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ABSTRACT 

Immunoglobulin (Ig) superfamily receptors function in a wide variety of developmental 

and metabolic processes. We are particularly interested in characterizing two Ig 

superfamily receptors neogenin and L1. The first chapter of the thesis gives a brief 

review of the biological significance of neogenin and L1 and what has been learned in 

their functions. In Chapter 2, we describe the localization of the hemojuvelin-binding 

epitope of neogenin to the membrane proximal fifth and sixth fibronectin type III 

(FNIII) domains, with the sixth FNIII domain contributing the majority of the binding. 

Chapter 3 presents the crystal structure of this hemojuvelin-binding fragment at 1.8 Å, 

revealing a nearly linear domain arrangement. Hemojuvelin binding sites have been 

mapped to one face of the sixth FNIII domain based on sequence alignment between 

neogenin and DCC (Deleted in Colorectal Cancer), a molecule related to neogenin but 

does not bind to hemojuvelin. These results should also be informative in understanding 

the interaction between neogenin and repulsive guidance molecule (RGM), the closest 

homologue of hemojuvelin. The interaction between neogenin and RGM is known to 

regulate neuronal survival. Chapter 4, the second part of the thesis, describes our studies 

of L1-mediated homophilic adhesion using biophysical approaches. We built a basis 

shape model to describe L1-mediated homophilic adhesion between L1-coated giant 

unilamellar vesicles and flat substrate. Using confocal microscopy techniques, we were 

able to reconstruct the three-dimensional shape of an adhered vesicle. We developed an 

algorithm in order to derive adhesion strength from the configurations of adhered 

vesicles based on our basis shape model using energy minimization approach. 
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Immunoglobulin (Ig) superfamily molecules 

 The concept of the immunoglobulin superfamily originated from the observation 

that domains within a variety of proteins share sequence similarity with immunoglobulin 

constant and variable domains, and such domains may have evolved from a common 

ancestral protein of ~100 amino acids in length (1). Initially, Ig or Ig-like domains were 

identified based on sequence similarity, but as more 3-D structures became available, this 

criterion was replaced by similarity based on structural features, which greatly broadened 

the definition of the superfamily. A typical Ig-like domain (Figure 1) has a sandwich-like 

fold formed by two sheets of antiparallel beta strands, and often a conserved disulfide 

bond between two cysteines, and an “invariant” tryptophan residue (1).  

 Most Ig superfamily molecules are located on cell surface, with exceptions 

including the secreted forms of antibodies. The most common functions of Ig superfamily 

receptors are adhesion/recognition and initiation of signaling cascade in the cytoplasm 

(1). One group of Ig superfamily receptors consists of tandem Ig-like domains followed 

by fibronectin type III (FNIII) domains, which is a common structure motif originally 

found in fibronectin (2). Both FNIII domains and Ig-like domains belong to the Greek 

key superfold (3), but the sequence similarity between these types of domains is usually 

quite low. The folding topology of a FNIII domain strongly resembles the IgC2 domain, 

but lacks the disulfide bond linking the two opposed beta sheets (3). Adhesion complexes 

formed by Ig superfamily molecules are not just static. Instead they are capable of 

sensing the signal from the extracellular space and modulating cellular activities (4). 
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Figure 1. Ribbon and topology diagrams of typical Ig folds and FNIII fold. Disulfide 

bonds are shown as yellow sticks in ribbon diagram and dashed lines in topology diagram. 

The IgV and IgC1 domains are found in the immunoglobulin variable and constant 

regions, respectively. IgC2 domain shares sequence similarity to IgV but topologically 

looks like IgC1. FNIII domain has the same domain arrangement as the IgC2 but without 

the disulfide bond. PDB IDs used are 1YQV, 2YXF, 1HNF, and 1QR4. 
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 Many Ig superfamily proteins function as adhesion molecules in the nervous 

system and they have been implicated in various roles during the development of the 

nervous system (5). Based on the composition of their extracellular domains, neural cell 

adhesion molecules of the Ig superfamily (IgCAMs) can be divided in three groups: 

containing Ig folds only, containing Ig folds followed by FNIII domain(s), and Ig folds 

linked to protein modules other than an FNIII domain. Figure 2 shows a schematic view 

of several neural cell adhesion molecules of the Ig superfamily, including the most 

extensively characterized proteins NCAM, L1, and DCC/neogenin. IgCAMs are known 

to interact with themselves (homophilic binding) and with other proteins (heterophilic 

binding), which can be other IgCAMs (6).  

 The thesis work described here is the characterization of the Ig superfamily 

receptors neogenin and L1 using biochemical and biophysical approaches. Although 

neogenin and L1 are both neural adhesion molecules of the Ig superfamily, neogenin 

interacts with a broader range of ligands and function in multiple aspects of development 

and metabolism other than CNS development, for example, iron homeostasis (7). Here 

we present studies aimed at elucidating the role of neogenin in the mammalian iron-

regulatory network through its interactions with hemojuvelin. Chapter 2 presents the 

mapping of the hemojuvelin-binding epitope on neogenin and Chapter 3 presents the 

crystal structure of the hemojuvelin-binding fragment of neogenin and comparison with 

existing tandem FNIII domain structures. These results are also relevant to interactions 

between neogenin and repulsive guidance molecules (RGMs), which regulate neuronal 

survival and are related to hemojuvelin. The second part of the thesis describes a 
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biophysical approach to studying L1-mediated homophilic adhesion using L1 

reconstituted into liposomes.  

 

Figure 2. Neural adhesion molecules of the Ig superfamily. Proteins composed of Ig-like 

domains connected to FNIII domains (left) and proteins composed of Ig-like domains 

alone (right) are included. Ig superfamily proteins with Ig-like domains linked to motifs 

other than FNIII fold are not shown. Synonymous names are in parentheses. These 

molecules are associated with the membrane either by a single transmembrane segment 

or a glycosylphosphatidylinisotol (GPI)-anchor. For a more detailed list of Ig superfamily 

neural adhesion molecules, see reference (5). 



 7 

Iron homeostasis 

 Iron is essential to almost all organisms on earth. The conversion between ferric 

(Fe3+) and ferrous (Fe2+) states enables it to donate and receive electrons and thus 

participate in many redox reactions. Well-known iron-containing proteins include the 

nitrogen fixation enzyme nitrogenase, ferrodoxin in photosynthesis, and the oxygen 

transporter hemoglobin. In order to maintain a normal level of iron availability and 

compensate for daily loss, dietary iron is absorbed through the mammalian intestinal 

epithelium, chelated by transferrin with extremely high affinity, and delivered to the rest 

of the body through the transferrin/transferrin receptor (Tf/TfR) system via a receptor-

mediated endocytosis (8). Iron-loaded Tf undergoes a pH-dependent conformation 

change in the acidic environment of intracellular early endosomes and releases the iron 

for cellular usage or storage in ferritin, within which iron is kept in a non-toxic form and 

can be released for later application. 

 Ionic iron has the potential to initiate lipid peroxidation, a free radical chain 

reaction involving molecular oxygen that can lead to cell death. Therefore, iron usually 

exists in a tightly coordinated form such as within a heme or iron-sulfur cluster rather 

than the free ionic form. Mammals have evolved a complicated iron regulatory pathway 

in order to handle iron in a safe manner (9). Strict regulation of iron not only prevents it 

from damaging cellular structures, but also limits its availability to bacteria, thus 

preventing infection-induced inflammation. Dysfunction of regulation can lead to iron 

deficiency or iron overload, also known as hemochromatosis, which can result in severe 

damage to the liver, heart, and pancreas, and in the worst cases, organ failure (10). 
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 Over the past two decades, many molecules in the iron-regulatory network have 

been identified, including HFE (11), transferrin receptor 2  (TfR2)(12), ferroportin (13-

16), hepcidin (17-19), and hemojuvelin (20). Among these molecules, hepcidin, an anti-

microbial peptide hormone secreted predominantly by liver, is the principal iron regulator 

(21). Hepcidin controls iron flux through binding and inducing internalization and 

degradation of ferroportin, the only known membrane iron exporter highly expressed in 

duodenal cells, hepatocytes, macrophages, and placental cells (22).  Elevation in hepcidin 

expression prevents dietary iron uptake as well as iron efflux to the plasma and can lead 

to anemia. On the other hand, insufficient hepcidin production due to mutation in the 

hepcidin gene or its upstream regulators (HFE, TfR2, and hemojuvelin) results in most 

causes of hereditary hemochromatosis (21).  

 The hemochromatosis protein HFE is type I transmembrane protein and related to 

class I major histocompatibility complex (MHC) molecules, but lacking their peptide 

binding ability (23). HFE competes with iron-loaded Tf, the whole body iron status flag, 

for binding to TfR (24, 25). HFE also interacts with TfR2, a type II transmembrane 

protein with an N-terminal cytoplasmic domain and a large ectodomain homologous to 

TfR. TfR2 does bind iron-loaded Tf (26), and has been suggested to serve more as a 

sensor for body iron status than in Tf uptake (27). Despite the considerable sequence 

similarity between TfR and TfR2, HFE binds at different locations on these two 

molecules: the ectodomain in the case of TfR and the transmembrane region in the care 

of TfR2 (28, 29). Since HFE does not have any identifiable internalization sequence in its 

cytoplasmic domain, the TfR2/HFE interaction was proposed to transduce signals 

through the TfR2 intracellular domain when serum iron saturation is changed (30). 
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Compared with HFE and TfR2, the role of hemojuvelin in regulating hepcidin level is 

better understood thanks to growing information in recent years. 

 

Iron regulatory protein hemojuvelin 

 In 2004, the HJV (originally called HFE2) gene, encoding the iron-regulatory 

protein hemojuvelin, was positionally cloned using samples from patients with juvenile 

hemochromatosis, an early-onset hereditary iron overload disorder (20). In HJV knocked-

out mice, hepcidin mRNA is almost undetectable (31), consistent with the low urine 

hepcidin concentration in patients with HJV mutations. 

 Expressed in fetal and adult liver, heart and skeletal muscle, human HJV encodes 

a protein of 426 amino acids, including a secretion signal peptide, a conserved RGD 

triamino acid motif, a partial von Willebrandt factor domain, and a 

glycosylphosphatidylinisotol (GPI) anchor for attaching the mature protein to the cell 

membrane. The closest homologues of hemojuvelin are repulsive guidance molecules 

(RGMs), which have multiple functions in neural development. Hemojuvelin can 

undergo a proteolytic cleavage at a conserved Asp-Pro bond and forms two fragments 

that usually associate together (32). This feature was also observed in mouse and chick 

RGM family members (32). Hemojuvelin can exist in both soluble and membrane-

associated forms. Soluble hemojuvelin is found in serum, serving as a competitor with its 

membrane-bound counterpart in a dose-dependent manner in regulating hepcidin 

expression (32).  

 

The Ig superfamily receptor neogenin 
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 Soon after the discovery of hemojuvelin, neogenin, a cell surface receptor 

belonging to the Ig superfamily, was found to guide axon growth and regulate neuronal 

survival through interacting with repulsive guidance molecule A (RGMa) (33, 34), the 

closest homolog of hemojuvelin. The high sequence similarity between hemojuvelin and 

RGMa suggested the possibility that neogenin might also function as the receptor for 

hemojuvelin, which was confirmed by co-immunoprecipitation experiment (35). The 

disease-causing mutant hemojuvelin G320V does not bind neogenin, indicating that the 

hemojuvelin-neogenin interaction is critical in iron homeostasis (35). Unlike the tissue-

specific expression pattern for hemojuvelin, expression of human neogenin appears 

ubiquitous (36), with the highest mRNA level detected in skeletal muscle, one of the few 

places where hemojuvelin is highly expressed. Since hemojuvelin does not seem to play a 

major role in muscle morphogenesis (20), it has been proposed that the function of the 

hemojuvelin/neogenin interaction in skeletal muscle is to provide soluble hemojuvelin in 

serum (37).  

 Neogenin consists of a large ectodomain with four Ig-like domains and six FNIII 

domains, a transmembrane region and an intracellular domain (38). Sharing nearly 50% 

sequence identity, neogenin is closely related to the DCC (Deleted in Colorectal Cancer) 

protein. Both neogenin and DCC function as receptors for netrins, a group of proteins 

playing fundamental roles in the development of nervous system (39, 40). Neogenin is 

also involved in a broad range of developmental and metabolic processes. In addition to 

interacting with RGMs and netrin in axon guidance in the brain, neogenin is also critical 

in establishing organ architectures (41), in stimulating myogenic differentiation (42) and 

promoting mammary gland morphogenesis (40).  
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 We initiated biochemical studies of the hemojuvelin/neogenin interaction to 

elucidate the mechanism of the interaction on the molecular level. The stoichiometry of 

the binding was found to be 1:1 and the hemojuvelin-binding epitope was mapped to the 

membrane-proximal FNIII 5-6 domains on neogenin as described in Chapter 2. In 

collaboration with Dr. An-Sheng Zhang in the Enns group at Oregon Health and Sciences 

University, we proved that this fragment is as effective as the intact neogenin ectodomain 

in competing with cell membrane neogenin both in vitro (Appendix A) and in vivo 

(Appendix B). The crystal structure of this hemojuvelin-binding fragment was solved and 

presented in Chapter 3. However, attempts to crystallize hemojuvelin alone and 

hemojuvelin/neogenin complexes have not yet been successful.  

 

Hemojuvelin-assisted bone morphogenetic protein pathway 

 Belonging to the transforming growth factor β (TGF-β) superfamily, bone 

morphogenetic proteins (BMPs) are a group of secreted molecules that play important 

roles in the cell growth, differentiation, and apoptosis throughout the animal kingdom 

(43). Originally identified as inducer of bone formation in vivo when injected in mice, 

BMPs have been intensively studied after the cloning of the human BMP-2 gene in late 

1980s (44). Like other molecules in the TGF-β superfamily, BMPs are synthesized as 

large precursors, which later become glycosylated and processed to form single disulfide 

bond-linked dimer with each polypeptide chain containing the C-terminal 114 residues of 

the propeptide (45).  

 Significant advances concerning the functions of BMPs and the receptor mediated 

signal transduction pathway have been achieved in recent years (46). Classic BMP 
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pathway is initiated by the binding of the ligand on the plasma membrane, inducing the 

heterodimerization of type I and type II transmembrane serine/threoinine kinase receptors, 

which in turn activates the Smad proteins by phosyphorylation (47, 48). The receptor-

activated Smad will then recruit another protein called Smad4 and translocate into 

nucleus to regulate the transcription of target genes (47, 48). There are several different 

type I and type II receptors and their combination determines the molecules subsequently 

involved in the signal transduction (47). 

 An important advance in the iron field occurred in 2006, when hemojuvelin was 

identified as the co-receptor for BMP (49). Evidences showed that hemojuvelin-aided 

BMP signaling triggers hepcidin expression through the classic Smad1/5/8 activation 

upon binding of BMP to its type I and type II receptors (49). This pathway was found to 

be independent of other iron-regulatory proteins such as HFE, TfR2, and Interleukin-6 

(IL-6) (50). BMP-responsive elements, STAT, and bZIP/HNF4/COUP motifs, were 

located in the promoter of hepcidin by two groups independently (51, 52). BMP-6 was 

then identified as the central endogenous regulator of hepcidin expression among all 

BMP family proteins in vivo and the phenotype of BMP-6 null mice resembles hereditary 

hemochromatosis (53).  

 The major players in hemojuvelin-related hepcidin expression are depicted in 

Figure 3. How does neogenin fit into the picture of hemojuvelin-mediated BMP 

signaling? Shedding of hemojuvelin from cell membrane was observed to be responsive 

to the concentration of iron-loaded transferrin and hemojuvelin shedding is mediated by 

neogenin and independent of BMP or its antagonist (37). The group that initially 

discovered hemojuvelin as a co-receptor for BMPs claimed that hemojuvelin signaled 
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hepcidin expression only through a subset of BMP ligands (BMP-2, BMP-4, and BMP-6) 

and BMP receptors, and that this process was independent of neogenin (54). However, 

another study showed that neogenin-hemojuvelin interaction was critical in BMP-4-

induced hepcidin expression (55), contradicting the previous conclusion. We also 

discovered that neogenin and BMP-2 do not bind to hemojuvelin at overlapping site (see 

Chapter 2), supporting the possibility that neogenin is part of the multi-protein complex 

that initiates the intracellular signaling that ultimately leads to hepcidin expression (56).  

Most recently, a third group succeeded in making neogenin-/- mice that exhibit iron 

overload, impaired BMP signaling and low levels of hepcidin (57). These researchers 

argued that neogenin regulates hemojuvelin/BMP-induced hepcidin expression through 

stabilizing GPI-anchored hemojuvelin and inhibiting hemojuvelin secretion. 

 Another way that neogenin may be involved in signaling is through the cleavage 

and translocation of its intracellular domain, which was suggested in a recent report (58). 

However, this study focused on the role of neogenin in axon guidance via interaction 

with the neuronal RGMa protein and thus does not directly address the questions in iron 

regulation, which mostly takes place in the liver. The exact role of neogenin in this 

pathway remains to be elucidated. 
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Figure 3. Molecular network of hemojuvelin-induced hepcidin expression. P1, P2 and P3 

are the conserved regions on neogenin intracellular domain. R-I and R-II are type I and 

type II transmembrane serine/threoinine kinase receptors for BMP. γ-secretase is 

responsible for releasing the intracellular domain of neogenin to the cytosol. Two dashed 

lines indicate potential interaction or pathway suggested by previous studies (56, 58). 
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Neural cell adhesion molecule L1 

 The L1 gene is located on the X-chromosome (59) and mutations in the L1 gene 

are associated with a broad spectrum of neurological diseases (60) including mental 

retardation (61), MASA syndrome (62), X-linked hydrocephalus (63), impairment of 

sensorimotor gating (64). The positions of these pathological mutations were mapped 

onto a structural model of the L1 ectodomain (65), based on the crystal structures of 

domains in telokin (66) and neuroglian (67), where the latter is the Drosophila 

homologue of human L1. Over half of the mutations are clustered at N-termini of 

individual domains as well as the C-D strand region on the Ig-like domain, potentially 

causing the phenotype by destabilizing the protein (65).   

 Primarily expressed in the developing and adult nervous system, L1 consists of 

six Ig-like domains, five FNIII domains, a single transmembrane domain and a 

cytoplasmic tail of just over 100 amino acids (68) (Figure 2). The multi-domain structure 

of L1 enables it to interact with distinct partners such as integrins, fibroblast growth 

factor receptor and other cell adhesion molecules (69), resulting in dynamic regulation of 

cell adhesion in response to different ligands. The cytoplasmic domain of L1 contains a 

conserved region capable of binding to the cytoskeletal protein ankyrin (68), and a 

conserved tyrosine residue within this region was found to control binding by its 

phosphorylation (70). Downstream signaling induced by L1 after ankyrin binding is 

complicated, including recruitment of the microtubule-associated protein doublecortin 

(DCX) and sequential activation of a series of kinases (69, 71, 72). 

 

L1-mediated homophilic adhesion 
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 How L1 achieves homophilic adhesion has been under intensive study for many 

years. The first four Ig domains are critical in homophilic adhesion and neurite outgrowth 

but the potency of molecules containing only these domains is lower than the intact 

molecule (73). Based on existing crystal structures of the L1 homologues hemolin (74) 

and axonin-1 (75), the first four Ig domains of L1 are believed to form a horseshoe-

shaped structure, with the first and second Ig domains folding back to interact with the 

third and fourth Ig domains. The FNIII domain region of the molecule appears to adopt a 

relatively extended conformation (76).  

 Severals models have been proposed to predict how the horseshoe pairs arrange 

with respect to each other in homophilic adhesion. Previous models, including a domain 

swapping model (74) and a zipper model (75), were based on crystal structures of 

proteins closely related to L1. Regularly spaced adhesion spots were observed in the 

more recent electron tomography studies and it was proposed that the separation distance 

is controlled by interactions either between negatively charged carbohydrates and 

positive surfaces of the neighboring protein or between uncharged carbohydrate pairs 

(77).  

 

Giant unilamellar vesicle as model membranes   

 We sought to address some thermodynamic and kinetic issues related to L1-

mediated homophilic adhesion. For example, what is the average adhesion energy for one 

pair of L1 molecules or the energy for a given L1 density? Is there cooperativity in L1-

mediated adhesion? Does the adhesion zone actively recruit L1 from other regions of a 
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membrane? In order to address these questions, we used L1 incoporated into giant 

unilamellar vesicles as the experimental platform.  

 As an essential component of all biomembranes, the lipid bilayer has the unique 

feature of two-dimensional fluidity, which is critical in lipid/protein diffusion, 

distribution, and local enrichment (78, 79). Due to the complex nature of biomembranes 

in cells, researchers have used lipid model systems to understand basic membrane 

activities (80). These cell-free assays make it possible to track down essential 

components of the membrane trafficking processes and distinguish the order of events, 

while at the same time preserving the two-dimensional fluidity of cellular membranes. 

One of the most broadly used model membranes is spherical liposome, also known as 

vesicle. Many methods have been established to prepare liposomes using natural or 

synthetic lipids while varying the chemical composition of the lipid bilayer.  Giant 

unilamellar vesicles (GUVs) are particularly of interest due to their cell-size dimensions 

(81). Although the observations from these in vitro experiments involving GUVs does 

not always translate into what happens in cells because cellular membranes are more 

rigid due the cytoskeleton, they often provide great insight essential to understanding 

events taking places on these membranes at a molecular level (82, 83). Chapter 4 

summarizes our work on L1-mediated homophilic adhesion using both theoretical and 

experimental approaches involving GUVs. 
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Abstract 

 Neogenin is a type I transmembrane glycoprotein with a large ectodomain 

containing tandem immunoglobulin-like and fibronectin type III (FNIII) domains. 

Closely related to the tumor suppressor gene DCC, neogenin functions in critical 

biological processes through binding to various ligands, including netrin, repulsive 

guidance molecules, and the iron regulatory protein hemojuvelin. We previously reported 

that neogenin binds to hemojuvelin through its membrane-proximal fifth and sixth FNIII 

domains (FN5-6), with domain 6 (FN6) contributing the majority of critical binding 

interactions. Here we present the crystal structure of FN5-6, the hemojuvelin-binding 

fragment of human neogenin, at 1.8 Å. The two FNIII domains are orientated nearly 

linearly, a domain arrangement most similar to that of a tandem FNIII-containing 

fragment within the cytoplasmic tail of the β4 integrin. By mapping surface-exposed 

residues that differ between neogenin FN5-6 and the comparable domains from DCC, 

which does not bind hemojuvelin, we identified a potential hemojuvelin-binding site on 

neogenin FN6. Neogenin FN5, which does not bind hemojuvelin in isolation, exhibits a 

highly electropositive surface, which may be involved in interactions with negatively-

charged polysaccharides or phospholipids in the membrane bilayer. The neogenin FN5-6 

structure can be used to facilitate a molecular understanding of neogenin’s interaction 

with hemojuvelin to regulate iron homeostasis and with hemojuvelin-related repulsive 

guidance molecules to mediate axon guidance. 
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1. Introduction 

Neogenin is a type I transmembrane glycoprotein expressed in multiple tissues 

including brain, kidney, liver, and skeletal muscle (Meyerhardt et al., 1997; Vielmetter et 

al., 1997). Closely-related to the tumor suppressor molecule DCC (Deleted in Colorectal 

Cancer) (Vielmetter et al., 1994), neogenin is composed of four immunoglobulin (Ig)-like 

domains followed by six fibronectin type III (FNIII) domains, a transmembrane region, 

and a cytoplasmic domain (Vielmetter et al., 1994; Vielmetter et al., 1997). Neogenin 

functions in a variety of developmental and metabolic processes (Wilson and Key, 2007), 

and several ligands have been identified, including netrin, repulsive guidance molecules 

(RGMs) (Matsunaga and Chedotal, 2004; Matsunaga et al., 2004; Rajagopalan et al., 

2004), and the iron regulatory protein hemojuvelin (Zhang et al., 2005).  

 While netrin-1 and neogenin mediate chemoattractive axon guidance, the 

neogenin/RGMa interaction functions specifically in axon repulsion (Wilson and Key, 

2006). Neogenin has also been implicated as a dependence receptor (Bredesen et al., 

2005), such that it triggers apoptosis in the absence of a ligand RGM molecule, whereas 

the ligand-bound state inhibits this effect (Matsunaga and Chedotal, 2004; Matsunaga et 

al., 2004). Downstream signaling elicited by the binding of neogenin to RGMa involves 

the Rho family of small GTP-binding proteins, which regulate cytoskeletal dynamics by 

controlling actin filaments and causing growth cone collapse (Conrad et al., 2007). Pre-

incubation of netrin-1 inhibits this signaling, indicating either that netrin-1 occludes the 

RGMa-binding site on neogenin, or that a different signaling cascade is initiated to 

counteract the Rho-mediated signaling (Conrad et al., 2007). 
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In hepatocytes and perhaps also skeletal muscle, neogenin is involved in iron 

homeostasis through interactions with hemojuvelin, also known as HFE2 or RGMc 

(Zhang et al., 2005). Hemojuvelin is a glycosylphosphatidylinositol (GPI)-anchored 

protein that shares sequence similarity with RGMa and RGMb, which, unlike 

hemojuvelin (RGMc), are expressed predominantly in the nervous system (Schmidtmer 

and Engelkamp, 2004). Hemojuvelin is an upstream modulator of hepcidin, a peptide 

hormone that regulates iron flux in mammals (Lin et al., 2005). Interaction with neogenin 

has been suggested to initiate retrograde trafficking of membrane-bound hemojuvelin to 

the Golgi and trans-Golgi network for further processing before soluble hemojuvelin is 

released from the cell (Maxson et al., 2009; Zhang et al., 2007; Zhang et al., 2008). The 

ratio of membrane-bound and soluble forms of hemojuvelin is believed to be important 

for determining the amount of signal sent to the nucleus through the bone morphogenetic 

protein (BMP)/hemojuvelin pathway, which regulates hepcidin expression levels (Babitt 

et al., 2006). 

We previously described biochemical studies using neogenin ectodomain deletion 

mutants to localize the hemojuvelin-binding site to the two membrane-proximal FNIII 

domains (FN5-6) (Yang et al., 2008). The FN5-6 fragment was as effective as the intact 

neogenin ectodomain in competing with cell membrane neogenin, both in vitro (Zhang et 

al., 2008) and in vivo (Zhang et al., 2009), suggesting that the FN5-6 region contains the 

hemojuvelin-binding region on neogenin. While FN5 did not bind detectably to 

hemojuvelin, FN6 alone bound hemojuvelin, although more weakly than FN5-6, 

suggesting a potential contribution from the domain linking region in the binding 

interaction (Yang et al., 2008).  
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  Here we report the crystal structure of the hemojuvelin-binding fragment of 

human neogenin, FN5-6, at 1.8 Å resolution. Each domain adopts the canonical FNIII 

fold, with the two domains arranged nearly linearly, surprisingly similar to the 

arrangement of a pair of tandem FNIII domains from the cytoplasmic tail of the β4 

integrin. The neogenin FN5 domain displays a highly positively-charged surface, a 

feature shared with DCC FN5 and other proteins known to bind heparan sulfate (Bennett 

et al., 1997; McLellan et al., 2006). In addition to the possibility of interacting with 

negatively-charged carbohydrate or protein ligands, we suggest that the positive surface 

on the neogenin FN5 domain may promote interactions with negatively-charged 

phospholipids to facilitate exposure of the hemojuvelin-binding FN6 domain to 

hemojuvelin proteins on the surface of another cell. To gain insight into which portion of 

neogenin FN5-6 interacts with hemojuvelin, we mapped non-conserved residues from the 

comparable domains of DCC, which does not bind hemojuvelin, onto the neogenin FN5-

6 structure. One side of the FN6 domain, comprising strands C, C’, F, and G, contains a 

high concentration of non-conserved surface residues, suggesting that this face of the 

molecule contains the potential hemojuvelin-binding site. 

 

2. Materials and Methods 

2.1 Crystallization and data collections 

 Neogenin FN5-6, corresponding to the fifth and sixth FNIII domains of human 

neogenin (residues 853-1054) plus a C-terminal 6x-His tag, was expressed in 

baculovirus-infected insect cells and purified from supernatants as previously described 

(Yang et al., 2008). This version of neogenin FN5-6 was previously referred to as sFNIII 
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5-6 to distinguish it from a longer version of these domains (FNIII 5-6; residues 851-

1103). The longer version bound to hemojuvelin with ~18 fold higher affinity than FN5-6 

(Yang et al., 2008), but did not crystallize, presumably due to disorder of the C-terminal 

extension. The best crystals were obtained from FN5-6 purified from culture media 

supplemented with 0.5 mg/L tunicamycin (Sigma) to inhibit addition of N-linked 

glycans. Crystallization screening was done using a Mosquito nanoliter handling system 

(TTP LabTech) with drops containing 200 nL protein plus an equal volume of reservoir 

solution. Initial crystals grew in mother liquor containing 0.1 M Tris, pH 8.5, 0.2 M 

ammonium sulfate, 25% PEG-3350 at 20˚C. Larger crystals were obtained in a Qiagen 

24-well screw-top hanging drop plate using the same mother liquor. A single crystal was 

cryo-preserved in mother liquor supplemented with 5% glycerol and a native data set was 

collected on an R-AXIS-VI rotating anode X-ray generator (Rigaku) at 100 K. 

 

2.2 Structure determination and model refinement 

 Data were processed by Denzo and scaled using Scalepack (Otwinowski and 

Minor, 1997) in the orthorhombic space group C2221 (a = 52.6 Å, b = 112.9 Å, c = 80.9 

Å). The calculated Matthews coefficient (VM=2.5 Å3/Da) (Matthews, 1968) suggested a 

solvent content of 51% and one molecule per asymmetric unit. The structure was solved 

by molecular replacement using the program Phaser (McCoy et al., 2007) and search 

models derived from NMR structures of individual domains of neogenin (PDB codes 

1X5J and 1X5K) in which residues not present in our construct were deleted. Solvent-

flattened electron density maps for model building were generated using the program DM 

(CCP4, 1994). After rigid body refinement, the model was iteratively improved using 
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cycles of refinement using CNS (Brunger et al., 1998) and manual rebuilding using 

COOT (Emsley and Cowtan, 2004) into 2Fo-Fc annealed omit maps. The final model 

(Rcryst= 20.0% and Rfree = 23.4%) consists of neogenin residues 853-899 and 903-1052 

(residues 900-902 were disordered), and 293 water molecules (Table 1). For analyses of 

contacts and buried surface areas, FN5 was defined as residues 853-949, and FN6 was 

defined as residues 952-1052. The CCP4 program Areaimol (CCP4, 1994; Lee and 

Richards, 1971; Saff and Kuijlaars, 1997) was used to calculate buried surface area using 

a 1.4 Å probe and to identify interacting residues using the following criteria: a distance 

of <3.5 Å and a hydrogen bond angle of  >90° for hydrogen bonds and a maximum 

distance of 4.0 Å for van der Waals interactions. Figures were prepared by Pymol 

(DeLano, 2002). 

 

3. Results 

3.1 Overview of the neogenin FN5-6 structure  

 Initial crystallization trials with insect cell-expressed neogenin FN5-6 yielded 

crystals that diffracted to only 15 Å. The expression of FN5-6 was repeated in the 

presence of tunicamycin, an inhibitor of N-linked glycosylation. Neogenin FN5-6 derived 

from tunicamycin-treated cells migrated as a slightly smaller apparent molecular weight 

than its untreated counterpart, consistent with successful inhibition of glycan attachment 

to the single predicted N-linked glycosylation site in FN5-6 (data not shown), and 

crystals obtained from the treated protein diffracted to 1.8 Å. A molecular replacement 

solution was obtained by searching simultaneously for the two individual FNIII domains.  
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 The structure of neogenin FN5-6 reveals two domains arranged in an extended 

conformation (Figure 1A). The neogenin FNIII domains share the canonical FNIII 

folding topology, with each FNIII domain containing two anti-parallel β-sheets, one 

formed by β-strands A, B, and E and the other by β-strands C’, C, F, and G. Preceding 

strand G in both domains is a polyproline II helix, a common feature of FNIII domains 

(Huber et al., 1994). Another polyproline II helix (residue 1-5) is present in strand A in 

the FN5 domain and a short 310 helix is found between strands C and C’ in the FN6 

domain. The two domains interact via a hydrogen bonding network (Figure 1B) that 

stabilizes the extended conformation observed for the structure in the crystals. The 

hydrogen bonding network, taken together with a lack of obvious crystal contacts that 

would promote the observed interdomain conformation, suggest that the domain 

arrangement in the crystals would be preserved in solution.  

 

3.2 Comparison with other FNIII domain structures 

The DaliLite server (Holm et al., 2008) was used to compare the neogenin FN5-6 

structure with other FNIII domains. In isolation, the closest structural homolog of 

neogenin FN5 is the FN1 domain from the plectin-bound β4 integrin (de Pereda et al., 

2009), and neogenin FN6 is most closely related to DCC FN6 (PDB code 2EDE; to be 

published). We also compared neogenin FN5-6 to available tandem FNIII structures 

including the β4 integrin cytoplasmic domain (de Pereda et al., 1999), neuroglian FN1-2 

(Huber et al., 1994), NCAM FN1-2 (Carafoli et al., 2008), fibronectin FN7-10 (Leahy et 

al., 1996), NCAM2 FN1-2 (PDB code 2JLL; to be published), and Ihog FN1-2 

(McLellan et al., 2006). The neogenin FN5-6 domain arrangement was most similar to 
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the arrangement of FNIII domains in the intracellular region of the β4 integrin 

(Supplementary Figure 1A), both in the interdomain tilt angle and the relative rotation 

angle (Table 2). A total of ~500 Å2 was buried between the two neogenin FNIII domains, 

an intermediate value for buried surface areas in tandem FNIII domain structures, which 

ranged from 280 Å for NCAM2 FN1-2 to 1170 Å for Ihog FN1-2.  

Electrostatic potential calculations revealed that neogenin FN5 is highly 

positively charged (Figure 1C), a feature shared with only a few other FNIII domains 

with structures available in the Protein Data Bank: of 80 available structures of FNIII 

domains, the only highly positively-charged domains were from the FN5 domain of DCC 

(PDB code 2EDD; to be published) (Figure 1C), FN1 from Ihog (McLellan et al., 2006), 

and FNIII domains from four other unpublished structures (PDB codes 1X4Z, 1UEN, 

1WFT, and 1UJT). Calculated electrostatic potential surfaces for a subset of these FNIII 

structures (the available tandem FNIII domain structures) are shown in Supplementary 

Figure 1B.  

 

3.3 Sequence comparison with DCC molecule and implications for ligand binding 

 We previously showed that isolated neogenin FN6 (sFNIII 6; residues 952-1054) 

bound to hemojuvelin with an affinity of ~2 µM, almost 1000-fold more weakly than 

neogenin FN5-6, whereas isolated neogenin FN5 (sFNIII 5; residues 853-952) showed no 

detectable binding to hemojuvelin (Yang et al., 2008). These results suggested that the 

hemojuvelin-binding epitope (and by analogy, the RGM-binding epitope) on neogenin is 

primarily located in FN6. To gain insight into potential hemojuvelin/RGM-binding 

interface(s) on neogenin, we mapped residues from DCC onto the neogenin FN5-6 
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structure. Previous studies demonstrated that hemojuvelin does not bind DCC, although 

neogenin FN5-6 and DCC FN5-6 share 64% sequence identity and 83% similarity 

(Figure 2A) and DCC is the closest homolog of neogenin (Zhang et al., 2005). Thus a 

concentration of non-conserved residues could represent a potential hemojuvelin/RGM 

binding interface on neogenin. A portion of FN6 comprising the 310 helix in the C-C’ 

loop, the C’ strand, and the loop between strands E and F is enriched in non-conserved 

surface residues, suggesting its potential involvement in binding hemojuvelin (Figure 

2B).  

The highly positive nature of the neogenin FN5 domain (Figure 1C) suggests a 

model (Figure 3) in which the FN5 domain interacts with negatively-charged 

phospholipids on the membrane bilayer to expose the membrane-proximal FN6 domain 

of neogenin for trans (between cells) interactions with RGMs (Yamashita et al., 2007). 

Alternatively, the basic patch on FN5 could bind to an as yet unidentified highly 

negatively-charged protein ligand or to negatively-charged polysaccharide chains, such as 

heparan sulfate, as has been demonstrated for DCC FN5 (Bennett et al., 1997) and for 

Ihog (McLellan et al., 2006).  

  

4. Discussion 

 Tandem FNIII domains are found in many signal-transducing cell surface 

receptors, including gp130, Ihog, neuroglian, and neogenin. Although a FNIII fold can be 

identified from sequence information alone, the arrangement of tandem FNIII domains 

cannot be predicted from a sequence. Structures of tandem FNIII domains have revealed 

a variety of domain arrangements, ranging from nearly linear (e.g., β4 integrin) to 
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slightly or completely bent (e.g., NCAM, neuroglian, fibronectin, and Ihog FNIII 

domains) (Supplementary Figure 1A). The crystal structure of the hemojuvelin-binding 

neogenin FN5-6 fragment reported here reveals a nearly linear domain arrangement. 

Surprisingly, this arrangement is most similar to the arrangement of intracellular FNIII 

domains in the cytoplasmic tail of the β4 integrin. The significance of the structural 

similarity between tandem FNIII domains in the extracellular region of neogenin and the 

intracellular region of an integrin is unknown. 

 The neogenin FN5-6 structure revealed an unusually electropositive surface, 

which is shared by only a few other FNIII domains, including DCC FN5 and Ihog FN1. 

Both DCC FN5 and Ihog FN1 bind to heparan sulfate (Bennett et al., 1997; McLellan et 

al., 2006), suggesting that neogenin FN5 may also interact with heparan or other 

negatively-charged polysaccharide chains. Alternatively, or perhaps in addition to, 

binding to heparan sulfate, the positive charges on neogenin FN5 could facilitate ligand 

(hemojuvelin or RGM) access to the membrane-proximal FN6 domain through 

interactions between FN5 and negatively-charged lipids on the membrane bilayer (Figure 

3). The surface of DCC FN5 is also highly positive (Figure 1C) and the basic residues in 

the DCC and neogenin FN5 domains are mostly conserved (Figure 2A), suggesting a 

similar function for DCC FN5. Consistent with this idea, the netrin-binding site on DCC 

has been mapped to a nearby region; either FN4 or FN5 (Geisbrecht et al., 2003; Kruger 

et al., 2004). 

 The discovery of hemojuvelin as a co-receptor for BMP during activation of 

hepcidin expression (Babitt et al., 2006) suggested the possibility of using BMP 

antagonists for the treatment of anemia (Browne and Reddan, 2009). Alternatively, since 
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the neogenin FN5-6 fragment described here has been shown to suppress BMP-mediated 

hepcidin expression both in vitro and in vivo (Zhang et al., 2009), it may be possible to 

treat anemia by using this fragment. Identification of a potential hemojuvelin-binding site 

on neogenin FN6 (Figure 2B) may be informative in designing such a drug if 

modifications are needed. 

 

Protein Data Bank Accession Code 

Coordinates and structure factors for neogenin FN5-6 have been deposited with RCSB 

Protein Data Bank with code 3P4L. 
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Table 1 Data collection and refinement statistics 

Unit cell Space group C2221 
Cell dimensions a, b, c (Å) 52.6, 112.9, 80.9 
Data collection   
 Resolution (Å) 32.8-1.8 (1.86-1.80) 
 aRmerge (%) 5.9 (37.8) 
 Completeness 99.3 (98.2) 
 I/σI 28.2 (4.2) 
 Mean redundancy 3.8 (3.7) 
 No. of unique/total reflections 22544/85823 
Refinement statistics   
 Resolution (Å) 32.8-1.8 
 No. reflections used 22481 
 No. reflections in working/test set  21391/1090 
 bRcryst/ Rfree (%) 20.0/23.4 
No. Atoms (B factor: Å2)   
 Protein 1577 (23.75) 
 Water 293 (35.49) 
RMS deviations   
 Bond length (Å) 0.010 
 Angle (°) 1.596 
Ramachandran plot (%)   
 Preferred 187 (96.4%) 
 Allowed 7 (3.6%) 
 Outlier 0 (0.0%) 

aRmerge (%) = 100 × ∑ |I-<I>|/∑I, where I is the integrated intensity of a given reflection. 

Numbers in parentheses are statistics for the highest resolution shell. 
bRcryst (%) = 100 × ∑ |Fobs-Fcalc|/∑Fobs, where the Fobs and Fcalc are the observed and 

calculated structure factor amplitudes for all reflections in the working set. 
bRfree was calculated as described for Rcryst but summed over the 5% of reflections that 

were not included in the refinement (Brunger, 1997). 
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Table 2. Interdomain tilt, rotation angles and buried surface area 

 PDB code Tilt (º)* Rotation (º) Buried surface area 
(Å2) *** 

neogenin FN5-6 TBD 169 148 501 
neuroglian FN1-2 1CFB 104 172 308 
fibronectin FN7-8 1FNF 129 112 601 
fibronectin FN8-9 1FNF 134 158 540 
fibronectin FN9-10 1FNF 157 42 338 
β4 integrin  1QG3 155;156** 150;153 392 
NCAM FN1-2 2VKW 57;59 140;140 530 
NCAM2 FN1-2 2JLL 122 89 280 
Ihog FN1-2 2IBB 42 137 1170 

* Tilt angle (defined as the angle between the long axes of two adjacent domains) was 

calculated using the program Dom_angle (Su et al., 1998). Rotation angle (kappa in polar 

coordinates) was calculated using COOT by superimposing the secondary structures of 

the two domains. 
** Two angles were calculated due to slight conformational differences between two 

copies of the same molecule.  
*** Total buried surface areas were calculated using CCP4 program AREAIMOL and a 

1.4 Å probe.  
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Figure legends  
 
 
Figure 1. Crystal structure of neogenin FN5-6. (A) Ribbon diagram of the neogenin FN5-
6 structure. N- and C-termini are labeled. β-strands A, B, and E are blue, strands C, C’, F, 
and G are purple, polyproline helices are orange and a 310 helix is green. A dashed line 
indicates the disordered loop missing in the final model. (B) Hydrogen bonding (dotted 
yellow lines) at the inter-domain interface. Oxygen atoms are red and nitrogen atoms are 
blue in the highlighted side-chains. (C) Electrostatic potential surfaces for neogenin FN5-
6 and DCC FN5 (PDB code 2EDD). Electrostatic potentials were calculated using the 
APBS tool (Baker et al., 2001) and plotted from -7 kT/e (red, electronegative) to +7 kT/e 
(blue, electropositive). 
 
 
Figure 2. Structure-based sequence alignment of the FN5-6 regions of human neogenin 
and DCC. (A) Sequence alignment of neogenin FN5-6 with the counterpart region of 
DCC (GenBank accession codes AAC51287 and NP_005206). Secondary structure 
elements determined from the structure of neogenin FN5-6 are indicated above the 
sequences (arrows for β-strands and springs for helices). Non-conserved residues 
representing potential interaction sites with hemojuvelin are highlighted in red, residues 
that are similar but not identical are highlighted in light brown, and conserved residues 
are not highlighted, with the exception of conserved positively-charged residues in FN5, 
which are marked with an asterisk. (B) Ribbon diagram and surface representation of 
neogenin FN5-6 using the color scheme from panel A to highlight non-conserved regions 
(red) as potential binding sites for hemojuvelin.  
 
 
Figure 3. Hypothetical model for how interactions between neogenin FN5 and 
negatively-charged phospholipids on the surface of the neogenin-expressing cell could 
facilitate interactions between hemojuvelin on the surface of another cell and the 
hemojuvelin-binding site on neogenin FN6. The neogenin FN5-6 structure is shown as in 
Figure 1C as an electrostatic surface, with the highly positive FN5 domain (blue) 
interacting with negatively-charged lipids (red). The remaining domains of neogenin are 
represented as cyan (Ig-like domains) and pink shapes (FNIII domains). A black arrow 
points to the 310 helix within the potential hemojuvelin binding site in the FN6 domain.  
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Figure 1 
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Figure 3 
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Supplementary Figure 1. Comparison of neogenin FN5-6 and other tandem FNIII 
domains in ribbon diagram (panel A) and electrostatic potential surface (panel B) 
representations. Coordinates are from neogenin FN5-6 (this paper), β4 integrin (PDB 
code 1QG3), neuroglian FN1-2 (PDB code 1CFB), NCAM FN1-2 (PDB code 2VKW), 
fibronectin FN7-10 (PDB code 1FNF), NCAM2 FN1-2 (PDB code 2JLL), and Ihog FN1-
2 (PDB code 2IBB). Electrostatic potentials were calculated as described before in Figure 
1C and plotted from -7 kT/e (red, electronegative) to +7 kT/e (blue, electropositive). The 
purple sphere in the neuroglian ribbon diagram represents a bound sodium ion. 
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Introduction 

L1 is a transmembrane glycoprotein that mediates homophilic and heterophilic 

adhesion events in neural cell recognition (1). L1 is an immunoglobulin superfamily 

member composed of six Ig-like domains followed by five fibronectin type III (FNIII) 

domains, a transmembrane domain and a short but well-conserved intracellular domain 

(2). L1 interacts with various binding partners and plays important roles in neural 

development as well as in the adult nervous system, including neurite outgrowth, 

neuronal migration and survival, and synapse organization (3, 4). Mutants of L1 have 

been found to cause mental retardation, hydrocephalus, impairment of sensorimotor 

gating, abnormal cerebellar development, and many other phenotypes (5-8).  

 Studies have shown that the first four Ig domains of L1 form a horseshoe shaped 

structure, which has been reported to be critical in L1 homophilic adhesion (9, 10). Based 

on studies of its homologues, two models, the domain-swapped multimer model (9) and 

the zipper model (11), have been proposed to explain how homophilic interaction is 

achieved. In the domain-swapping model, transient opening of the horseshoe structure 

induces the formation of domain swapped dimers and multimers (Figure 4A), and the 

latter contains periodic adhesion sites with gaps in between. The zipper model, however, 

predicts a continuous linear array of horseshoes in the middle of the adjacent membranes 

(Figure 4B). The two models not only differ in the adhesion site pattern, but also in the 

inter-membrane distance. Dr. Yongning He, a postdoctoral scholar in the Bjorkman 

laboratory, initiated his electron microscopy studies to observe L1-mediated adhesion 

between liposomes and to verify or refute these models. His studies revealed a regularly 

spaced pattern formed by L1 molecules from neighboring membranes and found that 
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alterations of L1-associated carbohydrates, for example, recombinant L1 proteins from 

different expression systems, changed the adhesion interface, particularly the distance of 

adhesion sites. Based on all of these observations, he suggested a carbohydrate-modified 

interaction model, in which protein-protein interactions determine the trans interaction by 

pairs of horseshoe domains and carbohydrate-carbohydrate or carbohydrate-protein 

interactions regulate the cis spacing between neighboring L1 proteins on a membrane 

(12) (Figure 4C).  

Additional questions regarding L1-mediated adhesion remain to be addressed. For 

example, what is the average binding strength between one pair of molecules (or average 

energies at different molecular densities)? Is there cooperativity in adhesive interactions 

between membranes? That is, is the total adhesion energy at an interface with 100 

molecules exactly twice of that of an interaface with 50 molecules? Additionally, under 

physiological conditions, when L1 protein is present at relatively low densities, does an 

adhesion interface recruit molecules from other regions?   

In order to adddress these questions, an appropriate model system is needed. 

Studies of membrane mechanics within the context of biology has long been a field that 

attracts physicists. Artificial lipid vesicles are often used as a model system for studying 

membrane mechanics because unlike biological membranes in cells, their lack of a 

cytoskeleton matrix and various membrane proteins makes it easier for researchers to 

understand underlying physical mechanisms and to provide important insights into 

complex biomembranes (13). Experimental and theoretical/numerical approaches have 

been applied to the study of red blood cell shape determination and transition (14), 
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budding (exocytosis) (15), and adhesion (16, 17). For a review of this field, please refer 

to (13).  

 

Figure 1. Three models of L1-mediated homophilic adhesion. (A) Domain-swapping 

model suggested by the structure of hemolin, an L1 homologue (9). (B) Zipper model 

based on the packing in crystals of axonin-1, another L1 homologue (11). (C) 

Carbohydrate-modified model proposed on the basis of electron tomography studies of 

L1-mediated adhesion in liposomes (12). Negatively-charged sialic acids on 

carbohydrates from one horseshoe interact with a positive patch (represented by a black 

dot) of a neighboring horseshoe to form a regularly spaced pattern. (Figure modified from 

(12).) 
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Our studies of L1-mediated adhesion have been a collaborative effort with Tristan 

Ursell, a former graduate student in the Phillips laboratory and now a postdoctoral 

scholar at Stanford. We aim to use biophysical approaches to answer the questions listed 

above using giant unilamellar vesicles (GUVs) as a platform. Tristan and I independently 

developed a basis shape model for the deformation for a GUV adhered to a flat substrate. 

In this general model, adhesion strength is defined on the interface but the nature of the 

adhesion force is not specified – it can be any interaction. Simulations were performed to 

show how adhesion energy density affects the shape of an adhered GUV. Experimentally, 

we developed a complete protocol in order to image L1-coated GUV adhering to L1-

functionalized coverglass using confocal microscopy. Data processing scripts were 

written in order to reconstruct three dimensional shape configurations and adhesion 

energy density was derived from the shape profile. We also tested the applicability of a 

numerical simulation program, Surface Evolver, to calculate the shape of a vesicle 

adhering to a substrate. Although the numerical method is not amenable to the inverse 

problem of extracting model parameters, it did provide insight regarding the validity of 

our parameterized basis shape model; by fitting the simulated profile to our model, it was 

possible to map out the regime where the latter indeed serves as a faithful 

characterization of the full profile. 

 
Materials and Methods 

Molecular cloning and protein expression 

 A gene encoding the ectodomain of human L1 (residues M1-E1120 and a C-

terminal 6x-His tag) was cloned into pcDNA3.1 vector (Invitrogen) by Yongning He as 
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described in (12). Supernatants collected from transiently-transfected 293T cells were 

buffer exchanged into 20 mM Tris, pH 7.4, 150mM NaCl before loading onto a Ni-NTA 

column (Qiagen). Eluates were further purified by size exclusion chromatography using a 

Superdex 200 10/30 column (GE Healthcare). Proteins were concentrated and stored at 4 

°C in 20 mM Tris pH 7.4, 150 mM NaCl and 5 mM EDTA.  

 

Preparation of giant unilamellar vesicles 

 1,2-Dioleoyl-sn-Glycero-3-phosphocholine (DOPC), 1,2-Dioleoyl-sn-Glycero-3-

{[N(5-Amino-1-Carboxypentyl)iminodiAcetic Acid]Succinyl} (nickel salt) (DOGS-

NTA-Ni), and 1,2-Dioleoyl-sn-Glycero-3-Phosphoethanolamine-N-(Lissamine 

Rhodamine B Sulfonyl) (Rhodmaine-PE) were purchased from Avanti Polar Lipids 

(Alabaster, AL). Lipid mixtures were made by mixing 5 mole % DOGS-NTA-Ni with 

94.5 mole % DOPC and 0.5 mole % Rhodamine-PE to facilitate visualization. The final 

concentration of lipids was set to 2 mg/ml in chloroform. 2 µl lipid/chloroform solution 

was applied to pre-cleaned indium tin oxide (ITO) glass slide on a custom-made chamber 

(by Tristan Ursell) to form a thin layer. The chamber was desiccated for one hour before 

an ethanol-cleaned one-side-greased nitrile O-ring was carefully placed on top of the 

dried lipid layer. 140 µl of 220 mM sucrose solution was added in the O-ring on which 

the cover of the chamber was then placed. Applying 1-5V voltage at 10 Hz to the 

chamber for 3 hours destabilized the lipid film to form GUVs. The end product was 

removed from the chamber and transfer to an eppendorf tube. The quality and yield of 

GUVs was checked under a microscope before proceeding to the next step. 
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Attaching protein to GUVs and collecting confocal images 

 Protein samples were exchanged into buffer containing 20mM Tris, 100mM NaCl 

before use (EDTA in the storage buffer needed to be removed to ensure that the His-

tagged protein bound efficiently to the Ni-NTA head groups). Copper NTA 

functionalized glass cover-slips were obtained from MicroSurfaces, Inc. The GUV stock 

was diluted by 10 fold in 20mM Tris, 100mM NaCl. Wildtype L1 (or a negative control 

His-tagged protein, scFv b12, courtesy of Rachel Galimidi) was incubated separately 

with the functionalized glass cover-slip and the diluted GUVs for 40 minutes in order to 

attach the His-tagged protein on both surfaces through His-tag metal-NTA chelation. L1-

decorated GUVs were then incubated with the glass coverslips to allow the adhesion of 

GUVs onto the bottom of the coverslip. After 20 minutes of incubation, samples were 

placed on the stage of Perkin-Elmer Ultraview spinning disk microscope and confocal 

images were recorded using a 100X oil-immersed objective (αPlan-APOCHROMAT 

1.46 Oil DIC, Zeiss) with 568nm laser as the excitation source. 3-D confocal stacks were 

sampled at 0.2 µm spacing in z direction with 200 milliseconds exposure time for each 

image. 

 

Data analysis with Matlab 

 The following steps summarize how to extract an adhesion energy from z-stack 

images of a vesicle adhering to a flat surface. 

(1) Format conversion 
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The confocal z-stack images had to be converted to TIFF using ImageJ PerkinElmer 

plugin in batch model. These images correspond to a series of optical sections 

covering the whole vesicle. 

(2) Determination of axis of revolution 

The images from the equatorial region of the vesicle normally have the best image 

quality in terms of signal to background ratio. It is thus possible to choose a threshold 

to convert the grayscale image to binary format, which displays background as black 

and the lipid bilayer as white. A circle could be fit using those points corresponding 

to the bilayer. Due to the high signal to background ratio, the exact choice of the 

threshold value did not have a significant impact on the fitting result. Ten images 

from the equatorial region were analyzed this way, and the coordinates of the center 

of the fitted circles were averaged to give the position of the revolution axis of the 

vesicle. 

(3) Determination of shape profile 

For images far from the equatorial region, it was difficult to find a threshold to 

differentiate bilayer and background; the vesicle boundary appeared to be a thick 

circle. In order to increase the signal to background ratio, a self-averaging approach, 

based on the axisymmetric property of the vesicle, was employed. To be specific, the 

image was divided into a series of concentric circular shells around the axis of 

revolution determined in the previous step. The average grayscale value in each shell 

was calculated and plotted as a function of its radial distance from the center. The 

peak of this radial profile indicated the position of vesicle boundary for this z-section. 

(4) Determination of the geometric parameters 
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For each radial profile, a threshold was chosen as the maximum intensity minus the 

background. Points above that threshold had radial coordinates approximately the 

same as the radius of the vesicle at the z-section. Note that the z positions were 

corrected as described in detail in the next section (Refractive index mismatch 

correction). These experimentally determined vesicle profile points were used to 

determine the geometric parameters characterizing the vesicle shape. In particular, the 

theoretical profile of the vesicle is completely determined by three important 

parameters, namely, R3, λ, and θc (for details of the model, see Figure 2). Given the 

experimental profile, a three-parameter search was carried out to find a set of 

parameters that minimized the square difference between the theoretical and the 

experimental points. Due to the existence of local minima, many random points in the 

three-dimensional parameter space were chosen as starting points of the optimization 

process. The theoretical curve based on the optimized parameters was checked 

visually against the experimental data as shown in the lower left corner of Figure 2. 

(5) Determination of adhesion energy 

In the adhesion model, the three geometric parameters are obtained by minimizing the 

system free energy given the adhesion energy, bilayer bending modulus, vesicle area 

and reduced volume. It is thus possible for us to deduce the adhesion energy using the 

parameters obtained in step 4. Furthermore, the vesicle area and reduced volume are 

fixed by a given set of shape parameters (R3, λ, and θc) when the bilayer bending 

modulus for the DOPC lipid (the major component in our lipid mixture) is known. So 

the problem reduces to a one-dimensional search in the space of adhesion energy to 
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get the best agreement between geometric parameters determined from experiments 

and theory. 

 

Refractive index mismatch correction 

 In order to reconstruct the three-dimensional shape of an adhered vesicles, the 

exact position along the z-axis is indispensable. Due to the difference of refractive indices 

between the cover-slip/immersion oil (n=1.52) and the imaging medium (here 20 mM 

Tris, pH 7.4, 100 mM NaCl, with n=1.34 (18)), the actual position of the focal plane 

differs from its nominal position since the direction of light changes as it enters the 

second medium from the first one. This effect worsens as the distance from the objective 

increases. For a thin specimen (less than 3 µm) or only minor differences in refractive 

indices between immersion and imaging media (for example, n1=1.46, n2=1.52), a linear 

correction factor can be used to account for the effects resulting from refractive index 

mismatch (19). In our case, the GUVs ranged from a few microns to tens of microns. 

Therefore, single parameter correction method was not appropriate. For every single 

confocal image, the position of actual focal plane was calculated based on a theory 

developed by Egner and Hell (20). The Matlab script for the correction is included in 

Appendix C. 

 

Simulation using Surface Evolver 

The initial shape is a cube on a flat surface and the bottom of the cube is confined 

to be on the surface. The vertices, edges, faces and body are defined, and the evolution of 

the vesicle shape is controlled by two energies: adhesion energy and bending energy. The 
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total area and total volume are fixed during evolution. The surface is first coarsely 

triangulated during the initial steps of evolution. After the shape starts to stabilize, the 

surface triangularization is refined to get finer details of the shape. The evolution 

sequence is normally composed of steps of first-order gradient search, facet management, 

refinement, and second-order Hessian search. The first-order gradient algorithm is robust 

but slow, so it is used to get close to the equilibrium point and provide a good starting 

point for second-order Hessian search. Facet management is required to get rid of 

extremely small edges and adjust the facet sizes to make them more uniform; robust 

calculation of curvature relies on this procedure. The grid density is adjusted by 

refinement to achieve the desired spatial resolution. 

 

Results and Discussions 

Parameterized basis shape model 

 As summarized in a classic review published in 1997 (13), there are three 

approaches that are often used to find the vesicle shape with the lowest energy: solving 

Euler-Lagrange equations, applying variational method to trial shapes, and minimizing 

the energy numerically on triangulated surfaces. We chose the second approach due to its 

relative simplicity, both analytically and numerically. The first method was attempted 

while I tried to repeat the results by Seifert in the two-dimensional adhering vesicle case 

(17) but the extension to three dimensions is nontrivial. The third strategy was later used 

to verify the validity of the current approach and will be described in later paragraphs. 
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Figure 2. Flow chart showing how the confocal images were processed. Clockwise from 

top left: stacks of raw images, fitting equatorial data to find the revolution axis, plotting  

self-averaging intensity profile, extracting data points (blue) from background, fitting the 

data points to a 3-parameter shape profile. 

 

 
Figure 3. Schematic view of a vesicle adhering to a flat surface with the geometric 

parameters defined.  
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For simplicity, we consider a vesicle adhering to a flat surface. Due to the 

axisymmetric nature of the problem, one can use a cross section along the revolution axis 

to represent the 3-D object. Assume the initial state is a free GUV with total volume V0 

and total area A0 (A0=4πR0
2, where R0 is called characteristic length) and the final state is 

pictured below in Figure 3, parameterized by three radii R1, R2, R3 and one angle θc. An 

adhered vesicle can be characterized by three regions: a spherical cap (in red), a adhering 

base (blue), and the connecting segment (green). Due to the boundary conditions, one 

radius can be expressed in terms of the other three parameters, leaving only three 

independent variables to fully describe the system. Let cosθc=c, and introduce λ=R2/R3, 

then we have 

. 

Now the system can be completely described by R3, λ, and c. The total area and total 

volume can be expressed as 

, 

. 

The bending energy can be calculated as a summation of the contributions from the 

spherical cap and the connecting region 
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where K1 and K2 are the principal curvatures of the local surface. By definition, R2=λR3, 

the bending energy becomes 

 . 

Depending the value of λ, the above integral has analytical form as following: 

. 

We assume that both the total volume and area are conserved (due to balanced osmolarity 

and extremely high energy cost to stretch a bilayer), now the question becomes how to 

minimize the total energy expressed in three variables under both area (A=A0) and 

volume constraints (V=V0): 

 

Here W is the adhesion strength per unit area while A* is the area of the adhesion plane.  
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Figure 4. Representative simulation results based on energy minimization shows how 

the shape changes as adhesion strength increases. R2 (blue, left axis) and R3 (green, 

right axis) are plotted as functions of adhesion energy. The coloring scheme is the 

same in vesicle shape plots on the top of each set of data points (R1 red, R2 blue, and 

R3 green). The initial state of the vesicle is represented by R0=20 µm and reduced 

volume σ=0.9 while the bilayer bending modulus is κ=20 kBT for DOPC bilayers 

(21). 
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 Now that the model is complete, for any given adhesion strength W and initial 

volume and area, one can obtain a configuration (set of R3, λ, and c) that gives 

minimal total energy. Inverting the problem, one can start from a final configuration 

and deduce the adhesion strength W. The latter case is what really happens in the 

experiments – one can take confocal images of an adhering vesicle, reconstruct its 

three-dimensional configuration, and then calculate the corresponding adhesion 

strengths, which we are interested in. Before collecting experimental data, I did a few 

rounds of simulations to calculate the shapes of typical sized GUVs under different 

adhesion strengths (Figure 4). What the simulation results tell us is that under high 

adhesion strength, the shape change becomes minimal so that one cannot confidently 

resolve the differences (for example, see the green regions of vesicles at adhesion 

strengths 10 and 20 kBT/µm2). In this case, one can still an obtain adhesion strength 

from experimental data but the confidence interval will be too big to be meaningful. 

 

Deduction of adhesion strength from experimental data  

 With the model complete, we then proceeded to perform the adhesion 

experiments. Following the protocol in the Materials and Methods (see Figure 5A for 

the electroformation chamber), we generated GUVs with diameters ranging from a 

few microns to tens of microns (Figure 5B). After adding L1 protein and incubating 

for 30 minutes, the GUVs deformed significantly (Figure 5C and 5D). A strong 

rhodamine signal, created by two contacting membranes, was observed at the 

adhesion interface.   
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Figure 5. L1 adhesion induces significant deformations in adhering GUVs. (A) 

Electroformation chamber for GUV production (courtesy of Tristan Ursell). (B) DIC 

image of raw GUVs (before addition of L1) made from 5 mole % DOGS-NTA, 

94.5% DOPC and 0.5% Rhodamine-PE. (C) and (D) fluorescent images of L1-

mediated adhesion/deformation under rhodamine channel. All Scale bars are 10 µm.  
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 Now that it was confirmed that adhesion could be observed on GUVs, we moved 

on to an experimental setup that mimics our model. As described in the Materials and 

Methods section, both GUVs and copper-NTA functionalized coverglass were 

incubated with L1 separately, and then the two were combined. We controlled the 

GUV density so that vesicle-vesicle adhesion was rarely observed and vesicle-

coverglass adhesion was predominant. The sample was then imaged with a confocal 

microscope and stacks of images were taken on adhered GUVs along the z-axis, as 

described in the Materials and Methods section. The cross section of a typical adhered 

GUV is shown in Figure 6A; a negative control, in which no adhesion zone was 

observed, is shown in Figure 6B.  

 Data processing was carried out as described in the Materials and Methods section. 

At the end of this procedure, one set of parameters (R3 λ c) is obtained using least 

square minimization to characterize the observed profile. Deriving adhesion energy 

from geometric parameters is simply the inverse problem of what was described in 

the previous simulation section. Calculated shape parameters and deduced adhesion 

energy densities from four different data sets are listed in Table 1 (see Figure 6C for 

fitting). These vesicles all had reduced volumes approaching unity, indicating that 

they were nearly spherical before adhesion occurred. This is consistent with the fact 

that the osmolarity difference between the inside and outside of vesicles was minimal 

because we used solutions of matching osmolarity to prepare and dilute the vesicles. 

The adhesion density varies greatly with vesicle size without an obvious trend. 

Obtaining more data may help reduce the confidence interval of the average adhesion 

energy density. It is also possible that adhesion energy does depend on the vesicle 
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size in a nontrivial way. One might think the redistribution of L1 molecule on GUV 

surface is able to cause the effect as long as the entropy cost can be compensated by 

adhesion. This hypothesis is based on the assumption that L1 protein is sparse enough 

on surface so that the adhesion zone needs more molecules to form. However, an 

analysis of the sizes of lipid molecule and L1 protein does not seem to support this 

theory. A lipid molecule normally occupies 0.25 nm2 on surface (22) while a typical 

Ig domain or FNIII domain measures 3 nm in diameter and 5 nm along the long axis 

(data derived from crystal structures). This means that if the bilayer contains 5% 

DOGS-NTA as in our experiment, there are 5.7 DOGS-NTA molecules per the space 

one L1 molecule fills up. Since either the density of DOGS-NTA lipids or the steric 

effect of L1 itself determines the L1 density on GUV surface, it seems that there is no 

need for the adhesion zone to recruit L1 molecules from other regions of the GUV. 

  

Table 1: Summary of information during data processing 
  022409#2 022409#4 022409#5 022409#8 
Data file 022409#2_stacks 022409#4_stacks 022409#5_stacks 022409#8_stacks 
No. of images used 66 63 63 39 
Centering images1 35-45 30-40 35-45 15-22 
Data extraction threshhold2 1.3 1.3 1.8 1.5 
No. of extracted data points 673 418 487 299 
Index of best fit parameters 8 23 38 29 
Error of best fit 0.0177 0.0153 0.0094 0.0116 
Best fit parameters  
(R3, λ, c)  

(4.1860, 0.4654,  
0.0503) 

(3.1063, 0.4567,  
0.0481) 

(1.5555,1.9417, 
-0.0413) 

(1.6210, 0.8669,  
0.0980) 

Total area A_x 435 237 226 100 
Reduced volume Sigma_x 0.989 0.989 0.935 0.969 
Center of spherical cap (0, 4.09) (0, 3.04) (0, 1.68) (0, 1.48) 
Center of connecting region (1.95, 4.19) (1.42, 3.11) (3.02, 1.56) (1.41, 1.62) 
Adhesion strength W3 1.3 2.4 9.1 7.9 
Min f(x) during finding W 0.01423 0.01411 0.01915 0.00283 

1 Centering images were used to determine the axis of revolution. 
2 A pixel is considered to be a data point when its fluorescent value is greater than the mean value of 

fluorescence intensities for the current image plus the threshold times the standard deviation. 
3 The unit of adhesion strength W is kBT/µm2. The bending modulus was taken as 20 kBT when calculating 

the adhesion strength. The unit of length is µm unless specified otherwise. 
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Figure 6. L1-mediated adhesion imaged by confocal microscopy. (A) Cross-section along 

yz plane of a GUV incubated with L1. (B) Cross section along yz plane of a GUV 

incubated with a control protein. Please note that z positions in A and B were not 

corrected with refractive index mismatch corrections. (C) Extracted confocal data (red) 

vs. fitting using our basis shape model (green) for all four data sets. The derived 

geometric parameters are shown in each panel and in Table 1.  
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 Finally, the validity of the parameterized model should be verified to ensure the 

model was sufficient to describe the system under our experimental conditions. The next 

section describes my work on the validation of the basis shape model by checking it 

against numerically simulated profiles using Surface Evolver. 

 

Surface evolver as a verification tool for the basis shape model 

Surface Evolver (http://www.susqu.edu/brakke/evolver/) is a widely-used 

interactive software to simulate the shape statics of an object under mechanical forces 

(23). The software finds the optimal shape of an object by minimizing the total energy of 

the system. Normally, a user provides an initial shape and specifies the functional forms 

of various energies, and Surface Evolver then evolves the object shape along the gradient 

the energy hypersurface. The typical process of evolution is shown in Figure 7 and one 

can see how a cube becomes an adhered vesicle under the force determined by the 

gradient of the energy functional. Researchers have successfully applied this 

methodology in studying the formation of multicellular aggregates (24). 

 Surface Evolver simulation was carried out for different reduced adhesion 

strengths (γ=WR0
2/2κ, in which W is the adhesion strength, R0 is the characteristic 

length, and κ is the bending modulus). The numerical profile of deformed vesicles at γ=1, 

2, 5, 10 were fitted to the basis shape model to evaluate its applicability. The comparison 

between the numerical result and the best fit model is shown in Figure 8. Qualitatively, 

vesicles under stronger adhesion (γ=5 and γ=10) seemed to be approximated better by the 

basis shape model. It should be noted that the numerical simulations are not always 

stable, especially for large adhesion strengths. 
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Figure 7. Typical evolution of a vesicle adhered to a flat substrate (total area A=6, total 

volume V=1, reduced volume σ=V/[4π/3)(A/4π)3/2=0.72]. 

 

Figure 8. Comparison of numerical results by Surface Evolver (red) and best fitting using 

basis shape model. In all cases the reduced volume is 0.95, which is comparable with that 

in our experiment.  
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Future Directions 

L1-GFP enables the direct visualization of L1 on GUVs 

 We described our observation of GUVs adhering to flat surface by monitoring the 

rhodamine signal within the lipid bilayer. However, this method does not give any 

information on the distribution of L1 protein on GUV surface and thus would not allow 

assessment of potential L1 relocalization once adhesion zone is initiated, one of the 

questions we aim to answer. In order to visualize the L1 protein, we designed a construct 

that has a GFP fused to the C-terminus of the L1 ectodomain. This protein, L1-GFP, was 

successfully expressed in mammalian cells and purified following the protocol used 

previously for L1 and its fluorescent signal was confirmed (Figure 9A). L1-GFP has also 

been proven to mediate adhesion between GUVs (Figure 9B).  Therefore, we have now a 

tool to visualize the bilayer and the localization of L1 protein within the bilayer. We also 

tested the attachment of L1-GFP on copper-NTA functionalized coverglass and observed 

a fluorescent signal. After photobleaching, this signal did not recover (data not shown), 

indicating that this signal indeed came from immobilized L1-GFP, rather than residual 

protein in the aqueous phase.  

Manipulation of lipid composition has proven to be feasible  

 Currently we use a lipid mixture containing 5% DOGS-NTA, which determines 

the maximum number of His-tagged L1 proteins the GUV can possibly attach. One 

possible assay is to monitor the GUV shape profiles while changing the percentage of 

DOGS-NTA lipids. We successfully made GUVs with 10% and 20% DOGS-NTA 

(Figure 10). However, lipid mixtures containing 50% DOGS-NTA failed to generate any 

GUVs.  
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Figure 9. Recombinant L1-GFP is 

fluorescent and is able to induce 

vesicle deformation during 

adhesion. (A) Fluorescence size 

exclusion chromatography (FSEC) 

trace of purified L1-GFP. (B) 

GUV adhesion imaged under both 

rhodamine (left) and GFP (middle) 

channels, and the overlay of the 

two (right). 

 

 

 

 

Figure 10. Successful production of GUVs from different lipid composition. (A) GUVs 

made from 10% DOGS-NTA. (B) GUVs made from 20% DOGS-NTA. 
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Matlab scripts for the L1 project 
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Matlab script for profile simulation for given adhesion strength 

% **********************File name: E_minimization.m********************** 

% Fan Yang 

% This subroutine returns the configuration parameters with the total lowest energy value 

once the adhesion strength w, reduced volume Sigma, and total area A0 are specified. 

  

function p=E_minimization(w,Sigma,A0) 

  

%clear all 

N=6000; 

lambda=linspace(0.01,50,N); 

cspace=linspace(-0.99,0.99,200); 

  

% initial total area, passed to the current subroutine 

% A0=4*pi*8*8; % R0=8 

  

%Scan lambda values and store the resulting energy E, R and c in an arrays 

%c1(2), R1(2) and E1(2). 

for i=1:N 

    %Find the minimal value of D=peliminate([-.99,0.99],lambda(i)). 

    %If min is less than zero, start root searching toward both ends 

    %If min is bigger than zero, no root will be found - exit with error. 

    for j=1:length(cspace) 

        D(j)=peliminate_x(cspace(j),lambda(i),Sigma); 

    end 

    [Dmin,Imin]=min(D); 

    if Dmin<0 

     

    opts=optimset('TolX',1e-10,'TolFun',1e-10); 

    %Look for root to the left and right of the minimum of D(i) to find 

    %roots of D 
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    try 

        c(i)=fzero(@(x) peliminate_x(x,lambda(i),Sigma),[-0.99,cspace(Imin)],opts); 

        R3(i)=sqrt(A0/(pi*(lambda(i)*lambda(i)+2*(lambda(i)+sqrt(1-

c(i)*c(i)))^2/(1+c(i))+2*lambda(i)*acos(-c(i))+2*(1+c(i))))); 

        E(i)=TotalE_w(R3(i),c(i),lambda(i),w); 

    catch ME1 

        idSegLast = regexp(ME1.identifier, '(?<=:)\w+$', 'match');  

        if strcmp(idSegLast, 'ValuesAtEndPtsSameSign') 

            c(i)=NaN; 

            R3(i)=NaN; 

            E(i)=NaN; 

        end 

    end 

     

      

    else  

        c(i)=NaN; 

        R3(i)=NaN; 

        E(i)=NaN; 

         

    end 

end 

  

[E1min Imin]=min(E); 

R3min=R3(Imin); 

cmin=c(Imin); 

lambda_min=lambda(Imin); 

  

    p(1)=R3min; 

    p(2)=lambda_min; 

    p(3)=cmin; 
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% **********************File name: peliminate_x.m********************** 

% Fan Yang 

% "p" denotes parameterized, meaning that the user is allowed to supply a parameter 

lambda here rather than a given number. 

% eliminate R3 using the area and volume constraints  

  

function D=peliminate(c0,lambda,Sigma) 

  

if lambda>0 

V=2/3*pi*(lambda/sqrt(1-c0*c0)+1)^3*(1-c0)+pi/3*(lambda+sqrt(1-

c0*c0))^2*(lambda/sqrt(1-c0*c0)+1)*(-c0)+pi*(1+c0)*lambda*lambda+pi*c0*sqrt(1-

c0*c0)*lambda+pi*(1+c0)*(1+c0)-1/3*pi*(1+c0)^3+pi*2*lambda*asin(sqrt((1+c0)/2)); 

A=pi*(lambda*lambda+2*(lambda+sqrt(1-c0*c0))^2/(1+c0)+2*lambda*acos(-

c0)+2*(1+c0)); 

%R=V/A^(3/2)-Sigma/(6*sqrt(pi)); 

D=V-A^(3/2)*Sigma/(6*sqrt(pi)); 

  

else D=(4/3*pi*(1-c0)+pi/3*(1-c0*c0)*(-c0)+(1+c0)^2+1/3*(1+c0)^3)/(4*pi)^1.5-

Sigma/(6*sqrt(pi)); 

end 

 

 

% *******************File name: TotalE_w.m******************* 

% Fan Yang 

% This subroutine calculates and returns the total energy for an adhered vesicle when all 

configuration parameters and the adhesion energy density are provided. 

  

function TE=TotalE_w(R,c,lambda,w) 

 

    if lambda>1, 
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        TE=4*pi*k*(1-c)+k*pi/sqrt(lambda^2-1)*(4*sqrt(lambda^2-1)-

2*lambda^2*atan((1+lambda*sqrt((1-c)/(1+c)))/(sqrt(lambda^2-1)))+4*c*sqrt(lambda^2-

1)+lambda^2*pi)-w*pi*lambda^2*R^2; 

    elseif lambda<1, 

        TE=8*pi*k+k*pi*lambda*lambda/sqrt(1-lambda*lambda)*log(((1+sqrt(1-

lambda*lambda))*(lambda+sqrt(1-c*c))/(lambda*(1-c*sqrt(1-

lambda*lambda)+lambda*sqrt(1-c*c)))))-w*pi*lambda^2*R^2; 

    else 

        TE=8*pi*k+2*k*pi/(1+sqrt((1-c0)/(1+c0)))-w*pi*lambda^2*R^2; 

    end 

 

Matlab scripts for confocal data processing 

% Tristan Ursell - extraction of vesicle shape from confocal z-stack 

% March 2009 

% Vesicle Adhesion Shape Analysis 

% 

% Fan Yang - fitting the extracted profile to the basic shape model 

clear all 

close all 

  

% file1 is a tiff stack of confocal images. There should be only one vesicle in the field of 

% view. The z-stack is built such that it starts from the top of a vesicle toward the           

% coverglass (adhesion zone).  

[file1,aa]=imgetfile; 

%[file1,dir]=uigetfile('*.tif','MultiSelect', 'on'); 

  

% get the number of images in the stack 

N=length(imfinfo(file1)); 

  

% Pick an image in the middle of the stack and select a region about the center of the     

% vesicle. The average intensity in the selected region is analyzed for each image, and it 
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% reaches maximum when the section is focused on the adhesion patch on the bottom of 

% the vesicle. N is then changed to the frame number for this section so that we only     

% analyze images at or above the adhesion zone. 

colormap(gray); 

Im=imread(file1,floor(N/2)); 

imagesc(Im); 

% choose the region of interest by mouse clicking 

[B roi]=imcrop; 

for i=1:N 

    Ims=imread(file1,i); 

    Ims_crop=imcrop(Ims,roi); 

    mean_crop(i)=mean2(Ims_crop); 

end 

[C bt_ind]=max(mean_crop); 

N=bt_ind; 

  

disp(['This z-stack has ' num2str(N) ' images.']); 

  

% The center of the vescile is determined by analyzing the sections focused in the middle 

% of the vesicle where a clear circle can be obtained by thresholding. The threshold is   

% determined by user selecting the bright region and the dark region. Pixels with an       

% intensity bigger than that of the dark region by more than 0.95*(difference between   

% dark and bright region) is used in the next step for curve fitting. The circle is fitted to 

% obtained the position of the center, and the cooridinates from all centering frames are 

% averaged. 

 

% choose centering frames 

startf=input('Enter initial centering frame:  '); 

endf=input('Enter final centering frame:  '); 

  

centN=endf-startf+1; 
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%xy plane pixel conversion (um/px) 

conv=0.1136; 

  

% Cutoff between dark and light 

C=0.95; 

  

q1=input('Analyze brightness of all centering frames?(y/n) ','s'); 

  

if q1=='y' 

    figure 

    colormap(gray) 

    for i=startf:endf 

        disp('Choose a brightness cutoff...') 

        disp(' ') 

        Im=imread(file1,i); 

        imagesc(Im) 

        axis equal 

        axis tight 

        title('Choose dark region.') 

        rect1=round(getrect); 

        dark=Im(rect1(2):rect1(2)+rect1(4),rect1(1):rect1(1)+rect1(3)); 

        title('Choose light region.') 

        rect2=round(getrect); 

        light=Im(rect2(2):rect2(2)+rect2(4),rect2(1):rect2(1)+rect2(3)); 

  

        cut(i)=(mean(mean(light))-mean(mean(dark)))*C+mean(mean(dark)); 

  

        clear T 

        T(:,:,1)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i)); 

        T(:,:,2)=mat2gray(Im); 
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        T(:,:,3)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i)); 

  

        imagesc(T) 

        axis equal 

        axis tight 

        title(['Frame ' num2str(i) ' / ' num2str(i-startf+1) ' of ' num2str(centN)]) 

        pause(1) 

    end 

    close 

else 

    figure 

    colormap(gray) 

    disp('Choose a brightness cutoff...') 

    disp(' ') 

    Im=imread(file1,startf); 

    imagesc(Im) 

    axis equal 

    axis tight 

    title('Choose dark region.') 

    rect1=round(getrect); 

    dark=Im(rect1(2):rect1(2)+rect1(4),rect1(1):rect1(1)+rect1(3)); 

    title('Choose light region.') 

    rect2=round(getrect); 

    light=Im(rect2(2):rect2(2)+rect2(4),rect2(1):rect2(1)+rect2(3)); 

  

    cut(startf)=(mean(mean(light))-mean(mean(dark)))*C+mean(mean(dark)); 

  

    disp('Choose a brightness cutoff...') 

    disp(' ') 

    Im=imread(file1,endf); 

    imagesc(Im) 
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    axis equal 

    axis tight 

    title('Choose dark region.') 

    rect1=round(getrect); 

    dark=Im(rect1(2):rect1(2)+rect1(4),rect1(1):rect1(1)+rect1(3)); 

    title('Choose light region.') 

    rect2=round(getrect); 

    light=Im(rect2(2):rect2(2)+rect2(4),rect2(1):rect2(1)+rect2(3)); 

  

    cut(endf)=(mean(mean(light))-mean(mean(dark)))*C+mean(mean(dark)); 

  

    for i=startf+1:endf-1 

        cut(i)=cut(startf)+(cut(endf)-cut(startf))/centN*(i-startf); 

  

        Im=imread(file1,i); 

        clear T 

        T(:,:,1)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i)); 

        T(:,:,2)=mat2gray(Im); 

        T(:,:,3)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i)); 

  

        imagesc(T) 

        axis equal 

        axis tight 

        title(['Frame ' num2str(i) ' / ' num2str(i-startf+1) ' of ' num2str(centN)]) 

        pause(0.5) 

    end 

end 

  

%Perform the center frame circle fitting 

n=1; 

for i=startf:endf 
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    Im=imread(file1,i); 

    [Y,X]=find(Im>cut(i)); 

    for j=1:length(X) 

        Z(j)=double(Im(Y(j),X(j))); 

    end 

  

    g = @(R)  sum(Z'.^n.*(R(1)-sqrt((R(2)-X).^2+(R(3)-Y).^2)).^2); 

  

    if i==startf 

        R0=[size(Im,1)/4,size(Im,1)/2,size(Im,2)/2]; 

    else 

        R0=[r(i-1),X0(i-1),Y0(i-1)]; 

    end 

  

    R=fminsearch(g,R0); 

  

    r(i)=R(1); 

    X0(i)=R(2); 

    Y0(i)=R(3); 

  

    %Plot the result 

    T(:,:,1)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i)); 

    T(:,:,2)=mat2gray(Im); 

    T(:,:,3)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i)); 

  

    theta=0:0.01:2*pi; 

    Xp=r(i)*cos(theta)+X0(i); 

    Yp=r(i)*sin(theta)+Y0(i); 

     

    imagesc(T) 
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    hold on 

    plot(Xp,Yp,'r') 

    plot(X0(i),Y0(i),'bo') 

    axis equal 

    axis tight 

    title(['Frame ' num2str(i) ' / ' num2str(i-startf+1) ' of ' num2str(centN)]) 

    pause(0.5) 

    hold off 

     

    clear X Y Z R T Xp Yp 

end 

close 

  

Xcent=mean(X0(startf:endf)); 

Ycent=mean(Y0(startf:endf)); 

  

% The intensity in a shell is averaged to provide a radial intensity profile for each frame. 

% determining minimum polar size 

sz=size(Im); 

s1=abs(sz(2)-Xcent); 

s2=abs(Xcent); 

s3=abs(sz(1)-Ycent); 

s4=abs(Ycent); 

  

% Establish maximum polar information radius 

Rmin=round(0.9*min([s1,s2,s3,s4])); 

Rminsq=Rmin^2; 

  

% Get bin positions 

clear bins 

dR=0.33; 
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bins=conv*(dR/2:dR:Rmin); 

  

% Create data matrices 

binmean=zeros(N,length(bins)); 

binstd=zeros(N,length(bins)); 

  

% Find the points that lie within Rmin of the vesicle center 

m=0; 

for j=1:size(Im,1) 

    for k=1:size(Im,2) 

        if ((j-Ycent)^2+(k-Xcent)^2)<Rminsq 

            m=m+1; 

            R(m)=sqrt((j-Ycent)^2+(k-Xcent)^2); 

            RminX(m)=k; 

            RminY(m)=j; 

        end 

    end 

end 

  

% Performing the symmetry revolution 

figure; 

for i=1:N 

    %i=30; 

    clear V 

    Im=imread(file1,i); 

     

    for j=1:m 

        V(j)=Im(RminY(j),RminX(j)); 

    end 

  

    % Create histogram-averaged profile 
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    for p=1:length(bins) 

        clear binvals 

        %find the points in the p-th bin 

        binvals=find(and(((p-1)*dR)<R,(p*dR)>=R)); 

        %calculate the mean of those points 

        if size(binvals,2)>0 

            binmean(i,p)=mean(double(V(binvals))); 

        else 

            binmean(i,p)=NaN; 

        end 

  

        % Calculate the STD of these points 

        if length(binvals)>1 

            binstd(i,p)=std(double(V(binvals))); 

        else 

            binstd(i,p)=NaN; 

        end 

  

        % Plot the results 

        plot(R*conv,V,'k.') 

        hold on 

        plot(bins,binmean(i,:),'r','LineWidth',2) 

        %plot(r(i),max(binmean),'go','LineWidth',2) 

        plot(bins,binmean(i,:)+binstd(i,:),'Color',[1,0.7,0],'LineWidth',1) 

        plot(bins,binmean(i,:)-binstd(i,:),'Color',[1,0.7,0],'LineWidth',1) 

        box('on') 

        xlabel('R(um)') 

        ylabel('Intensity(au)') 

        title(['Frame ' num2str(i) ' of ' num2str(N)]) 

        hold off 

    end 
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    pause(0.1) 

end 

close 

  

% Create final plots 

clear Z 

% step size in Z direction is 0.2 micron 

dZ=0.2; 

Z=0:dZ:(N-1)*dZ; 

Z=Z-Z(bt_ind); 

Z=-Z; 

% Z coordinate is modified by taking into consideration the refractive index mismatch   

% using routine test_optics. 

for i=1:N 

    Z(i)=10^6*test_optics(Z(i)*1e-6)+Z(i); % in microns 

end 

  

colormap(hot) 

  

surf(bins,Z,binmean,'LineStyle','none') 

hold on 

surf(-bins,Z,binmean,'LineStyle','none') 

  

view([0,90]) 

xlabel('R(um)') 

ylabel('Z(um)') 

title('Mean Polar Symmetric Intensity') 

axis equal 

axis tight 
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% Select points from the radial profile. Those higher than the average by more than        

% 1.5*standard deviation is considered a point on the vesicle. 

binmean_nor=mat2gray(binmean); 

mean_v=mean2(binmean_nor); 

std_v=std2(binmean_nor); 

bg=mean_v+1.5*std_v; 

  

X_data=[]; 

Z_data=[]; 

weight_data=[]; 

for i=1:N 

% The first 3 points in radial profile is not used since they came from the average of too 

% few pixels. 

ind=find((binmean_nor(i,4:length(bins))>max(binmean_nor(i,4:length(bins)))*.85).*(bin

mean_nor(i,4:length(bins))>bg)); 

    if isempty(ind) 

    else 

        X_data=[X_data bins(ind+3)]; 

        for j=1:length(ind) 

            Z_data=[Z_data Z(i)]; 

        end 

        weight_data = [weight_data binmean_nor(i, ind+3)]; 

  

    end 

end 

weight_data = weight_data/sum(weight_data); 

  

  

plot3(X_data,Z_data,sign(X_data)*1000,'b.'); 

plot3(-X_data,Z_data,sign(X_data)*1000,'b.'); 

 



 131 

% Now perform fitting to X_data and Z_data using basic shape model. Random initial   

% conditions for the three unknown parameters are provided at the beginning of search 

and the set of parameters that gives the smallest error is reported as p_final_out 

 

fun_final=[]; 

p_final=[]; 

  

% Number of cycles for different random initial conditions 

N_cyc=40; 

  

for i=1:N_cyc 

    % Generate four random numbers on the unit interval 

    r1=rand; 

    r2=rand; 

    r3=rand; 

    p_ini=[0.1+r1*(1-0.01) 0.1+r2*(5-0.1) -1+r3*2]; 

    tic 

    % Search for a set of parameters that would minimize the given function 

    [p_fit fun_err]=fminsearch(@(p) AdhesionError _3p(X_data,Z_data,0,p),p_ini); 

    toc 

    fun_final=[fun_final;fun_err]; 

    p_final=[p_final;p_fit]; 

end 

  

[fun_final_min p_final_ind] = min(fun_final); 

p_final_out = [p_final(p_final_ind, :) 0]; 

[x_fit z_fit] = AdhesionCurve(p_final_out); 

figure; 

plot(X_data, Z_data, 'rx'); 

hold on 

plot(x_fit, z_fit, 'k.'); 
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% ****************File name: AdhesionError_3p.m******************* 

function err=AdhesionError_3p(x,z,z0,p) 

% This function calculates the relative mean square error between the 

% "experimental" profile (x,z) and the theoretical one given by parameter 

% vector p 

R3=p(1); 

lambda=p(2); 

c=p(3); 

%x: xdata vector 

%z: zdata vector 

Neff=length(x); 

  

err=0; 

for i=1:1:length(x) 

    %Calculate the theoretical positions by calling ModelCoor subroutine 

    [xtmp ztmp ifoutside]=ModelCoor(x(i),z(i),[p z0]); 

    %Calculate the errors 

    err=err+((x(i)-xtmp)^2+(z(i)-ztmp)^2)/(xtmp^2+ztmp^2); 

    %At the junction of two regions, ignore the data points 

    Neff=Neff-ifoutside; 

end 

err=err/Neff; 

 

 

% File name: test_optics.m 

% This function calculates and returns the real z-coordinate from the nominal coordinates 

% by correcting for the refractive index mismatch. 

 

function z_max=test_optics(d) 

n1=1.515; 
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n2=1.34; 

NA=1.40; 

alpha=asin(NA/n1); 

theta1=linspace(0.01,alpha,200); 

theta2=zeros(size(theta1)); 

tao_s=zeros(size(theta1)); 

tao_p=zeros(size(theta1)); 

phi_d=zeros(size(theta1)); 

P=ones(size(theta1)); 

  

% d=10*1e-6; 

lambda=568e-9; % wavelength 

k0=2*pi/lambda; 

k2=2*pi*n2/lambda; 

for j=1:1:200, 

    theta2(j)=asin(n1*sin(theta1(j))/n2);    

    tao_s(j)=2*sin(theta2(j))*cos(theta1(j))/sin(theta1(j)+theta2(j)); 

    tao_p(j)=2*sin(theta2(j))*cos(theta1(j))/(sin(theta1(j)+theta2(j))*cos(theta1(j)-

theta2(j))); 

    phi_d(j)=-d*(n1*cos(theta1(j))-n2*cos(theta2(j))); 

    %P(j)=sqrt(cos(theta1(j))); 

end  

  

z=linspace(-d/2,d/2,200); 

I0=zeros(size(z)); 

h=zeros(size(z)); 

for k=1:1:200 

    I0(k)=0; 

    for j=1:1:200, 
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I0(k)=I0(k)+P(j)*sin(theta1(j))*(tao_s(j)+tao_p(j)*cos(theta2(j)))*exp(i*(k0*phi_d(j)+k2

*z(k)*cos(theta2(j)))); 

    end 

    h(k)=abs(I0(k))*abs(I0(k)); 

end 

  

%figure 

  

%plot(z,h); 

  

[C I]=max(h); 

z_max=z(I); 

 

 

 

 

 

Surface Evolver sample script 

/* Revisions by Ken Brakke, Feb. 26, 2010 

   enabled fixed area constraint 

   set facet tension to 0 

   fixed bug in Evolver regarding gradient of star*sq_mean_curvature on constraints. 

   wrote "gogo" procedure to illustrate evolution techniques for keeping  

   the bottom vertices well groomed; particularly necessary since the 

    way squared mean curvature is calculated for discrete surfaces. 

  

   Revisions by Ken Brakke, Mar. 1, 2010 

     Vertices along the contact line still want to go sideways too much. 

        So adding a constraint guidecon to keep the contact line vertices 

        on fixed radial lines.  Had to re-center starting coordinates to 
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        get nice central symmetry to start with. 

     Tried different versions of star sq curvature; star_normal worked 

        best, winding up with no negative eigenvalues after "gogo". 

*/ 

gravity_constant 0 

/* fix area */ 

quantity totalarea fixed = 5 method facet_area global 

/* bending energy */ 

// sq_mean has problems with horns. 

// quantity stnsq energy modulus 1 method sq_mean_curvature global  

// star_perp has trouble convergin. 

//quantity stnsq energy modulus 1 method star_perp_sq_mean_curvature global 

// star_normal seems to work pretty well; at least no negative eigenvalues 

// after "gogo" and hessian_seek works. 

quantity stnsq energy modulus 1 method star_normal_sq_mean_curvature global 

// star_eff_area comes up with a few negative eigenvalues after "gogo" 

// quantity stnsq energy modulus 1 method star_eff_area_sq_mean_curvature global 

/* adhesion energy */ 

quantity adhesion energy modulus 1 method facet_scalar_integral 

scalar_integrand: -5 /* user enters adhesion energy here */ 

/* fix the bottom on a plane */ 

constraint 1   /* the table top */ 

formula: z = 0 

// Guide lines for keeping contact line vertices spaced out. 

parameter guidemult = 4    // should be doubled each refinement 

constraint guidecon 

formula: sin(guidemult*atan2(y,x)) 

  

vertices 

1  -0.5 -0.5 0.0  constraint 1,guidecon  /* 4 vertices on plane */ 

2   0.5 -0.5 0.0  constraint 1,guidecon 
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3   0.5  0.5 0.0  constraint 1,guidecon 

4  -0.5  0.5 0.0  constraint 1,guidecon 

5  -0.5 -0.5 1.0 

6   0.5 -0.5 1.0 

7   0.5  0.5 1.0 

8  -0.5  0.5 1.0 

  

edges  /* given by endpoints and attribute */ 

1   1 2    constraint 1,guidecon /* 4 edges on plane */ 

2   2 3    constraint 1,guidecon 

3   3 4    constraint 1,guidecon 

4   4 1    constraint 1,guidecon 

5   5 6 

6   6 7   

7   7 8  

8   8 5 

9   1 5    

10  2 6   

11  3 7  

2  4 8 

  

faces  /* given by oriented edge loop */ 

1   1 10 -5  -9 density 1  

2   2 11 -6 -10 density 1  

3   3 12 -7 -11 density 1  

4   4  9 -8 -12 density 1  

5   5  6  7   8 density 1  

6  -4 -3 -2  -1  color green constraint 1 density 1 adhesion 

  

bodies  /* one body, defined by its oriented faces */ 

1   1 2 3 4 5 6 volume 1  
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//1   1 2 3 4 5 6  volume 1  density 1 

  

read  

set facet tension 0 

linear_metric on // for consistently normalized eigenvalues 

// Initial squish to get it started better 

set vertex z z*0.7 

// Grooming subroutine, for bottom facets.  Don't want to use vertex 

// averaging on contact line vertices. 

groom_size := 1; 

groom := { 

 fix vertices where on_constraint 1; 

 unfix vertices vv where on_constraint 1 and sum(vv.facet, not on_constraint 1) == 0; 

 refine edge where on_constraint 1 and length > groom_size; 

 u; V; u; V; 

 unfix vertices; 

 delete edge where on_constraint 1 and length < groom_size/4; 

 fix vertices vv where on_constraint 1 and sum(vv.facet, not on_constraint 1) == 0; 

} 

  

// Re-define r to automatically adjust groom_size 

r :::= { guidemult *= 2; 'r'; groom_size /= 2; }  

  

// Typical evolution.  Problem is that since curvature averages over adjacent facet area, 

//rim facets on the bottom want to increase in area toward the inside, since that does not 

//change the angles at the contact line vertices, but does increase the area averaged over. 

  

gogo := { 

  r;  

  r;  

  refine edge ee where sum(ee.facet,color==green)==1; 
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  m 0;  // give it a chance to adjust volume 

  g; 

  g; 

  optimize 0.1;  // now start minimizing energy 

  g; 

  u; 

  {g 5; groom;} 100; 

  r; 

  {g 5; groom; } 20; 

  

  // try some second-order convergence 

  hessian_seek;  // seems happy; hessian scale near 1.  

  hessian_seek; 

  v; 

}	  
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