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Abstract

Spatial processing of sparse, irregular floating-point computation using a single FPGA

enables up to an order of magnitude speedup (mean 2.8× speedup) over a conven-

tional microprocessor for the SPICE circuit simulator. We deliver this speedup us-

ing a hybrid parallel architecture that spatially implements the heterogeneous forms

of parallelism available in SPICE. We decompose SPICE into its three constituent

phases: Model-Evaluation, Sparse Matrix-Solve, and Iteration Control and parallelize

each phase independently. We exploit data-parallel device evaluations in the Model-

Evaluation phase, sparse dataflow parallelism in the Sparse Matrix-Solve phase and

compose the complete design in streaming fashion. We name our parallel architec-

ture SPICE2: Spatial Processors Interconnected for Concurrent Execution for ac-

celerating the SPICE circuit simulator. We program the parallel architecture with a

high-level, domain-specific framework that identifies, exposes and exploits parallelism

available in the SPICE circuit simulator. Our design is optimized with an auto-tuner

that can scale the design to use larger FPGA capacities without expert intervention

and can even target other parallel architectures with the assistance of automated

code-generation. This FPGA architecture is able to outperform conventional proces-

sors due to a combination of factors including high utilization of statically-scheduled

resources, low-overhead dataflow scheduling of fine-grained tasks, and overlapped

processing of the control algorithms.

We demonstrate that we can independently accelerate Model-Evaluation by a

mean factor of 6.5×(1.4–23×) across a range of non-linear device models and Matrix-

Solve by 2.4×(0.6–13×) across various benchmark matrices while delivering a mean

combined speedup of 2.8×(0.2–11×) for the two together when comparing a Xilinx
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Virtex-6 LX760 (40nm) with an Intel Core i7 965 (45nm). With our high-level frame-

work, we can also accelerate Single-Precision Model-Evaluation on NVIDIA GPUs,

ATI GPUs, IBM Cell, and Sun Niagara 2 architectures.

We expect approaches based on exploiting spatial parallelism to become impor-

tant as frequency scaling slows down and modern processing architectures turn to

parallelism (e.g. multi-core, GPUs) due to constraints of power consumption. Our

thesis shows how to express, exploit and optimize spatial parallelism for an important

class of problems that are challenging to parallelize.
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Chapter 1

Introduction

This thesis shows how to expose, exploit and implement the parallelism available in

the SPICE simulator [1] to deliver up to an order of magnitude speedup (mean 2.8×

speedup) on a single FPGA chip. SPICE (Simulation Program with Integrated Cir-

cuit Emphasis) is an analog circuit simulator that can take days or weeks of runtime

on real-world problems. It models the analog behavior of semiconductor circuits us-

ing a compute-intensive non-linear differential equation solver. SPICE is notoriously

difficult to parallelize due to its irregular, unpredictable compute structure, and a

sloppy sequential description. It has been observed that less than 7% of the floating-

point operations in SPICE are automatically vectorizable [2]. SPICE is part of the

SPEC92 [3] benchmark collection which is a set of challenge problems for micropro-

cessors. Over the past couple of decades, we have relied on innovations in computer

architecture (clock frequency scaling, out-of-order execution, complex branch predic-

tors) to speedup applications like SPICE. It was possible to improve performance of

existing application binaries by retaining the exact same ISA (Instruction Set Archi-

tecture) abstraction at the expense of area and power consumption. However, these

traditional computer organizations have now run up against a power wall [4] that

prevents further improvements using this approach. More recently, we have migrated

microprocessor designs towards “multi-core” organizations [5, 6] which are an ad-

mission that further improvements in performance must come from parallelism that

will be explicitly exposed to the hardware. Reconfigurable, spatial architectures like

FPGAs provide an alternate platform for accelerating applications such as SPICE
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SPICE Phase Description Parallelism Compute Organization

Model Evaluation Verilog-AMS Data Parallel Statically-Scheduled VLIW
Matrix Solve Sparse Graph Sparse Dataflow Token Dataflow

Iteration Control SCORE Streaming Sequential Controller

Table 1.1: Thesis Research Matrix

at lower clock frequencies and lower power. Unlike multi-core organizations which

can exploit a fixed amount of instruction-level parallelism, thread-level parallelism

and data-level parallelism, FPGAs can be configured and customized to exploit par-

allelism at multiple granularities as required by the application. FPGAs offer higher

compute density [7] by implementing computation using spatial parallelism which

distributes processing in space rather than time. In this thesis, we show how to trans-

late the high compute density available on a single-FPGA to accelerate SPICE by

2.8× (11× max.) using a high-level, domain-specific programming framework. The

key questions addressed in this thesis as follows:

1. Can SPICE be parallelized? What is the potential for accelerating SPICE?

2. How do we express the irregular parallel structure of SPICE?

3. How do we use FPGAs to exploit the parallelism available in SPICE?

4. Will FPGAs outperform conventional multi-core architectures for parallel SPICE?

We intend to use SPICE as a design-driver to address broader questions. How

do we capture, exploit and manage heterogeneous forms of parallelism in a single

application? How do we compose the parallelism in SPICE to build the integrated

solution? Is it sufficient to constrain this parallelism to a general-purpose architecture

(e.g. Intel multi-core)? Will the performance of this application scale easily with

larger processing capacities?

1.1 Contributions

We develop a novel framework to capture and reason about complex applications

like SPICE with heterogeneous forms of parallelism. We use parallel patterns for
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expressing and unifying this parallelism effectively. We organize our parallelism on

reconfigurable architecture to spatially implement and customize the compute orga-

nization to each style of parallelism. We configure this hardware with a compilation

flow supported by auto-tuning to implement the parallelism in a scalable manner

on available resources. We use SPICE as a design driver to experiment with these

ideas and quantitatively demonstrate the benefits of this design philosophy.

As shown in the matrix in Table 1.1, we first decompose SPICE into its three

constituent phases: (1) Model Evaluation, (2) Sparse Matrix-Solve and (3) Iteration

Control. We describe these phases in Chapter 2.

We identify opportunities for parallel operation in the different phases of SPICE

and provide design strategies for hardware implementation using suitable parallel

patterns. Parallel patterns are a paradigm of structured concurrent program-

ming that help us express, capture and organize parallelism. Paradigms and patterns

were identified in the classic paper by Floyd [8]. They are invaluable tools and tech-

niques for describing computer programs in a methodical “top-down” manner. When

describing parallel computation, we need similar patterns for organizing our parallel

program. We can always expose available parallelism in the most general Communi-

cating Sequential Processes (CSP [9]) model of computation. However, this provides

no guidance for managing communication and synchronization between the parallel

processes. It also does not necessarily provide any insight into choosing the right

hardware implementation for the parallelism. In contrast, parallel patterns are

reusable strategies for describing and composing parallelism that serve two key pur-

poses. First, these patterns let the programmer construct the parallel program from

well-known, primitive, building blocks that can compose with each other. Second,

the patterns also provide structure for constructing parallel hardware that best im-

plements the computation. This is more restricted than the general CSP model but

simplifies the task of writing the parallel program and developing parallel hardware

using well-developed solutions to avoid common pitfalls.

We analyze the structure of SPICE in the form of patterns and illustrate how

they guide the selection of parallel FPGA organization. The Model-Evaluation phase
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of SPICE can be effectively parallelized using the data-parallel pattern. We imple-

ment this data-parallelism in a software-pipelined fashion on the FPGA hardware.

We further exploit the static nature of this data-parallel computation to schedule the

computation on a custom, time-multiplexed, VLIW architecture. We extract the ir-

regular, sparse dataflow parallelism available in the Matrix-Solve phase of SPICE that

is different from the regular, data-parallel pattern that characterizes Model-Evaluation

phase. We use the KLU matrix-solver package to expose the static dataflow paral-

lelism available in this phase and develop a distributed, token-dataflow architecture

for exploiting that parallelism. This static dataflow capture allows us to distribute the

graph spatially across parallel compute units and process the graph in a fine-grained

fashion. Finally, we express the Iteration-Control phase of SPICE using a stream-

ing pattern in the high-level SCORE framework to enable overlapped evaluation and

efficiently implement the SPICE analysis state machines.

We now describe some key ideas that help us develop our parallel FPGA imple-

mentation:

• Domain-Specific Framework: The parallelism in SPICE is a heterogeneous

composition of multiple parallel domains. To properly capture and exploit par-

allelism in SPICE, we develop domain-specific flows which include high-level lan-

guages and compilers customized for each domain. We develop a Verilog-AMS

compiler to describe the non-linear differential equations for Model-Evaluation.

We use the SCORE [10] framework (TDF language and associated compiler

and runtime) to express the Iteration-Control phase of SPICE and compose the

complete design. This high-level problem capture makes the spatial, parallel

structure of the SPICE program evident. We can then use the compiler and

develop auto-tuners to exploit this spatial structure on FPGAs.

• Specialization: The SPICE simulator requires three inputs: (1) Circuit (2)

Device type and parameters (3) Convergence/Termination control options. We

exploit the static and early-bound nature of certain inputs to generate optimized

hardware implementation and quantify their benefits. The Model Evaluation
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computation is dependent on device type and the device parameters. We can

pre-compile, optimize and schedule the static dataflow computation for the few

device types used by SPICE and simply select the appropriate type prior to

execution. We get an additional improvement in performance and reduction

in area by specializing the device evaluation to specific device parameters that

are common to specific semiconductor manufacturing processes. We quantify

the benefits of specialization in Table 3.4 in Chapter 3. The Sparse Matrix

Solve computation operates on a dataflow graph that can be extracted at the

start of the simulation. This early-bound structure of the computation allows

us to distribute and place operations on our parallel architecture once and then

reuse the placement throughout the simulation. We show a 1.35× improvement

in sequential performance of Matrix-Solve phase through specialization in Ta-

ble 4.5 from Chapter 4. Finally, the simulator convergence and terminal control

parameters are loaded into registers at the start of the simulation and are used

by the hardware to manage the SPICE iterations.

• Spatial Architectures: The different parallel patterns in SPICE can be

efficiently implemented on customized spatial architectures on the FPGA. Hence,

we identify and design the spatial FPGA architecture to match the pattern of

parallelism in the SPICE phases. Our statically-scheduled VLIW architecture

delivers high utilization of floating-point resources (40–60%) and is supported

by an efficient time-multiplexed network that balances the compute and com-

municate operations. We use a Token-Dataflow architecture to spatially dis-

tribute processing of the sparse matrix factorization graph across the paral-

lel architecture. The sparse graph representation also eliminates the need for

address-calculation and sequential memory access dependencies that constrain

the sequential implementation. Finally, we develop a streaming controller that

enables overlapped processing of the Iteration Control computation with the

rest of SPICE.

• Scalability: Typical FPGA designs are rigidly tied to a particular FPGA fam-
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ily and require a complete redesign to scale to larger FPGA sizes. We are inter-

ested in developing scalable FPGA systems that can be automatically adapted

to use extra resources when they become available. For speedup calculations in

this thesis, our parallel design is engineered to fit into the resources available

on a single Virtex-6 LX760 FPGA. We develop an auto-tuner that enables easy

scalability of our design to larger FPGA capacities. Our auto-tuner explores

area-memory-time space to pick the implementation that fits available resources

while delivering the highest performance. The Model-Evaluation and Iteration-

Control phases of SPICE can be accelerated almost linearly with additional

logic and memory resources. With a sufficiently large FPGA we can spatially

implement the complete dataflow graph of the Model-Evaluation and Iteration-

Control computation as a physical circuit without using a time-shared VLIW

architecture. Furthermore, the auto-tuner can automatically choose the proper

configuration for this larger FPGA. This is relevant in light of the recently an-

nounced Xilinx Virtex-7 FPGA family [11] that has 2–3× the capacity of the

FPGA we use in this thesis. However, the Sparse Matrix-Solve phase will only

enjoy limited additional parallelism with extra resources. Additional research

into decomposed matrix solvers is necessary to properly scale performance on a

larger system.

The quantitative contributions of this thesis include:

1. Complete simulator: We accelerate the complete double-precision implemen-

tation of the SPICE simulator by 0.2-11.1× when comparing the Xilinx Virtex-6

LX760 (40nm technology node) with an Intel Core i7 965 processor (45nm tech-

nology node) with no compromise in simulation quality.

2. Model-Evaluation Phase: We implement the Model-Evaluation phase by

compiling a high-level Verilog-AMS description to a statically-scheduled custom

VLIW architecture. We demonstrate a speedup of 1.4–23.1× across a range of

non-linear device models when comparing Double-Precision implementations on

a Virtex-6 LX760 compared to an Intel Core i7 965. We also deliver speedups
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of 4.5–123.5× for a Virtex-5 LX330, 10.1–63.9× for an NVIDIA 9600GT GPU,

0.4–6× for an ATI FireGL 5700 GPU, 3.8–16.2× for an IBM Cell and 0.4–1.4×

for a Sun Niagara 2 architectures when comparing Single-Precision evaluation

to an Intel Xeon 5160 across these architectures at 55nm–65nm technology. We

also show speedups of 4.5–111.6× for a Virtex-6 LX760, 13.1–133.1× for an

NVIDIA GTX285 GPU and 2.8–1200× for an ATI Firestream 9270 GPU when

comparing Single-Precision evaluation to an Intel Core i7 965 on architectures

at 40–55nm technology.

3. Sparse Matrix-Solve Phase: We implement the sparse dataflow graph rep-

resentation of the Sparse Matrix-Solve computation using a dynamically-routed

Token Dataflow architecture. We show how to improve the performance of irreg-

ular, sparse matrix factorization by 0.6–13.4×when comparing a 25-PE parallel

implementation on a Xilinx Virtex-6 LX760 FPGA with a 1-core implementa-

tion on an Intel Core i7 965 for double-precision floating-point evaluation.

4. Iteration-Control Phase: Finally, we compose the complete simulator along

with the Iteration-Control phase using a hybrid streaming architecture that

combines static scheduling with limited dynamic selection. We deliver 2.6×

(max 8.1×) reduction in runtime for the SPICE Iteration-Control algorithms

when comparing a Xilinx Virtex-6 LX760 with an Intel Core i7 965.

1.2 SPICE

We now present an overview of the SPICE simulator and identify opportunities for

parallel operation. At the heart of the SPICE simulator is a non-linear differential

equation solver. The solver is a compute-intensive iterative algorithm that requires an

evaluation of non-linear physical device equations and sparse matrix factorizations in

each iteration. When the number of devices in the circuit grows, the simulation time

will increase correspondingly. As manufacturing process technologies keep improving

we are able to build smaller semiconductor devices and consequently we can pack
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larger circuits into a single chip. The ITRS roadmap for semiconductors [12, 13]

suggests that SPICE simulation runtimes for modeling non-digital effects [12] and

large power-ground networks [13] are a challenge. This will increase the size of the

circuits (N) we want to simulate. SPICE simulation time scales as O(N1.2) which

outpaces the increase in computing capacity of conventional architectures O(N0.96) as

shown in Figure 1.1 (additional discussion in Section 2.2). Our parallel, single-FPGA

design scales more favorably with increasing circuit size as O(N0.7). We show the

peak capacities of the processor and FPGA used in the comparison in Table 1.2. A

parallel SPICE solver will decrease verification time and reduce the time-to-market

for integrated circuits. However, as identified in [2] parallelizing SPICE is hard. Over

the past three decades, parallel SPICE efforts have either delivered limited speedups

or sacrificed simulation quality to improve performance. Furthermore, the techniques

and solutions are specific to a particular system and not easily portable to newer,

better architectures. The SPICE simulator is a complex mix of multiple compute

patterns that demands customized treatment for proper parallelization. After a

careful performance analysis, it is clear that the Model Evaluation and Sparse Matrix-

Solve phases of SPICE are the key contributors to total SPICE runtime. We note that

the Model Evaluation phase of SPICE is in fact embarrassingly parallel by itself and

should be relatively easy to parallelize. We describe our parallel solution in Chapter 3.

In contrast, the Sparse Matrix-Solve phase is more challenging. This is one of the

key reasons why earlier studies were unable to parallelize the complete simulator.

The underlying compute structure of Sparse Matrix Solve is irregular, unpredictable

and consequently performs poorly on conventional architectures. Recent advances

in numerical algorithms provide an opportunity to reduce these limitations. We

use the KLU solver [14, 15] to generate an irregular, dataflow factorization graph

that exposes the available parallelism in the computation. We explain our approach

for parallelizing the challenge Sparse Matrix-Solve phase in Chapter 4. Finally, the

Iteration-Control phase of SPICE is responsible for co-ordinating the simulation steps.

While it is a tiny fraction of sequential runtime, it may become a non-trivial fraction

of the accelerated SPICE solver. We show how to efficiently implement the Iteration-
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Figure 1.1: Scaling Trends for CPU FLOPS and spice3f5 runtime

Family Chip Tech. Clock Peak GFLOPS Power
(nm) (GHz) (Double) (Watts)

Intel Core i7 965 45 3.2 25 130
Xilinx Virtex-6 LX760 40 0.2 26 20–30

Table 1.2: Peak Floating-Point Throughputs (Double-Precision)

Control phase of SPICE in Chapter 5. Finally, in Chapter 6 we discuss how to

integrate the complete SPICE solver on a single FPGA.

1.3 FPGAs

We briefly review the FPGA architecture and highlight some key characteristics of an

FPGA that make it well-suited to accelerate SPICE. A Field-Programmable Gate Ar-

ray is a massively-parallel architecture that implements computation using hundreds

of thousands of tiny programmable computing elements called LUTs (lookup tables)

connected to each other using a programmable communication fabric. Typically these

LUTs are clustered into SLICEs (2–4 LUTs per SLICE depending on FPGA archi-

tecture). Moore’s Law delivers progressively larger FPGA capacities with increasing

numbers of SLICEs per chip. Modern FPGAs also include hundreds of embedded

memories and integer multipliers distributed across the fabric for concurrent oper-

ation. We show a small region inside an island-style FPGA in Figure 1.2 (LUTs

9
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correspond to islands in a sea of interconnect). An FPGA allows us to configure

the computation in space rather than time and evaluate multiple operations concur-

rently in a fine-grained fashion. In Figure 1.3, we show a simple calculation and its

conceptual implementation on a CPU and an FPGA. For a CPU implementation, we

process the instructions stored in an instruction memory temporally on an ALU while

storing the intermediate results (i.e. variables) in a data memory. On an FPGA, we

can implement the operations as spatial circuits while implementing the dependencies

between the operations physically using pipelined wires instead of variables stored in

memory. Additionally a pipelined FPGA circuit implementation of certain operations

in the computation (e.g. divide, sqrt) require multiple cycles on the CPU while we

can configure a custom, pipelined circuit for those operations on the FPGA for higher

throughput.

While FPGAs have been traditionally successful at accelerating highly-parallel,

communication-rich algorithms and application kernels, they are a challenging tar-

get for mapping a complete application with diverse computational patterns such

as the SPICE circuit simulator. Furthermore, programming an FPGA with exist-

ing techniques for high performance requires months of effort and low-level tuning.

Additionally, these designs do not automatically scale for larger, newer FPGA capac-

ities that become available with technology scaling and require re-compilation and

re-optimization by an expert.

1.4 Implementing SPICE on an FPGA

We now briefly describe our hardware architecture and mapping flow for implementing

SPICE on a single FPGA. We use a high-level framework to express, extract and

compose the parallelism in the different phases of SPICE. We develop a hybrid FPGA

architecture that combines custom architectures tailored to the parallelism in each

phase of SPICE. In Figure 1.4 we show a high-level block diagram of the composite

FPGA architecture with the three regions tailored for each phase of SPICE. We show

a simple picture of our mapping flow in Figure 1.5. While the logic configuration
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Figure 1.3: Implementing Computation

of the FPGA is the same for all SPICE circuits, we need to program the FPGA

memories in an instance-specific manner for each circuit we simulate. We show how

we assemble the FPGA hardware and provide additional details of our mapping flow

in Chapter 6.

A completely spatial implementation of the SPICE circuit simulator is too large

to fit on a single FPGA at 40nm technology today. On larger FPGAs, in the near

future, it will become possible to fit the fully-spatial Model Evaluation graphs entirely

on a single FPGA. For these graphs, the cost of a fully-spatial implementation gets

amortized across several device evaluations. However, for the Sparse Matrix-Solve

phase, the limited amount of parallelism and low reuse does not motivate a fully-

spatial design even if we have large FPGAs. Furthermore, configuring the FPGA

for every circuit using FPGA CAD tools (synthesize logic, place LUTs, and route

wires) can itself take hours or days of runtime defeating the purpose of a parallel

FPGA implementation for SPICE. We develop the custom FPGA architecture using

virtual organizations capable of accommodating the entire SPICE simulator operation

on a single FPGA. Furthermore, we simplify our circuit-specific compilation step by

requiring only a memory generation step to program the virtual architecture (static
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Chapter 2

Background

In this chapter, we review the SPICE simulation algorithm and discuss the inner-

workings of the three constituent phases of SPICE. We review existing literature and

categorize previous attempts at parallelizing SPICE. We argue that these previous

approaches were unable to fully capitalize on the parallelism available within the

SPICE simulator due to limitations of hardware organizations and inefficiencies in

the software algorithms. In the following chapters, we will describe our FPGA-based

“spatial” approach that provides a communication-centric architecture for exploiting

the parallelism in SPICE.

2.1 The SPICE Simulator

SPICE simulates the dynamic analog behavior of a circuit described by its constituent

non-linear differential equations. It was developed at the EECS Department of the

University of California, Berkeley by Donald Pederson, Larry Nagel [1], Richard New-

ton, and many other contributors to provide a fast and robust circuit simulation

program capable of verifying integrated circuits. It was publicly announced thirty-

seven years ago in 1973 and many versions of the package have since been released.

spice2g6 was part of the SPEC89 and SPEC92 benchmark sets of challenge problems

for microprocessors. Many commercial versions of analog circuit simulators inspired

by SPICE now exist as part of a large IC design and verification industry. For this

study, we use the open-source spice3f5 package released from Berkeley in 1995.
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Figure 2.1: Flowchart of a SPICE Simulator

SPICE circuit equations model the linear (e.g. resistors, capacitors, inductors)

and non-linear (e.g. diodes, transistors) behavior of devices and the conservation

constraints (i.e. Kirchoff’s current laws—KCL) at the different nodes and branches

of the circuit. SPICE solves the non-linear circuit equations by alternately computing

small-signal linear operating-point approximations for the non-linear elements and

solving the resulting system of linear equations until it reaches a fixed point. The

linearized system of equations is represented as a solution of A~x = ~b, where A is

the matrix of circuit conductances, ~b is the vector of known currents and voltage

quantities and ~x is the vector of unknown voltages and branch currents.

Spice3f5 uses the Modified Nodal Analysis (MNA) technique [16] to assemble

circuit equations into matrix A. The MNA approach is an improvement over conven-

tional nodal analysis by allowing proper handling of voltage sources and controlled

current sources. It requires the application of Kirchoff’s Current Law at all the nodes

in the circuit with voltage at each node being an unknown. It then introduces un-

16



V1 D1

R1

+

_

GND

C1

1 2

Figure 2.2: SPICE Circuit Example

knowns for currents through branches to allow voltage sources and controlled current

sources to be represented.

The simulator calculates entries in A and ~b from the device model equations that

describe device transconductance (e.g., Ohm’s law for resistors, transistor I-V charac-

teristics) in the Model-Evaluation phase. It then solves for ~x using a sparse-direct

linear matrix solver in the Matrix-Solve phase. We show the steps in the SPICE

algorithm in Figure 2.1. The inner loop iteration supports the operating-point calcu-

lation for the non-linear circuit elements, while the outer loop models the dynamics

of time-varying devices such as capacitors. The simulator loop management controls

are handled by the Iteration Control phase. We illustrate the operation of the

simulator using an example shown in Figure 2.2. We first write down the non-linear

differential equations that capture circuit behavior in Equation 2.1–Equation 2.6.

The non-linear (diode) and time-varying (capacitor) devices are represented using

linearized forms in Equation 2.2 and Equation 2.3 respectively. We then reassemble

these equations into A~x = ~b form shown in Figure 2.4.

2.1.1 Model-Evaluation

In the Model-Evaluation phase, the simulator computes conductances and currents

through different elements of the circuit and updates corresponding entries in the

matrix with those values. We expand the equations for the example circuit in Fig-
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I(R1) = (V1 − V2) ·
1

R1
(2.1)

I(D1) = Geq(D1) · V2 + Ieq(D1) (2.2)

I(C1) = Geq(C1) · V2 + Ieq(C1) (2.3)

I(V 1) = I(R1) (2.4)

I(R1) = I(C1) + I(D1) (2.5)

V1 = V 1 (2.6)

Figure 2.3: Circuit Equations from Conservations Laws (KCL)

 G1 −G1 1
−G1 G1 +Geq(C1) +Geq(D1) 0

1 0 0

 ×
 V1

V2
I(V 1)

 =

 0
Ieq(C1) + Ieq(D1)

V 1


Figure 2.4: Matrix Representation of Circuit Equations in SPICE

ure 2.5 and fill-in the matrix appropriately in Figure 2.6. For the linear elements (e.g.

resistors) this needs to be done only once at the start of the simulation (shown in

blue in Figures 2.5 and 2.6). For non-linear elements, the simulator must search

for an operating-point using Newton-Raphson iterations which requires repeated

evaluation of the model equations multiple times per timestep (inner loop labeled

Newton-Raphson Iterations in Figure 2.1 and shown in red in Figure 2.5 and 2.6).

For time-varying components, the simulator must recalculate their contributions at

each timestep based on voltages at several previous timesteps. This also requires

repeated re-evaluations of the device-model (outer loop labeled Transient Iterations

in Figure 2.1 and shown in green in Figure 2.5 and 2.6).

I(R1) = (V1 − V2) ·G1 (2.7)

I(C1) = (
2 · C1

δt
) · V2 − (

2 · C1

δt
· V old

2 + Iold(C1)) (2.8)

I(D1) = (
Is
vj
· eV2/vj) · V2 + Is · (eV2/vj − 1) (2.9)

Figure 2.5: Circuit Equations with contributions from devices
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
G1 −G1 1
−G1 G1 + (2 · C1/δt) 0

+(Is/vj) · eV2/vj

1 0 0

 ·


V1
V2

I(V 1)

 =


0

−((2 · C1/δt)× V old
2 + Iold(C1))

+Is · (eV2/vj − 1)
V 1


Figure 2.6: Matrix contributions from the different devices

A · ~x = ~b (2.10)

L · U · ~x = ~b (2.11)

L · ~y = ~b (2.12)

U · ~x = ~y (2.13) a11 a12 a13
a21 a22 a23
a31 a32 a33

 ·
 x1
x2
x3

 =

 b1
b2
b3

 (2.14)

 1 0 0
l21 1 0
l31 l32 1

 ·
 u11 u12 u13

0 u22 u23
0 0 u33

 ·
 x1
x2
x3

 =

 b1
b2
b3

 (2.15)

 1 0 0
l21 1 0
l31 l32 1

 ·
 y1
y2
y3

 =

 b1
b2
b3

 (2.16)

 u11 u12 u13
0 u22 u23
0 0 u33

 ·
 x1
x2
x3

 =

 y1
y2
y3

 (2.17)

Figure 2.7: Matrix Solve Stages

2.1.2 Matrix Solve

The simulator spice3f5 uses the Modified Nodal Analysis (MNA) technique [16] to

assemble circuit equations into matrix A. Since circuit elements (N) tend to be con-

nected to only a few other elements, there are a constant number (O(1)) of entries per

row of the matrix. Thus, the MNA circuit matrix with O(N2) entries is highly sparse

with O(N) nonzero entries (≈99% of the matrix entries are 0). The matrix structure

is mostly symmetric with the asymmetry being added by the presence of independent

sources (e.g. input voltage source) and inductors. The underlying non-zero struc-

ture of the matrix is defined by the topology of the circuit shown in Figure 2.2 and
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consequently remains unchanged throughout the duration of the simulation. In each

iteration of the loop shown in Figure 2.1, only the numerical values of the non-zeroes

are updated in the Model-Evaluation phase of SPICE with contributions from the

non-linear elements. To find the values of unknown node voltages and branch currents

~x, we must solve the system of linear equations A~x = ~b as shown in Equation 2.14.

The sparse, direct matrix solver used in spice3f5 first reorders the matrix A to mini-

mize fill-in using a technique called Markowitz reordering [17]. This tries to reduce the

number of additional non-zeroes (fill-in) generated during LU factorization. It then

factorizes the matrix by dynamically determining pivot positions for numerical sta-

bility (potentially adding new non-zeros) to generate the lower-triangular component

L and upper-triangular component U such that A = LU as shown in Equation 2.15.

Finally, it calculates ~x using Front-Solve L~y = ~b (see Equation 2.16) and Back-Solve

U~x = ~y operations (see Equation 2.17).

2.1.3 Iteration Control

The SPICE iteration controller is responsible for two kinds of iterative loops shown

in Figure 2.1: (1) inner loop: linearization iterations for non-linear devices and (2)

outer loop: adaptive time-stepping for time-varying devices. The Newton-Raphson

algorithm is responsible for computing the linear operating-point for the non-linear

devices like diodes and transistors. Additionally, an adaptive time-stepping algorithm

based on truncation error calculation (Trapezoidal approximation, Gear approxima-

tion) is used for handling the time-varying devices like capacitors and inductors. The

controller also implements the loops in a data-dependent manner using customized

convergence conditions and local truncation error estimations.

Convergence Condition: The simulator declares convergence when two con-

secutive iterations generate solution vectors and non-linear approximations that are

within a prescribed tolerance respectively. We show the condition used by SPICE to

determine if an iteration has converged in Equation 2.18 and Equation 2.19. Here, ~Vi

or ~Ii represent the voltage or current unknowns in the i-th iteration of the Newton-

Raphson loop. The convergence conditions compare the current solution vector in
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iteration (i) with the previous iteration (i − 1). SPICE also performs a similar con-

vergence check on the non-linear function described in the Model-Evaluation. The

closeness between the values in consecutive iterations is parametrized in terms of

user-specified tolerance values: reltol (relative tolerance), abstol (absolute tolerance),

and vntol (voltage tolerance).

|~Vi − ~Vi−1| ≤ reltol ·max (|~Vi|, |~Vi−1|) + vntol (2.18)

|~Ii − ~Ii−1| ≤ reltol ·max (|~Ii|, |~Ii−1|) + abstol (2.19)

Typical values for these tolerances parameters are: reltol=1e− 3 (accuracy of 1

part in 1000), abstol=1e−12 (accuracy of 1 picoampere) and vntol=1e−6 (accuracy

of 1 µvolt). This means the simulator will declare convergence when the changes in

voltage and current quantities get smaller than the convergence tolerances.

Local Truncation Error (LTE): Local Truncation Error is a local estimate

of accuracy of the Trapezoidal approximation used for integration. The truncation-

error-based time-stepping algorithm in spice3f5 computes the next stepsize δn+1 as

a function of the LTE (ε) of the current iteration and a Trapezoidal divided-difference

approximation (DD3) of the charges (x) at a few previous iterations. The equation

for stepsize is shown in Equation 2.20. For a target LTE, the Iteration Controller

can match the stepsize to the rate of change of circuit quantities. If the circuit

quantities are changing too rapidly, it can slow down the simulation by generating

finer timesteps. This allows the simulator to properly resolve the rapidly changing

circuit quantities. In contrast, if the circuit is quiescent (e.g. digital circuits between

clock edges), the simulator can take larger timesteps for a faster simulation. When

the change in the circuit quantities is small, a detailed simulation at fine timesteps

will be a waste of work. Instead, the simulator can advance the simulation with larger

stepsizes. A tolerance parameter trtol provides the user additional control over tuning

the timestep sizes. This parameter (default trtol=7) can be increased if necessary

to avoid excessively fine timesteps. The stepsize δn+1 is added to the current timestep

to advance the simulation as shown in Equation 2.21.
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Figure 2.8: Sequential Runtime of spice3f5 for circuit benchmarks

δn+1 =

√
trtol · ε

max ( |DD3(x)|
12

, abstol)
(2.20)

tn+1 = tn + δn+1 (2.21)

2.2 SPICE Performance Analysis

In this section, we discuss important performance trends and identify performance

bottlenecks and characteristics that motivate our parallel approach. We use spice3f5

running on an Intel Core i7 965 for these experiments.

2.2.1 Total Runtime

We first measure total runtime of spice3f5 across a range of benchmark circuits

on an Intel Core i7 965. We use a lightweight timing measurement scheme using

hardware-performance counters (PAPI [18]) that does not impact the actual runtime

of the program. We tabulate the size of the circuits used for this measurement along

with other circuit parameters in Table 4.2. We graph the runtimes as a function of

circuit size in Figure 2.8. We observe that runtime scales as O(N1.2) as we increase
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Figure 2.9: Sequential Runtime Breakdown of spice3f5 across the three phases

circuit size N . What contributes to this runtime? To understand this, we break down

the contribution to total runtime from the different phases of SPICE in Figure 2.9.

We observe that, for most cases, total runtime is dominated by the Model-Evaluation

Phase. This is because the circuit is mostly composed of non-linear transistor ele-

ments. In some cases, the Sparse Matrix Solve phase can be a significant fraction of

total runtime. This is true for circuits with large parasitic components (e.g. capaci-

tors, resistors) where the non-linear devices are a small portion of total circuit size.

Finally, the control algorithm that sequences and manages SPICE iterations ends up

taking a small fraction of total runtime. This suggests that in our parallel solution

we must deliver high speedups for the intensive Model-Evaluation and Sparse Matrix

Solve phases of SPICE while ensuring that we do not ignore the control algorithms. If

we do not parallelize the Iteration Control phase, it may create a sequential bottleneck

due to Amdahl’s Law.

2.2.2 Runtime Scaling Trends

Why does SPICE runtime scale super-linearly when we increase circuit size? The

Model-Evaluation component of total runtime increases linearly with the number of

non-linear devices being simulated (approximately O(N1.1) rather than the expected
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Figure 2.10: Scaling Trends for the key phases of spice3f5

O(N) due to limited cache capacity of the processor; also see Figure 2.13(a)) as

shown in Figure 2.10(a). The Matrix-Solve component of runtime empirically grows

as O(N1.2) as shown in Figure 2.10(b) (also see Figure 2.13(b) for floating-point

operation trends). Overall, we observe from Figure 2.8 that runtime grows as O(N1.2)

where N is the size of the circuit.

What other factors impact overall runtime? In Figure 2.11(a), we observe that

floating-point instructions constitute only≈20%–40% of total instruction count (smaller

fraction for larger circuits). The remaining instructions are integer and memory ac-

cess operations that support the floating-point work. These instructions are purely

overhead and can be implemented far more efficiently using spatial FPGA hard-

ware. They also consume instruction cache capacity and issue bandwidth, limiting

the achievable floating-point peak. Furthermore, we observe that increasing circuit

sizes results in higher L2 cache misses. We see L2 cache miss rates as high as 30%–

70% L2 for our benchmarks in Figure 2.11(b). As we increase circuit size, the sparse

matrix and circuit vectors spill out of the fixed cache capacity leading to a higher

cache miss rate. For the benchmarks we use, the sparse matrix storage exceeds the

256KB per-core L2 cache capacity of an Intel Core i7 965 for all except a few small

benchmarks. We also show the overflow factor (Memory required/Cache size) for our

benchmarks in Figure 2.11(b). A parallel architecture for accelerating SPICE has the
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Figure 2.11: Instruction and Memory Scaling Trends for spice3f5

opportunity to properly distribute data across multiple, onchip, embedded memories

and manage communication operations (i.e. moving data between memories) to de-

liver good performance. Our FPGA architecture exploits spatial parallelism, even

in the non-floating-point portion of the computation, to deliver high speedup.

2.2.3 CMOS Scaling Trends

As we continue to reap the benefits of Moore’s Law [19], we need to simulate increas-

ingly larger circuits using SPICE. As we saw in the previous Section 2.2.2, sequential

SPICE runtimes scales as O(N1.2) where N=size of the circuit. This means sequential

SPICE runtimes will get increasingly slower as we scale to denser circuits. Further-

more, as we shrink device feature sizes to finer geometries, we must model increas-

ingly detailed physical effects in the analog SPICE simulations. This will increase the

amount of time spent performing Model-Evaluation [20] as shown in Figure 2.12(a).

For example, the mos1 MOSFET model implements the Shichman-Hodges equations

which are adequate for discrete transistor designs. The semi-empirical mos3 model

was originally developed for integrated CMOS short-channel transistors at 1–2µm

or larger. The new bsim3v3 and bsim4 models are more accurate and commonly

used for today’s technology. It may become necessary to use different models for RF

simulations (psp model) or bipolar transistors (mextram).
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Figure 2.12: Impact of CMOS Scaling on SPICE

At smaller device sizes, our circuits will suffer the impact of tighter coupling

and interference between the circuit elements. This will add additional modeling

requirement of parasitic elements (e.g. capacitors, resistors) which increase the size

of the matrix. This will, in turn, increase the time spent in the Sparse Matrix-Solve

phase. The increase in SPICE runtime per iteration due to inclusion of parasitic

effects is shown in Figure 2.12(b).

2.2.4 Parallel Potential

We now try to identify the extent of parallelism available in the two computationally-

intensive phases of SPICE. In Figure 2.13(a), we plot the total number of floating-

point operations as well as the latency of the Model-Evaluation computation assuming

ideal parallel hardware as a function of the number of non-linear elements in the

circuit. The amount of work grows linearly (O(N)) with the number of non-linear

devices. However, the latency of the evaluation remains unchanged at the latency

of a single device evaluation. Each non-linear device can be independently evaluated

with local terminal voltages as inputs and local currents and conductances as outputs.

Thus, the amount of parallelism is proportional to the number of non-linear devices

in the circuit. This phase is embarrassingly parallel, and we show how to exploit this

parallelism in Chapter 3.
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In Figure 2.13(b), we plot the total number of floating-point operations in the

Sparse Matrix-Solve phase of SPICE as well as the critical path latency as a function

of circuit size. Here, we observe that the amount of work in the sparse factorization

increases as O(N1.4) (compared to O(N3) for dense factorization). This growth rate

is an empirical observation that is valid for circuit matrices in our benchmark set

(see [21]). This explains the O(N1.2) growth in total runtime we previously observed

in Figure 2.8. The critical path latency of the factorization only grows as O(N0.7).

This suggests that a well-designed parallel architecture can extract parallelism from

this phase since the critical path is not growing as fast as N . An architecture with low-

latency communication and lightweight fine-grained spatial processing of operations

should allow us to achieve faster operation.
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2.3 Historical Review

We now review the various studies and research projects that have attempted to par-

allelize SPICE in the past three decades or so. These studies attempt to accelerate the

computation using a combination of parallel hardware architectures and/or numerical

software algorithms that are more amenable to parallel evaluation. We tabulate and

classify these approaches in Table 2.1 and Table 2.2. We can refine the classification

of parallel SPICE approaches by considering underlying trends and characteristics of

the different systems as follows:

1. Compute Organization: We see parallel SPICE solvers using a range of

different compute organizations including conventional multi-processing, multi-

core, VLIW, SIMD and Vector.

2. Precision: Under certain conditions, SPICE simulations can efficiently model

circuits at lower precisions.

3. Compiled Code: In many cases, it is possible to generate efficient instance-

specific simulations by specializing the simulator for a particular circuit.

4. Scheduling: Parallel computation exposed in SPICE must be distributed

across parallel hardware elements for faster operation. Many designs develop

novel, custom scheduling solutions that are applicable under certain structural

considerations of the circuit or matrix.

5. Numerical Algorithms: Different classes of circuits perform better with a

suitable choice of a matrix factorization algorithm. Our FPGA design may

benefit from new ideas for factoring the circuit matrix.

6. SPICE Algorithms: Conventional SPICE simulations often perform needless

computation across multiple iterations that is not strictly necessary for an ac-

ceptable result. In many cases, it is possible to rapidly advance simulation time

by exploiting parallelism (e.g. speculation, concurrent alternatives). Our paral-
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lel FPGA system can enjoy the benefits of exposing parallelism in the iteration

management algorithms.

We now roughly organize the evolution of parallel SPICE systems into five ages

and identify the appropriate category for the systems considered:

Age of Starvation (1980-1990): In the early days of VLSI scaling, the amount

of computing resources available was limited. This motivated designs of custom ac-

celerator systems for SPICE that were assembled from discrete components (e.g. [25,

51, 26]). Numerical algorithms for SPICE were still being developed and not directly

suitable for parallel evaluation. The systems scavenged parallelism in SPICE using

compiled-code approaches and customized hardware. In a compiled-code approach,

the framework produces code for an instance of the circuit and compiles this gen-

erated code for the target architecture. This exposes instance-specific parallelism in

SPICE to the compiler in two primary ways: (1) it enables static optimization of

recurring, redundant work in the Model Evaluation phase and (2) it disambiguates

memory references for the sparse matrix access. The resulting compiled-code pro-

gram is capable of only simulating the particular circuit instance. One of the earliest

papers [22] on parallel SPICE sketches a design for the sparse matrix-solve phase by

extracting the static triangulation graph for the matrix factorization but ignores com-

munication costs. Other studies have also considered extracting the static dataflow

graph for matrix factorization using the MVA (Maximal Vectorization Algorithm)

approach [23] (Compiled Code). The resulting graph is vectorized onto a Hitachi

S810 supercomputer to get a 8.9× speedup with 4 vector units and a modest increase

in storage of intermediate results. Vectorization and simpler address calculation are

key reasons for this high speedup. Cayenne [24] maps the SPICE computation to

a 2-processor VAX system (Compute Organization) running a multiprocessing

operating-system VMS but achieves a limited speedup of 1.7×. A custom design for

a SPICE accelerator with 2 PEs [25] running a Compiled Code SPICE simulation

shows a speedup of 2× over a VAX 8650 operating at ≈2× the frequency. It empha-

sizes parallelizing addressing and memory lookup operations within the Processing

Element (PE) in a manner similar to our customized FPGA designs. Another Com-
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piled Code simulator outlined in [26] delivers a speedup of 7.3× using 6 processors.

This approach exploits multiple levels of granularity in the sparse matrix solve and

optimizes locking operations in model-evaluation for greater parallelism. However,

performance is constrained by the high operand storage costs of applying a compiled-

code methodology to the complete simulator on processing architecture with limited

memory resources.

Age of Growth (1991-1995): As silicon capacity increased, we saw improved

parallel SPICE solvers based on vector or distributed-memory architectures (e.g. [27,

31, 33]). These systems were more general-purpose than the custom accelerators.

However, they required careful parallel programming, performance tuning and novel

scheduling algorithms to manage parallelism. Awsim-3 [51, 28] again uses a Com-

piled Code approach and a special-purpose system (Compute Organization) with

table-lookup (Precision) Model-Evaluation to provide a speedup of 560× over a Sun

3/60. The Sun 3/60 implements floating-point operations in software which takes

tens of cycles/operation. This means that a bulk of the speedup comes from hard-

ware floating-point units in Awsim-3. Another scheme presented in [27] schedules

the complete SPICE computation as a homogeneous graph of tasks (Scheduling).

It delivers a speedup of 4.5× on 8 processors. Parallel waveform-relaxation (SPICE

Algorithms) is considered in [29] and [30] and demonstrates good speedups using

the different simulation algorithm. A novel row-scheduling algorithm (Scheduling)

for processing the sparse matrix solve operations is presented in [31] to obtain modest

speedups of 3.7× on 4 processors. A preconditioned Jacobi technique (Numerical

Algorithms) for matrix solve is discussed in [32] but achieves speedups of 16.5× using

64 processors. This is due to the cost of calculating and applying the preconditioner.

In [33], the task scheduling algorithm extracts fine-grained tasks (Scheduling) from

the complete SPICE computation to achieve an unimpressive speedup of 4.3× us-

ing 8 processors. Transputers have been used for accelerating block-decomposition

factorization (Numerical Algorithms) for the sparse matrix solve phase of SPICE

in [34], but no speedups have been reported.
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Age of the “Killer Micros” (1996-2005): Moore’s law of VLSI scaling had fa-

cilitated the ascendance of general-purpose ISA (Instruction Set Architecture) unipro-

cessors. These “killer micros” [52, 53] rode the scaling curve across technology gener-

ations and delivered higher compute performance while retaining the ISA program-

ming abstraction. Processors now included integrated high-performance floating-

point units which enabled them to deliver SPICE performance that was competitive

with custom accelerators. As a result, this age is characterized by a lack of many

significant breakthroughs in parallel SPICE hardware designs. A notable exception

is the mapping of parallel SPICE to an SGI Origin 2000 supercomputer with 40

nodes (MIPS R10K processors) in [35]. The supercomputer (Compute Organiza-

tion) was able to speedup SPICE for certain specialized benchmarks by 24× using a

message-passing description of SPICE.

Age of Plenty (2006-2010): In this age, the uniprocessor era was starting to

run out of steam. The cost of retaining the ISA abstraction while delivering frequency

improvements was increasing power consumption to unsustainable levels. This meant

that it was no longer possible to simply scale frequency or superscalar Instruction-

Level Parallelism to deliver higher performance. The microprocessor vendors turned

to putting multiple parallel “cores” on a chip and transferred the responsibility of

performance improvement to the programmer. Thus, it became important to explic-

itly expose parallelism to get high performance. A few studies accelerated SPICE

by a modest amount on such systems using multi-threading (e.g. [36, 38]). This

age also saw the rise of the Graphics Processing Units (GPUs) for general-purpose

computing (GP-GPUs) which densely packed hundreds of single-precision floating-

points on a single chip. A few studies (e.g. [40, 42]) have shown great speedups when

accelerating the Model-Evaluation phase of SPICE using GPUs (Compute Organi-

zation). In [36], a multi-threaded version of SPICE is developed using coarse-grained

PThreads. It achieves a speedup of 5× using 8 SMP (Symmetric Multi-Processors) on

a small benchmark set. SILCA [37] delivers good speedup for circuits with parasitic

couplings (resistors and capacitors) using a combination of low-rank matrix updates,

piecewise-linear approximations and other accuracy tradeoffs (Precision, Numer-
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ical Algorithms). It is possible to achieve limited speedups of 1.3× for SPICE

shown in [38] using OpenMP pragma annotations to the Model-Evaluation portion of

existing SPICE source-code. GPUs can be used to speedup the data-parallel Model-

Evaluation phase of SPICE by 50×([40]) or 32×([42]) but can accelerate the com-

plete SPICE simulator in tandem with the CPU by 3× for the GPU-CPU system.

A speedup of 2.4× can be achieved using speculative execution of multiple timesteps

as demonstrated in [39] (SPICE Algorithms). This approach is orthogonal to the

technique discussed in this thesis and can be used to extend our speedups further with

additional hardware. In [45], the authors show a speedup of 119×using 32 processors

with a domain-decomposition approach (Numerical Algorithms) for accelerating

Sparse Matrix-Solve phase. This technique breaks up a large circuit matrix into

smaller overlapping submatrices and factorizes them independently. This idea, too,

is orthogonal to our approach where we can use our FPGA-based solver to accelerate

the individual submatrices.

Age of Efficiency (2010-beyond) As Moore’s Law starts to hit physical limits

of energy and reliability, we must seek novel architectures for organizing computation.

The ISA abstraction is power-hungry and wasteful of silicon resources. Multi-core

architectures will eventually run into power-density limits at small feature sizes [54].

The simple SIMD model in GP-GPUs is unsuitable for sparse, irregular computation

(e.g. Sparse Matrix-Solve). Instead, we must consider energy-efficient, high-density

reconfigurable architectures (e.g. FPGAs) for implementing computation. We need to

create customized architectures that match the parallel patterns in SPICE to get high

performance. Communication bandwidth and latency become first-class concerns in

the compilation flow. This thesis shows how to express, exploit and implement the

parallelism available in SPICE using custom FPGA architectures.

2.3.1 FPGA-based SPICE solvers

FPGAs have been used extensively in custom-computing machines for accelerating a

wide variety of compute-intensive applications. However, they have enjoyed limited

use for accelerating SPICE due to limited FPGA resources and lack of tools and
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methodology for attacking a problem of this magnitude. In this context, FPGAs

were first used in a SPICE accelerator as glue logic [31] to implement the VME inter-

face (Versa Module Europa, IEEE 1014-1987 bus standard) and store communication

schedules to support a 4-chip Intel i860 system with a Compiled Code approach.

The schedules are implemented using an FPGA-based sequencer. The design in [48]

used FPGAs to support the VLIW datapath for accelerating SPICE. Due to limited

FPGA capacity, the FPGA was connected to discrete Weitek floating-point units

and SRAM chips (Compute Orgnization). A Compiled Code, partial evalua-

tion approach for timing simulation (lower precision than SPICE) using FPGAs was

demonstrated in [49] where the processing architecture was customized for a par-

ticular SPICE circuit. The compiler generates optimized fixed-point function units

(Precision) and schedules memory access for the simulation. Fixed-point compu-

tation may be unsuitable for certain simulation scenarios with high-dynamic range

of physical quantities (e.g. leakage simulations with picoampere resolutions). Ad-

ditionally, this approach demands that the physical FPGA be configured for every

circuit being simulated. FPGA mapping algorithms are time-consuming and may

themselves take hours to days of runtime. Another recent study [50] explores the

use of an FPGA-based, SPICE-like simulator for speeding up transient simulations of

SPICE circuits expressed as digital signal processing objects (SPICE Algorithms).

This approach converts an analytical analog representation of circuit equations into a

graph of variable-rate, discretized, streaming operators. The accuracy of the solution

depends on the discretization algorithm (Precision) and may require extremely fine

timesteps for correct convergence. Moreover, the current implementation operates on

8-bit/16-bit data-types which are insufficient for detailed leakage simulations.

2.3.2 Our FPGA Architecture

We now highlight some key features of our architecture that are inspired by the previ-

ous studies or superior to the older approaches as appropriate. Our FPGA-based ap-

proach accelerates the SPICE computation while retaining the accuracy of spice3f5.

Any optimization that sacrifices accuracy by simplifying the computation (e.g. table-
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lookups) or reducing the amount of computation (e.g. low-rank updates) is orthogonal

to our approach under identical convergence and truncation requirements. We use a

Compiled Code approach similar to several previous studies for our design. We cap-

ture parallelism available in the SPICE simulator using a high-level, domain-specific

framework that supports a compiled-code methodology for optimizing the simulation.

We then implement this parallelism on available FPGA resources by choosing how to

spread this parallelism spatially across the FPGA fabric (Compute Organization)

while distributing memory accesses over embedded, distributed memories. We are

also able to exploit additional parallelism by building custom architectures that are

tailored to unique forms of parallelism specific to each SPICE phase. Previous studies

did not to change their compute organization to adapt to the parallelism for each of

the three phases of SPICE. Our approach considers communication as a first-class

concern and designs high-bandwidth, low-latency networks that use either a time-

multiplexed approach for Model-Evaluation or a dynamically-routed packet-switched

design for the Sparse Matrix-Solve. Previous studies either used expensive crossbars

or slow packet-switched networks to support communication traffic. We distribute

the computation for locality and tune network bandwidth when required to balance

compute and communication times.
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Chapter 3

Model-Evaluation

In Chapter 2 (Section 2.1), we introduced Model Evaluation as an easily parallelizable

phase of the SPICE circuit simulator. It is characterized by abundant data parallelism

where each device can be evaluated concurrently in a data-independent manner. In

this chapter, we first identify additional computational characteristics of the Model-

Evaluation phase that are important for an efficient parallel mapping. We show how

to compile the non-linear differential equations describing SPICE device models us-

ing a high-level, domain-specific framework based on Verilog-AMS. We then sketch

a hypothetical fully spatial design that distributes the complete Model-Evaluation

computation in space as a configured circuit to achieve the highest throughput. We

develop spatial organizations that can be realized on a single FPGA using statically-

scheduled time-multiplexing of FPGA resources. This allows us to use less area than

the fully spatial design while still achieving high performance. Our automated com-

pilation and tuning approach can scale the implementation to larger system sizes

when they become available. We quantify the impact of loop-unrolling and software

pipelining (GraphStep scheduling) optimizations on FPGA costs and performance.

We also show how to target other parallel organizations (e.g. multi-core, GPUs, Cell,

Niagara) using an automated code-generation and auto-tuning approach. The high-

level framework and automated mapping flow allows us to describe the computation

at a high-level of abstraction while generating optimized parallel implementations for

different parallel architectures. We show speedups up to 23×(6.5× mean) for Double-

Precision Model-Evaluation computation when comparing a Virtex-6 LX760 to an
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Figure 3.1: Flowchart of a SPICE Simulator with emphasis on Model-Evaluation

Intel Core i7 965 (40–45nm technology). We also demonstrate Single-Precision im-

plementations that deliver speedups of up to 111×(31× mean) for a Virtex-6 LX760,

133×(58× mean) for an NVIDIA GTX285 GPU and 1200×(71× mean) for an ATI

Firestream 9270 compared to an Intel Core i7 965.

3.1 Structure of Model-Evaluation

The Model-Evaluation phase of SPICE calculates the currents and conductances of

all the devices in the circuit. The computed currents and conductances are used to

update the matrix A and the vector ~b (in A~x = ~b). At the start, the simulator pro-

cesses all the devices in the circuit. At subsequent timesteps, only the non-linear and

time-varying elements change and must be recalculated during the Model-Evaluation

phase. The resistors and uncontrolled sources have fixed conductances and do not

need to update the matrix in every iteration. A device updates the matrix according

to its stamp that specifies which entries it defines in the matrix. For an N -terminal
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device, we need to update at most N2 entries in the matrix. Thus, each device in the

circuit updates a constant number of entries in the matrix corresponding to its node

terminals. We show a 2-terminal diode and 3-terminal transistor stamp in Figure 3.2.

In this case the two devices share a terminal (D2 for diode and T1 for transistor).

The resulting stamps update the shared matrix entry corresponding to the device

terminals. We show device equations for a diode in Table 3.4.

For non-linear elements like diodes and transistors, the simulator must search for

an operating-point using the Newton-Raphson iterations shown in the outer loop of

Figure 3.1. The conductance of the non-linear and time-varying elements is a function

of the terminal voltages ~x. Since the terminal voltages ~x are computed by the A~x = ~b

solve, we need to use Newton-Raphson algorithm to iteratively compute the consistent

solution vector ~x. This requires repeated evaluation of the non-linear model equa-

tions multiple times per timestep. For time-varying components like capacitors and

inductors, the simulator must recalculate their contributions at each timestep based

on voltages and charges at several previous timesteps (e.g. Trapezoidal integration).

This also requires a re-evaluation of the device-model in each timestep.

Each model-evaluation computation only requires local voltages on the device

terminals as input and is completely data-independent from other devices. This

embarrassing data parallelism has been exploited extensively in previous studies (see

Section 3.2). In this chapter, we develop an efficient FPGA implementation that

exploits this data parallelism and static nature of the Model-Evaluation phase.

For circuits dominated by non-linear transistor devices, the simulator can spend

almost half its time evaluating the device models1. For circuits dominated by linear

parasitics (e.g. parasitic capacitances), simulation time may be dominated by the

Matrix-Solve phase. Since we are ultimately interested in accelerating both Model-

Evaluation phase and Matrix-Solve phase, it is important to understand how far we

can improve Model-Evaluation runtimes even in these cases where it is currently not

the dominant percentage of runtime. Furthermore, as transistor devices shrink in

1see “no parasitics” case in Table 3.1; we generated datapoints in this table by running spice3f5
on an Intel Core i7 using Simucad memory benchmarks [55]
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Figure 3.2: Model Stamp Example

feature-size, the complexity of the device models required to simulate them correctly

grows over time (see [56]). Newer device models often have complexity 4–5× that of

the classic bsim3 model [57] (e.g. compare psp [58] and bsim3 models in Table 3.3).

This motivates the need to accelerate the Model-Evaluation phase to avoid paying

a large modeling cost for future sub-micron netlists. For example, when Model-

Evaluation time increases by 5×, the no parasitic ram8k will spend 80% of its time

in Model-Evaluation phase, and the parasitic case will spend 36%.

3.1.1 Parallelism Potential

We now enumerate the potential of parallelizing the Model-Evaluation phase.

Data Parallelism: Each individual model evaluation (e.g. for each transistor)

within a timestep is completely independent. With ideal hardware (no resource con-

straints or data distribution latencies), we can process each device in parallel as

previously shown in Figure 2.13(a) of Section 2.2.4. Thus, evaluation time will be
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Benchmark Model Matrix Model
Circuits Evaluation Solve Evaluation
(bsim3) (seconds) (seconds) ( Percent (%))

no parasitics
ram2k 55 10 84
ram8k 237 87 73
ram64k 2005 1082 64

with parasitics
ram2k 69 149 31
ram8k 300 2395 11
ram64k 2597 99487 3

Table 3.1: spice3f5 Runtime Distribution (Core i7 965)

independent of size of the circuit.

Pipeline Parallelism: Model evaluation operations can be represented as an

acyclic feed-forward dataflow graph (DAG) with nodes representing operations and

edges representing dependencies between the operations. This allows us to balance

the delays on the different paths in the graph through suitable pipelining. Aggressive

pipelining allows us to start multiple device evaluations before the first one is finished

thereby improving performance.

Instruction-Level Parallelism: The dataflow graphs representing the device

equations have Instruction-Level Parallelism (ILP) that can be exploited by concur-

rent floating-point units on the parallel hardware. We can further increase this ILP

by performing loop-unrolling and software-pipelining optimizations on the dataflow

graphs.

3.1.2 Specialization Potential

We summarize some observations that enable specialization of the Model-Evaluation

phase for our parallel design.

• Fixed-Sized Workload: The Model-Evaluation phase processes all devices in the

circuit in each timestep. While certain simulators can bypass quiescent devices

for faster operation, in our design we do not consider this optimization and only

handle a fixed-size workload for easier parallelization. Our statically-scheduled
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design cannot handle dynamic changes in the workload that may arise from by-

passing quiescent devices. Parallelizing dynamically-varying workloads requires a

dynamically-scheduled hardware design which may deliver worse performance [59].

• Early Bound Graph: The Model-Evaluation compute graphs are known entirely

in advance as part of the input netlist. The circuit structure being simulated stays

constant throughout the simulation. The conductance and current values of the

circuit are the only quantities that change during the simulation.

• Limited Diversity of Graphs: Within a simulation, there may be very few

unique device models active. (e.g. typically all transistors in a circuit will use same

bsim3 model). This allows us to reuse the same parallel architecture and schedule

it across multiple device evaluations.

• Parametrized Reuse of Graphs: Individual device instances are customized

using parameters. Typically the CMOS process determines most of these parame-

ters leaving a handful of parameters which vary from device to device (e.g. Width,

Length of a transistor). All the constant parameters specified in the process tech-

nology can be constant-folded (computation can be simplified using the knowledge

of constant values) for faster operation (See Table 3.3).

3.2 Related Work

We now review some previous studies that attempted to parallelize the Model-Evaluation

phase of SPICE and adopt the category classification introduced in Section 2.3. We

tabulate and highlight key features of these studies in Table 3.2.

An early study [25] parallelizes the Model-Evaluation computation using cus-

tomized vector operations on a custom co-processor board (Compute Organi-

zation) but provides a limited speedup of 2×. The computation in the Model-

Evaluation phase also contains many non-vectorizable operations that will limit achiev-

able speedups. Our own studies with vectorization on the Intel multi-core architecture

(SSE3) show no benefit for Double-Precision evaluation and only modest benefits for

Single-Precision (see Section 3.8.1). Thus, vectorization is not the most suitable way
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Year Ref Parallel
Hardware

Style Sequential
Hardware

PEs Speedup Notes

1987 [25] Co-processor
board (SAP)

Vector VAX 8650 2 2 Custom datap-
ath

1992 [28] Custom
Hardware
(AWSIM-3)

VLIW Sun-3/60 - 2500 Table-lookup ap-
proximation

1997 [49] Altera
Flex10K
FPGA

VLIW SPARC sta-
tion

- 27.72 Fixed-Point
Timing simula-
tion

1995 [48] Marc-1 board
(TINA)

VLIW - - - No speedups re-
ported

2002 [36] Hitachi 9000
N4000

SMP 1 thread 8 5.7 -

2007 [38] UltraSPARC
3

SMP 1 thread 4 1.35 -

2009 [40] ATI Fire-
Stream 9170

GPU 4-core AMD
Phenom

320 50 -

2009 [42] NVIDIA 8800
GTS

GPU 4-core Intel
Core2

128 32 Single-Precision

Table 3.2: Parallel Model-Evaluation Studies

to exploit the parallelism in Model-Evaluation.

Awsim-3 [28] is a custom hardware accelerator (Compute Organization) us-

ing table-lookup approximation (Precision) and Compiled Code technique to de-

liver a speedup of 2500× over a Sun 3/60. The Sun 3/60 implements floating-point

operations in software which takes 10s of cycles per operation. This slows down

the floating-point component of the processing which explains a part of the high

speedups. Table-lookup approximations are computationally simpler to implement

since they only require memory operations and a few floating-point operations per

lookup. They are also easier to parallelize by distributing memory lookups across

parallel memory blocks. However, they sacrifice SPICE accuracy for this faster op-

eration. Our single-FPGA implementation implements the full analytic equations

on a VLIW scheduled architecture to deliver high speedups without compromising

simulation accuracy.

227.7× reduction in instruction count does not necessarily translate to speedup.
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TINA [48] (inspired from Awsim-3) is the first FPGA-based implementation of

SPICE Model-Evaluation. It used the Marc-1 reconfigurable board with 23 XC4005

FPGAs coupled to discrete Weitek FPUs to implement Model-Evaluation using a

table-lookup approach. Unfortunately, speedup figures were never unpublished. An-

other FPGA-based approach in [49], a fixed-point implementation (Precision) of

Model-Evaluation computation is implemented using partial evaluation of the Com-

piled Code timing simulation to deliver a 27.7× reduction in instructions when

comparing an Altera EPK10K50 with a SPARCstation.

We now review some recent literature that parallelizes SPICE Model-Evaluation.

Manual multi-threading (PThreads) [36] and automated data-parallelization (OpenMP

pragmas) [38] provide limited benefits of 5.7× and 1.35× respectively over Symmet-

ric Multi-processing systems. More recent work has focused on parallelizing Model-

Evaluation on GPUs (Compute Organization). The use of GPUs for accelerating

bsim3 models was first explored in [40] (double-precision) and subsequently in [42]

(single-precision). As shown in [40], it is possible to achieve speedups of 10–50× over

a quad-core AMD CPU when using an AMD Firestream 9170 GPU (512 processors).

Similarly, we can see in [42] that it is possible to obtain speedups of 32–40× over a

quad-core Intel CPU when using an NVIDIA 8800 GTS GPU (128 processors). Our

FPGA implementation uses a different parallelization approach (VLIW) and high on-

chip communication and memory bandwidth to deliver speedups in the same ballpark

for Model-Evaluation using a single FPGA with a slight compromise in accuracy for

Single-Precision implementation (Precision). Additionally, our approach shows a

speedup of 18× for the bsim3 model over a dual-core Intel Xeon processor when us-

ing an NVIDIA 9600 GT GPU with 64 processors and a speedup of 8× when using a

Virtex-5 LX330 FPGA. We present additional details in Section 3.7. The GPU imple-

mentations in [40, 42] must copy matrix and vector data back-and-forth from the host

CPU as the SIMD model is unsuitable for accelerating the Sparse Matrix-Solve phase

of SPICE. We later show in Chapter 4 how to accelerate the Sparse Matrix-Solve

phase on the same FPGA itself to eliminate this data transfer overhead.
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Model Instruction Distribution (Unoptimized on left and Optimized right)
Add Multiply Divide Sqrt. Exp. Log. Rest

bjt 39 22 65 30 49 17 3 0 8 2 1 0 37 8
diode 7 7 7 5 5 4 0 0 1 1 3 2 9 9
jfet 31 13 73 31 14 2 0 0 9 2 4 0 34 8
mos1 86 24 102 36 36 7 5 1 1 0 3 0 97 21
vbic 283 36 347 43 123 18 17 1 96 10 58 4 88 9
mos3 89 46 177 82 52 20 11 4 5 3 2 0 112 38
hbt 3202 112 4245 57 1101 51 1 0 305 23 364 18 678 60
bsim4 770 222 1479 286 482 85 48 16 66 24 34 9 2749 137
bsim3 585 281 995 629 188 120 23 9 23 8 12 1 362 117
mextram 1303 675 3041 1626 758 397 23 22 67 52 48 37 482 238
psp 5363 1345 7136 2319 1378 247 350 30 387 19 278 10 3325 263
Mean 3.2× 3.5× 4× 4.2× 4.5× 6.8× 4.9×
Saving

Column Rest includes MUX, BOOL and INT operations

Table 3.3: Verilog-AMS Compiler Optimized Instruction Counts

3.3 Verilog-AMS Compiler

Modern SPICE simulators accept a wide variety of device models that cater to dif-

ferent designer requirements of accuracy and performance. These device models are

released as simulator independent Verilog-AMS descriptions [60]. We use open-source

Verilog-AMS descriptions of a variety of devices available from Simucad [55]. We

developed a Verilog-AMS compiler that supports a subset of the Verilog-AMS lan-

guage for device models similar to [61]. We compile the device model equations into

a flexible intermediate representation that allows us to perform analysis, optimiza-

tion and code-generation for different architectures easily. The compiler currently

performs simple dead-code elimination, mux-conversion, constant-folding, identity

simplification and common-subexpression elimination optimizations. Our compiler

generates a generic feed-forward dataflow graph of the computation that is processed

by architecture-specific backend tools. The unoptimized and optimized instruction

counts and operation distribution for different device models is shown in Table 3.3.

This flow allows us to automate the compilation of the future device models as well

as recompilation of existing models due to updates without requiring manual inter-
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Table 3.4: Diode Dataflow Graph: Equations (top), Unoptimized (left), Optimized (right)

vention of a parallelism expert.

In Table 3.4, we show the device equations for a diode and the corresponding feed-

forward dataflow graph for those equations. Our Verilog-AMS parser generates the

unoptimized graph from the equations which is then optimized into a smaller graph

through constant-folding. Our compiler is able to aggressively eliminate boolean and

logical operations when using the knowledge of constant input parameters. For larger

graphs e.g. bsim4, the compiler optimizations reduce the number of nodes in the

graph by ≈7×(when considering only floating-point operations it is 4×).

3.4 Fully-Spatial Implementation

A spatial circuit implementation of computation is a straightforward embodiment of

a dataflow graph on an FPGA. Such a circuit contains physical operators for every

instruction in the dataflow graph and uses physical wires to implement dependencies

between the instructions. These operators can evaluate in parallel and communicate
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Device Total FPGAs Speedup
Models Speedup Required per FPGA

Fully Virtual No IO Fully Virtual No IO Fully Virtual No IO
Spatial Wires Limits Spatial Wires Limits Spatial Wires Limits

bjt 14 14 14 1 1 0.4 6.6 6.6 14.5
diode 34 34 34 1 1 0.1 5.9 5.9 34.9
jfet 17 17 17 1 1 0.2 4.6 4.6 17.2
mos1 14 14 14 1 1 0.3 5.1 5.1 14.3
vbic 17 17 17 1 1 0.8 15.6 15.6 17.7
mos3 12 12 12 1 1 0.9 10.9 10.9 12.0
hbt 62 62 62 36 4 2.2 1.7 15.5 27.9
mextram 204 68 204 676 25 18 0.3 2.7 11.3
bsim3 47 15 47 289 9 6 0.1 1.7 7.9
bsim4 69 69 69 121 9 4 0.5 7.7 17
psp 155 38 155 1089 25 20.72 0.1 1.5 7.4

Table 3.5: Estimated Speedup (vs. Intel Core i7 964) and FPGA costs (Virtex6 LX760) of
Multi-FPGA Designs
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Figure 3.3: A Spatial Circuit Implementation of Diode Equations
(With pipelined registers along wires with arbitrary delays for illustration purpose)
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results directly using the programmable FPGA interconnect. Furthermore, if the

computation is data parallel, we can exploit pipeline parallelism by adding a suitable

number of registers along the wires to balance dataflow. This will then permit us

to start a new evaluation of the dataflow graph in each cycle and deliver results

of the computation after the pipeline latency of the graph. This pipelined, spatial

circuit implementation of data-parallel computation will deliver the highest possible

performance for our Model-Evaluation computation. In contrast, a conventional von-

Neumann architecture (e.g. Intel CPUs) will implement this computation by fetching

a binary representation of computation stored in memory. The binary implicitly

encodes the dataflow structure using a sequence of instructions that communicate

results using registers (i.e. memory). The dataflow parallelism hidden in this implicit

encoding must be rediscovered by the von-Neumann architecture in hardware often

limiting the amount of parallelism that can be exploited from the dataflow graph.

We now consider three different models for estimating the benefits and costs of

the multi-FPGA spatial design. We summarize the total speedup, total FPGAs and

speedup per FPGA for all devices in Table 3.5.

Ideal Mapping We can imagine implementing the data-parallel operations in

Model-Evaluation as a pipelined dataflow circuit on the FPGA as shown in Figure 3.3.

If cost is not a concern, this approach provides up to two orders of magnitude speedup

over an implementation using Intel Core i7 965 microprocessor when using a Xilinx

Virtex-6 LX760 FPGA (see Table 3.5). We compute a lower-bound on the number

of FPGAs required to implement the dataflow graph based on total operator area

(ignoring FPGA external IO limitations and pipelining area costs). This model pro-

vides a lower-bound on cost and an upper-bound on the speedup possible with the

spatial approach. For the designs that fit in a single FPGA, this model only needs to

be refined with pipelining costs and can avoid the complexities of the multi-FPGA

distribution. A single-FPGA, fully-spatial implementation of all devices will be even-

tually possible with the increasing FPGA densities made possible by Moore’s Law.

From Table 3.5, the bsim3 model currently requires only 3 Virtex-6 LX 760 FPGAs

to fit. This means an FPGA that is 4× denser will fit the complete device evaluation
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graph. This FPGA will become possible two technology nodes into the future at

22nm (Virtex-6 is manufactured at the 40nm technology node).

Virtual Wires: When we distribute the dataflow graph across multiple FPGAs,

we must consider the cost of accommodating the graph edges (i.e. interconnect re-

quirements) over external FPGA pins. If the number of edges is more than available

IO, we must share a physical IO pin across multiple edges of the graph. The idea of

time-multiplexing physical chip IO was introduced in the context of prototyping ASIC

designs using FPGAs in [62]. We estimate the speedup possible and the number of

FPGAs required by time-multiplexing the communication between the FPGAs over

external FPGA IO using Virtual Wires. In this case, we compute the sequentialization

introduced by the time-multiplexing of communication and reduce ideal speedup by

that factor. We use VPR (Versatile Place and Route) [63] to route inter-FPGA com-

munication for a 2D bidirectional mesh organization of the multi-FPGA system shown

in Figure 3.4. VPR is originally designed to place and route logic netlists on a single-

chip FPGA fabric. For our experiments, we develop a multi-chip implementation

model for floating-point netlists and reuse the VPR algorithms for our context. The

IO serialization lowerbound is dchannelwidth/18e since we estimate that we can fit 18

double-precision channels (graph edges) operating at 250MHz on the external FPGA

pins of a Virtex-6 LX760 FPGA. Each of the 1200 external IO pins is capable of 960

MHz operation (1200 pins·960 MHz = 18 channels·64 bits·250 MHz ·4 directions).

Multi-FPGA Fully-Spatial Mesh: We are ultimately interested in estimating

the number of FPGAs required to implement the Model-Evaluation phase of SPICE

in a fully-spatial manner. We want to avoid the serialization bottleneck of Virtual

Wires while providing a tighter estimate than the lower-bound provided by the Ideal

Mapping. When we distribute the graph across a larger number of FPGAs, the

amount of IO that must be routed over each FPGA IO will decrease. In this case, we

increase system size until the communication requirements can be satisfied with the

available FPGA IO capacity with no serialization or time-multiplexing need. We show

such a spatial distribution in Figure 3.4. As we just calculated, a channelwidth < 18

meets the bandwidth constraints of the largest Xilinx FPGA. Again, we use VPR
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Figure 3.4: A Multi-FPGA Organization for SPICE Model-Evaluation

to route inter-FPGA communication for the multi-FPGA model shown in Figure 3.4

with Switch↔Logic communication limits (shown as IO in Figure 3.4) and estimate

the minimum number of FPGAs required for a channelwidth-limited mapping.

Performance and design cost are dictated purely by our ability (or inability) to

move data across external pins. Hence, we are motivated to consider affordable single-

FPGA designs for the problem and avoid external IO entirely.

3.5 VLIW FPGA Architecture

We are interested in designing a single-chip FPGA system capable of accelerating

the complete SPICE simulator. In the previous section, we estimated the maximum

speedups possible for the Model-Evaluation phase of SPICE without any cost con-

straints. In this section, we show how to design a cost-effective, single-FPGA solution

to deliver good speedups for the Model-Evaluation computation.

In Table 3.5 we observe that some device models require hundreds of FPGAs to
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realize the Model-Evaluation computation for that device. It is evident that if we

are to implement this computation on a single-FPGA we will have to virtualize (time

share) the computation over limited FPGA capacity. Conventional von-Neumann

processors (e.g. Intel CPUs) provide a virtualized instruction-set architecture that

permits reuse of limited ALU capacity (e.g. a few dedicated floating-point, integer

units) across large programs that are stored compactly in a memory. To exploit

instruction-level parallelism (ILP) from the computation, the processors attempt to

rediscover the dataflow structure of the compute graph using expensive dynamic

hardware techniques (e.g. Tomasulu [64]). Furthermore, they attempt to match an

application memory-access pattern by speculatively loading and unloading data items

into the caches. In Table 3.3 we note that the computation involves certain elementary

floating-point operations that are not directly supported in the form of a dedicated

unit in the processor’s ALU of an Intel Core i7 965. This means that the elementary

functions require several cycles to evaluate on the processor. However, for SPICE

Model-Evaluation graphs, we precisely know the dataflow structure of the device

equations and also have information about the data-access patterns before execution.

A programmable substrate like an FPGA can even be configured to implement the

elementary functions directly in hardware. This suggests we may be able to accelerate

the computation using a superior architecture that exploits application knowledge and

patterns in the computation for an optimized solution. We build an architecture with

the proper operator balance and a network which implements the data access patterns

in the dataflow graph.

We develop a customized statically-scheduled VLIW (Very Large Instruction Word)

architecture [65] that is tailored for the Model-Evaluation computation. The VLIW

architecture consists of a heterogeneous collection of floating-point operators coupled

to high-bandwidth local memories and interconnected through a time-multiplexed

communication network (see Figure 3.7). We choose the floating-point operator bal-

ance to match the compute requirements in the dataflow graph. We explicitly dis-

tribute data across the local memories to optimize concurrent access as required by

the computation. The distribution also exploits locality in the communication to
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minimize network bandwidth.

3.5.1 Operator Provisioning

Model-evaluation graphs contain a diverse set of floating-point operators such as adds,

multiplies, divides, square-roots, exponentials and logarithms as shown in Table 3.3.

Not all operators are used equally. We choose an operator mix proportional to the

frequency of their use since spatial implementations of floating-point operators can

be quite expensive. For example, in Figure 3.5 we provision multiple adders and

multipliers and just one each of the remaining operators within a Processing Element

(PE). The FPGA consists of multiple tiles of such PEs. Different device models will

have different operator distributions and will require suitable operator mixes. We

characterize the bisection bandwidth of our network using a tunable Rent parameter

p from Rent’s rule IO = c · Np [66, 67]. Here IO=bisection bandwidth, N=number

of operators, c=channels in the network. For our experiments we consider multiple

topologies with 0 < p < 1 with c = 1 as shown in Figure 3.6. A network with a p = 0

provides bisection bandwidth similar to a bus with small area requirement while a

network with a p = 1 provides bisection bandwidth of a crossbar with a larger area
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requirement. We match communication requirements of the application by picking

the appropriate p (balance bandwidth benefits with area requirement) through an

automated design-space exploration (See Section 3.7.4).

3.5.2 Static Scheduling

The Model-Evaluation computation in SPICE is known well in advance of the exe-

cution of the simulator. The device equations are described in Verilog-AMS and are

available as feed-forward dataflow graphs. Since this graph structure is known, we

can statically schedule our FPGA architecture to ensure high utilization of limited

resources. It is indeed possible to evaluate this graph using a dynamically-scheduled

hardware architecture, but that reduces performance by 2–3× [59]. This is because

the logic to dynamically mediate access to shared resources at runtime costs area

and introduces additional latency into the execution. Our static scheduling approach

eliminates this unnecessary overhead by avoiding any runtime decision-making. Fur-

thermore, the VLIW configuration can be efficiently stored in on-chip memories.

The scheduler generates a VLIW configuration [68] for the execution that contains

precomputed datapath, memory and switch controls (see Figure 3.7). A VLIW in-

struction for the PE consists of read/write addresses for the input and output mem-

ories along with multiplexer select signals for the datapath. The time-multiplexed
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Model CPU (ns) FPGA (ns)

bjt 55.66 1376
diode 29.44 1356
jfet 27.23 840
mos1 34.98 1600
hbt 318.74 2876
mextram 778.14 15968
bsim3 225.34 10864
bsim4 289.56 15496
psp 603.85 35140

Table 3.6: Naive Schedule Performance

switch also contains configuration instructions that provide routing information to

schedule communication between the input and output ports. We show how a sim-

ple dataflow graph may be scheduled on a simple VLIW architecture in Figure 3.8.

The nodes of the graph are assigned to the appropriate PE while communication

between the nodes is handled by the appropriate switches in the network. The static

scheduler provides a cycle-by-cycle configuration for the system represented by the

occupied boxes in the figure. The unoccupied boxes represent idle PEs or switches.

The efficiency of the design can be measured by the amount of idle time. Assum-

ing this näıve scheduling technique, we can compare the performance of the FPGA

with an Intel Core i7 CPU in Table 3.6. We can see that this simple approach can

be worse than the CPU implementation by as much as 50×. The long latency of

the floating-point operators and time-multiplexed routing fabric combined with low

throughput evaluation of the devices results in poor FPGA performance. We will

now investigate techniques for improving utilization of the FPGA hardware for high

throughput evaluation of a large number of devices.

3.5.3 Scheduling Techniques

We now consider strategies for reducing the amount of idle time in the static schedule.

The parallelism profile of Model-Evaluation graphs is shown in Figure 3.9. We note

that 20–50% of the graph operations can be issued in the first few steps of the graph

while the remaining operations must execute sequentially along the long tail. A näıve
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schedule of this graph as shown in Figure 3.8 will leave many idle slots leading to

poor utilization of resources. In fact as we saw in Table 3.6, the performance of this

unoptimized schedule is worse than a processor implementation. A key challenge for

the scheduler is to expose work to use these slots productively. We consider two

strategies for efficiently scheduling our VLIW architecture: (1) Loop Unrolling (2)

Software Pipelining with GraphStep Scheduling.

3.5.3.1 Conventional Loop Unrolling

When scheduling single loop iterations on fully-pipelined hardware, the total number

of active pipeline stages doing useful work may be limited. For Model Evaluation,

each iteration evaluates an individual non-linear device in the circuit. We can create

additional work for the scheduler to fill these empty pipeline slots by unrolling mul-

tiple iterations of the loop. Loop Unrolling on Model-Evaluation graphs is possible

with no increase in the logical critical path of the logical graph since iterations are

independent of each other. This allows the scheduler to get better utilization of provi-

sioned hardware resources. The per-iteration efficiency gains more than compensates

for the slight increase in scheduling latency of the mapped graph (due to congestion

and use of greedy scheduling algorithms). For example, in Figure 3.10, the latency to

get the output of a single iteration is 8 cycles. After unrolling 3 iterations, the total
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Figure 3.10: Loop Unrolling

latency increases to 12 cycles, but the average per-iteration latency drops to 4 cycles.

However, these efficiency gains come at the expense of increased memory cost for

storing intermediate state and instruction context. We now need to store 12 VLIW

configuration instructions instead of just 6 for the single-iteration case. Also, the

intermediate state requirements increase from 3 registers to 9 registers. For 100 total

iterations of example graph, this unrolled design will require 100 × 4 = 400 cycles.

We empirically determine the extent of the unroll using an auto-tuning approach that

provides the most judicious use of resources (Section 3.6).

3.5.3.2 Software Pipelining with GraphStep Scheduling

Software Pipelining [69, 70] improves the per-iteration performance by initiating ex-

ecution of successive loop iterations at a rate faster than their individual execution

latencies (which in our case is the resource-constrained initiation interval) without

requiring any unrolling. It overlaps execution of different portions of the loop in a

single repetitive macro-cycle. The benefit of a software-pipelined schedule is that
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a single schedule is valid for all iterations thereby saving instruction storage costs.

It does increase the amount of intermediate state for instructions communicating

across macro-cycle boundaries as well as latency of evaluation. For example, in Fig-

ure 3.11 we need only 2 cycles to schedule all the instructions and communication

between instructions in a macro-cycle (throughput is 1 result every 2 cycles) while

the result of the first iteration is available after 5 macro-cycles (latency is 10 cycles).

For 100 iterations of the example graph, our software pipelined design will require

(100+4)×2 = 208 cycles which is a speedup of almost 2× over loop unrolling example

(note that the +4 accounts for the initial macro-cycles required to fill the scheduled

pipeline). We use the GraphStep scheduling algorithm for implementing the software

pipelining optimization. It is inspired by the GraphStep system architecture [71]

developed for efficient parallel processing of sparse graphs.

In Figure 3.12, we show how the performance of Loop-Unrolling (unroll=10) com-

pares with that of Software Pipelining as a function of device count for a VLIW
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architecture with 16 operators and p = 0. We see that Software Pipelining schedul-

ing outperforms Loop-Unrolling when the number of devices exceeds ≈100 devices.

When combining both optimizations together we can improve performance by 2.7×

at 104 devices. We get this additional performance boost through better balanced

distribution of operators and fewer idle cycles per operator. We analyze performance

in greater detail in Section 3.6.

With loop-unrolling we can generate sufficient work to better overlap communica-

tion latency and fill the pipelines of long-latency floating-point operators like divide

(57 cycles).

For our scheduling problem:

• We must typically evaluate a large number of devices compared to depth of the

graph (number of instructions along the critical path). This allows us to pipeline

the graph deeply for high throughput while ensuring high utilization.

• We have access to several on-chip distributed FPGA memories to store intermediate

state. This capacity allows us to store the increased intermediate state generated

from loop-unrolling and software pipelining. We show the memory requirements for

the different cases in Figure 3.13. As expected, we observe a proportional increase in

memory requirements when we increase the unroll factor. We also observe a 1.9×

increase (1.3–4×) in storage costs for accommodating the retiming registers for

GraphStep scheduling. When implementing this on a Xilinx FPGA, we are limited

by the amount of onchip memory capacity available in relation to logic resources on
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the FPGA. The increase in memory requirement does not affect our performance as

long as the memory-logic balance is preserved. Our design-space exploration 3.7.4

will automatically pick the best configuration to maximize performance.

• We have to generate a schedule for the switching network in addition to compute

scheduling. Without software pipelining, we have to schedule the PE and the

switching network in an interdependent fashion. Software Pipelining with Graph-

Step scheduling allows separate scheduling of compute and switching network al-

lowing overlapped execution.

• We are able to provision interconnect resources as necessary to meet the demands of

the application. This is important to avoid communication bandwidth bottlenecks

for large graphs.

For data-independent loop-iterations, conventional modulo scheduling [72] will

generate a schedule while obeying intra-iteration dependencies. Based on our obser-

vations, we propose a simplified scheduler described here:

• We distribute instructions to different operators with load-balancing and schedule

all instructions on an operator without precedence constraints. This is because

Software Pipelining allows us to stagger the schedule for a pipelined path across

multiple macro-cycles. This gives us scheduling freedom in each macro-cycle to

tightly schedule as many pipelined operator slots as possible by ignoring precedence

constraints. This improves operator packing density at the expense of latency

(additional macro-cycles).
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• Within a macro-cycle, all instructions are processed on the operators and all in-

struction dependencies are routed on the communication network in parallel with

each other. Typically Software Pipelining is used to distribute instructions (graph

nodes) across multiple macro-cycles. In our case, since we must schedule both

compute and communicate, we can treat them uniformly for scheduling.

• We schedule data movement between operators concurrently but independently

from the computation. This allows us to overlap the compute and communicate

scheduled cycles thereby improving performance by 2× in the ideal case. However,

this adds an extra macro-cycle of latency before the dependent instructions can see

their inputs.

• We levelize the instructions in the compute graph based on an ASAP ordering of

the instructions within an iteration. We retime the inputs to each instruction based

on these levels and ensure they receive inputs from the correct iteration. These are

called rotating registers in the schedule [69].

These simplifications allow us to densely pack both the floating-point operators

and the communication network between these operators with high efficiency.

3.6 Methodology and Performance Analysis

In this section, we discuss our experimental methodology and explain our results for

double-precision implementation of Model-Evaluation.

3.6.1 Toolflow

We setup a shared toolflow for the two FPGA static scheduling strategies as shown in

Figure 3.14. We start by first deciding system size (i.e. number of floating-point op-

erators) and partitioning the nodes based on locality using a high-quality partitioner

MLPart [73]. At this point we do not partition the nodes according to operation

type. Next, we provision the number of hardware operators of each type according to

instruction frequency and allocate them to partitions using need-proportional distri-

bution [74, 75]. Each partition can process operations of a single operator type. We
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then reassign nodes paired with invalid operators to the nearest valid operator that

is least occupied. The range of FPGA configurations possible is large and we use an

auto-tuner to automatically select the best configuration.

• For loop unrolling, we provide an unrolled graph to the partitioner/placer. Once

instructions have been placed on proper operators, we then use a greedy list sched-

uler to assign those instructions to schedule slots on the operator. We use a priority

function that prefers nodes along the circuit critical path. We schedule commu-

nication between the nodes using a greedy time-multiplexed router that uses A*

routing. We developed this scheduler and router as part of the Graph Machine

project [71, 59, 76].

• For the GraphStep scheduler, we separately schedule computation and communica-

tion. The compute scheduler simply assigns all instructions to consecutive schedul-

ing slots on the fully-pipelined hardware operator. The communication scheduler

routes every edge with A* routing without any precedence constraints.

3.6.2 FPGA Hardware

We use spatial implementations of individual floating-point add, multiply, divide and

square-root operators from the Xilinx Floating-Point library in CoreGen [77, 78]. For

the exp and log operators we use FPLibrary from the Arénaire [79] group. Neither

of these implementations support denormalized (subnormal) numbers. We use the

Xilinx Virtex-5 LX330T and Virtex-6 LX760 for our experiments. We limit our

implementations to fit on a single-chip and use only on-chip memory resources

for storing intermediate results. The time-multiplexed switches are a collection of

multiplexers whose select bits are generated by a configuration context memory on
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Area Latency Speed Ref.
(Slices) (clocks) (MHz)

Add 334 8 344 [77, 78]
Multiply 131 10 294 [77, 78]
Divide 1606 57 277 [77, 78]
Square Root 822 57 282 [77, 78]
Exponential 1022 30 200 [79]
Logarithm 1561 30 200 [79]

PE support logic 82 - 300 -
BFT T-Switchbox 48 2 300 [59, 76]
BFT Pi-Switchbox 64 2 300 [59, 76]
Switch-Switch Wire 32 2 300 -

Table 3.7: Model-Evaluation FPGA Cost Model (Virtex-6 LX760)

each cycle. We pipeline the wires between the switches and between the floating-point

operator and the coupled-memories for high-performance. You can find additional

details of our time-multiplexed switches in [59]. We synthesize and implement a

sample double-precision, 8-operator design for the bsim3 model on a Xilinx Virtex-5

device using Synplify Pro 9.6.1 and Xilinx ISE 10.1. We provide placement and timing

constraints to the backend tools and attain a frequency of 200 MHz (See Table 3.7).

Aggressive pipelining of exp and log operators should enable higher rates.

3.6.3 Optimized Processor Baseline

We compile Verilog-AMS models into loop-unrolled, multi-threaded C-code for our

sequential baseline comparison. We measure sequential performance on two machines:

(1) a dual-core 65nm, 3 GHz Intel Xeon 5160 processor with a 4MB shared L2 cache

and 16GB main memory running 64-bit Debian Linux and (2) a quad-core 45nm,

hyper-threaded 2.67 GHz Intel Core i7 965 with an 8MB shared L3 cache and 12GB

memory. We use gcc-4.4.3 (-O3) with either the GNU libm math library or Intel

MKL library to compile device models. We use PAPI 4.0.0 [18] performance counters

to measure runtimes and report runtime averaged across multiple device evaluations.

We show peak double-precision floating-point capacities of these devices in Ta-

ble 3.8. From the table, we note that both the CPU and FPGA architectures have
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Family Chip Tech. Clock Peak GFLOPS Power
(nm) (GHz) (Double) (Watts)

Intel Xeon 5160 65 3 12 80
Xilinx Virtex-5 LX330T 65 0.2 11 20–30
Intel Core i7 965 45 3.2 25 130
Xilinx Virtex-6 LX760 40 0.2 26 20–30

Table 3.8: Peak Floating-Point Throughputs (Double-Precision)

Technology Speedup
Min Max Mean

Loop Unrolling
65nm 0.3 8.3 2.4
45nm 0.3 7.6 2.2

Graphstep Scheduling
65nm 0.9 16.1 5.1
45nm 1.4 14.7 5.2

Both combined
65nm 0.9 22 6.5
45nm 1.4 23.1 6.5

Table 3.9: FPGA Speedups for Model-Evaluation
(vs. 45nm Intel Core i7 965 and 65nm Intel Xeon 5160)

comparable peak floating-point peaks despite the FPGA having more than an order

of magnitude lower clock frequency than the CPU (200 MHz vs 3 GHz). We now show

how the FPGA architecture makes better use of its peak than the CPU to deliver

higher speedups.

3.6.4 Overall Speedups

In Table 3.9, we tabulate minimum, maximum and mean speedups across our bench-

mark set for two comparisons (1) Xilinx Virtex-5 vs. Intel Xeon 5160 (65nm technol-

ogy) and (2) Xilinx Virtex-6 vs. Intel Core i7 965 (45 nm technology). We achieve

modest mean speedups of 2× when using the Loop-Unrolling optimization and in the

worst case a slowdown of 0.3×. The mean speedup increases to 5× if we use the

GraphStep scheduling optimization while the worst case a slowdown of 0.9×. If we

combine both together, we are able to achieve a higher mean speedup of 6.5× with
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a worst case slowdown of 0.9×. For a given optimization, the FPGA speedups are

almost identical at both technology nodes suggesting a sustained performance benefit

for the FPGA with technology scaling. This is expected due to our spatial formula-

tion where the performance smoothly scales with increasing capacity for data-parallel

computation.

3.6.5 Speedups for Different Verilog-AMS Device Models

We plot the speedup achieved by our optimized FPGA designs compared to opti-

mized sequential implementations in Figure 3.15. We also show the percentages of

floating-point peak achieved by our design across the different non-linear models and

scheduling strategies. In the best case, we observe FPGA speedups as high as 23×

while FPGA floating-point utilization as high as 60%. In contrast, the optimized

CPU implementations never achieve more than 30% floating-point utilization for any

non-linear model. Both loop-unrolling and GraphStep scheduling contribute towards

this performance benefit. We show the key reasons behind this benefit in Figure 3.16.

As we see in Figure 3.16(a), Loop-Unrolling delivers performance improvement as

we increase the extent of unroll. The extra work introduced at large unroll factors

compensates for the large latency of the dataflow graph for the cases characterized by

high latency. At large unroll factors, we see a saturation in performance as the extra

work exposed matches the latency of the graph. In this case, we merely increase mem-

ory requirements without significant performance improvements. In Figure 3.16(b),

we separately show how GraphStep scheduling allows us to overlap compute and

communication phases of the schedule. When these times match, we can achieve per-

formance close to the computational peak as neither phase dominates total system

performance (i.e. no communication bottleneck). Why do they work better together?

When distributing the graph nodes across the VLIW architecture, we may end up

with poor utilization of certain operator resources. This happens when we have in-

sufficient floating-point work compared to the scheduled latency of dataflow graph.

When compute and communicate phases are mostly balanced, long-latency floating-

point operators like divide and sqrt (57 cycles) may not have sufficient pipeline
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Figure 3.15: Impact of Static Scheduling Optimizations (Double-Precision)
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slots performing useful work. For example, the bsim3 device evaluation with 128

PEs and a p = 0.8 (marginally compute-dominated), requires 74 compute cycles to

schedule the floating-point operators (57 cycles of operator latency accounts for most

of this time as average nodes/PE in this case is ≈ 9 nodes). With an unroll factor

of 2, we can increase total scheduled cycles to 84 compute cycles to deliver a better

per-device throughput of 84/2=42 cycles. The increased work is easily overlapped

with the long-latency floating-point operations to deliver higher utilization of the

long latency pipeline. In this case, we can further unroll the graph until the long-

latency pipelines are saturated and the bottleneck shifts elsewhere. Thus, GraphStep

scheduling with Loop-Unrolling together can deliver higher utilization of the custom

VLIW architecture.

Finally in Figure 3.16(c), we see that the CPU instructions are dominated by

load/store and data movement instructions. This means that a small fraction of in-

structions are performing useful floating-point work. In contrast, our VLIW FPGA

implementation spatially distributes memory operations, floating-point calculation

and communication operations. This means that all these operations are not simulta-

neously competing for instruction memory bandwidth. We observe a maximum IPC

(Instructions per Cycle) of only 0.8 per core (peak of 4 instructions/cycles per core)

resulting in the low floating-point utilization we saw in Figure 3.15.

3.6.6 Effect of Device Complexity on Speedup

Across all graphs in Figure 3.15, we observe that the smaller device models (e.g. diode,

bjt, and others) achieved much higher speedups that the larger device models (e.g. bsim3,

psp). Why is this so? Smaller devices have lower communication requirements in the

dataflow graph and consequently fit in smaller memories and smaller networks. Let

us now analyze this in greater detail.

In Figure 3.15(a) we show the speedups of the Loop Unrolling FPGA implemen-

tation and observe speedups of 0.3-8.3×. For small devices, we are able to deliver

high speedups by unrolling the device evaluation graphs by 10-30 unrolls depending

on the type of graph. The hbt benchmark delivers the highest speedup as it has
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Figure 3.16: Understanding Performance Trends
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Figure 3.17: Explaining Speedups

sufficient parallel work and contains 6% exponential and logarithm operations (aver-

age 2.8%, see Table 3.3) that are well-suited for parallel FPGA operation. For large

non-linear devices like mextram, bsim3, psp we suffer a slowdown. This disparity

can be explained by our inability to unroll the large device models due to limited

onchip FPGA memory capacity. We can see in Figure 3.17(a) how the peak unroll

factor reduces from the high of 15 to the lows of 2–3 as we increase device complexity.

Furthermore, the average work per pipeline stage in the dataflow graph representing

the device evaluation computation is high for the large devices (also see Figure 3.9).

This means that loop unrolling will be less effective at exposing parallelism in this

case. In contrast, the smaller device graphs are tall and skinny with limited amount

of work per stage. Such graphs can benefit from loop unrolling by balancing the large

graph depth with additional work from unrolling.

In Figure 3.15(c) we show the speedups of the GraphStep FPGA implementation

and observe speedups of 0.9–16.1×. As expected, this is higher than the speedups

achieved from Loop Unrolling. GraphStep implementation allows overlapped schedul-

ing of compute (graph nodes) and communicate (graph edge) operations. However,

speedups for the large devices still remain low. In Figure 3.17(b), we show why

speedups start to reduce for the large devices. As explained earlier, the peak unroll

factor is low for large devices due to limited onchip memory capacity. For GraphStep
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scheduling, our peak unroll factors reduce even more since we must accommodate

additional rotating-register state in the onchip memories. In Figure 3.17(b), we see

that the peak unroll factor drops to the low of 1–2 for the large device models. At

the same time, the larger dataflow graph size requires devoting a larger fraction (as

much as 60% for the largest device models) of the FPGA area to the BFT network

for balanced overall performance. The Loop-Unrolling optimization needs to only

devote 40% of its area to the network in the worst case. This is particularly impor-

tant for the GraphStep scheduling optimization since communication and compute

are overlapped. In most cases, we willingly perform this tradeoff to achieve higher

floating-point utilization. For the large devices, network area dominates compute

area which substantially reduces the peak floating-point capacity (around 2.5× when

comparing psp with diode). Thus, when we achieve high floating-point utilization

with GraphStep scheduling, we end up with fewer floating-point units on the FPGA

for the large devices.

3.6.7 Understanding the Effect of Scheduling Strategies

In Figure 3.18, we separate out the effect of the scheduling strategies on performance

of bsim4 evaluation as a function of PE size. We note that without either schedul-

ing optimization the performance of the FPGA actually gets worse as we distribute

processing over multiple PEs. This is because, the dataflow graph gets scattered

across the system with multiple cycles of network latency and insufficient parallelism

to balance the latency (see Figure 3.9). When we unroll the computation by a factor

of 8, we generate 8× as much parallelism without changing overall latency of the

data-parallel computation. This by itself improves performance by ≈5.6× but does

not scale as we increase PE count. Now, if we perform GraphStep scheduling instead,

we see a higher overall benefit of ≈100× over the unoptimized mapping at 128 PEs.

But performance scales by only 3× from 8 PEs to 128 PEs (an ≈16× increase in

area). If we perform loop unroll and GraphStep scheduling together, we get better

scaling behavior and observe an improvement of 11× as we scale from 8 PEs to 128

PEs. This explains the higher composite speedups shown in Figure 3.15(e).
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3.6.8 Effect of PE Architecture on Performance

We now discuss the impact of key architecture features that contribute to our speedup.

The internal design elements in our PE (i.e. parallel operators), distributed memories

and spatial floating-point operators, the design of the network and software optimiza-

tion are all crucial for delivering high speedup. In Table 3.10 and corresponding Fig-

ure 3.19, we illustrate the impact of these key features on performance of the bsim4

device model. The column Ratio to Baseline indicates the loss in performance

by eliminating a design elements indicated by the other columns in Architecture

Features. In the Single Datapath case, the processing architecture consists of 8

floating-point operators (2 adds, 2 multiplies, 1 divide, 1 square-root, 1 exponential,

1 logarithm) fused into a single datapath. For this configuration, we can access only

one operator at time. We observe a performance loss of 4× when sequentializing

operations onto a unified datapath pipeline. To put it another way, we get a 4×

benefit from having simultaneous access to the 8 floating-point operators in 8 sepa-

rate PEs. In the Single Memory case, the internal PE memories are fused into one

for the scheduler. All arriving messages, outgoing messages and datapath operations
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Figure 3.19: PE Architecture Configurations

must share a single dual-ported memory. This results in a loss in performance of

2.2×. Thus, streamlined message processing (simultaneously performing 2 network

receives and a network send) with overlapped compute operations using distributed

local memories within the PE delivers an additional 2.2× performance improvement

(compare Single Memory with Single Datapath). Next, in the Non-Spatial Operators

case, we replace fully-pipelined implementations of elementary floating-point func-

tions like divide, sqrt, exponential and logarithm with non-pipelined low-throughput

versions while retaining streamlined message processing. We observe that pipelined

spatial implementations of elementary floating-point operations contribute a signifi-

cant 6× performance improvement (compare Non-Spatial Operators with Single Dat-

apath). Finally, spatial floating-point operators combined with streamlined message-

processing together deliver a 7× improvement over the non-spatial, non-streamlined

version (compare Non-Spatial and Single Memory with Single Datapath). This means

we get a modest 1.1× improvement by adding streamlined message-processing to

the non-spatial implementation (compare Non-Spatial and Single Memory with Non-

Spatial Operators). Streamlined message-processing becomes important only when

the compute bottleneck introduced by non-spatial processing is eliminated. When

we compare the effect of having all architecture features we observe that the we can
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Architecture Features Sched. Ratio
Experiment PEs Ops.

per PE
Spatial
Op.

Mem.
per PE

Cycles Baseline Single
Datapath

Baseline 8 1 Yes 3 294 1 0.25
Single Datapath 1 8 Yes 3 1201 4 1
Single Memory 1 8 Yes 1 2760 9 2.2
Non-Spatial Op-
erators

1 8 No 3 7148 24 6

Non-Spatial and
Single Mem.

1 8 No 1 8244 28 7

Table 3.10: Impact of Architecture Features of the PE on Performance

deliver performance as high as 28× compared to the non-spatial, non-streamlined,

unoptimized implementation.

3.6.9 Auto-Tuning System Parameters

Our auto-tuning framework selects implementation configurations that are feasible

on the target FPGA while maximizing performance. As we saw in Figure 3.16(a),

increasing unroll factor can improve performance. However this also increases the

amount of onchip memory resources required. In Figure 3.20(a), we show both per-

formance improvements and memory resource requirement for the bsim4 device model

as a function of unroll factor. For Figure 3.16(a), we consider a 7-tile design where

each tile contains 8 PEs (operators). We observe that at an unroll factor of ≈12

we run out of onchip capacity of the Xilinx Virtex-6 LX760. Moreover, performance

starts to saturate at higher unroll factors as explained previously. Our auto-tuner

limits the unroll factor to fit onchip capacity.

In Figure 3.20(b) we measure the impact of scaling PE count per tile for a 7-tile

design and network richness (Rent parameter) within each tile on performance and

area cost (FPGA Slices). We observe that we can accommodate PE counts below

16 before we run out of onchip logic capacity of the Xilinx Virtex-6 LX760. For

p=0 (bandwidth of a ring), we see no performance improvements while total area

cost increases linearly with PE count. This is an example of area-time tradeoff that

simply wastes area. At the other end, p=1.0, we see performance improvements as we
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Figure 3.20: Understanding Performance Trends

increase system size. In this case, the richer network adds as much as 2× additional

area compared to the p=0 system. However, this additional network area allows us

to deliver performance close to the ideal scaling curve.

The static scheduling strategies generate FPGA configurations with a range of

area-time and memory-time tradeoffs. While Loop Unrolling generates work for the

scheduler by filling-in idle slots, it increases the memory requirement for storing the

intermediate results along the edges of the unrolled dataflow graph. Similarly, Soft-

ware Pipelining generates a dense schedule by tight packing of compute and com-

munication operations but it increases network bandwidth and also increases mem-

ory requirement for storing the rotating registers. We show the different area-time

GraphStep configurations possible for the bsim4 device model in Figure 3.21(a) and

memory-time Loop-Unrolling configuration in Figure 3.21(b). Each point in these

graphs corresponds to an arrangement of floating-point operators, network richness

and unroll factor. Our auto-tuner picks the best configuration through an exhaustive

design-space exploration of this space. This time-consuming exploration is acceptable

as we know the dataflow graphs for the devices when setting up the simulator much

in advance of the actual simulation run. Our framework also generates some config-

urations that will be feasible only on future FPGAs and allows us to make robust
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Figure 3.21: Design Tradeoffs for bsim4

design decisions. Thus, we can easily scale our design to fit newer, larger FPGAs in

the future without requiring a redesign from scratch.

3.7 Parallel Architecture Backends

We have seen how SPICE Model Evaluation is characterized by abundant data par-

allelism. Modern parallel architectures such as GPUs and multi-core processors can

exploit this data parallelism with specifically-tailored parallel descriptions. How can

we target these different parallel organizations to implement the Model-Evaluation

phase? How does the FPGA implementation compare against these architectures?

In this section we show how to explore multiple parallel implementations on these

architectures through a combination of automated code-generation and auto-tuning

operations.

In Table 3.11, we compare the peak floating-point capacities of the different ar-

chitectures used in this study. We observe that the raw floating-point peaks vary

as much as two orders of magnitude across the architectures. However, floating-

point peak throughputs do not always characterize achieved application performance.

Each architecture supports a different compute organization (SIMD, Vector, VLIW)

for delivering this throughput to the application. This suggests that SPICE Model
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Family Chip Tech. Clock Peak GFLOPS Power GFLOPs
(nm) (GHz) Double Single (Watts) per Watt

Intel Xeon 5160 65 3 12 24 80 0.3
Xilinx Virtex-5 LX330T 65 0.2 11 33 20–30 1.1
IBM Cell PS3 65 3.2 10 204 135 1.5
Sun Niagara Ultrasparc

T2
65 1.2 8 9.6 95–123 0.1

NVIDIA GPU 9600GT 65 1.6 - 312 59–96 3.2
AMD FireGL
GPU

5700 55 0.6 120 144 - -

Intel Core i7 965 45 3.2 25 51 130 0.4
Xilinx Virtex-6 LX760 40 0.2 26 75 20–30 2.5
NVIDIA GPU GTX285 55 1.4 132 1062 204 5.2
AMD Fire-
stream GPU

9270 55 0.75 240 1200 160–220 5.4

Table 3.11: Peak Floating-Point Throughput

Evaluation may achieve better overall performance even on architectures with poor

floating-point peaks due to higher utilization of available resources. In this experi-

ment, we focus on comparing the performance of the Intel Xeon 5160, NVIDIA GPU

9600 GT, IBM Cell (1st generation), Sun Niagara 2 with the Xilinx Virtex 5 FPGAs

(65nm technology) and the Intel Core i7 965, NVIDIA GTX 285, ATI Firestream 9270

along with the Xilinx Virtex 6 FPGAs (55nm technology or smaller). We customize

the code-generators and performance tuners to match the programming models for

the different architectures and perform this experiment with a completely automated

flow.

3.7.1 Parallel Architecture Potential

We now attempt to understand the compute organizations of the different parallel

architectures. Each architecture we consider contains multiple floating-point units

which are essential for a parallel implementation of Model Evaluation. They dif-

fer in their operating frequencies, pipeline depths and data access mechanisms. Our

parallel implementation must aspire to maximize performance by efficiently partition-

ing device clusters across parallel hardware and keeping resource utilization properly
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f loat [ ] a , b , c ;
# pragma omp p a r a l l e l for
for ( i =0; i<DEVICES; i++)

kernel( a[i], b[i], c[i] );

f loat [ ] a , b , c ;
vmlSetMode (VML HA) ;

kernel(a, b, c);

void ke rne l ( a , b , c ) {
c = a ∗ b ;

}

void ke rne l ( a , b , c ) {
vdMul (DEVICES, a , b , c ) ;

}

(a) OpenMP (b) MKL Vector

dim3 gr id ( 3 2 , 1 , 1 ) ;
dim3 threads (DEVICES/ 3 2 , 1 , 1 ) ;

cudaMemcpyToSymbol(a, host a);

cudaMemcpyToSymbol(b, host b);

kernel <<< grid, threads >>> ();

cudaMemcpyFromSymbol(host c, c);

int dev [ ]={X,Y} ;
: : brook : : Stream<f loat> a , b , c ( dev ) ;

a.read(host a);

b.read(host b);

kernel(a, b, c);

c.write(host c);

d e v i c e f loat [ ] a , b , c ;
g l o b a l void ke rne l ( ) {
int i = BlockDim . x∗BlockIdx . x

+ threadIdx . x
c [ i ] = a [ i ] ∗ b [ i ] ;

}

ke rne l void ke rne l ( a , b , c ) {
c = a ∗ b ;

}

(a) NVIDIA CUDA (b) ATI Brook

f loat [ ] a , b , c ( ( a l i gned ( 1 2 8 ) ) ) ;
for ( i =0; i<THREADS; i++)

pthread create(thread[i]);

for ( i =0; i<THREADS; i++)

pthread join(thread[i]);

f loat [ ] host a , host b , ho s t c ;
for ( i =0; i<THREADS; i++)

pthread create(thread[i]);

for ( i =0; i<THREADS; i++)

pthread join(thread[i]);

vec to r f loat [ ] a , b , c ;
int main ( arguments to thread ) {
spu mfcdma32(a,&host a,GET );

spu mfcdma32(b,&host b,GET );

for ( i =0; i<DEVICES/THREAD; i++) {
d i v f 4 ( a [ i ] , b [ i ] , c [ i ] ) ;

}
spu mfcdma32(c,&host c, PUT );

}

f loat [ ] a , b , c ;
int main ( arguments to thread ) {
spu mfcdma32(a,&host a,GET );

spu mfcdma32(b,&host b,GET );

int vec to r=DEVICES/THREAD;
vsd iv ( a , b , c ,& vec to r ) ;

spu mfcdma32(c,&host c, PUT );

}

(a) IBM Cell SDK (b) Cell MASS Vector

Table 3.12: A comparison of data-parallel constructs across three architectures
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balanced.

The Intel Core i7 965 processor provides four parallel cores with hyper-threading

capability on a single-chip and has 128-bit vector floating-point SSE pipelines per core.

Our parallel implementation partitions the devices across the cores using multiple

parallel threads. Within a core, we can pack computation into SSE instructions

to keep the vector units busy. We can strategically use loop-unrolling to generate

additional work for higher utilization.

The IBM Cell processor contains a single Power Processing Element (PPE)

and eight Synergistic Processing Elements (SPE) with 128-bit vector floating-point

pipelines. However, the Cell processor in the Sony PlayStation 3, which we use in

this paper, allocates one SPE for running a proprietary hypervisor and keeps another

SPE as spare for improving yield. We statically partition devices across the 6 SPEs.

Furthermore, we only consider single-precision implementations due to higher peak

throughput and bugs in the Cell vector library. Since there is no shared memory, we

must explicitly load inputs and unload outputs of the Model Evaluation computation.

We pack device computation into vector operations provided by the Cell SPEs for

higher utilization.

The NVIDIA GPUs used in our experiments are CUDA-capable (Compute Uni-

fied Device Architecture) graphics processors that support general-purpose computa-

tion expressed in C/C++ with the CUDA API. The 9600 GT GPU contains 64 stream

processors organized into 8 multiprocessors each capable of running multiple threads

managed by the GPU thread scheduler. The GTX 285 is a larger GPU that con-

tains 240 stream processors organized into 30 multiprocessors. The high-level CUDA

implementation runs the kernel in a data-parallel SIMD (singe-instruction multiple-

data) fashion across the parallel GPU resources. The devices get partitioned across

the different processors depending on a specified distribution pattern.

The ATI GPUs used in our experiments support the ATI Stream Computing

platform that allows computation described in the Brook [41] language to run in

parallel on the GPU hardware. The FireGL 5700 GPU is a low-power GPU for

mobility applications that contains 120 shader cores while the Firestream 9270 GPU
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Figure 3.22: Model-Evaluation Mapping Flow for Parallel Architectures

is a higher-performance GPU with 800 stream cores. We express our data-parallel

computation as stream kernels in the Brook language to distribute processing across

these parallel cores.

The Xilinx FPGA contains hundreds of thousands of logic cells, hundreds of

on-chip memories and embedded fixed-point multipliers that can be configured to im-

plement irregular floating-point datapaths. We statically distribute the devices across

multiple custom VLIW tiles (see Section 3.5). Each tile is statically-scheduled using

a combination of loop-unrolling and software-pipelining to design a well-balanced

system.

In Figure 3.22, we show our mapping flow for our experiments with parallel archi-

tectures. We share the Verilog-AMS compiler with the FPGA backend. The rest of

the flow is customized for the software environments specific to each parallel architec-

ture. We tabulate the different compilers, tools, libraries and timing-functions used in

our experiments in Table 3.13. We measure runtime of our generated code averaged

across a large number of device evaluations to minimize the effect of startup costs,

OS overheads and measurement noise. The two key components of this flow are (1)

the code-generator and (2) the auto-tuner. We explain these in detail in Section 3.7.2

and Section 3.7.4 respectively.

3.7.2 Code Generation

We target multiple architecture backends in our study to enable a fair comparison

of the different compute organizations. The software development framework for

each backend supports unique parallel constructs to expose parallelism within the

application. Instead of manually rewriting code using these constructs for each ar-
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Arch. Compiler Libraries Timing

Intel CPUs gcc-4.4.3 (-O3) OpenMP 3.0 [80],
GNU libm, Intel
MKL 10.1

PAPI 4.0.0 [18],
PAPI flops()

Nvidia GPUs nvcc, CUDA SDK
2.3 [43]

CUDA libraries cudaEventRecord()

ATI GPUs brcc g++-4.1.2,
ATI Stream CAL
1.4beta [81]

ATI Brook libraries gettimeofday()

IBM Cell spu-gcc, ppu-gcc,
Cell SDK 3.1 [82]

Simdmath, MASS gettimeofday()

Sun Niagara2 cc, Sun Studio
12.1 [83]

OpenMP [80],libm PAPI 3.7.0 [18],
PAP flops()

Xilinx FPGA Synplify Pro 9.6.1,
Xilinx ISE 10.1

Xilinx Coregen [77],
Arénaire [79]

-

Table 3.13: Software Environments

chitecture, we use automated code generation to simplify the mapping process. Our

code-generator backend accepts an intermediate representation of computation gen-

erated by the Verilog-AMS compiler. This allows us to target a single Verilog-AMS

description of computation across all the architectures considered in this study. For

data-parallel computation, the constructs extract the number of data-parallel units

of work available and the computation for each of these units. The compilers or

runtimes distribute the data-parallel units of work across the parallel computing el-

ements. Each computing element then evaluates the computation for the subset of

work it is assigned.

Each architecture provides a different data-parallel constructs to expose paral-

lelism to the compiler as shown in Table 3.12. We generate code with simple OpenMP

pragma omp parallel for shown in Table 3.12(a) to distribute Model-Evaluation

across 8 threads on the Intel Core i7 processor. We express each individual de-

vice evaluation as a scalar kernel and let the GPU thread scheduler distribute these

threads across the GPU using the CUDA API constructs shown in Table 3.12(b).

We distribute processing across the six user-programmable PS3 Cell SPUs by using

PThreads [84] shown in Table 3.12(c) to create and manage parallel threads. We

generate custom VLIW instructions for our FPGA architecture described in [85] and
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Section 3.5.

3.7.3 Optimizations

In addition to data-parallelism, we can exploit other characteristics of SPICE Model-

Evaluation graphs to get better performance. For example, we notice that SPICE

model-evaluation graphs are characterized by long critical paths with little work off

this path which may significantly underutilize processor capacity (see Figure 3.9).

To increase utilization and improve performance, we can perform loop unrolling or

vectorize the device loop so that multiple devices are scheduled together. For example,

the bsim3 device model implemented in Single-Precision on 8-operators (p = 0.8) with

GraphStep scheduling requires 481 cycles per evaluation with no unrolling, which

reduces to 477 cycles per evaluation when unrolled twice.

3.7.4 Auto Tuning

To enable a fair comparison of performance across the different architectures, we must

be able to generate optimized code for each architecture. We can achieve the best

performance on each parallel architecture by generating custom code for a target ar-

chitecture and then tuning the performance for each target in an architecture-specific

manner. The data-parallel computation distributed across the parallel compute ele-

ments must be tuned to achieve best performance. The tuning process identifies and

assigns values to optimization parameters that influence performance of the mapped

application (e.g. loop unroll factor, vector length). Typically, tuning is a manual

programmer-intensive process requiring trial-and-error or iterative approach to choose

the best value for an optimization parameter. This can be a non-trivial amount of

time if the number of parameters and their interactions are large. Furthermore the

results of the tuning process are tied to the particular combination of compiler, run-

time, operating-system and system configuration and not trivially portable to a new

system.

For our experiments, we choose an automated approach that empirically tunes
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Figure 3.23: Auto-tuning Performance-Ranges for the Parallel Architectures at 65nm
(9493 configurations)

the mapping for each architecture. The approach is similar to the auto tuner used

in the ATLAS framework [86] for optimizing dense linear algebra kernels. Our auto

tuner exhaustively explores several implementation parameters for the different archi-

tectures as shown in Table 3.14. The set of possible configurations we explore makes

it infeasible for a manual tuning process and automated approach is required. Such

an exhaustive approach is possible in our case since the Model Evaluation graphs

are completely known in advance. Furthermore, the entire space of implementations

can be explored automatically in a few hours. In Figure 3.23, we show the dynamic

performance range that our auto-tuner explores while determining the best parallel

implementation. As we can see in some cases the dynamic range can be as high as

100×. We envision an installation phase during initial setup on a parallel system,

where we spend time generating an optimized configuration. This offline install-time

tuning will pay off during an actual SPICE simulation by delivering the best possible

performance on that system.
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Architecture Parameter Range Increment

Intel
Loop-Unroll Factor 1–5 +1
MKL Vector true/false

NVIDIA GPU
Loop-Unroll Factor 1–2 +1
Threads per block 8–512 ×2
Registers/Thread 16–128 ×2

ATI GPU Loop-Unroll Factor 1–2 +1

IBM Cell Loop-Unroll Factor 1–3 +1
MASS Vector true/false

Sun Niagara2 Loop-Unroll Factor 1–3 +1
Number of Threads 1–64 ×2

FPGA

Loop-Unroll Factor 1–15 +1
Operators per PE 8–64 ×2
BFT Rent Parameter 0.0–1.0 +0.1

Table 3.14: Auto-Tuning Parameters

Let us now consider a few examples of how this tuning works. Our GPU imple-

mentation organizes device evaluations into threads (mapped to an ALU: a floating-

point unit) which must be grouped into blocks (mapped to multiprocessor: collection

of ALUs) and grids (mapped to GPU: collection of multi-processors) for a CUDA

implementation. Our auto-tuner picks the number of threads in each block (grid

configuration) to maximize GPU usage and deliver best performance. Similarly, our

FPGA architecture includes several different parameters that can be chosen to make

best use of available resources for a given problem.

3.8 Results: Single-Precision Parallel Architectures

In this section, we discuss our results of mapping SPICE Model-Evaluation code to

multiple parallel architectures. For these experiments we use runtimes for our models

averaged across multiple device evaluations to eliminate measurement noise and other

artifacts.

In Table 3.15 we show the minimum, maximum and mean speedups across dif-

ferent non-linear devices for the different parallel architectures when compared to

the optimized Intel microprocessor implementations. We also show mean percent
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floating-point peak achieved by the different architectures. We observe that at 65nm,

the Virtex-5 LX330T achieves the highest mean speedup of 35× across the differ-

ent architectures at that technology. We also see mean peak floating-point usage of

around 40%. The rest of the architectures provide modest speedups with the excep-

tion of the NVIDIA 9600GT GPU and only achieve a mean peak floating-point usage

of a few percent. Thus, the architecture with the highest peak does not necessarily

deliver the best performance. This changes for the 45nm architecture experiments.

While the FPGA still achieved good speedup of around 30× across the benchmark

set, we observe a noticeable increase in the performance of the two GPUs. The

NVIDIA GTX285 delivers a mean speedup of 58× while the ATI Firestream 9270

delivers a mean speedup of 71× at sufficiently large number of device evaluations.

We attribute this increase to the substantially superior floating-point peak through-

put. The data-parallelism in the Model-Evaluation computation matches favorably

with the SIMD and Streaming compute models of these GPU architectures. Despite

this high speedup the FPGA implementation still manages to achieve a high floating-

point utilization of 43% while the GPUs only manage 6% usage. In this case, the

performance difference between the FPGA and the GPU is much smaller than what

the peaks might suggest. We explain some of the reasons behind this difference in

Section 3.8.2. In Figure 3.24 we plot the speedups and percent floating-point peak

achieved by each non-linear device model across the different architectures.

3.8.1 Performance Analysis

In Figure 3.25, we plot achieved floating-point throughputs against the peak floating-

point throughputs of the different parallel architectures. As expected, we are unable

to fully exploit the peak floating-point throughput for any architecture due to bot-

tlenecks in other components of the architecture (all achieved data-points are below

Actual=Peak line in the figure). We observe that at both 65nm and 45nm, the FPGAs

are the closest to achieving their peak potential. At 65nm, not only does the FPGA

achieve a larger fraction of the peak, it also achieves the highest overall floating-point

throughput. At 45nm, the GPUs do achieve a higher actual floating-point throughput
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(Single-Precision)
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Technology Speedup % Peak
Min Max GeoMean GeoMean

65nm
Intel Xeon 5160 1 1 1 1.5

Virtex-5 LX330T 4.5 123.5 35.5 40.5
NVIDIA 9600GT GPU 10.1 63.9 24.3 2.9
ATI FireGL 5700 GPU 0.4 6.0 2.5 0.6

IBM Cell PS3 3.8 16.2 8.4 2
Sun Niagara2 0.4 1.4 1 2.2

45nm
Intel Core i7 965 1 1 1 1.9
Virtex-6 LX760T 4.5 111.6 31.9 42.9

NVIDIA GTX285 GPU 13.1 133.1 58.7 5.5
ATI Firestream 9270 2.8 1200 71.6 6

Table 3.15: Speedups for Single-Precision Model Evaluation across Parallel Architectures
(Compared to optimized Intel implementations at each technology node)

resulting in better performance than the FPGAs. However, this comes at the cost of

almost 100× higher peak floating-point throughput.

In Figure 3.26(a), we show how performance scales as a function of number of

threads of the Sun Niagara2. While the overall performance of this processor is poor,

we believe this scaling behavior is indicative of the kind of tradeoffs that will be

necessary to efficiently program multi-core systems with 100s of cores in the future.

For small devices like diodes performance saturates at 16 threads while it continues

to scale up to 64 threads for larger devices like mextram and psp.

In Figure 3.26(b), we show the impact of using the Intel MKL library [87] for

accelerated processing of vectorizable floating-point functions (e.g. divide, sqrt, exp,

log). We observe a limited performance improvement of at most ≈3× for using the

vector library only for single-precision evaluation. The limited speedups possible are

due to the inability to implement all the operations in the Model-Evaluation compu-

tation in vectorized form. For the large devices, only 40–50% of the operations are

vectorizable. We see no practical improvements for double-precision evaluation using

the MKL library. The peak floating-point throughput for single-precision evaluation

on Intel CPUs is twice as high as double-precision evaluation (see Table 3.11).

In Figure 3.26(c), we show how performance scales as a function of number of
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Figure 3.26: Additional Analysis
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devices being evaluated for the bsim4 device model. As expected, at low device

counts, the performance per device is poor. At these low device counts, the cost

of distributing evaluation across parallel resources does not justify the performance

improvement from parallelism. As we increase the number of devices, the cost is

amortized by the increased amount of parallel work. Thus at large device counts,

we see markedly improved performance. The ATI Firestream runtime has a high

overhead for launching kernels and transferring data to the GPU. We are able to

realize the architecture’s potential only at much higher device counts than the other

architectures. We also observe a performance saturation for the Intel Core i7 at 256

devices. The performance improvement for the NVIDIA GTX285 GPU saturate at

much higher 4096 devices while the Xilinx Virtex-6 FPGA saturates at 16384 devices.

In Figure 3.26(d), we include the cost of transferring data when computing total

speedup. For the FPGA, we estimate loading time for the device parameters from the

offchip interface (capable of transferring 32 bytes per cycle using the BEE3 memory

controller [88]). For the two GPU architectures, we include the cost of copying the

input arrays from the host CPU to the device and the output arrays from the device

to the host CPU. We note that the ATI Firestream 9270 performance drops dramat-

ically when including these memory transfer times. The performance of the NVIDIA

GTX285 also drops significantly and allows the FPGA to close the performance gap

for large device sizes.

3.8.2 Explaining Performance

In Table 3.16, we show assembly instruction analysis for a few candidate architectures.

We separate floating-point instructions (column ‘Float’ or ‘ALU’) from memory load-

store instructions (column ‘Ld/Str’ or ‘Fetch’) from the binary assembly codes gener-

ated by gcc for the Intel processors to estimate a weak lower-bound on floating-point

utilization. For the NVIDIA GPU, we use the CUDA occupancy calculator [89] to

predict the utilization of our floating-point resources. For the AMD/ATI GPUs, we

use the Stream KernelAnalyzer [90] to calculate the distribution of instructions in the

GPU assembly.
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Model Intel Xeon IBM Cell NVIDIA GPU ATI GPU
Float.
(%)

Ld/Str
(%)

Float.
(%)

Ld/Str
(%)

Ideal Occupancy
(%)

ALU
(%)

Fetch
(%)

bjt 10 23 13 20 100 9 65
diode 4 14 9 26 100 7 53
jfet 9 20 14 24 100 11 60
mos1 8 29 11 23 100 10 60
vbic 17 22 17 19 100 13 69
mos3 20 44 19 15 75 12 63
hbt 11 49 14 17 50 11 67
bsim4 28 47 25 16 50 15 66
bsim3 36 50 37 17 25 24 58
mextram 26 59 29 25 25 25 58
psp 41 52 43 24 25 31 57

Mean 16 34 18 20 58 14 61

Table 3.16: Assembly Code Analysis for SPICE Model-Evaluation
Ld/Str=Load Store, Float.=Floating-Point

We measured mean floating-point fractions of total instruction to be around 15%

irrespective of architecture. For small models like diode and bjt, this fraction may

even be in the below 10%. For larger models like bsim3 and psp, the fraction rises

to 25–40% of total instructions. Modern processors contain a fixed combination of

Load/Store and ALU capacity. This imbalanced fraction suggests that we may never

be able to fully achieve the peak utilization of floating-point units in these processing

architectures. On the FPGA, we are able to spatially distribute processing of the

Load/Store operations by creating address generators and datapaths for the com-

putation. We customize the distribution of floating-point resources to match the

required application balance and to avoid hotspots. We overlap compute and com-

municate operations to improve performance. We also ensure high resource utilization

by software-pipelining and loop-unrolling.

3.9 Conclusions

In this chapter, we show how to implement the data-parallel Model-Evaluation phase

of SPICE on an FPGA and other parallel architectures for a range of non-linear SPICE
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device models. We demonstrate speedups of 1.4–23.1× when comparing a Xilinx

Virtex-6 LX760 FPGA with an Intel Core i7 965 for double-precision floating-point

evaluation. Our model-specific, statically-scheduled VLIW FPGA architecture is able

to deliver these speedups due to need-proportional provisioning of floating-point op-

erators, software-pipelining and loop-unrolling optimizations, overlapped scheduling

of compute and communicate phases resulting in higher utilization of floating-point

resources (40%–60%). Our mapping framework can also target other parallel archi-

tectures apart from FPGAs since we capture the Model-Evaluation computation in a

high-level framework based on Verilog-AMS. We use code-generators and auto-tuners

to generate optimized implementations across these different architectures. We deliver

speedups of 4.5–123.5× for a Virtex-5 LX330, 10.1–63.9× for an NVIDIA 9600GT

GPU, 0.4–6× for an ATI FireGL 5700 GPU, 3.8–16.2× for an IBM Cell and 0.4–1.4×

for a Sun Niagara 2 architectures when comparing Single-Precision evaluation across

these architectures at 55nm–65nm technology. We also show speedups of 4.5–111.6×

for a Virtex-6 LX760, 13.1–133.1× for an NVIDIA GTX285 GPU and 2.8–1200× for

an ATI Firestream 9270 GPU when comparing Single-Precision evaluation on modern

architectures at 40–55nm technology. We observe that at 55nm–65nm FPGAs deliver

the highest performance for Model-Evaluation and are within 2.5× of the GPUs at

40–55nm comparisons. We expect to improve FPGA speedups in the future using

higher quality distribution of floating-point computation, use of offchip memory for

storing intermediate state, superior floating-point operators [91, 92] and better static

scheduling algorithms.
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Chapter 4

Sparse Matrix Solve

In Chapter 2 (Section 2.1), we identified the Matrix-Solve phase of the SPICE cir-

cuit simulator as the most challenging phase for parallelization. The computation is

characterized by sparse, irregular operations that are too fine-grained to be effectively

exploited on conventional architectures (e.g. multi-cores). In this chapter, we show

how to parallelize Sparse Matrix Solve using a combination of the KLU algorithm

(better software) and an efficient dataflow FPGA architecture (better hardware). We

start by introducing the KLU algorithm that extracts the exact compute graph of

matrix factorization and then describing a dataflow architecture for efficiently map-

ping the compute graph to an FPGA. We identify and quantify different approaches

for distributing the dataflow graph which is a subject of continuing research.

4.1 Structure of Sparse Matrix Solve

The open-source spice3f5 package assembles the matrix and the right-hand side

(RHS) vectors in A~x = ~b using the Modified Nodal Analysis approach. Since circuit

elements (N) tend to be connected to only a few other elements, there are a constant

number (O(1)) of entries per row of the matrix. Thus, the MNA circuit matrix with

O(N2) entries is highly sparse with O(N) nonzero entries (≈99% of the matrix entries

are 0 as shown in Table 4.2). spice3f5 uses the Sparse 1.3 [17] solver optimized

for efficient sequential processing of sparse matrices to compute ~x. This solver uses

dynamic pivoting for numerical accuracy which changes the non-zero pattern in every
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Figure 4.1: Flowchart of a SPICE Simulator with emphasis on Matrix-Solve phase

step of the solve. A change in the non-zero pattern changes the sequence of operations

for the Matrix-Solve step. This makes it difficult to distribute the computation in

parallel as the compute graph evolves and changes in each iteration. Furthermore,

the fine granularity of the underlying matrix solve computation is another factor

that prevents efficient parallel operation. Advances in numerical techniques during

the past decade have delivered newer, faster solvers. A few studies have successfully

used the highly-parallelizable preconditioned Krylov techniques [93] for Sparse Matrix

Solve like BiConjugate-Gradient and GMRES for certain classes of circuits. In our

experiments, these techniques delivered mixed results and need additional research

for proper consideration (see Figure 4.12 in Section 4.5.1). Instead we consider the

newer KLU solver [14, 15] that is a sparse, direct method that can work across a broad

range of circuits. While a direct method is not as parallelizable or scalable as a Krylov

technique, we choose this approach as it is robust across a broader range of circuits.

KLU performs a one-time partial pivoting at the start of the simulation and deliv-

ers a static compute graph that can be efficiently distributed and evaluated in parallel.
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Figure 4.2: KLU Analysis: (Left) Original Matrix and (Right) LU factors with fillin

The KLU solver uses matrix preordering algorithms (Block Triangular Factorization-

BTF [94] and Column Approximate Minimum Degree-COLAMD [95] vs. Markowitz

reordering used by Sparse 1.3) that are better at minimizing the fillin during the fac-

torization phase. It employs the left-looking Gilbert-Peierls [96] algorithm to compute

the LU factors of the matrix for each SPICE iteration. The solver attempts to reduce

the factorization runtimes for subsequent iterations (refactorization). It uses a par-

tial pivoting technique to generate a fixed non-zero structure in the LU factors at the

start of the simulation (during the first factorization). This static pattern is reused

across all SPICE iterations and enables us to generate a specialized static dataflow

architecture that processes the graph in parallel. It even enables faster sequential

evaluation by specializing the data-structures that hold the LU factor locations and

non-zero entries. The preordering and symbolic analysis step (labeled as Step 1© in

Figure 4.1) computes non-zero positions of the factors at the start while the refac-

torization and solve steps (labeled as Step 2©) solve the system of equations in each

iteration. Our FPGA solution parallelizes the refactorization and solve phases of the

KLU solver.

4.1.1 Structure of the KLU Algorithm

At the start of the SPICE simulation (in Step 1© of Figure 4.1), the KLU solver

performs symbolic analysis and reordering in software to determine the exact non-

zero structure of the L and U factors. We show an example matrix and the locations
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(Gilbert-Peierls) (Sparse L-Solve)

1%-------------------------------

2% input: sparse matrix A

3% output: factored L and U

4%-------------------------------

5L=I; % I=identity matrix

6for k=1:N

7b = A(:,k); % kth column of A

8x = L \ b; % \ is Lx=b solve

9U(1:k) = x(1:k);

10L(k+1:N) = x(k+1:N) / U(k,k);

11end;

Listing 4.1: Gilbert-Peierls Algorithm (A=LU )

1%-------------------------------

2% input: matrix L (1:k-1)

3% output: kth column of L

4%-------------------------------

5x=b;

6% symbolic analysis predicts non -zeros

7for i = 1:k-1 where x(i)!=0
8for j = i+1:N where L(j,i)!=0
9x(j) = x(j) - L(j,i)*x(i);

10end;

11end;

12% returns x as result

Listing 4.2: Sparse L-Solve (Lx =b,x= unknown )
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(Front Solve) (Back Solve)

1%--------------------------------------------

2% input: lower triangular matrix L, vector b

3% output: intermediate vector y

4%--------------------------------------------

5y = b;

6for i=1:N-1

7y(i+1:N) = y(i+1:N) - L(:,i)*y(i);

8end;

Listing 4.3: Front Solve ( Ly =b)

1%--------------------------------------------

2% input: upper triangular matrix U, vector b

3% output: final solution vector x

4%--------------------------------------------

5x = y;

6for i = N:1

7x(i-1:1) = x(i-1:1) - U(:,i)*x(i)/U(i,i);

8end;

Listing 4.4: Back Solve (Ux =y)
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A1 · ~x1 = ~b1 (4.1) 1 −1 1
−1 4923.1 0
1 0 0

 ·
 x1
x2
x4

 =

 0
4336

3

 (4.2)

L1 · U1 · ~x1 = ~b1 (4.3) 1 − −
−0.2E−3 1 −

1 1.0002 1

 ·
 1 −1 1
− 0.99 0.2E−3

− − −1.0002

 ·
 x1
x2
x3

 =

 0
0.880

3

 (4.4)

A2 · ~x2 = ~b2 (4.5) 1 −1 1
−1 6736.1 0
1 0 0

 ·
 x1
x2
x4

 =

 0
5936

3

 (4.6)

L2 · U2 · ~x2 = ~b2 (4.7) 1 − −
−0.1E−3 1 −

1 1.0001 1

 ·
 1 −1 1
− 0.99 0.1E−3

− − −1.0001

 ·
 x1
x2
x3

 =

 0
0.881

3

 (4.8)

Figure 4.3: A Matrix Solve Example using KLU (Circuit from Figure 2.2)

of the LU factors obtained from KLU symbolic analysis in Figure 4.2. The original

non-zero pattern is shown in the matrix on the left with the shaded boxes being the

non-zero locations. The non-zero pattern of the L and U factors with fillin is shown

on the right. The darker shaded boxes are the lower triangular non-zero entries while

the lighter shaded boxes are the upper triangular non-zero entries. The box with

the cross is a fillin generated during the pre-processing phase. This pre-processing

phase is a tiny fraction of total time and needs to be run just once at the start (see

column ‘Analysis’ in Table 4.5). In our parallel approach, we start with knowledge of

the non-zero pattern of the reordered circuit matrix. We are parallelizing Step 2© of

the KLU Matrix-Solver. This step consists of a Factorization, Front-Solve and Back-

Solve phases. We show an example matrix and the key steps involved in Figure 4.3.

Here we show the original matrix A1 in a SPICE iteration and its non-zero pattern

in Equation 4.2. The first LU factorization in Equation 4.4 processes this matrix to

generate the L1 and U1 factors. In another SPICE iteration shown in Equation 4.6,
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Figure 4.4: Non-zero pattern of SPICE circuit-simulation matrix for s1196

we get a new matrix A2 with only the non-zero values changed. The factorization of

A2 performs the same sequence of factorization operations on the changed non-zero

values to get new factors L2 and U2 as shown in Equation 4.8. In this small example,

the sparsity in the matrices is not typical of large SPICE circuits. In Figure 4.4, we

show the non-zero pattern of a more typical large SPICE circuit s1196. Each black

pixel in the figure represents a non-zero value. We show the non-zero pattern of the

original matrix on the left and the reordered matrix on the right. The high density

of non-zeros along the diagonal is evidence of locality in the matrix. The reordering

enhances this clustering effect along the diagonal to maximize locality. This matches

the natural real-world circuit structure where elements are connected to only a few

other elements (limited fanin and fanout) which are in its spatial neighborhood. The

concentration of non-zeros in the final few columns of the reordered matrix are due

to high fanout nets in the circuit such as power nets and clock trees.

In Listing 4.1, we illustrate the key steps of the factorization algorithm. It is the

Gilbert-Peierls [96] left-looking algorithm that factors the matrix column-by-column

from left to right (shown in the figure accompanying Listing 4.1 by the sliding column
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k). For each column k, we must perform a sparse lower-triangular matrix solve

shown in Listing 4.2. The algorithm exploits knowledge of non-zero positions of the

factors when performing this sparse lower-triangular solve (the x(i) 6= 0 checks in

Listing 4.2). This feature of the algorithm reduces runtime by only processing non-

zeros and is made possible by the early symbolic analysis phase. It stores the result

of this lower-triangular solve step in x (Line 8 of Listing 4.1). The kth column of

the L and U factors is computed from x after a normalization step on the elements

of Lk. Once all columns have been processed, L and U factors for that iteration

are ready. The sparse Front-Solve and Back-Solve steps are shown in Listing 4.3 and

Listing 4.4 respectively. The compute structure of these steps is similar to the L-Solve

step in Listing 4.2. These solve steps use the L and U matrices obtained from the

factorization phase and generate the final result vector x.

4.1.2 Parallelism Potential

From the pseudo-code in Listing 4.1— Listing 4.4 it may appear that the matrix solve

computation is inherently sequential. However, if we unroll those loops we can expose

the underlying dataflow parallelism available in the sparse operations. In Figure 4.5,

we compare the apparent sequential ordering (first column) of operations with the

parallel grouping of operations (second column) in the processing. These operations

are obtained by stepping through the computation on Line 8–10 of Listing 4.1. We can

see each evaluation of Line 10 (divide) in Listing 4.1 and Line 9 (multiply-subtract)

in Listing 4.2. We count a total of 6 steps in the sequential execution while we

can reduce this to 4 steps in the parallel evaluation. In the parallel evaluation, we

schedule operations purely on the basis of their dataflow dependencies rather than

the artificial ordering imposed by sequential description. We note that the divides (in

Step 1 of Parallel Column) can be issued in parallel since they have no dependencies

between each other. Similarly the multiply-subtract operations (in Step 2 and Step 3

of Parallel Column) can also partially overlap. This fine-grained dataflow parallelism

allows concurrent evaluation of operations in the computation. We observe there

are two forms of parallel structure in the dataflow graph that we can exploit in our
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parallel design:

1. Parallel Column Evaluation: Columns 1, 2 and 3 in Figure 4.5 can all be pro-

cessed in parallel. This is possible when the row corresponding to the diagonal

pivot element contains zeros for all earlier columns. This means that the non-zero

pivot value will be free of dependencies on earlier columns. These create parallel

dataflow paths rooted at the dependency-free pivot elements that can be evaluated

concurrently.

2. Fine-Grained Dataflow Parallelism: Multiply operations for updating A(3,4) could

proceed before all three earlier columns are evaluated. The non-zero pattern in a

column is defined by the sparsity of a circuit node i.e. a circuit node will connect

to only few circuit elements. This generates sparse dataflow paths with dependent

operations with internal parallelism within the path.

The parallelism comes from the non-zero pattern of circuit matrices. The sparsity

and natural clustering of circuit elements generates independent subtrees with little

or no communication with each other. We represent the complete dataflow compute

graph for this example in Figure 4.6. We also mark the sequential chain as well as

parallel wavefronts on the dataflow graph for this example matrix. We note that all

operations in the first wavefront (e.g. divides) can be issued in parallel.

Next, we show the execution profile of an example benchmark psadmit2 in Fig-

ure 4.7(a) to illustrate potential for parallel operation. We observe that we can issue

as many as 6% of the operations in the first few steps of the graph while on aver-

age we can issue as many as 75 operations/step. Each step in this computation is

a floating-point operation which requires 10s of cycles on an FPGA (see Table 4.4).

Thus, the effective number of operations/cycle is ≈7.5. This compares somewhat

favorably with architecture sizes of 9-25 PEs that can fit on an Virtex-5 LX330T

and Virtex-6 LX760 FPGA respectively. However, the critical chain of dependen-

cies in the evaluation can be long and may limit achievable performance (long tail

of Figure 4.7(a)). We must take care to avoid a bad distribution of operations as it

may spread the critical path across the machine introducing unnecessary high-latency

communication (see Figure 4.18(c)). Assuming unbounded hardware and no commu-
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A(3,1)=A(3,1)/A(1,1)
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A(4,3)=A(4,3)/A(3,3)
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A(4,4)=A(4,4)-A(4,3)*A(3,4)
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A(3,4)=A(3,4)-A(3,1)*A(1,4)

A(3,1)=A(3,1)/A(1,1)

A(3,2)=A(3,2)/A(2,2)

A(3,4)=A(3,4)-A(3,2)*A(2,4)

A(4,3)=A(4,3)/A(3,3)

Figure 4.5: Steps of Matrix-Solve Evaluation: Sequential (left) and Parallel (right)
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(a) Dataflow Graph for LU Factorization (Sequential Overlay)

(b) Dataflow Graph for LU Factorization (Wavefront Overlay)

Figure 4.6: Execution Flow for Sparse Matrix-Solve Dataflow Graph
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(b) Parallelism Profile of all benchmarks

Figure 4.7: Profiles of Dataflow graphs

nication delays we can estimate peak speedups possible for our benchmark matrices

as shown in Figure 4.8(a). We observe that we can accelerate the matrix solve bench-

marks by 1.45–189×(mean 10.5×) using this ideal parallel hardware. We also show

the predicted utilization of floating-point capacity in Figure 4.8(b). This shows we

can expect mean speedups of 10× and mean utilization of 12% when mapping the

Sparse Matrix-Solve computation to ideal hardware. However, communication la-

tency, poor distribution of processing and queueing delays in the processing element

will limit realizable speedups and floating-point utilization. Additionally, certain rows

and columns in the matrix may be substantially dense (due to high-fanout nets like

power lines, clock, etc) that may create bottlenecks in the compute graph (high-fanin

and high-fanout nodes). In future work, we plan to attack this bottleneck through

associative reduce decomposition.

4.2 Dataflow FPGA Architecture

Our goal is to accelerate the Sparse Matrix Solve computation. This computation

can be represented as a sparse dataflow graph once we have performed symbolic

analysis to lock down non-zero locations. The nodes represent floating-point opera-

tions and edges represent dependencies between the operations as previously shown

in Figure 4.6(b). The sequential microprocessor implementation of this computation
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(b) Predicted Floating-Point Utilization of Sparse Matrix-Solve on Ideal Hardware (25 PEs)

Figure 4.8: Predicted Performance of Parallel Sparse Matrix-Solve

under-utilizes the floating-point capacity of the processor due to non-floating-point

operations like address calculation and memory fetches (see Figure 4.18(a)). By

extracting the dataflow graph and mapping it to a custom parallel architecture, we

reduce these overheads. We limit the sparse matrix access to local onchip FPGA mem-

ories and implicitly encode instructions in the graph nodes. We expose the inherent

dataflow parallelism available in the computation and route dataflow dependencies

over the packet-switched network.

The Sparse Matrix Solve graph must be evaluated once per SPICE iteration.

Unlike the Model-Evaluation graphs that must be repeatedly evaluated several times

per SPICE iteration in order to process a larger number of identical devices in the

circuit, the sparse matrix graph needs to be processed only once in each iteration.

Hence, we must design an architecture that is optimized for low latency evaluation

of the dataflow graph rather than for high throughput.

The KLU solver provides a static dataflow graph of the matrix factorization. Ide-

ally, we should be able to perform an optimized static schedule of this graph on our
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parallel architecture i.e. the scheduler specifies the timing and location of each oper-

ation across the parallel architecture. However, our scheduling infrastructure is too

slow (≈ days of runtime for the largest benchmarks) to handle million-node matrix

factorization graphs. Hence, we use a lightweight, dynamically-scheduled design that

self-times the operations in the dataflow graph. A node in the dataflow graph is

ready for processing when it receives all its inputs. This is the dataflow firing rule.

This technique eliminates the need for static scheduling at the expense of some ad-

ditional area and slightly lower performance. We need to devote additional area to

implement the triggering logic and to support a dynamically-routed packet-switched

network. We sacrifice performance compared to the statically-scheduled design be-

cause we must now make local scheduling and routing decisions with incomplete

information about global system conditions at runtime which may result in longer

latency operation.

Our parallel FPGA architecture contains dataflow-scheduled parallel floating-

point operators coupled to local memories and interconnected by a packet-switched

network (Figure 4.9). This organization is inspired by the Tagged-Token Dataflow

style [97]. This architecture processes dataflow graphs by explicitly passing tokens be-

tween dataflow graph nodes (over the network) and making independent, local firing

decisions to process computation at each node. Each PE processes one dataflow graph

node at a time but manages multiple nodes in the dataflow graph (virtualization) to

handle dataflow graphs much larger than the physical PE count. When the dataflow-

firing rule is satisfied, the floating-point computation at the node is processed by the

PE datapath. The results are then routed to the destination nodes as specified in the

dataflow graph over a packet-switched network using 1-flit packets [59]. Each packet

contains the destination address and the floating-point result.

An FPGA implementation of this computation enables concurrent evaluation of

high-throughput floating-point operations, control-oriented dataflow conditions as

well as pipelined, low-latency on-chip message routing using the same substrate. The

PE shown in Figure 4.9 supports double-precision floating-point add, multiply and

divide and is capable of issuing one floating-point operation per cycle. The network
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Table 4.1: Parallel Sparse Matrix Solve Studies

Year Ref. Key Idea Hardware PEs Speedup

Parallel Software-based Sparse Matrix Solve for SPICE
2000 [98] hybrid iterative, direct SGI Origin 2000 12 3.9
2005 [99] iterative GMRES - 1 18
2006 [37] less work; accuracy

tradeoff
- 1 7.4

2009 [45] domain decomposition FWGrid 32 119

Parallel FPGA-based Sparse Matrix Solve
2004 [100] block decomposition;

fixed-point
Altera EP20K1500
FPGA

6 4

2006 [101] block decomposition Xilinx XC2VP125
FPGA

35 10

2007 [102] streaming; single-
precision

Altera 1S25 FPGA 2 5–6

General-Purpose Parallel Matrix Solve
2004 [103] block decomposition Cray T3E 16 4.1

interfaces are streamlined to handle one message per cycle (non-blocking input). We

explicitly store the Matrix-Solve graph structure (shown in Figure 4.6) in local

FPGA on-chip memories. The Dataflow Logic in the PE keeps track of ready nodes

and issues floating-point operations when the nodes have received all inputs (dataflow

firing rule). The Send Logic in the PE inspects network busy state before injecting

messages for nodes that have already been processed. We map the Matrix-Solve

graphs to this architecture by assigning multiple nodes to PEs so as to maximize

locality and minimize network traffic. We route packets between the PEs in packet-

switched manner over a Bidirectional Mesh network. For large graphs, we may not be

able to fit the graph structure entirely on-chip. We can fit the graphs by partitioning

them and then loading the partitions one after another. This is possible since the

graph is completely feed forward (DAGs) and we can identify the order of loads. We

estimate such loading times over a DDR2-500 memory interface.
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4.3 Related Work

We summarize several recent parallel Sparse Matrix solvers in Table 4.1 and identify

the categories for understanding each design as introduced in Section 2.3.

4.3.1 Parallel Sparse Matrix Solve for SPICE

First, we consider software approaches for parallelizing sparse matrix solvers that are

specific to SPICE circuit simulation. These solvers exploit structural properties of

the SPICE simulation to accelerate the sparse matrix computation. In [98], a hy-

brid direct-iterative solver (Numerical Algorithms) is used to parallelize SPICE

Matrix-Solve phase but requires modifications to the matrix structure (dense row/col-

umn removals) and is able to deliver only 2–3× speedup using 4 SGI R10000 CPUs.

The preconditioned sparse iterative technique GMRES (Numerical Algorithms)

used in [99] is shown to provide 3–18× speedup primarily for circuits dominated by

linear parasitics. It is able to deliver these speedups by reformulating the SPICE

integration and linearization algorithms (SPICE Algorithms). Our technique is

applicable to a broader class of circuits and requires no modification to SPICE al-

gorithms but provides lower speedups. SILCA [37] demonstrates good speedup for

circuits with parasitic couplings by pruning unnecessary work and trading off accu-

racy of the simulation (Precision). Our approach does not sacrifice accuracy and

shows speedups across a large benchmark set. These work-saving techniques can be

adapted for our design to achieve similar benefits.

In [45], a coarse-grained domain-decomposition technique (Numerical Algo-

rithms) is used to achieve 31×-870× (119× geometric mean) speedup for full-chip

transient analysis with 32 processors at SPICE accuracy. The key idea is to decompose

the large circuit matrix into smaller submatrices (domains) using Additive Schwarz

decomposition [45] and then solve the smaller matrices (domains) using a KLU solver.

Our technique accelerates the KLU solve step and can be used in conjunction with

domain-decomposition to accelerate each domain evaluation.
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4.3.2 Parallel FPGA-based Sparse Matrix Solvers

Next, we review FPGA-based approaches for parallelizing sparse matrix solve com-

putation. FPGA-based accelerators for sparse direct methods have been considered

in [100, 101] and [104, 102] in the context of Power-system simulations. In [100], a

parallel architecture based on embedded processors (Altera NIOS) performs single-

precision LU Factorization (Precision) of symmetric Power-system matrices using

coarse-grained block-diagonal decomposition to deliver a speedup of 4× using 6 NIOS

RISC processor cores (Compute Organization) compared to a uni-processor im-

plementation on a single NIOS core when considering small matrices of size up to

102x102. This comparison does not include the highly-optimized sequential imple-

mentation on an Intel CPU which is likely to be an order of magnitude faster. The

embedded processor requires several cycles to perform network send and receive opera-

tions and cannot spatially implement the non-floating-point operations. Furthermore

it must serialize compute and communicate instructions due to a single instruction is-

sue pipeline. Our processing element design supports double-precision operations and

is streamlined to process an incoming message, an outgoing message and a floating-

point operation per cycle for higher throughput. A different custom architecture

(Compute Organization) implements the block-diagonal decomposition algorithm

(Numerical Algorithm) in [101] but compares performance of a Xilinx XC2VP125

against a TMS320C6711 DSP to demonstrate 10× speedups for small matrices up

to size 32x32. The custom architecture does not use embedded processors like the

NIOS but is still organized as a RISC architecture preventing spatial implementation

of non-floating-point overhead operations.

In [102], a right-looking LU factorization technique using Block-Diagonal decom-

position (Numerical Algorithms) delivers 5–6× speedup for the single-precision

LU Factorization (Precision) using 2 parallel processing units when compared to an

Intel Pentium 4 2.6 GHz for symmetric Power-system matrices. Our approach paral-

lelizes all three phases (LU Factorization, Front-Solve and Back-Solve) on FPGAs in

double-precision arithmetic across 9–25 PEs with faster FPGA hardware (125 MHz vs.
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200 MHz) and compares performance to the newer Intel Core i7 965. In future work,

we expect to enhance our current FPGA implementation with domain-decomposition

techniques for further accelerating the sparse matrix factorization of asymmetric cir-

cuit matrices.

4.3.3 General-Purpose Parallel Sparse Matrix Solvers

Finally, we briefly discuss techniques used in general-purpose parallel software solvers

for sparse matrices. We report these with the intent of comparing our approach with

non-SPICE-specific parallel sparse solvers and identifying key differences. The par-

allel sparse unsymmetric matrix solver HSL MP48 [103, 105] uses a coarse-grained

strategy to decompose the matrix into diagonal blocks (Numerical Algorithms)

and factors the blocks in parallel using MPI. They report a speedup of 1–9× over 16

processors on a Cray T3E in [103]. While MPI is not directly applicable to tightly-

integrated architectures due to higher latency, we will consider the underlying algo-

rithm in the future to obtain higher speedups. Task queues for scheduling dense

matrix computation (Scheduling) across parallel multi-core architectures are con-

sidered in [106]. This solver organizes processing into DAGs (directed acyclic graphs)

of block operations and uses the task queue to dynamically schedule dependencies be-

tween the block operations to maximize performance. Our FPGA approach performs

sparse LU factorization of matrices whose structure is known a priori and can deter-

mine dependencies between operations on individual matrix entries instead of blocks

for finer-grained parallelism. Scheduling operations at a block-level is unsuitable for

sparse matrices due to the unnecessary sequentialization of possibly concurrent opera-

tions within a block. Our approach exposes all available parallelism in the underlying

sparse matrix dataflow graph without constraining it into blocks. Furthermore, the

communication network between the parallel elements on the FPGA provides a faster

mechanism for moving fine-grained data items across the parallel architecture than

relying on cache-coherency protocols on conventional multi-core processors.
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Figure 4.11: Experimental Flow for Matrix Solve

4.4 Experimental Methodology

We now explain the experimental framework used for the Matrix-Solve design. We

show the entire flow in Figure 4.11. In our experimental flow, we use spice3f5 sim-

ulator with the Sparse 1.3 [17] package for a functional baseline. We integrate the

KLU solver with spice3f5 to replace Sparse 1.3 to measure optimized sequential

performance. For our parallel FPGA design, we measure performance of the dataflow

graph extracted from the KLU [15] solver using a cycle-accurate simulator that mod-

els the dataflow architecture. We compare the sequential and parallel implementation

across a range of benchmark matrices generated from spice3f5, circuit-simulation

matrices from the University of Florida Sparse-Matrix Collection [111] as well as

Power-system matrices from the Harwell-Boeing Matrix-Market Suite [112]. For ma-

trices generated from spicef5, we use circuit benchmarks provided by Simucad [107],

Igor Markov [108], Paul Teehan [109] and Sani Nassif [110]. Our benchmark set cap-

tures matrices from a broad range of problems that have widely differing structure.

We tabulate key characteristics of these benchmarks in Table 4.2 and Table 4.3.
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Bmarks. Matrix
Size

Sparsity
(%)

Mult.
Sub.

Divide Total
Ops.

Fanout
(DFG)

Fanin
(NZ)

Latency
(cycles)

spice3f5, Simucad [107]
mux8 42 15.0793 488 138 626 8 20 1.9K
ringosc 104 6.4903 1.3K 351 1.6K 4 92 3.7K
dac 654 1.5849 20.2K 3.3K 23.6K 10 1136 7.7K
ram2k 4875 0.3107 1.0M 38.5K 1.0M 137 9618 62.2K

spice3f5, Clocktrees [108]
r4k1 39948 0.0131 390.3K 125.1K 515.5K 6 29910 127.8K

spice3f5, Wave-pipelined Interconnect [109]
10stages 3920 0.1753 57.8K 14.8K 72.7K 8 2384 18.6K
20stages 11225 0.0618 174.8K 44.4K 219.2K 9 9442 46.2K
30stages 16815 0.0410 244.3K 61.7K 306.0K 11 4688 88.6K
40stages 22405 0.0307 316.1K 79.5K 395.7K 9 600 134.2K
50stages 27995 0.0245 394.7K 99.2K 493.9K 10 484 169.7K

spice3f5, ISCAS98 Netlists [110]
s27 189 3.4405 2.1K 573 2.7K 6 50 3.6K
s208 1296 0.5277 19.7K 4.9K 24.6K 11 1414 11.3K
s298 1801 0.4026 32.6K 7.3K 40.0K 13 1938 13.1K
s344 1992 0.3522 32.3K 7.8K 40.1K 12 2178 14.7K
s349 2017 0.3512 33.9K 8.0K 41.9K 14 2218 14.7K
s382 2219 0.3184 37.2K 8.7K 45.9K 16 2358 16.1K
s444 2409 0.2952 41.4K 9.6K 51.1K 16 2526 16.6K
s386 2487 0.2927 46.4K 10.0K 56.5K 20 2626 15.7K
s510 2621 0.3124 105.3K 11.9K 117.2K 54 2722 21.4K
s526n 3154 0.2362 66.1K 13.0K 79.2K 25 3280 21.9K
s526 3159 0.2376 68.1K 13.3K 81.4K 26 3294 20.7K
s641 3740 0.2000 100.2K 15.6K 115.9K 39 4066 26.5K
s713 4040 0.1890 126.4K 17.1K 143.5K 47 4380 30.3K
s820 4625 0.1655 103.2K 19.6K 122.8K 29 4766 26.1K
s832 4715 0.1629 105.7K 20.0K 125.8K 29 4846 26.6K
s953 4872 0.1876 353.9K 24.3K 378.2K 85 5212 37.9K
s1196 6604 0.1399 475.3K 33.0K 508.3K 83 7146 46.4K
s1238 6899 0.1325 457.9K 34.2K 492.2K 78 7454 46.6K
s1423 9304 0.0820 296.0K 39.4K 335.4K 64 10384 64.5K
s1488 9849 0.0827 354.7K 44.7K 399.4K 49 10606 54.8K
s1494 9919 0.0817 352.4K 44.8K 397.3K 50 10646 54.6K

Table 4.2: Circuit Simulation Benchmark Matrices
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Bmarks. Matrix
Size

Sparsity
(%)

Mult.
Sub.

Divide Total
Ops.

Fanout
(DFG)

Fanin
(NZ)

Latency
(cycles)

Circuit Simulation, UFL Sparse Matrix [111]

sandia01 1220 0.6348 19.1K 4.2K 23.3K 8 70 5.7K
sandia02 1220 0.6348 19.1K 4.2K 23.3K 8 70 5.7K
circuit1 2624 0.6127 408.0K 22.3K 430.3K 82 5092 36.2K
circuit2 4510 0.1563 202.9K 16.1K 219.0K 172 2538 23.3K
circuit3 12127 0.0463 160.6K 37.8K 198.4K 21 9008 48.7K
memplus 17758 0.0400 798.8K 71.9K 870.8K 97 956 27.6K

Power-system, Matrix Market [112]

bcspwr01 39 12.9520 335 114 449 6 14 2.6K
psadmit1 494 0.9564 4.3K 1.4K 5.7K 10 46 4.9K
psadmit2 1138 0.4163 9.8K 3.2K 13.0K 11 62 6.7K

Table 4.3: UFL Matrix Circuit-Simulation Benchmarks

Block Area Latency DSP48 BRAM Speed Ref.
(Slices) (clocks) (blocks) (min.) (MHz)

Add 334 8 0 0 344 [77]
Multiply 131 10 11 0 294 [77]
Divide 1606 57 0 0 277 [77]

Processing Element 2368 - 11 8 270 -
Mesh Switchbox 642 4 0 0 312 -
DDR2 Controller 1892 - 0 0 250 [88]

Table 4.4: Area and Latency model for Sparse Matrix-Solve Hardware (Virtex-6 LX760)

Our parallel FPGA architecture handles dataflow graphs of the sizes shown in

column ‘Total Ops.’ of Table 4.2 and Table 4.3. We generate the dataflow graphs for

LU factorization as well as Front/Back solve steps from the initial symbolic analysis

and reordering phase of the KLU solver. Once we have the dataflow graphs, we assign

nodes to PEs of our parallel architecture. We consider two strategies for placing

nodes on the PEs: random placement and placement for locality using MLPart [73]

with fanout decomposition. We will consider additional strategies for distributing

the graph nodes across our parallel dataflow architecture for higher performance as

future work.
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4.4.1 FPGA Implementation

We consider a single-chip design of our dataflow architecture on a Xilinx Virtex-5

SX95T and a Xilinx Virtex-6 LX 760 FPGAs. We allow the dataflow design to use

the complete FPGA area for these experiments, but when composing the complete

SPICE design, we partition the FPGA accordingly (see Chapter 6). In some cases,

the dataflow graph will not fit entirely in the FPGA onchip memories. As identified

earlier, we can statically compute a loading order and stream the dataflow graph from

an offchip DRAM memory.

For our PE design, we use spatial implementations of individual floating-point

add, multiply and divide operators from the Xilinx Floating-Point library in Core-

Gen [77]. These implementations do not support denormalized (subnormal) num-

bers. We compose the two-dimensional, packet-switched network organized as an

84-bit Bidirectional Mesh (64-bit data, 20-bit address). Each switch in the network

is assembled using simple split and merge blocks as described in [59]. The switches

implement Dimension-Ordered Routing (DOR [113]). We pipeline the wires between

the switches for high performance. Every Manhattan hop in the mesh takes 9 cycles

including switch and wire pipeline delays. We estimate memory load time for large

matrices using streaming loads over the external DDR2-500 MHz memory interface

using lowerbound bandwidth calculations. We do not require a detailed cycle-accurate

simulation for the memory controller since it is a simple, sequential, streaming ac-

cess pattern that we know and precompute. We show the area and latency model in

Table 4.4.

We synthesize and implement a sample double-precision 4-PE design on a Xilinx

Virtex-5 device using Xilinx ISE 12.1. We provide placement and timing constraints

to the backend tools and attain a frequency of 250 MHz. We can fit a system of 9

PEs on a Virtex-5 SX240T (77% logic occupancy) while systems with 25 PEs are

easily possible on a Virtex-6 LX760 (estimated 65% logic occupancy). We note that

our architecture is frequency limited primarily by the Xilinx floating-point divide

operator and the DDR2 controller bandwidth. We can improve our clock frequency
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Figure 4.12: Comparing Iterative Solvers with KLU

further by using better division algorithms (e.g. SRT-8) and better memory interfaces

(e.g. DDR3) for additional external memory bandwidth.

4.5 Results

We now discuss experimental results for parallelizing the Sparse Matrix Solve phase

of SPICE. We first show results for some initial exploratory studies that attempted

to use Iterative algorithms but were not robust enough for circuit simulation. Next,

we look at the performance of the sequential SPICE solver with the KLU solver

integrated into the package. Finally, we present detailed analysis of the performance

of our FPGA design and identify the underlying factors to explain our results.

4.5.1 Exploring Opportunity for Iterative Solvers

It is well-known that iterative algorithms for Sparse Matrix Solve based on Krylov-

subspace techniques can be parallelized more effectively [93]. In contrast with direct

solvers that perform an LU decomposition, the iterative algorithms use repeat evalu-

ations of Sparse Matrix-Vector multiplications. These Matrix-Vector multiplications

can be parallelized very effectively on FPGAs [114], GPUs [115] and even Multi-

Cores [87]. Sparse direct solvers are not as easy to parallelize and require additional

effort. However, iterative techniques are not always sufficiently robust across different
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application scenarios. A lack of robustness may result in SPICE simulations that do

not converge at all or converge too slowly. It is possible to improve the robustness

of these iterative solvers using preconditioning. We experimented with a range of

preconditioned iterative algorithms and sparse direct solvers to evaluate their effec-

tiveness for solving circuit simulation matrices. We show the residues (~b− A~x) from

our experiments in Figure 4.12. The smaller the residue the better the result. We

observe that the KLU solver and the preconditioned-BiCG solvers deliver the most

robust results across our benchmark set. The preconditioned-GMRES algorithm is

consistently generating poor solutions with high residues in a majority of the cases.

While preconditioned BiCG iterative algorithm does deliver reasonable results, the

cost of calculating the incomplete LU preconditioner (using a sparse, direct method)

is expected to be comparable to the cost of complete LU factorization using a sparse

direct method. This initial exploration suggested that we will need to parallelize

the sparse direct solver in any case. For the purpose of this thesis, we focus on

parallelizing the KLU sparse direct solver. In future work, we will fully explore the

opportunities for using a parallel preconditioned iterative solver for SPICE.

4.5.2 Sequential Baseline: KLU with spice3f5

For our experiments, we first compare the sequential performance of the KLU solver

with the Sparse 1.3 solver (default in spice3f5). We replace the Sparse 1.3 solver

with the newer, improved KLU solver for all transient iterations. Note that both

techniques use the exact same convergence conditions defined in spice3f5 without

any loss in accuracy nor an increase in Newton-Raphson iterations. For simplicity,

we currently retain Sparse 1.3 to produce the DC operating point at the beginning

of the simulation. We quantify the performance benefits of using the newer solver by

measuring the runtimes of Matrix-Solve phase of spice3f5 with PAPI 4.0.0 [18]

performance counters. We measure runtimes of these sequential solvers when using

a single core of the Intel Core i7 965 processor. We compute speedup for the KLU

implementation using the formula in Figure 4.13.

We show the speedup for using the KLU solver over the Sparse 1.3 solver in
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Software Speedup =
Tsparse1.3(refactor) + Tsparse1.3(front solve) + Tsparse1.3(back solve)

Tklu(refactor) + Tklu(front solve) + Tklu(back solve)

Tsparse1.3(refactor) = Sparse 1.3 Solver LU Refactorization Time on CPU

Tsparse1.3(front solve) = Sparse 1.3 Solver Front-Solve Time on CPU

Tsparse1.3(back solve) = Sparse 1.3 Solver Front-Solve Time on CPU

Tklu(refactor) = KLU Solver LU Refactorization Time on CPU

Tklu(front solve) = KLU Solver Front-Solve Time on CPU

Tklu(back solve) = KLU Solver Front-Solve Time on CPU

FPGA Speedup =
Tklu(refactor) + Tklu(front solve) + Tklu(back solve)

Tfpga(refactor) + Tfpga(front solve) + Tfpga(back solve)

Tfpga(refactor) = KLU Solver LU Refactorization Time on FPGA

Tfpga(front solve) = KLU Solver Front-Solve Time on FPGA

Tfpga(back solve) = KLU Solver Front-Solve Time on FPGA

Figure 4.13: Speedup Calculation Equation for Sparse Matrix-Solve Implementations
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Tseq(klu analayze)

Tpar(klu total)
=

5 · Tseq(klu iter)
104 · Tpar(klu iter)

=
50 · Tpar(klu iter)
104 · Tpar(klu iter)

= 0.5%

Figure 4.15: KLU Analysis Overhead of Parallel KLU Runtime
(104 iterations, 10×speedup)

sequential spice3f5 in Figure 4.14. We show additional details in Table 4.5 where

we include runtimes for the different components of Sparse Matrix-Solve phase when

using the Sparse 1.3 solver and the KLU solver. We see that KLU improves the per-

iteration matrix solve time by as much as 4.6× for the largest ram2k benchmark while

delivering a geometric mean improvement of 1.35× on the whole benchmark set. We

also observe that, for some matrices, KLU delivers similar performance as Sparse 1.3

(e.g. 10stages, s298). For very small matrices ≤ 200 rows (e.g. mux8, s27, ringosc),

the KLU solver actually slows down the Matrix-Solve phase by ≈50%. The symbolic

analysis time (sub-column Analyze in column KLU) is ≈5× the runtime of a single

KLU Matrix-Solve iteration. This means that even if the analysis phase remains

sequentialized and we speedup iterations by 10× (see Figure 4.16), analysis accounts

for only 0.5% of total runtime after 10K iterations (3.3K timesteps for an average

of 3 iterations/timestep seen in our benchmark set). We show this calculation in

Equation 4.15. We use this faster KLU solver as the sequential baseline for computing

speedups of our FPGA architecture.

4.5.3 Parallel FPGA Speedups

For our Dataflow FPGA implementation we compute speedup using the formula pre-

viously described in Figure 4.13. In Figure 4.16, we show the speedup of our FPGA

architecture using the best placed design that fits in the FPGA over the sequential

software version running on an Intel Core i7 965. We obtain speedups between 0.6–

7.1×(geomean 2.4×) for Virtex-6 LX760. We observe a slight slowdown for very small

matrices mux8 and ringosc. We deliver a speedup of 1.5–5.8× (geomean 3.4×) for

Power-system simulation matrices accelerated using FPGAs in [101]. Our solution

is 2× faster than the one presented in [101] (estimated from MFLOPs since straight

118



Benchmark Sparse 1.3 (ms) KLU (ms) Ratio Analyze
LU Solve Total Analyze LU Solve Total (#Iters.)

s27 0.02 0.00 0.03 0.21 0.04 0.01 0.05 0.60 4
mux8 0.00 0.00 0.00 0.05 0.00 0.00 0.01 0.65 5
ringosc 0.01 0.00 0.01 0.12 0.01 0.00 0.02 0.66 5
s208 0.23 0.10 0.33 1.35 0.25 0.07 0.33 0.99 5
s298 0.43 0.17 0.60 2.12 0.43 0.12 0.55 1.10 4
s344 0.45 0.18 0.63 2.09 0.45 0.12 0.57 1.10 4
s349 0.48 0.22 0.71 2.15 0.46 0.12 0.59 1.20 4
dac 0.14 0.05 0.20 0.56 0.17 0.04 0.21 0.93 3
s400 0.51 0.20 0.71 0.00 0.51 0.20 0.71 1.00 0
s444 0.54 0.22 0.77 2.71 0.50 0.13 0.63 1.20 5
s386 0.65 0.24 0.90 3.09 0.60 0.16 0.77 1.16 5
s510 1.12 0.29 1.41 3.47 0.82 0.17 0.99 1.42 4
s526n 0.97 0.32 1.29 3.95 0.83 0.21 1.04 1.23 4
s526 0.97 0.33 1.31 3.98 0.84 0.21 1.05 1.24 4
10stages 0.40 0.17 0.57 4.31 0.41 0.11 0.53 1.09 9
s641 1.07 0.36 1.44 4.24 0.90 0.21 1.12 1.28 4
s713 1.50 0.47 1.97 4.69 1.16 0.26 1.42 1.38 4
s953 4.15 0.67 4.82 6.84 2.06 0.34 2.41 1.99 3
s820 1.48 0.50 1.98 6.91 1.21 0.30 1.52 1.30 5
s832 1.50 0.51 2.01 7.16 1.22 0.31 1.54 1.30 5
s1196 6.58 0.95 7.54 9.47 2.83 0.48 3.31 2.27 3
s1238 6.04 0.97 7.02 9.95 2.75 0.49 3.24 2.16 4
s1423 4.11 1.13 5.24 12.08 2.77 0.57 3.35 1.56 4
20stages 1.93 0.72 2.65 14.07 1.51 0.38 1.90 1.39 8
s1494 6.68 1.35 8.03 18.72 3.37 0.66 4.03 1.99 5
30stages 3.35 1.12 4.48 22.67 2.29 0.57 2.87 1.56 8
40stages 5.12 2.05 7.18 31.37 3.06 0.78 3.85 1.86 9
50stages 7.47 3.33 10.80 40.44 4.04 1.02 5.06 2.13 8
ram2k 22.96 1.36 24.32 15.79 4.89 0.38 5.28 4.60 3
r4k 16.50 9.06 25.57 42.48 8.99 2.45 11.44 2.23 4

Geometric Mean 1.35 5

Table 4.5: Runtime Per Iteration of KLU and Sparse 1.3
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runtime figures were not reported) due to independent processing of routing and

floating-point operations. For these speedup calculations we include memory loading

time for the large dataflow graph from external DRAM. We also compute speedups

in the case where we can overlap memory loading with computation. This is possible

since the graph is entirely feed-forward and we can compute a load order in advance.

Under this optimistic assumption we can achieve speedups between 0.64–13.49× (ge-

omean 3.8×). We also wish to explore the opportunity for placing large dataflow

graphs using greedy packers to avoid the bad random distributions as part of our

future work.

In Figure 4.17, we show the percent of peak floating-point throughput of our 25-

PE Virtex-6 LX760 FPGA design as well as 1 core of the Intel Core i7 965 processor.

A multi-core implementation for the KLU solver currently does not exist. Our exper-

iments with exposing the dataflow structure directly to the multi-core architecture

resulted in poor performance. Hence, for this study, we limit our comparisons to the

1-core implementation. The peak double-precision floating-point throughput of our

25-PE design is 12.5 GFLOPs while that of 1 core of the Intel Core i7 965 is 6.25

GFLOPs. We see that the FPGA is able to achieve a geometric mean 4.5% of the

floating-point peak of the FPGA while the CPU can only achieve 2.2% of its peak.

This translates into 33–1104 MFLOPS (geomean of 520 MFLOPS) on the 25-PE

while the processor is only able to achieve rates of 21-502 MFLOPS (geomean of 137

MFLOPS). The FPGA mean speedups and floating-point utilization are within 2–3×

of their predicted values shown earlier in Figure 4.8. This indicates we need to explore

different parallelization strategies such as domain decomposition on top of the sparse

dataflow parallelism for further accelerating the Sparse Matrix-Solve phase of SPICE.

4.5.4 Limits to Parallel Performance

We now attempt to provide an understanding of sequential and parallel performance

and identify opportunities for improvement.

We measure the dynamic instruction distribution in the Intel Core i7 implemen-

tation of computation in Figure 4.18(a). We observe that only of 1.3% (geomean) of
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total instructions are actually floating-point instructions. This partly explains why

we observe poor actual floating-point performance in Figure 4.17. The non-floating-

point instructions are devoted to address-calculation and memory fetch operations

on the sparse matrix data-structures. We can see in Line 9 from Listing 4.2 that we

must perform 3 reads and 1 write for each execution of that statement which may

require several cycles if not in the cache. Furthermore, we must lookup the non-zero

location corresponding to the j, ith entry in the matrix L through an address table

which can, in turn, take multiple cycles.

Our FPGA implementation achieves a higher utilization and delivers speedup by

spatially distributing these address-calculation overheads and by directly routing mes-

sages between graph nodes where needed. Next, we measure runtimes of the different

phases of the FPGA implementation in Figure 4.18(b) to identify bottlenecks. This

shows that memory loading times can account for as much as 38% of total runtime

while the LU-factorization phase can account for as much as 30%. Memory load

times (limited by DRAM bandwidth) can be reduced by around 3–4× using a higher-

bandwidth DRAM interface (saturating all FPGA IO and using DDR3-800) while the

LU-factorization runtime can be improved in a limited fashion with better placement

of graph nodes.

In Figure 4.18(c), we attempt to bound the additional improvement that may

be possible in runtime for the dominant phase: LU factorization. For these esti-

mates we ignore communication bottlenecks. We first compute the latency of the

critical path of floating-point instructions in the compute graph. This critical path

latency (Tcritical) is the ideal latency that can be achieved assuming infinite PEs,

unlimited DRAM bandwidth and no routing delays. This provides an upper bound

on achievable speedup (Speeduplatency = Tsequential/Tcritical). When we account for

serialization in each PE arising from reuse of PE resources, we can compute another

upper-bound on achievable performance. The floating-point operators in each PE

must be shared by multiple dataflow graph nodes. Next, we consider IO serialization

latency (Tserialization) which measures the number of cycles required to send and receive

messages into the network. We compute another idealized (approximate) estimate of
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these serialization overheads at 25 PEs to get a tighter bound on achievable speedup

(Speedupserialization = Tsequential/Tserialization). The estimated speedup is the lower

of the two idealized estimates (Speedup = MIN(Speeduplatency, Speedupserialization)).

For most of our benchmarks we are within a 2× of the ideal latency scenario. This

suggests that a limited amount of additional speedup is achievable for such bench-

marks using better distribution and placement of sparse dataflow parallelism. For

larger benchmarks such as s1196, memplus higher additional speedups are possible.

For netlists with high potential speedups, we are currently unable to contain the crit-

ical paths effectively into few PEs. We expect to extract higher performance for large

sparse dataflow graphs through novel placement and clustering strategies as part of

our future work.

4.5.5 Impact of Scaling

In Figure 4.19, we show the impact of scaling system size (PE count) on performance.

We observe a wide range of scaling trends ranging from 14× speedup at 36 PEs

(requires 2 Virtex-6 LX760 FPGAs) to no speedups at all in some cases (in fact

some slowdown). Large netlists like 40stages, 50stages which are relevant and

challenging for parallelization show the best scaling. These netlists have low fanout
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8–10 and modest fanin within a column ≈400-9000. Small netlists like mux8, ringosc

and bcspwr01 show poor scaling due to the small dataflow graph sizes ≈600–2000. We

see mean speedup scaling saturates at around 4× at 16 PEs with modest improvement

to 5× at 36 PEs. This modest speedup scaling is primarily due to the long tail of

the dataflow graph. We saw in Figure 4.7 that bulk of the nodes in the graph have

a depth of 1–2 in the graph. We also saw in Figure 4.18(c) that for most matrices

we are only ≈2× away from ideal critical-path latency in the dataflow graph. This

suggests we must investigate alternate strategies for exploiting parallelism. We may

be able to improve the latency of the packet-switched network (currently 9 cycles per

Manhattan hop) with an alternate design. We discuss a few of our ideas for future

work in Chapter 8.

In Figure 4.20, we estimate the impact of two architecture changes on final

speedups. We first reduce the latency of the floating-point operations to 1 cycle per

operation to minimize the impact of operator latency on total performance. Then, we

increase offchip IO bandwidth available on the FPGA by 10× to reduce memory load

times. We observe that reducing operator latency improves performance marginally

from 2.4× to 2.9×. This suggests that a significant portion of the total cycles is due

to packet-switched interconnect. In future work, we must also consider lower latency

network designs to improve performance. We also observe a higher improvement in

performance from 2.4× to 4.7× when we increase offchip IO bandwidth.
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4.6 Conclusions

In this chapter, we show how to implement the irregular Sparse Matrix-Solve phase of

SPICE on an FPGA for a range of matrix and circuit benchmarks. We demonstrate

speedups of 0.6–13.4×when comparing a 25-PE parallel implementation on a Xilinx

Virtex-6 LX760 FPGA with a 1-core implementation on an Intel Core i7 965 for

double-precision floating-point evaluation. Our token dataflow FPGA architecture

permits lightweight distributed processing of the sparse, irregular factorization graph

to deliver better performance. At present, our speedups for the Sparse Matrix-Solve

phase are limited primarily due to limited parallelism in the sparse dataflow graph.

Additionally, we are also affected by a combination of factors including memory load

times, long latency floating-point operations and poor distribution of critical path

across the parallel elements.

In future work, we will investigate different numerical algorithms (e.g. iterative,

domain-decomposition) to explore a different strategy to exploit higher parallelism

than that available in the sparse dataflow graph. In the short term, we expect to

improve FPGA speedups in the future using better placement algorithms that op-

timize latency of evaluation, overlapped streaming fetch from offchip-memory, and

lower latency floating-point operators [91, 92]. We will also develop vector implemen-

tations of the levelized dataflow graphs to compare performance against GPUs and

Intel multi-core CPUs.
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Chapter 5

Iteration Control

In Chapter 3 and 4, we discussed the two computationally-intensive phases of the

SPICE simulator. In this chapter, we explain how to implement the sequential,

control-intensive SPICE state-machines. We also discuss a streaming approach that

will permit a high-level expression of the Iteration Control computation using the

SCORE [10] framework. We show that ignoring this phase for parallelization results

in mean speedups of 2.4× for the composed SPICE simulator. We caution against

mapping this sequential Iteration Control computation to a lightweight embedded mi-

crocontroller (e.g. Microblaze) as it creates a performance bottleneck and decreases

overall speedups to 1.9×. We discuss our FPGA organization that uses a combina-

tion of static and dynamic scheduling to deliver balanced speedups of 2.6× for the

integrated design.

5.1 Structure in Iteration Control Phase

As discussed in Chapter 2, SPICE is an iterative algorithm that solves non-linear

differential equations. SPICE solves these equations using an iterative approach that

first linearizes the non-linear circuit elements and then performs a numerical integra-

tion involving time-varying quantities. The space of algorithms for linearization and

numerical integration is vast, and it covers conflicting requirements of convergence

speed, accuracy and stability while demanding different amounts of computation and

memory storage costs. The choice of a suitable algorithm applicable to circuit sim-
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ulation is the subject of continued research and is beyond the scope of this thesis.

Using the framework and methodology described in this chapter, we can support

newer algorithms for managing the SPICE simulation. For the purpose of this the-

sis and as a proof-of-concept, we pick the algorithms used in the spice3f5 package:

the Newton-Raphson algorithm for handling non-linear elements and the Trapozoidal

approximation for numerical integration.

The spice3f5 iteration controller manages two kinds of iterative loops: 1© a loop

for linearizing the non-linear elements of the circuit, and 2© another loop for advancing

the timestep of the simulation. We show these loops in Figure 5.1. The convergence

conditions for the Newton-Raphson algorithm are implemented in the block a© of

the figure. SPICE employs the Newton-Raphson algorithm for computing the linear

operating points of non-linear devices like diodes and transistors. The equation for

next timestep calculation is implemented in block b© of the figure. SPICE uses an

adaptive timestep-control algorithm that adjusts the timestep of the simulation based

on an estimate of local truncation error as previously introduced in Section 2.1.3. In
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block c©, SPICE implements the dynamic breakpoint processing logic for handling

source transition timesteps in the voltage and current sources. Finally, in block d©,

the analysis state machines implement the loop control algorithms for performing

DC and transient analysis. The Iteration Control computation constitutes a small

(7%) fraction of total SPICE runtime. We reported these measurements earlier in

Figure 2.9 shown in Section 2.2.

5.2 Performance Analysis

We now show the benefit of carefully parallelizing the Iteration Control phase of

SPICE. In Figure 5.2 we show the runtimes of the different phases of SPICE with

and without parallelization for the s641 and r4k SPICE netlists. In the “Sequential”

column we observe that sequential runtime is dominated by the Model-Evaluation

computation and the Iteration Control is a small 7–8% fraction of total runtime.

When we parallelize the Model-Evaluation and the Sparse Matrix-Solve phases on

a Virtex-6 LX760, we notice that the Iteration Control is now a significant 24–50%

portion of total runtime (see Column “Ignore IterCtrl”). This is especially true for

the r4k SPICE netlist where it is 50% of total runtime. This suggests, that we must

parallelize this phase to achieve high overall speedup. This is very relevant as we

scale to larger FPGA sizes in the future. In that case, since we have more area at our

disposal, we can further parallelize the Model-Evaluation and Sparse Matrix-Solve

phases of SPICE. The sequential Iteration Control phase will be an even greater frac-

tion of parallel runtime. In column “Spatial IterCtrl” we show the effect of spatially

parallelizing the Iteration Control phase on total performance. Like other FPGA

designs [116], we may choose to implement the Iteration Control portion on an em-

bedded processor e.g. Microblaze. However, in Column “Microblaze IterCtrl” for the

s641 netlist, we observe that this is a poor implementation choice and results in lost

speedup. We discuss performance comparison in greater detail in Section 5.6. These

two distributions suggest that we must avoid a sequential Microblaze implementation

of the Iteration Control phase while parallelizing this phase properly.

129



 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

Sequential Ignore
IterCtrl

Spatial
IterCtrl

Microblaze
IterCtrl

R
u

n
ti
m

e
/I

te
ra

ti
o

n
 

(m
ill

is
e

c
o

n
d

s
)

Iteration Control
Model-Evaluation

Matrix-Solve

(a) Runtimes for s641 netlist

 0

 5

 10

 15

 20

 25

 30

 35

 40

Sequential Ignore
IterCtrl

Spatial
IterCtrl

Microblaze
IterCtrl

R
u

n
ti
m

e
/I

te
ra

ti
o

n
 

(m
ill

is
e

c
o

n
d

s
)

Iteration Control
Model-Evaluation

Matrix-Solve

(b) Runtimes for r4k netlist

Figure 5.2: Runtime Distribution for SPICE Phases (Virtex-6 LX760 Parallel
Implementation)

 0

 20

 40

 60

 80

 100

10
2

10
3

10
4

10
5

P
e
rc

e
n
t 
o
f 
T

o
ta

l 
R

u
n
ti
m

e

Circuit Size

61%

26%

7%

Modeleval.
Modeleval.(avg)

Matsolve.

Matsolve.(avg)
Iterctrl.

Iterctrl, (avg)

(a) Sequential Percent Distribution

 0

 20

 40

 60

 80

 100

10
2

10
3

10
4

10
5

P
e
rc

e
n
t 
o
f 
T

o
ta

l 
R

u
n
ti
m

e

Circuit Size

38%

42%

19%

Modeleval.
Modeleval.(avg)

Matsolve.

Matsolve.(avg)
Iterctrl.

Iterctrl.(avg)

(b) Parallel Percent Distribution (Seq. IterCtrl)

Figure 5.3: Sequential and Parallel Performance Fractions of spice3f5 (Virtex-6 LX760
Parallel Implementation)

We present another way to look at the performance of Iteration Control in Fig-

ure 5.3. We compare the contribution of the Iteration Control phase of SPICE before

(Figure 5.3(a)) and after (Figure 5.3(b)) parallelizing the other two SPICE phases.

We observe that once the rest of SPICE is parallelized, the contribution of the Iter-

ation Control phase increases from 7% to 19% of total parallel runtime. Hence it is

important to seek ways to extract parallelism out of this phase of SPICE to deliver

overall speedups.

What will happen to overall speedups if we do not parallelize Iteration Control?

In Figure 5.4, we see that a speculative 25× speedup for the Model-Evaluation and
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Figure 5.4: Performance Bound on Parallelizing spice3f5 by ignoring Iteration Control

Sparse Matrix-Solve phase of SPICE results in an overall speedup of only ≈9×. This

is due to Amdahl’s Law (shown in Equation 5.1– 5.2) which states that the maximum

speedup possible in this case is 9.3× assuming 7% of total runtime is spent in the

Iteration Controller. We later show actual speedups achieved by our Virtex-6 LX760

implementation in Section 5.6.

Speedup =
1

(1− Pfrac) + (Pfrac/25)
(5.1)

Pfrac =
Tseq(modeleval) + Tseq(matsolve)

Tseq(modeleval) + Tseq(matsolve) + Tseq(iterctrl)
(5.2)

Pfrac = Parallelized fraction of SPICE

Tseq(modeleval) = Sequential Model-Evaluation time

Tseq(matsolve) = Sequential Matrix-Solve time

Tseq(iterctrl) = Sequential Iteration-Control time
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When architecting the complete FPGA-based system, we must implement this

computation in a manner that provides best overall speedup for the complete SPICE

simulator. We observed in Figure 5.3(b), that this phase is a non-dominant runtime

fraction of the complete simulation. We must take care to limit the amount of area

used by this component and devote FPGA resources to the compute-intensive Model-

Evaluation and Sparse Matrix Solve phases of SPICE. This will allows us to achieve

the highest composite performance. At the same time, we must be careful not to

excessively sequentialize the SPICE control algorithms.

5.3 Components of Iteration Control Phase

We now describe the key components of the Iteration Control phase of spice3f5.

We show the precise convergence conditions and the local truncation error estimate

equations used in spice3f5.

Convergence Conditions The simulator declares convergence when two con-

secutive Newton-Raphson iterations generate solution vectors and non-linear approx-

imations that are within a prescribed tolerance respectively. In Equation 5.3 and

Equation 5.4, Vi or Ii represent the voltage or current unknowns in the i-th iteration

of the Newton-Raphson loop. The convergence conditions compare quantities in it-

eration (i) with the previous iteration (i− 1). We show the convergence component

in block a© in Figure 5.1.

|~Vi − ~Vi−1| ≤ reltol ·max (|~Vi|, |~Vi−1|) + vntol (5.3)

|~Ii − ~Ii−1| ≤ reltol ·max (|~Ii|, |~Ii−1|) + abstol (5.4)

The simulator also compares the non-linear function fi−1 in the Model-Evaluation

of the previous iteration with the linear approximation f̂i of the current iteration.

This condition, represented in Equation 5.5, checks the consistency of the non-linear
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quantities after the Matrix-Solve step.

|f̂i − fi−1| ≤ reltol ·max (|f̂i|, |fi−1|) + abstol (5.5)

The closeness between the values is parameterized in terms of user-specified toler-

ance values: reltol (relative tolerance), abstol (absolute tolerance), and vntol (voltage

tolerance). Typical values for these tolerance parameters are: reltol=1e− 3 (accu-

racy of 1 part in 1000), abstol=1e−12 (accuracy of 1 picoampere) and vntol=1e−6

(accuracy of 1 µvolt). This means the simulator will declare convergence when the

changes in voltage and current quantities get smaller than the convergence tolerances.

Local Truncation Error (LTE): The truncation-error-based time-stepping al-

gorithm in spice3f5 advances the simulation timestep based on the rate of change

of the circuit quantities (e.g. charge, flux). LTE is a local estimate of accuracy of

the circuit quantities. If these circuit quantities are changing too rapidly, a smaller

timestep limits the amount of error. Conversely, if the circuit is mostly quiescent

(typical of digital circuit simulation between clock edges), a larger timestep can be

permitted without increasing error. The LTE calculation is shown in block b© in

Figure 5.1.

The algorithm computes the stepsize δn+1 so as to achieve a target LTE for the

observed divided-difference approximation DD3(x) of the varying circuit quantity.

This stepsize then advances the simulation timestep tn+1 as shown in Equation 5.6

and Equation 5.7. A tolerance parameter trtol provides the user additional control

over tuning the stepsize. A simple state machine combines the results of convergence

detection and stepsize calculation to decide how to advance the simulation.

tn+1 = tn + δn+1 (5.6)

δn+1 =

√
trtol · ε

max ( |DD3(x)|
12

, abstol)
(5.7)

In Equation 5.10, we show how to compute the Local Truncation Error (LTE,
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ε), as a function of currents I and charges of Q capacitors (or fluxes and voltages of

inductors). It is the maximum of two errors: current error (εI) and charge error (εQ).

εI = reltol ·max (|Ii|, |Ii−1|) + abstol (5.8)

εQ = reltol · max (|Qi|, |Qi−1|, chgtol)
δn

(5.9)

ε = max (εI , εQ) (5.10)

The divided difference approximation is recursively defined in Equation 5.11. For

our implementation, we consider second-order Trapezoidal approximations only (1 ≤

k ≤ 2).

DDk =
DDk−1(tn+1)−DDk−1(tn+1)

k∑
i=1

δn+1−k

(5.11)

Breakpoints: The calculation of the timestep based on divided differences in

Equation 5.7 assumes that the physical circuit quantities being approximated are con-

tinuously differentiable. However, when the source elements suddenly change value

(e.g. Piece-Wise Linear sources), they introduce a discontinuity. SPICE stores these

timepoints as breakpoints and forces a circuit evaluation at the breakpoint using a

first-order backward-Euler integration. This ensures timepoints beyond the disconti-

nuity are avoided. We represent this as the block labeled c© in Figure 5.1.

Analysis State Machines The loop control logic is managed by the SPICE

analysis state machines. These state machines are responsible for organizing the

simulation steps, handling error conditions, determining convergence and announc-

ing termination. We separate these state machines into two parts: (1) a high-level

controller spicestmc that manages the DC and transient analysis along with the

timestepping algorithm (the outer-loop in Figure 5.1), and (2) the iteration controller

nistmc that invokes Model-Evaluation and Sparse Matrix-Solve phases at the right

time (the inner loop in Figure 5.1). These are represented as d© in Figure 5.1.
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Figure 5.5: Sequential Runtime Breakdown of the Iteration Control phase of spice3f5

We now show a runtime breakdown of these different components of the SPICE

simulation in Figure 5.5. We observe that runtime is dominated by the calculation

of convergence conditions and local truncation error. These two operators together

account for 99% of total runtime. The breakpoint logic and SPICE control algorithms

take up less than 1% of total runtime.

Let us now attempt to understand and identify the sources of parallelism in the

Iteration Controller. We note that the Iteration Control state machine evaluation is

sequential and data-dependent in nature. The exact path through the state machines

depends on the numerical properties of the circuit equations and matrix solutions.

However, we can indeed statically schedule and extract limited instruction-level par-

allelism from the individual state actions of the Iteration-Control state machines.

Furthermore, the LTE calculations and convergence detection conditions are data-

parallel operations over the voltage, current and charge vectors of the circuit. We

can statically schedule these operations since the equations must be evaluated for all

elements on the circuit vectors. These observations motivate the use of a stream-

ing abstraction for expressing the Iteration Control computation. In this chapter,

we discuss our approach for efficiently implementing the SPICE Iteration Control

135



Table 5.1: SCORE Compiler Optimized Instruction Counts for Iteration Control

Operator Add Mult. Divide Sqrt. If-Mux Cmp. Bool Rest Total

converge 7 1 0 0 6 5 1 0 20
LTE 16 8 9 1 21 20 0 0 75

breakpoint 95 2 1 0 110 76 35 11 330
nistmc 2 0 0 0 8 7 5 2 24
spicestmc 29 15 6 0 79 42 24 17 212

Total 149 26 16 1 224 150 65 32 513
Column Rest includes floor, ceiling, and other special functions

algorithms on limited FPGA resources without creating a sequential bottleneck.

5.4 Iteration Control Implementation Framework

We express the SPICE Iteration Control algorithms in a stream-based framework

called SCORE [10] (Stream Computation Organized for Reconfigurable Execution).

The SCORE programming model allows us to capture the SPICE iteration control

algorithm at a high-level of abstraction and permits exploration of different imple-

mentation configurations for the parallel SPICE solver. The streaming abstraction

naturally matches the processing structure of the control algorithms and the over-

all composition of the solver. However, the SCORE compute model was originally

designed for rapidly-reconfigurable, time-multiplexed FPGAs. Modern FPGAs of-

fer poor dynamic reconfiguration support and are unsuitable for the coarse-grained,

dynamically-reconfigurable implementation of SCORE. Consequently, we develop a

new implementation model for SCORE based on resource-sharing and static schedul-

ing. We adapt the backend flow from our Model-Evaluation infrastructure described

in Chapter 3 to support dataflow graphs generated from the SCORE description of

the Iteration Control computation.

SCORE allows description of streaming applications using dynamic dataflow. A

SCORE program consists of a graph of operators (compute) and segments (memory)

linked to each other via streams (interconnect). Computation within an operator

is described as a finite-state machine (FSM). The operations within a state can be
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described as a dataflow graph, while the state machine transitions are captured using

a state transition graph. This suits the control-intensive nature of the SPICE iteration

control algorithm.

We show the high-level SCORE representation of the SPICE Iteration Controller

in Figure 5.6. We describe the control algorithms as SCORE operators and state-

machines interconnected by streams. The stream connection allows pipelined, parallel

evaluation of the different operators when possible. The white nodes in Figure 5.6

represent the state-machine and breakpoint logic. For calculating convergence and

local truncation error, we stream voltages, currents and charges through the operation

graph for the respective equations. The gray nodes are the data-parallel stateless

nodes that calculate Local Truncation Error (LTE) and compute convergence as a

function of voltage ~x, current ~b and charge ~Q vectors. We represent the Model-

Evaluation and Sparse Matrix-Solve phases of SPICE as black boxes. Internally these

are implemented differently using FPGA organizations described earlier in Chapter 3

and Chapter 4.

In Table 5.1 we show the number of floating-point instructions and their types

in the different SCORE operators. These statistics are obtained from the optimized

operation graphs generated by tdfc, the SCORE compiler. As expected, we observe

that the If-Mux, Comparison and Boolean instructions constitute the bulk of
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Operator Total Activations/
Iteration

Percent of Total

converge 1088465 64.394
LTE 601076 35.560

accept 299 0.017
breakpoint 48 0.002
nistmc 152 0.009
spicestmc 262 0.015

Table 5.2: SCORE Operator Activation Frequency for a simple Resistor-Capacitor-Diode
circuit

the control-intensive computation in this phase of SPICE. We also note that we

need only one SQRT floating-point operation and no other expensive elementary

floating-point functions. In Table 5.2, we show the dynamic activation counts for the

different SCORE operators in the Iteration Control phase of SPICE. An activation is

when a state within that SCORE operator gets fired. We observe that the LTE and

Convergence calculation dominate the dynamic activation counts. This explains the

runtime distribution shown in Figure 5.5.

5.5 Hybrid FPGA Architecture

We now describe the FPGA architecture for efficiently implementing the Iteration

Control phase of SPICE. As identified earlier in Section 5.1, this phase of SPICE is

responsible for a small fraction of total runtime. The control algorithms and SPICE

state-machines are infrequent operations that are sparsely activated per iteration as

shown in Table 5.2 and Figure 5.5. We also note that LTE calculation and conver-

gence evaluation are data-parallel operations that constitute the bulk to total time

spent in Iteration Control. A fully-spatial circuit implementation will be wasteful and

occupy a large amount of area while staying underutilized. An inexpensive embed-

ded microprocessor (e.g. Microblaze) implementation that sequentially processes the

computation will be too slow for the parallel design (see Section 5.6.4).

We develop a hybrid FPGA architecture that exploits the (1) streaming paral-

lelism between SCORE operators and (2) dataflow parallelism within each SCORE
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state to deliver an area-efficient implementation that achieves modest speedups. Our

hybrid design combines statically-scheduled components with dynamic logic special-

ized for state selection and stream management. The SCORE description allows a

straightforward separation of computation into static and dynamic portions. The

dataflow within a state is considered for static scheduling while the data-dependent,

dynamic state selection is mapped to dynamic logic. We couple SCORE with a back-

end that schedules static feedforward dataflow graphs to generate configurations for

each state. For certain SCORE operators, like LTE calculation and convergence

evaluation, we perform loop unrolling to improve throughput. We show the archi-

tecture in Figure 5.7. The design of this architecture is similar to the design of the

Model-Evaluation VLIW hardware described in Chapter 3.
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5.6 Methodology and Results

We now describe our experimental methodology and explain our results. We show a

high-level representation of our flow in Figure 5.8.

5.6.1 Integration with spice3f5

We re-express the SPICE simulator in the high-level SCORE framework. To verify

correctness of our implementation, we perform a functional SCORE simulation of the

Iteration Control algorithms and compare our results with spice3f5. We generate

multi-threaded C++ code from the SCORE compiler to obtain a functionally-correct

implementation of the SCORE description of Iteration Control. Then, we integrate

the SCORE runtime into spice3f5 to communicate relevant SPICE state to our

SCORE implementation using Inter-Process Communication (IPC). We then empiri-

cally compare the sequence of visited states in the two processes to determine correct

operation. Barring a few cases involving floating-point rounding, we achieved the

same operation for our SCORE implementation on a sample benchmark. This means

that our SCORE implementation visited the same states, made the same branching

and control decisions and generated the same timesteps. We also perform modular
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verification of individual SCORE operators by letting the spice3f5 process handle

the remaining Iteration Control computation.

5.6.2 Mapping Flow

We implement our SCORE computation on the FPGA in two ways:

1. Hybrid VLIW FPGA version: Statically-scheduled custom VLIW implementa-

tion shown in Figure 5.7.

2. Microblaze version: Sequential implementation.

For both cases, we measure the cycles required to implement each SCORE oper-

ator. We also count the number of state activations corresponding to the SCORE

operator graph of the Iteration Control computation from a spice3f5 run. This

allows us to determine the runtime of the two FPGA implementations for various

circuits in our circuit benchmark set by multiplying the state activations with the

cycle count per state.

time = clock period ·

( ∑
i∈operator

( ∑
n∈state

activations(i, n) ∗ cycles(i, n)

))

For the statically-scheduled implementation, we obtain the cycle counts from the

scheduler for each state of every SCORE operator. We implement the data-parallel

computation in LTE and Convergence operators using the GraphStep scheduler with

Loop-Unrolling (described in Chapter 3). We implement the sequential state-machine

logic in nistmc and spicestmc along with the breakpoint operators using a sim-

ple Dataflow scheduler (without any unrolling). We combine these two schedules

to assemble the spatial implementation of the Iteration Controller. Presently, our

statically-scheduled implementation operates at 200 MHz due to the limitations of

the Xilinx Coregen double-precision floating-point divider. We use the scheduled

cycle counts to compute the total time required for the Iteration Controller.

For the Microblaze implementation, we develop a SCORE runtime customized

for the Microblaze micro-controller. We perform automated code-generation of the
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Block Area Memory
(Slices) (BRAMs)

LTE (12 operators) 10917 28
convergence (12 operators) 10389 9
breakpoint, nistmc, spicestmc (4 operators) 3644 6
Microblaze and Peripherals 1504 16

Spatial Total (LTE + convergence +
breakpoint, nistmc, spicestmc)

24950 43

Microblaze Total (LTE + convergence + Mi-
croblaze and Peripherals)

22810 53

Table 5.3: Resource Usage for Iteration Control Implementation (Virtex-6 LX760)

SCORE description of the Iteration Control computation. The code-generator pro-

duces a flavor of C suitable for use with a light-weight embedded operating system

(Xilkernel [117]). We measure the number of Microblaze clock cycles to implement

each state of every SCORE operator using a hardware counter. The Xilinx Microblaze

controller along with supporting logic is designed to operate at 100 MHz by Xilinx

Core Generator [77]. We tabulate the cost model for these two designs in Table 5.3.

Finally, we compare both these implementations with a spice3f5 running on an

Intel Core i7 965 running at 2.67 GHz. We measure the runtime of the Iteration Con-

trol phase using the PAPI 4.0 [18] performance counters on a 64-bit Linux workstation

running Ubuntu Lucid Lynx 10.04.

5.6.3 Hybrid VLIW FPGA Implementation

We compute speedup of our Hybrid VLIW implementation using the formula de-

scribed in Figure 5.11.

In Figure 5.9, we plot the speedup achieved by our hybrid FPGA architecture over

the sequential microprocessor implementation on an Intel Core i7 965 for the Iteration

Control phase in spice3f5. We are able to accelerate this phase of SPICE by 1.07–

3.3× across the benchmark set (mean of 2.12×). We deliver the higher speedups of

around 3.3× for the larger circuit sizes.

In Figure 5.10, we show the effect of parallelizing the Iteration Control phase of

SPICE on overall SPICE performance. With 12 operators (3 ADDs, 3 MULTIPLYs,
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Figure 5.10: Speedup for the Complete SPICE Simulator
(Virtex-6 LX760 vs. Intel Core i7 965)

Speedup =
Tseq(LTE + convergence+ breakpoint+ nistmc+ spicestmc)

Tspatial(LTE + convergence+ breakpoint+ nistmc+ spicestmc)

Tseq() = Sequential Iteration Control time on an Intel Core i7 965

Tspatial() = Parallel time of the Hybrid VLIW FPGA Implementation on a Virtex-6 LX 760

Figure 5.11: Hybrid VLIW Implementation Speedup Calculation Equations
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Figure 5.12: Performance Scaling of LTE and Convergence operations for the Hybrid
VLIW Implementation

3 DIVIDEs, 3 SQRTs) implemented on a Virtex-6 LX760, we can deliver a mean

speedup of 2.6× across our benchmark set (1.29–8.1×). If we ignore this phase our

speedups are limited to 2.4× (1.26–5.9×). Thus parallelizing this phase improves

overall performance by a mean of 8% (max 35%). In Chapter 6, we discuss overlapping

the LTE and Convergence operations with the Model-Evaluation and Sparse Matrix-

Solve phase as a strategy for improving composite SPICE speedups. Finally, if we

could arbitrarily parallelize the Iteration Controller (without overlapping), we can

achieve mean speedups of 3×(max 11×). Thus, with sufficient parallel hardware, we

can improve performance of the composite SPICE implementation by a mean of 25%

(max 83%) compared to the sequential microprocessor implementation.

We now show how performance scales as we increase the amount of resources

provided to the Iteration Control phase. In Figure 5.12(b) and Figure 5.12(a) we

show the impact of increasing PE count (area) and Loop Unroll factor (memory) on

the cycles required by the static schedule averaged for each evaluation.

5.6.4 Microblaze Implementation

As an alternative, we consider a Microblaze implementation of the state-machine

and breakpoint-processing logic. In this arrangement, the LTE and Convergence
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Speedup =
Tseq(LTE + convergence+ breakpoint+ nistmc+ spicestmc)

Tspatial(LTE + convergence) + Tmicroblaze(breakpoint+ nistmc+ spicestmc)

Tseq() = Sequential Iteration Control time

Tspatial() = Parallel time of the Hybrid VLIW Implementation

Tmicroblaze() = Sequential time of the Microblaze Implementation

Figure 5.13: Microblaze Speedup Calculation Equations

operations continue to be implemented over statically-scheduled hardware. A Mi-

croblaze implementation of the data-parallel, floating-point intensive computation

in LTE and Convergence blocks will result in extremely poor performance that is

substantially worse than what we present here. Hence, we do not consider that

implementation for our comparisons. The embedded Microblaze controller runs at

100 MHz and sequentially processes the infrequent state-machine and breakpoint

logic using 3734 slices including supporting logic. We compute speedup for this phase

using the formula represented in Figure 5.13

The performance of this lightweight implementation is shown in Figure 5.14. Un-

fortunately, this implementation actually slows down the computation by as much as

30× for small circuits while delivering speedups of 2.9× for the larger benchmarks.

In contrast, we can achieve speedups for all circuit sizes for the statically-scheduled

hybrid FPGA architecture as shown in Figure 5.9. The reasons for this slowdown

include (1) lower clock frequency of the processor, (2) sequential nature of the pro-

cessor architecture and (3) poor double-precision floating-point support (10s-100s of

cycles for double-precision floating-point functions). We expect a faster embedded

controller with superior double-precision support to deliver better performance.

5.6.5 Comparing Application-Level Impact

In Figure 5.15 we summarize the speedups achieved for the complete SPICE simulator

under three scenarios: (1) no Iteration-Control parallelization (2) Microblaze imple-

mentation of Iteration-Control and (3) Hybrid VLIW Implementation of Iteration-
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Control. It is clear that the spatial implementation provides the highest overall mean

speedups of 2.6×. The Microblaze implementation is outperformed by even the Se-

quential implementation of Iteration Control. We are able to achieve a mere 1.9×

mean speedups (0.94–7.8×) across our benchmark set if we implement the Iteration

Controller on the Microblaze. This approach only delivers this speedup for very large

circuits where the Iteration Control phase is a tiny fraction of total runtime. For the

circuits in our benchmark set, even the näıve Sequential implementation of Iteration

Control achieves a mean speedup of 2.4×.

5.7 Conclusions

In this chapter, we showed how to express and parallelize the Iteration Control phase

of SPICE using the streaming SCORE framework. If we do not parallelize the Itera-

tion Controller and implement it on the host CPU, our overall SPICE speedups are

limited to 2.4× (max 6×). If we implement the Iteration Controller on an embedded,

sequential Microblaze controller, our mean speedups get reduced to 1.9× (max 7.8×).

A parallel implementation of the Iteration Controller that exploits data-parallelism

and instruction-level parallelism in this phase of SPICE allows the complete SPICE

simulator to achieve composite speedups of 2.6× (max 8.1×).
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Chapter 6

System Organization

In this chapter, we explain the complete mapping flow and organization of the FPGA-

based system for accelerating SPICE. In the previous chapters, we studied the designs

of the individual SPICE phases. We now show how to compose parallelism in the

different phases together to assemble the complete design on a single FPGA.

6.1 Modified SPICE Solver

We have previously shown how to parallelize and implement the three phases of

SPICE: Model-Evaluation in Chapter 3, Sparse Matrix-Solve in Chapter 4 and the

Iteration Control in Chapter 5. We suitably modified the simulation flow to allow us to

expose the parallelism available in the different SPICE phases for parallel operation.

We perform offline analysis and optimization of the non-linear device models and the

Iteration Control algorithms to generate static schedules for FPGA implementations.

We also change runtime behavior to include a one-time analysis of the sparse matrix

structure to extract parallel dataflow graphs to be shared across all factorizations.

We show this modified flow in Figure 6.1. In the figure, we partition processing into

Offline and Runtime components depending on the binding time of the parallelism

information into our FPGA solver. We compile the Iteration Controls state-machines

and algorithms from a high-level SCORE description in Step �
��
1a to generate a static

configuration. This FPGA configuration is used in Step �
��
1b at Runtime to make

convergence and timestepping decisions. We generate optimized dataflow graphs for
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Figure 6.1: Block-Diagram of the Parallel SPICE Simulator

Model-Evaluation from the high-level Verilog-AMS description in Step �
��
2a . Based

on the type of non-linear device used in the circuit being simulated, we load the

appropriate configuration for use in Step �
��
2b . We perform matrix reordering and

symbolic analysis of the sparse circuit matrix at Runtime in Step�
��
3a to extract the

sparse dataflow graph. This only needs to be done once for the entire simulation run

at the beginning of the simulation. This sparse dataflow graph is reused across all

factorizations in Step �
��
3b .

6.2 FPGA Mapping Flow

We now explain our FPGA mapping flow for generating a configuration for the FPGA

for implementing SPICE. We show the complete FPGA mapping flow in Figure 6.2.

At a high level, our FPGA flow is organized into paths that are customized for

the specific SPICE phase. These are represented with unique characteristic colors in

Figure 6.2. In this figure, we also partition the mapping flow based on binding time of
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Figure 6.2: Mapping Flow for the complete SPICE System

the operation being performed. We can optimize the Model-Evaluation computation

as well as compile the Iteration-Control processing statically offline. However, most

of the Sparse Matrix-Solve processing must be handled at runtime on a per-circuit

basis.

We statically generate a hardware configuration for the parallel SPICE simulator

and build the onchip memory images for each circuit at runtime. This means that

we need to run the time-consuming FPGA CAD tools offline to create an FPGA

configuration for the simulator. This is possible because we can limit the total number

of configurations and simply select the configuration to load based on the kind of

circuit being simulated. We list some observations about the simulator that make

this possible:

• SPICE circuits in most real-world environments as well as our benchmark set use a

single type of non-linear transistor model (e.g. bsim3, bsim4 or mos3). Moreover,

the bulk of the model-specific parameters are constant across all non-linear devices.
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Figure 6.3: Block-Diagram of the FPGA Design

This implies that we need a single, constant-folded static-schedule for non-linear

device processing on our VLIW architecture. This architecture will load the device-

specific parameters at execution time as described in Chapter 3.

• The Sparse Matrix-Solve computation for all circuits is converted to a sparse

dataflow graph that is processed on our Dataflow architecture. This does require

a circuit-specific extraction and distribution step, but the design of the Packet-

Switched Dataflow hardware does not need to be customized to the graph struc-

ture.

• The Iteration Controller is parameterized in terms of a few constants (e.g. abstol,

reltol, final time) but the underlying control algorithms do not need to be

recompiled per circuit.

Our mapping flow generates a few FPGA circuit configurations for SPICE cus-

tomized for specific non-linear device models (e.g. bsim3, bsim4, mos3). We pick the

appropriate configuration at the start of the simulation, when configuring the FPGA,

based on the device type being used in the SPICE circuit. Once we choose a distribu-
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tion of area and memory resources across the different SPICE phases, we can generate

an FPGA circuit configuration that can be reused across all circuits. This includes

the static VLIW configurations for the PEs and switches of the statically-scheduled

Model-Evaluation and Iteration Control processing elements (output of the “Static

Scheduler” blocks shown in Figure 6.2).

For each new circuit we simulate, we only need to load and program certain

memory resources appropriately. In Figure 6.2, this is shown by the paths that

lead into the “Memory Builder” block. For the non-linear devices and independent

sources, we must store the device-specific constant parameters specified in the circuit

netlist in FPGA onchip memory or offchip DRAM memory if necessary. We also need

to distribute the sparse dataflow graph across the Matrix-Solve processing elements

(shown by the “Placement” block in Figure 6.2) and store the graph in offchip DRAM

memory when it does not fit onchip capacity. Finally, we must load a few simulation

control parameters (e.g. abstol, reltol, final time) to help the Iteration Control

phase declare convergence and termination of the simulation.

6.3 FPGA System Organization and Partitioning

We represent the high-level FPGA organization of the Parallel SPICE Solver in Fig-

ure 6.3. We partition the FPGA into regions that are customized for solving the

individual phases of SPICE. Our goal is to minimize the runtime of the parallel

FPGA system while fitting the complete design onto a single FPGA chip. We repre-

sent the optimization problem in Equation 6.4. Since our set of feasible configurations

is very small, we solve this optimization problem through a simple exhaustive search

over all possible configurations and pick the configuration that minimizes time. In

Figure 6.5 we show Area-Time tradeoffs for the different phases of SPICE. We tab-

ulate the resource distribution between the three phases for the configuration with

best mean performance in Table 6.1. Our composite design is projected to use ≈90%

of the total FPGA resources of the Virtex-6 LX760. While we have shown how to

build the individual computing elements for the three phases of SPICE, we have not
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Minimize

max(Tpar(modeleval) + Tpar(matsolve), Tpar(iterctrl))

Subject to

Area(modeleval) + Area(matsolve) + Area(iterctrl) < Area(FPGA)

Mem(modeleval) +Mem(matsolve) +Mem(iterctrl) < Mem(FPGA)

Area(FPGA) = 118560 slices

Memory(FPGA) = 720 BRAMs

< Ai, Ti > : Area-Time mappings

Figure 6.4: Simplified Optimization Formulation

SPICE Phase Area Memory
Slices % BRAMs %

Model-Evaluation (bsim4) 62512 53 448 62
Sparse Matrix-Solve 27090 23 180 25

Iteration Control 17848 15 32 5

Total 107450 91 660 92

Table 6.1: FPGA Resource Distribution for complete SPICE Solver (Virtex-6 LX760)

conducted the final engineering effort required to integrate the whole design along

with the software infrastructure required to support the integrated design.

6.4 Complete Speedups

We show complete FPGA speedups for the integrated design on a Virtex-6 LX760

FPGA in Figure 6.7. We use the performance model described in Equation 6.6

to calculate speedups. Unlike speedup calculations in Chapter 5, in this compos-

ite design, we are able to overlap the timestep and convergence processing compo-

nents of Iteration Control phase with the Model-Evaluation and Matrix-Solve phases

of SPICE. These operations operate on the conductance and current updates from

Model-Evaluation along with voltage and current vectors from the Matrix-Solve in a

streaming fashion. With these changes, we observe a mean speedup of 2.8× across

our benchmark set with a peak speedup of 11× for the largest benchmark. As we
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Architecture Area Power
(mm2) (Watts)

Intel Core i7 965 263 130
Xilinx Virtex-6 LX760 576 35

Table 6.2: Area and Power consumption of the two architectures

need to simulate increasingly larger circuits, we are particularly concerned with the

performance of the parallel FPGA solution at large circuit sizes. If we neglect the

three small benchmarks s27, mux8 and ringosc, the mean speedups increase slightly

to 3×.

6.5 Comparing different Figures of Merit

The primary figure of merit for this thesis is speedup per chip. However, we can

compare the two architectures using other important cost metrics such as area and

energy. We tabulate the estimated area of the chip and power consumption of the two

architectures in Table 6.2. We observe that the FPGA is able to deliver its speedup

using a larger chip (≈2×) and lower power (≈3.5×). We estimate area assuming that
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Speedup =
Tseq(modeleval) + Tseq(matsolve) + Tseq(iterctrl)

max(Tpar(modeleval) + Tpar(matsolve), Tpar(iterctrl)) + Tparseq(iterctrl)

Tseq(modeleval) = Sequential Model-Evaluation time

Tseq(matsolve) = Sequential Matrix-Solve time

Tseq(iterctrl) = Sequential Iteration-Control time

Tpar(modeleval) = Parallel Model-Evaluation time

Tpar(matsolve) = Parallel Matrix-Solve time

Tpar(iterctrl) = Iteration-Control time for parallelizable portion

Tparseq(iterctrl) = Iteration-Control time for sequential portion

Figure 6.6: Speedup Calculation Equation
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Figure 6.7: Complete Speedup (Estimated) for SPICE on Xilinx Virtex-6 LX760 FPGA
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Area(6LUT ) ·Number(6LUT )

Area(4LUT ) ·Number(4LUT )
= 1.7 (from[118]) (6.1)

Num(4LUT )

Num(6LUT )
= 1.4 (from ABC synthesis) (6.2)

Area(4LUT ) ≈ 106λ2 (from [7]) (6.3)

⇒ Area(6LUT ) ≈ 1.7 · 1.4 · 106λ2 (6.4)

⇒ Area(6LUT ) ≈ 2.4 · 106λ2 (6.5)

Figure 6.8: Estimating area of a 6-LUT

V irtex6 LX760 = 118560 SLICEs (6.6)

= 474240 6LUTs (6.7)

= 474240 · 2.4 · 106λ2 (6.8)

= 474240 · 2.4 · 106 · (20nm)2 (6.9)

= 471mm2 (6.10)

Figure 6.9: Estimating area of FPGA die

the largest FPGAs are manufactured near the reticule size (24mm×24mm=576mm2).

We validate the ballpark estimate with a bottom-up area calculation from Equa-

tion 6.1 and Figure 6.9. We show the steps of this calculation in Figure 6.8. We then

estimate the actual area of the FPGA die in Figure 6.9 (estimated 471mm2 close

to reticule limit of 576mm2). Using these estimates, we can compare area efficiency

(performance per unit area) as shown in Figure 6.10. Thus, when considering speedup

per unit area, the FPGA is able to deliver lower speedups up to 4.8× with a geometric

mean speedup of only 1.05×.

We estimate power consumption of the FPGA using the Xilinx XPower tool as-

suming 20% activity on the Flip-Flops, Onchip-Memory ports and external IO ports.

We compute energy savings (Energy = Power × Time, as shown in Figure 6.11) of

our FPGA design with the microprocessor. We observe that the FPGA consumes up

to 40.9×(geomean 8.9×) lower energy than the microprocessor implementation.
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Figure 6.10: Speedup per Unit Area (Estimated) for SPICE on Xilinx Virtex-6 LX760
FPGA
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Figure 6.11: Energy Savings (Estimated) for SPICE on Xilinx Virtex-6 LX760 FPGA
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Figure 6.12: Complete Speedup (Speculated) for SPICE on Xilinx Virtex-7 2000T FPGA

6.6 FPGA Capacity Scaling Analysis

Our auto-tuner allows our design to easily scale to larger FPGA sizes. The larger

Virtex-7 XC7V2000T FPGA (part of the new Virtex-7 series [11] recently announced

by Xilinx) can accommodate a design with 2× the resources required of our current

Virtex-6 LX760 design. We estimate speedups achieved by this FPGA in Figure 6.12.

We observe speedups between 0.2–14.1×across our benchmark set (mean speedup of

3×). This represents a modest increase of 6% in mean speedup with a 2×increase in

area. Now, if we remove the small benchmarks s27, mux8 and ringosc from the mean

speedup calculation, our mean speedup is 4× which represents a more respectable 30%

increase in speedup with a 2× increase in area. The small benchmarks have insufficient

parallelism to justify a spatial mapping and can actually slow down (≈1–2% in this

case) when distributed across a large FPGA.
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Chapter 7

Conclusions

The concrete goal of this thesis was to parallelize the SPICE circuit simulator using

a single FPGA. In this thesis, we show how to achieve 0.2–11× speedup for SPICE

circuits when comparing a Xilinx Virtex-6 LX760 FPGA with an Intel Core i7 965.

We now summarize the answers to the key questions from Chapter 1 that we address

in this thesis:

1. Can SPICE be parallelized? What is the potential for accelerating SPICE? We

observe that there is parallelism in all phases of SPICE. Each phase of SPICE

is characterized by a specific parallel pattern i.e. data-parallel computation

in SPICE Model-Evaluation phase, sparse dataflow pattern in SPICE Matrix-

Solve phase and streaming, sequential controller pattern in the SPICE Iteration-

Control phase. Once we identify the parallel pattern, we can pick a suitable

high-level framework and corresponding implementation model for exploiting

that parallelism. Our performance analysis from Section 2.2 suggests that the

Model-Evaluation phase is completely data-parallel (O(N) parallelism) and rel-

atively easy to parallelize. We exploit specialization potential of device types,

parameters and constants to generate optimized parallel implementations. The

Sparse Matrix-Solve phase has a limited amount of parallelism (O(N0.7)) which

is challenging to capture and exploit. In this case, we exploit the early-bound

nature of the factorization graph to distribute the computation across parallel

compute elements. Finally, we exploit the streaming, data-parallel components

of the Iteration-Control phase to generate effective parallel implementations.

159



We also explore opportunities for overlapping the Iteration-Control computa-

tion with the other two phases of SPICE.

2. How do we express the irregular, parallel structure of SPICE? As identified ear-

lier, SPICE is a composite mixture of multiple forms of parallel patterns.

Instead of attempting to scavenge parallelism from dusty-deck C code we choose

to re-express SPICE in these high-level languages. We capture this parallelism

directly from the circuit computation graph (Verilog-AMS, KLU solver and

SCORE). We compile the high-level Verilog-AMS descriptions of the device

models into the static dataflow graph for data-parallel Model Evaluation com-

putation. We extract dataflow parallelism in the Sparse Matrix-Solve phase

directly from the SPICE circuit using the KLU solver and distribute this par-

allelism across a Dataflow FPGA architecture. This form of sparse, irregular

parallelism is unsuitable for direct implementation on multi-core and GPU ar-

chitectures due to high synchronization overheads. Finally, we describe the

SPICE Iteration-Control algorithms in SCORE and identify additional oppor-

tunities for overlapped, parallel evaluation.

3. How do we use FPGAs to exploit the parallelism available in SPICE? FPGAs

can be configured to support any kind of spatial parallelism in the applica-

tion. Once we capture the parallelism in SPICE, we implement this paral-

lelism on a combination of spatial architectures customized for each phase of

SPICE i.e. Custom VLIW architecture for SPICE Model-Evaluation phase, To-

ken Dataflow architecture for SPICE Matrix-Solve phase and a Hybrid VLIW

architecture for the SPICE Iteration Control phase of SPICE. We exploit the

high memory bandwidth available from hundreds of distributed onchip Block-

RAMs on the FPGA and spatially implement the communication operation

in the different phases using either a time-multiplexed or a packet-switched

network. Our framework allows us to compose these heterogeneous implemen-

tations into a single integrated design in a streaming fashion as described in

Chapter 6. Apart from FPGAs, we also explore multiple implementation tar-
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gets for Model-Evaluation phase including GPUs, IBM Cell, Sun Niagara and

Intel Multi-core processors with our automated code-generation and auto-tuning

framework.

4. Will FPGAs outperform conventional multi-core architectures for parallel SPICE?

We show how to accelerate SPICE by 0.2–11× across a range of benchmark

circuits when comparing a Xilinx Virtex-6 LX760 to the state-of-the-art quad-

core Intel Core i7 965. We can parallelize large circuits with low fanout very

effectively. Small circuits have insufficient parallelism to justify a spatial im-

plementation. Similarly, circuits with high-fanout nets perform poorly and de-

liver limited speedups. Thus, for well-behaved circuits we can outperform the

multi-cores by almost an order of magnitude using a single chip. We expect

multi-core architectures to be able to accelerate the Model-Evaluation phase

with additional parallel cores (see Figure 3.26(a)). The key performance bottle-

neck in our current spatial design is the Sparse Matrix-Solve phase. We believe

efficient implementation of this sparse, irregular parallelism on multi-processing

architectures will be possible only with suitable low-latency, message-passing

network support [119]. As we scale to larger FPGA capacities, our auto-tuning

framework will enable automated performance scaling of the SPICE design to

the newer, larger FPGAs.

Apart from showing how to parallelize SPICE using FPGAs, we are also broadly

interested in understanding the design space for mapping any parallel application to

suitable parallel organizations. We must describe applications like SPICE using a

composition of multiple parallel patterns using suitable high-level languages. We

must emphasize ease of composability using frameworks such as SCORE for inte-

grating the complete design and delivering the overall parallel solution. To fully

exploit available parallelism we must be able to customize the underlying compute

organization to match the pattern of parallelism in the application (e.g. Dataflow

architectures for sparse irregular computation, VLIW architectures for static data-

parallel computation and Streaming architectures for composing heterogeneous kinds
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of parallelism). We expect this thesis to serve as a starting point for further research

in this direction.

7.1 Contributions

We summarize the key quantitative contributions of this thesis:

1. Complete simulator: We accelerate the complete double-precision implemen-

tation of the SPICE simulator by 0.2–11× when comparing a Xilinx Virtex-6

LX760 with an Intel Core i7 965 processor for a Double-Precision evaluation.

We also deliver an estimated energy saving of up to 40.9×(8.9× geomean) when

comparing the same architectures.

2. Model-Evaluation Phase: We demonstrate a speedup of 1.4–23.1× across a

range of non-linear device models when comparing Double-Precision implemen-

tations on a Virtex-6 LX760 compared to an Intel Core i7 965. We also de-

liver speedups of 4.5–123.5× for a Virtex-5 LX330, 10.1–63.9× for an NVIDIA

9600GT GPU, 0.4–6×for an ATI FireGL 5700 GPU, 3.8–16.2× for an IBM

Cell and 0.4–1.4× for a Sun Niagara 2 architectures when comparing Single-

Precision evaluation across these architectures at 55nm–65nm technology. We

also show speedups of 4.5–111.6× for a Virtex-6 LX760, 13.1–133.1× for an

NVIDIA GTX285 GPU and 2.8–1200× for an ATI Firestream 9270 GPU when

comparing single-precision evaluation on architectures at 40–55nm technology.

3. Sparse Matrix-Solve Phase: We show how to improve the performance of

irregular, sparse matrix factorization by 0.6–13.4×when comparing a 25-PE

parallel implementation on a Xilinx Virtex-6 LX760 FPGA with a 1-core imple-

mentation on an Intel Core i7 965 for double-precision floating-point evaluation.

4. Iteration-Control Phase: Finally, we deliver 1.07–3.3× (mean 2.12×) reduc-

tion in runtime for the SPICE Iteration-Control algorithms when comparing a

Xilinx Virtex-6 LX760 with an Intel Core i7 965.
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7.2 Lessons

Finally, we highlight some key lessons from the thesis:

Sparse Matrix Solve Performance Scaling: The matrix factorization com-

putation is the key performance bottleneck for parallelization. Our Token Dataflow

architecture is only able to deliver a mean speedup of only 2.4× for our benchmark

matrices at 25 PEs. We are unable to significantly improve performance at larger PE

counts (see Section 4.5). The scheduled latency of the critical chain of dependencies

through the factorization graph limits overall performance. While the logical latency

of the factorization graph scales as O(N0.7) (see Section 2.2), the FPGA floating-point

operator latency (8 cycles for add, 10 cycles for multiply) and comparable network

latency (9 cycles including switch and wire delays) result in high latency paths. In

future work, we need to identify ways for reducing this physical mapped latency (and

possible even the logical latency of the graph).

Auto-Tuning: Our parallel framework is capable of exploring multiple parallel

architectures and scaling the design to larger FPGAs with no architecture-specific

manual customization. For the FPGA implementations, the auto-tuner is provided

a resource constraint for selecting the best design. The auto-tuner enables us to

automate the process of considering multiple implementation choices and selecting

the best one.

GPUs: It may appear that GPUs are an ideal target for implementing data-

parallel Model-Evaluation computation. However, we observe that FPGAs can out-

perform GPUs for most cases and are slower than GPUs in a few cases by 2–3× in

the best case. GPUs work well for regular operations rich in floating-point multiply-

add with high arithmetic intensity (few memory operations per compute operation).

Model-Evaluation computation is characterized by a mixture of elementary floating-

point functions (e.g. exponential, logarithm), relatively large amount of internal state

and high thread divergence due to control-flow statements. Furthermore, GPUs lack

a flexible, low-latency, message-passing network for rapidly moving data between the

ALUs. Our exploratory mapping studies for implementing vectorized Sparse Matrix-
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Solve computation on the GPU yielded very poor results. Finally, GPUs consume up

to an order of magnitude more power than the FPGA, resulting in far lower energy

efficiency for sparse factorization computation. This makes them unsuitable for im-

plementing sparse, irregular, fine-grained parallelism. This suggests that GPUs are a

poor target for accelerating the complete SPICE simulator by themselves. They may

work well in tandem with a CPU and/or FPGA as part of the complete system for

accelerating SPICE.

Programming FPGAs for General-Purpose Applications: In this thesis,

we demonstrate how to parallelize SPICE on FPGAs as a stepping stone towards

understanding how to broadly use FPGAs for general-purpose computing. Typical

real-world applications are a heterogeneous mix of multiple parallel patterns. We

must expose the pattern structure using suitable languages or language extensions

(e.g. Model-Evaluation computation using Verilog-AMS, streaming composition us-

ing SCORE TDF language). These patterns must be efficiently supported in a few

high-level programming languages. Modern programming languages support few pat-

terns of parallelism with libraries (e.g. OpenMP) that are added as an after thought.

When programming FPGAs today, we must manually explore multiple implementa-

tion configurations. This requires expertise and experience for good mapping results.

We believe auto-tuners need to play a vital role in hiding this complexity and au-

tomating the task of searching a good mapping. Thus, a combination of problem

capture using pattern and design optimization auto-tuning support will enable

general-purpose application development using FPGAs.
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Chapter 8

Future Work

8.1 Parallel SPICE Roadmap

This thesis serves as a starting point for further research in understanding how to

implement the SPICE simulator in parallel using FPGAs. Specifically, we will now

identify a roadmap for additional research that are highlighted by this thesis. We

also identify the appropriate categorization that we introduced in Section 2.3.

8.1.1 Precision of Model-Evaluation Phase

Double-precision floating-point operators consume a large amount of area on FP-

GAs. Custom floating-point or fixed-point operators (Precision) that operate at just

enough precision might provide an opportunity for improving the compute density on

FPGAs. For SPICE, it may be possible to apply or modify existing tools [120, 121]

to estimate the precision requirements of the Model Evaluation graphs (and possi-

bly Sparse Matrix-Solve graphs). Additional work may be necessary to make some

of these tools [121] work with elementary floating-point operations. It may even

be possible to implement the Model-Evaluation computation entirely in fixed-point

arithmetic. These additional optimizations will help us reduce cost (e.g. area, energy)

of the FPGA implementation while delivering a higher performance result.
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8.1.2 Scalable Dataflow Scheduling for Matrix-Solve Phase

Sparse matrix solve operations on large matrices can generate large dataflow graphs

with millions of nodes and edges. How do we rapidly distribute and schedule these

operations on a dataflow architecture? Furthermore, how do we make the perfor-

mance of a dataflow design scale to even larger system sizes? We believe greedy

clustering algorithms [122] (Scheduling) might provide a starting point for further

research. We could even investigate the opportunity for parallel clustering algorithms

(possibly running on the FPGA itself) that can handle large graph sizes efficiently.

Alternately, we can consider strategies for a top-down clustering strategy based on

matrix column dependency graph to enable rapid scheduling. These optimizations

enable us to close the performance gap with ideal parallel performance inherent in

the dataflow structure.

8.1.3 Domain Decomposition for Matrix-Solve Phase

SPICE circuits for entire chips will generate large matrices for the factorization phase.

To get high performance for such large matrices, we will need to partition the pro-

cessing across multiple FPGAs. Offchip IO limits may constrain performance for

dataflow communication between these large matrices. It will also be challenging to

schedule these large graphs in a reasonable amount of time. Domain-decomposition

approaches [45] (Numerical Algorithms) that break up the large matrix into mul-

tiple submatrices can offer a solution. The decomposed submatrices can be indepen-

dently solved in dataflow fashion on individual FPGAs or distributed across multiple

FPGAs if available.

8.1.4 Composition Languages for Integration

For SPICE, we composed the complete application using SCORE’s TDF (Task De-

scription Format) language. This may not necessarily be the best language to capture

certain control-intensive and sparse dataflow-oriented forms of computation. We need

to develop languages that allow composing multiple expression patterns effortlessly.
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This may be in the form of embedded languages or a completely new custom co-

ordination language.

8.1.5 Additional Parallelization Opportunities in SPICE

We currently expose most, but not all, of the parallelism available in the SPICE simu-

lator. We must investigate the following key opportunities for additional improvement

in parallel SPICE performance:

1. We can overlap the Model-Evaluation phase with the Sparse Matrix-Solve phase

of SPICE. Our streaming high-level capture in SCORE offers the ability to in-

tegrate a scheduler (Scheduling) that can facilitate this overlap. The sched-

uler needs to statically compute a suitable ordering of the device evaluation in

Model-Evaluation to match the dataflow ordering in the Sparse Matrix-Solve

computation.

2. Additionally, we can improve the performance of the Model-Evaluation phase

with extra loop-unrolling and the use of offchip memory capacity (Scheduling).

We need to develop an extension to our VLIW architecture to migrate data

offchip when necessary.

3. The Sparse Matrix-Solve phase of SPICE offers additional parallelization op-

portunities in the form of associative reformulation [123] (Scheduling) and

domain-decomposition [45] approaches (Numerical Algorithms).

4. Apart from these approaches, it may be useful to consider completely differ-

ent algorithms (iterative matrix-free fixed-point simulation [124] or constant-

Jacobian [125]; SPICE Algorithms) for SPICE simulations that completely

eliminate the need for performing per-iteration matrix factorization.
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8.2 Broad Goals

The goals of this thesis are not limited to implementing SPICE or FPGAs. Ultimately,

we are interested in understanding how to implement different kinds of computation

on multiple computing organizations e.g. multi-cores, GPUs. We now identify a few

areas of research that can help us support this long-term vision. These areas are

partly inspired from the thesis.

8.2.1 System Partitioning

For this thesis, we consider a solution which uses FPGA logic for the complete SPICE

solver. In the future, we want develop high-level frameworks that combine domain-

specific languages and auto-tuners to and build system-level backends for hetero-

geneous systems. We envision parallel processing systems which integrate FPGAs,

GPUs and Multi-Core processors to become important for many performance-critical

application. We can use SPICE as a design driver to show how to effectively program

and use such systems. We sketch some system partitioning strategies in Figure 8.1.

8.2.2 Smart Auto-Tuners

When mapping to multiple parallel architectures, we used automated code-generation

and auto-tuning approaches in this thesis to enable a fair comparison. This auto-

tuner makes an exhaustive sweep of the parameter space which in general evaluates

the cartesian product set of the parameter ranges. This is needless in most cases and

limits the utility to offline tuning. We may be able to use intelligent auto-tuners that

efficiently prune the search space and may even make it possible to perform online

auto-tuning like that in [86] or a mixed offline-online technique as in [126].

8.2.3 Fast Online Placement and Routing

In this thesis, for the Sparse Matrix-Solve computation, we currently generate the

dataflow graph and perform placement on the CPU and then transfer the placed
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graph over to the FPGA. This may be acceptable for long-running simulations but

can become a bottleneck for short runs. We must be able to generate the dataflow

graph on the FPGA as well as rapidly place the dataflow graph for locality. These

ideas have been previously explored in [127]. We currently perform dynamically-

routed packet-switched dataflow processing of the large matrix factorization dataflow

graph. Since we know the graph structure entirely in advance, we should be able to

schedule (place and route) the graph statically. Again, we can build on ideas explored

earlier in [128].

8.2.4 Fast Simulation

A scalable, fast cycle-accurate software simulator is crucial for demonstrating and

understanding performance scaling of novel computer architecture organizations on

large real-world problems. This is important before we invest significant time and

energy into building prototype hardware. We need to obtain additional insight into

performance trends for large matrix workloads to expose potential bottlenecks at large

problem sizes. We can exploit multi-core parallelism to build fast simulators for our

Dataflow FPGA architecture.

8.2.5 Fast Design-Space Exploration

In this thesis, we show the utility and benefits of using auto-tuning for generated

efficient, optimized FPGA implementation of the Model-Evaluation hardware. For

our case, we can perform an exhaustive exploration of the design space due the small

size of the space and quick compilation of each configuration. For general problems,

we must develop smarter exploration algorithms with rapid performance estimation

for faster optimization. We can even consider FPGA-based simulators [129] that can

quickly provide performance estimates.
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8.2.6 Dynamic Reconfiguration and Adaptation

The SPICE algorithm we use for this thesis has a mostly static compute structure.

We might be able to exploit delta dataflow [130] and tradeoff accuracy of the sim-

ulation for higher performance (less work). For more general matrices (not limited

to circuit simulation), we will need to support dynamic runtime pivoting for the LU

factorization. This will change the dataflow structure at runtime. We will need to

develop lightweight runtimes to support dynamic changes in the application compute

structure. This will allow us to extend the generality of this thesis to a broader

range of applications and even provide a richer quality-performance tradeoff space for

SPICE.
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