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ABSTRACT 

 

The young field of neuroeconomics has already produced many important insights into 

the neurobiological underpinnings of decision making.  However, at this early stage it is 

still unclear how much influence the field will have on mainstream economics.  Here, I 

show how a neuroeconomics approach can shed light on two classic economic problems.   

 

First, I show that it is possible to predict individuals’ values for public goods, using 

functional magnetic resonance imaging (fMRI)-based pattern classification.  With such 

predictions in hand, I demonstrate that it is possible to solve the free-rider problem, by 

taxing individuals based both on the values that they themselves report and on the 

predicted values (using fMRI).  I go on to more generally prove that by using any 

informative signal of value, it is possible to overcome classic impossibility results in 

mechanism design.  This allows us to construct mechanisms that simultaneously satisfy 

dominant strategy incentive compatibility, voluntary participation, budget-balance and 

social efficiency.  Such mechanisms were previously thought to be impossible.  I 

demonstrate how to construct such mechanisms, and test them in three different public 

goods experiments. 

 

Second, I show that individuals’ looking patterns are critical to the decision making 

process.  When people make choices between options, they tend to look back and forth 
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between them.  One might think that these “fixations” are an unimportant by-product of 

the choice process, but I demonstrate that they are in fact intimately tied to the 

comparison process.  By using a variant of the drift-diffusion models from the perceptual 

decision making literature, I find that fixations seem to bias the accumulation of evidence 

towards the item that is being looked at.  Therefore, if one spends more time looking at 

one item over the other, then one is more likely to choose that item.  Critically, I am able 

to show that this effect is not due to subjects looking longer at preferred items.  The 

model has deep implications for how looking patterns (treated as exogenous) should bias 

choices, and I confirm these predictions using eye-tracking data from subjects choosing 

between snack foods. 
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SUMMARY 

 

How can neuroscience inform economics?  For many economists, this is the fundamental 

question for the new field of neuroeconomics.  From a neuroscience perspective, there is 

no question of the value of understanding how the brain makes decisions.  But from an 

economics perspective, it is unclear how knowledge of the brain can improve a field that 

is only concerned with revealed preference.  In this thesis I tackle this important issue by 

presenting two examples of how neuroeconomics can help address traditional economics 

problems. 

 

In the first two chapters I show how using neurometric signals of value can overcome 

famous impossibility results in mechanism design.  In Chapter 1,  I discuss the public 

goods problem.  Every group needs to decide when to provide public goods and how to 

allocate the costs. In an ideal arrangement, individuals would reveal their values for the 

public good to the government, the socially optimal level of the good would be 

implemented, and the costs would be fully paid using fees that are proportional to 

individual benefits. Unfortunately, the economic theory of mechanism design has shown 

that this ideal solution is not possible when the government lacks knowledge about the 

individual valuations. I show that this impossibility result can be overcome in 

experimental settings by combining technologies for obtaining neural measures of value 

(functional magnetic resonance imaging-based pattern classification) with carefully 

designed economic incentives. 
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In Chapter 2, I extend the results from Chapter 1 to mechanism design in general.  

Several classic results have shown that it is impossible to design mechanisms that 

simultaneously satisfy efficiency, voluntary participation, and dominant strategy 

incentive compatibility. The results in the first chapter showed that it is possible to obtain 

noisy signals of subjects’ preferences.  Here I show that the availability of even mildly 

informative signaling technologies has a profound impact on the mechanism design 

problem.  In quasi-linear environments, it is possible to construct “neurometrically 

informed mechanisms” that implement any desired allocation rule by using both subjects’ 

reported preferences and their signals.  In particular, there are neurometrically informed 

mechanisms that simultaneously satisfy efficiency, voluntary participation, and dominant 

strategy incentive compatibility.  I go on to show, in two experiments, how to apply 

neurometrically informed mechanisms to complicated public goods games and how well 

these mechanisms perform in the presence of risk- and loss-aversion.  

 

In the final chapter, I show how information about individuals’ looking patterns can help 

shed light on the decision making process and better predict their choices.  Most 

organisms facing a choice between multiple options will look repeatedly at them, 

presumably implementing a comparison process between the items’ values. Little is 

known about the exact nature of the comparison process in value-based decision making, 

or about the role that the visual fixations play in this process. I propose a computational 

model in which fixations guide the comparison process in simple binary value-based 

choice and test it using eye-tracking. I show that the model is able to quantitatively 

predict complex relationships between fixation patterns and choices. 
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CHAPTER 1 

 

Using Neural Signals of Value to Solve the Public Goods Free-Rider Problem 

 

Public good allocation problems are pervasive in society. Examples in the government 

sector include the provision of national defense and environmental cleanups. Examples in 

the private sector include hiring a security guard or improving common areas in a 

condominium association. These examples highlight two key features of public goods. 

First, since their benefits are non-excludable, they are enjoyed by all members of the 

group, even those who do not help pay for them.  Second, the optimal allocation of public 

goods depends on the group members’ willingness-to-pay for them (1). 

 

If the government (or group leadership) knew every individual’s valuation for the good, 

the allocation problem would be straightforward: The government could compute the 

socially optimal level of the public good and then tax group members in proportion to the 

benefits that they receive in order to finance the cost of the good. In fact, in this case 

there are many possible fair rules for splitting the cost of the public good such that every 

individual’s benefit from the public good is greater than his tax (2, 3). Unfortunately, 

individual valuations for public goods are not directly observable by the government, 

which makes the allocation problem challenging. In particular, self-interested individuals 

have an incentive to understate those values, if they are asked directly for their valuations 

and know that their share of the cost will increase with their reported values. This is 

known as the free-rider problem, and it makes it very difficult in practice to accurately 
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determine which public goods should be provided and how the costs should be shared. 

Countless experiments around the world have shown that the financial incentive to free-

ride is pervasive and leads to allocations with a socially inefficient level of public good 

provision (4-6). 

 

Social scientists have explored two different ways to limit the problems caused by free-

riding. One approach investigates whether pro-social motives can be used to overcome 

the financial incentive to free ride. For example, pre-play communication and costly 

punishment of free-riders have been shown to ameliorate the problem in laboratory 

settings (7, 8). Although the full capabilities of these types of institutions are not yet 

known, the body of evidence (4, 5) suggests that pro-social motives are not always 

sufficient to eliminate free-riding behavior in all cultures (9). It is also unknown if these 

motives are strong and pervasive enough to solve large-scale problems of practical 

interest.  

 

The second approach has focused on designing institutions (known as “mechanisms”) 

that make it advantageous for self-interested individuals to reveal their true values. A 

mechanism is a set of rules specifying the information that is collected from the group 

members and how that information is used to decide how much of the public good to 

produce and how to split the costs. The number of potential mechanisms for public good 

problems is very large. Fortunately, the mechanism design problem is greatly simplified 

by a result, known as the revelation principle (10-12), which states that for every 

mechanism with a desirable set of properties, there is a related mechanism that achieves 
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the same outcomes but in which individuals are simply asked to reveal their values. This 

result is useful and important because it limits the search space to direct revelation 

mechanisms: if a desirable solution does not exist within this class, then it does not exist 

at all. 

 

A large body of work in economics has sought to design revelation mechanisms 

satisfying four desirable properties. The first is social efficiency (SE), which requires that 

the optimal amount of the public good always be produced, meaning that the net benefit 

to the group is maximized. The second property is dominant strategy incentive 

compatibility (DSIC), which requires that the wealth-maximizing strategy for each 

member of the group is to reveal his true value, regardless of others’ values or behavior. 

This property is desirable because truthful reporting is essential for determining the 

socially efficient level of the public good, and DSIC ensures that every subject has a 

financial incentive to do so regardless of his beliefs about the other group members. The 

third property is budget-balance (BB), which requires that the cost of the public good be 

completely covered by the members of the group. This property is desirable because it 

rules out the need for outside sources of funding. The fourth property is voluntary 

participation (VP), which requires that the expected value from participating in the 

mechanism be non-negative for each individual, so that members do not have to be 

coerced into participating. A central result in economic theory is that that there is no set 

of rules satisfying all four desired criteria (SE, DSIC, BB, and VP) simultaneously (13). 

In response to this fundamental impossibility result, theorists and experimenters have 

explored mechanisms that relax some of the criteria, but those mechanisms constitute a 
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less-than-ideal solution to the problem (14, 15). 

 

A key assumption behind the impossibility result is that the information used by the 

mechanisms is restricted to voluntarily reported values. However, a growing body of 

work in neuroscience has shown that it is possible to read subjective states with ranging 

degrees of accuracy (commonly 60-90%) using technology such as functional magnetic 

resonance imaging (fMRI) (16-23). This technology opens the door for a new class of 

mechanisms in which outcomes and payments depend both on individuals’ reported 

values and on neural readings about their values. We refer to this new class of institutions 

as Neurometrically Informed Mechanisms (NIMs). 

 

To explore the technological feasibility of NIMs, we studied the public good allocation 

problem in a simple experimental setting. In each trial subjects were randomly assigned 

to a group of size N=5, 10, 15, 20, or 25 and were assigned either a Low ($0-2) or High 

($8-10) induced value for an abstract public good. The cost of this good was fixed at $5 x 

N. As is common in experimental economics, subjects were paid based on their payoffs in 

the experiment.  Therefore, subjects were paid an amount equal to their value for the 

public good if it was produced, and zero otherwise. Subjects made decisions in 50 

different trials and were paid based on their average payoff from all trials. The overall 

payoff for each trial depended on the subject’s value, the tax he had to pay (described 

below), and whether or not the public good was produced. Under the NIM the public 

good was produced only when the sum of the reported values was greater than its cost. 

The true values were independently and identically drawn from a uniform distribution so 
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that on average it was efficient to produce the public good in only half of the trials. 

 

The experimental task procedure and rules of the NIM were as follows. First, subjects 

were shown the parameters of the decision problem in the sequential order depicted in 

Figure 1A  while undergoing whole-brain fMRI. Their trial-specific value for the public 

good was shown in isolation during an initial screen, which allowed us to use a non-linear 

support-vector-machine classifier (SVM) to predict subjects’ values (High or Low) based 

only on their pattern of neural responses to the value screen.  After seeing the group size 

and the total cost of the public good, subjects chose whether to report their true value for 

the public good (High or Low). If the public good was produced, the NIM then used both 

the classifier predictions and the reported values to determine the taxes paid by each 

individual, as depicted in Figure 1B. Note that subjects are penalized with a higher tax 

when their reported value differs from the classifier’s prediction. Furthermore, the higher 

the prediction accuracy, the more likely it is that a lie will be detected.  

 

In the Methods section we show that the NIM satisfies SE, DSIC, BB, and VP. Since the 

public good is produced only when the reported values exceed the cost, SE requires that 

every individual reveal his true value.  Subjects’ incentives to reveal their true values 

depend on what they believe the accuracy of the classifier to be. Figure 2A depicts the 

difference in expected payoff between truth-telling and lying as a function of the 

classifier’s accuracy. Note that Low-value types are strictly better off revealing their true 

value for any classification rate between 50% (i.e., no decoding) and 100% (i.e., full 

decoding). In contrast, High-value types are strictly better off revealing their true value 
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for any accuracy rate above 55%, but have an incentive to lie for rates between 50% and 

55%. This provides an intuition for why the mechanism satisfies DSIC, and thus SE, for 

classification rates above 55%. Figure 2B shows the total expected payoff from reporting 

truthfully in the NIM at different classifier accuracies, assuming that the other subjects 

are reporting truthfully and that they have High values 50% of the time. The expected 

payoff is positive for both value-types at classification rates above 60%, which illustrates 

why VP is satisfied. Finally, BB is satisfied because by design the NIM distributes any 

financial surplus or deficit evenly between the players.  

 

There was no feedback during the experiment and subjects’ values were classified 

afterwards to determine their payments. Therefore, subjects made decisions based solely 

on their beliefs about the classifier’s accuracy, which were assessed at the end of the 

experiment by debriefing.  The rules of the NIM were explained to the subjects 

beforehand. In particular, they were told that in a previous experiment the same 

classification algorithm used here was able to predict values with an accuracy of 60%. 

Clear instructions about how the mechanism works are necessary to guard against 

comprehension mistakes that would cloud interpretation of the results, and are considered 

a requirement by mechanism designers (24).  The 60 ± 2% (SEM) estimate for the 

classifier accuracy was based on an actual preliminary calibration experiment in which 14 

subjects played a simple version of the NIM.  In this experiment the classified values 

played no role on outcomes and the subjects did not know that their values were being 

predicted (Fig. 3A).  
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Figure 1. A) Timing of the experimental trials (top to bottom). B) Tax paid by the subject 

in each trial as a function of the classifier’s prediction and his reported type. Negative 

numbers denote transfers to the subjects.  
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Figure 2. A) Expected benefit of truth-telling as a function of value type and classifier 

accuracy. For a particular classifier accuracy, the value of the curve indicates the 

difference in expected payoff between reporting truthfully and lying.  The arrow denotes 

the payoffs at the 60% accuracy rate used to describe the mechanism. Note that a 

subject’s decision is based on their beliefs about what the accuracy of the classifier will 

be, and not on the realized accuracy after the experiment. B) Total expected payoffs as a 

function of the actual classification accuracy of the mechanism for a subject who reveals 

his true type.  For a particular classifier accuracy, the value of the curve indicates how 

much the subject can expect to earn on average, if he reports his type truthfully. A 

positive value means that VP is satisfied; a negative value means VP is violated. Note 

that since the function is increasing with the accuracy rate, subjects have an incentive to 

cooperate with the experimenter to make the classifier as accurate as possible. 
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Figure 3 depicts the results of the experiment.  The average classification accuracy was 

56 ± 4% (SEM), insignificantly below the stated 60% rate (two-tailed p=0.33; Fig. 3A). 

We tested subjects’ belief in the accuracy of the classifying technology by asking them to 

predict the classifier prediction rate for their own data and rewarding them based on the 

accuracy of their guess. During the debriefing period subjects predicted a classification 

rate of 64 ± 2% (SEM), which is insignificantly different from the actual classification 

rate (two-tailed p=0.10; Fig. 3A). Most importantly, subjects revealed their true values 

nearly 100% of the time, consistent with the properties of the NIM at the subjects’ 

predicted classification rates (Fig. 3B). Figure S12 shows that the frequency of truth-

telling did not change during the experiment. Figure 3C compares the social surplus 

generated by the NIM, which is a measure of social efficiency, with two important 

benchmarks: (1) the social optimum that could be achieved if the government had full 

information and thus could always choose the socially efficient allocation, and (2) the 

theoretical average outcome generated by the best non-NIM mechanism satisfying BB, 

VP, and DSIC. The NIM generated 93% of the full-information social optimum, as 

compared to 23% for the best theoretical non-NIM mechanism. 
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Figure 3. A) Mean accuracy rate of the classifier in the calibration (N=14) and main 

experiments (N=10), as well as the classification rate guessed by the subjects (N=10), 

with standard error bars. Two-sided p-values: calibration vs. main = 0.41, calibration vs. 

guess = 0.20, main vs. guess = 0.10. B) Individual reports as a function of true type 

(N=10), with standard error bars clustered by subject. Low types misreported High 3.5 ± 

1.6% (SEM) of the time, while High types reported High 99.5 ± 0.5% (SEM) of the time. 

C) Average social surplus per individual (N=489), a monetary measure of social 

efficiency, in the best non-neural mechanism (0.142 ± 0.037 (SEM)), the NIM (0.569 ± 

0.038 (SEM)), and the best possible allocation under conditions of full information 

(0.614 ± 0.029 (SEM)). One-sided p-values are the following: Choice vs. NIM = 10-18, 

Choice vs. Optimum = 10-23, NIM vs. Optimum = 0.20. 
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This study establishes the viability of NIMs in a simple experimental setting with two 

types and with experimentally induced valuations. Since NIMs constitute a significant 

departure from previous institutions used to solve the public goods allocation problem, it 

is worth highlighting several of their key properties. 

 

First, NIMs advance the theory and practice of mechanism design by combining 

economic theory with neural measurement technology. In the past, economists have 

considered mechanisms that only use the reported values from each group member to 

determine if the public good is produced and how the costs are shared. Here we show that 

it is possible to do substantially better by also employing fMRI measures that are reliably 

correlated with value.  

 

Furthermore, the use of NIMs is not limited to fMRI technology. As shown in detail in 

the Methods section, all that is needed for the NIM to work is the existence of some 

signal of value that is known to be informative, whatever its source. Thus, simple 

physiological measures (e.g., pupil dilation or facial electromyography) might be feasible 

as well.  

 

Another attractive property of NIMs is that they do not depend on beliefs about the types 

or behavior of the other group members. Truth-telling and voluntary participation are 

both dominant strategies with these mechanisms.  The only requirement is that subjects 

believe that their values can be predicted with sufficient accuracy by the technology.  

Therefore, NIMs might not be viable if subjects could interfere with the technology. 
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Fortunately, NIMs have a built-in incentive for subjects to make the classifier predictions 

as accurate as possible, since subjects’ expected payoffs are increasing with the 

prediction accuracy (Fig. 2B).   

 

Finally, VP is an attractive feature of the NIMs because it ensures that the public good 

makes every individual better off, so the entire group has an incentive to support the use 

of the NIM. Mechanisms are deliberately required to satisfy this VP property to bolster 

widespread acceptance. Note however, that VP can be harder to satisfy when individuals 

have substantial amounts of risk- or loss-aversion (see Appendix), although the problem 

is substantially reduced as the accuracy of the neural measurements improves. Thus, 

future technological advances should alleviate this problem. 

 

To summarize, the free-rider problem has been a challenge for economics, public policy, 

and political science since the work of Adam Smith (25). The field of mechanism design 

made substantial progress during the 20th century. Unfortunately, a major contribution of 

the theory was to show that an ideal solution is not possible when institutions rely only on 

revealed values. We have shown that this problem can be overcome in simple public 

good settings by using fMRI to obtain informative signals of individuals’ values, and 

using those signals to induce truthful reporting. Our results take the first step in 

combining physiological measurements with carefully designed mechanisms to create 

better institutions for collective decision making. Future theory and experiments will be 

needed to take this technology to more practical applications. 
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Methods 

I. Main experiment: Behavioral methods 

 

Subjects. 10 subjects (5 male, mean age 25) were recruited from the Caltech community. 

Caltech’s Human Subjects Internal Review Board approved the experiment. 

 

Economic setting. In every trial subjects make decisions in a group of size N. The group 

needs to decide whether or not to produce a public good that generates benefits to the 

group members, but costs $C to produce. The value of the public good is different for 

each subject, and the value for subject i is denoted by Vi. Vi is drawn randomly and 

independently each trial from a mixture of two uniform distributions, one with support 

$0-$2, and one with support $8-$10.  The value is drawn by first selecting one of the two 

distributions with equal probability and then drawing it from the selected distribution.  If 

Vi is drawn from $0-2, then we say that the subject has a Low value, and if Vi is drawn 

from $8-10, then we say that the subject has a High value.  We use 5 different values for 

N ={5, 10, 15, 20, 25} with corresponding costs C ={$25, $50, $75, $100, $125}.  Note 

that C/N=$5 in every case. As a result, on average it is efficient to produce the good only 

half of the time. Each subject played 10 trials for each value of N, and trials were 

presented in a random order. 

 

Task. Subjects make decisions in 50 different trials. In each one, they are asked to report 

their value type to the experimenter: High or Low. As described in Figure 1A, they are 
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given 3 seconds to indicate their choice. If they do not respond in the allotted time, then 

the subject’s payoff for that trial is a loss of $2 regardless of the actions of the other 

subjects with whom he is matched.  It is important to emphasize that the subjects need 

not report their true values: when their value is High they can report Low, and vice-versa. 

 

As shown in Figure 1A, on 8% of the trials subjects are asked to report whether the last 

digit of their value is even or odd.  The appearance of this question is fixed so that it 

occurs in the same trials for every subject (2 in the first session and 2 in the second 

session).  The goal of this “test” screen is to ensure that subjects are paying attention to 

their values in each round. The mean (standard error) percentage of correct answers was 

92.5% (5.3%). 

 

Subjects’ payoffs for every trial are determined by the rules of the NIM (described in the 

main text and in Section V below), which maps the reports and classifier predictions from 

each subject in the group to a decision regarding the public good (i.e., whether or not to 

produce it) and to a list of tax payments for each subject.  

 

A subject’s total payment from participating in the task equaled a fixed show-up fee, plus 

$5 for each correct even/odd screen (up to $20), plus five times their average payoff on 

the 50 trials, plus a payoff for how accurate their guess was about the classifier accuracy 

(up to $10). The factor of five was used to place more emphasis on the payoffs generated 
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by their decisions relative to the show-up fees.  The average total payoff was $73.  

 

Even though subjects’ aggregate decisions were used to compute payoffs, only one 

subject participated at a time because they were being scanned during the task. After all 

the subjects were scanned and the classification was performed, groups were formed ex-

post for every subject-trial pair by matching them with decisions made by a random set of 

other subjects in trials of the same type. Thus, for example, to compute the outcome for a 

trial with N=10 for a given subject, we randomly selected nine more trials from the other 

subjects for the case N=10, and their joint decisions determined the outcome for the 

group following the rules of the NIM. Note that since subjects have to choose their report 

without knowing the decisions made by others, and since no feedback is provided in the 

experiment, it makes no difference from a strategic point of view if a series of subjects 

make decisions sequentially (as they did in our experiment) or if all subjects choose 

simultaneously (as in most behavioral experiments of this type). Their incentives and 

information are identical in both cases. 

 

No deception was used in the experiment. All the information about the decision structure 

and the method for determining payoffs was communicated to the subjects during the 

instruction period prior to the experiment. Because of the complexity of the instructions, 

we held a separate instruction session 1-2 days before the experiment to give subjects a 

chance to think in detail about the rules of the NIM and to reflect about their optimal 
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strategy.  During this session the instructions were read out loud and then the subjects 

were asked to complete a quiz about them.  

 

It is important to note that we explained that the NIM was set up so that their unique 

payoff-maximizing strategy was to report the true value every trial and gave them 

detailed (and correct) calculations showing their expected payoffs for lying and for truth-

telling.  They also went through calculations describing their expected payoffs in cases 

where the classification algorithm could predict their values at rates that were lower or 

higher than the 60% rate described in the instructions.   

 

However, subjects were told that they were free to misreport their values and to try to 

control their brain activity. The only requirement imposed on them was to keep their eyes 

open and to look at the information on each screen. 

 

The reason for explicitly calculating expected payoffs from different reporting strategies 

is to enhance internal validity. Without such instructions, we would not know whether 

any misreporting is due to a desire to misreport (perhaps doubting the accuracy of the 

classifier) or a miscomprehension of the financial consequences of misreporting. This 

kind of instruction is often used in experimental economics when the economic 

consequences of particular choices are not easy to calculate, and when differences in the 

ability of participants to make such calculations are not a variable of interest. For 
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example, in Becker-DeGroot-Marschak mechanisms used to reveal maximum 

willingness-to-pay values, it is common to explain to subjects how truthfully revealing 

values leads to the highest expected payoff (26-30).  

 

On the day of the experiment subjects answered a short quiz to ensure that they 

understood the experiment. This experimental session was the second time they had seen 

the instructions and quiz, but both were repeated to ensure that the subjects remembered 

and comprehended the details of the experiment. Subjects were then run through two 

practice trials of the experiment on a laptop outside of the fMRI scanner to familiarize 

them with the stimuli.   

 

Immediately following the fMRI experiment, subjects were asked to answer the 

following question:  “The algorithm will be able to guess my value ____ % of the time.”  

Their responses gave us a measure of how well they believed the classifier could predict 

their values. Note that this information was extracted in an incentive-compatible way: 

subjects received a maximum of $10 if they guessed the prediction rate correctly, but 

their payoff decreased by $1 for each 2%-step deviation from the true percentage (in 

either direction). For example, if a subject guessed that we could predict their value 60% 

of the time, but we could in fact predict it at a 70% rate, then they received $10-$1*|(70-

60)/2| = $5.   
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II. Main experiment: fMRI and classification 

 

FMRI scanning procedure. Scans were acquired using the 3 Tesla Siemens Trio scanner 

at Caltech’s Broad Imaging Center.  Anatomical images (high resolution, 1x1x1mm, T1-

weighted) were acquired first.  Functional (T2-weighted) images were then acquired 

using the following parameters: TR= 2750ms, TE = 30ms, in-plane resolution, and slice 

thickness = 3mm, 44 slices.  Horizontal slices were acquired approximately 15 degrees 

clockwise of the anterior-posterior commissure (AC-PC) axis to allow for complete brain 

coverage, and were collected in an interleaved ascending manner.  The onsets of the 

value screens were time-locked to the beginning of TRs.  The experiment lasted 

approximately 28 min, broken into two sessions of 14 min each.   

 

Data preprocessing. The fMRI analysis proceeded in several steps. Images were 

corrected for slice acquisition time within each volume, motion corrected with 

realignment to the last volume, and spatially normalized to the standard Montreal 

Neurological Institute EPI template. Intensity normalization and high-pass temporal 

filtering (using a filter width of 128 s) were also applied to the data.  We did not apply 

any spatial smoothing, since spatial smoothing reduces the information that can be 

extracted from patterns of activation. 

 

We then ran 50 general linear models (GLMs) for every subject, one for each subset of 

49 trials out of the total 50.  In each of these GLMs we constructed regressors for the 
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following events: High value screen, Low value screen, left-out-trial value screen, group 

information screen, response screen, and even/odd screens. All of these events were 

modeled as stick functions, except for the group information screen, which was modeled 

as a boxcar with a duration equal to that of the event. The regressors were convolved with 

canonical hemodynamic response functions.  For each of these 50 GLMs and for every 

subject we then constructed a contrast of High – Low value trials at the onset of the value 

screen.  Based on these contrasts, we selected voxels-of-interest (VOIs) by taking the 100 

voxels with the largest t-statistics in the whole brain. Univariate feature selection is a 

common solution to the problem of reducing the number of variables used as inputs to 

multivariate classifiers such as support vector machines (SVMs) (31).  Note that our 

procedure avoids a peeking problem that has been pervasive in previous fMRI 

classification exercises: we pick VOIs based on the responsivity to High vs. Low values 

without using information from the 50th test trial in which we want to predict the 

subject’s value. For more detail on this leave-one-out procedure, see the Classification 

Analysis section below. 

 

After whitening the data (AR(1) process) and removing movement-associated noise, we 

then extracted the BOLD time-courses for each VOI and created a more continuous 

signal by interpolating the data at 12Hz. We then computed the average BOLD signal for 

the 3 to 7 second time interval after each value screen onset, for each of the VOIs.  

 

Classification analysis. The process described above generated a vector of 100 measures 
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of BOLD activity for each trial, which served as the input to the classification analysis. 

This data set was analyzed using non-linear SVMs with radial basis functions.  We used 

the Matlab SVM toolbox from LIBSVM to run these analyses. 

 

The first step of the SVM analysis was to normalize each voxel’s activity across trials to 

lie in the interval [0,1], as suggested by the LIBSVM documentation (32).  

 

The data was then run through a cross-validation procedure with two nested cycles (33).  

In this procedure, we iteratively attempted to predict the value for each trial by training 

our learning algorithm on the other 49 trials and then applying the resulting model to the 

test trial, generating a prediction of High or Low.  This procedure is known as “leave-

one-out” classification. Note that for each leave-one-out iteration we used a different set 

of 100 voxels to predict, as described above. 

 

The radial basis function used by SVM contains two free parameters, gamma and C.  

Gamma is essentially the degree of non-linearity in the SVM.  C is a parameter in the cost 

function that determines the model’s tolerance for counterexamples (34,35).  In order to 

select the parameters with the best predictive power, we performed a Five-fold cross-

validation on the 49 training trials, searching over all combinations of gamma and C = {2-

5, 2-4, 2-3, 2-2, 2-1, 20, 21, 22, 23 ,24, 25}.  Five-fold cross-validation is similar to leave-one-

out except that it randomly splits the 49 training trials into 5 groups (9-10 trials each), 

trains the SVM on 4 of those 5 groups, and then predicts on the remaining “validation” 
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group. This is repeated 5 times, each time using a different validation set from the 5 

possible groups.  After the five-fold cross-validation, we picked the combination of 

parameters that yielded the highest prediction accuracy on the validation sets.  We then 

fixed these parameters, retrained the SVM on all 49 training trials, and finally ran the 

resulting model on the remaining test trial to generate a prediction of High or Low.  

 

We ran through this whole analysis for each of the 50 trials, each time leaving one trial 

out and training the model on the remaining 49 trials.  We used these 50 predictions to 

determine the classifier’s accuracy, i.e., the percentage of the time that we correctly 

predict the subject’s value. 

 

We conducted a permutation test to ensure that our classifier was not biased towards 

reporting High or Low. Such a bias could lead to artificially high prediction rates if the 

number of High and Low trials was not equal for each subject (as was the case in this 

experiment).  We performed 100 permutations per subject, each time randomly 

permuting the labels (High and Low) and then running the classification procedure as 

outlined above.  The mean (SEM) prediction rate across all 1000 runs (100 permutations 

x 10 subjects) was 49.3 ± 4.0%, where the standard errors are clustered by subject.  This 

indicates that there was no significant bias in the classifier. Table 1 depicts a confusion 

matrix for the main experiment, showing the number of predicted High and Low types as 

a function of the true type. 
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Table 1. Confusion matrix for the main experiment, showing the number of predicted 

Highs and Lows as a function of the true type. 
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III. Calibration experiment: Methods 

 

Subjects. 15 subjects (12 male, mean age 24) were recruited from the Caltech community. 

Caltech’s Human Subjects Internal Review Board approved the experiment.  One subject 

was excluded due to excessive head motion in the scanner. 

 

Economic setting. The economic setting was identical to the one for the main experiment. 

 

Task. The setup for the calibration experiment was the same as in the main experiment, 

with some small changes. The timeline was the same, except that instead of asking 

subjects to report their value (High or Low), we asked them to cast a vote (Yes or No) for 

the public good.   

 

Outcomes were then determined by a simple voting mechanism. There was a threshold K 

such that the public good was produced if and only if K out of N subjects voted Yes. If the 

public good was produced everyone in the group received their private values (even if 

they voted against it) and the subjects who voted Yes split the cost C evenly among them. 

If the public good was not produced there were no costs or benefits to any of the subjects.  

The information screen showed the threshold K in addition to the group size N and the 

cost C. 
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As in the main experiment, there were 5 different values for N = {5, 10, 15, 20, 25} with 

corresponding thresholds K = (2N/5) = {2, 4, 6, 8, 10} and costs C = $5N = {$25, $50, 

$75, $100, $125}.   

 

Subjects went through 50 trials with the same structure as before. Subjects’ values in 

each individual trial were also drawn according to the rules explained above. A slight 

change from the main experiment was that the occurrence of Even/Odd screens was 5% 

and was random (not a fixed 4 trials as in the main experiment).  Also, rather than paying 

subjects for all trials, subjects in the calibration experiment were paid for the sum of five 

randomly selected trials, one for each group size. The average total earnings were $45. 

 

The reason for the different task structure in the calibration experiment was because we 

wanted to use a calibration experiment that was as close as possible to traditional public 

goods cost-sharing experiments. We could not use the NIM task for calibration since that 

would have required telling the subjects what the predicted rate of the classifier would be, 

which at that point we did not know. Also, we wanted to estimate the classifier’s baseline 

prediction rate in a setting where individuals did not know that we were trying to guess 

their values.  
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IV. Calibration experiment: fMRI and decoding 

 

fMRI scanning procedure. The fMRI procedure was identical to the main experiment 

except that the timing was slightly different. The total time duration of the experiment 

was approximately 24 min, broken into two sessions of 12 min each. We did not align the 

onsets of value screens with the beginning of TRs. 

 

Data preprocessing. It was identical to the main experiment. 

 

Classification analysis. Classification was done exactly as in the main experiment. 

 

 

V. Rules of the neurometrically informed mechanism (NIM) 

 

This section provides a more formal and detailed description of the rules of the NIM used 

in the main experiment.   

 

Before doing so we need to introduce some notation: 

-  denotes the value of the public good to player i. 
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-    denotes the value-type of a subject with 

value Vi , where 1=Low and 9=High. 

  

-  denotes the type reported by subject i, where 1=Low and 9=High. 

 

-  denotes the type assigned by the classifier to subject i. Note that if the 

classifier is informative, the probability of being classified a High type depends on the 

individual’s true type.  

 

-  denotes the level of public good as a function of the reports 

made by everyone in the group. 

 

-     denotes the optimal level of public 

good given a distribution of types in the group. Note that the NIM assumes that High 

types have a value for the public good equal to $9, and that Low types have a value equal 

to $1. 

 

The rules of the NIM are easily described using this notation. Each subject in the group 

reports simultaneously.  The NIM then sets .  If the public good is not 
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produced then there are no taxes and all subjects earn $0 in that trial.  In contrast, if the 

public good is produced then each player receives their value but has to also pay a tax 

given by: 

, 

where  is a baseline tax that depends only on player i’s report and 

predicted type, and  is a rebalancing tax that depends on the behavior and 

predicted types of all the group members. 

 

The baseline taxes used in the experiment are described in Figure 1B and 

in Table 2A.  Note that since the classifier is noisy, there is uncertainty about the actual 

taxes that subjects need to pay. Table 2B describes the expected baseline taxes with the 

assumed classification rate of 60%.  

 

The rebalancing transfer  is the same for all the subjects in the group and is 

added to the baseline tax to ensure that the NIM is budget-balanced.  Therefore, it is 

given by 

. 
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Table 2. (A Top) Baseline taxes used by the NIM. (B Bottom) Expected baseline taxes 

based on a classifier accuracy of 60%.  Positive numbers denote taxes.  Negative numbers 

denote transfers to the subjects. 
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VI. Key properties of the NIM 

 

This section provides a mathematical proof that the NIM satisfies social efficiency (SE), 

voluntary participation (VP), budget-balance (BB), and dominant strategy incentive 

compatibility (DSIC).   

 

In order to do this we need to introduce an additional piece of notation:  

 denotes the expected payoff to subject i as a function of his type and 

report, conditional on the types and reports of the other group members. As is common in 

the mechanism design literature, the arguments here assume that the subjects are risk-

neutral in monetary payoff (but see the Appendix for how the results extend to the case of 

risk-aversion). 

 

In order to simplify the exposition, we assume that subjects’ values for the public good 

are given by 

€ 

θi  not 

€ 

Vi. In other words, we assume that High types have a value equal to 

$9 and Low types have a value equal to $1. The arguments are easily extended to the 

more complex case, and all of the properties hold at the subject’s stated belief about the 

NIM classification rate of 64%.  
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Incentive Compatibility 

 

DSIC requires that subjects earn higher expected payoffs by truthfully reporting their 

type rather than lying, regardless of the types and reports of the other subjects.  

Mathematically, this requires that the following incentive constraint be satisfied: 

 

  for all 

€ 

θi,ri,r− i, and 

€ 

θ− i . 

 

From the description of the NIM in the previous section we know that 

 

 

 

, 

 

and that  
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, 

 

where E indicates the expectation operator over the classifier’s signals. 

 

It then follows that the DSIC condition can be rewritten as: 

 

 

 

To verify that the DSIC condition holds for all for all 

€ 

θi,ri,r− i, and 

€ 

θ− i  we must consider 

several cases:  

1) The public good is not produced regardless of i’s report.  

2) The public good is produced regardless of player i’s report.  

3) The public good is produced if i reports High but is not produced if he reports Low. 
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Case 1: Since the public good is not produced regardless of i’s report, the subject gets a 

payoff of $0 regardless of his actions, and thus the DSIC incentive constraint is trivially 

satisfied.  

 

Case 2: Since the public good is produced regardless of i’s report, his incentive constraint 

becomes: 

 

 

which is equivalent to  

. 

 

The fact that this inequality is satisfied for both High and Low types can easily be verified 

by looking at Table 2B, which describes the expected baseline taxes for a classifier 

accuracy of 60%. In particular, a true Low type pays an expected baseline tax of $0 if he 

reports Low, but pays an expected baseline tax of $10 if he reports High.  Similarly, a true 

High type pays an expected baseline tax of $7 if he reports High, but pays an expected 

baseline tax of $10 if he reports Low. As a result, if the conditions of case 2 hold, both 

types have an incentive to reveal their true type. 
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Case 3a: Subject i is a High type and can prevent the public good from being produced by 

reporting that he is a Low type. In this case the incentive constraint becomes: 

 

 

The fact that this inequality is satisfied for High types is shown in the VP section below. 

 

Case 3b: Subject i is a Low type and can cause the public good to be produced by 

reporting that he is a High type. In this case the incentive constraint becomes: 

 

 

Using the fact that  and the baseline taxes for the NIM described in Table 2A we 

get that this condition reduces to: 

 

 

where p denotes the classification rate of the mechanism. 
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Note that in order to verify that this inequality is satisfied for all possible types and 

reports by the other subjects, it is sufficient to show that it holds for the case when the 

expected baseline taxes paid by the other subjects are maximized. If the inequality holds 

in that case, then it will hold in all cases. As shown in Table 2B, that happens when every 

other player is lying, in which case their expected baseline tax equals $10.  

 

Figure 4 plots the right hand side of the inequality assuming this “worst-case” scenario as 

a function of the subject’s own classifier accuracy (p). Figure 4 shows that even in this 

scenario the subject’s expected payoff for lying is negative for all group sizes and 

classifier accuracies above p=0.5.  Therefore, a decisive Low type will never want to lie 

and report High, since he would rather take a payoff of $0 than a negative payoff.   
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Figure 4. Expected payoff for a decisive Low type who misreports being a High type 

when every other subject is also lying. The x-axis denotes the classifier’s accuracy for the 

subject being studied. The classification accuracy for all other subjects is assumed to be 

60%. 
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Voluntary Participation 

 

VP requires that all individuals earn positive expected payoffs from participating in the 

mechanism and adhering to the truth-telling strategy, regardless of the types and actions 

of the other subjects.  Mathematically, VP leads to the following constraint: 

 for all 

€ 

θi,ri,r− i, and 

€ 

θ− i . 

 

Following the derivation in the DSIC sub-section, this can be rewritten as: 

 for all 

€ 

θi,ri,r− i, and 

€ 

θ− i . 

 

In order to verify that this constraint is satisfied we need to consider three different cases: 

1) The public good is not produced. 

2) The public good is produced and the subject is a High type. 

3) The public good is produced and the subject is a Low type. 

 

Case 1: Since the public good is not produced, i’s payoff is $0 and the VP constraint is 

trivially satisfied.  
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Case 2: For High types the voluntary participation can be rewritten as follows: 

. 

 

Recalling that  and the baseline taxes from Table 2A, this condition reduces to: 

, 

 

where p denotes the classifier’s accuracy in predicting the subject’s type.  

 

As before, in order to verify that this inequality is satisfied for all possible types and 

reports by the other subjects, it suffices to show that it is satisfied for the case in which 

the expected baseline taxes by the other subjects are minimized. If the inequality holds in 

this worst-case scenario, then it will hold in all other scenarios as well.  As can be seen 

from Table 2B, this occurs when there is only a minimum number of reported High types 

consistent with optimal production the public good, and when all players are reporting 

truthfully. 

 

The minimum number of High types needed to produce the good is calculated using the 

definition of  for the optimal level of the public good. Figure 5 plots the left hand 

side of the constraint under this worst-case scenario, as a function of the subject’s own 
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classifier accuracy.  The results demonstrate that the constraint is satisfied for all group 

sizes if the subject’s classifier accuracy is above p=0.55.  

 

Low types: For Low types the voluntary participation constraint can be rewritten as 

follows: 

. 

 

Recalling that  and the baseline taxes from Table 2A, this condition reduces to: 

 

 

For the same reasons described above, to verify this constraint it suffices to show that it 

holds when there is only a minimum number of reported High types consistent with 

optimal production of the public good, and when all players are reporting truthfully. 

Figure 6 plots the left hand side of the inequality assuming this worst-case scenario, as a 

function of the subject’s own classifier accuracy.  The figure shows that it is satisfied at a 

p=0.6 classifier accuracy for group sizes of N=5, 10, 15 and 20.   

 

Due to a small computational mistake during the design of the experiment, VP is satisfied 

for the case of N=25 only when the classification rate is 61%. Fixing this numerical 
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glitch is mathematically trivial and experimentally uninteresting, since the subjects were 

not given the option to opt out of individual trials.  Also, note that the VP constraint was 

satisfied at the subjects’ stated classification rate of 64%. Since this is the rate that 

determines subjects’ behavior, we can conclude that VP was satisfied for the case of 

N=25. 

 

Budget-Balanced 

 

The NIM is budget-balanced by design.  In particular, the rebalancing transfers 

 ensure that the amount of taxes collected exactly equals the cost of the public 

good. 

 

 

Social Efficiency 

 

Social efficiency requires that the optimal level of the public good be selected for any 

distribution of types in the group. But this follows directly from the rules of the NIM as 

long as subjects report optimally, which is guaranteed by DSIC. 
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Figure 5. Expected payoff for a truth-telling High type in the “worst-case” scenario. The 

x-axis denotes the classifier’s accuracy for the subject being studied. The classification 

accuracy for all other subjects is assumed to be at 60%. 
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Figure 6. Expected payoff for a truth-telling Low type in the “worst-case” scenario. The 

x-axis denotes the classifier’s accuracy for the subject being studied. The classification 

accuracy for all other subjects is assumed to be at 60%. 
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VII. Additional properties of the NIM 

 

Note that the NIM is characterized by its predictive accuracy and by the values of the 

four possible baseline taxes: one for each possible combination of reported value and 

classified value.   

 

The goal of the mechanism designer is to pick these taxes so that the properties of DSIC, 

SE, VP, and BB are satisfied. This leads to a linear programming problem that has many 

possible solutions. Because there are many solutions, other criteria are imposed to choose 

a precise tax scheme. The tax values used in the experiment were selected with several 

additional criteria in mind: (1) to have a higher overall expected payoff for High types 

compared to Low types, (2) to provide a strictly positive incentive to report truthfully for 

both High and Low types, and (3) to minimize the effects of possible risk-aversion by 

limiting the variance of the potential payoffs. The fact that subjects behaved as predicted 

(typically revealing actual values in their reports), suggests that risk-aversion was not a 

problem, although more is discussed in the Appendix. 
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VIII. Optimal mechanism in the absence of informative type signals 

 

In this section we derive the optimal mechanism that does not have access to informative 

neural signals. Since it is well known that in this case there is no mechanism satisfying 

DSIC, VP, BB, and SE, we characterize the mechanism that generates the highest 

possible social efficiency while satisfying DSIC, VP and BB.   

 

The measure of efficiency is given by average surplus: 

 

 

By the revelation principle (36-38) subjects are simply asked to reveal their types: High 

or Low. In searching for the best mechanisms, we allowed the probability of producing 

the public good to vary from 0 to 1 as a function of the reported types, and we allowed 

any finite taxes (positive or negative) conditional on the subjects’ reports. 

 

The characterization of the optimal mechanism boils down to a linear programming 

problem.  In order to define it we need to introduce the following notation: 

-  denotes the number of reported High types. 
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- denotes the tax paid by a High type with k reported High types in a group of 

size N. 

-  denotes the tax paid by a Low type with k reported High types in a group of 

size N. 

- denotes the probability that the public good is produced with k reported High 

types in a group of size N. 

-  denotes the empirical probability of having k High types in a group of size N, 

given the distribution of values. 

 

The mechanism needs to satisfy the following constraints: 

1) Budget-balanced: For all k and N,  

. 

 

2) DSIC for the High types: For all k and N, 

 

 

3) DSIC for the Low types: For all k and N, 
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4) Voluntary participation for the High types: For all k and N, 

 

 

5) Voluntary participation for the Low types: For all k and N, 

 

 

The optimal mechanism is given by the rules , , and that 

satisfies these five constraints and maximizes the expected surplus function 

 

 

given the empirical distribution of High and Low types. The best mechanism satisfying 

these constraints is detailed in Table 3, and the average surplus that it generates is 

depicted in Figure 3C.  

 

To generate the average surplus from each mechanism in Figure 3C, we took each of the 

489 valid trials sequentially (11 were misses) from the main experiment, randomly 

completed the groups using information from other subjects’ trials with the same N, and 

then determined the outcomes using the rules of the mechanism.  
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Table 3. Probabilities of providing the public good with the optimal non-NIM 

mechanism satisfying DSIC, VP, and BB. Each column is a different group size and each 

row is the number of reported High types. 

 

# of 
High 
types 

N = 5 N = 10 N = 15 N = 20 N = 25 

1 0 0 0 0 0 
2 0 0 0 0 0 
3 0.1875 0 0 0 0 
4 0.5 0 0 0 0 
5 1 0.0031 0 0 0 
6 X 0.0238 0 0 0 
7 X 0.0833 0 0 0 
8 X 0.2222 0.0005 0 0 
9 X 0.5 0.0029 0 0 
10 X 1 0.0117 0 0 
11 X X 0.0368 0.0001 0 
12 X X 0.0982 0.0004 0 
13 X X 0.2321 0.0015 0 
14 X X 0.5 0.0054 0 
15 X X 1 0.0162 0 
16 X X X 0.0433 0.0002 
17 X X X 0.1052 0.0007 
18 X X X 0.2368 0.0025 
19 X X X 0.5 0.0072 
20 X X X 1 0.0191 
21 X X X X 0.0472 
22 X X X X 0.1094 
23 X X X X 0.2396 
24 X X X X 0.5 
25 X X X X 1 
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APPENDIX 

 

Robustness of the NIM in the presence of risk/loss-aversion 

 

The theoretical results derived in Section VI of the Methods assume that individuals are 

risk- and loss-neutral (i.e., they make choices to maximize their expected financial 

payoffs). However, a wealth of experimental and field evidence suggest that subjects 

often exhibit substantial degrees of risk- and loss-aversion (S1-S3). Risk-aversion refers 

to the tendency to value a risk at a certainty-equivalent that is below its expected 

monetary value, and is usually parameterized by a concave utility function of money. 

Loss-aversion is the tendency to weight the disutility of losses more highly than the 

utility of equal-sized gains.  

 

In this section we explore the role of both risk- and loss-aversion on our results. We do 

this in two parts. First, we explore what happens to the properties of the specific NIM 

actually used in the experiment when subjects are not risk- and loss-neutral. Second, we 

show that it is possible to construct alternative NIMs that are able to satisfy the four 

desired properties (DSIC, SE, BB, VP) even when there are large degrees of risk- and 

loss-aversion. 
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All of the arguments below assume that subjects make choices to maximize a Prospect 

Theoretic utility function (S3) of the form 

 

. 

 

In this formulation  measures the degree of risk-aversion; as falls below 1 the 

function for gains becomes more curved and risk-aversion is higher. The parameter  

measures the degree of loss-aversion. Note that this includes the case of risk-neutrality 

(expected-value maximization) as a special case when .  

 

 

A. The impact of introducing risk- and loss-aversion on the NIM used in the experiment.  

 

It is straightforward to see that this has no effect on the budget-balancing or social 

efficiency properties. 

 

Now consider the case of VP under the assumption, used in the experiment, that the 

classifier accuracy rate is 60%. As in the proof above, to show that VP is satisfied for a 

type it suffices to show that it is satisfied in the worst-case scenario for the behavior and 
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types of the other players (see the voluntary participation section above for details). 

Figure S1 plots the expected utility of a truth-telling High type as a function of his loss-

aversion and risk-aversion parameters for the case of N=5. (All figures in this section are 

done for groups of size N=5, but differences in group size have only very small effects). 

The regions in which expected utility is positive correspond to the sets of (

€ 

α and 

€ 

λ ) 

values for which the VP constraint is satisfied. The figure shows that VP is satisfied at 

the special case of risk- (

€ 

α =1) and loss-neutrality (

€ 

λ =1) and that satisfaction of the VP 

constraint is robust to the introduction of significant amounts of risk- and loss-aversion.  

Figure S2 plots the same thing for a truth-telling Low type. A comparison of the two 

figures shows that increases in the loss-aversion coefficient can cause the VP constraint 

to fail, unless the subject is also very risk-averse. 

 

Finally consider the DSIC property. As in the proof above, we need to show that the 

incentive compatibility for each type is satisfied in each of three possible cases: 

1) The public good is not produced regardless of i’s report. 

2) The public good is produced regardless of i’s report. 

3) The public good is produced if i reports High, but not if he reports Low. 

 

The argument for the first case is not affected by the introduction of risk- or loss-

aversion, and thus the incentive compatibility constraint still holds in that case. 
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Now consider the second case, in which the public good is produced regardless of i’s 

report. Figures S3 and S4 plot the change in expected utility between truth-telling and 

lying for a High and a Low type, respectively. The plots are generated assuming three 

other subjects reported High in the group (the minimum necessary for the good to be 

produced). The other omitted cases generate very similar conclusions.  The two figures 

show that for the range of risk- and loss-aversion parameters considered, the incentive to 

report truthfully is positive for both types.   

 

Now consider the third case. There are two sub-cases to consider. First is the sub-case of 

a Low type who could report High. Figure S5 plots the change in expected utility between 

lying and telling the truth in this case. We can see from this plot that the incentive to 

misreport is negative, so decisive Low types will want to report truthfully in the range of 

parameters described. Second is the sub-case of a High type who could report Low. As 

was the case in the risk/loss-neutrality case, the conditions for this incentive constraint 

are identical to the ones for the voluntary participation constraint described in Figure S1. 

 

To summarize, these arguments show that the introduction of risk- and loss-aversion to 

the analysis of properties of the NIM used in the experiment does not reverse individuals’ 

incentives to report truthfully in the NIM, but that the voluntary participation constraint 

can be violated when individuals have significant amounts of loss-aversion.   
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B. Alternative NIM mechanisms.  

 

There are at least two ways to alleviate the problems introduced by risk- and loss-

aversion described above. 

 

The first solution is to improve the classification accuracy.  As the classification rate 

improves, the variance of the baseline taxes can be reduced, thus reducing the effects of 

risk/loss-aversion. In fact, it is straightforward to see that it in the extreme case of full 

predictability (p=1), the government can impose the socially efficient allocation while 

assigning the costs of the public good to the different types in a way that does not involve 

any uncertainty. 

 

The second solution is to modify the NIM by changing the baseline taxes. This is the 

recommended approach if a mechanism designer had reason to believe the target 

population of participants was averse to risk or loss and had some prior beliefs over the 

risk and loss parameters. Figure S6 describes an alternative set of potential baseline taxes 

for different prediction rates. Note that the magnitudes of the taxes decrease drastically as 

the prediction rate improves and that the baseline tax for a reported High type is always 

$10. These taxes were chosen so that High types would be indifferent with respect to VP 

and IC in the worse-case scenario where the sum of the expected baseline taxes by the 
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other subjects is minimized (see Section VI for a detailed description of how this worst 

case is defined). 

 

Note that since the only variables that have changed are the baseline taxes, budget-

balance and social efficiency are still satisfied by the new NIM. 

 

What about voluntary participation? The VP constraint of the High type is trivially 

satisfied since it defines the taxes used. Figure S7 shows the expected VP constraint for 

the Low types, assuming a classifier accuracy of 60%, and for the worst-case scenario in 

which the sum of the baseline taxes by the other subjects is minimized. A comparison 

with Figure S2 shows that the region of parameters in which the VP holds has 

significantly expanded, and in particular that the VP constraint is now satisfied for 

moderate risk/loss-aversion.   

 

What about DSIC? As before, to prove that the DSIC property holds we need to consider 

several cases. Since the arguments are extremely similar, here we only describe the key 

steps. Figures S8 and S9 plot the expected utility change between truth-telling and lying, 

for High and Low types, respectively. These plots are generated assuming three other 

reported High types in the group (the minimum necessary for the good to be produced), 

which means that the subject is not decisive. For a decisive Low type there is no benefit 

to lying since he would always earn a negative payoff. 
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One natural question is how the VP constraint for the Low types changes in this class of 

NIMs as the prediction rate increases. Figures S10 and S11 plot the expected utility of 

Low types for classifier accuracies of 70% and 80%, respectively.  We can see that as the 

classifier accuracy improves, the region of positive utilities greatly expands and VP will 

therefore be satisfied for any reasonable amount of risk/loss-aversion. 

 

In conclusion, the analyses and arguments in this section show that it is possible to 

modify the NIM in ways that can accommodate moderate risk- and loss-aversion for the 

levels of classifier accuracy obtained in the experiment, and that the possible sensitivities 

of DSIC and VP satisfaction to risk- and loss-aversion are further reduced as the classifier 

accuracies improve. 
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Figure S1. Contour plot of the expected utility for a truth-telling High type, as a function 

of the risk- and loss-aversion parameters, for a group size of N=5, classifier accuracy of 

60%, and under the “worst-case scenario” in which the sum of the expected baseline 

taxes paid by the other players is minimized. For VP to be satisfied, this needs to be 

positive. 
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Figure S2. Contour plot of the expected utility for a truth-telling Low type, as a function 

of the risk- and loss-aversion parameters, for a group size of N=5, classifier accuracy of 

60%, and under the “worst-case scenario” in which the sum of the expected baseline 

taxes paid by the other players is minimized. For VP to be satisfied, this needs to be 

positive. 
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Figure S3.  Contour plot of the expected utility improvement for truth-telling compared 

to lying for High types, as a function of the risk- and loss-aversion parameters, assuming 

a group size of N=5, classifier accuracy of 60%, and that three other truthful High types 

are in the group. For incentive compatibility to be satisfied, this needs to be positive. 
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Figure S4. Contour plot of the expected utility improvement for truth-telling compared to 

lying for Low types, as a function of the risk- and loss-aversion parameters, assuming a 

group size of N=5, classifier accuracy of 60%, and that three other truthful High types are 

in the group. For incentive compatibility to be satisfied, this needs to be positive. 
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Figure S5. Contour plot of the expected utility change for a decisive Low type associated 

with misreporting being a High type, shown for group size N=5, and classifier accuracy 

of 60%.  For incentive compatibility to be satisfied, this needs to be negative. 
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Figure S6. Baseline taxes as a function of the classifier accuracy. Note that the tax for a 

reported High type is the same regardless of the classifier prediction.  Positive numbers 

indicate taxes, negative numbers indicate transfers to the subjects. 
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Figure S7. Contour plot of the expected utility for a truth-telling Low type in the 

alternative NIM, as a function of the risk- and loss-aversion parameters, for a group size 

of N=5, classifier accuracy of 60%, and under the “worst-case scenario” in which the sum 

of the expected baseline taxes paid by the other players is minimized. For VP to be 

satisfied, this needs to be positive. 
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Figure S8. Contour plot of the expected utility improvement for truth-telling compared to 

lying for High types in the alternative NIM, as a function of the risk- and loss-aversion 

parameters, assuming a group size of N=5, classifier accuracy of 60%, and that three 

other truthful High types are in the group. For incentive compatibility to be satisfied, this 

needs to be positive 
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Figure S9. Contour plot of the expected utility improvement for truth-telling compared to 

lying for Low types, as a function of the risk- and loss-aversion parameters, assuming a 

group size of N=5, classifier accuracy of 60%, and that three other truthful High types are 

in the group. For incentive compatibility to be satisfied, this needs to be positive. 
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Figure S10. Contour plot of the expected utility for a truth-telling Low type in the 

alternative NIM, as a function of the risk- and loss-aversion parameters, for a group size 

of N=5, classifier accuracy of 70%, and under the “worst-case scenario” in which the sum 

of the expected baseline taxes paid by the other players is minimized. For VP to be 

satisfied, this needs to be positive 
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Figure S11. Contour plot of the expected utility for a truth-telling Low type in the 

alternative NIM, as a function of the risk- and loss-aversion parameters, for a group size 

of N=5, classifier accuracy of 80%, and under the “worst-case scenario” in which the sum 

of the expected baseline taxes paid by the other players is minimized. For VP to be 

satisfied, this needs to be positive 
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Figure S12.  Frequency of truth-telling as a function of time (trials). Trials in which 

subjects did not respond in time were dropped from this analysis. 
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Instructions 

 

This experiment is a study of group investment behavior.  

 

There is NO deception in the experiment: if we tell you that we are going to do 

something, we will do it exactly as described. 

 

By showing up to the instruction session you have already earned $20 today. By showing 

up to the experiment you will earn an additional $20, and then there will be more 

opportunities to earn money based on your performance in the experiment. You will 

receive some of that money at the end of the experiment, and the rest you will receive 

when we are done scanning the other subjects.  (Instructions about how to collect the 

extra earnings will be given at the end of the experiment). 

 

In each round of the experiment you will be pooled into a group consisting of either 5, 

10, 15, 20, or 25 players (including yourself).  The compositions of the group are random 

and change from trial to trial. The other players in your group will be actual people who 

have gone through this exact experiment as well. Each player in the group has a different 

value for the investment and these values change from round to round according to the 

rules described below. You can either have a HIGH value ($8-10) or a LOW value ($0-2) 

for the investment.  For each group size there is also a different total cost to the group of 

the investment.  Whether the investment is made will partially depend on this cost, as 

described below. 
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This experiment has one unusual feature. Each round, we will be applying a statistical 

algorithm to measures of your brain activity to guess whether your value for that round is 

HIGH ($8-$10) or LOW ($0-$2). The values of the other players in the groups will be 

predicted in the same way.  Each round, we will also be asking you to report your value 

to us. 

 

To predict your value in a given round, our statistical algorithm will look at the data from 

the other rounds and learn how your brain responds when you see a HIGH value 

compared to a LOW value.  Then for the target round we are trying to predict, the 

algorithm will look at your brain activity at the time you see your value and try to guess 

whether that value is HIGH or LOW, by matching the pattern of activity in the target 

round to the other rounds. If the target-round activity is closer to activity in other HIGH-

value rounds, the algorithm will guess that your target-round activity is HIGH. If the 

target-round activity is closer to activity in other LOW-value rounds, the algorithm will 

guess that your target-round activity is LOW. 

 

You are free to try to control your brain activity in any way to affect how well the 

statistical algorithm can guess your value, and you are also free to misreport your value to 

us. However, you are required to: 

- Keep your eyes open at all times (except for casual blinking) 

- Look at the information on the screen 

 

VERY IMPORTANT: Failure to follow these instructions will compromise the 

integrity of the experiment and will be considered a violation of your subject 

responsibilities. 
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The experiment will consist of 50 rounds, 10 each with group sizes of 5, 10, 15, 20, and 

25.  The order of the rounds is completely random and each round is independent of all 

the others.  Your payoff for each round is determined by several things: your value for 

the investment, your reported value, your predicted value, and whether or not the 

investment is made: 

- We will take the reported values from each player in the group. If the sum of 

those values is greater than the total cost of the investment, then the investment 

will be made (we assume HIGH value = 9 and LOW value = 1).  If the sum of 

those values is less than the total cost of the investment, then the investment will 

not be made. 

- If the investment is made, you will earn an amount of money equal to your 

investment value.  In addition, you will also pay or receive one of the four 

following amounts: 

• If your reported value is HIGH and your predicted value is HIGH then you 

will pay $1. 

• If your reported value is HIGH and your predicted value is LOW then you 

will pay $16. 

• If your reported value is LOW and your predicted value is HIGH then you 

will pay $30. 

• If your reported value is LOW and your predicted value is LOW then you 

will receive $20. 

- We will take these payments (which may be negative, indicating a payment to 

you) from you and every other player in the group and then use them to pay the 

cost of the investment. If there is money left over after paying the cost, that 

amount will be redistributed evenly between the players in the group. If on the 

other hand there is not enough money to pay the cost, the extra amount needed 

will be collected evenly from the players in the group. 

If the investment is not made then you receive no payoff for that round. 

 

The total costs for the 5 different group sizes are as follows (they are always the same): 
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Group size = 5, Total cost = $25 

Group size = 10, Total cost = $50 

Group size = 15, Total cost = $75 

Group size = 20, Total cost = $100 

Group size = 25, Total cost = $125 

 

You do not need to memorize these values since they will be displayed each round before 

you make a decision. 

 

After we have data from all the players, we will take the 50 rounds that you have played, 

randomly select matching rounds from the other subjects to fill in the groups, and then 

calculate your average payoff. You will earn the average payoff from all 50 rounds, 

multiplied by a factor of 5. 

 

 

Procedure:   

In each round you will first see a screen with your value for the investment. This value is 

different each round, and is randomly drawn from the intervals $0-2 and $8-10. Which 

interval the value is chosen from is also random.  This means that in any given round, 

your value is equally likely to be anywhere between $0-2 and $8-10.  The value screen 

will be displayed for 4 seconds and look as follows: 
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You will next see a screen with the group size and the total cost for that round. This 

information screen will be displayed for 10 seconds and look as follows: 

 

 

 

Next, you will see a screen asking you to report your value, either HIGH or LOW.  The 

position of HIGH and LOW on this screen is random (some rounds HIGH is on the left, 

some rounds HIGH is on the right). Press the “left” button if you would like to report the 
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LEFT value, or press the “right” button if you would like to report the RIGHT value.  

You only have 3 seconds on this screen to enter your decision, so move quickly.  If you 

do not enter your choice in time then you will LOSE $2 in that round, regardless of 

whether or not the investment is made.  This screen will look as follows: 

 

 

 

After you’ve made your choice on this screen the next round will begin, except under a 

special circumstance.  In 8% of the trials (chosen randomly) we will be asking you at this 

point to tell us whether the last digit of your investment value is Even or Odd.  Each time 

you get this question correct, you will earn an additional $5 at the end of the experiment.  

For example, suppose that in a given round your value is $9.36.  In this case the correct 

answer would be ‘Even’ because the last digit of your value is 6, and 6 is an even 

number.  If you chose ‘Even’ then you would receive a $5 bonus; if you chose ‘Odd’ then 

you would not receive the bonus.  You only have 4 seconds on this screen to enter your 

decision, so move quickly or you will not receive the bonus. The screen will look as 

follows: 
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After you’ve entered your choice on this screen the next round will begin. 

 

 

Strategy: 

In a previous version of this experiment our statistical algorithm was able to correctly 

predict players’ values 60% of the time, on average.  That is to say, if a player’s true 

investment value was HIGH, our algorithm predicted a HIGH value with a probability of 

0.6 and a LOW value with a probability of 0.4.  Similarly, if a player’s true investment 

value was LOW, our algorithm predicted a LOW value with a probability of 0.6 and a 

HIGH value with a probability of 0.4. 

 

Given these probabilities, the payoffs are set up such that the best way to make money is 

to report your true investment value, regardless of what the other players are doing.  If 

you misreport your value in a round, your expected payoff for that round will be worse 

than if you had reported your true value.  For a mathematical explanation please see the 

appendix. 
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Again, you are free to misreport your value or try to manipulate your brain activity, but 

you are required to: 

- Keep your eyes open at all times (except for casual blinking) 

- Look at the information on the screen 

 

You should however note the following: 

 (1) Making your brain activity more “noisy” could reduce the algorithm’s prediction 

accuracy downwards towards 50%. For any accuracy above 55%, reducing the accuracy 

will lower your expected payoffs, and below 55% your expected payoffs are constant.  

For details see the appendix. 

 

(2) If, on the other hand, you can make your brain activity more consistent and drive the 

prediction accuracy up, this will actually increase your expected payoffs if you stick to a 

strategy of reporting your true investment value.  As the algorithm’s prediction rate goes 

up, so does your expected payoff (if you report your true value).  Again, feel free to work 

through the numerical calculations in the appendix to convince yourself that truth-telling 

is always your best strategy, and that if you stick to that strategy your expected payoff 

will go up as our ability to predict your value goes up. 

 

 

APPENDIX: 

All the following calculations leave out the extra payments for participation and the cost 

of the investment, but these do not change the results of any of these calculations. 
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Best strategy is to tell the truth: 

- If your reported value is HIGH and your predicted value is HIGH then you will 

receive your investment value minus $1. 

- If your reported value is HIGH and your predicted value is LOW then you will 

receive your investment value minus $16. 

- If your reported value is LOW and your predicted value is HIGH then you will 

receive your investment value minus $30. 

- If your reported value is LOW and your predicted value is LOW then you will 

receive your investment value plus $20. 

 

Assuming the algorithm can indeed predict your value at a 60% rate, if you have a HIGH 

value then the probability of a HIGH signal is 0.6 and the probability of a LOW signal is 

0.4.  Therefore, if you report a HIGH value, then your expected payoff is: 

Value + 0.6*(-$1) + 0.4*(-$16) = Value - $7. 

If you misreport a LOW value, then your expected payoff is: 

Value + 0.6*(-$30) + 0.4*($20) = Value - $10. 

This means that when you are a HIGH type, you will earn an average of $3 per round 

more by reporting HIGH.   

 

Similarly, if you have a LOW value then the probability of a LOW signal is 0.6 and the 

probability of a HIGH signal is 0.4. 

Therefore, if you report a LOW value, then your expected payoff is: 

Value + 0.6*($20) + 0.4*(-$30) = Value. 

If you have a LOW value and you misreport a HIGH value, then your expected payoff is: 

Value + 0.6*(-$16) + 0.4*(-$1) = Value - $10. 
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This means that when you are a LOW type, you will earn an average of $10 per round 

more by reporting LOW. 

 

Driving down prediction accuracy: 

Consider the case where it is impossible for the algorithm to guess your investment value 

and so it predicts your correct value only 50% of the time: 

If you have a HIGH value and you report a HIGH value, then your expected payoff is: 

Value + 0.5*(-$16) + 0.5*(-$1) = Value - $8.50. 

If you have a HIGH value and you misreport a LOW value, then your expected payoff is: 

Value + 0.5*(-$30) + 0.5*($20) = Value - $5. 

If you have a LOW value and you report a LOW value, then your expected payoff is: 

Value + 0.5*(-$30) + 0.5*($20) = Value - $5. 

If you have a LOW value and you misreport a HIGH value, then your expected payoff is: 

Value + 0.5*(-$16) + 0.5*(-$1) = Value - $8.50. 

 

This means that if you reported LOW in all HIGH rounds and LOW in all LOW rounds, 

which is the best you can do in this case, you would earn an average of (Value - $5) every 

round.  But in the case where we were predicting at a 60% rate, if you reported HIGH in 

all HIGH rounds and LOW in all LOW rounds, then you would earn an average of 

(Value - $3.50).  Feel free to work through the numbers for any other probability less 

than 0.6 to convince yourself that you will earn less money in that case. 

 

Note that with this probability it is actually a better strategy to misreport your value when 

you are a HIGH type.  However, this is only true up to a probability of 0.55.  For any 
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higher prediction rate you will always earn more money by revealing your true 

investment value.  And remember, at lower prediction rates you will be earning lower 

payoffs on average. 

 

Driving up prediction accuracy: 

If you have a HIGH value and you report a HIGH value, then your expected payoff is: 

Value + 0.7*(-$1) + 0.3*(-$16) = Value - $5.50. 

If you have a HIGH value and you misreport a LOW value, then your expected payoff is: 

Value + 0.7*(-$30) + 0.3*($20) = Value - $15. 

If you have a LOW value and you report a LOW value, then your expected payoff is: 

Value + 0.7*($20) + 0.3*(-$30) = Value + $5. 

If you have a LOW value and you misreport a HIGH value, then your expected payoff is: 

Value + 0.7*(-$16) + 0.3*(-$1) = Value - $11.50. 

 

As you can see, the best way to make money here is to report HIGH in HIGH rounds and 

LOW in LOW rounds.  In this case you would earn an average of (Value - $0.25), 

compared to the best you could do in the 60% case which averaged to (Value - $3.50).   
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QUIZ: 

Next you will answer a short quiz to ensure that you understand the instructions above.  

 If a statement is ‘False’, please rewrite the statement in a way that makes it ‘True’. 

 

Question 1: True or False: Your value for the investment is the same every round. 

 

Question 2: True or False: To determine your investment value (and the investment 

values of other players) we randomly choose between the $0-2 and the $8-10 intervals, 

and then randomly choose an amount in that interval. 

 

Question 3: How many rounds are there and how many of them will actually be used to 

determine your payment at the end of the experiment? 

 

Question 4:  True or False: Given that we can predict your value with a probability of 0.6, 

you will always make more money on average if you report your true investment value. 

 

Question 5: True or False: If you were able to manipulate your brain activity to make it 

harder for the algorithm to predict your value, you would be able to earn more money. 

 

Question 6: True or False: If you were able to manipulate your brain activity to make it 

easier for the algorithm to predict your value, you would be able to earn more money. 
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Questionnaire 

 

We would like to know how well you think we can predict your investment value 

in this experiment.  The 60% rate we told you before the experiment was averaged across 

many different players, and the rate can vary from person to person.  So, based on this 

information, please guess how well you think we’ll be able to predict your values.  To 

motivate you to think carefully, we will pay a bonus which is higher if you are closer to  

the actual percentage. Please give your answer in a 2-digit even integer, e.g. 56%, 60%, 

72%, etc. (Note that since there are only 50 trials, and the algorithm predicts correctly or 

not on each trial, the percentage of correct guesses will be a multiple of 1/50 or 2%). If 

you guess the percentage exactly, we will pay you $10.  For each 2% step deviation from 

the true percentage (in either direction), $1 will be subtracted.  For example, if you 

guessed that we could predict your value 64% of the time and in fact we could predict it 

70% of the time, you would receive $7. You would receive $7 because you started with  

$10 but were off by 6%., which is three increments of 2% deviation. For each increment 

$1 is subtracted, so $3 is subtracted in total, which a net payment of $7.  You will receive 

this money along with the rest of your payoffs when you come back in a couple weeks.  

Now, please give us your guess: 

 

The algorithm will be able to guess my value   _______ % of the time. 
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CHAPTER 2 

Neurometrically Informed Mechanism Design 

 

I. Introduction 

In the classical mechanism design problem, a social planner wants to implement an 

allocation that maximizes some notion of social welfare given the preferences of the 

group. The planner’s problem is difficult, however, because he does not have direct 

knowledge about the individuals’ preferences. Given this, the best he can do is to 

implement a mechanism that is characterized by a message space for each subject and a 

function mapping messages to outcomes. The mechanism solves the planner’s problem if 

the outcomes induced in equilibrium, as a function of the underlying preferences, are the 

ones that the planner wants to implement.  

 

A central preoccupation in the mechanism design literature has been to design 

mechanisms that satisfy three fundamental properties: efficiency, dominant strategy 

incentive compatibility, and voluntary participation. Efficiency requires that the outcome 

induced by the mechanism maximize the group’s net expected utility (based on the 

underlying preferences) while also balancing the budget. This property is a basic 

requirement for a desirable mechanism. Voluntary participation requires that the expected 

utility from participating in the mechanism be positive for every subject regardless of her 

preferences and the actions of the other individuals. This property is desirable because it 

implies that all subjects benefit by participating. Finally, dominant strategy incentive 
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compatibility requires that every subject choose the message that generates the planner’s 

desired outcome, regardless of the messages and preferences of the other subjects. This 

property is highly desirable because it implies that subjects have a strong incentive to 

comply with the mechanism, even if there is a lack of common knowledge of rationality 

or common knowledge of beliefs. 

 

Early on, a series of classic impossibility results showed that in most circumstances it is 

impossible to design a mechanism that satisfies efficiency, voluntary participation, and 

dominant strategy incentive compatibility (Hurwicz, 1972; Gibbard, 1973; Satterthwaite, 

1975).  The literature reacted to these impossibility results by investigating what could be 

achieved if one or more of the properties were relaxed. For example, several articles have 

investigated what can be achieved if the requirement of voluntary participation is 

foregone and the dominant strategy requirement is relaxed to a Bayesian (d’Aspermont 

and Gerard-Varet, 1979) or a Nash Equilibrium (Groves and Ledyard, 1977; Maskin, 

1999).  Others have investigated relaxing the requirement of efficiency (Vickrey, 1961; 

Clarke, 1972; Groves, 1973). Although many of these results have generated profound 

insights into the nature of institutions and incentives, the solutions that they have 

generated fall short of the ideal criteria that originally motivated the literature.  

 

One promising strand of this literature, on which our work draws, is found in Cremer and 

McLean, 1985 and 1988, and in McAfee and Reny, 1992.  Using Bayesian incentive 

compatibility they show that “introducing arbitrarily small amounts of correlation into the 
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joint distribution of private information among the players is enough to render private 

information valueless” (McAfee and Reny 1992, p. 395) and to allow the mechanism 

designer to fully extract expected rents.  This is equivalent to achieving expected 

efficiency and voluntary participation.  Their examples and applications are focused on 

situations with correlated information and Bayes incentive compatibility under common 

knowledge of beliefs and rationality.  But, as we will show below, with the right 

information structure, their approach allows us to dispense with common knowledge 

assumptions and actually recover dominant strategy implementation. 

 

A fundamental assumption behind the impossibility results, which has been maintained in 

the mechanism design literature, is that the only way the planner can gain information 

about the individual preferences is by eliciting them behaviorally through a cleverly 

constructed mechanism. Although this has been a valid assumption for the last 30 years, 

modern neurometric technologies are now making it possible to obtain direct noisy 

signals of subjects’ preferences. For example, in a recent article (Krajbich et al., 2009) we 

showed that experimentally induced valuations for public goods could be predicted with 

60% accuracy using a combination of functional magnetic resonance imaging (fMRI) and 

machine learning techniques. The field of “mind reading” (also called neural decoding) 

uses biological signals to classify mental states. Neurometric tools for mind reading are 

rapidly advancing and the accuracy of the measurements is steadily increasing (Haxby et 

al., 2001; Cox and Savoy, 2003; Kamitani and Yong, 2005; Polyn et al., 2005; Norman et 

al., 2006; Haynes et al., 2007; O’Toole et al., 2007; Pessoa and Padmala, 2007; Serences 
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and Boynton, 2007; Kay et al., 2008). Thus, there is reason to believe that in the future it 

will be possible to design practical mechanisms that make use of such signals. 

 

The availability of direct signals about subjects’ values raises a fundamental question in 

mechanism design, which is the topic of this chapter: Is it possible to use such noisy 

signals to construct mechanisms that satisfy efficiency, voluntary participation, and 

dominant strategy incentive compatibility?  We refer to such mechanisms as 

neurometrically informed mechanisms (NIMs). In Krajbich et al. (2009) we provided an 

initial proof of concept by showing theoretically and experimentally that it is possible to 

create a NIM for a very simple public goods problem with two player types.  In this 

chapter we address the larger question by developing a general theory of NIMs and 

testing the results experimentally. 

 

Using an approach pioneered by Cremer and McLean (1985, 1988) and developed further 

by McAfee and Reny (1992), we are able to show that with an even mildly informative 

signaling technology any feasible allocation rule can be implemented using a mechanism 

that satisfies voluntary participation and dominant strategy incentive compatibility. This 

result shows that the availability of neurometrically informed signals has a profound 

impact on the mechanism design problem. Importantly, we also show that the “recipe” 

for constructing NIMs that satisfy the desired properties is relatively simple and 

transparent.  
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As in most of the mechanism design literature, the fundamental result is derived under 

the assumption of risk- and loss-neutral subjects. We test the robustness of our results to 

the introduction of risk- and loss-aversion in two public good experiments. The results 

show that the augmented mechanisms are robust to this complication for the degrees of 

loss- and risk-aversion observed in most of our sample. 

 

The chapter is organized as follows.  In Section II we review the basic impossibility 

results from classical mechanism design theory and develop a possibility result for 

neurometrically informed mechanisms. In Section III we present the results of our two 

experiments.  In Section IV we discuss the scope and limitations of our results. 

 

II. Theory  

 

This section begins with a review of some fundamental impossibility results from 

classical mechanism design theory. We then derive the basic theory of neurometrically 

informed mechanisms.   

 

II.1. Review of classical mechanism design theory 
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Consider environments with N individuals indexed by i=1,…,N. Individuals have quasi-

linear preferences denoted 

€ 

ui(x,vi) − ti  , where 

€ 

vi ∈ V i denotes player i’s type,

 is the allocation of resources for the group, and 

€ 

ti ∈ ℜ denotes a payment 

from player i. We assume that the set of types for each individual, Vi, is a finite set. X 

denotes the set of feasible allocations. 

 

The set of environments for the mechanism design problem is given by 

€ 

{X,u1,...,uN ,V
1,...,V N} . An allocation (x, t) is feasible if  and 

€ 

ti
i=1

n

∑ ≥ 0.  An 

allocation is efficient in a quasi-linear environment, given the individuals’ types 

€ 

v = (v1,...,vN ) , if and only if it maximizes 

€ 

ui(x,vi)
i=1

N

∑  and 

€ 

ti = 0
i=1

N

∑ . Note that efficient	
  

allocations satisfy the Pareto property, so there is no other feasible allocation that can 

make everyone better off. 	
  

  

A mechanism is given by a message space 

€ 

M = M1 × ...×MN  and an outcome function g. 

Each individual i reports a message  . The vector of messages then determines an 

outcome according to the function .  

 

The mechanism design problem can now be described as follows. The social planner 

would like to implement an allocation rule  for every vector of 

 

x ! X " #
L

x !X
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preferences v. However, he cannot do so directly because he does not know the individual 

types vi. Instead he asks the subjects to play a mechanism (M, g). Let m*(v) denote the 

messages selected by the individuals in equilibrium. If the mechanism has the property 

that, for all v,  g(m*(v)) = a(v) and 

€ 

m*(v) = [m1
*(v1),...,mN

* (vN )] where 

€ 

mi
*(vi) is a 

dominant strategy for i,  then we say that the mechanism  (M,g) implements the allocation 

rule a in dominant strategies. Such a mechanism solves the social planner’s problem 

because, regardless of the actual preferences or beliefs held by the individuals, the 

mechanism induces the desired allocation. 

 

A class of mechanisms of particular interest are direct revelation mechanisms in which Mi 

= Vi for all i and for which m*(v)=v is a dominant strategy equilibrium for all v.  Such 

mechanisms are called incentive compatible direct revelation mechanisms. A 

fundamental result in mechanism design is the Revelation Principle (A. Gibbard, 1973, 

and R. Myerson, 1981), which states that if an allocation rule can be implemented in 

dominant strategies using a mechanism (M, g) then it can also be implemented using 

some incentive compatible direct revelation mechanism (V,g’). Because of the Revelation 

Principle we can, without loss of generality, focus only on incentive compatible direct 

revelation mechanisms in the rest of the chapter. 

 



100	
  
	
  

The mechanism design literature has focused on direct revelation mechanisms satisfying 

three basic properties: efficiency, incentive compatibility1 and voluntary participation. A 

direct mechanism (V,g) is efficient if and only if the allocation (x(v),t(v)) is efficient for 

all v. The mechanism is incentive compatible if and only if  

 

 

 

for all i, v, and v’i. This condition ensures that each individual’s utility is highest by 

reporting 

€ 

mi = vi regardless of the types and reports of the other players. Finally, the 

mechanism satisfies voluntary participation if and only if 

 

 

 

for all i and v. This condition ensures that each individual receives a non-negative payoff 

from truthful reporting, regardless of the types and reports by the other players. 

 

We are now in position to state the  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  From	
  this	
  point	
  on	
  we	
  will	
  use	
  the	
  phrases	
  “dominant	
  strategy	
  incentive	
  compatibility”	
  and	
  
“incentive	
  compatibility”	
  interchangeably.	
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Fundamental Impossibility Theorem of Mechanism Design: If V is rich enough, then 

there is no mechanism that is Efficient and Incentive Compatible and satisfies Voluntary 

Participation.  

 

A number of variations of this theorem have been provided. Hurwicz (1972) provides one 

of the first results for exchange environments.  Gibbard (1973) and Satterthwaite (1975) 

show that the result holds when V includes all preferences over at least three alternatives.  

Green and Laffont (1979) consider quasi-linear preferences but include all possible 

preferences for the non-linear part.  Walker (1980) shows that that the result still holds 

for quasi-linear preferences for which the non-linear part is concave. Hurwicz and 

Walker (1990) provide the most general version of the result for quasi-linear 

environments. 

 

With this impossibility theorem, the original search for mechanisms that satisfy dominant 

strategy incentive compatibility, efficiency, and voluntary participation seems doomed to 

failure. In the next section we show that the goal can be rescued using neurometrically 

informed mechanisms. 
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II.2. Neurometrically Informed Mechanisms  

 

In this section we consider what happens to the mechanism design problem when the 

social planner has access to a technology that provides noisy but informative signals 

about each individual’s type.  See the Introduction and Discussion sections for a 

discussion of why such signals are technologically feasible, and not mere theoretical 

curiosities. 

 

The planner is able to observe a signal  for each individual after they have 

announced their type.  S is assumed to be a finite set.2 The signals are distributed 

according to a density function conditional on the true types.  A signal technology for an 

environment is thus given by a mapping 

€ 

T :V →Δ(S) , where Δ(S) is the set of 

probability densities on S.  For the signaling technology to be useful, the signals have to 

be sufficiently informative.  We assume that T is 1-1 from V to T(V).  Note that the signal 

likelihood function does not depend on the subject’s messages.  Also, note that the 

subject neither knows what signal will be observed by the planner, nor can the subject 

manipulate the signal in any way.  All he knows is his density function T(vi). 

 

The availability of the signals allows us to augment the mechanism by introducing an 

additional tax function that depends on both the signals and the subjects’ reports. In 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  This	
  is	
  done	
  for	
  ease	
  of	
  exposition.	
  	
  The	
  results	
  in	
  this	
  paper	
  also	
  hold	
  for	
  larger	
  signal	
  spaces.	
  



103	
  
	
  

particular, for any direct mechanism (V,g) we can define an augmented mechanism 

(V,g,w), in which the new outcome function is given by  

 

 

where w(s,m) denotes the augmented tax.  Efficiency requires that 

€ 

wi(s,m) = 0
i
∑ .  

 

We can now define the key properties of interest for neurometrically informed 

mechanisms.  

 

The mechanism (V,g,w) is dominant strategy incentive compatible if and only if for all i, 

v, and m, we have that 

 

 

where E denotes the expectation operator.  

 

The mechanism (V,g,w) satisfies voluntary participation if and only if, for all i, vi, and mi, 

   . 
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Note that for neurometrically informed mechanisms, incentive compatibility relies on the 

timing of the signal technology.  At the time i is choosing her message, she does not 

know what signal s will be observed by the planner and thus must base her choice on the 

likelihood function of the signaling technology.  Incentive compatibility states that all 

individuals are willing to report their true types regardless of the reports by the other 

subjects, given the expected payoffs induced by the augmentations. Under our incentive 

compatibility condition, truth-telling is the best response even if others misreport.  We do 

not require common knowledge of either rationality or beliefs.  We get dominant strategy 

behavior instead of ex-post incentive compatibility because the signals are independently 

distributed. 

 

Voluntary participation also relies on the timing of the signal technology.  At the time i is 

choosing her participation decision, she does not know what signals s will be observed by 

the planner and thus must base her choice on the likelihood function of the signaling 

technology. Voluntary participation states that all truth-telling individuals are willing to 

participate regardless of the reports by the other subjects, given the expected payoffs 

induced by the augmentations.  We are normalizing u so that the value of the individual’s 

outside option is 0. 

 

We now turn to describing how to find augmentations w to a mechanism (V,g) such that 

the neurometrically informed augmented mechanism (V,g,w) will be incentive compatible 

and satisfy voluntary participation.  With the availability of a signaling technology, 
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having an agent reveal their type, v, is equivalent to having them reveal the probability 

distribution T(v).  There is a well-known way to induce revelation of a probability density 

using proper scoring rules (G.W. Brier, 1950).  For a useful review see T. Gneiting and 

A.E. Raftery, 2007.   

 

A scoring rule is a real valued function 

€ 

h :Δ(S) × S→ℜ  that assigns a score, a real 

number, to an announced probability distribution, 

€ 

p∈ Δ(S)  and a realization s.  Let 

€ 

H(q, p) = h(q,s)ps
s∈S
∑  be the expected value of the score if q is announced when the true 

density is p.  If H(p,p) > H(q,p) for all q ≠ p then we call h a proper scoring rule.  There 

are many proper scoring rules.  One well-known one is the logarithmic scoring rule 

 

 

To use a scoring rule to induce agents to reveal their true types, we must make the 

incentives to reveal at least as great as the gains from non-revelation. In the original 

mechanism (V,g), there is a maximum benefit to misreporting.  This can be as large as 

 

 

A particularly useful class of neurometrically informed mechanisms are those constructed 

using person-by-person augmentation. In the first step we compute each individual’s 

provisional tax r(si,mi), which only depends on her own message and signal. Second, to 
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ensure efficiency, the surplus raised  is redistributed back equally to all the 

individuals.  This generates an augmented tax function 

 

 

Under person-by-person augmentation, incentive compatibility is equivalent to 

 

where  

We can begin the augmentation process with any proper scoring rule h(p,s) and consider 

h(T(m),s).  Then H(T(m),T(v)) < H(T(v),T(v)) for all m,v.  Now increase the gain on the 

proper scoring rule and let 

. 

 

The maximum exists because V is finite. 

 

If we let r(mi,s) = -λ*h(T(mi),s), then it is easy to see that the mechanism (V,g,w) will be 

incentive compatible. 
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While any proper scoring rule can lead to an incentive compatible augmented 

mechanism, it is not necessarily true that the mechanism will then also satisfy voluntary 

participation.  If (V,g) satisfies voluntary participation then for our person-by-person 

augmented mechanism to also satisfy voluntary participation, we need 

 

A sufficient condition for this is H(v,v) = C, for all v, because from  incentive 

compatibility .  To ensure 

that we can find a proper scoring rule h(p,s) such that H(p,p) =C, we need the signal 

technology to satisfy a well-known condition from Cramer and McLean (1985).   

 

 CM Condition: The signal technology satisfies  where 

coA is the convex hull of A. 

 

As described in McAfee and Reny (1992), under the CM condition, a separating 

hyperplane argument gives us the result that 
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Thus h(T(v),s) = zs(v) is a proper scoring rule with the additional property that 

H(T(v),T(v)) = 0  for all v.3 

 

We summarize the possibility results for neurometrically informed mechanisms in 

 

A Possibility Theorem for Neurometrically Informed Mechanisms. Given a 1-1 

signal technology T:V→Δ(S) and quasi-linear environments with finite type spaces: 

a) Given any direct revelation mechanism (V,g), there is a person-by-person 

augmented mechanism (V,g,w) that is incentive compatible and yields the same 

expected outcome, 

b) Given any direct revelation mechanism (V,g) satisfying voluntary participation, if 

the signal technology T:V→S satisfies the CM condition, there is a person-by-

person augmented mechanism (V,g,w) that is incentive compatible, satisfies 

voluntary participation, and yields the same expected outcome. 

 

These results show that with access to a sufficiently informative signal technology any 

efficient allocation rule can be implemented in dominant strategies using a tax function 

that satisfies voluntary participation. This stands in sharp contrast with one of the most 

fundamental theorems of mechanism design that shows that, in the absence of such 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  It	
  is	
  also	
  true	
  that	
  there	
  is	
  a	
  proper	
  scoring	
  rule,	
  z(v),	
  on	
  T(V)	
  such	
  that	
  T(v)z(v)	
  =	
  C	
  for	
  all	
  v	
  iff	
  the	
  
CM	
  condition	
  is	
  true	
  on	
  T(V).	
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signals, there is no standard mechanism that is efficient, incentive compatible, and 

satisfies voluntary participation.   

 

II.3 Some Additional Observations 

 

Our results are even stronger than we have stated so far.  The possibility theorem for 

neurometrically informed mechanisms also holds if preferences are interdependent, a 

situation in which standard dominant strategy mechanisms may not even exist. If utility 

functions depend on everyone’s types, i.e., , with neurometrically 

informed signals satisfying the Cremer-McLean condition, one can construct mechanisms 

that implement efficient allocations, satisfy voluntary participation, and are incentive 

compatible in dominant strategies.   One does this in the choice of  by also maximizing 

over all   

 

In addition to providing an existence proof, our results are constructive in the sense of 

providing a simple “recipe” for how to construct the necessary mechanisms. As the proof 

of the lemma emphasizes, all that is required to get incentive compatibility is the addition 

of an augmented tax function that sets taxes proportional to any pre-existing scoring rule 

from the literature.  In fact, it is possible to show that any person-by-person augmentation 

tax function that provides dominant strategy implementation will be a proper scoring 

rule.  
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It is a little harder to get voluntary participation but there are some special cases where 

even that is simple.  One example arises when the supports of , 

are different for all v.  When  we can use 

the simplest possible scoring rule, which assigns a score of 0 to any signal in the support 

of , and a score of -1 to any other signal.  This is a proper scoring rule and

 for all v.  A second case occurs if the signal distribution maintains its 

shape and simply shifts around as v changes.  If  for all 

, then for scoring rules such that h(T(v),s)=h(T(v+µ),s+µ) it will be 

true that H(T(v),T(v)) = H(T(v+µ),T(v+µ)). One such scoring rule is the logarithmic rule, 

h(T(v),s)=ln Ts(v). 

 

Notice several useful properties of the class of neurometrically informed mechanisms. 

First, all of the possibility results can be obtained from person-by-person augmentation, 

which makes the computation and description of the mechanisms relatively easy. Second, 

in the dominant strategy equilibrium where m = v, the expected utility to any individual is 

exactly the utility they get under honest reporting in the un-augmented mechanism.  

Thus, in the dominant strategy equilibrium the augmented taxes do not on average cause 

any wealth redistribution.  Third, the mechanisms are balanced even after the signal.  

That is, they do not take any resources from the system, they only redistribute.  However, 

although they satisfy voluntary participation before the signals are observed, they may 

not after the signals.  We confront this experimentally next in Section III. 
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Finally, we have provided a complete proof and characterization for the case when the set 

of possible types V is finite.  But it is easy to see that, given appropriate continuity in the 

allocation to be implemented and in the utility functions, we could generate an 

approximation result similar to that of McAfee and Reny 1992.  Look at the definition of 

 in the proof of the lemma.  If V were a continuum, then the denominator would be 

arbitrarily close to zero for some values of vi
’ near vi, and the max would not exist.  

Scoring rules, necessary for dominant strategies, which have a max or min at zero, 

(necessary for voluntary participation) will flatten out as vi
’ nears vi but the gain from 

misrepresenting does not.  Thus there is a fundamental impossibility when V is a 

continuum.  But if we relax the dominant strategy condition to epsilon-dominant strategy, 

or voluntary participation to epsilon-voluntary participation, then we can get equivalent 

results for V that are not finite. 

 

III. Experiments: Neurometrically Informed Public Goods. 

 

In this section we present the results of two experiments designed to test the results 

derived above. Testing the results with real subjects is important for two reasons.  

 

First, the theory assumes that subjects are risk-neutral, whereas experimental tests show 

that most subjects exhibit risk- and/or loss-aversion (Kahneman and Tversky, 1979).  
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This is a potential problem for the theory because, since the signal technology is 

stochastic, subjects face a distribution of taxes, even if they report truthfully. As a result, 

voluntary participation and/or incentive compatibility in terms of expected utility might 

be violated for some individuals. 

 

Second, although the neurometrically informed mechanisms that we have proposed are 

relatively simple, there is a concern about whether subjects will understand that it is in 

their best interest to report truthfully. This concern is justified, for example, by previous 

results showing that some subjects do not bid truthfully in second price auctions 

(Coppinger, Smith, and Titus, 1980). 

 

III.1. Experiment 1 

 

The first experiment is designed to test whether the voluntary participation and incentive 

compatibility properties of a variant of the neurometrically informed mechanism 

proposed in Krajbich et al. (2009) are robust to the introduction of typical levels of risk- 

and loss-aversion. 

 

Environment. Groups of five subjects need to decide whether or not to produce a public 

good that has a cost of $25. The preferences of subject i are given by vig-yi, where g = 0,1 
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is the level of the public good, vi={$1,$9} is the value for the public good, and yi is the 

net tax paid by the individual. 

 

We assume that the social planner has access to a signal technology with the following 

properties:  and . 

In other words, the signal equals the true value with 80% probability and signals the other 

value with 20% probability. 

 

Neurometrically informed mechanism. We consider a simple direct revelation 

mechanism in which subjects simultaneously report their values mi = {$1,$9} and then 

the planner receives a signal for each of them si = {$1,$9}. The public good is ruled to 

induce efficiency over the reported values. Therefore, the public good is built whenever 

three or more subjects report a $9 value. Each subject pays a gross tax  

as given by the following table: 

  message 

  $1 $9 

$1 receive $3.67 pay $9  

signal $9 pay $14.67 pay $9 

 

If the amount raised from the gross taxes does not equal the cost of the public good, then 

the difference is evenly collected from (deficit) or returned to (surplus) the five subjects. 

In Krajbich et al. (2009) we showed that the resulting mechanism satisfies efficiency, 
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voluntary participation, and dominant strategy incentive compatibility for risk-neutral 

subjects. 

 

Subjects. N=50 subjects participated in the study. They were recruited from Caltech’s 

student population.  In addition to their experimental earnings, subjects were paid $20 for 

their participation. 

 

Experimental task. In each experimental session, subjects played two rounds of the 

experimental task described below, once with a $1 value for the public good, and once 

with a $9 value (both presented simultaneously). In each round subjects had to make two 

sequential decisions after observing their private value. First, they had to cast a binary 

Yes-No vote for whether they wanted the neurometrically informed mechanism to be 

played. These votes mattered because with probability 0.2 * I#No votes the mechanism was 

not played. Second, they had to report a value mi, which was binding only if the 

mechanism was played. 

 

Note the logic of the experiment. In the voting decision, it is a dominant strategy for the 

subject to vote Yes if and only if her expected utility from the neurometrically informed 

mechanism is positive. As a result, the vote decision allows us to determine for each 

subject whether the mechanism satisfies voluntary participation. Furthermore, since the 
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vote does not affect the rules of the mechanism conditional on it being played, we can 

elicit this measure without affecting the subsequent incentives. 

 

There was no feedback between rounds. The experiment was carried out with pen and 

paper. After the decisions were collected from all the subjects in the experimental 

session, each subject’s decision was randomly paired with four other subjects from the 

group, and they were paid for one randomly chosen group outcome. This ensured that the 

distribution of values were independent across rounds and subjects. 

 

The experimental instructions (included in Appendix I) provide an in-depth description of 

the rules of the mechanism and the payments that they induced under different 

contingencies.  

 

Measuring risk-aversion. Immediately after the main experimental task, subjects were 

asked to play a simple gambling task designed to estimate their risk- and loss-aversion 

parameters. In particular, subjects made 40 different binary choices between lotteries 

(Sokol-Hessner et al., 2009). Their responses were used to estimate the parameters of the 

following prospect theoretic model (Kahneman and Tversky, 1979) using Bayesian 

estimation (Wang, Camerer, Filliba, 2010): 
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where 

€ 

ρ  is a measure of the degree of risk-aversion, and  is a measure of the degree of 

loss-aversion. Note that risk-aversion is decreasing in

€ 

ρ , but loss-aversion is increasing in 

. 

 

Results. The aggregate results suggest that for most subjects the mechanism was 

incentive compatible: 88% of subjects reported truthfully when they had a value of $9, 

and 98% reported truthfully when they had a value of $1.  

 

We next tested if there was a systematic relationship between the coefficients of risk- and 

loss-aversion and subjects’ choices to misrepresent their values. A logit regression of an 

indicator function for truth-telling on the coefficients of risk- and loss-aversion for each 

subject estimated no effect for loss-aversion (p=0.27) or for risk-aversion (p=0.42). 

 

The aggregate results also suggest that most of the subjects believed that the mechanism 

satisfies voluntary participation: 100% of the subjects voted Yes when they had a value 

of  $9 and 78% voted Yes when they had a value of $1.  

 



117	
  
	
  

We next tested if there was a systematic relationship between the coefficients of risk- and 

loss-aversion and subjects’ beliefs that the mechanism did not satisfy voluntary 

participation. A logit regression of an indicator function for No votes on the coefficients 

of risk- and loss-aversion for each subject estimated no effect for the coefficient of loss-

aversion (p=0.5) or for the coefficient of risk-aversion (p=0.55).  

 

Figure 1 provides an additional test of this relationship. The dashed line in the upper 

graph depicts the voluntary participation constraint, as a function of the coefficients of 

risk- and loss-aversion, for individuals with vi= 1. Note that the constraint is satisfied in 

the lower left and it is violated in the upper right. Each point in the graph represents a 

subject’s parameters and her vote. As can be seen in the figure, a vast majority of the 

subjects fall to the left of or very near the indifference curve.  Only 14% of subjects have 

sufficiently high loss-aversion where voluntary participation becomes an issue.  

Furthermore, only two out of those seven subjects actually vote No in the public goods 

game. Also, note that the voluntary participation calculation changes depending on the 

gross taxes paid by the other players.  Therefore, here we have considered the “worst-

case scenario” for the subject, where the expected sum of the other players’ gross taxes is 

minimized, and therefore so is her budget-balancing refund. If voluntary participation is 

satisfied in this scenario, then it will be satisfied in all scenarios. 

 

For the case where vi=9, a truth-telling subject faces no uncertainty in his gross tax and 

earns a positive payoff in the worst-case scenario, and so voluntary participation will 
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always be satisfied.  This is consistent with the experimental data. Together, these results 

allow us to conclude that violations of voluntary participation are associated with large 

degrees of loss-aversion, which are observed in a small fraction of the population. 
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Figure 1. Individual voluntary participation constraint as a function of the individuals 

risk- and loss-aversion parameters for the case of vI = 1. The dashed line depicts the 

voluntary participation constraint, as a function of the coefficients of risk- and loss-

aversion. Note that the constraint is satisfied in the lower left and it is violated in the 

upper right. Each point in the graph represents a subject’s parameters and her vote.  Note 

that the constraint is calculated in the “worst-case scenario” for the subject, where the 

sum of the gross taxes paid by the other players is minimized. So if voluntary 

participation is satisfied in this case, it will be satisfied in every other scenario as well. 
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III.2. Experiment 2 

 

The second experiment is designed to test the performance of the neurometrically 

informed mechanism in more complex domains in which there are a large number of 

types.  

 

Environment. Groups of five subjects need to decide how much of a public good to 

produce. The preferences of subject i are given by 

€ 

vi log(z) − yi  where vi denotes the 

public good type, z is the total amount invested in the public good, and yi is the net tax 

paid by the subject. We assume that every subject can have one of 20 possible types, so 

that 

€ 

V = {1,2,...,20} . 

 

There is a signal technology with the following properties: if the subject’s true type is vi 

then the signal is uniformly distributed on [vi – 10, vi +10]. 

 

It is straightforward to show that efficiency requires producing a level of public goods 

given by 

€ 

z(v) = vi
i=1

n

∑ and raising an equivalent amount of taxes given by

€ 

yi(v) = z(v)
i=1

n

∑ . 
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An efficient allocation of particular interest is the one characterized by a Lindahl 

Equilibrium (Lindahl, 1958).  In this allocation, i’s contribution is given by her marginal 

benefit for the public good times the level of the public good (both calculated at the 

efficient level z(v)), which in this environment equals vi. 

 

Standard Lindahl Mechanism (SLM). A Lindahl mechanism is a direct revelation 

mechanism (V,g) that implements the optimal level of the public good given the reports 

(i.e., 

€ 

z(m) = mi
i=1

n

∑ ) and funds it using the Lindhal taxes (i.e., ). For these 

environments, the SLM is identical to the standard Voluntary Contributions Mechanism. 

(See Ledyard, 1995.)  It is straightforward to show that the Standard Lindahl Mechanism 

is efficient and satisfies voluntary participation, but is not dominant strategy incentive 

compatible.  

 

Augmented Lindahl Mechanism (ALM). We construct the Augmented Lindahl 

Mechanisms by applying the person-by-person augmentation methods described in 

Section III. In particular, we use the simple proper scoring rule 

€ 

hi(si,mi) = −(si −mi)
2 and 

. This implies that gross augmented taxes are given by  

€ 

ri(si,mi) =
N
N −1

(si −mi)
2  and the net augmented tax function is given by 
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. 

 

The net tax paid by the subjects is given by  

. 

 

For the signal technology here,   

Thus H(v,m) < H(v,v) for all m ≠ v and H(v,v) = -(100/3).  Therefore, we know that for 

risk- and loss-aversion neutral subjects it satisfies incentive compatibility and voluntary 

participation. 

 

Subjects. N = 30 Caltech undergraduates participated in the experiment. In addition to 

their earnings during the task, they paid a $15 fee. 

 

Experimental task. In each experimental session 10 subjects participated in 40 rounds of 

decision making, 20 with the SLM, and 20 with the ALM. 20 subjects played the rounds 

with the SLM before the ALM, the other 10 subjects played the opposite order.  
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In each round the private value was randomly and independently drawn for each subject 

from a uniform distribution on V. For each mechanism subjects remained in the same 

group of five, but between mechanisms subjects were randomly rematched. To allow for 

learning, at the end of each round subjects were told their earnings for that round as well 

as the group’s total contribution to the public good (given by 

€ 

mi
i=1

5

∑ ). In the ALM, 

subjects were also told the value of their signal for that round and the components of their 

total tax ti. 

 

The experimental instructions (included in Appendix II) provide an in-depth description 

of the rules of both mechanisms as well as the payments that they induce under different 

contingencies. An important feature of the instructions is that we explicitly explain to the 

subjects that truth-telling maximizes their expected payoffs regardless of the decisions 

made by the other subjects. It is important to emphasize that while this aspect of the 

instructions is not an explicit requirement of the theory (which assumes that subjects 

know this), making sure that subjects fully understand key aspects of the distribution of 

payoffs is an integral part of applied mechanism design. 

 

Results. In Figure 2 we report the deviations between truthful and actual reporting (given 

by vi – mi), as a function of treatment and experimental round. Whereas there was no 

under-reporting in the ALM condition (mean=0.02, se=0.05, p=0.73), there was 

significant under-reporting in the SLM (mean=5.50, se=0.73, two-sided t-test p=0.0007). 
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Furthermore, a mixed effects regression of the size of the deviations on round number for 

the ALM case reveals no learning effect (p=0.59), but a similar regression for the SLM 

shows that under-reporting increases with round (beta=0.10, p=0.0005). These results 

clearly illustrate the power of the neurometrically informed mechanisms: whereas the 

ALM elicits near-perfect truth-telling by the subjects, there is substantial free-riding in 

the SLM and it gets worse over time.  The SLM results are consistent with standard linear 

Voluntary Contribution Mechanism results (See Ledyard 1995.) 

 

In Figure 3 we display the efficiency of the allocations induced by both mechanisms. The 

figure plots efficiency as a function of round for each case, where efficiency is defined as  
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Figure 2. Under-reporting in Experiment 2 by mechanism and trial.   
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Figure 3. Average efficiency in Experiment 2 by mechanism and trial.  
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Average efficiency was 99.95% (se=0.02%) on the ALM and 88% on the SLM (se=3%). 

Thus, the ALM generated significantly larger efficiencies (p=0.0097 two-sided t-test). 

Furthermore, a mixed effects regression of efficiency on round number for the ALM case  

revealed no time trends (p=0.32), whereas a similar regression for the SLM showed that 

efficiency decreased with time (beta= –0.0032 , p<0.0007), which translates to a drop of 

efficiency of 6.4% over 20 trials. These results show that whereas the ALM institution 

generated nearly perfect efficiency in every round, the SLM generates substantial 

inefficiencies that worsen over time. 

 

Because we draw new values each round, it may not be clear from Figure 3 whether the 

efficiencies for the SLM are due to high contributions or high values.  In Figure 4, we 

compare the efficiencies from the actual reports and to those that would occur in the Nash 

Equilibrium for the SLM and ALM.  That is, we plot  

 

. 

 

It is important to realize that since we redraw values each round and since information 

about values is private, there is no game-theoretic reason why subjects should play the 

Nash Equilibrium, which usually has the highest valued type reporting their true value 

and all others reporting m = 1.  Nevertheless, from the data displayed in Figure 2 it is not 

possible to reject the hypothesis that, on average, the outcomes are the Nash Equilibrium 
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outcomes (p<0.9).  Further, unlike standard linear Voluntary Contribution Mechanism 

results, we do not see initial contributions that are higher than the Nash Equilibrium that 

then decline over time (p<0.7).  Here, contributions are near to the Nash Equilibrium 

from beginning to end.  Consistent with the observations from Figure 2, the efficiencies 

of the ALM are at the optimum. The Augmented Lindahl Mechanism provides a 

significant improvement over the Standard Lindahl Mechanism. 
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 Figure 4: Comparing Nash Equilibrium to actual choices in Experiment 2 by mechanism 

and trial. 
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IV. Final Remarks 

 

The theoretical results in this chapter show that the availability of even mildly 

neurometrically informative direct signals about the individuals’ preferences has a 

profound impact on the mechanism design problem: they make it possible to design 

mechanisms that implement any desired allocation and satisfy voluntary participation and 

dominant strategy incentive compatibility. This stands in sharp contrast with the classic 

impossibility results showing that without such signals it is generally impossible to 

design such mechanisms. 

 

As in most of the mechanism design literature, the theoretical results were derived under 

the assumption that individuals are risk- and loss-averse. To address the robustness of the 

results to relaxations of this assumption we investigated the properties of neurometrically 

informed mechanisms in two public goods domains. The results show that voluntary 

participation and incentive compatibility are easily accommodated for the range of loss- 

and risk-aversion parameters observed in most of our subject population. 

 

Several aspects of our results deserve more discussion. First, how informative does the 

signal technology have to be for our general possibility result to hold? The key 

assumption, namely that the signal technology satisfy the CM condition, is quite weak. 

For example, in the two-type case it is satisfied whenever the likelihood function over 
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signals is different for different values of the true preferences, which can be satisfied 

even if the probability of the high signal given that the type is high is barely above 

chance. One caveat, though, is that the neurometrically informed mechanisms generate 

payoff variability that depends on the realization of the signal. Furthermore, the lower the 

quality of the signal, the larger the amount of variability that will be present in the 

payoffs, which could be a problem if subjects exhibit sufficient amounts of loss-aversion. 

Fortunately, however, current trends in neurometric technologies suggest that high-

accuracy signals might be available in the near future (Haxby et al., 2001; Cox and 

Savoy, 2003; Kamitani and Yong, 2005; Polyn et al., 2005; Norman et al, 2006; Haynes 

et al., 2007; O’Toole et al., 2007; Pessoa and Padmala, 2007; Serences and Boynton, 

2007; Kay et al., 2008). 

 

Second, what are likely sources of signals in future applications? The findings in 

Krajbich et al. (2009), as well as those in the references in the previous paragraph, 

suggest that fMRI could be a good source of high-quality signals. However, such 

measurement technologies remain expensive, and thus it will be important to explore 

other less expensive sources of signals, such as electroencephalography (EEG), pupil-

dilation, skin-conductance, and facial electromyography (EMG) (Tassinary and 

Cacioppo, 1992; Lang et al., 1993; Aboyoun and Dabbs, 1998; Bradley, 2000; Dimberg 

et al., 2000; Partala et al, 2000; Bradley et al., 2008). Preliminary work in our laboratory 

suggests that these signals might be able to provide sufficiently informative signals, at 

least in simple contexts. It is also important to emphasize that our results also apply to 

non-neurometric signals. For example, the results also apply to a situation in which the 
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planner has sufficiently informative priors about individual subjects’ preferences based 

on previous behavioral or demographic data. However, the caveat with such signals is 

that individuals cannot know the values of the signals or be able to manipulate them, so 

non-neurometric signals would have to be collected covertly. 

 

Third, what if it is only possible (perhaps due to costs) to obtain signals from a subset of 

the members in the group? This problem can be addressed using “random augmentation”. 

This works as follows. Subjects make their choices for the neurometrically informed 

mechanism without knowing if a signal will be available for them. Afterwards, the 

planner randomly selects a subset of the group and obtains signals only for them. The 

augmented taxes can be redefined so that everybody’s incentives at the initial phase are 

the same as in the case of full signal monitoring. For example, suppose that the planner 

selects each individual for signal extraction with a constant probability q. It is easy to see 

that an augmented tax given by 

 

 

induces the same incentives as in the case of full monitoring (where wi(s,m) are the 

augmented taxes for the q=1 case). This idea is reminiscent of the literature on auditing, 

where a principal induces an agent to truthfully report by probabilistically auditing them 

and charging a high fee if misrepresentation is found.  See for example, Border and Sobel 

(1987) and Baron and Besanko (1984). 
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We conclude on an optimistic note. The rapid and likely rise of neurometric technologies 

has the potential to make it feasible to design much better mechanisms and institutions in 

a large number of applications. Importantly, as demonstrated here and in Krajbich et al. 

(2009), the development of such institutions will require a careful combination of 

methods from neuroscience and computer science and ideas and models from economics. 

In particular, the insights of mechanism design theory developed over the last 30 years 

are likely to be critical to make progress in designing new classes of neurometrically 

informed mechanisms. 
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APPENDIX 

 

 I: Instructions from risk/loss-aversion experiment 

 

This experiment is a study of group decision making.  

 

There is NO deception in the experiment: if we tell you that we are going to do 

something, we will do it exactly as described. 

 

There will be two rounds in this experiment.  In both rounds of the experiment you will 

be in a group of 5 people (four others and yourself) who have to decide whether to make 

a group investment.  Each person in the group receives a different value from the 

investment if it is made.  In one round your value for the investment will be $1 and in the 

other your value will be $9. The values of the other people in your group are also either 

$1 or $9. Their values are independent of each other— that is, each person’s value is 

equally likely to be $1 or $9 regardless of how many other people have $9 or $1 values. 

To fill your group, we will randomly select rounds from the other people in the 

experiment and use the decisions they made in those rounds. 

 

The two decisions you make 

In both rounds you will make two decisions after you find out your value. Your 

decisions, and the decisions of the others in your group, will determine whether the group 

makes the investment, and will determine how much money you might earn.  
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Next we will describe the decisions you make. Then we will explain how the decisions of 

the people in your group lead to the money you can earn.  

 

The first decision is to report whether your value is $1 or $9. You can report your actual 

value accurately, or report the opposite value from the one you have.  

 

Your second decision is whether to vote YES or NO to make the investment.  

 

You will not be told any information about the choices of others in your group between 

decisions or rounds. 

 

How decisions determine your earnings 

Your earnings are determined by two steps: 

 

When the investment is not made 

The first step is whether the group decides to make the investment. If the investment is 

not made, everyone in your group earns nothing in that round.  

 

The investment will not be made if either of two situations occurs.  

 

(1) The investment has a cost to the group of $25. The investment will not be made if the 

total of the values that are reported by all the group members (including you) is less than 

$25. Since the possible values are either $1 or $9 for everyone, this means 
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mathematically that if the number of people reporting $9 values is zero, one, or two, then 

the investment will not be made. If the number of people reporting $9 is three, four or 

five, then the investment might be made, if the second condition (below) is also satisfied.  

 

(2) Even if three or more people report values of $9, whether the investment is made also 

depends on the number of YES and NO votes, and on chance. If everyone in your group 

votes YES the investment will certainly be made. If everyone in your group votes NO, 

the investment will certainly not be made. In general, the percentage chance that the 

investment will be made is 20% times the number of YES votes. For example, if three 

people vote YES (and the other two people vote NO) then the chance that the investment 

will be made is 60%.  

 

The table below reminds you of the percentage chances that the investment takes place 

for all the possible numbers of votes in your group: 

No. of YES votes 0 1 2 3 4 5 

No. of NO votes 5 4 3 2 1 0 

Chance the 

investment is made 

0% 20% 40% 60% 80% 100% 

 

After the percentage chance of investment is determined by the votes, a random number 

will be drawn to determine whether the investment is made.  

 

 

To summarize, the investment is not made if two or fewer people report values of $9, OR 

if there are NO votes and the chance outcome determines that no investment is made.   

Remember that if the investment is not made, everyone in your group earns nothing.  

Below is a timeline explaining this procedure graphically (with time flowing down): 
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Your earnings if the investment is made 

If the investment is made, your earnings will depend on three numbers (and on the 

numbers and decisions of the others in your group): 

1. Your actual value ($1 or $9) 

2. What you reported about your value (in your first decision) 

3. A random guess generated by the computer that is related to your actual value 

 

The random computer guess will be equal to your actual value with an 80% probability, 

and will be equal to the opposite value with a 20% probability. For example, if your value 

is $9, then the computer guess will be $9 with 80% probability and the computer guess 

will be  $1 with 20% probability.  That means that if the computer did this 100 times, the 

most likely outcome would be 80 correct guesses and 20 incorrect ones.   
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Guesses of the values of the other four people in your group will be made independently 

in the same way.   

 

If the investment is made, the first part of your earnings is just your actual value. If your 

actual value is $1 you get $1. If your actual value is $9 you get $9.  

 

The second part of your earnings is an extra amount you pay or receive based on your 

reported value and the computer’s guess of your actual value. The possible amounts are 

shown in the table below. If you report $9 you pay $9 no matter what the computer 

guesses. If you report $1, however, you receive $3.67 if the computer guesses $1, or you 

pay $14.67 if the computer guesses $9.  

 

  Your report 

  $1 $9 

Guess $1 receive $3.67 pay $9 Computer’s 

guess 
Guess $9 pay $14.67 pay $9 

 

The third part of your earnings is an extra amount you either get or pay in order to pay 

the $25 cost of the investment. The amounts paid by everyone in the group from the 

computer guess payments just described (minus the amounts received) will first be 

totaled up. If the total amount paid is greater than $25, then any extra money paid (above 

$25) will be distributed evenly back to everyone in the group. However, if the amount 

paid is less than $25, the extra amount needed to create a total payment of $25 will be 

collected evenly from the people in the group. 
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To summarize: If the investment is made, your earnings are the sum of three components: 

1. Your actual value (either $1 or $9) 

2. The additional amount you pay, or receive, which depends on your reported value 

and on the computer’s guess 

3. The amount redistributed to everyone (if the payments from part (2) are more than 

$25), or collected from everyone (if the payments from part (2) are less than $25).  

 

Your dollar earnings from the experiment will be equal to the earnings from one of the 

two, randomly selected rounds. 

 

The expected dollar earnings from voting YES and reporting your actual value 

 

Your choices in this experiment are whether to vote YES or NO, and whether to report 

your actual value ($1 or $9) or to report the opposite. The financial consequences of these 

decisions are rather complicated (and also depend on what others in your group do).  

 

Therefore, it may be helpful to you to know expected cash earnings from one set of 

decisions you can make (also called “average” earnings). {If you are unfamiliar with the 

idea of an “expected” payoff please read the footnote on the next page.4} You can make 
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  The	
  expected	
  monetary	
  payoff	
  is	
  the	
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  you	
  would	
  be	
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  to	
  earn	
  if	
  you	
  made	
  the	
  same	
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  over	
  and	
  over,	
  so	
  that	
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  of	
  chance	
  events	
  comes	
  to	
  be	
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to	
  the	
  stated	
  probability.	
  For	
  example,	
  suppose	
  you	
  flip	
  a	
  fair	
  coin	
  and	
  earn	
  $3	
  if	
  heads	
  comes	
  

up,	
  and	
  lose	
  $1	
  if	
  tails	
  comes	
  up.	
  If	
  you	
  flip	
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  times,	
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  times	
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  $1.	
  On	
  any	
  one	
  coin	
  flip	
  you	
  would	
  not	
  earn	
  $1—you	
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these decisions if you want to, or any other decisions you like. This section is simply 

designed to help you see the implications of a particular kind of strategy.  

 

The rules and payments in this experiment are set up so that, the best way to maximize 

your average or expected earnings is to vote YES, and report your actual value. Making 

these decisions gives higher expected earnings regardless of the values, reports or 

computer guesses of the other people.  If you report the opposite of your actual value in a 

round, your average or expected earnings for that round will be worse than if you had 

reported your actual value.   

 

The payments are also designed so that your average or expected payoff is always 

positive if you report your actual value, regardless of what the other people are doing.  

Therefore, if you vote YES and report your actual value, your average or expected 

earnings will be positive.  If you vote NO and report your actual value, your average or 

expected earnings will be positive, but closer to $0 than if you had voted YES.   

 

The next two tables below describe your actual earnings for all the possible reports and 

computer guesses for you and the other four people in your group.   

 

Each column represents a different set of reports and guesses for the other people in your 

group. Since people who report $9 pay $9 regardless of the computer’s guess, there is 

only one row when your report is $9.  Each column heading indicates the number of other 

people in the group who reported $9, the number who reported $1 and the computer 

guessed $1, and the number who reported $1 and the computer guessed $9. These tables 
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omit the possibility that there are zero or one $9 reports because then the investment will 

not be made and you earn $0 no matter what you do.  

 

The first table shows your earnings if your actual value is $9. The first row (in grey) 

shows your earnings if you report $9. The second and third rows (in white) show your 

earnings if you report the opposite (reporting $1 when your actual value is $9) and the 

computer guesses $9 (the second row) or $1 (the third row).   Keep in mind that the 

computer would guess $9 with a probability of 80% and $1 with a probability of 20%, as 

indicated in the “chance” column. 

 

The second table shows your earnings when your actual value is $1. The first and second 

rows (in grey) show your earnings if you report $1 and the computer guesses $1 (the 

fourth row) or $9 (the fifth row).  The third row (in white) shows your earnings if you 

report the opposite (reporting $9 when your actual value is $1). Keep in mind that the 

computer would guess $1 with a probability of 80% and $9 with a probability of 20%, as 

indicated in the “chance” column. 

Actual 

Value 

Value 

Report 

Computer 

Guess 

Chance 2 $9 

2 $1 
Guess 

0 $9 
Guess 

2 $9 

1 $1 
Guess 

1 $9 
Guess 

2 $9 

0 $1 
Guess 

2 $9 
Guess 

3 $9 

1 $1 Guess 

0 $9 Guess 

3 $9 

0 $1 Guess 

1 $9 Guess 

4 $9 

$9 $9 $9/$1 100% -$1.07 $2.60 $6.27 $1.47 $5.13 $4 

$9 $1 $9 80% $0 $0 $0 -$3.07 -$0.60 -$0.54 

$9 $1 $1 20% $0 $0 $0 $11.60 $15.27 $14.14 
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Actual 

Value 

Value 

Report 

Computer 

Guess 

Chance 2 $9 

2 $1 
Guess 

0 $9 
Guess 

2 $9 

1 $1 
Guess 

1 $9 
Guess 

2 $9 

0 $1 
Guess 

2 $9 
Guess 

3 $9 

1 $1 Guess 

0 $9 Guess 

3 $9 

0 $1 Guess 

1 $9 Guess 

4 $9 

$1 $1 $1 80% $0 $0 $0 $3.60 $7.27 $6.14 

$1 $1 $9 20% $0 $0 $0 -$11.07 -$7.40 -$8.54 

$1 $9 $9/$1 100% -$9.07 -$5.40 -$1.73 -$6.53 -$2.87 -$4 

 

The table below describes your average or expected earnings for reporting your actual 

value or reporting the opposite (called “misreporting”) for all the possible values and 

reports of the other people.   

 

Each column represents a different set of reports by the other people in your group. Since 

people who report $9 pay $9 regardless of the computer’s guess, misreports by those 

people with actual $1 values do not affect your payoffs, so there are no separate columns 

for those events. So in the table, the term “misreports” always refers to people with $9 

values who report $1. Also, as in the previous tables, this table also omits the possibility 

that there are zero or one $9 reports because then the investment will not be made and 

you earn $0 no matter what you do.  

 

The first two rows of the table show the average or expected earnings if your actual value 

is $9. The first row shows your average earnings if you report $9. The second row shows 

your average earnings if you report the opposite (reporting $1 when your actual value is 

$9). Notice that in every column describing what other people might do, the first row 

average earnings are higher than the second row average earnings. 
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The third and fourth rows show the average earnings when your actual value is $1 and 

you report $1 (the third row) or report the opposite, $9 (the fourth row). In every column 

the third row average earnings are higher than the fourth row average earnings. In fact, 

the third row is always zero or positive, and the fourth row average earnings are always 

negative.  

 

Actual   

Value 

 

Value 

Report 

 

2 $9 

0 Misreports 

 

2 $9 

1 Misreport 

2 $9 

2 Misreports 

 

3 $9 

0 Misreports 

 

3 $9 

1 Misreport 

 

4 $9 

 

$9 $9 

 

$0.40 

 

$2.60 

 

$4.80 

 

$2.20 

 

$4.40 

 

$4.00 

 

$9 

 

$1 

 

$0 

 

$0 

 

$0 

 

$0.60 

 

$2.80 

 

$2.40 

 

$1 

 

$1 

 

$0 

 

$0 

 

$0 

 

$1.40 

 

$3.60 

 

$3.20 

 

$1 $9 - $7.60 - $5.40 - $3.20 - $5.80 - $3.60 - $4.00 
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QUIZ: 

Next you will answer a short quiz to ensure that you understand the instructions above.  

 If a statement is ‘False’, please rewrite the statement in a way that makes it ‘True’. 

 

Question 1: True or False: Your value for the investment is the same every round. 

 

Question 2: True or False: To determine the investment values of the other group 

members, for each one we randomly choose a value of either $9 or $1. 

 

Question 3:  True or False: Given that the computer correctly guesses your value with a 

probability of 80%, you will always make more money on average if you report your 

actual investment value. 

 

Question 4: True or False: If you vote NO for the investment, the investment will never 

be made. 

 

Question 5: True or False: Even if you report your actual investment value, voting NO for 

the investment could help you avoid situations where your expected earnings are 

negative. 

 

Question 6: True or False: Your actual earnings are always higher when you report your 

actual investment value. 

 

 



150	
  
	
  

Response Sheet 

 

Please circle your decisions below for both rounds. 

 

Your investment value is $9. 

 

Do you report       $9      or      $1     ?  

 

Do you vote       YES      or        NO     ? 

 

 

 

 

Your investment value is $1. 

 

Do you report       $9      or      $1     ?  

 

Do you vote       YES      or        NO     ? 
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IIA: Instructions from VCM experiment 

 

This experiment is a study of group decision making.  

 

There is NO deception in the experiment: if we tell you that we are going to do 

something, we will do it exactly as described. 

 

The experiment will consist of 20 rounds.  In each round of the experiment you will be 

placed into a group of 5 players.  In each round, you and the other members of your 

group will make a decision on the size of a group investment.  Your decision and the 

decisions of the others will determine how much money you earn.    

  

Your decision is how much to contribute to the group investment.  You can contribute $1 

to $20 .  We label this contribution mi.  The size of the investment, x, is determined by 

taking the sum of the contributions by the members of your group.  That is, x = Σi mi.   

 

Your payoff from an investment x is vi*ln(x).  Your value multiplier vi is different in 

each round and is different for each person in your group.  Your multiplier vi can range 

from $1 to $20.  This is true for every person. Later in the instructions we will provide 

earnings graphs so you don’t need to do any calculation of your own. 

 

To summarize:  Your earnings in one round will be computed as 

 

Earnings = investment payoff - your contribution  
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= vi*ln (Σk mk) -  mi  

 

At the end of the instructions we provide some graphs showing your average or expected 

earnings for different multipliers vi, investments x, and contributions mi. 

 

You will be paid your average total earnings from all 20 rounds.  Your average earnings 

will be displayed at the end of every round.  

 

Procedure:   

In each round you will first see a decision screen. On this screen you will see your value 

multiplier for that round. This multiplier changes from round to round, and is randomly 

drawn from $1 to $20.  

 

Below your value multiplier, we ask you to report your contribution. Use the number 

keys to type in a number between 1 and 20 and click the red “Make Offer” button to 

submit your contribution. If you enter a value outside this range then the screen will 

refresh and you will be asked again to enter your contribution.  You can use the 

“Backspace” key if you make a mistake while typing. This screen will look as follows: 
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After you’ve made your choice on this screen you will be told the total group 

contribution and your earnings for that round, as well as your average earnings from all 

the rounds so far.  This screen will look as follows: 
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After you hit continue on this screen the next round will begin. 

 

On the next pages are graphs showing your earnings as a function of your contribution 

and the contributions of the other players. Each graph is for a different value of your 

multiplier.  On the x-axis is your contribution, and each line represents a different sized 

contribution from the other four players: 
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QUIZ: 

Next you will answer a short quiz to ensure that you understand the instructions above.  

 If a statement is ‘False’, please rewrite the statement in a way that makes it ‘True’. 

 

Question 1: True or False: Your multiplier value for the investment is the same every 

round. 

 

Question 2: True or False: To determine your multiplier value (and the multiplier values 

of other players) we randomly choose an amount from $1 to $20. 

 

Question 3: How many rounds are there? To determine your final earnings do we take the 

sum of the earnings from those rounds, or the average earnings from those rounds? 

 

Question 4: True or False: There are some situations where you can get higher earnings 

by contributing something other than your multiplier value. 
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IIB: Instructions from augmented mechanism experiment 

 

This experiment is a study of group decision making.  

 

There is NO deception in the experiment: if we tell you that we are going to do 

something, we will do it exactly as described. 

 

The experiment will consist of 20 rounds.  In each round of the experiment you will be 

placed into a group of 5 players.  In each round, you and the other members of your 

group will make a decision on the size of a group investment.  Your decision and the 

decisions of the others will determine how much money you earn.    

  

Your decision is how much to contribute to the group investment.  You can contribute $1 

to $20.  We label this contribution mi.  The size of the investment, x, is determined by 

taking the sum of the contributions by the members of your group.  That is, x = Σi mi.   

 

Your payoff from an investment x is vi*ln(x).  Your value multiplier vi is different in 

each round and is different for each person in your group.  Your multiplier vi can range 

from $1 to $20.  This is true for every person.  Later in the instructions we will provide 

earnings graphs so you don’t need to do any calculation of your own. 

 

In each round, a computer will randomly guess your multiplier, vi, in a way that is related 

to the actual value for vi.  The guess will be drawn from a uniform distribution that 

ranges from +/- $10 of your multiplier. For example, if your multiplier was $12, then the 

computer would be equally likely to guess a number anywhere from $2 to $22. You will 

be charged a tax based on the computer’s guess, gi, and your contribution, mi.  Your tax 
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will be t(gi, mi) =  (gi – mi)2.  Note that you pay the lowest tax when the computer’s 

guess (gi) and your contribution (mi) are the same. 

 

We will take these taxes from you and every other player in the group.  We will then take 

the average tax paid by the other 4 players and pay that amount back to you as a refund.  

This refund process will happen for every player in the group. 

 

To summarize:  Your earnings in one round will be computed as 

 

Earnings = investment payoff - your contribution – tax + refund 

 

At the end of the instructions we provide some graphs showing your average or expected 

earnings for different multipliers vi, investments x, and contributions mi.  Note that you 

don’t have any influence on your refund, it is entirely dependent on the contributions of 

the other people in the group. 

 

You will be paid your average total earnings from all 20 rounds. If your total earnings are 

negative then that amount will be deducted from your show-up fee.  At the end of every 

round you will be told your computer guess, tax, refund, and earnings from that round, as 

well as the contributions of the other four people in your group. 

 

Procedure:   
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In each round you will first see a decision screen. On this screen you will see your value 

multiplier for that round. This multiplier changes from round to round, and is randomly 

drawn from $1 to $20.  

 

Below your value multiplier, we ask you to report your contribution. Use the number 

keys to type in a number between 1 and 20 and click the red “Make Offer” button to 

submit your contribution. If you enter a value outside this range then the screen will 

refresh and you will be asked again to enter your contribution.  You can use the 

“Backspace” key if you make a mistake while typing. This screen will look as follows: 

 

 

 

After you’ve made your choice on this screen you will be told the total group 

contribution, your tax, your refund, and your earnings for that round, as well as your 

average earnings from all the rounds so far.  This screen will look as follows: 
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After you hit continue on this screen the next round will begin. 

 

Strategy: 

The investment payoff, contribution, tax and refund are all parts of your total earnings for 

a given round.  To help you understand why the payoffs and taxes are the way they are, 

we will now highlight a few key points.  When we talk about your average or expected 

earnings, we mean averaging across the different amounts you might earn depending on 

the computer’s guess about your multiplier. 

 

(1) Given the distribution of the computer’s guess, the taxes are chosen so that on 

average you make the most money by contributing an amount equal to your value 

multiplier, regardless of the multipliers, contributions, or computer guesses of the 

other players.  If you make some other contribution in a round, your average or 

expected earnings for that round will be lower than if you had contributed your 

multiplier value.   
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(2) If you contribute your multiplier value, your average earnings will always be 

positive. However, if you contribute a different amount, your average or expected 

earnings can become negative. 

 

On the next pages are graphs showing your average earnings as a function of your 

contribution and the contributions of the other players. Each graph is for a different value 

of your multiplier. On the x-axis is your contribution, and each line represents a different 

sized contribution from the other four players.  As you can see, your highest average 

earnings occur when your contribution is equal to your multiplier value: 

 

QUIZ: 

Next you will answer a short quiz to ensure that you understand the instructions above.  

 If a statement is ‘False’, please rewrite the statement in a way that makes it ‘True’. 

 

Question 1: True or False: Your multiplier value for the investment is the same every 

round. 

 

Question 2: True or False: To determine your multiplier value (and the multiplier values 

of other players) we randomly choose an amount from $1 to $20. 

 

Question 3: How many rounds are there? To determine your final earnings do we take the 

sum of the earnings from those rounds, or the average earnings from those rounds? 

 

Question 4: True or False: There are some situations where you can get higher average or 

expected earnings by contributing something other than your actual multiplier value. 
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CHAPTER 3 

 

Visual Fixations Guide the Computation and Comparison of Value in Simple Choice 

 

There is a growing consensus in behavioral neuroscience that the brain makes simple 

choices by first assigning a value to all of the options under consideration and then 

comparing them. 1-3 This has motivated a growing interest in characterizing the exact 

computational properties of the processes responsible for the value comparison, and in 

understanding the extent to which they are able to generate reward-maximizing choices. 

 

Although many popular models of value-based choice implicitly assume that the 

comparison process involves a trivial instantaneous maximization problem, 4, 5 casual 

observation suggests that the underlying processes at work are more sophisticated and 

that visual fixations are likely to play a role. Consider, for example, a typical buyer at the 

grocery store choosing between two snacks: a bag of chips and a candy bar. Instead of 

approaching the counter and immediately selecting his preferred option, the individual’s 

gaze shifts repeatedly between the items until one of them is eventually selected.  

 

We propose a model of how simple value-based binary choices are made and of the role 

of visual fixations in the comparison of values. The model describes how the brain makes 

decisions in the experimental situation described in Fig. 1A, which simulates in the 
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laboratory a typical choice situation. Subjects are shown high-resolution pictures of two 

food items and are free to look at them as much as they want before indicating their 

choice with a button press. The model makes stark qualitative and quantitative 

predictions about the relationship between fixation patterns and choices, which we test 

using eye-tracking. 

 

The theory developed here builds on the framework of drift-diffusion models of binary 

response selection, 6-19 and especially on applications of these models to the realm of 

perceptual decision making, 18, 20-31 where they have been shown to provide accurate 

descriptions of the psychometric data as well as provide important insights into the 

activity of the lateral intraparietal area (LIP). These models assume that stochastic 

evidence for one response (compared to the other) is accumulated over time until the 

integrated evidence passes a decision-threshold and a choice is made.  The level of the 

threshold is set to balance the benefit of accumulating more information with the cost of 

taking more time to reach a decision. 

There are two important differences between our work and the related studies in the 

realm of perceptual discrimination that are important to emphasize from the outset. First, 

in the standard Newsome-Shadlen random dot motion task, the subject is exposed to a 

single stochastic stimulus that provides signals about the value of two potential 

responses. In contrast, in our task subjects are exposed to two non-stochastic pictures of 

food items and have to estimate their value in order to select the most rewarding one. 

Second, fixations do not play a role in the standard perceptual discrimination task 



163	
  
	
  

because subjects maintain central fixation at all times. In contrast, in our task subjects 

fixate back and forth between the two stimuli. The key idea of the model that we propose 

is that fixations affect the drift-diffusion value comparison process by introducing a 

temporary drift bias towards the fixated item. This drift bias in turn leads to a choice bias 

to items that are fixated on more often. Our experimental results show that, as predicted 

by the model, there are strong correlations between the fixations and choices.  

 

Results 

 

Computational model. Following the literature on drift-diffusion, our model assumes 

that the brain computes a relative decision value (RDV) that evolves over time as a 

Markov Gaussian process until a choice is made (Fig. 1B). The RDV starts each trial at 0, 

continually evolves over time at one of two possible rates (depending on the fixated 

item), and a choice is made when it reaches a barrier at either +1 or –1. If the RDV 

reaches the +1 threshold then the left item is chosen, if it reaches the –1 threshold then 

the right item is selected.  

 

The key difference with the standard drift-diffusion model is that the slope with which 

the RDV signal evolves at any particular instant depends on the fixation location. In 

particular, the average rate at which the RDV changes over time is proportional to the 

weighted difference between the values of the fixated and non-fixated items. The weight 

discounts the value of the unfixated item relative to the fixated one. 
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Thus, when the subject is looking at the left item the evolution of the RDV is given by 

 

and when the subject is looking at the right item, the evolution of the RDV is given by 

 

where Vt is the value of the RDV at time t,  and  denote the values of the two 

options, d is a constant controlling the speed of integration (in units of ms-1),  between 

0 and 1 is a parameter reflecting the bias towards the fixated option, and  is white 

Gaussian noise with variance , (randomly sampled once every ms).  

 

With respect to the fixation process, the model assumes that the first fixation goes to the 

left item with probability p, independent of the values of the options, that fixations 

alternate between the two items until a barrier is crossed, and that fixations have a 

maximum duration given by a fixed distribution that depends on the difficulty of the 

choice, as measured by . Note that a fixation terminates if either its maximum 

duration is reached, or the RDV terminates the choice process by crossing a barrier.  

 

Fig. 1C and 1D describe two simulated runs of the model and provide some intuition 

about the forces at work. Note that the evolution of the RDV is generally towards the  
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Figure 1. A) Choice trial.  Subjects are forced to fixate at the center of the screen for 2 

seconds.  They are then presented with images of two items and given as much time as 

they want to make their choice.  After a selection is made a yellow box highlights the 

chosen item for 1 second. B) Model.  A relative decision value (RDV) evolves over time 

with a slope that is biased towards the item that is being looked at. The slope dictates the 

average rate of change of the RDV, but there is also an error term drawn from a Gaussian 

distribution.  When the RDV hits the barrier a choice is made for the corresponding item. 

The shaded vertical regions represent the item being looked at. C & D)  Simulated runs 

of the model using d=0.005, , and , in order to give a better intuition for 

the decision process. 
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fixated item, but that the rate of the evolution depends on the values of the two items. For 

example, in panel 1D, the RDV signal integrates towards the left barrier when the subject 

fixates on the left item, even though it has a lower value than the right item. This 

introduces a critical role for visual fixations in the integration process, a role that will be 

important in explaining the results described below. 

 

Hypotheses and Model Fitting. We carry out a simple eye-tracking experiment to 

investigate the extent to which the drift-diffusion model outlined here is able to capture 

key patterns of the relationship between the fixation and choice data. We were 

particularly interested in testing between three alternative models: M1) The regular drift-

diffusion model, given by the case of ; M2) A drift-diffusion model with full 

fixation bias, given by the case of ; and M3) A drift-diffusion model with partial 

fixation bias, given by the case . The experiment consists of two stages.  In the 

first stage subjects are presented with images of 70 different snack food items and are 

asked to rate how much they would like to eat each item at the end of the experiment, 

using a scale from -10 to 10.  The liking ratings provide an independent measure of the 

value of individual items. In the second stage subjects are asked to make choices between 

pairs of neutral or appetitive foods. Subjects complete 100 such choice trials and 

afterwards eat the item they chose in a randomly selected trial. During the choice stage 

we measured eye-movements at a rate of 50 Hz.  In the analyses below we use the liking 

ratings from stage 1 as measures of the value of the two items. 
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We fitted the model to the even numbered trials from the group data using maximum 

likelihood estimation (see Methods for details). The model has three free parameters: the 

constant determining the speed of integration d, the discount parameter , and the noise 

parameter σ. The model was fit under the assumption that time evolves in 1 ms discrete 

steps. We selected the parameters that maximized the probability of the observed choices 

and reaction times, conditional on the values of the items. The best-fitting model had 

parameters , , , with a log-likelihood value of -3704. 

 

We also used the same procedure to fit models with  and .  In both cases the 

best-fitting models had parameters  and .  We then used the 

likelihood ratio statistic to test that  was significantly less than 1 (log-likelihood = -

3708, p<0.008) and significantly larger than 0 (log-likelihood = -3710, p<0.0005). This 

provides support for M3 over the standard and full fixation bias drift-diffusion models. 

(See also Table 1 and Fig. S1-S10, which compare the fits of all the relevant figures 

presented below for the best-fitted values of the three models). We also carried out a 

restricted fit of the model to individual subject data. The mean (standard deviation) 

estimated  value from individual model fits was 0.52 (0.3), and 35/39 subjects have an 

estimate of this parameter less than 1 (see Methods and Fig. S11-S12 of the Appendix). 

 

In order to investigate the ability of the model to predict the data quantitatively, we then 

simulated the model 1000 times per pair of liking ratings, using the estimated maximum 

likelihood parameters, and by sampling fixation lengths from the actual empirical fixation 
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data (taking into account that fixation durations are related to decision difficulty, as 

described below).  Throughout, we assume that fixations always alternate between the 

two items, and that the location of the first fixation is chosen probabilistically to match 

the empirical data (look left first with probability 74%). The results of the simulations are 

described below.  Note that in all comparisons of the model to the data, we present only 

the odd numbered trials, since the model was fitted to the even numbered trials.  

 

Basic psychometrics. Figure 2 describes the match between the simulated and the actual 

data. Not surprisingly, given that the parameters were chosen to fit these two variables, 

the model predicts the choice and reaction time curves quite well in the odd trials. Fig. 

2A provides the results for the choice data (  goodness-of-fit statistic = 4.47, p=0.92), 

and shows that choices are a logistic function of the value differences, which means that 

the best option is only selected 78 % of the time. Note that the amount of noise in the 

choice process is controlled by the Gaussian noise in the integration process, and by the 

random fixation durations.  This figure also shows the comparably poor-fitting 

model.   

 

Fig. 2B provides analogous results for reaction times (goodness-of-fit: p=0.10, see 

Methods for details), and shows that reaction times decrease with difficulty (mixed 

effects regression estimate -211 ms/rating, p<10-11), a property of drift-diffusion models 

that also extends to our model.  
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Table 1. Summary of the goodness-of-fit statistics for all the figures in the main text.  

Each number is the p-value from the goodness-of-fit test of that particular model to the 

data.  Note that the intermediate model (θ =0.3) fits better than the other two models in 

most cases except Fig. 4C and 5D/E (indicated by the gray shading). 

  2A 2B 2C 4B 4C 5A left 5A right 5B 5C 5D 5E 

θ = 0.3 0.92 0.1 0.39 0.997 0.824 0.96 0.96 0.75 0.0062    0.21 0.0016 

θ = 0  10-5 0.01 10-5 0.01 0.96 0.83 0.19 0.0002 10-13 0.76 0.1 

θ = 1  10-16 0.0007 10-15 10-16 0.04 10-16 0.0001 10-13 10-11 0.0009 10-9 
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Figure 2. A) Psychometric choice curve. B) Reaction times as a function of the 

difference in liking ratings between the best and worst items, which is a measure of 

difficulty. C) Number of fixations in a trial as a function of choice difficulty. In all 

figures the red dashed line indicates the simulated data using the MLE parameters and the 

subject data only includes the odd numbered trials. In A, the blue dash dotted line 

indicates the simulated data for the  model.  Bars denote standard errors, which are 

clustered by subject. Tests are based on a paired two-sided t-test. 
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Fig. 2C shows that the model can also account quantitatively for the number of fixations 

(goodness-of-fit: p=0.39), even though this psychometric match was not targeted by the 

model fitting procedure, and that the number of fixations decrease with difficulty (mixed 

effects regression estimates -0.171 fixations/rating, p<10-15). 

 

Properties of the visual search process. The model makes strong assumptions about the 

nature of the fixation process, which are tested in Figure 3. First, Fig. 3A shows the 

probability that the first fixation is to the best item, which is insignificantly different from 

0.5 and is unaffected by the difference in ratings (mixed effects regression estimates: 

intercept = 0.518, p<0.31; slope = -0.0009/rating, p<0.88). Second, Fig. 3B shows that 

the middle fixation duration is independent of the value of the fixated item (mixed effects 

regression estimate: 6.4 ms/rating, p<0.21). Third, Fig. 3C and Fig. 3D show that there is 

a slight dependence of middle fixation duration on the difference in value between the 

fixated and non-fixated items (mixed effects regression estimate: 11.4 ms/rating, 

p<0.0052), but that there is a larger dependency  of middle fixation duration on the 

difficulty of the decision (mixed effects regression estimate -33.8 ms/rating, p<10-5). 

Note that the dependency of middle fixation durations on value depicted in Fig. 3D is 

taken into account in the estimation and simulation procedures since we assume that 

fixation durations are drawn from the observed empirical distribution for trials with the 

same level of difficulty. (See also Fig. S13-S15 for analogous figures of the first fixation 

properties). 
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Figure 3. A) Probability that the first fixation is to the best item. In all cases they are not 

significantly different from 50%. B) Middle fixation duration as a function of the liking 

rating of the fixated item. C) Middle fixation duration as a function of the difference in 

liking ratings of the fixated and unfixated items. D) Middle fixation duration as a 

function of the difference in liking ratings of the best and worst rated items.  Bars denote 

standard error bars, which are clustered by subject. Tests are based on a paired two-sided 

t-test.	
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We also fitted the empirical distribution of middle and first fixations to several alternative 

statistical distributions and found the best fits with log-normal distributions (log-

likelihood = -24740 for the first fixations and = -34802 for the middle fixations; see 

Table S1 and Fig. S16-S22 and Methods).  

 

Core model predictions. Albeit extremely simple, the model makes several strong 

predictions about the relationship between visual attention, choices, and reaction times 

that we also tested using the eye-tracking data.  

 

First, consistent with the data, the model predicts that final fixations should be shorter 

than middle fixations, since fixations are interrupted when a barrier is crossed (Fig. 4A, 

p< 0.0002).  The figure also shows that first fixations were shorter than middle ones 

(p<10-14), which was not predicted ex-ante by the theory, but was incorporated ex-post 

into the computational model’s estimation and simulation procedures.  

 

Second, the model predicts that subjects will generally choose the item they looked at 

last, unless that item is much worse than the other one. Fig. 4B shows that this was 

indeed the case (  goodness-of-fit statistic = 1.96, p = 0.997). To see why this must be 

the case, recall that the RDV climbs towards the barrier of the fixated item unless the 

fixated item is sufficiently worse, so that the drift rate becomes negative. This figure also 

shows the comparably poor-fitting  model. 
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Third, the model predicts that the longer you have looked at item A during a trial, the 

longer you will have to look at item B before choosing it over item A.  The intuition for 

this is simple: on average, the longer one looks at item A the farther the RDV gets from 

item B’s barrier, and thus the farther it will have to travel back in order to hit that 

threshold.  As shown in Fig. 4C, the effect is marginal, but the model prediction is 

consistent with the data (goodness-of-fit: p = 0.82; mixed effects regression coefficient = 

-0.08, p< 0.11). This figure also shows how poorly the  model fits in this analysis. 

 

Choice biases. The model also predicts that when  the decision processes should 

exhibit several choice biases. First, it predicts a last fixation bias: subjects should be more 

likely to choose an item (for a given rating difference) if their last fixation is to that item 

as opposed to the other item. Furthermore, this difference should become more 

pronounced as the decision becomes more difficult.  This is a prediction of the model 

because the value of the unfixated item is always discounted (by θ) relative to the fixated 

item.  Fig. 5A shows that there is a sizable bias in both the simulated and the subject data 

(logit mixed effect regression: p < 10-16,  goodness-of-fit statistic = 3.64, p = 0.96 for 

last fixation left and = 3.58, p = 0.96 for last fixation right).  The  model predicts no 

effect of the last fixation, and this is clearly rejected by the data. 
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Figure 4. A) Fixation duration by type.  Middle fixations indicate any fixations that were 

not the first or last fixations of the trial. B) Probability that the last fixation is to the 

chosen item as a function of the difference in liking ratings between the fixated and 

unfixated items in that last fixation. C) Amount of time spent looking more at Item B 

prior to the last fixation (to Item A), as a function of the duration of that last fixation. In 

all figures with simulation data, the red dashed line indicates the simulated data using the 

MLE parameters, and the subject data only includes the odd numbered trials.  In B, the 

blue dash dotted line indicates the simulated data for the  model, and the vertical 

dotted lines indicate the points at which the simulation curves cross the horizontal line at 

chance.  In C, the blue dash dotted line indicates the simulated data for the  model.  

Bars denote standard error bars, which are clustered by subject.  
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Second, the model predicts that there should be a choice bias that depends on the total 

amount of time spent looking at one item versus the other.  Controlling for value 

differences, the probability of choosing an item should increase with the excess time that 

it is looked at.  A mixed effects logit regression shows that this is indeed the case (p < 10-

8). This prediction follows from the fact that the RDV always evolves more towards an 

item’s barrier when it is being looked at than when it is not. Fig. 5B, and the fact that 

fixation duration and order are independent of an item’s value, show this bias in the data 

and the simulations (  goodness-of-fit statistic = 3.43, p = 0.75).  Fig. 5C further tests 

this hypothesis by correcting for the difference in liking ratings.  For each trial we take 

the actual choice (1 or 0) and subtract the average probability that left was chosen in all 

trials with that difference in liking ratings.  These “corrected” choice probabilities are 

plotted in Fig. 5C as a function of the fixation time advantage for the left item (goodness-

of-fit: p = 0.0062).  This eliminates any possible influence of the measured liking ratings 

on the fixation durations and shows that there is a substantial effect of total fixation time 

on choice. The  model predicts no effect of exposure time on choices, and again this 

is clearly rejected by the data. 

 

In a related result, Fig. 5D shows that the duration of the first fixation is predictive of 

whether that first-seen item will be chosen (  goodness-of-fit statistic = 4.55, p = 0.21, 

mixed effects regression: p < 0.028).  Analogous to Fig. 5C, Fig. 5E corrects for the 

difference in liking ratings between the first-seen item and the other item (goodness-of-

fit: p = 0.0016).  Again, this eliminates any possible influence of the measured liking 

ratings on the first fixation durations and shows that there is a substantial effect of first  
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Figure 5. A) Psychometric choice curve conditional on the location of the last fixation.  

B) Probability that left is chosen as a function of the excess amount of time that the left 

item was fixated on during the trial.  C) Analogous to B, except subtracting the 

probability of choosing left for each difference in liking ratings. D) Probability that the 

first-seen item is chosen as a function of the duration of that first fixation. E) Analogous 

to D, except subtracting the probability of choosing the first-seen item for each difference 

in liking ratings.  F) Probability of choosing left as a function of the probability of 

looking left first.  Each circle represents a different subject. In all figures with simulation 

data, the red dashed line indicates the simulated data using the MLE parameters, the blue 

dash dotted line indicates the simulated data for the  model, and the subject data only 

includes the odd numbered trials.  Bars denote standard error bars, which are clustered by 

subject. Tests are based on a paired two-sided t-test, except in F, where we use standard 

two-sided t-tests. 
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fixation duration on choice. Just like before, the  model fails to explain the 

relationship between the first fixation duration and choice. 

 

Third, the model predicts that any left-looking biases should translate into left choice 

biases. Fig. 5F shows that this was also the case: the more likely a subject is to look left 

first, the more likely he is to choose items on the left, with a correlation of 0.38 (p = 

0.017) and a Spearman’s non-parametric correlation of 0.49 (p = 0.0017).  Again, this is 

consistent with the model since a fixation bias towards one item increases the likelihood 

of hitting that item’s choice threshold. 

 

Alternative models. There are several other ways in which fixations could interact with 

the decision process without using the exact model developed above.  In order to 

investigate the robustness of our model here we investigate the ability of three natural 

alternatives to account for the data (see Methods for details).  

 

The first alternative model also uses a drift-diffusion model framework, but assumes that 

the drift rate with which the RDV signal is integrated is independent of the fixations. 

Instead, the model assumes that fixation lengths are affected by the current value of the 

RDV signal. In particular, we assume that at each time point the probability that the 

current fixation will be terminated is inversely proportional to the distance between the 

RDV and the choice barrier for the unfixated item. We investigated the qualitative  
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Figure 6. Replications of Fig 4C and 5B with comparisons to alternative model 1 (panels  

A-B), alternative model 2 (panels C-D), and alternative model 3 (panels E-F).  In all 

figures the red dashed line indicates the simulated data using the alternative model, and 

the subject data only includes the odd numbered trials.  Bars denote standard error bars, 

which are clustered by subject. Tests are based on a paired two-sided t-tests. 
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properties of this model by simulating it using the best-fitting parameters from the  

version of our model. The results in Fig 6A-B and Fig. S23 show that while this model 

approximates the basic psychometric data in Fig. 2A-C well, it cannot account for the 

choice biases seen in Fig. 5B and 4C.  

  

The second alternative assumes that a RDV signal is computed and affected by fixations 

as in our main model, but differs on how a decision is triggered. In particular, we assume 

that the decision time is determined exogenously by a separate unmodeled process, and 

that the subject chooses the option with the best RDV at that time. We investigated the 

qualitative properties of this model by simulating it using the best-fitting parameters from 

the  version of our model, and randomly sampling decision times from the actual 

empirical distribution.  The results in Fig. 6C-D and Fig. S24 show that, while the model 

accounts for the psychometric data reasonably well, it is unable to account for some of 

the choice biases discussed above. 

 

The third alternative model is similar to our model, except that the fixations now change 

the locations of the choice barriers rather than the drift rate. We simulated this model 

using the best-fitting parameters from the  model, and assuming that the magnitude 

of the barrier for the fixated item is lowered from 1 to 0.8.  The value of 0.8 was chosen 

so that the model would fit the trends in Fig. 2A-C (see Fig. S25). However, as before, 

Fig. 6E-F show that although the model approximates the basic psychometric data 

reasonably well, it cannot account for some of the critical choice biases.  
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Discussion 

 

The results presented here provide insight into the nature of the computational and 

psychological processes guiding simple choices. In particular, we found that a simple 

extension of the drift-diffusion model in which fixations play a casual role in the value 

integration process is able to provide a remarkable quantitative account of various 

relationships between the fixation and choice data, as well as of several sizable choice 

biases.  

 

A robustness analysis was also able to rule out several natural alternative models for how 

fixations might interact with the choice process.  The first alternative model addressed 

whether fixations might simply reflect the evolution of a standard drift-diffusion model 

by dwelling on items that have a high RDV. A second model addressed whether the 

choice process is bounded, by allowing the RDV to evolve over the entire predetermined 

reaction time.  Finally, a third alternative model addressed whether fixations affect the 

drift rate or the location of the choice barriers.  Each of these models fits the basic 

psychometrics in Fig. 2 quite well, but was unable to explain some critical choice biases.  

Of course, we cannot rule out the existence of other models that could account for the 

patterns in this dataset better than the model presented here. However, given the results 

presented here, it would be surprising if one could find a model that could do so without 

the fixations modulating the value computation or comparison process. 
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A critical question raised by our results is whether the visual fixation process has a 

causal effect on the value comparison process. Several pieces of evidence suggest that 

this might be the case. First, our model assumes that this causal effect is present within a 

drift-diffusion model framework and is able to provide a remarkable quantitative fit to 

many moments of the data. Second, we have shown that a simple alternative drift-

diffusion model in which values affect fixations, but in which the opposite is not true, 

cannot account for key aspects of the data. Third, consistent with the findings reported 

here, a couple of related studies have shown that it is possible to bias choices by 

manipulating relative fixation durations 32, 33. For example, Armel, Beaumel, and Rangel 

32 manipulated fixation durations while subjects made binary choices using stimuli 

identical to the ones used in this chapter and were able to bias choices for sufficiently 

close items by about 6-15%. However, it is important to emphasize that the evidence 

provided here is not sufficient to establish a causal effect of fixations on choices. 

 

Our model does not rule out the possibility that values might have some effect on the 

pattern of fixations. In fact, as shown in Fig.3D, and assumed in the model’s estimation 

and simulation procedures, fixation durations in our dataset increase with the difficulty of 

the choice. However, the key aspect of the model and results is that even if these 

feedback results are present, random variation in fixation durations might affect the 

choice process itself. In this study we have treated these feedback effects from values to 

fixations as exogenous. Understanding the computational properties of these effects is an 

important open question for future research in this area. 
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The theory developed here builds on the framework of drift-diffusion models of binary 

response selection 6-19, and especially on applications of these models to the realm of 

perceptual decision making 18, 20-31.  Several differences between the two approaches are 

worth discussing. First are differences in the nature of the computational problem. In the 

standard Newsome-Shadlen random dot motion task, subjects are exposed to a stochastic 

stimulus that is assumed to generate perceptual noise signals in area MT. Under 

appropriate assumptions, it can be shown that the drift-diffusion model implements an 

optimal decision making process that amounts to a sequential-likelihood ratio test18, 23, 24, 

34, 35. In our model the stimuli are non-stochastic, in the sense that the image is non-

changing. However, we hypothesize that in order to construct value the brain needs to 

integrate a series of noisy signals about the value of the stimuli, in this case generated 

internally. In particular, we hypothesize that the brain assigns value to the stimuli by 

sequentially and stochastically extracting features of the stimuli, retrieving the learned 

values for such features, and then integrating those values. Although the objective nature 

of the noise is quite different in both cases, in the absence of fixations, the computational 

problem has similar properties. The second difference has to do with the role of the 

fixations. In particular, fixations do not play a role in the standard perceptual 

discrimination task because subjects maintain central fixation at all times. In our task 

subjects fixate back and forth between the two stimuli. The key idea of the model that we 

propose is that fixations affect the way the choice is made by introducing a temporary 

bias in the drift-diffusion process towards items that are looked at more. The results in the 
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chapter and the Appendix are well explained by the model, which predicts the various 

correlations between the eye-tracking and the psychometric data.  

 

Our model is also related to the models of decision field theory developed by Busemeyer 

and collaborators13, 37-40, which also consider sequential integration models in the spirit of 

the drift-diffusion model in which fixations matter. There are several differences between 

this literature and our study. First, decision field theory assumes that items are 

multidimensional and that fixations matter only to the extent that they focus the 

integration of value in one dimension or another. In contrast, we focus on choices among 

unidimensional stimuli and fixations matter because they bias the integration of value in 

favor of one of the items. Second, the predictions of decision field theory regarding the 

impact of fixations on choice have not been tested directly using eye-tracking. 

 

Note that while the drift-diffusion model implements an optimal statistical decision 

process in the case of perceptual decision making, the model that we investigated here 

does not seem to have that property. In particular, it is difficult to reconcile the presence 

of the integration bias with an optimal decision process. An important question for future 

research is to determine the extent to which the model approximates an optimal Bayesian 

decision making problem in which fixations are determined endogenously, perhaps with a 

switching cost. 
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One critical question is how the brain implements this model of decision making.  One 

brain region that is likely critical is the medial orbital frontal cortex (mOFC).  A number 

of studies have shown that the mOFC encodes value signals at the time of choice 41-47, 

which are the likely inputs to the comparator process studied here. We conjecture that 

fixations affect this process by amplifying the relative value signal for the fixated item in 

the mOFC. 

 

The results have several important implications for the quality of choice processes and 

decision making in general. First, since fixations might be attracted by other visual 

features of the items that are uncorrelated with value, such as their visual saliency 48 or 

their location, the model predicts that such irrelevant factors could affect choices.  A 

couple of studies have shown such effects by exogenously manipulating relative exposure 

times 32, 33.  Second, the model more generally predicts that systematic biases in fixations 

could lead to deficits in decision making. Extensions of this framework might help to 

understand why individuals with autism who generally avoid eye contact exhibit deficits 

in social decision making 49. Finally, the model explains how cultural norms (e.g., 

reading left to right) can interact with basic computational processes to produce cultural 

choice biases which help to explain, for example, why shelf and computer screen space 

on the top-left is more valuable. 
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Methods 

Subjects. 39 Caltech students participated in the experiment. Only subjects who self-

reported regularly eating the snacks foods (e.g., potato chips and candy bars) used in the 

experiment and not being on a diet were allowed to participate.  These steps were taken 

to ensure that the food items we used would be motivationally relevant.  This would not 

have been the case if the subjects did not like junk food.  Subjects were paid a $20 show-

up fee, in addition to receiving one food item (as described below). Caltech’s Human 

Subjects Internal Review Board approved the experiment. 

 

Task. Subjects were asked to refrain from eating for 3 hours prior to the start of the 

experiment. After the experiment subjects were required to stay in the room with the 

experimenter for 30 minutes while eating the food item that they chose in a randomly 

selected trial (see below).  Subjects were not allowed to eat anything else during this 

time.  The experiment was programmed using E-Prime software. 

 

The experiment had two phases. In the first phase subjects provided liking ratings for 70 

different food items. Every trial subjects were presented with a high-resolution picture of 

a different food item for 3 seconds.  Subjects were instructed to fixate on the item for the 

full 3 seconds.  On the next screen, subjects were asked to rate the item on a scale from  

–10 to 10, indicating how much they would like to eat the item at the end of the 

experiment.  They did so using an on-screen slider bar, manipulated using the left and 

right arrow keys on the keyboard.  The initial location of the slider was randomized to 
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reduce anchoring effects.  This rating screen had a free response time. The food was kept 

in the room with the subjects during the experimental session to assure them that all the 

items were available.  Furthermore, subjects briefly saw all the items at this point so that 

they could effectively use the rating scale. 

 

In the second phase subjects made choices between pairs of food items (Fig. 1A). Every 

trial subjects were presented with two food items and asked to choose which one they 

would rather eat at the end of the experiment.  They were told that one trial would be 

randomly chosen at the end of the experiment, and that they would receive the food item 

they chose in that trial.  Subjects made their choice on this screen by pressing the left or 

right arrow keys on the keyboard to indicate a choice of the left or right item, 

respectively. This choice screen had a free response time. There were 100 trials in this 

phase of the experiment. 

 

Food items that received a negative rating in the rating phase of the experiment were 

excluded from the choice phase.  We did not tell subjects about this feature of the 

experiment because doing so could have changed their incentives during the rating phase.  

 

The items shown in each trial were chosen pseudo-randomly according to the following 

rules: (1) No item was used in more than 6 trials; (2) The difference in liking ratings 

between the two items was constrained to be 5 or less; (3) If at some point in the 
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experiment (1) and (2) could no longer both be satisfied, then the difference in allowable 

liking ratings was expanded to 7, but these trials occurred for only five subjects and so 

were discarded from the analyses.  The location of the items (right vs. left) was 

completely randomized. 

 

After subjects indicated their choice, a yellow box was drawn around the chosen item 

(with the other item still on-screen) and displayed for 1 second.  This feedback screen 

was followed by a fixation screen before the beginning of the next trial.  

 

Eye-tracking. Subjects’ fixation patterns were recorded using a Tobii (Sweden) desktop-

mounted eye-tracker.  This eye-tracker recorded fixation location at a rate of 50 Hz. We 

recorded macrofixations using an ROI method (i.e., we recorded whether subjects were 

looking at the left item, right item, or elsewhere) but we did not record microfixations.  

 

Before each choice trial, subjects were required to maintain a fixation at the center of the 

screen for 2 seconds before the items would appear.  This was done to ensure that 

subjects started every choice screen fixating on the same location. 

 

Data analysis. Choice trials with gaps in the eye-tracking data at the beginning or end of 

the trial were excluded from analysis.  The mean (SEM) number of trials dropped per 

subject was 2.8  1.5. We define a gap as a period of time greater than 40 ms when the 
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eye-tracker did not record a fixation on either item. For all measurements following the 

first item fixation and preceding the last item fixation of the trial, blank fixations were 

dealt with according to the following rules: 

 

(1) If the blank fixations were recorded between fixations on the same item, then those 

blank fixations were changed to that item. So for example a fixation pattern of “Left 

Item”, “Blank,” “Left Item” would become “Left Item”, “Left Item”, “Left Item.”  The 

assumption here is that the eye-tracker simply lost the subject’s eyes during this time.  

The alternate hypothesis is that the subject looked away from the item without looking at 

the other item, but we consider this to be an unlikely scenario. 

 

(2) If the blank fixations were recorded between fixations on different items, then those 

blank fixations were recorded as non-item fixations and discarded from further analysis.  

The assumption here is that the subject took time to shift his gaze from one item to the 

other, and during that time was not fixating on either item. 

 

Group model fitting. The computational model was fit to the choice and reaction time 

data from the even numbered trials of the pooled data from the 39 subjects.  

 

The maximum likelihood estimation procedure was implemented as follows. First, we set 

apart half of our data to estimate the model (the half was given by the even trials). Then 
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for each set of parameters and pair of liking ratings in the data we ran 1000 simulations 

of the model.  In the simulations we randomly sampled fixation times from the empirical 

distribution conditional on the measure of choice difficulty given by . Given 

that first fixations were generally shorter than the rest, we sampled first fixation durations 

separately from the rest.  We also used the empirical fact that subjects looked left first 

74% of the time and that the first fixations were independent of value.  Finally, the 

simulations assume instantaneous transitions between fixations while in the data there are 

often delays between fixations.  To compensate, we calculated the total amount of 

“transition” time in each trial, randomly sampled from the empirical distribution of those 

“transition” times, and added them to the simulated reaction times. Note that the 

simulations used a time step size of 1 ms, which is significantly shorter than the average 

amount of time between measured fixations (20 ms). 

 

Second, we computed the probability of each data point for each set of parameters as 

follows. The empirical spread of reaction times ranged from 525 ms to 25 s so in the 

fitting procedure we discarded any simulation trials below 500 ms or above 25 s.  The 

rest of the reaction times were separated into bins from 500-6000 ms, each one spanning 

100 ms, except for the first bin which went from 500-1000 ms and the final bin, which 

went from 7000-25000 ms.  For each combination of liking ratings, we then split the data 

into the trials where Left was chosen and where Right was chosen, and then for each 

group, and counted the number of data trials in each reaction time bin, and similarly 

calculated the probability that a simulation trial occurs in each reaction time bin.   
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Third, we computed the set of parameters that maximized the log-likelihood of the data 

by taking the logarithms of each of these probabilities and summing them up.  The 

resulting number is used to assess how well the model fit the data, with larger numbers 

(closer to zero) indicating better fits. 

 

In the simulations, we vary σ as a function of the slope d, rather than absolutely.  

Therefore, we let  and perform a grid search over values of d, µ, and θ.  Given 

the computational expense of this estimation procedure, the search for the maximum 

likelihood parameters was carried out in three steps. First we did a coarse grid search 

with d in {0.0001, 0.00015, 0.0002, 0.00025}, µ in {80, 100, 120, 140} and  in {0.3, 

0.5, 0.7, 0.9}. Second, we used the results from the first search to define a finer search 

with d in {0.000175, 0.0002, 0.000225}, µ in {90, 100, 110} and  in {0.2, 0.3, 0.4}. 

The resulting log-likelihood value was -3704. 

 

Group likelihood ratio tests. We tested whether  was significantly different from 1 and 

0, by performing likelihood ratio tests. These tests use the results from the MLE 

described above, as well as those from another MLE model in which  was fixed to 0 or 

1. This procedure was carried out exactly the same as before, using only the even 

numbered trials and starting with a coarse search with d in {0.0001, 0.00015, 0.0002, 

0.00025} and µ in {80, 100, 120, 140}, followed by a finer search with d in {0.000175, 
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0.0002, 0.000225} and µ in {90, 100, 110}.  The best-fitting set of parameters in both 

cases was  and , with a log-likelihood value of -3708 for  and 

-3710 for .  

 

From these log-likelihood values we calculated the likelihood ratio statistic, which for the 

case of  is given by: 

 

Here, x is just the log-likelihood value for each set of parameters.  This test statistic is 

distributed as . 

 

Group simulations. We carried out 1000 simulations for every combination of values in 

the data set using the maximum likelihood parameter estimates and sampling fixation 

durations from the odd numbered trials. 

 

Individual model fitting. An important concern with the group fits above is that they do 

not provide a good description of the underlying distribution of parameters in the subject 

population. We investigated this issue with two analyses. 

In the first analysis (Fig. S11) we set  and  from the group level 

analysis and performed an MLE grid search over  in {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 
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0.8, 0.9, 1} using all trials (even and odd), and 1000 simulations for every combination of 

values. 

In the second analysis (Fig. S12) we calculated the average difference in left-choice 

probability between last-fixation-left trials and last-fixation-right trials, for each subject.  

This amounts to calculating the average difference between the two curves shown in Fig. 

5A.  Subjects with  should show no difference between these two curves, whereas 

subjects with  and  should show differences of 0.47 and 0.58, respectively 

(assuming  and ).  

 

Goodness-of-fit calculations.  For Fig. 2B, 2C, 4C, 5C, and 5E we could not compute  

goodness-of-fit statistics because the dependent variables are not binary.  R2 statistics 

were also uninformative because of the high variability in average fixation duration from 

subject to subject.  Therefore, we devised a different goodness-of-fit statistic that works 

as follows: (1) For each value of the independent variable we “correct” the dependent 

variable by subtracting the average simulated value from each subject’s average value. 

(2) We then run a weighted least-squares regression, regressing the “corrected” 

dependent variable on the independent variable.  The weights in the WLS regression were 

equal to the inverse of the variance. 

 

If the simulations fit the data well, then the “corrected” data should be a flat line at 0.  On 

the other hand, if the simulation fits poorly, then the WLS coefficient should be non-zero.  
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So for goodness-of-fits, we report the p-values for the coefficients of these WLS 

regressions.  If the p-values are less than 0.05 then we reject that the model fits the data. 

 

Fitting the fixation distributions.  In order to determine the best-fitting distributions for 

the first and middle fixation durations, we used a log-likelihood method to fit several 

different types of distributions to all the trials, as well as dividing trials by the absolute 

difference in the liking ratings. Table S1 summarizes the best-fitting parameters from 

log-normal distributions (which were consistently the best or near-best distribution) and 

the log-likelihoods for the different distributions. Figures S16-S22 show the log-normal 

fits to the data. 

 

Mixed effect regressions.  All mixed effect regressions mentioned in the chapter were run 

using R’s lmer function, with random effects for subject-specific constants and slopes as 

well as fixed effects for the relevant independent variable. The three regression 

coefficients pertaining to Fig. 3 (and similarly S13-S15) all came from the same mixed 

effects regression, which included as independent variables the fixated item rating, the 

non-fixated item rating, and the absolute difference between the ratings. 

 

Alternative model simulations. The three alternative models displayed in Fig. 6 and Fig. 

S23-25 were each simulated using 500 runs for every combination of values in the 
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dataset, and fixation durations and reaction times were sampled (where appropriate) from 

the odd numbered trials.   

For the alternative model, the probability of the fixation ending at each time point was 

 

where k is the magnitude of the distance between the RDV and the choice barrier for the 

currently fixated item.  These parameter values were chosen to roughly fit the 

psychometric patterns seen in Fig. 2.   

For the second alternative model, reaction times were sampled from the empirical 

distribution conditional on the difference in liking ratings.  The RDV was allowed to 

evolve for the entire reaction time.  At the end of the trial, if the RDV was positive then 

the left item was chosen, if the RDV was negative then the right item was chosen. 

For the third alternative model, when a fixation was made to the left item, the left choice 

barrier was lowered to 0.8.  When a fixation was made to the right item, the right choice 

barrier was lowered to -0.8.  These values were chosen to roughly fit the psychometric 

patterns seen in Fig. 2. 
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APPENDIX 
 

Table S1. Best-fitting parameters for various statistical distributions that were fit to the 

fixation data. The log-normal distributions consistently provided the best fit, as indicated 

by gray shading. Each row indicates the fit for either all the trials, or for only those trials 

with a particular absolute difference in liking ratings. In a couple cases the gamma 

distribution would not fit the data, resulting in a value of NaN. 

  log normal distribution   log likelihoods for other distributions   

  meanlog sdlog log likelihood gamma cauchy negative binomial normal 

middle fixations               

all trials 6.39 0.63 -34802 -35295 -35109 -35008 -36849 

diff = 0 6.46 0.65 -6139 NaN -6160 -6180 -6559 

diff = 1 6.45 0.66 -10093 -10203 -10243 -10149 -10624 

diff = 2 6.39 0.64 -7988 NaN -8056 -8050 -8507 

diff = 3 6.33 0.58 -5126 -5158 -5163 -5136 -5340 

diff = 4 6.28 0.54 -2736 -2742 -2762 -2735 -2822 

diff = 5 6.28 0.53 -1866 -1887 -1898 -1878 -1952 

first fixations            

all trials 5.83 0.62 -24740 -25021 -24884 -24755 -26223 

diff = 0 5.83 0.58 -3460 -3541 -3448 -3479 -3727 

diff = 1 5.83 0.66 -6170 -6231 -6205 -6155 -6546 

diff = 2 5.87 0.59 -5429 -5541 -5504 -5471 -5814 

diff = 3 5.84 0.56 -4188 -4205 -4239 -4187 -4356 

diff = 4 5.8 0.64 -2762 -2759 -2767 -2748 -2863 

diff = 5 5.8 0.68 -2064 -2096 -2074 -2068 -2207 
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Figure S1:  Reproduction of Fig. 2A from the text but with the simulation data from 

 (left) and  (right). The  goodness-of-fit statistics for  and  were 

39.6 (p<10-5) and 192 (p<10-16), respectively. 
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Figure S2:  Reproduction of Fig. 2B from the text but with the simulation data from 

 (left) and  (right).  The goodness-of-fit statistics for  and  were p = 

.01 and p = 0.0007, respectively. 
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Figure S3:  Reproduction of Fig. 2C from the text but with the simulation data from 

 (left) and  (right).  The goodness-of-fit statistics for  and  were p = 

10-5 and p = 10-15, respectively. 
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Figure S4:  Reproduction of Fig. 4B from the text but with the simulation data from 

 (left) and  (right).  The  goodness-of-fit statistics for  and  were 

22.9 (p<.01) and 622 (p<10-16), respectively. 
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Figure S5:  Reproduction of Fig. 4C from the text but with the simulation data from 

 (left) and  (right).  The goodness-of-fit statistics for  and  were p = 

0.96 and p = 0.04, respectively. 
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Figure S6:  Reproduction of Fig. 5A from the text but with the simulation data from 

 (left) and  (right).  The  goodness-of-fit statistics for  and  were 

5.76 (p<.83) and 495 (p<10-16) respectively for last-fixation-left, and 13.6 (p<0.19) and 

34.7 (p<0.0001), respectively for last-fixation-right. 
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Figure S7:  Reproduction of Fig. 5B from the text but with the simulation data from 

 (left) and  (right).  The  goodness-of-fit statistics for  and  were 

25.8 (p<0.0002) and 74 (p<10-13), respectively. 
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Figure S8:  Reproduction of Fig. 5C from the text but with the simulation data from 

 (left) and  (right).  The goodness-of-fit statistics for  and  were p = 

10-13 and p = 10-11, respectively. 
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Figure S9:  Reproduction of Fig. 5D from the text but with the simulation data from 

 (left) and  (right). The  goodness-of-fit statistics for  and  were 

1.16 (p<0.76) and 16.5 (p<0.0009), respectively. 
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Figure S10:  Reproduction of Fig. 5E from the text but with the simulation data from 

 (left) and  (right).  The goodness-of-fit statistics for  and  were p = 

0.1 and p = 10-9, respectively. 
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Figure S11:  Histogram of the best-fitting  parameters based on a subject-by-subject 

MLE analysis where d and  were fixed at their values (0.0002 and 0.02) from the 

group-level analysis, and we searched for  from 0 to 1, in increments of 0.1. 
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Figure S12:  Histogram of the left-choice bias between last-fixation-left trials and last-

fixation-right trials, subject by subject.  This bias measure takes the average difference 

between the two curves in Fig. 5A. With d and  fixed at their values (0.0002 and 0.02) 

from the group-level analysis, a subject with  would show a bias of 0 (first bin with 

one subject), a subject with  would show a bias of 0.47 (fifth bin with nine 

subjects), and a subject with  would show a bias of 0.58 (sixth bin with five 

subjects). 
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Figure S13: First fixation duration as a function of the fixated item’s liking rating.  A 

mixed effects regression for fixation duration on liking rating yielded a coefficient of 9.4 

ms/rating (p<0.004). 
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Figure S14.  First fixation duration as a function of the difference in liking ratings 

between the fixated item and the unfixated item. A mixed effects regression for fixation 

duration on the difference in liking ratings yielded a coefficient of 4.3 ms/rating (p<0.1) 

suggesting no significant effect of relative value on first fixation duration. 
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Figure S15. First fixation duration as a function of the difference in liking ratings of the 

best and worst rated items. A mixed-effects regression for fixation duration on the 

absolute difference in liking ratings yielded a coefficient of –0.11 ms/rating (p<0.98) 

indicating no significant effect of absolute rating difference on first fixation duration. 
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Figure S16:  Fixation duration histograms across all trials with best-fitting log-normal 

distributions superimposed (solid line) for first fixations (left) and middle fixations 

(right). 
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Figure S17:  Fixation duration histograms for trials with an absolute difference in liking 

ratings of 0, with best-fitting log-normal distributions superimposed (solid line) for first 

fixations (left) and middle fixations (right). 
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Figure S18:  Fixation duration histograms for trials with an absolute difference in liking 

ratings of 1, with best-fitting log-normal distributions superimposed (solid line) for first 

fixations (left) and middle fixations (right). 
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Figure S19:  Fixation duration histograms for trials with an absolute difference in liking 

ratings of 2, with best-fitting log-normal distributions superimposed (solid line) for first 

fixations (left) and middle fixations (right). 
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Figure S20:  Fixation duration histograms for trials with an absolute difference in liking 

ratings of 3, with best-fitting log-normal distributions superimposed (solid line) for first 

fixations (left) and middle fixations (right). 
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Figure S21:  Fixation duration histograms for trials with an absolute difference in liking 

ratings of 4, with best-fitting log-normal distributions superimposed (solid line) for first 

fixations (left) and middle fixations (right). 
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Figure S22:  Fixation duration histograms for trials with an absolute difference in liking 

ratings of 5, with best-fitting log-normal distributions superimposed (solid line) for first 

fixations (left) and middle fixations (right). 
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Figure S23:  Replication of Fig. 2A, 2C, 4B, and 5A with the alternative model 1.  
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Figure S24:  Replication of Fig. 2A, 2C, 4B, and 5A with the alternative model 2. 
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Figure S25:  Replication of Fig. 2A, 2C, 4B, and 5A with the alternative model 3. 

 

 

 

 

 

 

 

 


