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ABSTRACT 

Let (X, 1\., f,.I.) be a measure space and let M(X, !,.l) denote the set 

of all extended real valued m.easurable functions on X. If (X l' 1\.1' U 1 ) 

is also a measure space ann f E M(X, ~d and g E M(X
1

, !.-1
1

), then f 

and g are said to be equimeasurable (written f", g) iff ~t(f-l [r, sJ) 

-1 [ = III (g r, s J) whenever [r, sJ j s a bounded inte rval of the real 

numbers or [r, sJ = (+ ac} or = [- ac }. Equimeasurability is invesb-

gated systematically and in detail. 

If (X, 1\., u) is a finite measure space (i. e. U(X) < DC) then for 

each f E M(X, u) the decreasing rearrangement Of of f is defined by 

° ~ t ~ U(X). 

Then Of is the unique decreasing right continuous function on [0, u(X)] 

such that of ...... f. If (X, 1\, U) is non-atomic, then there is a measure 

preserving map 0: X .... [0, U(X)] such that ciO) = f \..l. -a. e. 

If (X, 1\., ~!) is an arbitrary measure space and f E M(X, \..l.) then 

f is said to have a decreasing rearrangement iff there is an interval 

J of the real numbers and a decreasing function 0 on J such that 

f", O. The set D(X, \J.) of functions having decreasing rearrangements 

is characterized, and a particular decreasing rearrangement of is 

defined for eachfED. Ifess.inff~O<ess.supf, then Of is 

obtained as the right inverse of a distribution function of f. If 

+ 
es s. inf f < ° < e s s. sup f then formulas relating (of) to C f+' 

o f) to 0 f- and 0 -f to 6 f are given. If (X, A, u) is non-atomic 

and o-finite and 6 is a decreasing rearrangement of f on J, then 

there is a measure preserving map 0: X - J such that 6(0) = f u-a. e. 
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If (X, 1\, u) and (Xl' 1\1' ~l) are finite Ineasure spaces such that 

a=u(X)~··Ul(XJl. if f.gl-M(X,~l)UM(XI,fll), and if (1"\1 and 

f a c ., . 
(J 1 are (1111te, 

() g 
then g -<-< f IlWanH / & '. /1: (,. 

() g () [ 
fOl' ill J 0 . I . it • 

and g -< f 111eanS g <-< f and The p reorder relaliol1H 

-< and -<-< are investigated in detail. 

If f E Ll(X, U), let O(f) = £g ELl(X, U'): g -<£} and 

6(f) = [g ELI (X, u): g "" f }, Suppose P is a saturated Fatou norm. on 

M(X, U) such that L P is universally rearrangem.ent invariant and 

LeX': C LP eLI, If f EL P then O(f) c L P and O(f) is convex and 

O(L P, LP')-com.pact. If £ is a locally convex topology on L P in 

which the dual of L P is L P ', then O(f) is the s-closed convex hull 

of 6(f) for all f E L P jff (X, 1\, \1) is adequate, More generally, if 

1, 1 
f E L (X I' 1J. 1 ) let (1 f(X, U) = (g E L (X, U): g -< f} and 

I 
6

f
(X, U) = [g E L (X, U): g ,..."" f}. Theorem.s for O(f) and 6(£) are 

generalized to Of and6.f' and a norm. PI onM(X
1

,u.1) is given 

such that O\f\ C L P iff f E LPI , 

A linear m.ap T: LI(X I' IJ,I) -+ L1(X, \J.) is said to be doubly stochastic 

iff Tf-<f for all f E L1(X
I

, UI)' It is shown that g -< f iff there is a 

doubly stochastic T such that g = Tf. 

I 
If f E L then the m.em.bers of 6.(f) are always extrem.e in 

O(f). If (X, 1\. u) is non-atom.ic, then 6(f) is the set of extrem.e points 

and the set of exposed points of O(f), 

A m.apping ~: 1\1 -+ 1\ is called a hom.om.orphism. if 

(i) u.(~(A)) = VI (A) for all A E 1\ 1; (ii) ~ (A \J B) = ~(A) U ~ (B) [}.L] whenever 

A n B = 0 [U.l J; and (iii) ~ (A n B) = ~(A) n ~(B) [u] for all A, B E A!, 



v 

where A = B [~J means C A = C
B 

IJ-a. e. If~: AI .... A is a homo­

morphism, then there is a unique doubly stochastic operator 

1 1 
T~: L (Xl' w. I ) .... L (X, u) such that T~CE = C~ (E) for all E. If 

T: L1(X
1

, ~l) .... Ll(X,~) is linear then Tf- f for all £ E L 1(X
1

, W,l) 

iff T = T41 for some homomorphisll1 ~. 

Let X be the non-atomic part of X and let A be the union of 
o 

1 1 oc 
the atoms of X. If f E L (X,~) then the a(L , L ) -closure of 6(£) is 

shown to be tg ELI: there is an h ""f such that glX -< hlx and 
o 0 

g I A = h I A} whenever either (i) X consists only of atoms; (ii) X has 

only finitely many atoms; or (iii) X is separable. 
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1. Introduction. The decreasing rearrangement of a non-negative 

measurable function has, since its treatment in Inequalities by Hardy, 

Littlewood and Polya, p lay e d an increasingly important role in 

analys"is, because of its fundamental part in the structure of nornwcl 

spaces of n1easurablc functions wh"i ch are rea r rangenlent inva riant. 

Exalnples of such spaces are the clas sica] LP spaces, the OrU 0'> 

spaces, and the spaces "introduced by Halperin [l4] and Lorcnt/-; [2~~]. 

These so-called rearrangenlent invariant Banach function spaces have 

been shown by Boyd [2], Shimogaki[45], and Lorentz and Shimogaki 

[25J to be well suited for studying problems related to Fourier analy-

sis and interpolation of operators. 

Recently Luxemburg [28J gave a general account of the theory 

of rearrangement invariant Banach spaces for measure spaces with 

finite total measure. Such spaces provide a natural setting in which 

to generalize a theorem of Hardy, Littlewood and Polya which gives 

equivalent conditions that two vectors in R
n 

be related by a certain 

preorder relation -<. J. V. Ryff [42J has given the generalization 

for L 1[0, 1], while Luxemburg [28] has given it in part in the re­

arrangement invariant Banach space setting. We will complete this 

generalization in Chapter V. 

With an eye to studying these topics when the total measure of 

the space is not finite, in Chapter I we investigate the concept of 

equimeasurability for arbitrary measure spaces, though we include 

as well results which can only be proved in general for finite measure 

spaces. 
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In Chapter II we define the decreasing rearrangen1.ent for all 

nleasurable functions if the n1.easure space is finite. If the rneasure 

spaccis not finite, we characterize the set of rneasurable functions 

which have decreasing rcarrangernents, and cI('finc olle for each Huch 

function. Of in,portance is the fact that we can prove a theorClIl 

relating a function to its decreasing rearrangement by a measure 

preserving transformation when the measure space is non-atomic 

and 0 -finite. 

In Chapter III we introduce the generalization to measurable 

functions on a finite measure space of the Hardy-Littlewood-Polya 

preorder relation -<, and investigate it and some associated inequali­

ties. In particular we give a new and careful proof of a theorem in 

[28] about the values taken on by certain integrals, and we characte r­

ize adequate measures. 

For completenes s we include as Chapter IV Luxemburg's 

treatment of rearrangement invariant Banach spaces. For the same 

reason we include his resultsonSchur convex functions in Chapter V, 

where we give finally a complete account of the generalization of the 

theorem of Hardy, Littlewood and Polya referred to above. We also 

extend Ryff's generalization of Muirhead's theorem to finite measure 

spaces. Finally in Chapter VI we settle some extremal and related 

problems of some sets which arose in Chapter V. 

Throughout we us e the following abbreviations: 

1"n. s. = measure space; m.p. = measure preserving; pwd = pairwise 

disjoint. 
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1. EQUIMEASURABIL1TY 

2. Spectral Measures. Let (X, A.,~) be a tneasure space (tn. s.), i. e., 

X is a non-etnpty point set, A. is a a-algebra of subsets of X, and ~ is 

a countably additive n'leaSUl'e on f\. Oft~)n we will write Jfdl-l [PI' tIl!' 

integral of f over X with respcl'j: to }..lwhen X is clear (,'oln the c()nt(~xL 

Also we let M = M(X, \..I.) denote the set of all extended real valued 

IJ-tneasurable functions on X, and if E is a set, then C
E 

denotes the 

characteristic function of E. 

Let R denote the real nutnbers, let R# denote the extended real 

nutnbers, and let S = S(R#) denote the Riesz space of all functions s 

of the fortn 

s 

where each Uk E R and each 1k is a bounded interval of R#, i, e., 1k 

is an interval of R of finite length or 1k =:: [+ao} or 1k =:: {-co}. We call 

the tnetnbers of S step functions on R Jf , - -
For every s E Sand f EMit is easy to see that s (f) is a sitnple 

tneasurable function on X, If f E M, let 1
f

:S .... R #- be defined by 

for all s ES. Suppose f has the property that lJ.(f- l [u, v]) < oc for every 

bounded interval [u, v] of RJf. Then 1
f
(s) is finite for every s E Sand 

in fact defines a positive linear functional which is continuous in the 

sense that if s ~ 0 then 1f{s ) ~ O. Hence there is a tneasure \..I.
f 

on 
n n 

Jf 
R such that for every s E S we have 
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We call1J
f 

the spectral measure of f, or sornetinlCs the ~-sp('ctral 

rneasurc of f. In probability theory IJ.
f 

is known as the distribution 

nleasure of f. 

For many purposes, whether or not f takes the value a on a 

set of finite or infinite measure is of no interest, so our conditions 

under which IJ
f 

is defined may seem unduly restrictive. However, we 

have only to let X, = [x E X:f (x) * a} (called the carrier of f) N =/\ n X, 

and IJ' = IJ.!/\' to see that if 1J(f -1 [u,v]) (00 for all bounded intervals 

[u, vJ of RI - [OJ then 1J'(f\X,-l[u,v])< 00 for all bounded intervals of 

R* and thus the ~-spcctralmeasure IJ.'f\X' is defined. We may in a 

similar manner ignore whether or not f takes the values +00 or -00 

on sets of finite or infinite measure. 

Observe that if [u, v] is a bounded interval of RI, then 

kl f( [ u, v]} = J.,l (C 1 [ u, v]). If (X, A, u,) is a fi nit e m. s. ( i. e. hJ. (X) < (0), 

then IJf is defined for every f E M and can be repre sented by the distri­

bution function d
f 

defined for t E R by 

df{t} = u,{ (x E X:f(x) > t}) • 

Letting ef{t) = u.({x E X:f(x) ~ t}) for every t E R we have that df+ef=IJ.(X), 

d
f 

is decreasing, e
f 

is increasing, both d
f 

and e
f 

are right continuous, 

d f t d f and c f ~ e f whenever fn t f, l~m df{t) = IJ{ U = +oo}), 
n n t 00 

Ii m eit ) = IJ( U = -co}), df<t-) = IJ.( tx:f(x) ~ t}), and e
f 

is continuous at 
t .... -00 

t iff d
f 

is continuous at tiff IJ( [f = t}} = O. 

(2. 1) PROPOSITION. If (X, /\, \,t) is a fi nite m. s. and f .... f pointwise 
- -- n 

~~en d
f 

-+ d
f 

at every point of continuity of df' ~ d
f 

..... d f 
n n 

poi ntwi se a. e. 
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PROOF. Let E = [x:f (x) f f(x}}. Then IJ(E) = O. Let t E R 
n 

and let A = U > t} and A = (f > t}. 
n n 

Then AcE U lim inf A cE U 
n 

lim sup A cE U AU [f = t}. 
n 

If d f is continuous at t, then IJ( U=t}) = 0 

so U(A)S:IJ(lim inf A ) ~ lim inf U(A } ~ lim sup \.L(A ) ~1J(lim sup A ) 
n n n n 

~ !-L(A) and hence df{t) = IJ(A) = lim \J(A
n

) = lim d
f 

(t). Since d
f 

is 
n 

decreasing on R, d
f 

has only countably many discontinuities. 

REMARK. If f = g a. e. then s(f) = s(g) a. e. for each s E S. 

Thus for each s f S we may define a mapping T :L1(X, 1\, ',.,ij-+ Ll(X, 1\, IJ) - s 

by T sf = s(f). Let 51 = fsES:s = C]u, v[' u & v rational}. Then 

fTs:sES1} separates points of Ll 

For if f & gEL 1 differ on a set of positive \J - measure, then 

at least one of {f < g} or fg < f} has positive measure. By symmetry 

00 
we may assume {f < g} has positive measure. If ff3

i 
\= 1 is an 

co 
enumeration of all rationals of R, then U < g} = U U < f3. < g} so there 

. 1 1 
1= 1 

is a rational ~ such that \J. (U < v < g}) > O. Since f E L , u( U= -co}) = 0 

so there is a rational number ~ s. t. IJ( fu < f < v < g}) > O. Letting 

s=C] [wehaves(f)=C
f 

f< }sofs(f)~s(g)}:::>[u<f<v<g} u, v .u < v . 

and thus s(f) and s(g) differ on a set of positive measure. 

3. Spectral Equivalency. Let (X 1,1\1' IJ
1

) and (X
Z

' I\Z' iJZ) be measure 

spaces (m. s. ) with f 1 EM(X l' IJ,1) and fZ EM(X z' IJZ)' If both m. s. are 

finite, then we say that f1 and fZ are spectrally equivalent or equi­

measurable iff Uf = \J.f and in this case we write f 1 --- fZ' Then 
1 Z 

f 1 ..... £Z iff d f = d f iff \J.1(f
1
-

1
[u,v]) = \Jz(fz-1[u,v]) for every bounded 

1 Z #= 
interval [u,v] ofR. 
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In case one of the m. s. is not finite we write f {,",fZ iff 

-I -I #: 
IJ 1(f1 [u, vJ) = lJ.Z(fZ [u, v]) for every bounded interval [u, vJ of R . 

Then f1 , ... ··-[Z iff lJ.1(f1-
1
[B]) = lJ.z(fz-1[B]) for every Berel set Bof R,p,. 

Observe that if there exist f1 E M(X 1, lJ,1) and fZE M(XZ' IJZ) 

such that f 1 ~ f2. then 1-11 (X 1) =1-12.(X
2

) in the sense that both are infinite 

or finite and equal. 

(3. 1) LEMMA. 1£... f'" g and f is a simple function, then g is a simple 

function. Two simple functions are equimeasur able iff they take the 

same value on sets of equal measure. 

n 

PROOF. Let f = ~ a.. C E where 0.
1 
<.". < a. and tE.} par-

i= 1 1 i n 1 

titions X I' Suppose g E M(X
Z

' \JZ) and g ....... f. Then lJ.Z( tg = o.i}) = ).ll(E i )· 

lJ.z(fg ~f0.1'·'" o.n}})=lJ,Z(g-l[-oo,o.l[) 

n-1 
+·L:IlJ,2(g-110..,0.'+1[)+~-J(g-lJo. ,+ooJ) 

1= 1 1 <.. n 

11.-1 
"" - I [ - 1 J +p lJ. 1(f ]a..,o. I )+lJ,l(f Jo. ,+00 ) 
1= 1 1 1+ n 

n 

Thus if A. = [g= a..} then g = ~ a.. C A a. e. 
1 1 i= IIi n 

Now let f be as above and suppose g = ~ a.. C A where tA.} 
1= I 1 i 1 

partitions X z and IJZ(Ai) = iJ. 1(E
i

), i=l, .,. , n. If [u, v] is a bounded 

interval of R#:, then ).lz(g-l[u, v]) = UZ(U[Ai:o.iE[u, v]}) 

::: L:fIJZ(A.):o.. E [u, v]} = L41J
1

(E.):0.. E[u,v]} 
1 1 . 1 1 

= 1J.1(UtEi:ui E[u,v]}) = 1-1 1 (£-1 [u,vJ). 
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(3.2) PROPOSITION. Let F b(' a Borel measurable function on ;)11 

interval I , .. R~. ~ G C M(l) ~nd r > 0 ~l~ F1(t):::; F(rt) alld G1(t):- G( 1'1) 

on ~ I then G ....., F iff G 1 ~ F l' In addition, each of the followi nJ;i 

functions is equinleasurable with F. 

(i) H(t):::; F(t-r) r E R, t E 1+ r 

(ii) H(t):: F(-t) t E - I 

(iii) H(t) :: F(t+} if F is monotonic 

(iv) H(t) :: F(t-) if F is monotonic 

PROOF. Let m denote Lebe sgue measure, and let [ u, v] be a 

~ -1 ] 1 -1[ bounded inte rval of R . m(F 1 [u,v)= r m(G u, v l) 

-Ie -I r ] -I[ ] -I[ ] so m(F u, vl) :: m(G u, v ) iff m(F
I 

u, v ) = m(G
I 

u, v ) . 

-1[ ] -I[ -I[ 1 (i) m(H u,v)=m(F u,vJtr)=m(F u,v~) 

(ii) m(H-I[u, vJ) = m(_F-I[u, v]) = m(F-1[u, v]) 

(iii) & (iv) H = F a. e. 

(3. 3) PROPOSITION. The following are true for all measure space s. 

(i) f,...., g implies s(f) ,...... s(g) ~or all s E S 

(ii) f -- g implies rf,.,... rg and ftr '" gtr £~~..!:!. r E R 

(iii) f", g implies If\ '""' \g I 
(iv) f,....,g implies ft -g+ and f-""g 

(v) If a:X
1 

-> X
2 

is measure preserving and f E M(X
Z

' U
Z

) then 

foo""£. 

(vi) f"""g implies ess.inff= ess.infgandess.supf::ess.supg. 

(vii)Jif""g and f;<:O ~.then g:2:0~. andthere are sequences 

[tn } and {g } of simple measurable functions such that f ,..... g and 
n n n--

o ~ f t f and 0 ~ g t g. In addition, if f is essentially bounded 
n n 

~fl~ g is essentially bounded and fn t f and gn f g uniformly. 
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(viii) ~ fl E M(X l' ~1) and fZ E M(XZ' ~Z) and fl' fZ ;;:: 0 then fl ,...., fZ 

implies Sf I dl-1 1 = Sf2.d~Z in the sense that both arc finite and equal, 

or both are infinite. 

(ix) ....!if I (- LI(XI'~I) and fZ EM(X Z,I-1Z) and fZ"'fl then 

f Z ELI (X 2' IJ 2) and S f 1 d \J. 1 = S f Z d IJ. 2 • 

(x) ..!!:.f EM(X,I-1) andg EM(X',~') and rXi}i~1 and (Xi}i~I are 

pairwise disjoint measurable subsets of X and X' respectively such 
f , 

that IJ(X-U X.) = 0 = 1-1'(X'-UX. ) then fIX. ,.... g Ix. i = 1,2,3, ..•. 
-- 1 1-- 1 1 

In addition the following ar e true for finite m. s. 

(xi) .!i. f 1 - g 1 and f Z '" g Z and inf t If 11, If L.I } = a = inf rig I I, I g zl } 

the n f I + f Z ....., g I + g Z . 

(xiii) If f .... f and g ..... g a. e. and f "" g n = 1, Z, 3, .•. , the n f ,..; g. 
-n --n n n 

(xiv) If fn' f E L I(X l' 1-1 1) ~nd gn' gEL \XZ' I-1 Z) and fn .... f and gn -- g 

in L 1 norm and f ...... g n = 1, Z, 3, ... , then f ,.... g. 
- n n --

(xv) .!i. cp is Borel measurable on R# then f~g implies cp(f) ....., cp(g). 

n 
PROOF. (i) Let f '"" g and s =:E ok C I with Uk} pwd intervals 

n k= I k 

of R#=. Then s(f) = 0 Ok C f-l[I 1 ,..,~n ok C -Ie ] = s(g) using 
k-l k~ k-l g Ik 

LemIna (3. 1). 

(ii) Let [u, vJ be a bounded interval of RI. If r > a then 

( -1 [ - 1 [u v] -1 u v] - 1 ~1 (rf) u,v])=~I(f r'r)=I-1Z(g [r'r)=I-1Z (rg) [u,v]). 

-l r· -1[ -1 -1 
1J 1( (-f) u, vJ) = ~l(f -v, -uJ) = IJZ(g [-v, -uJ) = ~Z( (-g) [u, vJ). 

Thus rf ,... rg if r> 0 and -f,.., -g, so rf-rg for all r E R. Let r E R. 

-1 -1 -1 ] -1[ J) \J.l«f+r) [u,vJ)=U
1

(f [u-r,v-!:J)=iJ.2(g [u-r,v-r) =~Z«g+r) u,v. 
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(iii) Let f,..., g and let [u, v] be a bounded interval of R:!f,. In case 

11 - 1 -I[ -Ie J u :s; 0 ~ v, \J 1 (f [u, v]) = \Jol (f -v, v]) = uz(g -v, v ) 

= uz(/gl-I[u, v)). If 0 < u, \JI(lf\-1[u,v]) = U
1
(f-l[n,y])+\Jl«-O-I[u,v]) 

-I[ -1 I ,-I[ J = IJz.(g u, v])+\Jz.«-g) ell, v]) = Ilz( g u, v ). 

The cas e v < 0 is trivial. 

(iv) Let f ~ g and l e t [u, v] be a bounded interval of R#' W e w i sh to 

prove that 1J.
1 
(f+-l [u, v]) = IlZ(g +-I[u, vJ) which is clearly true jfv<O or 

+-1[ J -lr ] \1>0 . Hence supposeu~O~v. Then u 1(f u, v ) = \Jl(f L -OO , v ) 

-1[ +-1[ _ = IlZ(g -00, vJ) = \JZ( g u, v j). For the r e st , f ~ g "" -f,..., - g "" f 

+ +-= (-f) ~(-g) = g . 

-1[ ] -1 -lr -Ie (v) I-Ll((fo a ) u, v ) = 1J.1(a fLU, vJ) = IJ-z.(f u, vJ) . 

(vi) Recall that ess. sup f = inf ft:u( [f > t}) = o} and ess. inf f = 
- ess. sup (-0. If f ...... g, then t E R:!f, "" U

1
(U > t}) = IJ-

1
(f-l]t, +ooJ) 

= IJ)(g -lJt, +ooJ) = IJ ) ( f g > t}) so es s . sup f = ess. sup g. f'" g "" -f ...... -g 
~ ~ 

~ cs s. inf f = - e ss. sup(-f) = - ess. sup(- g ) = e ss. inf g. 

(vii) Let f rv g and f ~ 0 a. e. The n (vi ) abov e "" g ~ 0 a. e . To con-

struct [f } and [ g } let 
n n 

A = f-l[i-l _i_ [ B 
- 1 [ i-I 2-[ l~i~nZ.n = g 

11 , i n ' Zn n, i n ' Zn Z Z 

A 
-1 - 1 

en, 00 J = f [n,ooJ B = g 
11 n 

11 

n 
n 2. . 1 
"" 1-g = LJ - C B . + nCB 

n i= 1 In n,l n 
f 

The n Lemma (3. 1) "" f '" g • f ..... g "" \ fl ,..., 19 I so if f is essentially n n 

bounded, then ess. sup! g 1 = ess. sup I f l < 00 so g is essentially 

bounded. The rest is well known. See [17 , p. 15 9 , (11. 35)J . 
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(viii) If f is Cl. sin1ple function and g ..... f then Lemma (L 1) '? g i::; 

simple and J fd~I = J gdlJZ' If f ~ 0 and g"" f then g ? 0 and t:her(~ 

are sequences f£ } and fg } of non-negative sin1ple functions s. t. 
11 n 

fn ~gn and fn t f and gn t g. Then Jfd 1J 1 = lim S fndiJ1 = lim S gn d \12 

= JgdiJZ' 

(i x) If f E L 
1 
(X l' iJ 1) and g '""' f the n 1 g I ~ \ f \ 50S \ g I d IJ, Z = S I f I d ~ 1 

< ro and thus g E LI(X
Z

' 1.1
2

), Finally g r-J f ~ g + ...... f+ and g ..... f 50 

j' J+ ('- S+ S- S g d \J 2 = g d \J. 2. - J g d IJ,Z = f d \J 1 - f d \.11 = f d \J 1 . 
I I 

(x) Letting Xo = X-UX. and Xa = XI- UX! we have fIx. '" g IX. 
III 1 

I = 0, 1, 2., •.. , and £X. J~a and £X.' }.rna are partitions of X and XI 
I 1= 1 1= 

respectively. Let [r, s] be a bounded interval of R*. Since 

flx.-g\x. i=O,l,2, ... ,~havelJ(f-I[r, s] n X.) = 1J,'(g-I Cr , s]nx.') 
. 1 1 1 1 

-I[ i = 0,1,2, ... , so summing from i = 0 to +co we get iJ(f r, s])= 

~'(g-1[r,5]). Hencef....,g . 

. (xi) Let fI,fz,gI,gZ be as stated. Then IJI(X I ) = IlZ{XZ}' Let 

Ei = [fi oJ: oJ, Fi = [gi * a} i= I,Z, and E3= Xl - (EIUEZ)' 

F 3 = X z - (F 1 U F Z)' Then IJ I (E i ) = UZ(F
i
) i:= 1,2 and since the m. 5. 

are finite we may conclude thatIJ1(E3) = IJ,Z(F3 ). Let [u, v] be a 

bounded interval of R* and let f = flH
Z

' g = gl+gZ' Then 1J1(f-1[u, v]) 
3 -;' , -Ie ] - -Ie -Ir 1 -t='11J1(Einf u,v) -1J1(f I u,v])+1J1(fz L.U,v_)+1J 1 (E 4 ) 

where E4 = £E3 if 0 E Cu, vJ Hence if F _ I F3 if 0 ) [u, v] 
% if 0 fl [u, v J 4 - t % if a 'F [u, v] 

[ -1 -1 
then fJZ(g-1 u, v]' = IJ,Z(gl Cu, v])+UZ(gz Cu, vJ) + Uz (F 4) 

-1 
= \..LI(f [u, v]) 

(xii) Follows from (iv) and (xi) . 
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(xiii) Using (2. 1) we have 

= d on R so f - g. g 

(xiv) f - f in nonn implies {£ } has a subsequence f - f 
n n n

k 

pointwise a. e. Then g - g in norm so 
n k 

~ } has a subsequence 
n

k 

gn -- g pointwise a. e. 
lnk 

But then fn -> f pointwise a. e. so (3. 3)(xiii) 
mk 

implies f'" g. 

+ -
(xv) From the proof (vii) we see that each of cp and cp is the 

n 
limit of a sequence of simple functions of the form L a. C E where 

i = IIi 
the sets [E.} are Borel sets. Hence cp is the limit of a sequence 

1 

[s } of simple functions of the same form. Hence f"" g ~s (f)- s (g) 
n n n 

and since s (f) ..... cp(f) and s (g) -cp(g) we have cp(f) ...... cp(g). 
n n 

(3.4) LEMMA. (i) Suppose f E M(X 1, 1\1' IJ 1 ), g E M(X 2, 1\2' 1J,2), 

El EA 1, E 2 E1\2' \.11(E 1 ) = 1)'2(E 2 ) < 00 and f and g have the same 

constan t value on E 1 and E2 respectively. Then f"-' g ~ fiX 1 -E 1 

~gIX2-E2 and fC X -E -gCx -E . 
1 1 2 2 

(ii) Suppose f, g E M(X, 1\, IJ), E E 1\ has ~(E) < 00 and fiE = g 1 E. 

Then f'" g ~ fl X-E- g IX-E and fC X _E ""' g CX_E. 

PROOF. (i) Let fl=flx1-E
1 

and gl =gIX 2 -E z' and let a = flEl 

= glE z· Let [r, sJ be a bounded interval of R#. Then 

-1[ ] _{a ifa~[r,sJ 
\J 1 (f r, s n E 1) - ~1 (E

l
) if a E [r, sJ 
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-l[ -I[ J ' and siITlilarly for g, so iJ. I (f r, sJ n E I ) = iJ.Z(g r, s n E Z)' Hence 

I-Ie -I[ IJ.I (f r, sJ) = iJ. I (f r, sJ n (XI-E I » 

-l[ -l[ ] =1J.r(f r,s])-IJ.I(f r,s nEll 

-I[ J -I[ ] ~ , .. I[ ] :::lJ.t(g r,s )-IJ.Z(g r,s nl<'Z)=U.Z(g r,s), 

so rJ ~'g 1 . 
- 1 

Letf l =fCX1-E
l 

andg 1 =gCXZ-E
Z

' ThenlJ.r(fl (0» =: 

-1 1-1 1-1 ~(El U{(X 1 -E 1 )nf (0») =iJ.1(EI)+iJI{f (0» = Uz{EZ)+iJ.Z(g (0» = 

Uz{gI-I{O». If I is an interval of R#and ° ~ I, then UI (f1-
1 {I» = 

1
-1 1-1 -1 

iJ.1(f (I»=UZ{g (I»=IJZ(gl (I». HencefI"'-'gI' 

(ii) Let f/ = fIX-E and g\ = g\X-E. Let [r, sJ be a bounded 

intervalofR#. Since fIE=g\E, wehave lJ(f-1[r,s]nE) = 

-1 [ lJ.{g r, s J n E) and the rest is siITlilar to part (i). 

(3.5) EXAMPLES, 1. The following functions are equiITleasurable 

with f{x) = x on [0, 1 J and are ITleasure preserving ITlaps of [0, IJ- [0, IJ. 

(i) g 1 (xl = 1 -x 0 s; x ~ 1 

(iii) 

~ {
i-x 0 ~ x: k I 

g3 (x) = ~ 
2 -x t ~ x ~ 1 

-------
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(i v) 1 

° sa :-:;:: 1 

° SX< I-a 
a 

1-a s x<1-Z 
a 1- z s xsl 

Z. Let f = C]_oo, O[-C]Z,oo[ and g = C]_oo, 1[-C J2 ,00[' Then 

+ + - - J -1 
f =CJ-oo,O[~CJ-oo,I[=g andf-- g butf.,..gsincern(f (0»)=2 

-1 
while m(g (O» = l. 

3. Letf=C
J

_00 ,0[+2C[O,00[" m([O,00[}=m([1,00[) and f 

has the same constant value on [0, oo[ and [1,00[ but f1R - [0,00 [ 

~ fIR - [1,00[. 

4. Let 3' be the collection of all finite subsets F of [0, 1J and let 

3' be directed by c. Then fCF}FE3' is a net which converges pointwise 

to C[O, IJ (since if tE [0, IJ then F ° = ttl E 3' and F 0 c F implies 

CF(t) = 1) but C F ~ ° for all F E 3' . 

For i = 1, ... , k let (X., fe., \,.L.) and (Y., 2:., v.) be finite m. s., let 
11·1 111 

(3.6) PROPOSITION. Let f. EM{X.,\,.L.) and g. EM(Y.,v.) i=l,. •. , k 
-- 1 1 1 -- 1 1 1 

and let F(x1, ..• , X k ) = (f I (x 1L ... , fk(xk » for all (xl"'" xk ) EX and 

G(y 1,···, Yk ) = (gl(Yl),"" gk(Yk» for all (Y I ,·'" Yk) E Y . .!!.. fi '" gi 

1 = 1, ... , k then F ....., G. 

PROOF. Let ~k be the semi-algebra of all measurable 

k k 
rectangle s of R and let iBk be the a-algebra of all Borel subsets of R . 

If A is a set and ~ c ZA let S(~) denote the a-algebra generated by ~; 
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let C(~) denote the monotone class generated by ~; and let R(~) be the 

algebra generated by~. If f;; is a semi-algebra we recall that R(~) is 

the set of all finite pairwise disjount [pwd] unions of members of~. 

Let (J= fB ESk:IJ,(F-I[Bl)=v(G-I[B])}. 

If Bl X· •• X Bk E: .2t],' then 

-1 -1 -I[ ] U(F (B1X ... X B k »= \J(f1 [B1JX .... Xfk B k ) 

-Ie -1[ J = IJ, 1 (f B 1 ] ) ..• , IJ,k Uk B k ) 

= v 1(gi
1
[B 1])'" 'Vk(gk1rBkJ) 

= v (G - 1 (B 1 x· •. x B
k

» 

so" k ctJ. 0 is clearly closed under pwd unions so R("i) C (J. (J is 

easily seen to be a monotone class, so ~ = SW
k

) = S(R("k» = C(R("k» 

cO. 

(3.7) COROLLARY. Fori == 1, ... ,k let (X.,A.,u.) and (Y.,:S.,v.) 
-- -- 1 1 1 -- 1 1 1 

be finite m. s., let f. E M(X., !J.), g. E M(Y., v.), a. E R, and n. ? 0 
-- 1 1 11 1 1 1 -- 1 

integers. If f. "J g., i= 1, ... , k then for each of the following definitions 
- 1 1 -

of F and G we have F ....... G. 
k 

(a) F (x l' ... , x k ) =. ~ 
1= 1 

n 
a. f. i (x.) 

1 1 1 

k n. 
G(Yl""'Yk)=t: a. g.l(y.} 

1= 1 1 1 1 

k n 
(b) F(x 1, ••. , x k ) = Tf fi i.. (xi) 

i= 1 

k n. 

k n. 

G(Yl""'Yk)=lI gi1(yi ) 
i::: 1 

PROOF. Use Props. (3.6) and (3.3) (xv) with ['D(t
1
,···, t k ) = 

k n . 
'2t a

i 
ti 1 and cp(t

1
, ..• , t

k
) = .". t. 1 . 

III 1 



-13-

REMARKS. (1) For finite m. s. (3.3) (xv) gives another proof of 

(3.3) (ii), (iii), & (iv) by lettingcp(t) = rt, cp(t)::: t+r, cp(t)::: It!, and 

cr(t) ::: max fO. tl. rp(t) ::: - min [0, t} . 

(2) For finite Ill. s. if f "-'a f for some number a .s. t. I a I =F 1, then 

I f I::: 0 or +00. For we have by induction that If I "" lalnlf\"" 0 or +00 

as n ""00. 
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II. DECREASING REARRANGEMENTS 

4. The Right Inverse of a Decreasi.~Function.. If p is a decreasing 

function defined on an inte rva1 J of R, we can extend p to a de c reas i ng, 

function defined on R# by defining [or t ~ J, 

p(t) = {+ac 
-oc 

if t ~ inf J 
if t;;;:: sup J 

If P is a decreasing function defined on R#, then its right continuous 

inve rs e p. is defined by 

p' (t) = inf (u E R: p(u) :5: t} 

for each t E R*, where by inf 0 we mean + oc and inf R ::: -ac. If p is 

1 : 1 
• -1 

then p = p 

It is easy to see that p' is decreasing and right continuous, 

and for every t E R*, p'(p(t)) st, p'(p(t+)) st, p'((p(t)+€)-) s t, 

p'(p(t)- 8) ~ t whenever e > 0, and p'(p(t)-) ~ t. Furthermore, for all 

t E R#, p'(t) = suptu E R:p(u) > t} = sup [u:p(u-) > t} and 

p'(t-) ::: inf(u E R:p(u) < t} = inf(u:p(u-) < t} . 

(4,1) PROPOSITION. 1i. p is a decreasing function on R~ then for 

every t E R we have 

p' '(t) oc (p')'(t) ::: p(t+). 

PROOF. Let u E R. Since p'(p(u+)) $ u we have p"(u) = 

inf[t:p' (t) s u} :O::p(u+). Since p' is decreasing and right continuous 

we have p'(p"(u)) = p'(inf[t:p'(t) s u}) ::: sup (p'(t):p'(t) s u} s u. Since 

t .... p(t+) is also decreasing and right continuous we have similarly 
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,Ji 
p(p·(t)+) = suptp(r+):p(r) $ t] :<;: t for all t ER. Hence 

p(u+) ~;p(p"(p"·(u) )+)$ p··(u). 

(4.2) PROPOSITION. Let 0 < a ER and let p be a decreasing function 

defined QQ_ [0, a]. Then for eve ry t E R, 

p·(t) = m((uE [O,a]:p(u) > t}) = d (t) 
P 

where m is Lebesgue measure. 

PROOF. Now p·(t) = suptu:p(u) > t} so p(u) > t ~ 

u sp"{t) and thus fu E[O,a]:p{u) > tl c [O,p"{t)] 

Again, p·(t) = inf {u:p(u):S; t} so p{u):s; t ~ 

p·(t) su, i. e., u < p"(t) =:> p{u) > t, so 

JO, p. (t) [c t u E [ 0, a]: p (u) > t} . 

(4. 3) PROPOSITION. Let p, Pn be decreasing functions on Ri for 

n = 1, 2, 3, ... and suppose p .... p at all but countably many points 
n 

of R#. Then p ..... p. at every point of continuity of p •. 
n 

PROOF. Fix t E R. Let An = {u:Pn (u) > t} , A = [u:p (u) > t} , 

E = (u:p (u) 1+ p(u)} so that p. (t) = sup A , p·(t) = sup A and E is 
n n n 

countable. Then 

An E C c lim inf A C lim sup A C tu:p (u) ;;:: t} so 
n n 

sup An E C :s; sup (lim inf A ) :s; sup (lim sup A ) :s; sup (u:p (u) ;;:: t} 
n n 

Now the functions p are decreasing so the sets A have the forrn 
n n 

[-oc, r [ or [-oc, rJ and thus sup (lim inf A ) = lim inf (sup A ) = 
n n 

lim inf p. (t) and similarly sup (lim sup A ) = lim sup p • (t). Since 
n n n 
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E is countable and A is an interval, sup A n E C = sup A = p. (t). Hence 

p. (t) $ lim. inf P~ (t) :s:; lim. sup P~ (t) $ p·(t-). Thus if p. is continuous at 

t, thenlim.p·(t)=p·(t). Also see [47, p. 508, (18.21)]. 
n 

5. Decreasing RearrangerrlCnts of Functions on Finitem.. s. Let 

f: [0, 1] -> [0, 1 J be Lebesgue measurable. It is natural to wonder 

if the values of f can be rearranged to form. a decreasing function 

* * f : [0, 1] -> [0, 1] such that f "" £. The affirm.ative answer is well 

known [15]. 

We now generalize this idea for a finite m.easure space 

(X, A, 1-1 ) by showing that if f E M(X, IJ) then there is a decreasing right 

continuous Lebesgue m.easurable function of on [0, ~ (X)] s. t. of"'" f. 

For the rest of this section let (X, fl., IJ ) be a finite Ineasure 

space (m.. s. ). 

(5. 1) DEFINITION. l£. f E M(X, fJ) we define [, f £Y 6 f(t) = d i (t) if 

° < t So IJ (X ) . 

(5.2) THEOREM. (i) l!.. f E M(X, f-l) then of is a decreasing right 

continuous Lebesgue m.easurable function on [b, IJ(X) ] satisfying 

Of - £. 

(ii) Conversely, if p is a decreasing right continuous Lebesgue 

m.easurable function on [O,I-1(X)] satisfying p ~ f, then p = of 

PROOF. Now of is by definition decreasing, right continuous 

and Lebesgue measurable on [0, f..l (X)] and 6 f = di. Lemma (4. 2) ~ 
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do = 0; and LeITlITla (4.1) =:) d;· = d£ so do = d
f 

and thus o£ "-'f. 
f £ 

Conversely, if p is right continuous decreasing and Lebesgue 

measurable on [0, I-l(X)] s. t. p"-' f. then d
f 

= d
p 

= p. using (4.2) 80 

. . . H. I} ~ 6 = d == P 
f f = p. 

(5.3) PROPOSITION. 
a 

(i) £ is integrable if£ Of is integrable in which case Sfdl-l = J Of 
o 

where a = I-l(X). 

(ii) s(£) ...... 8(0£) for all s E S. 

(iii) fl ~ £2 =:) o£ $; o£ 
1 2 

(iv) 1£ each o£ £ and g is a ITleasurable function on a finite ITl. S. 

then £ "" g iff o£ = ° . -- - g 

(v) 1i..P is increasing on R# then 0p(f}(t) = P(of(t)-) 0 ~ t ~ I-l(X). 

(vi) ..!.!. r ~ 0 then orr = rof' while i£ r is real, then 0f+r = of+r. 

(vii)li £n -. £ a. e. then o£ -+ Of at every p_oint of continuity o£ or 
n 

(viii)-.!i fn ..... 0 in ITleasure then o£ -+ 0 uniforITlly on every closed 
n 

subinterval o£ JO, fJ (X)[. 

PROOF. (i) This is an iITlportant special case o£ results o£ § 3. 

SiITlilarly for (ii). 

(iii) £ 1 ~ £2 =:) d £ ~ d £ =:) ° £ 
1 2 1 

= df· ~ d£· = ° £ . 
1 2 2 

(i v) f '" g=:>o £ = d i = d ~ = ° g Conversely, ° = 0 =:> d = £ g f 
0' = 

f 

° . = d =:) £ '" g. g g 

(v) Since f'" o£ we have p(£) '" P{of} = P{of-) a. e. Since t -- P(of{t}-} 

is decreasing and right continuous, TheoreITl (5.2) (ii) iITlplies 
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(vi) These are important special cases of (v) with p (t) = rt and 

p(t)=ttr. 

(vii) f -- f a. e. ~ clfo -- d
f
. at all but cOllntably rnany points 150 

n 11 

Lenllna (4.3) :;.:) of =- eli =: lirn dfr~ at every point of continuit.y of elf· 0" be 

(viii) Let [u, vJ c JO, iJ.(X)[ and let € > O. Since u > 0.3 Nl > () s. t. 

j..L({!f l>e})<uwhenevern;:::N1sodf (e)=jJ({£ >s})<u and thus 
n n n 

Of (u) s; of (df (e)) = d/(df (e)) s; ewhenever n ;:::N 1 . Since v < j..L(X) 
n n n n n 

3N2> 0 s.t. n;::: N2 ~j..L (£Ifn ! > s/2}) < j..L(X) - v so 

v < j..L ((! f ! ~ e /2 }) ~ j..L (U > - e:}) = d f (- e) = d i . ( -e) sob f (v) = d i (v);::: - €: 
n n n n n n 

whenever n ;::: N 2 . Since bf
n 

is decreasing on [u, v] we have Ibfn(t) I ~ e 

for all t E [u, vJ whenever n;::: NI t N Z. 

Recall that if f E M(X, j..L), then ess. sup f = inf{t: \J({£>t}) = OJ. 

Writing E
C 

= X -E if E E 1\ and f I E
C 

for f restricted to E
C 

we have: 

(5.4) PROPOSITION. l!.. f E M(X, u) and 0 s; t s;j..L(X), then 

0f(t) = inf (ess.sup (fIE
c

): IJ(E) ~t} 

0f(t-) = inf (ess. sup (fIE c ): j..L(E) < t} 

where ess. sup fl 0 = -00. 

PROOF. Let t E [0, IJ(X)] . Ifu ER:/I:andE = (£>u} so that 
u 

df(u) = j..L(Eu )' then df(u) s; t ~ j..L(Eu) $ t and ess. sup (fIE~) $ u and thus 

inf {ess. sup (fIE
c

): j..L(E) S; t} s; bf(t). 

Conversely, if j..L(E) ~ t, let u = ess. sup (fl E C
) so that {£ > u}CE, 

df(u) ~ t, and thus bf(t) s; inf (ess. sup (fIE c ): IJ(E) st} . 
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(5.5) THEOREM. If f E M(X, p) and a = \J(X} then 

(i) (Of)+ = 0f+ ~~ (of)- = -o_C 

so that of = 0 f+ + o_C 

(ii) 6 (t) = -0 «a-t)-) 
-f f 

o :-:;: t ~ a. 

+ + - - + PROOF. (i) of ~ f ~ (O[) '" f and (o[) '" f. Since(o[) is 

decreasing and right continuous, Ui[)+ = 0f+' (o[)- -..f- ~ -(o[)- -- -[­

and -(of)- is decreasing and right continuous, so -(o[)- = o_f- and 

thus (o[)- = -a_C. 

(ii) f ..... o[ ~ -f,..,. -of'" a where a(t) = -of(a-t)-) using Lemma (3. Z) 

(iii). Since a is decreasing and right continuous, a = ° -f' 

From now on we will use 0E to denote 0c ' where E is a 
E 

measurable set. Statement (i) of the following lemma seem s to have 

been first used systematically by F. Riesz ([35], p. 164). 

n 

(5.6) LEMMA. (i) 1L f =i~~l fi C
Ei 

E M(X, u} and 0 < f 1 < ... < f n , 

n n 
then of = [I OF +.~ (f. -f. l)OF- where F - = U _ Ek 

1 1= 2 1 1- 1 1 k= 1 

n 
(ii) If f = ~ f· CEo E M(X, u) with f. > 0 and E 1 ~ ••• ~ E , then 

- i= 1 1 1 -- 1 -- n 
n 

Of = '~l f. 0E· . 
1= 1 1 

PR00F. (i) Let F n+1 = ¢. Now 

S :? [ 
n 

fi ~ s < f i + 1 

s < f 1 

i= l, ... ,n-1 
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n 

so of = 121 fi CCU(Fi+1LU(F
i
)[ 

n n 
= ~ f. [) 

i= 1 1 F i 
L: f. [) 

i= 1 1 F i+ 1 

n 

= f1 of + ·r'Z (f. -f. _l}oF . 1 1- IIi 

n i 
(ii) Let G. = E. - U Ek and g. = '0 fk , go = O. 

1 1 k= i + 1 1 k= 1 

n 
Then f = L: g. C

G 
and 0 < g 1 < ... < g so 

i= IIi n 

since 

n 
F. ::: U G

k 
== E. and g. - g. 1 = f. 

1 k==i 1 1 1- 1 

(5.7) PROPOSITION. E: 0 5: f E M(X, IJ) ~nd EEl\. ~ 0fC
E 

5: of 0E 

PROOF. Fir st let f = CF where F E 1\.. 

C [ r" 5: C [- r } [ :: ° ° . 0, IJ(EnF) 0, min tU(E),\.L(F) E F 

n 
Let f = L: f. C F , Fe··· C F l' f. > 0, so 

i= IIi n 1 

0fC
E 

:: L fi 0EnF. ~ I fi 0E OF. ::: 0E of' If ° ~ f E M(X, IJ) then 
1 1 

there is a sequence 0 ~ fn t f of simple functions, so of t ° f and 
n 

of C t 0fe and hence 0fe = lim of C , .c: lim of 0E = ofoE' 
nE E E nE n 

REMARKS. (1) It follows immediately from Prop. (5. 4) that 

o£(o) = esse supf and 0f(a-) ::: esse inf f when a = IJ,(X). 

(2) If £ (x) = xn on [0, IJ then f -0 f = 0 in measure but 
n n 

of (0) = esse sup £n = 1 so of (0) f 0f(O) = O. 
n n 
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(3) We cannot prove Prop. (5. 3)(vii) for nets. Direct the finite 

subsets of [0, 1J by inclusion and let fE = C E if E is a finite subset of 

[O,lJ. Then t E [0, 1J and ft} c: E;:::) fE(t) = CE(t):= 1 so the net fEE} 

converges pointwise everywhere to 1 but of = 0 for every E since 
E 

fE = 0 a. l.'. 

(4) Ifg= 16fl. thenog = 0lfl sincef",of;:::) 1[1-10[1. 

(5) Let p be decreasing and right continuous on R#, [ E M(X, U) 

and a = U(X). f...., -o_f so p(f) "" p(-o -f) which is decreasing and right 

continuous on [0, aJ. so for 0 ~ t ~ a, 0p(f)(t) = p(of«a-t)-». 

(6) Let 0': X .... [0. U(X)] be m. p and let a(t) = U(X)-t 0 ~ t ~ IJ(X). 

Then 0' .-v a and a is decreasing and nght contlllUous so 0O'(t) = U(X)-t. 

(7) Let a > O. If F E M[O, a] and F 1 (t) = F(at) on [0, 1 J then 

of (t) = 0F(at) on [0, 1]. This follows immedlately from (3.2). 
1 

EXAMPLES. 1. Let [(x) = x on [a, bJ. Slllce o(x) = b-x IS a 

m. p. map of [0, b-aJ .... [a, bJ. f a (J.-v [ 0.3) (v). But fa O'(t) =: b-t 

is decreasing and right continuous on [0, b-aJ so 0f(t) = b-t on 

[0, b-aJ. 

2. Suppose p is increasing on R, a> 0, and f(x) = p(ax) on [a, b]. 

Then 0f(t) = ° ( )(t) = p(o (t)-) = p(a ° (t)-) = p«ob-at)-) on ro, b-aJ. p ax ax x -

3. Let g(x) = e
ax

, a> 0, on [a, bJ. 
ab-at 

Then 0 (t) = e on 
g 

[0, b-aJ using example 2. 

4. Let g(x) = log ax, a > 0, on [a, b], a > O. () (t) = log(ab-at) 
g 

011 [0, b-aJ. 

5. Suppose p is increasing on R, Q' < 0, and f(x) = p(Q'x) on la, bJ. 

Since a(x) = x+a is a m. p. map of [0, b-aJ .... [a, bJ, f a a'" f. Thus 

t .... p(Q'(t +a)-) is decreasing and right continuous and equimeasurable 
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'Ni th f sao f (t) = p ((at + aa) - ). 

6. Let f(x) = sinx on [0, Tr/2}. Then 0f(t) = cost on [0, Tr/2], 

because cosx::: sin(x+Tr/2) on [0, Tr/2] and thus they are cquimeasur-

able. 

7. Let l' be decreasing on [0, al and extend F to R by periodicity. 

Let f(x) ::: F(x) on [0, na] where n> ° is an integer. 

on [0, na]. To prove this, let G(t) = F(..!.+) on [0, naJ. and lei [r, sJ be 
n 

a bounded interval of RI. Then m(G -1 [r, s J) = m(nF -1 [r, sJ n [0, naJ) 

-I[ [ -1 = nm(F r, s] n 0, a]) = m(f [r, s]). Thus G", f and since Gis 

decreasing and right continuous, G::: or 

8. Let f(x) == sinx on [0, Tr]. Then 0f(t) = cos t/2 on [0, Tr]. For 

if we let g(x) = cosx on [0, Tr/2[ and g(x) == cos(x-Tr/2) on [rr/2, Tr] then 

g\ [0, Tr/2[ '" fl [0, Tr/2[ and g\ [Tr/2, rr] == f\ [Tr/2., Tr] so g ",f by (3. 3) (x) 

and thus 0f(t) ::: c5 g (t) == cos t/2 on [0, Tr] using example 7. 

9. Let f(x, y) = x-ty on [0, IJ X [0, 1] with product Lebesgue 

measure. Then 

1 

1 - tt2 

~. (2 _t)2 

o 

t ~ a 
a ~ t ~ 1 

1 $ t $ 2 

t ~ 2 

1 2 1, 2 
by inverting 1 - 2"t and z(2-t) 

o $ U $ i 
1 
Z $ u $ 1 

10. Let g(x, y) == (I-x)+ (I-y) on [0, 1] X [0, 1]. Then with f as 

in example 9, 0g = of because g'" f by (3.6). 

11. If g(x, y) = Jx+y on [0,1] X [0,1] with f as in example 9, 

° = J6:f using (5.3)(v). g 

12. The Hilbert Transform of a function f on R is defined by 
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T(x) lim 
1 S f(t) 

dt ::: 

8-1 0+ 'IT t - x 
It-xl>€: 

It is well known that if E has finite Lebesgue measure, then 

d Ie" I (t) ::: 2 m (E) / sinh 'ITt so 
L 

0l?-! I(U);::;.L sinh-
1

(2m(E)/It). [46 J 
I...~E 'IT 

At this point it is natural to wonder if, given a right continuous 

decreasing function Q on [0, ~(X)J, there is an f E M(X, ~) s. t. 6f ::: Q • 

(5. 7) PROPOSITION. Every right continuous decreasing function on 

[0, j..J.(X)] is the decreasing rearrangement of a measurable function on 

(X, /\,\...1.) iff there is a m.p. mapa: X -+ [O,\...I.(X)]). 

PROOF. Let 0: X -+ [0, ~(X)J be m.p. and let g be a decreasing 

right continuous function on [0, ~(X)J. Then goa E M(X, \...I.) and 

goo'" g so 6 0 a = g. g 

Conversely, let a E M(X, \...I.) s. t 6a(t) ::: j..J.(X) - t,O $t ~\...I. (Xl. Then 

6 and hence a is m. p. 
a 

Recall that A E A is said to be an atom of (X, /I., IJ) (sometimes 

an atom of IJ) iff IJ( A) > 0 and B C A, B E /I.=- ~B) = 0 or ~(B) = IJ,(A). 

If A is an atom of (X, A, IJ.) and f E M(X, U) then ess. sup(fIA) ::: 

ess. inf(f\A), i. e., f is essentially constant on A. (X, /I., \J.) is said 

to be non-atomic if it has no atoms. Any Borel subset of R with 

Lebesgue measure is known to be non-atomic. The following is a 

fundamental result about non-atomic measure spaces. 
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(5.8) LEMMA. (A. Liapounoff, 1940) If (X, /I., IJ.) is a non-atomic 

finite m. s. then tlJ.(E): E E /I.} = [0, Il(X)]. 

For a proof see N. Dinculeanu [5.p. 25J. 

In order to state Liapounoff's result in another way VIe rnake the 

following definition. 

(5. 9) DEFINITION. A mapping r/> : [0, 1 J -0/1. is said to be a 

Il-resolution of A E /I. if it has the following three properties. 

(i) r/> (t) C A for all ° ~ t ~ 1. 

(ii) ° ~ tl ~ t2 implies r/> (t 1 ) C r/>(t 2 )· 

(iii) p( r/>(t)) = tlJ,(A) for all ° :5: t ~ l. 

Observe that a IJ.-resolution r/> of a set A E /I. is continuous in the 

sense that 1J.(~(u) - r/> (t» = (u-t)IJ.(A) - ° as u ~ t or as t t u. This is 

equivalent to saying that r/> is continuous as a mapping of [0, 1] into 

the ,tnetric space associated with(X, /1.,1,,1). (Also see [26J.) 

(5. 10) THEOREM. The following four statements are equivalent for 

the finite m. s. (X, /I., iJ.). 

(i) (X, /I., IJ) is non-atomic. 

(ii) There is a IJ.-resolution of X. 

(iii) There is a measure preserving map of X onto [0, IJ(X)] . 

(iv) Every right continuous decreasing function on [0, IJ.{X) ] 

is the decreasing rearrangement of a measurable function on (X, i '., ;..I.). 
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PROOF. (i) ~ (ii). Let a = u(X) and let Xo E X. Since (X, A,~) 

is non-atomic, lJ{{x
O

}) = O. Let i> (0) = [x
O

} and i> (I) = X. If cf; (m/Zn) 

. n m-I m is defmed for each ° ~ m ~ Z so that ¢ (--) c i> (--) and 
Zn 2;n 

m m Zm-l 
~li>(-») =-- a, then there are sets i> (-ri-=ry) E A s. t. 

Zn Zn 2 

~ (m-l ) c i> (2m.-l ) c i> (.222:.-) and ~(i>(2m-l ) = 2m-1 a, 0 ~ m -< Zn. 
Zn Zn+l Zn Zn+ 1 Zn+ 1 

This defines ¢J on A = £ n~ : n ~ 0, ° ~ m <' Zn} e [0, 1 J so that for all 
Z 

U, v fA we have rI> (u) C rI> (v) when u < v and U(rI>(u» = au. If t E [0, 1 J -A 

we define i> (t) :-:: n {i>(u): u ~ t}, which also holds for tEA. 

I-l(i>(t)) = in£[~(i>(u): u ~ t} = t a and if tl < t z there is a v ~B s. t. 

tl < v < t z and hence rI>(i.) = n(rI>(u): u ~tl} crl>(v) en frl>(u): u ~ t z} = rI>(tz). 

Thus i> is a ~ -resolution of X. 

(ii) ~ (iii). Let i> be a f.l - resolution of X. Define 

cr(x) = a· inf {t: x E rI>(t)}. Then (x EX: cr(x) > s} = U{rI>{t)c: t>s/a} so 

dots) = IJ fa> s} = lim IJ (i>(t)c) = lim(a-ta) as t ~ s/a 

=aCJ _oc , O[ + (a-s) C[O, a] so 0a(t) = a-t, 0 ~t sa, and hence a is m.p. 

Any m. p. nlap is cs sentially onto. 

(iii) :::) (iv) This is (5. 7). 

(iv) ~ (i) Let £ E M(X, IJ) be s. t. o£(t) := a-t, 0 ~ t ~a. Then £ 

is not constant on any subset of X of positive measure so (X, A, IJ) has 

no atoms. 

EXA..l.v1PLES. 1. rI> (t) = (0, at] is an m-resolution of [0, a] with 

Lebesgue measure m. 

Z. If a: X -+ [O,a}is m.p. then rI>(t) = a-l[O,at] is a \J.-resolution 

of X, and for all x E X we have a(x) = inf(t: x E a-
1

[0, at]}. 
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3. cr(x) = b-x and T(X) = x-a are measure preserving n1aps of 

La, b] onto [0, b-aJ. 

The following theorem, proved by J. V. Ryff [40J for M[a, 1], 

shows how each measurable function on a non-atomic m. s. can be 

related to its decreasing rearrangement. First a lemma. 

(5. 11) LEMMA. 1£ the finite m. s. (X, 1\., \.l) is non-atomic and 

p(X) = b-a, then there is am. p. map of X onto Ca, bJ and also one of 

X onto [a, b[ 

PROOF. Let cp: X ... [O,b-a] be rn. p. and let ",(t) = t+a, t E R. 

Then 0 = '" 0 cp: X .... [a, bJ is m. p. and i£ p(t) = {! ~; ~a, be then 

01 = pot 0 cp: X ..... [a, be. Any m. p. map is essentially onto. 

(5.12) THEOREM (J. V. Ryff). If the finite m. s. (X, 1\., \.l) is non­

atomic and f E M(X, \J) then there is am. p. cr: X ..... [0, \.l(X)] s.t. 

\..J. - a. e. 

PROOF. Following Ryff [40, p. 96] let It = f s E [0, u (X) J: 0 f(s )=t} 

and At = fx EX: f{x) = t} for each t E R~. Since £ ....... of' there is an 

£1 = £ u-a. e. s. t. £1 and o£ have the same range B. Denote fl by £. 

Also m(I
t

) = 1 •• L(A
t

) for each extended real t, and each It has the form 

[a, bJ or [a, br since Of is decreasing and rt-ctn. Hence for each 

onto 
t E B there is a m.p. crt: A t --7 It' Define crby cr{x) = crt(x) if x EAt' 

Then clearly £ = o£ 0 0. Now IJ,(X) < oc ~ m(I
t

) > 0 for at most countably 

many t. Let F be the set o£ all such t and let I = U It' which is 
tEF 
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measurable since its complement is, and on which of is 1: 1. Let 

JC[O,IJ(X)] be measurable. ThenJ= U JnItUJnI so 
tEF 

-1 ,,-1 -1 -1 
U(o (J)) = LJ 1J(0 (JnI

t
)) + 1J(0 (J nI)). But 1J(0 (J nIt)) = 

tEF 
u(ot-1(JnIt)) = m(JflI

t
) and of is 1:1 on Jnr, so f = of 0 0 ~6f-l of = 0 

there, and hence 1-1(0-
1 

(J nI)) = u(f-
l 

(o[(J nI))) = m(of- 1 (Of(J nI)))= 

m(J n I). Hence 0 is m. p. 

REMARKS. (1) In general we cannot always find a measure 

preserving map if>: [0, a] ... X such that f a f/J = or For example, let 

f: [0, 1] ... [0, 1] be m. p., suppose f/J : [0, 1] ... [0, 1] is measure 

prese rving s. t. £ a f/J = 0 f' and let 0: [ 0, 1] ... [0, 1] be m. p. such that 

Of a 0 = f. Then 0f(t) = I-t = fa f/J (t) = 1 - o(f/J(t)) so o(f/J(t)) = t for all 

t E [0, IJ and hence t1 =+= t z ~ o(f/J(t 1 )) =+= 0(f/J(t2 )) ~ f/J (t 1) 4= f/J(t 2 )· 

Since f/J is m. p. it is essentially onto and it follows that f/J -1 = 0, so 

a is an invertible m. p. map. Also o[ 0 0 = f implies f = 1 - 0 so f is 

nec('ssarHy 1:1. Thus if f is not 1:1, say [(x) =:: 2x mod 1, then there 

is no Ill. p. f/J: [0,1] .... [0, 1 J such that [ 0 f/J =:: of" (see §20). 

(2 ) Let (X., fl.., \J..) be finite m. s. with a. = IJ.(X.), i=1, ... , k, 
1 1 1 1 1 1 

let (X, fI.,lJ) be their product m. s., and let J = [0, a 1] x·· ·x[O, akJ 

with product Lebesgue measure. If o.:X. -+ [0, a.J are m.p. i=l, ... ) k, 
1 1 1 

and o(x
1

, ••• , x k ) = (0
1 

(Xl ), ••• Ok (~)) then 0: X ... J is m. p. To prove 

this take £. = o. and g. (t) = t for all t E [0, a.] in Prop. (3.6). 
1 1 1 1 

(3) Observe that Prop. (3. 6) ~ (f l , ... , fk ) .-..-(of ' ... , o£ ) so as 
1 k 

in (3. 7) at the end of § 3 we may conclude such things as 

\f(x) - g(y)1 ,~Io£(u) - 0g(v)\. 
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(4) If £ E M[O, 1J, and t E [0, 1J let cp(t) = 

m(f£ > £(t)}) + m([£ = £(t)} n [0, tJ). Ryff l44] has shown that 

cp: [0, 1J -[0, 1J is m.p. and £ = o£ 0 cp. 

(5) Actually Liapounoff proved a Dluch stronger result in 1940 

than the one stated above: The range o£ a countab1y additive finite 

measure taking values in R n is compact, and if the rneasure space is 

non-atomic, then the range is convex as well [22 J. In 1947 

Paul R. Halmo s gave a simplified proof of this result [l1J. In Lemma 

7 he shows that a non-atomic m. s. (X, A, ~), with U taking values in Rn, 

is convex, i. e., for every E E A there is a function c/> : E ... r 0, 1 [ s. t. 

hl ([ c/> < s}) = s IJ (E) for every s E [0, 1 J. We may define a one-

9imensional vector valued Lebesgue measure A on the line segment 

[0, U(E)[ = fs U(E): 0 ~ s < I} joining the zero vector and the vector 

U(E) as follows. Let m be Lebesgue measure on [0, I [. If Be [0, l[ 

we write B U(E) to denote [tU(E): t E B}, and if B is Lebesgue measur­

able we define A(BU(E)) = m(B)u(E). Thus A is a vector valued 

measure defined on the a-algebra S = [B U(E): B c [0, I [ is Lebesgue 

measurable} o£ subsets of [0, IJ(E)[. Now let (X, A, IJ) be convex, let 

EE A and let c/> be as above. If we define a(x) = c/> (x) IJ(E) then a is a 

m. p. map of (X, A, IJ) onto ([0, U(E)[ , s, A) . 
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6. Decreasing Rearrangem.ents on Not Necessarily Finite m.. s. 

Let (X, Ii, \.1) be a m.easure space (m.. s. ) and let m. denote 

Lebesgue m.easure. If f E M(X, IJ) and there is an interval Ie Rand 

a decreasing function 6 E M(I, rn} such that f ..... , 6, then we will call 6 

~ decreasing rearrangem.ent ~ f. In this section we will character-

1ze those functions which have a decreasing rearrangement 1n this 

sense. 

(6.1) DEFINITION. We denote by D(X, \..I.) the set of all f E M(X, \..I.) 

which satisfy 

(i) 
-1 

fJ.(f [a,bJ)<oc whenever [a,bJc] ess.inff, ess.supf[; 

-1 
(ii) -1 

\.l (f ] c, e s s. sup f [) < oc whenever lJ(f (es s. sup f)) > 0 

and ess.inff<c<ess.sup f. 

1 -1 
(iii) \..I.(f- ] ess. inf f, c[) < oc whenever lJ(f (ess. inf f)) > 0 and 

I!SS. inf f < c < .:!ss. sup f. 

It is our purpose to show that D(X, \..J) is precisely the set of 

all those functions which have decreasing rearrangem.ents. 

(6.2) LEMMA. If I is an interval of Rand [) E M(I, m.) is m.onotonic, 

then 0 E D (I, m.). 

PROOF. Assum.e 6 is decreasing; the proof when 6 is increas-

ing is sim.ilar. Let J = ] ess. inf 6, ess. sup 6 t. so JC]inf 8, sup 8 [. 

(i) Let [a, bJ c J. Then b < sup 6 so there is au EI such 

that b<O(u)andhence6- 1[a,b]c]u,oc[. Sinceinf 6<athereisavEI such 
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-1 
t hat 0 (v) < a s 0 0 [a, b ] e ] -0(';, V [ • Hence o-l[a, b] e ]u, vr: so 

-1 
m(o [a,b])<oc. (ii) Let c E J. Then there are w, v E I such that 

-1 6(v) < c < o(w). If m(6 (ess. sup 6)) > 0 then there is atE I such that 

oCt) = ess. sup 6, so o-l]c, ess. sup o[eCt, vJanclthus m(6- 1]c,ess.sup o[)<oc. 

The proof when m(o-l(ess. inf 6)) > 0 is similar. 

(6. 3) LEMMA. (i).:!i. f E D(X, U) and fIE M(X l' U 1) ~hcn f 1 ~J f im2li~~ 

fIE D (X l' 1J. 1 ). 

(ii) li f E D(X, \.1) then f + r E D(X, 10-1,) for all r E R. 

PROOF. (i) use (3.3) (vi) 

(ii) Let f E D(X, \ooL) and r E R. Then ess. inf (f+r) = r + ess. inf f 

and ess. sup (f+r) = r + ess. sup f. If Ca, bJe] ess.inf(f+r), ess.sup(f+r)[ 

then [a-r, b-rJ e]ess.inf f, ess. sup f[ so u((f+r)-l[a, bJ) = 

-1 
U(f [a-r. b-rJ ) < 'JC. The rest of the verifications are similar. 

Thus we see that (6.2) and (6.3) (i) imply that D(X, ~l) contains 

all measurable functions which have decreasing rearrangements. To 

prove the convers e we have to construct a decreasing rearrangement 

for each function in D(X, U). It is convenient to do this first for a 

special subset of D(X, U), which we now define. 

(6.4) DEFINITION. Dt (X, IJ) is the set of all functions f E D(X, U) 

which satisfy 

(j) ess. inf f ~ 0 < ess. sup f 

(ii) U(f-l (0)) > 0 if ess. inf f = O. 
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If fED' (X, j,l) we define a distribution function by 

= { lJ(f-
1 

Jt, OJ) if t < ° 
df(t) _U(f- 1 JO, tJ) if t ~ ° 

for all t E Rif. Then d
f 

is decreasing and we define 

0 f (t) = di(t) 

for all tEl = J - p(C
l 

] 0, oc ]), hl(f-
1 

[-oc, OJ)[ 

(6.5) LEMMA. Let £ E D' (X, 1).) and let 

1= J -1J(£-lJO,ocJ), 1).(£-1 [-oc, OJ)[. 

(i) Idf(t) I < oc if ess. inf f < t < ess. sup f. 

(ii) d
f 

is right continuous 

(iii) di (t) = +oc iff t < -\..I. (f-
1 

J 0, uJ) for all ° ~ u E R 

(iv) di(t) ;= -oc iff t ~ IJ.(f-1 J -oc, OJ) . 

PROOF. (i) Since f E D(X, \..I.), this is clear when es s. inf f f O. 

If es s. inf f = ° then l).(f-
1 

(ess. inf f)) > ° so \..I.(C 1 J 0, tJ) < oc whenever 

ess.inf £ = 0 < t < ess. sup f. 

(ii) Now d£ is clearly right continuous at all t < 0, and also at 

t ~ 0 if I d£(u) I < oc for som.e u > t. Hence let t ;;;: ° and suppose 

ldf(u) I = oc for all u > t. For such u we have u > ° ;::> ess. in£ £, so 

-1 -1 
(i) im.plies ess. sup £ ~ u. Hence \.1(£ JO, tJ) = hl(£ JO, ess. sup £]) = 

-1 
U(f JO, uJ). 

(iii) di (t) := +oc iff fu: d£(u) > t} ::) [0, +oc [ and 

di(t) = -oc iff {u: df(u) ~ t}::) J -oc, o[ . 
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One wouln hope that d£ = d on R* inlplics f ~ g. The following 
g 

example shows this is not the case. 

{
X if O:O:;;X:OS::+OC 

g (x) = +oc if - 1 :0:;; x < 0 

Let £(x) == x on Xl = [0, -tocJa.n<ll<:~t 

on X 2 = [-1, + oc J. 

11= -1 -1 
Then d

f 
= d

g 
on R but m(f (+ oc» 1:- m(g (+oc ». We will be able to 

prove Of = 0g iff f,...... g, however, by using (6.5) (iii) & (iv) and the 

following result. 

(6.6) LEMMA. Let f E Dr(x
1

,!-1.) and g E Dr(x2, ~2)' If d£ = d
g 

on 

R then PI (£-I Ca , bJ) = ~2(g-1[a, bJ) for all intervals [a, bJ of R. 

PROOF. This is equivalent to proving that £1£-l[R] ""g\g-l[R] 

so we may assume (and we do) that £ and g are essentially finite. 

Let d f = d
g 

on R. Then (6.5) (i) says that !df(t) \ < oc and Idg(t) I < ce 

whenever min {ess. inf f, ess. inf g} < t < max tess. sup £, ess. sup g}, 

-1 -1 -1 [. 
inwhichcase~2(g J-oc,t])=l-ll(f J-oc,t])and~(g ]t,oc) = 

1-11 (£-1 ]t, oc [). Then es s. in£ £ < t < es s. sup £ implies \J
2 

(g -1 Jt, oc J) > 0 

and I-I.Z(g-l ]-oc, tJ) > 0 so ess. sup g >- ess. sup f and ess. inf g :OS::ess.inf £. 

The argument is syn1metric in £ and g so we conclude that they have 

the san1e ess. inf, say u, and the same ess. sup, say v. 

Now Ca, b J c]u, vr implies \J
1 

(£-1 [a, bJ) & \JZ (g -1 [a, bJ) < oc in which 

-1 ] -1 [ J case loll (£ [a, b ) = df(a-)-d£(b) = dg(a-)-dg(b) = ~Z(g a, b ). Also if 

[a, bJ c ] -oc, u[ U ]v, +oc [ then IJ,1 (C
l 

Ca, b]) = ° = I-lZ(g-l [a, b]). 

Now f, g E Dr implies u:os:: ° < v. If !oJ 1 (f-
1

JO, vD < ce then 

-1 -1 I-lr (f (v» = df(v-)-df(v) = dg(V-) -dg(v) = biz(g (v». Otherwise, since 

£, g E Dr, 1-1.1 (£-l(v» = 0 = IoL Z(g-l(v». For the rest, if ~1 (f-1Ju, OJ) < ce, 
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then since 1J.1(f-1(-,;o» = 0 == ~~2(g-1(-oo), we ha.ve 1J.1(f-1(u»). 

~1 (C 1 ] -.x., uJ) = 1J.
1 

(f -1 ] - 'Y), OJ) - IJ 1 (f - 1 J u, 0:1) 

= iJ 2 (g-1] -~, OJ) -IJZ(g-l]u, OJ) == bl
Z

(g-l]-X1, u]) 

-1 -1 
Otherwise, u < 0 and ~l (£ (u» = 0 == blZ(g (u). 

(6.7) LEMMA. Let J be an interval of R4F such that inf J ~O ~ sup J. 

~.! pE: DI(J, m) it> decreasingand pet) ~O iff t;;?; 0, then p' = d
p 

')n R#. 

PROOF. From the definition of p' and the condition on p it is 

easy to see that we have: 

if t < 0, then [O,pO(t)[cJnp1]t, OJ C [O,pO(t)] 

'i.f t ~ 0, then ]p 0 (t), O[cJnpl]O, tJ c [p 0 (t), 0[, 

Hence pO = d . 
P 

(6.8) DEFINITION. For each fED (X, bl) define b
f 

= 0 if fED' (X, ~) 
, 

while if f fJ. D (X, \.l) define 

'hess. inI f + es s. supf) iI less. inI II &1 ess. sup fl <oc 

b
f == -1 + eHS. sup I if I ess.sup fl <00& less.inffl =00 

1 + ess. inI f iI 1 es s. inf f 1 < 00 & 1 es s .sup II = +00 

(6.9) LEMMA . .!!. f E D(X, IJ) is not essentially constant then 

esse inI £ < b
f 

< esse sup I and. £ - b
f 

E D' (X, IJ,) . 
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(6. 10) DEFINITION. For each £ E D (X, ~) define 

if f is not essentially constant 

if f if essentially constant 

on I = 

(6.11) THEOREM. Let f E D(X,~) and let 

-1 -I r ][ I = ]-~(f Jbf' ~ ]), \.l(f -<X:, b f ) . 

(i) Then inf I ~ 0 ~ sup I, 6 f E D(I, m.) is decreasing and right 

,S'ontinuous, 0f'~ f, and for each tEl, 0f(t) ~ b
f 

iff t:? O. 

(ii) Suppose J is an interval of R such that inf J ~ 0 ~ sup J, 

!,uppose p E D(J, m.) is decreasing and right continuous, p,....., f, and for 

each t E J, P (t) ~ b f iff t ~ O. Then I c J and p = 6 f on 1. 

PROOF. (i) The result is clearly true if f is essentially 

constant since m.(I) = U(X). If the result is true for fED' (so b
f 

= 0) 

and fED is not ess entially constant, then 

0f (t) = 0f-bP) -t b f ':;: b f iff 0f_b (t).:;: 0 iff t ~ 0 for all t E ]u, '\I [ where 

-1 -1 f 
u=-~«(f-bf) ]O,oc])=-u,(f ]bf'oc]) and 

-1 -1 ] v=\-1«f-b
f
) [-ac,OJ)=~(f [-oc,b

f
) so 

I = Ju, v (; and f - b f '" 0 f _ b 
f 

Hence suppose f E D' . 

If 0 .:;: t E R"", then df(O) = 0.:;: t so di(t) = inffu: df(u) ~ t} .:;: O. 

:3uppose 0> t E R#. For all 0 < u < ess. sup f, df(u) is finite. Hence 

clf(u) t 0 as u ~ 0 so there is a U o > 0 s. t. t < df(u O)' Then 

di (t) = sup fu: clf(u) > t} ::: U o > O. 
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Let q = <I;. Then d
q 

= q' := di':: ci
f 

on R. But \d[(t)1 <00:) tEl 

(Lemma (6.5)):) Ill(o~l [a,b])=rrl(qlr-1[a, b]) = m(q-l [a, b]) =\..d{l[a,b]) 

for all bounded intervals [a, b] of R. Now (6.5) implies 

-1 -1 -1 -1 ° f ( - oc ) = [1.1 (f ] - oC, OJ), 1.1 (f [ - oc, 0 J ) [ sou (f ( - oc )) = 0 ~ 

-1 -1 . -1 m(oi (-oc)) = O. If U(f (-oc)) > 0 then U(f J-oc, OJ) < oc and thus 

-1 -1 -1 
m(of (-oc)) = l,.L(f (-oc)). Similarly, ifU(f (+oc)) = 0, then 

-1] ] I -1 -1 -I.l(f O,u ).-I.l(f ]O,oc]) asu-oc so(6.5)~m(of (+oc)) = 0. 

-1 -1 -1-1 
If U(f (+oc)) > 0, then f..l(f JO, oc [) < oc so m(of (+oc)) = I.l(f (+oc )). 

(ii) Again this is clearly true if p is essentially constant since 

then f is) and p '" f implies m(J) = U(X). If the result is true for all 

p ED' (J, m) (so b
f 

= 0), and p E D(J, m) is not essentially constant, 

then p - b
f 

E D' (J, m) satisfies all the conditions in (ii) for 

f - b
f 

E D' (X, 1.1) so I e J and p - b
f 

= 0f_b i. e. p = 0f_b + b f = of on 1. 
f f 

Hence suppose fED'. Since p ...... f , 

d f = d
p 

= p' so di = p" = p. Also, because p "i, 

-1 -1 
m(Jnp JO,oc]) = lJ(f ]O,oc]) and 

-1 -1 
m (J n p [ -oc, ° J) = IJ. (f [ -oc, 0]), and 

]inf J,O [eJ np-1]0,oc] c [inf J, O[ and 

-1 
[0, sup J [ c J n p [ - oc, ° J c [0, sup J J so 

-1 -1 
inf J = -U(f ]O,ocJ) and sup J = U(f [-oc, OJ) 

and hence Ie J, and on I, p = di = of . 
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(6.12) THEOREM. _Suppose f E D(x, ~ and ess. in£ £ < 0 < ess. sup f. 

Let I = J-~(f-l]O, +oc]), iJ.(f-1 [-0(, OJ) [ 

a = iJ.(f-l (0» < oe and we hav{' 

(i) on I 

(Of)-(t) = o£_((a-t)-) 

(ii) o_f(t) = -of((a-t)-) 

tEl 

tEa - I 

Then 

PROOF. Let F(t) = (of) ((a-t)-) We prove that 0f- = F on a-I. 

Now f,..., of so f- ~ (of)- '" F. Now a = m(oi-1(O», &\ (6. II) (i) implies 

-1 
of (0) c [0, aJ so F(t) ~ 0 iff 0f((a-t)-) = 0 iff t;? 0 and hence 

-1 1 
F = 0f- on J = J - IJ.((f-) JO, 0( J), IJ.((f-)- [-oe, OJ) [= a - I . 

The rest is siInilar and easier. 

Vie now show how to obtain an analog of Theorem (5. 10) for 

general m. s. Observe that unlike the situation for finite m. s., if 

A is an atom and f E M(X, \J.), it need not be the case that f is constant 

on A, or even on a subset of A of positive measure. This can only 

happen, of course, if ~(A) = + oc. The situation is nicer if 

fED (X, \.J). 

(6.13) LEMMA. If A is an atom of (X, fl., IJ.) and f E D(X, iJ.) then 

~ [x E A: f(x) f:. f es s. inf f, es s. sup fn = O. Hence f is constant on a 

subset of A of positive measure. 
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PROOF. LetJ==]ess.inff, ess.supf[. IfIJ(A)<octhe n f is 

essentially constant on A, so assume hJ.(A) == +oc. Since fED, 

- I[ [ ] 1 - 1 [- . - 1 [] . lJ(f r,s])<ocwhenever r,s cJso~«(£A) r,sJ)=IJ(t r.s . )nA)< ·l cr:: 

IJ(A) and thuslJ(flA -I rr, sJ) = 0 for all Cr. sJ cJ, since A is an a tom. 

Since J is a countable union of closed intervals, 

Utx E A: f(x) ~ tess. inf f, esse sup f}} = lJ(flA -1 (J)) = O. 

-1 -1 
0< IJ(A) 5; lJ,(f (ess. inf f)) + U(f (ess. sup f)) shows the rest. 

(6. 14) LEMMA . ..!! (X, /I., IJ) is a m. S. and I is an open interval of R 

S. t. \J(X) = m(l) and [Xi }i~l is a partition of X by measurable sets 

s. t. IJ.(X.) < oc i = 1,2, 3, ... , then there are pwd open intervals 
1 

t}. ,b [} ~ 1 S. t. IJ (X ) = b -a n = 1, 2, 3, ... , and n n 11- -- n n n 
oc 

m(I - nl.J: I Jan' bnU = 0 . 

PROOF. Suppose first that I is bounded below, say a
1 

= infI > -oc. 
n-l oc 

Let a = a l + 6 IJ(X . ) and b = a + iJ. (X). Then U ] a ,b [ = 
n i=l 1 n n n n=l n n 

I - fa : n = 1,2,3, ... }. Similarly if I is bounded above. Hence 
n oc 

let I = R. Then L U(X.) = \J(X) = m(I) = +oc so there is a partition 
i=I 1 

[B
k

} oc of the positive integers by finite sets Bk such that 
k=l 

L: (IJ(X . ): i E B
k

} ;:::: 1 for each k = 1,2, 3, . .. . Let {n . } oc and {p o }OC 
1 li=I li=l 

oc oc 
enulnerate U BZk and U B2k 1 respectively, let rO E R, and let 

k=I k=l-
oc oc 

Xl =.ld X , X 2 = .U X , II = ]rO'oc [and 12 = I-oc, r O[' We get 
1-1 n i 1=1 Pi 

collections of intervals for II and Xl and for 12 and X 2 as before, and 

the union of these collections works for X. 
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(6.15) THEOREM. Let (X, 1\., IJ.) be a m. s. and let I be an open inter-

val of R with 0 E I. Then the following four statements are eguiva-

lent. 

(i) There is an f E M(X, IJ.) _so t. t\(t) = -t for all tEL 

(ii) There is a measure preserving map of X onto_I. 

(iii) l!'. v E M(I, m) is decreasing and right continuous and for 

each tEl, v(t),;; b iff t :2 0, then there is an fED (X, IJ.) s. t. of = v 
v-

on I. 

(iv) (X, 1\., IJ.) is non-atomic and a-finite and ~X) = m(I). 

PROOF (i) ~ (ii) Let 0= -£. Then -0 = f'" of so 0'" -0£. Then 

J is m. p. and has the same essential range as -of' namely 1. 

(ii) ~ (iii). Now ess.inf 0= inf I and ess.sup a=supI. Let 

f = v 0 a. Then f ....... v so b
f 

= by' 

lJ.(f-l] be oc]) =: m(v-
I

] by' oc]) ::: -inf I 

\1(f-
1 C-oc, b

f
])::: m(v-

1 C-oc, b
v

])::: sup 1. 

implies ° £ ::: v on I. 

Hence Theorem (6. 11) 

(iii) ~ (iv) Let f E M(X, IJ.) s.t. 0f(t)::: -t for all tEL Then 

X = UU-I[i, i+l[: i is an integer} and \1(f-
1

[i, i+l[)::: m(of-
1
[i,i+l[) ~ 1 

so X is a-finite. Since \.l(£-1 (r)) = m(of- 1 (r)) = 0 for all r E R, £ is not 

constant on any set of positive measure, so X has no atoms. m(I) = 

m(of -1(R))= \1(f-
1

(R))::: U(X). 
oc 

(iv) ~ (i) Let [Xi }i=1 be a partition of X by sets of finite measure. 

Since X is non -atomic, so is each X,. 
) 

j)airwise disJ'oint intervals []a" b. [}~ I 
1 1 I:::. 

b. -a. = \.l(X.). 
III 

Since m (1) = \1 (X) the re are 

s. t. m(I -i~l ]a
i
, b

i 
[) ::: 0, and 
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Let t(t) = t for all t E R. Now c.l' (t) = -(t+a ) for 0 <.-. t <: b -(1 is 
n n 11 n 

decreasing and right continuous on [0, \.I. (X )] and hence there is an 
n 

f E M(X . IJ) s.t. f "'"' a. Now for v (t)=Q' (t-a )= -t (a :S:t < b ) we 
n n n n n Ii n n n 

have f ...... a ...... v -- - t1 [a ,b [. Let f(x) = f (x) if x EX. Then 
n n n nn n n 

f E M(X, IJ) and fix = f - tl [a ,b [so f- -t II. Then f ED'(X, \.I.) 
n n n n 

and Theorem (6.11) irnplies of = - t on 1. 

(6. 16) THEOREM. 1£ (X, A, \.I.) is non-atornic and a-finite, if f E D(X, \.I.) .. 

0-nd jf 0 E M(I, m) is a decreasing rearrangement o~ f, then there is a 

l1wasure preserving rnap 0: X - T such that (J 0 0=· f u- a. e. 

PROOF. Let J
t 

= is E I: o(s) = t} for each t ER#. Each J
t 

is an 

interval, and since the topology of R has a countable base, we have 

rn(J
t

) > ° for at rnost countably rnany t. The rest of the proof is like 

that of (5. 12). 
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REMARKS. 1. If (X, I\,U) is a m.s. and 0 <,f (M(X,U) d.nd 

U({ f ::: ~}) < <L: for some P-, then we may c1l~fjne [fJ on rO, ';c [ to IH' 

the right continuous inverse of df(t) = U( {f > t}) [H] This is 

almost the same as the definition of T given by Hardy, Littlewood 

and Polya [15] for X an infinite interval of R. Although 

mn[fJ > S}) = IJnf > s}) for all ~ E R, in general [f] need not be 

equimeasurable with f. If fED (X, IJ) then a = iJ(r 1] bI' ex: ] ) < ex: 

and for all 0 ~ u < ex: we have 

[f](u) = 0f(u-a). 

2. If (X , 1\, IJ) is a finite m. s. and f E M(X, IJ) then the decreasing 

rearrangenlent of f defined in this section is a translation of the 

decreasing rearrangement defined in § 5 for finite m. s. Letting 

f>:c denote the one defined in § 5, we have 

0f(t) = f*(t+a) 

for all tEl = J-IJ(f-1]bI'oc]), U(£-l[-oc,b
f
])[ 

where 

3. Suppose (X, 1\, IJ) is a finite m. s. and X is the union of a 

finite number of atoms of equal measure, say X = Al U· ... U An. 

Then M (X, IJ) is isomorphic with R n unde r the correspondence 

f - a = (aI' ... , a ) E R
n 

where a. = riA. . For each f E M(X, \,1) let 
nIl 

6 f denote the dec reasing rear rangement defined in § 5. If f E M(X, IJ) 
.. k 

then of is constant on [O'k_l' O'k [ where O'k =3:1 Il(A~ k= 1, .... n, and 

if a .-. f and a: = 6 f I [O'k_l' O'k [ then a * is the point of R n whos e 

components are the components of ~ arranged in decreasing order. 



-41-

4. G. F. D. Duff [6J has defined a generally multiple valued 

decreasing rearrangement for each menlber of M(I, In) where I 1S an 

infinite interval of R and In is Lebesgue nleasure. The ('on!\itinns 

(6.1) on f E M(I. In) arc nl:cessary and sufficient that this decreasing 

rearrangement be single valued. 



-42-

III. INEQUALITIES AND REARRANGEMENTS 

7. A TheorelTI of Hardy. The following theorelTI of G. H. Hardy 

will be used often in what follows. 

(7.1) THEOREM. (Hardy) (i) Suppose fl' f2 EM[a, b], f l , £2 EL'[a,tJ, 

for all a :-:;; t < b and f: fl ~ jt f2 for all a S"t :O:;b. 1£ g is a non-negative 
a 

decreasing function on [a, b] s. t. fig EL' [a, t] (i = 1,2) for all a :-:;; t < b, 

then ftflg:-:;; l f 2 g for all a:-:;; t:-:;; b. 
a a 

(ii) Suppose fI' f2 E L1[a, b], / fl ::s; jtf2 for all a ::s; t ::s; b, jb f1 =jbf2 , 
a a a a 

and g E M[a, b] s. t. fig EL1[a, b] (i=1, 2). li g is decreasing then 

Ibflg::s; jb f2g , while if g is increasing then jb flg ;;,: jb f2g . 
a a a a 

PROOF. (i) Let F. (t) = It f. (i=I, 2) if a < t :-:;; b. Then for all 
1 a 1 

a st :-:;;b, jtf2g-flg = jtg d(FZ -FI ) = g(t) (F
2

-F
I

)(t) -l(F2 -F I )dg;;,: O. 
a a a 

(ii) is silTIilar. 

(7.2) THEOREM . .!!. f E L 1[0, a] is decreasing, then; {tf ~ 

decreasing function of t, while if f is increas ing, then ~ ~t f is an 

increasing function of t, 0 < t :-:;; a. 

PROOF. Let 0 < tl < t2 :-:;; a. Then tIt :-:;; t2t for all 0:-:;; t :-:;; a 

so min [tIt, t I t 2 } :-:;;lTIin tt 2t, t l t 2 } and hence 

/ ~ c [0 t ] = ~ lTIin it, t 2 } :-:;; ~ lTIin [t, t I } = j t 
02 '2 Z 1 a 

for all 0 :-:;; t :-:;; a. Thus (7. 1) (ii) ilTIplies 

1 t z a 1 1 
1 f! C f<ja_ C f= 

t z 0 = 0 t-z [0, t ] - t [0 t ] 
Z a 1 '1 

1 J1 f if f is decreasing, 
tl a 
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and the reverse inequality if f is increasing. 

8. A P reorder Relation. In this and in subsequent sections we will 

use of to denote the decreasing rearrangement defined in § 5, since 

the nleasure spaces will always be finite. In addition we will use 

0E to denote the decreasing rearrangement of CEo 

In [15] Hardy, Littlewood and P olya introduced for the first 

tilne an important preorder relation for n-tuples of real numbers 

and later for integrable functions on a finite interval. We present 

this relation for finite m. s. as follows. 

(8.1) DEFINITION. Suppose (Xl' 1\1' \.lol) and (X, l\,).,l) are finite m. s. 
a a 

with a = ~l(Xl) = ).,l1(X 1 ) and £, g EM(X,IJ,)UM(X1,\J.l) and 1
0

°£+ and. 10 0g+ 

are finite. 
t t 

(i) g -< -< f means fo 0 g -;:: fo 0 f for all 0 «; t ~ a 

a a 
(ii) g -< fmeans g -<-< £ and ! 0 = J of' o g 0 

It is obvious that 

(i) f ""' g iff g -<-< f and f -<-< g iff g -< f and f -< g; 

(ii) g -<-< f iff 0 g -<-< 0 f 

(iii) g -< f iff -5 g -< 0 £ 

(iv) -<-< and -< are reflexive and transitive 

The reader should cOITlpare the conditions in Definition (8. 1) 

with the hypotheses of Theoren1 (7. 1). 
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The following are some other useful but less obvious properties 

of these preorder relations. 

(8.2) LEMMA. (i) 1! g -< -< f then g+r -< -<f+ r for all r ER and 

rg -< -< rf if r·~ O. 

(ii) If g -< f then g+r -< f+r for all r E Rand rg -< rf for all 0 -:' r ( R. 

If}n addition f ELI then -g -< -f. 

(iii) l.!.. r sf$; s where r, s E R* and g -< f then r $; g $; s. 

(iv)1!fELl(Xl'~l) then (iJ,l(Xl IX fdhl-l)CX-<f. 
1 1 1 1 

(v) If f E L (X l' ~ 1 ) and E E A then f -< C E iff 0 $; f ~ 1 and 

J
X 

fd\J.l = \J.(E). In particula~, if f -< C x then f = CX
l 

\J.l-a. e. 
1 

+ + --(vi) If g -< £ and g -< £ then g -< f . 

(vii) If g -<-< f then g+-<-< £+. If g -< £ELI then in addition g- -<-< C. 

(viii}.!iO$;£ntf,O$;~1 g, and gn -< in' n=l, 2, 3, ... , then g -< f. 

PROOF. (i) & (ii) 1£ g -<-< f and r E R then 

t t t t 
JOt = I (6 tr) $; f (Of+ r ) = J Of for all 0 $;t.,:: a u~ing (S.3)(vi). 
o g r 0 g 0 0+ r 

If g -< f then in addition we have equality when t = a. Suppose r ~ O. 

If g -< -< f then ft 0 = ft r 0 $; ft r 5
f 

= ft 0 f for all 0 $; t sa. If g -< f 
o rg 0 goo r 

then we also have equality when t = a. Now assume g -< f. To prove 

the rest it suffices to show that -g -< -f. fto (u)du = / - 0 (a -u) du 
a-t a-t a-t 0 -g 0 g 

= I 0 = J 6 - fa o s: J Of - Ja o£ = ft_ o£(a-u)du = fto £(u)du 
ago gog 0 0 0 0-

for all 0 $; t s: a with equality when t = a using (5. 5) (ii). 

(iii) Let g -< £ and suppose first that £ ~ O. If g is negative on a 

set of positive measure then there is a 0 < u < a s. t. 0 (u) < O. Then 
g 

o (t) < 0 for all u $; t s a so la Of = lao < jU o s: jll Of $ fa of since 
goo gog 0 0 
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6 f ;::: 0, a contrd. Hence g ;::: O. Now suppos erE Rand r '" L Tlw n 

f - r "? 0 and g-r <: f-r so g-r:?: 0, i. e. r ;<:: g. Suppose s E R ,~tld 

f <. s. Then -f f s:O'> 0 and -gls .( -Us so -gls:'" O,i. ('. g~: s. 

(iv) 

ft 6 = t 
o g 

by TheoreITl (7. 2), and we have equality when t = a. 

for all 0 ~ t ~ a 

(v) Supposef<:C
E

, Then(iii)~O$f$l, and! fdlJ,l = 
Xl 

J CEdU=U(E). 
X 

6 f ~ 1 so ft 0 f ~ t, 
o 

AssuITle ° Sf sl and fXlf dj..tl = IJ,(E). Then 

and ° S Of so ft Of S rOf = j..t(E). Hence 
o 0 

It Of $ min{t, W(E)} = ft 0E for all 0 st S a and we have equality 
o 0 

when t = a. 
t t t t 

(vi) Now g- -< r- ~ -g- -< -f- so [ 0 = f f) ++ J 0 sf of+ 
tog 0 g 0 -g- 0 

= £ o£ for all 0 $ t S a with equality when t = a, using (5. 5)(i) . 

(vii) AssuITle g EM(X,j..l) & fEM(X1,\.lr)' Let b=j..l([g~O})=ITl({Og~O}) 
a b b b i a 1 

and b
l 

=j..tl({f;:::O}). Then f 0 +=/' {) ~f Of$/ 6f =! 6f+· If g -< f E L og og 00 0 

- + +-then -g -< -f so g = (-g) -<-< (-f) = f . 

(viii) Use ITlonotone convergence and (5.3). 

(8,3) LEMMA. Suppose £, gEL 1 [0, a]. f and g are decreasing, 

] r, s [ & ] u, v [ C [0, aJ = I, s -r = v-u, and IS f s IV g. l! g -< -< f 
-- r U 

then gII-Ju, v[ -<-<fII-Jr, s[ 

PROOF. The proof is essentially due to Ryff [43 , p. 433J . 

Let gl = gil - Ju, v[, fl = £\I-Jr, se and let h = s-r = V-U. Except at 

ITlO st at countably many points of I, 
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o I (x) g = { 
g(x) 

g(xlh) 
o S:x ':;U 

u<x<a-h 

dnd similarly for f. We consider fonr cases. 

Cas e 1. t < min {ll, r}. 

t t t t / ° I = / g 5 / £ = / O£I 
o goo 0 

Case 2. t > m.ax {u, r}. Now 

t u t u t+h 

! ° I g 
= / g + / g(x+h)dx = / g + / g 

o o u o v 

and sirnilarly for f. Hence 

t v t+h t+h t 

t{ 0 g I -I / g - I g <:; / f = / 6£1 -l / 
u 0 0 0 r 

v s 
Since I g - / f ~ 0 we obtain 

u r 
t t v s t 

! 0 I 5 / 0 I + / g - / f 5 
/ °fl o g o g u r 0 

s 
f 

Case 3. r 5 t 5 u. Since g is decreasing, 

t v t v t t+h 
/0 1+ / 
o g u 

gs/g+ /g g = / g + / 
u o t o 

t+h t s t t 

v 

lu g 

t+h 
I g 
o 

s: / £ = /0£1 t- /£ 
o 0 r 

so J ° I .:; / 0fl as before. 
o g 0 

Case 4. u .:; t c:;: r. 
t u t+h u t t t 
/Oyl=/g t- / g 5 /g + f g = J g 

{) g 0 v 0 u 0 

$: I £ = 
o 

Thus g I -< -< fl 

Then 
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(g. 4) L EMMA. S upp 0 S c f, gEL 1 [0, a J, ] r, s [ & ] u, v [ c r O. a. J ::.; I, 

s-r = v-u, and gil - ]u,v[ -<-< flI - Jr, s[. Then 

gCl _J [taC] [-<-<fCl _J [taC] [forallaER. u, v u, v r, s r, s 

PROOF. Letgl =g\l-]u,v[and fl=fII-]r,s[. sogl-<-<fl, 

let aE R, let gl :; g C l _ ]u, v [+ a C] u, v [, let 

f1 = f C1-]r [+ a C] [, and let] w, z[c 0 -l(a) & 
,s r,s gl 

]p. q[ C 0f-1 (a) s.t. z-w = q-p = h = s-r = v-u. 
1 

Then 0 g 1 ;,~ a on [0, w J, 6 g 1 ~ a on r z. a -h ], and 

except at most at countably many points of I, 

6 g I(x) o ~x ~ w 

0 
gl 

(x) = a w<x~z 

0gl (x-h) z<x~a 

t t 
and sirrlilarly for f. The inequality 10 $/O f o gl 0 1 

follows by 

exarrlining cases. Rather than go through therrl all we give the details 

for three representative ones. 

Case: w'; p ~ t ~ min tq, z }. Now a ~Ofl on [w, PJ 
t w t w 

fa 
t 

so If.> =/f.> 1+/a ::: / 0 1+ + I a 
o gl 0 g w 0 

g w p 

/ofl+ro£1 

t I? t t 
$ + I a ::: 7 0 fl t/a = I o £ 1 

o w P 0 P 0 

Case: p $w $ t $ rrlin tq, z} . Now 0fl ~a on[p, w] so 

t w t w t r 0f\ 

w t 
10 = I 0 1 + I a $ I 0f\ + 10' $ +1 a + I a 
o gl o g w 0 w 0 p w 

! Of I + 
t t 

= I a = I 0 f 
0 p o 1 



-48 -

Case: . It.c -_ I W '- I Z ~ t s g. u u 1 1 

o g log 
w t-h t-h t 

= I ° I + O:'h + 
o g 

1 °1= / °1+/0:'. 
w gog t-h 

t-h t t-h t t 

If t:::;; p, I ° 
o gl 

= ! ° l+! Q' s I 0fl -1- / Of/ = 
o g t-h 0 t-h 

since Q' ~ 0fl on [t-h, tJ 

If p < t, then t -; q .c~ t-h sp &a<ofl on [t-h, PJ 

t t-h p t t-h p 
JOg - / 0(,(\+1 Q' -1- fa 5', I 0£1 + 1 0fl 
o 1 0 Co t-h p 0 t-h 

so 

t t 
+ IQ' _. I o£ 

P o 1 

(8.5) LEMMA. Suppose£,g ELI [O,a], ]r,s[&]u,v[C[O,a]=I 

and s -r = v-u. 
s v 

(i) [J. V. Ryff] If £ and g are decreasing and J £ = J g and 
r u 

g < f then g! 1- ] u, v J < £ 1 1- ] r, s [ . 

(ii)!! gl I-Ju, v[ < £1 1- ] r, s[ then for all Q' E R, 

gCI _ J [+Q'C] C<£C1- J [+Q'C] [. u, V u, v r, s r, S 

PROOF. (i) Let £" g I be as in the p roof o£ (8.4). Then 

a-h a v a s 
jOl=/g =/g 

o g 1-Ju, v[ 0 

Ig 
u 

= I £ - I £ = 
r o 

where h = s -r = v-u. Since we already have g I < <£ I from (8.3) 

we conclude that g I < £\ . 

(ii) Let gl and £1 be as in proof o£ (8.4). Then 

a a v a s a 
I gl = I g J g +Q'h = J f /f+Q'h = Ifl 
o 0 U 0 r 0 
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(8.6) LEMMA Suppose fELL (Xl' f1.), g E Ll (X, ~), 

f 1S constant on E1 E J\, g is constant on E E 11., flEI ~ glE and 

IJI (E 1 )=IJ(E). !!g-<-<f, then 

(i) gIX-E -< -< r/X-E1 and 

(ii) g C X _
E 

+ 0' C
E 

-< -< f C x + 0' C
E 

for all 0' E R. 
1 - El 1 ---

PROOF. Let (3 = flE l , y= glE, a = IJ(X) = iJ
l 

(Xl) , 

r = [0, a], ] r, s [ e 0 f-
1 

((3) s. t. s - r = ~ (E 1)' and 
1 s v 

]u, v[e 0 - (y) s.t. v-u = IJ (E). Then s-r = v-u and! of ~ f 0 . 
g rug 

If g -< -< f then 0g -< -< of so gl X-E '" 0glr-Ju, v[ -< -< 0flr-Jr, s[-f\X I-E
I 

and gCx -E + O'C E""' <> g S _ ] u,v[+aC]u, vC-<-< of S-] r, s [+aC] r, s["'" fCXCE/O'CEI 

for all 0' E R using Lermnas (3.3) (xi), (3.4) (i), (8.3), and (8.4). 

(8. 7) LEMMA. Suppose f ELI (X l' 1J 1 ), gEL 1 (X, IJ) and suppos e 

£ and g have the same cons tant value on E 1 E 11.1 and E E II. 

respectively, where iJ 1 (E 1) = IJ(E). g g -< f then 

(i) gIX-E -< f\X 1 -E
l 

and 

(ii) gCX _E + 0' C E -< £ Cx -E + 0' C
E 

for all 0' E R. 
1 1 1 

REMARK. Let g:f:; £ mean g -< £ and g and f are not equimeasurable, 

and define g<j;f similarly. Let (X, /I., IJ) be a non-atomic m. s. and let 

f, g E L1 (X, IJ). Then g:t f ~there is an h ELI (X, IJ) s. t. g;t, h:t f, 

and g l' f ~ there is an hELL (X, iJ.) s.t. g<j;h ~ f for by Theorem (S. 10) 

there is an h E M(X, iJ.) s. t. <>h = ~'[Of+Og] . 



-50-

We now paus e to show how a finite m. s. can be embedded 

in a non-atomic Ill. s. We will use this device to show which results 

about non-atomic m. s. carryover the general m. s. 

9. Embedding of a Finite Ill. s. in a Non-AtoIllic Finite Ill. s. Let 

(X, il., 1oL) be a finite m. s. We recall that a Illeasurable set A E A is 

called a u-atom or an atom of (X, /I., I-l) whenever iJ.(A) > 0 and B C A 

implies U(B) = 0 or U(B) = I-l(A). If A is a IJ-atom and f E M(X, IJ.) then 

f is essentially constant on A. If A and Bare U - atoIlls, they are 

equal or disjoint a. e., i. e., \.l(A {:, B) = 0, where A {:, B == A-B U B -A, 

or U (A n B) == O. 

A finite (or 0" -finite) m. s. can have at most countably many 

atoms. Thus X = X U U A where P is tl, ... , k} for some natural 
o n(P n 

number k or P is {I, 2, 3, ... } ; each A is alJ,-atom; and 
n 

(X
O

' A n XO' IJ,) is non-atomic. 

We may embed (X, /I., IJ.) 

If: _ 
follows. Let X - Xo U U 

nEP 

II "" II in a non-atomic m. s. (X , 1\ , i-4 ) as 

lCa ,b ] where the l[a ,b ] are disjoint 
n n n n 

intervals of R with end -points a & b s. t. b - a == IJ,(A). Then 
n n n n n 

(XJl., 1\ Jl., \.l#) is the direct SUIll of (X
O

' j\nX
O

' IJ) and the Lebesgue Ill. s. 

(I[ a ,b ], m), i. e., E E Aif iff E == EO U U En where EOE ii, EOCXO' 
n n -- nEP 

and for each n E P, E is a Lebesgue measurable subset of lCa ,b ], 
n n n 

and in this case 1oL#(E) = IJ(E
O

) +:E m(E). 
nEP n 

Clearly (X~ f-lIJ.#) is a non-atomic finite m. s. with fJ*(X#) == IJ.{X). 

Each f E M(X, ii, U) is identified with {'If == f C x + r; (fiA ) C r[ b] 
"0 n EP nan' n 

in M(X# , il, '~/") and it is easy to see that f,...; # so Of = orlf. Of Illore 



-51-

lmportance is the fact that Ll (X, ~) is a retract of Ll (X#, ~#) under 

the following rn,apping. 

(9. 1) DEFINITION. If f ELI (X~ fJ.#) U Mt (X~ ~#) let 

"" 1 Jbn 
T f:::£C +0 (f)C 

\.J Xo nEP b -a a A n n n n 

(9.2) THEOREM. (i) TfJ.: Ll (Xl, fJ.#) -+ Ll (X, fJ.) . 

(ii) T~./ = f for all fELL (X, IJ,) UM+(X, IJ,). 

(iii) TjJ.£ 2 0 for all 0 $f E M(X, jJ.) . 

(iv) J TtJ,f dlJ = If djJ.:Ik for all f E(LI UM+) (X~ tJ,#) and 

\\T \Jf\1 1 $ \\f\1 1 for all f ELI (X#, \.l.{l:) • 

(v) 11 T rll s 11 [II for all f E L oc (X~ ~#) I-l oc oc ,-

(vi) .!:~r all f E (Ll U M't) (X#, ~:Ik) and g E M(X, jJ.) s. t. 

fg E (Ll UM+) (X#,fJ.Jt.) we have TfJ.(fg)::: (TlJ.f)g 

Th e reader who is faITliliar with the concept of a conditional 

expectation will recognize that TJ is the conditional expectation of f 

with respect to the a-ring generated by Xo n /.and the intervals 

l[a ,b J. n E P. 
n n 

At the end of § 13 we will prove that TlJ,f <f for all 

f' .:: (L 1 U M+) (X#, t,#), W '11' t' t t f t' f th' '- ... e WI Inves 19a e rans orma Ions 0 IS 

type in detail in § 17. 
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10. An Inequality of Hardy and Littlewood. In this section w e prove 

a n inequality which w as originally proved by Hardy and Littl e wood 

for non-ne gative fun ctions ([15J, Theor c n,378). This ine quality 

w ill b e fundamental for what is to follow. 

(10.1) THEOREM (Hardy & Littlewood). !! f, g E M(X, 1-1), a = 1-1 (X) <oc, 

a nd if 0lflOlgl ELI[O,aJ, then £gELl(X,I-1) and 

a a a 
I <\(a-t)o (t)dt = IOf(t)o (a-t)dt ~ I f g dlJ ~ I OfOg 
o gog X 0 

PROOF. First suppose f = C
E 

and g = C F when E , F E A. 

a + + 
Then I o£(t) 0 (a-t)dt = (1-1 (E) + I-1(F) - a) = (~(EUF)+~(EnF)-a) ~1-1(EnF)= 

o g 
a 

f fg d~ ~ min tl-1(E), I-1(F)} = I of 0g. 
o 

N e xt suppose f and g are non-negative simple functions. Then 

f and g can b e written in the forn> 

n 
f = l:: fi CEo f . > 0 i = 1, ... , n and E

1
:=> ••• :=> E 

i=l 1 n 
1 

n> 
= l:: g ' C F 

g . > 0 J = 1, ... ,m and F ~ ... :=> F 
j=l J . J 1 n> 

J 

g 

a a 
Then I 0f(t)6 (a-t)dt = z= f. g. I 0E. (t) 0F.(a-t)dt 

o g i, j 1 J 0 1 J 

~ ~. fi gi I CE .C F . dU = / f g du. 
I, J 1 J 

a 
= /Of 0 using (5.6) (ii). 

o g 
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If 0 ~- £, g E M(X, \.t) then the re are sequences {r } and f g } of 
n ·n 

non-negative sinlple functions such that fn t f and gn t g everywhere. 

a Ijnl a 
Then I o£(t) ° (a-t)dt = I o£ (t) ° (a-t)dt g n-ac g 

o 0 n n 

S lilll I £ d = I £ g d 
n .... ac n gn ~ U 

s lim / ° ° n-ac £ g 
o n n 

a 

= I o£ ° o g 

Letf, gEM(X,u)bearbitrary s.t. 01£1 0lg\EL 1 [0,a]. 

Then by what we have already proved /1£ g\ d~ ~ ~a 0 1 £ lot g I so 

f g E r} (X IJ). Then using Theorem (5.5) 
, 

a ++ -+ -- f+-+ / 0f-(a-t) 0g_(t)dt s 1£ g dIJ -!f g dlJ, + /f g dlJ - f g d~ 
o 

= ! f g d\J, 

REMARK. Obs crve that the inequalities in (10.1) are true £0 r all 

° <: f, g E M(X,~) even i£ of 0g '1. LI[O, a] . 

(10.2) PROPOSITION. I..!. F and G are llleasurable functions on 

[0, a] such that O\F\ o\G1EL1[0, a] and G is decreasing, then the 

convolution 

u 
F~<G(u) = / F(t) G(u-t)dt 

o 

is a continuous function o£ u ~ [0, a J . 
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PROOF. First we show that \Fl*IG\ (u) is finite for every 

u E [0, a]. Let u E [0, a] and let 

__ {G(U-t) on 
H(t} 

G(t) on 

[0, uJ 

]u,a] 

Then Hlro, u] "-' GI[o, u] and HI ]u, a] "-' GI ]u, a] so 

H "-' G and thus I H I - I G \ so 
u u a 

IF \* IGI (u) ::; flF\ (t) lGI(u-t)cJt~ltF\ (t) \G \(u-t)dt+[IFI \ GI 
o 0 1.1 

a a a 

::; L IF I 1 H I ~ fo 6 \ F 1°\ H \ = fo 01 F \ 6 IG rex:· 

Let 0 ~ u < U
o 

:5: a, so 

u u 
I F*G(uO) - F*G(u)\ ~ t. 0 IF(t)G(uo-t)\dt + ~ I (G(u-t)-G(uo-t» F(t)\dt. 

Let H(t) = G(uo-t) on [u, u
O

] and 0 elsewhere. Then 

H-G C[O -uJ so (H\ ",IGI CeO _uJand thus ,uo ,uO 

u a a u -u 

o ~ ~oIF(t)IIG(uo-t)ldt = £ IFIIHI ~ fo 61FloIHI ~ foo 61Fl o1Gr·0 

For the rest, let un i U
o 

n = 1,2,3, ... , and let Hn (t) = G(un -t)F(t) 

on [0, un] and 0 elsewhere and H(t) = G('1>-t)F(t) on [0, uJ and 0 

elsewhere. Then H l H pointwise a. e. since the discontinuities of 
n a 

G form a set of measure 0, and! IHII = \FI*IGI (u l ) < ex: , so 
o 
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U a 
I n I(G(un -t) -G(tta-t)) F (t) I cit = I IH -H 1- 0 as 11 .... at by 
o 0 n 

Dominated convergence. 

The case 0 :s; U o < u :s; a is similar. 

11. The Values of an Integral. Let f, gEM (X, \.L). If 0lf 1°1 g I E LI[ 0, a] 

where a = \.L(X) and f'...., [and g' -g then If' I,.., If I and Ig' I,..., Ig I and we 
a a 

know that Ilf'g'ldU ~ £ 0lf'IOlg'l = loOlflOlgl and 

a a 
10 0r(t) 0g(a-t)dt ~ I fIg' d\.L ~ J Of 5 . o g 

(11. I) THEOREM. Let f, g E M(X, \.L) and 0lf 10 \g I ELI [0, a] , 

where a = \.L(X). g (X, A, \.L) is non-atomic, then 

PROOF. We already know that 

[!f g' dU: g' "-' g} c [I: 0f(t)og(a-t)dt, I: 0fOg]. so 

it rem.ains to show that all the values are taken on. 

and for 0 ~ u ~ a let 

u a 
y(u) = J 0f(t)o (u-t)dt + I 0fo . Then y is a continuous function of 

o g u g 

a a 
u with y (0) = ! 0fo and y(a) = f 0f(t)o (a-t)dt, so it suffices to o g . 0 g 

prove that for each 0 ~ u ~ a there is a g' ""'g s.t. If g' dIJ= y(u). 

Fix u E [0, a]. We prove that there are sets Xl EA and X
2 

= X-Xl 

s.t. IJ(X I ) = u, 0flx
1 

= Of on [O,u[ and 0flx
2

(t) = 0f(t+u)onO~t<a-u. 
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To this end, if t ER#: let F
t 

= [x EX: f(xl > t} and 

= {x EX: f(xl:? t} so IJ(F
t
._) = lim IJ(F). Now IJ(F

t
_) = 0 ~ u 

s t t s ~ 

so let to = inf[ t E R*: \J.(F
t

) .:;; u}. Then \.l(Ft
o

) < \.1, and 

s < t ~ IJ(F
s

) > u, so \.l(Ft.) ~ u ~ IJ (F t _) Since (X, A, IJ.) is non-
o 0 0 

atomic, there is an Xl E A s. t. Ft
o 

c. Xl C Ft
o

- and IJ(X 1) = u. 

Nows<t ~df(s)=IJ(F »u so df(s)<u=::)s~ t =::)F CFt CX l ~ o s 0 s 0 

dflxl(S)=U{FsnXI)=IJ(FS)=df(sl. Conversely, s<to =::) 

Xl CFto - C Fs ~ dfl Xl (s) = IJ(F s n Xl) = U(X 1) = u so 

dflxl (5) < U ~ S ~ to =::) df(s) = dflX1 as before. Hence if 0 ~ t < u 

we have fs: d f (5) .,; t} = t s: dflxl (s) .,; t} so o/t) = 0flx
l 

(t). 

Now let v(t) = 0f(t+u) on ° .:;; t < a-u. Then for each bounded 

interval [1', sJ of R# we have 

-1 [ ] I -1 [J -I iJ.(f r, s n Xl) = 1J«f Xl) r, s ) = m(0tlx 

-1 1 
= m( ° f [r, sJ n [0, u [). 

Cr, s J ) 

Subtracting this equation from \.1(f- 1 [r, s J n X) =rrl(o;l [r, s J n [0, a[ 

we get lJ(f-
1 
[r, sJ n (X-Xl)) = m(of-

1 
[r, sJ n [u, a[ ), i. e., 

IJ( fIXz)-l[r, sJ) = m(v-l[r, sJ nco, a-u[)+ u) 

= m(v- l [r, sJ n [0, a-u[) 

Hence 0f/ X 2 
(t) = 0f(t+u) on ° .,; t < a-u. 

Recall that if T: (X,!I., IJ) -+ (Y, l: ,'J ) is a measurable 

trans fo rmation and g E M(Y, L:) then / g(dlJ T -1) = fg oT dll in the 

sense that either both integrals exist and are equal or neither exist 

[12, p. 163, Theorem C] where (IJT-I)(E) = IJ(T- 1 (E)) for all EEL: 

-1 
If T is m.easure preserving, then iJ. T = V . 
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Let (11: Xl .... [O,u[ and 0Z:XZ .... [O,a-u[be m.p. s.t. (\lx
1
o 01 ::: 

f I X 1 and b f I X z () 02 :::: f I X Z· 

Also 1et G (t) ;..; 6 (u-tl on ° ~,t <: u so G
1 

",-,6 1[0, u[ 1 g g . 

and letGZ(t)=6
g

(t+u) on o <:t<;a-usoGz-6gl[u,a[ 

u u 
Then ! 0f(t)o (u-t)dt 

o g = 10 ° f I Xl G 1 dm = ~ (0 f I X 1 0 0 1)( G 1 0 0 1) dlJ 
1 

Also 

a-u a-u 
J 0f(t+u)o (ttu)dt = 1 6 I G 2 dm o g 0 f X z 

and y(u) = 1 f gl dU. 

theng'-o "'g g 

(11. 2) COROLLARY !! (X, 1\, fl) is non-atomic then for all 

° ~ f, g EM(X, U) we have 
a 

max[ 1 f' g' dU: f' '"'" f, gl -g} ::: max [I f gl dlJ: g' '" g}::: ! 0fo , 
o g 

in the sense that both are infinite or are finite and equal. 

PROOF. As we observed, the inequalities of (10. 1) hold for all 

° ~ f, g E M(X, btl even if 0fOg ~ L 1 [0, a]. To show that the sup is 

attained, let 0: X -- [0, a] be rneasure preserving s. t. of 0 0= f. Then 

a 
1 Of 6 = 1 (of 0 0) (0 0 o)dIJ = J f gl dlJ, where g' ::: 0 0 a '" g. 

o g g g 
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Many investigato rs have us ed g -< f to mean I g I -<-< I f I 
([25J for example). Hence the following theor e m is of interpsi. 

It will also b e v e ry useful. 

(11 .3 ) THEOREM. Let (XI ' 1\I,\JI) and (X,1\,IJ)befinitem.s . suc h 

1 
that ~(X) = ~ (Xl) = a, and let f EL (Xl' ~I) and g E M(X, IJ)· Then 

g -< f implies gEL 1 (X, IJ) and I g I -<-< \f \ . 

1 
PROOF . (8. 2)(vii) ~ gE L. From § 9 it follows that (11. 2) implies 

t 
10 0\ g \ = fig I C E dlJ* for some E E 1\# with !Jo#(E) = t 

= I g sgn(g) C
E 

d',J# 

a 
~ 10 ° °h where h = sgn(g) C

E g 

a 
s 10 °foh sin c e g -< f 

= f f hI dki # for some h I E LI(Xt , !Jot) s.t. hl"'h 
1 

s 1 lfllhll dI-Lt and lhll,....., lhl = C E so lhll = C F for 

some F E1\ # s.t. IJ'*(F) = ~#(E) = t 
= 1 \ f \ C F dlJ~ 1 1 I 

for all o st ::;; a. 

REMARKS. 1. If (X, 1\, ~ ) has atoms, then Theorem (II. 1) may be 

false. Let X = Xo U Al where Xo is non-atomic, Al is an atom, and 
a 

U (A I) > \.L (X 0) > O. Let f == Cx and g = CA' 
o I 

Then loo/)g = \J(X O) 

but gl '" g implies gl = C A since U(A I ) > ~(XO)' 
1 

1 f g I dU = 1 C X 0 CAl dlJ = O. 

so 
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2. If (X, J\, ~) is a finite m. s. consisting only of atoms of equal 

measure, then it is said to be discrete, and the set of values of the 

corresponding sums do not fill lip the whole interval, although the 

endpoinls are attained. (Sec [15]. Theorem .)()H). 

(11. 4) DEFINITION. A finite m. s. (X, fI, \.l) is called adequate if 

for all 0 ~ f, g E M(X, \.l) we have 

a 
max { / f g' dbl: g' '" g } = ! 0fo , a = IJ(X). o g 

(11.5) THEOREM. The following are equivalents for the finite m. s. 

(X. A, U) 

(i) (X, l\, ~ is adequate. 

(ii) (X, fI, ~) is non-atomic or consists only of atoms of equal 

Ineasure. 

(iii) For all A, BEll. we have 
a 

sup [f C
A C E dU: CE~CB} = fo 0A 0B 

PROOF. Now we know that (ii) ~ (i) ~ (iii). Hence it remains 

to prove (iii) :~ (ii). Suppose (ii) is not true. Then either X has at 

least two atoms A, B with 0 < !J(B) < ~(A), or X has an atom A 

and a non-atomic part Xo of positive measure, in which case (5.8) 

implies there is aBC Xo such that 0 < \.l(B) < 1-1 (A). In either case, 

for all E E A. with C
E 

'" C
B 

we have \.l(E) = !J(B) and hence 

I-1(A n E) ~ \.l(E) = bl(B) < bl(A) so U(A nE) = O. Thus / C A C
E 

dlJ. = 0 
a 

for all E E A. with C E ,.." C B but /0 0AoB = IJ.(B) > O. 



- 60-

lZ. The Decreasing Rearrangements of Sums and Products. If 

f, gEL 1 (X, ~) then in general ° f+g t of + 0 g' For example, let E 

and F be disjoint sets of equal positive measure. Then 

We can, however, prove the following. 

(IZ. I) THEOREM. 

t t tnt 

~) .) f. ! .~;. ~) ~\. (a -u )du <: fo 0 f! .... 1 f S .2= fa ° f. 
lIT I J 1 n J = 11 

-- 1, .•. , n 

for_ all 0 S t <: a with equality on both sides when t = a. 

PROOF. From § 9 it follows that Theorem (11.1) implies 

t t 

= max{ fE(fl+fZ)d~,l": E E /I."" & \..l"(E) = t} s fa 0f
1 
+ fa ofZ 

t 
and J a 

:? lnax 

The general case follows by induction. 

t t 
f of + f of (a-u)du . 
a 1 a Z 

(1Z. Z) COROLLARY. 
t 

.!! f ELI (X,~) then fa 10fl 
t 

~; fa 0 If I fa r all 

o ~ t sa with equality when t = a. 

t t t t 
PROOF. folofl = fa of+ t fa 0c (a-u)du:;;; fa O£ttr 

using Theorems (5. 5) and (IZ. 1). We have equality when t = a 

Along with (ii) of (7. I), (IZ.I) also yields the following. 



-61 -

(12. 3) THEOREM. !! (X, A, IJ) is a finite :m. s. with a = IJ, (X) and 

g is a bounded decreasing function on [0, aJ. then the function 
a 

p(f) = 10 0f(u)g(u)du is sublinear on Ll (X, 1).). 

(12.4) LEMMA. I l! f, gEL (X, IJ,) then 

I ~ of - I~ 0 g I <, for all ° <t S:a . 

t t 
PROOF. For all ° ~ t ~ a, 

t t t 
<, f a + f alf I and f ° <, o g 0 -g 0 g 

! a + ! 0 o g 0 f-a 
t t b 

r 0 f ~ r of + 
'0 g- 10 

t 

! °lof I o -.-g 

t t t t 

so - 10 0 I f _ g I ~ 10 0 f - 10 & g <, 10 c. If _ g I . 

1 I 
(12.5) COROLLARY. Suppose f, fn EL (Xl' fJ

1
) and g, gnEL (X, IJ) 

and gn -<fn' n = 1,2,3 . . . .. !! "fn -fill -> 0 and IIgn -gill -> 0 then 

g -< f . 

PROOF. \ J~ of - ~ of I <, fo °If -£1 <, J: 0lf -fl = Ilfn -flh for 
n n n 

all 0 ~ t ~ a, and si:milarly for g. 

As in the case of su:ms, if f, gEL 1 (X, IJ) then in general, 

o fg f:, 0 fO g even if 0 <, f, g. For exa:mple, let E and F be disjoint 

sets of equal positive :measure and let f = <;:+2C
F 

and g=2<;:+C
F

. Then 

fg = 2 C EUF ' and of = 0g = 2 C[O,U(E)[+ C[IJ(E), 2U(E)[ so 

OfOg = 4C CO , ~(E)C + CC\.l(E), 21J.{E) [ ~ 2C CO, 2~(E)C = Ofg' 

Recall, however, that if 0 <, f E M(X, \.I.) and E E A then 

0fC <, of 0E' More generally, we have the following. 
E 
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(12.6) THEOREM. (i)..!£ 0~f1'" ., f E M (X, IJ) then 
t t n--

loof .... f s;lo of ... of for all Os; t s; a, so in particular, 
1 n a 1 n 

I fl'" fn dlJ, s; 10 Of l' .. of . 
n 1 

(ii) !f..f1,···, fn E M (X,IJ) and 0l f
1
1'" 0lfnl E L [O,a] 

where a :;: iJ(X), then for all Os; t S; a we have 

t t t 
10 lOf ···f I ~/oO'f .. ·f I s;loo lf , ... O\f \. 

1 n 1 n 1 n 

PROOF. (i) There is an E E A>Il with IJ* (E) :;: t s. c. 

t .. #: a 
I of f :;: IE flf2 d IJ :;:_&(£1 CE)(£ZC E ) dlJ S; 10 of C of C 

a 1 2 X" 1 E ·2 E 
a t 

~ f of ~ of 0E = f of of' The general case follow s by induction 
a 1 2 a 1 2 

using (7. 1) (i). (ii) follows from (i) and (12. 2). 

13. T f < f and Some Consequences. 
II 

(13. 1) THEOREM. Let (X, A, IJ) be a finite m. s. Then for all 

f ELl(X~,)..L#) UM+ (X*,iJ#)we have T f<f. 
IJ 

PROOF. Let E EA*. I TIJ CE dlJ = I C E dlJ+ = IJ+ (E) by (9.~) (iv) 

and T C E = C x n E + ~ 
m(E n l[a ,b J) 

n n 

\.l a nEP m{Ila ,b J) 
n n 

hence TIJ, C E < C E by (8.2) (v). 

Actually, for all f E L l(X*, iJ >Il) we have already that 

a 
:;: = = fa Of using (9. 2)(iv). 

Let f be a non-negative simple measurable function. Then f 
n 

can be written in the form f = '6 f. C
E i= 1 1 i 

with f. > 0 
1 

i = 1, ... , n 
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and E1::::J .... ::::JEn' For all 0 ~t ~a, 

t n tnt t 
r 0 '6 f. 
Jo T f"; i= 1 1 

!J 
fa 0T C .,; '6 f. f 0E = 10 Of' 

\..L E. i= 1 1 a i 
1 

so T f -< f. 
IJ. 

Let a :::;; f E L l(x#, IJ~) be arbitrary. Then there is a sequence 

(f J of non-negative simple functions s. t. f t f. From the definition 
n n 

of T we see that a :::;; T f t T f. Since we have T f -< f it follows 
U \.tn \..L un n 

from (8. 2)(viii) that T f -< f. 
\.t 

If f E L1(X~, \..L JI:) then TUf+ -< t+ and Tu,f- -< f- so -TIJ C -< -C. For 

all a ~ t :5: a we then have 

so T f -< f • 
U 

+ 

(13.2) THEOREM. Let (X,fI.\J) and (X
1

,fl.
1

,1-4
1
)befinitem.s. such 

that a = IJ,(X) = 1J1(X
1
), and let f E M(X,IJ) and g E M(X1,1J,1)' 

(i) ~ 0lfl 0lgl E LIea, a] then 

f!f g' dlJ,: g' E M(X,IJ) & g' -< g} = [/a 0f(u)o (a-u)du, fa Of 0 J. 
ago g 

a 
(ii) If a ~ f, g then max{ f f g' dlJ: g' -< g} = I of 6 in the 

- -- 0 g 

sense that both are infinite or are finite anc:I equal. 

PROOF. (i) According to Theorem (5. 10) there is a 

g E M(X*, \J '*) such that 6 = ° . Let I be the interval in question. 
a go g 

Then I::::J U f gl dlJ: g' -< g}::::J [/ f TUg'dw,: g'", g, g'E M(X~w,#)} 

= £ffg'du.#:g'",g} = I using (7.1), (13.1), (9.2) and (11.1). 
a 

(ii) Follows from (11. 2) in a manner similar to (i). 
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EXAMPLE. If n ~ 0 is an integer and t.. ~ 1, find 

1 1 
sup[ ! n 

f(x)dx: 0 -;; f ~: A and 10 f(x)dx 1 } . x = 
0 

1 
I 

I 
~f 1 

Now a ~ f ~A and 10 f -. 1 iff a ~. --f < 1 and ~} -
A A A 

1° ff 1 f C 1 . ( 8 2) ( ) I" -<'[O'IJ' usmg . v. Thus the sup is the saIne as 

1 I 
sup t! xn f{x}dx: f -< C [0 1.. ] } = ! 6 6, C I 

o , A 0 xn I\. [0, I ] 

1 
2 n = A! (I-x) dx, 

o 

using (13.2) and (5.3) (v). 
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IV. REARRANGEMENT INVARIANT BANACH FUNCTION SPACES 

studies havl' been nlactc of Banach function spaces ane! Illor(~ genl·rally 

narrned Riesz spaces (see [27Jand [29J). In thjs chapter we review 

saIne rearrangeInent invariant properties of such spaces when the 

underlying Ineasure space is finite. The treatInent closely parallels 

LuxeInburg in [28J. RearrangeInent invariant Banach spaces will 

be the setting in which we will work in future sections. 

(14. l) DEFINITION. Let (X, 1\, ~) be a finite In. s. + + and let M =M (X,~) 

denote the sct of all non-negative extended real valued Ineasurable 

f t · (X ~ ) A . M+ R# . 11 d ft' _ unClons on ,n, I.! . Inapplng p: -0' IS ca e a unc Ion norIn 

if it has the following two properties. 

(i) + o ~ p(£) ~ +oe for all f E M and p(f) = 0 iff f = 0 1-4 - a. e. 

(ii) p(£+g) s p(f) + p(g) for all f, g EM+ 

p(af) + = ap(f) forallfEM and a~ O. 

f s g + ~ p(f) ~p(g) for all f, gEM. 

In addition, p is said to have the sequential Fatou property and 

is called a Fatou norIn if it also satisfies. 

(iii) 0 $£ t fpointwise everywhere iInplies p(f ) jp(£). 
n n 

We extend the dOInain of definition of a function norIn p by 

defining p(f) = p(/fl) for all f E M(X, U), and we denote by LP=LP(X, u,) 

the set of all f E M(X, IJ) such that p(f) < oe. If U-a. e equal IneInbers 
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of L P are identified as usual, then L P is a normed linear space with 

the nornl Ilfll :: IIfll = p(f). These spaces arc clearly generaliz.ations 
p 

of the classical Lebesgue and Orlicz. space';. 

Unfortunately the hypotheses we have placed on p so far do not 

preclude the existence of a p-purely infinite set, i. e., a set A for 

which p(C
B

) :: +oc for all Be A such that U(B) > O. Of course, if 

f E M(X, U) and A is p-purely infinite, then f C A :: 0 hi, - a. e. 

[29, NoteIV, p. 251, Lemma 8.2]' Fortunately it can be shown that 

X has a maximal p-purely infinite set X , i. e., X is p-purely 
oc oc 

infinite and X -X has no p -purely infinite subsets [Note IV, TheoreITl 
oc 

B.3]. We will aSSUITle in this and in subsequent sections that X has 
oc 

been renlOved frOITl X so that our ITl. s. has no p-purely infinite sub-

sets. In this case p is said to be saturated. 

Given a function norITl p we define the first and second asso-

ciates of p as follows. 

(14.2) DEFINITION. + For all f E M 

pi (f) :: sup £ ! Ifg I dlJ: p(g) 51} 

P II (f) :: sup [ ! I fg I du.: pi (g) 51} 

It is not hard to show that pi and pI! have the sequential Fatou 

property [Note IV, p. 254, Theorem 9.2]' and that p is saturated 

implies pi is a norITl [Note IV, TheoreITl 9. 7J. It is true but harder 

to show that in addition, p! is saturated [Note IV. p. 261, Corollary 

11. 6J. Hence p" is also a saturated Fatou norITl. 
pI 

The spaces L 

and L P" are called the first and second associate spaces of L P 
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respectively. 

We have the following lIc)lder type inequality [NoteIV, p. 2£>1, 

Corollary 11. 7J. 

(14.3) THEOREM. If f E L P and g E LP' then 

I If g dU! .0; I \fg\dIJ::::; p"(f)pl(g)::::; p{f)p'(g) . 

Note that p" ::::; p. In the other direction the following has been 

shown. [Note IV, p. 259, Lemma 11. 3]. 

(14.4) THEOREM. (Lorentz and Luxemburg) p" = p if and only if 

p has the sequential Fatou property. 

The following converse of the Holder inequality also holds. 

[Note V, p. 499, Corollary 14. 2J. 

(14.5) THEOREM. (Lorentz and Wertheim.). Suppose L P is 

completeand gEM(X,U). ThengEL P' iff IlfgldhJ.<oo forall 

f E L P. 

It has been shown that L P is complete iff P has the following 

property called the Riesz-Fischer Property: L p(f ) < 00 implies 
n 

P(L If I) < 00. [Note I, p. 143, Theorem 4. 8J. In particular, L P 
n 

is complete whenever p is Fatou. [Note II, p. 149, Theorem 5. 3]. 

Thus LP' and LP" are complete. 
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P I:> p' q -1 
If L = L , 1 ~ P <; oc, then L = L where p - 1 I q :::. 

In general L P' is a closed normal subspace of the Banach Dual (L P )':< 

[30, p. 153]. , * 
We have L P = (L P) iff p(f ) l ° whenever flO 

n n 

everywhere. G E (LPt is in L P' iff G(f ) l ° whenever f ~ 0, 
n n 

Since the m. s. is finite we will, in accordance with the 

Lebesgue and Orlicz space situation, assume in this and in sub­

sequent sections that L oc C L P, L P' c L 1. This is easily seen to be 

L·quivalent to p(C
X

) < oc and p'(C
X

) < oc. If P is Fatou, then 

LocCLPCL
l 

iff p(CX)<oc and p'(Cx ) <,.x:, in which case 

oc p' 1 
L C L c L also. 

(14.6) DEFINITION. A function norm p is called rearrangement 

invariant (r. i. ) if f1 --f2 implies p(f1 ) = p(f2 ). 

L p is called rearrangement invariant if f1 ..... £2 E L P irnp1ies 

f E L P . 
1 

If P is rearrangement invariant then so is L P, but the converse 
1 2 

IS not true. For example, let p(f) = J
o

lf(t)ldtt2 f1If(t)ldt if fEM[0,2]. 

L P is r. i. since g"-' f E L P implies 
122 

3 J~ 0 1 f I ~ 3 fo 6 If 1 = 3 fo If \ < oc . 

121 1 
fo Ig I + 2 fl I g I ~ fo O\g \ + 2 fo O\g I = 

However p(C[O, 1J) = 1 and 

P (C [ 1, 2]) = 2 even though C [0, 1] '" C [1, 2 J . 

The following lemma is fundamental to what follows. 
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(14.7) LEMMA. Suppose (X, 11., fJ) is adequate (i. e. discrete or 110n-

Then L P is re-atomic) and p is a Fatou norm and let a = U(X). ----
arrangement invariant iff 0fOg E LI[O, a] for all 0 ~f EL P and 

o ~ gELPI, in which case L P' and L P" are rearrangement invariant 

iff L P is. 

PROOF. Suppose L P is rearrangement invariant. Let 0 ~ f E L P 

and 0 ~ g E LP' If f' '" f then f' E L P so ! f' g dlJ:::; p(f') pI (g) < ex:.. 

Hence 0/) gEL 1 [0, a] since \J is adequate. 

Suppose 0fOg E Ll [0, a] for all 0 :::; f EL P and 0 ~ g E L P' 

a " o ~f' "-' f E L P, ! f' g dw. ~ fo 0llg < oc so f' EL P = L P using If 

(13.4) and (13.5) since pis Fatou. 

The rest follows by replacing P by P I and L p" by L p. 

(14.8) THEOREM. Suppose (X, 11., w.) is adequate. 

(i) If P is a Fatou norm and if L P is rearrangement invariant 

then 0 ~ g -<-< f E L P implies g EL P and hence g -<f E L P implies g EL P. 

(ii) Y L P is rearrangement invariant, then 0 ~ g -<-< f E L P' 

jJl1plies g E L P' and g -< f E L P' implies g ELP'. 

PROOF. (i) Suppose 0 ~g -<-<f EL P. Then for all 0 ~ hELP' 
a 

we have! g h dlJ :::; fo 0gOh s r: 0foh < oc using (10.1) and (i) of (7.1), 

" 1 P so gEL P = L P If g -< f E L PeL then (11. 3) implie s Ig I -<-< If 1 EL 

so Ig I E L P. 

(ii) Follows from (i) since pI and P" are Fatou norms, and 

If (r. i. ) implies LP' and L P" are (r. i. ). 
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(14. 9) DEFINITION. A functi~n_ norrn. p is called universally re-

arrangement invaria_nt (u. r. i. ) if fl ",f ~ 0 i.mplies p(Tp [I) ~ p(O 

for a.1I [I E M(X-IJ, IJ.I). 

L P is called universally rearrangement invariant (u. r . i.) i f 

fl"", £ E L P implies TIJ £1 E L P for all fl E M(X~ I.l). 

will 

If (X, /\, U) is adequate (i. e. dis crete or non-atomic) then we 

that p is (u. r. i.) iff it is (r. i. ) and L P is (u. r. i. ) iff see 

it is (r. i.). Our previous results generalize as follows. 

(14.10) THEOREM. (i) If L P is (u. r. i. ) then Of 0 ELI [0, a] for all - -- g 

o s f EL P and 0 s g EL P' where a = IJ.(X). Y P is a Fatou norm, 

pip" . 
then the converse holds, and in that case L and L are (u. r. 1. ). 

iff L P is (u. r. i.) 

(ii) Y p is a Fatou norm and L P iUu. r. i. ) then 0 s g « f E L P 

implies g E L P and g -< f E L P implies g E L P. 

(iii) Y LPis (u. r. i. ) then 0 sg <-<f EL
PI 

implies g EL
PI 

and 

P I pi P" 
g -< f E L implies gEL . Similarly for L . 

PROOF. (i) For all fl "" f, £1 EM(X I
, IJ#)' we have 

! fl g dlJ.* = ! (T fl)g dlJ :5: p(T fl)pl(g) < DC, 
fA. V 

. (Xdf #). t' Slnce . ,~ ' 1S non-a omlC. 

Suppose P is Fatou and let 0 s fl ....., f E L P, £1 E M(X#, vJf
). Then 

J 
a I 

/(TI-/')g dIJ = J fl g cl s 10 OfOg < ex for all O:5:g E L P so 

" I 
TIJf l EL P = L P. The rest follows by replacing L P by L P and 

L P " by L P 



-71 -

(ii) and (iii) Follow as in (14.8). 

We now investigate rearrangement invariant (and (u. r. i)) 

norlns. 

(14. 11) THEOREM. Suppos e (X, 1\., ~ ) is adequate and p is a re-

arrangement invariant norm and let a = bJ, (X). Then for all 

o sf E M(X, IJ) we have 

a 
p I (f) = sup t J of °lg 1 : 

p(g) s 1 } 
0 

a 
p ll(f) = sup [ J of 01 g j : p'(g)sl} 

0 

so pI and pl! are rearrangement invariant. 

In addition, g p is a Fatou norm, then 

a 
p (f) = sup { fo 6 fO I g I: pI (g) s I} 

for all o 5 f E M (X, IJ ) • 

PROOF. Since (X, 1\., U) is adequate, for each g with p(g) :::;; 1 

there is a gl ~J g such that JoaOfOlgj=Jf!g'ld\J.. gl~g implies 

p(gl) = p(g) 5 1 since p is (r. i.) so 

a 
f J 0 0 fO 1 g !: p (g) s I} C t J fIg I d},l: p (g) :::;; I}. 

a 
But f fig j dW 5 fo of 0lg ISO 

a 
pl(f) = sup{J flgjdlJ: p(g) <:: 1] -. sup{ fo 0lllgl: p(g) 51 ] 

We get the formula for p l! by replacing p by pl. If P is Fatou, then 

p = pl!, giving the last formula. 
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The following is a kind of converse which will be useful 

later. 

(14.1Z) LEMMA. Let (X, 11., ~) and (X', 1\', IJ.') be finite m. s. with 

IJ.(X) = U'(X') = a. y A C M(X', U') with rCx, EA for some r :J: 0, then 

the mapping 0 $ [ ..... p (f) defined on M + (X, ~) EY 

a 
p (f) = sup { fa 0[0\ g I: g E A } 

is a Fatou norm which is universally rearrangement in variant. 

PROOF. f = 0 U - a. e. implies p(f) = 0 is clear. If p(f) = 0 
a 

we take g = rCX' and obtain fo of = 0, so of and hence f = 0 a. e. 

since f ~ o. If u ~ 0, then 0uf = u of so p(uf) = u p(f). If 0 $ fl $ fZ 

then of $ of so p(f
1 ) $ p(fZ)· To prove the triangle inequality we 

1 Z t t 
have from (1Z. 1) that f of +f $ 1 (of + of ) for all 0 $t $a, so 

o 1 2 0 1 Z 

if p(f
1

) & p(fZ) < ~ then (7.1) implies that for each gEA we have 

a a a 

f 0 6 [ 1 + f Z I) I g I ~ fa 6 flo Ig I + fo 0 f Z 6 I g I 
a a 

Since 0 $ fn t f everywhere implies fa Of 01 g I t 10 0/) I g I for each 
n 

g EA, we have p(f ) t p(f) as in [Z9, Note II, p.149, Theorem 
n 

5. 4J. Hence p is a Fatou norm. To prove tha1 p is (u. r. i.), let 

o $ f E M(X, U) and let fl '" f where fl E M(X#-, ~#). Then 0 ~ T f' -<-< f 
IJ a 

solo 0 T f' 0 I g I 
\J 

p(T\.,/') $ p(f). 

a 
10 of 0lgl for each g E A and hence 
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(14.13) THEOREM. Suppose (X, /I., u.) is adequate and p is a 

rearrangement invariant norm. If p is al so Fatou, then 

(i) 0 ~ g «f implies p(g} ~ p(f). 

(ii) g < f E L \X, u.} implies p(g) ~ p(f}. 

Whether p is Fatou or not, p' and p" satisfy (i) and (ii). 

If (X, A, u,) is not adequate, then Theorem (14.13) may not 

Iw trut'. For example, suppose X = Xo U A where A is an atom, 

Xo is llon-atornic, 0 < u.(X
O

) < u.(A), and u,(A) > 1. Let 

p(h) = IX \h\du. + \heAI. Pick E: > 0 such thatO<l-e:<\J.(XO)~(l-E:)',J,(A), 
o 

and let f = C A and g = C x + E: C AO Then p is a Fatou rearrange­
o 

ment invariant norm and 0 ~ g -<-< f, but p(f) = 1 < \J(X
O

) + 8 = p(g). 

For general m. s. our previous results take the following 

form. 

(14. [4) THEOR EM. If pis a univer sally rearrang(~ment invariant 

no/·m, then the following four statements are true. 

(i) For all 0 ~ f E M(X, IJ) we have 

a 
p'(f) = sup f fo Of 0lgl: p(g) ~ I} and 

a 
p"(f} = suPt fo Of 0lgl: p'(g} ~ I}, where 

a = \J(X). If p is in addition Fatou, then 

a 
p(f) = supt fo 0fOlg,:pl(g)~ I} 

for all 0 ~ f E M(X, U) 
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(ii) p' and pIt are universally rearrangement invariant. 

(iii) 0 ~ g -<-< f implies p'(g) ~ p'(f) and p"(g} ~ p"(f), and 

similarly for p if p is Fatou. 

(iv) g -< f E L l(X, IJ} implie~ p'(g) ~ p'(f) and p"(g) <:;; p"(f), and 

similarly for p ~ p is Fatou. 

PROOF. (i) For each g with p(g) ~ 1 there is a g' E M(xi, \J.*) 
a 

suchthatg'''''gand 10 0fOlgl = Iflg'ld\J.* = IfT~lg'ldIJ.. 
gf,.., g implies Ig'l -\g\ so p(TIJ.\gl\) ~ p(lg\) ~ 1 and thus 

a 
flo of 0lgl: p(g) ~ I} c { I flgld\.J.: p(g) ~ I} . Then 

a 
pf(f) = supt I flgldU: p(g) ~ I} = supt 10 of 0lgl: p(g) ~ I} 

as in (14. 11). 

(ii) This follows from (i) since 0 ~ ['" f' E M(X~ IJ #=) implies 

T f' -< f im p Ii esT [' >- 0 (8. 2), 
IJ IJ 

(iii) & (iv) are immediate using the representations in (i). 

15. A Repre sentation Theorem. The rear rangement invariant 

spaces such as the classical Lebesgue spaces, the Orlicz spaces, 

and the spaces introduced by Halperin and Lorentz (see (14 J, [23J, 

[24]), Boyd [2] and Shimogaki (45] are all of the following kind. 

Let (X, /I., U) be a finite m. s. with a= IJ(X) and let M+ [0, aJ 

denote the set of all non-negative extended real valued Lebesgue 

measurable [unctions on [0, aJ. 
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(15. 1) LEMMA. g A is a Fatou rearrangement invariant norm 

. +e 00 A 1 defmed on M 0, a] such that L c L c L , then the mapping 

o sf -> p(f) == A(of) is a Fatou norm which is universally rearrange­

ment invariant, and p '(f) = A '(0 f) for all ° s f E M(X, U). Further­

~~Loo C L P, LP'C L 1 

PROOF. Since Lebesgue measure is non-atomic, (14.11) 

implies that for all Os F EM[O,a] we have 

a 
X(F) = supf 10 ~ 0 I GI: A'(G) s I} so 

a 
p(f) -- sup( 10 of 0IGI "A'(G) s I} 

To show that p is a (u. r. i. ) Fatou norm we have by (14. 12) only 

to show that \'(r CeO,a]) s 1 for some r '* 0. 1£ \1(CeO,a]) = 0, 

take r = 1. Otherwise, let r = 1/\' (CeO, a]). 

Finally we show that p'(f) = \ '(of). For each G with A(G) s 1 
a 

there is a g' E M(X~,u*) such that g'"" lGl and 10 OfO\Gl = Ifg'du~. 

But I fg' rilJ~ == 1fT g' dU and p(T g') = \(oT ,) s \(IG1)s 1 
IJ u Ug 

sinceOsT g'«lGI, so 
U 

a 
t fo of 0lGl: A(G) s I} C [ I flgldU: p(g) s I} and thus \'(of)::;; p'(f). 

a 
For the rest, if p(g)::;; 1, then IflgldU s 10 of O\gl and 

p'(Cx ) == ) . .'(C
eO

, aJ) shows the rest. 
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(15.2) THEOREM . .Y' (X, 1\, \J) is a finite m. s. and p is a Fatou 

norm, then p is univer sally rearrangement invariant (r earrange-

ment invariant if (X, 1\, IJ,) is adequate) if and only if there is a Fatou 

rearrangement invariant norm 'A. on M+[O, a], where a = IJ,(X), 

such that p(f) = 'A.(o£) for all 0 ~ f E M(X,IJ,}. 

PROOF. It only remains to prove the existence of 'A.. By (14. 14) 
a 

we have that for all 0 ~ f E M(X,IJ,) p(f) = sup[ loolilgl: p'(g) ~ I} . 

For every 0 ::;; F E M[O, a] we define 'A.(F} = sup[ 1:%01 gl: p'(g) ~ I} • 

(14. I2) implies that 'A. is a (r. i.) Fatou norm.. Clearly p(f) = 'A.(of) 

for all 0 ::;; f E M(X, IJ,). 



-77-

I 
V. INEQUALITIES OF HARDY, LITTLEWOOD, POLYA AND 

MUIRHEAD 

16. Schur Convex Functions. If 

(X, fI, u,) is a finite ITl. s. consisting of n atoms of equal nleasure, 

then each ITlember of M(X, IJ) may be identified with a point 

;; := (x l' ... , x
n

) of R n, in which case its decreasing rear rang eITlent, 

-* denoted by x , is the point obtained by rearranging the components 

-+ --+ -iii- n -+ -It 

of x in decreasing order. If x, y E R then the definition of y -< x 

as sume s the form 

k 

~ 
i= 1 

* y. ::; 
1 

k :Ie 
~ x. 

i= 1 1 

with equality when k = n. It was in this form that the relation -< 

was first introduced by Hardy, Littlewood, and Pblya. 

Let S denote the symmetric group of all permutations of 
n 

[1,. ") n}. For each;; ERn let 6(x)= [yERn:y,,-,x} = 

Recall that an nXn matrix A = [a .. ] 
1J 

is said to be doubly stochastic (d. s. ) if a .. ~ 0 and 
1J 

n 

:0 
i= 1 

a .. = 
1J 

n 
1 = ~ 

j= 1 
a .. 

1J 
for all i, j = 1, ... , n. 

(16.1) THEOREM. (Hardy, Littlewood and Pblya). The following 

--.... n ar e equivalent for x, y E R . 

-> -(i) Y -< x 

n n 
(ii) ~ cp(y.) ~ ~ cp(x.} for all convex functions CO on R. 

i= 1 1 i= 1 1 

(iii) Y 1S in the convex hull of ti;) 
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--t ...... 

(iv) There is a doubly stochastic matrix A such that y = Ax. 

An interesting discussion of this result and of the theory of 

doubly stochastic transfornlations can be found ill a paper by 

L. Mirsky [31J. 

(16.2) THEOREM. 
...... --t n 

(R. Muirhead) Let x, y E R • 

iff for all pas itive a ERn we have 

" y( 1) 
LJ ao(l) 

o E S 
n 

a
y ( n) < " x( 1) 

( ) - L.J a o( 1) 
o noES 

n 
--t .... .... 

Equality holds iff a is constant or y"-' x . 

--t --t 

Then y -< x 

x{n) 
a 

o(n) 

It will be our purpose in the next few sections to show in 

what sense these two theorelTIS can be extended to functions in 

LP(X, A, U" where (X, A, U) is a finite m. s., L 00 C LP, L P ' eLI, P is 

a saturated Fatou norm, and LP is universally rearrangement 

invariant. The gene ralization to L 1 [0, 1 J of the equivalenoe of 

(i), (iii) and (iv) and Theorem (16. Z) was given by Ryff ([39J, [40J, 

[42J). The generalization of the equivalence of (i) & (ii), was given 

for L oo(X, A, 1.1) by Grothendieck [10J. The generalization of the 

equivalence of (i), (ii) and (iii) was given for LP(X, U) independently 

by Luxemburg [28]. 



-79-

(16.3) DEFINITION. A mapping ~: LP - R* which satisfies the 

following propertie s is called a Schur Convex function. 

(i) - ao < iP (f) ~ +00 for all f E L P, and iP (f) < +00 for some f E L P. 

(ii) '"1' is convex, i.e., ~(rf1+(1-r)f2)s r 4i(fl)+(l-r)4i(fZ) for all 

f l' f 2 E L P and 0 s: r s: 1. 
I 

(iii) iP is a (LP , L P ) - lower serrli-continuous, i. e. , 

(£: iP(f) s: r} is o(L P, L P ') - closed for all real r. 

(iv) iP is rearrangement invariant, i. e., fl ,...... f2 irrlplies 

iP(f 1) = ~(f2) for all f 1, f2 E L P. 

If iHs convex, then for all real r, the set [f: ~(f) s r} is 
, 

convex. Hence it is o(LP, LP ) closed iff it is closed in each locally 
, 

convex topology on LP in which LP is the dual of L P • In particular 
, 

the topology 101 (LP, L P ) generated by the serrlinorrrls 
, 

P (f) = I I fg I dlJ, f E LP, g E L P is a locally convex topology on LP 
g , 

in which L P is the dual of L P, and thus a ~ satisfying (i) and (ii) 

t 

satisfies (iii) iff: Jlfn-f! I gldlJ - 0 as n - 00 for all g E L P implies 

~ (f) s lim inf iP (f ). 
n - 00 n 

In particular, such a iP satisfies (iii) whenever: 

If I 
n 

s: f E LP and f - f IJ-a. e. irrlplies ~ (f) s lirrl inf iP (f ). 
o n n-oo n 

We would like to prove that g -< f iff qi(g) s iP (f) for all Schur 

Convex functions ~. However it is clear that we cannot prove this 

for gene ral m. s. because any rearrangement invariant Fatou 

norm PI is Schur convex, and we have seen that unles s (X, fl., IJ) is 

adequate, we cannot guarantee that g -<f irrlplies Pl(g) s P
1

(f). 
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In order to alleviate this problern we introduced the 

concept of a universally rearrangement invariant norm. The saIne 

idea works here also. 

(16.4) DEFINITION. A mapping ~: LP -+ R* is said to be a universal 

Schurconvex function (u. s. c. ) if it satisfies properties (i), (ii) ~nd 

(iii) of (l6. 3) and (iV)1 ~ is universally rearrangement invariant, i. c., 

H T fl) ~ ~ (f) whenever f E LP, f' E L P (X*, \J*) and f' ~ f. 
~! 

If ip is universal Schur convex then it is Schur convex. 

The next lemma win imply (among other things) that if (X, !\,IJ) is 

adequate, then ~ is u. s. c. whenever it is Schur convex. 

EXAMPLES. (i) If cp is a real convex function on R then 

q; (f) = / q:l(f) dlJ is Schur convex on LaO. If in addition cp is increasing 
t t 

then ip t(f) = /0 cP(of) = fo 0(1)(f) is, for each 0 ~ t ~ iJ(X),Schur convex 

on L 00. If lim inf r~(u)/u is finite, then ip and ip are Schur convex 
U -+ -O(l t 

(ii) ip 1 (f) = ! f dlJ and ip2(f) = !( -f)dlJ are u. s. c. on LP. 
t 

(iii) For each 0 ~t :S:\J(X), ipt(f) = fo Of is u.s.c. 
, a 

(iv) If g E L P and a = IJ,(X) then q; (f) = ! of ° + b is universal 
gog 

Schur convex on L P where b ER. 
a t a 

(v) [RyffJ q; (f) = ! ! 0f(s)dsdt =! 0f(s)(a-s)ds is u. s. c. on LP 
o 0 0 

and q; (f) = q; (g) iff f ""' g. 
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(vi) If ~ is a Fatou rearrangcll1ent invariant function norm., 

tl1<'ll cj) is Schur convex on L P . (~;('e [30J, Theorem 3. t, p. !(,Z). 

(vii) The sup rC111un1 of a Ltlnily of Schur convex [Llni versa} Schu r 

Convex] functions is Schur Convex [Universal Schur Convex]. 

(16. 5) LEMMA. If cP IS universal Schur convex, or if (X, /I., U) is 

adequate and cj) is Schur convex, then there are functions g. E L
Pf 

and 
1 

real nUInbers b. such that 
1 

a 
~(f)=sup£f Of 0 +b.} for allf EL P. 

i 0 gi 1 

If in addition t is inc rea sing, then 

a 
cj)(f) = s~p{ 10 of 0 Igi l + bi} for all f EL

P
. 

PROOF. It is well known that if ~ IS convex and lower semi-

continuous, then there are continuous linear functionals L. and real 
1 

numbers b. such that ip (f) = sup {L.(£) + b.}, the L. being non-negative 
1 . 1 1 1 

1 1 

if ~ is increasing [1]. For each i, there is a g. E LP s.t. L.(f) = 
1 1 

f f g. clu, for all f E L P, and g. ~ 0 if L. is non-negative, so 
111 

a 
cj) (f) = sup (ffg. du. + b.} ~ {! Of 0 + b.} 
ill 0 gi 1 

Suppose cj) is u. s. c. and let f E LP. For each i there is an 
a 

fl "-' f with £1 E LP(X~ '1-)") such that I fl g. clJ = ! Of 0 . Then 
1 0 gi 

cj)(f) ~cj)(T ff):? I g. T f' dk/. + b. = Iff g. du.#-+ b. 
U. IIJ 1 1 1 

and this holds for all i so 
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a 

~(f)~ supff 0[0 + b.} . 
o gi 1 

The proof when (X, f\., I.J.) is adequate and ~ is Schur Convex is 

similar. 

REMARK. Luxem.burg has observed that if we let 

Y(g) = supf /fgd\.J.-iP(f):fELP}thenthe conclusion of the 

lemma assumes the form 

~ (f) ::: 
a I 

sup r / of 0 - Y(g); g E LP } 
o g 

(I6.6) THEOREM. (i) Suppose (X, fl., \.J,) is any finite m. s. and 

f l' f2 E LP(X, IJ). 

1. f1 ~~ f2 iff ~(fI) ~ iP(fZ} for all increasing universal Schur 

convex functions iP on L P. 

2. fl -< f2 iff iP(fl)~~(f2) for all u. s.c. functions ~ on LP. 

(ii) Suppose (X, fL, u,) is adequate and fI' f2 E LP. 

1. f1 -<-< f2 iff iPUI)"S: iP(f2)for all increasing Schur convex 

functions <jl on L P. 

2. f 1 -< f 2. iff ~(f 1) :-s: iP(fZ) for all Schur convex functions iP 

on L P. 

PROOF. Lemma (16. 5) in conjunction with the Hardy inequalities 

and CP is increasing. 

~ iPU
Z

} for all increasing Schur convex iP, then since 

f - increasing and u. s. c. for each 0 :S t ,;; \.J.(X), we have 
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is universalSchurconvexwe have f1 <f2 · 

Reca 11 that if p i ti a Fatolt It. r. i. Bonn, then thc .J"t.· is ,\ Fatoll 

1'.1. 
+ norm A on M [0, a] such that p(f) = A(of)' 

(16.7) THEOREM. Suppose p(f) = Ho
f

) where A is a Fatou r e-

arrangement invariant norm. Then ~ is a universalSchur convex 

function on LP iff there is aSchur convex function ~ on LA[O, a] 
0-

I 

PROOF. If ~ is u. ti. c. on L P then there are g. E L P and b. E R 
1 1 

a 
such that for allf ELP, ~(f)= suPt J 0fO + b.}. Since p'(g)=AI(O) 

. 0 g. 1 g 
I 1 A I 1 

for all g E LP we see that [) E L [0, a] for each i. Hence define 
a 

~ (F) = sup f J of ° + b . } 
o i 0 gi 1 

and <Po(of) = ~(f). 

gi 
for F E L A[ 0, a]. Then ~ is Schur convex 

o 

Conversely, if ~ is Schur convex on LA[O, a] then there are 
o 

AI a 
G i E L [0, a] and bi E R s. t. ~o(F) = s~pf fo of 0G. + bi } for all 

A. All 
F E L CO,aJ. But f E L P iff of E L [O,a] so for all f E L P, 

a 
~(f) = ~0(6f) = stpf fo of 0G

i 
+ bi} and thus ~ is universal Schur 

convex. 

17. The Sets O(f) = (£': f' -< £}. Recall that we are assuming that 

p is a saturated Fatou norrn on M+(X, U), LP(X,~) is u. r. i., 

00 P pI 1 
L (u) C L (u), L (U) C L (\.I.), and a = \J(X). 
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The equivijl.lence y -<;; iff YE the convex hull of li~) can be reformulated; 

r--to -+ -+.-. -+ p 
l.y: y -<x} = the closed convex hull of [y: y'" x}. If f E L (X,~) we 

let D(f) = [[I EL 1
(X,1-41: £1-< f}, and 6(£):::; ££1 ELl(X,~): fl ~f}. Since 

L P is u. r. i., fl -< £ E L P implies £1 E LP and hence both O(£)& Mf)e L P. 

n(£) has a smallest element T = (\J~X) ! £ dfJ) eX in the sense that h -< fl 

for all fl E nit) iff h = T. This follows from (8. 2)(vi). Also O(f) is 

contained in the hyperplane [£, ELI: ! fl dIJ = / f d~}, and T is 

L~quldistant (in the L 1 norm) from the members of ~f). 

(17.1) PROPOSITION. Any a(L P, LP')-bounded set ACL P is 

p-bounded. 

PROOF. Since A is a(L P, LP')-bounded, for each g E L P' we have 

sup(! /f' g dfJl: f' E A}< oc. For each fl EA, Lf,(g) = ! £' g dfJ defines 

a pi-continuous linear functional on L P' with IILfl1i = p"(fl) = p(fl) 

[29, Note IV, p. 257J. Then for each g EL P', sup { ILf,(g) I: £1 E A} <oc, 
I 

and since L P is complete, the Banach Steinhaus Theorem implies 

sup{IILf,ll: f' E A} = sUp{p(fl): £' E A}< oc. 

(17.2) COROLLARY. 1£ {£ } is a net in LP which is a(L P, L
pl

) 
- Q 

(17.3) THEOREM. For all £ E L P, ["2 (f) is p-bounded. 

I 

PROOF. We have only to show that 0 (f) is a{L P, L P ) bounded. 

This follows at once since for each gEL pi we have 
a 

sup { 1 I fl g dlJ I: f' E O(f)} $ sup [ ! 1£1 g 1 dlJ: £' E O(£)} $ 10 0 I £ I [) I g I < oc 
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(17.4) THEOREM. Y £ E L P then 0(£) is a convex and a(L P, L
PI

) 

compact subset o£ L P. 

PROOF. Let f E L P, let fI' £2 E O(f) and let 0 s r~· 1. Then 
t 

(12.1) and (5. 3)(vi) imply that for all 0 s t sa, 10 0rf
I
+(I-r)f2 

t t t 
,;; fo rO

fl 
+ fo (1-r)Of

2 
s fo o£ so rf I + (l-r)f2EO(f). Hence O(f) is 

convex. 

Let [£ } be a net in O(£). For each 0', F (g) :: f f g dfJ defines 
0' 0' 0' 

a pi-continuous linear functional on L
PI 

with IIF II :: p"(f ) :: p(£ ) 
0' 0' 0' 

[29, Note IV, p. 257]. Since O(f) is p-bounded, there is a nUITlber 

M > 0 such that p(fl) s M for all fl E 1(£), and thus lIF 11 :: p(£ ) s M 
0' 0' 

for all 0'. 
pi * pi Hence {F } is a net in a a{(L ), L )-coITlpact set 

0' 

[Alaogluls TheoreITl, 7, p. 424J, so jt has a convergent subnet 

F \3 -> F 0 say. To show that F E L P ::: L P" it is necessary and 
o 

sufficient to show that F (g ) ~ 0 whenever g ~ 0 [30, p. 155]. 
o n n 

Now for each gEL P I and for each 0', IF 0' (g) I :: I f fO' g du.1 sfl fO'g 1 d~ 
a 

~ fo 0lfl 0lgl because fO' -< fELl implies 1£) -<-< If I . Since the 
a. 

bound is independent of 0' we have IF 0 (g) I s fo ° \ f \ 0\ g \ and this ~ 0 

as 19 I ~ 0. Hence F EL P, i. e., there is an f EL P such that 
o 0 

F 0 (g) :: J fo g du. for all g E L
PI 

Since F f3 -. F 0 we have 

pi 
fff3gdf,l=Ff3(g) .... Fo(g)=f£ogd~forallgEL ,i.e., {£!3} is 

O(L P, L
PI

) convergent to £. Thus 0(£) is o(L P, L P') compact. 
o 

* Let V be a locally convex linear topological space and let V 

* denote the dual of V, i. e. V is the collection of all continuous linear 
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functionals F on V. For each A C V and for each linear fUllctional 

F on V let F[A] = [F(v): v E A} and let cov(A) denote the convex 

hull of A. 

As a corollary of the Hahn-Banach Separation Theorern we have 

the following characterization of closed convex sets. 

(17.5) PROPOSITION. Let K be a closed convex subset of V. 

* Then for each v E V, v E K iff F(v) ~ sup F[K] for all F E V . 

* PROOF. 1£ v E K, then clearly F(v) ~ sup F[K] for a1l F E V . 

Conversely, if v ({ K, then the Hahn-Banach Separation Theorem 

* [36, p. 30, Cor 1] implies there is an F E V such that 

F (v) rI:. F [K] :::J [inf F [KJ, sup F [KJ ] so either sup F [K] < F (v) 

or sup -F [KJ < -F (v). 

a 
(17.6) THEOREM. Letf EL P. Then fl EO(£) iff Iflgd~ ~/06f6g 

fo r all gEL P , . 

PROOF. The continuous linear functionals on L P with the 

()(L P, L P ') topology are Fg (f) = f f g dUo where f EL P, 

each g E LP' it follows from (13.2) that sup Fg [O(f)J = 

Now use (17.5). 

For 
a 

I 6
f 

6 . 
o g 

We may similarly give a criterion for deciding when a closed 

convex set is the closed convex hull of another set. 
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(17.7) PROPOSITION. Suppose K is a closed convex subset of V 

and D C K. Then K is the closed convex hull of D iff 

~( 

sup F[DJ = sup F[K] for all F E: V . 

PROOF. Suppose the criterion holds. Then 

* sup F[K] = sup F[D] ~ sup F[cov(D)] for all F E V . Since cov(D) 

is a closed convex set, (17.5) implies K ccov(D). But cov{D) cK 

since D c K and K is closed and convex. Hence K = cov{D). 

Suppos e now K = cov(D). Let v E K. Then there is a net t w Of} 

* in cov{D) such that w -v, so for each F E V we have F(w ) - F{v) Of Q 

anc1 thus sup F[DJ :::: sup F[cov(D)J:?: sup F(w ) :?: F{v) since 
Q Q 

F[DJ :.:: F[cov(D)] . 

In view of (17.7) we have immediately: 

(17.8) THEOREM. Let f E L P and let r, be a topology on L P 

in which L P' is the dual of L P. Then O(f) is the; -closed convex 
a , 

hull of a set D c O(f) iff supt If' g d~: f' ED} = ! Of 0 for all g E L P . 
o g 

(17.9) THEOREM. Let S be a topology on L P in which L P ' is the 

dual of L P. In particular S = o(L P, L P ') or if p(f ) 
-- n 

a whenever 

fn l 0 the~ S = the p - topology are such topologies. 

(i) O(f) is the S -closed convex hull of 6 (f) = [£, ELI: fl ""' £} 

fo r all f E L P iff (X. A, w.) is adequate. 

(ii) For any finite m. s. (X, 11., IJ) and f E L P, O(f) is the ;-dosed 

convex hull of f.T hi- fl: £I ELI (X#, \.l) and £1 '" f } . 
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PR.OOF. (i) If (X, A, f1) .is a.dequa.te then the re~.,uH follow::; from 

(17.8) and (11. 1). If (X, A, iJ) is not adequa.te, then (11. 5) shows that 

the condition in (17. 8) fails. (ii) Follows from (17.8) and (9.1) 

(iv) & (vi). 

As Luxemburg has pointed out, Theorem (17. 9) answers the 

following question asked recently by Z.Nehari [32J: Let (X, A,IJ) 

be a non-atom.ic finite m. s. and let E E A have positive measure. 

What is the smallest closed convex set A cL 1 (X, IJ) which contains 

all the functions C
F 

such that W,(F) = ~(E)7 Obviously A is the 

dosed convex hull of .6(C
E

) so A = O(C
E

) = {£ ELI (X, bJ,): 0 $ f $; 1 

and J f dlJ = IJ(E)} using (8. 2)(v}. 

We can defin~ the sets 0 in a slightly more general way. Let 

(Xl' AI' IJ I ) and (X, A, 14) be finite m. s. such that 141 (Xl) = IJ(X) = a. 

1 1 
IffEL (X1,IJI)letOf(X,u)= [hEL (X,\J.):h-<f} and let 

1 
L\f{X, iJ) = [h E L (X, 14): h "'-'f}. Observe that Of is never empty 

because it contains I = (_(IX ) f f diJ i )CX' but it may happen that 
IJ I 1 

.6£ = 0. This is the only interesting case, because if 6
f 

=1= (/;, then 

w~~ are doing nothing new, since for each fa E 6
f 

we have Of = O(fo)' 

Thcorenl (5.10) implies that .6
f

(X/ . iJ#-)=I= 0 for all f ELI(X
I

, U
I

), so if 

fa E lIf(IJ#) we then have Of (X, IJ) CO(fo}' 

+ Now let p be a saturated Fatou norm on M (X, IJ) such that 

L'X:; (14) C L P, L P
! C L 1 (u) and L P is u. r. i. The question arises: For 

w ha t f EL
I 

(X I' iJ I) is (2 f C L P (X, )J,) ? 
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(17.10) PROPOSITION. LetfELl(Xl,~.J.1). ThcnOlflcI..JP jff 

DlflDlgl EL1[O,a]forallgEL
PI

, in which case rtC-LP. 

PROOF. IfC2lflC L P then fl -< If\, fl E M(X,U) implies 

o S£I E L
1

(X, U) so £1 EOlfl c L P and thus for all g E L
PI 

we have 

that 1 fl Igi dlJ is finite, and hence (13.2) says 0lfl 0lgl E Ll[O, aJ. 

Conversely, if 0lflDlgl E L1[0, a] for all g EL
Pf 

then fl -< f implies 

1£11 -<-< 1£\ so ('lfllOlgl E L
1
[0,a]for all g E L

PI 
and hence £1 E L P 

by (13. 2) & (14. 5). 

Observe that Theorems (17.3), (17.4), (17.6), (17.8) and 

(17.9) are true for C2 £ under the hypothesis that 01£1 c LP, because 

in view of (17. 10), the proofs are practically the same. 

In view of the condition [2 I f I cL P it is natural to wonde r: 
p 

Is there a norm PIon M+(X I , U1 ) such that f ELI implies 01£1 C L P? 

a 
Pl(f) = supt 10 0lfIDlgl: pl(g) -:; I}. 

Then Pl is a Fatou u. r. i. norm satisfying 
p pi 

(i) L ~ (IJ 1 ) C L 1, L 1 C L 1 (U 1 ) 

(ii) fl -< £ E L
PI 

implies p(£I) -:; PI (f) 

(iii) 0\£1 C L P iff f E L
PI 

. 
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a 
PROOF. (i) P1(C

X1
) = 8Up[ fa algi: p'(g) <11 

= supf / Igldu: p'(g) ~ I} = p(Cx ) < DC. Since 0 < p'(Cx ) < DC let 

1 1 a 
gl = CX' Then -- flfldu 1 = 1 °lflol I 

p'(C ) p'(C ) a gl 
X X 

<sup{ t 0lf!Olgl: p'(g) ~ I} = Pl(f) so f E L
P1 

implies f E Ll(U l )· 

p' 1 
Since PI is Fatou, L oc: (U

1
) C L 1 C L (U

1
) also. 

(ii) In order to apply the theorem of Hardy (7.1) we need to 

1 ' 
know that 0lf' 10 Ig I E L [0, a] for all g E L P with P' (g) < 1. Now 

f' -< f E L
P1 

C LI(U I ) implies Of' -< Of E LI[ 0, a] so 

a a 
01£' 10 1 g I ELI [0, a] for all gEL oc (U), so fa 0' f' ,0, g' ~ fa 01 f ,01 g 1 

OC for all gEL ( lJ). 

Let g E L P' (U). Then there is a sequence [g } CLoc(hl) such that 
n 

o $ gn t Ig I so {) t a, I and hence the monotone convergence 
gn g 

theorem implies 

a a a 

fa °If'IOlgl = lim fa °If'IOg
n 

< lim /0 °l£! °gn = <oc 

a 
~ sup [ /0 01 £ 10 1 g I: P' (g) ~ I} = PI (f). 

(iii) Part (ii) shows that f E L
PI 

implies o'lfl C L P. Suppose 

1 I 

Then 01 f! 01 g I E L [0, a] for all g E L P 
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a 
somaxf ffllgldlJ: fl -< If I} = fo 0lflOlgl <x forallg ELPI and 

hence PI(f) ~- Sup [rllax[ ff'lgld~: £1 -<If\}: p'{g) <: I} 

-Sllp[Sllp[ / j"lgl<lfJ: f"{g).; l~: [' ...: If I } 

:: suptp(£I): 1" E Cl f }<oc because 01£\ cL P 

implies O£ is p-bounded. 

If (as in ?IS) A is a Fato~ r. i. norm on M+[O, a] such that 

ac A A' 1 + L cL, L cL and p(£)::A(of) for fEM (X,I,J.) then the natural 

norm to choose onM+(X
1

,1J
1

) is PZ(f):: A(of)' In this connection 

we have the following. 

(17.12) PROPOSITION. Let A, P, PI' Pz be as above. 

(i) 
P P ' ac 2 Z 1 

L (btl) c L , L c L (U I) 

(iii) £1 -< £ EL
PZ 

implies p(£I) $;PZ(£) 

PROOF. (i) ·See (15.1) . 

a 
(iii PI (f) :: sup [/0 ° If! ° Ihl: A'(oh) ~ 1, h E M(X, IJ)] 

a 
< sup t J 0 I) I f I I:i I G I: A I (G) < 1 } == P 2 (f) . 

(iii) Use (17. lZ) (ii). 
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18. Doubl~tochastic Transformations. Observe that (16. I) 

irn.plies that an nXn rnatrix A is doubly stochastic iff A-;' ,;;Z for 

-+ n 
all x E R. Let (Xl' AI' ~tl) and (X, fl., U) be finite nWaSllr(' spaces 

with ~l (Xl) = IJ(X) = a. 

1 1 
(18. 1) DEFINITION. A linear mapping T: L (X l' U

1
) .... L (X, U) 

1 
is called doubly stochastic (d. s.) iff Tf -< f for all f E L (Xl' IJ I ). 

EXAMPLES. 1. If (X, A, U) is a non-atomic m. s. and 

a: X .... [0, a] is measure preserving (m. p. ) let T f = f 0 o. Then 
a 

T : L I [0, a] -+ L I (X, IJ) is d. s. 
J 

I # JI, 1 . 
2. TIJ:L (X,U ) .... L (X,V)lsd.s. 

3. 
1 I I 

Tf = (\.il (Xl) J f dw.I)C X defines ad. s. T: L (Xl' f.l l ) .... L (X,u). 

(18.2) PROPOSITION. 
I I 

Let T: L (\1) -+L (IJ') be d. s. Then 

(i) T is non-negative, i. e., f ~ ° implies Tf ~ 0. 

(ii) TC
X 

= C x 
I 

(iii) (Tf)+ <; Tf
t

, (Tf) <; Tf-, ITfl <;Tlfl for all f EL
1

(U
1

) 

ac c<: 
(iv) T: L (Xl' k-i l )'" L (X, U) 

1 
(v) f E L (U 1 ) implies /lTf1l 1 ~lIflll 

f E Loc(IJ 1 ) implies IITfik <; Ilfllac 
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PROOF. (i) Follows from (8.2)(iii). 

(ii) Follows from (8. 2)(v). 

+ + -I f 
(i i i) Sin c e T f = T f - T f - and T f , T f :? 0 we have (T f) :--: T ( 

and (Tf) s; (TO-. Hence ITfl = (T£)+ + (T£)- < Tf+ + Tf- = Tlfl. 

(iv) & (v) Follow from ITfl s T If I -< Ifl. 

(18.3) LEMMA. Suppose T:L
l

(lJ
l

) ..... L
l
(lJ)islinear. 

+ + --(i) Ii Tf -< f and Tf -<f then Tf -< f. 

(ii) T is d. s. iff Tf -< f for all 0 $f EL
l

(1J
1

). 

PROOF. 

for all 0 st $ a with equality when t = a since Tf- -< f implies -Tf- -<-f 

(ii) Tf-<f foraH f:?O implies Tf+-</ and TC-<f- soTf -< f for all f. 

The following Theorem, first proved by J. V. Ryff =39J for 

L 1 [.0, 1 ] . f d 1 ,IS un amenta . 

(18.4) THEOREM [J. V. RyffJ. A linear transformation T 

rnapping the simple functions of (Xl' 1\1' V- l ) into Ll(X, 14) has a 

unique extension to a doubly stochastic transformation of L 1 (1J
1

) .... L \4) 

iff for all E E 1\1' we have 0 s T C
E 

$ Cx and! T C
E 

dlJ = 1J
1 

(E). 
X 

PROOF. (8. 2}{v) shows that these conditions are equivalent to 

T C E -< C
E 

for all E E 1\1' and are thus necessary. Hence suppose T 

is given satisfying the above conditions. Let 0 s; f E M(X l' V- 1 ) be 
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n 

simple. Then f = ~ f.e whereE c····cE and£.> 0, 
. lIE. nIl 
1= 1 

n 

Of = L: f. 0E' Then (12.1) implies for all 0 ~ t <a, 
i::: IIi 

tnt n t t 

so 

J 0 'J"! 5 ' 'J' f !" ! 0 o'Tf"" t. lTC <t. ' °r ,. f 
i:::l .I () "'E. i:.::l 1 () "j 0 

with l'quality will'" 

1 

t = a, so Tf -< f for all non-negative siluple functions and hence for 

all simple functions. Thus T is a contraction in the L 1 and Lac 

norms on the simple functions, so it extends uniquely to LITo 

show that T is d. s. Then there is a sequence 

(f } of simple functions s. t. 0 ~ f i f. Then Tf is increasing so 
n n n 

Tf t Tf and since Tf -< f , (8. 2)(vii) implies Tf -<f. Hence 
n n n 

(18. 3)(ii) implies T is d. s. 

If T:L 1 (U
1 

) - L 1 (U,) IS linear, let T>:' denote the adjoint of T, 

! f >:< 1 ac 
defined by g Tf du,::: X f T g dW,1 for all f E L (U- 1 ), gEL (u). 

X >.~ 1 
It follows that T: L1x,\J) - Lac (Xl' U

1
) and hence T is weakly contin-

I ac 1 ac 
uous under the topologies a(L (U,l)' L (~)) and a(L (u), L (u)) 

([36, p.38, Prop. 12J or use nets and the defining equation. ) 

(18.5) THEOREM. If T: L1(U
1

) - L1(1-l) is 
>:< 

d. s. then T has a unique 

1 1 
extensiontoad.s. mapofL (u,)-L (U

1
). 

PROOF. This follows from (l8. 4) as follows. Let E E A. 
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(18.6) PROPOSITION. A linear mappin~ 
I I 

T: L (~ll) --- L (1.1) is 

doubly stochastic iff 

(i) T:;:: ° 
(ii) TC

X 
- C 

1 - X 

* {iii} T C x ::: C x 1 

PROOF. This follows from (18.4) since for all E E Al 

Observe that i£ (X Z' AZ' /J.Z) is also a finite m. s. with 

1 1 1 1 
hJ 2(X 2 )::: a, and T 1 : L (WI) -0 L (fd,) and T Z: L (fd,Z) .... L (IJ I ) are both 

d. s. then TIT 2: L 1 (W Z) -0 L 1 (U) is d. s., since for all £ ELI (1J 2) we 

ha ve TIT 2 £ -< T 2 f -< f. 

(18.7) LEMMA. Let £ ELI (X, IJ) and let c;:x* -0 [0, aJ be measure 

preserving s. t. 

PROOF. For all measurable J c [0, aJ we have 

a * '* ¥ a /0 C J Tc; £ dm::: /fTc;C
J 

dlJ =[(6 f a a)(C J a a)dlJ' =/0 o£ C J dm. 

Let ~(Xl' X) ::: {T: LI(X
1

, 1J
1

) -oL1(X, \.J,) such that T is doubly 

1 
stochastic}. If f E L (fd,l) let ~f(Xl' X) = [Tf: T E ~(Xl' X)} and we 

1 
recall that (1 fiX, IJ) ::: {g E L (X, IJ ): g -< f} and 
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1 
6f(X,~) = [g E L (X.U); g,....,f} 

As we indicated in § 17, if 6
f 

:\= J6, then Of = 0(£0) for all foE!::.C Notl' 

1 
that ~f C Of for all f E L (~j 1)' 

(18.8) THEOREM. ~(X l' X) is convex and compact in the weak 

operator topology determined by the linear functionals 

T ... /£ Tg dIJ 
1 00 

f E L (IJ)' gEL (IJ 1)· 

PROOF. To show 19 is convex, let T l' T Z E ~ and 0 S; r S; 1. 

Then for all f E L
1

(IJ
1

) we have Tlf, TZf E Of so r Tlf t (l-r)TZf Eelf , 

i.e., (r Tl t (l-r)T
Z

)f= r TIft (l-r)T
Z

f.-<f, sor Tl t (l-r) T
Z 
E~. 

Let S 1 be the unit ball of L 00 (IJ 1) and let S be the unit ball in L 00 (u.). 

Since Sis a(Loo (IJ), L 1(1J» compact, the set of all linear operators 

which map S 1 ... S is compact [18]. Hence it only remains to show 

that ~ is closed. Let T a .... T. For each E E Al we have T a C E E 0C
E 

and T a C
E 

-i> TC
E 

weakly. Since liCE is a(L 
1

, L (0) closed we get 

TC
E 

E 0 C . Hence (18.4) implies T E ~. 
E 

1 
(l8.9) THEOREM. Let f E L (X l' U

1
). !! gEM (X, IJ) ~g -< f iff 

there is a doubly stochastic T: L I(IJ 1) ..... L I(IJ) such that g = Tf. 

PROOF. We have to show that ~f = Of' It suffices to show that 

TIJ 6 f (IJ#) C ~f (where, of course, TIJ 6f(lJ~ = [TlJf':f'ELI(X~IJ#)&f'--f}) 

and that 19
f 

is a(L I(IJ)' L 00(1J)) closed and convex, because we know 

from (17. 11) that Of is the closed convex hull of TU 6f(IJ~) in this 

topology. 19
f 

is convex and closed in this topology, because it is the 
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ilTlage of the convex, cOI11.pact (in tllt' weak operator topology described 

>\'C 
in (18.8)) set .\9(X, Xl) under the continuous linear map T -- T f. For 

the rest, let f' E L\(~*). There are lTleasure preserving tran!:lforma­

tions 0: Xl -+ [0, a] and ~: xt -+ [0, a] such that To of' = f' and T ~o f= f. 

>\'C 

Since ft -- f, of' = of so T,,/' = TIJ. TaT¢' f E ~f" 

(18.10) THEOREM. 

g -< fl + fZ then there 

g 1 -< f 1 and g Z -< f Z· 

PROOF. There is aTE .I9(X
1

' X) s.t. g = T(f
1
+f

Z
)' so let 

g. = Tf., i= I,Z. 
1 1 

A good exalTlple of a class of doubly stochastic operator s is 

provided by conditional expectations. Let 1\' be a a-subalgebra of 1\ and 

1 
let f E L (X, iJ.). It follows frolTl the Radon-Nikodyn theorelTl that there is 

a unique !\-lTleasurable function Tf such that IEf dlJ = IE Tf dU for all 

E E /\'. Using (18.4) it is clear that T: Ll(X, 1\, U)->Ll(X, 1\',1.1) is 

doubly stochastic. T is called the 1\' conditional expectation. 

As a special case of this process let X = X U U X. be the 
o iEP 1 

union of an at IllOst countable nUlTlber of sets of positive lTleasure and 

let (I.' be the a-sub-algebra generated by the sets A n X and fX.}. r:::p. o 1 1, 

Then the A' conditional expectation has the form 

1 
Tf = f Cx + 6 \J{X.} (Ix. f du)C x .· 

o iEP 1 1 1 
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Now let P be a saturated. Fatou norrn on M(X, IJ) such that 

LP(\.J) is u. r. i. andL11J.) C L P, L P ' C L1(\.J)' and define the u. r. i. 

Fatou norm PIon M(X
I

, \.JI) by 

a 
Pl(f) = supt 10 blfl blgl: p'(g) ~ l}. 

PI 
and p(Tf) ~ PI (f) for all f E L 

(ii) T has a unique extension to a doubly stochastic T: Ll(\.Jl)~Ll(IJ). 
I 

*' PI ' (iii) T : LP (IJ) ..... L (loll) and PI (T*g) ~ p'(g) for all g E LP 

PROOF. (i) We already know that Tf -< f E L
P1

(\.JI) implies 

p(Tf) ~ Pl(f) so Tf E LP(\.J). 

(ii) This follows from (lB. 4) since L
oo

(\.Jl) C L
P1

(\.Jl)' 
pi >!< 

(iii) Let g EL (IJ.). Since we have! f T g dIJ.
1 
=! gTf d~ is finite for all , 

PIP 1 I 

f E L (u 1), (14.15) implies T*g E L (loll)' Let g E LP(U). 

pll (T*g) = suPt ! If T*gld~l: p
1

(f) ~ l} 

~ sup f I I fiT * I g I dU 1: P 1 (f) ~ I} 

= sup(! Igl T If I dlJ: PI (f) ~ 1 } 

~ supf ! Igi If'ldu: p(f') ~ 1 } = p'(g). 
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(18.12) COROLLARY. 

r 1 1 
PROOF. Let gl -< g E LP (u). There is ad. s. T: L (IJ)-+L (1J 1) 

* 1 1 s. t. g 1 = Tg. Then T extends uniquely to a d. s. map of L (IJ 1) --L (U) 

* * * PI so applying (IB.l1)toT wehaveg 1 =(T)gEL (1J 1) and 

* >,'C 
pll (gI) = pll «T ) g) ~ pl(g). 

REMARKS. (i) If (Xl' fir 1J
1

) = (X, fl., IJ) and p is u. r. i. then 

PI = p. 

(ii) If "- is a r. i. Fatou norm on M+ [0, aJ and p(f) = "-(of) for 

f E M+(X, IJ) as in §15, and PZ(f) = "-(of) for f E M+(X l' UI ) then 

(18.11) holds with PI replaced by PZ' 

19. Muirhead',s Theorem. J. V. Ryff has given a generalization of 

Muirhead's Theoren-l for bounded measurable functions on [0, 1 J 

(see [42J). In thi s section we will show when this generalization is 

valid for arbitrary finite measure spaces. 

Let (X, fI.,U) and (Xl' fl.1'lJ l ) and (X 2 , fl.Z,IJZ) be finite m. s. such 

that U(X) = 1J1(X l ) = IJZ(X
Z

) = a. If u E M(Xz.IJZ} is positive (i. e. 

u(x) > ° IJZ-a. e. ) and f E M(X, \J) let 

[f;uJ = I log (I u(x/(Y) dIJZ(x} )dlJ(Y) 
X Xz 

and similarly for g E M(X l , 1J
1

}' 



-100-

(19.1) LEMMA. If u E M(X
Z

' ~Z) is positive and f E M(X,~) thet::.. 

[f;uJ = [Of;o J in the sense that both are finite and equal or both - u 

are infinite with the same sign. 

PROOF. Let pER and let \jr(t) = t P for all t E R. Since u'" ° u 

and the measure spaces involved are finite, (3. 3)(xv) says \jr(u)~ \jr(o ) 
u 

a a 
so /,X \jr(u)dU Z = ! \jr(o ), i. e. i-X uP dlJ,Z = ! (0 )P. Let 

Z 0 II a lOU 

Ci'J(P) = log(/X.,uPdUZ) = log( fo(ou)p). Again,sincef",-,6fwehavcCj:~f)~ct(6f) 
L. a 

so[f;uJ=JX cp(f)dlJ.= JoCP(Of) = [of;ouJ· 

) 
00 00) (19.l THEOREM. LetfEL (X,IJ.)andgEL (Xl,U l . 

(i) Il g < f then [g;uJ ~ [f;uJ and both are finite for all 

positive u E M(X
l

, 1J.
2

) such that uP E L l(Xz,lJ.z) whenever 

ess. inf (min(f, g» ~p s: ess. sup (max(f, g» [we call such u admissible 

for f and g. J 

(ii) g [g;uJ = Cf;uJ ~nd u is admissible for f and g then 

f '" g ~E. U is constant uz -a. e. 

(iii) If (Xl' "'Z,)..I2) is non-atomic and [g;uJ s: [f;uJ for all 

i>ositiv~ u E M(X
Z

' )..12) such that uP E L
1

(X
2

, )..IZ) whenever pER 

[ we call such u admissible for L ooJ, then g < f. 

PROOF. Ryff has shown that this theorem is true when 

X = Xl = X z = [O,1J with Lebesgue measure ([4Z ,p. 596J and 

[43 , p. 436J). 

Our fir st step is to show that the theorem is true when 

X = Xl = X z = [0, aJ with Lebesgue measure. Let F, G E M[O, aJ 

and let u E M[n, aJ b e admissible for F and G. Then 
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[F;u] = J: log( I: u(s)F(t) dS)dt 

1 1 
=aJ

o 
log( 10 u(as)F(at) dS)dtl-aloga 

:.- a [1' 1; u 1 ]Ia Log a 

where F 1 (t) = F(at) and u
1 

(s) = u(as) on [0, IJ. Similarly 

[G;u] = a[G1;u1J + a loga where GI(t) = G(at) on [0, I). Since a> 0, 

(3.2) implie s G 1 -< F 1 iff G -< F, and thus it is easy to see that the 

theorem is true when X = Xl = X z = [0, a]. 

00 00) Now let f E L (X, u,) and gEL (Xl' U1 . 

(i) Suppose g -< f and let u E M(X
Z

' u,Z) be admissible for f and g. 

Then 0g -< of and it is easy to see that 0u is admissible for of and 0g so 

rg;uJ = [0 ;6 J ~ [of;o ] = [f;uJ. 
- g u u 

(ii) Suppose [f;uJ = [g ;u]. Then [of;o ] = [0 ;0 ] so either 
u g u 

0f~ ° (so f,.., g) or 0 is essentially constant (so u is also). 
g u 

(iii) Suppose (X
Z

' I\Z' U,Z) is non-atomic and [g;uJ~ [f;u] for all 

u E M(X
Z' ~Z) admissible for L 00. Let v E M[O, a] be admissible for 

LOO[O, aJ. Then there is a u E M(X
2

,U,Z) such that 0u = 0v' in which 

case II is admissible for L 00 and [0 ;v] = [0 ;0 ] = [g;u] ~ [f;uJ = [of;v], 
g g u 

so [Og;v] ::; [of;v] for all admissible v and hence 0g-< of so g-<f 

REMARKS. l.Ryff has also shown that (iii) is not in general true 

if Wv intt.' n~hang~~ the ord('r of integration in the definition of [f;u]. 

2.. (iii) mayalso fail if (X
Z

,A
Z

,I-4
Z
) has atoms and (X, 1-10) and(Xl'~) are 

more cOITlplex than (Xz,t-Ioi. Forexample.if X Z is an atom and both X and 

Xl are not atoms, then (iii) fails. The assumption that (X
Z

' liZ' U,Z) 



-102-

is non-atomic is sufficient to insure that there are enough admissible 

u E M(X!" P
Z

) to di stinguish when g -< f, no matter how complex (X, j.l) 

and (X1,f,l1) are. 
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VI. EXTREMAL AND RELATED PROBLEMS 

20. ExtrelTIe, Exposed and Support Points of Of" Let V be a 

locally convex topological vector space and let K be a convex 

subsd of V. A point v E K is said to be all cxtl"t::me point of K if 

v ~ ivl+ivz & vI' V z E K iUlplies v
l 

= vz." v is said to be an exposed 

:f< 
point of K if there is an F E V (the continuous linear functionals 

on V) such that F(w) < F(v) whenever w E K, w '*' v. If K is contained 

in a hyperplane, then a point v E K is called a support point of K 

'* if there is an F E V such that F(w) ~ F(v) for all w E K and F(w) < F(v) 

for SOlTIe w E K. It is clear that every exposed point is both an 

extreme point and a support point. 

It would be de sir able to characterize the extrelTIe points of K 

'* in terms of the sets F[K], F E V. For example, it is clear that 

* if F(v} is extreme in F[K] for all F E V , then v is extreme in K. 

The converse is not true as can be seen by considering the closed 

unit disk. However, it is true that if v is extreme in K, then there 

~ 
is an F E V such that F(v} is extreme in F[K]. For if v is extreme 

in K, then v is a boundary point of K, and since the interior of K 

is convex, the Hahn-Banach Separation theorem [36, p. Z9J gives 

the required F. 

It is we II known that v E K is not extreme iff there is a 0 '* u E V 

such that v+u and v-u E K. Suppose K is closed and convex. It is 

easy to see using (17.5) that this condition become s: v E K is not 

extreme iff there is a 0 '* u E V such that both 

F(u) ~ sup F[K] - F(v) 

F(u) ~ F(v} - inf F[K] 
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>1< 
for all F E V. This condition has been given for O(f) by Luxemburg 

[Z8, p. 141J. 

It does not appear likely that a useful characterization of this 

type is possible. Let K be an ice-cream cone in the plane fonned by 

intersecting tangents to a circle. The points of tangency arc extrCITIC 

but not exposed, and there seems to be no way to distinguish them 

using closed hyperplanes from the points on the sides of the cone. 

Let (X, fl., I-L) and (X l' fl.
1

, I-L 1) be finite measure spaces such 

that U(X)::: 1-L
1
(X

1
) = a. Recall that if f E L

1
(X

1
,1-L

1
) we let 

Of (X, I-L) ::: [g E L l(X, U): g ~ f} 

1 
{g E L (X, I-L): g "'" f}. The reader is referred to § 1 7 for 

a detailed discussion of the se sets. 

The extreme, exposed and support points of Of have been 

determined by J. V. Ryff when X = Xl = [0, IJ (see [41J). The 

proof that the functions in 6
f 

are all extreme in Of is due to J. L. Doob 

[41J. We present it in the following way. The proof of (20.2) is 

different from Doob's. 

(ZO.I) LEMMA. (J. L. Doob). (i) If -;t(f1+ f2) '" f1 -- f2 ~ 

f 1 f Z ~ a I-L - a. e. 

(ii) Let g E Of' .!!.g::: -;tf I +#2 & fl' f2 E Of implies fl -- f2 "'" g 

PROOF. (i) fI'"-'f2 implies !\I-I£zl so !!fll dlJ = !1£zldl-L' 

Also !f I + fzl --.-zlf I ' so fifl + izldl-L= !(If
1 1 + Ifzl)dlJ sothe 

triangle inequality implies I fl + fzl = I fll + 1 fZ! U-a. e. and thus 

flfZ = Iflfzl ~ a u-a.e. 
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1 1 f (ii) Suppose g, fl' fl E Of and g == a f l + afl' Then g"'" f 1 ....., land 

we have to show fl = fl' By symmetry it suffices to show that 

[x: f
1

(x) <f
2

(x)} has measure zero. For all r E R, 

(f1-r) ""' (fZ-r) ....... (g-r) = i(fl-r) + i(fl-r) so (fl-r)(fl-r) :2: 0 \.l-a. c. 

Let fr } be an l'llUIl"leration of all the rationals of R. Then 
. n 

oc 
fx: f

1
(x) < fZ(x)} = U [x: f 1(x) < rn < fZ(x)} 

n= 1 
0() 

C U [x: (fl(x)-r )(f
2

(x)-r ) < o} and each of these sets has measure 
n=l n n 

zero. 

(ZO.2) THEOREM. If g E Of and g""'" f then g is extreme. 

a t a 
PROOF. Let ~(h) == J 1 ° = 10 0h(s){a-s)ds if o 0 h 

hE L 1(X,\J) U L 1(X
1
,\J1)' ~ is Shur convex and ~(hl) == ~(hZ) iff 

1 111 
h} "" h

Z
' Suppose gEL (X,U) and g ....... f E L (X 1,U 1)· If g == Pl+af

Z 

where fl,f2 E Of then ~(f) = Hg) == ! Hf l ) + t~(fZ) ~t~(fl) + !qj{f) so 

~(f)~~(fl)-O;~(f) and thus ~(f)=~(f1) so f ...... f l • Similarlyf......,fZ· 

Hence g ~ f 1 ~ f 2. so g is extreme. 

Using Theorems (5.10), (5. lZ) and (10.1) it is easy to see 

that Ryff' s proofs are valid when (X, 1\,).).) is non-atomic. Hence we 

have the following. 

(lO.3) THEOREM. If (X,I\,IJ)isnon-atomicandfEL
1

(X
1

,U 1) 

then the set of extreme points and the set of exposed points of Of 

are identical with the set 6
C 

A function g E Of is a support point of 
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t t 

Of iff there is a 0 < t < a such that fa 0g = fa Of' 

If (X, fl., IJ) is not adequate, then there will be a function 

f E L l(X, IJ) such that O(f} = [g E L 1(1J}: g -< f} is not the closed convex 

1 1 
hullof,Mf}= [gEL (1J):g ..... f}.lffoEL (X1,1J 1) suchthatfo~fthen 

Of will not be the closed convex hull of 6£ ' and hence 6£ cannot 
000 

contain all the ext reme points of Of . 
o 

It is a good conjecture that every extreme point of Of has the 

form T fl where fl E L l(X*, IJ#) and £1 ..... f, and that every function in 
~ 

Of equimeasurable with an extreme point is an extreme point. For 

example, if £ is extreme and either (i) g a a = £ where a: X ...... X is 

measure preserving or (ii) g l X = fl X and g' A,.." fl A (where X is 
a a a 

the non-atomic part and A is the union of the atoms of X) then g is 

extreme. 

The following example shows that not every function 

TlJf l, ft E L 1 (X"", IJ#)' fl ..... f is an extreme point. Let X be the union 

of two atoms A and B with IJ(A} < IJ(B}. Then every g E M(X, IJ) 

has the form g = xC A + yC
B

· Let f = 2C A + C
B

. Then g E O(f) iff 

x ~ 2, Y IJ(B} ~ 21J(A) + (IJ(B}-IJ(A}) = IJ(A) + IJ(B} and 

xU(A) + Y IJ(B) = 21J(A) + I-l(B}. If we define cp: M(X, IJ) -+ R 
2 

by 

::p(xC
A 

+ yC
B

) = (x, y) then cp is linear, 1:1, and onto the line segment 

joining the points (2, 1) and (1, 1 + ~~~~ ). Hence the extreme points 

of D(f} are f = 2C A + C
B 

and g = C A + (1 + ~~~ ) C
B

. Observe that 

6(£) = [f}, 6(g) = (g}, and g = Tlffl where £1 = Ceo (B)[+2C r (B) (X)i 
'"" ,I-l -IJ ,IJ ,~ 

",f. It is clear in this case that [TlJf': f' ...... £, f' E Ll(~,IJ:I(.)} = 0(£). 
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The following exatnple shows how extretne points not in 

lI(£) Inay arise when X has an atotn A and a non-atotnic part X 
o 

of positive tneasure. Let B C X be s. t. 0 < IJ(B) :s; IJ(A). Using 
o 

(5.10) there is an f on B s.t. 0fIB(t) = ~4B)-t on [0, IJ(B)[. Define 

f to be 0 on the rest of X. Let l[a, rJ be the interval of 

(X#=, !I. ~ \.I. #) co rresponding to A as in §9. Define g' ELI (XJI:, U ') by 

g'(t) = a + IJ(B}-t if a < t < a + IJ,(B} and g' = 0 elsewhere. Then 

1 2 
g' "",f so g::: Z f,.L(B) C

A
::: TIJ g' -< f and g~£. To show that g is 

extren"le, suppose g ±u -< f (here ± means + and -) where u E M(X, IJ}. 

Then! u dlJ ::: 0 and since f:;:: 0, we have g ±u ~ O. Thus 

O:s;g±ulAc=±uIA
c 

so ulA
c

=O. ThenO=!udu,=(ulA)bJ,(A) 

itnplies u IA = 0 so u::: O. Hence g is extretne. 

In each of the above exatnples extretne points were obtained 

in the following way. WriteX:::X U U X where P = fl. ... , n} or 
o iEP 1 . 

p = [1,2,3, ... }, X is the non-atotnic part of X, and X, iEP, 
o i 

are the atotnS of X. For the intervals l[a., b. ] defining X# take 
1 1 

i-I i 
l[a., b. ] ::: [IJ,(X ) + 6 iJ(X

l 
i, bJ,(X ) + L, IJ(X

k
)[ . 

1 10k:: 1 \: 0 k= 1 

1 
Let f E L (X, \..l. ). For each partition n ::: [[a.,~. [}. EP of the interval 

1 1 1 

[0, f,.L(X) [ such that [J.-a. = IJ(X.) define 
1 1 1 

Now for each tneasure preserving a: X -t [0, bJ, (X ) [ let 
o 0 

, 
" " f 

n, cr ::: (fn 0 cr)C X + fn C X _
X 

. 
o 0 
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, 
1 # # , 

Then f f 
IT, 0 

E L (X, ~ ), 
IT, 0 

~ f, and it is a good conjectu re that 
, 

T f is c:x-trcn1e in Of" )..l IT, 0 

21. Pern1utator Transformations. Becaus e of the importance of 

the sets lI(f) = £h: h -- f} it seems natural to investigate the neces-

sarily doubly stochastic operators T such that Tf,..., f for all f. 

Such an operator is called a permutator, because for discrete 

lueasures they correspond to the permutation matrices. 

Let (X, fI, U) be a finite m. s. with u(X) = a. If A, B E fI we 

write A = B [U] to mean C A = C
B 

IJ.-a. e., i. e., IJ.(A 6. B) = 0 

where A /::, B = A-B U B-A. We also write A cB [~] to mean 

CAS C B IJ - a. e., i. e., U(A-B) = O. Note that A c B [IJ] implies 

U(A) $; U(B) and A = B [14] implies bJ,(A) = IJ (B). If A c B [IJ.], then 

A = B [u] iff U(A) = IJ(B). 

Now let (Xl' AI' btl) be a finite m. s. with 141 (Xl) = IJ,(X) = a. 

(21.1) DEFINITION. A mapping ~: Al .... Ais said to be a homolUor­

phism of fll into fI if it satisfies 

(i) lJ(qi (A» = 1J 1 (A) for all A E Al 

(ii) ~ (An B) = ~ (A) n~ (B) [U] for all A, B E Al 

(iii) ip (AUB) = ~ (A) Uip (B) [IJ] whenever A n B = ~ [1.),1]. 

We call ip an isomorphism if in addition its range is A [IJ,], 

i. e., for every E E A there is an A E Al such that ip (A) = E [kJ.]. 

-1 -1 
In this case there is an isomorphism ip : 1\ - Al such that ip 0 ip 

is the identity [U] on A. 
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(21.2) PROPOSITION. I( q;: Al .... /\ is a homorphism, then 

(i) q; preserves disjoint sets, i. e., AnB = 0 [IJ] implies 

i!i(A)flq;(B) = 9J [IJ]. 

(ii) if? is monotone, i. e., AC B [~J implies q;(A)c~ (B) ijJ]. 

(iii) i!i preserves differences, i. e., ip (B -A) = ip(B)-i!i (A) [~J whenever 

ACB[IJ I ]· 
oc 

(iv) iii is countably additive, i. e., if [Ai }i=l c /\1 are pwd [1J 1 ] 

then ip (U A.) = Uili (A.) [~]. 
-- 1 1 

(v) if? is 1:1, i.e., q;(A) = <!i(B) [IJ] implies A=B [1J 1J. 

PROOF. (i) AnB = f/J [1J
1

] iff fJ
1 

(AnB) = 0 so 

U(ili (A) n ili (B)) = U(ip (An B» = U
l 

(AnB) = 0 implies <!itA) n(B) = 9J [U]. 

(ii) & (iii) If AcB [1J1J then B = B-AUA [1J 1 ] is a pairwise 

disjoint union so <!i (B) = ip (B -A) U <!i (A) [uJ is a pwd union (U] and 

hence ip(A)cif?(B) [IJ] and ip(B) -ip(A) =ip(B-A)[uJ 

(iv) Let tA.} c Al be pwd [WI]' Now A. c UA. for all j implies 
1 J 1 

i!i (A.) c q; (U A.) for all j and hence Uq;(A.) cq;(UA.). Since 
J oc 1 t>C nIl n 

U(q;(U A.»=U
1 

(U A.)= lim 1J
1
(UA.)=lim u,(ip(U A.» 

i=1 1 i=1 1 n .... oc i=l 1 n .... oc i=l 1 

n oc 
:: lim IJ( U ip(A.» = IJ(U ip(A.» we have ip(UA·)=Uili(A.) [uJ 

n ..... oc i=l 1 i=1 1 1 1 

(v) Suppose ili (A) = ili (B) [IJJ. Let E = A or B. 

1J1 (E - AnB)=\.l(ili (E-AnB» = lJ(ip (E)-ip (An B» = lJ,(ili(E)-<p (A)nili (B» = 0 

so A :: B [u]. 

If (X, A, IJ) is a product of a possibly unc ountable number of copies 

of [0, 1] with Lebes gue measure, then every homomorphism 
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~: A -> A is induced by a measure preserving a: X ...... X in the sense 

-1 
that ip (E) = a (E) for all E EA. If 0: X -> [0, a] is measure preserving 

then HE) := 0-
1 

(E) is a homorphism of the Borel subsets of [0, a] into 

1\. Recall that in this case T f = f 0 0 defines a doubly stochastic 
o 

transformation of L 1 [0, a] into L 1 (X, \.I.). 

(21. 3) PROPOSITION. To each homomorphism ip: 1\1 -. 1\ there 

corresponds a unique linear transformation 

I 1 
Tip: L (Xl' ~1) -> L (X, u) such that Tip C E = Ccp{E) for all E E AI' 

addition we have the following: 

(i) T cP f ~ f for all f ELI (X l' ~ 1 ) 

(i1) Tcp(fh)::: (T ipf){Tiph) whenever f, h, fh ELI (Xl' 1.11) 

(iii) If ip I: 1\('" A and Tip ::: Tip I then ip = ip I [~J. 

n 

In 

PROOF. If f = I: 0'. C A is a simple function with fA.} a partition 
i=l 1 i 1 

of X 1 [IJ 1] we define 

n 
Tf="'O'C cP L.; i ip(A.) 

i= 1 1 

n 
It follows from (21. 2) that [i[>(A

i
) }i::: 1 is a partition of X, so 

Tf and f are simple functions taking the same values on sets of equal 

n1.easure and hence Tf-f. 
m 

To see that T~ f is well defined, suppose also f = 6 1". C B ' 
'It i=l J j 

m 
where {B

j 
]j:::l is a partition of X l' Then 

f = I: I: O'i C A . nB . 
i j 1 J 

::: ~ ~ f3 j CA. n B. 
1 J 1 J 

so 0'. ::: (3. whenever A.n B. =1=0 [u. ] and thus 
1 J 1 J '-1 
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0'. = 13. wheneverp (A.nB.)::\=0 [u.]. Hence 
1 J 1 J 

L: L: O' i C~(A. n B.) = 
i j 1 J 

~ ~ f3 j Cq?(A.nB.) 
1 J 1 J 

L: L. O' i C~(A.)np(B.)= L: L: f. Cp(A.)n~(B.) 
lJ 1 J ij.J 1 J 

- ~~ "i C<r(B.) 
1 J 

It is easy to see that Tip(rf) = rTipf for all r E R. To show that 
m 

Tip is linear, let g = L: ",C
B 

where [B.} is a partition of Xl' Then 
i =1 J j J 

£+g = L:.I:.(O'.+I3,)C
A 

nB and fA.nB.} is a partition of Xl so 
1J1J '. 1 J 

1 J 

Tp(£+g) =L:L(O'i+~j) Cq?(A.nB.) =LL:(O'i+l3j)C~(A.)nip(B.) = Tq?f + Tipg 
1 J 1 J 

since [ip(Ai)nip (B
j
)} is a partition of X [1I.J. Similarly, Tip(fh) = (Tipf) (Tiph) 

for all simple functions f, h. 

It follows from (18.4) that Tip extends uniquely to a doubly 

stochastic trans formation of L 1 (U 1) .... L I (u). Since the simple functions 

arc dcns<' in L
1

(U
I
) and Tp is continuous in the L

oc and Ll norms, it 

follows from (3.3) (xiii) that Tipf""f for all f EL
1

(kJ
l

). Similarly, 

1 
Tq? (fh) = (Tipf)(Tq?h) whenever f, h, fh EL (VI)' 

If T: L
1

(U 1 ) .... L
1

(U) is also linear such that TC
E 

= Cq?(E) for all 
n 

E E 1\.1 and f = I: a. C A where fA.} is a partition of X 1 then 
i=l 1 i 1 

Tf = L:a i TC A. = L:ai Cip (A.) = Tip£. It follows that T extends uniquely 
1 1 

to a d. s. transformation of L 1 (1J,1) .... L 1 (\.l). Since T = Tip on the simple 

functions, T = T ~ on L 1 (1J
1

). 

FillctllY. if~': 1\.1 -+ 1\ is a hornornorphism for which T~, = T
f 

then 

C.p'(E) -;" "'.p,C E ' T<j\CI~'::' C~(E) for all E ( 1\1 so ip'"' <P iu]. 
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It is easy to see that if (X 2' 1\.2' bi 2 ) is a finite m. s. with 

1J 2 (X Z ) = U(X) = a and 'J!: 1\.2 ..... 1\.1 is a homomorphism, then ~ 0 'l': /\2 -+ /\ 

IS a hOJnornorphism and T~ 0 'J! = T~ 0 T,+,' 

2. 2 
Let T: L (~),l) ..... L (boL) be linear. T is called multiplicative if 

T (fh) = (Tf) (Th) whenever f, h E L 
2 (~1)' Tis called isometric if 

2 JTf Th dlJ = J f h dlJ
l 

whenever f, h E L (1:4
1

), T is called unitary 

* if both T and T are isometric. 

Observe that if T is multiplicative and isometric then (18.4) 

irnplies that T has a unique extension to a d. s. 

If T: L
1

(1J
1

) .... L
1

(1J) is d.s., then (17.13) (or Remark (ii) 

after (18.12)) implies that T: L
2

(1:41) .... L
2

(IJ). It is easy to see that it is 

multiplicative iff T(fh) = (Tf)(Th) whenever f, h, fh ELI (14
1

) iff 

T(fh) = (Tf)(Th) whenever f, h E L oc (U
I

); similarly for T isometric. 

(Z1. 4) THEOREM. Let be linear. 

following are equivalent: 

(i) 1 T£ ,...., £ for all f E L (14
1

), 

(ii) T is induced by a homomorphism ip: /\1 ..... I\. • 

(iii) T is d. s. and multiplicative. 

Then the 

(iv) T is d. s. and T*T is the identity function on L 1 (\J
I

)' 

(v) T is d. s. and isometric. 

PROOF. We have already proved (ii) ~ (i) in (21. 3). (i) ~ (ii): 

If E E J\1 then TC E ,....., C E so there is a ~(E) E I\. such that TS: = C
HE

) 

and lJ(p (E)) = 1-11 (E). Let A, B E 1\.1 and f = C A +CB=C A-AnB+CB-An B 

+ 2 C AnB , Then Tf:: Cp(A)+Cp(B)::C~(A-AnB)+C4'(B_AnB)+ 2C~(AnB) 
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so if? (An B) C iji (A) n iji (B) and thus to show equality it suffices to "how 

they have equal ITleasure. Now iji (A) n q;(B) = [Tf = 2} and AnB = (£ = 2} 

so since Tf", f, U(~(AnB)) = ~1 (AnB) = lJ.(iji(A) n <I>(B)) and thus 

if?(A) n iji(B) = iji (A n B) [uJ . 

If An B = '/1 [jJ 1J then C A UB = CAt C B f-i-a. e. so applying T we 

get Ciji (ALJB) = Ciji (A)+ Ciji (B) = Ciji (A) Uiji (B) since IJ(~(A) niJi(B))= lJt(AnB)=O. 

Henet' <r (AUB) = <P (A)Uiji(B). 

(ii) ~ (iii). This is (21. 3). 

1 oC 1 
(iii) ~ (iv). Let f E L (1-L

1
). For all gEL (~1) we have f gEL (101. 1 ) 

* * so ffg d~1 = f T(fg) d~ = f Tf Tg dU = Jg T Tf d~I and thus f = T Tf. 

1 * (iv) ~ (v). Let f, h, fh E L (U
I

). Then f fh dl-Lr = Jh T Tf dU 1 

= ITfThdbl. 

(v)~(ii) C3,p.22]. LetA,BEA I · JTCATCBdU=lcACBd\J.I 

= Ic AnB dU I = I TC AnB dU· Since T is d. s., 0 S;TCA s; 1 so 

2 2 o s; (TC A) s; TC A s; 1, and for A = B, f TC A - (TC A) dlJ = 0 so 

2 
(TC A) = TC A and thus TC A takes only the values 0 and 1. Letting 

q;(A) = fTC A = I} we have TC A = Cq; (A)" Now TC AnB~ITlin[TC A' TC B } 

2 
so 0 S;TC AilB = (TC AnB ) s; (TCA)(TC B ) and since ITCAnBdlJ = 

I TC A TC B dU we have TC AnB = TC A TC
B 

so iji (AnB) = iji(A) niji(B). 

When AnB = 0, apply T to C
AUB

= CAtCB to deduce iji(AUB)=iji(A)Uiji(B). 

Finally, lJ(iji(A)) = ITC A dU = I C A dIJ-
1 

= 1J
1 

(A) since T is d. s. 
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(21. 5) COROLLARY. Let ip: 1\1 -+ 1\ be a homorphism. Then 

(i) Tip is 1:l. 

(ii) Tip* maps L oc (u.) onto L oc (~) and L 1 (\.l) onto L 1 
(14

1
), 

* PROOF. T<p Tip = the identity mapping on L 1 (\.lI) and 

oc oc 
Tip: L (~1) .... L (14)· 

(21. 6) THEOREM. Let if?: 1\1 .... 1\ be a homorphism. Then the 

following are equivalent. 

(i) * Tip is 1 = 1. 

(ii) T <p T iJ?* is the identity mapping on L 1 (fJ.) 

(iii) The range of Tip is all of L 1 (14) 

(iv) if? is an isomorphism. 

* (v) T ~ is induced by a homorphism of 1\ .... 1\1' 

(vi) Tip is unitary. 

PROOF. (i) ~ (ii). * * * Then Tip (TiJ? TiJ? f) = Til? f so 
)'( 

T iJ? TiJ?' f = f. 

(ii) ~ (iii). Obvious. 

(iii) ~ (iv). Let A E 1\. Then there is an fA E L 1
(fJ. 1 ) such that 

oc 2 * ! 2 TiJ?fA = CA' For all g EL (14) we have !fA Tipg dlJl = g TipfA dlJ 

Since TiJ?* maps Loc(IJ) onto L oc (I-!l) (this is implied by (Zl. 5)(ii» we 

2 
have fA = fA so fA = C B where B = [fA = I}. Then CiJ?(B) = TiJ?fA = C A 

soiJ?(B) =A [u.]. 
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-1 
(iv) ~ (v). 11 : 1\ ..... 1\1 is a hom.orphism., and 

* * * T~ = T~ (Tq, Tq,_I) = (Tqi Tgi)T~_1 = Tqi_l . 

~, * 
(v) =:> (vi). If Tq, == T,¥ then Tq, is isom.etric so Tq, is unitary. 

(vi) ~ (i). * If T<l? is unitary, then Tq, is isometric and hence 

induced by a hornonlOrphisrn, and it follows from. (21.5) that it is 1: 1. 

REMARKS. 1. Let 0: X ..... X I be measure preserving and let 

Tn bedefinedonM(XI,\JI) by Tof::::£(o). 

all E E Al so To = Tq, where 1> (E) = a-I (E). 

ThenT C
E 

==c _l(E) for a 0 

2. The relationship between m.ultiplicative unitary operators 

(which are necessarily d. s. ) and the operators Td where a: X .... X 

is m.easure preserving, was studied as early as 1932 by von Neum.ann 

[33, p. 6I8J, who assumed that X is a complete separable metric 

space with a finite Borel measure kJ, such that spheres have positive 

measure and every measurable set is contained in a Go with the same 

measure. 

3. With (X, 1\,1../.) and a as in 2, Paul R. Halmos has used the 

operators To to find necessary and sufficient conditions for the 

existenceofa square root of a. [13J 

4. It follows from (20.2) that the operators Tq, are extreme 

points of ~(XI' X) (another proof can be gleaned from [34, p. 269, 

Theorem 1. 4 J ). * It is easy to see that T E ~(Xl' X) is extrem.e iff T 

is extreme in fi.X, Xl)' * Hence the operators T ~ such that ~: A. ..... 11.1 

is a homomorphism are also extreme in fi.X l' X). A complete 

characterization of the extreme points of .19 (X l' X) does not seem to be 

known. 
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22. The Weak Closure of fg: g "-' f}. As always let (X, fl. IJ) and 

(Xl' Al,U I ) be finite measure spaces with IJ(X),:: 1J1(X 1 ):::" <l. Hccal1 

that if f ELI (Xl' U
1

) then Of (X, IJ) = fg ELI (X, IJ): g -< f} and 

6
f
(X, U) = [g ELI (U): g ....., £}. The problem is to determine the o(L

l
, L:X:) 

closure of 6r The case 6
f 

= 0 is easy, while if 6
f 

::j: C/J and fo E 6f 

then Of = O(f
o

) and 6
f 

= 6(f
o

)' Hence from the beginning we work only 

with the sets 0 (f) and 6(f) where f EL
I 

(X, IJ). 

J. V. Ryff has shown the following result which we state as a 

lemma. For the p roof see [43, p. 432 J . 

(22.1) LEMMA . .!! FE Ll[O, IJ then O(F) = fGE Ll[O, 1J: G -< F} 

is the o(L I , Lex:) closure of 6(F) = [G E Ll[O, 1]: G,....., F}. 

(22. 2) THEOREM. O(f) is the o(L 1, L oc) closure of 6(f) for all 

f ELl (X, u) iff (X, A, bJ.) is non-atomic or X is an atom. 

PROOF. Suppose (X, 1\, \,1) is non-atomic. Let g E O(f) and let 

0: X -+ [0, a] be measure preserving such that 6 0 G = g. Let 
g 

F(t) = 0f(at) and G(t) = 0g(at) on [0, 1J. Then G <: F so there is a 

net [Hale 6(F) such that HO! -- G in the O(Ll[O, IJ, Loc[O, 1J) topology. 

Letting h (t) = H (t/a) on [0, aJwe have h ,....., 6
f
, and for all v ELoc [0, a], 

a O! 1 a 
a 1 a 

! h v cit = a ! H (t) v(at)dt -+ a ! G(t) v(at )dt = f 6 v dt, i. e. , 
OO! OO! 0 og 

h --6 intheo(L
1
[0,a], LOC[O,a]) topology. SinceT isweakly 

O! g G 

continuous, T h .... T 6 = g and ThE 6(£). Hence 6(f) is weakly 
GO! og GO! 

dens e in 0(£). 
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If X is an atom, then 6. (f) = {f} = O(f). 

For the converse, suppose X is not an atom and (X, A, 1-1) is not 

non-atomic. Then X = Al U A2 where Al and A2 are disjoint sets 

of positive H1Casure, and X has an atOTIl B. Let f = 2eA + C A ' 
1 1 2 

let g = - f f dl-J = 1 + ~(Al)/f,.L(X) so I < g < 2, and let g = g eX' o a . 0 0 

so g E O(f). If h E 6(f) then h = 2C
B 

+ C
B 

where \.I. (B. ) = w.(A.) i = 1, 2, 
I 2 1 1 

so !(g-h)C B dw. = go U(B) - 2u(B
I

nB) - U(B 2 nB) and u,(BnB
i

) = 0 or 

u,(B) since B is an atom. Hence for E: = IJ(B) min (g -1,2-g ) there 
o 0 

is no h E 6.(f) such that I ! (g-h)C
B 

dU 1< E: so lI(£) is not dense in 0 (f). 

(22. 3 ) COROLLARY. 
1 

For any finite m. s. (X, fl., IJ) and £ E L (X, U) 

£1 "'£} . 

PROOF. Let g E (2 (f). Since (X#,I,i) is non-atomic, there is a 

net [£1 } cL I (X~IJ*) such that £1 -- g in a(L 1(14#), L ~ (J)). Since Til 
a a ~ 

is weakly continuous (see ~I7 or use (9.2)), T £1 -- T . .e: = g in 
U a ~ 

1 ~ 
a(L (\.I.), L (\.I.)). 

1£ (X, A, IJ) consists only o£ atoms o£ equal measure then lI(£) is 

finite and hence weakly closed. We will now determine the weak 

closure o£ 6(£) when X consists only o£ atoms, or X has only finitely 

many atoms, or when X is separable. 

Let Xo be the non-atomic part o£ X, let (An}nEP be the atoms 

o£ X and let A = U A; also let a = \J.(X ) (see ~ 9). 
nEP n 0 0 
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(22.4) DEFINITION. If f EL
I 

(X, ~) let Z (f) be the sct to which g 

b~~longs iff there is an h ...... f such that g I Xo ~ h Ixo and g IA:::h IA. 

(22.5) LEMMA. For all £ ELI we have ~(f) CZ(f) eMf). 

PROOF. 6. l.~ Z is easy. For the other inclusion, let g E Z so 

tll\~n.~ is an h...., f Ruch that glXo -<hlxo and glA::.: hiA. Since Xo is 

non -atomic the re is a net (h } eLl (X ,~) with h ...... h I X and 
0( 0 0( 0 

h -, glX weakly. Extend eachh to X byh IA:::hIA. Thenh -h-f 
0( 0 a 0( 0( 

(see (3. 3)(x)) and for each vE Loc(X,~) we have vlx ELoc (X ,~) 
o 0 

so Ix hO( v dj..l-+!X g v dj..l, but since ~hO( v dj..l::: fA gv d~ we have 
o 0 

finally that I X hO( v dj..l -+ ! X g v dj..l, i. e., ha .... g weakly. Hence g EX. 

(22. 6) THEOREM. If (X, 1\, j..l) consists only of atoms, then ~(f) ::: Z (£) 

f()r all f ELI (X, ~). 

PI~OOF. We have onLy to show that D.(O C Z(O. Let g E ~(f) . 

Then there is a net {h } c 6(f) with h .... g weakly. Let B be an atom. 
a a 

Now ~(B) S;~(h -l(h IB))::: ~(f-l(h IB)) and f-1(h IB)) nf-1(hAIB)::: cP 
a 0( a 0( ~ 

whenever hO( I B =1= h~ I B so \J.(X) < oc implies there are only finitely 

rnany different values ha I B. But ha I B -+ g I B, so for some a O' a ~aO 

implies h I B ::: g I B. Hence there is an increasing sequence a such a n 

that a 2a implies h IAk ::: glAk' k ::: 1, "', n. 
n a . 

g ·~f and hence g EMf) ::: Z (f) in this case. 

I can now prove 6(f) = Z(f) in general. 

Then IIha -gill -+ 0 so 
n 
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(22. 7) THEOREM. If (X, fI, IJ) has only a finite nUITlber of atoms, 

then t.(f) = Z (f). 

PROOF. We have only to show that 6(f) C Z(f). It is easy to see 

that the condition hilA = h21A defines an equivalence relation on t.(f). 

Since there are only finitely ITlany atoITls, there are only finitely ITlany 

equivalence classes, HI'····' Hn say. t.(f) == H 1U·.·. UHn so 

t.(f) == HI U· ... U Hm' Let g E 6(f). Then g EHk for SOITle 1 ~k ~ ITl, 

so there is an h E Hk and a net [h } CH
k 

with h - g weakly. Since 
o a a 

h ,h EH
1

, h IA = h IA for all a. Let B be an atOITl of (X, fI, u,) 
a 0 '- a 0 

(so B cAl. g is constant on B so (gl B )IJ(B)= IgCBdU=liITlafhaCBd\.L 

== (h IB)U(B) and thus g IB = h I B since k!(B) > O. This holds for all o . 0 

atoms B, so g I A = h I A. Let v E Lac (X ,IJ) and extend v to all of 
o 0 

X by vIA == 0, so v E Loc(X, fJ)· Then Ix g v dfJ = Ix g v du, 
o 

== liITl tx h v dU = liITl /,X h vd~ so h IX -+g Ix weakly. But a a QI a a 0 0 
o 

h IA == h IA and h "" f '" h so (3. 4)(ii) iITlplies h IX -h Ix . 
(}' 0 0' 0 a 0 0 0 

Hence glX E t.(h Ix ) = n(h Ix ), i. e., glX ~ h Ix . 
10 00 00 000 

(22.8) PROPOSITION. If f, gEL 1 (X, u,) and g ~ f and g IA == flA 

then g I X ~ fIX . 
---- 0 0 

PROOF. Define F n' G
n 

inductively by G l == g, F 1 == f, 

G n +1 == Gn C X _A ' F n +l == Fn C X _A ' Since g -< fwe have G I -< Fl' 
n n 

Since flA == glA we have by induction using (8.7) that G -< F , n EP. 
n n 
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Ii X has only a finite number of atoms, then for some n E P, 

= G ~F = f C and (8.7) implies glX ~ fix. 
n n X 0 0 

Otherwise, 
o 

G n ~ g C x and F n~ f C x and IIF -fCX II = IF n -f C x dIJ. 
o 0 n 01 0 

= f £ C ~ A. d~ .... ° as n -+ oc 
i=n 1 

Hence (12. 5) implies g eX 
o 

since f ELI. 

so g Ix ~ fix. o 0 

REMARK. If f & geL 1 
then (22.8) may fail since we could have 

flo ao 
! £ dlJ = J g d~ = +oc with J ° I x < J ° f I X 
A A 0 goo 0 

(22. 9) LEMMA. If f ELI (X, IJ) then Z (f) is o(L 1, L oc} sequentially 

closed. 

PROOF. Let the sequence [g } c Z (f) with g -+ g weakly. Then 
n n 

g I A -+ g I A pointwise, and there are functions h "" £ such that 
n n 

gnlxo~ hn\XoandgnlA =hnIA, n=1,2,3, ... Lettcan' bn[}nEP be 

pairwise disjoint intervals such that U [a , b [::: [a
O

' a [ and 
nEP n n 

b -a = U(A }, n EP(see §9}. For each n = 1,2,3, .. , let 
n n n 

H = 0h Iv C [0 [+ z::; (h I Ak ) C r b [ 
n n r 0 ' a ° kEP n La k' k 

Then tEn} c [-oc, oc J[ 0, a [ which is compact in the product topology, 
oc 

so there is a subsequence IHn} which converges pointwise 
l' k k= 1 

everywhere to a function H. HI [0, a O [ is the limit of a sequence 

of decreasing functions so it is decreasing, and X is non-atomic, so 
o 

there is an h E M(Xo ' IJ} such that 0h Ix = HI [0, a O[ a. e.. Extend 
o 

h to X by h IA = g I A. Now H "" h "" f and Hn .... H pointwise so 
n n k 
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H"" f. Also HI [0, a O[ = bh IX ""' hi X O' and since 
o 

1 

.H I [a O' a [ 

pointwise, we have HI [a O' a[-- h!A. 
1 

Hence h", H ,..... f ELand thus 

Since O(f) is weakly closed, g E O(f) so g -< f...., h and hence 

g -< h. SincegIA=h!A, we have using (22.8) that glX -<hIX. 
o 0 

Thus g E Z (f). 

Recall that the metric space associated with a finite rn. s. 

(X, A, \,j) is (A(\.I), d) where A (IJ) is A modulo the sets of measure 

zero and d(A, B) = \.dA-B) + IJ(B-A). A(IJ) will be viewed as A with 

the equality A = B[~J iff C A = C B ~ -a. e. A finite m. s. is 

said to be separable if its as sociated metric space is separable. 

Note that Lebesgue measure on bounded subsets of Rk and Stieltjes-

Lebesgue rneasure on bounded subsets of Rare separable [47, p. 69J. 

(22. 10) PROPOSITION. (i) (X , A nx ,\.I) is separable iff (X, 1\., IJ) 
o 0 

is separable. 

1 
(ii) If (X, /I., \.I) is separable then for each f E L (X, 1..1) the 

1 oc 
relative a(L ,L ) topology on O(f) is rnetrizable. 

PROOF. (i) (A n X (\.I), d) is a subspace of (A(IJ), d) so (!I. (1-/.), d) 
o 

separable implies (A n X (lJ), d) is separable. Conversely, if 
o 

(I\. n X (\.I), d) is separable, then the union of the atoms of X and a o 

countable dense subset of (A n X (U), d) is countable and dense in 
o 
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(/I (~), el). 

1 
(ii) Let a be a countable dense subset of (1\(\J.), d) an! let f E 1.. . 

Then 0 (f) is weakly compact. so according to [20, p.143, TheoreU1 

16. 7J we have only to show there is a countable subset of 1.. oc which 

separates points of L 1 Let f; = teE: E E d3}, so f; is countable. To 

show that f) separates points of L 1 let g, h ELI If f (g -h)C
E 

db!, = 0 

for all C
E 

Ef) then JE(g-h)db!, = 0 on a dense subset of (A(~), d). 

Since g-h EL
I

, E -> JE(g-h)du, is continuous on (A(~, d) and hence we 

conclude that JE(g-h)dw, = 0 for all E E II(bt) so g = h. 

(22. 11) THEOREM. If (X , An x ,bt) is separable then for every 
- 0 0 

1 -
f E L (X, ~ we have 6(f) = Z (f). 

PROOF. Now the weak topology on O(f) is metrizable so Z (f) 

is closed and thus 6(f)c Z(f)C6(f) iU1plies 6(f) = Z(f). 

Now suppose p is a saturated Fatou norm on M(X, IJ) such 

that L oc cL P, L P ' eLI and L P is u. r. i. If f E L P then 6(f) cL P and 

the problem is to deterU1ine the a(L P, LP')-closure of 6(f). If 

A c L P we denote its o(L P, L P ') closure by P A. Since 

o(LP,Loc)ca(LP,LP')we see that P A cA. 

By examining the proof of (22.10)we see that if £ E L P and 

(X ,1\ nx ,uJ is separable, then the relative a(L P, L P') topology on 
o 0 

0(£) is metrizable. 
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(22. 12) PROPOSITION. If the simple functions are dense in L p 
, 

then for every f E L P and Ac O(f), the a(L P, L
PI

) closure of A 

1 ac 
equals the o(L ,L ) closure of A. 

PROOF. Now O(f) is p-bounded so there is an M> 0 such that 

p(g) < M for all g E O(f). We have only to show that A c Px . Now 

p- . 
A c 0(0 by (J 7.4). Let go EA. Then there is a net {gO'} C A with 

1 ac pI 
in o(L ,L ). Ifh E L , Fh(g) = J g h dU defines a con-

tinuous linear functional on LP. It suffices to ",how that F h (gQl) ..... F h (go) 

for all hELP'. Hence let hELP' and let IS > O. Then there is a 

simple function v such that pI (h-v) < e, so for all g E O(f), 

IFh(g)-F)g)1 = I J (h-v)g d~ I ~ p(g)pl(h-v) ~ M 8. Now there is 

an 0' such that 0' 2 0' implies IF (g ) - F (g ) I < e. Hence for 
o a vO' va 

0' 20' , IFh(g )-Fh(g )1 ~ lF
h

(g )-F (g )1 + IF (g )-F (g )1 
a 0' 0 0' VO' vO'vo 

(22. 13) THEOREM. If the simple functions are dense in L P ' and 

f E LP then the a(L P, L P ') closure of (I.(£) equals the a(L 1
, LO())~losure 

of !\(f). 

REMARK. The intuitive idea behind the definition of Z is that 

every member of 6(f) can be reached by a net in which eventually 

the rearrangements of f are formed by rearrangements on X and 
a 

rearrangements on A. This means that if g E tJ(f) there is a net 

(h } ctJ(f) and an index 0' such that for 0', p 2 QI we have 
0' 0 a 



-124 -

h IX '" hAlx and h IA,.....,bAIA. In this vase h IX ..... glX 
Q' 0 t-' 0 Q' t' 0:' 0 . 0 

lmpliesglX -<b Ix and h IA ..... gIAimplicsgIA"'-,h IA. 
o Q' 0 Q' Q' 

o 0 

Hencedefiningh by hlX =h IX and hlA=glA we have o Q' 0 
o 

h ,....., f, g I Xo -< h I X 0 and g I A = hi A. 
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