cp ]
t
= f6l for all D =t = a.

REMARKS. 1. If (X, A, 4) has atoms, then Theorem (l1.1) may be

false. Let X = XO U A1 where X, is non-atomic, A, is an atom, and

0 1

a
X, and g = cAl. Then foafag = H(X,)
% since u‘(AI) > u(XO), so

1
[fg'du = fcxocA1 du = 0.

u(A1)>u(X )> 0. Letf=C

0
but g' ~ g implies g' = C
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2. If (X, A, ) is a finite m. s. consisting only of atoms of equal
measure, then it is said to be discrete, and the set of values of the
corresponding sums do not fill up the whole interval, although the

endpoints arce attained. (See [15], Theorem 368).

(11.4) DEFINITION. A finite m.s. (X, A, u) is called adequate if

for all 0 <f{, g€ M(X, 4} we have

a

max{ [fg' dd: g' ~g} = /o 66 . 2 = WX).

g

(11.5) THEOREM. The following are equivalents for the finite m. s.

(X, A, u) .

(i) (X, A, W) is adequate.

(ii) (X, A, W) is non-atomic or consists only of atoms of equal

measure.
(iii) For all A, B € A we have

a
{ : - =
sup { [C, Cp du: Cp cB} L8, 85 -

PROOF. Now we know that (ii) = (1) = (ii1). Hence it remains
to prove (iii) = (ii). Suppose (ii) is not true. Then either X has at
least two atoms A, B with 0 <(B) <ud(A), or X has an atom A
and a non-atomic part XO of positive measure, in which case (5. 8)

implies there is a B € X such that 0 < 4(B) < y(A). In either case,

0

for all E € A with CE ~ CB we have (HE) = 4(B) and hence

HANE)suE) =uB) <uy(A) so MANE)=0. Thus fCACE du =0

a
1 ~ = >
for all E € Awith C ~C, but fo 6,65 = M(B) > 0.
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12. The Decreasing Rearrangements of Sums and Products. If

f, g € LI(X, ) then in general 6f+g £ 6f + 6g. For example, let E
and F be disjoint sets of equal positive measure. Then

=5 = =
e T °F T o, umil E = Crn, ey ™ Sy F g T e

We can, however, prove the following.

while 6

(12.1) THEOREM. If ‘5 fn & Ll(X, M), then

If f,, ..
/!; t t n
g R . : <3
L8 b2 fo 5, (a-u)du < /0 8 ... ' B <.L
i) #i j 1 n j=

for all 0 <t <a with equality on both sides when t = a.

PROOF. From § 9 it follows that Theorem (11.1) implies

; _ 4 b, f ’ ;

A 6f1+f2 = max{ [(f;+,)du": E € N7 & (E) =t} < [ 6f1+ A 6f2
! 4 4

and '[o 6fl+f2 = max{ fE(fl+f2)du ‘u (E) =t}

Z 4 t t t
PHTE) =t} + [ 5, (a-u)du = f05 +f05 (a-u)du .

> max { [_ f du
E 1 2 1 2

The general case follows by induction.

t t
(12.2) COROLLARY. If f€ L'(X,u) then L |5f| A 6‘fl for all

0 =t £a with equality when t = a.

t t t t t
PROOF. /O]zsfl = jo 6oy + /o 6.~ (a-u)du s/o Bet g = /o 6|f|
using Theorems (5.5) and (12.1). We have equality whent = a

because Ifl ~ '6£| .

Along with (ii) of (7.1), (12.]) also yields the following.
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(12.3) THEOREM. If (X, A, 4) is a finite m.s. with a = 4(X) and

g is a bounded decreasing function on [0, a], then the function
a
plf) = [0 6f(u)g(u)du is sublinear on L (X, W).

(12.4) LEMMA ., If £ g €L (X, u) then

t t t

foéf—foég < f06|f—g| for all 0 <t <a .

t t t
_ PROOF. Forall0sts<s, /?6f < [ fg + fot5f_g )
sf06g+ fo6lf—g| and fosg < [ 6 foag_fs PR A 6-‘.’f-g|
t t t t

0 - g <Lt - Ldg T L ¥y

1 1
(12.5) COROLLARY. Suppose f, fn el (Xl,pl) and g, gnEL (X, )
and g <f ,n=1,23..... If[|f -£]| | =0 and |lg -gll; =0 then
g <f.

t t t a
PROOF. | [ 6fn - Lo < S 6|fn“f| < /OGlfn‘fl = ||f, -fl|, for

all 0 <t <a, and similarly for g.

As in the case of sums, if f, ¢ ELl(X, i) then in general,

6fg £ 6f6g even if 0 <f, g. For example, let E and F be disjoint

sets of equal positive measure and let f= CE+2CFa.nd g=2CE+CF. Then

fg=2¢C and6f=6g=

EUF’ 2C00, uE) " CruE), 2uE) °°

568 = 4C10, uE)l * Cru®E), 2wE®) [ 270, 2u@®) = Otg

Recall, however, that if 0 <f € M(X, ) and E € A then

)

A

£Cp 6f 6E. More generally, we have the following.
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.., £ €M (X,p) then

(12.6) THEOREM (i) _I_f_Osfl,.

t

[06f e f s/o PEEEE 6{ for all Ot € a, so in particular,
1 n q 1 n

ffl... fn dy < /o 6f1... 6fn
- 1
(i) If f, ..., f, €M (X,u) and .5“1'... élfn‘- € L[0,al

where a = 4(X), then for all 0<t < a we have
t

t t
o loa g <o dtep g | <o t1e o S 1

DROOF. (i) There is an E € A% with p* (B) =t s.c.
t
[ob g =1 TEYATNe
o fle. E 1 Z . X#
a
by 6f26E = /o 6f1 6f2. The general case follows by induction

using (7.1) (i). (ii) follows from (i) and (12.2).

2 (2C )du#s/es 5,
< b Cn 45

13. Tuf < {f and Some Consequences .

(13.1) THEOREM. Let (X, A,u) be a finite m.s. Then for all

sentixt, by uM (x* uf) we have T <1

PROOF. LetE en¥, / THCE dy = [ Cg agt = u#(E) by (9.2) (iv)

m(E n1a_,b_1)

and T C_=C + 0<T C_. <1 and
ne S UvE X NE EP m(Ila_, b_J) 50 u"E n

hence TH CE < CE by (8. 2) (v).
Actually, for all f ELI(X#, p,#) we have already that

a
[Ttam = [ fag¥ = [ 8, using (9.2)(iv).

]

a
L 8 ¢
9}

Let f be a non-negative simple measurable function. Then f
n

can be written in the form f = 'E fi CE with fi >0 i=1

s mm mg T
=1 i
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andEl:)~---DEn. For all 0 €t < a,

t n t n t t

Ldres B & L dpc = DhLeg = [ 8. soT <i
W Ei 1 i

Let 0 <f € Ll(X#,u#) be arbitrary. Then there is a sequence
{fn} of non-negative simple functions s. t. fn t f. From the definition
of T we seethat 0 <T f t+ T f. Since we have T f <f it follows

& M 5] Un n
from (8. 2)(viii) that Tuf < f.

1f £ € LY(x* u#*) then T, < and T f~ <~ so -T f <-f. For

all 0 <t £ a we then have

E t t t t t
r -
/oéTuf = o 6Tuf‘*' T fo 6—Tuf‘ g /o 6f+ + fo 6-1"‘ B fo 6f
T £f<1£.
so T,

(13.2) THEOREM. Let (X, AuW) and (Xl’ Al,ul) be finite m. s. such

that a = WX) = u,l(Xl), and let f € M(X,u) and g € M(Xl’u‘l)'

(i) If B!fl 6‘g‘ GLl[O,a] then

& a
{([fgdusg' e M(X,w & g' <gl= [ fo 6f(u)6g(a-u)du, '[o 6f6g:l 5

a
(ii) If 0 <f, g then max{ [fg'du:g'<g}= fo 6f 6g in the

sense that both are infinite or are finite and equal.

PROOF. (i) According to Theorem (5. 10) there is a
g, € M(X#, u,#) such that égo = 6g. Let I be the interval in question.
Then ID {[fg'du:g' <g}o{/f T g'du:g'~g, g'€ Mm(x* %))
= {[fg! du#: g! ~g0} = 1 using (7.1), (13.1), (9.2) and (11.1).

(ii) Follows from (11.2) in a manner similar to (i).
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EXAMPLE. Ifn 2 0is an integer and A 21, find

1 1
sup{,/:) <" f(x)dx: 0 < (=X and /o f(x)dx = 1}.

| !
- T PO [
Now 0 < f <\ and fof‘-l iff O s )\fsl and fo T L= :
iff 3 f<C 1 5, using (8. 2) (v). Thus the sup is the same as
A [0,5\*]
1 1
1 n e n
sup{f x f{x)dx: £ <C 0 1 = f 5 6 =2 ] (T-x] dx
o [’x] o “.n xc[O’_i_] o

using (13.2) and (5. 3) (v).
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IV. REARRANGEMENT INVARIANT BANACH FUNCTION SPACES

14. Rearrangement lnvariant Banach Function Spaces. lixtensive

studies have been made of Banach function spaces and more gencrally
normed Riesz spaces (sec [27]and [29] ). In this chapter we review
some rearrangement invariant properties of such spaces when the
underlying measure space is finite. The treatment closely parallels
Luxemburg in [28]. Rearrangement invariant Banach spaces will

be the setting in which we will work in future sections.

(14.1) DEFINITION. Let (X, A, ) be a finite m.s. and let 1\/I+:MJr (X, 1)

denote the set of all non-negative extended real valued measurable

functions on (X, A, W). A mapping p: M+ - R#

is called a function norm

if it has the following two properties.

(1) 0 <p(f) <+o for all f € M and p(f) = 0 iff £=0 u-a.e.
(ii) p(f+g) < p(f) + plg) forall f g €M

p(af) = a p(f) for all f €M’ and a 2 0.

f<g = p(f) <plg) forall f g€ M+.

In addition, p is said to have the sequential Fatou property and

is called a Fatou norm if it also satisfies.

(iii) O sfn T f pointwise everywhere implies p(fn) Tp(f).

We extend the domain of definition of a function norm p by
defining p(f) = p(]£]) for all f € M(X, 4), and we denote by LP=1LP(X, u)

the set of all f € M(X, i) such that p(f) <. If y-a.e equal members
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of LP are identified as usual, then LP is a normed linear space with
the norm ||f|| = Hf”p= p(f). These spaces arc clearly generalizations
of the classical Liebesgue and Orlicz spaces.

Unfortunately the hypotheses we have placed on p so far do not
preclude the existence of a p-purely infinite set, i.e., a set A for

which p(C_) = +o¢ for all BC A such that y(B) > 0. Of course, if

B

f € M(X,u)and A is p-purely infinite, then fC, =0 U - a.e.

A
[29, NotelV, p. 251, Lemma 8.2]. Fortunately it can be shown that
X has a maximal p-purely infinite set Xoc, I €5, Xoc is p-purely
infinite and X-X  has no p-purely infinite subsets [NotelV, Theorem
8.3]. We will assume in this and in subsequent sections that Xoc has
been removed from X so that our m. s. has no p-purely infinite sub-
sets. In this case p is said to be saturated.

Given a function norm p we define the first and second asso-

ciates of p as follows.

(14. 2) DEFINITION. Forall f€ M

el
—
Lae
~—
t

sup{ [ |fg|dw: p(g) <1}

©

.

s}

&2
i

sup{ /lfgldu: p'(g) =< 1}

It is not hard to show that p' and p'' have the sequential Fatou
property [Note IV, p. 254, Theorem 9.2], and that p is saturated
implies p' is a norm [Note IV, Theorem 9.7]. Itis true but harder
to show that in addition, p' is saturated [ Note IV, p. 261, Corollary
11.6]. Hence p' is also a saturated Fatou norm. The spaces Lp‘

1
and L” are called the first and second associate spaces of LP,
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respectively.

We have the following 11older type inequality [NotelV, p. 261,

Corollary 11.7].

!
(14.3) THEOREM. If f € L? and g €L" then

| ftgdu]| < [ligldu < p"(f)p'(g) < p(flp'(g) .

Note that p'" € p. In the other direction the following has been

shown. [NotelV, p. 259, Lemma 11.3]7.

(14.4) THEOREM. (Lorentz and Luxemburg)p' = p if and only if

p has the sequential ¥Fatou property.

The following converse of the Holder inequality also holds.

[Ncte V, p. 499, Corollary 14.2].

(14.5) THEOREM. (Lorentz and Wertheim). Suppose LP is

1
complete and g € M(X, ). Then g eLPf iff flfg]du <o for all

feLP

It has been shown that LF is complete iff p has the following

property called the Riesz-Fischer Property: 2 p(fn) < e implies
p(2- lfnt) <. [NotelI, p. 143, Theorem 4.8]. In particular, LP
is complete whenever p is Fatou. [Note II, p. 149, Theorem 5. 3].

1 1
Thus L? and LP are complete.
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IfL" =LY, | s p<oa, then L.” =L7% wherep ~ 1 q =1,
' S
In general Lp is a closed normal subspace of the Banach Dual (Lp)
1 3
[30, p. 153]. We have LP = (LP)" iff p(f ) 4 O whenever £ 10
3 !
everywhere. G € (Lp)> is in LP  iff G(fn) | 0 whenever fn 10,
f ¢LP.
n
Since the m. s. is finite we will, in accordance with the
Liebesguc and Orlicz space situation, assume in this and in sub-
1
sequent sections that L cLP, LY o Ll. This is easily seen to be
) <o and p'(C

equivalent to p(C ) <. If pis Fatou, then

X
12 cLP Lt i pc

X

< and p'(C, ) <, in which case

X) X

- 1
1% cLP ¢ 1! a1s0.

(14.6) DEFINITION. A function norm p is called rearrangement

invariant (r.i.) if fl ~£2 implies p(fl) = p(fz).

p . : . : -~ p . .
L" 1is called rearrangement invariant if f1 fz €L"” implies

: p
tIGL.

If p is rearrangement invariant then so is LP, but the converse
1 2
is not true. For example, let p(f) = [ |e(t)|dt+2 [ |f(t)|dt if feM[o0,2].

1
LP is r.i. si ~f €L impli . 2 [Plaglefte v2 ) 8 4 =
1151 i s1nc§g fel 21rnp ies fo lg |+ /1 [g[(/o le| fo e |
3 /oélf‘ <3 fo élf! =3 fo lf| <«. However p(C[O’lj) =1 and

p(C[ 1, 2]) = 2 even though C[O, 17~ C[l, 27

The following lemma is fundamental to what follows.
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(14.7) LEMMA. Suppose (X, A, i) is adequate (i. e. discrete or non-

atomic) and p is a Fatou norm and let a = X). Then LP is re-

arrangement invariant iff 6f6g € Ll[O, a]for all 0 <f €L and

1 1 1"
0<g€ LP , in which case LP and LP are rearrangement invariant

iff 1P s,

PROOF. Suppose LP is rearrangement invariant. Let 0 < feLP
and 0 <g¢ ELp‘. If f' ~ f then f{'E€ o so /f' g du<pl(f')p'(g) <.
Hence 6f6g € Ll[O, a] since J is adequate.

Supposc 68 € 1 78, 5] borall B e 6L and 0 = g TP
If 0<sf'~f€LP [f gdus fjéfég ¢z gaf ELP = LP using
(13.4) and (13.5) since p is Fatou.

1
The rest follows by replacing p by p' and LP by LP.

(14.8) THEOREM. Suppose (X, A, ) is adequate.

(i) If p is a Fatou norm and if LP is rearrangement invariant

then 0 < g << f € LP implies g €LP and hence g <f € LP implies g€L".

!
(ii) If LP is rearrangement invariant, then 0 sg << { eLP

1 1 1
implies g € LP and g <fé€ LP implies g £L"

!
PROOF. (i) Suppose 0 <g <<f €LP. Then forall 0 <h ¢ LP
a
we have [ghdu < [o 6g6h < /j 6,6, <a using (10.1) and (i) of (7. 1),
"

sog €LP =LP rg<feLfc L} then (11.3) implies |g|<<|f| €eLP
so |g]| € LP.

(ii} Follows from (i) since p' and p'" are Fatou norms, and

! 18}
1P (r.i.) implies LP and LP are (r.i.).
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(14. 9) DEFINITION. A function norm p is called universally re-

arrangement invariant (u.r.i.) if f' ~f 20 implics p(Tu f1)y « p(l)

dorall e Mx?, u%.

LP is called universally rearrangement invariant (u. r.i.) if

£~ f € LP implies %, & P tor all ' € MxE oy

If (X, A, d) is adequate (i.e. discrete or non-atomic) then we
will see that pis (u.r.i.) iff itis (r.i.)and LPis (u.r.i.) iff

it is (r.i.). Our previous results generalize as follows.

(14.10) THEOREM. (i) If L”is (u.r.i.) then 5

1
0<feL? and 0<g ELp where a = u(X). If p is a Fatou norm,

6, € L0, 2] for all

1 [N
then the converse holds, and in that case LP and LP are (u. r.1i.).

iff LP is (u. r.i.)

(ii) If p is a Fatou norm and LP is (u.r.i.) then 0 s g<<fc¢ P

implies g € L? and g < f ¢ LP implies g €LP.

1
(iii) If LPis (u.r.i.) then 0 <g <<f €LP implies g €LP and

{3 ] 1
g <f€LP implies g €L?. Similarly for LP .

PROOF. (i) For all f' ~f, £ eM(X* 4, we have
fergant = [T, g dusp(T, fp(g) <, so 86, € L'[0,a]
since (X#, g#) is non-atomic.

Suppose p is Fatou and let 0 <f' ~f € LP, fre M(X¥, u¥. Then
f('l‘“f')g du = [f'g ddf‘ < /: 6f6g <« forall 0 <g € | L -
Tuf‘ ELPH = LP. The rest follows by replacing L* by Lp’ and

1)
LP by LP.
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(i1) and (iii) Follow as in (14. 8).

We now investigate rearrangement invariant (and (u. r.i))

norms.

(14.11) THEOREM. Suppose (X, A, ) is adequate and p is a re-

arrangement invariant norm and let a = 4(X). Then for all

0 <f e M(X, 4) we have

©
—
[ma
—

"

IA

a
sop{ [ 8.81,17 plg) = 1]

gl

Y

a
= 6.6 § 1 <1
Sup{fo £°]g] p'(g) 3

e
iee
ims!
—
|

so p' and p'' are rearrangement invariant.

In addition, if p is a Fatou norm, then

a
pf) = sup{ [ 8,5/ 1 p'(e) <1}

gl
forall O0=<feM(X u),

PROOF. Since (X, A, u) is adequate, for each g with p(g) £ 1
there is a g' ~ g such that foa 6f6‘g'=ff{g'!dp.. g'~g implies
p(g') = plg) <1 since p is (r.i.)} so

a

{f 6f6|gl: plg) <1} < { [flgldu: plg) = 1}.

‘o
a
But ff]gldu < /o 6f G‘gl so
a

p'(£) = sup{/ flg|du: plg) =1} = sup{ [ 6;61, 11 p(g) <1 1.

We get the formula for p' by replacing p by p'. 1If p is Fatou, then

"

p = p', giving the last formula.
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The following is a kind of converse which will be useful

later.

(14.12) LEMMA. Let (X, A, ) and (X', A', ') be finite m. s. with

X)) = u'(X') = a. If A cM(X', 4') with rC € A for some r £ 0, then

X'
the mapping 0 <f = p(f) defined on M+(X, M) by

a
p(f) = sup{ [ 6f6|gl: g €A}

is a Fatou norm which is universally rearrangement invariant.

PROOF. f=0u- a.e. implies p(f) = 0 is clear. If p(f) =0
a
we take g = rCX, and obtain /o 6f =0, so 6f and hence f = 0 a.e.

since £ 2 0. Ifu = 0, then 6uf = u 6f so p(uf) =u p(f). If0 < f.1 < f2

then 6f < 6f so p(fl) < p(fz). To prove the triangle inequality we
1 2 t t
have from (12.1) that j;) ) /o (6f + 6f ) for all 0 <t <a, so

<
£+, ] o

it p(fl) & p(fz) < e« then (7.1) implies that for each g€ A we have
a a a
/s 6fl+fzb|gl A 6f16‘g| of 8 6f26lg| so plf;+£,) < p(f))1p(f,).

a a
Since 0 §fn T‘f everywhere implies fo éfnﬁ‘gIT /o éfé[g! for each

g €A, we have p(E) $ o(f) as in [29, Note II, p. 149, Theorem
5.47. Hence pis a Fatou norm. To prove that p is (u.r.i.), let

0 sf€M(X, 1) and let f' ~ f where £' € MX* |#). Then 0 < T <<t
a

a
S0 /o 6Tuf, 61 ‘ < /o 6f6‘g! for each g € A and hence

g

p(Tuf') < p(f).
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(14.13) THEOREM. Suppose (X, A, i) is adequate and p is a

rearrangement invariant norm. If p is also Fatou, then

(i) 0 <g << f implies p(g) < p(f).
(ii) g < f € Ll(X, M) implies p(g) < p(f).

Whether p is Fatou or not, p' and p'" satisfy (i) and (ii).

If (X, A,u) is not adequate, then Theorem (14. 13) may not
be true. For e¢xample, supposec X = XO U A where A is an atom,
XO is non-atomic, 0 < u(XO) <W(A), and wA) > 1. Let
p(h) = fx |hldu + ‘hCA‘. Pick ¢ > 0 such that O<1-e<u(XO)s(1-e)u(A),
o

and let { = CA and g = CXO +e CA. Then p is a Fatou rearrange-

ment invariant norm and 0 < g <<f, but p(f) = 1 < u(XO) +e = plg)

For general m. s. our previous results take the following

form.

(14.14) THEOREM. If p is a universally rearrangement invariant

norm, then the following four statements are true.

(i) For all 0 <f € M(X, ) we have

a

p'(f) = sup { fo 6f6!g‘: p(g) =11} and
a

p''(f) = sup{ fo 6f6lgl: p'(g) <13, where

a = WX). If p is in addition Fatou, then

a
p(f) = sup{ [ 6f6lgl: p'g) = 1}

for all 0 <f € M(X, W)
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(ii) p' and p' are universally rearrangement invariant.

(iii) 0 £ g << f implies "(g) < p'(f) and p'(g) < p'(f), and
g p Sl

similarly for p if p is Fatou.

(iv) g < £ € L'(X,u) implies p'(g) < p'(f) and p"(g) < p'(f), and

similarly for p if p is Fatou.

PROOF. (i) For each g with p(g) < 1 there is a g'¢€ M(X#,u.#)

a
- # _
such that g' ~ g and fo 6f6|gl = fflg’!du = ffTH|g"du..

g'~ g implies |g" ~ ‘g‘ SO p(Tu‘g") < p(‘g‘) <1 and thus
a
{fo 6f6|g|: p(g) <1} c{ [flglau:plg) <17 . Then

a
p'(f) = sup{ [ flg|du: p(g) =1} = sup{ [ S0 Ple) = 13

as in (14.11).
(ii) This follows from (i) since 0 < f~ f' € M(X#, u,#) implies

a a
] s = ~
Tuf < f implies Tuf'20(8.2), and /oaT f,6|gl g/o 6f6'g‘.

(iii) & (iv) are immediate using the representations in (i).

15. A Representation Theorem. The rearrangement invariant

spaces such as the classical Lebesgue spaces, the Orlicz spaces,
and the spaces introduced by Halperin and Lorentz (see [147, [23],
[24]), Boyd [2] and Shimogaki [45] are all of the following kind.
Let (X, A, &) be a finite m.s. with a= u(X) and let M¥ [0, a]
denote the set of all non-negative extended real valued Lebesgue

measurable functions on [0, a].
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(15.1) LEMMA. If )\ is a Fatou rearrangement invariant norm

A & Ll, then the mapping

defined on M [0, a] such that L® < L.

0<f-p(f) = )\(Gf) is a Fatou norm which is universally rearrange-

ment invariant, and p'(f) = )\'(éf) for all 0 < f € M(X, ). Further-

1
more L cLP, LP c Ll

PROOQOF. Since Lebesgue measure is non-atomic, (14.11)
implies that for all 0 < FF € M[0, a] we have

a

MF) = sup{ [

06F6'G|: A(G) <1} s0

a

pf) = sup{ [ 6.8 (@) <1]

To show that p is a (u.r.i.) Fatou norm we have by (14.12) only
t t " 3 =
o show that Af(r C[O,a]) <1 for some r £ 0. If A (C[O,a]) 0,
&= i - f
take r = 1. Otherwise, let r (P (C[o’ a]).
Finally we show that p'(f) = X'(6f). For each G with A\ (G) < 1

a
there is a g' € M(X% u*) such that g'~ |G| and [ & 2 /fg'du#.

||
But [ fg' At = ffTug' du and p(T g') = )\(6Tug,)s Gl

since 0 STug' << [C—l, so
a
{ fo 5, 5'G‘: MG) s 1} { [flg|ldu: p(g) <1} and thus A8, < p'(£).
a
For the rest, if p(g) <1, then [f|g|du < A afa‘g‘ and
x(6|g|)= plg) =1 so p'(f) = \'(67). p(Cy)= )‘(C[o a]) &

p'(CX) = )"’(C[O, a]) shows the rest.



T

(15.2) THEOREM. If (X, A, ) is a finite m.s. and p is a Fatou

norm, then p is universally rearrangement invariant (rearrange-

ment invariant if (X, A, ) is adequate ) if and only if there is a Fatou

rearrangement invariant norm A on M+[O, a], where a = U(X),

such that p{f) = )\(Sf) for all 0 < f € M(X,u).

PROOF. It only remains to prove the existence of \. By (14. 14)
we have that for all 0 < f € M(X,u) p(f) = sup{ f:6f6‘g‘: atis] £ 1} -
For every 0 < F € M[0, a] we define A(F) = sup{ fj&Fé‘g‘: p'g) €17 .
(14.12) implies that A is a (r.i.) Fatou norm. Clearly p(f) = M(Sf)

for all 0 < f € M(X, u).
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V. INEQUALITIES OF HARDY, LITTLEWOOD, PéLYA AND

MUIRHEAD

16. Schur Convex Functions . If

(X, A, ) is a finite m. s. consisting of n atoms of equal measure,

then each member of M(X, ) may be identified with a point

- n . ; : .
X = (Xl’ S xn) of R, in which case its decreasing rearrangement,

- %
denoted by x , is the point obtained by rearranging the components

of X in decreasing order. If ;,—; € R" then the definition of -';r’ <%

assumes the form
k £

<
PO
i=d 1

K %
< 2 x, l«sk<sn

. i

=
with equality when k = n. It was in this form that the relation <
was first introduced by Hardy, Littlewood, and Pdlya.

Let Sn denote the symmetric group of all permutations of

{1,..., n}. For each x € R™ let AMx)= {y ERn:y~X} =
{(Xo(l)’ S wa Xo(n)): o€ Sn} . Recall that an nxn matrix A = [aij ]

is said to be doubly stochastic (d. s.) if aij >0 and

a,. for all 1i,j=1,..., n.
!

Mo
!
1
1
ATl

(16.1) THEOREM. (Hardy, Littlewood and Pblya). The following

are equivalent for X, ;; e R".

(1) y<x

n n
(i1) 2 cp(yi) < 5 cp(xi) for all convex functions ¢ on R.
i= =1 o

(iii) ; is in the convex hull of A(;) :




T e

(iv) There is a doubly stochastic matrix A such that ; = AX.

An interesting discussion of this result and of the theory of
doubly stochastic transformations can be found in a paper by

L. Mirsky [317.

—

(16.2) THEOREM. (R. Muirhead) Letx, y € R". Theny <x

iff for allyositivez € rR" we have

5 v y(n) o5 (1) x(n)

g ity * aG(n) *Ogs ao(l) s ® W ac(n)
n n

-

Equality holds iff 2 is constant or ;’v %

It will be our purpose in the next few sections to show in
what sense these two theorems can be extended to functions in
Lp(X, A, W), where (X, A,U) is a finite m. s., L™ Lp, Lp' < Ll, pis
a saturated Fatou norm, and LP is universally rearrangement
invariant. The generalization to Ll[O, 1] of the equivalence of
(i), (iii) and (iv) and Theorem (16.2) was given by Ryff ({397, [40],
[427). The generalization of the equivalence of (i) & (ii), was given
for L®(X, A, u) by Grothendieck [10]. The generalization of the
equivalence of (i), (ii) and (iii) was given for Lp(X, l) independently

by Luxemburg [28].
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(16.3) DEFINITION. A mapping &: 1P - R# which satisfies the

following properties is called a Schur Convex function.

(i) - o < ®(f) = 400 for all £ € LP, and 3(f) < +w for some [ € LP.

(i1) % is convex, i.e., @(1'fl+(1—r )fz).<. T @(f1)+(1-r)<§(f2) for all
S ceLPando<r <.

!
(ii1) & is O(Lp, 3 ) - lower semi-continuous, i.e.,

(]
{£:8(f) <r} is o(LP,LP) - closed for all real r.

(iv) ¢ is rearrangement invariant, i.e., f1 ~ fZ implies

8(f,) = 8(f,) for all f,, f, € LP.

If $is convex, then for all real r, the set {f: 3(f) < r} is
convex. Hence it is o(Lp, Lp') closed iff it is closed in each locally
convex topology on LP in which Lp' is the dual of LP. In particular
the topology ]o‘(Lp, Lp') generated by the seminorms
Pg(f) = f‘fg'du, fe Lp, g € Lp‘ is a locally convex topology on LP
fn whish TP is ghe duwl of 1P, and fhme & % satisfying (i) and (ii)
satisfies (iii) iff: ”fn—f! ‘g!du -0 asn~ow for all g € Lp' implies
§(f) = 1;rr_1‘ ioonf §(fn). In particular, such a & satisfies (iii) whenever:
Ifnl <f_ € LP and f ~f W-a.e. implies 8(f) < 1&11_1_’ ionf B(f ).

We would like to prove that g <f iff $g) <&(f) for all Schur
Convex functions §. However it is clear that we cannot prove this
for general m. s. because any rearrangement invariant Fatou

norm plis Schur convex, and we have seen that unless (X, A, U) is

adequate, we cannot guarantee that g <f implies pl(g) < pl(f).
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In order to alleviate this problem we introduced the
concept of a universally rearrangement invariant norm. The same

idea works here also.

(16.4) DEFINITION. A mapping &: LP - R is said to be a universal

Schurconvex function (u. svc.) if it satisfies properties (i), (ii) and

(iii) Pi(l()’ 3) and (iv)' & is universally rearrangement invariant, i.e.,

<I>(Tuf') < ¥ (f) whenever [ € Lp, ft € Lp(X#, p#) and f' ~ f.

If § 1is universal Schur convex then it is Schur convex.
The next lemma will imply (among other things) that if (X, A, W) is

adequate, then @ 1is u.s.c. whenever it is Schur convex.

EXAMPLES. (i) If ¢ is a real convex function on R then

8(f) = [(f) du is Schur convex on L®. 1If in addition 0 is increasing
t

t
then §t(f) = /0 Cp(éf) = fo 6CD(f) is, for each 0 <t < (X),Schur convex
on L. If lim inf ¢(u)/u is finite, then & and @t are Schur convex

u - -on

on Lp.

(i1) @l(f) = [ f du and Qz(f) = [(-f)dy are u.s.c. on LP,
t
(iii) For each 0 <t < u(X), & (f) = jo 5, is u.s.c.

t
a
1
(iv) If g € LP anda = {4 (X) then Qg(f) = fo 6f6g + b is universal
Schur convex on LFP where b €R.

a t a
(v) [Ryff] & (f) = fo /o 6f(s)dsdt = fo 6f(s)(a-s)ds is u.s.c. on LP

and & (f) = & (g) iff £ ~ g.
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(vi) If § is a Fatou rearrangement invariant function norm,
then ¢ is Schur convex on Lp. (sec [30], Theorem 3.1, p. 162).
(vii) The supremum of a family of Schur convex [UniversalSchur

Convex] functions is Schur Convex [Universal Schur Convex].

(16.5) LEMMA. If & is universalSchurconvex, or if (X, A, i) is

!
adequate and ¢ is Schur convex, then there are functions g; € L? and

real numbers bi such that

a
8(€) = sup{ [ 6, 5, b.} for all f eLP.

1 i

1{ in addition ¢ is increasing, then

a
§(f) = su 5,6 +b.} for all f €LP.
ip{ I 8, MR
PROOF. It is well known that if & 1is convex and lower semi-
continuous, then there are continuous linear functionals Li and real
numbers b.1 such that & (f) = sup {Li(f) + bi}, the Li being non-negative
i 1
if ¢ is increasing [1]. For each i, there is a g € LP s.t. Li(f) =
[£ g; dy for all f € LP, and g2 0if Li is non-negative, so
a
8 (f) = Slilpiffgi e iy {8, 6gi +b.}
Suppose $ is u.s.c. and let f €L?. For each i there is an
# 4 a
f' ~f with f' € Lp(X, W) such that ff‘ g; (IL,# =, fo 6f 6g . Then
i

f') = 1 - ! # .
@(f)éé(TH) /giTuf du+b = [f g duT+ b,

= /o 6,6 +b, and this holds for all i so



a
3(f) 2 sup{/o b, 6g + bi}

i
The proof when (X, A, ) is adequate and & is Schur Convex is

similar.

REMARK. Luxemburg has observed that if we let
Y(g) = sup{ [fgdu -3(f): f€ Lp} then the conclusion of the

lemma assumes the form

a ]
$(f) = sup{ [ &, 5, - Y(g):geLf} .

(16.6) THEOREM. (i) Suppose (X, A, d) is any finite m. s. and

p
£,£, € LP(X, u).

1. fl << fZ iff @(fl) < @(fz) for all increasing universal Schur

convex functions & on LF.

2. £, <1, iff 8(f )< ®(f,) for all u.s.c. functions ¢ on LP.

p
l,fZGL =

1. fl << f‘2 iff @(fl)s @(fz)for all increasing Schur convex

(ii) Suppose (X, A, ) is adequate and f

functions ¢ on Lp.

2. f, <f, i_f_f__@(fl) £ @(fz)for all Schur convex functions &

on L.

PROOF. Lemma (16.5) in conjunction with the Hardy inequalities

(7.-1) shows that @(fl) < @(fz) whenever f, < fZ’ or whenever f. << f?_

1 1

and § is increasing.

If @(fi) < @(fz) for all increasing Schur convex §, then since
t

f- fo 6f is increasing and u. s.c. for each 0 =t £ (X)), we have
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1‘1 << fZ' If @(fl) < @(fz) forallSchur convex ¢, then since f —'f(-f)dp,

is universal Schur convexwe have f, < fZ'

1

Recall that if p is a Fatou u. r.i. norm, then there is a Fatou

r.i. norm X\ on M+[O,a] such that p(f) = l(éf)-

(16.7) THEOREM. Suppose p(f) = Méf) where )\ is a Fatoure-

arrangement invariant norm. Then & is a universalSchur convex

function on LP iff there is aSchur convex function @0 on L)\[O, al

such that §(f) = QO(Gf).

1
PROOF. If & is u.s.c. on LP then there are g; e LP and bi €R
a
such that for all f € Lp, 3(f) = sup{ fo 6f Sg + bi}. Since p'(g)= X'(ég)
¢ 1 ] i
for all g € LP we see that 6g ¢ L2 {0,a] for each i. Hence define
a i
- A : .
§ (F)= st;.p{ fo o 6gi+ bi} for F € L"[0,a]. Then éolsSchur convex
and éo(éf) = §(f).
Conversely, if éois Schur convex on LXEO, a] then there are
k8 _ 2
G, €L [0,a] and b, €R s.t. @O(F) = sviJ.p{ fo 6F 6 t bi} for all
F e LM0,a]. Butfe LPiff 5. € LMo0,a] so for all f € LP,
a
3 (f) = <§o(6f) = s;lp{ /o 6 6 bi} and thus & is universal Schur

i
convex.

17. The Sets Q(f) = {f': f* <f} . Recall that we are assuming that
p is a saturated Fatou norm on M+(X, W), Lp(X,H) is u. r.1i.,

L®() € LPw), LP () c L), and a = w(x).
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The equivalence ;; <;iff;€ the convex hull of A(;) canbe reformulated:
F: ¥ <X} = the closed convex hull of {y: y~x}. 1ff€L°X, u) we
let OF) = {£' €LY (XM): 1< £}, and A(F) = (' €LY (X, W: £ ~£} . Since
LPisu.r.i., £ <£€LP implies f' € L and hence both Q(f) & A(f)c LP.
Q(f) has a smallest element = (ﬁ%{—) [ fdw C in the sense that h < f'
for all £' €Q(f) iff h = f. This follows from (8. 2)(vi). Also ((f) is
contained in the hyperplane {f' € Ll: [ au= [fdu}, and T is

cquidistant (in the Ll norm) from the members of Af).

1
(17.1) PROPOSITION. Any ¢ (L°, LP)-bounded set Ac LF is

p-bounded.

1 1
PROOF. Since A is o(Lp, LP )-bounded, for each g € LP we have

sup{|/f gdu|: f' € A}< . For each ' €A, L_(g)= [f g du defines

fl
1
a p'-continuous linear functional on L? with HLf,” = p'"(f') = p(f")
1
[29, Note IV, p. 257]. Then for each g epLP , sup{|Lf,(g)|: ' € A} <e,

i
and since LP is complete, the Banach Steinhaus Theorem implies

sup{HLf,H: £ € A} = sup{p(f'): f' € A}<«.

(17.2) COROLLARY. If {f ] is a netin LP which is o(LP, L")

convergent to f € LP then {fa}ﬁ p-bounded.

(17.3) THEOREM. Forall f € Lp, (2 (f) is p-bounded.

H
PROOF. We have only to show that Q (f) is o(LP, L? ) bounded.

This follows at once since for each g € L? we have

a
sup{| /' g dul: £ €00} s sup{ [|Pglau: £ €D} < [ 60y 8] 1< -
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t
(17.4) THEOREM. If f € LP then Q(f) is a convex and o(LP, L.P)

compact subset of LP,

PROOF. Let f € LP letf f, €Q(f) and let 0 <r < 1. Then

1,
t
(12. 1) and (5. 3)(vi) imply that for all 0 s t < a, /o 6rf1+(1—r)£2
t t t
< /s vog A (t-r)s = [, 8¢s0 xf+(l-r)f, €Q(f). Hence Q(f) is
convex.

Let {fa} be a net in (Q{f). For each o, Fa(g) = /fa/ g dd defines
a p'-continuous linear functional on Lp’ with “FQH = p"(fa) = p(fa)
[29, Note 1V, p. 257]. Since Q(f) is p-bounded, there is a number
M > 0 such that p(f') < M for all f' € Q(f), and thus HFQH =p(f) <M
for all «. Hence {Fa} is a net in a o"pr')*, Lpl)-compact set
[Alaoglu's Theorem, 7, p. 424], so :t has a convergent subnet
Fﬁ"' FO say. To show that FO g 1.7 = LP" it is necessary and
sufficient to show that Fo(gn) { 0 whenever g, L0368, p. 155].
Now for each g € Lp' and for each «a, ]Fa(g)‘: ] ffa g du\sf]fag! du
sfz 6|f| 6|g| because f < f € L' implies IfaL << [f] . Since the
bound is independent of ¢ we have lFo(g)I < /o 6 ‘f‘ 6lg‘ and this | 0
as lgl { 0. Hence Fo ELp, i.e., there is an fo € L.P such that

1
Fo(g) = ffo g du forall g € LP . Since F —'FO we have

g
ff(3 g dH = Folg) ~F (g) = [f, g dufor all g €LP, i.e., {fﬁ} is

1 H
c(Lp, LP ) convergent to fo. Thus Q(f) is o(Lp, LP ) compact.

*
Let V be a locally convex linear topological space and let V

% . . y
denote the dual of V, i.e. V> is the collection of all continuous linear
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functionals I’ on V. For each A CV and {for each lincar functional
F on Vlet F[A] = {F(v): v € A} and let cov(A) denote the convex
hull of A.
As a comllaryof the Hahn-Banach Separation Theorem we have

the following characterization of closed convex sets.

(17.5) PROPOSITION. Let K be a closed convex subset of V.

"
Then for each v € V, v € K iff F(v) <sup F[K]forall F €V .

PROOF. If v € K, then clearly F(v) < sup F[K] for all F GV*.
Conversely, if v € K, then the Hahn-Banach Separation Theorem
[36, p. 30, Cor 1] implies there is an F €V such that
F(v) ¢ F[K] o [inf F[K], sup F[K] ] so either sup F[K]< F(v)
or sup -F[K]< -F(v).

(17.6) THEOREM. Let { e LP. Then f

a
€0 ;g/flgdp s/’oéf&g

1
forall g € LP .

PROOF. The continuous linear functionals on Lp with the

1 '
S(LP. LP) topology are F, () = [ g du where f €L’ gerLf. For
a
each g € P % follows from (13.2) that sup Fg Q)] = '[o 6£ 6g

Now use (17.5).

We mavy similarly give a criterion for deciding when a closed

convex set is the closed convex hull of another set.
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(17.7) PROPOSITION. Suppose K is a closed convex subset of V

and D @ K. Then K is the closed convex hull of D iff

sup F[D] = sup F[K] for all F € v,

PROOEF. Suppose the criterion holds. Then

—— £
sup F[K] = sup F[D] < sup Flcov(D)] for all F € V . Since cov(D)

is a closed convex set, (17.5) implies K Ccov(D). But cov(D) <K

since D € K and K 1is closed and convex. Hence K = cov(D).

Suppose now K = cov(D). Letv € K. Then there is a net {Wa}
in cov(D) such that w, "V, S0 for each F GV* we have F(Wa) - F(v)
and thus sup F[D] = sup Flcov(D)] = sup F(Wo) > F(v) since

F[D] = Fleov(D)].
In view of (17.7) we have immediately:

(17.8) THEOREM. Letf € LP and let £ be a topology on LF

i
in which LP is the dual of LP. Then {(f) is the E-closed convex
a 1
hull of a set D < Q(f) iff sup{ [f' g du: {* €D}= [ 5f5g for all g € LP .

1
(17.9) THEOREM. Let £ be a topology on LP in which L is the

1
dual of L.P. 1In particular £ = O(Lp, P ) or if p(fn) { 0 whenever

fn { 0 then € = the p-topology are such topologies.

@) 119 s the E-cleser] conves hull uf B0 = I €L1c 8~

for all f € 1P 1_f£ (X, A, 4) is adequate.

(ii) For any finite m.s. (X, A, i) and f € L°, Q(f) is the €-closed

convex hull of {TH f1: 1 € Ll (X#, u#) and f'~f}.
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PROOF. (i) If (X, A, @) 1s adequate then the result follows from
(17.8) and (11.1). If (X, A, i) is not adequate, then (11.5) shows that
the condition in (17. 8) fails. (ii) Follows from (17.8) and (9.1)

(iv) & (vi).

As Luxemburg has pointed out, Theorem (17.9) answers the
following question asked recently by Z.Nehari [32]: Let (X, A, )
be a non-atomic finite m.s. and let E € A have positive measure.
What is the smallest closed convex set A CLI(X, i) which contains
all the functions CF such that W(F) = w(E)? Obviously A is the
closed convex hull of A(CE
and ff du = W(E)] using (8. 2)(v).

) so A =0(Cy) = ffeLlx w:0<cf<1

We can define the sets (1 in a slightly more general way. Let
(Xl’ Al, pl) and (X, A\, 4u) be finite m.s. such that gl(Xl) = W(X) = a.
If f € Ll(Xl, uy) let Q(X, u) = {h enl(x, u): b <£} and let
Af(X, M) = {h € Ll(X, (4): h~f}. Observe that Qf is never empty
because it contains f = (HT&:) [f dp&l)CX, but it may happen that
Af = @. This is the only interesting case, because if Af +{, then
we are doing nothing new, since for each fo € Af we have Qf = Q(fo).

Theorem (5.10) implies that /_\f(X% u#) + @ for all f ELI(XI, ul), so if

tOE Af(H ) we then have Qf (X, &) CQ(fO).

Now let p be a saturated Fatou norm on MJr (X, i) such that
or p . P 1 p . : : ’ .
L7W)cL", I.L" €L (4) and L" is u.r.i. The question arises: For

what £ € LN(X 1) is 0, < LP(X, 1)
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(17.10) PROPOSITION. Let f € LI(XI, ul). Then (2|f| = T.F ift

p

1
6,{, 6|g| € Ll[O,a] for all g GLp, in which case Qf i P

PROOF. If Q) c LP then £ < |f], f' € M(X, ) implies
0<f eLl(x, 1 so & eqy < LP and thus forall g £ L7 we have
that [ f' lgl du is finite, and hence (13.2) says 6lf| 6|g| € Ll[O, al.
Conversely, if 6| 8| | € 1[0, a] for all g €LP then f' < f implies
'] << |f] so 51018 1g] € 1.7, alfex a3l 5 € 1P and benee £ & LP

by (13.2) & (14.5).

Observe that Theorems (17.3), (17.4), (17.6), (1L7.8) and
(17.9) are true for Qf under the hypothesis that QM c Lp, becau!se
in view of (17.10), the proofs are practically the same.

In view of the condition Q‘fl cLPf it is natural to wonder:

Is there a norm p; on M+(Xl’ u,l) such that f € L. 1 implies QM & 1, 0%

(17.11) THEOREM. Define the norm Py _o__rlM(Xl, ul)ﬂ

a
p (B) = sup { 4>6|fl6|gf p'(g) <1}

Then py is a Fatou u. r.i. norm satisfying

P P’
M Lupenhut entu)

P
(1) £ < £ €L ' implies p(f') < py ()

@id) 0,4 e LP ige £en’l .
| £] ==
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a
PROOF. (i) py(Cy ) =supl [ §)
1

g|: P 1]

=sup{f‘g'du: p'(g)sl}zp(CX)<oc. Since0<p'(CX)<oc let
1

1 a
g, = C,. Then SlEldu, = [ 8y .6
boecy) X p'(Cy) Lo el

, |

a P
1 1
<su ) 6 cp'{g) =1} = f) so f €L implies f € L~ (4, ).
p{ [ 1£1°1g] p'(g }=pyl p 1
P

Since Py is Fatou, L (u,) c L CLl(ul) also.

1

(ii) In order to apply the theorem of Hardy (7. 1) we need to

]
know that &), |6‘g‘ € L1[0,a] for all g €LP with p'(g) = 1. Now

p
f<fel oL ) implies 5, <6, € L'[0,a] so

6lf,|~ léf,] << ]6f| ELl[O,a] so & |€L1[0,a] and hence

£

1 = a a
81,16 0 5
1|2 g | € L [0,a] forallg €L (), so foé‘f“é‘g‘ & /Oam el

for all g €L ().

1
Let g € LP (u). Then there is a sequence {gn} < L* (1) such that

0 2 B, Tlg’ so 6g T 6‘g‘ and hence the monotone convergence
n

theorem implies

a a a a
6 6 = 1i 1 =
fO lf'l lgl im foélf'légnS].lm /06|f! 6gn foé‘f|6|g|<3€

50 8118, €L [0,a]. Hence (') = supl [lf'glau: p'(g) <1}

a
Ssup{foﬁlfl(sl :p'(g)il} — pl(f).

g

p
(iii) Part (ii) shows that f € L 1 implies Q‘f\ cLP. Suppose

Qlfchp, Then 6|f‘6'g‘ € LA[0, & THor =11 g & LF
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a
so max{ [ f'|g|du: £' < |£|} = /O 6“‘6!?1‘ <x forall g€ L™ and

hence pl(f) = sup {max{ ff']g!({u: f' < lfl}: p' () < 1}

- sup{sup{ _/1"1241(!“: pig) <1} < lll ]
g sup{p(f’): f' €Q £ } <« because le c LP

implies Q. is p-bounded.

f

If (as in §15) X\ is a Fatou r.i. norm on M+[O, a] such that
A A

X

L cL L~ C L1 and p(f) = )\(6£) for f € M+(X, () then the natural
norm to choose on M+(X1, g_l) is pz(f) = X(éf). In this connection

we have the following.

(17.12) PROPOSITION. Let 3, p, P P2 be as above.

Py P 1
() L*@)cL % L% cLi)

p
(i) £ <f €L ° implies p(f') < p,(f)

PROOF. (i) See (15.1).

a
(i) py(f) = Sup{fo 5‘“6\}1‘: \'(6) = 1, h € M(X, i) ]
. ‘
<sup { /O 6|f| 6|G|; ANG) £ 1} = p, (D).

(ii1) Use (17.12) (ii).
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18. Doubly Stochastic Transformations. Observe that (16.1)

implies that an nXn matrix A is doubly stochastic iff AX < % for
all x ¢ R”. Let (Xl’ /\1, L.Ll) and (X, A, 4) be finite measure spaces
with gl(Xl) = w(X) = a.

(18.1) DEFINITION. A linear mapping T: Ll(Xl, gl) - LI(X, M)

is called doubly stochastic (d.s.) iff Tf <{ for all f € Ll(Xl, ul).

EXAMPLES. 1. If (X, A, 4) is a non-atomic m.s. and
0: X »[0,a] is measure preserving (m.p.) let ch =foo. Then

TG: Ll[O,a] - Ll(X, M) is d. s.

g, TH:LI(X#, - Lhx, wois d. s
3, Tf =(——— [fdu,)C defines a d.s. T: LY(xX., u,) - L (X W
ul(xl) 177X TR 1F Gl

(18.2) PROPOSITION. Let T: Ll(gl) —'Ll(u) be d.s. Then

(i) T is non-negative, i.e., £20 implies Tf 2 0.

(ii) TCXl = CX

Git) (1) < Tf", (TH™ < T, |Tf| =Tt for all £ GLl(gl)

(iv) T: LO(X, 1))~ L X, w

(v) fe€L @) implies |Te], <[,

fe L)) implies | Tt < [f]

1)
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PROOF. (i) Follows from (8. 2)(iii).

(ii) Follows from (8. 2)(v).

(iii) Since Tf = Tf' - Tt and Tf', T 2 0 we have (T0)' = TC
and (Tf)” < (Tf)". Hence |Tf] = (TH' + (TH)” <Tf + Tf = Tle|.

(iv) & (v) Follow from leI < T‘f‘ < lf]

(18.3) LEMMA. Suppose T: Ll(ul) - LI(L,L) is linear.
(1) ETf <f and Tf <f then Tf<f.

(1) T is d.s. iff Tf < f for all 0 <f ELl(ul).

t t t t
PROOF. (i) [ 8y = [Oppt g S Oppt 4 [0 _pg-
£ £ i
= /o Bt /o L jo Sy

for all 0 <t <a with equality when t = a since Tf < f implies -Tf <-f .

+ - -
(ii) Tf<f forall £=0 implies Tf <f and Tf <f so Tf < f for all f.

The following Theorem, first proved by J. V. Ryff 739] for

R [0, 1], is fundamental.

(18.4) THEOREM [J. V. Ryff]. A linear transformation T

mapping the simple functions of (Xl, Al’ ul) into LI(X, i) has a

1
unique extension to a doubly stochastic transformation of Ll(ul) =LY

iff for all E EAl, we have OchEsc and [ TCEdu:ul(E).

X X

PROOF. (8.2)(v) shows thatthese conditions are equivalent to

TCg < CE for all E € A}, and are thus necessary. Hence suppose T

is given satisfying the above conditions. XLet 0 <f EM(Xl, Hl) be
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n
simple. Then f = 20 f, C, whereE c----c E. and f. > 0, so
3, n 1 i

i=1 1B
n
By = 25 6E Then (12.1) implies for all 0 <t =a,
1=l i
t n t n t t
/;_) 6Tf = 5 (i /U b'l'(} o b fi f() O /() 61' with cquality whoen
\,:1 li, =1 1

t =a, so Tf < f for all non-negative simple functions and hence for
. \ : . : 1
all simple functions. Thus T is a contraction in the L.” and P
. . 1
norms on the simple functions, so it extends uniquely to L". To

show that T is d.s. let 0 <f € Ll(u Then there is a sequence

1)'
{fn} of simple functions s.t. 0 < fn T f. Then Tfn is increasing so

Tf % Tfand since Tf_ < £, (8.2)(vii) implies Tf <f. Hence

(18. 3)(ii) implies T is d. s.

s
1f T:L1 (u,l) e L1 (4) is linear, let T denote the adjoint of T,
‘ - ¥ 1 o
defined by [ g Tf du = fx £T gdyy forall f €L (u), g €L ().
1

X K
It follows that Ta: LOO(X,H)"LOC X u,l) and hence T is weakly contin-

l)

uous under the topologies o(Ll(g,l), 1™ (p,l)) and cs(L1 (W, T (4))

({36, p.38, Prop. 12] or use nets and the defining equation. )

ES
(18.5) THEOREM. LE "I% Ll(u, —'Ll(u.) is d.s. then T has a unique

1)
extension to a d.s. map of Ll(g) —'Ll(ul).

PROOF. This follows from (18.4) as follows. Let E € A.
3 . _ _ 3
Then [ 1 Cpdu; = ch TcXl du = fCE dy = W(E). Also for all
i e = . «< - i
- /A T Cpdd = /CLTC, dy and 0 afCETCA dy = chAm,
=W (A)= [, Cy du 50 0T C_5C

1 CHEE
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(18.6) PROPOSITION. A linear mapping T: Ll (ul) - Ll () is

doubly stochastic iff

i) T =0

(11) Tcxl = CX
N S
(iii) T CX = CX

PROOF. This follows from (18.4) since for all E € AI

. * _ - <
JTCy du= fc,E T Cydd) = [Cpdy =u (E) and 0=Cp = Cx]

implies 0 < TCE < TCX1 = CX.

Observe that if (XZ’ AZ’ MZ) is also a finite m. s. with
1 1 1 1
pz(Xz) = a, and TI: L (p,l) - L7 (4) and Tz: L (L,LZ) - L (gl) are both
d. s. then TITZ: Ll(uz) - Ll(u,) is d.s., since for all f € Ll(uz) we

have’rlT f<’T2£<f.

2

(18.7) LEMMA. Letf € L1 (X, 4) and let U:X#-* [0, a] be measure

o i 4 ¥
preserving s.t. TG 6f—6foo—fu-a.e. ThenTo f*éfa.e.

PROOF. For all measurable J < [0, a] we have

fac T fd = [fT _C d#‘[é C d#—fa«s . d
o 7J ‘g 1T gog G S0 oHC, 0 Bl =, By Gy dm,

Let MXI, ¥y = 1 Ll(Xl, ul) —‘LI(X, i) such that T is doubly
stochastic}. If f € Ll(p,l) let Qf(Xl, Xy = {77 T G;S)(Xl, X)} and we

recall that Q (X, y) = {g € Ll(X, w): g <f} and



~96-

AAX, 1) = {g €L1(X,u):g~f}.

¢
As we indicated in §17, if Ar # @, then Qf = Q(fo) for all fo € Af’ Notc

, 1
that ;Sf e Qf for ali f € L7 (14 l).

(18.8) THEOREM, Q(Xl, X} is convex and compact in the weak

operator topology determined by the linear functionals

]
T~ [tTgdu feL (), g €Ly

PROOF. To show § is convex, let T TZ €88and 0 <r < 1.

1’

Then for a1l T € Ll(ul) we have T f, T,f €0 sor T f+(l-r)T,f €,

1

i.e., (r T1 + (l—r)TZ)f= r T.f+ (l—r)TZf <f, sor T1 + (1-1) TZ € 9.

1
Let S, be the unit ball of L°°(u,1) and let S be the unit ball in L2(u).

Since S is o(L2(u), Ll(u)) compact, the set of all linear operators
which map S1 —~ S is compact [18]. Hence it only remains to show

that 9 is closed. Let Ta -+ T. For each E € [\1 we have T(1 CE EQCE

- . . 1 ;o0
and TQCE TCE weakly. Since QCE is o(L",L™) closed we get

'TCE € Q Hence (18.4) implies T € 8.

Cg

(18.9) THEOREM. Let f€L'(X,u ). Ifg € M(X,u) theng < f iff

there is a doubly stochastic T: Ll(ul) — Ll(p,) such that g = Tf.

PROOF. We have to show that ﬁf = Qf. It suffices to show that
TLJ. Af(u#) «= ;S\f (where, of course, TH Af(u¥) = {Tuf’:f'GLl(X#,u#)&f'rvf})
and that ;Qf is G(Ll(u.), Loo(u.)) closed and convex, because we know

from (17. 11) that Qf is the closed convex hull of Tu Af(u#) in this

topology. Sf is convex and closed in this topology, because it is the
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image of the convex, compact (in the weak operator topology described
in (18. 8)) set H(X, Xl) under the continuous lincar map T — '1'*f. For
the rest, let f! € Af(u.#). There are measure preserving transforma-

tions o: X7 - [0,a] and 4: x’l"' - [0, a] such that Ty 8p= f' and T¢6f= f.

f

e
1 LIPS = L
Since f f, 6f, 6f S0 TL’-f TLJ.TO T;Z{ f e Qf.

(18.10) THEOREM. If f;, f, € LY (X, ;) and g € M(X, 1) and

g <f, ¢+ fZ then there are 8- 8, £ Ll(X,u) such that g = g,*g, and

gl<f andg2<f

1 2

PROOF. Thereisa T € J@(Xl,X) s.t. g= T(f1+f2), so let

g.=Tf

L, i=1,2.
1 1

A good example of a class of doubly stochastic operators is

provided by conditional expectations. Let A' be a g-subalgebra of A and

let f € Ll(X, ). It follows from the Radon-Nikodyntheoremthatthereis
aunique N-measurable function Tfsuchthat fEf du = jE Tf{ du for all
E ¢ A'. Using (18.4) it is clear that T:Ll(X, A, u)-'Ll(X, AL W) is
doubly stochastic. T is called the A' conditional expectation.
As a special case of this process let X=X U U X. be the
o jep 1

union of an at most countable number of sets of positive measure and

0y 1 =Y - G - 3 26 -
let A' be the 0-sub-algebra generated by the sets A N XO and {Xi}iGP

Then the A' conditional expectation has the form

1

Tf=fC, +2 ([« fdu)C. .
X, jep HIXT X, 5
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Of course TH is of this type.

Now let p be a saturated Fatou norm on M(X, u) such that

1
Lp(u) is we rais ande(p) I Lp, P c Ll(u), and define the u. r.i.

Fatou norm p, on M(Xl’ ul) by

a
py(f) = sup{ [ 5161 8141’ p'(g) < 1.

p
(18.11) THEOREM. If T: L 1(1..11) - Ll(p.) is linear and Tf < f{ for all

Py
f €L “(4)) then

pl P
(i) T:L (ul)—'Lp(u) and p(Tf) < p,(f) for all f €L .

(ii) T has a unique extension to a doubly stochastic T: Ll(ul)—'Ll(u).

cxm i e o P1 p'
(iii) T : LV (W) = L “(u,) and p'l(T*g) < p'(g) for all g € LF .

PROOF. (i) We already know that Tf <f € L l(ul) implies

p(Tf) < p (f) so TfE LP ().
p
(ii) This follows from (18.4) since LY(u) © L l(ul)-
pr o
(iii) Let g €L (M. Sincewehave [fT gdu1=ngf du is finite for all
]

p
feL 1(ul), (14. 15) implies T#*g € L 1(“1)' Let g € LP{u).

py (T*g) = sup{ [ [f T*g|du,: p (f) <1]
< sup{ [ |f| T* [gldul: py(f) <1}
= sup{ [ |g| T |f] du: p () <1}

< sup{ flg‘ ‘f"du: p(f') <1 3= p'(g)



P

1
(18.12) COROLLARY. Letg, € Ll(Xl,ul)- Ifg, <g € LP (u) then
, Let 1 then

P
g, €L ° and pY(gy) =p'(g)

1
PROOF. Letg < g€ LP (4). Thereis ad.s. T: Ll(u)—»Ll(ul)
x . 1 1
s.t. g, = Tg. Then T extends uniquely to a d.s. map of L (u;)~L (L)
) * % x P
so applying (18.11) to T we have g~ (T )g €L (ul) and

o e ) = P ((T) g) = p'(g).

REMARKS. (i) If (X, Aj,u)) = (X, Au)and p is u.r.i. then
Py =P

(ii) If \ is a r.i. Fatou norm on Mt [0,a] and p(f) = )\(6f) for
f € M'(X, 1) as in §15, and p,(f) = A(5) for f € M+(X1, u,) then

(18.11) holds with Py replaced by Py

19. Muirhead's Theorem. J. V. Ryff has given a generalization of

Muirhead's Theorem for bounded measurable functions on [0, 1]
(see [42]). In this section we will show when this generalization is
valid for arbitrary finite measure spaces.

Let (X, A, ) and (Xl, Al,ul) and (XZ, }\Z,uz) be finite m. s. such
that YW(X) = ul(Xl) = uZ(XZ) =a. Ifué€ M()%'HZ) is positive (i.e.
u(x) >0 My-a. e.) and f € M(X, M) let

[6u] = [ tog( [ uta™) a0 )auty)

X X2

and similarly for g € M(Xl’ p,l).
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(19.1) LEMMA. If ue M(XZ’ uz) is positive and f € M(X, u) then

(fsul = [6f;6u] in the sense that both are finite and equal or both

are infinite with the same sign.

PROOF. Letp € R and let {(t) = t¥ for all t € R. Since u~5_
and the measure spaces involved are finite, (3. 3)(xv) says y(u)~ \y(éu)
a a
< - : P - P
SO fX.) \l/(u)duz = fo \]/(6u), i ez; fXZ u duz = fo (6u) . Let
o(p) = log( [y upduz) = log( [ (5 )P). Again,since f~6 we have gf) ~0(6)
> " o' u f

f
solfiul =/y w(f)du = [ o6 = [8:8 I

(19.2) THEOREM. Let f € L®(X,u)and g € L°°(Xl,u,1).

(i) If g <f then [g;u] < [f;u] and both are finite for all

positive u € M(XZ’ uz) such that uP ¢ Ll(XZ, u.z) whenever

ess.inf (min(f, g)) <p < ess. sup (max(f, g)) [we call such u admissible

for fand g.]

(i) If [g;ul = [f;u] dnd u is admissible for f and g then

f~g or u is constant My-a.e.

(iii) If (XZ’ Az,uz) is non-atomic and [g;u] < [f;u] for all

positive u € M(XZ’ u.Z) such that uP € LI(XZ, uz) whenever p € R

[ we call such u admissible for L], then g < f.

PROOF. Ryff has shown that this theorem is true when
X = Xy & X2 = [0,1] with Lebesgue measure ([42 ,p. 596] and
[43 , p. 4367).

Our first step is to show that the theorem is true when
X=X, = X?. = [0, a] with Lebesgue measure. Let F,G € M[0, a]

and let u € M[0, a] be admissible for F and G. Then
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a a
[F;ul] = ',o 10g< fo u(s)F(t) ds)dt
1 . F(at)
gaf Iog( '/o ulas)” *° ds)dt}-alog a

¥ a [Fl,‘ul]')-a log a

where Fl(t) = F(at) and ul(s) = u(as) on [0, 1]. Similarly
[G;u] = a[Gl;ulj + a log a where Gl(t) = G(at) on [0, 1]. Since a > 0,
{3.2) implies Gl < F1 iff G < F, and thus it is easy to see that the

theorem is true when X = X, = XZ = [0, a].

Now let f € L®(X,u) and g € L°°(X1, W)

(i) Suppose g <f and let u € M(X ) be admissible for f and g.

i* k3
Then 6g < 6f and it is easy to see that 6u is admissible for 6f and 6g so
fgsul = [ég;éu] < [éf;éu] = [f;u].

(ii) Suppose [f;u] = [g;u]. Then [éf;éu] = [6g;6u] so either

6f~ 6g (sof~g)or 6\1 is essentially constant (so u is also).

(iii) Suppose (X ) is non-atomic arnd [g;ul< [f;u]] for all

2) AZJ uz

u € M(X ) admissible for L®. Let v ¢ M[0, a] be admissible for

2+ Mz
L®[0,a]. Then thereis au € M(X,,u,) suchthat § =6 , in which
case u is admissible for L® and [6g;v] = [6g;6u]= losul =[ful= [éf;v],

so [ég;v] < [6f;v] for all admissible v and hence 6g< &, so g<f

f

REMARKS. LRyff has also shown that (iii) is not in general true
if we interchange the order of integration in the definition of [f;u].

2. (iii) mayalso failif (XZ,AZ,HZ) has atoms and (X, 4) and(Xl,le) are
more complexthan (XZ,HZ}. Forexample,if X2 is an atom and both X and

Xl are not atoms, then (iii) fails. The assumption that (XZ’ AZ’ uZ)
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is non-atomic is sufficient to insure that there are enough admissible
u € M(X&, }.12) to distinguish when g < £, no matter how complex (X, )

and (Xl,ul) are.
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V. EXTREMAL AND RELATED PROBLEMS
20. Extreme, Exposed and Support Points of Qf. Let V bea

locally convex topological vector space and let K be a convex

subset of V. A point v € K is said to be an extreme point of K if

v o= %v +‘31‘vZ & Vi Vs € K implies ¥y = VZ' v is said to be an exposed

*
point of K if there is an F € V (the continuous linear functionals

on V) such that F(w) < F(v) whenever w € K, w # v. If K is contained

in a hyperplane, then a point v € K is called a support point of K

if there is an F € V* such that F(w) < F(v) for all w € K and F(w)<F(v)
for some w € K. Itis clear that every exposed point is both an
extreme point and a support point.

It would be desirable to characterize the extreme points of K
in terms of the sets F[K], F € V*. For example, it is clear that

x
if F(v) is extreme in F[K] for all ¥ € V , then v is extreme in K.

The converse is not true as can be seen by considering the closed

unit disk. However, it is true that if v is extreme in K, then there
isan F € V* such that F(v) is extreme in F[K]. For if v is extreme
in K, then v 1is a boundary point of K, and since the interior of K

is convex, the Hahn-Banach Separation theorem [36, p. 29] gives

the required F.

It is well known that v € K is not extreme iff thereis a 0 ¥+ u€ V
such that v+u and v-u € K. Suppose K is closed and convex. It is
easy to see using (17.5) that this condition becomes: v € K is not
extreme iff there is a 0 # u € V such that both

F(u) € sup F[K] - F(v)

F(u) < F{v) - inf F[K]
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for all F € V*. This condition has been given for Q(f) by Luxemburg
[28, p. 141].

It does not appear likely that a useful characterization of this
type is possible. Let K be an ice-cream cone in the plane formed by
intersecting tangents to a circle. The points of tangency are extreme
but not exposed, and there seems to be no way to distinguish them
using closed hyperplanes from the points on the sides of the cone.

Let (X, A, ) and (Xl’ Al,ul) be finite measure spaces such

that W(X) = ul(Xl) = a. Recall that if f € Ll(Xl,ul) we let
1
(X, 1) = {g € L (X,u): g <f]}
Af(X,u) = {g¢€ Ll(X,u): g~ f}. The reader is referred to § 17 for

a detailed discussion of these sets.

The extreme, exposed and support points of Qf have been
determined by J. V. Ryff when X = Xl =[0,1] (see [41]). The
proof that the functions in Af are all extreme in Qf is due to J. L. Doob
[41]. We present it in the following way. The proof of (20. 2) is

different from Doob's.

(20.1) LEMMA. (J. L. Doob). (i) If —;—(f1+f2)~f1~fZ then

fl fZ 20 u-a.e.

(ii) Let g EQf. Ifg=3f +3f & f f2 GQf implies f ~f2~g

then g is extreme.

1

PROOF. (i) f; ~f, implies !fll ~ 11,1 so [lf |au= []f,|au.
Also [fy + £l ~2[f | so [t +f,]du= f(le;] + 1£,hdu so the
triangle inequality implies !fl + fZ‘ = ‘fll + [fz! M-a.e. and thus

£,f, = [flle >0 y-a.e.
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(ii) Suppose g, fl’fz e Qf and g = %fl + %fz. Then g ~ f1 ~ f2 and
we have to show f1 = fZ' By symmetry it suffices to show that
{x: fl(x) < fz(x)} has measure zero. For allr € R,
(fl—r) ~ (f2~r)~(g-r) = %(fl-r) + %(fa—r) so (fl—r)(fa-r) 20 u-a.c.

Let f_r } be an enumeration of all the rationals of R. Then
n

{x: fl(x) < fz(x)} &= otj {x: £(x) < r < fz(x)}

n=1
o0
e U b= (fl(x)-rn)(fz(x)-rn) < 0} and each of these sets has measure

n=1
zero.

(20.2) THEOREM. If g € Q. and g~1f then g is extreme.

2 t a
PROOF. Let &h) = fo fo 5, = fo 6, (s)a-s)ds if
he LM (x,u) UL} (X ,u)). 8 is Shur convex and 8(h)) = &(h,) iff
hy ~h,. Suppose g € EMX ) wmd g ~ £ B Ll(Xl,ul). If g = 3 +31,

where f,,f, €, then &(f) = &(g) = TR(6)) + %—@(fz) <3(f)) + 13(f) so

Q(f)s@(fl)gé(f) and thus Q(f):é(fl) so f~f1. Similarly f~f2.

Hence g ~ f1 ~ fZ. so g 1is extreme.

Using Theorems (5.10), (5.12) and (10. 1) it is easy to see
that Ryff's proofs are valid when (X, A\,d) is non-atomic. Hence we

have the following.

(20.3) THEOREM. If (X, A,u4) is non-atomic and f € Ll(Xl,ul)

then the set of extreme points and the set of exposed points of Q,f

are identical with the set Af. A function g € Qf is a support point of
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t t

Q, iff thereis a 0 <t<a suchthat [ & = [ &_.
f —_— ‘0 g o f

If (X, A, u) is not adequate, then there will be a function

fe Ll(X,u) such that Q(f) = {g € Ll(u.): g < f} is not the closed convex
hull of A(f) = {g € Ll(u.): g~ f}.1f fOG Ll(Xl,ul) such that fO ~ f then

Qf will not be the closed convex hull of Af , and hence Af cannot
o o o

contain all the ext reme points of Qf s

It is a good conjecture that :very extreme point of Qf has the
form T“f' where ' € Ll(X#, u#) and '~ f, and that every function in
Qf equimeasurable with an extreme point is an extreme point. For
example, if f is extreme and either (i) g 0 0 = f where 0: X - X is
measure preserving or (ii) g!XO = f'XO and g‘A ~ flA (where Xo is
the non-atomic part and A is the union of the atoms of X) then g is
extreme.

The following example shows that not every function
T“f', £ € Ll(X#,u#), f' ~{is an extreme point. Let X be the union
of two atoms A and B with MU(A) < u(B). Then every g € M(X, )

B
x 2, y(B) s 2u(A) + (W(B)-u(A)) = u(A) + u(B) and

has the form g = xCA + yC,. Letf= ZCA + CB. Then g € Q(f) iff

xu(A) + vy W(B) = 2u(A) + u(B). If we define p: M(X, u) RZ by

tp(xCA + yCB) = (x,y) then ® is linear, 1:1, and onto the line segment

joining the points (2, 1) and (1, 1 + &(—él-) . Hence the extreme points
W(B)
of Q(f) are f= 2C, + Gy and g = G +(1+“7(..*A:)_ g+ Observe that

f) = - = 1 = -~
M9 = {f}, Mg) = {g}, andg= T f' where f' Cro, w2 Crum),uxn

1
~f. It is clear in this case that {Tuf': f'~f, f' €L (X#,p,#)} s Rf)
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The following example shows how extreme points not in
A(f) may arise when X has an atom A and a non-atomic part Xo
of positive measure. Let B & XO be s.t. 0 < (B) S H(A). Using

{5.10) there is an f on B s.t. t) = WB)-t on [0, uB)[. Define

5 |B!
f tobe 0 on the rest of X. Let Ifo, ] be the interval of

(X#, /\#, p.#) corresponding to A as in §9. Define g' GLI(XJ{ u#) by
g'(t) =a + u(B)-t if a<t<a+ u(B)and g' = 0 elsewhere. Then
g'~f so g =%p(B)2 Cp = Tu g' <f and g« f. To show that g is
extreme, suppose g tu < f (here tmeans + and -) where u € M(X, W.
Then [u dd = 0 and since f2 0, we have g £u = 0. Thus

0<g iu‘AC = iulAC $0 u]AC = 0. Then O = fudy = (ulA)u(A)
implies uIA =0 so u=0. Hence g is extreme.

In each of the above examples extreme points were obtained

in the following way. Write X=XOU U Xiwhere P=1{l,...,n} or
€P
P = {1,2,3,... }, X is the non-atomic part of X, and X, i€P,

i
are the atoms of X. For the intervals I[a.l, bi] defining X# take

i-1 i
la, b.] = (X ) +kZ:1 MY WX )+ kZil WXL

Let f € LI(X, i ). For each partition = = {[a/i, ﬁi[}iEP of the interval

[0, uX)[ such that ﬁi—ai = g(Xi) define

f b=

. 6le (t—ao) C
O

o . [tz (f]Xi)C[

o- i€P o, Bl

1

Now for each measure preserving XO - [0, Q(XO)[ let

1 1 1

f'rr,O:(f‘n'OO)C +£f C
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1 1
Then fTr o € LI(X#, u.#), fTr i f, and it is a good conjecture that
' ;

T f is extreme in Q..
MmO £

21. Permutator Transformations. Because of the importance of

the sets A{f) = {h: h~ f} it seems natural to investigate the neces-
sarily doubly stochastic operators T such that Tf~f for all f.
Such an operator is called a permutator, becausAe for discrete
measures they correspond to the permutation matrices.

Let (X, A, L) be a finite m.s. with WX) =a. If A, B €A we
write A = B [4] to mean C, =CphH-a.e., ie., WA ABY=0
where A A B = A-B U B-A. We also write ACB[u] to mean
CA < CB -a.e., i.e., W(A-B) = 0. Note that A © B (4] implies
WA) < wB) and A

i}

B {u] implies WA) = u(B). If Ac B[u], then

1}

A =B[u] iff y(A) = u(B).

Now let (Xl’ Al’ U,) be a finite m. s. with ul(Xl) = wW(X) = a.

1)

(21.1) DEFINITION. A mapping §: Al = MNis said to be a homomor-

phism of /\l into A if it satisfies

(1) M@(A) =u,(A) for all A€M
(i1) 3 (ANB) =3 (A)N®(B) [u] forall A, B € Ay
(ii1) 8 (AUB) = 8(A)U%(B) [u] whenever ANB = ¢ [, ].

We call ¢ an isomorphism if in addition its range is A ul,

i.e., for every E € A there is an A € /\l such that 3 (A) = E [u].

In this case there is an isomorphism § -1: A= 1‘\1 such that & o $ <

is the identity [u] on A.




-109-

is a homorphism, then

i.e., ANB = ¢ [u] implies

(21.2) PROPOSITION. If &: I\l = A

disjoint sets,

(i) & preserves

(ANE(B) = @ [u].
{ii} % is monotone, i.e., AT DB D‘J’lj implies $(A)C?% (B) ].

i.e..3(B-A) = §(B)-2

A)[u] whenever

(1ii)  preserves differences

AcB [u,]
: oc
i.e., if {Ai}i=1 C A are pwd [ul]

(iv) & is countably additive,

then & (U Ai) = U¢ (Ai) Ll
i.e., d(A) =

B) (u] implies A=B [ul] .

(v) ® is 1:1,

SO

iff 4, (ANB) =0
A)N(B) = ¢ [u].

i) AnB =9 [u]

PROOF.
(ANB) = 0 implies §(

e (A) N¢(B)) = u@(ANB)) =

(ii) & (iii) If AcCB [ul] then B = B-AUA [14 ]
) (1] is a pwd union [u] and

is a pairwise

=¢(B-A)US(A

disjoint union so & (B)
=3(B-A) [u]

hence 3(A)c 3(B) (U] and 3(B) -3(A)
(iv) Let {Ai} < A be pwd [ulj. Now AJ.CZ UA, for all j implies
$ (Aj) cd U Ai) for all j and hence U@(Ai) C@(UAi). Since
oC o n n
M@ (U A))=ul( A= lim W (UA)=lim Wu@(U A))
o N | N |
i=1 = | n=o i=1 n—o 1=1
n o
= lim J(U @(Al)) = (U §(A.)) we have ¢ (UA.)= i [ul .
n-—w i=] =l L 1
(v) Suppose 3(A)=8%(B)[u]. Let E = A or B.
=@ (E)-3(ANB)) = u@(E)-3(A)NE(B)) =0

W (E -ANB)=u@ (E-ANB)) =
so A =B [u].

If (X, A, ) is a product of a possibly uncountable number of copies

of [0, 1] with Lebesgue measure, then every homomorphism
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¢: A » A is induced by a measure preserving & X — X in the sense
that 3 (E) = O‘nl(E) forall E € A. Ifo: X - [0,a] is measure preserving
then 3(E) = 0~1(E) is a homorphism of the Borel subsets of [0, a]into

A. Recall that in this case T f = { 0 0 defines a doubly stochastic
o

transformation of I_.l {0,a] into Ll (X, -

(21.3) PROPOSITION. To each homomorphism §&: /\1 - A there

corresponds a unique linear transformation
1 1 _
T@' L (Xl, ul) L (X, W such that Tq) CE = C@(E) for all E € Al' In

addition we have the following:

i) T, f~f for a,lleLl(Xl,ul)

:
(1) Ty(fh) = (T z£)(T;h) whenever I, h, fh € Ll(Xl, up)
(i) If @' A=A and Ty = T, then & =38"[u].
n
PROOF. Iff =2 @, C, is a simple function with {A.l} a partition
i=1 i

of X, [ulj we define

n
Tgf= 2 a; Cgp )
i=l1 i
n

It follows from (21.2) that {<§(Ai)}i:l is a partition of X, so

Tf and f are simple functions taking the same values on sets of equal

measure and hence Tf ~{.

o
"
@)

To see that Téf is well defined, suppose also f =

i=1 37

m
where {Bj }j=l is a partition of X,. Then

—e

f=2 ZaCppnpg =L 2bChpp
i i j i

so a, = ﬂj whenever AN Bj 0 [ulj and thus
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g, = ﬁj Whenever@(Aiﬂ BJ.)#Q) {4]. Hence

b > a. C =3 M g. C

: ;08 = 2 2P Ceans)

- B

22 Cqapnas) T % 2 F Caanne )
ooy Cpiny 2.8 G@(Bi)

1 1 1

q)(rf) = rTéf for all r € R. To show that

T(§ is linear, let g = 2 BjCB where {Bj}is a partition of Xl' Then

frg = Zizj (cxi+[3j)C

It is easy to see that T

SO

J
and {Aiﬂ BJ.} is a partition of X,

A.ﬂB.
J

(f+g) = 2572 (e, +B

@

3(a;NB,) ~ 2 (ai+ﬁj)C§(Ai)ﬂ§(Bj) = Tgk + Tge

since {é(A ns (B } is a partition of X M. Similarly, Té(fh)r-(T@f)(Téh)
for all simple functlons £, h.

It follows from (18.4) that T, extends uniquely to a doubly

$
stochastic transformation of L1 (ul) '*Ll(u,). Since the simple functions
arc dense in L,](u}) and Tq; is continuous in the L% and Ll norms, it

follows from (3.3) (xiii) that T, £ ~f for all f €L'(y). Similarly,

T, (fh) = (T, £)(T h) whenever f, h, th eLlw).

¢ 1

If T: L1 (i4,) —'Ll(u) is also linear such that TC_. = C for all
A E ¢ (E)

E €A and f=2 @ C, where {Ai} is a partition of X, then
i=1 i
Tf=ZDtiTCA = 2o O

i

3 (Ai) = Tq’ £, It follows that T extends uniquely

to a d. s. transformation of Ll(gl) i Ll(u). Since T = TQ on the simple

functions, T = 'T‘(5 on Ll(ul).

Finally, if &' /\l = /A is a2 homomorphism for which Tq;' = T’b then

X w TG 8w TG 200 oo 2 i ] L LT
C o (1) ol l(b o (@(IL) for all I ¢ /\1 50 ¢ ¢ | 1]
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It is easy to see that if (XZ’ /\2, uz) is a finite m.s. with
uZ(XZ) =y(X) =a and VY: /\2 -*/\1 is a homomorphism, then ¢ o V: /\2" A
is a hornomorphlsm and 'IQ oy = T@ o I\y'

Let T: L (u, ) = L (4) be linear. T is called multiplicative if

T(fh) = (Tf)(Th) whenever f, h ELZ(u T is called isometric if

1)'
fo Th dy = ff h dL,L1 whenever f, h € Lz(ul). T is called unitary
%
if both T and T are isometric.
Observe that if T is multiplicative and isometric then (18.4)

implies that T has a unique extension to a d.s. T: Ll(ul) - Ll(u).

If T: Ll(p.l) - Ll(u) is d.s., then (17.13) {or Remark (ii)
after (18.12)) implies that T: Lz(ul)" Lz(p,). It is easy to see that it is
multiplicative iff T(fh) = (Tf)(Th) whenever f, h, fh GLI (ul) iff

T(fh) = (Tf)(Th) whenever f,h € L (4;); similarly for T isometric.

(21.4) THEOREM. Let T: Ll(ul) - Ll(u) be linear. Then the

following are equivalent:

G) Tl fox mil fELl(gl).

(ii) T is induced by a homomorphism &: Ay—A

(iii) T 1is d.s. and multiplicative.

&
(iv) T is d.s. and T T is the identity function on Ll(ul).

(v) T is d.s. and isometric.

PROOF. We have already proved (ii) = (i) in (21. 3). (i) = (ii):

It E € Al then TC_, ~ C so there is a ¢(E) € A such that TCE= Cq;(

E E E)
and [4(é (E)) = ul(E). Let A, B € A and f = CA+CB A-ANB CB ANB
+ 2 C ., Then Tf =C + 2C

ANB 3a) CsB)” “sa-anB)" Cas-ans)" *Cs(anB)
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so §(ANB) €3 (A)N®(B) and thus to show equality it suffices to show
they have equal measure. Now & (A)N &B) = {Tf = 2} and ANB = {f = 2}
so since Tf ~ f, LW{§(ANB)) = ul(AﬂB) = 4{B3A)N ¢(B)) and thus
3(A) N&(B) =& (A NB) W] .

If ANB =0 [4;] then CAUB =C,*+Cph H-a.e. soapplying T we

get C<I> (AUB) = C<15 (A)+ C@ B) = C‘5 (A) U (B) since W(3(A) ﬂ@(B))=H1(AﬂB)=0-

Hence & (AUB) = ¢ (A)UR(B).
(it) -» (11i). This is (21. 3).

(iii) = (iv). Let f € Ll(p,l). For all g € [ (M,) we have ngLl(ul)

1
£ %
so [fg du, = [T(fg)du = [Tf Tgdu=fgT Tf du; and thus f = T Tf.

sk
(iv) = (v). Let f, h, fh € Ll(gl). Then [fh dw = /b T Tfdy,
= [Tf Th du.

(v) = (i1) [3,p.22]. LetA, B €A, chATchu-/cA 5 du;

= chﬂB du, = ITCAHB dy. Since T isd.s., 0<TC, <1 so

2 2 _
OS(TCA) s TC, <1, and for A = B, chA A) du=0 so
2

(TCA) = TCA and thus TCA takes only the values 0 and 1. Letting

=1} we have TC, = Cq> (A) Now TCAnBSmln{I’CA, TC

- (TC

#(A) = {TC, 51

so 0 <TC = [FC 2 PO Cy) and since fTCA

AMB AﬂB) ANT ne¢

/ TCA TCy, d4 we have TCAnB = 6, TCB so § (ANB) = 3(A) NH(B).

When ANB = @, apply T to CAUB= C,tCp to deduce & (AUB) =8 (A)U§(B).

Finally, W(§(A)) = /TCA du = [cA di4; =4, (A) since T isd.s.
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(21.5) COROLLARY. Let?$: Ay = A be a homorphism. Then

(1) T@ is 1:1.
% o

(ii) T@ maps L™ (1) onto L* (gl) and Ll(u) onto Ll(ul).

3k
PROOF. T§ TQ = the identity mapping on Ll(u.l) and
()

B L“(ul) - L%

(21.6) THEOREM. Let &: /\1 -  be 2 homorphism. Then the

following are equivalent.

() T, isl:l.
A
(ii) T‘§ T@ is the identity mapping on Ll(u) ’

(iii) The range of T. 1is all of Ll(u) =

%

(iv) & is an isomorphism .

%*
(v) T@ is induced by a homorphism of A = A;.

(vi) T@ is unitary.

1

* % *
PROOF. (i) = (ii). Letf €L (ul). Then T, (T, T. f) = T, f so’

¢ e7% &

b3

TQTQ f = £,
(ii) = (ii1). Obvious.
(iii) =» (iv). Let A € A. Then there is an fA € Ll(ul) such that

2, % 2
T,f, =C,. Forallg €L™ (4) we have ffA Teedy, = /g Tots =i

*
- /g(TQfA)(Té fA)dH - fg CA d.u- fg Té fA dH,Z ffA T@ g dul

*
Since T@ maps L* (4) onto L* (ul) (this is implied by (21.5)(ii)) we

Bave §.2 =2, s i, = O whereBz{fAzl}. Then C

A A A B $(B) $

so ¥B) = A [u].

=T fA=C

A
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iv) = (v). & —1: A /\1 is a homorphism, and
% %

*
T(§ = T§ (TQTQ)‘l)-(Té T@)T@-l "T@—l .
% *
(v) = (vi). If T(§ = T‘P then T(§ is isometric so T‘§ is unitary.
P
(vi) = (3). 1f Tq; is unitary, then TQ is isometric and hence

induced by a homomorphism, and it follows from (21.5) that it is 1:1.

REMARKS. 1. Leto: X = X1 be measure preserving and let

Io be defined on M(Xl’ u,l) by To_f = f(o). Then TOC = (,O_l(E) for

E

all E ¢ Ay so TQ: T. where 3(E) = o-1(E).

¢

2. The relationship between multiplicative unitary operators
(which are necessarily d. s. ) and the operators To‘ where 0: X - X
is measure preserving, was studied as early as 1932 by von Neumann
[33,p.618], who assumed that X is a complete separable metric
space with a finite Borel measure | such that spheres have positive
measure and every measurable set is contained in a G6 with the same
measure.

3. With (X, A, i) and ¢ as in 2, Paul R. Halmos has used the
operators TO to find necessary and sufficient conditions for the
existence of a square root of g. [13]

4. It follows from (20. 2) that the operators Tq, are extreme
points of ;Q(Xl, X) (another proof can be gleaned from [34, p= 269,

*
Theorem 1.4]). It is easy to see that T € S(Xl, X) is extreme iff T

*
$

is a homomorphism are also extreme in ;SXXI, X). A complete

is extreme in §X, Xl)' Hence the operators T, such that¢: A - AI

characterization of the extreme points of ,)Q(Xl, X) does not seem to be

known.
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22. The Weak Closure of {g: g ~ f}. As always let (X, A, 1) and

(Xl’ /\1, ul) be finitec measure spaces with (U(X) = My (X]) = a. Recall
that if f € Ll(Xl, ul) then Qf(X, M) = {g ELl (X, 1) g < £} and
Af(X, w) = {g € Ll(u): g ~ f}. The problem is to determine the O(Ll, )

closure of Af. The case Af = § is easy, while if Af + @ and fo EAf

then Q, = Q(fo) and A, = A(fo). Hence from the beginning we work only

£
with the sets 0 (f) and Aff) where £€ L1 (X, ).

J. V. Ryff has shown the following result which we state as a

lemma. For the proof see [43, p.432].

(22.1) LEMMA. If F €L'[0,1] then Q(F) = {GE L'[0,1]: G < F}

is the O(Ll, LX) closure of ME)Y = {G € Ll[O, 17: G~ FJ.

{22, 7} THEOREM. Q) is the o, L0 closure of A(f) for all

fe Ll(X, ) _1_f_f (X, A, 4) is non-atomic or X 1is an atom.

PROOF. Suppose (X, A, 4) is non-atomic. Let g € Q(f) and let
o X = [0,a] be measure preserving such that 5g o0 =g. Let
F(t) = 6f(at) and Gf{t) = 6g(at) on [0,1]. Then G <F so there is a
net {HQ}C A(F) such that H, - G in the CI(L.I (o, 117, L*[0,17) topology.
Letting b (t) = H (t/a) on [0,a]we have h ~ &, and for all v €L*[0,a],
a 1 1 2 .
/o ha vdt = a fo Ha(t)v(at)dt - a fo G(t)v(at)dt = '[o 6g v dt, i.e.,
h, —vég in the O(LI[O, al], LC[0,a]) topology. Since TO is weakly
continuous, Tcha - TO 6g = g and Toha € A(f). Hence A(f) is weakly

dense in Q(f).
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If X is an atom, then A(f) = {f} = Q(f).
For the converse, suppose X is not an atom and (X, A, 1) is not

non-atomic. Then X = A1 U A2 where Al and A_ are disjoint sets

2

of positive measure, and X has an atom B. Let f=2C, + C, ,
e g

-1 e 4 &
let g_ = ;ffdu =1+ WA )/ uX)sol<g <2 andletg=g Cy

so g €Q(f). If h € A(f) then h = ZCB + CB where u(B.) = y(A,)i=1, 2,
1 > i i

so f(g—h)CB du = g, WB) - Zg(BlﬂB) - g(BzﬂB) and u(BﬂBi) =0 or
WB) since B is an atom. Hence for ¢ = 4(B) min (g0~1, Z—go) there

is no h € A(f) such that l f(g—h)CB du | < ¢ so A(f) is not dense in Q (f).

1
(22.3) COROLLARY. For any finite m.s. (X, A, ) and f € L. (X, W)

we hroe that Q) is the oL, L) slosyure of (T g £ erlxtu?) and

£ ~f} .

PROOF. Let g € Q(f), Since (X#, g#) is non-atomic, there is a
net {1 } et x*.#) such that £l -gin ot wh), L= o). Since )
is weakly continuous (see §17 or use (9. 2)), Tuf'a - Tug =g in
H

oL (), LT W) .

If (X, A, u) consists only of atoms of equal measure then A(f) is
finite and hence weakly closed. We will now determine the weak
closure of A(f) when X consists only of atoms, or X has only finitely
many atoms, or when X is separable.

Let X be the non-atomic part of X, let {An}né be the atoms

P

of Xand let A = U A ; alsoleta = u(X ) (see §9).
nep D o o
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(22.4) DEFINITION. Iff € Lix, W) let Z(f) be the set to which g

belongs iff there is an h ~{ such that g|X0 % h‘XO and g‘A=h|A.

(22.5) LEMMA. For all f € L} we have A(f) cZ(f) <E{.

PROOF. A« Z is easy. For the other inclusion, let g € Z so
there is an h ~ { such that g‘XO <h|XO and g‘A = h|A. Since XO is
non-atomic there is a net (h }JC LI(X , 1) with h ~h|X and

o o a 0
ha ¥ g|Xo weakly. Extend each ha to X by ha |A=h|A. Then ha ~h~f
(see (3.3)(x)) and for each v € L® (X, u) we have V!XOEL“C (X, 1)
so /.

e havdu-‘fx g v di, but since '/;Xhan“: ngvdu we have

O lo]

finally that [y h vdu = [y gvady, i.e., h, =g weakly. Henceg € 3.

(22.6) THEOREM. If (X, A, 4) consists only of atoms, then A(f) = Z(f)

for all f € LY, u).

PROOK. We have only to show that A(f) © 4(f). Let g €A(f) .
Then there is a net {ha} C A(f) with ha -~ g weakly. Let B be an atom.
- - - -1

Now u(B) <uh, ' (b, |B) = uie™ t, |B) and £, |B) nE g |B) =
whenever ha‘B * hﬁl.B so W(X) <o implies there are only finitely
many different values ha|B' But ha\B - g|B, so for some @y @ 2ag
implies ha‘B = g‘B. Hence there is an increasing sequence . such
that o ‘:an implies ha‘Ak = glAk, k=1,..., n. Then ”han —g”l - 0so

g ~f and hence g €A(f) = Z (f) in this case.

T can now prove A(f) = Z(f) in general.
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(22.7) THEOREM. Lf_ (X, A, 4) has only a finite number of atomns,

then A(f) = Z(f).

PROOF. We have only to show that A(f) € Z(f). It is easy to sece
that the condition h, \A = hz‘A defines an equivalence relation on A(f).
Since there are only finitely many atoms, there are only finitely many

equivalence classes, H H say. A(f) =HU----UH so

l,....’ -

AMfy=H U ---UH_. Letg€A(f). Theng eﬁ; for some | £k €m,

$0 there is an h0 € Hk and a net {ha} CH, with ha - g weakly. Since

k
h,h €H, h |A=h |Aforalle. Let B be an atom of (X, A, u)
o o K Ta o

(so B A). g is constant on B so (g'B)u(B)= [e CBdg=1imaﬂlaCBdu
= (hO IB)L,&(B) and thus g]B = ho‘B since WB) > 0. This holds for all
atoms B, so glA = ho|A. Let v € L° (Xo, M) and extend v to all of
X by v|A=0, so vEL (X,u). Then [y gvdu = [y gvdu

o
=lim, [ h_ vdu= limafxohavdu so h |X_-g[X weakly. But

h,A=h_[A and h ~f~ h so (3.4)(ii) implies h [X_~h_|X .

Hence g|X_ € 'A(ho‘]x‘ J o= Q(holxo), i.e., glxo <h, ]xo.

(22.8) PROPOSITION. If f g eLl(x,u) and g<f and gla=tla

then gIXO < f]Xo.

PROOF. Define Fn’ Gn inductively by Gl =g, F1 = f;

Since g < f we have G, < F,.

- = kit 1 1

n+l B = FnC

A’ "n+l X-A
n n

Since flA = g]A we have by induction using (8. 7) that Gn < Fn’ n €P.
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If X has only a finite number of atoms, then for some n € P,

g CXO =G _<F_-=f CXO and (8.7) implies g|X_ < f|x_. Otherwise,

G +gCy and F I £Cy and||[F _-fCy || = [F -fCy, dy
o o ol o
= [f C.OS A, du— 0 as n ~« since f € Ll. Similarly, HGn—g CXOHI-* 0.

1=n

Hence (12.5) implies gCXO < fCXO §0 g|X0 < fIXO.

REMARK. If f&g ¢ L! then (22.8) may fail since we could have

J fdu=/ gdu =+ with faob

<[5
A A 0 o flX

g|X

o ¢}

(22.9) LEMMA. If f LY. u) Phem ZE) is gtk T sequentially

closed.

PROOF. Let the sequence {gn} C Z(f) with g, "8 weakly. Then

g, ' A-g lA pointwise, and there are functions hn ~ f such that

g [x_<h |X and g lA =h A n=1,2,3,... Let{[a, b [} ep be

pairwise disjoint intervals such that U [a ,b [=[a, a[ and
nep BN 0

l)n—an = u(An), n €P(see §9). For each n=1,2,3,... let

= 8
Hn hn‘XoC[O,aO[ T Eep(hnlAk)c[ak, bk[

Then {Hn} < [-oc, ][ 0 af which is compact in the product topology,
so there is a subsequence {an }Zzl which converges pointwise
everywhere to a function H. Hl [o, a0[ is the limit of a sequence
of decreasing functions so it is decreasing, and Xo is non-atomic, so

there is an h € M(Xo, M) such that 6 = HI o, ao[a.e. .  Extend

hix
h to X by hlA = g[A. Now Hn~hn~ f and an - H pointwise so
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H~f. AlsoH|[0,a,[ = 6h' ~h|X,, and since

X
o
H ‘[‘aO’aENhn 'A=gn lA

"k k k
! !

H|[ayal ¢|A =hla
pointwise, we have HI [ao, al~h|A. Hence h~H~fE€ L! and thus
h ELI. Since ((f) is weakly closed, g €Q(f) so g <f~h and hence
g <h. Since g|A = hIA, we have using (22.8) that ngo <h|XO.

Thus g € Z({f).

Recall that the metric space associated with a finite m.s.
(X, A, 1) is (A(M), d) where A(d) is A modulo the sets of measure
zero and d(A, B) = W(A-B) + B-A). A(M) will be viewed as A with

the equality A = B[] iff C :CB M-2.e. A finite m.s. is

A
said to be separable if its associated metric space is separable.
Note that Lebesgue measure on bounded subsets of Rk and Stieltjes-

Lebesgue measure onbounded subsets of Rare separable 47, p. 69].

(22.10) PROPOSITION. (i) (XO, AOXO, W) is separable iff (X, A W)

is separable.

(ii) If (X, A, u) is_separable then for each f € LI(X, i) the

relative O(Ll, Loc) topology on Q(f) is metrizable,.

PROOF. 1) (AN Xo(u,), d) is a subspace of (A(W), d) so (A(W), 4)
separable implies (AﬂXo(u), d) is separable. Conversely, if
(AN Xo(u), d) is separable, then the union of the atoms of X and a

countable dense subset of (AN Xo(u), d) is countable and dense in
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(A (), d).

(ii) Let 8 be a countable dense subset of (A(Y), d) an:!{ let f € Ll.
Then Q (f) is weakly compact, so according to [20, p. 143, Theorem
16. 7] we have only to show there is a countable subset of L% which
separates points of L', Let 8 = {CE: E € R}, so § is countable. To
show that § separates points of Ll let g, h ELI. 1f f(g-h)CEdu =0
for all Ci. €8 then fE(g-h)du = 0 on a dense subset of (A(W), d).
Since g-h € Ll, E - fE(g -h)dy is continuous on (AW, d) and hence we

conclude that fE(g~h)du = 0 for all E € N4) so g =h.

(22.11) THEOREM. If (X , [\ﬂXO, 4) is separable then for every

o
f& LI(X, {) we have A(f) = Z(f).

PROOF. Now the weak topology on ((f) is metrizable so Z(f)

is closed and thus A(f)c Z(f) cA(f) implies A(f) = Z(f).

Now suppose p is a saturated Fatou norm on M(X, ) such
that L cLP, LP c L' and L is w.r.i. 1ff € LP then A()cLP and
the problem is to determine the O(Lp, Lpl)-closure of A(f). If
A c LP we denote its G(Lp, Lp|) closure by PA . Since
O(Lp, LOC) c o(Lp, Lpl) we see that PA cA.

By examining the proof of (22.10)we see that if f € LP and
(Xo, /\ﬂXo, i) is separable, then the relative O(Lp, Lp‘) topology on

QUf) is metrizable.
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1
(22.12) PROPOSITION. If the simple functions are dense in LP

1
then for every f € LP and Ac Q(f), EI_}E o(Lp, 1, ) closure of A

equals the o(Ll, L°c) closure of A.

PROOF. Now Q(f) is p-bounded so there is an M > 0 such that
plg) < M for all g € Q(f). We have only to show that AcPA . Now

A cC Q) by (17.4). Let g, € A . Then there is a net {ga} c A with

oc)'

!
g, 8, in o(Ll, L Ifth e LP, Fh(g) = [ g h dy defines a con-

s

tinuous linear functional on LP. It suffices to show that Fh(ga)th(go)
| 1

for allh € L. Hence leth € L. and let ¢ > 0. Then there is a

simple function v such that p'(h-v) < g, so for all g €Q(f),

|Fh(g)-F @] =1]/b-vIgdu| = plg)p'(h-v) < M e. Now there is

v

an a_ such that ¢ = @ implies va(ga) - Fv(go)\ < e. Hence for

aza, |F (g,)-Fyle )| < |Flg)-F (g )]+ |F _(g,)-F (g )]

+|Fv(go)-Fh(go)| sMe+e+Me. Thus F, (g )~ F, (g )

1
(22.13) THEOREM. If the simple functions are dense in L? and
1

1
f € L then the o(Lp, LP ) closure of A(f) equals the o(L", L% closure

of A(f).

REMARK. The intuitive idea behind the definition of Z is that
every member of A(f) can be reached by a net in which eventually
the rearrangements of f are formed by rearrangements on XO and
rearrangements on A. This means that if g € m there is a net

{ha} cA(f) and an index @ such that for e, = @ we have
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h,[X ~hg|X_  and b |A~hi|A. Inthis case b, [X =u|X,
implies g|X_<h_ [X_ and h |A~g|A implics gl]A~h [A.
O O

Hence defining h by hfX =h_[X and h|A = g|A we have
3 Qo 0(0 (o]

h~f g|X_ =<h|X and glA =h[A.
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