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Abstract 

With the advent of faster and cheaper computers, optimization based control method

ologies have become a viable candidate for control of nonlinear systems. Over the 

past twenty years, a group of such control schemes have been successfully used in the 

process control industry where the processes are either intrinsically stable or have 

very large time constants. 

The purpose of this thesis is to provide a theoretical framework for synthesis of 

a class of optimization based control schemes, known as receding horizon control 

t echniques for nonlinear systems such as unmanned aerial vehicles. 

It is well known that unconstrained infinite horizon optimal control may be used 

to construct a stabilizing controller for a nonlinear system. In t his thesis, we show 

that similar stabilization results may be achieved using unconstrained finite horizon 

optimal control. The key idea is to approximate the tail of the infinite horizon cost

to-go using, as terminal cost, an appropriate control Lyapunov function (eLF) . A 

eLF can be thought of as generalization of the concept of a Lyapunov function to 

systems with inputs. 

Roughly speaking, the terminal eLF should provide an (incremental) upper bound 

on the cost . In this fashion , important stability characteristics may be retained 

without the use of t erminal constraints such as those employed by a number of other 

researchers. The absence of constraints allows a significant speedup in computation. 

Furthermore, it is shown that in order to guarantee stability, it suffices to sat

isfy an improvement property, thereby relaxing the requirement that truly optimal 

trajectories be found. 

We provide a complete analysis of the stability and region of attraction/operation 

properties of receding horizon control strategies that utilize finite horizon approxi

mations in the proposed class. It is shown that the guaranteed region of operation 

contains that of the e LF controller and may be made as large as desired by increasing 
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the optimization horizon (restricted, of course, to the infinite horizon domain). More

over, it is easily seen that both CLF and infinite horizon optimal control approaches 

are limit ing cases of our receding horizon strategy. The key results are illustrated 

using a familiar example, the inverted pendulum, as well as models of the Caltech 

ducted fan at hover and forward flight, where significant improvements in guaranteed 

region of operation and cost are noted. 

We also develop an optimization based scheme for generation of aggressive tra

jectories for hover and forward flight models of the Caltech ducted fan experiment, 

using a technique known as trajectory morphing. The main idea behind trajectory 

morphing is to develop a simplified model of the nonlinear system and solve the tra

jectory generation problem for that model. The resulting trajectory is then used as 

a reference in a receding horizon optimization scheme to generate trajectories of the 

original nonlinear system. Several aggressive trajectories are obtained in this fashion 

for the forward flight model of the Caltech ducted fan experiment. 
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Chapter 1 Introduction 

1.1 Background 

For quite some time now, optimization has played a crucial role in decision processes 

concerning physical or organizational systems. Every time there is a need to make a 

selection between a set of possible choices, one would like to pick the decision that 

costs the least, satisfies all constraints, and is practical to implement. Scarcity of 

resources often dictates the need to make decisions that distribute available resources 

in an optimum manner. Therefore, it is not surprising that optimization has become 

an integral part of any scientific and engineering discipline. 

Despite the fact that the mathematical foundation of optimization theory goes way 

back to great mathematicians such as Gauss, Lagrange, Euler, the Bernoulis, etc., 

it was only 5 decades ago, with the advent of digital computers, that optimization 

became widespread and practical. 

It was perhaps with the invention of Simplex method [Dan51]' an efficient algo

rithm for solving linear programs, that both the theory and practice of optimization 

gained momentum. Linear programing was, and still is , the most natural way to 

formulate a variety of optimization problems. In addition to the elegance of the 

mathematical solution, perhaps the simplicity in the formulation phase has made 

linear programing a pure success. 

Nevertheless, there are a huge class of optimization problems which can not be 

formulated as a linear program, for the simple reason that the constraints and/or the 

objective are not linear in variables. This brings us to nonlinear programs [GMW81J. 

Much of the early theory associated with this type of optimization has been focused 

on obtaining necessary and sufficient conditions for a solution point. Also, due to the 

non-convex nature of the problem, the solutions are at best local extrema, i.e. , there 

is no guarantee, in general, that the nonlinear program is solved globally. 
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Although intrinsically more difficult than its linear counterpart, the past couple 

of decades has witnessed a tremendous amount of research in development of efficient 

algorithms for solving nonlinear programs. Several interior point methods have been 

developed for solution of quadratic programing problems which are a special class of 

nonlinear programs [Wri9S]. General nonlinear programing problems can be solved 

by finding the solution to a sequence of quadratic programs using a method known 

as sequential quadratic programing [GMSW9S]. 

Both linear and nonlinear programing, however, are static optimization problems. 

An interesting and useful class of optimization problems is dynamic optimization. In 

dynamic optimization, a functional is maximized/minimized subject to a set of differ

ential and algebraic constraints. Such problems arise in planning, control, estimation, 

game theory, etc. This class of problems are essentially more difficult to solve, since 

the solutions are elements of infinite dimensional rather than finit e dimensional vec

tor spaces, as in the case of nonlinear programs. This simple difference introduces a 

whole new set of challenges to the problem. Namely, to solve the problem, one has 

to somehow convert the problem into a nonlinear programing problem, and then use 

off-the-shelf nonlinear programing solvers to solve the problem. In this thesis , our 

focus is on this type of optimization problems. Specifically, we focus our attention on 

the optimal control problem. 

Although optimal control theory has its roots in calculus of variations and John 

Bernoulli's brachistochrone (Greek for "shortest time") problem, it was formally de

veloped about 50 years ago in the seminal works of L.S. Pontryagin [Ponan] in the 

former Soviet Union and Richard Bellman [BeI52] in the United States. While Pon

tryagin introduced the minimum principle, which basically gave necessary conditions 

for the existence of optimal trajectories, Bellman introduced the concept of dynamic 

programing. The development of dynamic programing led to the notion of the cele

brated Hamilton-Jacobi B ellman (HJB) partial differential equation, which had the 

value function as its solution. The value function provided the cost-to-go for any 

initial condition, resulting in an optimal f eedback policy. 

The idea behind dynamic programing was extremely simple and elegant. It was 
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mainly based on principle of optimality which merely suggested that if a trajectory 

is optimal, any end portion of it had to be optimal too. This resulted in a revolution 

in optimal control, and with pioneering work of Kalman [KaI60, KB61, Ka164] in 

1960's, led to the theory of linear optimal control. 

The decade 1960-1970 witnessed intensive research activities on the Linear Quadra

tic Gaussian (LQG) problem [Ath 71], also known as the 1-l2 optimal control problem. 

The HJB partial differential equation, prohibitive to solve in general, had now become 

two separate Riccati equations, which could be solved very efficiently. 

At that point in time it was pretty much believed that the linear optimal control 

problem was solved. However, a simple counter example in [Doy78] proved otherwise. 

This simple counter example showed that LQG regulators can have arbitrarily small 

robustness margins. This result was quite contrary to the common belief at the time 

and ignited a new line of research that mixed control theory and pure mathematics 

for the most of 80 's and led to the solution of the well-known 1-loo optimal control 

problem [DGKF89]. 

The story of the nonlinear optimal control, however, was unfortunately not as 

fruitful , for the very good reason that the problems were inherently more difficult in 

the nonlinear domain. The HJB equation was solved only in some low dimensional 

cases, and that was by brute force numerical methods that exploited gridding and 

meshing techniques. 

Furthermore, the problem of finding an optimal state and control trajectory from 

a given initial condition was solved by solving a two point boundary value problem. 

This, however , was just a way to come up with the optimal control action , as a 

function of time and not as a function of state. Therefore, for obvious reasons, it was 

vulnerable to uncertainty, and not useful for control purposes. Besides, even in the 

linear case that the problem was much more mature, dealing with control and state 

constraints was not properly addressed in this context. 

Several excellent textbooks emerged on the optimal control theory in 1960's and 

1970's [AF66, LM67, BH75]. Among these books, however, [LM67] had an inter

esting paragraph that described a hypothetical method for obtaining a closed-loop 
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controller from open-loop trajectories [MRRSOO]: "One technique for obtaining a 

feedback controller synthesis from knowledge of open-loop controllers is to measure 

the current control process state and then compute very rapidly for the open-loop 

control function. The first portion of this function is then used during a short time 

interval , after which a new measurement of the process state is made and a new open

loop control function is computed for this new measurement. The procedure is then 

repeated." 

This very important remark was simply forgotten, probably due to the high com

putational cost of the algorithm. More than ten years later, this idea led to the 

Model Predictive Control (MPC), also known as Receding Horizon Control (RHC) 

technology. 

Perhaps the earliest application of this idea was in Richalet , Rault , Testud and 

Papon [RRTP78]. These authors developed a technique known as IDCOM (IDen

tification and COMmand) . Their method employed a finite horizon pulse response 

linear model , a quadratic cost function, and input and output constraints. It was, 

however, developed totally independent from the earlier results of optimal control , 

such as the one in [LM67], and was designed to address the needs and concerns of 

the industry, which required methods that can handle constraints and uncertainty. 

Several other methods were later developed along the same lines. Some of these were 

Dynamic Matrix Control (DMC) [CR80, PG79], and later Quadratic Dynamic Ma

trix control (QDMC) [GM86]. In QDMC, quadratic programing was employed to 

solve the constrained open-loop optimal control problem that results from having a 

linear system with linear constraints and quadratic cost in the optimization. 

These methods were mainly used in the petro-chemical and process control indus

tries. In these industries, t he operating points were obtained by solving linear pro

grams, and due to economic considerations, they were required to be on the boundary 

of feasibility. This made the use of optimization quite attractive. 

Despite the fact that the industrial proponents of this approach did not address 

stability issues directly, they were well aware of its importance. In fact, an earlier 

observation by Kalman [KaI60] had suggested that even in the absence of constraints, 



5 

optimality did not necessarily imply stability, and that only under some conditions 

(stabilizability and detect ability) , and infinite length of the optimization horizon, 

optimal controllers were stabilizing. Later, standard Lyapunov stability techniques 

were used to establish stability and it turned out that the value function associated 

with the infinite horizon optimal control problem is a suitable Lyapunov function. 

Since solving an infinite horizon optimal control problem in real time was a pro

hibitive task, except possibly for standard H2 and Hoo problems, researchers came up 

with alternative schemes to use finite horizon approximations. According to Mayne 

et al. [MRRSOO], early examples of results in this direction were Kleinman [Kle70], 

and Thomas [Th075]. Kleinman considered the minimum energy control of a linear 

system over a finite horizon and picked the inverse of the controllability Grammian 

over the finite horizon as the Lyapunov matrix. 

Further results by K won and Pearson [KP77] and K won, Brukstein, and Kailath 

[KBK83] solved a more general linear quadratic problem with a finite horizon. These 

results were important, but of limited application, because they were only appropriate 

for unconstrained linear systems. 

Since then, MPC has become a standard technique for control of multivariable, 

constrained chemical processes. Over 2000 applications of this technology has made 

it a multimillion dollar industry [MRRSOO, ML99, GPM89]. However, until recently, 

the attention of MPC proponents has been mainly restricted to open-loop stable 

processes or systems with large "settling times." 

At first only linear systems were considered and the effect of horizon length and 

cost function parameters on stability and performance were analyzed. Since the 

employed machinery was linear analysis, hard constraints did not appear in these 

results. 

Around the same time, however, a closely similar methodology was being devel

oped in the adaptive control community and that was named Generalized Predictive 

Control (GPC) [CMT87a, CMT87bj . The main issue under consideration in GPC 

was stability of input-output linear discrete time systems where states were not avail

able for measurement and noise was present. Stability was achieved by imposing 
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constraints on inputs and outputs over a finite interval. 

The turning point in stability analysis of the MPC scheme is probably the paper 

by Chen and Shaw [CS82]. These authors show that the stability of the receding 

horizon scheme can be guaranteed by utilizing a terminal constraint and using the 

value function as a Lyapunov function candidate. Later, Keerthi and Gilbert [KG88] 

im posed a terminal state equality constraint x (t + T) = 0 and used the value function 

as the Lyapunov function to ensure the stability of constrained discrete-time nonlinear 

systems. Since then, the value function has been almost universally used as the 

Lyapunov function to ensure stability of the receding horizon scheme. 

The 90 's has witnessed a number of proposals in ensuring the stability of the 

MPC scheme. Some of these approaches follow and extend the last two references, 

and employ terminal equality constraints to guarantee stability. The work of Keerthi 

and Gilbert [KG88] resulted in a finite-horizon optimization problem which turned 

out to be computationally demanding and almost impossible to satisfy in some cases. 

This result was later relaxed by Michalska and Mayne [MM93] which ensured 

closed-loop stability by requiring that the state at the end of the horizon to enter a 

suitable neighborhood of the origin rather than being at the origin. Once the state 

entered that neighborhood, the control was switched to a local linear controller which 

stabilized the system from that point. This approach was known as the dual mode 

control. A similar approach was also used in Sznaier and Damborg [SD90] in a 

different context. 

Another important scheme which was developed by Bitmead et al. [BGW90] 

utilized a terminal cost to ensure closed-loop stability of unconstrained linear systems. 

There was no need to impose terminal constraints in this approach and the controller 

was computed off-line. In addition to these results, a very important result due to 

Rawlings and Muske [RM93] was developed in the context of linear stable systems 

with input constraints. They proposed the terminal cost to be the infinite horizon 

value function associated with zero control. 

A different approach combined both of the aforementioned methods, namely, 

using a terminal constraint as well as a terminal cost. These were proposed by 
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Parisini and Zoppoli [PZ95] and later by Chen and Allgower [CA98] in the context 

of nonlinear systems. The idea was to use a quadratic endpoint penalty of the form 

ax (t + T)T P x(t + T) for some a > ° and some positive definite matrix P , as well as 

a terminal inequality constraint. 

In a more recent paper by Magni and Sepulchre [MS97] and later by De Nicolao et 

at. [NMS98], stability of the receding horizon scheme was proven (for continuous-time 

and discrete-time systems, respectively) by using a (possibly non-quadratic) end point 

penalty which is the cost incurred if a locally stabilizing linear control law is applied 

at the end of the time horizon T. The linear control law ensures local exponential 

stability of the equilibrium at x = 0, and it is assumed that the region of attraction 

of the linear controller is large enough that can be reached from the initial condition 

within the time interval [0, T]. Moreover, it is assumed that the optimization is 

performed over admissible control sequences, i.e. , control sequences which guarantee 

that at the end of the horizon the state has reached a suitable neighborhood of the 

origin which is an exponential stability region for the linear controller. In other words, 

a state inequality constraint is implicitly imposed. 

An approach for the receding horizon control of globally stabilizable nonlinear 

systems was developed by Primbs et at. [PNDOO, Pri98]. In this approach, first a 

globally stabilizing control law is achieved by finding a global control Lyapunov func

tion (CLF) [Son89]. As it will be explained later in the thesis , a CLF is generalization 

of the Lyapunov function to systems with input. Once the global CLF is obtained, 

closed-loop stability is enforced by including additional state constraints that require 

the derivative of the CLF along the receding horizon trajectory to be negative and 

also that the decrease in the value of the eLF be greater than that obtained using 

the controller derived from the CLF. This approach is attractive in the sense that 

global stability is retained without , e.g. , enforcing an equality endpoint constraint. 

(Unfortunately, it does require a global CLF.) This approach divides the problem into 

two phases. The first phase is to obtain a CLF and the second is to use the CLF in 

a receding horizon scheme. 

Since the couple of lines of introduction in [LM67], MPC has come a long way. 
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However, there are several issues which have not been addressed properly. 

On the theory side, despite the variety of approaches in stability analysis of the 

closed-loop system, there are a few problems still unsolved. Most importantly, the 

issue of stability is not completely resolved yet . Other issues such as regions of 

attractions of MPC or RHC have not been fully addressed either. 

On the practical side, although various success stories have been reported from the 

process control industry, such as plants with as many as 50 states and multiple inputs 

and outputs, it has been mainly confined to slow or stable processes. Specifically no 

successful application of the MPC or RHC scheme or any of its variants which can be 

coined under the term optimization based control, has been reported in flight control. 

Part of the problem stems from the fact that control theory has been very developed 

in terms of regulation whereas the area of trajectory generation and tracking is not 

developed as much, and performing very exotic maneuvers can not be addressed 

properly in a regulation setting. 

As it will be seen in the next section, the purpose of this thesis is to develop a 

mathematical framework for the MPC-RHC scheme that can be employed for the 

control of highly maneuverable aerial vehicles. 

1.2 Contents of this thesis 

In the previous section, we presented a brief overview of the status of model predictive 

control/receding horizon control methods, also known as optimization based control 

approaches. In the next few chapters , we develop a stabilizing scheme for receding 

horizon control of nonlinear systems. The proposed scheme utilizes a special class 

of control Lyapunov functions (CLFs), which can be obtained off-line, and used as a 

terminal cost in the receding horizon scheme to guarantee stability. 

Specifically, we show that contrary to some earlier results described in the previous 

section, there is no need to impose terminal equality and lor inequality constraints 

or any other CLF based constraint to guarantee stability of the receding horizon 

scheme. This, as will be seen later throughout the thesis, will speed up the calculations 
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drastically. 

This research has been performed at Caltech as part of the Software Enabled 

Control (SEC) at DARPA. The idea behind SEC program is to explore challenges 

that one faces when trying to use optimization-based control strategies for control of 

Unmanned Aerial Vehicles (UAVs). Until recently, use of RHC in control of UAVs 

seemed impossible, due to heavy cost of online computations required for stability 

and high performance of the vehicle. Thanks to faster and cheaper hardware, and 

more efficient software, there seems to be at last some light at the end of the tunnel. 

Proper use of RHC technology, in addition to proper software, undoubtedly makes 

this once thought farfetched goal as close as ever to reality. 

The main contribution of this thesis is the development of an RHC strategy which 

is suitable for control of high performance Unmanned Aerial Vehicles (UAVs). In 

Chapter 2, we show that stabilization results may be achieved using an unconstrained 

finite horizon optimal control problem. The key idea is to approximate the tail of the 

infinite horizon cost-to-go using, as terminal cost, an appropriate control Lyapunov 

function. Roughly speaking, the terminal CLF should provide an (incremental) upper 

bound on the cost. In this fashion, important stability characteristics may be retained 

without the use of terminal constraints such as those employed by a number of other 

researchers mentioned in 1.1. The absence of constraints allows a significant speedup 

in computation. 

We provide a complete analysis of the stability and region of attraction/ operation 

properties of receding horizon control strategies that utilize finite horizon approxi

mations in the proposed class. It is shown that the guaranteed region of operation 

contains that of the eLF controller and may be made as large as desired by increasing 

the optimization horizon (restricted, of course, to the infinite horizon domain). More

over, it is easily seen that both eLF and infinite horizon optimal control approaches 

are limiting cases of our receding horizon strategy. The key results are illustrated 

using a familiar example, the inverted pendulum, where significant improvements in 

guaranteed region of operation and cost are noted. 

A requirement implied in these results was being able to solve the optimizations 
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globally. This assumption is removed in Chapter 3 and it is shown that the optimality 

can be replaced by an improvement property. Specifically, it is shown that in order 

to guarantee stability, it suffices to satisfy an improvement property, thereby relaxing 

the requirement that truly optimal t rajectories be found. A numerical example using 

the same inverted pendulum is presented to illustrate this point. 

Furthermore, several approaches for obtaining CLF suitable for receding horizon 

purposes will be discussed in Chapter 4. The methods used range from Jacobian 

linearization of the nonlinear plant and designing an LQR controller , to using convex 

optimization techniques to come up with quadratic CLFs and finally Linear Param

eter Varying (LPV) methods for quadratic and state dependent control Lyapunov 

functions. 

The practical portion of the thesis deals with the application of receding hori

zon/CLF methods developed earlier in this thesis to models of a flight control ex

periment developed at Caltech. The experiment is a tethered flying wing with a fan 

and a duct , hence, it is called "ducted fan ." The dynamics of the system are rep

resentative of a Vertical Landing and Take off (VTOL) aircraft, such as a Harrier 

around hover or a thrust vectored aircraft such as F18-HARV or X-31 in forward 

flight. Therefore, it serves as a perfect testbed for the purpose of this thesis. This 

section starts from Chapter 5. In this chapter, the Caltech ducted fan experiment is 

completely described and two models of the experiment , one in hover mode and one 

in forward flight, are developed and discussed. Several simulations are performed and 

comparisons are made between different results. 

All the chapters so far deal with the problem of regulation. We briefly touch on 

the subject of trajectory generation in Chapter 6. Since trajectory generation is an 

inherently difficult problem, a simplified model of the ducted fan is developed for 

trajectory generation purposes. The generated trajectories are used as reference in 

a receding horizon scheme and trajectories for the full model are generated in this 

fashion. Finally, conclusions are presented in Chapter 7. 
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Chapter 2 Receding horizon control 

2.1 Problem setting 

The nonlinear system under consideration is 

i; = f(x,u) 

where the vector field f : ]Rn x ]Rm ----+ ]Rn is C 2 and possesses a linearly controllable 

critical point at the origin, e.g., f(O,O) = 0 and (A, B) := (D1f(0, 0), Dd(O, 0)) is 

controllable. We require the set f(x,]Rm) c ]Rn to be convex for each x E ]Rn. Given 

an initial state x and a control trajectory u(·), the state trajectory xU
(-; x) is the 

(absolutely continuous) curve in ]Rn satisfying 

for t ~ O. We require that the trajectories of the system satisfy an a priori bound 

Ilx(t)11 ~ j3(x, T, Ilu(')lld < 00, t E [0, T], 

where j3 is continuous in all variables and monotone increasing in T and Ilu(-) IiI = 

Ilu(·) IILJ(O,T)' Most models of physical systems will satisfy a bound of this type. 

The performance of the system will be measured by a given incremental cost 

q : ]Rn x ]Rm ----+ ]R that is C 2 and fully penalizes both state and control according to 

for some cq > 0 and q(O , 0) = O. We further require that the function u H q(x, u) be 

convex for each x E ]Rn. These conditions imply that the quadratic approximation of 
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q at the origin is positive definite , D2q(O, O) 2:: cqI > O. 

\¥e will also suppose that f and q are sufficiently compatible to uniquely define 

a C 2 Hamiltonian for the (optimized) system [LM67]. In particular, we will require 

that there is a C 2 function u * : ]Rn x ]Rn -+ ]Rm : (x , p) H U * (x, p) providing a 

global minimum of the pre-Hamiltonian K(x ,p, u) := pT f( x, u) + q(x, u) so that the 

Hamiltonian H(x,p) := K(x,p,u*(x,p)) is C2
. Such a u*(·,·) is locally guaranteed 

by the implicit function theorem (though we would require f , q E C 3 ). Note that 

this condition is trivially satisfied for control affine f and quadratic q (for then u H 

K (x, p, u) is strictly convex and real analytic). 

The cost of applying a control u(·) from an initial state x over the infinite time 

interval [0 , (0) is given by 

The optimal cost (from x) is given by 

J~ (x) = inf Joo (x , u(·)) 
u(-) 

where the control functions u( ·) belong to some reasonable class of admissible controls 

(e.g., piecewise continuous) . The function x H J~ (x) is often called the optimal value 

function for the infinite horizon optimal control problem. For the class of f and q 

considered, we know that J~ is a positive definite C 2 function on a neighborhood 

of the origin. This follows from the geometry of the corresponding Hamiltonian 

system [vdS91 , vdS94]. In particular, since (x,p) = (0 , 0) is a hyperbolic critical 

point of the Hamiltonian vector field XH(x ,p) := (D2H(x,p), -DIH(.T,p))T, the 

local properties of J~ are determined by the linear-quadratic approximation to the 

problem and, moreover, D2J~(0) = P > 0 where P is the stabilizing solution of the 

appropriate algebraic Riccati equation. 

For practical purposes, we are interested in approximating the infinite horizon 

optimization problem with one over a finite horizon. In particular, we would like to 
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somehow take the discarded tail of the cost into account. To do this , let 11 be a 

nonnegative C2 function and define the finite horizon cost (from x using u(·)) to be 

and denote the optimal cost (from x) as 

J;(x) = infJT(x, u(·)). 
u(-) 

As in the infinite horizon case, one can show, by geometric means , that J:;' is locally 

smooth (C 2
). Other properties , e.g., local positive definiteness , will depend on the 

choice of 11 and T. As we will see in the sequel, certain choices of 11 will allow us to 

keep the desirable features of the infinite horizon problem. 

Let roo denote the domain of J~ (the subset of]Rn on which J~ is finite). It is 

not too difficult to show that the cost functions J~ and J:;', T ~ ° are continuous 

functions on r 00 using the same arguments as in proposition 3.1 of [BCD97]. We 

make the following assumption. 

Standing Assumption (SA): The minimum value of cost functions J~, J:;' , T ~ 0, 

is attained. 

The assumption (SA) guarantees the existence of an optimal trajectory 

(x;,(t; x), u;'(t; x)), t E [0, TJ, 

such that 

JT(x, u;,(· ; x)) = J:;'(x) . 

Continuity of uT(.; x ) follows directly from Pontryagin's Maximum Principle. This 

trajectory is not necessarily unique. In fact, in examples one finds two trajectories of 

equal (minimal) cost originating at points where J:;' is only continuous (and not dif

ferentiable). Under assumptions of the sort given (convexity, boundedness, etc.), one 

can turn (SA) into a proposition. This involves the use of techniques from regularity 
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theory and the direct methods of the calculus of variations; see [Ces83] and [BMH98]. 

It is easy to see that J~ is proper on its domain so that the sub-level sets 

are compact and path connected and moreover roo = U r>O r~ . Note also that r oo 
may be a proper subset of]Rn since there may be states that can not be driven to the 

origin. We use r2 (rather than r) here to reflect the fact that our incremental cost is 

quadratically bounded from below. We refer to sub-level sets of JT and 11 using 

r~ := path connected component of {x E roo : J:;'(x) ::; r2} containing 0, 

and 

Dr := path connected component of {x E ]Rn : lI(x) ::; r2} containing 0. 

2.2 Infinite and finite horizon optimization 

In this section , we explore some of the relationships between an infinite horizon opti

mal control problem and its finite horizon approximations. We will show that the use 

of an appropriate terminal cost allows us to retain desirable features of the infinite 

horizon problem. 

2.2.1 Infinite horizon properties 

What infinite horizon problem properties are interesting for finite horizon approxima

tions and, in particular , are useful for receding horizon strategies? This is a question 

that we intend to answer in this section. 

Let (x~, u~)(·; x) be any optimal trajectory originating at x. Then, for any 6 > 0, 

we have 

(2 .1) 
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Since, by (SA), T f---t 'U, ~(T; x) is continuous for T 2:: 0, we see that 

so that J~ possesses a well defined (negative definite) directional derivative in each 

optimal direction f(x, u~(O; x)). In fact, we may write 

j~(x, u~(O; x)) + q(x, u~(O; x)) = 0 (2.2) 

where j~(x, u) is the directional derivative of J~ in the direction f(x, u) (when it 

exists). (At points of differentiability, j~(x, u) = DJ~(x) . f(x , u).) 

We conclude that each sub-level set r~, r > 0, is positively invariant under 

optimal actions , both incremental (6 > 0) and infinitesimal. Also , in all cases, these 

sets are attracted to the origin exponentially fast. In particular, the (not necessarily 

unique) feedback u = koo(x) := u~(O; x) exponentially stabilizes the origin. 

2.2.2 Finite horizon properties 

As noted above, one may use optimal (infinite horizon) actions to provide a stabilizing 

feedback for a nonlinear system. It is natural to expect that a similar result would 

be possible using a finite horizon optimization. For instance, one could implement a 

Teceding horizon scheme as follows. From the current state x (t) , obtain an optimal 

trajectory (X~,U~)(T;X(t)), T E [O,T], and use as feedback u(t) = uHO;x(t)). (This 

feedback is not uniquely defined at points where more than one optimal trajectory 

is available.) This approach requires one to continuously re-solve the finite horizon 

optimization. An alternative scheme is to solve the finite horizon optimization every 

6 > 0 seconds and use the control trajectory U~(T; x(t)) , T E [0 , 6]' to drive the 

system from x(t) at time t to x~(6,x(t)) at time t+6. (Practically speaking, a better 

idea is to use a local tracking controller to regulate the system about the desired 

trajectory (x~, U~)(T; x(t)), T E [0,6].) We will denote this receding horizon scheme 

as R1i(T, 6). One might also consider using a variable 6k, which will be denoted 
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as R1l(T, {od). Note that the receding horizon strategy defined a (sampled data) 

f eedback law in contrast with the one shot use of an open loop optimal trajectory. In 

defining (unconstrained) finite horizon approximations to the infinite horizon problem, 

the key design parameters are the terminal cost function 1/ and the horizon length T 

(and, perhaps also , the increment 0). What choices will result in success? 

It is well known (and easily demonstrated with linear examples), that simple 

truncation of the integral (i.e. , t ! = 0) may have disastrous effects if T > 0 is too 

small. Indeed, although the resulting value function may be nicely behaved, the 

"optimal" receding horizon closed loop system can be unstable! 

A more considered approach is to make good use of a suitable terminal cost 1/. 

Evidently, the best choice for the terminal cost is 1/ (x) = J~ (x) since then the 

optimal finite and infinite horizon costs are the same. Of course, if the optimal value 

function were available there would be no need to solve a trajectory optimization 

problem. \Vhat properties of the optimal value function should be retained in the 

terminal cost? To be effective, the t erminal cost must account for the discarded tail 

by ensuring that the origin can be reached from the terminal state xU(T ; x) in an 

efficient manner (as measured by q). One way to do this is to use an appropriate 

control Lyapunov function (CLF). 

A contr'ol Lyapunov function (CLF) IS a C 1
, proper, positive definite function 

11 : ]Rn -+ ll4 such that: 

(2.3) 

If it is possible to make the derivative negative at every point by an appropriate choice 

of 'U, then we have achieved our goal and can stabilize the system with 11 a Lyapunov 

function for the closed loop that we choose. This is exactly the condition given in 

(2.3). It can be shown that the existence of a eLF is equivalent to the existence of an 

asymptotically stabilizing control law u = k(x) which is smooth everywhere except 

possibly at x = 0 [Art83]. Moreover, one can calculate such a control law k when the 

system is affine in control , i.e., f(x, u) = j(x) + g(x)u, explicitly from j, 9 and 1/ 
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[Son89]. To this end, suppose that 1/ is a proper C2 function satisfying 1/(0) = 0, 

x E jRn, 

and that is compatible with the incremental cost in the sense that 

min (11 + q)(x, u) ~ 0 
u 

(2.4) 

on a neighborhood of x = O. Here V(x, u) := D1/(x) . f(x, u). 

Indeed, the feedback 

u = kv(x) := u*(x, D1/(xf) (2.5) 

stabilizes the origin. Note that 1/ can be thought of as a control Lyapunov function 

which is also an upper bound on the cost-to-go. The maximum principle ensures 

that 1/ = J~ also satisfies (2.4) according to (2 .2). Continuity and properness of 1/ 

guarantee the existence of a continuous nondecreasing function r H Cv (r) such that 

1/(x) ~ cv(r)llxI12 for all x E Dr so that x rt Dro implies that IIxl1 2 ;::: r5/cv(ro). Also, 

let rv > 0 be the largest r such that (2.4) is satisfied for all x E Dr. 

The following result provides a basis for the use of finite horizon optimization in 

a receding horizon control strategy (cf. [JYH99b]). 

Theorem 2.2.1 Suppose that x E jRn and T > 0 are such that 

(2.6) 

Then, for each 0 E [0, T], the optimal cost from xr (0; x) satisfies 

(2.7) 

Note that (xr, ur)(-; x) can be any optimal trajectory for the problem with horizon 

T. 



18 

Proof: Let (i(t) , u(t)), t E [0,2T], be the trajectory obtained by concatenating 

(xy , Uy)(t; x), t E [O,T], and (Xk ,uk)(t-T;xT(T ;x)) , t E [T, 2TJ. Here, (Xk,Uk)(S ;xo) 

is the closed loop trajectory starting from Xo at time s = 0, 

where u = k(x ) is any feedback law such that pi + q)(x , k(x)) ::; ° for x E nr v ' e.g., 

that defined by (2.5). Consider now the cost of using u(·) for T seconds beginning at 

an initial state Xy(o; x ), 0 E [0 , TJ; see Figure 2.1. We have 

{TH 
JT( Xy(o; x ), u(·)) = i b q(i (T), U(T)) dT + V(i(T + 0)) 

J;'(x) -lb 
q(:ry (T; x ), 'Uy(T; x)) dT - V(xy(T; x)) 

{TH 
+ iT q(i(T) , U(T)) dT + F(i(T + 0)) 

where we have used the fact that q(i (T) , U(T)) ::; -1i (i(T) , U(T)) for all T E [T, 2TJ. 

The result follows since the optimal cost satisfies J;'(Xy(o; x)) ::; JT( Xy (o; x), u(·)). 

D 

The following corollary [JYH99b, NMS98 , rvIS97J easily follows : 

Corollary 2.2.1 Suppose the eLF is replaced by the infinite horizon cost-to-go re

sulting from the application of an a priori obtained stabilizing controller, such as the 

one defined in {2.5}. Then {2.7} still holds. 

Pmof: The proof easily follows that of Theorem 2.2.1. D 

At this point, one is tempted to conclude that our approach to approximating the 

infinite horizon problem using a CLF terminal cost has been successful. After all, 

(2.7) is an appropriate approximation to (2.1) for invariance purposes. In fact , Theo

rem 2.2.1 is sufficient to conclude the desired invariance and attractiveness properties 
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Figure 2.1: eLF sub-level set Sl"v as well as Xy(-) and x k(-). 
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in the case that 1/ is a global CLF for then that pesky "if" condition (2 .6) will be 

trivially satisfied. 

The situation when V is but a local CLF is much more delicate. Indeed, we 

must determine conditions under which (2.7) will hold under iteration of the receding 

horizon map, i.e. , whether xy(T;xT(b";x)) E Orv holds. One way to ensure success is 

to solve a constmined optimization that imposes such a condition; see, e.g., [NMS98, 

MM93]. We will show that such an approach is unnecessary. 

We begin with a surprising lemma that helps us control the behavior of the ter

minal state of optimal trajectories. 

Lemma 2.2.1 Suppose that x E Or, T :::; Tv' Then xT(T; x) E Or for every T 2: O. 

Pmoj: As before, let (x\ uk)(t; x), t 2: 0, be the trajectory (starting at x) obtained 

using a feed back control 'U = k (x) satisfying (1) + q) (x , k (x)) :::; 0 on Orv' The optimal 

cost with horizon T 2: 0 satisfies 

Thus, 

J;(x) < rT 

q(xk(T; x), Uk(T; x)) dT + V(xk(T; x)) 
.fo 

< lT -V(Xk(T;X),Uk(T;X)) dT+ V(xk(T ;.T )) 

V(x) :::; r2 . 

V(xy(T; x)) rT 

J:;(.T) - Jo q(Xy(T; x), Uy(T; x)) dT 

< J;( x ):::; V(x) :::; r2 . 

D 

Note that Lemma 2.2.1 does not say that xT(t; x) E Orv for all t E [0, T] when 

x E Or". This is false in general as simple examples show. Indeed, one might say 

that methods that attempt to maintain the invariance of Or, r :::; r v, are inefficient. 

(lVloreover, adding constraints of that sort also drive up the computation cost.) 

Figure 2.2 depicts the situation for a linear system with quadratic incremental 

cost. The (smaller) elliptical region is an invariant (sub-level) set for the chosen ter-
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Figure 2.2: Optimal trajectories that enter [lrv need not stay in [lrv . 

minal eLF (and corresponding controller). The trajectory originating at (-0.5,0.1) 

is optimal for T > 5. Note that sub-level sets of the terminal eLF are not invariant 

under optimal (incremental) flow. The shape of the sets that are invariant (sub-level 

set of Jr) is indicated by the larger (truncated) ellipse. 

The elliptical region represents an invariant set defined by a quadratic Lyapunov 

function , whereas the larger set is the region of attraction of the infinite horizon 

control law. As it can be seen in this figure, the trajectories starting in [lrv need not 

stay there for all t E [0, T]. 

One might say that methods that attempt to maintain the invariance of [lrv are 

inefficient Since the available methods either require a terminal equality or inequality 

constraints which further add to the computational burden. 

A key motivation for using on-line optimization is to enlarge the operating region 

for a controller. We are now in a position to show that the receding horizon controller 

does at least as good a job as the eLF controller, from the point of view of theoretical 

operating region predictions. 

Proposition 2.2.1 For all T ~ 0, x E r~ implies that xy(T ; x) E [lrv . Moreover, 
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n rv c r~, for all T :::: o. 

Proof: Let T :::: 0 and x E r~, and note that 

V(x~(T; x)) ::; r; -IT q(X~(T ; x), U~(T; x)) dT < 

The second statement was proved in the proof of Lemma 2.2 .1. Figure 2.3 illustrates 

the set inclusions. o 

, 
\ 

\ -~ - - -. / ... 

". 

; 
~' j.. ' -

. .. . . .... .... .... .. (/ .. 
" 

r T == { I J * ( ) < 2 } r X T X _rv 
" 

Figure 2.3: CLF sub-level set nrv and r;.:. The optimal trajectories starting on r~, 
end up inside nrv after T seconds. 

Recall, however , that a key motivation for using on-line optimization is to enlarge 

the operating region for a controller. Moreover, in many cases, the best that one can 

hope for is a local CLF. 
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The following result provides a performance guarantee for our receding horizon 

control strategies. 

Proposition 2.2.2 Suppose that T , r > ° are such that xr(T; x) E Dr" for all x E f;. 
Let Xo E f; and consider a trajectory (Xrh(t), Urh(t)), t ;::: 0, resulting from the use of 

a receding horizon strategy R1i(T, {Ok}) (with Ok > 0, 2.:~=o Ok -+ 00 as I -+ (0). 

Proof: Consider, at first, the use of R1i(T, 0) with constant 0 > 0. The receding 

horizon strategy defines a sequence of points {Xk} ~=o according to 

starting with Xo so that Xk = x(ko). Now, by the principle of optimality, the cost of 

the arc from Xk to Xk+l is given by 

Hence, the total cost of this strategy is 

00 

J:r(Xo) + L {J:r(Xk) - J:r_li(Xk)} 
k=l 

where the final inequality follows from the fact (shown in Proposition 2.2.3) that 

J,T(Xk) ::; J';'_li(Xk) for all <5 ;::: ° and all k ~ 0. Clearly this result does not require 

o > ° to be constant but merely that 2.:~=o Ok -+ 00 as I -+ 00. 

The case of receding horizon control with continuous update follows by a limiting 

argument. 

o 
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The above proposition generalizes the fact that 

(V + q)(X(t), U(t)) :::; 0, t;:::: ° ===} 100 

q(X(T), U(T)) dT :::; 1/" (x(0)) 

when 11 is positive definite (implying x( t) -t 0). In both cases, we obtain an upper 

bound on the cost for a family of trajectories. We also point out that the cost of 

using a receding horizon control strategy approaches the infinite horizon cost as the 

horizon T is increased since J~(xo) :::; Joo(xo, Urh(·)) :::; J;(xo) and J;(xo) -t J~(xo) 

as T -t 00. 

We are now ready to show that application of the receding horizon strategy results 

in the exponential convergence of the trajectory to the origin: 

Theorem 2.2.2 Let T > ° and consider the use of a receding horizon scheme R1l(T, {Ok}) 

with each Ok E (0, T] and L::;=o OJ -t 00 as k -t 00. Then, for each Xo E r~T)' the 

resulting trajectory converges to the origin exponentially fa st, where r(T) is the largest 

radius such that for each Xo E r~T)' xT(T; xo) E Drv· 

Proof: Given T > 0, set CT and moo such that J;(x ) ::; cT llxl1 2 \Ix E r~T) and 

J~(x) ;:::: moo llxl1 2 \Ix E r~T) . Let (XRH(t), URH(t)), t ;:::: 0, be the receding horizon 

trajectory originating from an arbitrary Xo E r~T) and define 

(The control trajectory U RH (-) is piecewise continuous since each optimal control tra

jectory uT( t; x), t ;:::: 0, is continuous as a function of time.) As shown in Propo

sition 2.2.2, W(t;xo,URH (·)) ::; J;(XRH(t)) . Also, since R1l(T, {5d) is a suboptimal 

strategy, J~(XRH(t)) :::; W(t; XO, URH (·)). Now, since q(XRH(t), URH(t)) -t ° as t -t 00, 

we have 

-q(XRH (t), URH(t)) 

< -cqllxRH(t)W 
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< _ Cq 
J';(XRH(t)) 

CT 

< - CqW(t;XO,URH (·)) 
CT 

so that W(t; Xo, URH (·)) ::; e- *tTV(O ; Xo, URH (·)). The result follows since 

moo llxRH(t)112 < J~(XRH (t)) ::; TV(t;XO,URH (-)) 

< e- *tW(O; Xo, URH (·)) ::; e- *t J';(xo) 

D 

Note that the optimal control ul,(-; x) is uniquely defined in a neighborhood of 

the origin since J'; (.) is locally C 2 so that the locally defined instantaneous receding 

horizon control U = kT(x) := uT(O; x) (i.e., <5 = 0) defines a feedback providing local 

exponential stability of the origin. Indeed, the resulting feedback law is identical to 

that obtained by solving the associated Hamilton-Jacobi-Bellman PDE. When there 

are states x possessing multiple optimal trajectories (as occurs in the example below), 

it is no longer clear that an instantaneous receding horizon control can be successfully 

employed. From a practical point of view, the restrict ion to <5 > 0 is quite sufficient 

as some computation time is always required. 

Theorem 2.2.2 says that for every fixed T > 0, the receding horizon scheme using a 

T-horizon optimization is effective. What it does not say, in particular, is that we may 

vary T and expect a stable process, i. e., stability is not guaranteed (by our results) 

when the different horizon lengths are allowed at each receding horizon iteration. 

Note that the dual mode approach described in [MM93] uses (actually requires) a 

variable optimization horizon. In that case, stability is ensured by switching to a 

stabilizing (linear) controller when close to the equilibrium. In contrast, we note that 

one does not need to use a fixed <5 when implementing a receding horizon scheme 

since (2.7) implies that xT(<5; x) E r;" for all <5 E (0, T]. The stability results are thus 

independent of <5. 
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As was mentioned in the introduction, a major issue which to the best of our 

knowledge has not been addressed rigorously, is the region of attraction of receding 

horizon control strategies. 

One expects that the region of effectiveness should grow as the optimization hori

zon T is increased, eventually covering all of foo. This can not be done without 

increasing r beyond r v as the following result on inclusions shows. 

Proposition 2.2.3 Let r > 0 be given and suppose that T > 0 is such that 

for all x E f;: . Then 

for all Tl 2': T so that, in particular, f;: c f~. 

Proof: Using (an extended version of) u(·) from the proof of Theorem 2.2.1, we see 

that 

JT1 (x, u(·)) iT q(x;,(r; x), u~(r; x)) dr + LTI q(i;(r), u(r)) dr + V(i;(Tl)) 

< iT q(x~ (r; x), u~(r; x)) dr + V(x~(T; x)) = J;,(x). 

It follows that Jr1 (x) ::; Jr(x) for all x E f;: (cf. [MS97]). D 

An important question is whether there exists a suitable horizon length for any desired 

radius r. The following result guarantees the existence of a suitable optimization 

horizon for a given (desired) radius r. 

Proposition 2.2.4 For any r > 0 there is a Tv = Tv(r) such that 

for all x E f~ and all T 2': Tv (r). In particular, xT(T; x) c DT v for all x E f;:. 
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Proof: First, note that J;(x) is bounded (hence well defined) on f~ for all T 2': 0 

since 

where bv(r) := maxxEr?" V(x). Next, we note that, regardless of the horizon length 

T , the trajectory Xy (.; x) must enter the set nr" within a bounded interval of time. 

Indeed, let x E f~ and T > 0 be arbitrary and suppose that xT( t ; x) rt. nrv on an 

interval t E [0, t1)' In this case, the optimal cost satisfies 

Combining the two inequalities, we see that, for T > 0 sufficiently large, xy('; x) must 

enter nrv with the first arrival time t1 (x , T) satisfying 

In particular, we see that using Tv = t1 (r) + E, E > 0, guarantees the existence of 

times t 1(x) < Tv, x E f~, such that V(xijh(x); x)) ::; r;. The result xyJTv; x) E nrv 

follows by Lemma 2.2.1 completing the proof. D 

The following corollary follows immediately from the above Proposition. 

Corollary 2.2.2 Let Xo E f oo be arbitrary. There exist r, T < 00 such that 

1. Xo E int f;: 

2. xy(T ; x) E nr ,. for all x E f;: 

Proof: Use r2 = J~(xo) + r; + E, E > 0, and T = Tv(r). D 

This also shows that f OO is an open set. 

We are now prepared to present the following theorem: 
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Theorem 2.2.3 Let A be a compact subset of roo . There is a T < 00 such that A 

is contained in the exponential region of attraction for the receding horizon strategy 

'R1-l(T,5) for every 5 E (O,TJ. 

Proof: For each x E A, let U(x) = int r~~) where T(x) and r(x) are given by 

Corollary 2.2.2. The collection {U(X)}xEA is an open cover of A. By compactness, 

there is a finite sub-cover {U(Xi)}i ::; N. Setting Tt = T(Xi) and ri = r(xi) we see that 

A c U r~ c U r~m c r;;:: 
i<N i::; N 

where Tm = maXi Ti , rm = maXi ri and the last two inclusions follow from Proposi

tion 2.2.3. 

Setting T = Tm (and r = rm) we see that xT(T; x ) E Drv for all x E r; ~ A. The 

result follows since (2.7) ensures that xy(5; x) E r; for all 5 E (0, TJ. 0 

Theorem 2.2.3 tells us that we may make the effective operating region of a re

ceding horizon control strategy as large as we like (relative to the infinite horizon 

operating region). Of great importance is the fact that this result is obtained using 

finite horizon optimization without imposing any constraints on the terminal cost. 

2.3 Unconstrained receding horizon control with 

no terminal cost 

One would expect that as the horizon length grows, the effect of the terminal cost 

should diminish. In fact, it has been shown that when stability is enforced by terminal 

stability constraints, the effect of these constraints diminishes as the horizon length 

is increased [CM96, SR98J. Therefore, it would be reasonable to ask whether there 

exists a finite horizon length such that the receding horizon scheme would remain 

stabilizing without using a CLF as a terminal cost. 

We know that in the infinite horizon case, the minimum cost qualifies as a Lya

punov function. Also, we know that as T -7 00, Jy. -7 J~. The remaining question 
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is whether there is a (large enough) finite horizon length for which the minimum cost 

qualifies as a suitable Lyapunov function. This question was answered fairly recently 

in the context of constrained discrete-time linear systems [PNOOj. We will show that 

a similar result holds in the case of unconstrained nonlinear systems. Before proving 

this result, we will need the following definition and proposition [Roy88j : 

Definition 2.3.1 An extended real-valued function f is called upper semicontinuous 

at the point y if f (y) =1= +00 and f (y) :::: limx-ty f (x) . We say that f is upper 

semicontinuous on a set if it is upper semicontinuous at each point of that set. 

Proposition 2.3.1 (Dini): Let {fn} be a sequence of upper semicontinuous, real

valued functions on a countably compact space X , and suppose that for each x E 

X , the sequence {fn(x)} decreases monotonically to zero. Then the convergence is 

uniform. 

Now we are ready to present the following theorem: 

Theorem 2.3.1 Consider the receding horizon scheme Rll(T, 6) with zero terminal 

cost. Then there exists a T* such that for T :::: T*, Rll(T, 6) is stabilizing with f;T-<5 

being the region of attraction, where for any given r > 0, rT > 0 is the largest value 

such that f ;;<5 C f~. 

Proof: Using the principle of optimality, we can write the following: 

where Jr( x) := JOT q(xy(r; x), uy(r; x))dr, l. e., the same as before except for zero 

terminal cost. 

Adding Jr_o(x) to both sides of (2.8), and taking Jr(x) to the other side, we 

obtain the following: 
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Also, note that contrary to the case with a eLF terminal cost, the shorter the 

horizon length, the lower the cost value. To see this, suppose T1 < T2 , then 

which is clearly greater than JY,l (x). Therefore, we can write the following inequalities: 

J;(x) ::; 115 

q(X~(T;X),U~(T;X))dT 0 < 5::; T. (2.10) 

The last inequality follows from the fact that u~ is not (necessarily) optimal over 

[0 , 5]. Hence, we can write (2.9) as the following inequality: 

(2.11) 

Also, (2.10) implies that the finite horizon sub level sets are indeed larger than the 

infinite horizon ones, i.e., 

r~ c r~ \:j r > O. 

All we need in order to prove stability is to show that there exist a large enough but 

finite T* such that the right-hand side of (2.11) is positive. To show this, we define 

the following function over the compact set r~: 

<I>T(X) 
J~ (.'E ) - Jy,(x) 

.- \:j x # 0 
J;(x) 

(2.12) 

It is clear that for each x =I- 0, <I>T(X) is continuous, because the numerator of <I>T(X) 

is continuous and the denominator is continuous and non-zero. Hence it is also upper 

semicontinuous everywhere except possibly at the origin. In order to show that <I>T(X) 

is upper semicontinuous at the origin as well, all we need to prove is that <I>T(O) =I- 00. 

The rest is clear from definition 2.3.1 and the definition of <I>T(O). 

Also, note that for all non-zero values of x E r~, the sequence {<I>T(X)} 1S a 
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monotone, decreasing sequence , tending to zero as T -+ 00. We must show that 

<PT(O) is bounded and converges to zero when T -+ 00 as well. This is true due to the 

fact that around the origin, Jy(x) = XTpTx + rT(x ), J~(x) = xTpccx + rcc (x ), and 

J;(x ) = xT Pox + ro(x ) where PT, Po , and Poo are the positive definite solutions of 

the corresponding differential and algebraic Riccati equations respectively [DAC95], 

and 
. ri(x ) . 
~~ IIxll2 = 0 ~ = {T, 00 , 6}. 

Therefore, in a small neighborhood of the origin we have: 

as T -+ 00. This also proves that <PT(O) is bounded from above, showing that <PT(X) 

is upper semicontinuous at the origin. The same argument can be used for <PT- O (x ), 

by merely replacing T with T - 6. 

We can now conclude that {<PT-O(X)} is a sequence of upper semicontinuous 

functions that converges monotonically and pointwise to zero; therefore by Propo

sition 2.3.1 , the convergence is uniform. 

Hence, by the definition of uniform convergence, there exists a T* such that for 

any T ~ T *, <PT-O < ~, implying that 

J~(x) - JT_O(x) < ~J;(x). 

Thus, 

(note that J~(x) ~ JY(x)). This implies that Jy_o(x ) is a Lyapunov function proving 

asymptotic (and in fact exponential) stability of the closed-loop system with f;T being 

the region of attraction, and r~ being the value of the largest sub level set of Jy_o(x ) 

that lies inside f~ , for any given r > O. (See Figure 2.4 for an illustration of the set 

incl usions) . o 
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Figure 2.4: The region of attraction r~ (in gray) as well as f;: -8 (dotted line) and 
r~ (solid line). 
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The main consequence of this theorem is that when the horizon length is long enough, 

no off line calculation is required to ensure closed-loop stability. This opens up the 

possibility of using the receding horizon scheme in cases where the dynamics and/or 

the cost change in real-time (such as when a fault occurs). A practical application of 

these results will be demonstrated in Chapter 6. 

2.4 Unconstrained receding horizon control with 

magnitude saturation 

As it was mentioned in Chapter 1, one of the main attractions of the receding horizon 

control scheme is its ability to handle input constraints. Due to physical limits in 

actuation authority, any practical control strategy has to be able to cope with these 

types of constraints. 

In this section we formulate a slightly different optimization scheme for inclusion 

of magnitude constraints on controls, i.e., instead of explicitly imposing the magni

tude constraints in the optimization, we use a smooth saturating function such as 

a hyperbolic tangent function to implicitly impose the saturation constraint. The 

optimization problem to be solved can be written as follows: 

subject to : i; = f(x, O"(v)) U = O"(V) 

where 0"( v) = tanh (v) is a smooth saturating function. Note that the above 

optimization problem is effectively similar to the one with the magnitude constraint 

and with U as an input except for the fact that by eliminating the constraint we have 

kept the problem as unconstrained. The extra penalty term is added to force the 

control to stay in the linear part of the saturation curve. 

In order to be able to utilize the stabilizing receding horizon approach developed 
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in this chapter in this case, we have to use a CLF that respects the input constraint. 

Since such CLFs are extremely hard to come up with in general, we will use the 

same unconstrained CLF. However, we have to reduce rv , the radius of the region 

of attraction, such that the input constraints are satisfied. We would search for the 

largest level set of the CLF which satisfies minl lul l ~I(V + qe)(x, u) S 0, where qe is 

the modified cost functional including the extra term ~ Ilv - ull~. Without loss of 

generality, we have assumed a unity bound on the magnitude of control action. This 

way we have implicitly taken the saturation into account without searching for a 

constrained CLF or imposing the constraints on the optimization. 

2.5 Example 

For the purpose of illustration, we consider the problem of balancing an inverted 

pendulum on a cart. We discard the states associated with the cart to allow two

dimensional visualization. (Please note that this is a highly unrealistic system as it 

allows equilibria where the cart is experiencing continuous acceleration-the system 

is for visualization only.) The pendulum is modeled as a thin rod of mass m and 

length 2l (the center of mass is at distance l from pivot) riding on a cart of mass Iv! 

with applied (horizontal) force u. The dynamics of the pendulum are then given by 

(with 61 measured from the vertical up position) 

61 
gil sine - m riP/2 sin2B - mr/ml cose u 

4/3 - mr cos2 61 

where mr = m/ (m + ll1l) is the mass ratio and g is the acceleration of gravity. Specific 

values used are m = 2 kg, II/I = 8 kg, l = 1/2 m, and g = 9.8 m/s2. 

System performance is measured using the quadratic incremental cost q(x, u) 

o.l.Ti + 0.05x§ + 0.01u2 where as usual the state is (Xl, X2) = (61, iJ). To obtain an 

appropriate control Lyapunov function, we modeled the system locally as a Poly topic 

Linear Differential Inclusion (PLDI) [BGFB94]. This approach is quite satisfactory 

for this simple (planar) system over a large range of angles. (The details of obtaining 
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such CLFs will be discussed in detail in Chapter 4.) Working over a range of plus or 

minus 60 degrees, we obtained the quadratic CLF lI(x) = xT Px with 

P = [151.57 42.36] 

42.36 12.96 

Simple numerical calculations (in low dimensions!) show that r v ~ 6.34, that is , 

minu(1! + q)(x, u) is negative on solid P-eUipses Or with a radius r < 6.34. An 

optimization technique that can be adapted to the problem of computing rv in higher 

dimensions can be found in [LH93]. 

J~(x) = 6.342 for T =0.3 

-4 -3 -2 -1 o x1 (rad.)1 2 3 4 

Figure 2.5: The sublevel set r; for T = 0.3 and r = r v = 6.34 together with Orv ' 

Also depicted are the trajectories xr (-; x) for x on the boundary of r;:. 

By Theorem 2.2.2, we know that, for T 2: 0, r;: is an invariant subset of the region 
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of attraction for the receding horizon controller R1l(T, 6) with 6 E (0, TJ. Figure 2.5 

depicts the set r~, for T = 0.3, IV = 6.34 together with trajectories xT(·; x) for x on 

the boundary. Also shown is the set Dr". The inclusion Dr" C r~, (Proposition 2.2.3) 

is evident as is the fact that xT (T, x) E Drv for x E r;:. 
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Figure 2.6: Receding horizon R1l(0.3, 0.05) and eLF controller (dashed) trajectories. 

Figure 2.6 provides a comparison ofreceding horizon trajectories (for R1l(0.3 , 0.05)) 

with those obtained using the eLF controller u = k(x) = argminw (1! +q)(x, w). Note 

that r~, is not invariant under the eLF flow. As expected, the receding horizon tra

jectories do remain inside r;:. 
We also note that the eLF controller often reqUlres significantly more control 

authority. For example , as shown in Figure 2.7, the eLF controller demands almost 

15 times as much authority when stabilizing from Xo = (-3.5,5.9). (The pair orig-
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Figure 2.7: State and control trajectories (RH -solid and eLF-dashed) from Xo 

(-3.5,5.9). 
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inating at Xo = (-4.0, 7.5) has a ratio greater than 35.) This is not too surprising 

since the eLF controller was designed for angular deviations of perhaps 60 degrees 

and qualified on the set Drv. The chosen Xo is well outside of the guaranteed eLF 

performance region. In contrast, a small optimization horizon (T = 0.3 compared 

vvith a convergence time of> 1.5) allows the receding horizon controller to exploit its 

knowledge of the nonlinear system dynamics in this region. 

Some relevant quantities for the trajectories in Figure 2.6 are given in the follow

ing table (the square root of the cost is shown in parentheses): 

(-3.5,5.9) 40.10 10.23 (3.20) 184.21 (13.57) 
(-0.5,5.6) 40.18 38.26 (6.19) 113.47 (10.65) 
(-3.9 , 9.2) 39.96 7.92 (2.81) 80.07 (8.95) 
(-2.0,5.2) 42.41 31.29 (5.59) 35.14 (5.93) 
(-4.0,7.5) 39.90 2.00 (1.41) 155.98 (12.49) 
(0.0,3.7) 40.18 38.59 (6.21) 101.34 (10.07) 

( -3.3, 10.6) 40.25 17.64 (4.20) 27.74 (5.27) 
(-2.4, 5.7) 39.69 28.26 (5.32) 30.80 (5.55) 
(-1.5,7.5) 39.76 31.88 (5 .65) 80.30 (8.96) 

Table 2.1: The cost of receding horizon control for various T values (Vcost). 

These values confirm the fact (Proposition 2.2.2) that Joo(x, Urh(-)) :::; JT(x). In 

this case we see that significant performance improvements are obtained through the 

use of a relatively inexpensive receding horizon strategy. 

The appropriate finite horizon optimization problems were solved numerically us

ing RIOTS [Sch96] as well as some local codes that are under development. 

Table 2.1 illustrates the effectiveness of using various horizon lengths T in an 

unconstrained receding horizon scheme (with 6 = 0.05). The table compares the cost 

(and its square root) of using receding horizon control with T = 0.3 and T = 1.0 

with that resulting from the use of the eLF controller (T = 0.0). One observes a 

great reduction in cost for trajectories obtained using even modest amounts of online 
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optimization. We also see that near optimal (infinite horizon) performance may be 

obtained on a larger operating region by using a longer optimization horizon. See, 

especially, the results for x(O) = (n /2 , 2). 

Further insights into the contrasting nature of these trajectories can be found by 

presenting the trajectories in phase coordinates as in Figure 2.8. The r = 6.34 level 

set contours for F and J; are also shown in that figure. One notes how natural the 

receding horizon trajectories appear, especially by comparison to the corresponding 

CLF trajectories. 

One notes that, away from the stable manifold of the uncontrolled system, the 

cost of using the CLF controller may be very large. (In fact , the phase portrait of 

the CLF controlled closed loop system indicates that the CLF controller uses a great 

amount of control energy to quickly force the system onto a slow manifold for transit 

to the origin. Moreover , this behavior is observed in the large (at great cost) with 

small eddies such as that observed near (n/2,O).) 

We should point out that there is a curve of points where J~ is not differentiable 

that roughly parallels the r = 6.34 contour in a northwest direction from the CLF 

eddy. From those points, one finds two very different trajectories with precisely the 

same cost. The presence of such a shock (in the "solution" to the Hamilton-Jacobi 

equation) somewhat complicates the story by allowing kinks in the level sets. 

Surprisingly, our use of finite horizon approximations seems to improve the situa

tion somewhat. In fact, the use of receding horizon control with a CLF terminal cost 

allows us to, in effect, find near optimal trajectories over a larger region by exploit

ing local CLF stability properties. This will be discussed in more detail in Chapter 

3. We also mention that the optimal trajectories for this problem, even those that 

originate at points where the value function is not differentiable, appear to satisfy 

local second order sufficiency conditions for an isolated local minimum. In that case, 

reliable computations should be possible provided suitable initial trajectories may be 

obtained. 

As it can be seen from Figure (2.7), when no saturation is in effect, a large control 

action is required to stabilize the system, even in the case of the receding horizon 
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controller. Figure (2.9) illustrates what happens when the magnitude of the control 

action Ilull is required to be less than 60. In order for V to remain a valid CLF, r v is 

reduced from 6.34 to 4.5. However, by choosing a larger horizon length of T = 1, we 

can compensate for the reduction in the size of the region of attraction. Control and 

state trajectories are depicted in Figure (2.10). 

J~=4.52 for T =1 sec. with magnitude constraints 
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Figure 2.9: The sub level set r~ for T = 1.0 and r = rv = 4.5 together with Dru. Also 
depicted are the trajectories xT( ·; x ) for x on the boundary of r~ with magnitude 
constraints lui::; 60 from Xo = (-3.5,5.9). 
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2.6 Summary 

In this chapter, we have developed a family of receding horizon control strategies 

that obtain excellent stability and performance properties through the use of a control 

Lyapunov function as terminal cost. This approach is quite natural , providing a happy 

medium between the use of a CLF controller and an ideal infinite horizon controller. 

Of practical significance, we have shown that this approach does not require the 

introduction of terminal constraints for stability (such as the ones required by [Pri98]). 

As was discussed in Chapter 1, results of [Pri98] enforce stability by requiring that 

the derivative of CLF decreases sufficiently along the open-loop optimal trajectories. 

We have shown that such an approach is not necessary, thereby eliminating a key 

source of computational burden 

In fact , it appears that these computations may be made fast enough to allow 

their use even in challenging areas such as flight control. An implicit assumption 

in this chapter is that (globally) optimal trajectories are calculated precisely. This 

restriction will be relaxed in Chapter 3. An interesting direction is the extension 

of these techniques to the case of the trajectory tracking for nonlinear systems. Of 

course, the situation is much more complicated since the problem of finding useful 

trajectories of a nonlinear system is itself a rather difficult problem. A first step in 

that direction is the use of trajectory morphing techniques [HM98b, HM98a]. This 

will be addressed in Chapter 6. 
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Chapter 3 Relaxing the optimality 

condition in receding horizon control 

In the previous chapter, we have detailed the theoretical properties of ideal reced

ing horizon strategies wherein a global minimum is computed at each step. Only 

in very special cases (e.g., linear dynamics, strictly convex cost, etc.) can one ex

pect reliable (approximate) computation of a global minimum. It is the purpose of 

this chapter to illustrate one of the many ways in which this requirement may be 

relaxed. Several authors have addressed this issue in the context of constrained op

timization. The purpose of this section, however, is to show that without requiring 

constraint optimization in each iteration, stability can be guaranteed with the same 

approach of Chapter 2; see Chen and Allgower [CA98], and Scokaert, Mayne, and 

Rawlings [SMR99] for results of this nature. 

As was discussed earlier, receding horizon techniques produce a sequence of (state 

and control) trajectories with ever decreasing cost . Stabilization or, more precisely, 

convergence of the cost may be obtained by ensuring that there is sufficient improve

ment at each step. Thus we may replace the optimality test at each step by a test 

for improvement between steps. 

3.1 Relaxing the requirement for optimality 

The following result provides a sufficient condition to ensure convergence of the state 

to the origin. 

Proposition 3.1.1 Fix T, <5 > 0 and let Xi, Ui(·), i 2: 0, be such that XHI = XUi (<5 ; Xi ) 

and 

(3.1) 
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Then Xi -+ 0 as i -+ 00. 

Proof: Note that the sequence of costs Ci := JT( Xi , Ui( ·)) is monotone decreasing and 

bounded from below. It follows that the incremental cost 

must go to zero as i -+ 00, since the cost is lower bounded by zero and at each 

iteration there is sufficient amount of decrease. This implies that Xi -+ 0 since there 

is a/'\,> 0 such that f08 
q(XU(T; x), U(T)) dT 2 /'\,. min{l, Ilx112} for every u(·). 0 

How may we ensure, at each step, the existence of an improving control Ui+l (-)? 

Similar to the controller u (.) constructed in the proof of Theorem 2.2.1 , we can use 

a dual mode control. The difference here is the fact that the control need not be 

optimal over [6, T]: 

Proposition 3.1.2 Suppose that Xo and uo(·) are such that xuo(T; xo) E Drv. Then, 

there exists a sequence of controls {Ui(·)}r such thatxUi (5; Xi) = Xi+l -+ 0 as i -+ 00. 

Proof: Given Xi, Ui(·), choose Ui+l(·) such that XU
i+ 1 (T; Xi+l) E Drv and the im

provement property (3.1) is satisfied. One choice is the control obtained by using the 

remainder of Ui (.) in the interval [5, TJ, followed by a eLF feedback control (as in the 

proof of Theorem 2.2.1) for the interval [T, T + 5]. The rest of the proof follows that 

of Theorem 2.2.1. o 

One may (and many have) use constrained optimization to solve, at each step, a 

feasibility problem of the sort indicated. In that regard, the above result shows that 

the problem will remain feasible if it is initially thus. Also, since feasible controls may 

be obtained for free, we may use any means whatsoever (including unconstrained 

optimization) in our search for better controls, accepting only those that satisfy both 

terminal and improvement conditions. Specifically, we can use the results of Theorem 

2.2.2 to indicate that the sub level sets of the cost function JT( XU, u(·) is an estimate 

of the regions of attraction of the unconstrained receding horizon scheme. In other 
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words, one can infer all the results obtained in Chapter 2 in this case, by merely 

replacing the optimal trajectory 'Uy with any control trajectory that guarantees (3.1). 

Of course, there is always a need for an initial feasible trajectory. As was shown 

earlier, inside Dr)n one can use the CLF controller for warm starting the optimization. 

3.2 Inverted pendulum revisited 

The inverted pendulum example was used to illustrate the theoretical properties of 

our proposed receding horizon scheme in Chapter 2. We now use the same example 

to illustrate a very interesting phenomenon. It was mentioned in Section 2.5 that 

for long horizon lengths, the optimized trajectory behaves in a qualitatively different 

manner. See Figure (2.8). 

It is the purpose of this example to elaborate more on this issue and provide a 

clear-cut picture. For small values of the horizon length T, the set r~, looks very 

much like the ellipse Dr" which is reasonably well lined up with the stable manifold 

of the pendulum. As the value of T is increased, the ends of r~ begin to open up , 

eventually wrapping back around toward the inverted equilibrium, indicating that it 

can be efficient (from a cost standpoint) to allow the pendulum to swing down before 

bringing it back up to the vertical position. Figure 3.1 depicts the nature of this 

wrap-around for T = 2.0 and r = r v = 6.34. The set r;v is shown without an overlap 

by plotting half of the set boundary which, together with trajectories starting on the 

boundary, provide an unwrapped view of the set. 

Figure 3.2 provides a close up view of the overlapping set r~, together with the set 

[2,·v' At each point in the overlap region, there are (at least) two local minima. Strict 

use of the global optimum in a receding horizon strategy would indicate a preference 

for letting the pendulum fall in many situations where the pendulum can be brought 

back to the vertical quickly and for a reasonable, though suboptimal, cost. 

Consider, for example, the use of a receding horizon strategy with 6 = 0.1 (and 

T = 2.0) starting at the initial condition x(O) = Xo = (-1.803 , 8.413) with optimal 

cost J:;(xo) = r~ = 40.1956. The situation is depicted in Figure 3.3. After 6 = 0.1 
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-4 -2 o 2 4 6x1 (rad.j3 10 12 14 16 

Figure 3.1: The sub-level set r;' for T = 2.0 and T = Tv = 6.34. Half of the boundary 
(together with trajectories) is shown in an unwrapped fashion to aid in understanding 
the overlapping nature of the set. 
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Figure 3.2: A closeup of the sub-level set r-; for T = 2.0 and r = rv = 6.34 together 
with Drv' Also depicted are several locally optimal trajectories beginning on the 
boundary. 
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Figure 3.3: Receding horizon trajectories using 0 0.1 beginning at x(O) 

6 

(-1.803,8.413). At x(8) = (-1.038 , 6.887) , local minima with costs of 36.973 (square) 
and 37.323 (circle) are found providing two different strategies. 
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seconds, we arrive at x(6") = (-1.038, 6.887) and find two local minima with values 

36.973 and 37.323, offering two potential strategies. As both costs are less than r~ , it 

is clear that either course will result in convergence to the inverted equilibrium. The 

resulting trajectories are shown in figure 3.3. The evolution of the costs is shown in 

figure 3.4 verifying its decreasing nature as well as the possibility of discrete jumps, 

indicating strict inequality in (3.1). 

45.-----.------.-----.------.-----.------.-----.------.-----.-----~ 
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Figure 3.4: Evolution of the cost for the two strategies shown in figure 3.3. 

This phenomenon is surprising, since in this special case, t he optimal solution is 

not the desired one. 
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3.3 Summary 

The purpose of this Chapter was to extend the results of Chapter 2 to the case were 

the optimizations are not solved exactly. Instead of requiring the receding horizon 

trajectories to be optimal in each iteration, a certain decrease in the value of the 

cost was required. Furthermore, it was shown that there always exists a controller 

which provides the proper decrease. The control trajectory consisted of two parts; 

the first part was the tail of the trajectory obtained from the previous iteration 

and the second was a feedback obtained from the CLF. A numerical example using 

the inverted pendulum compared the use of locally optimal and globally optimal 

trajectories. Simulations indicated that there are regions in which more than one 

locally optimal trajectory exist and both of them are stabilizing. 
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Chapter 4 Generating a suitable CLF 

In this chapter, we address the problem of obtaining a CLF suitable for the receding 

horizon strategy outlined in Chapters 2 and 3. As was shown earlier, the required 

CLF has to be an upper bound on the cost-to-go, in the sense of (2.4). In the sequel, 

we discuss a variety of methods used to obtain such CLFs. Each method will be 

discussed with its advantages and disadvantages. 

Despite their differences, these methods have one thing in common: They are 

all derived using linear methods. Other nonlinear methods such as differential flat

ness [FLMR95] and back-stepping [KKK95] can also be used to obtain suitable CLFs. 

Note that in the case of CLFs that are not an upper bound on the cost-to-go, i.e., the 

ones that do not satisfy (2.4), one can always use scaling by a large enough constant 

so that (2.4) is satisfied [JYH99b]. 

4.1 Jacobian linearization 

Perhaps the simplest method for deriving a CLF for a nonlinear system is to use 

the Jacobian linearization of the system around the desired equilibrium point and 

generate a CLF by solving an LQR problem. 

It is a well known result that the problem of minimizing the quadratic performance 

index: 

J 

subject to: x 

100 

(xT (t)Q.T(t) + uT Ru(t))dt 

Ax + Bu u = -I<x 

results in finding the positive definite solution of the following Riccati equation 

[DAC95]: 

AT P + P A - P B R- 1 BT P + Q = 0 (4.1) 
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The optimal control action is given by 

In the case of the nonlinear system x = f (x, u), A and B are assumed to be 

A_a!(x,u)1 - a (0 ,0) x 
B _ a!(x, u) I 

- ax (0,0) 

where the pairs (A , B) and (QO.5, A) are assumed to be stabilizable and detectable 

respectively. Obviously the obtained CLF V(x) = xT Px will be valid only in a 

region around the equilibrium (0,0). Therefore, if used as a terminal cost in the 

receding horizon scheme developed in Chapter 2, the terminal set Drv will be small in 

general, requiring longer horizon lengths to maintain stability without enforcement of 

terminal constraints. We will discuss this in more detail in the context of an example 

in Chapter 5. 

4.2 Global linearization 

The idea of global linearization has its roots in early works on the problem of absolute 

stability in the Soviet Union [LP44]. The basic idea behind this approach is to model a 

nonlinear system as a Poly topic Linear Differential Inclusion (PLDI) [BGFB94]. The 

dynamics of the nonlinear system are approximated to lie in the convex hull of a set of 

linear plants. The problem of quadratic stability of the obtained PLDI, i.e., stability 

provable by a quadratic Lyapunov function, is then recast as a convex optimization 

problem which can be solved very efficiently using interior point methods [NN94J. 

The PLDI describing the nonlinear model can be written as 

m 

i=l 

u -Kx 
m 

CYi ( t) > ° L CYi ( t) = 1. 
i = l 
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Using a quadratic cost funct ion such as ( 4.1), the problem of minimizing an upper 

bound on t he cost :J can be written as the following convex optimization problem: 

Minimize 

tr(Z) 

Subject to: 

Y AT + Ai Y - BiX - X T BT 

Ql /2y 

R 1/ 2 X 

YQl /2 

-J 

0 

Y > 0 

X T R1/2 

0 < 0 

-J 

[ ~ ;] > 0 

z 1, ... , m 

where Z is a slack variable , Y = p - l, and X = KY are the change of variables m ade 

to recast the matrix inequalities as LMIs [BGFB94J. Q and R are performance index 

matrices, with Q ~ 0 and R > O. The initial conditions are assumed to be random 

vectors with zero mean and an identity covariance. 

This is a very powerful method for obtaining suitable CLFs for nonlinear systems. 

However, it can be quite conservative, since there are many trajectories that are a 

trajectory of the PLDI, but are not a trajectory of the nonlinear system. Furthermore, 

the above LMI conditions verify quadratic stability, which is stability provable by a 

quadratic Lyapunov function. Another advantage of this method is that robustness 

can be addressed in this context. Both parametric uncertainties and unmodeled 

dynamics can be addressed in this framework [BGFB94] . A successful application of 

this strategy was illustrated in Section 2.5. 
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4.3 Frozen Riccati Equation (FRE) method 

This method was first introduced by Cloutier et al. in [CDlVI96j. The basic idea 

behind this method, sometimes called State Dependent Riccati Equations, is to solve 

a Riccati equation pointwise, along the trajectory of the nonlinear system. A state 

dependent formulation of the nonlinear system is obtained, and nonlinearity of the 

representation at each point in state space is totally ignored. Although results are 

often promising, there are no rigorous justifications for even maintaining mere sta

bility. Nevertheless, the simplicity of the implementation makes the FRE approach 

a plausible alternative in some applications. To apply this method, the nonlinear 

system is written in the following state dependent form: 

i; = A(x)x + g(x)u (4.2) 

At each frozen state the Riccati equation is solved, and then the resulting state 

feedback controller is applied to the system, i.e., the state feedback nonlinear control 

law is obtained by solving the following: 

o A(xfp(x) + P(x)A(x) - P(x)g(X)gT(x)p(X) + Q 

u (4.3) 

The quantity lI(x) = xT P(x)x generated by this technique is in general only a local 

CLF. 

One of the major drawbacks of this method is the lack of a systematic procedure 

for selecting, among the infinite possibilities, a single parameterization for f(x) (in the 

form of equation (4.2)) which achieves stability and acceptable performance [HJ99j. 

The CLF obtained using this approach has been used successfully in a receding horizon 

scheme [SCH+OOj. 
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4.4 Linear Parameter Varying (LPV) methods 

This method was originally developed to design controllers for linear systems with 

varying parameters, hence the term LPV was coined [SA90 , SA91, SA92]. It was 

assumed that the varying parameter p(t) is available for measurement in real t ime, 

and also that it lied in a compact region with a bound on its variat ions known a 

priori. Although these conditions limit the application of this strategy, it has been 

successfully used in the aerospace indust ry. A variant of this approach, known as the 

quasi LPV scheme, was used to design controllers for nonlinear systems. The main 

ideas are identical, except for the fact that the varying parameters are a subset of the 

states, on which the nonlinearities in the state dependent representation depend. The 

so-called quasi-LPV representation of a nonlinear input-affine system can be written 

as follows: 

x = A(p(x))x + B(p(x))u (4.4) 

Assume the underlying parameter p varies in the allowable set 

where P c ]Rm is a compact set. If there exists a positive definite X (p) such that the 

following inequality is satisfied 

[ 

- tE;(P) ~:. + A(p)X(p) + X(p)AT(p) - B(p)R- l BT(p) 

C(p)X(p) 

X(p)CT(p) 1 
-1 

< 0 

(4.6) 

for all pEP where C(p) = Q~(p(x)), then the closed-loop system is stable with t he 

state feedback 
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Moreover, an upper bound on the optimal value function lI*(x) (which also serves as 

a CLF) is given by 

lI(x) = XTX-I(p(x))x 2' lI*(x). 

The notation L:::llzAp) in (4.6) means that every combination of Vi (P) and !:!.-i(P) 

should be included in the inequality. For instance, when m = 2, VI(P) + V2(P) , 

VI (p) + !:!.-2 (p), !:!.-l (p) + V2 (p) and !:!.-l (p) + !:!.-2 (p) should be checked individually. In 

other words, (4.6) actually represents 2m inequalities. Additionally, solving (4.6) 

involves gridding the parameter space P and choosing a finite set of basis for X(p) (see 

[WYPB96] for details). As can be easily seen, the number of LMIs grows exponentially 

with the number of varying parameters. Furthermore, the gridding technique can be 

quite costly. Due to these restrictions this method is usually suitable when there are 

only a few varying parameters (states) in the state dependent representation. 

From a theoretical point of view, in order to guarantee stability, gridding has to be 

finer than a critical limit [WYPB96]. However, finding this limit requires knowledge 

of some information about the nonlinear system which is usually not available. Hence 

it is not practical to use. This makes the gridding phase an ad hoc procedure. 

Similar to the FRE approach, the non-uniqueness of the state dependent repre

sentation of the nonlinear system can make the results conservative. However, due 

to the fact that bounds on the parameter variations are taken into account, stability 

arguments are more powerful than regular gain scheduling or the FRE method. The 

non-uniqueness issue of the state dependent representation can be properly addressed 

by including an additional degree of freedom in the optimizations [HJ99, Hua9S]. 

The quasi-LPV control techniques have been quite successful in a variety of 

aerospace applications [BFL +97]. Since the main application area of this thesis 

is intended to be the aerospace industry, we choose the LPV approaches to be our 

method of choice for obtaining a CLF. 
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4.5 Summary 

The purpose of this chapter was to discuss several methods of generating a CLF, 

suitable for receding horizon purposes. Following the results of [Prig8], it was shown 

that while these methods generate their own controllers, it is beneficial to use the 

CLF, rather than the controller, to be used in the receding horizon schemes developed 

earlier in this thesis. The methods discussed are only a few of the methods available 

in the literature. The discussed methods were all developed from a linear setting, 

and are suitable for generating CLFs that are useful in the context of the results of 

Chapters 2 and 3. 
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Chapter 5 The Caltech ducted fan 

The Caltech ducted fan is an experimental testbed developed to facilitate the study of 

Uninhabited Combat Aerial Vehicles (UCAVs). These highly maneuverable aircrafts 

are designed to operate without having a pilot on board. The pilot will be in a ground 

or airborne based control room far from the actual vehicle. Using the state of the 

art virtual reality technology as well as proper control schemes is believed to make 

UCAVs a reality. The main advantage of using such vehicles is that it takes the pilots 

out of harm's way. 

As was mentioned in the introduction, one of the tasks at DARPA's Software 

Enabled Control Program, is Online Control and Customization (OCC) for UCAVs. 

A viable candidate for OCC has been receding horizon control strategies. In this 

chapter, we deal with two models of the ducted fan experiment, one around hover 

and one at forward flight. The RHC method developed in this t hesis is successfully 

applied to these models [JYH99aJ. 

5.1 Ducted fan at hover 

The Caltech Ducted Fan is a small flight control experiment whose dynamics are 

representative of a VTOL (Vertical Landing and Take off) aircraft such as Harrier 

in hover mode or a thrust vectored aircraft such as F18-HARV or X-31 in forward 

flight [Mur98J. This system has been used for a number of studies and papers. In 

particular, a comparison of several linear and nonlinear controllers was performed 

in [KBPM95, BBK96, NM96J. In this section we describe the simple planar model 

of the fan shown in Figure 5.1. This model is useful for initial controller design and 

would serve as a good testbed for purposes of this thesis. 

Let (x, y, B) denote the position and orientation of a point on the main axis of the 

fan. We assume that the forces acting on the fan consist of a force h perpendicular 
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Figure 5.1: Schematics of the planar ducted fan. 

to the axis of the fan acting at a distance r and a force 12 parallel to the axis of 

the fan. Assuming m, J, and g to be the mass of the fan , the moment of inertia, 

and the gravitational constant respectively, the equations of motion can be written 

as follows [HSM92]: 

mx -di + h cos e - 12 sin e 
my -dy + h sin e + 12 cos e - mg (5.1 ) 

Je rh 

where the drag terms are modeled as viscous friction with d being the viscous 

friction coefficient. The numerical data for the experiment are as follows: m = 

11.2 kg , 9 = 0.28 m/ sec2
, J = 0.0462 kg m 2

, r = 0.156 m , d = 0.1 N sec. Note that 

due to the use of a counterweight for balancing the fan , the gravitational constant is 

not 9.8 m/ S2. It is convenient to redefine the inputs so that the origin is an equilibrium 

point of the system with zero input. If we let Ul = hand U2 = 12 - mg, the equations 

of motion can be written as: 
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mx -mg sin e - dj; + Ul cos e - U2 sin e 

my mg(cose -1) - diJ + Ul sine + U2COSe 

Je (5.2) 

These equations are referred to as the planar ducted fan equations. The following 

quadratic performance index was used in the quasi-LPV scheme: 

where x = [x j; y iJ e oV, R and Q is chosen to be diagonal matrices with the following 

diagonal terms: 

Q 

R 

diag( [0.5 1 5 1 5 1] ) 

diag( [2 1] ) 
(5.3) 

(5.4) 

To obtain a CLF for the ducted fan using quasi LPV methods, we have to choose a 

set of varying parameters and bounds on parameter variation in case we are searching 

for parameter dependent Lyapunov functions. 

For the ducted fan , p = e is chosen as the varying parameter, and the operation 

range P = [- ~ , ~]. As a first attempt , we tried to find a quadratic CLF so t hat no a 

priori bound on parameter variation is needed. Unfortunately, the resulting convex 

program is not feasible; therefore, we switch to searching for parameter dependent 

Lyapunov functions with e as the varying parameter. The bound on the rate variation 

on e is set to be 10, i.e., 101 :::; 10. Obvious parameterizations of f and 9 are given by 
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setting A(e) and B(e) as follows [JYH99b, JYH99a, YJPH99]: 

0 1 0 0 0 0 

0 _il 0 0 gsinO 0 m 
--0-

A(e) 
0 0 0 1 0 0 

0 0 0 _il g(cosO-l) 
0 m 0 

0 0 0 0 0 1 

0 0 0 0 0 0 

0 0 

cos 0 sin 0 
Tn m 

B(e) 
0 0 

sinO cos 0 
(5.5) 

m m 

0 0 

I:. 0 j 

A set of polynomial basis functions are chosen to compute X (p), i.e., X (p) = 2.:~=1 Ci (p )Xi 

where Xi'S are symmetric coefficient matrices (LMI variables) and {Ci (p)} are fifth 

order Legendre polynomials on P: 

{I, ~(), (3( ~(})2 - 1)/2, (5( ~(})3 - 3( ~(}))/2, 
7r 7r 7r 7r 

(35( ~(})4 - 30( ~(})2 + 3)/8} 
7r 7r 

Once the CLF is obtained, it can be used as the terminal cost in a receding horizon 

optimization. Also, as it was mentioned earlier, if the horizon length is long enough, 

the local CLF obtained by solving an LQR problem for the linearized dynamics can 

also be used. In the next section, we discuss some simulation results for the planar 

ducted fan model, using CLFs from LQR and LPV as a terminal cost in the receding 

horizon scheme. 
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5.2 Simulation results 

The following initial condition was chosen 

[ x X y iJ e iJ] = [ -1 2.5 0 0 -450 0] . 

Simulations were performed for several different horizon lengths. Also, in order to 

have a measure for the performance, the "optimal" control trajectories were calculated 

by solving finite horizon optimization problems for long horizon lengths. It can be 

seen from the simulation plots that a simple LQR controller does not stabilize the 

system, whereas the LPV controller does. This is not surprising since the region of 

attraction of the LQR controller is much smaller. 

As we include on-line optimization in the process, it can be seen that when a 

simple quadratic eLF from LQR is chosen as the terminal cost, the controller is still 

not stabilizing the system. Figure 5.2 depicts x - y trajectories of the ducted fan for 

four receding horizon iterations with different horizon lengths of 0.05 , 0.1 , 0.15, and 

0.2 seconds. As shown in Figure 5.2, the terminal point is far from the origin, hence 

the resulting receding horizon controller is not stabilizing. For long enough horizon 

lengths, however, the x - y trajectories converge to the origin, and the resulting 

receding horizon controller stabilizes the closed-loop system, as shown in Figure 5.3. 

This is due to the fact that the set Or\? , defined in Section 2.1, gets larger as the 

horizon length is increased. Note that the trajectories also converge to the optimal 

ones as T approaches infinity (see Figure 5.3). 

Figure 5.3 shows that if the horizon length is long enough, the eLF form LQR is 

a suitable choice for the terminal cost. However, if the horizon length is short , the 

receding horizon with eLF from LQR method does not give a good performance and 

in fact the closed-loop system is unstable. 

The x - y trajectories for several receding horizon iterations with different horizon 

lengths with eLF from LPV is depicted in Figure 5.4. The initial condition chosen 

was the same as in (5.6). Note the difference in the orientation of the fan in the case of 
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LQ RH (T =0.05, 0.1, 0.15, 0.2) 
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Figure 5.2: x-y position of the fan for four one shot trajectories with different horizon 
lengths, from 0.05 sec to 0.2 second. The resulting receding horizon controllers are 
not stabilizing. 

LQR and LPV terminal costs. Also, note that the eLF from LPV is stabilizing with 

a 0 horizon length which corresponds to no online computation at all, i.e. , applying 

the LPV controller. 

One might think that since stability is guaranteed by having a eLF as terminal 

cost, any positive definite function lower bounded by the eLF would also be a legiti

mate choice. Simulation results indicate that this is not the case, and merely putting a 

quadratic penalty which is greater than the value of the eLF (and therefore an upper 

bound on the cost-to-go) is not sufficient. Figure 5.5 depicts the simulation results 

for the receding horizon scheme with having a penalty of the form of ,llx(t + T)W 

where, > 0 is chosen such that ,IIxl12 > V(x) \::j x. Shown in Figure 5.5 are again 
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Figure 5.3: x - y position of t he fan for RH with quadratic e LF . 
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LPV RH (T =0, 0.1, 0.9, 1.2, 1.5, 2, 3, 5, 00) 
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Figure 5.4: .r - y position of the fan for receding horizon with the eLF from LPV. 
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norm RH (T =0.9,1, 1.2, 1.5,2,3,5,9, 00) 
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Figure 5.5: x - y position of the fan for receding horizon with I' JJ XJJ2 as penalty. 
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Figure 5.6: Ratio of the cost to the optimal vs. the horizon length. 
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x - y trajectories for various choices of T. Note that even for long horizon lengths, 

the performance is not satisfactory at all. 

An interesting comparison between the three discussed choices for the terminal 

cost is shown in Figure 5.6. The horizon length is plotted on the horizontal axis, and 

the ratio of the actual cost to the optimal cost is plotted on the vertical axis. Note 

the fast convergence of the cost to the optimal, when the CLF from LQR is chosen as 

the terminal cost. Interestingly, the choice of CLF from LPV as terminal cost starts 

at a much lower cost but longer horizon length is needed to converge to the optimal 

one. 

In fact, for horizon lengths of T ;::: 0.6, using the CLF from LQR results in a 

lower cost due to the fact that the optimal value function is well approximated by the 

CLF from LQR method, in a suitable neighborhood of the origin. We can therefore 

conclude that the CLF from LPV methods is suitable when long optimization horizons 

are not possible due to costly computation. Finally, having a terminal cost of the 

form of a quadratic upper bound on the cost-to-go does not work even for very long 

horizon lengths. 

5.3 Ducted fan in forward flight 

In the previous section, we dealt with a simplified model of the ducted fan around 

hover. The fan was modeled as a rigid body and the aerodynamic forces were totally 

ignored. In forward flight, however, one can no longer ignore the aerodynamic forces 

and moments, since they are the dominant forces that make the ducted fan fly. 

An activity to build up aerodynamic models for the ducted fan was established at 

Caltech [MlVI99 , HauOO]. However, obtaining steady state flight data has proved to 

be much more challenging than expected. This is mainly due to a periodic drag force 

resulting from the interaction of a wing tip vortex with the walls in the lab. (See 

Figures 5.7 and 5.8 for a view of the experimental setup.) 

A first step in obtaining suitable models is to familiarize oneself with the flight 

of this vehicle by doing a significant amount of manual flight. The aggressive ca-
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Figure 5.7: The wing has been re-designed to improve the thrust vectoring. 

pabilities of the system have been explored through manual flip and turn around 

maneuvers [MM99, HJOO, TroOO]. Some of these high angle of attack maneuvers are 

depicted in Figure 5.9. Angle of attacks of close to 70 degrees are reported in these 

experiments [HJOO]. 

In spite of the problems arising from the periodic drag force, the results look quite 

promising, especially for the purpose of obtaining a model that captures the essential 

f eatures of the system. 

After getting a general picture of the capabilities of the system, an important 

step in modeling is to obtain the experimental equilibrium manifold. The equilibrium 

manifold is the surface resulting from setting the right-hand side of the equations of 

motion to zero. Experimentally, points on this surface can be found by performing 

steady flights at different velocities. Corresponding to each velocity, there is an angle 

of attack as well as the thrust force and thrust angle that would keep the vehicle in 

that equilibrium point. Figures 5.10 and 5.11 depict the experimental and the model 

equilibrium manifolds. 
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Figure 5.10: Required angle of attack vs. velocity for points on the model and 
experimental equilibrium manifold. For each flight condition, the average , standard 
deviation, and the range of values (minimum and maximum) are plotted [HJOO]. 
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Figure 5.11: Required thrust T and paddle (nozzle) angle 6p at different velocities for 
points on the equilibrium manifold. For each flight condition, the average , standard 
deviation, and the range of values (minimum and maximum) are plotted. 
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v 

Figure 5. 12: Schematics of the thrust vectored flying wing. 

5.3.1 Modeling 

The ducted fan is modeled as a flying wing with vectored thrust, as in Figure 5.12. 

T he effect of the newly designed thrust vectoring nozzle is modeled as a vectored 

force applied at a fi.xed position on t he flight vehicle. The parameters for this model 

were estimated using static force/ moment measurements. Using the experimental 

equilibrium manifold, a plausible aerodynamic model was obtained. 

The equations of motion for the thrust vectored flying wing of Figure 5.12 are as 

follows: 

mll - D (V,o:) - Wsin 'Y +Tcos(o:+ aT) 

mll-y L(V, 0:) - vV cos I' + Tsin(o: + aT) 

B q 

Jq M(1i,o:) - TIT sin (aT) (5.6) 

where T is the thrust force, and bT is the angle at which thrust is applied. It will 

be natural to take as state and control variables x = (11, ,,/, q, 0:) , where I' = B - 0: is 

the flight path angle, q = e, and u = (T , aT). 

The physical parameters for t his model are m = 12 kg, g = 0.6 m/ 82
, S = 0.61 m 2

, 

p = 1.2 kg/m3
, IT = 0.31 m, J = 0.24kg m 2

. The lift, drag and moment terms can 



be written as follows: 

L(V, a) 

D(V, a) 

M(V, a) 
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1p1/2SCd a ) 

1 
2PV2SCD(a) 

1 2 
2PV ScCM(a). (5.7) 

Where c = 0.5 m, and Cda) , CD(a), CM(a) are the lift, drag and moment coef

ficients respectively. Using the experimental data from the equilibrium manifold as 

well as estimates of the thrust and thrust angle given in Figures 5.10 and 5.11, one 

can come up with plausible estimates for the lift, drag and moment coefficients as 

depicted in Figures 5.13 and 5.14. 

From the discontinuity in the lift curve, one can notice that stall occurs between 

16 and 20 degrees angle of attack. More noticeable is the change in pitching moment 

at these angle of attacks. Stall can also be noticed from Figure 5.11 which depicts 

the thrust angle vs. velocity for the equilibrium manifold. 

An interesting point worth mentioning is that one would not see the usual drop in 

the lift curve after the wing stalls. This is probably due to the fact that the fuselage 

housing the fan starts to act as a lifting body at these angle of attacks. Worthwhile 

noting is the fact that the lift, drag, and moment curves fit nicely with the equilibrium 

manifold data. Locally (i.e. , up to stall), lift, drag and moment curves are expressed 

by the following equations as functions of the angle of attack in radians. 

C£(a) 

CD(a) 

CM(a) 

CIQa = 3.256a 

Cdo + CdQa 2 = 0.1716 + 2.395a2 

CMQa = -0.0999a (5.8) 

Roughly speaking, the thrust can range from 0 to 13.5 N and can be vectored a little 

more than 25 degrees, i.e., 6T ::; 0.45 radians. 

While the input variables in the model are the thrust force T and the thrust angle 

6T, the control inputs in the experiment are the motor voltage Vm and the commanded 
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Figure 5.13: Experimental and model curves for the lift coefficient C£(a). 

paddle angle 6p . We have the following relationship between the two pair of inputs: 

T 46.5Vm - 5. (5.9) 

Overall, the above model is a plausible description for the Caltech ducted fan, al

though much work remains in the understanding of the nature of uncertainties , both 

external disturbances and model uncertainties. 

5.3.2 Control of the ducted fan in forward flight 

So far, we have discussed a model of the Caltech ducted fan which is suitable for 

control purposes. 

Following the discussion in Chapter 4, we now develop a quasi LPV scheme to 

generate a control Lyapunov function suitable for receding horizon control. The 

objective of the controller is to regulate the ducted fan at a specific point on the 

equilibrium manifold. 
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Figure 5.14: Experimental and model curves for the drag coefficient CD(a). 

Our objective is to regulate the ducted fan at V = 6 m/ s. Using Figures 5.10 

and 5.11, the corresponding angle of attack, thrust, and thrust angle are as follows: 

ao = eo = 10.149°, To = 3.2005 N,6To = -7.9°. 

In order to be able to use the quasi-LPV scheme to generate a CLF, we first have 

to do a coordinate translation so that the desired equilibrium is the origin of the 

translated system. The next step is to choose a set of varying parameters. Contrary 

to the planar model where only the pitch angle e was the varying parameter, we need 

to choose three terms. We would need 2 out of the three angles a, e, I as well as 

the velocity ~7 . 

For convenience, a, e, and 11 are picked. Note that the new states are ii' = V -l'o, 

6: = a - ao, and tJ = e - eo. Also, if = q = e. As can be seen from (5.7) , the model 

is not affine in control, hence not suitable for use in the LPV scheme. In order to 

avoid this problem, the following change of variables are made, and forces in the x 

and z direction are chosen as inputs: Fx := Tcos(6T) Fz := Tsin(6T). We can now 

describe the equations of motion in the new translated coordinates as follows: 

x = A(V, 6:, tJ)x + B(1!, 6:, tJ)'u (5.10) 
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where 

u:= 'U - Uo = 
[ 

FF-_xz 1 (5. 11) 

and 

All A12 A 13 0 cos(o+ao) sin( cHao) 
m m 

A21 A22 A 23 1 sin(a+ao) cos(a+ao) 

A(i/', a, 0) := B(V, a, 0) := m(V+Vo) m(V+\'o) 
0 0 0 1 0 0 

A41 A42 0 0 0 IT 
J 

After a set of rather tedious calculations, the elements of the A matrix can be written 

as follows: 

1 pS(V + 2 Vo)(Cdo + Cda (a + ao?) 
2 m 
1p1fo2SCdQ(a+2ao) . (e-a) (0- -) - 1 - - + 9 sm - - 7r - a + 
2 m 7r 

1 (cos(ao + ~ a)Fzo sin(ao + ~ a)Fxo ). 1 a -1 
- - sm( - - )a 7r 
2 m m 27r 

e - a - 1 
-gsin(-- )7r(O - a)-

7r 
1 pSCla (a + ao) 
2 m 

9 Fxo sin(ao) - Fzo cos(ao) 
--=='---- +---.:"-----.:...-::..:...~---.:~----.:.~ 

Vo (V + Vo) mVo (V + 1fo) 
g(cos(e - a) - 1) 1 P SCla 1fo 
(0 - a)(V + 1fo) 2 m 

-2 (cos(ao + ~)Fxo + sin(ao + ~)Fzo) sin( ~ )~(m(11 + VO)) - l 
2 2 27r a 

g(cos(e - a) - 1) 
(0 - a)(V + 1/0) 

1 p (V + 2 vo)ScCMa (a + ao) 
2 J 
1 pVr}ScCMa 
2 J 

(5.12) 

Once the equations of motion are represented in the appropriate state dependent 

form , the next step is to formulate a suitable performance index to be used in the 
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quasi-LPV scheme. 

It is well known that choosing a suitable performance index such that all desired 

aspects of the problem are taken into account, can be quite difficult. We know that 

in order to regulate the ducted fan to a point on the equilibrium manifold, the flight 

path angle must be regulated to 0 therefore , it would be appropriate to put a large 

weight on the flight path angle in the optimization criterion. Since in our quasi-LPV 

modeling we did not choose 'Y as the varying parameter, it would be convenient at 

this point to choose the flight path angle 'Y over the pitch angle e to be a state. Hence 

we perform the following change of coordinates: 

1/ 11 1 0 0 0 

'Y 0 0 -1 1 0 
=T, T, = (5.13) 

0 e 0 1 0 0 

q q 0 0 0 1 

The new set of coordinates is called the wind coordinates. Also, the following Q and 

R matrices are chosen in conjunction with the quasI LPV model to generate a CLF. 

Q diag [3 36 2 1 J 

R diag [.46251 0.98851 J x 10-3 (5.14) 

The reason for such a choice for R is the relationship between the forces in the x and 

z directions and the actual control inputs v~ and bp . 

To use the quasi LPV scheme discussed in Chapter 4, we first have to pick a 

gridding region for the varying parameters (states) . 

Since our simple aerodynamic model is valid locally, the following region is picked 

for gridding: 11 E [4,8]' and 0, e E [-8.149°, 28.149°J. 

Note that the simulation model [HauOO, MM99J exceeds this local region in terms 

of the aerodynamic modeling. For simplicity of the LPV design, we have chosen to 

use the above limited gridding region for CLF design. 

Also, note that since the CLF is merely a stability safeguard to be used as terminal 
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cost in the receding horizon scheme, we would be quite happy with a quadratic eLF, 

provided the resulting convex optimization problem is feasible. This would greatly 

reduce the number of LMI constraints in equation (4.6) . It turns out that the opti

mization problem is indeed feasible, and a quadratic eLF does exist. The resulting 

eLF is V(x) = xTpx where 

.2.0162 -0.3103 - 0.4178 -0.0818 

- 0.3103 43.6804 10.3974 1.2838 
p= (5.15) 

- 0.4178 10.3974 4.8598 0.5232 

- 0.0818 1.2838 0.5232 0.2064 

The above eLF is then used in a receding horizon scheme with a horizon length of 

T = 0.5 and sampling rate of 6 = 0.05 seconds. Also, to compare the results with 

"optimal" trajectories, the horizon length is increased to 3 seconds. 

An important issue is magnitude constraints imposed on the control action. As 

was mentioned earlier, the thrust can not exceed 13.5 Newtons, and can be only 

vectored for about 25 degrees. This would translate to the following bounds on the 

actual control actions Vm and 6p . 

0.13 Volts < V~n:::; 0.35 Volts 

- 400 < 6p :::; 40 0 (5 .16) 

In order to simulate the system in the forward flight mode, the following initial 

condition was chosen: 11 = 6 m/ s r = - 400 a = 10.2 0, q = O. The above 

initial condition represents a pull-up maneuver. Simulation results are depicted in 

Figures 5.15 and 5.16. Also , F igures 5.17 and 5.18 depict the one shot "optimal" 

trajectories for the same initial condition and a longer horizon length of 3 seconds. 

A more interesting way of plotting trajectories is to show the actual trajectory of 

the flying wing in the X z space instead of showing the time trajectories . These plots 

are shown in Figures 5.19 and 5.20 for the receding horizon and one shot traj ectories 

respectively. In both figures, t he ducted fan is shown as a flying wing, with a red 
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Figure 5. 15: Simulat ion results for the ducted fan in forward flight with a receding 
horizon controller R1i(0.5, 0.05) . Shown here are the states V, 'Y, 0:, e. 

line representing the thrust. These figures indicate that with a horizon of only 0.5 

seconds, we get very close to the optimal solution. 

One can also include the z dynamics in the equations of motion by letting i = 

V sin 'Y . Using a similar LPV scheme and by penalizing z with a weight of 20, we 

obtain a quadratic Lyapunov function V,(x) = xT Pzx with Pz given as follows: 

59.3330 -1.8051 -175.5690 -39.2179 -5.0851 

-1.8051 47.6105 11.1567 -3.5507 - 0.6610 

Pz = - 17.5.5690 11.1567 854.3814 176.9442 27.1237 (5 .17) 

- 39.2179 -3 .5507 176.9442 59.6604 7.3196 

- 5.0851 -0.6610 27.1237 7.3196 2.0231 
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Figure 5. 16: Simulation results for the ducted fan in forward flight with a receding 
horizon controller R1-l (0.5, 0.05) . Shown here are the controls V~ and t5p . 
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Figure 5.17: Simulation results for the ducted fan in forward flight with a one shot 
optimal controller T = 3 seconds. Shown here are the states V, ,,/, 0: , B. 
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Figure 5.18: Simulation results for the ducted fan in forward flight with a one shot 
controller with T = 3 seconds. Shown here are the controls Vm and eSp . 
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Figure 5.19: T he x - z trajectories for t he ducted fan in forward flight with a receding 
horizon controller RH (0.5, 0.05). The red lines indicat e the thrust , scaled according 
t o the t hrust value. 
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Figure 5.20: The x - z trajectories for the ducted fan in forward flight with a one 
shot controller with T = 3 seconds. The red lines indicate the thrust, scaled in length 
according to the thrust value. 
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Figures 5.21 and 5.22 depict the simulation results when the desired flight path angle 

I is a square wave, switching between -150 and 150
• Figure 5.21 depicts the time 

trajectories of the states and controls, whereas Figure 5.22 shows the trajectory in 

the x - z space. As can be seen from both figures , the controls are saturated most 

of the time. Again, it should be noted that the simulation model extends the local 

range and includes the stall information. Also, the objective function in the receding 

horizon optimizations was the same as in the quasi-LPV scheme. 

The resulting receding horizon optimizations were performed using RIOTS [Sch96] 

in the Matlab environment. Each receding horizon iteration (for a 0.5 second horizon 

length) took about 0.6 seconds on a Sun Ultra 30 machine. The next step is to verify 

the simulation results on the actual experiment using a much more efficient optimal 

trajectory solver recently developed at Caltech [MMMOOj. 

5.4 Summary 

The purpose of this chapter was to demonstrate the results of Chapters 2 and 4 on 

two distinct models of the Caltech ducted fan experiment. Equations of motion were 

obtained for the hover mode as well as the forward flight mode. Using quasi-LPV 

methods discussed in Chapter (4), two CLFS were obtained and used as a terminal 

cost in the receding horizon scheme. Several simulations were performed, and the 

results suggested that the proposed receding horizons scheme is suitable for regulation 

of the Caltech ducted fan and guaranteeing closed-loop stability. 
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Figure 5.21: Simulation results for the ducted fan in forward flight with a receding 
horizon controller 1V-l (0.5, 0.05) . Shown here are the time trajectories for V , ,,(, a , 
and B as well as controls Vm and eSp • The commanded 'Y is switched between -15 and 
15 degrees. 
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Figure 5.22: Simulation results for the ducted fan in forward flight with a receding 
horizon controller R1{ (0.5, 0.05). Shown here is the phase trajectory in the x - z 
plane. The flying wing represents the ducted fan and the red line depicts t he thrust, 
scaled in length according to the actual thrust value. The commanded 'y is switched 
between -15 and 15 degrees. 
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Chapter 6 Receding horizon trajectory 

generation for the Caltech ducted fan 

6.1 Trajectory generation and morphing 

So far, we have outlined a receding horizon strategy which utilizes an a priori obtained 

terminal cost to guarantee closed-loop stability. However, it was assumed that the 

goal of the control strategy is to regulate the states to an equilibrium point , such as 

the origin. 

Although this is an important task on its own, and there exist a plethora of results 

for addressing this problem, there are much fewer results that successfully address the 

issue of trajectory generation for a general nonlinear system. In this case, the main 

question being asked is not about finding a stabilizing controller, but about finding 

a pair of solutions (x, u) in the trajectory space of the system i; = f(x, u), such that 

the pair (x , u) is "close enough" to a desired maneuver. In other words, instead of 

asking the system to "just get to the desired point," one would like to first provide a 

trajectory, and then regulate the system along that. 

This has led to the two degree of freedom paradigm (see [NM96, MMMOO] and 

the references therein). In this approach, the problem can be divided to two phases. 

The first phase deals with generating a state and control trajectory that respects the 

dynamics and other possible input and state constraints, and the second phase is to 

design a controller that would regulate the system around the trajectory. 

Luckily, there exist a class of systems for which this problem can be easily tackled. 

It is known that if a system is differentially fiat [FLMR95], the problem of trajectory 

generation reduces to solving a set of algebraic equations. Loosely speaking, a system 

is differentially fiat, if there exist an output known as the fiat output, such that states 

and the input can be written as a function of the fiat output and a finite number of 
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its derivatives. It can be shown that all linear systems are differentially fiat, as well 

as nonlinear systems that are feedback equivalent to a linear system. Unfortunately, 

it is extremely difficult, in general, to determine whether a given nonlinear system 

is differentially fiat. Moreover, there are a lot of nonlinear systems that are not 

differentially fiat. 

The ducted fan in forward fiight is an example of a nonlinear system which is not 

differentially fiat. How should we go about generating trajectories for such a system? 

This is the question we intend to address in this chapter. 

Our approach for trajectory generation and tracking is based on combining the 

phase one and phase two of the above mentioned two degree of freedom paradigm. 

Using the idea of trajectory morphing [HM9Sb], we parameterize the trajectories 

of a complicated nonlinear system by those of a simpler one. With a homotopy con

necting the simple system to the complicated one, one may morph simple trajectories 

to those of the complicated system. One thus seeks a simple system for which trajec

tory exploration and specification is tractable and that is sufficiently rich to capture 

the essential dynamic coupling of the target system. In an extreme case of simplifi

cation, one could use the system obtained by Jacobian linearization of the nonlinear 

dynamics as the simple system. 

To illustrate this point, consider the following optimization problem: 

minimize 

subject to x(t) = f(x(t), u(t)), 

where f describes the dynamics of the complicated system and the integrand may be 

a weighted square. Also, we might include a terminal cost to condition the problem. 

The above nonlinear least square problem would result in a trajectory (x , u) that 

is closest in an £2 sense, to that of the simplified system. 

Morphing makes use of the fact that we know that (Xd' udK) satisfies the equations 

of motion for the simplified system. Thus, after a suitable augmentation of the 
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simplified state and controls, we may define a homotopy connecting the simple system 

fo and the complicated system f, e.g., 1>.. = (1 - A)fo + Af. We know the solution of 

the above optimization problem when f = 1>.., it is simply (Xd, Ud). If f and fo are 

well chosen (e.g., by a clever engineer) , then A can be continued from 0 to 1 resulting 

in a trajectory of the complicated system that resembles the prototype trajectory of 

the simple system. 

Since the simple system is often differentially fiat, the desired trajectory can be 

easily generated. If the simplified system captures the essential dynamics and fea

tures of the more complicated model, one can also use a receding horizon scheme 

to morph the trajectories of the simplified model to those of the more complicated 

one, instead of using the above mentioned homotopy argument. Due to the fact that 

the receding horizon approach results in a sampled data feedback , (often times) a 

stabilizing controller around the trajectory is also generated, therefore removing the 

need for a tracking controller and combining both phases of the two degree of freedom 

paradigm. 

Of course the issue of a suitable terminal cost becomes an important one, since 

the usual methods of obtaining a eLF are only valid for regulation around the trivial 

trajectory, i.e., the equilibrium at the origin. In order for our stability arguments to 

be valid, the terminal cost should be a eLF proving stability of the system around 

the trajectory of the full model. Such eLF is in general impossible to find , since we 

do not know the trajectory of the full model a priori. 

However, we know from Theorem 2.3.1 that for a long enough horizon length, the 

terminal cost becomes unnecessary for guaranteeing stability, although it might be 

still useful to have one to condition the problem numerically. 

Before moving to trajectory generation for the vectored thrust model (5.6) , we 

consider the planar ducted fan equation (5.2). 
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6.2 Trajectory generation for the planar ducted 

fan 

The planar ducted fan is a differentially flat system. However, to illustrate the re

ceding horizon trajectory morphing scheme, it would be instructive to use it as an 

example of our trajectory morphing scheme. We would like to consider the following 

simplification of the planar equations in (5.2): 

mx -hsine 

my hcose - mg (6.1) 

Je rh 

As can be seen from the above equations, we have ignored the effect of h on the 

x and y dynamics. With this simplification, we can choose x and y to be the flat 

outputs. 

Our goal is to generate a trajectory for the simplified dynamics in (6.2) , and morph 

that into a trajectory of (5 .2). 

Consider the following desired values for x and y: 

Xd = 0.5 cos(0.67ft) Yd = O. 

The above choice of Xd results in the following choice for ed: 

ed = - arctan( Xd ) = - arctan(6.34 sin(0.67ft)). 
0.28 

Once ed is computed, one can compute hd and hd to be the following 

mg 
hd=-

cose 

Now that the desired trajectory is available, we can use it as a reference in the least 

square optimization discussed earlier. We choose a "long" horizon length of 3 seconds 
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to ensure stability of the receding horizon scheme. 

Simulation results are depicted in Figure 6.l. Perfect tracking is obtained in x 

and B, while there is a t racking error in y. This is perhaps due to the fact that the 

desired trajectory is not a trajectory of the full model. 

In the next section, we discuss some flight maneuvers for the vectored thrust model 

of the ducted fan in forward flight. 
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Figure 6.1: The desired trajectory (in red), and the actual trajectory (in black) for 
the planar ducted fan model. Shown here are the ducted fan posit ions x and y , as 
well as the pitch angle B and the control action fz. 
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6.3 Trajectory generation for the Caltech ducted 

fan in forward flight 

As we have seen in Chapter 5, the Caltech Ducted Fan, modeled as a vectored thrust 

flying wing, is a highly nonlinear system with unique capabilities. From experience 

(and simple experiments) , we know that operation near steady flight conditions can be 

easily achieved. Moreover, it is not too difficult to compute the associated equilibrium 

state and control values, as we did in Chapter 5. It is a much more difficult matter 

to specify feasible non-equilibrium trajectories, especially aggressive maneuvers that 

push the limits of performance. 

The use of vectored thrust allows us to operate the ducted fan beyond the friendly 

linear aerodynamic regime, providing unique opportunities. For example, during a 

dive recovery, one may sacrifice a certain amount of energy (while creating high drag) 

for the sake of improved maneuverability (higher lift plus thrust vectoring). 

How may we approach the specification of high performance, or aggressive , ma

neuvers? Although models of the sort described above are nearly differentially flat , 

we suspect that the presence of aerodynamic forces and moments br:eaks the neces

sary symmetries. Hence, trajectory generation for such a problem is by no means 

simple. To make things worse, the trajectory generation scheme has to handle input 

constraints as well. 

In the case of the vectored thrust flying wing, one may obtain a simplified model 

by removing from consideration the (internal) pitch dynamics and then using the 

angle of attack a as a pseudo-control together with the thrust T. This results in a 

system with two states and two controls: 

mV 

mV-y 

- D (V, a) - lV sin I' + T cos ( a ) 

L(V, a) - Tiff cos I' + Tsin(a). 
(6.2) 

Where V and I' are the states, and T and a are the controls. Given a trajectory 

(Vd(·) , I'd(') , Td(·), ad( ')) of the system (6.2), we build up a desired trajectory for the 
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full system (5.6) by defining qd(·) as the (approximate, if necessary) derivative of 

bd + ad) (.) and choosing 6T ,d so that 

if 6T ,d(-) is sufficiently small (keeping the sin otherwise). The desired trajectory is 

then defined to be Xd(·) = (1ld, l'd, qd,adK) and Ud(-) = (Td,6r ,dK) . 

6.4 Aggressive maneuvers 

In this section we present some of the aggressive maneuvers obtained by implementing 

the morphing technique in a receding horizon fashion on maneuvers developed using 

the simplified model. 

Note that as we mentioned earlier, in addition to actually generating trajectories of 

the more complicated system, the receding horizon approach also provides a (sampled 

data) feedback. 

To get an idea of the maneuverability of the ducted fan , we first push the flying 

wing through a number of periodic climb/dive maneuvers similar to what we have 

flown of the real ducted fan. The period of the maneuvers was chosen to be 5 seconds. 

Figures 6.2 and 6.4 show the nature of these maneuvers as time trajectories. We 

see that the simplified system actually does a decent job of specifying approximate 

trajectories. The actual trajectories of the ducted fan for the above two cases are 

plotted in Figures 6.3 and 6.5 respectively. 

A standard aerobatic maneuver for reversing direction is made up of a half loop, 

better known as an Immelman. For the ducted fan (in up and away flight sans floor 

and ceiling) , the idea is to make the flight path angle l' go from 0 degrees to 180 

degrees. The piloted maneuver would be completed with a 180 degree roll but we 

have no roll axis with the ducted fan and, moreover, the ducted fan can easily fly 

inverted since the system is more or less symmetric. Figures 6.6 and 6.7 show such 

a maneuver. Once again , the simplified system works quite well. In this figure, we 
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Figure 6.3: Periodic diving and climbing maneuver with approximately 20 degrees 
flight path angle 'Y change. Shown here is t he actual trajectory of the ducted fan in 
the x - z plane. The length of the red lines scales with the actual thrust value. 
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have actually plotted the entire set of one second optimal trajectories (with artifacts 

between them). 

yand a. V 
6.5 

150 6 

100 5.5 . .. . ' .. 

(/J 
(/J (!) ..... 

~ E 5 OJ 

~ 50 

4.5 

0 
4 

5 10 15 20 25 5 10 15 20 25 
Time (sec.) Time (sec.) 

0 V 
p m 

0.45 
5 

0.4 

0 
0.35 

(/J 
(!) .l!l 
~ (5 

0.3 g'-5 > 
"0 

0.25 

-10 
0.2 

-15 0.15 
5 1 Grime (JEfc.) 20 25 5 1 Drime IJ&c.) 20 25 

Figure 6.6: Immelman maneuver for reversing direction. Note the radical change in 
6p as stall is encountered. 

6.5 Numerical considerations 

The simulations presented in this chapter were performed using RIOTS [Sch96] in the 

Matlab environment. The software package RIOTS is a general purpose trajectory 

optimization solver. first, the problem is reduced to a nonlinear program and then 

the resulting nonlinear program is solved by NPSOL Version 5.0 [GMSW98] using 

a sequential quadratic programing (SQP) algorithm. RIOTS uses a method known 
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Figure 6.7: The actual trajectory of the ducted fan in the x - z plane is shown during 
an Immelman maneuver. Thrust is represented by red lines, the length of which is 
scaled with the magnitude of thrust. 
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as consistent approximations [PoI93]. In this approach, a solution is obtained as an 

accumulation point of the solut ions to a sequence of discrete-time optimal control 

problems that are consistent approximations to the original continuous-time opti

mal control problem. The discrete-time optimal control problems are constructed by 

discretizing the system dynamics with Runge-Kutta integration method and by pa

rameterizing the control with finite-dimensional B-splines [Sch96]. Note that in this 

approach, only the control trajectory is parameterized. The control trajectory is fed 

into the system dynamics as a function of time, and the resulting system is solved 

using Runge-Kutta methods. 

Since this is performed in an open-loop fashion, it suffers from instability of shoot

ing [HauOO]. This makes it extremely difficult to solve optimization problems for 

horizon lengths of more than 2 seconds. 

An alternative approach is to use collocation methods [MMMOO], and parameterize 

both state and control trajectories. At certain collocation points, the dynamics are 

enforced, reducing the problem into a nonlinear program with equality constraints. 

Using ideas from differential flatness , this can be done in a very efficient manner, 

opening up the possibility of running the optimizations real-time [MMMOO]. 

6.6 Summary 

The purpose of this chapter was to demonstrate the use of receding horizon strategies 

for trajectory generation and tracking. Using an approach known as morphing, tra

jectories were obtained for a simplified model of the system under consideration. A 

least squares optimization problem is then formulated and solved in a receding hori

zon fashion , such that a sampled data receding horizon feedback controller is obtained 

at the same time as the trajectory of the full system. 

These results were demonstrated in simulations on the planar model as well as 

the thrust vectored forward flight model of the Cal tech ducted fan. 
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Chapter 7 Conclusions 

7.1 Thesis summary 

The purpose of this thesis was to develop optimization-based control schemes that are 

suitable for control of unmanned aerial vehicles. The developed scheme is based on a 

receding horizon control strategy, also known as model predictive control or moving 

horizon control. 

The main idea behind receding horizon control is to solve a series of open-loop 

finite horizon optimal control problems in real time. The control trajectory resulting 

from this optimization is then applied to the system under consideration for a small 

fraction of the horizon length, after which a new state measurement is made and this 

process is repeated. 

Although this idea and its variants have been used in industry and extensively 

studied, its use has only been limited to problems in process control industry, where 

the processes are usually open-loop stable and have large time constants. 

With the advent of faster and cheaper computers, as well as state of the art 

numerical methods for solving nonlinear optimization problems faster than ever, it 

was suspected that this technology can be used beyond process control. 

The main obstacle in applying the receding horizon technology in stability critical 

areas such as flight control has been the fact that existing methodologies were not 

tailored for such purposes. Moreover, even the few theoretical results that dealt with 

nonlinear systems had very high computational cost. 

We developed a theoretical framework for stability analysis of receding horizon 

controllers, based on utilizing a control Lyapunov function as terminal cost. It was 

shown that if an appropriate control Lyapunov function (obtained off-line) is used as a 

terminal cost, the stability of the receding horizon scheme can be guaranteed without 

the need for imposing additional stability constraints. Specifically, it was shown that 
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the region for which the unconstrained receding horizon scheme is stabilizing can be 

computed and estimated. Furthermore, we proved that this region can be grown to 

contain any compact subset of the infinite horizon region of attraction. 

We showed that the horizon length can be thought of as a homotopy parameter, 

which can have a CLF controller at one extreme (no optimization), and the opti

mal control (infinite horizon optimization) at the other. Also, in another important 

proposition, we showed that there always exists a finite horizon length for which the 

receding horizon scheme is stabilizing even without the presence of a terminal cost. 

Several propositions and theorems were stated and proven, illustrating the exponen

tial convergence of the resulting receding horizon trajectories to the origin. 

Also, it was shown that the requirement that truly optimal trajectories be com

puted can be relaxed by an improvement condition. This was illustrated by an in

structive example, showing that sub-optimal controllers can sometimes be even more 

desirable. We also proposed a number of possible approaches that provide the CLF 

suitable for receding horizon purposes. 

One of these approaches provided local CLFs based on the linearization of the 

nonlinear system at the origin, and using the linear quadratic regulator theory, while 

another, used the more sophisticated approach of quasi-Linear Parameter Varying 

(quasi-LPV) methods , generating state dependent Lyapunov functions resulting in 

larger regions of attractions. This was based on solving a convex optimization problem 

off-line. 

These results were then applied to a model Unmanned Aerial Vehicle (UAV) , 

known as the Caltech ducted fan. The Caltech ducted fan is a tethered flying wing 

developed as a testbed for flight control. Two modes of operation of the Caltech 

ducted fan , namely hover and forward flight modes , were considered. Several simu

lation studies and numerical experiments were performed to illustrate the developed 

theory. 

A simplified model ignoring the aerodynamic forces was developed for the hover 

mode. Two different CLFs were chosen as terminal costs and comparisons were made 

to explain the theoretical contributions in more detail. 



107 

For the forward flight mode, the ducted fan was modeled as a thrust vectored 

flying wing, and aerodynamic forces and moments were taken into account. The 

model parameters were verified by performing a series of experiments to develop the 

experimental equilibrium manifold. It was shown that the model and experimental 

equilibrium manifolds follow each other closely. 

In the next step, we chose an operating condition and developed a state dependent 

representation of the forward flight model , suitable for use in the quasi-LPV scheme. 

Simulation results indicated that the obtained results are indeed close to the optimal 

solution. 

In Chapter 6, we touched on the issue of trajectory generation, and used the idea of 

trajectory morphing to generate trajectories for the planar ducted fan model as well as 

aggressive maneuvers for forward flight. The main idea behind the morphing concept 

was to use a simplified version of the model which captured the essential dynamics of 

the system, to generate aggressive maneuvers. Once these maneuvers were generated, 

they can be morphed to trajectories for the original complicated model by solving a 

least square optimization in a receding horizon fashion. The obtained results were 

quite promising. 

In the next section we talk about possible future directions. 

7.2 Future research directions 

7.2.1 Running the experiment 

The next obvious step in this research will be using the developed receding hori

zon methodology on the actual experiment. In fact, with availability of trajectory 

generation software developed at Caltech [MMMOO], it would be possible to try the 

stabilization schemes on the experimental setup. Currently, this work is underway at 

Caltech to use the trajectory generation software in conjunction with the experiment. 

The removal of stability constraints has sped up the optimizations drastically. There

fore , we expect that using efficient software in conjunction with our results would 



108 

make it possible to run the receding horizon scheme on the experiment in real time. 

7.2.2 . Inclusion of state constraints 

As was mentioned in the Introduction, one of the main advantages of optimization

based control schemes is their ability to handle constraints. 

As far as the theoretical results are concerned, the method developed in this thesis 

can provably handle input and state constraints as long as the CLF can handle them 

as well. We showed how to use the same unconstrained CLF in the constrained case. 

However, as we saw in the thesis, the region of attraction gets smaller when the 

constraints are present. There are quite a few papers in the literature that propose 

methods for generating CLFs in the presence of input constraints. State constraints 

are, on the other hand, more difficult to handle. Perhaps the same methodology of 

using the unconstrained CLF, and getting a smaller region of attraction, can be a 

first step. 

7.2.3 Multi vehicle extensions and decentralized control 

The ultimate goal of this research project is to develop a decentralized, optimization 

based scheme for control of flocks of U AV s rather than just one. The single vehicle 

platform was just a starting point to establish the fact that receding horizon method

ology is suitable for control of U AV s. A next step would be to use two vehicles, 

perhaps the actual experimental setup in addition to a virtual vehicle which can be 

in a computer. 

The idea would be to try to tackle issues that do not appear in the single vehicle 

case, such as decentralization, coordination, communication and conflict resolution. 

In the multi vehicle case, a challenge would be the design of decentralized con

trollers. In this setting, each vehicle would have only partial information about the 

state of other neighboring vehicles. This problem is well documented and well-known 

to be difficult in control literature. It would be interesting to pursue this in a reced

ing horizon setting. Stability arguments will be undoubtedly more challenging, and 
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search for suitable terminal costs seem to be important issues. 

7.2.4 Fault tolerance and online adaptation 

A very important aspect of any flight control scheme is its ability to handle faults and 

adapt to changes in the environment and/or system. One of the possible advantages 

of online control schemes is their ability to adapt to changes. Since the control is not 

pre-programed, and is computed in real time, sudden changes in the cost function , 

dynamics and/or constraints can be handled. Of course, the choice of a terminal cost 

becomes a crucial one, since that usually requires off-line calculations. One possible 

direction to pursue would be generating the CLF in parallel to the optimization. In 

particular, when the simple CLF from LQR is chosen as terminal cost, one can solve 

Ricatti equations , in real-time, so that the CLF can be changed if necessary. 

7.2.5 Uncertainty management 

Throughout this thesis, the focus has been on developing sub-optimal control schemes 

that can handle nonlinearity. An aspect which has not been addressed is the issue 

of uncertainty. Although there are various approaches available for addressing uncer

tainty in linear systems, there are not nearly as many for nonlinear systems. There 

have been various attempts to address robustness by solving min-max optimization 

problems in a receding horizon setting, but so far none these have been amenable to 

real time calculations. 

There are many possible directions that one can pursue for uncertainty manage

ment. Specifically, it would be interesting to find out whether use of CLFs that are 

obtained having robustness in mind, will do any better in terms of disturbance rejec

tion. Due to the difficulty of solving min-max problems in real time, it is not possible 

to address the robustness issue in a direct fashion. However, a starting point would 

be to use a CLF derived using robust methods , such as those from HOC) approaches. 

It is well known from the full information HOC) control theory that the worst case 

disturbance as well as the optimal controller are both of the state feedback form. 
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These results have also been extended to the Linear Parameter Varying (LPV) and 

quasi-LPV cases. By augmenting the objective function in the robust receding hori

zon scheme with the a priori computed worst case disturbance , the min-max problem 

can be turned into a minimization problem, which can then be solved in a receding 

horizon framework having the CLF from 1-£00 methods as terminal cost. 

7.2.6 Software development 

Another important issue is the development of proper optimal control software pack

ages. The newly developed software package [MMMOO] has addressed a significant 

number of issues that were not properly addressed in RIOTS [Sch96]. However, there 

are still some problems that need to be studied further. One important issue is the 

choice of collocation points. How many of these points does one need to pick to guar

antee satisfactory performance? How should the gridding be performed? These are 

some of the issues that need to be addressed in a more rigorous fashion. 

7.2.7 Trajectory generation and morphing 

As we saw in Chapter 6, trajectory morphing ideas can be used in conjunction with 

receding horizon schemes to generate trajectories for nonlinear systems such as the 

vectored thrust model of the Caltech ducted fan in forward flight. We mentioned 

that for long enough horizon lengths , the t erminal cost is not necessary for stability 

guarantees, and we used that to justify the receding horizon morphing scheme. More 

theoretical work is needed to come up with rigorous conditions under which the re

ceding horizon morphing technique is successful. It should be noted that when the 

t rajectory ends up in an equilibrium point, the same machinery that was developed 

in this thesis can be used to guarantee stability of the receding horizon/morphing 

scheme. In order to develop a complete theory, one should answer questions such as: 

When can the morphing be successful without the homotopy argument? Are there 

any better ways to transition from trajectories of simplified models to the more com

plicated ones, other than forming convex combinations? Under what conditions can 
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we perform the morphing, in a receding horizon setting, and what would be a suitable 

terminal cost for shorter horizon lengths? The answers to these questions would help 

develop a nice framework for aggressive maneuvering and trajectory generation for 

nonlinear systems. 



112 

Bibliography 

[AF66] 

[Art83] 

[Ath71] 

[BBK96] 

[BCD97] 

[Be152] 

M. Athans and P. L. Falb. Optimal Control. McGraw-Hill, New York, 

1966. 

Z. Artstein. Stabilization with relaxed controls. Nonlinear Anal. , 

7(11 ):1163-1173, 1983. 

M. Athans. The role and use of the stochastic linear quadratic Gaus

sian problem in control system design. IEEE Transactions on Automatic 

Control, 16(12):529-552, December 1971 . 

B. Bodenheimer, P. Bendotti, and M. Kantner. Linear parameter-varying 

control of a ducted fan engine. International Journal of Robust and Non

linear Control, 6:1023- 1044, Nov 1996. 

M. Bardi and 1. Capuzzo-Dolcetta. Optimal Control and Viscosity Solu

tions of Hamilton-Jacobi-Bellman Equations. Birkhauser, Boston, 1997. 

R. Bellman. The theory of dynamic programming. In Proc. Nat. Acad. 

Sci. USA , number 38, 1952. 

[BFL +97] G. Balas, 1. Fialho, L. Lee, V. Nalabantoglu, A. Packard, W. Tan, 

E. Wemhoff, G. Wolodkin, and F. Wu. Theory and application of linear 

parameter varying control techniques. In Tutorial presented at the 1997 

Automatic Control Conference, Albuquerque, NM, 1997. 

[BGFB94] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix In

equalities in System and Control Theory, volume 15 of Studies in Applied 

Mathematics. SIAM, Philadelphia, PA, June 1994. 

[BGW90] R. R. Bitmead, M. Gevers, and V. Wertz. Adaptive Optimal Control. 

Prentice Hall, Englewood Cliffs, N.J., 1990. 



113 

[BH75] A. E. Bryson and Y. C. Ho. Applied Optimal Control. Taylor & Francis, 

Bristol, PA, 1975. 

[BMH98] G. Buttazzo, G. Mariano, and S. Hildebrandt. Direct Methods in the 

Calculus of Variations. Oxford University Press, New York, 1998. 

[CA98] H. Chen and F. Allgower. A quasi-infinite horizon nonlinear model predic

tive control scheme with guaranteed stability. Automatica, 34:1205- 1217, 

1998. 

[CDM96] J.R. Cloutier, C.N. D'Souza, and C.P. Mracek. Nonlinear regulation and 

nonlinear Hoo control via the state-dependent riccati equation technique. 

In Proc. 1st Internat. Conj. on Nonl. Problems in Aviation and Aeras

pace, Daytona Beach, FL, 1996. 

[Ces83] 

[CM96] 

L. Cesario Optimization - Theory and Applications: Problems with Ordi

nary Differential Equations. Springer-Verlag, New York, 1983. 

D. Chmielewski and V. Manousiouthakis. On constrained infinite-time 

linear quadratic optimal control. Systems and Control Letters, 29:121-

129, 1996. 

[CMT87a] D. W. Clarke, C. Mohtadi , and P. S. Tuffs. Generalized predictive 

control- I. The basic algorithm. Automatica, 23:137-148, 1987. 

[CMT87b] D. W. Clarke, C. Mohtadi, and P. S. Tuffs. Generalized predictive 

control-II. Extensions and interpretations. A utomatica, 23: 149-160, 

1987. 

[CR80] 

[CS82] 

C. R. Cutler and B. L. Ramaker. Dynamic matrix control- A computer 

control algorithm. In Joint Automatic Control Conj., San Francisco, 

California, 1980. 

C. Chen and L. Shaw. On receding horizon feedback control. Automatica, 

pages 349- 352, 1982. 



[DAC95] 

[Dan51] 

114 

P. Dorato, C. Abdallah, and V. Cerone. Linear-Quadratic Control, An 

Introduction. Prentice Hall, Englewood Cliffs, New Jersey, 1995. 

G. B. Dantzig. Maximization of a linear function of variables subject 

to linear inequalities. In T. C. Koopmans, editor, Activity analysis of 

production and allocation, volume 1660 of Cowles comission monograph. 

John Wiley, New York, 1951. 

[DGKF89] J.C. Doyle, K. Glover, P. Khargonekar, and B. Francis. State-space solu

tions to standard H2 and Hoo control problems. IEEE Transactions on 

Automatic Control, 34(8):831- 847, Aug 1989. 

[Doy78] J. C. Doyle. Guaranteed margins for LQG regulators. IEEE Transactions 

on Automatic Control, 23(4):756- 757, Aug 1978. 

[FLMR95] M. Fliess, J. Levine, Ph. Martin , and P. Rouchon. Flatness and defect 

of non-linear systems: introductory theory and examples. International 

Journal of Control, 61:1327- 1361 , 1995. 

[GM86] C. E. Garcia and A. M. Morshedi. Quadratic programming solut ion of dy

namic matrix control (QDMC). Chemical Engineering Communications, 

46:73- 87, 1986. 

[GMSW98] P. E. Gill , W. Murray, M. A. Saunders, and M. H. Wright. User's guide 

for NPSOL (version 5.0): a fortran package for nonlinear programming. 

Stanford University SOL 86-1 , Stanford University, Revised, July 1998. 

[GMW81] P. E. Gill, W. Murray, and M. H. Wright . Practical Optimization. Aca

demic Press , London and New York, 1981. 

[GPM89] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: 

Theory and practice - A survey. Automatica, 25(3):335-348, May 1989. 

[HauOO] J. Hauser. Personal Communications. 2000. 



[HJ99] 

[HJOO] 

[HM98a] 

[HM98b] 

[HSM92] 

[Hua98] 

115 

Y. Huang and A. Jadbabaie. Nonlinear Hoo control: an enhanced quasi

LPV approach. In Proceedings of the IFAC World Congress, Vol. F, 

pages 85-90, 1999. 

J. Hauser and A. Jadbabaie. Aggressive maneuvering of a thrust vec

tored flying wing: A receding hoizon approach. In IEEE Conference on 

Decision and Control, Sydney, Australia, 2000. 

J. Hauser and D. G. Meyer. The trajectory manifold of a nonlinear control 

system. In IEEE Conference on Decision and Control, pages 1034- 1039, 

1998. 

J. Hauser and D. G. Meyer. Trajectory morphing for nonlinear systems. 

In American Control Conference, pages 2065-2070, 1998. 

J . Hauser, S. Sastry, and G. Meyer. Nonlinear control design for slightly 

nonminimum phase systems - application to v/stol aircraft. A utomatica, 

28:665-679, 1992. 

Y. Huang. Nonlinear Optimal Control: An enhanced quasi-LPV ap

proach. PhD thesis, California Institute of Technology, Pasadena, CA, 

1998. 

[JYH99a] A. Jadbabaie, J. Yu, and J. Hauser. Receding horizon control of the 

Caltech ducted fan: A control Lyapunov function approach. In IEEE 

Conference on Control Applications, pages 51- 56, 1999. 

[JYH99b] A. Jadbabaie, J. Yu, and J. Hauser. Stabilizing receding horizon control of 

nonlinear systems: A control Lyapunov function approach. In American 

Control Conference, pages 1535- 1539, 1999. 

[Ka160] R. E. Kalman. Contributions to the theory of optimal control. Bol. Soc. 

Mat. Mexicana, 5:102-119, 1960. 



116 

[KaI64] R. E. Kalman. When is a linear control system optimal? J. Basic Engrg. 

Trans. ASME Ser. D, 86:51- 60, 1964. 

[KB61] R. E. Kalman and R. Bucy. New results in linear filtering and prediction 

theory. J. Basic Eng., Trans. ASME, Ser. D, 83:95- 108, 1961. 

[KBK83] W. H. Kwon, A. N. Bruckstein , and T. Kailath. Stabilizing state feedback 

design via the moving horizon method. International Journal of Control, 

37(3):631- 643, 1983. 

[KBPM95] M. Kantner , B. Bodenheimer, P.Bendotti, and R. M. Murray. An experi

mental comparison of controllers for a vectored thrust ducted fan engine. 

In American Control Conference, pages 1956- 1961 , 1995. 

[KG88] S. Keerthi and E. Gilbert . Optimal infinite-horizon feedback laws for a 

general class of constrained discrete-time systems: Stability and moving

horizon approximations. Journal of Optimization Theory and Applica

tions, pages 265- 293, 1988. 

[KKK95] M. Kristic, 1. Kanellakopoulos , and P. Kokotovic. Nonlinear and Adaptive 

Control Design. John Wiley & Sons, New York, 1995. 

[Kle70] B.L. Kleinman . An easy way to stabilize a linear constant system. IEEE 

Transactions on Automatic Control, 15:693, 1970. 

[KP77] 

[LH93] 

[LM67] 

W .H. Kwon and A.E. Pearson. A modified quadratic cost problem and 

feedback stabilization of a linear system . IEEE Transactions on Auto

matic Control, 22(5):838- 842, 1977. 

M. C. Lai and J. Hauser. Computing maximal stability region using a 

given Lyapunov function. In American Control Conference, pages 1500-

1502, 1993. 

E. B. Lee and L. Markus. Foundations of Optimal Control Theory. Wiley, 

New York, 1967. 



[LP44] 

[ML99] 

[MM93] 

[MM99] 

117 

A. I. Lur'e and V. N. Postnikov. On the theory of stability of control 

systems. Applied Mathematics and Mechanics, 8(3), 1944. 

M. Morari and J. H. Lee. Model predictive control: past, present, and 

future. Computers and Chemical Engineering, 23:667- 682, 1999. 

H. Michalska and D.Q. Mayne. Robust receding horizon control of con

strained nonlinear systems. IEEE Transactions on Automatic Control, 

38(11):1623-1633, November 1993. 

M. Milam and R M. Murray. A testbed for nonlinear flight control 

techniques: The Caltech Ducted Fan. In IEEE Conference on Control 

Applications, pages 345- 351 , Big Island, Hawaii, 1999. 

[MMMOO] M. Milam, K. Mushambi, and R M. Murray. A computational approach 

to real-time trajectory generation for constrained mechanical systems. In 

IEEE Conference on Decision and Control, 2000. 

[MRRSOO] D. Q. Mayne, J. B. Rawlings , C.V. Rao, and P.O.M. Scokaert. Con

strained model predictive control: Stability and optimality. Automatica, 

36(6):789- 814, 2000. 

[MS97] 

[Mur98] 

[NM96] 

L. Magni and R. Sepulchre. Stability margins of nonlinear receding hori

zon control via inverse optimality. Systems and Control Letters, 32:241-

245, 1997. 

RM. Murray. Modeling of the Caltech ducted fan , class notes for cds 

111. Technical report , California Institute of Technology, Control and 

Dynamical Systems 107- 81, Pasadena, CA 91125 , 1998. 

M.van Nieuwstadt and R. M. Murray. Real time tarjectory generation 

for differentially flat systems. In Proceedings of the 1 gg6 IFA C World 

Congress, 1996 . 



[NMS98] 

[NN94] 

[PG79] 

[PNOO] 

[PNDOO] 

[PoI93] 

[Ponan] 

[Pri98] 

[PZ95] 

[RM93] 

118 

G. De Nicolao, L. Magni , and R. Scattolini. Stabilizing receding-horizon 

control of nonlinear time-varying systems. IEEE Transactions on Auto

matic Control, 43(7):1030- 1036, 1998. 

Yu. Nesterov and A. Nemirovsky. Interior-point polynomial methods 

in convex programming, volume 13 of Studies in Applied Mathematics. 

SIAM, Philadelphia, PA, 1994. 

D. M. Prett and R. D. Gillette. Optimization and constrained multivari

able control of a catalytic cracking unit. In AIChE Meeting, Houston, 

TX, 1979. 

J .A. Primbs and V. Nevistic. Feasibility and stability of constrained finite 

receding horizon control. Automatica, 36(7):965- 971, 2000. 

J. A. Primbs, V. Nevistic, and J. C. Doyle. A receding horizon generaliza

tion of pointwise min-norm controllers. IEEE Transactions on Automatic 

Control, 45:898- 909, June 2000. 

E. Polak. On the use of consistent approximations in the solution of 

semi-infinite optimization and optimal control problems. Mathematical 

Programing, 62:385-415, 1993. 

L. S. Pontryagin. Optimal control processes. Uspehi Mat. Nauk, 14:3-20, 

1959 (in Russian). 

J. A. Primbs. Nonlinear Optimal control: A receding horizon approach. 

PhD thesis , California Institute of Technology, Pasadena, CA, 1998. 

T. Parisini and R. Zoppoli. A receding horizon regulator for nonlinear 

systems and a neural approximation. Automatica, 31:1443- 1451, 1995. 

J . B. Rawlings and K. R. Muske. The stability of constrained receding 

horizon control. IEEE Transactions on Automatic Control, 38(10):1512-

1516, 1993. 



119 

[Roy88] H. L. Royden. Real Analysis. Macmilan, New York, 1988. 

[RRTP78] J . Richalet , A. Rault , J. L. Testud, and J. Papon. Model predic

tive heuristic control: Applications to industrial processes. A utomatica, 

14(5):413- 428, 1978. 

[SA90] 

[SA91] 

[SA92] 

[Sch96] 

J. Shamma and M. Athans. Analysis of gain scheduled control for non

linear plants. IEEE Tr·ansactions on Automatic Control, pages 898- 907, 

1990. 

J. Shamma and M. Athans. Guaranteed properties of gain scheduled 

control for linear parameter-varying plants. Automatica, pages 559-564, 

1991. 

J. Shamma and M. Athans. Gain-scheduling: Potential hazards and 

possible remedies. IEEE Control Systems Magazine, 12(3):101- 107, June 

1992. 

A. Schwartz. Theory and Implementation of Numerical Methods Based 

on Runge-Kutta Integration for Optimal Control Problems. PhD Disser

tation, University of California, Berkeley, 1996. 

[SCH+OO] M. Sznaier, J. Clout ier, R. Hull , D. Jacques , and C. Mracek. Reced

ing horizon control lyapunov function approach to suboptimal regula

tion of nonlinear systems. Journal of Guidance, Control, and Dynamics, 

23(3):399- 405 , 2000. 

[SD901 M. Sznaier and M. J. Damborg. Heuristically enhanced feedback con

trol of constrained discrete-time linear systems. A utomatica, 26:521- 532 , 

1990. 

[SMR99] P. Scokaert , D. Mayne, and J . Rawlings. Suboptimal model predictive 

control (feasibility implies stability). IEEE Transactions on Automatic 

Control, 44:648- 654, March 1999. 



[Son89] 

[SR98] 

[Th075] 

[TroOO] 

[vdS91] 

[vdS94] 

[Wri98] 

120 

E.D. Sontag. A 'universal' construction of Artstein's theorem on nonlin

ear stabilization. Systems and Control Letters, 13(2):117- 123, 1989. 

P. Scokaert and J. Rawlings. Constrained linear quadratic regulation. 

IEEE Transa ctions on Automatic Control, 43:1163- 1169, August 1998. 

YA. Thomas. Linear quadratic optimal estimation and control with 

receding horizon control. Electronic Letters, 11:19- 21, 1975. 

M. Trotoux. Personal Communications. 2000. 

A. J. van der Schaft. On a state space approach to nonlinear Hoo control. 

Systems and Control Letters, 116:1- 8, 1991. 

A. J. van der Schaft. L 2 -Gain and Passivity Techniques in Nonlinear 

Control, volume 218 of Lecture Notes in Control and Information Sci

ences. Springer-Verlag, London, 1994. 

M. H. Wright. The interior-point revolution in constrained optimization. 

In R. DeLeone, A. Murli , P. M. Pardalos , and G. Toraldo, editors, High

Performance Algorithms and Software in Nonlinear Optimization, pages 

359-381. Kluwer Academic Publishers, 1998. 

[WYPB96] F. Wu, H. X. Yang, A. Packard, and G. Becker. Induced L2-Norm con

trol for LPV systems with bounded parameter variation. International 

Journal of Robust and Nonlinear Control, vol. 6:983-998, 1996. 

[YJPH99] J. Yu, A. Jadbabaie , J. Primbs, and Y Huang. Comparison of nonlinear 

control designs for a due ted fan model. In Proceedings of the IFAC World 

Congress, Vol. E, pages 53- 58, 1999. 


