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Abstract 

Cells in a developing animal require information about their relative position in order to 

function and differentiate appropriately. In the classical view, cellular positional 

information is interpreted from the concentration of chemical signals known as 

morphogens. However, recent studies have questioned the ability of morphogens to 

establish gene expression patterns in a concentration-dependent manner. Here we 

combine theoretical tools and experimental work in Drosophila melanogaster to 

investigate the mechanisms by which positional information is interpreted from a 

morphogen gradient and the ability of patterns to scale with respect to the size of the 

system.  

First, we study how a concentration gradient of the signaling molecule Hedgehog 

establishes multiple patterns of gene expression along the anterior-posterior axis of the 

Drosophila wing disc. Using mathematical modeling as a hypotheses-generating tool, we 

predicted that positional information cannot be explained by different concentration 

thresholds from a static Hedgehog gradient. Instead, we propose that cells take into 

account their history of Hedgehog signaling exposure to determine patterns of gene 

expression. We provide experimental evidence that supports our model and conclude that 

gradient dynamics, resulting from the gene network architecture of the Hedgehog 

signaling pathway, determine pattern formation in the wing disc.  

Second, we introduce a theoretical formalism to study the role of morphogen 

gradient dynamics in developmental patterning. Given a mathematical model of pattern 

formation, we define and compute parameter perturbations that leave invariant the 

steady-state distribution of the relevant morphogen. We propose that this approach can be 
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used as a tool to design genetic experiments that assay the function of morphogen 

dynamics. 

Lastly, we use dorsal-ventral patterning of the early Drosophila embryo as a 

model to study scaling of gene expression patterns with respect to natural variations in 

axis length, that is, the ability to establish positional information relative to the size of the 

system. We provide evidence that gene expression patterns that depend on the maternal 

factor Dorsal, scale along the dorsal-ventral axis. Our data suggest that scaling in this 

system is a gene-dependent rather than a position-dependent property. We propose that 

the mechanisms for scaling depend on feedback interactions downstream of Dorsal. 
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Chapter 1 

Introduction 

 
“Development starts off from a more or less spherical egg, and from it an animal 
develops that is anything but spherical; it has legs, a head, a tail, etc. and internal organs 
that also have determined constant forms…”  
 
                 C. H. Waddington (The Nature of Life, 1961) 
 

It is difficult to think of a natural process that displays a more elegant combination of 

efficiency, complexity, and self-organization than animal development. The species that 

today populate our planet are the result of the most spectacular experiment in natural 

history; through millions of generations, organisms have adapted their body plans to 

coexist with each other, often in unfavorable or hostile environments. The final product 

of this long evolutionary process is not only a plethora of living shapes and forms, but 

also the precise “instructions” of how they develop and come to be. These “instructions” 

or principles have only become available to us recently, thanks to the advancement of 

microscopy, molecular biology, and genetics. In fact, much of the research in modern 

developmental biology relates to finding and interpreting the principles underlying 

animal design (Carroll et al., 2005; Davidson, 2006; Lawrence, 1992). A central aspect to 

the understanding of animal development is the study of pattern formation, this is, the 

spatiotemporal specification and organization of cell types in a developing group of cells. 

Although there has been much scientific interest in developmental patterning during the 

past 40 years, the mechanisms by which cells interpret the signals that control gene 

expression patterns remain controversial. This chapter introduces the ideas and models 
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that have played a key role in trying to explain the formation of pattern in developing 

systems and highlights some fundamental problems that will be the focus of this work.  

 

1.1 Historical Perspective 

For centuries, scientists and naturalists have been fascinated by the complexity of animal 

development and have speculated about the origin of life forms and functions. While the 

importance of embryonic pattern formation was well recognized by embryologists in the 

late 19th century, the models of how cells in a developing embryo or tissue acquire a 

precise spatial organization have changed dramatically in the history of biology. Today 

we know that all cells in a developing animal carry the same genetic information and that 

the spatial organization of cells during development depends on their ability to control, in 

space and time, the expression of a set of key genes. But for much of the first half of the 

20th century, the genetic basis of spatial order in development was a controversial subject. 

This brief historical remark does not intend to summarize the complex history of 

embryonic pattern formation, but tries to trace the origin of some of the concepts that are 

currently widely used in developmental patterning, such as the concepts of organizer, 

embryonic field, and morphogen gradient.  

Much of the early efforts to explain pattern formation originate from regeneration 

experiments in insects (Morgan, 1897) and the concept of embryonic induction in 

vertebrates (Spemann, 1938). These experiments revealed the amazing ability of embryos 

to self-organize their developmental programs upon external manipulations. The global 

properties of spatial order were captured in the concept of embryonic field, first 

postulated by Boveri in 1910 (reviewed by Sander, 1994). In its simplest form, an 
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embryonic field refers to a system that, as long as it remains in contact with some 

substratum, is able to spatially reorganize its developmental program in response to 

changes in size or mass. Although the concept of embryonic field was not precisely 

defined and the mechanisms of action of the field were not known in the early 20th 

century, many sources of experimental evidence favored the existence of embryonic 

fields and the concept rapidly became a paradigm of experimental embryology.  

Strong support for the embryonic field concept came from spectacular 

transplantation experiments in newts and salamanders. In 1924, Hans Spemann and Hilde 

Mangold performed a famous experiment using salamander eggs from two different 

species (Spemann and Mangold, 1924). They transplanted dorsal cells from one embryo 

(the donor) and introduced them into the ventral region of the other embryo (the host). As 

revealed by the difference in cell pigmentation between the two species, the donor cells 

were able to induce dorsal neural fates in the surrounding host tissue. The experiment 

suggested the presence of an “organizing” substance emanating from the donor tissue that 

acts at the distance to orchestrate patterning in the host. The discovery of the “Organizer” 

could have had an immediate impact on the problem of pattern formation, but the lack of 

success in identifying the organizing substance over many decades obscured the interest 

in the problem (Witkowski, 1985).  

Almost at the same time that Spemann popularized the concept of induction, the 

field of genetics began to demonstrate that its tools had much to offer to the problem of 

pattern formation. The identification of mutants in fruit flies and mice with 

morphological defects and the discovery of genetic mosaics provided a fantastic 

opportunity to study the problem of developmental patterning. Thomas Hunt Morgan, 
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who established the modern school of genetics in the fruit fly Drosophila melanogaster, 

was also an influential embryologist. In 1934, Morgan wrote a review entitled 

Embryology and Genetics with the objective to set a ground of contact for the two 

disciplines (Morgan, 1934).  However, only a few embryologists at that time believed 

that genes could have a developmental role and Morgan’s attempt to initiate crosstalk 

between geneticists and embryologists was not very fruitful. The most significant efforts 

to integrate genetics and embryology came from Conrad Hal Waddington, a British 

paleontologist by training that was attracted to embryology by the Organizer problem.  

As many embryologists and biochemists that turned their attention to the Spemann 

Organizer, Waddington failed to find the chemical nature of the organizing substance, but 

in the late 1930s, he uncovered another aspect of the Organizer problem. In Spemann’s 

work, too much attention was given to the inducer tissue (the Organizer) rather on the 

response of the surrounding cells to the organizing substance. Waddington realized that 

in order for ventral cells in the host tissue to develop into ectopic dorsal tissue in the 

Spemann and Mangold experiment, they must be competent to respond to the inducing 

signal. This idea prompted Waddington to propose that the development potential of cells 

to adopt a particular fate should be under the control of the genes. The idea that genes 

were under control of developmental patterning was not entirely new, but was very 

unpopular among embryologists who claimed that different patterns could not be 

explained by the action of genes whose DNA template was the same in every cell type of 

the embryo. By 1940, Waddington was able to gather a series of analogies to support the 

equivalence of organizers and genes (Waddington, 1940). A celebrated example was that 

of the gene aristapedia which is responsible for the transformation of legs into antennas 
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in Drosophila (since in aristapedia mutants, legs develop in place of the antennas). He 

argued that in the same way that host cells in the Organizer experiment adopt different 

fates in the presence or absence of the organizing substance, aristapedia was able to 

induce the “antenna” fate instead of the default “leg” fate. In 1956, Waddington 

presented a genetic model of embryonic cell differentiation suggesting that organizing 

substances in the cytoplasm influence the activation of genes in the nucleus (Waddington, 

1956). With his ideas, Waddington founded the genetic basis of embryonic induction and 

pattern formation, but his work received full consideration by embryologists only after 

Jacob and Monod demonstrated that cell differentiation in bacteria was under the 

transcriptional control of gene activity (Jacob and Monod, 1961).  

The synthesis of genetics and embryology opened a new research era in the 

problem of developmental patterning. During this new stage, organisms that were 

extensively used for the study of embryology, such as flat worms, salamanders, and 

frogs, were replaced by emerging genetic “model” organisms such as fruit flies and mice. 

Genetic screens prompted the discovery of new genes with developmental phenotypes, 

but the technology was still somewhat immature to reveal the molecular mechanisms 

underlying the spatial control of gene expression. These conditions favored the 

development of theoretical and mathematical models of pattern formation.  The main 

challenge of these theoretical studies was to introduce a conceptual framework to explain 

the stable generation of patterns and their self-organizing properties. An almost universal 

feature of the theories of pattern formation (that prevails until today) was to postulate the 

existence of chemical gradients (or gradient-fields), which were considered particular 

cases of morphogenetic fields in the 1920s and 1930s. Gradients of different kinds were 
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originally considered in theories by Huxley and de Beer (1934), Dalcq (1938), and Child 

(1941); but perhaps the most influential theoretical contributions to the current 

understanding of pattern formation came in the 1950s and 1960s with Turing’s reaction-

diffusion model of morphogenesis (Turing, 1952), Stern’s prepattern hypothesis (Stern, 

1954), and Wolpert’s positional information theory (Wolpert, 1969).  

The use of reaction-diffusion dynamics in developmental patterning is due to the 

famous mathematician, Alan Turing, a pioneer in the development of mathematical 

models in embryonic pattern formation. In his 1952 seminal paper, Turing used partial 

differential equations to model the concentrations of two chemical species diffusing and 

reacting with one another. It was shown that under certain conditions on the parameters 

(e.g., assuming short-range activation and long-range repression) a broad variety of 

periodic patterns (such as “spots” or “stripes”) could be generated using Turing’s 

formalism. In his paper, Turing also coined the term “morphogen” to refer to the 

chemical species that work as “generators of form,” a concept that is prevalent in the 

modern literature. Meinhardt and Gierer later expanded the efforts of Turing and applied 

them to patterning of Hydra (Meinhardt and Gierer, 1972). A recent application of 

Turing’s concept is the case of Spätzle, a ligand that activates the Toll receptor in the 

early Drosophila egg. Spätzle is “freely” diffusible in the extracellular space surrounding 

the embryo known as the perivitelline fluid where it interacts with other factors that 

regulate its activity. These peculiar characteristics make the system suitable for modeling 

by using Turing’s formalism (Meinhardt, 2004). In fact, reaction-diffusion models have 

successfully explained some intriguing properties of this system such as axis duplication 

when Spätzle is over-expressed (Morisato, 2001). Turing’ reaction-diffusion models are 
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very influential today in mathematical biology and have also been shown to have 

experimental significance in the formation of skin and pigmentation patterns (Kondo and 

Asai, 1995).   

On the other hand, one of the first attempts to explain pattern formation based on 

genetic evidence is the work on genetic mosaics in Drosophila and the theory of 

prepatterns proposed by Curt Stern (Stern, 1954). The theory postulates the existence of 

genetic prepatterns and suggests that final patterns in a tissue result from the competence 

of cells to respond to the prepattern cues (or ‘singularities’). In a mutant clone, for 

example, mutant cells may not affect the prepattern, but may cause a change in their 

competence to respond to it. With the prepattern concept, Stern was able to explain the 

phenotypes resulting from genetic mosaics of homeotic mutants in Drosophila (i.e., 

mutants transform one tissue identity into another). Stern’s prepattern hypothesis was 

very influential in the 1960s, especially on insect patterning (Sondhi, 1963; Lawrence, 

1966; Stumpf, 1967). However, the prepattern hypothesis lost general applicability when 

it was found to be insufficient to explain bristle patterns in different Drosophila tissues 

(Bryant, 1969; Tokunaga, 1978). Nonetheless, Stern’s theory had a profound influence on 

Wolpert’s positional information theory and was also later proposed to apply to 

patterning of the Drosophila segmentation network (Akam, 1987). 

 

1.2 Positional Information and Morphogen Gradients 

The prevailing view about developmental pattern formation comes from Lewis Wolpert’s 

theoretical work on positional information (Wolpert, 1969). In contrast to previous 

models of pattern formation, Wolpert’s goal was to propose a general conceptual 
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framework in which the common properties of pattern formation could be explained. 

Wolpert reasoned that in the same way that universal principles govern the synthesis of 

proteins from a DNA template (cf. the central dogma of molecular biology), there should 

be general principles involved in the translation of genetic information into spatial 

patterns of cellular differentiation; if cells depend on their spatial location to determine 

their fate, what are the general principles by which cells acquire and interpret their 

“positional information”?  

According to the theory of positional information, developmental patterning is the 

process by which each cell, based on its genetic information and developmental history, 

determines its pattern of molecular differentiation according to its location in the system. 

Hence, pattern formation is regarded as a sequential two-step process comprising the 

specification and the interpretation of positional information. The specification of 

positional information in an embryonic field is the equivalent of choosing a coordinate 

system (a notion proposed originally by Hans Driesch in 1894). Coordinate systems are 

defined with respect to reference points and depend on the polarity of the system, i.e., the 

direction in which positional information is to be measured. One mechanism (originally 

proposed by Stumpf in 1966) by which cells may acquire their positional coordinates is 

by measuring the concentration of a chemical substance that is present in a concentration 

gradient across the field of cells (Stumpf, 1966). A concentration gradient capable of 

specifying positional information in a concentration-dependent manner is referred to as a 

morphogen gradient in the modern literature. Although this is not the only way to specify 

positional information, the existence of morphogen gradients and their role in 
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developmental patterning was later strongly supported by many experimental studies and 

constitutes one of the paradigms of modern developmental biology.   

The second step in the process of pattern formation is the interpretation of 

positional information, that is, how “positional values” are converted into discrete states 

of cellular differentiation. The interpretation step must depend on a regulatory code by 

which cells translate positional information signals into differentiation genes, but may 

also depend on cellular competence to positional signals, developmental history, and cell-

cell interactions.  

Perhaps the most important contribution of Wolpert’s positional information 

theory is the postulate that the coordinate systems required for positional specification 

may be universal (at least within the same animal). For example, the specification of 

positional values in two developing tissues may be the same, but they give rise to two 

different adult parts because cells interpret positional coordinates in a different manner 

within each tissue. Evidence for this universality hypothesis was provided by genetic 

mosaics of homeotic mutants (Roberts, 1964) or from transplantation experiments in 

insect segments (Stumpf, 1967). For example, clones of cells lacking the gene 

aristapedia produce leg structures in the antenna that correlate with their corresponding 

position in the leg (Roberts, 1964). One corollary of the universality hypothesis of 

coordinate systems is that the process of positional specification is independent from its 

interpretation. In particular, the specification of positional information should be -in 

principle- independent of the field’s genome or its developmental history.  

The original motivation of the theory of positional information was to address the 

problem of size-dependent scale invariance in embryonic patterning. This problem can be 
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abstracted by the famous French flag problem, which Wolpert introduced a year earlier 

and can be stated as follows (Wolpert, 1968). Consider an embryonic field that is 

subdivided in three contiguous patterns such that the first third contains cells of “blue” 

type, the second third contains cells of “white” type, and the remaining third contains 

cells of “red” type (resembling the pattern of a French flag). The problem consists of 

explaining how the patterns maintain their proportions over large deviations in the 

original size of the field (i.e., after the field has been ‘cut’ into half or after two fields 

have been fused).  It is evident that to generate a French flag pattern irrespective of the 

size of the field, each cell must poses information about its location, not only with respect 

to a reference point, but also relative to the length of the axis. Wolpert offered a solution 

in terms of a diffusible substance (morphogen) that is secreted at one end of the 

embryonic field (source) and destroyed at the other (sink) (Wolpert, 1968). This solution 

of the problem suggests the existence of two or more ‘thresholds’ in positional 

information values that cause any two adjacent cells to adopt the same pattern when their 

positional values are within the same threshold domain, but another pattern if they 

correspond to different threshold regions [an idea originally proposed by Dalcq and 

Pasteels (1937)]. For its simplicity, the formation of pattern as a result of concentration 

thresholds from a morphogen gradient rapidly became a classical textbook model of 

developmental patterning (popularly known as Wolpert’s French flag model* or 

“Classical Morphogen” model). Subsequent theoretical work explored the biological 

                                                        
* The use of the name Wolpert’s French Flag model in the modern literature is unfortunate because it does 
not necessarily refer to the solution of Wolpert’s French Flag problem described above (i.e., the size-
dependent scale invariance problem), but simply to the existence of morphogen concentration thresholds 
that define boundaries of gene expression patterns. Perhaps, the name “Dalcq-Pasteels Thresholds” model 
would have made more historical sense. In the rest of this work, I will use the term “classical” morphogens 
to distinguish morphogens that specify positional information in a concentration-dependent manner from 
(non-classical) morphogens that do not employ multiple thresholds (see below). 
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feasibility of morphogen gradients to be established by diffusion (Crick, 1970) and 

discussed the mechanisms in which concentration thresholds could lead to sharp 

boundaries of gene expression (Lewis et al., 1977). However, the existence of 

morphogens and their mechanisms of action remained a theoretical speculation until the 

first morphogen was discovered experimentally 20 years later.  

The molecular identification of morphogen gradients in the late 80s and 90s 

provided the first opportunity to test their proposed role as carriers of positional 

information. The first genetic gradient to be observed experimentally was the maternal 

product, Bicoid (Bcd), in the early Drosophila embryo (Driever and Nusslein-Volhard, 

1988a). In their studies, Driever and Nusslein-Volhard were able to show not only that 

the Bcd protein forms a concentration gradient that peaks at the anterior pole and 

decreases posteriorely in an exponential fashion, but they provided genetic evidence that 

patterning of the anterior-posterior axis in the embryo depends on Bcd concentrations 

(Driever and Nusslein-Volhard, 1988b). The news that Bcd apparently behaves as a 

classical morphogen provided strong support to Wolpert’s positional information theory 

and initiated the “hunt” for additional morphogens in other systems. In the following 10 

years, many other morphogen candidates were identified in different systems, including 

Activin in the frog embryo (Green and Smith, 1990), Decapentaplegic (Dpp) in the 

Drosophila embryo and developing wing (Ferguson and Anderson, 1992; Nellen et al., 

1996), and Sonic Hedgehog in the chick limb and spinal cord (Riddle et al., 1993; 

Roelink et al., 1995). Moreover, comparative studies across different phyla have revealed 

that most morphogens belong to just a few families of signaling molecules, namely, the 

Hedgehogs, the Wnts, and the families of Transforming, Epithelial, and Fibroblast 
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Growth Factors (TGFs, EGFs, and FGFs, respectively). This remarkable fact shows that, 

in some sense, the specification of positional information is universal; despite the vast 

repertoire of animal body plans, positional information is established using essentially the 

same molecular machinery.  

However, morphogens are by no means the only way to establish positional 

information. For example, in the sea urchin embryo, it is possible to explain cell 

differentiation solely from the dynamics of transcriptional networks (Smith et al., 2007; 

Bolouri, 2008). Another intriguing case of developmental patterning without morphogens 

is that of the slime mold Dictyostelium discoideum in which cells first differentiate at 

scattered locations and then sort themselves in the aggregate to form a reproducible 

“French flag” pattern (Thompson et al., 2004). Conversely, the role of morphogens is not 

limited to pattern formation. For example, morphogens are also recognized to participate 

in cell affinity, polarity, and tissue growth (Lawrence, 2001). 

Recent advances in genetic, molecular, and microscopy tools have provided the 

opportunity to study the mechanisms underlying morphogen-mediated patterning in high 

resolution and have favored some experimental model systems over others. The 

experimental studies in this work are based on two systems that lead much of the current 

research in developmental patterning, the early Drosophila embryo and the developing 

Drosophila wing (or wing imaginal disc). One of the advantages of the first system as a 

model to study the role of morphogens is the fact that during the first ~4 hours (known as 

the syncytial blastoderm stage), the Drosophila embryo is a giant cell comprising nuclei 

that share a common cytoplasm and are encompassed by a single cell membrane. 

(Individual cell membranes form later during a stage known as cellularization). This 
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means that the early gradients in the Drosophila embryo are intracellular. In fact, the 

maternal factors Bcd and Dorsal (dl) that initiate patterning of the embryo are 

transcription factors, meaning that they directly bind DNA and control gene expression. 

This suggests that the interpretation of positional information in the early Drosophila 

embryo is much simpler than in other systems in which patterning is orchestrated by 

extracellular morphogens that depend on complex signal transduction pathways. Another 

advantage of the early Drosophila embryo is that its size does not change over time, that 

is, once an embryo is laid, it will retain its size during embryonic development; this 

provides the advantage that positional coordinates will not need to change over time as a 

result of embryo growth. On the other hand, the wing imaginal disc has proven to be one 

of the most convenient models to study extracellular morphogens because powerful 

genetic toolkits permit a precise spatiotemporal tuning of morphogen activity. One 

example is the increasing stock collection libraries employing the Gal4-UAS system 

(Fischer et al., 1988; Brand and Perrimon, 1993). Gal4 is a yeast protein that, when 

expressed in a particular pattern in flies, can activate transcription of any gene that is 

under the control of the “Upstream Activation Sequence” (UAS). The Gal4-UAS system 

can be combined with other genetic techniques such as mitotic recombination to express 

any desired gene in genetic mosaics, or can be enhanced for temporal control when 

expressed in conjunction with a temperature-sensitive form of Gal80 yeast protein which, 

at permissive temperature, binds Gal4 and blocks the transcription of the gene under UAS 

control (McGuire et al., 2004; see Chapter 2 for an example).  

One important difference between morphogen-mediated patterning in the early 

Drosophila embryo and in imaginal discs is the origin of positional information. Unlike 
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in the early embryo in which the morphogens are established maternally (i.e., mother 

cells deposit bcd and dl RNA into the egg when it is still in the female’s abdomen), the 

classical paradigm by which imaginal discs are patterned can be described as a three-step 

process (Lawrence and Struhl, 1996). In the first step, positional information from both 

the anterior-posterior (AP) axis and the dorsal-ventral (DV) axis of the embryo defines 

the location of a subset of cells that will become the disc primordium. The second step 

consists of forming ‘compartments’ within the disc primordium. For example, cells 

located at the posterior side of the disc primordium express the ‘selector’ gene engrailed 

(Morata and Lawrence, 1975) that distinguishes them from cells at the anterior side of the 

primordium that do not express it. In this case, the restriction of engrailed expression to 

posterior cells is defined earlier during the patterning of the embryo segments. The 

expression of selector genes is inherited after cells divide and also influences cell affinity 

to result in sharp boundaries between compartments. In this way, cells segregate into 

distinct compartments and maintain their identity as the tissue grows (García-Bellido, 

1975). Third, cells in each compartmental boundary are instructed to serve as the source 

of morphogens, which establish positional information within the disc (Meinhardt, 1983). 

In recent years, the study of how morphogen gradients are established and 

interpreted is at the very front of research in developmental biology. Yet, our progress on 

understanding their mechanisms of action as organizing molecules of pattern formation 

has been frustratingly slow. The study of morphogen-mediated patterning can be 

conceptually subdivided into two classes of problems: how morphogen gradients are 

established (specification of positional information; reviewed by Zhu and Scott, 2004; 

Kornberg and Guha, 2007), and how morphogen gradients specify patterns (interpretation 
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of positional information; reviewed by Gurdon and Bourillot, 2001; Ashe and Briscoe, 

2006). In this thesis, I present the results of my investigations on three fundamental 

problems regarding how morphogen signals are interpreted to control developmental 

patterning. These problems, which are briefly discussed and justified in the following 

sections, are the driving force and motivation of my multidisciplinary research program. 

 

1.3  The Problem of How Extracellular Morphogens are Interpreted 
 

The advancement of molecular and genetic tools in developmental biology has left no 

doubt about the importance of organizing molecules or morphogens in the formation of 

patterns of gene expression. Although the progress regarding the identification and 

localization of the relevant morphogens that orchestrate patterning in different 

experimental systems has been spectacular in the past 10 years, the problem of how 

morphogens act, that is, how signaling gradients give rise to different cellular responses, 

still deserves much additional consideration.  

The Classical Morphogen model provides a simple and elegant mechanism by 

which graded spatial information can be converted into discrete patterns of gene 

expression. This mechanism depends on the existence and interpretation of morphogen 

concentration thresholds, but the molecular basis of how thresholds from a graded input 

give rise to multiple discrete responses remains poorly understood. Theoretical models 

can mimic concentration thresholds by assuming high cooperative binding of the 

morphogen or imposing positive feedback on gene responses (Lewis et al., 1977; 

Meinhardt, 1978). On the other hand, experimental studies in many systems have shown 

that chemical gradients often correlate with the position of gene expression patterns. 
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These observations provide support to the Classical Morphogen model, but do not 

conclusively demonstrate that patterning is a concentration-dependent process. In fact, 

with the exception of a few cases in which the interpretation of the morphogen signal has 

been studied in detail, it is largely unclear if the position of different patterns actually 

corresponds to different concentration thresholds. One such exception is the case of 

Activin in the frog embryo (Green and Smith, 1990; Gurdon et al., 1998). Activin is a 

member of the TGF-β family that patterns the dorsal mesoderm in the frog embryo. 

Through a series of elegant studies, John Gurdon and his colleagues have been able to 

convincingly show that Activin works as a classical morphogen by directly activating the 

genes goosecoid (gsc) and Xenopus brachyury (Xbra) in a dose-dependent manner. First, 

Gurdon et al. observed that glass beads soaked in Activin transplanted into the embryo 

result in the expression of gsc next to the beads followed by an expression domain of 

Xbra (Gurdon et al., 1994; Gurdon et al., 1995). Second, using radioactively labeled 

Activin protein, it was shown that signal responses depend on absolute receptor 

occupancy (in particular, about 100 Activin-bound receptors are sufficient to activate 

Xbra, while approximately 300 are required for gsc; Dyson and Gurdon, 1998). Third, 

changes in Activin dosage correspond to similar concentration changes in the 

intracellular transducer of the signal, Smad2 (Shimizu and Gurdon, 1999). Furthermore, 

Gurdon and collegues ruled out that other mechanisms played a role in Activin 

patterning. For example, they showed that once activin signaling is stabilized, increased 

temporal exposure to the signal does not affect the patterning outcome (Dyson and 

Gurdon, 1998). In addition, cells appear to respond to Activin signaling levels 

independent of the levels of their neighbors (Gurdon et al., 1999). Taken together, this 
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detailed body of data provides strong evidence that Activin acts as a classical morphogen 

in the frog embryo. 

However, not all the gradients that have been studied in detail support the 

Classical Morphogen model. For example, the specification of digits in the developing 

vertebrate limb depends on the temporal exposure to Sonic Hedgehog (Shh) signaling. A 

group of cells in the posterior limb bud produces Shh, which forms a gradient along the 

AP axis of the limb. In vivo studies in which the fate of Shh producing cells is genetically 

marked have demonstrated that many of the cells that initially express Shh are displaced 

anteriorely as a result of tissue growth away from the region of Shh-expressing cells. This 

process results in populations of cells that experience different temporal exposures to Shh 

and suggests that the identity of posterior digits depends on their temporal exposure to 

Sonic Hedgehog signaling (Ahn and Joyner, 2004; Harfe et al., 2004). Follow up studies 

confirmed that temporal exposure rather than Shh signaling “strength” is the predominant 

factor in the specification of posterior digits (Scherz et al., 2007; Towers et al., 2008) and 

concluded that Shh acts as a “non-classical” morphogen in the vertebrate limb. 

Although the Classical Morphogen model remains as a paradigm of modern 

developmental biology, the importance of concentration thresholds remains doubtful in 

many systems that are often considered “classical.” Regardless of whether or not the 

Classical Morphogen model can be verified or ruled out in other systems, a more detailed 

study of morphogen signaling will provide the opportunity to uncover the precise 

mechanisms in which positional information give rise to form and pattern in developing 

systems. In Chapter 2, I present our study of how a gradient of Hedgehog (Hh) is 

interpreted to give rise to at least three patterns of gene expression in the Drosophila 
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wing disc. Hh belongs to a family of widely conserved signaling molecules that organize 

patterning in different developmental contexts (reviewed by Ingham and McMahon 2001, 

Jiang and Hui, 2008; Varjosalo and Taipale, 2008; see Box 1.1). We demonstrate that 

patterning by Hh in the Drosophila wing disc largely depends on the properties of the Hh 

gene network architecture rather than in the “shape” of the Hh concentration. Our results 

suggest that, contrary to what was previously thought, Hh does not seem to act as a 

classical morphogen in this system and we introduce a novel mechanism in which 

patterns of gene expression can be established during development (Nahmad and 

Stathopoulos, 2009). 

 

1.4  The Problem of How Gradient Dynamics Affect the Interpretation 
of Morphogen Signals 

 
Developing systems exhibit various sorts of dynamic behaviors. For example, some cells 

grow and divide, while other cells die prior to reaching maturity; some cells remain in 

their original locations while others migrate several cell diameters away from the site 

from which they originated. Yet, the resulting morphogenetic pattern in adult animals is 

usually invariant and highly reproducible from individual to individual suggesting that 

the interpretation of positional information takes into account these dynamical processes. 

One idealization of the Classical Morphogen model, at least in its naïve “textbook” 

version, is its static nature. In this view, patterns correspond to the read out of 

concentration thresholds from a stable morphogenetic landscape. However, morphogen 

gradients are more likely dynamic entities rather than fixed systems of coordinates. In 

fact, several experimental studies in many systems have shown that morphogen gradients 

remain changing in time during and even after the process of pattern formation takes  
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 Box 1.1. Brief overview of the Hedgehog signaling pathway. 

 
hegehog (hh) was discovered in genetic screens that affect early Drosophila patterning 
(Nusslein-Volhard and Wieschaus, 1980). Since its discovery, the Hh pathway has been 

central in the study of development and disease. Unlike other signaling pathways, 

activation of Hh signaling depends on the interruption of an inhibitory signaling cascade, 

rather than on leading the activation of a pathway. In the absence of Hh, the 12-span 

receptor Patched (Ptc) maintains the signaling pathway inactive by repressing 
phosphorylation of the 7-transmembrane effector Smoothened (Smo). Although the 

precise mechanism of how Ptc inhibits Smo activation remains unclear, Ptc and Smo do 

not seem to interact directly (Denef et al., 2000). Instead, Ptc seems to repress Smo 

catalytically (Taipale et al., 2003), probably by secreting a small molecule that results in 

Smo repression (Bijlsma et al., 2006). Upon Hh binding to Ptc, the Hh-Ptc complex is 
internalized via endocytosis and degraded in lysosomes (Torroja et al., 2004). This leads 

to removal of Ptc and activation of the pathway. However, activation of Hh signal does 

not seem to depend on the absolute levels of unliganded Ptc, but also on the levels of the 

Hh-Ptc complex which can activate the signal by titrating unliganded Ptc molecules 
(Casali and Struhl, 2004). Hh signal activation induces phosphorylation of Smo by 

Protein Kinase A (PKA) (Jia et al., 2004; Zhao et al., 2007) which enhances the 

recruitment of a series of kinases that include the kinesin-like molecule Costal2 (Cos2) 

and the kinase Fused that prevents PKA-dependent phosphorlylation and cleavage of the 

zinc-finger transcription factor cubitus interruptus (ci). In the absence of Hh signaling, the 
cleaved Ci fragment (known as Ci75) acts as a repressor of Hh target genes. Activation of 

the Hh pathway inhibits the processing of Ci into Ci75 and permits full-length Ci to enter 

the nucleus as a transcriptional activator of Hh target genes (Vervoort, 2000). A key 

feature of Hh signaling is that ptc, the gene that encodes the Hh receptor, is 

transcriptionally activated by Hh signaling. This feedback gives Ptc the dual function of 
receiving the signal and limiting its range of action (Chen and Struhl, 1996). Although 

most key aspects Hh signaling are generally conserved from flies to vertebrates, there are 

some differences. For example, vertebrates have three Hh ligands and transcriptional 

activation depends on the balance of three ci homologs, known as Gli’s. Moreover, unlike 
in Drosophila, Hh signaling in mammals depends on a cellular structure called the 

primary cilium (Huangfu, et al. 2003). In addition to its role as a morphogen in many 

developmental contexts, Hh has also been implicated in tissue homeostasis, stem cell 

maintenance, and growth control (reviewed by Jiang and Hui, 2008). 
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place (Bergmann et al., 2007; Harvey and Smith, 2009; Kanodia et al., 2009; Liberman et 

al., 2009). The problem of how the dynamics of morphogen gradients contributes to the 

establishment and interpretation of pattern is little understood and only recently has 

received full consideration (Jaeger and Reinitz, 2006; Kutejova et al., 2009).  

 How is a stable pattern established from a gradient that changes in time? And 

moreover, how do morphogen dynamics contribute to the interpretation of positional 

information? The first question has been recently studied in detail in some systems. For 

example, temporal changes in Activin concentrations in the frog embryo are rapidly 

reflected in concentration changes of the transducer, Smad2 (Bourillot et al., 2002). In 

this case, cells may switch from Xbra to gsc expression as Activin levels are temporally 

established. Therefore, Activin signaling is continuously transduced; a transient signal 

corresponding to transient pattern of gene expression that converge to stable patterns 

once the Activin gradient reaches a steady-state distribution. Furthermore, the role of 

transient morphogen gradients is especially relevant in systems in which patterning takes 

place within a short window of time. For instance, in the early Drosophila embryo, 

patterning along the AP axis takes about 90 minutes, while the rates of Bcd gradient 

formation in diffusion models is estimated to take on the order of a few hours. This has 

led to the proposal that the interpretation of the Bcd gradient takes place prior to reaching 

its steady state (Bergmann et al., 2007).  

 However, the problem of whether or not morphogen gradient dynamics per se 

encodes some sort of positional information has not been carefully explored 

experimentally. For example, it is conceivable that cells respond to the rate of change of a 

morphogen signal or that a transient exposure to the signal changes the context in which 
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cells respond to the morphogen at later times (Pages and Kerridge, 2000). In our study of 

Hh signaling in the Drosophila wing disc (presented in Chapter 2), we provide 

experimental evidence that changes in the distribution of the Hh gradient are essential for 

the formation of different patterns of gene expression and that the establishment of Hh-

dependent gene expression patterns depends on the history of Hh signaling exposure, 

rather on the steady-state profile of the gradient (Nahmad and Stathopoulos, 2009).  

In general, the study of the role of morphogen dynamics in pattern formation remains 

technically challenging because genetic manipulations cannot be finely tuned enough to 

selectively perturb transient gradients in a reproducible way, without affecting the steady-

state distribution of the morphogen. In Chapter 3, I present a modeling-based 

experimental design framework to isolate the roles of transient and equilibrium dynamics 

in morphogen-mediated patterning. Although the experimental implementation of this 

idea is left for future studies, these theoretical tools are not limited to the study of 

morphogen dynamics, in particular, and might be applicable to a wide variety of 

problems. 

 

1.5  The Problem of Size-Dependent Scale Invariance of Pattern 

Many animals exhibit an extraordinary ability to re-organize their developmental 

programs in response to changes in embryo size. For example, sea urchins embryos are 

subdivided along their animal-vegetal axis into three germ layers (mesenchyme, 

endoderm, and ectoderm) and several embryological studies show that the proportions of 

this pattern are preserved when the size of the embryo is manipulated up to 8-fold  
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(Hörstadius, 1939; Gustafson, 1965). This ability to adapt pattern to the size of the 

embryo is commonly referred as size-dependent scale invariance or, simply, scaling.  

The problem of scaling can naturally be stated in terms of positional information 

(Wolpert, 1969), this is, how do cells acquire information about their relative location in 

a developing field? One way to illustrate the concept of establishing positional 

information in relative rather than absolute coordinates is provided by the famous French 

flag problem introduced above (Wolpert, 1968): Is it possible to establish a pattern in 

which three sequential states can be established in equal proportions independently of the 

size of the system? A simple solution of the French flag problem is to postulate the 

existence of a morphogen gradient established by diffusion that is produced at one end of 

the embryo and destroyed at the other (Wolpert, 1968). However, this solution assumes 

that the distal end of the embryo works as a “perfect sink”, a scenario that is likely 

unrealistic. Other theoretical and empirical models that have been proposed to explain the 

problem of scaling include the double gradient theory of Dalcq (Dalcq, 1938; Hörstadius, 

1939; Needham, 1942; Wolpert, 1969) that suggests that patterning depends on the 

concentration of two gradients emanating from opposing ends of the embryo (an idea that 

was recently explored further using mathematical modeling by McHale et al., 2006), and 

the “short-range activator, long-range inhibition” model of Gierer and Meinhardt (1972). 

Although these models provide plausible solutions to the scaling problem in general, they 

lack experimental significance because they were based on hypothetical gradients rather 

than on real morphogens. Since the spatial distribution of different cell types ultimately 

depends on patterns of gene expression, the problem of scaling is equivalent to the 
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question of how morphogen gradients determine patterns that correlate with changes in 

the size of the system.  

The most extreme manifestation of scaling is observed in experiments in which 

embryo size is externally manipulated resulting in well-proportioned animals that are 

much smaller or much bigger than the average adult. For instance, classical experiments 

in amphibians reveal that bisected embryos that contain a portion of the dorsal lip result 

in smaller, but anatomically normal tadpoles (Spemann, 1938). Conversely, adding extra 

tissue to a frog embryo results in a bigger animal but its overall anatomy is preserved 

(Waddington, 1938). Recent progress on the problem of scaling in frogs revealed that the 

mechanisms of scaling depend on protein-protein interactions of morphogens from the 

family of Bone Morphogenetic Proteins (BMPs) and their inhibitors (reviewed by De 

Robertis, 2006). In particular, it was found that Admp, a BMP ligand whose expression is 

inhibited by BMP signaling, is essential for scaling (Reversade and De Robertis, 2005). 

Further, mathematical modeling suggest that scaling in this system depends on shuttling 

of BMPs to the ventral midline by binding the inhibitor Chordin, coupled with Admp 

auto-repression (Ben-Zvi et al., 2008). 

A different aspect of scaling is exhibited across a population of animals in which the 

proportions of gene expression patterns are maintained despite natural variations in 

embryo size. In Chapter 4, I present results on the problem of scaling due to natural 

variations in embryo size along the DV axis in Drosophila. Patterning of the DV axis in 

Drosophila depends on the nuclear distribution of the maternal factor Dorsal (dl), a 

homolog of vertebrate NF-κB (reviewed by Moussian and Roth, 2005; Reeves and 

Stathopoulos, 2009; see Box 1.2). Our results show that the dorsal borders of DV patterns  
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Box 1.2. Brief overview of dorsal-ventral patterning in the Drosophila 
embryo. 
 
The establishment of dorsal-ventral (DV) positional information in the early Drosophila 
embryo is largely under maternal control and originates early during oogenesis.  
The signaling cascade that provides DV asymmetry in the oocyte arises from the dorsally 
restricted activation of EGFR in the follicular epithelium, a group of somatic cells that 
cover the surface of the developing egg (Price et al., 1989; Schejter and Shilo, 1989). This 
asymmetry restricts the transcription of pipe, a gene that encodes a glycosaminoglycan-
modifying enzyme, to the ventral side of the egg chamber (Sen et al., 1998). Pipe 
localization initiates a cascade of reactions that involve complex interactions of proteases 
in the perivitelline fluid, a space that separates the embryo from the follicular epithelium 
(reviewed by Moussian and Roth, 2005). The protease cascade results in the formation of 
a gradient of Spätzle in the perivitelline space. The process of translating maternal signals 
into the embryo is afforded by the Spätzle-dependent activation of the Toll signaling 
pathway, which also plays a pivotal role in the immune response of insects and vertebrates 
(reviewed by Imler and Zheng, 2004). Toll activation recruits a complex that includes the 
serine/threonine kinase Pelle (Towb et al., 1998). This process leads to Pelle accumulation 
and auto-phosphorylation and results in a gradient of activated Pelle in the ventral region 
of the embryo that is known to be sufficient for DV patterning of the embryo (Towb et al., 
2001; Stathopoulos and Levine, 2002). In the cytoplasm, Pelle likely phosphorylates and 
promotes the proteolysis of the IκB homolog, Cactus (Edwards et al., 1997; Drier et al., 
1999). Destruction of Cactus releases the NF-κB homolog, Dorsal (dl) and permits its 
nuclear import where it acts as a transcription factor (Belvin et al., 1995; Bergmann et al., 
1996; Reach et al., 1996). The end result of the pathway is a graded nuclear distribution of 
dl that organizes the subdivision of the DV axis in distinct domains of gene expression 
(Roth et al., 1989; Rushlow et al., 1989; Steward, 1989). High levels of dl lead to 
transcription of twist and snail that define mesodermal precursor cells in the ventral-most 
region of the embryo (Jiang et al., 1991; Pan et al., 1991). Intermediate to low levels of 
nuclear dl activate short of gastrulation (sog) and rhomboid in ventrolateral regions that 
define the neurogenic ectoderm (Bier et al., 1990; François et al., 1994; Ip et al., 1992).  
Finally, decapentaplegic (dpp) and zerknült (zen) are activated in the dorsal and dorso-
lateral regions of the embryo that correspond to the precursors of the amnioscerosa and 
the dorsal ectoderm (Rushlow et al., 1987). Although this view fits well with the 
hypothesis that dl acts as a classical morphogen, patterning of the DV axis depends on a 
complex transcriptional network in which dl-target genes interact with each other to 
establish precise domains of gene expression (Stathopoulos and Levine, 2005). 
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that depend on the maternal factor dl scale with respect to embryo size. Furthermore, we 

provide evidence that scaling in this system depends on dl but not in a direct manner. We 

propose that additional factors downstream of dl are required to determine relative 

coordinates along the DV axis. 

 

1.6  A Multidisciplinary Approach to the Study of Developmental 
Pattern Formation 

 
In his famous Lectures on Physics, the great Caltech physicist Richard Feynman wrote: 

If our small minds, for some convenience, divide a glass of wine, this universe, into parts 
–physics, biology, geology, astronomy, psychology, and so on- remember that nature 
does not know it! 
 
Feynman was obviously not talking about multidisciplinary “wine” science, but he was 

referring to the human obsession of classifying knowledge into categories. Scientific 

questions are “traditionally” studied using the tools and views of the discipline that they 

were classified into, rather than using a broad, unbiased perspective. The 

multidisciplinary philosophy followed in this work is, as much as possible, interest-

driven towards the fundamental question of how cells interpret their positional 

information in order to acquire a specific pattern or fate, rather than limited by the tools 

or concepts from a certain discipline. The history of the problem of pattern formation has 

facilitated its study using both theoretical and experimental viewpoints (Ibañez and 

Izpizúa-Belmonte, 2008; Green, 2002; Lander, 2007), but the interplay between theory 

and experiment is often forced to exhibit its usefulness instead of being truly motivated 

by scientific questions.  

We are now witnessing a second major revolution in developmental biology (the 

first one was the synthesis of embryology and genetics in the first half of the 20th 
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century). I am referring to the post-genomic revolution. This new era is not only 

facilitating whole-genome tools for the study of biological systems and expanding the 

availability of unexplored experimental systems, but is changing the way we think about 

developmental mechanisms in terms of gene regulatory networks (Levine and Davidson, 

2005). Furthermore, the post-genomic revolution is also bringing a new multidisciplinary 

viewpoint to the study of biological systems that promotes the use of tools from different 

disciplines. This viewpoint is already affecting the way we study the developing embryo 

and will hopefully bring new light to the understanding of the “building blocks” 

underlying animal design.  
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Chapter 2 

Dynamic Interpretation of Hedgehog Signaling in the 
Drosophila Wing Disc* 
 
Morphogens are classically defined as molecules that control patterning by acting at a 

distance to regulate gene expression in a concentration-dependent manner. In the 

Drosophila wing imaginal disc, secreted Hedgehog (Hh) forms an extracellular gradient 

that organizes patterning along the anterior–posterior axis and specifies at least three 

different domains of gene expression. Although the prevailing view is that Hh functions 

in the Drosophila wing disc as a classical morphogen, a direct correspondence between 

the borders of these patterns and Hh concentration thresholds has not been demonstrated. 

Here, we provide evidence that the interpretation of Hh signaling depends on the history 

of exposure to Hh and propose that a single concentration threshold is sufficient to 

support multiple outputs. Using mathematical modeling, we predict that at steady state, 

only two domains can be defined in response to Hh, suggesting that the boundaries of two 

or more gene expression patterns cannot be specified by a static Hh gradient. Computer 

simulations suggest that a spatial “overshoot” of the Hh gradient occurs, i.e., a transient 

state in which the Hh profile is expanded compared to the Hh steady-state gradient. 

Through a temporal examination of Hh target gene expression, we observe that the 

patterns initially expand anteriorly and then refine, providing in vivo evidence for the 

overshoot. The Hh gene network architecture suggests this overshoot results from the Hh-

                                                        
* ©  2009, Nahmad and Stathopoulos. This chapter, originally published as “Nahmad M. and 
Stathopoulos A. (2009) Dynamic Interpretation of Hedgehog Signaling in the Drosophila Wing 
Disc. PLoS Biol 7(9): e1000202. doi:10.1371/journal.pbio.1000202,” is reproduced under the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/). 
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dependent up-regulation of the receptor, Patched (Ptc). In fact, when the network 

structure was altered such that the ptc gene is no longer up-regulated in response to Hh-

signaling activation, we found that the patterns of gene expression, which have distinct 

borders in wild-type discs, now overlap. Our results support a model in which Hh 

gradient dynamics, resulting from Ptc up-regulation, play an instructional role in the 

establishment of patterns of gene expression. 

2.1 Introduction  

Pattern formation in many developing systems depends on the formation and 

interpretation of morphogen gradients (Gurdon and Bourillot, 2001). The classical model 

of pattern formation conveyed by morphogens is typically illustrated by Wolpert’s 

French Flag model (Wolpert, 1968). In the context of Wolpert’s model, cells capable of 

sensing an extracellular gradient will adopt one of three different regulatory states 

depending on their local readout of the morphogen concentration. Based only on the input 

(ligand gradient) to output (target gene expression) relationship, several signaling 

molecules appear to operate in the context of Wolpert’s Classical Morphogen model 

(Cooke, 1995; Gurdon et al., 1998; Tabata and Takei, 2004); however, the underlying 

mechanisms regarding how gradients of these signaling molecules are translated into 

discrete patterns of gene expression remain unclear. One example of such a signaling 

molecule is Hedgehog (Hh), as in the Drosophila wing disc, where the distribution of Hh 

clearly correlates with gene expression patterns (Fig. 2.1A) (Strigini and Cohen, 1997). 

Yet, it has not been demonstrated definitively that different Hh concentrations define the 

positions of distinct borders of gene expression patterns.  
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Hedgehog molecules are secreted proteins that control patterning pervasively 

during animal development (Jiang and Hui, 2008). In the Drosophila wing imaginal disc, 

hh is expressed exclusively in cells of the posterior compartment. After several 

posttranslational modifications, Hh is secreted from the posterior compartment, forming a 

concentration gradient within the anterior compartment with highest levels present at the 

anterior–posterior (AP) boundary. Although the range of Hh signaling is short compared 

to that of Decapentaplegic (Dpp), 10–15 cells compared with approximately 40 cells, 

respectively, at least three different patterns are established by Hh signaling (Strigini and 

Cohen, 1997; Mullor and Guerrero, 2000; Vervoort et al., 1999; Ho et al., 2005; Mullor 

et al., 1997). Target genes activated by Hh signaling include dpp, collier (col), patched 

(ptc), and engrailed (en) (Fig. 2.1A).  

A simplified network of genetic interactions involved in the Hh signaling pathway 

is shown in Figure 2.1B. Hh signaling is maintained in a default OFF state by the Hh 

receptor Patched (Ptc), which is constitutively expressed in cells of the A compartment. 

Ptc expression inhibits the activation of the transmembrane protein Smoothened (Smo) 

through a mechanism that is still not well understood and is likely indirect (Denef et al., 

2000; Taipale et al., 2002). Extracellular Hh binds to Ptc and induces its internalization 

and degradation. In the absence of Ptc, Smo accumulates and is phosphorylated, a step 

required to activate Hh signaling (Apionishev et al., 2005; Jia et al., 2004). The details 

regarding how phosphorylated Smo (pSmo) results in activation of the pathway are 

complex and not well defined, but require Smo-mediated recruitment of a series of 

kinases that prevent processing of the transcription factor Cubitus interruptus (Ci). In the 

absence of Hh or pSmo, Ci is cleaved, and one of the fragments, known as Ci75, acts to 
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repress particular Hh target genes (Méthot and Basler, 1999). Activation of the Hh 

pathway stabilizes pSmo expression, which in turn inhibits the cleavage of Ci into Ci75, 

to permit full-length Ci to enter the nucleus and activate the transcription of Hh target 

genes.  

Activation of Hh signaling in the wing disc appears to depend not only on the 

concentration of free Ptc, but also on the amount of Ptc bound to Hh (Casali and Struhl, 

2004). Thus, it has been proposed that transduction of Hh signaling depends on the ratio 

of liganded to unliganded Ptc (Casali and Struhl, 2004). Furthermore, an evolutionarily 

conserved property of the Hh signaling pathway is that ptc, the gene that encodes the Hh 

receptor, is transcriptionally up-regulated by Hh signaling (see Fig. 2.1B). This feedback 

gives Ptc the dual function of both receiving the signal as well as limiting the spatial 

range of the Hh gradient (Chen and Struhl, 1996).  

In this study, we investigated the mechanisms by which the Hh gradient is 

interpreted to pattern the Drosophila wing disc. Our approach was to use mathematical 

modeling to formulate hypotheses that can be tested directly through experimentation. 

Surprisingly, our mathematical analysis suggested that the steady-state Hh gradient is 

insufficient to determine more than two gene expression patterns in a concentration-

dependent manner. We propose that Hh-dependent Ptc up-regulation causes a transient 

expansion (or “overshoot”) of the Hh gradient before approaching its final distribution. 

Through experiments conducted in vivo, we provide evidence that this transient 

overshoot exists and that it is required to distinguish different spatial domains of gene 

expression in response to Hh. Taken together, our data suggest a new model of pattern 
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formation, which takes into consideration gradient dynamics to explain Hh-dependent 

patterning of the wing disc.  

2.2 Materials and Methods 

Numerical Simulations 

A Forward-in-Time-Centered-in-Space (FTCS) algorithm (Δx = 2.5 µm, Δt = 0.5 s) was 

implemented to solve Equations (2.1)–(2.5) numerically in MATLAB using the 

parameters in Supporting Table 2.1. Numerical solutions approximately reach steady 

state in less than 8 hours. To simulate the outputs in ptc-TPT (Fig. 2.3H), we use 

Equation (S4) in Supporting Text instead of Equation (2.2) (see Supporting Text for 

further details).  

Fly Crosses and Transgenes 

Fly crosses were conducted at 25 °C, except where otherwise indicated. For the 

experiments using the hhts2 allele (Fig. 2.2E, 2.5, 2.6A,B, and Supporting Fig. 2.2), fly 

stocks of genotype dpp10638/CyO; hhts2/TM6B, Tb were crossed at 18 °C. dpp10638 is a 

transgene on II containing a lacZ reporter (dppZ) that produces nuclear β-galactosidase 

(β-gal). hhts2 homozygous animals are marked by the Tb+ phenotype. A 

Tubulin1>ptc>Tubulin1α 3′UTR (TPT) transgenic line located on chromosome III has 

previously been shown to rescue ptc mutant animals (Chen and Struhl, 1996). To obtain 

ptc-TPT discs, we crossed ptc9;TPT / SM6; TM6B, Tb males to ptc16, dpp10638; + / 

SM6; TM6B, Tb females. ptc16 has been previously characterized as a null allele 

(Capdevila et al., 1994), and ptc9 produces a product that is defective in reaching the 

plasma membrane and binding to Hh (Strutt et al., 2001). Tb+ marks ptc mutant larvae 
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that carry a copy of both the TPT and dpp10638 transgenes (Fig. 2.3D–F and Supporting 

Fig. 2.5). In Figure 2.4D–F, TPT transgenic discs in a wild-type background (ptc+TPT 

discs) were obtained from third instar larvae of the genotype dpp10638; TPT / SM6; 

TM6B, Tb. In Figure 2.6C–H, males of genotype dpp10638; UAS-Ptc / SM6; TM6B, Tb 

were crossed to females of genotype TubGal80ts; TubGal4 / SM6; TM6B, Tb at 18 °C. 

TubGal80ts is a transgene on chromosome II that expresses a temperature-sensitive form 

of the Gal80 protein. In these experiments, third instar larvae of Tb+ phenotype were 

selected, representing mutants of genotype TubGal80ts/dpp10638; TubGal4/UAS-Ptc. 

dpphr56 / dpphr4 transheterozygotes animals are defective in Dpp signaling at 29 °C 

(Hsiung et al., 2005). We crossed dpphr56; + / SM6; TM6B, Tb to dpphr56; dppZ / SM6; 

TM6B, Tb animals at 18 °C. Third instar larvae marked by Tb+ are normal at 18 °C, but 

defective in Dpp signaling after 24 h at 29 °C (Supporting Fig. 2.3).  

Reinitialization of the Hh Gradient Using a Temperature-Sensitive hedgehog Allele 

hhts2 flies were placed at 18 °C. After 2 d, adults were removed and progeny were kept at 

18 °C for an additional 7 d. Hh signaling was then interrupted by placing the resulting 

larvae at 29 °C for 24 h. Finally, larvae were placed back at 18 °C to induce Hh signaling 

for a period of time, τ. Third instar larvae homozygous for the hhts allele were fixed 

immediately for immunostaining at the designated time points τ. A graphical depiction of 

this scheme is presented in Figure 2.2D. 

Fixation, In Situ Hybridization, and Immunostaining 

Third instar wing discs were dissected, fixed, and immunostained using standard 

techniques. The following primary antibodies were used: monoclonal mouse anti-Ptc 
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(developed by I. Guerrero, and was obtained from the Developmental Studies Hybridoma 

Bank at the University of Iowa), rabbit anti-β-gal (Invitrogen Molecular Probes), 

monoclonal mouse anti-Col (M. Crozatier), rabbit anti-En (P. O’Farrell), and guinea pig 

anti-pMad (E. Laufer). The secondary antibodies used were rabbit Alexa 647, mouse 

Alexa 488, and guinea pig Alexa 555 (Molecular Probes). Samples were mounted in 

Mowiol 4-88 (Molecular Biosciences). Fluorescent in situ hybridization for data in Figure 

S2 was performed using standard techniques using a digoxigenin-labeled riboprobe for 

dpp. Primary and secondary detection of the dpp probe was done using a polyclonal 

sheep anti-digoxigenin (Roche) and sheep Alexa 555 (Molecular Probes) antibodies, 

respectively.  

Image Analysis 

Images were acquired using a confocal microscope (Zeiss Pascal) and processed in 

Adobe Photoshop. Images in Supporting Figure 2.2 were taken using a 20× objective 

(Zeiss). Images in other figures and supporting figures were taken using a 40× oil 

objective (Zeiss). Imaging parameters for each set of data were selected for the control or 

wild-type experiment, and the same imaging conditions were used throughout the rest of 

each dataset. Discs compared in Figure 2.2E were chosen such that they met the 

following conditions: (1), approximately the same size, (2), similar average background 

intensity in the posterior compartment, and (3), similar average intensity in the anterior 

compartment away from the AP boundary. For the intensity profiles in Figure 2.2E, 

images were processed in ImageJ and quantified in MATLAB (see Supporting Protocol 

for further details).  
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2.3 Results 

Mathematical Modeling of Hh Signaling Interpretation 

We devised a mathematical model of Hh signaling based on the simplified network 

presented in Figure 2.1B (see Supporting Text for further details). The dynamics of gene 

(and protein) concentrations along the AP axis are modeled using the following system of 

reaction-diffusion equations: 
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where [Hh], [ptc], [Ptc], and [Hh_Ptc] are the concentrations of Hh, ptc (mRNA), Ptc 

(protein), and the Hh-Ptc complex, respectively. The coefficients α, β, γ, and T represent 

the rates of synthesis, degradation, complex formation, and translation, respectively. We 

use a system of coordinates centered on the AP boundary with the anterior compartment 

on the positive side (Fig. 2.1A). S+(x) (or S−(x)) is a step function of the form S+(x) = 1 if 
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x > 0 [or S−(x) = 1 if x < 0] and zero otherwise (see Supporting Text for further model 

details). 

We use the variable [Signal] (instead of a particular effector such as pSmo, for 

example) to represent the concentration of Hh signaling activity and assume that [Signal] 

reflects the propensity to activate Hh target gene expression. Our model of signal 

activation is based on the phenomenological observations that Hh-dependent gene 

expression depends on the ratio of liganded (Hh_Ptc) to unliganded Ptc [Equation (2.5)] 

(Casali and Struhl, 2004). Unlike other models of Hh signaling conducted in the past 

(Saha and Schaffer, 2006; Gunbin et al., 2007; Lai et al., 2004; Eldar et al., 2003; 

Gonzalez et al., 2008), our model is not based on any particular molecular mechanism 

regarding how Ptc and Smo interact. A mechanistic model would require additional 

knowledge of the specific biochemical interactions, including how Ptc interacts with Smo 

and how Smo interacts with other pathway components, which are currently not 

completely understood. Our goal was to use mathematical modeling as a tool to formulate 

experimentally testable hypotheses in order to study how a gradient of Hh is interpreted 

by a field of cells. 

Theoretical Analysis Suggests That the Steady-State Hh Gradient Is Interpreted as 
a “Switch-Like” Response 

At steady state, the system of equations [Equations (2.1)–(2.5)] reduces to a single 

second-order equation for [Hh] with boundary conditions (see Supporting Text), and all 

other concentrations can be written as a function of [Hh]. For example, setting the left-

hand side of Equations (2.4) and (2.5) to zero, and substituting Equation (2.4) into (2.5), 

we obtain the following expression valid at steady state in the anterior compartment: 
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Equation (2.6) is a nonlinear input-output relationship between the (unbound) 

[Hh]ss gradient and the [Signal]ss profile, in which the subscript ss refers to steady-state 

concentrations. It reveals that the steady-state interpretation of the Hh gradient, in terms 

of the [Signal] profile, depends qualitatively on the Hill coefficient n. For n ~ 1, an 

extracellular [Hh] gradient corresponds to a monotonic [Signal] gradient, but as n 

increases, the spatial distribution of [Signal] rapidly acquires a step-like profile (Fig. 

2.1C). Let F be the rate of Signal activation (first term on the right in Equation (2.5)):  
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which is assumed to be a sigmoidal function of the [Hh_Ptc] to [Ptc] ratio (Casali and 

Struhl 2004), then the value of n is proportional to the slope of the line tangent to the 

graph of F at the point of half-maximal activation (Fig. 2.1D). Thus, it is possible to 

obtain a lower-bound estimate of n using any two data points on this curve (Supporting 

Text). Using published data (Casali and Struhl, 2004), we estimated that n > 6.8 (Fig. 

2.1D). The quantitative details of this approximation depend on several unknown 

parameters as well as the quantitative accuracy of the data used (see Supporting Text). 

Nevertheless, the qualitative behavior when n >> 1 is clear. Most cells interpret either 

maximal signaling levels (ON state) or little to no signal (OFF state), and the transition 

between these two states is sharp (Fig. 2.1E and Supporting Text). However, this analysis  
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Figure 2.1 Mathematical modeling proposes the Hh steady-state gradient is translated into a step-like 
signal response.  
 
(A) In the wing disc, Hh emanates from the posterior (P) compartment and forms a concentration gradient 

within the anterior (A) compartment to organize three different domains of gene expression: (I) engrailed 

(en), patched (ptc) and collier (col): blue; en is initially expressed in a narrow domain (dark blue), but it 

later expands to encompass the same domain as ptc and col (light blue). (II) decapentaplegic (dpp): white. 

(III) Cells beyond the dpp domain do not respond to the signal (OFF: red). Here and in subsequent figures, 

wing discs are oriented with posterior to the left and position along the AP axis is measured relative to the 

AP boundary (x = 0). (B) Simplified gene network of Hh signaling in the Drosophila wing disc as modeled 

in this study. Arrows represent activation; blunt-end lines represent repression. (C) Simulated steady-state 

(ss) profiles of [Hh] and [Signal]. The [Hh]ss profile (black curve) is approximately invariant to changes in 

the parameter n, whereas the [Signal]ss profile is qualitatively different for different values of n.  
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(D) Estimation of n from published data (Casali and Struhl, 2004). The dashed line is the graph of, 

€ 

F Ratio( ) =
Ratio( )n

kSignal
n + Ratio( )n

with 

€ 

Ratio ≡ [Hh_Ptc]
[Ptc]

. Ratio = 1.6 produces no signaling response (~5%), 

whereas Ratio = 2.7 gives full activation of the pathway (~95%) (Casali and Struhl, 2004). A lower-bound 

value of n can be estimated by the slope of the line through these data points [red line; slope = 

tan−1(φ)=

€ 

0.95 − 0.05
2.7 −1.6

=0.8]. Therefore, 

€ 

n = 4kSignal tan
−1(θ) > 4kSignal tan

−1(ϕ)  6.8. The minimum lower-

bound estimate, taking into account error bars (drawn according to published data (Casali and Struhl, 

2004), is n > 4.0. (E) Simulated steady-state profiles of [Hh], blue line, and [Signal], red line, for n = 6.8. 

Cell position relative to the AP boundary is indicated on the horizontal axis (x-axis). “X,” “Y,” and “Z” 

denote three arbitrary positions along the x-axis.  

fails to explain how three (or more) domains of gene expression might be specified by the 

Hh gradient (see Fig. 2.1A).  

Computer Simulations Suggest That Hh Gradient Dynamics May Contribute to 
Differential Gene Expression  

Our mathematical analysis supports the hypothesis that at steady state, a graded 

extracellular input of [Hh] is interpreted into a switch-like profile of signal activation 

[Signal], in which two domains of gene expression could easily be supported by the ON 

versus OFF states. Although morphogens are often considered as static gradients or their 

transient dynamics are largely ignored (Tabata and Takei, 2004; Kicheva and González-

Gaitán, 2008), recent studies have highlighted the importance of morphogen gradient 

dynamics in supporting differential gene expression (Saha and Schaffer, 2006; Bergmann 

et al., 2007; Harfe et al., 2004; Jaeger et al., 2004). In order to reconcile the apparent 

switch-like profile of Hh signaling with the fact that at least three domains of gene 

expression are specified, we asked whether dynamics of the Hh gradient contribute to 

patterning of the Drosophila wing disc.  



  39 
We examined the dynamic establishment of the Hh gradient through numerical 

simulations of Equations (2.1)–(2.5) (see Materials and Methods section). We observed 

that the gradient expands transiently to a position further from its steady-state distribution 

and then refines towards its source, the posterior compartment, as it approaches its final 

form (Fig. 2.2A). This dynamic behavior of the gradient is most likely due to the 

dynamics of Hh-dependent Ptc expression. During the formation of the gradient, Ptc is 

expressed only at low levels throughout the anterior compartment, and therefore, the 

range of Hh is largely unrestricted by Ptc; once Ptc is up-regulated, then Hh mobility is 

affected. As a consequence, we observe that a transient expansion of the gradient, or 

overshoot, results. Cells in more anterior positions receive the Hh-dependent signal for a 

limited amount of time, but they no longer receive the signal once the gradient has 

reached its steady-state position (Fig. 2.2B).  

On the basis of this theoretical analysis, we proposed an Overshoot model to explain the 

three states observed in the system: (State 1) cells that are never exposed to Hh above a 

“switching threshold,” the level necessary to activate Hh signaling, are always in the OFF 

state (Fig. 2.2C, red); (State 2) those cells that are only transiently exposed to levels 

above the switching threshold may transiently turn gene expression ON, but only certain 

genes subject to additional regulation will be able to maintain expression (Fig. 2.2C, 

white); and (State 3) those cells that are exposed constantly to levels above the switching 

threshold exhibit an ON state (Fig. 2.2C, blue). Interpretation of Hh signaling in the 

context of the Overshoot model requires only a single concentration threshold (the 

switching threshold) and takes into account each cell’s dynamic history of Hh exposure 

(see Discussion). 
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Figure 2.2.Temporal analysis of Hh signaling in vivo reveals the existence of a spatial overshoot.  
 
(A) Simulated profile of [Hh] gradient at three different time-points: Time 1 < Time 2 < Time 3. The 

gradient transiently expands anteriorly (Time 2) and then refines towards its steady-state shape (Time 3). 

(B) Number of cells that experience higher concentrations of [Hh] than the ON/OFF switch threshold, ε, as 

a function of time based on the simulated [Hh] profiles. This diagram defines an overshoot, a spatial 

domain of cells that are exposed transiently to [Hh]. (C) The dashed and solid red lines represent the 

[Signal] profiles resulting from the “overshoot” and “steady-state” gradients, respectively. Cells experience 

three qualitatively different dynamic trajectories of [Signal] exposure depending on their spatial location 

(lower boxes). (D) Experimental setup to reinitialize the Hh gradient using a temperature sensitive hedghog 
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allele (hhts2; see Materials and Methods for details). Induction at 18 °C to induce Hh signaling was 

conducted for different intervals of time (τ). (E) Ptc immunostaining of hhts2 homozygous discs from the 

experiment described in (D) for different induction times τ compared to a disc from a larva raised solely at 

18 °C. The large box in the illustration shows the entire region imaged; the small red box corresponds to a 

sample region used to generate the profiles using the Supporting Protocol, displayed in the bottom panels. 

Discs were fixed, immunostained, and imaged under identical conditions (see Materials and Methods). (F) 

Width of the Ptc domains as the Hh gradient is developed. At least four discs at each time point were used. 

Mean widths were computed, and error bars indicate standard deviations (see Supporting Protocol 1). 

Yellow area indicates the width range for Ptc in control discs at 18 °C.  

Taken together, our mathematical modeling enabled us to formulate the following 

hypotheses. First, the Hh gradient at steady state is insufficient to generate more than two 

states, and, thus, Hh patterning cannot be explained using the Classical Morphogen 

model. Second, the formation of the gradient exhibits a transient overshoot. This dynamic 

behavior would be a consequence of the gene network architecture; in particular, it is 

effected by Hh-dependent up-regulation of Ptc. And third, that the overshoot is necessary 

to specify more than two domains of gene expression in the system. These hypotheses are 

experimentally testable, and once they are supported by in vivo experimentation, we 

contend that the details of the mathematical model (parameter values, equation terms, 

etc.) are less important.  

In Vivo Evidence for a Transient Expansion of the Hh Signaling Response 

First, we designed an in vivo approach to test the existence and function of a Hh 

overshoot in wing disc patterning. Experimental evidence for the Hh gradient overshoot 

can be inferred from a recent study in which Hh was visualized using inducible Hh-GFP, 

though the existence of the overshoot was not highlighted by the authors (Su et al., 2007). 
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We investigated whether or not an overshoot at the level of extracellular Hh protein 

would also have an effect on target gene expression. 

To test this idea, we used a system in which Hh signaling in the wing disc can be 

reinitialized and target gene expression assayed in time through the use of a temperature-

sensitive hedgehog allele, hhts2 (Ma et al., 1993) (Fig. 2.2D). After 24 h at restrictive 

temperature, no Hh protein is detected by Western blot analysis suggesting that Hh 

protein synthesis is impaired at the restrictive temperature (S. Eaton, personal 

communication). As the ptc gene itself is a target of Hh signaling, we investigated Ptc 

recovery in time after the Hh gradient is re-established (Fig. 2.2D). We found that Hh-

dependent Ptc expression transiently expands, followed by a posterior refinement (Fig. 

2.2E). The refinement observed is not simply due to changing the temperature, because 

no differences in Ptc expression are observed in equivalently treated wild-type discs 

(Supporting Fig. 2.1). This overshoot of Ptc expression is observed as soon as 6 h after 

reinitialization of the gradient, and even after 36 h, refinement of the Ptc pattern is not 

complete (Fig. 2.2F). The dynamic states of this pattern support that a Hh gradient 

overshoot exists and, more importantly, demonstrate that an overshoot can be detected at 

the level of target gene expression. 

 
Hh-Dependent Ptc Up-Regulation Is Required for the Establishment of Different 
Domains of Gene Expression  
 
Previous studies have conclusively demonstrated that Ptc restricts the range of the Hh 

gradient (Chen and Struhl, 1996). As the Hh gradient expands further in ptc clones, we 

hypothesized that a Hh overshoot is likely to depend on signal-induced Ptc up-regulation. 

Therefore, we investigated how Hh-patterning is affected in discs that lack the ability to 
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up-regulate Ptc. ptc mutant animals die during embryogenesis but can be rescued, 

remarkably, by introducing ubiquitous levels of ptc through a Tubulin1α>ptc>Tubulin1α 

(TPT) transgene (Chen and Struhl, 1996). In ptc mutant discs carrying a copy of the TPT 

transgene (ptc-TPT; see Materials and Methods), it has been previously documented that 

Hh target genes are expressed in a broader domain compared to wild type (Chen and 

Struhl, 1996), but no information regarding the relative positions of target genes has been 

reported.  

In ptc-TPT discs, there is no Hh-dependent ptc expression, and consequently, 

discs are not expected to exhibit a Hh overshoot. We found that the expression domains 

of Collier (Col) and a dpp reporter, dppZ, which are expressed in different domains in 

wild-type discs (Fig. 2.3A–C), are almost completely overlapping in ptc-TPT discs, save 

a single row of cells (Fig. 2.3D–F). This result provides insights into the mechanism of 

patterning, because in contrast to the wild type (Fig. 2.3G), the Overshoot model and the 

Classical Morphogen model make different predictions regarding target gene expression 

in ptc-TPT discs (Fig. 2.3H). The Classical Morphogen model predicts that these genes 

will continue to be differentially expressed in ptc-TPT discs because distinct 

concentration thresholds define their boundaries (Fig. 2.3H). In contrast, the Overshoot 

model predicts that Col and dppZ borders would overlap in ptc-TPT discs; in the absence 

of a spatial overshoot, we predict that there are no cells that are only transiently exposed 

to the signal (Fig. 2.3H and see Fig. 2.3C).  

As Ptc up-regulation also results in Hh signal inactivation, we considered the 

possibility that the almost overlapping patterns of Col and dppZ observed in ptc-TPT 

discs are simply a consequence of increased levels of Ptc introduced by the TPT  
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Figure 2.3 Hh-dependent Ptc is required for the specification of more than two domains of gene 
expression.  
 
(A–F) Immunostaining of third instar wing discs carrying the dppZ reporter using anti-Col ([A and D] 

green) and anti-β-gal ([B and E] red) antibodies. (C and F) Merge of images in (A and B) and (D and E), 

respectively. Stainings within wild-type (WT) discs or ptc- discs carrying a single copy of the TPT 

transgene are depicted in (A–C) and (D–F), respectively. (C′ and F′) 2.25× magnification of white boxed 

regions in (C and F), respectively. Scale bar indicates 10 µm. (G) Interpretation of the wild-type Hh 

gradient according to the Classical Morphogen model or Overshoot model; Col and dppZ are shown as 
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examples. The Classical Morphogen model assumes the existence of concentration thresholds (T1 and T2) 

in the steady-state gradient of Hh that define different domains of gene expression (marked by “x”) . In the 

Overshoot model, patterning depends on a single “switching threshold,” δ, that differentiates between 

ON/OFF states of the pathway (see Supporting Text). Because of the overshoot, some cells will be exposed 

to the signal (above δ for a transient period of time (red solid circle), whereas others will be constantly 

exposed (green solid circle). Either model has the potential to explain gene expression in wild-type. The 

dashed and solids lines represent the two different time points corresponding to the overshoot and steady-

state profiles, respectively. (H) In ptc-TPT discs, the Hh gradient is not expected to exhibit an overshoot. 

The Hh gradient profiles converge to the steady-state location directly, and no posterior shift of the gradient 

occurs. Using the same concentration thresholds T1 and T2 defined in (G), the Classical Morphogen model 

predicts different Col and dppZ domains even in the absence of Ptc up-regulation. According to the 

Overshoot model, in contrast, no cells would be exposed to the signal only transiently and, thus, an overlap 

of Col and dppZ patterns is predicted. 

transgene. In fact, we noted that in ptc-TPT discs, the predicted distance between the 

anterior borders of Col and dppZ [Xdpp – Xptc/col], in the context of the Classical 

Morphogen model, is reduced with respect to the wild-type case if levels of Ptc 

introduced by the TPT transgene are higher than the endogenous Ptc levels expressed in 

wild-type discs away from the boundary (see Fig. 2.4A,B and Supporting Text). In order 

to address this possibility, we considered a system in which Ptc is expressed at even 

higher levels than in ptc-TPT discs. For instance, within wild-type discs that carry a copy 

of the TPT transgene (ptc+TPT), the levels of Ptc are higher in anterior cells away from 

the boundary compared with ptc-TPT discs. If the Ptc levels introduced by the TPT were 

the cause of the small difference between Col and dppZ expression patterns in ptc-TPT 

discs, the prediction is that [Xdpp – Xptc/col] in ptc+TPT discs will reduce even further (see 

Figure 2.4C and Supporting Text). We observed that dppZ expands at least three cells  
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Figure 2.4 Ptc and dppZ are expressed in different domains in ptc+TPT discs.  

(A–C) Comparison of the range of the Hh gradient in wild-type (A), ptc-TPT (B), and ptc+TPT discs (C) in 

the region anterior to the expected ptc and col borders (Xptc/col). In this region the gradients are exponential, 

with characteristic length given by 

€ 

λ =
D

γHh_Ptc[Ptc]A +βHh
, with [Ptc]A defined as the Hh-independent 

concentration of Ptc in the anterior compartment. On the basis of reported measurements of the TPT 

transgene with respect to wild type (Chen and Struhl, 1996), we assumed that [Ptc]A in ptc-TPT discs 

([Ptc]TPT is higher than in wild-type discs ([Ptc]0). In the context of the Classical Morphogen model, the Hh 

gradient in (A–C) has the same amplitude (T1) at Xptc/col even though that the actual value of Xptc/col may be 

different for each case. Therefore, λ is representative of the width of the domain in which Ptc and dppZ do 

not overlap ([Xdpp − Xptc/col]). [Ptc]A should be higher in ptc-TPT than in ptc-TPT discs and, thus, λ in 

ptc+TPT disc is a lower-bound estimate of [Xdpp − Xptc/col] in ptc-TPT discs (see Supporting Text). (D and 

E) Immunostaining of wing discs carrying the dpp10638 reporter and a single copy of the TPT transgene 

using anti-Ptc (D) and anti-β-gal (E) antibodies. (F) Merge of images in (D and E). (F′) Magnification of 

the white box shown in (F). Scale bar indicates 10 µm. 
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beyond the Ptc border in ptc+TPT discs (Fig. 2.4D–F). These data reveal that the 

overlapping patterns in ptc-TPT discs do not result from a dominant-negative effect of 

the TPT transgene and argue strongly against the Classical Morphogen model (see 

Discussion).  

Dynamics of Hh Target Gene Expression 

In light of the Overshoot model (Fig. 2.2C), we predicted that (1) dpp would respond 

rapidly to a transient exposure to Hh, because the transient overshoot likely occurs in a 

relatively short amount of time (e.g., see Fig. 2.2F); and (2) dpp, but not ptc, expression 

would be predicted to persist after the transient signal is discontinued.  

We investigated the response of Ptc and dppZ expression after Hh signal was 

restored only transiently in hhts2 homozygous discs. Consistent with previous data (Fig. 

2.2E), Ptc is fully expressed after only 6 h of signal re-initialization; in contrast, dppZ 

expression is limited to only one row of cells under these conditions (Fig. 2.5B; compare 

to Fig. 2.5A). The full domain of Ptc is reached after 12 h of induction (Fig. 2.5C), but 

this expression can be completely eliminated after a loss of Hh activity of only 8 h (Fig. 

2.5E). In contrast, even after 12 h of induction, only partial dppZ expression appears (Fig. 

2.5C). Expression of dppZ within its entire expression domain is approached after 20 h of 

exposure (Fig. 2.5D). Importantly, a similarly full dppZ expression pattern is supported 

when the signal is only induced for 12 h but followed by an additional interruption of 8 h 

(Fig. 2.5E, compare with Fig. 2.5D). This result suggests that additional time of exposure 

to the signal is not required to support the full expression of dppZ, but instead that 12 h of 

exposure to Hh are sufficient for approximately normal dppZ expression, but an 

additional waiting period is required for the pattern to fully develop (Fig. 2.5E; compare  
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Figure 2.5 Dynamic response of Hh target genes. 

Third instar larvae from hhts2 homozygous animals initially grown at 18 °C and obtained along a time 

course of Hh exposure at particular times indicated in the diagrams. The time course (also illustrated in the 

panels above the images) is defined by notation (y,z): homozygous animals were grown for grown at 18 °C 

for 8 d, followed by 48-h signal interruption at 29 °C, followed by y hours of signal induction at 18 °C, 

followed by an additional z hours of interruption at 29 °C: (A) = (0,0); (B) = (6,0); (C) = (12,0); (D) = 

(20,0); and (E) = (12,8). In the lower panels, immunostainings depict Ptc (green) and dppZ (red) expression 

in discs subject to the different histories of Hh exposures as outlined in the time-course. 

with Fig. 2.5C). These data also suggest that whereas sustained exposure to the signal is 

required to maintain Ptc expression, dppZ expression is maintained after Hh signaling has 

ceased (Fig. 2.5E and see below). Collectively, these data demonstrate that ptc responds 

rapidly to changes in Hh signaling activity and suggest that although the dpp response is 

much slower, additional regulatory mechanisms may ensure its ability to capture the full 

dynamics of the gradient (see Discussion).  
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We investigated further the fact that dppZ expression perdures after Hh signal is 

interrupted using the hhts2 genetic background and found that dppZ persists after 24 h at 

restrictive temperature, although the intensity of expression is significantly reduced (Fig. 

2.6A,B). Through in situ hybridization, we confirmed that dppZ perdurance is not a 

consequence of β-galactosidase (β-gal) stability, as dpp transcript similarly persists after 

24 h of signal interruption (Supporting Figure 2.2).  

Previous studies have used Ptc overexpression to repress Hh signaling in the wing 

disc (Johnson et al., 1995). Using the Gal4-UAS system and a temperature-inducible 

Gal80 protein, we were able to interrupt Hh signaling (via strong Ptc overexpression) in a 

temporally-controlled manner. At permissive temperature, Gal80 blocks Gal4’s ability to 

drive Ptc expression such that wing discs from animals developing at permissive 

temperature exhibit normal patterns of Ptc, Col, and dppZ (Fig. 2.6C,E,G). However, 

animals exposed to restrictive temperature for the last 24 h of larval development (Fig. 

2.6D) ectopically express Ptc ubiquitously, which abrogates Hh signaling, as confirmed 

by the loss of Col expression (Fig. 2.6F). In contrast, we found that low levels of dppZ 

expression persist under these conditions (Fig. 2.6H). Taken together, these data (Fig. 2.5 

and Fig. 2.6) suggest that whereas ptc (or col) and dpp expression are each initiated by 

Hh signaling, only ptc and col expression require sustained exposure for maintenance.  

In an effort to identify the molecular machinery responsible for maintenance of 

dpp expression, we considered a role for dpp autoregulation. If Dpp autoregulation were 

responsible for maintaining expression of dpp in the most anterior part of its domain (that 

which is not overlapping with the Col/Ptc), then Ptc and dppZ would be expected to 

overlap in discs in which Dpp signaling is lost. To test this assertion, we used a dpp  
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Figure 2.6 Persistence of dpp expression after Hh signaling interruption. 

(A and B) Antibody staining using anti-β-gal antibody to detect dppZ expression in hhts2 homozygous third 

instar wing discs at 18 °C (A), or exposed to restrictive temperature 29 °C for the last 24 h (B). The domain 

of dppZ expression is similar in (A and B), but the intensity of expression is higher in wild type. (C–H) 

Immunostaining using anti-Ptc (C and D), anti-Col (E and F), and anti-β-gal (G and H) antibodies within 

discs that overexpress Ptc using the Gal4-UAS system, and controlled by a temperature-sensitive Gal80. At 

18 °C, Gal80 inactivates ectopic Ptc expression, so discs grown at this temperature exhibit essentially 

normal patterns of Ptc (C), Col (E), and dppZ (G). A 24-h exposure to 29 °C, however, causes high levels 

of Ptc expression ubiquitously (D), and consequently, the Col pattern is completely lost (F), whereas low 

levels of dppZ remain (H).  

temperature-sensitive system (dppts) (Hsiung et al., 2005). dppts discs develop normally at 

permissive temperature; in particular, they have normal patterns of phosphorylated Mad 

(pMAD), a direct indicator of Dpp signaling activity, as well as normal expression of Ptc 
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and dppZ (Supporting Fig. 2.3A-C). However, dppts discs, exposed to restrictive 

temperature for the last 24 h of larval development, exhibit a loss of pMAD expression 

(Supporting Fig. 2.3E), but Ptc and dppZ genes are expressed in their normal domains 

(Supporting Fig. 2.3F,G); in particular, these patterns do not overlap (Supporting Fig. 

2.3H). Thus, this result argues against the idea that Dpp autoregulation is the main 

mechanism that controls dpp maintenance.  

2.4 Discussion  

In this study, we investigated how the Hh gradient is interpreted in the Drosophila wing 

imaginal disc. In particular, we explored whether or not concentration thresholds in the 

Hh gradient correspond to different borders of target gene expression. We used 

mathematical modeling as a hypotheses-generating tool. Although our mathematical 

model makes strong claims about the interpretation of Hh signaling, it is through in vivo 

experimentation that these hypotheses were tested. The predictions of the mathematical 

analysis present a novel mechanism for Hh signal interpretation by a field of cells. This 

model can be summarized by three main claims (see Fig. 2.2C): (1) At steady state, a 

monotonic Hh gradient is translated into a step-like signal response. This suggests that 

only two states (“blue”/“red,” corresponding to fully ON/OFF expression of Hh target 

genes) can be discriminated at steady state. (2) The dynamics of the Hh gradient (and 

therefore the signal response) exhibit a spatial overshoot. This raises the possibility that a 

third state (“white,” corresponding to dpp ON; ptc/col OFF expression) may be 

established by the transient signal provided by the overshoot. (3) This third state (white) 

may require additional mechanisms to sustain gene expression after the transient 
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exposure to Hh ceases. Here, we discuss these predictions in the light of our experimental 

data. 

Existence of a Hh Overshoot and Dynamics of Target Gene Expression 

We provide in vivo evidence that Hh signaling responds to dynamical changes of the 

gradient. Upon Hh signaling reinitialization (using the hhts2 system), the establishment of 

the Hh gradient is dynamic and exhibits an “overshoot behavior” (Fig. 2.2E,F). Although 

the existence of the Hh overshoot can be predicted from the gene network architecture, it 

was not clear if the timescale of gradient formation would be slow enough such that the 

overshoot could be detected at the level of target gene expression. Using Ptc expression 

as a reporter of Hh signaling activity, we demonstrated that a Hh overshoot can influence 

Hh-dependent patterning. Ptc is fully up-regulated within 6–9 h of reinitialization of the 

system (Fig. 2.2E), therefore, we estimate that the transient overshoot occurs on a similar 

timescale; in contrast, refinement of the gradient likely happens at a much slower pace 

(Fig. 2.2F). Furthermore, it is not clear from our data whether the refinement occurs 

progressively (as predicted in Fig. 2.2B) or in a stepwise manner (i.e., oscillating towards 

a final state), and either scenario would be consistent with an Overshoot model.  

However, the natural timing of an overshoot during the course of normal 

development remains in question. As hh is expressed in the early embryo, one possibility 

is that the Hh gradient forms early during embryonic development and is retained within 

the wing disc. Of note, however, is the fact that several factors are required for Hh 

secretion and distribution (Han et al., 2004; Burke et al., 1999; Panakova et al., 2005; 

Chamoun et al., 2001). As it remains unclear at which developmental time point Hh 

mobility might be afforded by one or more of these factors, it is difficult to speculate on 
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the timing of an overshoot. In the future, live examination of the distribution of Hh from 

early larval development and throughout maturation of wing disc development will 

provide insights, but currently, this remains a technical challenge.  

Our data also revealed that ptc expression is up-regulated faster than dpp 

expression (Fig. 2.5). Moreover, the temporal response of dpp expression in response to 

Hh signaling (12–20 h) is much slower than the predicted timescale of the occurrence of 

the overshoot (6–9 h). This result is counterintuitive with regards to the Overshoot model 

because it predicts that the domain of dpp expression can be specified by a transient Hh 

signal. Interestingly, our data demonstrate that only a short transient exposure to Hh 

appears to be required to support dpp expression, but it can only be detected some time 

thereafter (see Fig. 2.5). Thus, additional regulation above that of Hh is likely to 

influence the timing of gene expression. For example, the kinetics of dpp expression may 

be controlled by a feed-forward loop, in which a factor required for its activation 

introduces a time delay with respect to the time in which exposure to the Hh signal takes 

place (see below).  

Signal-Dependent Ptc Up-Regulation Is Required to Generate Multiple Patterns 

Our in vivo data demonstrated that in the absence of Hh-dependent Ptc up-regulation, the 

borders of Col and dppZ coincide (Fig. 2.3F). We contend that this result is not due to 

higher levels of Ptc supported by the TPT transgene, because wild-type discs expressing 

this same TPT transgene (ptc+TPT discs) should express even higher concentrations of 

Ptc in the anterior compartment (due to additional contributions from the endogenous ptc 

gene), and yet these discs clearly exhibit different domains of Ptc and dppZ expression 

(Fig. 2.4). Thus, the Classical Morphogen model cannot explain the patterns observed in 
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ptc-TPT and ptc+TPT discs. Importantly, the nonoverlapping domains of Ptc and dppZ 

in ptc+TPT (Fig. 2.4D-F) are consistent with the Overshoot model, as Hh-dependent Ptc 

up-regulation is supported within these discs. 

Nonetheless, other interpretations to explain the overlapping patterns in ptc-TPT 

discs are plausible. For example, we observed that whereas the Col domain of expression 

expands in ptc-TPT discs relative to wild-type discs (Fig. 2.3D, compare with Figure 

2.3A), the dppZ expression domain does not (Fig. 2.3B,E). It is formally possible that the 

Col and dppZ borders may coincide in the ptc-TPT discs due to a postulated repressor 

that blocks Hh target gene expression beyond a certain position within the anterior 

compartment. However, we suggest this scenario is unlikely, as a significant expansion of 

the dppZ domain is observable both in ptc mutant clones located near the AP boundary or 

when lower levels of Ptc are present (Chen and Struhl, 1996). Furthermore, Hh-

expressing clones located anywhere in the anterior compartment are able to support 

expression of target genes within and around the clone (Strigini and Cohen, 1997).  

Another possible interpretation is provided by a recent study of Hh signaling in 

the vertebrate spinal cord in which signal-dependent Ptc up-regulation provides cells the 

ability to adapt after sustained exposure to the Hh signal (“desensitization”) (Dessaud et 

al., 2007). This “Temporal Adaptation model” also invokes feedback by up-regulated Ptc; 

however, the role of the Ptc protein in this model is quite different. The Temporal 

Adaptation model relies on Ptc to down-regulate the signaling pathway; in contrast, the 

Overshoot model depends on the ability of Ptc to sequester the ligand. Supposing that 

desensitization is in effect, Ptc up-regulation could convert different Hh concentrations 

into a more graded signal response (Supporting Fig. 2.4A), but such an effect would be 
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limited to the domains in which Ptc is expressed, as desensitization is cell autonomous in 

nature. Thus, cells that express dppZ (but not Col) should not be affected by Ptc-

dependent desensitization (Supporting Fig. 2.4B). We argue, therefore, that the Temporal 

Adaptation model cannot explain the patterning changes we observe in ptc-TPT discs, 

i.e., the overlap between dpp and ptc/col expression domains (see Supporting Fig. 2.4). 

Alternatively, en is considered responsive to the highest levels of Hh signaling (see Fig. 

2.1A) (Strigini and Cohen, 1997; Blair, 1992; de Celis and Ruiz-Gomez, 1995), and En 

and Col overlap in expression within ptc-TPT discs (Supporting Fig. 2.5). However, we 

cannot be sure that this is due to loss of desensitization, because a careful examination of 

En expression in wild-type discs shows that Col and En in fact overlap even in wild-type 

discs, provided that gene expression is assayed late enough in development (Supporting 

Fig. 2.6). Nevertheless, it is still plausible that Hh-dependent Ptc up-regulation may 

control the boundary position of other Hh target genes in two ways: by Ptc-dependent 

desensitization within the domain of ptc expression and through gradient dynamics 

(overshoot) in cells located anteriorly to the ptc domain.  

Although the Overshoot model is largely consistent with our observations, the fact 

that Col and dppZ patterns in ptc-TPT discs do not completely overlap (Fig. 2.3F′) 

requires additional discussion. Because the Overshoot model strictly assumes a unique 

threshold, δ, that distinguishes between ON and OFF states of the system (Fig. 2.2C), in 

theory, the model would predict a full overlap of Col and dppZ within ptc-TPT discs. 

Though we contend that gradient dynamics, driven by signal-dependent Ptc up-

regulation, encodes the predominant mechanism by which gene expression boundaries 

are established, additional mechanisms could also subtly influence patterning outputs. For 
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instance, interpretation of the ON/OFF threshold at the cis-regulatory level cannot be 

infinitely accurate, and thus, different binding affinities (i.e., concentration-dependent 

effects) might account for small differences in the observed expression domains (Fig. 

2.3F).  

A State-Space Model for the Overshoot Model of Patterning 

Our results can be summarized by a state-space diagram, which integrates dose-

dependent effects with gradient formation dynamics (Fig. 2.7A). The history of Hh 

signaling activity over time for a given cell is represented by a trajectory within the state-

space diagram. Cells in the anterior compartment adopt one of three final territories (I, 

III, and IV) depending on their history of Hh exposure rather than their final Hh 

concentration. Territory II is a transient state in which the cell expresses ptc, but not dpp. 

An unusual topological property of this state-space diagram is that Territory IV can only 

be reached through Territory III. A further requirement is that cells that enter Territory IV 

be able to maintain dpp expression, for instance through a positive feedback loop that 

allows cells to retain dpp expression even once Hh signaling has been discontinued. In 

support of this requirement, our data show that dpp expression is maintained long after 

Hh signaling is interrupted (Fig. 2.6).  

Autoregulatory feedback is an attractive hypothesis to explain this maintenance of 

dpp expression, as previous studies suggest dpp exhibits autoregulation in the wing disc 

(Hepker et al., 1999) and in the early embryo (Jazwinska et al., 1999; Biehs et al., 1996). 

However, we see no change in the dppZ pattern when Dpp signaling is transiently 

impaired (Supporting Fig. 2.3), arguing against autoregulatory feedback as a major 

mechanism supporting “memory” of dpp expression. However, other possible molecular 
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Figure 2.7  State-space diagram and network architecture for the Overshoot model. 

(A) The state-space diagram consistent with the Overshoot model is divided into four territories (I–IV) 

defined by the expression levels of ptc (or col) and dpp, consistent with the data in Figure 5. All cells in the 

anterior compartment are initially in Territory I (ptc OFF; dpp OFF) but only cells relatively far from the 

AP boundary, in which signaling levels are below the switching threshold, δ, remain in this territory (red 

trajectory). During the formation of the Hh gradient, cells located sufficiently close to the AP boundary 

visit transiently Territory II and express ptc, but not dpp. From the subset of cells that enter Territory II, 
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those that remain exposed to the signal will continue expressing ptc and will eventually express dpp when 

crossing to Territory III (blue trajectory). However, cells in which Hh signaling ceases (for example, as a 

result of gradient refinement after the overshoot) will maintain dpp expression, but will stop expressing ptc. 

These cells will cross to Territory IV and remain there (gray trajectory). Note that Territory IV is not 

simply connected to Territory I (see boundary line demarcated by X’s) as it is only accessible from 

Territory III. An additional territory (V) may be considered to include engrailed in the state-space model 

(see Figure S6G). (B) The Overshoot model is inherent within the Hh network architecture. The overshoot 

of Hh depends exclusively on Hh-dependent Ptc-upregulation (“Overshoot” module). However, distinct 

ptc/col and dpp can only be realized if dpp (but not ptc and col) expression is maintained in cells in which 

exposure of Hh is only transient. One way in which this can be effected at the molecular level is if a 

“Memory” module operates in the network. For example, dpp expression can be maintained specifically if a 

stable protease “X” that degrades the repressor form of Ci (Ci75) is up-regulated in response to Hh 

signaling; “Z” represents a Hh-independent activator that supports dpp expression (see Discussion). 

mechanisms to maintain dpp expression are conceivable (see below and Fig. 2.7B, for 

example). 

Towards the Molecular Basis of the Overshoot Model 

Our data are consistent with a model in which Hh-dependent Ptc up-regulation is 

necessary to shift the initial Hh gradient posteriorly, generating a zone of transient signal 

exposure that is required to specify different domains of gene expression. Unlike other 

models of patterning, the Overshoot model is based on two properties of the Hh gene 

network architecture: first, a negative feedback loop mediated by Ptc that controls the 

spatial range of the Hh gradient (Fig. 2.7B; “Overshoot” module) (Chen and Struhl, 

1996), and second, a positive feedback loop that maintains gene expression of dpp in the 

region in which only a transient Hh signal is received (Fig. 2.7B; “Memory” module).  
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Although we contend that the molecular players within the Overshoot module are 

known, we do not have a molecular understanding of the genes that relate to the Memory 

module. One possible molecular mechanism to explain “memory” may involve the 

differential functions of Ci. ptc, col, and en require the activator form of Ci (Ci155) for 

expression; whereas in the absence of Ci155, dpp still exhibits low-level expression 

(Méthot and Basler, 2001). Evidence exists that the repressor form of Ci (Ci75) is more 

critical for dpp expression and that another activator “Z” may support low level dpp 

expression (Méthot and Basler, 2001). A putative Memory module, for example, could 

involve Hh-dependent regulation of a protease, “X,” that degrades Ci75 and is stable. In 

this scenario, the overshoot gradient would be sufficient to activate X in the dpp 

expression domain, which in turn will maintain the absence of Ci75 in this region even 

after the overshoot has occurred. This molecular model is appealing in light of our data 

for the following reasons. First, it suggests that the slow temporal response of the dpp 

pattern after signal reinitialization may be due to the delay in producing X; and second, it 

explains why dpp can only be maintained at low levels after Hh signaling is removed 

(Fig. 2.6 and Supporting Fig. 2.2). 

Implications of the Overshoot Model 

We have discussed how the Overshoot model proposed here explains ptc/col and dpp 

differential expression, but how might expression of en be controlled? We observed that 

the En boundary falls in the middle of the Ptc domain in the wing disc of a crawling third 

instar larva (Supporting Fig. 2.6A–C), but the patterns tend to overlap when discs are 

taken from larvae close to pupariation (Supporting Fig. 2.6D–F). These results suggest 

that the En pattern forms very slowly and may also be explained in the context of our 
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three-state overshoot model: En is patterned in a manner similar to ptc and col genes, 

encompassing similar domains of expression, but the En pattern is realized later 

(Supporting Fig. 2.6G).  

These observations raise an important point regarding the interplay of gradient 

dynamics and Hh concentration levels. Although the Overshoot model does not require 

multiple concentration thresholds in order to determine different boundaries of gene 

expression, the rate of signal activation likely depends on the Hh concentration. The 

influence of concentration on patterning through the Overshoot model is explicitly taken 

into account within the state-space diagram; different territories are delineated by curved 

domains (instead of straight vertical lines) to indicate responsiveness to concentration 

differences (Fig. 2.7A and Supporting Fig. 2.6G). For example, cells exposed to two 

different Hh concentrations (provided that they are both higher than the switching 

threshold, δ) will both eventually turn en expression ON, but the cell exposed to the 

higher concentration will support expression first. This would also explain why the dppZ 

pattern forms in a sequential manner, with fewer cells closer to the AP boundary 

expressing the reporter first (Fig. 2.5). To be clear, this concentration-dependent 

influence on the rate of pattern formation is not related to concentration thresholds as 

defined by the Classical Morphogen model.  

Another implication of the Overshoot model is that the decision to activate dpp is 

irreversible. This implies that once cells receive sufficient Hh levels to turn on the 

pathway and express dpp, they will continue to do so even if Hh signaling is removed 

(Fig. 2.6). This idea is similar to early theoretical studies based on the classical French 

Flag model that proposed that the ability to reach a certain concentration threshold is not 
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sufficient to support a specific response, but that instead additional feedback interactions 

are required to “lock down” that response (Lewis et al., 1977; Meinhardt, 1978). We find 

support for this idea as we observe that dpp expression is retained even 24 h after Hh 

protein is removed (Fig. 2.6B and Supporting Fig. 2.2).  

Although the Overshoot model as presented here (Fig. 2.7A) can only specify 

three states (i.e., a “French Flag”), it is conceivable that this model may be generalizable 

to support more than three distinct domains of expression. For example, an additional 

state in the system may be incorporated if additional proteins are considered, ones that, 

like Ptc, regulate Hh mobility and are up-regulated in response to the signal. In 

vertebrates, targets of Hh have been identified that include proteins that sequester Hh 

itself. Hedgehog-interacting-protein 1 (Hhip1) can limit the range of the Hh gradient, and 

Hhip1 transcription is also slowly up-regulated by Hh signaling (Chuang and McMahon, 

1999). In this case, for instance, the full refinement of the Hh gradient could occur in two 

discrete steps (in vertebrates this could be mediated by Ptch1 and a Hhip1) that generate 

two transient zones of different temporal exposures to Hh able to support multiple 

patterns of gene expression. In fact, in Ptch1 mutant mouse embryos that express low 

levels of Ptch1 ubiquitously, neural tube patterning is affected in ventral regions (close to 

the source of Hh), but patterning of intermediate regions is approximately normal (Jeong 

and McMahon 2005). However, in Ptch1; Hhip1 double mutants, ventral patterns expand 

and overlap intermediate patterns (Jeong and McMahon, 2005). These observed 

patterning changes share similarity with the overlap of patterns observed for ptc-TPT 

discs (Fig. 2.3D–F); thus, we suggest that the Overshoot model may apply to Hh 

patterning in vertebrates as well.  
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Conclusion 

The significance of the Overshoot model presented here relies on the architecture of a 

particular gene regulatory network, in which a morphogen activates the expression of a 

molecule affecting its distribution. As this network property has been identified in other 

systems (Chuang and McMahon, 1999; Golembo et al., 1996; Nakagoshi et al., 2002; 

Drossopoulou et al., 2000), it is possible that evolution has selected upon this network 

architecture to support patterning of other developing systems in a similar manner to Hh-

mediated patterning of the Drosophila wing disc, through gradient dynamics.  
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Chapter 3 

Steady-State Invariant Genetics: Probing the Role of 
Morphogen Gradient Dynamics in Developmental Patterning 
 

 

Morphogen-mediated patterning is the predominant mechanism by which positional 

information is established during animal development. In the classical view, the 

interpretation of morphogen gradients is assumed to be at equilibrium and the dynamics 

of gradient formation are generally ignored. The problem of whether or not morphogen 

gradient dynamics contribute to developmental patterning has not been explored in detail, 

in part, because genetic experiments that selectively affect signaling dynamics while 

maintaining unchanged the steady-state morphogen profile are difficult to design and 

interpret. Here, I present a theoretical approach to identify genetic mutations in 

developmental patterning that may affect the transient, but leave invariant the steady-state 

signalling gradient. As a case study, I illustrate how these tools can be used to explore the 

dynamic properties of Hedgehog signaling in the developing wing of the fruit fly, 

Drosophila melanogaster. This analysis provides insights into how different properties of 

the Hedgehog gradient dynamics, such as the duration of exposure to the signal or the 

width of the gradient prior to reaching the equilibrium, can be genetically perturbed 

without affecting the local steady-state distribution of the gradient. I propose that this 

method can be generally applicable as a tool to design experiments to probe the role of 

transient morphogen gradients in developmental patterning and discuss potential 

applications of these ideas to a wide variety of problems. 
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3.1. Introduction 

A classical paradigm in developmental biology is that cells in a developing embryo or 

tissue acquire information about their relative spatial location by interpreting the local 

concentration of chemical signals in their environment called morphogens. The key idea 

is that the interpretation of positional information results in the establishment of gene 

expression patterns whose boundaries correspond to concentration thresholds of the 

morphogen gradient (Wolpert, 1971; Gurdon et al., 1998; Ashe and Briscoe, 2006). A 

common implicit assumption of the Classical Morphogen model is that gradients are 

interpreted approximately at the steady state in order to produce stable patterns of gene 

expression (Nellen et al., 1996; Kicheva et al., 2008). However, recent quantitative 

imaging studies in some systems have demonstrated that morphogens are more dynamic 

than previously thought and have raised criticisms to the classical morphogen concept 

(Gregor et al., 2007; Harvey and Smith, 2009; Liberman et al., 2009). For instance, if 

gradient formation evolves in time, how and when are concentration thresholds 

interpreted? Or more generally, how do morphogen dynamics contribute to positional 

information? One possibility is that patterns evolve as the gradient develops, giving rise 

to transient patterns that converge to stable gene expression domains as the gradient 

approaches the equilibrium (Bourillot et al., 2002). This scenario supports a ‘no-role’ 

model for transient gradients (Fig. 3.1A), but this seems not always to be the case. For 

example, we recently reported that in the wing disc of the fruit fly, Drosophila 

melanogaster, the specification of different spatial domains of expression in response to 

Hedgehog (Hh) signalling depends on the dynamics of the Hh gradient (Nahmad and 

Stathopoulos, 2009). In particular, we showed that cells exposed to Hh only transiently  
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Figure 3.1 Static vs. dynamic models of morphogen-mediated patterning. 

 (A) In the classical view, morphogens are assumed at equilibrium and cellular states (blue, white, or red) 

depend on morphogen concentration thresholds (T1 and T2). In this model, the dynamics of the gradient 

prior to reaching the equilibrium (gray region) does not have a role in patterning. For example, cells 

transiently exposed to the morphogen, but that cease receiving the signal at the steady state acquire the 

same state (red) than cells always exposed to low signaling levels (trajectories 1 and 4). (B) In the 

‘Overshoot’ Model (Nahmad and Stathopoulos, 2009), the dynamics of the gradient are essential for pattern 

formation. Cells receiving the morphogen will change from a red (OFF) to a blue (ON) state. As in (A), 

those cells that keep receiving the signal will maintain their blue fate (trajectories 2 and 3), but cells that 

lost their transient signal (trajectory 4) will adopt a different state (white) than cells that never reach the 

switching threshold T (trajectory 1). In (B), the red and white domains are not simple-connected, i.e. 

trajectories cannot cross the red-white boundary. 

 

express a different combination of genes compared to cells constantly receiving the signal 

or cells that never receive it at all. In contrast to the Classical Morphogen Model (Fig. 

3.1A), this case provides an example in which patterns are not only defined based on the 

steady-state readout of the morphogen concentration, but also on their history of exposure 

to the signal (Fig. 3.1B). In general, the problem of whether or not the dynamics of 
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gradient formation are required for morphogen interpretation remains largely unexplored 

experimentally because mutants that affect gradient dynamics are also likely to perturb 

the steady-state morphogen distribution. Despite the recent introduction of techniques to 

quantify and measure the dynamic properties of morphogen gradients in living embryos 

or tissues (Kicheva et al., 2007; Yu et al., 2009), the identification of mutants that 

selectively affect gradient dynamics with little or no effect on the equilibrium profile 

remains challenging.  

For more than 50 years, mathematical modeling and theoretical biology have 

provided powerful tools to identify potential mechanisms of morphogen gradient 

formation and interpretation in developmental patterning (Turing, 1952; Meinhardt, 

1978; von Dassow et al., 2000; Lander et al., 2002; Eldar et al., 2003; Bollenbach et al., 

2008). However, much of this literature has been built on the assumption that 

morphogens are interpreted at the steady state and transient gradients are often 

completely ignored. Reducing a dynamical system to its steady state is usually 

mathematically convenient as the equations of the model often simplify considerably and 

theoretical tools are readily available to study the stability of solutions. In contrast, much 

less analytical tools exist to investigate the temporal evolution of a gradient and studies 

that have taken morphogen dynamics into consideration usually rely on exhaustive 

numerical explorations of high-dimensional parameter spaces (Jaeger et al., 2004; Saha 

and Schaffer, 2006).   

In this paper, I present theoretical tools to study transients of dynamical systems 

in general and the role of the dynamics of morphogen gradients in particular. Given a 

mathematical model of a particular morphogen-based pattern formation system, we 
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consider parameter perturbations that may change the transient shape of a morphogen 

without effectively affecting its steady-state distribution. I introduce a theoretical 

framework to study these perturbations in a geometric way and discuss how they could be 

analyzed systematically. As an example, I investigate the dynamics of the Hh gradient in 

the Drosophila wing disc and show how this approach may lead to predict genetic 

mutants that provide insights into the role of Hh gradient dynamics during development. 

Other applications of these concepts and their theoretical and biological implications are 

also highlighted. 

 

3.2. Methods 

Wing Disc Immunostaining 

In Figure 3.3A, a third instar wing disc of genotype dpp10638/CyO was immunostained 

with mouse anti-Ptc (Hybridoma Bank Developmental Studies at the University of Iowa) 

and rabbit anti‐β-Galactosidase (Invitrogen) antisera following standard techniques. 

dpp10638 is a lacZ enhancer trap reporter that expresses nuclear β-Galactosidase under 

the control of the dpp enhancer. 

 
Analytical Solutions 

The analytical solution of equation (3.1) was derived by Bergmann et al. (2007) and is 

given by: 
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with erfc, the complementary error function, 

€ 

erfc(z) =
2
π

exp(−τ 2)dτ
z

∞

∫ . This solution was 

used to generate the gradient profiles in Figure 3.2C-E. An approximate analytical 

solution of Equation (3.6) near the AP boundary (Equation (3.8)) was obtained by 

linearization and the full details of this approximation are given in the Supporting Text. 

 
Numerical Simulations 

Our model of Hh-dependent patterning of the wing disc is assumed one-dimensional 

along the AP axis. We used a system of coordinates centered at the AP boundary (x=0) 

where the posterior and anterior ends of the disc were assumed at 

€ 

x = −LP  and 

€ 

x = LA, 

respectively (with LP+LA=200 µm, the length of the AP axis). Equations (3.5) were 

numerically solved with the parameters values as in Supporting Table 1 and using a 

Forward-in-Time-Centered-in-Space algorithm implemented in MATLAB. As in 

previous work (Nahmad and Stathopoulos, 2009), we use zero initial conditions, except 

for [ptc] and [Ptc] that were taken as: 

€ 

[ptc](x,  0) =
α ptc0

β ptc

,  for x > 0 and zero otherwise; [Ptc](x,  0) = TPtc

βPtc

[ptc](x,  0). 

Furthermore, we imposed zero-flux boundary conditions at the disc extremes (

€ 

x = −LP ; 

€ 

x = LA), and assumed continuity of the [Hh]SS profile and its derivative at the AP 

boundary (x = 0; see Supporting Text). 

 

3.3. Theoretical Framework: Definitions and Examples 
 
 
One way to study the role of signaling dynamics is to consider perturbations that maintain 

certain steady-state properties of a system unchanged, but affect the history of how those 
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equilibrium states are reached. In this section, I introduce a general theoretical framework 

to define this class of perturbations, referred here as steady-state invariant perturbations, 

and use a practical example to illustrate how this approach can be used as a tool for 

experimental design in the context of developmental genetics.   

 

Steady-State Invariant Perturbations: An Example 

In order to introduce the concept of steady-state invariant perturbations, consider a simple 

example, namely, a naïve model of a one-dimensional morphogen produced at a point 

source (x=0) that establishes a concentration gradient by diffusion and linear degradation, 

€ 

∂ [A]
∂t

= D∂
2[A]
∂x 2 +αδ(x) −β[A], 

   
(3.1)  

where [A] denotes the concentration of morphogen A, δ(x) is the Dirac delta distribution, 

and α, β and D are the production, degradation, and diffusion rates of A, respectively. At 

the steady state, the shape of the [A] gradient is exponential* and given by 

€ 

[A]ss(x) = A0 exp −
x
λ

 

  
 

  
,   with 

€ 

A0 =
α

2 Dβ
 and 

€ 

λ =
D
β
.  (3.2) 

In Equation (3.2), A0 and λ  represent the amplitude and characteristic length of the 

steady-state gradient, and their values determine uniquely this solution. As A0 and λ are 

defined in terms of the parameters of the system, a perturbation on the wild-type 

parameter values will maintain the steady-state solution invariant if and only if the values 

of A0 and λ remain unchanged. To formalize, let 

€ 

( ˜ α ,  ˜ β ,  ˜ D ) be the wild-type parameter 

values and consider a mutant that perturbs the system such that the effective parameter 
                                                        
*  In this example, we ignore boundary conditions by assuming that the system is infinitely long and 
diffusion occurs in both directions from the source. These assumptions allow us to solve the full time-
dependent problem (3.1) exactly using the method of Fourier transforms (Bergmann et al., 2007; see 
Methods section) and solution (3.2) arises as a limit of the time-dependent solution when t∞. 
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values of the system change to (α’, β’, D’). We say that the mutant preserves the steady-

state gradient or is steady-state invariant if the following equations hold: 

€ 

′ α 
′ D ′ β 

=
˜ α 
˜ D ˜ β 

≡ constant1

     ′ D 
′ β 

=
˜ D 
˜ β 
≡ constant2.

     (3.3)  

The set of all steady-state invariant perturbations can be represented geometrically in 

parameter space and will be referred to as the steady-state invariant set of the system. In 

general, a steady-state invariant perturbation Δ can be denoted as a vector in parameter 

space that is based on the point of wild-type parameter values and ends on the steady-

state invariant set (Fig. 3.2A). In this example, it follows that any perturbed parameter 

vector (α’, β’, D’) satisfying Equation (2.3) must be of the form, 

€ 

( ′ α ,  ′ β ,  ′ D ) = (δ ˜ α ,  δ ˜ β ,  δ ˜ D )    for some δ > 0.  (3.4) 

Equation (3.4) represents a straight line in parameter space that crosses through the origin 

and contains the wild-type parameter vector 

€ 

( ˜ α ,  ˜ β ,  ˜ D ) (Fig. 3.2B). Thus, the line defined 

by Equation (3.4) is the steady-state invariant set of this system. Importantly, a 

perturbation that keeps the parameter values within the steady-state invariant set may 

affect the transient evolution of the gradient but maintains the steady-state morphogen 

gradient unchanged. In this simple example, the effects on morphogen dynamics along 

the steady-state invariant set are simple to interpret;  for  δ  < 1, gradient formation is 

slower compared to the wild-type case, while for δ > 1 the steady-state gradient is 

approached faster than in the wild type (Fig. 3.2C-E). In addition, the rates in which the 

steady state is approached are space-dependent; cells adjacent to the source approach 

equilibrium faster than cells away from it and this property also holds after steady-state  
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Figure 3.2 Analysis of steady-state invariant perturbations in the case of a morphogen established by 
diffusion and uniform linear degradation.  
 
(A) Steady-state invariant sets can be generally described as subsets of parameter space. A steady-state 

invariant perturbation is represented by a vector in parameter set based on the point of wild-type parameter 

values (green) and ending on another point of the steady-state invariant set (red). (B) The steady-state 

invariant set of the morphogen modelled by Equation (1) is the straight line defined by Equation (3.4) with 

δ>0. (C-E) Temporal dynamics of the morphogen concentration [from Equation (3.1)] when parameter 

values α, β, and D are perturbed along the steady-state invariant set by varying the value of δ. (C) δ=1 

(unperturbed case); (D) δ=0.5; (E) δ=2. For comparison purposes, gradients in (C-E) are plotted using the 

same colour-coded timescale and the (invariant) steady-state profile is displayed in all three panels. 

 

invariant perturbations (see Supporting Fig. 3.1). Despite the simplicity of this example, 

the definition of steady-state invariant sets and the method to compute them can be 

generalized (see Box 3.1).   
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BOX 3.1 
 
Consider the following general model of developmental patterning. Let G=([g1], [g2], …, [gk]) a 
vector denoting concentrations of gene products g1, …, gk and assume that the dynamics of gene 
concentrations is described by a reaction-diffusion equation of the form 
 

€ 

∂ G
∂t

=D∇2G + f (G,  µ) .  (B1) 

 

In this equation, 

€ 

∇2 denotes the Laplacian operator (

€ 

∇2 ≡
∂ 2

∂x 2
+
∂ 2

∂y 2
+
∂ 2

∂z2
), D is a vector of 

diffusion coefficients, f is the reaction function that describes the interactions of gene products, and m 
is a vector of kinetic rates or parameters of the system. Note that the systems considered in the text 
(Equations (3.1) and (3.5)) are particular cases of Equation (B1). At the steady state, we set the time 
derivatives to zero so that the steady-state concentrations, Gss, obey the following equation, 
 

€ 

0 =D∇2GSS + f (GSS,  µ) .  (B2) 
 

Assume that the solution of (B2) exists and let us denote it as 

€ 

Gx
SS(µ) . 

 A parameter perturbation (e.g., a genetic perturbation) of the system is a function D of the form 
D(m)=(d1m1, d1m2, ..., drmr)

€ 

≡

€ 

(µ'1 ,µ'2 ,...,µ'r )  for some positive constants d1, ..., dr. We are 
interested in the study of perturbations that leave the steady-state solution 

€ 

Gx
SS(µ)  unchanged at least 

in a region of space S. A steady-state invariant perturbation is a parameter perturbation D that 
satisfies the following property: 
 

€ 

Gx
SS(µ) =Gx

SS(Δ(µ))                for all x ∈ S .  (B3) 
 

Our goal is to find the set of steady-state invariant perturbations satisfying Equation (B3). For this 
purpose, it is useful to consider the following geometric representation. Note that there is a one-to-one 
correspondence between parameter perturbations and points in parameter space (i.e points of the form 

€ 

(µ'1 ,µ'2 ,...,µ'r )  with m'i ≥ 0, i=1,…, r). For each x (fixed), 

€ 

Gx
SS(µ) = constant  and therefore, we 

can consider the points 

€ 

(µ'1 ,µ'2 ,...,µ'r )  in parameter space that satisfy 
 

€ 

Gx
SS(µ'1 ,µ'2 ,...,µ'r ) =Gx

SS(µ) = constant,                for x fixed . (B4) 
 

Denote by Wx the set of points in parameter space satisfying (B4) for a given x, and define the steady-
state invariant set, W, of the system (in S) as the set that results from the intersection of Wx for all 

€ 

x ∈ S , i.e. 
 

  

€ 

Ω = Ωx
x∈S
 ,  (B5)  

 
(see Supporting Figure 3.2). Hence, the steady-state invariant set is a geometric representation of the 
set of mutants that leave invariant the equilibrium gene concentrations in cells located within the 
region S. 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Hh Signaling in the Drosophila Wing Disc: A Case Study 

In order to motivate the applications of the concept of steady-state invariant sets to 

practical cases, the dynamic properties of Hh signaling in the Drosophila wing imaginal 

disc were investigated. In a recent study, we provided experimental evidence for the 

existence of a transient expansion (or ‘overshoot’) of the Hh gradient in the Drosophila 

wing disc which is required to define three different regions of signal exposure (Fig. 

3.3A; Nahmad and Stathopoulos, 2009). However, how specific properties of this 

transient overshoot (e.g., its duration) contribute to patterning has not been established. 

Here, I use the concept of steady-state invariant perturbations to make predictions about 

which genetic perturbations of the system may affect the dynamic properties of this 

overshoot without affecting the equilibrium profile of the gradient.  

Consider the mathematical model of the Hh signaling pathway originally 

presented in Nahmad and Stathopoulos (2009): 

€ 

∂[Hh]
∂t

= D ∂
2[Hh]
∂x 2

+ S−(x)αHh − γHh_Ptc[Hh][Ptc]−βHh[Hh]

∂[ptc]
∂t

= S+(x)α ptc0 +
α ptc[Signal]

m

kptc
m + [Signal]m

−β ptc[ptc]

∂[Ptc]
∂t

= T
Ptc
[ptc]− γHh_Ptc[Hh][Ptc]−βPtc[Ptc]

∂[Hh_Ptc]
∂t

= γHh_Ptc[Hh][Ptc]−βHh_Ptc[Hh_Ptc]

∂[Signal]
∂t

=

S
+

(x)α
Signal

[Hh_Ptc]
[Ptc]

 

 
 

 

 
 

n

k
Signal

n
+
[Hh_Ptc]
[Ptc]

 

 
 

 

 
 

n
−βSignal[Signal],

   (3.5) 

where [Hh], [ptc], [Ptc], [Hh_Ptc] are the concentrations of Hh, ptc (mRNA), Ptc 

(protein), and the Hh-Ptc complex, respectively.  The coefficients α, β, γ, and T,  
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Figure 3.3 Analysis of steady-state invariant perturbations of the Hh morphogen in the Drosophila 
wing disc.  
 
(A) Summary of the ‘Overshoot’ Model (Nahmad and Stathopoulos, 2009). An overshoot of the Hh 

gradient determines patterning of the Drosophila wing disc. Three gene expression domains are established 

by this overshoot. Cells that do not receive the signal or that receive sustained signalling levels are denoted 

by red and blue, respectively. Certain cells that are only transiently exposed to the signal are denoted by the 

white state and characterized by dpp (but not ptc) expression. The photo displays wild-type expression 

patterns of ptc and dpp in a third-instar wing disc (with the anterior compartment oriented upwards) 

carrying a dpp-lacZ reporter immunostained using Ptc (blue) and β-Galactosidase (white) antibodies. (B) 
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Comparison of the Hh steady-state profiles as obtained from the numerical solution of equation (6) or the 

exact solution of the linearization [Equation (3.8)]. Note that the approximation is good only near the AP 

boundary. (C) The steady-state invariant subset described by equation (3.10) represents a line 

parameterised by the variable δ. (d) Analysis of the overshoot in selected steady-state invariant mutants. 

Colour coding of the curves correspond to different values of δ as shown in (C). Note that the amplitude of 

the overshoot is unaffected by these steady-state invariant perturbations. (E) The duration of the overshoot 

(in hours) as extracted from (D) (squares) as a function of δ. (F) Representation of the steady-state invariant 

subset from equation (11) in two dimensions. The vertical axis denoted by µ, represents any other 

dimensions of parameter space. (G) Similar analysis as in (D), but corresponding to the approximate 

steady-state invariant subset in (F). (H) Steady-state invariant perturbations in (F) considerably affect the 

amplitude (red), but not the duration of the overshoot (blue).  

 

represent the rates of synthesis, degradation, complex formation, and translation, 

respectively. S+(x) (or S-(x)) is a step function of the form S+(x) = 1 if x > 0 (or S-(x) = 1 if 

x < 0), and zero otherwise that is used to represent compartment-specific reactions. For 

example, in this model, extracellular Hh is produced in the posterior compartment (x<0) 

and diffuses across the anterior-posterior (AP) boundary (x=0). In the anterior 

compartment (x>0), Hh binds its receptor, Patched (Ptc), and Hh signaling is activated as 

a function of the ratio of bound to unbound receptor concentrations (Casali and Struhl, 

2004). As in our previous study, the variable [Signal] denotes the concentration of a 

factor that models pathway activity at the intracellular level (see Nahmad and 

Stathopoulos (2009) for further details). At the steady state, the set of Equations (3.5) 

reduce to the following second-order equation, only valid within the anterior 

compartment (x>0), 
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€ 

D d2[Hh]ss
dx 2

−
χ [Hh]ss

β
Ptc

+ γHh_Ptc[Hh]ss
α ptc0 +

α ptc[Hh]ss
nm

η κ n + [Hh]ss
n[ ]

m
+ [Hh]ss

nm

 

 

 
 
 

 

 

 
 
 
−βHh[Hh]ss = 0 ,  (3.6) 

with 

€ 

χ =
TPtcγHh_Ptc
β

ptc

, 

€ 

κ =
kSignalβHh_Ptc
γHh_Ptc

, and 

€ 

η =
kptcβSignal
αSignal

. This equation is nonlinear and an 

analytical solution may be difficult (or impossible) to obtain. However, near the anterior-

posterior boundary (0< x <<1), we can assume that Hh exists at sufficiently high levels so 

that 

€ 

[Hh]SS
n >> κ n  holds in this region (see parameter values in Supporting Table 1). 

Under this assumption, one of the nonlinear terms in Equation (3.6) can be approximated 

by a constant, 

€ 

α ptc[Hh]ss
nm

η κ n + [Hh]ss
n[ ]

m
+ [Hh]ss

nm
≈
α ptc

η +1
. 

The other nonlinear term in Equation (2.6) can be linearized (via a Taylor expansion) 

around a point where the condition 

€ 

[Hh]SS
n >> κ n

 
is satisfied (see details in the  

Supporting Text). Under these approximations, it can be shown that near to the AP 

boundary the steady-state gradient can be approximately modeled by the following linear 

equation: 

€ 

d2[Hh]SS
dx 2

−B[Hh]SS −C = 0 ,  (3.7) 

with

€ 

B = βHh

D
 1+

TPtcγHh_Ptc

βptc 3βHhβPtc + γHh_PtcαHh( )
α ptc0 +

α ptcαSignal

αSignal + kptcβSignal

 

 
  

 

 
  3−

γHh_PtcαHh

3βHhβPtc + γHh_PtcαHh

 

 
 

 

 
 

 

 
 
 

 

 
 
 

 
and 

€ 

C =
3βHhTPtcγHh_Ptc

2 αHh
2

βptcD 3βHhβPtc + γHh_PtcαHh( )2
α ptc0 +

α ptcαSignal
αSignal + kptcβSignal

 

 
  

 

 
   (see Supporting Text for 
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details). Using appropriate boundary conditions (see Methods section), the solution of 

Equation (3.7) is given by: 

€ 

[Hh]SS(x) = Aexp − Bx[ ] − CB ,    (3.8) 

with  

€ 

A =

αHh

βHh
+
C
B

1+ BD
βHh

coth βHh
D
LP

 

 
 

 

 
 

 and LP is the width of the posterior compartment (see 

Supporting Text). In fact, the numerical solution of Equation (3.6) (using the parameters 

values in Supporting Table 2.1) is well approximated by the exact solution of the 

linearization [Equation (3.8)] close to the anterior-posterior boundary (Fig. 3.3B). A 

steady-state perturbation will maintain the Hh gradient approximately invariant near the 

anterior-posterior boundary if Equation (3.8) is unaffected by the perturbation, this is, if 

A, 

€ 

B , and 

€ 

C
B

 remain constant. Thus, under these approximations, the steady-state 

invariant set of the linearized system is given by: 

€ 

B'= β 'Hh

D'
 1+

T 'Ptc γ 'Hh_Ptcζ '
β 'ptc 3β 'Hh β 'Ptc +γ 'Hh_Ptcα 'Hh( )

3−
γ 'Hh_Ptcα 'Hh

3β 'Hh β 'Ptc +γ 'Hh_Ptcα 'Hh

 

 
 

 

 
 

 

 
 
 

 

 
 
 

= constant1

     C'=
3β 'Hh T 'Ptc γ 'Hh_Ptc

2 α 'Hh
2 ζ '

β 'ptc D' 3β 'Hh β 'Ptc +γ 'Hh_Ptcα 'Hh( )2 = constant2

A'=

α 'Hh

β 'Hh

+
C'
B'

1+ D'  B'
β 'Hh

coth β 'Hh

D'
LP

 

 
 

 

 
 

= constant3,

   

(3.9)  

where constant1, constant2, and constant3 are given by the wild-type parameter values 

and 

€ 

ζ ' =α 'ptc0 +
α 'ptcα 'Signal

α 'Signal +k'ptc β 'Signal
. Although any set of perturbed parameter values that 

satisfy these equations will maintain the approximated steady-state gradient unchanged, 
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the steady-state invariant set defined by Equations (3.9) is not very useful in practice 

because it involves more than fifteen parameters. Therefore, it is convenient to study 

particular subsets of the set defined by Equations (3.9). As a first case, consider, 

€ 

( ′ α ptc, ′ α ptc, ′ β ptc ) = (δ ˜ α ptc0,δ ˜ α ptc,δ ˜ β ptc ) ,    for any δ > 0    (3.10) 

with 

€ 

˜ α ptc0,  ˜ α ptc,  and ˜ β ptc  denoting the wild-type parameter values and all other 

parameters kept unperturbed (i.e. at their wild-type values). By substitution into 

Equations (3.9), it is clear that Equation (3.10) represents a steady-state invariant subset 

of the linearized system. In fact, Equation (3.10) also leaves invariant the original steady-

state equation of the system [Equation (3.6)] and therefore, it is an exact steady-state 

invariant subset of the system. Geometrically, Equation (3.10) represents a line in the 

αptc0−αptc−βptc parameter subspace (Fig. 3.3C). Numerical simulations suggest that a few-

fold changes in δ  affect the duration but have little effect in the amplitude of the 

overshoot (Fig. 3.3D,E). In particular, we noted that the duration of the overshoot 

increases rapidly as δ decreases (δ<1), but decreases slowly as  δ increases (δ  >1). 

Therefore, perturbations along this steady-state invariant subset provide the opportunity 

to study the role of signal duration in more detail. 

An even simpler case of a steady-state invariant subset of the linearized system 

can be obtained by noticing that the system of Equations (3.9) does not involve the 

degradation rate of the Hh-Ptc complex, βHh_Ptc. Therefore, under these approximations, 

the steady-state solution does not depend on the value of βHh_Ptc. For simplicity, consider 

the approximate steady-state invariant subset given by: 

€ 

′ β Hh_Ptc = δ ˜ β Hh_Ptc ,  for 0<δ <1  (3.11) 
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with all other parameters held constant at their wild-type values (Fig. 3.3F). The 

constraint 0< δ <1 was enforced so that the assumption 

€ 

[Hh]SS
n >> κ n  remains valid. In 

contrast to the subset defined by Equation (3.10), perturbations along the subset described 

by Equation (3.11) will affect the amplitude of the overshoot, but its duration will be 

maintained relatively constant (Fig. 3.3G,H). The simplicity of this subset permits the 

design of a genetic steady-state invariant perturbation. The ptc14 allele has been 

characterized as a mutant that is defective in endocytosis-dependent internalization and 

degradation of the Hh-Ptc complex, suggesting that the stability of the Hh-Ptc complex is 

increased in Ptc14 mutants (Torroja et al., 2004). Importantly, other properties of the Ptc 

protein appear unaffected in ptc14 mutant clones. For example, Ptc14 proteins bind Hh and 

repress Hh signal transduction in a similar manner than wild-type Ptc (Torroja et al., 

2004). Furthermore, Ptc14 is not over expressed in anterior clones away from the AP 

boundary, suggesting that unbound Ptc14 degradation is normal. This genetic evidence 

suggests that βHh_Ptc  decreases in ptc14 mutants, while other parameters approximately 

maintain their wild-type values. Therefore, we predict that ptc14 mutants satisfy Equation 

(3.11) and can be considered as a steady-state invariant perturbation of the system near 

the AP boundary.  Based on our modeling results, perturbations along this steady-state 

invariant subset affect the amplitude of the overshoot, but not the overall shape and 

duration of the transient response suggesting that more anterior cells would be transiently 

exposed to the signal (Fig. 3.3G,H). Experiments using ptc14 mutant clones abutting the 

anterior-posterior show that the expression domains of Hh target genes expand in the 

region of these clones (Torroja et al., 2004), consistent with the predictions of our model 

and our simulations (Nahmad and Stathopoulos, 2009; Fig. 3.3G). 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Other subsets can be similarly obtained from Equations (3.9) and their effects on 

transient dynamics can be systematically analyzed. However, sets involving more 

parameters are difficult to visualize and perturbations along these subsets may not be 

easily achieved by experimental manipulations (see below). 

 

3.4 Analysis of Steady-State Invariant Sets 
 
 
The problem of computing the steady-state invariant set from a given model is in general 

non-trivial. Although the example of the single morphogen gradient established by 

diffusion and degradation [Equation (3.1)] is not intended to represent any biological 

morphogen of interest, it was chosen because the steady-state invariant set can be 

computed exactly. However, in most cases a solution to the steady-state problem 

(equation (B2) in Box 3.1) cannot be obtained analytically. Nonetheless, there are 

different manners to overcome this problem and get a partial or approximate set of 

steady-state invariant perturbations. One easy way to obtain  at least a steady-state 

invariant subset of a system is to simply inspect the steady-state equation and ask which 

parameter perturbations leave the equation invariant. For example, perturbations that 

satisfy Equation (3.10) leave the steady-state problem [Equation (3.6)] unchanged. In this 

case, there is no need to know the solution of the steady-state equation, but in general, 

this approach will only provide a subset of steady-state invariant perturbations. We will 

say that a steady-state invariant set is direct if it can be deduced from the steady-state 

equation. Note that Equation (3.4) is a direct subset of Equation (3.1), and from the 

steady-state solution (3.2), we verified that it contains all the steady-state invariant 

perturbations of the system. But this is not true in general. An interesting theoretical 
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challenge for the future will be to find conditions to determine in which cases the full 

steady-state invariant set is direct, i.e., when we can obtain all steady-state invariant 

perturbations of the system without the need of solving the equations.  

  Alternatively, as we did for Equation (3.6), an approximate steady-state invariant 

set can be obtained by linearization. One advantage of this approach is that subsets may 

be more simple and useful for experiment design (e.g., Equation (3.11)). However, unlike 

exact steady-state invariant sets that are valid throughout the developing field, these 

approximations are rather local (Fig. 3.3B).  

Finally, another approach is to compute the exact steady-state invariant set by 

spatially discretizing the system, i.e., turning the problem (Equation (B1) in Box 3.1) into 

a system of ordinary differential equations. In fact, this is the way in which we defined 

steady-state invariant sets in general in Box 3.1. Using this approach, the property of 

steady-state invariance needs not to be global, i.e., it can be considered in a desired subset 

of the whole developmental field and this might often be convenient in practice. For 

example, some genetic perturbations are lethal to the organism, but can be studied in a 

specific developmental context (e.g., using mosaic genetic analysis). Another advantage 

is that embryos and tissues are composed by discrete entities (cells), so that modelling the 

system in this way might be well justified in this kind of problem.  

In practice, it would be convenient to know, based on the geometry of the steady-

state invariant set, how difficult is to design a genetic experiment that causes a steady-

state invariant perturbation in the system. In other words, how likely is it for a random 

parameter perturbation to be steady-state invariant? A geometric notion that provides 
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insight into this question is the concept of codimension*. Intuitively, the codimension of a 

geometric set tells us how large the dimension of space where the set is embedded is 

compared to the dimension of the set. For example, the codimension of a sphere is one in 

a three-dimensional space, but n-2 if considered in a space of dimension n. For the 

practical purposes of this study, we define the codimension of a set as follows. Let M be 

a steady-state invariant set that affects s parameters and can be parameterized by r 

variables, then the codimension of M is defined as codim(M)=s-r. For instance, the 

steady-state invariant subsets defined by Equations (3.10) and (3.11) depend on three 

(αptc0,  αptc, and  βptc) and one (βHh_Ptc) parameters, respectively, and both are 

parameterized by the single variable δ. Therefore, their codimensions are two and zero, 

respectively. Intuitively, the codimension of a set is inversely related to the concept of 

degrees of freedom, i.e., the number of parameters that can be arbitrarily varied without 

abandoning the set. In general, steady-state invariant sets of small codimensions (or large 

degrees of freedom) would be expected to be more suitable in practice because they 

provide further flexibility in generating steady-state invariant perturbations. The extreme 

scenario is when the codimension is zero and any perturbation of the parameters involved 

is in fact steady-state invariant. This scenario is potentially very useful for experimental 

design because such perturbations do not require precise tuning of parameter values. For 

example, the fact that the codimension of the subset defined by Equation (3.11) is zero 

allowed us to propose a concrete experiment (using the ptc14 allele) to locally introduce 

steady-state invariant perturbations in this system.  

    

                                                        
* Steady-state invariant sets are defined by algebraic equations and therefore the concepts of dimension and 
codimension can be rigorously defined (see Supporting Text).  
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3.5 Concluding Remarks 
 
 
There is recently much interest in the problem of how the dynamics of morphogen 

gradients contribute to developmental patterning (reviewed by Kutejova et al., 2009). In 

this paper, I presented a general theoretical approach that may help to identify mutations 

that affect the transient establishment of morphogen gradients without changing their 

equilibrium distribution. Although the experimental implementation of these tools to 

study the role of morphogen gradient dynamics in developmental pattern formation is left 

to future studies, I provided details of how they can be implemented in practical systems. 

In particular, the analysis of steady-state invariant subsets in a model of Hh signalling in 

the Drosophila wing provides the opportunity to decouple two properties of the Hh 

gradient overshoot, namely, duration and amplitude. The duration of the overshoot can be 

modulated in a steady-state invariant manner by varying the rates of ptc production and 

degradation (Fig. 3.3C-E). Furthermore, the amplitude of the overshoot can be affected 

by reducing the rate of Ptc-dependent Hh internalization and degradation. In fact, 

previous experiments in which a mutant form of Ptc (Ptc14), that is defective in Ptc-

mediated Hh endocytosis, but otherwise appears to function normally, provides an 

example of an experimental steady-state invariant perturbation in this system. 

Another interesting application of these tools is to consider steady-state invariant 

sets as parameter perturbations to which the system exhibits robustness. For instance, in 

engineering it is often desirable to design systems in which the steady state is robust to a 

certain class of perturbations. Therefore, the converse problem, namely, to construct a 

dynamical system that will maintain a desired set of perturbations invariant poses an 

interesting challenge for the future. The context in which the converse problem has been 
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studied in some detail is robust control theory and there are several examples in which 

imposing invariance into the steady-state values of some variables constrains the dynamic 

properties of the system. One of the most studied examples is ‘perfect adaptation’ in 

bacterial chemotaxis (Barkai and Leibler, 1997; Alon et al., 1999). For instance, a well-

known result in control theory is that the steady-state error in some desired signal remains 

negligible despite external perturbations or variations in internal components if and only 

if the error dynamics are governed by integral feedback and this has been shown to apply 

to perfect adaptation in chemotaxis (Yi et al., 2000). Furthermore, a recent report 

provides structural conditions on biochemical reaction network dynamics to guarantee 

invariance of particular steady-state concentrations (Shinar and Feinberg, 2010). Finally, 

it is likely that evolution has faced and solved this converse problem in selecting for 

optimal mechanisms for developmental patterning; in some systems, it is possible that 

natural selection has minimized the effects of certain classes of genetic perturbations to 

maintain invariant some essential gene expression patterns. Alternatively, natural 

selection may have taken advantage of the diversity of morphogen dynamics to evolve 

the mechanisms of developmental pattern formation. 

 

3.6 Outlook 
 
  
It is broadly recognized that physics and engineering have not only clearly benefited from 

mathematics, but also have substantially motivated the development of new mathematical 

theories and concepts. Although the use of mathematical modelling has become a 

common practice in biological research in general, and in developmental biology in 

particular (Tomlin and Axelrod, 2007; Ibañes and Izpisúa-Belmonte, 2008; Oates et al., 
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2009), some theoreticians hope that problems in biology will contribute to the 

development of new mathematics in the 21st century (Cohen, 2004; Sturmfels, 2005). The 

theory of steady-state invariant sets introduced here was motivated by the problem of 

whether or not morphogen dynamics contribute to developmental patterning. 

Nonetheless, the applications of the tools presented here are not limited to the design of 

experimental perturbations and/or to test the role of transient signals in developmental 

patterning, but may be broadly applicable to a large class of problems and will hopefully 

depict interesting research avenues in dynamical systems theory. 
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Chapter 4 

Spatial Scaling of Dorsal-Ventral Patterns in the Early 
Drosophila Embryo 

 

Animal populations naturally display variations in the size of their individuals, but these 

changes in total size are often compensated by proportional changes in organ or tissue 

sizes. This phenomenon, commonly referred to as scaling, is widespread in animals, but 

the mechanisms by which cells acquire relative positional coordinates -- so that patterns 

correlate with the size of the field -- are poorly understood. Patterning of the dorsal-

ventral (DV) axis in the early Drosophila embryo depends on the nuclear distribution of 

the maternal factor Dorsal (dl).  Using quantitative fluorescent in situ hybridization data, 

we investigate how the location of dl target genes depends on natural variations in the 

size of the DV axis.  We show that the borders of the dl target genes vnd and sog scale 

with the size of the system, while the ind borders correlate, but do not strictly scale with 

the length of the DV axis. Our results suggest that scaling in this system is a gene-

dependent rather than a position-dependent property. The width of the nuclear dl gradient 

also correlates with axis length, but is not sufficient to explain strict scaling of DV 

patterns directly in a concentration-dependent manner. Using a system in which a 

gradient of nuclear dl is ectopically generated along the anterior-posterior (AP) axis, we 

asked whether scaling solely depends on the patterning cascade downstream of dl or if 

other endogenous factors contribute to spatial scaling along the DV axis. We found that 

dl nuclear gradient exhibits much variability and does not scale with respect to the AP 

axis in these embryos. Strikingly, however, the posterior border of the vnd pattern scales 

precisely with the length of the AP axis. Since the ectopic dl gradient is the only source 
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of DV positional information in these embryos, we conclude that factors downstream of 

dl provide spatial information relative to the length of the axis. 

 

4.1 Introduction 

Scaling, the ability of pattern to correlate with size in an embryonic field, is exhibited at 

different levels of organization in animal development. At the level of a single organism, 

animals often display the ability to reorganize their patterning programs after surgical 

manipulations; for example, amphibian embryos that are cut in half or fused to other 

embryos maintain the proportions of their patterns and give rise to anatomically normal 

animals of different sizes (Spemann, 1938). Another aspect of scaling at the single animal 

level is the ability of patterns to accommodate changes in size as a result of tissue growth. 

Many developing systems that are genetically or environmentally manipulated to over- or 

under-grow are able to maintain the proportions of their patterns invariant. For instance, 

fly larvae that are poorly fed produce flies with smaller wings, but the wing venation 

pattern remains largely unaffected (Robertson, 1963).  

A different aspect of scaling phenomena is exhibited at the species level; groups 

of closely related species that differ substantially in egg size give rise to anatomically 

similar animals despite the fact that they use much of the same genetic circuitry (Carroll 

et al., 2005).  A particular case of this form of scaling is the ability of a population of 

embryos from a single species to maintain pattern proportions despite natural variations 

in the size of their individuals. However, there is a fundamental difference between 

scaling across species and scaling within a species; while scaling across species can be 

afforded by the adaptation of patterning molecules to evolutionary changes in size, 
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scaling within a homogeneous population of organisms must rely on a mechanism of 

establishing positional information using a system of relative, rather than absolute 

coordinates. Although this form of scaling is widespread in the animal kingdom, the 

detailed mechanisms by which cells acquire positional information relative to size remain 

largely unknown. 

 The Drosophila embryo has become a useful system to study spatial scaling of 

patterns in response to natural variations in embryo size as it provides the following 

advantages. First, the size of an embryo remains practically unchanged once it is laid and, 

therefore, a single measurement of axis length is enough to describe the “size” of the 

system over the whole patterning process. Second, gene expression patterns can be 

measured quantitatively with resolution that is not yet possible in other systems. Recent 

studies have compared scaling of Bicoid (Bcd)-dependent patterns along the AP axis in 

Drosophila embryos with scaling of the Bcd gradient itself. For example, a study on 

closely related Drosophila species shows that segmentation patterns in the embryo scale 

along the AP axis despite that the diffusion properties of Bcd were predicted to be the 

same in different species (Gregor et al., 2005; Gregor et al., 2008). Further studies have 

demonstrated that gap gene patterns scale despite natural variations of egg length, even 

within the same species (Gregor et al., 2007; He et al., 2008; Holloway et al., 2006; Lott 

et al., 2007; de Lachapelle and Bergmann, 2010), suggesting that the property of scaling 

in this system is likely to depend on a mechanism of “sensing” the size of the embryo, 

rather than on the evolution of the biochemical properties of the Bcd morphogen. These 

studies have established the Drosophila embryo as a model system to study scaling of 

pattern in response to natural variations in size. 
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Although scaling along the AP axis of the Drosophila embryo has been recently 

the focus of much attention, little is known about scaling along the dorsal-ventral (DV) 

axis. DV patterning in the fly embryo is orchestrated by the maternal factor Dorsal (dl), a 

NF-κΒ homolog (reviewed by Moussian and Roth, 2005). Maternal dl is ubiquitously 

present in the embryo cytoplasm where it is sequestered by the IκB homolog, Cactus. 

However, upon activation of the Toll transmembrane receptor in the ventral side of the 

embryo by the Spätzle morphogen, Cactus is targeted to degradation thereby allowing dl 

to enter ventral nuclei in the periphery of the embryo (Roth et al., 1989; Steward, 1989; 

Rushlow et al., 1989). In the nucleus, dl acts as a transcription factor and is required to 

activate mesoderm (snail, twist), mesectoderm (sim), and neuroectoderm (rhomboid, 

brinker, vnd, ind) differentiation genes in different domains of expression (reviewed by 

Stathopoulos and Levine, 2005). The nuclear dl distribution displays a concentration 

gradient that peaks at the ventral midline and decays dorsally, suggesting that dl acts 

directly as a morphogen gradient (reviewed by Reeves and Stathopoulos, 2009). 

Moreover, dl has been shown to be sufficient to establish different patterns of gene 

expression in the embryos that have no other source of DV positional information (Huang 

et al., 1996; Stathopoulos and Levine, 2002). In this study, we use the Drosophila 

embryo as a model to study spatial scaling of DV patterns with respect to natural 

variations in embryo size. We provide evidence that scaling in this system depends on 

each particular gene rather than on its location. In addition, we show that the length-scale 

of the nuclear dl gradient scales with embryo size, but it is not sufficient to explain 

scaling of dl target genes. We propose that factors downstream of dl contribute to scaling 

of DV patterns with respect to size in this system. 
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4.2 Materials and Methods 
 
Fly Stocks 

Two “wild-type” populations of embryos were considered. One population comprised 

embryos of yw genotype and the other comprised embryos from the India strain. India 

embryos are a wild-type strain of Drosophila melanogaster that are about 25% larger 

than the laboratory wild-type strain (w1118) along the AP axis (Lott et al., 2007). For the 

experiments in which the dl gradient is ectopically generated along the AP axis, we 

collected embryos from females of genotype wind[M88]/wind[E4]; hsp83>Toll10b bcd 

3’ UTR. These embryos lacked normal DV patterning due to maternal loss-of-function of 

the windbeutel (wind) gene (wind[M88] and wind[E4] are null alleles; Nilson and 

Schupbach, 1998). Females carrying the hsp83>Toll10b bcd 3’ UTR (HTB) transgene lay 

embryos that express an activated form of Toll (Toll10b) maternally-driven by the hsp83 

promoter in the anterior pole of the egg using the bcd localization sequence (Huang et al., 

1996). 

 

Fixation and Fluorescent in situ Hybridization 

Two-four hour old embryos were fixed using formaldehyde solution using standard 

techniques. Fluorescent in situ hybridization was performed according to standard 

protocols using digoxigenin-, biotin- and fluorescin-labelled riboprobes for sog, ind, and 

vnd. Primary antibodies used were sheep anti-digoxigenin (1:500, Roche), mouse anti-

biotin (1:500, Roche) rabbit anti-fluorescin (1:500, Invitrogen), mouse anti-dorsal (1:10, 

Hybridoma Bank Developmental Studies at the University of Iowa), and rabbit anti-
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Histone H3 (1:1000, Abcam). Secondary antibodies used were Alexa Fluor 488 anti-

mouse, Alexa Fluor 555 anti-sheep, and Alexa Fluor 647 anti-rabbit (1:1000, Invitrogen). 

 

Embryo Sectioning and Mounting 

Fluorescently stained embryos were individually sectioned in 70% glycerol using a sharp 

razor blade under a dissecting microscope (except for the embryos from wind; HTB 

mothers which were kept as whole-mounts). Sections were taken approximately at 50% 

egg length and about 150 mm thick (as estimated from comparing with the diameter of 

the embryo). “Wild-type” sections (and whole embryos from wind; HTB mothers) were 

mounted in 70% glycerol on a glass slide with a cover glass supported by two pieces of 

double-sided tape in each side to minimize deformation of the sample.  

 

Image Processing, Measurements, and Data Analysis 

Statistical analysis was performed using standard tools and functions from MATLAB. 

Images of fluorescent embryos or sections were taken using a LSM 5 Pascal confocal 

microscope. Imaging of each sample was performed under identical conditions. To 

reduce temporal-dependent fluctuations in gene expression, only embryos from late 

nuclear cycle 14 (marked by expression of ind) were considered in the analysis. For 

“wild-type” cross sections, we acquired an average of 15 z-stacks from the center of the 

specimen (where deformation of the embryo due to sectioning does not affect the 

embryo’s morphology) using a 40X-oil objective. Z-stacks were then orthogonally 

projected and gene expression profiles were obtained using MATLAB. Quantification of 

nuclear dorsal levels in cross sections relative to Histone H3 levels was performed as in a 
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previous study (Liberman et al., 2009).  Measurements of embryo circumference were 

estimated by calculating the pseudoarclength of 50-100 points found to be on the 

perimeter of the embryo. In order to obtain the location of the boundaries of the patterns, 

each gene expression profile was fitted to a stereotypical profile of the specific pattern as 

described previously (Liberman et al., 2009) and the borders of gene expression were 

computed as the points of half-maximal decay of the fitted profiles. The location of the 

ventral midline was found as the average of the midpoints between dorsal and ventral 

borders of each gene or as the center of the peak of the dorsal gradient.  

For whole-mount embryos, we acquired z-stacks from the top of the embryo to 

about 50% depth using a 20X objective. Each embryo “shell” was then “computationally-

unrolled” as described in a previous study (Liberman et al., 2009) to take into account the 

embryo curvature. The length of the AP axis in each embryo was obtained by computing 

the average size of the “unrolled” sheet and the positions of the gene expression 

boundaries were obtained as described above for cross sections. The distance from the 

anterior pole of the embryo to the locations of target genes was obtained from the 

“unrolled” sheet and therefore corresponded to distances measured on the surface of the 

embryo. Quantification of the dl nuclear gradient in whole-mount embryos was obtained 

by adapting the algorithm of nuclear dl quantification in wild-type embryos published 

before (Liberman et al., 2009). In embryos from wind; HTB females, the nuclear dl 

gradient is fitted to a Hill function of the form, 

€ 

f (x) =
Axm

km + xm
 

and the “width” of the gradient is defined as the half-maximal value of the Hill function, 

“k.” 
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Scaling Criterion 

We devised a criterion to determine quantitatively whether or not the location of a certain 

pattern scale with respect to natural variations in the length of the DV axis. For each 

embryo (labeled by the index i), let Xi be the measured location of a certain pattern with 

respect to a reference point (in this case, the absolute distance from the border of a certain 

gene measured to the ventral midline), and let Li be the length of the embryo’s DV axis 

(estimated by the semi-circumference at approximately mid-embryo along the AP axis). 

If the population of embryos is sufficiently large, it is possible to study how Xi and Li are 

statistically correlated using simple regression analysis. “Perfect scaling” corresponds to 

the case in which the following linear model holds, 

€ 

Xi = x Li   for all i ,  (4.1) 

where x is a constant that represents the relative position of the pattern. Conversely, if Xi 

remains unchanged with Li (i.e., if Xi=x for all i), then Xi and Li are not statistically 

correlated, and therefore, the location of the pattern is independent of embryo size. 

However, these scenarios are just extreme hypothetical situations and, in practice, there is 

a continuous range of scaling behaviors in between. A more general and realistic situation 

is that the pair (Xi, Li) is linearly correlated while not necessarily obeying the strict 

scaling condition (4.1), i.e., 

€ 

Xi = m Li + b  for all i   (4.2) 

with m and b some parameters determined by fitting the data to the linear model (4.2). 

Note that when 

€ 

b  is “sufficiently” small, the model (4.2) approximates the perfect 

scaling case (4.1). Note that the model (4.2) also includes the case in which positional 



  94 
values are independent of size when m=0, which in practice correspond to the case when 

€ 

b ≈ X , where

€ 

X  is the mean of the Xi’s. However, it is not always possible to make an 

accurate decision about scalability; for example, if the variability of the positional data 

(Xi) is “larger” (either due to measurement errors or internal noise) than the range of 

embryo sizes along the DV axis  (Li) (see below). 

We define three steps that provide a simple quantitative criterion to determine 

scaling in this system: 

1. Scalability Test: A decision about scalability of the dataset (Xi, Li) can be made 

if the range of Li’s is larger than the variation in positional values, Xi’s. This is, we say 

that the dataset (Xi, Li) passes the scalability test if 

€ 

S ≡ 2 Δx L 
r(L)

< 1, 

with Δx the standard deviation of the scaled positions 

€ 

xi =
Xi

Li
, 

€ 

L  is the mean of the Li’s, 

and r(L) is the “range” of the Li’s as defined by Lmax - Lmin, where Lmax, Lmin denote the 

extremes of the distribution of lengths (centered at 

€ 

L ) encompassing 80% of the Li’s. 

The quantity S will be referred as the scalability factor. 

 2. Simple linear regression. A dataset that passes the scalability test is then fitted 

to a linear model, 

€ 

X = ˆ m L + ˆ b ,   (4.3) 

where 

€ 

ˆ m  and 

€ 

ˆ b  are the least-squares estimates of the regression. By construction, the 

least-squares approximation (4.3) is satisfied by X =

€ 

X  and L =

€ 

L . Thus, if we write 

€ 

ˆ b = αL , then Equation (4.3) evaluated at the mean values takes the following form, 

€ 

X = ( ˆ m + α)L . 
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Therefore, α is a measure of “how much” the estimated slope would need to be corrected 

(in units of axis length) in order to have perfect scaling at the point of center of mass 

(

€ 

X ,

€ 

L ). For practical purposes, we say that a dataset (Xi, Li) exhibits strict scaling if 

€ 

α ≤ 0.05, meaning that linear model of the data differs from the perfect scaling case by 

at most 5% of the total axis length. 

 3. Scaling significance. Because of the statistical nature of the data, under certain 

circumstances scaling may be explained by chance, due to random variations in the 

positional data. This depends on the relative position of the pattern (approximated by 

€ 

x = X 
L 

); confidence about strict scaling increases with the distance from the pattern to the 

reference point and can be captured in the following quantity, 

€ 

C ≡ 1− S L 
X 

 

 
 

 

 
 100%  if 

€ 

S L 
X 
≤ 1 and 

€ 

C ≡ 0%  otherwise. 

As the scalability factor S is a measure of the maximum slope that can be generated 

solely by variability in the positional data, the scaling percentage, C, is the percentage of 

data that cannot be explained by the variability in the positional data (see Supporting Fig. 

4.1). 

 

4.3 Results 

Determining Scaling from Quantitative Measurements of Gene Expression 

Using fixed cross sections of wild-type embryos, we quantified the expression levels of 

three dl target genes that pattern the neuroectoderm of the embryo and measured the 

positions of their dorsal and ventral borders with respect to the ventral midline along the 

circumference (Fig. 4.1A,B). We also measured the length of the DV axis as the semi-
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circumference of the cross section for each embryo (Fig. 4.1A). In order to study the 

correlation between pattern locations and size, we devised a criterion to determine scaling 

of pattern locations with respect to the length of the DV axis in a homogeneous 

population of embryos (see Materials and Methods for details). Briefly, the criterion 

determines scalability from three statistical measures. First, the scalability factor, S, 

determines if the range of lengths along the DV axis is larger than the variability of the 

positional data (scalability test). If the scalability test fails (i.e., if S>1) then we cannot 

conclude anything about the scalability of the pattern location from the data. Second, the 

scaling compensation value, α, measures how positional data compensate to changes in 

the length of the DV axis based on a linear model of the data. Perfect scaling corresponds 

to the case in which α=0. If α >0, then changes in the length of the axis are 

undercompensated by changes in the position of the pattern. Conversely, α <0 

corresponds to the case in which changes in the length of the axis are overcompensated 

by changes in the position of the pattern. Third, the scaling percentage, C, provides a 

measure of the percentage of data that exhibits scaling beyond what can be explained by 

chance (i.e., by random fluctuations in our measurements of positional data). This 

criterion provides a precise definition of scaling from our quantitative gene expression 

data. 

 

sog and vnd Strictly Scale with the Length of the DV Axis, while ind Expression 
Exhibits Overcompensation  
 
Based on our measurements of the position of gene expression patterns with respect to 

the ventral midline (Fig. 4.1B), we find that the locations of the dorsal borders of vnd and 

sog scale almost strictly with the perimeter of the semi-circumference (i.e., the relative  
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Figure 4.1 Scaling of DV patterns in wild-type embryos. 

(A) Fluorescent in situ hybridization in a wild-type (yw) embryo using sog (green), vnd (red) and ind (blue) 

probes. Fixed embryos of yw phenotype were sectioned approximately at 50% egg length and mounted 

upright for imaging. The length of the DV axis was measured as half the perimeter of the polygon that 

encompasses the cross section. Using the ventral midline as a reference point (x = 0), we measured the 

location of gene expression boundaries around the circumference.  (B) Gene expression profile around the 

embryo cross section extracted from the image in (A) in units of DV axis length, L. (C-H) Dorsal (C-E) 

and ventral (F-H) border locations of vnd (C,F), sog (D,G), and ind (E,H), plotted against the length of the 

DV axis. Each data point displayed corresponds to the average of the distance to each of the two lateral 

expression domains. Black lines correspond to the least-squares fit of the data. The results of the scaling 
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criterion applied to each dataset are shown in each panel. By convention, strict scaling occurs if S<1 and    

0.050 ≤α ≤ 0.050. 

 

positions are within 5% (

€ 

α < 0.05) of the expected (strict scaling) locations with ~50% 

or more of scaling percentage; Fig. 4.1C,D). Similarly, the locations of the ventral 

borders of vnd and sog appear to strictly scale with size, although the scaling percentages 

of these data are somehow lower (~20%; Fig. 4.1F,G). Collectively, these data provide 

evidence that the ratios of the “width” of the vnd and sog patterns to the length of the DV 

axis remain constant. The positions of the ind borders also correlate with changes in the 

size of the embryo, but this correlation exhibits overcompensation, i.e., variations in the 

length of the axis result in larger “shifts” of the borders’ locations compared to those 

expected by strict scaling (Fig. 4.1E,H). Therefore, the extent to which scaling is attained 

depends on the genetic identity of each pattern rather than on its position within the axis 

(see Discussion).  

 

The dl Gradient also Scales with Respect to the Length of the Embryo 
Circumference, but it is Insufficient to Explain Scaling of its Target Genes  
 
Since dl controls patterning of the DV axis, we examined whether scaling of sog and vnd 

was a direct consequence of scaling of the dl gradient. The dl gradient has a bell-shaped 

profile that can be empirically fitted to a Gaussian distribution of the form 

€ 

dl(x) = Aexp − x 2

2σ 2

 

 
 

 

 
 + B,   (4.4) 

with A denoting the amplitude of the gradient and σ denoting its “width” or decay length 

(Liberman et al., 2009; Fig. 4.2A,B). As a consequence of the dl-gradient shape, any two 

gradients of widths σ  and (1+γ)σ  (with γ a small perturbation) are shifted from one  
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Figure 4.2 Scaling of the nuclear dl gradient in wild-type embryos. 

(A) Immunostaining of a wild-type (yw) cross section taken at mid-embryo using dl (green) and Histone H3 

(red) antibodies to quantify nuclear dl intensity levels. (B) Quantification of nuclear dl levels around the 

cross section circumference using the ventral midline as a reference point (x = 0). Each (green) data point 

corresponds to the average dl intensity in each nucleus detected by the segmentation algorithm displayed 

according to its distance from the reference point (x = 0). Black curve indicates the best fit of a Gaussian 

function of the form of Equation (4.4) characterized by the decay-length, σ. (C) “Widths” of the nuclear dl 

gradient defined as half of the decay-length (σ/2) of the fitted Gaussian curve plotted against the length of 

the DV axis. Inset shows the intensity profiles of all the embryos considered (n=38). (D) Position of the 

ventral border of sog compared to the width of the nuclear dl gradient in the same embryos. The black line 

represents the least-squares fit to the data points (and r denotes the correlation coefficient). (E) Precision in 

the width of the dl gradient vs. precision in determining the ventral boundary of sog. Each data point in the 

graph corresponds to the difference between scaled position (Xi / Li) of the ventral border of sog in an 

embryo and the mean relative location (or the difference between scaled widths (σi / Li) in an embryo and 

the mean scaled width) as a function of the mid-embryo semi-circumferences (Li). 
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another by exactly the same proportion (1+γ) at any concentration threshold. For 

example, two gradients whose widths differ by 10% will differ by exactly 10% at the 

concentrations required to define different patterns of gene expression. Therefore, it is 

reasonable to use the width of the gradient, σ, as an indicator of how the dl gradient is 

affected by variations in the length of the DV circumference. We quantified the nuclear 

levels of dl in fixed cross sections of wild-type embryos and found that the width of the 

gradient scales with the size of the axis (Fig. 4.2C). However, we found that these data 

have a scaling percentage of C=0%, i.e., it is not possible to rule out that scaling of these 

data can be fully explained by the internal variability or experimental error in the 

measurements of the dl widths. A way to increase the scaling percentage C is to consider 

a broader range of DV axis lengths. We attempted to increase r(L), by considering the 

wild-type strain India, whose embryos are ~25 % larger along the AP axis compared to 

the laboratory strain (Lott et al., 2007). However, we did not find any significant 

difference in length along the DV axis (see Supporting Fig.  4.2). Nonetheless, we asked 

if the presumptive scaling of the dl-gradient width could explain scaling of the target 

gene expression patterns. We stained wild-type embryos simultaneously with dl/Histone 

H3 antibodies and sog RNA probe and asked whether or not the width of the dl gradient 

correlates with the ventral position of sog. Our data show that the location of the ventral 

border of sog is slightly correlated with the width of the dl gradient (r2=0.244; Fig. 4.2D). 

However, this correlation is not sufficient to explain scaling of this pattern with respect to 

the length of the DV axis because changes in dl gradient widths are under-compensated 

by changes in the location of the sog expression pattern (Fig. 4.2D).  
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These data also provide the opportunity to compare the precision of the dl 

gradient with the precision in determining the ventral location of the sog pattern. We 

found that the precision in defining the location of the ventral border of sog is similar to 

the precision of the width of the gradient (Fig. 4.2E). This observation demonstrates that 

the dl gradient could be able to determine the relative location of the ventral border of sog 

with the observed precision. Therefore, the positional information encoded by dl is 

insufficient to determine the relative position of the sog pattern in a concentration-

dependent manner. 

Taken together, our results reveal that the width of the dl gradient scales with 

respect to the DV circumference, but scaling of the ventral border of sog cannot be 

explained by a proportional shift of the dl gradient, and suggest that other factors 

participate in establishing the relative location of this pattern. For example, it is possible 

that dl contributes to setting the location of the borders of gene expression factors, but 

additional factors are required to “sharpen” this location as a function of the length of the 

DV axis.  

 

Scaling of DV Patterns Depends on Factors Downstream of the Toll Pathway 

Our data suggest that additional factors are required to determine the relative location of 

gene expression patterns. Previous models suggest that scaling might be explained by a 

combination of gradients emanating from opposite ends of a single axis (Aegerter-

Wilmsen et al., 2005; Hörstadius, 1939; McHale et al., 2006; Wolpert, 1969). In order to 

test whether a gradient established from the dorsal side of the embryo contributes to 

scaling of dl target genes, we use a genetic background in which DV patterning is 
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ectopically established along the AP axis. Embryos from females that are mutants for at 

least one of the factors that disrupt DV patterning [such as windbeutel (wind)] and in 

addition, carry the HTB transgene (a maternal promoter Hsp83 used to express an 

activated form of the Toll receptor (Toll10b) using the bcd localization sequence), exhibit 

a full range of DV patterns along the AP axis (Huang et al., 1996). While ectopic DV 

patterns along the AP axis in embryos of this genetic background cannot be directly 

compared to endogenous patterning along the DV axis of wild-type embryos, this system 

allowed us to investigate whether or not endogenous factors are required for scaling of dl-

target genes. Since activated Toll is the only source of ectopic DV positional information 

in these embryos, we would expect that the dl-target genes will lose their ability to scale 

with respect to the length of the axis if scaling were dependent on additional endogenous 

factors (e.g., an opposing gradient emanating from dorsal regions of the embryo). We 

quantified the gradient of nuclear dl in whole-mount embryos from wind; HTB mothers 

and observed several differences with respect of the endogenous dl gradient (Fig. 4.3A-

C). First, the overall shape of the gradient is “bimodal” instead of Gaussian (Fig. 4.3B). 

Second, we observed a very high embryo-to-embryo variability in the range of the dl 

nuclear gradient. Figure 4.3B shows representative nuclear dl gradients from three 

different embryos in which such variability is clearly exhibited. Third, unlike in the wild-

type case, the width of the ectopic dl gradient does not correlate with the length of the AP 

axis (Fig. 4.3C).  

 Next, we measured the distance from the anterior pole of the embryo to the 

“posterior” borders of vnd, sog, and ind (Fig. 4.3D), i.e., those that would correspond to 

the dorsal borders in wild-type embryos. Strikingly, the location of the vnd border strictly  
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Figure 4.3 Scaling of dl and dl-target genes along the AP axis in embryos from wind; HTB females 

(A) Immunostaining of an embryo from a wind; HTB female using dl (green) and Histone H3 (red) 

antibodies to quantify nuclear dl intensity levels. (B) Intensity profiles from three different embryos that 

illustrate the variability in the width of the nuclear dl gradient in this genetic background. (C) In contrast to 

the wild-type case, the nuclear dl gradients in this genetic background are fitted to the shape of a Hill 

function and the “width” is defined as the fitted parameter k in the Hill equation (see Materials and 

Methods). The width of the nuclear dl gradient in these embryos is plotted against the length of the AP axis 

along the surface of the embryo. The least-squares fit of the data (black line) is similar to a horizontal line 

that defines the mean width (red line). (D) Fluorescent in situ hybridization in an embryo from a wind; 

HTB female using sog (green), vnd (red) and ind (blue) probes. The location of borders of gene expression 

and the length of the AP axis were measured on the surface of the embryo using the anterior pole as a 

reference point (x = 0). (E, F) The position of the posterior borders of vnd (E) and sog (F) are plotted 

against the length of the AP axis. Black lines correspond to the least-squares fit of the data. The numerical 

results of the scaling criterion applied to each dataset are shown in each panel.  
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scales with the length of the AP axis (Fig. 4.3E). Although the level of scaling percentage 

in this case is significantly lower than in the wild-type case, this result is remarkable 

considering that the scalability of the dl gradient widths is completely abolished in this 

system (Fig. 4.3C). In contrast, the borders of sog and ind do not seem to scale along the 

AP axis and exhibit a high degree of embryo-to-embryo variability (Fig. 4.3F and data 

not shown). The result that vnd scales in this system suggests that the mechanism for 

“sensing” the size of the embryo to establish relative positional information must depend 

on factors downstream of Toll signaling activation. 

 

4.4 Discussion 

A balanced relationship between pattern and size in embryonic development is essential 

to produce well-proportioned organisms. Although this relationship has been extensively 

studied in embryological systems such as frogs and sea urchins by dissection and 

transplantation experiments (reviewed by De Robertis, 2006), little is known about the 

interplay between pattern and size in natural populations. In this work, we investigated 

the correlation between patterns of gene expression and embryonic length along the DV 

axis in the Drosophila embryo. In summary, our results provide evidence that the dl-

target genes vnd and sog, as well as the dl gradient itself, exhibit scaling over a range of 

embryo sizes. However, our data show that scaling of the dl gradient is neither necessary 

nor sufficient to explain scaling of gene expression patterns along the DV axis. We 

propose that gene-specific feedback mechanisms operate downstream of the dl gradient 

to provide positional information relative to the size of the system. 
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Spatial Scaling of DV Patterns is a Gene-Dependent rather than a Position-
Dependent Property 
 
Our data provide evidence that while the ventral boundaries of sog and vnd coincide (Fig. 

4.1B) and scale with respect to the DV circumference (Fig. 4.1F,G), under certain 

conditions (e.g., in embryos from wind; HTB females) scaling of one border does not 

imply scaling of the other. Similarly, the dorsal border of vnd often coincides with the 

ventral border of ind, but our data show that these boundaries have different scaling 

behaviors (Fig. 4.1C,H). These results support the idea that scaling in this system 

depends on the gene in question rather than on its location.  

Interestingly, this conclusion is in contrast with a recent study on scaling of gap 

genes along the AP axis of the Drosophila embryo that suggest that scaling in the 

posterior half of the embryo occurs regardless of the gene assayed (de Lachapelle and 

Bergmann, 2010). Another intriguing difference between our findings on DV patterning 

and recent work on scaling along the AP axis is the role of the participating morphogens. 

In the case of Bcd, there is recent evidence that its distribution scales precisely along the 

AP axis and correlates with the positions of target gene expression (Gregor et al., 2007; 

He et al., 2008; He et al., 2010). In contrast, while our data suggest that the nuclear dl 

gradient might scale with the embryo circumference, scaling of the gradient does not 

necessarily imply scaling of target genes (Fig. 4.2C,D).  

 

Mechanisms of Spatial Scaling along the DV Axis 

While the role of dl as the main player in DV patterning in the Drosophila embryo cannot 

be questioned, our results challenge the idea that a gradient of dl provides directly enough 

positional information to explain scaling of the DV patterns assayed. In particular, our 
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observations that scalability of the dl gradient does not imply scalability of gene 

expression patterns leave doubts regarding the mechanisms of establishing relative 

positional information in this system. 

Although our data do not reveal the mechanisms underlying scaling in this 

system, it does restrict the set of possible scenarios. For example, our observation that the 

ventral border of vnd scales in embryos from wind; HTB mothers suggest that the 

mechanism of scaling of this border should depend on factors that are downstream of Toll 

signaling. In particular, our data rule out the possibility that two independent gradients 

emanating from opposing regions establish relative coordinates of positional information 

in the system (Wolpert, 1969). However, we cannot discard the possibility that two 

“interdependent” gradients are involved –for instance, an opposing gradient that depends 

on dl may be required for scaling. One attractive candidate for this opposing gradient is 

decapentaplegic (dpp), a member of the TGF-β family. dpp expression is restricted to the 

dorsal-most part of the embryo by dl, and key regulators of Dpp signaling such as sog 

and brinker are also under direct transcriptional control by dl (François et al., 1994; 

Jazwinska et al., 1999). These facts suggest that dpp could take part in a feedback 

mechanism that contributes to establishing a scale-free coordinate system along the DV 

axis. However, our preliminary results do not show defects on vnd scaling in brk, sog 

double mutant embryos (data not shown). 

 

Origin of Relative Positional Information in DV Patterning 

The elegance of the Classical Morphogen model relies on providing patterning 

information from a single input: the concentration distribution of the morphogen. As a 
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consequence, a gradient that scales with size results in patterns of gene expression that 

scale accordingly. In contrast to this view, our data suggest that positional information 

relative to the length of the DV axis cannot be established from the simple readout of the 

dl nuclear gradient (Fig. 4.4A). Instead, our results suggest that the dl gradient can only 

instruct directly a region that is subsequently “sharpened” to a precise location by 

downstream mechanisms that are specific to each gene (Fig. 4.4B). For example, scaling 

of the border of sog should depend on scaling of the dl-gradient because sog scaling is 

disrupted in embryos from wind; HTB mothers (Fig. 4.3F). However, the dl-gradient is 

insufficient to determine the relative position of sog boundaries (at least linearly in a 

concentration-dependent manner), as the sog ventral border does not compensate as much 

as it would be predicted by a direct readout of the nuclear dl gradient (Fig. 4.2D). 

Perhaps, scaling of the dl-gradient ensures scaling of other factors (e.g., repressors of sog 

expression) that directly result in scaling of sog borders along the DV circumference (Fig. 

4.4B). The case of vnd is even more dramatic as it does not appear to require scaling of 

the dl gradient (Fig. 4.3E) suggesting that downstream factors can self-organize scaling 

of the ventral border of vnd with respect to axis length. Some obvious candidates to fulfill 

the role of these downstream factors that are already known to participate in “sharpening” 

the ventral borders of vnd and sog are the transcription factors Twist and Snail (von 

Ohlen and Doe, 2000; Cowden and Levine, 2003). Future work will determine whether or 

not Twist and Snail are required for determining the location of the ventral borders of sog 

and snail in coordinates relative to the length of the axis.  

While the cases examined here do not appear to rely on scaling of the dl gradient to 

ensure scaling of target gene expression, we cannot rule out that other dl target genes  
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Figure 4.4 Models of spatial scaling of DV patterns in Drosophila.  

(A) In the direct scaling mechanism, a scaled dl gradient defines scaled locations of gene expression. The 

mechanism of scaling in this case is probably upstream of dl (e.g., scaling of the pipe domain in ovarian 

egg chambers). Although it is possible that some dl-target genes scale as a consequence of nuclear dl 

scaling, none of the genes assayed here correspond to this case. (B) Scaling of the DV patterns studied here 

is gene-specific. Even if the dl gradient scales with the length of the DV axis, additional downstream 

factors X and Y could be required for scaling of other dl-target genes. These factors are likely gene-

specific, rather than position-specific. 

 
 

scale as a direct consequence of scaling of the dl gradient (Fig. 4.4A). Therefore, an 

important question is how a scale-invariant dl gradient is established in the first place. 

One possibility is that feedback mechanisms exist that ensure that the dl gradient 

accommodate to the size of the embryo (see Ben-Zvi and Barkai (2010), for example). 

Our data however, do not support the idea that feedback interactions downstream of dl 

control scaling of the nuclear dl gradient itself because the gradient fails to scale in 
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embryos from wind; HTB females. Another possibility that is consistent with previous 

studies is that scaling of the dl gradient results from scaling of an upstream factor in the 

DV signaling cascade. In ovarian egg chambers, pipe is expressed in the 40% ventral 

most region of the follicular epithelium around the oocyte irrespective of egg size (Nilson 

and Schupbach, 1998; Peri et al., 2002). Since pipe predefines the location of the nuclear 

dl gradient in the embryo, these studies suggest that scaling of the dl gradient may result 

from scaling of the pipe expression domain in the oocyte. Thus, it is conceivable that an 

ancestral mechanism of scaling that originates in the oocyte and results in scaling of the 

dl gradient and other dl-dependent patterns diverged at some time in evolution in order to 

provide more complex mechanisms that ensure the proper establishment of relative 

positional information in a gene-specific manner. 
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Chapter 5 

Discussion 

 

In a developing organism, cells require information about their relative position in order 

to function and differentiate appropriately. Despite the discovery that key signaling 

pathways act as organizers of pattern formation in several systems, the details of how this 

positional information is distributed, processed, and interpreted by cells in a developing 

field remain little understood. In this thesis, we use a combination of theoretical tools and 

experimental work in Drosophila to investigate the origin and interpretation of positional 

information, the role of temporal changes in signaling activity on patterning, and the 

relationship between the location of patterns and the size of the system. Our contributions 

to these fundamental questions can be briefly summarized as follows (see details below): 

- In Chapter 2, we challenge the prevailing idea that the Hh morphogen 

establishes positional information in a dose-dependent manner and proposed a model in 

which gradient dynamics, resulting from the Hh gene network architecture, determines 

pattern formation in the Drosophila wing disc.  

- Chapter 3 introduces a general theoretical framework to design genetic 

experiments that isolate the effects of transient vs. steady-state signals on developmental 

patterning. This formalism is not limited to the study of signal dynamics and may be 

generally applicable to other problems. 

- In Chapter 4, we investigate spatial scaling of gene expression patterns due to 

natural variations in the length of the DV axis in the Drosophila embryo. In contrast to 
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recent studies on scaling along the AP axis (de Lachapelle and Bergmann, 2010), we 

show that scaling in this system is a gene-dependent, rather than a position-dependent 

property. We propose that gene-specific scaling mechanisms depend on factors 

downstream of the Toll signaling pathway. 

 

Mathematical Modeling as a Hypotheses-Generating Tool* 

Mathematical modeling and theoretical biology have led efforts to investigate the 

question of how patterns emerge during development (Turing, 1952; Wolpert, 1968), and 

today, there is no doubt that the interplay between theory and experiment has 

significantly advanced our current understanding of developmental processes (Green, 

2002; Ibañes and Izpisúa-Belmonte, 2006). A common approach has been to use 

available experimental data to devise mathematical models that can be employed as 

predictors of experimental results (Fig. 5.1A). Typically, these models are then used to 

explore properties of the system that are not easily exploited by experimentation.  

Alternatively, mathematical models can be formulated to discriminate between different 

interpretations of an experiment (Fig. 5.1B).  Although the use of mathematical models as 

predictors (Fig. 5.1A) or interpreters (Fig. 5.1B) of experimental data have often resulted 

in important contributions to developmental biology, they have also been subject of 

skepticism from experimentalists. A major criticism to these approaches is that 

conclusions arise from the models themselves, and as such, depend on the details of their  

                                                        
* This section, originally published as part of  “Nahmad M. and Stathopoulos A. Establishing 
positional information through gradient dynamics: A lesson from the Hedgehog signaling 
pathway. Fly 4:4; 1-5 © 2010 Landes Biosciences,” is reproduced under the terms of the license 
agreement between the authors and the publishers.    
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Figure 5.1. Different methodologies for using mathematical modeling in biological research. 

 (A) The mathematical model is used as a predictor of new experimental results. As new experimental data 

become available, the model is validated or refined. This approach is typically used to build general 

mathematical models that explain the phenomenon of interest. (B) The mathematical model as an 

interpreter of experimental data. In this case, the mathematical model is used to test the feasibility of 

different interpretations of an experiment. (C) Mathematical modeling as a hypotheses-generating tool. In 

this approach, the mathematical model is used to propose different hypotheses, but does not favor any 

particular one. Unlike the methodologies depicted in (A) or (B), in (C) conclusions are only derived from 

experimental data. 

 

mathematical formulation and their accuracy to represent the biological phenomenon. 

In our study of the interpretation of Hh signaling in the Drosophila wing disc 

(Nahmad and Stathopoulos, 2009; see Chapter 2), we used mathematical modeling as a 

tool to formulate hypotheses that could be tested through direct experimentation (Fig. 

5.1C).  Importantly, these hypotheses would not be straightforward to propose without 

the mathematical model.  Specifically, we modeled the Hh signaling pathway using a 
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system of partial differential equations and found that under certain assumptions (i.e., the 

value of a critical parameter), interpretation of the Hh gradient in a concentration-

dependent manner was not possible.  Furthermore, the model suggested that the 

formation of the gradient follows some unusual dynamics due to a property of the gene 

network architecture associated with the Hh signaling pathway, namely, that the Hh 

receptor and antagonist, ptc, was transcriptionally upregulated in response to Hh 

signaling. The gradient initially expands due to low Ptc levels, but then retracts as a result 

of Ptc accumulation, which leads to the sequestration and degradation of free 

extracellular Hh (Fig. 2.2E). Moreover, we showed experimentally that if Hh-dependent 

ptc upregulation is impaired, then the signal fails to establish different domains of gene 

expression (Fig. 2.3F). Thus, the model did not predict that the dynamics of the gradient 

were required for the interpretation of the signal, but rather prompted us to investigate it.  

In contrast to other modeling approaches that have utilized mathematical models as 

predictors of unknown data (Fig. 5.1A), or to interpret unclear experiments (Fig. 5.1B), in 

our study the model was used as a motor to propose non-trivial hypotheses (Fig. 5.1C).  

Our approach is somewhat similar to model-based experimental design strategies in 

which mathematical models are used to define possible experiments that can be 

performed.  Although these approaches have become widely used in systems biology in 

the post-genomic era (Kitano, 2002; Kreutz and Timmer, 2009), our approach - to 

employ mathematical modeling as a tool to guide experimental research - is not common 

in the context of developmental biology. 
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A Network Architecture-Based Model of Hh-Dependent Patterning* 

The most important conceptual contribution of our work on Hh signaling (Chapter 2), in 

our opinion, is the idea that the shape of the gradient is not the major factor contributing 

to pattern formation in this system. It is widely recognized that developmental patterning 

is tightly controlled by feedback components inherent within the gene regulatory network 

of the system (Kutejova et al., 2009). These feedback interactions have been shown to be 

essential for generating sharp boundaries of gene expression and to ensure reproducibility 

and precision under genetic or environmental perturbations. However, most models of 

morphogen-mediated developmental patterning are built under the main hypothesis that 

pattern formation is a function of the morphogen concentration profiles.  In particular, 

changes in patterning are usually directly associated with changes in the morphogen 

distribution, and properties such as precision, robustness, or size-dependent scaling are 

generally studied assuming that the shape of the morphogen gradient is the predominant 

factor (Houchmandzadeh et al., 2002; Eldar et al., 2003; Bollenbach et al., 2008; Ben-Zvi 

et al., 2008).  Our study suggests that Hh-dependent patterning in the Drosophila wing 

disc depends on temporal changes of the morphogen profile but, unlike the classical 

morphogen model, it does not primarily depend on concentration thresholds defined by 

the distribution of the gradient; instead, patterning is controlled directly by the 

architecture associated with the Hh gene network, particularly by the feedback that 

results from Hh-dependent ptc upregulation and Ptc-dependent ligand sequestration.  

Therefore, our model backs up a recent study (Smith et al., 2007) that supports the idea 

                                                        
* This section, originally published as part of  “Nahmad M. and Stathopoulos A. Establishing 
positional information through gradient dynamics: A lesson from the Hedgehog signaling 
pathway. Fly 4:4; 1-5 © 2010 Landes Biosciences,” is reproduced under the terms of the license 
agreement between the authors and the publishers. 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that pattern formation is inherent within the gene regulatory network of the system and 

implicates that the shape of the Hh concentration profile is not the primary source of 

positional information.  

 
 
Steady-State Invariant Perturbations as a Tool to Study Morphogen Dynamics 
 
The major challenge in modelling-based experimental design is not just that 

mathematical models can only capture a simplified view of the natural phenomenon, but 

that they are tightly constrained by the experiments that can actually be performed. The 

hope of the theoretical approach presented in Chapter 3 is to use it as a tool to design 

genetic experiments that separate transient from equilibrium effects in developmental 

patterning. The problem of computing invariant subsets that correspond to experimentally 

testable genetic perturbations is in general very difficult; even in the cases in which the 

steady-state invariant set can be obtained either exactly or approximately, it is unclear if 

the design of such a genetic experiment is possible (i.e., one in which the affected kinetic 

parameters remain on the steady-state invariant set). Experimentally, genetic 

perturbations that are expected to satisfy many constraints on independent kinetic 

parameters are difficult to realize. For instance, in our example of a free morphogen 

established by diffusion and linear degradation [Equation (3.1)], only those perturbations 

in which all three parameters are altered in the same proportion remain on the steady-

state invariant set [Equation (3.4)]. Despite the simplicity of this example, a genetic 

perturbation subject to these constrains (i.e., such that Equation (3.4) holds) is very 

difficult to achieve experimentally because kinetic rates, in general, may not be precisely 

tuned using standard genetic techniques. Although this example is not of biological 
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interest, it illustrates a general conceptual problem of modeling-based experimental 

design: models that are simple enough so that the steady-state invariant set can be fully 

computed do not necessarily predict simple genetic experiments. On the other hand, in 

our model of Hh signaling, the steady-state invariant set cannot be computed exactly and 

yet, an approximate steady-state invariant subset that involves only one “freely” tuneable 

parameter can be obtained [Equation (3.11)] and the genetic design of steady-state 

invariant perturbations is plausible.  

The theoretical approach presented in Chapter 3 faces some challenges that may 

limit its applicability. For example, the geometry of steady-state invariant sets depends on 

the details of the mathematical model. As these models are based on simplified 

representations of the developing system, a steady-state invariant perturbation predicted 

by the theory may not be so experimentally. Therefore, these tools should be used as a 

predictor of steady-state invariant genetic perturbations but appropriate control 

experiments should be performed to show that the steady-state distribution of the signal is 

in fact unchanged by the proposed perturbation. Another assumption of this theoretical 

approach is that the steady state is reached within a relevant developmental timescale, but 

this may not necessarily be the case. For example, the nuclear concentration of the 

transcription factor, Dorsal, in the early Drosophila embryo does not appear to reach a 

steady-state distribution by the time that gene expression patterns are specified (Liberman 

et al., 2009). However, in the cases when equilibrium is not reached within the patterning 

timescale, it is clear that positional information is established by signaling dynamics and 

that additional mechanisms are required to explain patterning in these systems. 
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Spatial Scaling along the DV Axis of the Drosophila Embryo is a Gene-Specific 
Property 
 
Our finding in Chapter 4 that scaling of dl-target genes with respect to the embryo 

circumference depends on specific genes, rather than on particular positions along the 

DV axis, implies that scaling in this system does not result from the interpretation of 

position from a global system of scaled coordinates like in the French Flag problem (c.f. 

Wolpert, 1968). Instead, our results suggest that different genes may use different 

coordinate systems to establish their positional information in the embryo. An intriguing 

example is the comparison of the dorsal border of vnd vs. the ventral border of ind 

because previous studies suggest that vnd sets this border of ind (von Ohlen and Doe, 

2000; Cowden and Levine, 2003). However, our data indicate that despite strict scaling of 

the dorsal border of vnd with the length of the DV axis (Fig. 4.1C), the ventral border of 

ind displays overcompensation and thus does not scale (Fig. 4.1H). One explanation for 

this result is that vnd and ind use different coordinate systems to specify the locations of 

their borders. For example, vnd may use feedback interactions downstream of dl to 

ensure precise scaling, whereas ind may employ another system of coordinates; for 

example, EGFR signaling has been suggested to play a role in ind expression (as egfr 

mutant embryos do not express ind) (von Ohlen and Doe, 2000).  

Similarly, while more data are required to verify whether or not the dl gradient 

scales in wild-type embryos, our result that the dorsal border of vnd scales in embryos 

that ectopically express dl along the AP axis (in which it is clear that scaling of the dl 

gradient along the AP axis does not occur; see Fig. 4.3B,C,E) shows that dl scaling is not 

required to ensure scaling of the vnd pattern. In contrast, the dorsal border of sog, which 

conclusively scales in wild-type embryos (Fig. 4.1D), fails to scale in this genetic 
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background (Fig. 4.3F). This suggests that gene-specific coordinates are used to 

determine positional information with respect to the size of the embryo. 

 

A Gene-Specific Model to Explain Scaling of the Ventral Border of sog     

Although our experiments in Chapter 4 do not uncover any particular mechanism of 

scaling, we can speculate about gene-specific mechanisms of scaling in this system. For 

example, the ventral border of sog cannot be explained directly by concentration 

thresholds of the dl gradient in wild-type embryos (Fig. 4.2D), suggesting that additional 

factors contribute to scaling of this pattern. We suggest that scaling of the sog ventral 

border is an indirect consequence of scaling of the snail gene, which encodes the 

mesoderm-specific transcription factor implicated in sharpening borders of gene 

expression in ventrolateral patterns. However, the generation of sharp boundaries does 

not imply scaling (or viceversa). If scaling of the dl gradient width results in scaling of 

the snail border, then snail scaling would be a direct consequence of scaling of the 

nuclear dl gradient (Fig. 4.4A), while snail would work as gene-specific intermediary in 

scaling of the ventral border of sog (see Fig. 4.4B with X=snail). 
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Chapter 6 

Future Directions 

 

Besides our contributions discussed in previous chapters to the problem of developmental 

pattern formation, this work has also brought new questions that remain unanswered. The 

purpose of this Chapter is to highlight some problems that will likely provide new 

insights into the field and will be interesting to consider in follow-up studies. 

 

6.1 Future Directions for Chapter 2 

Genetic Characterization of the “Memory Module” 

The Overshoot Model proposed in Chapter 2 to explain the interpretation of the Hh 

morphogen in the Drosophila wing disc depends on two network subcircuits or 

“modules” (see Fig. 2.7B). The Overshoot Module causes a delay in Hh-dependent ptc 

upregulation that results in a transient overshoot of the Hh gradient. The Hh overshoot is 

essential to expose a subset of cells transiently to the signal, but the Overshoot Module 

fails to explain patterning if this subset of cells is not able to “recall” its history of Hh 

signaling exposure. The maintenance of this transient state likely depends on a positive 

feedback loop on dpp transcription that maintains expression of dpp once the transient 

signal ceases. However, the genetic players that participate in this transcriptional 

subcircuit or “Memory Module” have not yet been identified. 

 One way to identify novel players in the Memory Module is to use a candidate 

approach, this is, to investigate if “memory” of dpp expression persists after some 
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candidates are impaired one at a time. For example, one natural candidate is dpp itself, as 

it encodes a signaling molecule that could enhance its own expression after it is activated 

by a transient Hh signal. However, in Chapter 2 we provided evidence against this 

possibility (see Supporting Figure 2.3).  Other possible candidates include members of 

other signaling pathways that participate in wing disc patterning, such as Wingless and 

EGFR.  

A more direct approach to identify potential transcriptional players in the 

“Memory Module” is through cis-regulatory analysis; if genetic players exist that 

determine memory of dpp expression through a transcriptional feedback loop, we should 

be able to identify the region in the dpp enhancer DNA where these players bind and 

activate transcription of dpp. Cis-regulatory studies on the dpp enhancer have identified a 

“minimal enhancer” (800 base pairs long) that is capable of reproducing the normal 

pattern of dpp in wing discs (Müller and Basler, 2000). Preliminary data suggest that this 

minimal element does support memory of dpp expression after the inactivation of Hh 

signaling using the hhts system described in Chapter 2 (data not shown). However, the 

confirmation and continuation of this work is left to immediate future studies. 

Another possibility is that the “Memory Module” does not require other 

transcription factors, but instead employs regulation of the existing ones. For example, it 

is possible that the mechanism for dpp memory is provided by the differential 

responsiveness of Hh target genes to the activator (Ci155) and repressor (Ci75) forms of 

the transcription factor Ci. Unlike other Hh target genes, dpp does not require activation 

by Ci155 (as ci clones located anywhere within the anterior compartment of the wing disc 

express), but presence of the repressor form Ci75 is sufficient to abolish dpp expression 
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(Méthot and Basler, 1999). These data suggest the existence of (ubiquitous) transcription 

factors that activate dpp expression in the absence of Ci75 and propose a potential 

mechanism by which dpp expression may be maintained upon transient Hh signaling 

activation; perhaps there is a Hh-dependent factor (e.g., a ligase or a protease) that 

impairs the activity of Ci75 in the dpp domain. One potential factor is roadkill (rdx), a 

Hh-target gene that encodes a subunit of a E3 ubiquitin ligase that targets Ci to 

degradation via the proteasome ubiquitin pathway (Kent et al., 2006; Zhang et al., 2006).  

Ubiquitous Rdx upregulation causes loss of ptc expression and expansion of the dpp 

domain (Kent et al., 2006). However, some evidence argues against the role of rdx as a 

key player in the “Memory Module.” First, Rdx preferentially promotes destruction of 

full length Ci than Ci75 (Kent et al., 2006). Moreover, rdx is normally expressed in a 

narrow domain abutting the AP boundary of the wing disc, a region of sustained Hh 

signaling activity (Kent et al., 2006; Zhang et al., 2006). 

 

When Does the Hh Overshoot Occur in vivo?* 

Our study in Chapter 2 provides evidence for the existence of a Hh gradient overshoot 

upon reinitialization of the gradient using a temperature-sensitive hh allele, but when 

such a dynamic shift in the gradient occurs during normal development remains to be 

identified. Alternatively, it is also possible that the overshoot occurs multiple times in 

wing disc development.  Such oscillations in the range of the signal may occur if Hh-

dependent Ptc upregulation becomes sufficiently strong so that Hh signaling is repressed 
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completely, and thus that expression of ptc is interrupted - allowing for multiple rounds 

of Hh gradient expansion and refinement.  However, this periodic behavior of Ptc 

expression has not been reported and, furthermore, we suggest that such regulation is 

unlikely to occur in a synchronized manner.  These important aspects will require direct 

temporal examination of Hh gradient formation and Ptc expression in living tissues over 

a long period of time, but this remains technically challenging. 

 

Integration of Patterning by the Overshoot Model with Tissue Growth* 

Another important problem that will require further investigation is how this model 

accommodates tissue growth.  In particular, if cells that experience a transient Hh 

signaling retain dpp expression by some ‘memory’ mechanism, whether or not this is 

retained after cell division, is still in question.  Our data show that the time-scale of the 

overshoot (~6 hours) is shorter than the average cellular proliferation rate in the wing disc 

during the third instar (~8.5 hours; González-Gaitán et al., 1994); therefore, the dynamics 

of the gradient should not be directly affected by tissue growth.  However, it remains 

unclear why all the cells derived from dpp-expressing progenitors do not retain dpp 

expression; a fraction of cells that are sufficiently close to the AP boundary (where Hh 

signaling is ON) may end up located farther away from it as a result of tissue growth 

(where Hh signaling is OFF).  One possible explanation is that cells expressing dpp 

maintain their relative position in the wing disc as a result of cell affinity, but their 

progeny eventually lose the ability to maintain dpp expression and are pushed away from 

                                                        
* 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2010 Landes Biosciences,” is reproduced under the terms of the license 
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the anterior-posterior boundary.  In fact, the hypothesis that dpp-expressing cells attempt 

to remain together during wing disc development is supported by a study that suggest that 

dpp-expressing cells may regulate a cell adhesion molecule that is necessary to avoid 

intermixing of anterior and posterior cells (Dahmann and Basler, 2000). However, it is 

unclear if the progenitors of dpp-expressing cells that are no longer exposed to Hh would 

lose their ability to maintain dpp expression.  In summary, the relationship between 

patterns and growth, and particularly, how dpp ‘memory’ is affected by cell proliferation 

deserves further investigation as well.   

 

The Overshoot Model in Other Patterning Systems* 

Our model of Hh-dependent patterning in the Drosophila wing disc primarily depends on 

a particular gene network architecture, rather than on Hh concentration thresholds. 

Numerous studies in different developmental contexts have revealed that the Hh 

signaling gene network architecture is largely conserved from flies to humans. In 

particular, Hh-dependent ptc upregulation is a common feature in all the systems studied 

so far.  Thus, an exciting question for the future is whether similar models of pattern 

formation hold for systems with equivalent network architectures, or the principles of 

developmental pattern formation evolved despite the conservation of gene network 

topologies. Interestingly, recent data from the vertebrate neural tube suggest that cells 

determine their fate by integrating the strength of Hh signaling over time (Dessaud et al., 

2010), while another study in the same system reported that some positional information 
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agreement between the authors and the publishers. 



  124 
is lost when ptc is not upregulated in response to Hh signaling (Jeong and McMahon, 

2005). These results are in close agreement with our model of Hh patterning in the 

Drosophila wing disc (Chapter 2), but additional studies will reveal if developmental 

patterning in other Hh-dependent systems employs similar principles.  

 

6.2 Future Directions for Chapter 3 

A technical challenge that deserves further discussion in the future is how to analyze and 

visualize steady-state invariant sets in realistic models of developmental patterning. This 

problem is common in practice because steady-state invariant sets are usually contained 

in high dimensional spaces. For example, the dimension of the parameter space of our 

highly simplified model of Hh signaling is 16. More realistic models may involve an 

even larger number of parameters making the resulting steady-state invariant set difficult 

to analyse and visualise. Our analysis in Chapter 3 reduces to the study of subsets 

[Equations (3.10) and (3.11)] that are contained in particular parameter subspaces, but an 

interesting future direction is to use theoretical tools (e.g., nonlinear extensions of 

Principal Component Analysis; see Kruger et al., 2007, for a review) to reduce high-

dimensional steady-state invariant sets to sets of lower dimensions that are easier to 

visualise and more useful for experimental design.  

 

6.3 Future Directions for Chapter 4 

The work presented in Chapter 4 is an unfinished project that will soon be considered for 

publication. However, there are some points that require additional experimental support 

that are currently in progress. For example, the confidence of some of the results (based 
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on the value of the scaling percentage) is relatively low, partly because the number of 

embryos considered is not appropriate. In particular, we would like to determine with 

greater confidence if scaling of the nuclear dl gradient can be confirmed by adding more 

data to the sample. In addition, it will be useful to investigate the correlation between the 

width of the dl gradient and the other target genes under study. 

Our conclusion that spatial scaling of DV patterns is gene-dependent raises 

questions about the scalability of other genes in the system. Some candidates include 

twist, snail, rhomboid, and brinker. For example, it would be useful to determine if there 

are genes whose scalability can be explained by the nuclear dl gradient and whether their 

scaling can be used to establish scaling of other genes. As DV genes affect each others 

patterns through a network of complex interactions (reviewed by Stathopoulos and 

Levine 2005), it is likely that they contribute to each other’s ability to scale with respect 

to the length of the DV axis. Particularly, we would like to test our model that snail acts 

as an intermediate factor to establish scaling of sog (see Chapter 5). 

We are trying to identify gene-specific scaling mechanisms using a candidate 

approach, in which scaling of vnd, sog, and ind is assayed in different mutant 

backgrounds. One limitation of this approach is that the process to screen for scaling 

using embryo cross sections is very slow, making it difficult to design a large screen that 

can help in the identification of molecular players that are required for scaling. The 

search for genetic players that affect scaling in this system is also technically difficult 

because it is likely that mutants that affect scaling also affect other aspects of patterning, 

such that the effects on scaling and patterning cannot be genetically separated. On the 
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technical side, it would be useful to improve our methods to screen faster and more 

reliably for factors that affect scaling.  

There is no doubt that the use of multidisciplinary and quantitative tools will 

provide new insights into the mechanisms of pattern formation and promise a fruitful 

path to the future of developmental biology. But this approach is still in its infancy. Our 

ability to measure gene expression with high temporal and spatial resolution is still very 

limited even in well-characterized model systems. However, future studies will surely 

provide a more quantitative picture of animal development that will contribute to a better 

understanding of the relationship between positional signals and animal design.   
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Appendices 
 
 

Supporting Materials for Chapter 2 

 

Supporting Text 

Justification of assumptions 

We modeled Hh signaling in the wing disc using a system of nonlinear partial differential 

equations [Equations (2.1)-(2.5)]. The general form of the equations is similar to previous 

morphogen models of the wing disc [1,2,3,4,5].  Here we discuss the approximations 

used in the formulation of our mathematical model.  

 

Disc Geometry. Wing discs in Drosophila are approximately flat larval tissues. We 

assumed that anterior-posterior (AP) patterning of the disc can be modeled as a one-

dimensional system. Because Hh crosses into the anterior compartment from all positions 

along the AP boundary, a one-dimensional domain is a good approximation of the 

complicated disc geometry [6]. The subdivision of wing discs into compartments is much 

more than a convenient definition. The posterior compartment is defined by the 

expression of the selector gene engrailed and cell populations from different 

compartments do not seem to intermix during development [7]. Thus, the concepts of 

compartments and AP boundary are well defined in the system. The AP axis of a third 

instar wing discs is about 200  µm (~80 cells) long [8,9]. We assumed that the AP 

boundary divides this one-dimensional domain into two equal parts (of 100 µm each). 
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From our images, this seems a fair approximation. We do not expect that any of these 

approximations of the disc geometry affect the conclusions of this study.  

 

Disc Growth. Cells in third instar wing discs proliferate in a uniform manner, 

approximately one division every 8 hours [10]. Since the time-scale of cell proliferation 

is slow compared to morphogen gradient formation [11,12], in our model we assumed 

that patterning and growth can be decoupled, and discs are assumed to have a fixed size.  

A study suggests that the Dpp gradient in the wing disc is not affected by disc growth 

[13].  Since the Hh gradient specifies the source of the Dpp gradient, it is likely that the 

Hh gradient is also not affected by disc growth. It is unclear when the Hh gradient forms 

during wing disc development. However, as the range of Hh is relatively short, the results 

do not depend on a precise size/stage of the discs.  

 

Equations. hedgehog is transcriptionally activated in every posterior cell by the selector 

gene engrailed and we assume that Hh is produced and secreted at a constant rate in all 

cells of the posterior compartment [Equation (2.1)]. Hh transport into the anterior 

compartment is a complex process and requires heparan-sulfate proteoglycans and 

lipoproteins [14,15], but it is mainly transported extracellularly and not by sequential 

rounds of dynamin-dependent endocytosis/exocytosis [16,17]. We assume that this 

transport process can be modeled as an effective diffusion process [Equation (2.1)]. This 

seems to be a good approximation [4,6].  

Ligand-Receptor binding reaction is modeled as a mass-action law; in this case, 

the rate of Hh_Ptc formation is proportional to the product of [Hh] and [Ptc] [Equations 
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(2.1)-(2.3)]. Because upon Hh binding to Ptc, the Hh_Ptc complex is internalized and 

targeted to degradation [16], we modeled the Hh+Ptc Hh_Ptc reaction as irreversible, 

i.e., once the Hh_Ptc complex is formed and internalized, the Ptc receptor cannot be 

reused and the Hh ligand cannot be re-secreted [Equation (2.1)]. This assumption is 

supported by experimental data [16], but in any case, assuming that the reaction 

Hh_PtcHh+Ptc occurs at a slow rate (compared to the inverse reaction) it does not 

affect the conclusions of this study (data not shown). We modeled the distribution of the 

receptor Ptc, both mRNA and protein, in space and time. ptc is constitutively present at 

low levels in the anterior compartment, but in addition, it is transcriptionally upregulated 

by Hh signaling. Hh-dependent ptc transcription is modeled using a Hill function that 

depends on the levels of signaling activity, here represented by the variable [Signal] 

[Equation (2.1)]. In Equation (2.3), the rate of ptc translation is assumed proportional to 

[ptc] as in other studies [18].  

A molecular model of how Smo activation depends on Ptc and Hh_Ptc is missing, 

but a study has reported the ability of Hh-Ptc complexes to titrate the inhibition of Ptc on 

signal activation [19]. We use these phenomenological observations to model the rate of 

“Signal” activation as a Hill function of the [Hh_Ptc] to [Ptc] ratio [Equation (2.5)]. 

Although the choice of this Hill function is not directly justified by chemical reactions, 

experimental data suggests that the rate of “Signal” activation is a saturation curve that 

depends on the [Hh_Ptc] to [Ptc] ratio [19] (see also Fig. 2.1D). Numerical simulations 

suggest that other choices of sigmoid curves do not affect our conclusions (data not 

shown). We do not include equations for other Hh target genes in Figure 2.1B because 

their profiles are only outputs of the system and are not required for the analysis. 
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Initial and Boundary Conditions. The initial conditions of the system are unclear, since 

many of the genes involved in Hh signaling may be expressed early in wing disc 

development. Nevertheless, we administered the initial conditions which are 

demonstrated sufficient to rescue patterning to approximate wild-type conditions when 

the system is reinitialized artificially using the hh temperature sensitive mutation hhts2 

[20]. Since ptc is expressed in a Hh-independent way at low levels in the anterior 

compartment, we set the following initial conditions (I.C.) for [ptc] and [Ptc],  

(I.C. 1)     [ptc](x,0) = 

€ 

S+(x)α ptc0

βptc

 =

€ 

α ptc0

βptc

  for x > 0, and zero otherwise, 

(I.C. 2)     [Ptc](x,0) = 

€ 

TPtc
βPtc

[ptc](x,0) . 

All other terms in the mathematical model are set to zero initially. Unlike other 

theoretical studies [3,6], we have explicitly included the posterior compartment in our 

model and simulations. This simplifies (and makes irrelevant) the choice of the posterior 

boundary condition. Also, because the range of the Hh gradient is short compared to the 

size of the anterior compartment, the results are largely independent of the choice of the 

anterior boundary condition. In our simulations, we use zero-flux boundary conditions 

(B.C.) at x =

€ 

±100 µm,   

 (B.C.)  

€ 

∂[Hh]
∂x x=−100

=
∂[Hh]
∂x x=100

= 0 . 

 

Parameters 

The parameter values used in the computer simulations of Equations (2.1)-(2.5) are 

reported in Supporting Table 2.1. Parameter values were either extracted from the 
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literature, or estimated from experimental or empirical measurements. In this section, we 

discuss the estimation of those parameters that are not extracted explicitly from the 

literature. Third instar wing disc cells have an approximate diameter of 2.5 µm and an 

approximate volume of 

€ 

2 ×10−14  litres [6]. When parameters are reported in other units, 

we use these factors to convert parameters into units of Molar. 

 

Hh effective diffusion coefficient (D). The Hh diffusion coefficient has not been 

measured. For Dpp and Wingless in the wing disc, reported values are 0.1 and 0.5 µm2/s, 

respectively. Hh transport seems more similar to that of Wingless, which also requires 

lipoparticles [15]. Therefore, we estimated D = 0.5 µm2/s.  

Hh production-secretion rate (αHh). We assumed that extracellular levels of Hh are about 

1µM in the posterior compartment; this is similar to the levels of Dpp in the source of the 

Dpp gradient. Since the maximum levels of Hh, HhMax, are given by HhMax

€ 

=
αHh

βHh
, we 

have that α Hh= (1 µM)β Hh.  

Hh-Ptc association rate (γ Hh_Ptc). We use γ Hh_Ptc = 0.12 µM-1 s-1 as used for analysis of the 

Dpp system [6]. 

Hh degradation rate (β Hh). The characteristic space-constant, λ, of an exponential 

concentration gradient is formally defined as the distance at which the concentration 

drops by a factor of 1/e of its maximal intensity. For a morphogen gradient established by 

diffusion (D) and linear degradation (β), we have 

€ 

λ2 =
D
β

. However, if in addition, Hh is 

degraded by binding its receptor, we have that the space constant is 
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€ 

λHh ≈
D

βHh + γHh_Ptc < Ptc >
 where <Ptc> is the average unoccupied Ptc receptors in the 

Hh operating domain. Based on computer simulations, we estimated an average of 65% 

unoccupied Ptc. Studies have reported λHh 

€ 

≈ 3.5 µm [21], which permits the following 

estimation, 

€ 

βHh ≈
DHh

λHh
2 − γHh < Ptc >= 3.4 ×10−3  s-1. 

ptc translation rate (TPtc). The control of mRNA translation is precisely regulated in 

different eukaryotic cells. For example, the rate of rabbit globin translation when globin 

mRNA is injected into Xenopus oocytes is 110 globin proteins per mRNA molecule per 

hour [22], and this number does not appear to change in different embryonic stages or 

cell types [23].  Since rabbit globin mRNA is 650 base pairs (bp) [24], we estimated that 

the rate of translation in eukaryotes is about 20 bp/sec. Thus, TPtc is obtained using this 

estimated rate of translation as well as information that the ptc mRNA is 5535 bp in 

length (www.flybase.org). 

Ptc and Hh_Ptc degradation rates (βPtc  and βHh_Ptc). It has been proposed that Ptc 

internalization and degradation is independent of Hh binding [25]. Therefore, we assume 

that  βPtc  =  βHh_Ptc. We use the receptor degradation rate measured in other vertebrate 

receptors which is consistent with the rapid turnover of Ptc when Hh signaling is shut off 

in hhts2 discs [8].   

ptc transcription rate (αptc  and αptc0). In our experiments, Ptc is detected as soon as 2 

hours after Hh signal is recovered (Fig. 2.2E) suggesting that [ptc] levels can build up 

within 2 hours. Maximum receptor levels in this system have been estimated at 

approximately 1,600 per cell [6]; this gives 0.48  µM. Therefore, we can estimate ptc 
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maximum levels as 

€ 

α ptc

β ptc

=
(0.48 µM)βPtc

TPtc

= 0.2 µM . If these levels can be reached within 

approximately 2 hours, then the rate of ptc activation is 

€ 

α ptc =
0.2 µM
7200 s

≈ 2.7 ×10−5µM s-1. 

Finally, the Hh-independent levels in the anterior compartment are about 7-fold lower 

than in the Hh-induced ptc domain [19]. Therefore, we set 

€ 

α ptc0 =
α ptc

7
. 

ptc degradation rate (βptc). From the previous computation, 

€ 

βptc =
α ptc

0.2 µM
≈1.4 ×10−4 s-1

. 

”Signal” activation rate (αSignal). We assume that signal activity depends on the rates of 

Smo phosphorylation.  The maximum levels of pSmo are assumed to be 0.3 µM. Denef et 

al. [26] showed that a pSmo replaces unphosphorylated Smo within 30 minutes after 

exposure to Hh in cell culture [26]. Therefore, we estimate 

€ 

αSignal =
0.3 µM
1800 s

≈1.7 ×10−4 µM s-1
. 

”Signal” degradation rate (βSignal). From the last expression, we obtain, 

€ 

βSignal =
αSignal

0.3µM
≈ 5.5 ×10−4  s-1

. 

[Signal] level required for ptc half-maximal activation (kptc). We simulated the system 

and found a value of kptc to support a ptc domain which is 5 cells wide.  

Hh_Ptc:Ptc ratio required for half-maximal activation of Signal (kSignal). Casali and Struhl 

suggested that this ratio is approximately two [19]. 

Hill coefficients (m and n). We set m=3 [2]. In the text (see also discussion below), we 

estimated n > 6.8, (n > 4.0 in the more stringent scenario). In all the simulations, however 

(except for Figure 2.1C), n was set to 6.8. 
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Steady-State analysis 

At the steady state, it is possible to reduce the full model [Equations (2.1-2.5)] to a single 

equation of [Hh]. Setting the right-hand side of Equations (2.1-2.5) to zero, and making 

the necessary algebraic substitutions we obtain the following boundary-value 

problem

€ 

D d2[Hh]ss

dx 2 + S - (x)αHh −
χ [Hh]ss

β
Ptc

+ γHh_Ptc[Hh]ss

S+(x)α ptc0 +
α ptc[Hh]ss

nm

η κ n + [Hh]ss
n[ ]

m
+ [Hh]ss

nm

 

 

 
 
 

 

 

 
 
 
−βHh[Hh]ss = 0,  (S1)

 

with 

€ 

χ =
TPtcγHh_Ptc
β

ptc

, 

€ 

κ =
kSignalβHh_Ptc
γHh_Ptc

, and 

€ 

η =
kptcβSignal
αSignal

, and satisfying the boundary 

conditions 

€ 

d[Hh]ss
dx x=−100

=
d[Hh]ss
dx x=100

= 0. 

Equation (S1) is still difficult to solve analytically but can be used to compute 

steady-state profiles numerically. The solution of the full model [Equations (2.1)-(2.5)] 

approaches the steady-state solution of the last equation and is practically 

undistinguishable after 8 hours of simulation time (data not shown). 

At the steady state, it is also possible to write each variable as an explicit function 

of [Hh]ss. An example is the steady-state profile of [Signal]ss as a function of the 

extracellular gradient [Hh]ss [Equation (2.6)]. Figure 2.1E shows that based on the 

estimation of the parameter n (Fig. 2.1D and next section), the shape of the [Signal]ss 

profile is step-like. In this situation, the parameter ε defined in Equation (2.6) can be 

interpreted as a ‘switching threshold’ (see below for discussion of this concept). If a cell 

experiences an extracellular concentration of Hh higher than ε, Hh signaling will be 
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activated in that cell, while if [Hh]ss < ε,  then that cell will not be responsive to the Hh 

pathway.  This binary behavior of the system is, of course, only strictly true when 

€ 

n→∞.  In practice, this is only an approximation and therefore cells that experience 

extracellular Hh levels similar to  ε  will produce ‘intermediate’ levels of “Signal.” 

Therefore, it is appropriate to ask what is the size of the region expressing these 

‘intermediate’ levels of “Signal” at steady-state when n > 6.8. A simple inspection of 

Figure 2.1E suggests that [Signal]ss levels change from nearly maximal to nearly minimal 

within < 3 cell diameters. However, it is not clear what the range of [Signal]ss is that can 

activate Hh signalling in vivo. Morphogen studies in Xenopus suggest that 100 active 

receptors is about the lowest signaling concentration that cells can respond to [27]. If we 

consider similar numbers for the signal transducer pSmo in our system (which is also a 

transmembrane molecule), this is about 0.03 µM. In our simulation results of Figure 

2.1E, a cell at position 9 would express already lower levels of [Signal] at the steady 

state. Thus, according to this analysis, we estimate that [Signal] levels drop from nearly 

maximal to undetectable in less 3 cells. Because this estimation depends on many 

uncertain parameters, we cannot strictly rule out that some concentration-dependent 

effects contribute to some extent to the final output. In fact, the small overlap between 

Col and dppZ detected in Figure 2.3F may be due to a slight concentration-dependent 

difference between the two target genes.  

The steady-state interpretation of the Hh extracellular gradient in terms of 

Equation (2.6) requires some additional discussion. Since [Hh] refers to free unbound Hh 

concentration, strictly speaking, Equation (2.6) is not the relationship that describes how 

cells ‘translate’ extracellular levels into signaling outputs because cells probably do not 
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have another way of sensing extracellular Hh concentrations other than by using the 

receptor Ptc. This does not affect any of the predictions of the model. However, it is 

important to clarify the meaning of some parameters. For example, the interpretation of ε 

as the ‘switching threshold’ is somehow artificial, because cells (presumably) do not have 

a way to ‘measure’ unbound extracellular [Hh]. A more appropriate definition of 

‘switching threshold’ may be obtained using an extracellular gradient that cells can sense. 

Since, all steady-state variables can be written as a function of [Hh]ss, we can define more 

realistic ‘switching thresholds.’ For example, we can write [Ptc]ss as a function of [Hh]ss 

and set the switching threshold to be [Ptc]ss(ε). The switching threshold can also be 

defined in terms of [Hh_Ptc]ss, 

€ 

[Hh_Ptc]ss
[Ptc]ss

, or other combinations. Using the ratiometric 

model, the natural choice of switching threshold is given by 

€ 

δ =
[Hh_Ptc]ss(ε)
[Ptc]ss(ε)

=
γHh_Ptc
βHh_Ptc

ε = kSignal .  (S2) 

Note that δ and ε are linearly proportional. Indeed, the last equation is just a particular 

case of a more general property of the system, namely, at steady-state, Equation (2.4) can 

be written in the form, 

€ 

[Hh_Ptc]ss
[Ptc]ss

=

€ 

γHh_Ptc
βHh_Ptc

 [Hh]ss.  (S3) 

Therefore, defining the switching threshold as ε or δ  is equivalent. Nonetheless, δ (and 

not ε) is used as a ‘switching threshold’ in Figures 2.3 and 2.5.  In any case, we insist that 

other choices do not affect the concept or the conclusions of this study.  
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Ratiometric model and estimation of n  

Our mathematical analysis depends on the ratiometric model of Hh signaling 

interpretation [19]. Since this model has caused some controversy in the literature [28], it 

is appropriate to discuss possible problems that may arise in this treatment. The 

ratiometric interpretation of Hh signaling is a phenomenological model, this is, it is based 

on observations about target gene expression, but does not provide a molecular 

mechanism of Hh signal activation. In the past, it was thought that the levels of free 

(unliganded) Ptc would control the activity of the signal. In this scenario, signaling 

activity would not change as long as levels of free Ptc are maintained constant. The 

ratiometric model is introduced to explain the effect of [Hh_Ptc] levels in cells with a 

constant background of free Ptc [19]. To a first approximation, the ratiometric model 

explains how cells would correct the interpretation of a certain concentration of [Ptc] 

levels when also expressing [Hh_Ptc], but experiments in vertebrates or in different 

conditions suggest that the ratiometric model is probably not applicable in general. For 

example, the ratiometric model may be sensitive to total levels of Ptc, as experiments in 

vertebrates do not seem to obey the predictions of the model [29]. If so, the ratiometric 

model may not explain some mutants such as ptc overexpression. Despite these 

difficulties, the ratiometric model explains Hh patterning to a good approximation under 

normal physiological conditions. Because our analysis is based on the wild-type and 

many important details about Hh transduction are unknown, we argue that for the purpose 

of this study, the ratiometric model may be used as a phenomenological model of Hh 

signal interpretation.   
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An additional consideration is the use of the measurements from Casali and Struhl 

[19] to estimate the value of n. Here, we give a formal mathematical argument of the 

lower-bound estimation of n in Figure 2.1D. The basic idea is that n has a geometric 

meaning in the graph of the Hill function for which n is the Hill coefficient; it is a 

measure of the steepness of the Hill function. The following proposition shows that, 

given two points in the curve of the Hill function, it is possible to estimate a lower-bound 

estimate of n. 

Proposition:  Consider the function 

€ 

F(x) =
Ax n

k n + x n
. Let x, y be real numbers and 

without loss of generality take x≤y. Then,  

€ 

F(y) − F(x)
y − x

≤ F '(k) =
An
4k

 

(If x=y, the left hand side is understood as the limit, i.e., 

€ 

F '(x) ≤ F'(k)). 

 

Proof.  By the intermediate value theorem of calculus, there is x≤z≤ y such that 

€ 

F(y) − F(x)
y − x

≤ F '(z). 

A simple computation shows that the maximum of F’(x) is reached when x=k. 

This completes the proof. 

 

 Let 

€ 

F Hh_Ptc
Ptc

 

 
 

 

 
 =

100% [Hh_Ptc]
[Ptc]

 

 
 

 

 
 

n

k
Signal

n
+
[Hh_Ptc]
[Ptc]

 

 
 

 

 
 

n
. The experiments of Casali and Struhl [19] 

provide two data points in the graph of F as they made clones of ptc- cells in the anterior 

compartment expressing different amounts of the [Hh_Ptc]/[Ptc] ratio. For 

€ 

[Hh_Ptc]
[Ptc]

=1.6 , they found no detectable activation of Hh target genes, and for 
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€ 

[Hh_Ptc]
[Ptc]

= 2.7 , they found high expression of Hh outputs. We can, therefore, apply the 

proposition above to obtain a lower-bound estimate of n. We assumed that F(1.6)=5% 

and F(2.7)=95% to represent no and full activation of the pathway up to a 5% detection 

error (95%). Unfortunately, Casali and Struhl did not compare gene expression levels in 

the 

€ 

[Hh_Ptc]
[Ptc]

= 2.7  clone to wild-type gene expression in the same disc, but both Col and 

a reporter of dpp appear strongly expressed in these clones [19]. Also, it is not clear 

whether or not signaling activity is maximal for 

€ 

[Hh_Ptc]
[Ptc]

= 2.7 , since Casali and Struhl 

did not report whether or not engrailed was expressed in clones expressing this ratio. 

Therefore, the accuracy of the estimate F(2.7) = 95% is unknown. However, reasonable 

deviations of this choice do not affect our conclusions. For example, setting F(2.7) = 80% 

gives the lower-bound estimate of n to be 5.7. As other caveats can be found in the use of 

these data for the estimation of the value of n, we insist that to give an accurate and 

reliable value of n is not a result or goal of this study. Instead, our estimation of n 

suggests that the hypothesis that the steady-state [Signal] profile has a step-like shape is 

reasonable and consistent with experimental findings.   

 

Analysis of the Hh gradient in ptc-TPT and ptc+TPT discs 

Hh signaling in ptc-TPT discs can be simulated using our mathematical model, with the 

exception of Equation (2.2), which is replaced by 

€ 

∂[ptc]
∂t

=αTPT −βptc[ptc],  (S4) 
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and the initial condition (I.C.1) is replaced by [ptc](x,0) = 

€ 

αTPT

βptc

. Compared to Equation 

(2.2), the last equation eliminates all wild-type ptc expression and models ubiquitous 

expression of ptc as introduced by the TPT transgene. Chen and Struhl estimated that two 

copies of the TPT transgene introduce Ptc levels that are less than twofold compared to 

the maximal levels of Ptc near the AP boundary [30]. Therefore, we set 

€ 

αTPT =
α ptc

5
≈ 5.4 ×10−6  µM s-1 in the numerical simulations of Hh signaling in ptc-TPT 

discs.  

 Regarding the levels introduced by the TPT transgene, it is important to clarify 

that in a previous report it was observed that dppZ expands further anteriorly with respect 

to the wild-type pattern (reported as data not shown in ref. [30]). However, in our own 

experiments we observe that the dppZ domain is slightly reduced with respect to the wild 

type (Fig. 2.3B,E). This apparent discrepancy may be due by one of the following 

reasons. First, it is possible that the Chen and Struhl [30] used another insertion of the 

TPT transgene, for example, one on the second chromosome. Or second, the TPT 

transgene may have acquired mutations in the past decade that affected the performance 

of the original transgene. In any case, the predictions of the Overshoot Model are not 

affected by the strength of the transgene. The Overshoot Model predicts the Col and 

dppZ patterns to overlap regardless of whether each pattern expands or reduces with 

respect to the wild type.   

Although the profiles shown in Figure 2.3G,H are intended as illustrations of the 

predictions of the Classical Morphogen Model vs. Overshoot Model in different genetic 

backgrounds, it is illustrative to estimate the expected size of the dppZ domain that would 
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not overlap with the Col pattern in ptc-TPT discs according to the interpretation of the 

Classical Morphogen Model. One way of doing this is to measure the size of the Col vs. 

dppZ domain in wild-type discs and use the numerical simulations to predict the expected 

non-overlapping region in ptc-TPT discs. However, this estimate will depend on the 

parameter values used in the simulations, as well as in our accuracy to measure the dppZ 

domain, which is difficult to estimate reliably because unlike Col, in wild-type discs the 

anterior boundary of the dppZ is not sharp (Fig. 2.3C).  

Another way of estimating the difference in Col and dppZ patterns according to 

the Classical Morphogen model interpretation is to compare the shape of the Hh gradient 

in the region anterior to the Ptc/Col domain (x > xptc/col, with xptc/col denoting the position 

of the anterior border of Ptc/Col, which we assume is the same throughout this analysis). 

As Ptc is not upregulated by Hh signaling in this region, we can assume that Ptc levels 

are approximately constant (denoted by [Ptc]A) so that Equation (2.1) at steady-state is 

linear and given by 

€ 

0 = D d2[Hh]SS
dx 2

− γHh_Ptc[Ptc]A + βHh( )[Hh]SS ,  (S5) 

subject to the boundary condition [Hh]SS(xptc)=T1, which assumes that the Ptc boundary is 

set by a fixed concentration threshold, denoted by T1. Equation (S5) has the following 

solution, 

€ 

[Hh]ss(x) = T1exp −
x − xptc/col

λ

 

 
 

 

 
       (x > xptc/col), (S6) 

where 

€ 

λ =
D

γHh_Ptc[Ptc]A + βHh
  is the characteristic length of the gradient. In the context 

of the Classical Morphogen model, λ is actually a good representation of the width of the 
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non-overlapping domain. Equations (S5-S6) are also valid in ptc+TPT and ptc-TPT discs 

provided that the constant [Ptc]A is adjusted appropriately. Thus, we can compare what 

are the expected differences in the Col and dppZ domains in these backgrounds according 

to the Classical Morphogen model. If we denote [Ptc]0 the anterior Ptc levels in wild-type 

discs, and assume that the levels of Ptc introduced by the TPT transgene can be denoted 

by [Ptc]TPT (from measurements of an earlier study using the TPT transgene, it can been 

estimated that [Ptc]TPT/[Ptc]0=1.4), then the predicted differences in Col/Ptc and dppZ 

domains in different mutant backgrounds are given by: 

€ 

λWT =
D

γHh_Ptc[Ptc]0 + βHh

                              (in wild - type discs)

λptc -TPT =
D

γHh_Ptc[Ptc]TPT + βHh

                      (in ptc - TPT discs)

λptc+TPT =
D

γHh_Ptc([Ptc]0 + [Ptc]TPT ) + βHh

      (in ptc + TPT discs).

  (S7) 

Thus, Equations (S7) provide quantitative proof of our predictions in Figure 2.4A-C, 

namely, λptcTPT  >  λptc+TPT  independently on the Ptc levels expressed by the TPT 

transgene. Our data in Figure 2.4F’ show that experimentally λptc+TPT  is at least 3 cells 

wide, suggesting that the non-overlapping region in ptc-TPT would be larger than 3 cells. 

This prediction is clearly not consistent with the observations in Figure 2.3F’, 

demonstrating that the patterns in these mutant backgrounds cannot be explained by the 

Classical Morphogen model. Thus, this analysis provides strong support for the 

Overshoot model over the Classical Morphogen model in this system. 
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Supporting Protocol 

 

The following protocol explains how the expression of Ptc was quantified to generate the 

concentration profiles in Fig. 2.2E. This process was followed with each image manually 

one at a time. The process was repeated independently twice in each image and the final 

result was averaged. For each time point, 4-7 discs were analyzed.  

 

1. The original image was passed through a Gaussian filter (medfilt2 in Matlab). 

2. Crop a 30X30 pixel box manually from the Posterior compartment of the filtered 

image and compute the average pixel intensity. This is the background intensity. 

3. Subtract the background intensity to the whole filtered image. 

4. Crop a 30X30 pixel box manually from the Anterior compartment (far from the AP 

boundary) of the filtered-background subtracted image and compute the average pixel 

intensity. This is the “Ptc basal intensity”. 

5. Crop a 20X80 pixel box that crosses the AP boundary in a place that the posterior 

border of Ptc looks approximately straight (as the red box in the cartoon of Figure 2.2E). 

Average the intensities of each of the 20 lines that are perpendicular to the AP boundary. 

6. Divide the average intensity at each point by the “Ptc basal intensity”. This gives the 

intensity profiles in units of the “Ptc basal intensity”. In Figure 2E, all profiles were 

plotted on the same relative scale. 

7. Finally, the width in Figure 2.2F is defined as the distance between the points that 

cross an intensity equal to 2 (this is twice the Ptc basal levels). Widths for the same time 

points were averaged along their standard deviation and are plotted in Figure 2.2F. 
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Supporting Table 2.1. Wild-type parameter values used in the numerical simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Parameter values are estimated from previous theoretical and experimental studies; see 

Nahmad and Stathopoulos (2009) for details). 

 

 

 

Parameter 
 

Description 
 

Value 

D Hh diffusion coefficient 0.5 µm2s-1 

αHh Hh maximal activation rate 3.4 x 10-3 µMs-1 

αptc ptc maximal activation rate 2.7 x 10-5 µMs-1 

αptc0 ptc basal transcription rate 3.8 x 10-6 µMs-1 

αSignal Signal maximal activation rate 1.6 x 10-4 µMs-1 

βHh Hh degradation rate 3.3 x 10-3 s-1 

βptc ptc degradation rate 1.4 x 10-4 s-1 

βPtc Ptc degradation rate 1.5 x 10-3 s-1 

βSignal ‘Signal’ degradation rate 5.5 x 10-4 s-1 

βHh_Ptc Hh_Ptc degradation rate 1.5 x 10-3 s-1 

γHh_Ptc Association rate, Hh_Ptc complex 7.15 x10-2 µM-1s-1 

ΤPtc Ptc translation rate 3.6 x 10-3 s-1 

kptc ptc half-maximal activation conc. 0.14 µM 

kSignal [Signal] half-maximal activation 2.135 

m 
Hill coefficient (ptc activation) 3 

n Hill coefficient (‘Signal’ activation) 6.8 
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Supporting Fig. 2.1 Temperature changes do not affect Ptc expression.  

Wild-type discs from larvae raised at 18°C (A) or from larvae raised at 18°C followed by 

24 h at 29°C (B) immunolabeled for Ptc. Fixation, immunostaining, and imaging of discs 

in (A and B) were performed under identical conditions. 
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Supporting Fig. 2.2 dpp expression is maintained after Hh signaling is interrupted. 

In situ hybridization using a riboprobe to dpp in a wild-type disc (A) versus a hhts2 

homozygous disc (B) grown at 18°C and exposed to 29°C for the last 24 h of the third 

larval instar. The domain of dpp expression is similar in (A and B), but the intensity of 

expression is higher in wild type. If residual Hh levels were to account for this 

expression, then dpp expression domain would be predicted to shift in expression toward 

the AP boundary; the full extent of the pattern would not be expected. 
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Supporting Fig. 2.3 dppZ and Ptc expression patterns are normal after Dpp 
signaling interruption.  
 
(A–C) dpphr56/dpphr4 animals raised at 18°C are normal in Dpp signal transduction 

assayed by pMAD expression (A) and have normal patterns of Ptc (B) and dppZ (C). (D) 

Merge of the patterns displayed in (B and C). (E–G) dpphr56/dpphr4 larvae exposed to 

restrictive temperature (29°C) for 24 h have lost their pMAD expression pattern (E), and 

yet, Ptc and dppZ are approximately normal (F and G). The patterns do not overlap, 

suggesting that Dpp signaling is not required for maintenance of dpp expression in the 

nonoverlapping region. (H) Merge of the patterns displayed in (F and G). In this figure, 

the dppZ transgene is an insertion on chromosome III, to allow assay in a dpp mutant 

background. 
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Supporting Fig. 2.4 The overlap of Col and dppZ in ptc−TPT discs cannot be 
explained by the Temporal Adaptation model.  
 

Predictions of Hh patterning in wild-type (A) versus ptc−TPT discs (B) according to the 

Temporal Adaptation model (Dessaud et al., 2007). In wild-type discs (A), Ptc-mediated 

desensitization is required to map different concentrations of the extracellular gradient 

(green) into a graded signal response (blue). However, when signal-mediated Ptc up-

regulation is impaired, cells are unable to differentially “desensitize” the levels of the 

signal and respond similarly to different concentrations of the signaling (B). Thus, lack of 

desensitization in ptc−TPT discs results in the expansion of the highest response (e.g., en; 

blue) to the extent of the intermediate response (e.g., col; white), but should have little or 

no effect in the differential establishment of the dppZ and Col borders, because Ptc-

mediated desensitization is a cell-autonomous effect. 
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Supporting Fig. 2.5 Col and the anterior pattern of En overlap in ptc−TPT discs. Col 

(A) and En (B) are expressed in nearly the same domain in the anterior compartment in 

late third instar ptc−TPT discs. (C) Merge of panels displayed in (A and B). The line 

drawn from the Col pattern shows that Col and En approximately share their anterior 

border. 
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Supporting Fig. 2.6 Hh-dependent expression of Ptc and En approximately overlap 

in late wild-type discs. 

 (A and B) Immunostaining of wild-type wing discs from a crawling third instar larva 

using anti-En (A) and anti-Ptc (B) antibodies. (C) Merge of images in (A and B). (A′–C′) 
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4× magnification of the white box depicted in (A–C). White circles mark a cell in the 

anterior border of the En pattern showing that at this time, the En border approximately 

falls within the domain of Ptc expression, but does not share the same anterior boundary. 

(D and E) Same as (A and B), but from a third larva close to pupariation. (F) Merge of 

images in (D and E). (D′–F′) Magnification of the white box in (D–F). Scale bars indicate 

10 µm. White circles mark a cell at the anterior boundary of the En pattern, showing that 

at this time, the En and Ptc anterior borders coincide. (G) Generalization of the state-

space model in Figure 2.5 to incorporate engrailed. No additional concentration threshold 

is required to define the en domain of expression. Instead, en seems to be responsive to 

integration of Hh signaling over time, as it shares an anterior boundary with Ptc, and 

presumably Col, at later time points. Therefore, cells exposed to two different Hedgehog 

concentrations δ1 and δ2 above the switching threshold, δ, turn on Hh target gene 

expression at different time points but eventually activate all target genes (Territory V). 
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Supporting Materials for Chapter 3 

 

Supporting Text 

Linear approximation of the Hh steady-state gradient 

Consider the model of Hh signaling in the Drosophila wing disc [Equations (3.5)]. At 

steady-state, simple algebraic substitutions reduce the system of equations to a single 

piecewise ordinary differential equation, 

€ 

D d2[Hh]ss

dx 2 + S− (x)αHh −
S+ (x)χ [Hh]ss

β
Ptc

+ γHh_Ptc[Hh]ss

α ptc0 +
α ptc[Hh]ss

nm

kptcβSignal κ
n + [Hh]ss

n[ ]
m

+ αSignal[Hh]ss
nm

 

 

 
 
 

 

 

 
 
 
− βHh[Hh]ss = 0   (A1)

 

with 

€ 

χ =
TPtcγHh_Ptc
β

ptc

 and 

€ 

κ =
kSignalβHh_Ptc
γHh_Ptc

. In the anterior compartment, 

€ 

S−(x) = 0 and 

€ 

S+(x) =1, and Equation (A1) reduces to Equation (3.6) which can be linearised to obtain 

an approximate solution for the Hh steady-state gradient near the AP boundary [Equation 

(3.8)]. Here, we provide the details of this linearization that were omitted in the text. Near 

the AP boundary, Hh is present at sufficiently high levels that we can assume 

€ 

[Hh]SS
n >> κ n

 
(see below) so that the following approximation holds, 

€ 

α ptc[Hh]ss
nm

η κ n + [Hh]ss
n[ ]

m
+ [Hh]ss

nm
≈
α ptc

η +1
. 

This expression reduces one nonlinear term in Equation (3.6) to a constant. The other 

nonlinear term can be approximated by a linear function near a point of interest 

€ 

[Hh]SS
0( )

 
via a Taylor expansion:  
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€ 

f [Hh]SS( ) =
χ [Hh]ss

β
Ptc

+ γHh_Ptc[Hh]ss

≈ f [Hh]SS
0( ) +

df
d[Hh]SS

[Hh]SS
0( ) [Hh]SS − [Hh]SS

0( )

                                                 ≈ χ
βPtc + γHh_Ptc[Hh]SS

0

γHh_Ptc[Hh]SS
0 2

βPtc + γHh_Ptc[Hh]SS
0 + 1−

γHh_Ptc[Hh]SS
0

βPtc + γHh_Ptc[Hh]SS
0

 

 
 

 

 
 [Hh]SS

 

 
 
 

 

 
 
 
.

 

The maximum [Hh]SS levels are limited by the ratio of the Hh production rate (αHh) to the 

Hh degradation rate (βHh) and numerical estimates suggest that [Hh]SS rapidly drops to 

one third of this maximal value within a few cells diameters from the AP boundary (Fig. 

3.3B). Therefore, substituting

€ 

[Hh]SS
0 =

1
3
αHh

βHh  
(which also satisfies the condition of the 

previous approximation: 

€ 

1
3
αHh

βHh

 

 
 

 

 
 

n

>> κ n  using the parameter values in Supporting Table 

2.1) in the Taylor expansion above we get, 

€ 

χ [Hh]ss
β
Ptc

+ γHh_Ptc[Hh]ss
≈

3χβHh
3βHhβPtc +αHhγHh_Ptc

γHh_PtcαHh
2

9βHh
2 βPtc + 3αHhβHhγHh_Ptc

+ 1−
αHhγHh_Ptc

3βHhβPtc +αHhγHh_Ptc

 

 
 

 

 
 [Hh]SS

 

 
 
 

 

 
 
 
. 

These approximations turn Equation (3.6) into a linear equation [Equation (3.7)] which 

can be solved analytically once boundary conditions are provided. The boundary 

condition at the anterior end is completely irrelevant and can be ignored (i.e. assumed at 

infinity) because the range of the [Hh]SS gradient is much shorter than the width of the 

anterior compartment. However, the solution [Equation (3.8)] is only fully determined 

once the boundary conditions at x=0 are specified. In fact, the parameter A in Equation 

(3.8) is determined by imposing continuity of the gradient (and its derivative) at the AP 

boundary. Note that Equation (A1) in the posterior compartment takes the following 

simple form: 

€ 

D d2[Hh]ss
dx 2

+αHh −βHh[Hh]ss = 0.     
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Imposing a zero-flux boundary condition in the posterior end: 

€ 

d[Hh]SS
dx

x = −LP( ) = 0
 

  
 

  
, 

the solution of this equation is: 

€ 

[Hh]SS(x) =
αHh

βHh
−Mcosh x + LP

D
βHh

 

 

 
 
 

 

 

 
 
 
 (for

€ 

x ≤ 0), (A2) 

with M determined by boundary conditions at x =0. By continuity, Equations (3.8) and 

(A2) and their derivatives must coincide at x=0. This condition determines A (in 

Equation (3.8)) and M (in Equation (A2)) uniquely from a system of two algebraic 

equations:  

€ 

A− C
B
= αHh

βHh
−Mcosh βHh

D
LP

 

 
 

 

 
 

A B =M βHh
D
sinh βHh

D
LP

 

 
 

 

 
 .

 

And simple algebraic substitutions give, 

€ 

A =

αHh

βHh
+
C
B

1+ BD
βHh

coth βHh
D
LP

 

 
 

 

 
 

. 

This analysis permits to obtain a linear approximation of the Hh gradient near the AP 

boundary and defines the approximate steady-state invariant set described by Equations 

(3.9). 

 

Geometric Properties of Steady-State Invariant Sets 

Given the practical purposes of the study, we considered steady-state invariant 

perturbations as a subset of parameter space, but their geometric properties were not 
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stated in detail. Here, we briefly discuss some general geometrical properties of steady-

state invariant sets and discuss potential advantages of a geometric treatment. Steady-

state invariant sets are defined by systems of algebraic equations (in many cases by 

polynomial equations), and therefore, they are real semi-algebraic varieties. As such, 

geometric properties such as their dimension (or codimension) are well defined. Although 

a formal treatment of the geometry of steady-state invariant sets is beyond the scope of 

this study, it is important to realize that there is a vast literature of algebraic and 

geometric tools to analyze the properties steady-state invariant sets. Future geometric 

studies may provide insights into practical aspects of steady-state invariant sets. For 

example, how to decompose steady-state invariant sets into more simple varieties; and 

the existence of steady-state invariant subsets of codimension zero.  
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Supporting Fig. 3.1. The time to reach the steady state is position-dependent.  

In the model of the single morphogen described by Equation (3.1), the time to reach the 

steady state is position-dependent. Cells located closer to the morphogen source approach 

the equilibrium faster than cells farther away from it. The same trend is observed for 

parameter perturbations along the steady-state invariant set (δ=0.5, red line; δ=2, green 

line). As a consequence of this spatial effect, cells sufficiently far from the source may 

not reach the equilibrium within the developmental timescale. 
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Supporting Fig. 3.2. Geometric visualization of a general steady-state invariant set.  

For a fixed spatial position, we can obtain the set of parameter values that leave the 

steady-state solution GSS unchanged with respect to the wild-type (Equation (B4) in Box 

3.1), i.e., the set of points in parameter space that are mapped into the same value of GSS 

than the wild-type values. The figure shows a cartoon of these sets for three different 

points (denoted by ΩX1, ΩX2, and ΩX3). The steady-state invariant set Ω  (in S={X1, X2, 

X3}) is given by the intersection of those sets (Equation (B5) in Box 3.1). 
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Supporting Materials for Chapter 4 

 

 
Supporting Fig. 4.1 Derivation of the scaling percentage level. 

Given a plot of positional data vs. length of the domain, we can derive the scaling 

percentage level formula by comparing the variability in the positional data (red bar) to 

the height of a right triangle (green bar) of base equal to r(L) and slope defined by the 

ratio of the mean location to the mean axis length. The ratio of the red to green bars 

represents how much of the data can be explained by chance due to fluctuations in the 

Xi’s. Thus, C is the percentage of scaling data that cannot be explained by variability on 

the positional data.   
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Supporting Fig. 4.2 yw and India embryos do not display significant differences in 
the length of the DV axis. 
 

Although India and w1118 embryos display significant differences along the AP axis 

(Lott et al., 2007), measurements from cross sections show that they do not differ 

significantly in the length of their DV axis. 
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