
Asynchronous Pulse Logic

Thesis by

Mika Nystrom

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

200l

(DefendeclMay 14, 2001)

11

© 2001

Mika Nystrom

All Rights Reserved

III

Acknowledgments

What am I doing in graduate school? My interest in computing goes back to when I disassembled,

with my father, an Original-Odhner pinwheel calculating machine. I must have been about four or

five years old at the time, and like most four-or-five -year-olds who have a passing acquaintance with

addition and subtraction, arithmetic is something very mysterious. The sight of the many, many

tiny gears in the insides of that calculator has dogged me ever since. I have been determined to

figure out how it worked. Today I think I have a fair idea.

This thesis is first and foremost dedicated to my parents, who started it all-in more ways than

one. I am sad to say that they did not live to see me through school; I should not have been here

without their insistence on education before all else. I shall always be baffled by my mother's courage

in sending me to a school where a foreign language--English-was the only one we young students

could communicate in. Eventually it led to my leaving my native Sweden just as she once left her

native Finland.

One's own insistence is not enough. I have been lucky to live in a world where willing and able

teachers are plentiful. Starting with Lynn Carlisle, whom I still blame when my accent marks me

a Midwesterner, I have had many: Maurice Naddermier, who first opened my eyes to the vastness

of science; Simeon Leet, who in three years of high school taught me most of the mathematics that

I know to this day and gave me a strong appreciation for the place of science and technology in

the larger universe of human wisdom; and latest but not least, my advisor, Alain J. Martin, whose

patience in the last seven years with the many things I have enjoyed myself working on has seemed

infinite. I have had many other inspiring teachers in between; and if I were to list also those teachers

that have taught me through their writings, the list would go on forever (some of their names appear

in the Bibliography).

I came to graduate school so that I could continue learning; in this, I have been successful.

Our Friday morning group meetings have alwaYH been nourishing food for thought; I remember

many inspiring debates with Jose Tierno, Tony Le<\ Marcel van der Goot, Jessie Xu, Peter Hofstee,

Andrew Lines, Rajit Manohar, Paul Penzes, Robert Southworth, Uri Cummings, Eitan Grinspun,

Cathy Wong, Karl Papadantonakis, Abe Ankumah, and many occasional visitors. Andrew and

Rajit, with their two very different but complementary world-views, have especially inspired me,

lV

and much of what I write about here originally came from their minds and only made a detour

through mine before landing on paper.

The members of my thesis committee, Andre DeRon, Alain Martin, Rajit Manohar, and Ali

Rajimiri, have read the thesis carefully and suggested many changes. I have tried to control my own

stubbornness and take as much of their advice as possible, but I have not always been successful in

this.

Several others have read the thesis out of the goodness of their hearts and given me hundreds of

helpful comments: Karl Papadantonakis, Cathy Wong, Eitan Grinspun, Paul Penzes, Abe Ankumah,

and the anonymous Institute Proofreader. Especially Chapter 3 owes much of its Greek clarity to

Karl's demands. Again, these kind readers' comments have had a powerful foe in my stubbornness,

and remaining errors are all mine.

This thesis is written in English (or American; but I think they are the same), a language that I

learned (from Lynn) when I was four years old. Writing a Ph.D. thesis is something one tries to do

carefully, so before I embarked on it, I decided to try to improve my writing by reading up on the

English language. I may have succeeded, but I have also acquired some unusual habits of expression

that I should perhaps caution the reader of. (Such as obstinately putting prepositions at the ends of

sentences whenever I deem it appropriate.) These habits have been inspired by H. W. Fowler. 1 As

I am writing computer-science English, I am permitted a great degree of leeway. I do not know why

so many computer scientists write such sloppy English; we that are used to expressing ourselves with

such exactitude when dealing with machines seem to of tell fall flat on our faces when trying to deal

with human readers. I have tried to use my technical writer's leeway to write unambiguously rather

than sloppily; in this I have made fewer concessions to convention than Fowler himself would have.

No doubt sometimes all that I have achieved is annoyingly unconventional writing, and for all my

efforts I have not managed to completely banish the sloppy mistakes; I am for instance convinced

that hyphenation in English, especially noun-stacking technical English, walks a thin line between

illogicality and illegibility. I cannot blame Fowler for these failings: they are due to my own pedantry

and my sometimes foolish wish for consistency.

We live in a practical world, and research clops not come of the mind alone. Many generous

sponsors have made the work described here possible: it has been supported by the Defense Advanced

Research Projects Agency (DARPA) for a long time, and I have been directly supported by the

Okawa Foundation and by a two-year Graduate Research Fellowship from IBM Corporation. The

computers used for the work were donated by Intel Corporation.

I am happy I came to graduate school at Caltec:h. It took longer than I thought possible, but

1 H. W. Fowler and F. G. Fowler, The King '0' EnqliO'h, I.hird edition (Oxford: Oxford University Press, 1931);
H. W. Fowler, A Dictionary of Moder'n English Usage, first edition (Oxford: Oxford University Press, 1926). Both of
these, as well as several lesser editions of Moder'n English Usage, are still in print. The King's English is also available
on the Internet.

v

Caltech is a truly remarkable place filled with remarkable persons. On the practical side, my stay as

a graduate student has been made less stressful by the hard work of many Computer Science staff

members; especially Cindy Ferrini, Jeri Chittum, and Betta Dawson.

I thank Deidre for her patience with me.

vi

This paqe intentionally left blank.

Vll

Abstract

This thesis explores a new way of computing with CMOS digital circuits, single-track-handshake

asynchronous pulse-logic (STAPL). These circuits are similar to quasi delay-insensitive (QDI) cir

cuits, but the normal four-phase QDI handshake is replaced with a simpler two-phase pulsed hand

shake. While a delay-insensitive two-phase handshake requires complicated decoding circuits, the

pulsed handshake maintains the simpler, electrically beneficial signaling senses of four-phase hand

shaking by using timing assumptions that are easy to meet.

We cover many aspects of designing moderately large digital systems out of STAPL circuits,

from the communicating-process level to the production-rule and transistor level.

We study the theory of operation of pulsed asynchronous circuits, starting with simple pulse

repeaters; hence we progress to a general theory of operation for pulsed asynchronous circuits. This

theory is a generalization of the theory of operation of synchronous digital circuits.

We then develop the family of STAPL circuits. This is a complete family of dataflow processes:

the presented circuits can compute unconditionally as well as conditionally; they can also store state

and arbitrate.

Next, we present some aspects of automatic design-tools for compiling from a higher-level de

scription to STAPL circuits. Many of these aspects apply equally well to tools for QDI circuits; in

particular, we study boolean-simplification operations that may be used for improving the perfor

mance of slack-elastic asynchronous systems.

Finally, a simple 32-bit microprocessor is presented as a demonstration that the circuits and

design methods work as described. Comparisons arc made, mainly with QDI asynchronous design

styles: SPICE simulations in 0.6-ILm CMOS suggest that a system built out of automatically com

piled STAPL circuits performs at about three times higher throughput (650-700 MHz in 0.6-lLm

CMOS) compared with a similar system built out of carefully hand-compiled QDI circuits; the

STAPL system uses about twice the energy per operation and twice the area; in other words, the

STAPL system improves on the QDI system by four to five times as measured by the Et2 and At2

metrics.

VIll

Th'is page intentionally left blank.

Contents

Acknowledgments

Abstract

1 Introduction

1.1 The VLSI design process .

1.2

1.3

1.4

1.5

From physics to computer science .

Asynchronous digital design

Asynchronous design-styles

1.4.1 Bundled-data design

1.4.2 Delay-insensitive design-styles.

Contributions

2 Preliminaries

2.1 Quasi delay-insensitive design

2.2 High-speed CMOS-circuits ..

IX

2.3 Asynchronous protocols and delay-insensitive codes

2.4 Production rules

2.5 The MiniMIPS processor .

2.6 Commonly used abbreviations.

3 Asynchronous-Pulse-Logic Basics

3.1 Road map of this chapter

3.2 The pulse repeater

3.2.1 Timing constraints in the pulse repeater

3.2.2 Simulating the pulse repeater .

3.2.3 The synchronous digital model

3.2.4 Asymmetric pulse-repeaters

3.3 Formal model of pulse repeater . .

iii

vii

1

2

2

3

3

4

4

5

7

7

7

9

9

10

12

13

15

16

17

17

24

24

25

x

3.3.1

3.3.2

3.3.3

3.3.4

Basic definitions .,

Handling the practical simulations

Expanding the model

U sing the extended model

3.3.5 Noise margins

3.4 Differential-equations treatment of pulse repeater

3.4.1 Input behavior of pulse repeater

3.4.2 Generalizations and restrictions .

4 Computing With Pulses

4.1 A simple logic example.

4.2 Pulse-handshake duty-cycle

4.3 Single-track~handshake interfaces

4.4 Timing constraints and timing "assnmptions"

4.5 Minimum cycle~transition-counts . . .

4.6 Solutions to transition-count problem

4.7 The APL design-style in short

5 A Single-Track Asynchronous~Pulse-Logic Family: 1. Basic Circuits

5.1 Introduction.

5.2 Preliminaries

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

Transition counting in pipclined asynchronous circuits

Transition-count choices in pulsed circuits

Execution model

Capabilities of the STAPL family.

Design philosophy

5.3 The basic template .

5.3.1 Bit generator

5.3.2 Bit bucket. .

5.3.3 Left-right buffer

5.4 Summary of properties of the simple circuits.

25

27

28

30

31

31

33

37

39

40

44

46

47

48

49

49

51

51

51

52

53

56

56

57

58

58

62

66

71

6 A Single-Track Asynchronous~Pulse-Logic Family: II. Advanced Circuits 73

6.1 Multiple input and output channels. 73

6.1.1 Naive implementation 75

6.1.2 Double triggering of logic block in the naive design 75

6.1.3 Solution........................ 77

xi

6.1.4 Timing assumptions

6.2 Generallogic computations

6.2.1 Inputs whose values are not used

6.3 Conditional communications

6.4

6.5

6.6

6.7

6.8

6.3.1 The same program can be expressed in several ways

6.3.2 Simple techniques for sends

6.3.3 General techniques for conditional communication-actions

Storing state

6.4.1 The general state-storing problem

6.4.2 Implementing state variables

6.4.3 Compiling the state bit

Special circuits . .

6.5.1 Arbitration

6.5.2 Four-phase converters

Resetting STAPL circuits . .

6.6.1 Previously used resetting schemes

6.6.2 An example

6.6.3 Generating initial tokens.

How our circuits relate to the design philosophy .

Noise

6.8.1

6.8.2

6.8.3

6.8.4

External noise-sources

Charge sharing

Crosstalk ...

Design inaccuracies .

7 Automatic Generation of Asynchronous-Pulse-Logic Circuits

7.1 Straightforwardly compiling from a higher-level specification.

7.2 An alternative compilation method

7.3 What we compile.

7.4 The PL1 language

7.4.1 Channels or shared variables?

7.4.2 Simple description of the PL1 language

7.4.3 An example: the replicator

7.5 Compiling PL1

7.6 PL1-compiler front-end

7.6.1 Determinism conditions

78

78

79

82

82

84

85

90

91

92

93

96

97

99

101

102

104

105

105

106

106

107

108

109

111

112

113

113

114

115

115

117

118

120

120

7.6.2 Data encoding .

7.7 PL1-compiIer back-end.

7.7.1 Slack

7.7.2 Logic simplification.

7.7.3 Code generation ..

xu

8 A Design Example: The SP AM Microprocessor

8.1 The SP AM architecture

8.2 SPAM implementation

8.2.1 Decomposition

8.2.2 Arbitrated branch-delay

8.2.3 Byte skewing

8.3 Design examples ..

8.3.1 The PCUNIT .

8.3.2 The REGFILE

8.4 Performance measurements on the SPAM implementation

8.4.1 Straightline program

8.4.2

8.4.3

8.4.4

8.4.5

Computing Fibonacci numbers

Energy measurements

Summary of SPAM implementation's performance

Comparison with QDI

9 Related Work

9.1 Theory

9.2 STAPL circuit family.

9.3 PL1 language

9.4 SPAM microprocessor

10 Lessons Learned

10.1 Future Work

10.2 Conclusion

A PLI Report

A.1 Introduction.

A.I.1 Scope

A.I.2 Structure of PL1

A.2 Syntax elements

A.2.1 Keywords

122

124

125

127

131

133

133

134

134

135

136

140

140

152

156

157

159

160

161

162

165

165

165

167

168

169

169

170

171

171

171

172

172

172

XUl

A.2.2 Comments.

A.2.3 Numericals

A.2.4 Identifiers

A.2.5 Reserved special operators.

A.2.6 Expression operators

A.2.7 Expression syntax

A.2.8 Actions

A.3 PLI process description

A.3.1 Declarations .

A.3.2 Communication statement .

A.3.3 Process communication-block

A.4 Semantics

A.4.1 Expression semantics .

A.4.2 Action semantics

A.4.3 Execution semantics

A.4.4 Invariants

A.4.5 Semantics in terms of CRP

A.4.6 Slack elasticity

A.5 Examples

B SPAM Processor Architecture Definition

B.1 Introduction.

B.2 SP AM overview .

B.3 SPAM instruction format

B.4 SPAM instruction semantics .

B.4.1 Operand generation

B.4.2 Operation definitions .

B.5 Assembly-language conventions

B.5.1 The SPAM assembly format .

C Proof that Definition 3.2 Defines a Partial Order

C.1 Remark on Continuity

Bibliography

172

172

173

173

173

173

173

175

175

175

176

177

177

179

180

180

181

183

184

187

187

187

188

189

189

190

192

192

195

196

199

xiv

TIt'is page intent'io'fl,ally left blank.

List of Figures

2.1 One stage of domino logic

2.2 Dual-rail encoding of one bit of data.

3.1 Three-stage pulse repeater.

3.2 Five-stage pulse repeater. .

xv

3.3 A long pulse almost triggers a pulse repeater twice.

3.4 Shmoo plot for three-stage pulse repeater.

3.5 Shmoo plot for five-stage pulse repeater. .

3.6 Input-output relationship of pulse lengths for five-stage pulse repeater; this particular

circuit stops working for input pulses longer than 1.47 ns.

3.7 Qualitative interpretation of shmoo plots. . ..

8

9

16

17

19

19

20

20

22

3.8 Mapping of input to output pulse parametf~rs. . 23

3.9 Asymmetric 3-5-stage pulse repeater. 25

3.10 (a) the function f and two members j, k E P(P). Here j :::; f :::; k. (b) parameter-

space representation of sets J(f) and K(f) and the points j and k (more properly

p-l(j) and P-l(k)) picked by M. 29

3.11 Input circuitry of a pulse repeater. 33

3.12 Pulse repeater modeled with inverting ill(~rtial delay. 35

3.13 Two different input-pulse scenarios and tht~ir corresponding intermediate-node values

and output values. .. 36

4.1 Input transistors in QDI merge. 41

4.2 APL circuit, version with diodes. 41

4.3 APL circuit, version with diodes and reset transistors. 42

4.4 APL circuit; diodes implemented with transistors. 43

4.5 Pseudo-static C-element. 47

5.1 Path from input's arriving to acknowledge in QDI circuit: dotted, forward path;

dash-dotted, backward path. 54

xvi

5.2 Path from input's arriving to its being removed in STAPL circuit: dotted, forward

path; dash-dotted, backward path. 55

5.3 Forward (compute) path of STAPL bit generator. . 60

5.4 Complete STAPL bit generator. . 61

5.5 STAPL bit bucket. . . . 65

5.6 STAPL left-right buffer. 68

5.7 Paths implementing the delays Strue, Bfalse, :Ctrue, and Xfalse. 70

6.1 Schematic version of unconditional STAPL template. 83

6.2 Schematic version of conditional STAPL template. 88

6.3 Basic state bit. 93

6.4 Naive state-variable compilation. 94

6.5 Sophisticated state-variable compilation. 97

6.6 "Mead & Conway" CMOS arbiter. 98

6.7 Complete STAPL ARB process. . . 98

6.8 QDI-to-STAPL interfacing cell built from a QDI and a STAPL buffer. 100

6.9 STAPL-to-QDI interfacing cell built from a STAPL and a QDI buffer. 101

6.10 Circuit alleviating charge-sharing problems. Resistor implemented with weak transistor. 108

6.11 "Load lines" of pulsed circuit. 1: pulse becomes lower when the circuit is overloaded;

2: pulse becomes lower and longer. .. 110

7.1 Structure of the PL1 compiler. Files are shown in dashed boxes; program modules in

solid. 119

7.2 Relevant parts of declaration of sum-of-products data structure in Sop. i3. . 129

7.3 Modula-3 code for boolean simplification. 130

8.1 Sequential CRP for SPAM processor. . 134

8.2 Overview of SPAM decomposition. . . 134

8.3 Three ways of distributing control, shown OIl a hypothetical datapath operating on 32

bits encoded as 16 1-of-4 values. (a) MiniMIPS method: two-stage copy to four byte

wide processes. (b) Asynchronous-filter method: linear tree (list) of control copies to

16 processes operating on 1-of-4 data (bit skewing). (c) SPAM method: linear tree of

control copies to four four-way copies and thence to 16 processes operating on 1-of-4

data. 138

8.4 Top-level CAST decomposition of SPAM PCUNIT (without arbiter). . 141

8.5 Process graph of PCUNIT. Data channels are drawn solid; control channels dotted.

Initial tokens are shown as circles. 142

XVll

8.6 PL1 program for a single 1-of-4 process of psel.

8.7 PL1 program for pcunitctrl.

143

144

8.8 Block diagram of pc incrementer; layout alignment. Flow of data is from left to right. 145

8.9 Block diagram of pc incrementer; time alignment. . 146

8.10 Behavior of expc [1J after reset; no branches. . . . 148

8.11 Behavior of control for pc-selector psel; a branch is reported at t =12 ns. 148

8.12 Current draw of PCUNIT in amperes; no branching. Go active at t = 6.5 ns. . 149

8.13 Current draw of PCUNIT in amperes; constant branching after t = 12 ns. Go active

at t = 6.5 ns. 150

8.14 Arrival of least and most significant 1-of-4 codes of pc. 150

8.15 Charge sharing in the pc incrementer. 151

8.16 Circuit diagram of compute logic for the upper 1-of-4 code in pc-incrementer. 152

8.17 Top-level CAST decomposition of SPAM REGFILE. 154

8.18 Process graph of REGFILE. Data channels are drawn solid; control channels dotted. 155

8.19 Block diagram of 8 x 8 register-core cell; input and output channels are each four

1-of-4 codes. .. 156

8.20 Circuitry associated with each pair of state bits in register core. Dummy-write cir

cuitry not shown. .. 157

8.21 Overall arrangement of register-core cell. A two 1-of-4-code tall, three-register wide

chunk is shown. 158

8.22 SPAM program for computing Fibonacci numbers. 159

8.23 Part of the critical-path transition-trace of running the program of Figure 8.22. Time

goes upwards; each transition delay is counted as 100 time units.

8.24 SPAM program for computing Fibonacci numbers, unrolled once.

160

161

xviii

This page 'intentionally left blank.

1

Chapter 1

Introduction

For 'tis your thoughts that now must deck ollr kings,

Carry them here and there; jumping o'er times,

Turning th'accomplishment of many years

Into an hour-glass: for the which supply,

Admit me Chorus to this history;

Who, prologue-like, your humble patience pray,

Gently to hear, kindly to judge, our play.

- William Shakespeare, The History of King Henry the Fifth (1599)

In January of 1979, the first of a series of conferellces on "Very Large Scale Integration" took place

at Caltech. The two keynote speakers, Gordon :!VIoore of Intel and Carver Mead of our Computer

Science Department, both spoke of the same concern, but from two very different viewpoints. Their

concern was design complexity.

Moore, the conservative industrialist, questioned whether the electronics industry was really

ready for VLSI: "If the semiconductor industry had a million-transistor technology like VLSI," he

wrote in the article accompanying his talk, "I'm not so sure it would know what to do with it." [62]

He seemed to find it a far-fetched idea that a circuit designer should possibly know how to make use

of a canvas large enough to hold a system as complex as VLSI would allow.

Mead, on the other hand, recognized that VLSI was going to be an inevitable development,

whether the designers know what to do with their canvases or not, and we should probably all agree

today that his article to a large extent explains why Moore was concerned. "VLSI," Mead wrote,

"is a statement about system complexity, not about transistor size or circuit performance." He

continued, "Many fundamental ideas [pertaining to large-system design] have yet to be discovered.

The architecture and algorithms for highly concurrent systems is even less well developed." [59]

This introducing of the ideas of computer scienee illto what until then had been thought of as mere

circuit design was a step that was to have far-reaching effects. Mead's article went on to predict that

2

the large-system design problem would in time be tackled, as the fundamental problems of device

physics and fabrication had been before it.

A quarter century will soon have passed since these words were written. In this time, there have

been great advances, along the lines Mead predicted, in circuit design techniques and in computer

aided design and design automation. But the fact remains that most of today's VLSI systems are

understood in terms of the same finite-state machines that were used for describing the mainframes

of the 1960's; the fact remains that highly concurrent systems are poorly understood, especially by

circuit designers.

The inevitable conclusion is that today';; multi-million-transistor chips have been made possible

not mainly by new fundamental ideas, but by the almost superhuman efforts made in exploiting the

old ones. Though the fact may puzzle him that reads in today's newspapers that he stands in the

middle of a "tech revolution," Carver Mead's VLSI revolution, 25 years in coming, is yet unfulfilled.

1.1 The VLSI design process

VLSI-system design is the process of implementing and realizing a system specification, the archi

tecture, as an electronic circuit. We shall assume that the architecture is given to us and that the

fabrication is not our concern. Longtime tradition, due to IBM [11], divides the design process into

two stages beyond computer architecture: irnple'fnentation of the architecture by a micro-architecture

and realization of the micro-architecture by a physical circuit design.

The border between implementation and realiza.tion, like that between the United States and

Mexico, is an artificial demarcation drawn for political purposes. The VLSI border traditionally

serves to separate high-level logical reasoning from electronic-circuit design, tasks usually performed

by different people, or at least by different software systems.

1.2 From physics to computer SCIence

It has slowly been realized that, as Carver Mead suggested, VLSI system design contains aspects of

both software design and electrical engineering. In VLSI, the imagination of the mathematician and

enthusiasm of the programmer finally meet with the pragmaticism of the engineer. c, we are told,

is the speed limit; oX is the accuracy that we can build things with. But most of us would rather

ignore the problems of others. So when we imagine and program a VLSI system, we do not allow c

and oX to constrain our imagination or to damp our enthusiasm. We design our systems as if c and

oX did not exist, and then we tell the engineer, "Implement this." When the wafers return, we say

that the poor performance is not our fault: we cannot be blamed for any failure to deal with c and

oX since we left this task to our friend, the engineer.

3

1.3 Asynchronous digital design

Poor performance is usually unacceptable for a VLSI system. Optimists have long studied asyn

chronous design techniques, hoping that they have found at least a partial solution to the design

problem. While it is true that proponents of asynchronous design like claiming that asynchronous

circuits offer speed and power advantages, the author believes that the main advantage of asyn

chronous design is more subtle than these: it is the designer's ability of easily composing circuits

that operate at different points in the design space (characterized by speed, power, and design effort)

without destroying the beneficial properties of any of the circuits.

What makes a digital system asynchronous'! A system is asynchronous if, in short, it does not

use a clock for sequencing its actions. Asynchronous logic has been used for computer design since

the 1950's, when several members of the ILLIAC series of computers were designed partly asyn

chronously [45]; somewhat later, Digital Equipment Corporation's PDP-6 computer was a modest

commercial success [20].

What unites all methods of asynchronous circuit design is that they all strive for making the

speed of computing dependent on the operations that are being carried out. A slow operation is

allowed to take longer than a fast one; the system continues to the next operation only once the

previous one is completed.

It is as if we could assemble a troika consisting of an Arabian, a Shetland pony, and a draught

horse, without losing the useful qualities of the individual horses. If we should try this with real

horses, the harness would act much as the clock does in a synchronous system and render the exercise

pointless. But the asynchronous troika may he ahle to pull its load better than even a well-matched

synchronous team, because the horses are not harnessed together by the clock-the draught horse

does not have to keep up with the Arabian, and we do not have to feed the big horses if we only

have need for the pony.

By allowing us to divide up a system into smaller, more independent pieces, the asynchronous

design technique simplifies the large-system design problem: the main goal of asynchronous design

is addressing Carver Mead's concern of 1979.

1.4 Asynchronous design-styles

In a synchronous system, it is easy to know when a computation is done. When the clock edge

arrives, we read out the results of the computation. If it is not finished by then, we say that the

system is wrong and throw it on the trash heap. (Or-less violently-adjust the clock speed.) The

computation must necessarily be done by the time the clock edge arrives, or else the synchronous

model would not make sense.

4

In contrast, the chief difficulty in asynchronous design is knowing when a specific computation is

done. If we encode data in the same way as in a synchronous system, e.g., using two's-complement

numbers, and start an operation f(x), and the number "5" should appear on the result bus of our

asynchronous system, how are we to know that it signifies the result of the present computation, and

not of the previous? Worse, might it not be the bitwise combination of the results of the previous

and current computations?

1.4.1 Bundled-data design

The early asynchronous computers were designed ill what we shall call the bundled-data style. De

signing in this style, the designer assumes that he can build a delay that matches whatever the

delay is of the computation that he is really interested in. This matched delay is used as an "alarm

clock" that is started when f (x) is started and that rings when we can be sure that f (x) has been

completely computed. The design style is called bundled data because the data travels in a "bundle"

whose timing is governed by the control signal that we called the "alarm clock." As one might guess,

arranging for the matched delay is the Achilles' heel of the bundled-data style. If the delay is too

short, the system will not work; if too long, then it will work slowly. Especially if computation times

are data-dependent, the matched delay can easily become a designer's nightmare. The matched

delay mechanism's working rests on a form of a pn;ori knowledge of relative timing; we shall call

making use of such knowledge a timing (lss'umption.

1.4.2 Delay-insensitive design-styles

Originally conceived of at about the same time as the bundled-data design-style, delay-insensitive

logic design attempts using the data bits themselves for sequencing. By making every input transition

(change in logic level) cause, either in itsdf or within a cohort of input transitions, an output

transition or a detectable pattern of output transitions, we can at least make interfaces between

processes delay-insensitive.

Systems built using the delay-insensitive philosophy range from the speed-independent investi

gated by D. E. Muller in the 1950's [63], which work under the assumption that all wire delays

are negligible compared with the operator delays (which may be of any length), to the truly delay

insensitive, in which both operator delays and wire delays may be arbitrary. Martin has shown

that, using a reasonable operator model,J truly delay-insensitive systems are of little use [51]; the

work in our research group has mainly beel! within the q'u,(lsi delay-insensitive (QDI) model, which

is essentially Muller's speed-independent model with information added for distinguishing between

IThis "reasonable" operator model defines all operator as a single-output device; using the "unreasonable" model
that an operator must be nothing more than a transistor, it is easy to see that building a nontrivial delay-insensitive
circuit with repetitive behavior is absolutely impossible.

5

wires whose delays must be short compared with the operator delays and wires whose delays may

be arbitrarily long.

We cannot possibly do justice to the many different design methods that have been proposed

for asynchronous-circuit design;2 bundled-rlata and QDr rlesign will however serve as convenient

extremes that we can compare with.

Assembling a working system out of QDI parts is almost frighteningly easy: start from a correct

sequential program, decompose it into communicating processes, compile these processes into cir

cuits, put the pieces together, and everything works. The chief advantage of this way of designing

systems is that once we have decomposed, the design style is completely modular: there is no implicit

use of global information (i.e., no clock), and the different parts can be designed independently.

In this sense, QDI design comes close to finally putting Carver Mead's concern to rest. But

there is one difficulty with QDr design: the requirement that the circuits work properly even if

all operator delays were to vary unbouncledly is a difficult one to satisfy; our satisfying it involves

inserting much circuitry whose only purpose is checking for the occurrences of transitions that we

may know would in any case take place.:' We should say that QDI systems must still be designed

"within reason": it is possible to make things not work by designing them very poorly; likewise,

it still takes considerable work and skill to achieve good performance. Yet, with these things in

mind, the message-passing QDr design-style allows the design of large, well-performing systems with

relatively little design effort [53, 18, 55].

1.5 Contributions

This thesis makes its main contribution by developing a design style that allows making use of limited

amounts of timing information, i.e., limited use of timing assumptions, without destroying the most

important, system-simplifying property of QDI design, namely that of the data's carrying its own

timing information. We do this by replacing some of the four-phase (return-to-zero) handshakes

in a QDr circuit with pulses, thus breaking the timing dependencies that are the source of the

performance problems of QDI circuits. Our ultimate goal is that of improving the performance of

modular asynchronous systems so much that it becomes possible to use asynchronous techniques for

implementing large systems that perform well, yet are easy to design.

The organization of the thesis is as follows:

2The interested reader should see Hauck's paper for a b;tlanced introduction [34J.
3The reader with experience in designing CMOS circuits will realize that the situation is especially bad with regard

to the checking for the occurring of downward (true to false) transitions, since such checking must be done with
p-transistors. If we know that a signal x has switched from false to true, and the signal y is the output of an inverter
whose input is x, then what harm is there in assuming that 11 has switched from true to false? In practice there may
be none; but in the QDI model, there is great harm, whence the QDI designer will find it necessary to check for y's
going false with the dreaded extra p-transistor.

G

I. \Ve develop a theory that accounts for the proper functioning of pulsed asynchronous circuits

(Chapter 3).

II. We develop a new target for the compilation of CHP programs, the single-track-handshake

asynchronous-pulse-Iogic (STAPL) circuit (Chapters 5 and 6). These circuits are as easy to

compose as QDI circuits, yet they operate faster: they have fewer transitions per execution

cycle (10 instead of QDI's 18 for many nontrivial circuits), and they have less loading from

p-transistors (no input-completion circuitry ill most cases, and even when it is present, it has

no p-transistors).

III. We explore some properties of Pipeline Language 1 (PLl), a simple yet expressive language

for describing asynchronous bit-level processes (Chapter 7). PLI is a convenient language for

expressing the behavior of basic dataflow-style processes. It succinctly captures all the capabil

ities we should like to have and that are easy to implement for simple asynchronous processes.

The particular capabilities that we choose for the language are inspired by the MiniMIPS

work: we thus have evidence that the capabilities are enough for implementing large and well

performing asynchronous digital VLSI systems. It is much easier to work with descriptions at

this level than in terms of production-rule systems; compared with CHP programs, the PLI

language allows only a subset that can be :.;traightforwardly and automatically compiled. The

PLI language is intended to be used for both STAPL and QDI design.

IV. Putting the methods developed in previous chapters to the test, we study a microprocessor

design consisting of STAPL circuits, most of which were themselves designed using the PLI

language (Chapter 8). The microprocessor is a simple 32-bit one; the design shows how best

to take advantage of the capabilities of the STAPL circuit family. The results of the test

are good: the STAPL family is shown to he capable of significantly higher throughput than

QDI circuits at a small extra cost in energy; the overall improvement using the Et2 metric is

approximately a factor of five.

7

Chapter 2

Preliminaries

-And why not the swift foot of Time? lwei not that been as proper?

-By no means, sir. Time travels in divers paces 1vitil divers persons.

~- William Shakespeare, As You Like It (1599)

2.1 Quasi delay-insensitive design

This thesis aims at establishing a new t.arget for hardware designers; while asynchronous, the new

pulsed-logic design-style depends on timing assnmptions for working properly, which quasi delay

insensitive (QDr) circuits do not. Still, many of the design issues are very similar, especially at the

higher levels of the design; consequently, we shall be able to reuse much of what is known of QDr

design.

We shall use much of the same terminology and not.ation as QDr designers do. To wit, we

shall compile our circuits starting from the Communicat.ing Hardware Processes (CHP) language,

a language based on Hoare's Communicating Sequential Processes (CSP) [36J; we shall describe

our communication protocols using the not.ation of the Handshaking Expansion (HSE) language

used by QDr designers; we shall describe our t.ransistor networks using the Production-Rule Set

(PRS) notation. These languages are all explained in detail by Martin [48, 54]; some more recent

extensions to CHP, whose syntax was suggested by Matthew Hanna, are described by Hanna (33J

and the author [66].

2.2 High-speed CMOS-circuits

Over time, the Caltech group's way of designing of asynchronous circuits has converged with some

of the ways that high-speed synchronous circuit.s are designed. Most of what we shall discuss in

this thesis falls into the broad category of "precharp;e domino logic." The basic techniques used for

designing these kinds of circuit.s are well illustrated by Glasser and Dobberpuhl (29J.

8

Vdd

c-4
out

in

L-_-¥--"",---' network of
n-transistors

c--1
GND

Figure 2.1: One stage of domino logic.

Here we shall only cover a few issues in nomenclature. A basic CMOS domino-logic "stage" is

shown in Figure 2.1. The part on the left. of the f:igun~ is the "precharged domino" part of the circuit.

When the control signal C goes low, the stage precharges--the node x rises and the output out falls.

When C next goes high, depending on the values on the in wires, the domino mayor may not "fall"

(i.e., x mayor may not fall to GND). The llame "domino logic" comes from these circuits' ability of

being cascaded within a single clock-phase in a synchronous system. Confusingly, while Figure 2.1

depicts a single "domino stage," the same structurp can also be called two "stages of logic" -the

domino block plus the inverter. In the design style that we use, a block like this also implements an

entire "pipeline stage"; i.e., cascaded dominos cycle independently (to an extent determined by the

"reshuffling" of the handshake).

The important features of domino logic: are as follows. There are few p-transistors; because of the

much higher mobility in silicon of electrons compared with holes, this means that domino logic will

usually be much faster than combinational logic, where pulling up the outputs has to be handled by

the inputs. Furthermore, if we wish to cascade the dominos, each computation stage takes two logic

transitions (one for the domino, one for the inverter)-this we call the forwarrllatency of the stage;

alternating "n-dominos" with "p-clominos" is possible, hut the performance gain, if any, compared

with standard domino logic, is small; owing to the lIlany p-transistors in the p-dominos, this style

can indeed be slower. An important drawback of domino logic is that it is more sensitive to different

kinds of noise than combinational logic is.

In asynchronous circuits, the control transistor gated by C is sometimes replaced with several

control transistors; this is necessary for accomplishing the more complicated synchronization that

9

Rail Value

x.O false true false true
x.l false false true true

Meaning No data :r: = 0 :r; = 1 Illegal

Figure 2.2: Dual-rail encoding of one bit of data.

can be required by asynchronous data-transfer protocols.

2.3 Asynchronous protocols and delay-insensitive codes

Asynchronous systems are based on handshaking protocols; i.e., two processes wishing to transfer

data between each other synchronize the data transfers with signals that the processes themselves

generate. It is most straightforward for us first to envision the handshake itself and then to add

the data transfers in later. This way of designing things allows transferring data using conceptually

simple protocols. One property that must be satisfied by the data is that it is encoded using a

delay-insensitive code.

This means informally that the data encoding contains the same information that was present

in the original "bare" handshake (i.e., data present or not-present) and that the data is encoded so

that transitioning between the data present and not-present states is free from timing assumptions

(i.e., it does not matter in which order the transitions are received). The most basic encoding that

satisfies these conditions is the dual-rail ellcoding of a single bit (Figure 2.2); one that will also be

seen often in this thesis is the l-of-4 encoding of two bits.

Generalizing from bare handshakes to using delay-insensitive codes leads naturally to needing

circuits for determining whether data is present or not-present. This we loosely refer to as "comple

tion circuitry." For instance, a two-input OR-gate can be used for completing a dual-rail channel,

as can a four-input OR-gate for a l-of-4-cocled channel.

2.4 Production rules

In this thesis, we shall not generally describe circuits at the level of transistor netlists; this would

be unnecessarily much detail. Instead, we shall use pr-odnction rules. A production rule (PR) is a

statement of the form

G --7 x := c

where G is a boolean expression called the gnILrd and the assignment x := c is the command. In a

production rule, c can only be true or false; nothing more complicated is allowed. We abbreviate

10

x := true as xt (read as "x up") and .'f := false as 1;+ (read as "x down"). At the circuit level, the

effect of such an elementary assignment is a transition on 1: from a low to a high or from a high to

a low voltage.

In a given system, we must necessarily have rules for the setting of each node x that transitions

more than once both to true and to false; the combination of the two rules is called an operator.

In other words, an operator is a device with one or more inputs and a single output. The mapping

from operators to circuit gates is fairly direct, but we do not consider it in detail in this thesis; nor

do we consider layout issues in detail.

Before proceeding, it must be pointed out that although we use the same notation, our using

timing assumptions means that we cannot ascribe quite the same semantics to HSE and PRS as we

can in QDI designs. We shall have more to say about this later; in short, we disallow "stuttering"

in HSE and we shall use a timed execution model for production rules instead of the weakly-fair

interleaving model that can be used for QDI circuits.

2.5 The MiniMIPS processor

The MiniMIPS processor, designed by the Caltech group during 1995-1998, represents the state of

the art in QDI asynchronous design today [55].

The MiniMIPS processor consists of two million transistors; it has been fabricated in 0.6-JLm

CMOS, and in this technology, it runs approximately 170 MHz at the nominal process voltage

(3.3 V).

A few notable features of the MiniMIPS processor an~ the following:

• Almost complete reliance on QDI circuits. (The exceptions are the low-level implementation

of the cache-write mechanism and the off-chip bundled-data asynchronous interface.)

• Extensive use of 1-of-4 data-encoding to minimize completion delays and save switching power.

• Use of pipelined completion to minimize completion delays. Using pipelined completion results

in a processor that can be thought of as an array of byte-slice processors, with a minimum

of synchronization between the byte slices. The QDI model, which we used to verify that

the design is correct, refuses to deal in delays; hence we know that the processor would work

for a wide range of delays, and we simply try to pick those delays that shall result in the

most efficient (i.e., the fastest) implementation. Thus the byte-slice processors nevertheless

operate in synchrony most of the time, and we receive the benefits of a highly concurrent

design with short, well-matched delays without paying the price of having to impose unwanted

synchronization throughout our design model.

11

• Universal use of precharged, pseudo-static1 domino-logic.

• A deeply pipelined design with buffering in every domino stage. The processor can execute

many programs at an average speed of 18 2/1 logic transitions per fetch cycle.

As important as the MiniMIPS processor itself a.re the techniques used to design it:

• Initial specification as a sequential CHP program and stepwise refinement to a collection of

concurrent processes.

• Use of slack elasticity [45] to allow variable latencies yet ensure deterministic behavior.

• Final, formal specification in terms of a hierarchical production-rule set (PRS), using the CAST

language.

• Universal use of full-custom physical design, in terms of a magic cell hierarchy. Several man

years were spent on this aspect of the design.

lSee footnote on p. 47.

2.6

APL

BDD

C

CAST

CHP

CMOS

CSP

DI

DRAM

ER

GND

HP

HSE

IBM

MIPS

MOS

PCHB

PLI

PR

PRS

QDI

RIse

SPAM

SRAM

STAPL

Vdd

VLSI

WCHB

12

Commonly used abbreviations

Asynchronous pulse-logic

Binary-decision diagram

Consensus (in "C-element")

Caltech asynchronous synthesis tools (hardware description language)

Communicating hardware processes

Complementary metal-oxide-semiconductor [field-effect transistor]

Communicating sequential processes

Delay insensitive

Dynamic random-access memory

Event rule

Ground (circuit node)

Hewlett-Packard [Corp.]

Handshaking expansion

International Business Machines [Corp.]

Microprocessor without interlocked pipeline-stages

Metal-oxide-semiconductor [field-effect transistor]

Precharged half-buffer

Pipeline language 1

Production rule

Production-rule set

Quasi delay-insensitive

Reduced-instruction-set computer

Simple pulsed asynchronous microprocessor

Static random-access memory

Single-track-handshake asynchronous pulse-logic

Positive power supply (circuit node)

Very large-scale integration

Weak-condition half-buffer

13

Chapter 3

Asynchronous-Pulse-Logic Basics

All delays are dangerous in war.

- .101111 Dryden, Tyrannic Love (1669).

Over the years, asynchronous design techniques have gone from Muller's simple handshaking

circuits and the carefully timed bundled-data circuits used in the PDP-6 to the sophisticated, yet

easy to design, dataflow techniques used for the MiniMIPS design. It remains, however, that the

MiniMIPS processor operates, under ideal conditions, at a fetching rate of 18 2/3 CMOS transitions

per instruction fetch, and designing a QDI microprocessor that fetches much faster than this seems

an impossible challenge. This number compares favorably with the performance achievable by most

synchronous design techniques, but it falls short of the 10--14 transitions per cycle that the most

aggressive (and hard-working) synchronous designers achieve.

The barrier that prevents QDI circuits from achieving higher performance lies in the QDI hand

shake. By insisting on the four-phase handshake, e.g.,

* [[li]; (compute outputs); lot; [.h]; loJ-],

we demand that any process in our system shall, after it has acknowledged receipt of its inputs,

wait for those inputs to reset to neutral. This is expensive because checking inputs' neutrality is

done in p-transistors: hence it must be decomposed into several stages, and it also loads the inputs

heavily. (Of course, switching to inverted logic docs no good since then computing the outputs and

checking the validity of the inputs must instead be done in p-transistors, which would be even worse

than before.) The most trivial four-phase-handshaking QDI circuit takes ten transitions per cycle,!

and anything nontrivial takes 14; inescapably, the complicated control-processes take 18. (These

numbers are taken from the MiniMIPS [55] and Lines's work [43].)

Various authors have suggested that the solution to the performance problems that plague four

phase QDr circuits is that we should use two-phase signaling instead. Many variants exist; the

1 Building a chain of buffers that take six transitions per cycle while remaining QDI is possible, but it cannot be
done without inverting the signal senses from a buffm's input to its output.

14

simplest is:

* [[Ii -=I- 10]; (compute outputs); 10:= li]

Some things can be implemented well with this protocol, but designers struggle fruitlessly with

anything but the simplest specifications when they must design logic. This is why: on each iteration

of the loop, the sense of the input signal changes. At one moment, an input near Vdd means a true

input; at another, it means a false input. Who can make sense of that?::!

What we want is a design style that combines the straightforward logic of four-phase QDI with

the timing of two-phase logic. Obviously, we cannot expect to have all the desirable properties at

once. Accordingly, we shall no longer demand that the circuits be QDI; yet they will in many ways

operate similarly to the QDI circuits we used in the MiniMIPS.

But is it even possible to use the MiniMIPS design-style for designing anything but QDI circuits;

shall we not have to abandon all that we know of asynchronous design and start over?

It turns out that most QDI circuits that have heen designed can be sped up considerably by

introducing weak timing-assumptions, without our having to rethink the high-level design. The

reason for this is simple: while using a four-phase handshake for implementing two synchronization

actions is certainly possible (indeed, this technique is used in some special circuits, such as the

distributed mutual-exclusion circuit designed by Martin [50]), this is not commonly done. In the

dataflow-style processes used in the MiniMIPS, it is never done. Hence, out of the four phases of

the four-phase handshake, only two are used: send and acknowledge. The remaining two, resetting

the data and resetting the acknowledge, are not used for synchronization. These phases are entirely

superfluous from the point of view of the specification.

Each phase consists of two actions: an assignment and the wait for that assignment. We can make

use of the phases' being superfluous by eliminating the waits, even though we keep the assignments;

by removing the waits, we get the synchronization behavior of two-phase handshaking; but by

keeping the assignments, we keep the encoding properties of four-phase. What we propose doing

is allowing communicating circuits to reset their interface nodes in parallel; in other words, once

we acknowledge an input, we assume it will reset "quickly." This achieves the desiderata: the

inputs may still always be in positive logic, yet their synchronization behavior will have many of the

characteristics of two-phase signaling, since we only wait for the first phase of the inputs. Waiting

for the first phase of the inputs is anyway normally required for computing the outputs, so what

remains will definitely be closer to optimal.

In this chapter, we shall study a few simple pulsed circuits and then develop a theory that may

be used to account for the proper functioning of a wide class of pulsed circuits and show how that

2The reader who finds this comment facetious is urged to contemplate the designing of a circuit that has several
conditional inputs. Such a circuit will have to combillc inputs of arbitrarily different senses, potentially in a different
arrangement of senses for each iteration.

15

theory may be applied to the specific simple pulsed circuits.

3.1 Road map of this chapter

This is the most challenging chapter of this thesis as we make the needed connection between physics

and computer science. So that the reader will not get lost in the chapter, let us first discuss the

main points.

We shall first study the designing and simulating of a basic pulsed asynchronous circuit, viz.

the pulse repeater. This will be an ad hoc discussion based on properties easily observable by and

well-known to the electrical engineer: pulse lengths:l (widths) and heights.

Secondly, we shall explore why these simple and readily observable properties are not enough

for describing the full range of possible pulse-repeater behaviors. Simply speaking, the essential

shortcoming of the pulse length and pulse height is that these two properties, while they may suffice

for specifying a testing pulse that is applied to a circuit, do not suffice for completely describing the

shape of the output waveform produced by that circuit.

Thirdly, we shall generalize the legal-logic-range-noise-margin argument commonly made for es

tablishing the correctness of traditional synchronous circuits. This generalizing serves two purposes:

on the one hand, it establishes a framework that we can understand the logic family of Chapters 5

and 3 within; on the other hand, it serves the wider purpose of taking a baby step towards establish

ing a formal model for the functioning of asynchronous circuits with the simple understandability

of the synchronous model. The mathematical argument in this section may seem overly formal, but

it is really a straightforward generalization of the synchronous argument.

In generalizing we consider uncountably infinite sets of waveforms instead of the simple voltage

ranges used by the synchronous argument. By spncifying the sets of waveforms as "the set of all

functions f(t) such that each f(t) is bounded below by the function j(t) and above by k(t)," we

reduce the argument to one where j(t) and k(t) play the leading rOles instead of the much more

cumbrous infinite sets of functions. This corresponds to understanding the synchronous argument

in terms of the boundaries between the voltage ranges rather than having to consider every possible

intermediate voltage separately.

Fourthly, we shall recognize that, given certain desirable properties of the circuits that we study,

establishing the correctness of an asynchronous-pulse-logic family can be clone entirely in terms

of functions j(t) and k(t); we shall determine what properties are necessary for allowing this vast

simplification.

Lastly, we shall argue that the pulse n~peaters we first studied in such an ad hoc way actually

satisfy the conditions allowing the simplification. At this point, we shall have to appeal to more

3 Also called "pulse width"; see the footnote on p. 17 for Ollr jUHtifying the "pulse length" nomenclature.

16

vaguely known things, such as transistor equations and circuit parameters; this argument is hence

specific to the kind of circuits we are studying.

3.2 The pulse repeater

The first pulsed asynchronous circuit that we shall investigate is the "pulse repeater." A pulse

repeater copies input pulses to its output. While this function could be performed by a wire or an

open-loop amplifier, the pulse repeater has feedback; llsing the feedback, it restores the quality of

the signals, both in the time domain and the voltage domain.

x out

i;-1

Figure 3.1: Three-stage pulse repeater.

The circuit in Figure 3.1 is a simple three-stage pulse repeater. In its idle state, both the input

and the output are at a logic zero, and the internal node :1: is at a logic one; this is the only stable

state of the circuit. When the input voltage is raised towards a logic one, the voltage on x begins

to fall; which then causes 07J,t to rise, and finally, at least if in has meanwhile returned to zero, x

to rise back to the idle state. The circuit can misbehave if in remains at a logic one for too long.

Characterizing the misbehavior and finding ways of avoiding it are the main topic of the rest of this

chapter.

In the three-stage pulse repeater, the node o'u,t (when repeaters are cascaded, in is a neighbor'S

out) is driven by an inverter, as is the node y. We shall see that, even as we introduce more and more

dynamic nodes for handling complicated protocols, there will be nodes that shall remain driven by

combinational logic. These nodes do not offer much opportunity for computing, so we shall direct

our attention to the node x.

17

3.2.1 Timing constraints in the pulse repeater

The pulse repeater is a difficult circuit to get working reliably, owing to the timing assumptions that

are necessary for verifying its correctness. If we will ensure that a pulse on in is noticed by the

repeater, we must arrange that its length4 exceed some minimum. On the other hand, the pulse

must not be too long; if it is, then the circuit may produce multiple outputs for a single input.

(Depending on device strengths, it may instead stretch the output pulse. We might endeavor to

design a pulse repeater so that this stretching could be used to keep the circuit reliable even with

arbitrarily long input-pulses. Owing to the difficult design problems posed by the transistor-ratioing

constraints, designing a reliable pulse repeater along these lines is difficult.)

We shall not consider the possibility that two input pulses arrive so close together that they

appear as a single pulse-for two reasons: first, the problem of the pulses' arriving too close together

can be understood similarly to how we understand the single too-short and too-long pulses; secondly,

we shall see that the issue is not of much concern in the APL circuit-family because the pulse

handshake protocols require inserting an acknowledgment of some sort between the two pulses (i.e.,

we ensure at a higher level of the design that we never have two pulses sent without the target's

responding with an acknowledgment in between).

x out

i;-1

Figure 3.2: Five-stage pulse repeater.

3.2.2 Simulating the pulse repeater

The author has simulated a few variants of the pulse-repeater design described above with input

pulses of varying lengths and heights applied, thus illustrating the timing margins of the pulse

repeater. The repeaters that were simulated are similar to the simple three-stage version described

above. The differences are that the input and output were negative-logic (i.e., the input transistor

4It is conventional to speak of pulse "widths" and interval "lengths"; using both concepts together, as we do, is
apt to lead to confusion if this convention is adhered to. For this reason, we shall talk about pulse "lengths," thereby
meaning the same as the conventional pulse "width." Similarly for "long" and "wide."

18

is a p-transistor) and that "keeper" resistors were used on the x nodes. We shall see the results

for two separate circuit designs: a three-stage version, and a five-stage version that differs only in

two extra inverters' being used in the feedback path from x to y (Figure 3.2). The author produced

layout for the pulse repeaters using the magic layout editor and simulated them with the aspice

circuit simulator. The assumed technology is HP's O.6-ILm CMOS via MOSIS; the supply voltage,

V dd, is 3.3 volts for all simulations present(~d in this thesis. ,S

In what follows, we shall mainly aim at understanding the behavior of a single pulse traveling

down an infinite chain of pulse r·epeater>8. Will t.lw Imlse die down? Will it lengthen until it becomes

several pulses? Or will it~as we hope~travel down the chain unscathed?

Two things can go wrong with the pulse repeater. The input pulse can be too weak for the circuit

to detect it, or the input pulse can be of such long duration that it is detected as multiple pulses. An

example of a pulse repeater on the verge of misbehaving owing to a too-long input pulse is shown

in Figure 3.3. The nodes are labeled as follows: input, T.in; internal node, T.il; output, T.out; their

senses are inverted compared with the pulse repeaters in the text. Here the input pulse is 1.5 ns

long, beginning at t =10 ns. As we can see from t.he graph, the internal node T.il starts rising

almost instantly, causing the output to fall about 20D ps later. At t = 11 nfl, the internal node rises

again, thus re-arming the circuit. Slightly before t = 11.5 ns, the re-armed circuit starts detecting

the input~which has by now overstayed its welcome~as a second pulse, but the detecting transistor

is cut off by the input, which falls back to GND barely in time to avoid being double-latched.

Figure 3.4 shows the results of applying pulses of varying lengths and heights to the three-stage

pulse repeater. The pipe-shaped region shows when a single input pulse results in a single output

pulse, as desired. The other two regions correspond to forms of misbehavior: the region to the right

of the pipe shows when a single input puls() results in several output pulses, i.e., when the input

pulse is too long to be properly detected as a single pulse; the region to the left of the pipe shows

when the input pulse is too feeble to elicit any response at all. (The gaps in the plot are due to

irrelevant practical difficulties with the simulatiomi.)

Figure 3.5 shows the results for the five-stage pulse repeater. Figure 3.6 shows a plot for the

five-stage pulse repeater of the length of the output pulse for different lengths of the input pulse,

the input swing here being from GND to Veld. The solid line shows the data; "0," "1," "2," and

"3" indicate operating regions explained below. The diagonal dashed line in Figure 3.6 denotes the

stability constraint that the output pulse is as long as the input pulse; we should expect that in

an infinite chain of pulse repeaters, the pulses will eventually have the parameters implied by the

intersection of the input-output curve and the stability constraint. 6

5The parameters used are known to be inaccurate. The circuit speeds indicated by the simulations are 15-
20 percent higher than what one can reasonably expect from fabricated parts. These parameters keep the simulations
straightforwardly comparable with most of the work done ill the Caltech group in the last five years.

6 As will be clear from the rest of t.his chapter, this is a very naive understanding of the situation; we are here
trying to project the behavior of a many-dimensional system onto a single scalar dimension: the pulse length. The

~
.<=
.!2'
Q)

.<=
Q)
V)

"3
0-
:;
0-s:

19

0.5

o

. 0.5 "-----'------'-----'-----'-----'------'-----'-----'
9

3.5

3

2.5

2

1.5

0.5

9.5 10 10.5 11

tJ[ns]

11.5 12 12.5

Figure 3.3: A long pulse almost triggers a pulse repeater twice.

13

O~------~------~------L-------L-------~------~------L_~
o 0.2 0.4 0.6 0.8 1.2 1.4

Input pulse length/[ns]

Figure 3.4: Shmoo plot. for three-stage pulse repeater.

20

3.5

3

2.5

~
"" 2 .9'

CD

"" OJ
<J)

:5
c. 1.5
'5
c.
.E

0.5

o*-------------~--------------L-------------~------------~
o 0.5 1.5 2

Input pulse length/[ns]

Figure 3.5: Shmoo plot for fivc-stage pulse repeater.

0.8
,. _ .. - .. _ .. _ .. _ .. -.

.... 3 Iii' c "'=:'
2 ..c

"5l 0.6
c --- ..,..-
~ - - - -
Q) 1 CIl
"S
0. 0.4
"S 0 0.
"S
0

0.2

I

0
0 0.2 0.4 0.6 0.8 1.2 1.4

Input pulse length/[nsj

Figure 3.6: Input-output relationship of pulse lcngths for five-stage pulse repeater; this particular
circuit stops working for input pulses longer than 1.47 ns.

21

3.2.2.1 Analysis of pulse repeater data

There are two important questions we should ask when analyzing the pulse repeater data: First,

can we cascade the circuits-can we connect them so that they work properly when the output of

one is the input of another'? Secondly, do the circuits work over a reasonable range of parameter

variations?

The "shmoo" plots, Figure 3.4 and Figure 3.5, are caricatured in Figure 3.7.7 Normally, if the

input pulse is of a reasonable height and length (see below), t.hen the gain of the pulse repeater will

force the output pulse to be approximately characterized by t.he point. marked "X" in the caricature.

Furthermore, the line "A" describes the minimum pulse length t.hat can be detected by the pulse

repeater. This is set by circuit parameters, mainly by t.he strength of the input transistor and the

load on its output. The other line, "B," marks t.he longest. pulse length that. will lead to a single

output pulse.

The reason there is a maximum lengt.h t.hat. the repeat.er will not work properly beyond is that the

repeater "double-latches" when the input. pulse is so long t.hat it is still present when the repeater has

gone through the entire cycle x-L-; ... y-L-; :rt; ... yt; furthermore, the up- and down-going behaviors of

the pulse repeater are roughly similar; t.he salIle numher of transitions is exercised, through roughly

similar circuitry. Taken t.oget.her, this means t.hat the interval .T.!-; y.!-; xt (approximately the same

length as the output pulse) is about t.he same lengt.h as t.he interval xt; yt; x-L-, where the final x-L

is the misfiring resulting from the too-long input pulse. Hence, t.he pulse length along "B" will be

about twice the length of the normal pulse "X."

3.2.2.2 Digital-analog correspondence

If we restrict ourselves to the digit.al domain, we can underst.and the pulse repeater's behavior for

different input pulse lengths by considering the input pulse as two t.ransit.ions int; in.!-. The length

of the input pulse is the length of the time interval bet.ween int and inl int begins the operation

of the pulse repeater; leaving out in.!-, the sequence of t.ransit.ions is

int; x-L-; outt; y-L-; xt; out-L-; yt .

Changing the input pulse length amounts t.o changing the position of in-L- in this trace (we are here

assuming that the sequence continues even in the absence of in-L-; i.e., in the presence ofinterference).

There are five main possibilities:

O. in-L- occurs so early that the pulse on in is t.oo short t.o trigger the pulse repeater-t.hen t.here

will be no sequence x-L-; O'll,tt; etc. The repeater fails.

impatient reader is urged to take a peek at Section :3.3 and t.heu to return here.
7 An Internet search reveals the spelling "shmoo plot" as being five times more commonly used than the variant

"schmoo plot."

22

1. in-J,. occurs long enough after int that the input pulse is noticed, but it occurs before y-J,.. This

is the ideal situation. There is no interference. The repeater works perfectly.

2. in-J,. occurs during y+- There is some interference, but because the input behavior is monotonic

(the inputs tend to drive :r: strictly more towards Vild as time goes by), the interference is

fairly harmless-a slig"htly lengthened output pulse may result. The repeater still works.

3. in-J,. occurs after y-J,. but not long enough after it to trigger the repeater again. The repeater

still works, but it draws a great deal of short-circuit current.

4. in-J,. occurs long enough after y-J,. that :r:t has already occurred; x-J,. is triggered again, and the

repeater generates a second output pulse. The repeater fails.

We may draw an analog connection: the possibilities 0.-3. correspond to the so labeled segments of

Figure 3.6 (the part of the curve for possibility 4. is not shown). In normal operation, the repeater

is thus operating at the border between possibilities 1. anel 2. This is not surprising, since the input

pulse is approximately the same length as the resetting pulse on y.

3.2.2.3 The cascaded repeater

::r
CD

cO'
::r
~

'<

A B

x

I
-I - - - - - - - - - -I - -:--:-::-:---::-::-=--=-=-'""=-~-~~-----

input length/[ns]

Figure 3.7: Qualitative interpretation of shmoo plots.

Vdd

F

Now we shall justify the location of the point marked "X" in Figure 3.7. Is it really true that

the output pulse will have the characteristics implied by the location of X, almost regardless of the

23

characteristics of the input pulse? Yes, it is. We can see this8 from Figure 3.6. This figure shows

that, in this fabrication technology, for input pulse lengths in the wide range from 0.12 to 1.47 ns,

the output pulse lengths range only from 0.57 to 0.85 ns. (Note that the scale along the abscissa is

not the same as that along the ordinate.) Since five transitions take about 0.61 ns here, we can say

that in technology-neutral terms, the input pulse lengths may vary from about 1.0 normal transition

delays to about 12 delays for an output variation from 4.7 to 7.0 delays.

Since the range of input pulse lengths comfortably contains the range of output pulse lengths,

we should have to add considerable load, or we should have to fall victim to extreme manufacturing

variations to make the pulse either die out or double up as it travels down a pipeline of pulse

repeaters of this kind. Since, further, the input-output relationship of the pulse lengths is almost

entirely monotonic, we can summarize the behavior of the pulse repeater thus: an input pulse of

length between about 1.0 and 12 transition-delays will generate a single legal output pulse; the

length gain averages 4.8.

~~
/~ input

\~

pulse length/[ns]

Figure 3.8: Mapping of input to output pulse parameters.

Figure 3.8 is another caricature of the operation of pulsed circuits. The input pulses within the

input pipe lead to output pulses within the indicated output region. 9

8Note that the various shmoo plots and the width-p;ain plot are drawn for several different circuits, so the numerical
values are not necessarily directly comparable across them; ,L1so the criterion for a pulse's being legitimate is somewhat
over-strict in the shmoo plots. We shall formalize the conditions later.

9The continuity of physics demands that the output rep;ion also goes to infinity where the input pipe does so.
This is a nicety that we ignore because, in any case, a pulse repeater operating in this region would be unstable and
fickle. Furthermore, as we shall see in Section 3.3.5, allowing the input pipe's being the largest possible for generating
properly shaped output pulses will not work, since if we do that, continuity will demand that the output shape

24

3.2.3 The synchronous digital model

The correctness of synchronous digital logic is justified by a two-part model that is familiar to every

electrical engineering undergraduate. The first part explains what it means to be a valid logic

level by dividing the possible analog voltages of a digital circuit into a few ranges with the right

properties to guarantee that noise is rejected; this division we call the digital logic-Ie vel-discipline , 10

or logic discipline for short. The second part introduces a synchronous timing-discipline. The

timing discipline can be introduced in several ways, which all rely on defining the times when circuit

elements are allowed to inspect the analog voltages (i.e., when they can be proved to obey the logic

discipline) and defining the times when the circuit may change the voltages (when the voltages

cannot be shown to obey the logic discipline of the model). The timing discipline is normally

maintained by introducing latches and a clock and specifying setup and hold times for the latches.

Comparing Figure 3.8 with the synchronous logic-discipline, we can identify the big pipe with the

legal input-range for a logic value; the little pipe, with the legal output range; the difference between

the two is, intuitively speaking, the noise margin.

The synchronization behavior of asynchronous circuits is sufficiently different from the syn

chronous timing-discipline that we shall have to develop a different timing model. The synchronous

logic-discipline, on the other hand, rests on a transitive-closure property of synchronous digital cir

cuits that we may emulate for deriving sufficient conditions for the correctness of APL circuits. In

the synchronous world, introducing legal-voltage ranges and noise margins establishes the correct

ness of the digital model; having introduced these constructs, we can show that voltages that have

clear digital interpretations will be maintained throughout a circuit as long as the noise that is

present is less than the noise margins [84]. We shall generalize this one-dimensional model for the

asynchronous pulses.

3.2.4 Asymmetric pulse-repeaters

We noted above (Section 3.2.2.2) that the pulse repeater normally operates on the border between

the "ideal" domain and the "fairly harmless" clomaill. The reason for this is that, in a long chain of

cascaded inverters, the reset pulse on y is about the same length as the input pulse on in.

Practically speaking, there is interference in tht~ "fairly harmless" domain; this means that the

circuit generates extra noise and uses more power than necessary. Furthermore, many theoretical

difficulties are caused by this interference, as we shall see below. Is there no way of avoiding this?

In fact, it is fairly easy to avoid the 'in pulse's interfering with the y pulse. What we need is a

circuit that generates pulses of different lengths on y and 011,t; the pulse on out needs to be shorter

shall touch the input shape. Hence, the pipe Rhown in Figure 3.8 is actually a little smaller than the ones shown in
Figures 3.4 and 3.5 (by about 1/5).

laThe terms "logic discipline," "timing disciplilw," etc., iLrc tiLkcn from Ward and Halstead [84J.

25

than the one on y. An example of a circuit with this behavior is shown in Figure 3.9.

out
x

Figure 3.9: Asymmetric 3-5-stage pulse repeater.

We shall not mention these circuits further, except now and then to lament that we should be

lucky to be blessed with their non-interference. The theory of these circuits may be simplerll and

the power consumption lower; but the output pulse is shorter and driven by a more complicated gate

(hence weaker), and there are two stages of logic that we can no longer use as fully as before. For

these reasons, we should probably have to stretch the timing of this pulse repeater to 5-7 transitions

instead of 3-5. The losses would outweigh the gains.

3.3 Formal model of pulse repeater

Formally, we may divide what we are doing with tlw pulse-repeater problem into three steps: our

generating input excitations, the circuit's reacting to the input excitations by producing output

waveforms, and our measuring of the output waveforms. The question we should like to ask is if it

is possible to combine several pulse repeaters, i.e., if cascading the pulse repeaters will maintain the

pulse shape.

We shall study the behavior of a pulse repeater when presented with a single input pulse; we

shall not directly consider a single pulse repeater's being presented with several pulses in succession.

3.3.1 Basic definitions

The waveforms that we saw in the pulse repeater experiments are parameterized by two parameters,

the voltage V and the time t; for the particular parameterization we chose, it made sense to speak

of the height h and the length l. For instance, let us assume that we would use rectangular pulses

11 But in the light of the following theory, which establishes that the symmetric pulse repeaters work, the suggested
asymmetric-repeater theory might be considered dishOIwst. If the symmetric repeaters work despite interference,
would not the asymmetric ones too'? And would not the asymmetric-repeater designer be tempted to allow his
circuits' operating in this domain'?

26

as excitations for characterizing the behavior of some pulsed circuit. We could then parameterize

the pulses that we use as12

P[,;](t) (~f h x (l(t) - l(t -I)),

where lex) is the unit step function [76]:

l(.r.) ~ { ~ if x < 0,

if:1: 2 o.

(3.1)

(3.2)

We first define the set T of functions over time that have their global maximum in finite time,

i.e.,

T ~f {f : t --+ 111\ (3k:, F :: (V.T : 1:1:1 > k : f(:r:) < F) 1\ (3x :: J(:1:) > F))}. (3.3)

The need for the restriction is explored ill Appendix C.

We say that two functions13 f, g : R --+ R are equivalent under translation if there exists a 6. E R

such that J(t) = get - 6.) for some 6.; we write this f ~ g. We shall mainly deal with the partition

of T into equivalence classes under translation; we call this partition F. The equivalence class that

contains J we write 7(1).

We can think of the p waveforms as a mapping from pairs of real numbers, i.e., members of the

set

(3.4)

to functions in F. The mapping itself, P : P --+ F, is defined as

P ([
11,]) (~f .
I - P[',']' (3.5)

we write PCP) for the subset of F that represents all such rectangular pulses.

Secondly, the circuit's reaction to the input may again be thought of as a mapping, this time from

input to output functions. We may write this <P : T --+ T; interpreting a translation of the input as

causing an identical translation of the output (tlw circuits themselves are of course time-invariant),

we may also write

<p:F--+F. (3.6)

Lastly, we consider measuring the output waveforms. NaIvely speaking, we want to characterize

the output waveforms in the simplest way; since we use P to parameterize the inputs, it would seem

convenient to extract the same parameters of the output waveforms. Perhaps we can phrase the

12We use the vector notation [i.] mainly for making things typographically clear; the functions we are considering
are generally nonlinear, whence the analogy with matrices and linear transformations is not so useful.

13If nothing to the contrary is stated, then we shall assnme that a function f maps from real numbers to real
numbers.

27

questions about the pulses in terms of the parameters of the pulses.

3.3.2 Handling the practical simulations

If we want to determine the mapping for it real circuit, we should run a set of simulations to check

the behavior of our circuit for a variety of input pulses of the shape P[';ii J' with i = 0,1,2, In

order to determine the mapping of Figure 3.8, we measure the length and height of the output pulses.

This we could do, for instance, by measuring the highest voltage recorded by SPICE and measuring

the time interval between the upward crossing of Vdd/2 and the following downward crossing. (If we

should not detect any crossings of Vdd/2, or if we should detect more than these two crossings, we

should be able to conclude that the input pulse was outside the "pipe.") With these measurements

in hand, we could then draw Figure 3.8, and if the area covered by the output pulses should be

contained within that of the input pulses, then we could finally conclude that the circuit we have

tested can be used as a pulse repeater because the input-output relationship is stable.

In other words, we have the commutative diagram:

[','] c;
---+

lp (3.7)

'1'
P[':] ---+

The upper part of the diagram defines the function e : P --+ P on the parameter space. In practice,

we study e by computing p-l 0 <]) 0 P. We ultimately want to know if p-l 0 <I>n 0 P converges as

n --+ 00; we can now ask the same thing of en.
Unfortunately, there is an important fiaw in the described testing procedure. While it is true

that the input, P[7](t), is properly characterized by h andl, and that our measuring the height and

length of the input pulses would indeed result in the values we specified in the definition of p, our

measurements of the output pulses only incompletely characterizes them. This is understandable:

even though a simple mathematical function describes the input pulses, the waveforms of the output

are unlikely to obey some P[,;](t) for any values of hand l. Indeed we should be surprised if

they did, given that there is an infinite variety of possible output waveforms, depending on circuit

parameters, environmental conditions, noise, etc. In fact, we know that the output pulses cannot

possibly be characterized by P[:'] since the function]I has discontinuities, whereas-given the nonzero

capacitances that are present-the output voltage cannot have discontinuities if all the currents in

the circuit are finite. Formally, we should say that p-l only exists for members of PCP), not for

arbitrary functions.

28

3.3.3 Expanding the model

We instead define a partial order on functions in the obvious way:

Definition 3.1 (Partial ordering of functions in T) Given H, ¢ E T, we say that H ::::; ¢ if and

only if H(t) ::::; ¢(t) for all t. We say that f} f'.lJuals qJ if H ::::; ¢ and ¢ ::::; H;

and extend it to our translation invariant representatives in F:

Definition 3.2 (Partial ordering of members of F) Given f, 9 E F, we say that f :::; 9 if and

only if there exist representatives (J E f and ¢ E 9 (with (J, qJ E T) such that (J :::; ¢.

Appendix C shows that Definition 3.2 establishes a partial order (i.e., a relation that is transitive,

reflexive, and anti-symmetric) of functions obeying (3.3) if by two functions' being equal we mean

that they are members of the same equivalence class in F.

If we consider a member f E F (f is an equivalence class of functions; we can loosely speak of it

as a function if we by that mean some canonical representative), we can define the mapping taking

it to the subset of rectangular pulses PCP) dominated by it as

(3.8)

agE PCP) is also in J(f) if and only if g::::; f.

Similarly, we define the subset of PCP) that dominates f as K(f). Figure 3.10 illustrates the

situation as it applies to an arbitrary waveform when P consists of the rectangular functions P[7] (t) =

h x (l(t) - l(t -l)).14

As we know, an arbitrary f is most unlikely to be in PCP). Hence we shall not attempt to define

a mapping directly from F to P; instead, we define a mapping M : F -+ PCP) x PCP). (M stands

for "measuring mapping.") Starting from J(f) and K(f), M picks an ordered pair U] such that

j E J (f) and k E K(f)-in other words some pair U] such that j ::::; f and f ::::; k; we further write

Me> for j and M{3 for k; we can also define M : F -+ P x P by M (~f [:=:i~;n. It is clear that

j is somewhat arbitrary (m satisfies the same condition as j), but there is no reason for choosing k

different from the corner of the square region. Obviously, U] is not unique, so M is not unique; as

we shall see, picking M properly is important. if>

Let us now define <Jl to work on sets of functions as well as on functions. We define <Jl : 2:F -+ 2:F:

<Jl(5) (~f {t: (38: s E 5: t = <Jl(s))} (3.9)
-~------------------------------

14In order that we may keep the exposition manageable, we have simply truncated all the waveforms at the threshold
voltage-any activity below the threshold we have assumed to be negligible.

15Figure 3.10 applies to the particular case when P(F) consists of the rectangular functions p [7]. Here it is clear

that there is no reason for picking a k different from t.he vert.ex of t.he square area. Which j is best is a different story;
picking the j that maximizes the product h x I is likely a good heurist.ic. In the general case when a more complicated
P(P) is used, k can also be open to question. We might then choose the k E K(f) that minimizes J k(t) dt and the

j E J(f) that maximizes J j(t) dt.

29

v

J m
f

t t
(a) (b)

Figure 3.10: (a) the function f and two members), k E P(P). Here j :::; f :::; k. (b) parameter-space
representation of sets J(f) and K(f) and the points j and k (more properly p-l(j) and P-l(k))
picked by M.

Similarly, we may define M on sets, so that M : 2:F --t P(P) x P(P); thus,

de[[Mn(lIlinf(S)) 1
M(S) = ()' M(1 maxf(S)

(3.10)

where minf : 2:F --t F, with [minf(S)](:r) (~f[in(8](:r), where we use Definition 3.2 for:::; and the
sEc';

corresponding inf; and analogously for maxf. Finally, let us define the map F : P(P) x P(P) --t 2:F

that generates all functions between two reference pulses j, k; hence,

F ([~:]) (~f {f : j :::; f :::; k}. (3.11)

It should be clear that M 0 F ([i, J) = ([f J) as long as .i :::; k; hence we could define

(3.12)

but we must then keep in mind that M-1
0 M(S) for a set of functions S does not necessarily equal

S; we do however have that

S ~ M-1
0 M(S). (3.13)

30

3.3.4 U sing the extended model

Now we can ask questions about the behavior of the parameterized waveforms when <I> is iterated.

If we consider If ~f lim <I>"(f) , we know by (3.13) that if E lim M-1(M 0 <I> 0 M-l)n(Mf). We
n~= . n~=

hence define the mapping from input to output in terms of the reference pulses as G : P(P) x P(P) -t

P(P) x P(P)

G def M <I M-1
M = 0) 0 ; (3.14)

if we should prefer considering the behavior in the parameter space P, we can write G : P x P -t P x P

as

(3.15)

The M subscripts serve to remind that thpre is some arbitrariness in the choice of M, which infects

G and G too. Thus we have soundly fixed the commutative diagram, (3.7); we should write:

GM ([~])
1 M-1oP

{f : P(p) sf s P(q)}

r [:=:::;]
'I> () ----+ {g: 3.f: P(p) sf s P(q) : 9 = <I>(f) }

(3.16)

We can think of U] as defining a rectangle16 in P-space, whence we may have:

Definition 3.3 (Stable function mapping) Wc say that G is stable under M if there exists a

rectangle [~]
of <I».

such that GM ([I]) C [I]. We call [I] a region of stability of G (and by extension
111, 'fn 'In

The connection with pulse repeaters should be clear. We find that if we can arrange that the inputs

Xi to a chain of pulse repeaters will obey M(x;) C [~l]' then all nodes along the chain will also

obey that relation.

In topological terms, the stable G's causing pulses to remain well-behaved is a weak application

of the "contraction principle" used by Gamelin and Greene [27]; if we could guarantee that for all

[~] in a region of the plane, we could define a metric d measuring [~t] such that it decreases for

each iteration of <I>, then we should have a true contmciion mapping, in which case the pulse would

converge to a single well-defined shape as it t.ravels down t.he chain of pulse repeaters. This very

often happens in practice, but as should be clear from our argument, so strong a property is not

required for the pulses' remaining well-defined.

16When P-space is two-dimensional; it should be clear that P-space could have any desired dimensionality, and
[{] generally defines a coordinate-aligned rectangular hyperprism. The rest of the argument is the same for any
dimensionality of P. We might for instance handle the threshold-voltage issue (see footnote on p. 28) by adding an
extra parameter to the P-space.

31

What have we gained-why should M 0 1> 0 M~l be easier to handle than 1> itself? One situation

when it is easier to handle G is when 1> is locally monotonic, i.e., if it is true that \if j, 9 : j ~ j ~

9 ~ k : 1>(f) ~ 1>(g). If this is true, then it is also true that 1> 0 M~l ([i]) C M~l ([:W]),
which means that we need only operate on pairs of functions j and k to determine the boundaries

of the region of stability (rather than on the infinite sets of functions M~l ([t])); i.e., our naive

pulse-repeater experiments then carry enough information for determining whether a given pulse is

a legal input pulse to the circuit.

3.3.5 Noise margins

If we consider a region of stability [,;,] of 1>, wp know that for any input signal f that satisfies

M(!) C [!n), it is true that M 0 1>(.f) C ['~I]' If the region of stability is finite (which it normally

is), then there exists at least one maximal region of stability [~;:::J, which has the property that

there is no larger region of stability ['f'] =:> [1m",]. It can be proved that [l"'"x] allows at least one
S InnH1x IH ll1ax

input function f that differs only infinitesimally from an input function 9 that would take the circuit

out of the region of stability. Hence, if we allow as legal any pulse for which M(f) = [lm.x] , then m ITlax

the circuit's noise margin will be zero. (In traditional synchronous logic, this would be equivalent

to considering as a legal digital input one that is exactly at the switching threshold.)

If we instead define a norm on the noise margin, i.e., on the function-set difference M~l ([!n]) -
1> (M~l ([!n])), we can say that the [I:'] that we should choose as our legal range of pulse inputs

is the one that maximizes II M~l ([,:,]) - 1> (M~ 1 ([I:'])) II. The legal range of pulse outputs is

the corresponding 1> (M~l ([,;,])). We define the noise nw:rgin

(3.17)

Choosing this norm properly is likely a difficult matter, although simplistic versions are not too hard

to come up with. Saying more about noise here would be premature; how we treat noise depends

to a large extent on what we shall do with pulsed circuits. The interested reader is referred to

Section 6.8.

3.4 Differential-equations treatment of pulse repeater

How do we find out if 1> is locally monotonic, as would make the previous section's results applicable?

First, we shall reiterate (almost verbatim) the definition of a str'ong npper- fence given by Hubbard

and West [38].

Definition 3.4 (Strong upper fence) For- the differ"ential equation x' f(t,x), we call a con-

32

tinuous and continuously d'ijjer'entiable function (3 (t) a strong upper fence over the interval I if

f(t,(3(t)) < f3'(t) for all tEl.

Theorem 3.1 If f3(t) is a strong upper fence on x;' = f(t,x;), then for any solution u(t) with

u(to) ~ f3(to), u(t) < f3(t) for all t > to in (Lny interval contained in I where u'(t) = f(t,u(t)),

Proof. See Hubbard and West.

Let us now consider the boundary value problem of a differential equation in x(t) of the type

d:r () - = f t,:D,W(t) ,
elt

(3.18)

with boundary condition

x;(O) = :D(). (3.19)

To save the reader's patience, let us right away call t the t'ime, w the excitation, and x the response.

Without loss of generality, define I so that 1= {t : 0 ~ t ~ T}. Furthermore, let it be the case

that over the entire domain of f, an increased excitation tends to drive the response downward; i.e.,

formally, let everywhere
af'
-' <0. ow (3.20)

Now we should like to characterize the behavior of the solutions to the boundary value problem (3.18)

for different choices of the excitation function w. Let us specifically have in mind two excitations

w¢ and We such that

w¢(t) > wo(t) for all tEl; (3.21)

we shall for convenience refer to the respOIUies given these excitations as x¢ and Xe. Then:

Lemma 3.1 xe(t) is a strong upper fence for the d~fferential equation dx/dt = f(t,x(t),w¢(t)).

Proof. From Theorem 3.1, we know that we need to show that

d:ce
f(t,:DI!(t),WqJ(t)) < -.

dt
(3.22)

But we also know that xe(t) solves the boundary value problem (3.18) for the excitation we(t), so

that we have to prove

f(t,xe(t),w(!J(t)) < f(t,x;e(t),we(t)). (3.23)

This relationship is obvious from (3.20) and (3.21). Therefore xe(t) is a strong upper fence for

dx/dt = f(t,x(t),w¢(t)). Q.E.D.

We can now state the desired relationship between .T¢ and Xe.

33

Theorem 3.2 Ifw</>(t) > we(t) for all tEl, then x</>(t) :::; xe(t) for all tEl.

Proof. Recall that x</>(O) = xe(O) = Xo. Thus, in Theorem 3.1, u(O) = $(0), and therefore x</>(t) :::;

Xe (t) for all tEl. Q.E.D.

3.4.1 Input behavior of pulse repeater

Figure 3.11 illustrates the input circuitry of a pulse repeater. We shall discuss the time behavior of

the node x as an input pulse arrives. The input pulse may have any shape.

1+. ,
X

i~ ! 7
CX

IX

Figure 3.11: Input circuitry of a pulse repeater.

If we assume that the circuit starts out with a known voltage on the node x at time ta, Vx(ta),

we may write

(3.24)

or in integral form, replacing the boundary condition with the term Vx (ta),

(3.25)

Since the input pulse ends at some time-call it t/)--we are mainly concerned with the value

of the right-hand-side expression at time til. The relationship between ix and Vx follows from the

transistor equations and the shape of Vi", but what do we know about i+(t)?

34

3.4.1.1 Inertial approximation

Let us first assume that we can model the behavior of the circuit as "inertial"; i.e., we will consider

only the behavior of the pulse repeater in situations when the input pulse has not yet acted so long

that i+ has been affected via the feedback path (y in Figure 3.1) by the chang'e in x. Understanding

exactly where this is true would involve understanding exactly when Equation 3.20 with the proper

variable renamings holds, i.e., when it is true that

(3.26)

We intuitively justify the approximation by noting that (3.26) holds as long as y (the input to the

pullup p-transistor, see Figure 3.1) is approximately Vrlrl. That this is true for a while can be

seen from the transistor equations. We can for instance use the familiar Sah model to model the

transistors [73, 2]. Under this model, since the p-transistor is in the forward active region,17 and

the n-transistor is in saturation during most of the beginning of the input pulse, we may write

(3.27)

and

(3.28)

Now we verify (3.26) for this model:

(3.29)

The partial derivative (3.29) is certainly negative as long' as Vin is positive, as it must be under our

assumption that the transistor is in saturation. This may not be accurate for all input pulses, so we

must re-check the conditions in the linear region; this work is not shown.

We may identify J, (ix(t) +i+(t)) with w in (3.18). Hence, as long as (3.26) holds, we can apply

the theorem and conclude that if we have three pulses p, q, rand p < q < r and both p and rare

legal input pulses for a pulse repeater, then so is q.

3.4.1.2 Non-inertial behavior

But is it really true that we can ignore the feedback path that could affect i+? Let us slightly refine

the model for the pulse repeater. Basing our argument on Figure 3.1, we can see that the output

inverter is used for two purposes: first, it generates the output; and secondly, it provides a feedback

path, which eventually resets the output, thus generating a pulse. If we break up the two functions,

17 Also called linear region, triode region.

35

we have the circuit of Figure 3.12 instead. Here we have modeled the feedback path, which creates

the pulse, as an inverting inertial delay called D. If the amount of delay introduced is .6., we should

normally write y(t) = Vdd - x(t - .6.). Writing y thus would however neglect the gain of the inverter

or inverters on the delay path (two in the case of the three-stage repeater, four in the case of the

five-stage repeater). Hence we shall instead write

y(t) = C(:z:(t - .6.)), (3.30)

where C represents the "inverting clamping function" that is Vdd if the input is less than Vdd/2

and is 0 if the input is more; we thus assume that the gain along the delay path is enough that we

can consider y a purely digital signal. (In other words, the gain is infinite.) We further assume that

the output inverter's logic threshold is at least as low as the inertial delay's (i.e., the output inverter

will not trigger before the inertial delay).

y inverting inertial delay 0

~x------------------~~

i~

Figure 3.12: Pulse repeater modeled with inverting inertial delay.

Can we get away without the special inertial-delay element? Unfortunately not: the length of the

output pulse will be approximately .6. long; if that is also the length of the input pulse, then it means

that the current i+ will begin changing approximately at the same time as the input pulse ends; we

should hence be concerned that the monotonicity condition may be violated for input pulses longer

than .6.; this corresponds approximately to the later half of the "pipe," at least near its top.

Consider the two input-pulses in the scenarios A and B of Figure 3.13 (as usual, we have ignored

the irrelevant time-translation of the various signals). The pulse repeater whose behavior we are

plotting must be avoided because it misbehaves: the weaker input-pulse causes a stronger output

pulse. Both A and B are slightly longer than .6.; hence there will be some interference on the node

x during the later parts of the input pulses. The pulse in A is slightly "weaker" than in B during

the first .6., as shown by the notch at the top; we have assumed in the x waveform that the weak

36

strong output driver---
output rises even though x is weak

.

A

no/ eak· .
~-.. in erference· ·no int rference--

out ut remain high

in x out

B
st ong input-

stro g interfere ce ·Iater ... ~

interference cause
'---''---_

to fall early

Figure 3.13: Two different input-pulse scenarios ane! their corresponding intermediate-node values
and output values.

inA merely causes a slow transition.

If we first consider, as in Figure 3.13, a circuit whose inertial delay has no gain, it is clear that the

monotonicity property is in danger. This is because if y(t) merely mirrors x(t), then the interfering

i+ will be less for scenario A than it will be for scenario B. Hence, in scenario A, the signal on x

could actually have a larger (more negative) swing t.han in scenario B, and the ultimate output-pulse

on node out could be larger than in scenario B.

Now let. us see how our assumptions about. D solve the problem. There are two possibilities we

need to consider:

1. First, the pulse inA may be so weak t.hat it. does not trigger D until much later than the pulse

in scenario B. But we said that if D is not t.riggered, then the output inverter is not either,

and we know that the output pulse will then start later than in scenario B.

II. Secondly, the pulse inA may be st.rong enough that it triggers D immediately. But since D

has infinite gain, i+ will now be the same in t.he two scenarios.

This argument shows that monotonically stronger input-pulses will still cause monotonically

stronger output-pulses, even in the presence of interference when the input pulses are more than II

long. (The reader may wish to verify that our argument with respect to possibility 1. holds as long

37

as the input pulses are no longer than approximately 2~.)

3.4.2 Generalizations and restrictions

Because of the simple requirements of the Fence Theorem, Theorem 3.1, we should find it easy to

verify the fence conditions for (3.24) even for a complicated transistor model, because all that is

required is that the circuit's response-the instantaneous current flowing to l;-is strictly antimono

tonic in the input voltage.

Of course, physics is never quite as simple as we have made it seem. First, we have used a

very simplistic model; the behavior of the cascaded inverters is only imperfectly captured by an

infinite-gain inertial delay. Secondly, the data in the pipe figures was captured with a rudimentary

technique that does not directly correspond to the theory we have developed. Both of these are

reasons for mistrusting some aspects of the pipe figures; especially the data around the edges of the

pipes are suspect. Lastly, we may expect that the pulse-logic designer loses sleep over not being able

to verify that his circuit satisfies the fence condition (3.20) at all times. If oj/ow can sometimes

be positive (e.g., owing to second-order effects in the transistors; the MOS Miller effect comes to

mind), but this deviation from the fence condition is small, then how does the designer prove that

the required monotonicity-property for the pulses still holds? We could perhaps save the day with

more detailed analysis. In practice, we could also use differently shaped test signals to eliminate or

minimize the unwanted behavior of oj / ow .lS

18Note that the partial derivative is with respect to changes in w from one waveform to another, not with respect to
changes in w over time in a single waveform; thiR means that although we cannot avoid the Miller effect's suggesting
that dx I dt can sometimes be positive in responsp to a pORitive dw I dt, we may conjecture that we shall still be able
to shape the input pulses so as to keep af law < o.

38

This page intentionally left blank.

39

Chapter 4

Computing With Pulses

My pulse, as yours, doth temperately keep time

- William Shakespeare, Hamlet, Prince of Denmark (1603)

As undergraduates, we learned that while important, the logic discipline alone does not suffice for

building digital systems that shall be able to compute arbitrary functions repeatedly. Two further

attributes are required before a circuit-design method can be used for implementing a wide range of

digital systems: timing discipline-in essence, design properties allowing the reuse of circuitry (i.e.,

as repetitive systems); and logic-our circuits' ability of computing arbitrary boolean functions.

In traditional synchronous design, simplicity requires treating timing discipline and logic sepa

rately; this approach leads to design styles that alternate "latching elements" with "combinational

logic." This is taken to an extreme in automated design systems: the latching elements are spe

cial library cells and no feedback paths whatsoever are allowed in the logic-a formally complete

separation of logic and timing.

Over the years, however, designers of high-performance synchronous systems have begun inves

tigating techniques that more and more mix logic and timing. We see a familiar example of this

in "precharge logic" or "domino logic." Precharge logic is more difficult to design because of the

mixture of timing and logic; the precharge-logic designer must renounce attempting to implement

logical specifications that do not fit in the precharge timing-discipline. The mixing trend has not

abated over the years; currently, "self-resetting" (or "post-charged") logic [71] is an active area of

research in synchronous systems-this type of logic is in many ways the synchronous parallel to the

asynchronous pulse-logic that is the subject of this thesis. Self-resetting synchronous circuits are

indeed asynchronous to the extent that sorne of their timing is data driven. Unfortunately, using

the clock for synchronizing these circuits globally, albeit less frequently, still spoils the broth. De

signers of self-resetting synchronous circuits hence face the worst of both worlds: the system-design

difficulties of synchronous systems and the circuit-design difficulties of asynchronous circuits.

Asynchronous-circuit design-styles inherently require that the logic computations carry timing

40

information. This can mean either that the computations explicitly carry timing information (as in

QDI or speed-independent design) or that implicit timing-assumptions are made (as in bundled-data

design); from the historical trends in synchronous design, we may infer that we need not apologize

for the mixing of timing and logic-everyone that builds fast circuits mixes. Neither should we be

surprised to find out that the subtleties of asynchronous pulse-logic are due mainly to dependencies

between logic and timing.

4.1 A simple logic example

The next pulsed circuit we shall examine is what we call a "pulse merge." We can think of this as

the implementation of the CHP program

* [LO, L1; R J ,

where LO, L1, and R are ports (i.e., the mention of LO etc. in the program signifies a communi

cation on that channel). The synchronization of LO and L1 is here explicit in the CHP program,

but the kinds of circuit structures required for this explicit synchronization are also used for im

plementing data computations, where implicit synchronizations capture the fact that output values

of a logical function cannot be computed until inputs are available. For instance, the program

* [A? a, B? b; C!(a + b)J explicitly synchronizes at the explicit semicolon and at the "loop semicolon"

between loop iterations, and it also implicitly synchronizes the data because producing a value on

C is impossible before inputs have arrived on A and B. The explicit synchronizations are mainly

for the convenience of human understanding-they could, and should, eventually be removed; the

data dependencies cannot be-the real task of the system designer lies in minimizing the need for

data synchronization.

For the time being, let us keep pretending that the circuits we design will only have to be used

once. It should right away be obvious that a QDI-inspired structure for the merge such as the one

seen in Figure 4.1 (where 10, 11, etc. signify the circuit implementations of the channels-i.e., the

corresponding electrical nodes) and descrih("d by tlw PRS

... 1\101\11 --t '-.J..
,-
-" - --t ,t,

will not do. 1 The QDI merge behaves like a C-dcment; in other words, it waits until both inputs

have become asserted and then asserts its output. This will not work for pulses because the pulses

are ephemeral: the high voltage-level signifying a positive pulse is only present for a short time.

1 The ellipsis indicates that some details about the internal synchronization of the circuits have been left out. In QDI
circuits, we should have various "state variables" in this place for sequencing the actions of the circuit properly [43J.
Synchronous designers will see the analogy with the "foot" transistor of clocked domino-stages.

41

Unless we are willing~and we are not~to insist that outside agents shall synchronize the arrivals

of to and ll, attempting to work with coincident pulses will get us nowhere.

10-1

I

V

Figure 4.1: Input transistors in QDI merge.

If we are to design circuits that g"enerate outputs computed from pulse inputs that can arrive at

different times, we shall have to capture the pulses somehow and "remember" them. The circuit in

Figure 4.2 is a conceptual solution to the problem. Incoming pulses on 10 and II are captured by the

diodes; the maximum voltage during the pulse is stored on the gate capacitance of each transistor.

r

10 ---N---1

Figure 4.2: APL circuit, version with diodes.

The diode-transistor combination captures pulses by turning them into voltage levels. This is

enough for using the circuit just once, but we seem to have pushed part of the problem ahead of us;

if we capture a pulse by converting it into a voltag(~ level with a one-way device, how do we reset the

circuit so that we can use it again? A straightforward way of doing this is shown in Figure 4.3; here

42

we have added reset transistors that are exercised by a separate reset pulse-the gates of the reset

transistors are marked R in the figure; presumably, the generation of the reset pulse is contingent

on the circuit's having produced its outputs, thus ensuring that the inputs are no longer required.

(Of course, we shall have to explore this presumption later.) In simple circuits, the reset signal can

often be the same for all inputs, as shown. In the case of data, the reset signal can also fan out to

all the data rails, i.e., to inputs that have not necessarily been asserted, since vacuously2 resetting a

data rail that was not previously set by an incoming pulse is harmless. When we reuse the circuit,

we shall have to arrange things so that the pulse Oil R avoids interfering with the input pulses on lO

and ll, or chaos will ensue.

~R
IDe

11c

~R

Figure 4.3: APL circuit, version with diodes and reset transistors.

Now we must get our signal senses in order. For simplicity, we have so far preferred discussing

positive (i.e., from a stable low value: np, then dmvn back to low) pulses. This turns out to be

the wrong choice. We shall not discuss all the reasons why this is so; instead, we justify our choice

of signaling senses by observing that in our example circuit, r _ will certainly be in the negative

sense; i.e., it goes to false rather than to true when it produces an output. The obvious choice is

to make the logic-gate signals, ZOe and II c in Figure 4.3, positive logic; and r _ negative logic, as

indicated by the figure. Furthermore, we can sec" that the minimum number of stages of logic that

we can use is two-one for implementing ... /\ 10 c /\ 11 c --+ r _ -L- and one for the diode; this means

that we shall have to design the circuit so that T_ is pulsed. While we might entertain the idea

of using an actual diode (a substrate diode or a trallsistor with the drain and gate tied), normally

using a transistor will be better; the transistor has gain, and foundries optimize CMOS processes

for producing good transistors, not diodes. Figure 4.4 shows the modified circuit; the kinship with

2 An assignment x := a is called vacuous if:c already has the value a before the assignment; else it is effective.

43

synchronous domino-logic and QDI-asynchronous precharge-logic (see Lines [43]) is obvious.

~R
IDe

11c

~R

Figure 4.4: APL circuit; diodes implemented with transistors.

In the form of a PRS, then, we may write the a.'iynchronous-pulse-logic implementation of

* [LO, Ll; RJ as

--t lOet

--t lIef

... 1\ lOe 1\ lIe --t 7'_+

--t 7'-t

R --t [Oe+

R --t lId·

Here, the p-transistors denoted by .[0_ --t lOet and .lL --t lIet are impl(~mentations of inverting

diodes. The inversion at the "diode" means that we Illay (or must) merge the diode with the inverter

of Figure 4.3; removing the inverter completely is usually preferable to adding another. There

remains filling in the implementation of the ellipses, but the general form of this circuit is what we

shall see throughout the rest of this thesis: a negative pulse appears; a single p-transistor captures

the pulse; the captured pulse, now a high voltage-level, gates a transistor in a logic network, which

computes the desired function and produces an output pulse, negative like the original pulse; the

output pulse having been produced, a suitably generated reset pulse removes the original, captured

pulse.

4.2

44

Pulse-handshake duty-cycle

Let us now consider two repetitive processes, named P and Q, that synchronize once per iteration

by means of a channel. We refer to the nodes used for implementing the channel as interface nodes

when necessary for distinguishing them from other nodes in the system (e.g., nodes that are private

to the implementations of P and Q).

The standard QDI handshake:l is

P : * [[re]; rdt; [-or-e]; rrJt] II Q : * [ret; [rd]; reJ.; [-ord]] .

This handshake in theory has two synchronization points (e.g., the up- and down-going phases on

rd), but the difficulties attached to designing circuits that compute on a downgoing transition are

enough to convince us that using the handshake for more than a single synchronization is usually a

bad idea.

We first consider a simple adaptation of the QDI handshake to the pulsed world by writing the

pulse generation on a node x as :r{ (read "x pulse down") and x~ (read "x pulse up"). If a process

executes x~, x will from then on evaluate to true, until some process executes x{ This corresponds

directly to the "diode-capacitor-transistor" model we used in the previous section.

Now we can write a pulse handshake corresponding to the QDI handshake thus:

P

(Note that already this handshake is not delay-insensitive; unless we add timing constraints, there

may be interference.) But, secondly, we should realize that if we allow P's directly detecting that Q

has executed rd{, then the pulse re~ is unnecessary, since simply by knowing that rd? has completed,

P may know it can safely send another nir P can glean the necessary knowledge by monitoring rd

(at the perhaps significant cost of using p-transistors in series).

By thus eliminating the communicating on re, we go further than the QDI designer; he had the

freedom to release and leave floating his nodes early but could choose not to use that freedom-we

shall require the nodes' early release. We call the resulting protocol the single-track handshake.4 ,5

The removal of the acknowledgment wire and pulse does somewhat reduce the flexibility of the

allowable family of pulsed circuits, becausf~ one ("xtra means for flow control has been removed: in

the example, delaying P further is not possible once rd{ has been executed, because no further

3Here we have written the handshake with an inverted acknowledge, called the enable. This choice of senses
improves circuit implementations; while this is admittedly a weak reason for choosing the sense at the HSE level,
there is really no reason at all except convention itself for choosing the conventional sense for the acknowledge. Perhaps
also the term "enable" is more suggestive of a pipeline with "flow control" than of an orderly handshake between two
otherwise independent processes.

4The name single-track handshake was coined hy van Berkel and Bink [8].
5Let the reader beware: the terms "single-track" and "single-rail" mean quite different things. "Single-track" refers

to a handshake whose transmit and receive phases occur on the same wire or wires; whereas "single-rail" refers to the
practice of encoding data one bit to a wire, cOllventionally used in synchronous and "bundled-data" systems. This
thesis speaks only of "single-track" circuits; the author feels that the problems involved in using "single-rail" data
encoding are doomfully severe, whence we shall not explore it.

45

notice will be given that it is all right for P to send another datum; rd? is now the only signal to

notify P, whereas we previously both removed the old datum and acknowledged it, either of which

could have been used by P for determining that Q is ready for more input. But the flexibility that

we thus remove is actually an unfamiliar one: for instance, it does not even exist in QDI systems,

since these usually also have only one mechanism for flow control (the acknowledge).

Hence we shall in what follows restrict our attention to circuits that use the same wires for

sending data as they do for receiving acknowledges and the same wires for receiving data as they do

for sending acknowledges. The single-track handshake may be written in terms of HSE:

P *[[....,rd]; rdt] II Q * [[n1]; nLj.] .

Note, however, that even though the syntax for the pulsed program looks similar to that used

in the HSE describing ordinary QDI circuits, the semantics may be quite different. In QDI-HSE, it

does not matter whether the driver for rd has three states (driving up, not driving, driving down) or

two (driving down, driving up) in the implementation of the program * [[re] ; rdt; [ore]; rd.!-J. The

driver could, e.g., be implemented with an inverter, in which case rd is always driven (a combinational

node). In general, what this means is that in QDI-HSE, a process that executes a sequence of

commands S; rdt; T; rd..!- , where Sand T are arbitrary program parts, may choose to stop driving

up rd and leave it floating at any time after nit has completed, i.e., before T, during T, or after T,

as long as the rd..!- action has not yet begun. G This is no longer allowed.

We shall take the following complementary specifications as given:

Definition 4.1 (Maximum single-track hold time (maximum impulse» If a process P be

gins driving an interface node to a new val-ue v at ti'fne t, then P must have stopped driving the node

at time t + o"v, where o"v is a (system-'l1}'ide) global ronstant; P may not again drive the node to v

until it has detected that the node has left v (see Definition 4.2).

Definition 4.2 (Minimum single-track setup time (minimum inertia) If a process P de

tects that an interface node has switched to (J, nrw vll,lne 'U at time t, then P must not drive that node

away from v until the time t + ~v, where ~" 'is a (system-wide) global constant.

We should like to design our circuits so that tlwy satisfy:

Definition 4.3 (single-track-handshake constraint) A set of processes S satisfies the single

track-handshake constraint if ~v 2:: 0" v, fm' all 'U and all processes in S.

6This is a big freedom. The conservative would say that this freedom should be approached with respect, because
he thinks that it is difficult to design the state-holding circuits that must be used if any appreciable amount of time is
allowed between the abandonment of "fit and the start of ni.).. (The electrical engineer refers to the state of the circuit
during this period of time as "high-impedance" or "high-Z"; we shall call it floating.) On the other hand, the designer
of traditional QDI circuits is apt to use this freedom to great effect for simplifying many aspects of his design; the
freedom might perhaps allow his inserting inverters in cOllvenient places without violating the rules of the QDI game.
What this means is explained in detail in the QDJ literature, e.g., by Martin, who explains the need for having such
freedoms under the heading "bubble reshuffling" [54J. Martin also uses a technique called "symmetrization," which
involves replacing xt; ... ; x.). with the "stuttering" .7:t; ... ; :l:t; ... ; :1:.). when this simplifies the circuit realization.

46

This property will guarantee that there shall never be interference between the two actions xt and

x-J,.. We may in practice choose to be lax about this, allowing some interference (see Section 3.2.2.2).

The rationale for allowing a different (f and ~ for each possible value of v (usually only true and

false are allowable values for v) is that this allows implementing x-J,. and xt differently. But because

the constants are global, we must still implement x-J,. similarly throughout a system, and likewise for

xt·7

4.3 Single-track-handshake interfaces

We must remember that the adoption of the siIl/!;le-track handshake, while it appears to follow

naturally from the pulsed version of the four-phase handshake, does not in itself involve exchanging

pulses between communicating processes. One process sets :r: and another, having seen the activity,

resets x as an acknowledgment. At this level, no pulses are visible, and the processes may defer the

actions on x indefinitely, if they should prefer doing so. In this design style, we oblige no process

to respond immediately to an input any more than we do a QDI process. What a single-track

handshake process may never do, on the other hand, is to drive one of its interface nodes for a long

period of time (to either rail); it may also not drive one of its inputs too soon after it has changed.

Where did the pulses go? The single-track processes use pulses internally for guaranteeing that

the single-track-handshake constraint is satisfied. If we compare the single-track processes with the

straightforward translation of QDI handshakes into pulsed handshakes, the main change is that we

have moved the "diode" transistors at the inputs of the "diode-capacitor-transistor" circuits to the

transmitting process.

We should note that the requirement that single-track processes use pulses internally is fundamen

tal. There is simply not enough information available to a process for it to implement * [[-,rdJ ; rdtJ

quasi delay-insensitively. 8

7The careful reader will notice that we really only need to satisfy the constraints on each channel instance separately;
there is in theory no need for making the constraints !!,lobal. \TIle shall not discuss such refinements in this thesis. On
the one hand, our making the constraints local would break the modularity of the desi[';n style, and this is reason
enough for saying no.

On the other hand, we could profitably take the view that: first, we should design systems as if the constraints
were to be globally satisfied-thus ensuring that the digital design could be sized to operate properly; secondly, the
final sizing should be done with only local constraints, local values of Ev and <Tv-thus making best use of the silicon:
this compromise should allow the design of formally modular systems without paying the practical price of complete
modularity. The required automatic design-tools have yet to be written.

8Seitz [75] rejected pulsed asynchronous circuits for this reason; but on closer inspection, the reason is weak: he
replaces the timing assumption required for proper pulsed operation with others that appear to be just as difficult
to satisfy. Admittedly, this comparison is a bit unfair: if we were transported back in time to 1980, the reason we
should reject the pulsed circuits developed in this thesis woule! be the hi[';h transistor-count; the dataflow-influenced
QDI style used in the MiniMIPS would likely have to be rejected for the same reason.

47

4.4 Timing constraints and timing "assumptions"

One of the great strengths of QDI circuits is their reliability when faced with uncertainties or

variabilities in the timing characteristics of their constituent circuit elements. Unfortunately, the

requirement that the circuits must have internal equipotential regions (isochronic forks) means that

even QDI circuits are not immune to reliability problems that result from timing mismatches. We

should also remember that, while we should not normally consider a single operator to have internal

isochronic forks, this is merely a convenient fiction resulting from a simplistic model for QDI circuits.

We consider implementing the inverting C-element:

aAb

c

a---1

Figure 4.5: Pseudo-static C-element.

The simplest implementation of the C-element is the pseudo-static9 version shown in Figure 4.5. The

wire that connects the gate of an n-transistor with the corresponding p-transistor in the C-element

can behave like an isochronic forle For instance, we might have that the input a changes very slowly

from a valid logic-zero to a valid logic-one. During the time when a is between the two legal logic

levels, both the n-transistor and the p-transistor connected to that a will be turned on. As long as

this situation persists, the C-element behaves like a slow inverter with respect to b; this behavior is

not at all what we should like. If the transition on (J, is extremely slow with respect to the circuitry

that acknowledges b, the circuit may misfire, which would likely result in a system failure.

9 An operator U -t xt, D -t x+ is called static or comhinational if U = ~D; if not, it is dynamic, but if a dynamic
operator is realized with a staticizer (keeper), we call it pseudo-static.

48

The possibility that the circuit should misfire is especially menacing for the pseudo-static imple

mentation that we have shown (and even more so for fully dynamic versions). The reason is that the

switching thresholds of a pseudo-static operator are moved unsafely towards the power rails because

there is no "fight" between the transistor that is just turning on and the one that in combinational

logic would be about to turn off; i.e., the noise margins are reduced. We can remedy the situation

either by making the staticizer larger or by changing the circuit so that it is fully or partially static,

thus re-introducing the fight [7]. In an extreme case, we can even make the C-element hysteretic

(like a Schmitt trigger; see Glasser & Dohhprpuhl [29]). The reason we shall not do these things is

that we should lose much of the performance advantage of the dynamic implementation. The energy

dissipation would also increase, compounding the undesirability of the design.

4.5 Minimum cycle-transition-counts

We can say that a QDI circuit is correct only if each signal within it satisfies certain timing con

straints. The rise time of the signal must be small compared with the delay of the cycle of transitions

that invalidates that signal. As we have se(~n above, these constraints must be satisfied also by sig

nals that are not on isochronic forks in the normal sense, i.e., those that are checked in both the

up- and down-going directions. Since the delay of a cycle of transitions can be thought of as a

linear combination of rise (and fall) times, the constraint is two-sided as stated: we cannot allow a

transition to be slow compared with its environment, and we cannot allow a sequence of transitions

to be fast compared with their environment. Because we are trying to keep a single transition faster

than the sum of delays of a sequence of transitions, the difficulty in maintaining reasonable rise

times becomes lesser if we design circuits so that every cycle has a minimum number of transitions

before invalidating the input, e.g., five.

On the other hand, the number of transitions on a cycle acts as a minimum constraint on the

cycle time of a system; in other words, the fewer the transitions on the cycles, the faster the circuits

run. This suggests that we should decrease the number of transitions on the cycles to the minimum

possible.

Summing up, we see that part of the reliability of a QDI circuit is determined by the minimum

number of transitions on any cycle, and at the same time, the maximum speed of the circuit is

determined by the maximum number of transitions on any cycle that is exercised frequently. A

reasonable design approach in the face of this dichotomy is to aim at a roughly constant number of

transitions in each cycle of the system. If the target number of transitions is small, then the circuits

designed will be fast and unsafe (i.e., difficult to verify the correctness of); conversely, if the number

is large, the circuits will be slow and safe.

49

4.6 Solutions to transition-count problem

Obviously, we must be careful when dealing with pseudo-static non-combinational circuits. In simple

cases, we could follow van Berkel's advice [7] and use techniques that add hysteresis to the circuits;

but these techniques are often inconvenient, and they always complicate the circuits, as well as raise

their power consumption and increase their latency. In any case, we did not use these techniques

in the circuits used in the MiniMIPS processor; instead, we used pseudo-static circuits and hoped

for the best. In honesty, it should be mentioned that our hope was supported by extensive aspice

simulations and mechanical circuit-verifications that verified that the worst-case ratio of the rise

time Ta to the delay Tc-tb was small.

The fact that the MiniMIPS processor and other chips using the same circuit techniques were

functional is evidence that timing assumptions involving isochronic forks in QDI circuits are man

ageable, even when the circuits involved are complex. In APL circuits, we shall take a different

approach: the timing assumptions used in APL circuits depend on internal operator delays; thus,

they are formally more restrictive. On the other hand, as we shall see, the timing assumptions ap

pear under much more controlled circumstances than in QDI circuits; under certain circumstances

APL circuits may be more reliable than QDI circuits because of the APL circuits' simpler internal

timing relationships.

4.7 The APL design-style in short

The APL design method aims at describing how to compile CHP programs into circuits; it is thus

similar to the QDI design method. But whereas we strive for designing circuits with a minimum

of timing assumptions when designing QDI circuits, we use internal pulses for implementing the

single-track handshake when designing APL circuits.

We could introduce timing assumptions in many different ways for the purpose of simplifying

or increasing the performance of QDI circuits; several schemes have been mentioned already. Our

APL scheme takes a simple approach: we use a single-track external handshake, and we minimize

the number of timing assumptions at the interfaces between processes; internally, in contrast, we

design the circuits so that they generate predictably timecl internal pulses. This is a separation of

concerns: most ofthe variable parts of an APL circuit (i.e., those parts that vary depending on what

CHP is being implemented) are arranged so that their delays do not matter much for the correct

operation of the circuit; conversely, the pulse generator, whose internal delays do matter for the

correct operation of the circuit, does on the other hand not vary much.

We consider the implementation of some CHP as an APL circuit in O.6-ILm CMOS (the same

technology that we used for the pulse repeater demonstrations). We should not expect to be able

50

to say much about the delay from the inputs' arriving to the outputs' being defined; in contrast,

we should expect that the internal pulses always are approximately 0.7 ns long. Before we fabricate

a chip, we want to verify that there is a good chance that it will work as designed. This is when

we benefit from the invariability of the pulse length: since the pulse length varies so little (this is

a different way of saying that the pulse repeater has a high length-gain), we commit only a minor

infraction if we assume that the length is constant.

The simplifying power of this assumption can hardly be overstated: once we have assumed that

the pulse length is given, we need only verify that the circuitry generating the pulse and the circuitry

latching the pulse work properly given that pulse length, and-this is the important part-we need

not consider the effects of the inputs and outputs on the pulse length. This means that we can

verify our timing properties locally. In effect, we have reduced a problem consisting of verifying

the properties of the solution to a system of N coupled nonlinear equations into one involving N

uncoupled nonlinear equations: we have gone from a task that seems insurmountable to one that is

(in theory at least) easy.

51

Chapter 5

A Single-Track
Asynchronous-Pulse-Logic Family:
I. Basic Circuits

Remember that the slowest link in the APL system is you, the user. You are limited by the speed

with which you can enter information via the keyboard.

- L. Gilman and A . .1. Rose, APL, An Interactive Approach (1970)

5 .1 Introduction

In Chapters 3 and 4, we developed a theory that accounts for the proper operation of pulsed circuits,

and we described some experiments bearing out the theory in practice. In this chapter, we apply

the theory to the design of a family of circuits that can be used for implementing a wide variety

of logic functions. The particular features that we choose to implement directly in our logic family

are strongly influenced by the MiniMIPS work; tlw QDI circuits developed for the MiniMIPS will

here have their single-track-handshake APL counterparts. For brevity, we shall abbreviate "single

track-handshake asynchronous-pulse-logic" as STAPL.

5.2 Preliminaries

Chapter 4 has established a number of constraints that STAPL circuits must obey. These constraints

are inequalities, however, and there remains a great deal of freedom in our choosing the design

parameters (e.g., ~v and O"v in Definition 4.3). These parameters are somewhat arbitrary. Some

of the things that influence them are outside the scope of the thesis; for instance, we should like

a simple software implementation of the design tools (leading to uniform choices of ~v and 0",,);

also, the author finds it easier to make a convincing argument about the quality of the STAPL

52

design style in terms of high-speed circuits rather than in terms of low-power circuits, because the

speed advantage of STAPL is obvious compared with QDI, whereas the power advantage-if any-is

harder to quantify. We shall compare the QDI and STAPL design-styles for speed and energy later;

see Section 8.4.5.

5.2.1 Thansition counting in pipelined asynchronous circuits

We may get a rough estimate of timing by "counting transitions," i.e., the number of stages of logic

that a signal must pass through. At first thought, this may seem an inaccurate way of estimating

timing information; is it not the case that only the nai·ve would attach any weight to a timing

estimate that reckons an inverter delay to be the same as the delay of a complicated precharge-logic

gate, and that the sophisticated man must deal in more sophisticated delay models?

Our experience in the MiniMIPS project has first of all shown that when dealing with pipelined

asynchronous circuits, transition counts are a useful delay measure, at least when the circuits are

designed for maximum reasonable speed. 'Ve encountered many instances of circuits for computing

some useful eight-bit operations, designed by someone reasonable and intended by him to operate at

around 280-300 MHz according to our 0.6-I1.m parameter set. We saw almost universally that when

such a circuit was implemented so that it cycled in 14 transitions (i.e., could accept a new input

datum every 14 transitions), we had to size the transistors far larger than reasonable, compared

with the transistors in an 18-transition-per-cycle implementation capable of running at the same

speed. Increasing the transition count in the circuit to 22, we found that achieving the desired

throughput becomes impossible. Only very carefully designed circuits (e.g., in the MiniMIPS, the

register file) operating at 20 transitions per cycle could compete with the 18-transition-per-cycle

implementations.

Secondly, to some extent also in explanation of the MiniMIPS results, asynchronous circuits by

their nature mix computation and communication. While the logic delays of computation may vary

greatly-even dynamically, depending on the data-the communication delays are often much more

predictable. For example, an eight-bit QDI unit is difficult to implement in less than 18 transitions

per cycle. Of these 18, only two are transitions of the logic, and one of these may even be masked

by communication transitions (both transitions' bceing so masked would indicate a poor design).

As a result, only a small part of the cycle time of a QDI unit will be affected by the delays of

computation. One of Our design objectives for pulsed circuits is to increase the proportion of the

cycle that is the logic delay. As we shall see, however, we do not attempt bringing the cycle time for

a complex system below ten transitions per cycle. Also, owing partly to Our way of automating their

compilation, the pulsed circuits will have more uniform completion-delays than the QDI circuits we

are familiar with. We should keep in mind that the logic delay that is the largest and the most

variable is the "falling domino" transition. Increasing the delay of this transition can only improve

53

things so far as the circuit's satisfying the single-track-handshake constraint goes; in other words,

if the uniform-delay model suggests that a pulsed circuit is correct, then the real circuit delays will

only improve the operating margins if the logic-computation delay is increased compared with the

other delays.

Thirdly but not least importantly, the equal transition-counts assumption can for several reasons

be self-fulfilling. For instance, let us assume that we have decided to use a uniform implementation

for pipeline stages, i.e., an implementation whose every stage runs at the same speed, counted in

transitions per cycle. As we have seen, the compiction circuitry will be similar from stage to stage.

Thus, if a process is part of a pulsed pipelinQ, and the completion delays are uniform throughout the

pipeline, then the designer will feel an urge for making the logic delays equal also, since the cycle

time of the pipeline as a wholQ will be determined by the slowest stage.

In summary: the MiniMIPS experiQnce shows that our assuming the transition delays to be

equal can be a useful model; the general nature of pipelined asynchronous circuits suggests that

equal transition-counts are not, as we might fear, an unnatural design corner for the circuits to

be shoehorned into; on the contrary, a good designer's tending to equalize delays throughout an

asynchronous pipeline will lead to a circuit with roughly equal transition delays. Hence equal

transition delays are likely a natural endpoint in the design space.

If we consider circuits that are desigrwd more with reducing energy dissipation in mind, not for

maximum speed as we assumed above, the situation can become more difficult; we might not want

to match equal transition counts. But this is not an essential difference: in either case, we shall

eventually have to verify that the transistor implementations of the pulsed circuits have delays that

satisfy the single-track-handshakQ constraint to an acceptable degree.

5.2.2 Transition-count choices in pulsed circuits

The preceding section has made the case that transition counting can be an effective way of esti

mating delays in asynchronous circuits, with the caveat that the prophecy of equal delays for equal

transition counts partly needs to be self-fulfilling. A corollary of our using transition counts for

estimating delays is that when we should like particular delays to be equalized or ordered (i.e., in

amount: we might always want the delay from transition (), to transition c to be larger than that from

transition b to transition d) in a circuit, a first-order approximation of the required delay-ordering

is arrived at simply by requiring the corresponding ordering of the transition counts.

The inverting property of restoring CMOS logic implies that the number of transitions per

execution cycle must be even if we will ensure thu possibility of a circuit's returning to its initial

state (e.g., as in an execution cycle of a CHP program); furthermore, any circuit that is symmetric

in the sense that up- and down-going transitions take similar paths-e.g., through the same circuit

54

elements-must have a transition count per cycle of the form 4n + 2.1 While the simplest QDI

circuits are symmetric in this sense, this is only one way to design things. And just as for the QDI

circuits, it is not necessary for the pulsed circuits to have this kind of symmetry: on the contrary,

one of the purposes of our developing pulsed circuits is that these circuits can be asymmetric; the

asymmetry allows our avoiding a good deal of work due t.o the circuits' checking for the occurrence of

transitions that we know must. anyway occur. The asymmetry is illustrated by Figures 5.1 and 5.2;

the fact that the up- and down-going transitions follow the same path in the QDI implementation in

Figure 5.1 is illustrated by the forward-path (for the QDI circuit, [ri]; ret , for the STAPL circuit,

[ri]; ...) and backward-path arrows (QDI, [,r"i]; r'ct , STAPL, ... ; rit) in the middle process and

[,ra]; ret in the one on the left), which hoth go through the completion circuitry, whereas they do

not in the STAPL implementation in Figure 5.2.

~-----------------

logic , .,
block

c

,------------------

"' i· 1 ,
"' \" ..

\""/
'.c.
~". "
1'<" , "

c

Figure 5.1: Path from input's arriving to acknowledge in QDI circuit: dotted, forward path; dash
dotted, backward path.

If we want the single-track-handshake timing-const.raint to be satisfied in terms of transition

counts, we have the following choices: each lTv must be equal to the delay of an odd number of

transitions, at least three (because a self-invalidating CMOS-gate does not work), and each ~v must

be given an odd number of transitions larger than the corresponding av (but see below).

As we earlier alluded to, a happy-go-lucky design-style might allow ~v ~ a v ; in this case, we

could allow the transition counts to be equal. SPICE simulations show that this may be reasonable.

In practice, a choice of ~v ~ a v may lead to the single-track-handshake constraint's being violated.

The result of this need not be disastrous, however. Because the violation persists for only a short

ITo see why this is so, consider the handshake [r'e]; nit; [~re]; nIt. Since the total effect of executing the path
from rdt to rd.j,. amounts to an inversion of rd (in addition to possibly many other activities), this path must consist
of an odd number of stages of logic, e.g., 2n + 1. If now the circuit is symmetric iu the way described, then the path
from rd.j,. to rdt is the same length, so that the total cycle time tc = t"dt-->rdt + trdt-->""dt = 4n + 2.

I--------------------------~

logic

, , ,

55

----------------, ,

~--------------------------

~-------------------------\

,

,

Figure 5.2: Path from input's arriving to its being removed in STAPL circuit: dotted, forward path;
dash-dotted, backward path.

period of time, and because the violation occurs during a "handoff" (the driving of the node is passed

from the sender to the receiver; the sender becomes the receiver, and the receiver, the sender) that

guarantees the inputs' being monotonic, the effect is merely some extra power consumption because

a node is briefly being driven both to Vdd and to GND. If the timing mismatches are not too large,

then this situation is no different from what occurs in normal combinational logic when the input

switches through the forbidden region, during which time both the pull-up and pull-down transistors

are (weakly & briefly) tied. We must also remember that this particular problem is present in many

modern synchronous clocking schemes for the very same reason that we see it in pulsed asynchronous

circuits. 2 Finally, it is also present in the pulse repeaters we studied in Chapter 3.

To determine the cycle time of a STAPL handshake, let us refer back to

P : * [[....,rd]; rdt] II Q : * [[ni]; 1'(1+] .

The trace of executing this handshake is nit; ni..[.; nit; rd..[.; We shall compute the time taken

from an rdt to the next rdt; this is the cycle time.

After the rising edge of rdt, the driving process must not hold rd high for more than O"true

time units. Likewise, the receiving process must not begin executing rd..[. until ~true time units have

passed. Since we have ~true 2: O"true, we know that rd..[. can begin at the earliest after ~true time

units have passed. Repeating the argument for tIl() down-going part of the handshake, we should

find that the cycle time for a STAPL circuit is constrained so that

tc 2: l;true + l;false. (5.1)

We have previously experienced problems whell building asynchronous circuits with very fast

feedback paths; in Section 4.4, for instance, we saw what could go wrong if the delays on a three

transition feedback path were not carefully adjusted. This is a strong reason for avoiding three

transition feedback paths and hence for requiring 0"" 's being at least five transitions' worth of delay.

2High-performance clocking schemes using a "delayed reset" suffer from the same problem; the designers' response
has been to make an effort to match the delays to minimize the crowbar currents [83].

56

The author believes that a design with ~v ;:::: O"v with all these equal to five transitions is safer than

one where ~v is five and O"v is three transitions. Whether this justifies the inevitable performance

loss that results from our going from an eight-transition cycle time to a ten-transition cycle time

is unclear; but we might also find it difficult to implement the amount of logic we should like in a

single process in as little as eight transitions per cycle (see Section 6.3), and we should remember

that a circuit with different numbers of transitions on its set and reset phases will necessarily have

to be implemented asymmetrically, which makes designing it more difficult (see Section 3.2.4).

For all these reasons, we shall mainly study STAPL circuits with ~v ;:::: (J" and all equal to five

transitions' delay. These circuits will also have thf~ minimum reasonable input-to-output latency,

which is two transitions' delay.

5.2.3 Execution model

In the next few chapters, we shall see the STAPL circuit family described in terms of production

rule sets (and the corresponding transistor networks according to the usual transformation rules

developed for CMOS QDI circuits). Because the PRS of a STAPL system is not QDI (or speed

independent), we cannot use a model where every PR can take an arbitrary time before it fires. We

shall instead assume that all PRs take a single time unit from becoming enabled to firing, except

when we say otherwise. PRs that take more time to fire will be labeled thus: (n) a -7 bt will take

n time units from becoming enabled to firingY

5.2.4 Capabilities of the STAPL family

Lines's work, which establishes a straightforward way of compiling QDr circuits with reasonable

capabilities, has inspired the capabilities that we !mclow our STAPL circuit family with. His methods

deviate from earlier practice: the more traditional asynchronous design procedure starts from a high

level CHP program, decomposes it into many small CHP programs, picks reshuffiings (HSE), and

thence compiles into production rules. Linus's work, on the other hand, suggests that a large class

of QDr circuits can be built efficiently by translating rnonc or less directly from decomposed CHP

processes to production rules, thus avoiding the frequent explicit use of the HSE level of description

(naturally, the compilation procedure itself implicitly represents the HSE).4

For pulsed circuits, the reshuffiings arc necf~ssarily simpler than the allowable four-phase QDI

reshuffiings; consequently, the HSE is ev(m less important for the working deSigner (the use of HSE

3What happens if a PR's delay is different in re,tlity from what we have assumed? See Section 5.2.5.
4This is not to say that Lines's work was the first to be able to compile directly from CHP to PRS. In early

work, Burns and Martin [13, 15] translated directly from CliP syntax to PRS; later on, the Philips group's work on
Tangram has done the same [9]. Indeed, Lines does not prescnt a completely automatic way of doing the translation:
the difference between Lines's work and the other direct ClIP-to-PRS work is his (implicit) use of a slack-elastic
dataflow model and process templates at the lcvel of a QDI buffer rather than at the much lower level of the various
syntactic constructs of CHP.

57

is crucial in this thesis, where we are examining the reshllfflings themselves; but once a reshuffling

has been picked, there is much less leeway for the designer to affect the protocols that processes

use to communicate). Also, the meaning of production rules is less clear for pulsed circuits; in this

thesis, the author has chosen to use production rules as a convenient representation for transistor

networks; the reader should not infer from the syntactic: similarity to the PRS used in QDI cir

cuits that the properties that are true of production-rule sets in QDI circuits-viz., stability and

noninterference [54]-also are true of pulsed circuits.

The differences between QDI and APL circuits at the HSE and PRS levels are a good reason for

our taking a higher-level view in describing the family of STAPL circuits. The higher-level approach

will require our compiling directly from a level of description corresponding to small CHP programs

into circuits. We shall see how to formalize the compilation in Chapter 7; for the time being, we

refer to the capabilities informally.

STAPL circuits should be capable of basic dataflow operations:

• Computing an arbitrary logical function

• Computing results conditionally

• Receiving operands conditionally

• Storing state

• Making non-deterministic decisions

• Communicating with four-phase QDI circuits

In the rest of this chapter, we shall explore how to provide each one of these capabilities in

STAPL circuits. Our final goal will be a circuit template that simultaneously admits of as many of

these capabilities as possible, because such a template will allow the direct compilation of as wide a

class of CHP programs as possible.

Most of the work we have to do in implementing the STAPL family consists of reconciling the

handshake specification of O"v ~ ~11 ~ 5 transitions with the CHP specification of each circuit. We

build up the circuits gradually, showing at each stage how the mechanisms required for building any

desired STAPL circuit may be combined.

5.2.5 Design philosophy

In this chapter, the various techniques that we need for implementing the building blocks that

we shall ultimately want are presented one at a time. Therefore, the reader is here cautioned

that, especially in the earlier sections of tlw chapter, many of the circuits will be presented in an

58

incomplete or at least not generalizable way so that they shall remain understandable. The sum of

the techniques is what we should properly call the STAPL design-style.

Since our circuits depend on satisfying certain timing assumptions to work, we shall have to

proceed carefully. We shall use a few simple techniques for guaranteeing that the circuits will stand

a good chance of working properly. First, we shall always use the same circuit for generating the a

delays: a five-stage pulse generator. Secondly, we shall insist that the delay margins shall always be

(in the limit of instantaneous transitions) half a cycle, or five transitions: this is the best that can

be done uniformly. (This insistence will kad to our rejecting a "naIve" design in Section 6.4.3.1. We

will still sometimes make an exception from this rule when we can thereby remove the foot transistor

in simple circuits.) Lastly, the complicated logic will always be responsible for implementing the ~

delays; hence, if the logic gets slower (e.g., more heavily loaded), satisfying the timing assumptions

becomes easier, not harder.

The basic template that we shall implement will be of the following form: produce each output

as soon as possible (when the necessary inputs are available and when there is space in the output

channels), then wait for the other inputs that are to be received; when all inputs that are to be

received on a given cycle have arrived anel all outputs that are to be produced on that cycle have

been produced, reset all the inputs; and repeat.

5.3 The basic template

We start with a few simple STAPL circuits; thus we illustrate the basic properties of the circuit

family. The simplest useful circuits in the family are the bit generator, the bit bucket, and the

left-right buffer. 5

5.3.1 Bit generator

The STAPL bit generator implements the CHP program

p == * [R!O] ,

or in terms of HSE,

5The reader should be cautioned that some of the mechanisms that we develop may appear to be very ad hoc.
In some cases, it may even seem that there are milch Himpler waYH of implementing the specifications. This is true:
the bit bucket and left-right buffer could be implemented more simply without violating the single-rail-handshake
constraint. The reason for the more complicated implementations we give here is that they generalize; i.e., they lead
naturally to the implementations in Sections 6.3.3.2 and 6.;3.3.3. The author feels that this method of exposition, while
slightly illogical, is more understandable and pedagogical thau the alternative of first presenting the full template and
then presenting as examples the special cases that we now Htart with.

59

The bit generator will illustrate how to transmit data in the STAPL family. The basics are simple:

we wish to send a zero value on R repeatedly. For each value we send: P must first wait until its

communication partner-call it Q-signals that it is ready to receive, which Q does by lowering

any asserted data wire; secondly, after the imposed setup-time ~false, P asserts the zero rail of the

channel; thirdly, we must ensure that P no longer drives the rail after the hold time O"true has passed

after the rail's being asserted.

5.3.1.1 Output completion

Using the precharged implementation suggested previously for the circuits, we find that the mini

mum delay in a STAPL stage from an input's being asserted to an output's being asserted is two

transitions. Furthermore, a STAPL stage is not allowed to produce outputs until five transitions

after its partner has removed the previous output fi"OIn the channel. This means that the logic path

bringing flow control from the output rails to the domino block must be three (5 - 2) transitions

long.

5.3.1.2 Forward path

Since the bit generator does nothing besides generating outputs, we can now start deriving a STAPL

implementation. The only thing that remains to sort out is what to do with the remaining rails

of the channel: since we know that only P will scnd on R, we can tie the other rails to GND and

ignore them in P. This results in the HSE

straightforward compilation of the "forward path" [,rOJ; rOt results in the partial PRS

(3),rO --+ ret

re --+ rO_+

,rO_ --+ rOt,

where the annotation "(3)" means that the produdion rule in question shall take three transitions

to execute. The corresponding circuit is shown in Figure 5.3; the use of the NOR gate in the figure

in place of the inverter of the PRS suggests how the R channel could be generalized to multiple rails.

5.3.1.3 Pulse generation

We shall finally see how rO_ is precharged. The bit generator is particularly simple, and all that is

required for pre charging is a sequence of inverters. The final PRS, with the PRs listed in order of

execution, is as follows:

60

rO

Figure 5.3: Forward (compute) path of STAPL bit generator.

(3).rO -t ret

re -t rO_-l-

.rO_ -t rot

(4).rO_ -t rH

(3)rO -t re-l-

.rf -t rO_t

(4)rO_ -t rft

The final circuit is shown in Figure 5.4, where we see the expanded version of each PR. Although it

is not shown in the diagram, all nodes that are dynamic must be staticized; nodes that are pulsed

may be staticized with a resistor to Veld, whereas those that hold state must be staticized with a

cross-coupled inverter-pair with weak feedback or an equivalent latching circuit. (The bit generator

does not have any nodes that hold state.)

5.3.1.4 Execution

It will be instructive to make a timeline for P's execution, labeling each transition with the time

when it occurs. Starting with the fall of rO at t = - 3 (the rationale for this choice is that we shall

61

Figure 5.4: Complete STAPL bit generator.

consistently have the inputs to the domino block become active at t = 0), we get the following:

action

root
ret

rO_t

rOt

rit, ret
rO_t

rOt

rit

ret

-3

()

1

2

5

6

7 +()

10

H)+il

--

--

time

(-3) + 3

1+4

2 + (5 + il)
6+4

(7 + 8) + 3

-- 2+3

An arbitrary delay, 6, has been added to the response time of process Qo This 6 accounts for the

pulse-signaling constraint's being single-sided on the response time of Q: Q may respond to rOt

after ~false has elapsed, but it need not; the arbitrary extra time that Q lingers in a particular

execution is captured by 6. This allowed, arbitrary il is what makes the design style asynchronous

and composable.

5.3.1.5 Constraint satisfaction

Let us verify that this circuit satisfies the single-track-handshake constraint. Calling the pulse

generator P and its neighbor Q, we must check that P obeys O"true and ~false on 1'0 and Q obeys

O"false and ~true. We assume all the O"S and ~H are five time units (transition times). Since we are

62

here describing the bit generator, we shall postpone the verification for Q to the section on the bit

bucket; we shall assume that Q does its part and resets rO at the earliest five time units after P has

set it to true and that Q holds it false for no more than five time units.

Process P drives rO from the time rO_ goes down until it goes back up; this is 6 - 1 = 5 time

units, as desired. Likewise, after rO goes down at -3, P does not attempt driving it until at 2, again

five time units. These things are clear from the production rules.

We should note that the pull-up transistor that causes rot must be sized large enough to drive

the actual output most of the way to Vrlrl during the pulse. This means, for instance, that the

only way of handling intrinsically long-delay outputs (e.g., outputs that themselves behave like RC

loads rather than, as we have assumed, mere capacitive loads) is to slow down the circuits. We

should hence not expect to use STAPL signaling off-chip or even on very long on-chip wires (see

Section 8.2.3).

5.3.1.6 Remarks

A few things are noteworthy in the trace of P: r:f t and ret occur after the same number of transitions;

falling transitions occur at odd time indices, rising transitions at even indices; there are two "extra"

transitions in -lTO --t ret, and three in -,rlL --t r:f t, that we have not made use of (in the sense that

they are realized with inverters, but we could conceivably introduce logic instead; we cannot remove

them completely since then the circuit would no longer satisfy ~false).

First, the fact that rf t and ret occur at the same time is evidence that an important general

design principle has not been ignored: the inputs to a logic gate's arriving simultaneously ensures

that the gate spends the least possible time in an idle state. We shall see later that we cannot

always trust re as sufficient How control, and we shall sometimes have to use re 1\ rf in the pulldown

network; re and rf's being synchronized will then be of even more value.

Secondly, the strict alternation of falling and rising transitions suggests that a direct CMOS

implementation is possible. We shall see that we can maintain this property while generalizing the

design of the bit generator.

Lastly, we shall also find the "extra" transitions useful in generalizing the circuits; it is for instance

obvious that the three transitions allotted to the path -,r() --t r·et could be used for implementing

the neutrality and validity checks of wide channels, e.g., 1-of-8 codes.

5.3.2 Bit bucket

The bit bucket is the counterpart to the bit generator; its CHP is

63

where the use of the underscore variable _ signifies that the process should discard the incoming

values, which it has read on L. The corresponding HSE is

* [[zo V 11J; lOt, 11t J ,

where every lOt, 11t except one is vacuous. The bit bucket's specification is similar to the bit gener

ator's; and this suggests that we might be able to reuse the bit generator design, with appropriate

modifications. However, this approach would not be suitable for generalization to the more complex

units that we shall study later, because of our asymmetric choice of delays in the STAPL family:

two transitions for the path inputt-to-outputt (the forward latency), but five transitions for inputt

to-inputt (= ~true). Therefore, we develop the bit bucket quite differently from how we developed

the bit generator; this will serve the purpose" of providing an example of the input circuitry required

in a generic STAPL unit.

5.3.2.1 PRS implementation

Although the bit bucket does not require the input values on L for any computation, it obviously

cannot work without detecting the presence of inputs. We introduce a "dummy output" for this

purpose; it is convenient to choose this output to he a single-rail channel-we call it X -, which

cycles for every L received. The node implementing X, :L, is precharged in the same way that the

domino output is precharged in the bit generator. The corresponding PRS is

lO V 11 ~ x-t
(4)....,x_ ~ .7:H
....,xf ~ x_ t
(4)x_ ~ xft.

If we consider the case when 10 is the asserted input at t = 0, the execution trace is as follows:

action time

lOt 0

x-t 1

xH 5 - 1+4 -

x-t 6

xft 10 - 6+4 -

What remains is for us to ensure that tht~ input is removed at time index 5. We do this by, first,

adding output-validity circuitry (even though all we have is a dummy output); we call the node

that checks the output validity xv. Since :L is here a single-rail signal, this amounts to an inverter.

64

Secondly, we add a pulse generator for generating the pulse that resets the inputs. To minimize the

number of different circuits that shall need to be verified for timing and other properties, we arrange

that this pulse generator is as similar as possible to the :L pulse generator; i.e., it will generate

negative pulses; this being the case, the actual reset pulse will have to be generated by an inverter.

We introduce the names p for the intprnal, ne[!;ative pulse; pf for the precharge of p; and R4

for the positive reset pulse, where the "4" conveniently denotes that the pulse becomes active four

transitions after the input arrives (recall our convention of choosing for t = 0 the time of the input's

becoming defined). Hence the PRS:

lOvll -+ x-i

,x_ -+ xvt

(4),x_ -+ xf-i

xv -+ pi

'p -+ R4t

(4),p -+ pf-i

R4 -+ lOi, lli

,pi -+ pt
p -+ R4i

(4)p -+ Pft

,xl -+ x-t
,x_ -+ xvi

(4)x_ -+ xft

The circuit diagram IS shown in Figure G.5. Note that we have shown :rv as being within the

first-stage pulse-generator because we should consider it part of the output completion of the pulse

generator, not as an output. In other words, a pulse generator with a wide output channel would

still have only a single xv output.

10

65

first-stage pulse-generator

, ,
\

f

f

second-stage pulse-generator
----------- ---------

Figure 5.5: STAPL bit bucket.

,
\

5.3.2.2 Execution

The execution trace becomes as follows:

action

lOt
L+
p+
R4t

10+, xf +

x-t
pH
pt
R4+

xft
lOt

x_+
Pft

o
1

3

4

5

6

7

8

9

10

10+6

11+6

12

66

time

4+1 -- 1+4

3+4

5 + (5 + 6)

8+4

We should now verify that the bit bucket satisfies the timing constraints we claimed for it when

we verified the bit generator, in Section 5.3.1.5. There we claimed that the bit bucket does its part

and resets 10 (the bit generator's 1'0) at the earliest five time units after the bit generator has set it

to true and that the bit bucket holds it false for no morc than five time units.

We see from the production rules and the execution trace that the bit bucket indeed takes five

transitions to respond, satisfying ~true. Furthermore, the resetting of the input is handled by the

signal R4; this signal is active (high) for five transitions too, which satisfies {Jfalse.

We observe that the remarks of Section 5.3.1.6 hold for the bit bucket also.

5.3.3 Left-right buffer

We have seen enough detail in the description of the bit bucket and bit generator that we can

combine the two to build a left-right buffer. The CHP specification for the buffer is

BUF == * [L?x; R!x] .

We shall give the implementation of BUF for the case when Land R are one-bit (1-of-2) channels.

The HSE for B UF is then

67

* [[lO -----+ rOt D 1I -----+ rl t]; 10-1-, lI-l-, [--,r'O /\ --,rl]] .

5.3.3.1 PRS implementation

Except for the fact that both the output rails are used (and thus must be checked for validity), the

output looks like that of the bit generator, in other words,

(3)--'1"0/\ --,rl -+ ret

re /\ lO -+ r'O_-I-

re /\ 1I -+ rL-I-

--'1"0_ -+ rot

--'1"1_ -+ rlt

(4)--'1"0_ V --,rL -+ rH

(3)1"0 V rl -+ ret
--'1"1 -+ 1"0_ t, r'L t

(4)1"0_/\ rL -+ r/t

the inputs are handled as in the bit bucket:

--'1"0_ V --,rL -+ rvt

1"0_/\ rL -+ rv-l-

rv -+ P-I-

--,p -+ R4t

(4)--,p -+ pH

R4 -+ lO-I-, lI-l-

--,pI -+ pt

P -+ R4-1-

(4)p -+ Pit

The only thing that is different in B UF compared with the program that should result from

merging the PRs for the bit bucket and the bit generator is the two rules re /\ lO -+ 1"0_-1- and

re /\ 1I -+ rL-I-. These rules are responsible for the computation of the output, when a value arrives

on L, as well as for flow control, when the process that receives R is slow to respond. The complete

circuit is shown in Figure 5.6. An n-input pulse generator is made by replacing the first inverter in

the I-input pulse generator with an n-input NAND-gate, as suggested by the PRS.

pulse
gen.

68

xv

pulse

gen.

Figure 5.6: STAPL left-right buffer.

xv

69

5.3.3.2 Execution

The execution trace for this process, assuming that the first L and the first ret both arrive at t = 0

and that the counterpart on L sends 0, 1, ... , is as follows:

action

lOt, ret
rO_t
r'Ot

pt
R4t

lOt, 1'/ t, ret

ro_t
pH
rot
pt
R4t

rft

lIt

ret
rLt
pft

o
1

2

3

4

5

6

7

7+f

8

9

10

10+15

10+f

ll+max(15,f)

12

time

2+(5+f)

5 + (5 + b)

(7 + f) + 3

max((10 + b) + 1, (10 + f) + 1)

8+4

Arbitrary delays 15 and f have been inserted where the neighbor processes are allowed to linger; these

delays have the same meaning as the 15 of Section 5.3.1.4. Again, these allowable extra delays are

what make this design style asynchronous, i.e., compos able and modular.

5.3.3.3 Timing assumptions

Figure 5.7 shows how the different parts of the circuit satisfy the timing constraints: as promised, the

IJ pulse-lengths are controlled with pulse generators, and the ~ response-delays are delays through

the logic. We call the actual delays of the circuit, as opposed to the timing constraints, Strue, SfaIse,

Xtrue, and Xfalse.

While the single-track-handshake constraint only requires the conditions ~true ;::: IJtrue and

~false ;::: IJfaIse, our circuit implementations depend on lIlore than that. The handshake constraint

gives us the following constraints on Strue, 8false, :Dtrue, and Xfalse:

:' S "
" true .. :

'. .
.......

X
false

70

. S " !. faIS~:
x

true

....

Figure 5.7: Paths implementing the delays 8true, Sfalse, Xtrue, and Xfalse.

71

Strue < Utrue (5.2)

8false < O"false (5.3)

:r:true > ~true (5.4)

;r;false > ~false (5.5)

As we have remarked earlier, we always handle the 0" constraints with pulse generators; hence we

should expect Strue ~ Sfalse; O"true and O"false are abo of course approximately equal to the s's. Since

we have the difficult task of making sure that S is long enough for latching the output transistor yet

not too long to violate (5.2) or (5.3), choosing to generate oS with a single, well-characterized circuit

is the right thing to do.

The only part of the circuit that can be slowed down arbitrarily is the domino pull-down that

computes the logic; if the reset pulse is delayed, then the circuit may double-latch the inputs, and

if the flow control through the NOR gate and inverters to r'e is slowed down, then the circuit may

produce another output before it is allowed to do so.

5.3.3.4 Remarks

The left-right buffer consists mainly of a domino block and two pulse generators. One pulse generator

is used for generating the outputs of the circuit; the other is used for clearing the inputs.

Again, the remarks of Section 5.3.1.6 hold. We note that TL..(. happens only after both the

arbitrary extra delays before 11 t and TO.). have be~m accounted for; this means that, as required, the

circuit will not produce a new R until ~false time units after the old R has been consumed, nor will

it attempt removing the new L until ~true time units aftE~r the new L has arrived. Furthermore, we

should note with satisfaction that lO..(., rf..l., and r·e..!. are perfectly synchronized and will stay thus as

long as £5 and E are both zero; connecting buffers in a long chain with a bit generator at one end

and a bit bucket at the other end will keep them at Z(~ro. But it is a bad sign for efficiency that

several transistors in series are required in some places, viz. in the gates that compute TV and Tf;

we should like to avoid this kind of variance from tIl(" template because it introduces delays that are

more difficult to keep uniform across a large syst.em with diverse circuits.

5.4 Summary of properties of the simple circuits

So far, we have seen three STAPL circuits: the bit generator, the bit bucket, and the STAPL

dual-rail left-right buffer. The following properties hold.

72

1. Each circuit takes at minimum 10 transitions for a cycle (the time it takes to return to a state

once it has been departed).

2. If the environment of the circuit does not impose further timing constraints (in our discussion,

by setting 6 > 0 or E > 0), then the circuit takes exactly 10 transitions per cycle.

3. The forward latency of the left-right buffer is two transitions.

4. If the environment imposes 6 > 0 or f > 0, then the circuit slows down accordingly; i.e., flow

control is automatic.

5. The circuits can be implemented in CMOS; i.e., all the PRs are antimonotonic.

6. If the environment does not impose 6 > 0 or f > 0, then every input to every conjunctive gate

arrives simultaneously.

7. The static slack of the left-right buffer is one; its dynamic slack is, to first order, 1/5.6

8. Foot transistors, except for the flow-control transistor, are unnecessary.

9. The inputs of the left-right buffer lead only to the domino block; no extra completion is

necessary.

10. One or several NAND-gates with fanin equal to the width of the output channel are required

in the circuit.

Each one of these except the last is a desirable property. Unfortunately, not all of the desirable

properties can be maintained in more complex situations: specifically, we shall need foot transistors

and extra completion-circuitry in some cases. We shall be able to remove the NAND-gates' series

transistors, however.

6The static slack is the maximum number of tokens (data items) that a chain of bufters can hold when deadlocked;
the dynamic slack is the number of tokens held at maximum throug;hput. See also Lines [43J and Williams [85J.

73

Chapter 6

A Single-Track
Asynchronous-Pulse-Logic Family:
II. Advanced Circuits

Beware of the man who won't be bothered with details.

- William Feather

In Chapter 5, we saw how to design simple circuits in a pulsed asynchronous style: bit buckets,

bit generators, and a simple left-right buffer. This is not enough to do much of interest: even simple

processes like an adder or a controlled merge have behaviors that are not captured by these trivial

circuits.

We shall develop the modifications to the basic circuits by considering how to add the necessary

functions without breaking the mechanisms we have addecl before.

6.1 Multiple input and output channels

Let us consider the program

DBUF == * [L?x, M?y; R!x, S!y] ,

which is a simple example of synchronized input and output channels. In this form, this is not a very

useful program; as we mentioned, the compntation model that we are working in assumes that only

the sequence of values sent on every channel-not the relative timing of the communications-has

meaning, so DBUF could equally well be written * [L'?:r:; R!:z;] II * [M?y; S!y]. In a slack-elastic

program, the syntactic semicolon, like tIl() one in DB UF, is not what demands synchronization;

dependencies between different data computations are what demand it. But still we study DBUF

so that we shall see synchronizations in their simplest form; we do not yet want to think about the

reasons for and extents of data dependencies. 1

lWe discuss these issues more fully in Sections G.2 aile! 7.7.2.

74

We would never introduce unnecessary synchronization on the compute path of a STAPL process;

accordingly, we shall not invent an artificial scheme for synchronizing DBUF exactly as the CHP

has been written. Instead, we shall implement the program

DBUF2 == * [(L?x; R!x) , (M?y; Sly)] .

The synchronization between L, Rand M, Sin DBUF2 lies in the implied semicolon at the end of

the loop, which keeps the channels loosely synchronized (i.e., eL - eM ::; 1, etc. at all times).

We shall not burden our circuits with synchronization on the forward path (except for the needed

data synchronization); hence, at the HSE level, DB UF's synchronizes the channels on the reset phase.

In other words, assuming single-rail data,

DBUF == *[([Z 1\ 'rJ;rt),([rn 1\ .sJ;st) Z+, m+] .

75

6.1.1 Naive implementation

Most of the PRS implementation of DBUF is a straightforward composition of the two left-right

buffers we saw above; one may surmise that certain parts will have to be shared in order to accomplish

the synchronization, and that other parts cannot easily be shared. Examining the structure of the

left-right buffer (see Section 5.3.3.4), we see that we may attempt generalizing it~at first incorrectly,

it will turn out~into a new circuit that can handle several channels by using one pulsed domino block

for each output channel and one extra pulsed block for generating the clear signal for the inputs.

(The general scheme we use for generalizing the buffer's circuit structure is shown in Figure 6.1.)

The block generating the clear signal will accomplish the simultaneous reset of I and m specified by

the HSE. We should thus get the following PRS:

(3)'r -+ ret 1"1; A sv -+ p-J..

re A I -+ r--J.. 'P -+ R4t
'r_ -+ rt (4),p -+ pf-J..

(4),r_ -+ rt-J.. R4 -+ 1.J,.,m.J,.

(3)r -+ re.J,. 'pf -+ fit
'rf -+ r_t p -+ R4.J,.

(4)r_ -+ rft (4)p -+ Pit;

,r _ -+ rvt

r_ -+ rv.!.

(3),s -+ set

se A m -+ s_.J,.

,s_ -+ st

(4),s_ -+ st-J..

(3)s -+ se.J,.

,sf -+ s-t
(4)s_ -+ sft

,s_ -+ svt

s_ -+ sv-J..

note that the only PR that synchronizes the activities of the L - R block with those of the M - S

block is rv A sv -+ p.!..

6.1.2 Double triggering of logic block in the naIve design

From the experiments with the pulse repeaters of Section 3.2 we remember that an input staying

active for too long could cause a pulse repeater's consE)cutively interpreting that input as several;

76

the same problem could occur in DB UF. If for instance an input arrives by way of It but some

delay should intervene before the arrival of mt, then DBUF would not quickly reach the action l-!.;

as a result, I could stay true for an arbitrarily long time. The trouble this would cause is apparent

from an examination of the relevant PRs, those of the L - R block, viz.

(3)""'r -t ret ""'r:f -t r'_ t

re 1\ I -t r_-!. (4)r_ -t rft

....,r _ -t rt -,r'_ -t "''/It
(4)....,,,. _ -t ".n. r'_ -t r''/I+;

(3)r -t re-!.

there is here no mention of R4 nor of p; since it does not wait for these signals, this circuit would

read I as being true repeatedly; this would continue until mt occurs, when p and R4 will at last

pulse, removing I from the input and finally·-alas, too late!-putting an end to the nonsense.

The way to eliminate the repeated triggering of the L - R block is obvious. The issue is simply

that we did not properly implement the final semicolon in * [([[1\,r] ; rt), ([m 1\,s] ; st); l-!., m-!.] .

We cannot allow the L - R block's cycling twice before the M - S block has had its say. This is not

hard to do; we change the pulse generator so that it will have to be "armed" before it will cycle. We

do this by making the pullup of rl conditional on the arming Signal, which we call Rx. But is then

the PR r _ -t rit necessary"! Not if we guarantee that R:rt can cause rit only after r _ would have

caused it in the na'ive design; and this is easy to do, because we know exactly when r _ will go back

up, viz. at transition 6.

77

6.1.3 Solution

The naive design works properly and efficiently when I and m are synchronized; as long as they are

synchronized, Rx must re-arm the pulse generator at the same as in the naIve design. When I and

m are not synchronized, Rx needs to re-arm both pulse generators exactly when the later of I and

m should have re-armed it. From this discllssion, it is obvious that R.T can be a delayed version of

R4 since R4 already waits for the later of I and m.

Thus we arrive at a satisfying design that not only can be generalized to multiple outputs but

also does away with the pesky series n-transistors that were required by the static-logic design when

r _ carries data. The production rules for rf become

(4)-,r _ -+ rf.!

(?)Rx -+ rft.

By comparing the transition time-indices of Rx, R4, and the inputs, we find that rft should be

enabled at t = 10, whence we deduce that

(2)R4 -+ R6t

(2)-,R4 -+ R6..1-

(4)-,r_ -+ rf..l

(4)R6 -+ rft

will do the job.

For the scheme to work completely, we must eliminate the possibility that the inputs cause the

path re /\ I -+ r -..I- to turn on at the same time that rf is pulling 7"_ up. This is our first encounter

with the problem because of the fortuitous (and fortunate) way that the timing of rf always aligned

with that of re in the bit generator and in the left-right buffer. The solution lies in adding a foot

transistor to the PR for r -..I-; the foot's being gated by 'If will prevent the unwanted interference

(in the simple circuits of Chapter 5, the foot transistor is not required because the re node cuts off

the pull down path; since no other outputs are being generated, the pulse generator always re-arms

immediately-eight transitions-after the output is produced). Observe that the foot transistor

is required in an input-output domino-block if and only if there is in the process more than one

input-output block; i.e., it is required for all output channels if and only if there are in total two or

more output channels. No extra foot transistor is n~qllired in the p block.

We should of course make the corresponding changes for the S - M block; we can also introduce

a signal R8, defined in analogy with R6, thus removing the combinational pullup for p; as far as we

know at present, the only reason we should do this is to maintain the similarity between the L - R

and M - S pulse generators on the one hand and the p - R:I: pulse generator on the other; but see

Section 6.3 for a better reason.

78

Summing up, we have the PRS for DBUF:

(3).1' -t ret -'1'_ -t r'vt

rf 1\ re 1\ I -t r_.j.. 1'_ -t rv+

.1' _ -t rt (3).s -t set

(4).1'_ -t rf.j.. sf 1\ se 1\ m -t L.j..

(3)1' -t re.j.. ·s_ -t st

.rf -t r_t (4)'8- -t sf.j..

(4)R6 -t rft

(3)s -t se.j.. (4).p -t pf.j..

.sf -t s_t R4 -t l.j..,m.j..

(4)R6 -t sft ·pf -t pt

·s_ -t svt P -t R4.j..

s_ -t sv.j.. (4)p -t Pit

rv 1\ sv -t p.j.. (2)R4 -+ R6t

.p -t R4t (2).R4 -t R6.j.. .

6.1.4 Timing assumptions

With the addition of the R6 circuitry, some of the timing constraints that were present in the

simple circuits have become easier to satisfy: this is good because it may be more difficult to

predict the delays in these more complicated circuits. Specifically, the two constraints mentioned in

Section 5.3.3.3 are now easier to satisfy: the reset pulse's being delayed now cannot cause the circuit

to double-latch the inputs, because the reset pulse is used for re-arming the pulse generators, which

must happen before another output can be producl~d; similarly, adding the foot transistor removes

the need for re's switching early enough to keep the circuit from producing another output during

the same cycle.

6.2 General logic computations

We need to change very little in the buffer template that we have been studying for it to be used for

more general computations. If we consider DBUF from the previous section and compare it with a

half-adder, HADD, the kinship is obvious because

DBUF == * [L?x, M?y; R!x, Sly] ,

and

79

HADD == * [A?a, B?b; S!(a + b)o, D!(a + bh J ,

where the subscripts denote bit indexing. If we implement the computation of a + b directly on the

input rails, the calculation is self-synchronizing; i.e., no result will be produced till the inputs have

arrived. The only PRs for HADD that we need state are

se /\ sf /\ (a.O /\ b.O V a.l /\ b.l) -+ !L.O.}

se /\ sf /\ (a.l /\ b.O V a.O /\ b.l) -+ LH

de/\df/\(a.OVb.O) -+ (La.}

de /\ df /\ (a. 1 /\ b.l) -+ d_.l.};

the reader can easily infer the rest from the descriptions of the left-right buffer and DBUF.

6.2.1 Inputs whose values are not used

We can only trust the simple compilation, which appears to work in the case of HADD and DBUF,

when the logic computation is itself enough to implement the required handshaking behavior. When

the logic computation does not suffice for this, we shall have to add further circuitry.

An example will clarify. Let us consider a circuit that generates only the carry output of a

full-adder,

CADD == * [A?a, B?b, C?c; D!(a + b + C)l J ,

where the subscript "1" denotes bit indexing. By following the procedure we used for HADD, we

should arrive at the following:

de /\ df /\ (a.O /\ b.O V a.O /\ c.o V b.O /\ c.O) -+ (La.}

de /\ df /\ (a.l /\ b.l V a.l /\ c.l V b.l /\ c.l) -+ (LH

What is the HSE that we must implement? Omitting the details of the data computations, we can

say that it is at least

* [[a.O V a.I] , [b.O V b.lJ , [c.O V c.l] ;

[... -+ d.OtD ... -+ d.ltJ , a.O.}, (d.}, b.O.}, b.l.}, c.O.}, c.l.} J

But neither a.O /\ b.O V a.O /\ c.O V b.O /\ c.O nor a.l /\ b.l V a.l /\ c.l V b.l /\ c.l actually implements

[a.O V a.l], [b.O V b.lJ, [C.O V c.l], whence we must believe that something is amiss with this

implementation of CADD.

6.2.1.1 Aside: Comparison with QDI precharge half-buffer

The following discussion has been prepared for those familiar with the implementation of the QDI

precharge half-buffer (peRB) and the QDr weak-condition half-buffer [43J.

80

We may write the simple (dataless) QDI process2 * [A? _, B? _, CU in terms of HSE as

*[([aiJ; aot; [--.aiJ; ao,1-) , ([b'iJ; /Jot; [--.biJ; /Jo+) , (cot; [ciJ; cot; [--'ciJ) J ;

at present, we shall only be concerned with the inputs ni and bi, The handshake on an input,

[aiJ; not; [--.aiJ; ao-!-, may be broken down into the rising-edge input completion (also called input

validity) [aiJ, the acknowledgment aot, the falling-edge input completion (also called input neu

trality) [--.aiJ, and the reset phase of acknowledgment ao+, If data is used instead of merely bare

handshakes, then [aiJ becomes instead [nO Val V ' ',J, and [--.aiJ becomes [--.aO A --.al A ". J.

The essential insight that establishes that the PCHB compilation is often superior to the weak

condition half-buffer (WCHB) compilation is that it is unnecessary and usually unwanted to perform,

as the WCHB does, the waits required by a process's handshaking specification in the same opera

tors as the logic computation is performed. Performing the waits with these operators often means

strengthening the operators, which reduces their performance for two reasons: it adds extra tran

sistors in series, and it means that inputs that are not required for the computation of the outputs

are still waited for; and while our having to insert these waits is troubling enough, in the WCHB

we also have to insert neutrality waits for the down-going phase of the handshake; the terror when

we realize that this can compile to one additional p-transistor in series for every rail in every input

channel!

The PCHB avoids the completion difficulties of the WCHB by our compiling the two functions

of handshaking and completion into separate circuitry; the two parts are joined on the input with

isochronic forks, and on the output synchronized by a C-element, The very simple requirements

on the handshaking part allow an implementation that can be decomposed into OR-gates and C

elements; these operators can be further decomposed, if that should be deemed necessary.

If we observe a PCHB circuit, e.g" an implementation of our offending CADD, in operation, we

shall see the following. Sometimes, the logic part of the circuit uses enough information about the

inputs in computing its outputs that the input validity may thence be inferred; since, however, the

logic part has no p-transistors, it cannot possibly compute the input neutrality. In contrast, the

completion part of the circuit always checks both the input validity and the input neutrality.

In a STAPL circuit, input neutrality need not be checked. In effect, our timing constraints

guarantee that the inputs are neutral when required-·no p-transistors are required for this, and this

is of course one of the reasons that STAPL circuits are faster than QDI circuits.

In summary: the QDI circuit often needs only the p-transistors in the completion network; the

n-transistors are added so that the completion network itself shall be delay-insensitive. The STAPL

2 Traditionally, authors-Martin among others--havp uspd the notation A to signify a dataless synchronization,
thus emphasizing that a dataless synchronization is symmetric. This is sensible when there is no "direction" in the
synchronization, But communications almost always have a definite send-receive direction in the design style that
we are exploring in this thesis-the only reason for introducing dataless synchronizations is, with few exceptions,
pedagogy, This is why we shall still normally identify the direction of the synchronization, i.e" the party that sends
(AL) and the one that receives (A?_).

81

circuit does not need the p-transistors; hence we can also omit the n-transistors, except in those

unfortunate circumstances (as in CADD) where the logic computation is insufficient for always

checking for the arrival of inputs. In other words, in STAPL circuits the need for the completion

circuitry is much diminished, but not eliminated.

6.2.1.2 Solving the problelll

Obviously we shall need to add completion circuitry to solve the problem posed by the CADD

compilation. One way of doing this is simply to make the circuit's producing the outputs always

depend on its receiving inputs on all channels: this amounts to checking for the arriving of unneeded

inputs in the compute logic. Sometimes this is the preferred way of doing things; but it reduces the

slack and increases the number of transistors in series, so it often is not.

Indeed, the bit-bucket compilation suggests what needs to be done if we want to complete the

inputs without complicating the computing logic. We add to the circuit a dummy output 8 whose

task is checking that all the inputs have arrived before the Rx reset pulses are generated. While it

may sometimes be possible to do tricky things with the dummy output, it seems simplest to make it

an unconditional output that indicates only that all the inputs have arrived and nothing else; if the

normal outputs always check the arrival of certain inputs but not others, the dummy output needs

only check the others. We can specify it thus at the HSE level:

* [([a.O V a.1J, [b.O V b.1J, [c.O V c.l]; 8t), [... --+ d.OtD ... --+ d.lt]

8t, a.Ot, a.lt, b.Ot, b.lt, c.ot, c.H] ;

the negated sense of 8 allows implementing it as we implement the a_.x operators. The implied PRS

is

se /\ sf /\ (a.O /\ b.O V a.l/\ b.l) -t Lot
se /\ sf /\ (a.I/\ b.O V a.O /\ b.l) -t LIt

de /\ df /\ (a.O V b.O) -t (LOt

de /\ df /\ (a.l/\ b.l) -t d_.lt

8f /\ (a.O V a.l) /\ (b.O V b.l) /\ (d.O V d.l) -t 8t ;

since 8 does not leave the process, no 8e node need exist. Note that we get to keep the desirable

property that no p-transistors are required for the completion of the unused inputs.

6.2.1.3 Unconditional process telllplate

We now know how to implement as a STAPL circuit any process of the form3

3We may deplore the outward similarity of the parallel "," in <,'; :: Li?X, > to the merely syntactic function-call
"," in h(<, i :: Xi ». Making matters worse, the last comma on the program line is part of the English text; written

82

*[<,i:: Li?Xi > ; <,j:: Rj!/j«,i:: Xi » > J ,

as long as the process is reasonably simple; what is reasonable varies with technology and application.

In terms of circuits, the unconditional process template is schematically illustrated by Figure 6.l.

Any unconditional STAPL process can be built out of these pieces: one output block for generat

ing the data on each output channel, an input-clearing block for clearing all the inputs, and the

acknowledgment block for implementing the necessary sequencing in the process. Dummy channels

as mentioned in the previous section are simply implemented as output channels without the out

put p-transistors or flow-control NOR-gates. The areas marked "LD" in the figure will contain the

circuitry for evaluating the output functions. 4

6.3 Conditional communications

As is obvious from synchronous systems, in which we may consider the value that each node assumes

on every clock cycle as the result of a communication, the unconditional template we have so far

developed is enough for building a system that implements any arbitrary high-level specification.

As is equally obvious from the CHP programming-model, however, our using only unconditional

processes is not the only~or even the obvious~way to build message-passing systems: lately, even

synchronous designers are investigating conditionally message-passing systems; they do this in the

hope that they will thus be able to avoid the costs involved in communicating unnecessarily often.

It is not always clear when introducing conditionality into a system is a good idea, and deter

mining whether it is a good idea in a given situation would take us too far afield from the main

subject of this thesis; we shall simply assume that conditionality may be specified in the CHP, and

that when it is specified, it must be implemented.

6.3.1 The same program can be expressed in several ways

An elementary example of conditional communication is the split, viz.,

SPLIT = *[C?c, L?x; [c = 0 ----+ RO!:r Dc = 1----+ R1!x JJ

another is the merge,

MERGE = *[C?c; [c=O----+LO'?x Oc=1----+L1'?x J; R!x J.

The asymmetry (most noticeably, the differing number of semicolons) between SPLIT and MERGE

is somewhat illusory, due in part to syntactic issues with the CHP language. We might, e.g., write

thus, the program satisfies the author's sense of order but admittedly leaves him answerable to the charge of pedantry.
4The reason the circuit in Figure 6.1 does not generate [1,6 directly from R4 is to avoid that the designer's

imprudently overloading R4 should affect the pulse shape 011 R6.

83

(-----------------------------B--------------~

, R'

inputs one outp~t channel

input-output block ,- ----inputs ----------" J ~ ~ f- R 4 i 'op"t-ol''''09 blook

,
~-------------------_/

inputs one outpwt channel ,

,
~---_/

input-output block

r----------------------------------,

pulse

acknowledgment block

,

, , ,
6,

R'

Figure 6.1: Schematic version of unconditional STAPL template.

84

SPLIT == * [C?c; [c = 0 -+ RO!(L?) Dc = 1 -+ Rl!(L?)]],

MERGE == *[C?c; [c=O-+R!(LO?) Oc=l-+R!(Ll?)]];

in the slack-elastic model, rewriting like this in no way changes the meanings. Inventive persons have

carried this argument further, noticing that the receiving of c into an internal variable is needless;

the output or outputs depend on c as much as they depend on I, only in a different way. If we

insisted on our code's reflecting the symmetry between c and I, we should for example have that,

written with a single, implied semicolon,

SPLIT ==
*[[C=O -+ C?_, RO!(L?)

o C = 1 -+ C? _, Rl!(L?)

]]

While SPLIT seems at home with this transformation, the same could not be said for many more

complex processes; the synchronization behavior implied by our writing the processes in this way may

be closer to what we aim at in our HSE-PRS compilation, but the semantic advantage is outweighed

by the degree that the code is obscured to, and we hence shall usually take the position that slack

elasticity allows us: all the programs for SP LIT w(~ have given in this section are equivalent and

should compile the same.

6.3.2 Simple techniques for sends

There is a wide variety of ad hoc techniques available for adding conditional sends to QDI process

templates; we shall briefly study the simplest one before proceeding to general methods.

Consider the "filter" process

FILTER == *[C7c, L?:c; [c = 0 -+ R!:c Dc = 1 -+ skip]] .

The simplest QDI implementation of this process is arrived at by starting with a QDI left-right

buffer and to it adding an extra, dummy output-rail of '(' _; this appears not to work so well in the

STAPL family, because it appears that we shall need to add a dummy block for completing L when

c = 1. However, that the dummy block is required is a property of the output function-not of its

implementation; the dummy block would ill allY case be required because the outputs do not always

complete the inputs. For other circuits with conditional outputs, the dummy block may not be

required, because the input could be completed by some other, unconditional, output; or conversely

the dummy block may be needed because the output functions do not compute the input completion

even when the outputs are generated, as happened with CADD.

We give the PRS for '(' _ :

re A c.O A l.0 -+ r _.0+

reAc.OAl.1 -+ r_.1+

c.1

85

using re in the PR for r _.00+ is quite legal, but unnecessary. (Sharp eyes and minds will notice

that replacing the PR for r _. 00+ with c.1 A (l. 0 V l.l) --+ r _.00+ will, in this special case, obviate the

dummy block.) Being only an internal signal in FILTER, r _.00 has no output p-transistor.

6.3.3 General techniques for conditional communication-actions

We may solve the problem of conditional outputs by adding a dummy rail, but this is not always

the most efficient way of doing it; thinking about the behavior of the circuit, we should realize that

while no outputs are generated when r _.00 cycles, there is still much internal activity going on.

The situation becomes especially bad if most output circuits are not generating outputs on a given

cycle-they shall still have to cycle their dummy rails.

More seriously, the dummy-rail technique helps not at all if what we want is a conditional input.

That satisfying this desire is more difficult is clear if we consider that a conditional input implies,

among other things, conditional reset pulses. We cannot sidestep this difficulty by resetting inputs

that are not being used because we are required to keep our circuits slack-elastic: inputs must be

allowed to arrive arbitrarily early; hence resetting inputs that are not being used would violate the

handshaking specification.

6.3.3.1 A general method

We shall solve the problem of general conditional communications by introducing another domino

logic block. This domino-logic block will compute which inputs and outputs the process uses on

a given cycle. We shall avoid introducing new fundamental constructs by using the same kind of

domino block for the conditions as for the logic computations; this means that this conditions block

shall have a one-hot (i.e., l-of-n) output. In other words, depending on the input, the conditions

block computes which of several possible commu'TI,'';ca,tion patterns is being followed.

We shall illustrate the method by implementing SPLIT and MERGE.

6.3.3.2 SPLIT implementation

The SPLIT process has only conditional outputs; this will make the compilation simpler than for

MERGE. We first introduce an internal channel p_ that denotes the communication pattern. There

are two mutually exclusive communication patterns followed by SPLIT: receive on C, receive on

L, send on RO; and receive on C, receive on L, send on Rl: we call the former p_.O, and the latter

86

p_.1. Furthermore, we may consider p_ as the manifestation of an internal, unconditional channel

P, whence we may summarize the communication patterns in the table:

Condition When true Channels exercised

p.O C.O C L RO P

p.1 c.1 C L R1 P

Why can we not use c directly instead of generating the middleman p_? Admittedly, SPLIT is

a special case where we could implement the conditional communications more simply; but one of

the main problems is that if we try to use c directly, it becomes defined and needs to be reset at

the wrong times, viz. in each case two transitions after the other inputs. (Recall that the logic block

synchronizes c and l because they are both llsed in the same production rules; hence we cannot simply

require that c be presented two stages later by the environment.) This is an unwanted asymmetry

in the circuit; furthermore, the additional two stages of delay introduced by the conditions block

also allow our using much more complex conditions.

We make all the activity in the acknowledge block conditional on the communication pattern;

thus, p, R4, and R6 become one-hot codes (one-"cold" for p).

In any case, the PRS consists of the usual compilation for the outputs and additionally of

conditional-communication circuitry. First, the PRs for p_ and pare

pi 1\ c.O -+ p_.O..l

pi 1\ c.1 -+ p_.1..1-

-+ p.ot

-+ p·lt·

Secondly, since we need separate resets for the output channels, we can re-use them for resetting the

p's, so we have

R6.0 -+ p.O..l

R6.1 -+ p.1..1-.

Thirdly, the PRs for re-arming the pulse generators are now different for the different outputs

(strictly speaking, this is not required for the SPLIT, but in the general case, slack-elasticity requires

it; also, if a single output channel participates in several communication patterns, each one of the

corresponding R6's must be able to reset it), so that the pulse generators now become

-'1'0.0_ V -.rO.L

(4)R6.0

R6.0

-t rOvt

-t rOft

-t rOvt

(4)-'1'1.0_ V -.r1.L -t rlft

-.1'1.0_ V -.rl.L -t rlvt

(4)R6.1 -t dft

R6.1 -t rlvt.

Lastly, the PRs for p, R4, and R6 are

p.O /\ rOv -t p.ot

p.l/\rlv -t p·H

p.O -t R4.0t

p.l -t R4.lt

(2)R4.0 -t R6.0t

(2)-.R4.0 -t R6.0t

(2)R4.1 -t R6.lt

(2)-.R4.1 -t R6.lt·

87

Happily, all the input channels are completed by the outputs. In this compilation, all the logic

blocks (including the conditions block) require the extra foot transistor; as always, the p block does

not. Schematically, the arrangement is shown in Figure 6.2.

We may generalize the conditional communications of the SPLIT, thus implementing any process

of the type

* [<, i :: Li?xi > ; <,j:: [Gj(x) ---t Rj!fj(x)D-.G) (x) ---t skip] >] ,

where we for simplicity write x for <, i :: :1:; >.

88

--------------------------------------,
RS.i

inputs one outP~t channel

-----------------------------------, , , , , , ,

,
,---------------------------------------

input-output block ,-- ----inputs ----------',

: ~ ~ ~~ ~ /"p",-,.,""" "ID"
RS~O

i= ------ ---------------------------
acknowledgment block (only one rail shown)

inputs one outp~t channel

input-output block

R~

inputs

onditions block

Figure 6.2: Schematic version of conditional STAPL template.

89

6.3.3.3 MERGE implementation

The MERGE is similar to the SPLIT except for its conditional inputs, to wit

MERGE - * [C?c; [c = 0 ----t R!(LO?) Uc=1----tR!(L1?)]] ,

which compiles (in the dual-rail case) to

* [[c.O 1\ -'(1'.0 V 1'.1) 1\ 10.0 ----t r.ot , ZO.O-J,. , c.O-J,.

U c.O 1\ -'(1'.0 V 1'.1) 1\ ZO.1 ----t r.1t , 10.1-J,. , c.O-J,.

U c.1 1\ -'(1'.0 V 1'.1) 1\ n.D ----t T·.ot , ll.O-J,. , c.1.j,.

U c.1 1\ -'(1'.0 V 1'.1) 1\ 1l.1 ----t r·.l t , 11.l-J,. , c.l-J,.

]]

We shall need separate reset signals for the channels 10 and 11; since we must in any case have these

separate reset signals, we can take advantage of them and give c.O and c.1 separate resets; however,

introducing separate reset signals for each of the values of the channels ZO and 11 is needless and

would lead to a more complex circuit. Hence the program we implement is better described as

* [[c.O 1\ -'(1'.0 V T'.l) 1\ 10.0 ----t T'.ot , ZO.O-J,., ZO.l-J,. , c.O-J,.

U c.O 1\ -'(1'.0 V 1'.1) 1\ 10.1 ----t T'.lt , 10.0-J,.,10.l-J,. , c.0-J,.

U c.1 1\ -'(1'.0 V 1'.1) 1\ 11.0 ----t dlt, l1.0-J,.,I1.l-J,. , c.l-J,.

U c.1 1\ -'(1'.0 V T'.1) 1\ ILl ----t T·.lt , 11.0-J,.,11.1-J,. , c.l-J,.

]]

We compile MERGE in much the same way as SPLIT. If we introduce P the same way as

before, the condition table for MERGE hecomes

Condition When true Channels exercised

p.O C.O C LO R P

p.l c.l C L1 R P

The condition computation is identical to SPLIT's, but we shall have to generate the two reset

signals from two separate p signals; the PRS becomes

pf /\ c.O -+ p_.O-1-

pf /\ c.l -+ p_.l-1-

--,p_.O -+ p.ot

--'p_.l -+ p.lt

p.O /\ rv -+ p.O-1-

p.l/\ rv -+ p.l-1-

--,p.O -+ R4.0t

--,p.l -+ R4.lt

(2)R4.0 v R4.l -+ R6t

R6 -+ p.O-1-

R6 -+ p.l-1-

(2)R6 -+ R8t

(2)--,R6 -+ R8-1-

(4)R8 -+ p.ot

(4)R8 -+ p.lt,

90

where we see that introducing R8 becomes necessary (see Section 6.1.3) if we insist on avoiding the

long pulldowns of a static implementation of pf. The only drawback to our introducing R8 in this

way is that part of the path to the p pullups becomes dynamic, but this is a drawback that we have

long ago accepted for the first-stage logic blocks, so why not here too?

Conceptually, we should not find difficult generalizing the template of Section 6.2.1.3 so that it

covers conditional receives; however, the CRP language does not have the necessary constructs for

easily and unambiguously describing the semantics that we can implement, whence we defer this

issue to the next chapter and to Appendix A (see p. 182).

6.4 Storing state

Any method of digital design that aims at components' being used repeatedly must allow state to be

stored across circuit iterations. A simple circuit that requires storing state is given by the alternator,

which is specified by the CRP program

ALT == * [R!O; R!l] .

91

During an execution of P, it may be that ALT has lately executed R!O and will presently execute

R!l; that this is so and not the other way around (i.e., that ALT has lately executed R!l, et seq.)

need not be a fact inferable from any outside information. Therefore P must store state within itself.

6.4.1 The general state-storing problem

We have expressed all our programming problems in terms of repetitive programs with two parts:

receiving inputs, then producing results. In these general terms, a circuit's storing state becomes

necessary when actions in a later iteration depend OIl events in an earlier iteration. We shall extend

the template given in Section 6.2.1.3 t05

* [<, i :: Li?Yi > , <, k :: Xk := :r£ > ;

<,j :: RjlfJ(y, x) > , <, k :: .'Ck := gdy, x) >

] ,

whence it is already clear that the updating of a state variable is similar to receiving and sending

values on a channel-unsurprisingly so, since sending and receiving together implement a distributed

assignment. We may note in passing that complicating matters with conditional actions is unneces

sary since

... , [Go ---7 x ---7 skip]

is identical in effect to

... ; [Go ---7 x := go a -., Go ---7 :/: := :/:] ; ... ;

hence all state variable updates may, without loss of generality, be made unconditional.

How would one use the template? ALT will serve as an example. We need to rewrite ALT so that

it contains only a single send action per iteration; we replace the sequencing implied by the semicolon

with loop iterations and introduce a state variable for keeping track of the program's progress with

respect to the semicolon. The similarity to software compilation into assembly language statements

is clear: one could introduce a program counter to fold an arbitrarily complex sequential program

into a single statement. We have

ALT == x:= 0;

* [[x = 0 ---7 R!O; x:= 1

a x = 1 ---7 R!l; x:= 0

]]

A final rewriting will merely introduce the special intermediate variable x'; hence

ALT ==

x' := 0; * [x:= x' ; R!:I:, [:1: = 0 ---7 :/:':= 1 a x = 1 ---7 X':= 0]]

5If the program seems puzzling, please see Section 6.:3.:3.2 and also the footnote to Section 6.2.1.:3.

92

6.4.2 Implementing state variables

Observing that state-variable updates are similar to channel sends and receives, we can see that

state variables could be implemented with feedback loops-channels that lead from a process P,

possibly through buffering, back to P. P would send the updated state variable on, e.g., X' and

receive the new value, some time later, on X. This approach works, is easy to implement, and can

be reasonably efficient if there are not too many state variables in a system; it also has the advantage

that we can in some situations easily add pipelining, since it is now straightforward to pipeline the

state variable-the procedure we are alluding to is similar to loop unrolling and software pipelining,

and it was extensively used in the MiniMIPS processor.

The high costs of implementing state variables with feedback loops are obvious in the Min

iMIPS processor: they are due to the channel mechanism's being more powerful than is required

for state variables; in other words, channels carry more information-specifically, synchronization

information-than variables that may be read and assigned at any time; they hence work in many

situations where (shared) variables are insufficiently powerful; but using channels where variables are

sufficiently powerful is wasteful: taking the dynamic slack properties of Williams [85] and Lines [43]

into account, we can deduce that implementing a single-bit state variable may require as many as

four or five left-right buffers, which adds up to an exorbitant cost of several hundred transistors. In

short, the approach may be acceptable for infrequent use in control circuitry, but we should avoid

using it in datapath circuitry.

6.4.2.1 Issues with direct implementation

The better way of implementing state variables is implementing them directly. The main obstacle to

this is that, till now, all nodes in our STAPL circuits have had the same switching behavior; namely,

if we consider an iteration of such a circuit, each node either remains idle or switches with (ideally)

a 50 percent duty cycle, which means that in the circuits studied so far, the node goes active for five

transitions, then returns to its neutral value for another five transitions, and may go active again

at that time;6 as we have explored the handshake phases may be longer, but not shorter, than five

transitions in the presence of external synchronizations.

The symmetric and long pulses that appear ill normal asynchronous circuitry are due to the

handshake protocols that are used for moving data around. These protocols come at a high cost,

but this is often unobjectionable when the computation that is implemented is logically complex, as

is often the case in normal control or datapath circuitry. In the case of state variables, however, the

mass of extra circuitry that is needed for generating the desired symmetric pulses does in fact give

rise to the feedback loops that we have already deprecated.

60ur using the terms "active" and "neutral" ill place of true and false indicates that the argument applies to
logic that can be either positive or negative.

93

6.4.3 Compiling the state bit

To find our way out of the timing conundrum, we must abandon the similarity between handshake

variables and state variables. We shall instead explore a STAPL circuit with characteristics similar

to the state-variable compilation given by Lines for QDI circuits [43]. Our new compilation uses the

fact that the state variable is embedded inside a circuit that we already have timing information

about; in this way, we can achieve a very simple state-variable implementation that allows of using a

simple dual-rail, non-handshaking state-bit, but which at the same time can safely be accessed by its

parent circuit according to the parent's handshake timing. We shall see that the timing signals that

are necessary for a simple state-variable compilation are already available in the STAPL template.

6.4.3.1 Circuits

The simplest state variable (that does not need to be refreshed) is the SRAM cell, which consists

of two cross-coupled inverters and read-write circuitry. Whereas a standard SRAM has pass-gates

for reading out and writing the stored bit, we shall use different circuits, which will implement the

conversion between handshaking protocols and the state variable.

The state bit is shown conceptually in Figure 6.3.

read 1 read 0

write 1 write 0

read select

Figure 6.3: Basic state bit.

How can we generate the appropriate control signals for the state bit? Recalling the timing of

a STAPL process, we know that once we have generated the outputs (on transition 1 internally,

transition 2 for the outputs), we shall have eight transitions for getting the circuit ready for the

next set of inputs. We shall find it convenient to synchronize the arrival of the new state-bit value

94

with the next set of data inputs; this allows us the maximum time for computing the new state bit

without incurring a delay penalty on the next iteration.

Our first implementation of the STAPL state bit works as follows: on transition 1, the internal

nodes begin their active-low pulse; we use p-transistors to write the state bit immediately on tran

sition 2; this being done, the last reset pulse RS copies the new state bit to the input side of the

process. This circuit is shown in Figure 6.4.

other inputs

Figure 6.4: Naive state-variable compilation.

The corresponding PRS is

....,X_.o ~

....,x_.l ~

88_.0/\ x_.l ~

88_.1/\ x_.O ~

88_.0 ~ x.ot

88-.1 ~ x.lt

....,88_.0 ~ x.ot

8LOt

8LIt

8LIHt)

8LOHt)

RS/\ .T.O ~ .TX_.0.t.

RS/\ .7:.1 ~ .TL.lt

....,.T:L.O ~ 8.0t

....,:r::L.l ~ 8.1t

....,RS ~ :1:L.Ot

....,RS ~ J:;L.lt.

s.1

s.O

Here, we call the input to the circuit x_; this is the "output" of the parent. Conversely, the output

of the circuit, also the "input" of the parent, is called 8. The production rules marked (t) are

implemented with interference (weak feedback).

6.4.3.2 ProbleIlls

What are the problems that introducing this circuit into the STAPL family can give rise to?

95

We first note that we may have a problem when an input is asserted and it attempts setting the

state bit to a new value. When this happens, the n-transistor pulldown chain that is responsible for

setting the new value turns on at the same time that the opposing p-transistor is turned on. Hence,

we must make arrangements that ensure this situation's happy resolution; this is an instance of a

ratioing assumption. The only way we can solve this problem (short of using a much more complex

implementation) is by careful sizing and verification. This being a familiar problem, it should not

concern us too deeply.

Secondly, the worries that we had regarding tlw unusual timing relationships of the state-variable

nodes must be considered. When one side of the cross-coupled inverter pair is pulled down to GND,

the other side is pulled up one transition later; it may be a slow transition, but in either case,

there is no reason to believe that the timing relationship between this transition and the transitions

otherwise seen in STAPL circuits should be predictable. If we compare the behavior of a dual-rail

STAPL channel with the state bit, we see that the dual-rail channel ideally is defined five transitions

out of ten; the state bit ideally nine or-when it does not change-ten out of ten. The main issue

that we need to worry about is the new value's being generated too early and hence its triggering

an illegal 1-1 state (because it may be read one cycle early, when the old value is still available).

This is a real problem. R8 is, as we know, active (high) for five transitions, going high at

transition 8 and low at 13. If the state variable changes, however, the new value of x goes high at

transition 4, viz. transition 14 of the previolls cycle. Terror strikes! We have only a single transition

of delay margin; should x go high a little early or R8 be a little slow to reset, then the circuit may

enter the illegal 1-1 state, and all is lost.

Since solving the state variable's timing problem by delaying the variable's update would defeat

the purpose (this solution would turn the state variable back into some sort of feedback loop with

the same kind of timing as a channel), we must use something more unconventional. The problem

we wish to avoid can be seen from the following partial trace:

action tiIlle

.T.1t 4

R8t 8

:c:L.Lj,. 9

R8-l- 13

J;.(lt 14

whence we see that if the reset of R8 is dPlayed slightly, then .T:L.0-l- may become enabled at time

index 14. We introduce an interlock; this is a mechanism that keeps the circuit from getting into

the 1-1 state. Since xx_.l has fallen at time index 9, it is the obvious choice for the interlock; the

PRS for the state variable becomes

-+ SL.Ot

-+ sLIt

SS_.o /\ x_.l -+ SLLI·

sL.l/\ x_.O -+ SLOt

8S_.0 -+ x.ot

SL.l -+ x.lt

'S8_.0 -+ x.ot
,ss_.1 -+ x.lt

R8/\ x.O /\ xx_.l -+ xx_.ot

R8/\ x.l/\ xx_.O -+ xx-.H

'xx_.o -+ s.ot

'xx_.l -+ 8.1t

,R8 -+ xx_.ot

,R8 -+ xx-.It·

96

The circuit is shown in Figure 6.5. Compiled thus, the state variable is again resistant to minor

timing variations; in fact, the interlock makes the production rules for xx_ more resistant to timing

variations than the other parts of the STAPL circuit-the margin on xx_ is nine transitions, rather

than the usual five.

6.5 Special circuits

So far, we have seen circuits for buffering data, computing functions, performing conditional commu

nications, and remembering state. These are enough for implementing deterministic computations

that take place entirely within the STAPL model. The reader should see-if he does not, he might

want to look at the next chapter-that any deterministic logical specification could be implemented

straightforwardly in these terms.

The things that most clearly are missing from our model are nondeterministic devices (i.e.,

arbiters) and devices that allow us to communicate with systems built in different design-styles, e.g.,

QDI systems. The devices that we shall present al') solutions to these problems are different from

the ones presented so far in that they are not necessarily intended to be generalized.

97

s.1

other in--,-p_ut_s __ ,

s.O

Figure 6.5: Sophisticated state-variable compilation.

6.5.1 Arbitration

Whereas the prudent asynchronous VLSI designer avoids nondeterministic choice when possible,

he will find, prejudices notwithstanding, that there are situations in which nondeterministic choice

simplifies or allows a more "asynchronous" implementation. In the MiniMIPS for instance, we

introduced non determinism in two places where it naively appeared unnecessary: in merging the

cache operations in the off-chip memory-interface, and in the exception mechanism. In the former

case, the non determinism simplified; in the latter, it allowed a more asynchronous implementation

because it allowed the system's being designed without any prior knowledge of actual pipeline depths.

We shall implement arbitration in one way only; this we do with the program

ARB ==

*[[if -+ A,R!O

I B -+ B,R!1

]]

The reader will recognize that this program is at least sufficient, although perhaps not always the

most convenient, for implementing most interesting kinds of nondeterministic choice (but see also

Section 6.5.2).

We shall use the standard QDI arbiter (Figure 6.6) as the central building block of the STAPL

ARB. The only difficulty this causes is that the QDI arbiter takes more than one stage of logic; hence

we cannot simply insert it into a normal STAPL circuit. Instead, we provide for the extra delay by

omitting the second stage (the completion stage) from the circuit and instead using the grant lines

to reset the request lines directly. The resulting ARB is shown in Figure 6.7. In terms of PRS, the

circuit consists of the usual arbiter-filter combination [54], the usual STAPL pulse generator, and

b --'-----I

a ---.----/

98

filter
I------------~

I
I

u

v

Figure 6.6: "Mead & Conway" CMOS arbiter.

rf

g.O

xa

pulse

gen.

re

Figure 6.7: Complete STAPL ARB process.

'---i __ .---- r.1

L........! __ '----.-- r.O

99

re 1\ rf 1\ g.O 1\ r _.1 -+ r _.0..1-

re 1\ rf 1\ g.11\ r _.0 -+ r _.1..1-

r _.0 -+ xa..l-

-.r _.0 -+ xat

r _.1 -+ xb-J-

-'r _.1 -+ xbt

xa -+ a..l-

xb -+ b.!-

-.r _.0 -+ r.Ot

-'r _.1 -+ r·lf .

Since the circuit used here is slightly different from what we have used in STAPL circuits so far,

some care may be necessary to ensure that the circuit verifiably works.

Attentive readers will have noticed that the interlock we introduced for the state variable has

appeared again in ARB. We see why: the S-R latch used for arbitration is indeed a state-holding

element (albeit one that in these enlightened times is considered somewhat archaic); it has timing

characteristics similar to those of the cross-coupled inverters used in the state-variable compilation.

Consider a scenario that both inputs to the arbiter are asserted in. The arbiter chooses one, setting

in motion a train of events that ends in the chosen input's being deasserted. At this time, the output

of the arbiter will quickly change from a 1-0 state to a 0-1 state, in exactly the same troublesome

way that a state variable can change. This shows that if the interlock were not added, one output's

rising a mere single transition later than designed could cause fatal confusion.

6.5.2 Four-phase converters

Why would we ever convert to four-phase logic? Have we not covered all the kinds of circuits

necessary for building any system we might desire'? The practical man will know that sometimes

he will be called upon to interface his circuits with the outside world, from time to time even

to interface with inferior things he has little or no control over. In these cases, he may find the

synchronizer useful; and it is otherwise also one of the most practical circuits that we have not

given a STAPL implementation for. Our introduction of means for converting between the STAPL

family and four-phase QDI circuits ensures that the existing QDI synchronizer implementations can

be used; it also obviously allows our carrying over other convenient QDI circuits. For instance, the

extra design freedoms of four-phase logic appear to allow designing circuits that are very efficient in

100

terms of energy consumption or number of devices, by using creative and non-obvious reshuffiings

that efficiently encode complex control [54].

There are enough similarities between the STAPL handshake and the QDI handshake that con

verting between the two is not too difficult. The only thing that needs to be done is to make the

STAPL circuit respect the falling edge of the QDI handshake; i.e., it now has to wait for [-,li].

Because of the timing assumptions in the interface of STAPL circuits (0" and 0, the QDI circuit

that is to be interfaced with has to obey certain timing constraints. The easiest way of solving the

problem is probably to make a standard cell with a QDI interface on one side and a STAPL interface

on the other. Using the cells that we have already built, we can put together a QDI "weak-condition

half buffer" [43] and a STAPL half-buffer. We force the STAPL buffer to respect the QDI handshake

by not re-arming the pulse generator until [li] has occurred; for this purpose, we generate R6 by

completing the input channel rather than in the usual way. Figure 6.8 shows the resulting circuit;

notice how little extra circuitry is required.

q.e.;.. ____ --'

,

"R6"

,
qi.1:

I qi.O

xv

, , ,

~ _______________________________ J

QDI WCHB

vqi
qi.e

, :
1 ______ --- ________________ _

STAPL left-right buffer

Figure 6.8: QDI-to-STAPL interfacing cell built from a QDI and a STAPL buffer.

Converting from STAPL to QDI is about as easy. A circuit for doing it is shown in Figure 6.9;

the main changes from standard QDI and STAPL buffers are that the QDI buffer needs to reset its

inputs with a pulse, easily generated from its acknowledge; and the STAPL buffer waits for the QDI

acknowledge as well.

101

~---, ,
pulse xv
gen.

1---------------- 1 , ,
qi.1 xr--,-,- r. 1

>---- -:- r.e
qi.O

QDI buffer

~ __ J

ST APL buffer

Figure 6.9: STAPL-to-QDI interfacing cell built from a STAPL and a QDI buffer.

Simpler circuits could probably be designed for converting between the STAPL and QDI proto

cols. The ones we have seen however have the advantage that, since the conversion is implemented

with a pair of buffers and a few extra transistors, they easily generalize much the same as other

STAPL and QDI circuits do.

6.6 Resetting STAPL circuits

It should be understood that out of the 2N states that a digital STAPL circuit of N nodes can

be in, only a small minority are meaningful; for instance, any circuit that has more than one node

out of a one-hot channel true is in an illegal nonsense-state. Until now, we have been concerned

with describing the repetitive operation of STAPL circuits; we have described mechanisms whose

incorporation into circuits will allow these circuits' repetitively computing useful things, all the while

remaining in the legal parts of their state spaces; but how do we initially coax them thither?

Since an asynchronous circuit has no clock that governs its timing, it is in general difficult to

predict when it shall respond to a presented input. What is more frightening is that an asynchronous

circuit is by its nature self-invalidating; i.e., there is no legal stable state for an asynchronous circuit

to be in, because if there were, then the circuit would never get out of that state. Hence it is clear

102

that what we seek to do in resetting an asynchronous system is to put it in an unstable state, whence

it may proceed to execute normally. On the other hand, there is no requirement that the reset state

itself be a legal state that could be encountered later during execution, as long as we can show that

from the reset state we shall eventually encounter only legal states.

6.6.1 Previously used resetting schemes

The most commonly used resetting scheme in QDI circuits consists of introducing a single active-low

reset node called ReseL together with its active-high inverse Reset; this has been used in most QDI

projects undertaken at Caltech. The scheme works by resetting the circuit nodes to a known state,

call it n, when the reset nodes are asserted. Interference between production rules is allowed during

the beginning of the reset period, as long as it resolves itself within a limited time; no interference

is allowed afterwards. The time allotted to resetting is "long"; i.e., the timing of the reset pulse is

handled through a comfortably safe timing assumption. When the reset nodes are finally deasserted,

the circuit begins executing.

From the preceding, we understand that the actual initial state of the circuit from the point of

view of the CHP specification is not the reset state that is the fixed point achieved by asserting

the reset nodes, but rather it is the special state nlR t f' I R t t ,achieved just after our ese ----* a se, ese _--+ rue

deasserting the reset nodes. Designing the MiniMIPS, we realized that-while the timing assumption

governing the length of the reset pulse is unavoidable-it would be inadvisable to trust that the two

transitions ReseLt and Reset4-. occur simultaneously; we avoided trusting this by using Reset only

in downgoing production rules, i.e., by making the transition Rcsct4-. undetected by the circuit. To

complete the reset protocol, we arranged things so that the Rcsct4-. transition always occurs before

the ReseLt transition. Hence, the MiniMIPS reset procedure consists of the following succession of

states (where _ denotes an arbitrary state, which need not be legal):

-:::::;. n:::::;. nlR C I :::::;. niH f'l R eset--+.a se ,eset--+ a se, eseL--+true (6.1)

Since Reset4-. is unchecked, no circuit activity can take place between the second and third states in

the sequence, and we may again use a comfortably safe timing assumption. In practice, whereas we

handled the reset-length timing-assumption by gfmerating a pulse of the appropriate length off-chip,

the second timing assumption is most easily handled by a few on-chip inverter delays.

6.6.1.1 Go signal

There are obvious problems with the described resetting scheme. The first and most obvious is the

timing assumption used for sequencing Rcsct4-. and RcscLt. Secondly, the transition ReseLt causes

other transitions to occur immediately; hence, making this transition too slow could conceivably

103

lead to problems of the kind described in Section 4.4. The first of these problems can be eliminated

and the second alleviated by introducing a third reset signal, which we call Go. In the resulting

reset scheme, we cause the transitions to occur in the following order: first, reset in the state where

Reset = true, ReseL = false, Go = false; secondly, Reset.!. and ReseLt occur in any order; lastly,

Got shall occur after a comfortably long delay. The reason that this scheme is better is that ReseLt

no longer needs to do the double duty of on the one hand establishing R and on the other holding

back the execution; in other words, most of the load that was on ReseL can be kept on it and only

a small part shifted to Go, which is the signal that must switch reasonably quickly. The progression

of states is now:

=} R =} RI =} R I = R' =} R'I . - Reset-.;ralse' Reset-.;ralse,ReseL-.;true - Go-.;true'
(6.2)

we have here labeled the two stable reset states, Rand R', separately.

On the system-design level, a third problem occurs with the QDI reset scheme. Consider a "token

ring," i.e., a chain of buffers connected in a ring. We should like to think of these buffers as being

all of the same type, viz.,

BUF = * [L?x; R!x] .

Such a ring cannot be useful. It will do nothing, since all processes are attempting to receive but no

one is sending~sadly reminding us of dining philosophers that starve.

We can simply solve the ring-resetting problem by introducing an asymmetry; we shall then have

two types of buffer process, viz.,

BUFO

BUFI

*[L?x; R!x]

*[R!x; L?x]

and

The number of buffers of type 1 used determines the number of "initial tokens" in the system. While

correct and conventional, the solution leaves us unsatisfied. More precisely: when we are dealing

with a system that is described in slack-elastic terms, we are allowed to add slack after the CHP

description has been completed, during its compilation to PRS and circuits; we might want to put

the initial tokens in that extra slack when possible, but the form of description we have chosen does

not allow that; furthermore, once the decision has been made at the CHP level to call one buffer

BUFO and another BUFl, should we not expect that the top-down compilation procedure will yield

different implementations? But the same specification (and hence implementation) could be used

for both if the initial tokens could be shifted into the extra slack.

We thus get the impression that the placing of initial tokens should properly occur in a separate

phase of the design; it would then be possible that our ring of buffers should have processes only of

the type BUF. At this point, the possibility of using a single implementation of BUF may seem like

104

an insignificant advantage, but we shall see later (or may imagine now) that it would allow our using

a vastly simpler template for describing the CHP processes, which need not make reference to the

initial state: we should realize that the simplification, small for B UF, will be much more significant

for complicated processes, since a process with N channels may at reset have a token (or not) on

each of them.

Let us not deal further in hypotheticals: there is a catch. Normally, QDI processes have combi

national logic at their outputs. Hence, any scheme that should attempt resetting QDI processes in

two phases as suggested must have knowledge about their internals (it must reset the inputs of the

combinational logic, not the outputs).

Here the STAPL circuits have a definite advantage: they have a single transistor on their outputs,

so it is possible to create the initial tokens directly on the channels between processes. The reset

protocol that we use is the same as the modified QDI protocol: Reset = true, ReseL = false, Go =

false. Now we can choose to identify the two reset states Rand R' thus: R will be the starving

philosophers' state, i.e., when all processes are ready to receive and none is sending; R' will be the

state when all tokens that shall be created on reset have been created. The happy conclusion is that

we can design all processes so that they themselves attain R (when Reset 1\ ...,ReseL holds); we shall

separately add circuitry for getting from R to R' (when ...,Reset 1\ ..., Go holds).

6.6.2 An example

Let us now turn to a simple example. How should we reset the STAPL left-right buffer? From

above, we know that we need only concern ourselves with the empty-pipeline case. The goal will be

resetting the circuit with as few transistors as possible.

The most obvious places for inserting reset circuitry are the pulse generator and sequencing

circuits that must always be present in the same way. Considering the HSE for the (dual-rail)

left-right buffer,

*[(tH to -+ rot 0 II -+ rlt J; lOt, llt, [...,rO 1\ ...,rlJ J ,

we should like to reset into the state marked (t). Given a set of processes to reset, we choose the

following division of labor: each process shall be responsible for resetting its own internal nodes

and its own inputs. Hence, we shall have the various R4 nodes resetting in the true state (which

incidentally violates the otherwise sound property of their being mutually exclusively true): this

will clear the inputs. As for the internal nodes, we make the pulse generators reset into the state

where the precharge signal is active.

105

6.6.3 Generating initial tokens

So far we know how to reset a system so that all processes begin by receiving. We earlier mentioned

that we should like to create the initial tokens during the period when ,Reset 1\ ,Go holds. Doing

this is straightforward: tokens between processes are signified by true nodes; hence, all we shall need

to do is pull the nodes that we wish to reset up with two p-transistors implementing ,Reset 1\ ,Go.

Of course, we must check that Go switches fast enough that the isochronic fork is unimportant.

If we feel that we cannot arrange this, then we might have to add yet another reset node, e.g.,

ReallyGo, since strictly speaking, using Go for generating initial tokens violates a property implied

by Section 6.6.l.1, namely, the property that Go should be used only for holding tokens back from

execution, not for resetting things.

6.7 How our circuits relate to the design philosophy

In Section 5.2.5, we outlined a few guidelines that our circuits should obey. We have since developed

the bit generator, bit bucket, left-right buffer, multiple-input and multiple-output circuits, circuits

that compute arbitrary functions, circuits that do not use certain inputs, as well as a number of

specialized circuits.

For each one of the designs, it may have seemed that a new mechanism was invented out of thin

air. Of course, if we take a different view of things-if we consider the simpler circuits as special

cases-then these mechanisms may not seem so ad hoc.

Let us therefore examine Figure 6.2. How much of the design presented there is an inevitable

consequence of our design philosophy, and how much of it simply the result of arbitrary design

decisions?

First, while it is not exactly part of the design philosophy, the choice of two transitions' delay for

the forward path is a natural one: this choice minimizes the delay, given that we want to maintain

the same signal senses at the outputs as at the inputs. Using a single p-transistor per output rail

is clearly the simplest way of implementing the output part of the handshake, as is using a single

n-transistor per input rail for implementing the resetting of the inputs.

Secondly, we stated that we were going to implement the (j delays everywhere with pulse gen

erators: this gives us the puIlups for t.he internal nodes. But why can we sometimes get. away

with combinational pulse-generators and why do we sometimes need to use ones that are one-shot,

i.e., explicitly re-armed? Similarly, why do we sometimes need the foot transistor and why do we

sometimes not need it? The answer to these quest.ions is the same: in general, the one-shot pulse

generators and foot transistors are required. It is only in the very special case of a single output

that they are overkill, because with only a single output we can make an additional timing assump

tion; namely, we can assume that once we have produced the output, all the necessary inputs have

106

arrived; this is true even if some inputs are being ignored since we are counting dummy outputs

used for completion as separate outputs. We should note that the timing assumptions are slightly

more difficult to meet when we omit the foot transistor: if the foot transistor is used, we know that

the pulse generator cannot re-arm until the second stage has reset it; if it is not used, then a slow

falling transition on the output can cause the pulse generator to fire twice.

Thirdly, why do we use a second stage for computing what to acknowledge, and why does the

second stage have the form we have seen? Here we have mainly tried to keep things simple: the

same implementation is used for the second stage as for the first. Note that the reason that we can

omit the foot transistor in the second stage is that we can consider the second stage as having a

single output; namely, the internal channel R4, which always produces a result. As we have seen in

Section 6.3.2, there are other ways of implementing the functionality provided by this second stage.

Lastly, what of the special circuits: the arbiter, state bit, and four-phase converters? These

circuits are harder to understand directly within the stated design philosophy. The reason this is

so is not hard to see: the state bit is essentially a transistor-saving trick that eliminates much of a

feedback loop that could as well have been implemented with buffers, and the arbiter has the same

timing characteristics. In the case of the four-phase converters, we are dealing with circuits that in

any case do not obey our design philosophy, so it is not surprising that these circuits should look a

little odd.

6.8 Noise

When we speak of "noise," the implicit assumption is often that noise is due to some external

mechanism, or at least to some mechanism that we are not modeling properly, e.g., shot noise,

thermal noise, noise from outside electronic systems. But in more performance-oriented design

styles, the digital model is often just an approximation; the difference between the pure digital

model and the physical behavior of the system we can also loosely call "noise." Hence, we shall use

the term "noise" to denote any deviation from ideal conditions.

6.S.1 External noise-sources

External noise-sources are the easiest to deal with. In Section 3.3.5, we defined what noise margins

mean in pulsed circuits and left it up to the reader to come up with a metric suitable for making

sense of the multi-dimensional noise that we should find in such circuits. The noise has as many

dimensions as the test pulses in P have parameters, to use the terminology of Section 3.3; but apart

from this mathematical annoyance, noise margins in STAPL circuits are really of the same form as

in synchronous circuits, and may be treated similarly.

Are the noise margins wide enough in the circuits that we have studied? This is a quantitative

107

question, and there are several ways of answering it. First, we can flip back to Section 3.2.2.3, where

we should see that the input pulse lengths can vary between 1.0 and 12 normal transition delays,

and the circuit will still work as intended; this will probably satisfy most readers. Secondly, we

note that we can build STAPL circuits with any desired noise margins by manipulating the delay

in the feedback loops and the thresholds of the input logic; as long as the noise is smaller than the

signals we are looking for, we can build a STAPL circuit that works. Lastly, we can rephrase the

question thus: do STAPL circuits give higher performance for the same degree of noise immunity

than implementation technology X? This question is harder to answer; it does seem that the STAPL

circuits can be made almost as noise-immune as QDI circuits at much higher performance levels, and

compared with the highest-performance synchronous logic-styles, STAPL circuits achieve the same

or better performance. But the question will probably not be answered to everyone's satisfaction

until STAPL chips have been fabricated and are found to work reliably.

6.8.2 Charge sharing

The STAPL circuit family makes great use of dynamic (or at least pseudo-static) logic. Charge

sharing (between internal parasitic capacitances in a domino block and the output node) is the

bane of dynamic logic styles. The situation could be particularly bad in STAPL circuits because we

cascade dynamic-logic stages. (In the MiniMIPS, for instance, an effort was made to avoid cascading

dynamic logic by attempting to alternate dynamic and static logic as much as possible.)

The good news is, first, that the STAPL circuit family never makes use of p-transistors in series

driving dynamic nodes (the only p-transistors in series are in the circuitry that generates the re

signals), and secondly, that the timing behavior of STAPL circuits is much simpler than it is for

QDI circuits. For these reasons, we should not generalize all the bad experiences from high-speed

QDI design and think that things are only going to be worse in STAPL. The simpler timing behavior,

especially, allows using much simpler circuitry for avoiding problems with charge sharing. Since the

domino block never has its outputs "floating low" except potentially for a very short period of time

(because they are pulsed), we need not worry about sneak paths from Vdd to the output rails, as

long as the transistors along these paths are weak. Concretely speaking, we can systematically use

the circuit in the dashed box of Figure 6.10 for reducing charge-sharing problems. (This circuit will

not work in QDI circuits, because sneak paths from the resistor to the output could pull up the

outputs out of sequence when they are left floating.) The costs of using such charge-sharing avoiders

are that the circuits are a little slower and that static power dissipation is possible if some of the

inputs arrive but not the others (so one has to be a bit careful when introducing these circuits if low

power should be an important design objective).

108

I
I

-------------------,

p- rt

Figure 6.10: Circuit alleviating charge-sharing problems. Resistor implemented with weak transistor.

6.8.3 Crosstalk

Aside from charge sharing (more properly "static" charge sharing), something that causes reliability

problems in modern VLSI circuits is crosstalk (also variously called coupling noise or "dynamic"

charge sharing). Some authors (e.g., Balamurugan and Shanbhag [6]) have even suggested that

crosstalk noise gets worse when device sizes are scaled down. While arguments suggesting that

crosstalk noise gets worse because of Vrlrl scaling should be eyed with suspicion, it is on the other

hand true that the aspect ratio of minimum-size wiring on modern chips has made crosstalk worse:

using wires that are tall and narrow means that most of a wire's capacitance is to its horizontal

neighbors, not to the substrate.

The STAPL circuit family offers no special remedies for crosstalk noise; the dynamic nature of

STAPL circuits indeed suggests that they are susceptible to it. At the same time, we should not

exaggerate the problem: 1-of-4 encodings for instance allow signals to be routed so that a wire is

never routed adjacent to two "aggressors" (i.e., circuit nodes that couple strongly to the wire in

question). Furthermore, as we have stated elsewhere, a well-designed asynchronous circuit will have

most of its capacitance in the transistor gates (see footnote on p. 147). Finally, we can use our

circuits' being asynchronous by inserting extra buffering: this is easier than in synchronous systems,

since our timing constraints are less rigid.

In practice, the avoiding of destructive crosstalk noise will have to be done with design tools: we

shall have to map the noise margins that we have defined for STAPL circuits to specific circuit-design

guidelines.

109

6.8.4 Design inaccuracies

The most serious issue with STAPL circuits-the most serious way that the real world deviates from

ideal conditions-is probably design errors or design uncertainties. The reader has probably guessed,

for instance, that mis-sizing transistors in a STAPL circuit can cause the circuit to fail. Many

designers will be reluctant to give up their "ratioless" CMOS logic. It would also be unsatisfactory

if every instance of every circuit in a large STAPL system had to be sized specially just to keep

things working.

We can phrase it thus: assume that we have a STAPL circuit designed to work well in a particular

environment, and now it turns out that, e.g., the capacitance on its outputs is much higher than

anticipated-this can happen because our extractor is inaccurate or because we are lazily trying to

reuse a piece of layout that was designed for something else-what happens?

If we overload one of the STAPL circuits presented in this chapter, then its internal pulse may

not be quite enough for setting the output signal to Vrlrl; equivalently, we may consider the situation

when the output p-transistor is sized very large and the internal pulse is too feeble to set the output

to V dd. We can think of this as moving the normal operating point of the circuit to one where the

output pulse has a smaller height; in terms of the pipe diagrams, the operating point is moving more

or less along the arrow marked "I" in Figure 6.11. We can see that we shall have to overload the

circuit considerably before it fails (until the pulse height is about one half of normal-this is more

than double capacitance because the pulses have fiat tops/bottoms; they are not normally triangle

waves).

The ideal situation would be if the circuit could move along the arrow marked "2"; if it did that,

then we should have the largest possible noise margin. The STAPL circuits naturally move their

operating points somewhat to the right in the figure when they are overloaded by a too-large output

transistor because the pulsed node drives that transistor directly; the transistor's being larger than

expected causes the internal pulse to be wider than designed because it delays the rise and also the

fall of the pulsed node. It is possible to add further feedback from the output node (i.e., we could

add a transistor that senses that the output is being pulled up too slowly and then adds extra drive).

By using these kinds of mechanisms, we could aim the load line down the pipe and thus achieve very

good noise margins.

Single-track circuit-families have been studied in the past [8, 83]. These have tended to use much

stronger output-feedback than our STAPL family-recall that the STAPL family's circuits wait until

the inputs have arrived, but once they have been detected, the timing of the pulse is almost entirely

locally determined. As we have seen, the feedback wuld be a good thing, if it aims the load line in

the proper direction.

Why have we not studied these other kinds of circuits in more detail? The reason is that the

output feedback, via the internal-pulse length and height, affects the pulse widths that can be

:::::I
"'0
c
.-+

:::::r
eo

<5"
:::::r
c:t
<:

no

----~----------------------- Vdd
" I "

: "" 2
, 1 " " "

input length/[ns]

Figure 6.11: "Load lines" of pulsed circuit. 1: pulse becomes lower when the circuit is overloaded;
2: pulse becomes lower and longer.

tolerated on the inputs and it also affects-in the more complex STAPL circuits-the behavior of

the second stage of the circuit (the acknowledgment stage). In other words, the theory required for

explaining the circuit behavior becomes more difficult because changes at the outputs now cause

changed input behavior (i.e., we have to solve equations rather than just propagate functions; the

simple conditions on (J" and ~ will no longer be so simple). This will undoubtedly be an interesting

area for further research.

111

Chapter 7

Automatic Generation of
Asynchronous-Pulse-Logic Circuits

You cannot fight against the future. Time is on OUl" side.

- Gladstone (1866)

We have so far developed a theory accounting for the proper functioning of asynchronous-pulse

circuits, and we have developed some example circuits. While he who is skilled in slack-elastic QDI

design will see how, following the guidelines that we have laid down, he could realize any desired

computation in STAPL circuits, those not so skilled may not see as clearly how this should be

done. Furthermore, we should like to automate the design procedure from CHP-Ievel specification

to STAPL circuit, so that we may avoid both needless labor and the making of careless mistakes.

For these reasons, we shall now take a step back from the STAPL circuits and explain how we can

succinctly describe processes of the kinds that we discussed in Chapters 5 and 6.

We will design circuits at a high level of abstraction, i.e., in terms of digital abstractions. For

this, the abstract CHP-Ievel of description is ideal. Eventually, of course, we will compile from the

CHP to transistor networks, and thence finally to concrete geometric layout. In most situations, we

should like human designers to have to do as little work as possible: they are best at the abstract

work needed for generating the original CHP; they are not so good at intricate but mindless tasks

like logic minimization; and they are lazy. Hence, we should aim at designing processes or circuits

as much as possible at the CHP level, and we should permit describing the processes in as abstract

terms as necessary.

112

7.1 Straightforwardly compiling from a higher-level specifi-

cation

In software systems, we usually compile a program as follows. First, we convert the high-level

program into an intermediate-language representation; this is mainly a syntactic transformation

for streamlining the syntax of the program to simplify automatic translation tools' analysis of the

statements of the program. Secondly, we convert the intermediate-level representation into a dataflow

graph, which is an abstract representation of how each vallIe computed by the program depends on

previous operations and of how later operations depend on the value. Thirdly, we manipulate the

dataflow graph, aiming at lowering the cost of evaluating the statements it implies, but maintaining

its meaning. Lastly, we convert the optimized dataflow graph into a machine language program,

which can be loaded and executed by a processor when desired.

The technique that has been evolved for compiling software programs into machine language is

attractive because it cleanly separates the question of what is computed from how it is computed.

Specifically, given a simple program that performs actions that are independent, the dataflow graph

can be used to deduce this property. Having determined that the actions are independent, the

compiler can convert them separately into the target language. The dataflow graph also represents

the constraints on the reordering of actions in the program.

The dataflow technique can be applied to the compiling of HSE into PRS, but because the

necessary properties (stability and noninterference [54]) are global system properties, this is not

simple. The only known algorithms that work on general HSE programs conduct exhaustive state

space exploration. As far as is known, these algorithms all take exponential time in the worst case,

and they do not in practice work on large systems.

The difficulties of directly compiling from a higher-level description to PRS suggest that this is

the wrong way of going about things. A description of an algorithm at the level of the sequence of

actions on each bit (or electrical node) of a system is simply at too fine a level for most purposes.

Once an algorithm has been described in this much detail, it has been over-sequenced; and removing

the extra sequencing is too difficult. The bad level of specification that we speak of is exactly the

HSE level.

That the compilation from HSE to PRS is hard is not the only problem with this approach.

Another is that we have no trustworthy metrics for determining when one compilation is better than

another. While we could possibly develop such metrics for determining when a given compilation

result will run faster than another in a known environment, we may not know a priori all the

parameters of the environment where a circuit will operate; if we had to know these parameters

before compiling the circuit, we should certainly not be able to claim that the compilation procedure

is modular. And modularity is the principle, above all others, that we strive for in asynchronous

113

design. Better then to abandon the HSE level in our day-to-day design work and use PRS templates

for compiling directly from CHP to PRS; the resulting PRS could be trusted to work efficiently in

most environments. 1

7.2 An alternative compilation method

Because HSE is difficult to compile, we shall in this thesis-as we did in the MiniMIPS project

take the position that we should like to compile ab initio as seldom as possible. (In the MiniMIPS

project, we used only a few templates to compile almost all the processes into QDI circuits. Lines

describes most of these templates in detail [43].)

Compiling arbitrary CHP programs directly (i.e., syntactically) into circuits is possible [13, 9];

doing it efficiently is difficult. This is why we have chosen to compile only a restricted subset of

CHP programs into circuits; the particular subset we have chosen is approximately those processes

that are described by the capabilities mentionecl in Section 5.2.4, namely that the circuits should be

capable of the following;

• Computing an arbitrary logical function

• Computing results conditionally

• Receiving operands conditionally

• Storing state

• Making non-cleterministic decisions

• Communicating with four-phase QDI circuits

Since we explained how to implement each of these capabilities in terms of STAPL circuits in

Chapter 5, the methods we saw will form the basis for the discussion. In short, we shall bridge the

gap between those circuits and CHP programs.

7.3 What we compile

We should realize that the last two capabilities in the list of Section 5.2.4 are used infrequently, and

as we pointed out in Section 6.5, these circuits are not easily generalizable; hence we shall drop these

1 We should make it clear that we are not condemning the HSE language itself. The HSE notation is, as we have
seen, extremely useful for designing the template~ used for compiling from CHP to PRS; the HSE language is indeed
the most convenient of the languages we use for describing handshaking behaviors (as it should be). What we are
suggesting is however that we should probably not manipulate the HSE descriptions of processes too frequently; we
should do it only when we are developing the compilation templates or when we have to design some special circuit
that we do not know how to design well using the day-to-day templates.

114

capabilities from the list of what an automatically-compilable process needs to be able to do, and

we are left with the following four capabilities:

• Computing an arbitrary logical function

• Computing results conditionally

• Receiving operands conditionally

• Storing state

We should realize that there is nothing in these capabilities that is specifically tied to STAPL

implementations, or even anything that is necessarily tied to hardware implementations: we could

from these abstractions equally well build up a software-programming methodology. What is however

clear is that these capabilities are fundamentally "asynchronous"; it is possible to introduce a clock

to sequence the actions further-if we should for some reason be frightened of the prospect of

asynchronous-circuit design-but as the send and receive actions already in themselves supply the

necessary synchronization, this would seem otiose. 2

The STAPL circuits that we have developed have the capabilities we desire, but they have no

further means of control. Hence, the only programs that they can implement have the structure of

the templates described in the previous chapter, viz.,

* [<, i :: Li?Xi > <,j:: RNj(x) >] ,

* [<, i :: Li?Xi > <,j:: [Gj(x) ---+ Rj!fj(x)D.Gj(x) ---+ skip] >]

*[<,i:: Li?Yi > , <,k:: Xk:= .'E£ > ; <,j:: RNj(Y,x) > , <,k:: x£:= 9k(Y,X) >] ,

as well as the conditional-inputs template (see Section 6.3.3.3) that we have not made explicit, and

combinations of any of these templates.

The conditional-inputs template is not easy to describe in terms of CHP; let us merely say here

that any of the inputs can be conditional. A more accurate definition of what we can and cannot

do is given in Appendix A, p. 182.

7.4 The PLI language

A CHP program fitting the templates described in Section 7.3 is easy for us to compile because it

uses only a small, carefully chosen part of the CHP language. For the purposes of making clear

the compilation procedure and simplifying the compiler as well as carefully delineating the kinds of

conditional programs we can compile, we shall describe the programs in terms of a language that

2Por various reasons, synchronous "asynchronous" systems have been investigated by Philips [67]. The dataflow
models used in the early 80's and in current work in reconfigurable computing are also related [19].

115

compactly captures exactly those behaviors that we know how to compile; this language we call

Pipeline Language, version i: abbreviate as PLio

The precise scope and syntax of the PLllanguage are given in Appendix A; here we shall mainly

be concerned with justifying the design decisions of the language and showing how one may compile

PLI programs into STAPL circuits.

7.4.1 Channels or shared variables?

Although CHP processes communicate with each other on channels, once the processes are imple

mented as circuits, the channels are implemented as shared variables. The shared variables' being

products of such a compilation implies certain properties about them: for instance, a (slack-zero)

channel is never "written" (i.e., sent on) twice without an intervening read. These properties may

be useful for further compilation or for verification, but a na·ive outside observer would not be able

to tell that the shared variables resulted from a channel compilation. A single semantic construct

hence can be described as either a channel, at the CHP level; or as a shared variable, at the circuit

level.

It is almost certain that some useful operations are difficult to do with only the CHP constructs;

it is even more certain that shared-variable hardware design is far more difficult, far less modular,

and far more time-consuming than CHP hardware design. The PLI language aims at combining

the channel and shared-variable constructs in a way that, for the present circuit-design purposes,

improves upon both the CHP and shared-variable (HSE or PRS) descriptions. The innovation is

straightforward: in the PLllanguage, we read and write channels as if they were shared variables, but

the implementation~not the programmer~ensures that all channel actions are properly sequenced.

The language forbids interfering constructs.

The PLI language also only allows "safe" constructs. As we shall see, writing many simple

CHP processes in terms that are close to our desired implementations involves the frequent use of

constructs like the value probe or the peek operation. While the responsible use of these constructs

is unobjectionable, the untrained eye cannot easily determine if the use has been responsible or not.

Irresponsible uses quickly lead to nondeterministic programs, non-slack-elastic programs, and other

abominations.

7.4.2 Simple description of the PL1 language

The PLI language is a simple language for describing the small processes that we should like to

build hardware systems out of. The semantics of the PLI language allow the implementation to

add more slack than exists in the specification; hence the language is appropriate for the design of

slack-elastic systems.

116

In most message-passing programming languages (CHP in particular), using a data value that

arrives on a channel first requires receiving it. In the hardware implementation, however, we can

use and receive the value at the same time, or even delay the acknowledging of the value so that

it remains pending. This functionality we have added to CHP with the value probe and peek

operations. In the PL1 language the value probe and peek are the most basic operations: receiving

a value is done by first using it (the peek), and then acknowledging it as a separate action.

PL1 programs consist of sets of guarded commands. The guards are not necessarily mutually

exclusive. The semantics are that the process waits 11ntil it can determine, for each guard, whether

or not it will be true for the next set of values that shall arrive. For instance, determining whether

the guard a==l is true requires knowing the value of a. It is not enough that no value of a be present,

since this would not be slack-elastic: the value 1 could have been delayed en route; hence if there

is no value of a yet present and a==l is evaluated, the process will suspend. Of course, a value of

o does establish that a will not next be 1. Thus we can evaluate expressions while banishing from

our language the "undefined" value of a channel: there is in PL1 no way of writing the true negated

probe.

Let us examine at a simple example PL1 program:

define filter (e1of2 c, 1, r)

{

}

communicate {

c==l -> r!l;

true -> l?,c?;

}

The expression syntax is the same as in the C language [41]. The first line is the prototype for the

process. The declaration of the parameters as e1of2 means that these are channels that can hold

the values 0 and 1. Hence, evaluating c==l requires receiving a value on c.

If c==l evaluates to false (i.e., if c should get the value 0), then only the second guarded command

is executed, and the values on 1 and c are received and acknowledged; the process suspends until

values are present on both the channels.

If c==l evaluates to true (i.e., if c should get the value 1), then both the guarded commands will

execute; the value received on 1 will be sent on r as well.

The PL1 language is defined so that programs like this one are meaningful, even though 1 and

c are each used in two places at the same time. In essence, all the uses that require the value are

performed first, then it is acknowledged. Only strictly contradictory programs are disallowed (see

below). Appendix A has more details.

117

7.4.3 An example: the replicator

It is often useful to be able to replicate data sequentially; let us therefore consider the process

REPl:::: * [L?x; c:= true; * [c ---+ R!:r ; C?c]] .

If we are to implement REP with the methods of Chapter 5, we shall have to remove the nested

loop from this program and rewrite it using value probes. The result of this is3

REP2::::

*[[C=true ---+ R!(Li.), C?

o C = false ---+ R!(L?), C?

]]

The REP2 program is not, strictly speaking (given the usual semantics of CHP), equivalent to

REPl; but it is equivalent under the assumptions of slack-elasticity. The transformation from

REPl to REP2 is anything but obvious; it is difficult to explain what it is that makes REP2 a

reasonable program for an implementor to compile into a circuit and what it is that makes REPl

unreasonable.

In the PLl language, we must declare the variables; this is no drawback, since declarations

would anyhow be necessary for specifying the variable types at some point before compilation into

the target PRS/circuit; we thus arrive at, e.g.,4

define rep3(e1of2 c,l,r)

{

communicate {

true -) c?,r!l;

c==O -) 1?;

}

}

There are two executable statements in this PLl program:

true -) c?,r!l;

c==O -) 1?;

3The Spanish inverted question mark, j" is the notation used for the recently introduced channel peek operation
in CHP [33, 66).

4We should note that the semicolons at the end of each line are syntactic, separating the two possibly concurrent
statements true -) c?,r!1 and c == 0 -) 1?: in this regard, these semicolons have the same role as the commas in
the interface declaration elof2 c ,1, r; on the other hand, the comma in c? ,r! 1 is semantically meaningful, signifying
parallel execution. There should be no confusion since there is no way of specifying sequential execution in the PLI
language beyond the global sequencing that is implied by the process structure itself.

118

We call the construct c==O -> l? a guar'derl command (the guarded-command idea is due to Dijk

stra [21]), where c==O is called the gua.rd, and l? the command or action; 1 we occasionally shall

refer to as an action variable.

It is worthwhile stating here-the appendix explains in more detail-that the semantics of PL1

are such that a process's concurrently executing r! 1 and l? presents no t.rouble: the actions are

sequenced by the implementation so that they shall be non-interfering. Likewise, the implementation

will see to it that the action c? is delayed enough that. the condition c==O may be safely evaluated.

Why should we use the PL1 language, and in what. sense is it preferable to CHP? The answer

to these questions follows from the PL1language's being capable of expressing only a small fraction

of what the CHP language can express; however, it is a fraction that we know how to compile into

efficient APL and QDI circuits. To some extent, we use the PLI language so that the compiler may

avoid the difficult problem of determining that REP2 is a reasonable implementation of REPI or

that rep3 is a reasonable implementation of either; we should also like to avoid stating exactly what

subset of CHP shall be a legal input to our circuit compilation method.

The PLI language is not intended to replace the CHP language; on the contrary, the author

expects that software tools will be written t.hat shall be able to automatically convert CHP into

PLl, or better yet, into PL1-equivalent data struct.ures. 5

7.5 Compiling PLI

Compiling PLI programs, regardless of the target language, is a task best carried out in phases.

The first phase, parsing and analysis of the input. program, is common to each target; the sec

ond, generating the output, varies with the t.arget. Figure 7.1 shows the resulting structure of the

compiler: here we have shown the three back-end modules for generating different kinds of target

representations, viz., one module that generat.es Modllla-3 [65] code that shall compile and link as

part of a Modula-3 simulation system, another for generating QDI circuit descriptions, and a third

for generating STAPL circuit descriptions; the last QDI and STAPL generators generate CAST that

describes a single process and that shall have to bp combined with some infrastructure ("header

files") to be useful. 6

The intermediate form of the compiler is a Modula-3 data structure, not a file. This data structure

5 Unfortunately, we do not have such tools today, and he hopes that by making explicit the kinds of information
that can easily be compiled from, minds will be stimulated into solving the CHP-PLI compilation problem.

6 At the time of writing, there are two PLI compilers. The first, written in C, generates C code (not Modula-3)
that will work within a fast but rudimentary simulation environment.: in this environment, function calls are used
for context switches; hence, execution speeds are approximat.ely 3 x higher than for the same code using even very
light-weight threads. This compiler can also generat.e rudimentary QDI production rules, which are correct but
inefficient.

The second, written in Modula-3, generates efficient &; optimized STAPL circuits; it can also (this work, still
in progress, is due to Abe Ankumah [4]) generate QDI circuits; its abilities of generating high-level language code
(Modula-3) for simulation purposes are yet unfinished work.

We shall mainly be concerned with the structure of the second compiler and especially with its STAPL back-end.

Input

proc.pl1
L. ____ _ ,

, Modula-3:
proc.i3 :- - - --
proc.m3

G

----------,
, QDI circuit ' , ,
, proc.cast ,- - - - -, ,

Q

: ST APL ckt. : ----, proc.cast :

119

PLlprocess m3

PL1
--------- front-end

---t-------- "-"'-. -. -- - . --. --.

Modula-3
back-end

enSimulator.m3

QDI
- - - -- back-end

Dlprocess.m3

STAPL
---------- back-end

intermediate
form

PLlprocess.T

PPSprocess.m3

Figure 7.1: Structure of the PL1 compiler. Files are shown in dashed boxes; program modules in
solid.

is an object, called a PLlprocess. T. The back-end modules are implemented similarly: each back

end module specifies an object type that inherits many of its properties from a generic "process

object-type," ProcessSpec. T, which incidentally is also the supertype of the PLlprocess. T.

120

7.6 PLl-compiler front-end

The PL1 compiler represents the program being compiled as a Modula-3 object; all guards and

actions of the program are represented in terms of binary decision diagrams (BDDs) [12].7 Three

levels of representation are used for data: first, the compiler front-end evaluates all PL1-language

expressions as two's-complement numbers (a BDD expression is used for each bit of the numbers,

the unspecified bits being treated as false); secondly, when the front end passes the results of its

analysis to the back end, it uses a unary encoding, which makes the results suitable for the back

end's compiling into circuits that use delay-insensitive codes; lastly, the back end generates the PRS

for the circuit using a sum-of-products representation.

7.6.1 Determinism conditions

After parsing the input program and generating the appropriate BDD representations for the ex

pressions used in it, the first task of the compiler front-end is the checking of some remaining

determinism8 conditions: while the slack-elastic design-style handles determinism issues well, the

syntax of PL1 allows the programmer to specify meaningless, nondeterministic programs, e.g.,

define mistake(elof2 r)

{

communicate {

true -> rIO;

true -> r!l;

}

}

We cannot tell if the programmer intended that mistake should send a ° or a 1 repeatedly on

r; or perhaps he intended some interleaving? The two henefits of ruling out mistakes like this one

are: first, that programming mistakes are caught and programs will have well-defined meanings;

and secondly, that the back-end of the compiler can now use the expressions of the PL1 program

directly in generating its target PRS: the logical expressions of the PL1 program can be converted

into production rules without further ado.

While at first glance it may seem easy to banish programs like our mistake, a moment's reflection

will show that this is not so. The first-glance solution is to require that actions on a particular

interface variable or state variable appear syntactically in a single place in the program for each

7The BDD package used in the compiler was written in C by Ra.iit Manohar.
SIn light of the fact that the only non-deterministic programs that can be specified in PLl have the kinds of

nonsensical behaviors discussed here, these might as well be called "meaningfulness conditions."

121

such variable. This is unsatisfactory because it is often desirable to use a particular variable in two

completely different ways, the choice being based on some arbitrary piece of information: consider

a process that could either add or multiply its two data inputs based on a control signal; writing

c==O -> r! (a+b); c==l -> r! (a*b) ; is easy, but if we had to combine the + and * operators in

a single boolean expression?-at best, a confusing program; much more likely, an incorrect one.

At second glance, we could simply forbid that the actions on interface variables or state variables

"appear dynamically" in several places on the same execution cycle of a program. With this view,

define buffer(e1of2 c,r)

{

}

communicate {

true -> c?;

c==l -> r!l;

c==O -> r!O;

}

would be right, but mistake would be wrong. But what should we make of

define dubious_buffer(e1of2 c,r)

{

communicate {

true -) c?;

c==l -) r!l;

true -> r!c;

}

} ?

He who would take the position that dubious_buffer is another mistake would not injure reason,

but the PL1language described in the appendix allows dubious_buffer as having the same meaning

as buffer. The grounds for allowing it arc a very simple execution model for PL1 programs: on a

given execution of a PL1 program, all enabled actions are collected and then executed concurrently,

at most one action to an interface variable or state variable; on the next execution of the program,

no memory of these events is retained except as specified in explicit state variables. We hence must

forbid x! 0 ,x! 1; but of the two interpretations of x ! 0 ,x! 0, viz. forbidden and idempotent, we choose

122

the latter (i.e. x!o).

To check the determinism conditions, the compiler must make certain that whenever two com

mands are enabled at the same time, any overlapping state variables or send channels are treated

the same way. In practice, we can also consider any invariant I that the programmer should care to

mention; to check the conditions for the PL1 program Go -> So (Gso) 0 G1 -> Sl (Gs 1) . .. , the

compiler hence has to run the following:

forall P = Gi II Gj II I

if P =j. false then

forall a E vars(Gsi) n vars(GSj)

assert val(b",Gs i I P)=val(b",Gsj I P)

end

end

end

What this program does is the following: for each pair of guards Gi and Gj , we check for a non-zero

overlap of the pair of guards given the invariant I. If a pair of guards does overlap (i.e., if it is

conceivable that they should both be enabled at the same time), we must check the equivalence

of expressions sent on the same channels; the channels that are mentioned for both the guarded

commands are given by the expression vars(Gs i) nvars(Gsj). The last step is checking that the

values that are sent do match; we check this conditionally on every bit of the two's-complement vector

ofBDDs, given the overlap condition P-this is denoted by assert val(b",Gsi I P)=val(b",Gsj I P).

He that yet insists that we should forbid x! 0 ,x! 0 cannot cite the complexity of determinism

checking in his favor: it would be quite as difficult to figure out, as we anyway must, which guards

overlap as it is to carry out the described determinism checks; the programmer's extra freedom

coming at so little cost, we should be miserly to deny him it.

7.6.2 Data encoding

Once the compiler front-end has checked the determinism conditions, it generates the expressions for

assignments and sends in terms of two's-complement BDD expressions. Expressions that can take

on more than two values, e.g., for those variables declared 10f4, 10f8, etc., are thus represented by

a vector of BDDs.9 The expressions are first generated in terms of sets of guard-value pairs (G, E)

for sends and assignments and simply guards G for receives; the list entries are collectively called

actions.

9It is a current implementation-restriction that variable8 must be of the form lofn, where n is a power of two.
The e in elof2 is present for historical reasons only; being logical, we should write 10f2 in the declaration and leave
the e to be filled in by the QDI-compiler back-end.

123

Let us use as an example the two-way, 1-of-4 merge:

define merge2_4Celof2 c; elof4 la, lb , s)

{

communicate {

c==O -> s!la,la?,c?;

c==l -> s!lb,lb?,c?;

}

}

The BDD representation will be: for c, be; for la, the vector [b,a,o, bla,d; for lb, the vector [blb,O, bZb,I];

and for s, the vector [bs,o, bs,I]. The guard-value set for s is {(be, [bZb,o, blb,l]), (,be, [bZa,I, bla,o])}·

The compiler's first step towards generating the logic expressions for sends and assignments from

the BDD representations is to loop through all the possible values v for the outputs. If we consider

an action variable x, then we may state the condition c that v is sent on or assigned to x by a single

action (G, E) thus: c = (E = v) 1\ G. Since we have ensured that actions are non-interfering, we

can aggregate the conditions for v on x for each of the actions in the action set for x, Ax; we now

introduce Xv as being the (unqualified) condition upon which the value v is sent on or assigned to x:

.T v = V (E; = v) 1\ G;
iEA"

(7.1)

In terms of our example, we may illustrate by considering S2: v = 2 is equivalent to [false, true].

Considering the first element of the guard-value set, we may compute c = (E = v) 1\ G: ,bZb,o 1\

blb,l 1\ be; considering the second, we compute ,b,a,o 1\ bla,l 1\ ,be. Hence

(7.2)

The next issue that we need to handle is that the expression that we have computed for determin

ing whether we shall send a value Xv is in terms of a BDD on the two's-complement representation of

PL1 variables, whereas Xv itself is already suitable for a unary encoding. Hence we shall have to con

vert the representation of the BDD for Xv to a unary representation. Substituting unary expressions

for the two's-complement expressions is tlw most straightforward way of doing this. We introduce

the unary "rails expression" T:r,i as the BDD describing the condition when action variable x takes

on value i; we now have that we should in our example replace be f-t Te,l and bza,o f-t Tla,l V Tza,3'

124

We also have the useful invariants, due to the l-of-n encodings, that

"Ix :: Vi :: Vj :.i I- i : r',",i =? ,rx,j' (7.3)

Returning to our example, we see that we may write S2 in terms of the T'S as

It is immediately obvious that some simplifications can be made; e.g., we observe that Tlb,3 is

unnecessary in '(Tib,l V Tib,3) /\ (r'uI,2 Vrlb,:J) /\ 7'e,l since it appears in the form ,x /\ ,rlb,3 /\ (Tib,2 Vrlb,3),

and rlb,2 =? 'Tib,3' Following this hint, we simplify using Equation 7.3 and get that

S2 = 7'lb,2 /\ T c ,l V Tia,2 /\ ,r c,l· (7.5)

This is almost what we should like to see, hut ,re ,l is cause for concern. The reader will recall that

our final objective is the generating of domino 10gic. 1O The evaluation part of domino logic consists

of n-transistors only, and with the data encodings that we use, we cannot directly test a negative

expression like ,re,l' What we should realize is that ,re ,l is not to be understood as testing that

"the voltage on the circuit node c.l is close to GND" -after all, we have not brought up anything

at all about circuits in our discussion of PLl, so why should we think this?-instead, it is to be

understood as meaning "the value of c.l will not become close to Vdd on this execution cycle":

the very same statement that can in a slack-elastic system only be tested by "the value of c.O has

become close to Vdd," i.e., we must replace ,re ,l f-7 7'c,o, and we should similarly treat any other

negated literals that remain after simplification. Once we have done this, we may directly identify

the rx,i BDD literals with the actual circuit nodes :r:.i.

7.7 PLl-compiler back-end

The PL1-compiler back-end is implementation-technology dependent, and therefore what we learn

here need not apply to all back ends; broadly speaking, the back ends that the author has imple

mented have fallen into two categories: circuit generators and software generators.

The software generators are useful for fast high-level simulation that captures enough of the

synchronization behavior of processes to ensure that the system being designed does compute the

right thing and does not deadlock or exhibit other unwanted characteristics; simulation at this level

lOWhile this discussion is phrased in terms of circuits, the reader should bear in mind that it applies equally well to
software implementations that use shared variables: the na'ive implementation of .re,l that we avoid in the hardware
would in the software involve the testing of a channel's being empty, i.e., a negated probe. Either na'ive implementation
destroys slack-elasticity, whence they must be avoided and the semantic interpretation that we take in the text must
be substituted.

125

is even useful for capturing reasonably accurate performance estimates. Simulation at this level is

much faster than what is possible with PRS-level simulators (on the order of two to three orders of

magnitude).

7.7.1 Slack

Because predicting the exact amount of slack that shall be present in a circuit implementation of a

PLl program can be difficult (we shall see reasons why this may be so), we desire that the software

simulator implementation of the program should have an amount of slack that helps in finding bugs.

Manohar has proved [45) that adding slack to certain kinds of deterministic and non-deterministic

systems (which he calls slack-elastic) cannot change the degree of nondeterminism or cause deadlock,

whereas it is obvious that removing slack may cause deadlock; hence the software simulator should

provide, as far as possible, at most as much slack as the hardware implementation. Things having

been thus arranged, we should know that if the software implementation runs correctly, then the

hardware implementation, which has at least as much slack everywhere, must also run correctly.

Why should it not be entirely obvious how much slack a hardware implementation of a PLl

program shall have? The answer is that we should prefer allowing the compiler back-end to adjust

the amount of slack, if it can thereby improve the circuit implementation.

Let us consider two examples. First, the full-addprY

define fa(elof2 a,b,c, s,d)

{

communicate {

true -> a?,b?,c?,s! (a+b+c)&Oxl,d!!! ((a+b+c)&Ox2);

}

}

If we compile fa into a circuit (either STAPL or QDI), we find that the obvious production rules

for the carry-out d have the form

... /\ ((a.O /\ b.O /\ c.O) V (a.O /\ b.O /\ (.1) V (n.O /\ b.l/\ c.O) V (a.l/\ b.O /\ c.O)) -t d_.O-J,.

... /\ ((a.l/\ b.l/\ c.l) V (a.l/\ b.l/\ c.O) V (a.l/\ b.O /\ c.l) V (a.O /\ b.l/\ c.l)) -t d_.l-J,.,

where· .. stands for technology-dependent control signals. Because a slack-elastic system's correct

ness depends only on the sequence of values sent on its channels and not on the timing of those

llThe syntax of d!!! ((a+b+c)&Ox2) is something of a puzzle to the uninitiated, but should not frighten him that
has experience with both C and CHP programming: the first exclamation represents the channel send and the
next two represent logical inversions. In Moclula-3, the same statement would be written far more clearly, e.g.:
d.send(Word.And(a+b+c,2)#O).

126

values, and because we may assume that a correct system does not deadlock, we may infer that

the expression a.O /\ b.O /\ c.O V a.O /\ b.O /\ c.l may be "simplified" to a.O /\ b.O. This is especially

desirable for the full-adder, because cascading full-adders into an n-bit adder will lead to a design

whose latency is limited by the length of the carry chain; if we do not make the "simplification,"

then n will always determine the input-to-output latency of the circuit, since the carry information

must always propagate from the least significant bit to the most significant bit, regardless of the

disposition of the data; if on the other hand we do "simplify," then what matters is only the length of

the longest string of carry-propagates for the particular pair of n-bit numbers being added. (Asyn

chronous designers are familiar with this result; but see Section 8.4.2 for some disturbing & relevant

observations.) There is really no reason for avoiding the replacement: the circuit will be simpler and

faster, and it will have more slack, slack that may allow the system to run faster because there are

fewer data dependencies.

Secondly, let us consider the two-way merge:

define merge(elof2 c,la,lb,r)

{

}

communicate {

true -> c?;

}

c==O -> r!la,la?;

c==l -> r!lb,lb?;

For this program, the obvious production rules would be as follows:

... /\ (c.O /\ la.O V c.l /\ lb.O) -t r·_.O-J

... /\ (c.O /\ la.l V c.1 /\ lb.1) -t r·_.l-J-

Can we make the same sort of "simplification" as we did for the full-adder? Yes and no. In logical

terms, the "simplification" can be stated as a weakening of the production rules that respects the

determinism conditions; any such weakening is permitted. In merge, we are permitted to weaken

the above thus:

... /\ (c.O /\ la.O V c.1 /\ lb.O V la.O /\ lb.O) -t '{"_.0J.

... /\ (c.O/\ la.1 V c.1 /\ lb.1 V la.1 /\ lid) -t 'f"_.1J.

But how is this a "simplification"? We have added slack by logical weakening, as before, but the

circuit has now become more complicated-it has more transistors than before the transformation.

Except under special circumstances, we should probably avoid this kind of transformation. And

127

he that would say that the extra transistors are a small price well worth our paying would be wise

to refer to Section 6.2.1: when the la.O /\ lb.O disjunct is enabled (true), the input value on c is

completely ignored, and we shall have to add completion circuitry; the price was not so small after

all!

7.7.2 Logic simplification

The previous section makes it clear that there are choices to be made at the circuit level. Given

the BDD representation of c.O /\ la.O V c.1/\ lb.O, which need indeed not look at all similar to the

straightforward sum-of-products form c.O /\ la.O V c.1/\ lb.O, what production rulel2 should we gen

erate? Should we weaken maximally? Not at all?

The answers to these questions depend, of necessity, on things such as the implementation tech

nology, and in general we should not be surprised to learn that the optimal answers vary from

situation to situation, even within a single system implemented in a single technology. Instead of

examining all the possible cases, we shall develop a heuristic procedure for going from the BDDs

to production rules that are reasonably efficient. In particular, this procedure makes the "right"

choices for both fa and merge of the previous section.

Let us take as an example the merge logic described above. The details of the structure of the

BDD representing c.O /\ Za.O V c.1/\ Zb.O need not concern us overly here, because we are not going

to make any more use of the special properties of the BDD data structure; the main thing for us

to remember about it is that it looks nothing like what we want for our circuit implementation: in

fact, it happens to have the form (the particulars depend on an arbitrary variable ordering, so this

is only an example):

re,a /\ (rla,a /\ true V (re,l /\ (rll),a /\ true V false /\ ·rtb,a) V false /\ .rc,d /\ .rla,a)

V(rc,l /\ rlb,O /\ (true V false /\ .rlb,a) V false /\ 're,l) /\ .re,a (7.6)

Following the procedure for negated literals we mentioned above, we should arrive at-now repre

sented as a sum-of-products expression-

c.O /\ Z!L.O V c1/\ lb.O /\ c.1, (7.7)

where the extra c.1 is obviously superfluous.

How do we know that the c.1 is superfiuous? Quite simply because

c.O /\ la.O V c.1/\ Zb.O /\ c.1 == c.O /\ Z!L.O V c.1/\ Zb.O (7.8)

12Here we are not even considering the important question of how we should convert production rules into transistor
networks; in this process, there are also choices to be made.

128

for all values of the literals. More generally, we are interested in not the unqualified equivalence of

boolean expressions, but rather in their equivalence under known invariants. Hence if two boolean

expressions Band C satisfy

(7.9)

for all values of their literals, where I is some invariant known to be true of the system, then

we should pick between Band C the one that we should prefer to implement; this choice would

commonly be guided by which of B or C has better performance or lower cost. The weakest invariant

is true, which was yet enough for the trivial example of removing c.l. More commonly, we shall use

the invariant of Equation 7.3; this way, we should for instance see that we could simplify c.O A c.l

as false.

In fact, several transformations that we do can be treated as boolean simplifications under various

"invariants." Taking advantage of this, we introduce three separate boolean expressions, as follows:

• The invariant, I: this is the invariant of Equation 7.3 strengthened with any invariants that

the user should care to specify in the PL1 source code. For merge, I is ...,(c.O A c.1) A ...,(la.O A

la.1) A ...,(lb.O A lb.1)P

• The slack-elastic invariant, S: this is what can always be true in a slack-elastic system,

namely the statement that some value has arrived on each of the input channels. For merge,

Sis (c.O V c.l) A (la.O V la.1) A (lb.O V Ib.1). (This is not really an invariant at all, but we call

it that anyhow because we use it in the same way as the real invariant.)

• The eventual invariant, £: this is what eventually must be true of the inputs to a process if

the system is not to deadlock; in other words, [; is exactly the progress condition under which

a process shall finish its current execution cycle. For merge, [; is (c.O A (la.O V la.l)) V (c.IA

(lb.O V Ib.1)). (This is a bit more like the usual notion of an invariant than S.)

We use a simple, greedy algorithm for simplification of the sum-of-products expressions; the

Modula-3 code for it is given in Figure 7.3. In English, these are the steps:

• First, clean out any disjuncts that must be false under I.

• Secondly, try removing literals from the disjuncts, starting with the longest disjunct first-the

disjuncts are sorted so that this should be easy. The simplifying invariant that is appropriate

for this operation is I A S. The reason we can remove literals under S is that removing literals

is a logical weakening operation, which hence increases the slack of the process; any behaviors

that we thus introduce are allowable under the assumptions of slack-elasticity (this is the

weakening that we spoke of in Section 7.7.1).

13Whether we choose to include output variables in the invariants has no effect on the simplification procedure; in
any case, we leave them out here to keep down the typographical clutter.

TYPE
Disjunct = REF ARRAY OF SopLiteral.T;
Rep = REF ARRAY OF Disjunct;

Public = OBJECT METHODS

129

init(from: Bool.T) : T; (* initialize from a Bool.T literal *)

toBool() : Bool.T;
invariantSimplify(invariant,

disjunctivelnvariant,
eventuallnvariant : Bool.T) T;

END;

T = Public BRANDED "Sop Expression" OBJECT
rep : Rep;
bool : Bool.T;

OVERRIDES
init := Init;
format := Format;
toBool := ToBool;
invariantSimplify
map .- Map;

END;

InvariantSimplify;

Figure 7.2: Relevant parts of declaration of sum-of-products data structure in Sop. i3 .

• Thirdly, try removing whole disjuncts, again starting with the longest disjunct first. We cannot

use S now because while S may always be true, there is no guarantee that it will: we cannot,

in the hope that we may simplify the transistor networks, force a process to wait for an input

on a channel that is not going to be used on the present cycle: that input may never arrive,

whence the system may deadlock. On the other hand, all that we need to do is to avoid

deadlock; since [; specifies the conditions that must anyway obtain for avoiding deadlock, we

can use II\ [; for the simplifying invariant here .

• Lastly, if anyone of the simplifying steps should succeed, then recurse.

Referring to the Modula-3 code, we should make it clear that Bool represents the BDD library:

even though we are here simplifying sum-of-products expressions, we convert the expressions back

into BDDs so that we may conveniently check the logical equivalences that we must check. Bool. And,

etc., are the BDD library routines for performing logical operations on BDDs.

The InvSimplify routine is normally called as a method on a sum-of-products-expression object;

this expression is referred to as self in the code. Normally, the routine would be called with I in

inv, S in weakeninglnv, and [; in eventualInv. The sum-of-products expression itself is declared

as shown in Figure 7.2; i.e., the data structure is an array of arrays of literals, each of which may

be negated.

So far, we have phrased the boolean-simplification problem in terms of simplifying the logic used

130

PROCEDURE InvSimplify(self : T; inv, weakeningInv, eventualInv Bool.T) T
VAR

res := Copy(Simplify(self»; (* pre-process *)

fullInv := Bool.And(inv,weakeningInv);
BEGIN

SortSopDisjunct.Sort(res.rep-);
(* first remove all disjuncts that are false under the inv *)

FOR i := LAST(res.rep-) TO FIRST(res.rep-) BY -1 DO
IF Bool.And(FromDisjunct(res.rep[i]) .toBool(), inv) = Bool.False() THEN

res. rep .- DeleteDisjunct(res.rep,i)
END

END;
VAR simplify := FALSE; BEGIN

FOR i := LAST(res.rep-) TO FIRST(res.rep-) BY -1 DO
(* for each disjunct, try removing literals, one by one *)

WITH c = res.rep[i] DO VAR oldc : Disjunct; BEGIN
FOR j := LAST(c-) TO FIRST(c-) BY -1 DO

oldc := c;
c := DeleteLiteral(c,j);
IF Bool.And(res.toBool(),fullInv)

Bool.And(self.toBool(),fullInv) THEN
simplify := TRUE;

ELSE c := oldc END
END

END END
END;
IF simplify THEN

RETURN res. invSimplify(inv, weakeningInv ,eventualInv)
END

END;
VAR oldRep := res. rep; BEGIN

(* try removing disjuncts *)
FOR i := 0 TO LAST(res.rep-) DO

res.rep := DeleteDisjunct(res.rep,i);
IF Bool.And(res.toBool() ,eventualInv)

Bool.And(self.toBool(),eventualInv) THEN
RETURN res.invSimplify(inv,weakeningInv,eventualInv)

ELSE res.rep := oldRep END
END

END;
RETURN res

END InvSimplify;

Figure 7.3: Modula-3 code for boolean simplification.

131

for computing the output values. We can use the same simplification methods for simplifying the

control signals introduced in Section 6.3.3.1 for the handling of general conditional communications.

7.7.3 Code generation

At this point, we have seen how we should generate the logic production-rules. Our compilation job

is now mostly done. What we have left is the code-generation phase.

For the most part, code generation for STAPL circuits is straightforward; it consists chiefly of

adding control signals in the manner described in detail in Chapter 5 and then formatting and

printing the resulting logical equations. There is little flexibility in this and few real traps that we

could fall into. Mainly, we need to be concerned with whether we need the "pattern" logic block,

owing to the presence of conditional communications (Section 6.3.3.1); whether we need to use a

pulse generator that can be re-armed in several ways, owing to the process's having conditional sends

(Section 6.3.3.3); whether we need to add foot transistors, owing to the presence of multiple outputs

(Section 6.1.3); and whether we need to add extra completion circuitry, owing to the presence of

inputs that go unchecked by the logic computations (Section 6.2.1).

We having already decided on the compilation method to the extent described in Chapter 5, the

only real difficulty that remains is the detecting of inputs that go unchecked by the logic computa

tions. As should be clear from what we have said above of boolean-logic manipulations, an input's

being acknowledged by an output can be affected by these manipulations. Whereas we could design

the compiler to take these manipulations into account (in the best of worlds, the compiler should

treat the boolean-logic manipulations and the completion-circuitry generation as a single problem);

this has not yet been done, and may even be an unreasonable thing to ask for. The current compiler

uses a simple (and safe) heuristic for determining whether an input will always be acknowledged by

the generated outputs. The heuristic works well for all cases that have so far been tested, and it al

lows a more modular compiler-design than would be possible with a more complicated and accurate

method.

The heuristic we use for checking whether a value on an input channel L is acknowledged by the

outputs has two parts, both of which err on the safe side:

• First, check if the logic of the computed outputs is such that the outputs must acknowledge

the input in question. This is the case if, regardless of the disposition of the other inputs, it is

always the case that the value on L will affect the computed output-i.e., if regardless of the

other inputs, the value arriving on L can always force a choice between at least two alternative

outputs on some output channel. If this is so, then no amount of boolean manipulation can

remove the outputs' checking of the L-value.

• Secondly, check the generated logic for each output channel: does it require the presence of one

132

literal of L before it will produce an output? The conditions that we can thus determine that

L will be acknowledged under are the union of the communication conditions for the output

channels that contain a literal of L in every disjunct of their output logic.

If either one of the two checks should always succeed, then L is known to be acknowledged by the

outputs, and no further checking is necessary. Strictly speaking, we should prefer using only the first

condition (since this is the modular one-the second condition is implementation-dependent), but

the author has unfortunately found that processes requiring the second condition's being checked

before they would compile without unnecessary input-completion circuitry are fairly common.

133

Chapter 8

A Design Example: The SP AM
Microprocessor

NONSENSE, n. The objections that are urged against this excellent dictionary.

- Ambrose Bierce, The Devil's Dictionary (1881-1906)

In the Introduction (Chapter 1), we said-following Carver Mead-that VLSI is a statement

about system complexity, not about circuit performance or sheer circuit size. Consequently, the

touchstone that shall determine whether a way of building VLSI is worth pursuing must involve the

designing of complex systems. Unfortunately "system complexity" is impossible to define directly

and objectively. The best we can do is to design a real system of at least moderate complexity. If

we should find that the system so designed performs well or was particularly easy to design or had

some other attractive feature, then we should know that we are on the right track.

And this is why this chapter has been written: the only way we could possibly tell whether

STAPL circuits are any good or whether the PL1 language is at all useful is by designing, with

them, a complex concurrent system.

8.1 The SPAM architecture

The SPAM (Simple Pulsed Asynchronous Microprocessor) architecture is defined in detail in Ap

pendix B. The SPAM architecture defines a simple 32-bit RISC instruction set. It defines eight

registers and a number of integer operations, and it is generally intended to be easy to implement

without making any real sacrifices of functionality. The instruction set is completely orthogonal;

i.e., all instructions have the same addressing modes, always specified by the same bit fields in the

instruction word.

Given what we are trying to accomplish and the resources that have been available, the SPAM

processor is somewhat more complicated than would have been attempted with the same resources,

had for instance the PL1 language not existed. \Vc make no comments about the designer's rela-

134

SEQSPAM ==
*[i ;= imem[pc];

OpX := gpr [i.r·x] , opy := YMODE(i.ymode)(gpr [i.ry], i.imm);
opz := OP(i.opcode)(opx,opy), pc := PCOP(i.opcode) (pc, opX, opy);
gpr[i.rz] .- opz

]

Figure S.l: Sequential eRP for SPAM processor.

tive abilities, and appeal only to general notions of honesty when it comes to the accuracy of the

simulations.

8.2 SPAM implementation

The sequential SPAM is specified by the remarkably simple program of Figure S.l; this program is

a restatement of the English description in the appendix of how the processor executes instructions.

8.2.1 Decomposition

We shall study the decomposition of the SPAM processor into the processes shown in Figure 8.2;

the decomposition is similar to but not identical to the one chosen for the MiniMIPS.

+
I
I
I
I
I

PCUNIT r--- IMEM r---..- DECODE I
I
I branch
I

J J
I
I

I
I

1
f

t I

REGFILE ,. OPER ~ EXEC ~ WB ~ REGFILE

Figure 8.2: Overview of SPAM decomposition.

Seven units are identified in the figure:

• PCUNIT, responsible for generating the program-counter values representing the addresses

in the instruction memory of the instructions that are to be executed. PCUNIT corresponds

to the operation pc := PCOP(i.opcode)(pc, OpT, opy) of SEQSPAM.

135

• IMEM, the instruction memory. In the simple test-processor we are speaking of here, there is

no off-chip memory; i.e., IMEM is a memory, not a cache. IMEM corresponds to

i := imem [pc].

• DECODE, the instruction-decode unit. This unit generates the control signals for the units

that are to execute the fetched instruction. DECODE corresponds to computing i.ymode,

i. 'T"X , i.'T"Y, i.imm, i.opcode, and i.'T"z.

• REGFILE, the register file. It contains eight registers. It appears twice in the figure, which

signifies that it conceptually acts twice for each instruction that is executed: once to fetch

the operands and once to write back the result. REGFILE corresponds to computing

gpdi.'T"Y] , opx := gp'T"[i.'T"x] and performing gpdi.r·z] := opz.

• OPER, the operands-generation unit. This unit is responsible for computing opy in

Figure 8.1; hence it contains a conditional shift-add combination (see table on p. 190).

OPER corresponds to YMODE(i.ynwde)(gpr· [i.'T"Y] , i.imm).

• EXEC, the instruction-execution unit. This unit internally consists of several sub-units: an

arithmetic-logic unit (ALU), a shifter, and a data-memory unit. EXEC corresponds to

OP(i.opeode)(opx,opy). In this decomposition, it also contains the part of

PCOP(i. opeode) (pe, opx, opy) that uses the registers, i.e., the branch comparator.

• WE, the writeback unit. This unit is responsible for canceling instructions whose results

should not be written back (see Section 8.2.2); it also notifies the PCUNIT of taken

branches. WE is not present in SEQSPAM, because it is used only for providing sequencing

in the decomposed, concurrent version.

8.2.2 Arbitrated branch-delay

Most programs that are run on general-purpose processors have unpredictable control-flow; they

are not simple, straightline programs. The straightline program-flow is interrupted by branches or

exceptions; it is well-known that programs for these processors execute on average only five to ten

instructions for every branch that they execute. If we treat exceptions similarly to how we treat

branches, the rate increases further: on some architectures nearly every instruction may raise an

exception.

Especially if we treat exceptions and branches together, it is clear that processor performance

can be improved by adding some sort of Immeh p'T"eri'iction mechanism. Such a mechanism has two

fundamentally distinct parts: predicting whether a given instruction will branch, raise an exception,

or do neither; and dealing with mispredictions. While the details of how we might predict whether

136

a branch will be taken or an exception will be raised are outside the scope of our present discussion,

the mechanism for dealing with mispredictions is not.

A mechanism for arbitrated precise-exception-handling, used in the MiniMIPS processor, has

been presented by Manohar, Martin, and the author [47]; a similar one by Furber et al. [88]. The

SPAM processor uses such an arbitrated mechanism for normal branches; since it does not have

exceptions, there is no need for a precise-exception mechanism; but having handled branches in this

way, adding exceptions should be easy.

The details of the mechanism are available in the paper, but the basic idea is very simple: the

PCUNIT generates the sequence of program-countpr values that we a priori believe to be the most

likely. The corresponding instructions are fetched from instruction memory and executed. Results

are written back to the register file and data memory in program order; if the control flow takes an

unanticipated turn, the instructions that were fetched but should not be executed are yet executed,

but the results of these executions are discarded. Finally, the PC UNIT is informed that the control

flow has changed; it then begins fetching the instructions corresponding to the updated control flow.

As is easily understood from the preceding description, the arbitrated mechanism is flexible and

could accommodate a wide variety of predicted control-flows. In practice, we have as yet only used it

predicting a straightline control-flow. l In other words, the processor fetches instructions sequentially,

assuming (in the MiniMIPS) no exceptions or (in the SPAM) no branches; if the assumption turns

out to have been wrong, the unwanted instructions are discarded and fetching begins from the

exception-handler address (in the MiniMIPS) or from the branch-target address (in the SPAM).

The arbitrated mechanism allows informing the PCUNIT of control-flow changes only when they

occur; it becomes unnecessary to inform it, for each instruction that does not change the control

flow, that they do not occur. This means that the fetching of instructions is effectively decoupled

from the executing of them.

In the SPAM processor, the canceling of unwanted instructions and the informing of the PCUNIT

of control-flow changes are handled by the write back unit, WE. When a branch is executed and an

impending control-flow change becomes apparent (in the EXEC), this information passes via the

WE on a channel to the PCUNIT. As we noted, the communications on this channel are conditional.

In Figure 8.2, this is illustrated by the channel's being drawn dashed.

8.2.3 Byte skewing

Classic QDI design-styles, such as the one used ill the design of the Caltech asynchronous micro

processor [53] and the Philips Tangram system [9], treat QDI-system design in a control-centric

way: first, the control structures that are necessary for implementing bare, dataless handshakes are

1 We should point out that the MiniMIPS processor has a second mechanism, different from the one described here,
for performing branch prediction; this branch predictor uses the slightly more sophisticated backward-taken-forward
not-taken ("BTFN") predictor.

137

designed, and then the bare channels are widened to carry data; logic for computing can be inserted

in appropriate places.2

While this method of designing the circuits elegantly takes us from a collection of small processes

that implement only the handshakes to processes that communicate (and compute) with data, the

large drawback is that the slack of the system is fixed at the time that the control is designed, unless

special measures are taken. For instance, handshakes between units (which for control circuitry

consist only of bare wires but are much more complicated in the finished system) can limit the

performance of a system.

One of the main innovations of the MiniMIPS processor project was the slack-elastic design

style [55]. The slack-elastic style allows the introducing of slack gradually during the decomposition

instead of all at once at the beginning; among other things, this allows our breaking the handshake

cycles into smaller pieces, thus achieving higher system throughput.

In the MiniMIPS, we distributed the control to the datapath via a logarithmic tree. In other

words, if control information is required at the level of hit processes (or more commonly, at the

level of l-of-4 processes), this information is copied out in a pipelined tree. Normally, a four-way

copy would copy the control information to each of the bytes, and the bytes would be designed as

single, large processes, with the bit or l-of-4 "processes" actually being fragments and not complete

processes (i.e., the smallest part of the design that communicates with its environment entirely on

channels is the byte-sized process).

The MiniMIPS logarithmic tree is not the only way of distributing the control. If throughput is

the only concern and the latency of computation is a secondary issue (e.g., in DSP applications),

each bit of the datapath can be made to copy the received control at the same time as it performs its

data computation. This approach, called bit skewing, was used in the asynchronous filter designed

by Lines and Cummings [18].

Any number of compromises can be imagined. Figure 8.3 shows three ways of distributing

the control. Importantly, in a slack-elastic system, which way we finally choose is not visible in the

high-level description. Datapath processes are marked "D" in the figure; the remaining processes are

simple copies, although the initial copy can sometimes be combined with the preceding process. For

the SPAM implementation, we choose method (c), which combines aspects of both the logarithmic

tree method and the bit-skewing method. We call this byte skewing. 3

2 A good intuitive understanding of this procedure can be had by comparing with how the Incas built suspension
bridges across gullies in the Andes. First, they would send a runner through the jungle with a light rope; having done
this, they would pull the rope up from the jungle Hoor until it fan across the gUlly. Then they would use the thin rope
to haul a much thicker rope across, a rope thick and strong enough to carry the persons, llamas, etc., that needed to
cross the bridge. The bare handshakes are the "thin ropes" and the full-fledged data channels with computation are
the "thick ropes."

3We should note that the datapath operation's being implemented in eight-bit chunks in (a) and in two-bit chunks
in (c) is an issue separate from t.hat of byte skewing. The chief reason we choose to implement the operations in
two-bit chunks in the SPAM processor is because many of t.he algorit.hms used for compiling PLl programs (mainly
the BDD code) require resources that are roughly exponential in t.he size of the process being compiled; hence, it is
much easier to compile these smaller pieces automatically than it would be to compile the eight-bit MiniMIPS chunks.

138

D

D

D

D

(a) (b) (c)

Figure 8.3: Three ways of distributing control, shown on a hypothetical datapath operating on 32
bits encoded as 16 1-of-4 values. (a) MiniMIPS method: two-stage copy to four byte-wide processes.
(b) Asynchronous-filter method: linear tree (list) of control copies to 16 processes operating on 1-
of-4 data (bit skewing). (c) SPAM method: linear tree of control copies to four four-way copies and
thence to 16 processes operating on 1-of-4 data.

139

The reason we should avoid method (b) in a general-purpose processor design should be obvious:

the latency penalty is simply not acceptable. But what is wrong with (a), the MiniMIPS method?

Compared with it, byte skewing as in (c) has the following advantages:

• The method is easily scalable; going from 32 bits to 64 bits is simply a matter of arraying more

cells. This is why we have "grounded" the top of the figure: by using a bit bucket here, we

pay a small penalty of unnecessary data-replication but gain the benefit of being able to array

identical datapath-cells. Scaling the datapath for method (a) involves adding an additional

level to the tree as well as new wires that cross the datapath (new wiring slots must be found

for these).

• The wires are shorter-no wires cross the entire width of the datapath.

• There are fewer wires; instead of O(logn) sets of wires, each enough for crossing the entire

width of the datapath, there is only one such set. In the limit of wide datapaths, (c) will hence

use less energy than (a).

• Byte skewing allows for simpler implementations of many arithmetic operations, e.g., addition.

• The layout is far simpler.

The importance of the shorter wires and the simpler layout should not be underestimated.

Naysayers would retort that byte skewing adds to the latency of computing, which in itself is

enough for them to say no; this is true, but only to an extent. Comparing (a) and (c) in Figure 8.3,

the latency difference for control to arrive at the top bit of the datapath is really only two stages (we

should not count the extra pipelining that was added for other reasons); at the same time, we should

realize that control, generally speaking, arrives sooner at the less-significant bits. In any case, the

naysayers' argument is weak: the added latency matters only on branches, and the amount of added

latency is insignificant compared with the average time between branches; it seems likely that the

throughput advantage and simple design of the byte-skewed control distribution will outweigh it.4

In the SPAM implementation, byte-skewing is llsed in many places where it might not at first

seem obvious that it is a good idea. For instance, the bits of the instruction word are rearranged so

that the register identifiers rx and ry come out of the memory before the other bits of the instruction

word. This way, producing the instruction operands early is possible; indeed, earlier than would be

possible using the logarithmic-tree control distribution of the MiniMIPS.

We should also note that the second stage of the control distribution tree in (a) in many ways behaves electrically like
a four-way copy, even though it may not do so logically. Fiually, implementing the operations in this finer-grained
way adds extra pipelining to the processor, the desire for which should be clear from our going from 18 2/ 3 transitions
per cycle in the MiniMIPS to 10-12 in the SPAM.

4In the SPAM processor, the only arithmetic operatiou that gets slower under byte skewing is shifting right. But
of course shifting left becomes simpler and gets faster.

140

8.3 Design examples

We shall now study two parts of the SP AM design to see two different ways that we can design

large STAPL-based systems in. First, we shall study the PCUNIT of the SPAM processor; this we

shall be able to understand completely as a composition of PL1 programs. Secondly, we shall study

the REGFILE; this design example will show that the compilation methods that we gave in the

previous chapter are not the only way that STAPL circuits can be compiled in.

8.3.1 The PCUNIT

The sequential CHP of a non-arbitrated PCUNIT would be

pc := iniLpc;

* [IMEM _ADDR!pc; pc + = 4;

DOBRANCH?d;

] ;

[d -+ pc := bmnclLtarget 0 --.d -+ skip

]

the PCUNIT learns by reading DOBRANCH whether it has to branch. With the arbitrated mech

anism, the program becomes instead

pc := iniLpc, va := false;

* [IMEM _ADDR!pc, VAlva; pc + = 4, va := false;

] ;

[DOBRANCH -+ pc .- Iwancldm'get - 4, va .- true, DOBRANCH

o --.DOBRANCH -+ skip

]

the reader is referred to Manohar, Nystrom, and Martin [47] for the purpose of the VA channel and

the implementation of the negated probe --.DOBRANCH. We further add a channel, EXPC, for

informing the EXEC of what it needs for computing the target of relative branches and another for

reading the as yet unspecified bmnch_tatget, which gets us to

pc := iniLpc, va := false;

* [IMEM _ADDR!pc, EXPC!pc, VAlva; pc + = 4, va := false;

[DOBRANCH -+ BRANCH _TARGET?pc, va := true, DOBRANCH

o --.DOBRANCH -+ skip

]

J,

where we have assumed that the branch target is computed elsewhere.

141

define pcunit_noarb() (10f(2) d; 10f(4) [16J branchto; 10f(4) [16J expc;
10f(4) [16J imem_addr; 10f(2) va)

{

}

10f(2) bc, dup_ctrl;
10f(4)[16J incpc, incpc2, genpc, newpc, pc2;
10f(2) [32J addend, aug, genpc2;

pc_sel32() psel(bc, incpc2, genpc, newpc);
pc_copy() pcopy(newpc, imem_addr, expc, pc2);
pc_incr() pinc(pc2, incpc); /* INCPC <- PC2 + 8 */

/* initialize tokens: output of incrementer gets 8, input gets 4 */
<i:16: [i != 1 -> reset10f(4,O) r_pc2[iJ (pc2[i]), r_incpc[iJ (incpc[i]);] >
reset10f(4,1) r_pc2_1(pc2[1]); reset10f(4,2) r_incpc_1(incpc[1]);

slack(4,16,3) sm_incpc(incpc,incpc2); /* slack match common case */

/* branch path */
addend_dupe) pdup(dup_ctrl, branchto, addend);

<i:32: [i!=2 -> zero_gen(2) a[iJCaug[i]);J [i==2 -> alternatorC) a2(aug[2]) ;]>
pc_adder() padd(addend, aug, genpc2);

<i:16: buf_2to4 b24_pc[i] ({genpc2[2*i],genpc2[2*i+1J},genpc[iJ); >

10f(2) p_ns, p_s;
singlewidth_slack(2,4) p_s_slaek(p_ns , p_s); reset10f(2,O) r_s_slack(p_s);

pcunitctrl() p(d, be, dup_etrl, va, p_s, p_ns);

Figure 8.4: Top-level CAST decomposition of SPAM PCUNIT (without arbiter).

8.3.1.1 Adding slack

Originally, the implementation of the PCUNIT program used in the SPAM processor was designed

with an amount of pipelining that could be chosell when the system is reset. This was accom

plished by using a fixed datapath and a number of initial tokens that could be chosen at reset time.

Considering only the pc-increment function of the PCUNIT, we could write this as the program:

* [L?oldpc ; R!(oldpc + n * 4)J II SLACK(R, L) ,

where the process SLACK implements a high-slack channel. At reset time, this channel is initialized

with n tokens, iniLpc, iniLpc + 4, iniLpc + 8, ... , 'imLpc + 4(n - 1), corresponding to the first n

pc-values. 5

It turns out, however, that a much simpler design is obtained if the number of tokens is fixed.

In the program that we shall see, n = 2.

5 As mentioned in Appendix B, iniLpc = 8 in the SPAl"I architecture,

142

pe2 0
~~-~--, ,

I) ,
/ , ----_ ...

inCRC sm
~ pine incpe r-- inepc2

"0 CD
~

psel
newpc

augend peopy

branchto

0 L. Lf -;;it
-
0 padd b24pc • J2. genpe r --.. pdup addend

expc

: be • du - etrl p

d ~ va

P s· .. p_ns - : ... Jr-..,....,~-,
1 101 \--01.

Figure 8.5: Process graph of PCUNIT. Data channels are drawn solid; control channels dotted.
Initial tokens are shown as circles.

143

define pc_sel(elof2 c; elof4 incpc, genpc, newpc)
{

communicate {
true -) c?, incpc?;
c == 0 -) newpc!incpc;
c == 1 -) newpc!genpc, genpc?;

}

}

Figure 8.6: PL1 program for a single 1-of-4 process of psel.

8.3.1.2 CAST decomposition

The top-level CAST decomposition of the PCUNIT (without the arbiter-the arbitrated branch

mechanism is handled outside this program) is shown in Figure 8.4. This program corresponds

exactly to the CHP above, except that two pc-operations are in progress at the same time; the

transformations used for getting hither are described by Penzes [69].

8.3.1.3 Subprocesses

The process graph is illustrated in Figure 8.5. The top cycle in the figure is the one usually exercised:

an old pe appears on pe2; pine increments it by eight (since two tokens are in the pc-increment loop,

this is the right amount to increment by); sm_incJlc slack-matches it so that all the processes are

given enough time to reset their handshakes; psel selects it (as long as there has been no branch);

pcopy copies it to the various places it is needed. The bottom path, from bmnchto to newpc, is only

used during branches. This allows a simple ripple-carry adder's being used for padd. The unit that

follows padd, b24_pc, converts the result of the addition from 32 1-of-2 codes (bits) to the 16 1-of-4

codes usually used for representing the JlC value. All the processes are byte skewed; for instance, the

lower bits of an operation in pcopy in time overlap the higher bits in psel.

Branches are handled by discarding the two tokens in the pc loop and regenerating them. When

a branch has been detected, pdup sends the branch target address received on bmnchto twice on the

addend channel. The augend channel meanwhile carries the two tokens 0 and 4. (The alternator

process driving bit 2 of augend accomplishes * [angend!O; (wgend!4].)

As is clear from the above, psel is what we can call an "asymmetric select" process. It either

simply reads and copies incpc2 to newpc or else it reads and discards the value on incpc2 and reads

and copies the value on genpc to newpc (on branches). The PL1 code for a single bit of psel is shown

in Figure 8.6.

The most complex of the PC UNIT processes is the control process pcuni tctrl; this was imple

mented with a single PL1 program, seen in Figure 8.7. 6

6The only reason that the state variable s ill this program was implemented using a feedback loop is that the
PLl compiler as yet does not handle state variables properly; making the replacement manually would save a few

144

define pcunitctrl(elof2 d, selctl, dctl, wbva, s, ns)
{

}

1* EVENTUALLY c(d) = c(wbva)
invariant { s == 1 #> d != 1 }
communicate {

c(selctl) *1

true -> s?, d?;

1* normal op *1
s == ° && d == ° -> ns!O, wbva!O, selctl!O;

1* start branching *1
s == 0 && d == 1 -> ns!1, wbva!1, selctl!1, dctl!1 1* copy *1;

1* stop branching *1
s == 1 -> ns!O, wbva!O, selctl!l, dctl!O 1* pass *1;

}

Figure 8.7: PL1 program for pcunitctrl.

The reason that slack-matching is required (s'fTL'incpe) is that the PCUNIT needs to produce a

new pc every ten transitions, so the loop pine-s7TLinepe-psel-pcopy_· .. should take twenty transi

tions, but pine takes only ten transitions; hence there are six transitions left (psel and pcopy only

take two each) that need to be absorbed if we want the system to be able to run at full speed.

8.3.1.4 32-bit incrementer

The most interesting of the datapath units is the incrementer. This unit computes, on 1-of-4 data,

pc2 := pc + 8. As mentioned above, it does this in ten transitions (i.e., five stages). However, it is

still a very simple unit-the byte skewing allows this. The incrementer consists of three types of

cells: a bottom adder cell for adding the actual increment, a carry cell that is specialized for adding

zero plus a carry in, and a buffer for slack-matching.

Because of the byte skewing, carrying across a byte boundary costs no extra latency; however,

carrying within a byte does cost. Hence, carrying across byte boundaries is done with a rippling

carry, and carrying within bytes is done with a carry forwarded to the next pipeline stage. By

increasing the number of bits that can he incremented at the same time, we can minimize the

number of carries that need to be done within bytes, which will thus minimize the number of stages

required for the increment. It appears to he practical to increment pairs of 1-of-4 codes. Hence, the

incrementer overall gets the structure seen in Figure 8.8. In the figure, only the carry paths have

been drawn; "S" signifies a slack-matching stage (i.e., a buffer), and "I" signifies an incrementer

stage. The diagram has been redrawn in Figure 8.9; the beneficial effects of the byte skewing are

here clear: the structure behaves in time as a pure carry-forward incrementer.

transistors, but it would also make modifying the program more difficult.

Byte 3

Byte 2

Byte 1

Byte 0

145

GGG s
s

GG

s
add2

o

s

s

s
s

s GG
GGG

Figure 8.8: Block diagram of pc incrementer; layout alignment. Flow of data is from left to right.

s
add2

o

146

GGG s
s

GG s

s

GG s
s

s GGG
Figure 8.9: Block diagram of pc incrementer; time alignment.

147

8.3.1.5 Implementation and simulation

The author produced layout for the PCUNIT described here using the magic layout tool, using

design rules for the HP /MOSIS 0.6-p,m process (see Section 3.2.2). Most of the layout was "quick

and dirty"; the transistors were sized by hand to avoid bad cases of static charge-sharing (the cir

cuits included charge-sharing avoidance measures, as well) and for reasonable performance. Shared

transistor networks were used where performance was an issue.

The complete PCUNIT contains 54,786 transistors (this includes weak transistors in staticiz

ers/bleeders and the transistors used for charge-sharing avoidance). The simulation results we shall

see were obtained using the aspice circuit simulator without considering wiring resistance or capac

itance. Because of the byte-skewed design-style and its relatively short wires, it seems likely that

wiring resistance would not be an issue, even in more recent deep-submicron technologies; the extra

wiring capacitance would cause a performance loss of from 20--40 percent, depending on how much

the designer cares about speed relative to energy. 7

Spice simulations show that the STAPL PCUNIT runs at about 1 GHz in its unwired state; this

is about three times as fast as the QDI unit used in the MiniMIPS. Given that the MiniMIPS would

be capable of operating at about 220 MHz if a layout bug were fixed, we should expect a fabricated

STAPL PCUNIT to run at 650-700 MHz in the same technology.

Some simulation results are shown in Figure 8.10 and Figure 8.11. Figure 8.10 shows expc [1],

i.e., bits 2 and 3 of the pc, just after reset. Figure 8.11 illustrates the latency of detecting a branch

from the arbiter input's rising at t = 12 ns to the control for psel's being produced at t;:::;! 13.3 ns;

the datapath's producing the first branched-to JlC value takes 2-5 more stages, so the total latency

is about 2 ns. Each 40-ns simulation takes about four hours to run on a 1 GHz single-processor Intel

Pentium III Xeon computer with 512 megabytes of memory, running FreeBSD 4.2.

The current consumption ofthe PCUNIT is shown in Figure 8.12 and in Figure 8.13; Figure 8.12

shows the current consumption when there is no branching, whereas Figure 8.13 shows it for constant

branching. For the no-branching case, the power consumption is about 1.2 A x 3.3 V ;:::;! 4 W, or

about 4 nJ per operation. While this lIlay seem a high number (the MiniMIPS fetch unit uses

about 2.6 nJ per instruction [70]), we must remember that the circuits were not carefully designed

at the analog level, that they run at 1 GHz, and that whereas the power consumption is high, at

least the noise-inducing dI / dt is very low. Finally, the latency due to byte skewing is illustrated in

Figure 8.14; in this figure, we can see that expc [15] is produced about 0.5 ns later than expc [1].

7It is fairly easy to show that if a circuit is well-balanced in the sense that its different parts run all at about the
same speed and respond to sizing in about the same way and we are sizing the circuit for minimum Etn , where n is
some constant, then we should expect the optimal transistor-sizing to yield a speed that is roughly n/(n + 1) of the
simulated speed without parasitics. For many applications, 'It = 2 is a reasonable choice [55J; this choice can also be
justified on theoretical grounds, as long as we are allowed to vary the supply voltage of the system being designed.
For n = 2 we should expect the optimally sized circuit to run about 70 percent as fast as the ones we are presenting
here. (Note that the circuits we present here are not entirdy unloaded-some wires are present, and some transistor
parasitics, e.g. edge capacitances, are also present.)

'>
~

~

3.5

3

2.5

2

1.5

0.5

0

-0.5
0

3.5

3

2.5

2

1.5

0.5

o

148

, ,

,
, ,

2 4 6

U[nsJ

expc[1 J.O --,If -----~7~-------------,?f ----~~r~; -~~i~ ~~~ --
. , , ' •.. eXPCi1'j·.1 .,:

"

8 10

iexpc{1. 2 _.c.;,._.

:exp11 :3 -:-~-
, i \ , , , ,

'i

12 14

Figure 8.10: Behavior of expc [1] after reset; no branches.

, ,
- - 7 - - ,,~

, ,
f'_/ \ ,

i \
: 1 , , , , , ,
i : , ,
) \ , , , , , , , , , ,
,

/ \
/ \

/ "-
,.,,--------- /~------

-0.5 '--_____ '---____ ---' _____ --1. _____ ---'-_____ --'

10 11 12 13 14 15

tI[nsJ

Figure 8.11: Behavior of control for pc-selector psel; a branch is reported at t =12 ns.

149

We should point out that the circuit is a simplistic one: the slack-matching of the incrementer

is done with standard left-right buffers. Since the number of tokens is known at compile time, we

could easily use higher-slack buffers that use less energy and fewer transistors for the same amount

of slack. It seems likely that nearly half the energy could thus be saved. A little less easily, the

PCUNIT could be redesigned to have the same input-output specification but to use an algorithm

optimized for the average case; studies of the MiniMIPS have shown that even greater savings would

be possible in this way.

1.4 .----...,.---__,_---~--__r---__,_---._--__y---_,
"<I OVdd I -/research/apl/apl_uP/deriv/FreeBSD3/deriv" --

1.2

0.8

<' 0.6 s-

0.4

0.2

0

-0.2
0 5 10 15 20 25 30 35 40

t/[ns]

Figure 8.12: Current draw of PCUNIT in amperes; no branching. Go active at t = 6.5 ns.

The most difficult part of the PCUNIT for the circuit designer is the pc incrementer. In our

decomposition, this unit is used on every instruction fetch; hence the number of 1-of-4 codes that can

be incremented in a single stage of logic to a large extent determines how fast the whole processor can

run, for a given degree of speculation. For this reason, carefully designing the pc-incrementer stage

so it achieves the highest possible throughput and the smallest possible latency becomes necessary.

In the domino-logic design-style that we use, the circuits perform fastest if transistors are shared

in the pUlldown paths; in the pc incrementer this sharing is necessary if we want to get acceptable

performance. The sharing leads to large internal parasitic capacitances and hence to difficulties

with charge sharing. An example of the had effects of charge sharing is seen in Figure 8.15. The

figure shows one of the output-logic nodes of the more-significant incrementer-domino as the carry-in

150

1.8 r-----~------~------~------_r------,_------~------._----_,

1.6

1.4

1.2

~ 0.8

0.6

0.4

0.2

0

-0.2
0 5 10 15 20 25 30 35 40

tJ[ns]

Figure 8.13: Current draw of PCUNIT in amperes; constant branching after t = 12 ns. Go active at
t = 6.5 ns.

3.5 r---------~--------,_--------_r--------_r--------_,--------_,

3

2.5

2

1.5

0.5

.. . ,

Go ---
Kl'Slll -- --

e)(p6[1]·4
expc[15].O ..

-0.5 '--______ ---''--_____ ---' _______ --1. ________ ---.>.. _______ --'-_____ -'

6 6.5 7 7.5

tJ[ns]

8 8.5

Figure 8.14: Arrival of least and most significant 1-of-4 codes of pc.

9

151

changes (the output goes from zero to one); because the incrementer computed a result of zero on the

previous cycle, the internal nodes are charged up, and hence the figure shows almost the worst-case

charge-sharing possible in this circuit,

The circuit diagram of the pull-down logic is shown in Figure 8,16; the node that is the source of

our charge-sharing troubles is marked "X" in the figure, The p-transistors to Vdd and the parallel

resistors (implemented by weak p-transistors to Vdd with their gates grounded) are used for reducing

the effects of charge sharing by charging the internal nodes away from GND when the circuit resets,

By sizing them larger, we can reduce or eliminate the charge-sharing problem, at the cost of a slower,

more power-hungry circuit,

:>
~

4
dut.p,pinc,stage[2j,incr2[Oj,r _[1j,O --

3,5

3

2,5

2

1,5

0,5

o

-0,5 L-__ --L ___ -'-___ .L-__ --1 ___ -'-___ "--__ --' ___ -l

18 18,5 19 19,5 20

tJ[nsj

20,5 21

Figure 8,15: Charge sharing; in the pc incrementer.

21,5 22

The PCUNIT was implemented mainly with PL1 processes, Those things that were not designed

as PL1 processes either already existed (they were simple, hand-compiled processes like the copy

processes and merge processes required in any STAPL design of moderate complexity) or they were

hand-designed for flexibility (e,g" the 2 x 1-of-4 code incrementer cell was parameterized to allow easy

experimenting with different arrangements; the result of compiling a PL1 program implementing the

finally chosen design would have been similar if not identical to the hand-designed circuit with the

finally chosen parameters),

U1].O U1].1

rf[1]4

152

~rf[1]

~ re[1]

U1].2 U1].3

P- rf[1]

Figure 8.16: Circuit diagram of compute logic for the upper 1-of-4 code in pc-incrementer.

8.3.2 The REGFILE

In the PC UNIT design that we have just seen, we were able to decompose the large-scale unit into a

collection of PL1 processes, i.e., into a collection of processes whose implementation exactly followed

the rules of Chapters 5-7. This already snggests that the STAPL technique and the PL1 language

let us build digital logic systems. One cause for concern is that the transistor count for STAPL

circuits is fairly high. While technology changes are making this more and more acceptable in logic

circuits, high transistor-counts are still cause for concern in array circuits, e.g., SRAMs and DRAMs.

The SPAM processor implementation has three array structures: an instruction memory, a data

memory, and a register file. As a first step in applying APL techniques to the design of such

circuits, the register file is a ten-transition-per-cycle APL circuit, using single-track handshaking. 8

The design that we shall see here uses an additional timing assumption for the purpose of reducing

the transistor count; it implements an 8 x 8-bit register array in a single process, which would not

be possible if we were to strictly follow the rules of Chapter 6. It also uses a higher-level design-trick

inherited from the MiniMIPS design for the purpose of increasing the slack: a special type of buffer

is used for distributing the register control to the register file in such a way that conflicting register

accesses (Le., reads and writes, or writes and writes, referring to the same register) are properly

sThe instruction memory and data memory are simplified versions of the register file: the instruction memory has
one read port and no write port; the data memory has one read port and one write port. The register file itself of
course has two read ports and one write port.

153

sequenced, but other accesses can be performed out of order.

8.3.2.1 REGFILE specification

The SPAM REGFILE has 8 registers numbered 0--7, of which register 0 is always zero (it may be

written, but such writes will be ignored); it has two read ports, x and y, and one write port, z.

Because of the SPAM architecture's orthogonal instruction set, there is nothing very mysterious

about the REGFILE: it is simply consulted for the execution of every instruction. Hence, its CHP

specification is

REGFILE ==
gpr [0] := 0;

* [I?i;

]

Xlgpdi.rx] , Ylgpdi.ry];

[i.rz 0 -+ Z?_

o i.rz i- 0 -+ Z?gpr[i.r·z]

]

We should like to implement the REGFILE in a way that allows the reading and writing of registers

in the core to be performed concurrently; the register core will then be specified as:

REG CORE ==
gpr[O] := 0;

* [I?i; Xlgpdi.rx] , Ylgpdi.ry] , Z?gpdi.r·z]

If we can implement the REG CORE thus, we shall be able to use simpler circuit realizations of the

register bits than the general state-bit described in Section 6.4.3.1 (the general state-bit can be read

and written at the same time, whence it is necessary to copy the value between iterations so that

the reading does not result in the new value or confusion).

The main thing that raises concern here is that a register may be read and written on the

same iteration of REGFILE, but this is not true of the REG CORE program. A register-bypass

mechanism solves this problem: we copy the input value three ways, delay the write to the register

file by one iteration, and if the same register is read on the iteration following the one it was written

on, the value is read from the bypass unit rather than from the register core. The bypass mechanism

also reduces the read latency for reads of registers that have lately been written. The mechanism is

essentially identical to the one used in the MiniMIPS.

154

define regfile()(1of(2)[3J rx, ry, rz; 1of(4) [16J x, y; 1of(4) [16J zO, z1, z2;
1of(2) reg_wb)

{

}

1of(4)[16J corex, corey, corezO;
1of(S) cx, cy, cz; 1of(2) bx, by, bxs, bys;

regctrl() rct(rx,ry,rz, reg_wb, cx, cy, cz, bx, by);
slack(2,1,3) s_bx({bx},{bxs}), s_by({by},{bys});
bypass() b(bxs, bys, x, y, zO, z1, z2, corex, corey, corezO);
reg_core(true) rco({ cx,cy }, cz, , corezO);

rco.r[O .. 15,OJ = corex[O .. 15J; reo.r[O .. 15,1J eorey[O .. 15] ;

Figure 8.17: Top-level CAST decomposition of SPAM REGFILE.

8.3.2.2 REGFILE decomposition

The REGFILE is decomposed into three main pieces: the bypass unit, the register core, and the

register control; the decomposition is shown in Figures 8.17 and 8.18. The register control and

bypass are further decomposed into sets of PL1 processes, which are then compiled into STAPL

circuits. The register core is a hand-compiled circuit that obeys the STAPL timing constraints.

Note that we have split the input channel Z into three: ZO, Zl, and Z2. It turned out that the

unit merging the results from the different execution units (arithmetic, function block, shifter, and

so on) was a simple one and could easily take on additional functions. By combining the copying

of Z that would normally have to occur in REGFILE with the merging function, we are able to

remove one stage of pipelining from the execution loop, at the cost of this minor cluttering of the

REGFILE interface.

8.3.2.3 Register-core cell

The register-core cell holds eight bits in eight registers (64 state bits) in a single process. The read

and write ports may be treated as separat(~ units; this is possible because the register control issues

only non-conflicting reads and writes to the core (n)call that this was the purpose of introducing the

bypass).

The (two-read-port, one-write-port) core cell consists of five distinct parts: two read-port sub

cells, one write-port subcell, one dummy-write subcell, and the state bits themselves. A block

diagram is shown in Figure 8.19.

The state bits are organized in pairs; this allows generating the read outputs directly as l-of-

4 codes in the core. The circuitry used for each pair of state bits is shown in Figure 8.20. The

arrangement of the state bits, the word (i.e., byte) lines, bit lines, pulse generators, etc. is shown

155

zO
bypass

x

z1 corex

corezO

z2 corey y

• • bxs: :bys

cx: cy: cz: ~~
bx : by

regctrl

III 1

rx ry rz regwb

Figure 8.18: Process graph of REGFILE. Data channels are drawn solid; control channels dotted.

Z --.,-------..t

~
~
a.
c
3
3
'<

156

(2x4)x8 state bit

write port Z

f----__ -y

----... ~~x

ez ex ey

Figure 8.19: Block diagram of 8 x 8 register-core cell; input and output channels are each four 1-of-4
codes.

in Figure 8.21.9 As usual, the control wires have been drawn dotted. There are in reality four data

wires for each of X, Y, and Z.

Simulations show that this register file operates at about the same speed as the logic circuitry we

have seen before, i.e., about 1 GHz in 0.6-tLm CMOS without wiring, according to our simulations;

this indicates that the speed for fabricated parts would be 650-700 MHz.

8.4 Performance measurements on the SPAM implementa-

tion

The design of the SPAM processor is complete to the PRS level. Using the assembler mentioned

in Appendix B, we can assemble programs for it and run them on the simulator. We shall study

the results of running two small programD on the SPAM: first, a simple straightline program that

tests the maximum speed of the SPAM processor; and secondly, the program shown in Figure 8.22,

which computes the nth Fibonacci number. The results were obtained by the author's simulating

9 Jose Tierno has kindly pointed out to the author that this register file could easily be extended to 32 registers
while maintaining almost the same performance by making four of the 8 x 8 bit cores we have here but then ganging
them together simply by putting the output p-transistors ill p;trallel (some modifications to the control circuitry would
also be needed). This would allow a MIPS- or Alpha-style :~2-elltry register file in a single pipeline stage, operating
at ten transitions per cycle.

~-------------------------------\

read port (two needed)

157

... - - - - - - - - - - - - - - ,
: '

j'[1~11

, ,

j'[O~11

, ,
1 ______ --------;

state bits

1-----------------------------,
: x[1].1 x[1].0

1.0-1 ~ 1.3

1.0-1 ~1.3

write port

Figure 8.20: Circuitry associated with each pair of st.ate bits in register core. Dummy-write circuitry
not shown.

the SPAM processor design at the PRS level on a 1 GHz Pentium III Xeon computer with 512 MB

of RAM, using the csim production-rule simulator; the simulation runs at several instructions per

second. lo

8.4.1 Straightline program

The first program consists of the assembly instruction and rO=rO, rO repeated enough times to

fill the memory (our implementation has 512 bytl~s of instruction memory; i.e., the instruction is

repeated 128 times). Because logical operations can proceed at ten transitions per cycle, and because

the PCUNIT can fetch at that speed, we should expect the processor to be able to execute this trivial

program at that speed. Running the simulation shows that this is not so. If we average over 260

instructions, the SPAM processor runs at 12 2/3 transitions per cycle.

The reason that the SPAM processor cannot completely manage its intended ten transitions

per cycle is to be found in the register file-execution unit loop. In an effort to keep the SPAM

simple, the implementation was designed with only a single writeback bus (Z); this causes slack

matching problems because the execution unit-bypass-execution unit loop is too long: to manage

full throughput, we should have to have at most five pipeline stages in this loop; we have seven. This

problem was avoided in the MiniMIPS partly by splitting the writeback bus Z into two separate

busses that are used alternately; this technique could be used in the SPAM.l1 The fact remains,

laThe csim simulator was writt.en by Matthew Hanna and Eitan Grinspun as part of the MiniMIPS project.
llThe other reason that this problem was less t.roublesome in the MiniMIPS was that many circuits used in the

158

crO cwO· . cr1 cw1 cr2 cw2

cw

Figure 8.21: Overall arrangement of register-core cell. A two 1-of-4-code tall, three-register wide
chunk is shown.

159

;;; Compute the n+ith Fibonacci number
.=Ox8

1i
1i
1i

Start: beq

End:

add
or
or
sub
jmp
hlt

ri=15
r2=O
r3=1
ri, End

r4=r3,r2
r2=r3,O
r3=r4,O
ri=ri,i
rO=Start

n
fib(O)
fib(1)

fib(f+i) . = fib(f) + fib(f-i)

halt the processor--result is in r2

Figure 8.22: SPAM program for computing Fibonacci numbers.

however, that back-to-back data-dependent instructions in the SPAM simply cannot execute at full

speed, because the latency through our units is slightly too long, notwithstanding our efforts to keep

the forward latency short.

8.4.2 Computing Fibonacci numbers

The second program we try is shown in Figure 8.22. It computes the sixteenth Fibonacci number

using the simple iterative algorithm.

The Fibonacci-number program needs to execute 5 + 6n instructions; 95 for n = 15. Simulating

it, we see that it takes 4048 transitions to execute the program (to the point where zero is written

to rl-92 instructions after reset). In this time, we should have been able to execute roughly 400

instructions (or at least 300, taking into account or 12 2/3 transitions' minimum cycle time). We

should expect that the arbitrated-branch mechanism steals a few cycles for every branch, but at

worst that should take us up to 150 instructions or so. Obviously something else is stealing the

time. What is the problem here?

If we examine an execution trace using csim's critical feature, which deduces what transitions

are on the critical path, we see that the culprit is the instruction sub ri=ri, 1. The pertinent part

of the trace is shown in Figure 8.23.

Examining these production rules, we see that the critical path is the carry chain of the datapath

adder. But was not the point of using a simple ripple-carry adder that we could demonstrate the

superior average-case performance of asynchronous design?

It turns out that asynchronous intuition fails us here. It is true that on average, for random data,

the longest sequence of carries in a ripple-carry adder goes only as log n, where n is the width of

MiniMIPS were in fact faster than the 18 2/3 cyclf~S per transition that the processor as a whole managed. Since we
are with the SPAM design aiming at the entire processor's executing at the maximum speed of the individual blocks,
this option is not open to liS. However, "binary tn,e FIFOs" [18] and similar structures have the effect of absorbing
slack mismatches even in STAPL systems operating at ten transitions per cycle overall.

160

-dut.e.a.a.f[6].d_.1 -> dut.e.a.a.d[7] .1+ at 405100
dut.e.a.a.f[6] .fd & dut.e.a.a.f[6].de & dut.e.a.a.b[6].1 & dut.e.a.a.d[6].1 -> dut.e.a.a.f[6] .d_.1- at 405000
-dut.e.a.a.f[5].d_.1 -> dut.e.a.a.d[6] .1+ at 404900
dut.e.a.a.f[5] .fd & dut.e.a.a.f[5] .de & dut.e.a.a.b[5].1 & dut.e.a.a.d[5].1 -> dut.e.a.a.f[5].d_.1- at 404800
-dut.e.a.a.f[4] .d_.1 -> dut.e.a.a.d[5] .1+ at 404700
dut.e.a.a.f[4].fd & dut.e.a.a.f[4].de & dut.e.a.a.b[4].1 & dut.e.a.a.d[4].1 -> dut.e.a.a.f[4] .d_.1- at 404600
-dut.e.a.a.f[3].d_.1 -> dut.e.a.a.d[4].1+ at 404500
dut.e.a.a.f[3].fd & dut.e.a.a.f[3].de & dut.e.a.a.b[3].1 & dut.e.a.a.d[3].1 -> dut.e.a.a.f[3].d_.1- at 404400
-dut.e.a.a.f[2].d_.1 -> dut.e.a.a.d[3].1+ at 404300
dut.e.a.a.f[2].fd & dut.e.a.a.f[2] .de & dut.e.a.a.b[2].1 & dut.e.a.a.d[2].1 -> dut.e.a.a.f[2] .d_.1- at 404200
-dut.e.a.a.f[1).d_.1 -> dut.e.a.a.d[2].1+ at 404100
dut.e.a.a.f[l).fd & dut.e.a.a.f[l] .de & dut.e.a.a.b[l].l & dut.e.a.a.d[l].l -> dut.e.a.a.f[l].d_.1- at 404000
-dut.e.a.a.f[0).d_.1 -> dut.e.a.a.d[l].l+ at 403900
dut.e.a.a.f[O].fd & dut.e.a.a.f[O] .de & dut.e.a.a.a[O].l & dut.e.a.carry_in.1 -> dut.e.a.a.f[O] .d_.1- at 403800

Figure 8.23: Part of the critical-path transition-trace of running the program of Figure 8.22. Time
goes upwards; each transition delay is counted as 100 time units.

the adder in bits; it is furthermore true that most numbers that are added by the average program

may have better behavior even than that b(,cause they are more commonly small than large. Hence,

for adding or subtracting random numbers to and from each other or for adding small numbers

to each other, an asynchronous ripple-carry adder is a good and far simpler alternative to a carry

lookahead or carry-select adder. But what we are doing in the Fibonacci program is subtracting small

integers from each other. In this case, the ripple-carry adder achieves its worst-case performance;

and consistently so.

The way we can improve the performance of the Fibonacci program is familiar to every hacker:

we unroll the loop. Thus we remove a large fraction of the subtract instructions (and incidentally also

of the branches, which themselves are a bit costly). The improved program is shown in Figure 8.24.

Executing it takes 2324 transitions, a speedup of 1.7. I3ut the critical path still mainly goes through

the adder.

8.4.3 Energy measurements

The author has run the unrolled Fibonacci program through the esim production-rule and energy

simulator. 12 Using a fanout-weighted transition-counting model that has been calibrated on the Min

iMIPS, running the unrolled program took 21.5 x lOG esim energy units. Penzes's observations [70]

of the MiniMIPS suggest that each energy unit corresponds to about 160 f.J; the author calibrated

the model against the PCUNIT, which took 4.82 x lOu of the energy units to fetch 126 instructions,

suggesting that the number is a bit smaller for the SPAM (about 105 fJ), if we assume that the

energy cost of adding all the wiring will approximately cancel the benefit of more careful sizing.

(Recall that the PCUNIT uses about 4 n.J per operation; see Section 8.3.1.5.) This is not surprising

since the MiniMIPS does not have the STAPL feedback-path transitions; also esim overestimates

the energy dissipation for the SP AM because the gate-sharing information was not included in the

measurements. The unrolled Fibonacci program executes 60 instructions; in the simulation it fetches

12The author is indebted to Paul Penzes for his providing the esim simulator and helping to run it.

" , Compute
.=Ox8

li
li
li
and
beq

StartOdd:
add
or
or
sub

StartEven:
beq
add
or
add
or
sub
jmp

End: hlt

the

161

n+1th Fibonacci number, unrolled

r1=15
r2=O
r3=1
r4=r1,1
r4, StartEven

r4=r3,r2
r2=r3,O
r3=r4,O
r1=r1,1

r1, End
r4=r3,r2
r2=r4,O
r5=r4,r3
r3=r5,O
r1=r1,2
rO=StartEven

n
fib(O)
fibO)

fib(f+1) fib(f) + fib(f-1)

fib(f+1) := fib(f) + fib(f-1)

fib(f+2) fib(f+1) + fib(f)

halt the processor--result is in r3

Figure 8.24: SPAM program for computing Fibonacci numbers, unrolled once.

126. We can hence estimate that the energy per operation is 37 nJ per effective instruction or 18 nJ

per fetched instruction. The MiniMIPS consumes about 34 nJ per arithmetic instruction and about

21 nJ for a no-operation instruction [70].

8.4.4 Summary of SPAM implementation's performance

The SPAM implementation performs reasonably wdl. In fact, for programs that do not use the

ripple-carry adder in the worst-case way of the Fibonacci program (unfortunately, all programs

with short for-loops use the adder thus), the performance is very good: 12 2/3 transitions per cycle

would correspond to an average fetching rate of over 500 MHz in the now-obsolete 0.6-fLm CMOS

technology. (This is an honest figure for a hypothetical fabricated chip.) At the same time, we have

identified a few serious bottlenecks: first, the loop restricting the speed to 12 2/3 transitions per cycle

could be removed by redesigning the writeback mechanism along the lines of the MiniMIPS; secondly,

changing the datapath adder from a ripple-carry adder to a traditional carry-Iookahead adder would

bring us much closer to the goal of executing real programs at ten transitions per cycle.13 We should

finally remember that the bottlenecks we have identified are not due to the STAPL realization but

rather due to a microarchitecture that is it bit too simple to be able to achieve the performance

13Note that we should not redesign the adder without fimt fixing the writeback bottleneck; the author has tried
replacing the ripple-carry adder with a simple carry-Iookahead add(,r (with full carry-Iookahead across eight bits), and
this resulted in the Fibonacci program's running slightly slower because of the added latency of the carry-Iookahead
adder.

162

target.

8.4.5 Comparison with QDI

We have now seen the design of a large, concurrent system using the STAPL circuit family. The

speed and energy advantages of QDI design have been established before [55]; can we compare the

two design styles?

The only way of truly fairly comparing' STAPL and QDI would be taking a single specification,

e.g., the SPAM architecture, and implementing it as well as possible using each of the design styles,

We have not done this, and obviously it would be a lot of work to do so; most likely no way of doing

it would even convince the skeptics.

Nevertheless, we should not shirk our duty of comparing STAPL with previously known tech

niques. There are four chief dimensions of interest: case of design, speed, energy consumption, and

reliability; reliability may include tolerance to design errors and noise, and the ability of operating

over a wide range of environmental conditions.

8.4.5.1 Ease of design

Are STAPL circuits easier to design than their QDI counterparts? The PLllanguage shows that it is

easy to design STAPL circuits, so easy a computer can do it well. But given the similarities between

STAPL and QDI circuits, it would be easy to write the same software tools for QDI circuits (indeed

the work is already in progress). And QDI circuits are easier to generalize: there is a compilation

technique that will take us from eRP all the way to PRS. We must also remember that STAPL

circuits are more sensitive to sizing; it is not clear how important this is for the designer, since QDI

sizing must also be verified before fabrication.

8.4.5.2 Speed

Do STAPL circuits run faster than QDI circuits'! Undoubtedly. The SPAM example shows that

something as large as a microprocessor can be designed with circuits that all run at ten transitions

per cycle, whereas it would be very difficult to do so in less than 18 with only QDI circuits. The

reason for the difference is that STAPL circuits remove many waits that are necessary for maintaining

QDI protocols and replace them with timing assumptions. Furthermore, STAPL circuits load their

inputs less than do QDI circuits, because they generally do not need the completion circuitry that

is needed in QDI circuits. The SPAM processor parts that we have simulated run three times as

fast as similar parts from the MiniMIPS.

It should be noted that STAPL circuits do not offer a magic bullet for dealing with latency

issues. The latency through a STAPL stage is somewhat smaller than through the same stage of

163

QDr computation, because of the lesser loading of the inputs; but the difference is minor. Some

might say that STAPL circuits make the job harder for the microarchitect, much as the faster

improvement in processor speed compared with the improvement in DRAM access-time has made

his job harder.

8.4.5.3 Energy

How do STAPL and QDr circuits compare on energy? To first order, there is no reason to believe

that they should use very different amount" of energy. The reason is that STAPL circuits have most

of the paths that are present in QDr circuits: the logic is the same, much of the output completion is

the same. There is no input completion, nor are there acknowledge wires, but on the other hand, the

QDr circuits do not have pulse generator". E"timating the energy lost to interference is difficult, but

so is estimating the energy lost to "shoot-through" current in the combinational completion-networks

in QDI circuits.

There is a little more to this story, however. A circuit carrying out the STAPL handshake uses

the same wires for receiving data as it does for acknowledging it; hence in the limit of single one-hot

codes, there are only half as many transitions on the interface nodes of STAPL circuits as there

are for QDI circuits. But in QDI circuits, one can combine the acknowledges by synchronizing at a

slightly larger grain-size: e.g., in the MiniMIPS, most "elementary" processes (meaning those that

communicate with their environment entirely on channels) are eight-bit processes, thus amortizing

the cost of the acknowledge across all eight bits. But in STAPL circuits, little would be gained by

this. Hence the STAPL circuits invite deeper pipelining.

In short, this means that while STAPL and QDI circuits can be built that look nearly identical,

that may be an artificial thing to do. And hence we cannot say that, given a high-level specification,

its well-designed STAPL and QDI implementations will dissipate the same amount of energy per

operation. We cannot, for instance, say that STAPL circuits will run three times faster and use the

same amount of energy as QDI circuits: the higher degree of pipelining in STAPL circuits will use

a little more energy than that.

Let us evaluate STAPL and QDI circuits using the Et2 metric; this metric captures the fact

that by our varying the supply voltage of a CMOS circuit, any speed improvement can be traded

for roughly twice that improvement in energy. The 1:2 tradeoff is reasonably accurate for a wide

range of operating voltages. The Et2 metric was introduced in the context of the MiniMrpS by

Martin et al. [55]; it is more fully explored by Martin [57]. STAPL circuits are about three times

faster for the circuits we have studied; the transistor count is about twice as high, and there is

an extra handshake for each 1-of-4 code that is not present for the QDI implementations that we

compared with. Hence, conservatively estimating' (E t-+ 2E, t t-+ t/3) the improvement in Et2 gives

that STAPL circuits improve by a factor of about five; to first order, the change in At2 (a metric

164

introduced by Thompson [82]) would be about the same. How this comparison would turn out if we

compared PL1-described STAPL with similarly generated QDI circuits is less clear, because some

part of the higher transistor-count of the STAPL circuits is due to our using higher-level design tools

rather than to the circuit family itself. (The MiniMIPS processor, whence come the QDI circuits we

are comparing with, was designed entirely by hanel.)

8.4.5.4 Reliability

How reliable are STAPL circuits? Since we have not yet seen a fabricated chip, this is not the easiest

question to answer. The timing assumptions in STAPL circuits are definitely cause for concern. In

simulations, the author has noticed that. STAPL circuits, when their supply voltage is lowered away

from the nominal, appear to stop working sooner (at a higher voltage: ~ 1 x VT) than do QDI

circuits (the author has in the lab successfully operated the 1989 QDI, 1.6-tLm microprocessor [53]

with Vdd ~ VT/3). These failures are due to the various circuit delays' not changing at the same

rate as the supply voltage is changed; the STAPL circuits could be engineered to be more tolerant

to supply-voltage changes by making sure t.hat (7 decreases and ~ increases as the supply voltage

changes instead of the other way around. Recall that the single-track handshake involves four timing

constraints; these are captured by (7true, (7faise, ~true, and ~faise (see Figure 5.7).

As for injected noise, it does not seem that either STAPL circuits or QDI circuits are particularly

trustworthy. Both design st.yles make much use of dynamic logic; both design st.yles achieve high

performance when gate sharing is used, which leads t.o charge sharing and t.hence to problems with

the dynamic nodes. The STAPL circuits do use more dynamic st.ages than do the QDI circuits, but

on the other hand, charge-sharing-avoiding circuits are easier to design in STAPL circuits.

STAPL circuits are less tolerant to design errors than are QDI circuits. In a STAPL circuit, a

single mis-sized transistor can easily lead to complet.e system failure, whereas in QDI circuits, the

same thing can usually only happen under extreme circumstances (a badly mis-sized transistor on

a three-transition feedback-loop, for instance). This, however, is something that we can understand

theoretically, and we saw in Section 6.8.4 how we might deal with the issue.

165

Chapter 9

Related Work

Quidquid latine dictum sit, altum viditur.

~ Anon.Ymous

This thesis is about asynchronous pulse logic: in essence, it argues that APL circuits are possible;

that they will compute reliably; and that their performance is better than that of QDI circuits, for

about the same degree of design difficulty. We have had to cover a wide range of subjects to make

the argument stick.

9.1 Theory

In Chapter 3, we developed a theory for the functioning of APL circuits. No comprehensive theory

exists that manages establishing the connection from device physics to digital asynchronous logic.

There have been small steps towards one for QDI circuits. Martin [52] suggested that as long as

signals ramp monotonically (and quickly), the circuits can be proved to be correct realizations of the

specifications. Later, van Berkel discovereel that not arranging the signals to behave well can cause

problems [7]. Greenstreet has come further than others in making the connection complete; his

work relies on dynamical-systems theory (which to some extent ours does too) [31]. Our work differs

from these authors' in that we have chosen the pulse as the basic abstraction, whereas Martin and

van Berkel considered the transition (which is natural since they were dealing with QDI systems)

and Greenstreet used a more complicated (and more powerful) dynamical-systems model.

9.2 STAPL circuit family

We next, in Chapters 5 and 6, developed a family of practical circuits for implementing any digi

tal specification. These circuits are similar to the "asP" circuits studied by Greenstreet, Molnar,

Sutherland, Ebergen, and others [32, 61, 80]. The work at Sun (Sutherland, Ebergen, and others)

166

seems aimed mainly at very fast (six transitions per cycle) FIFO controls intended for driving a

bundled-data datapath. Our work differs considerably from this in that we design the entire system,

control as well as datapath, using the STAPL model (see section below on PL1 language). These

other authors also have not studied circuits as complicated or powerful as ours; it seems unlikely

that the circuits that we have studied should be possible with only six transitions per cycle. The

"IPCMOS" circuits studied by Schuster et al. at IBM Yorktown Heights [74] are in essence the same

as the Sun circuits, although the low-level realizations differ slightly.

Single-track handshakes have been studied before [8, 83]. The chief difference between the earlier

work and the STAPL family is that the STAPL family is aimed at implementing in a single template

all the functions that we should care to see in a single process; earlier single-track circuits have

generally started from a QDI specification and gradually worked in the timing assumptions. We

have instead started with the idea of a pulse with well-known characteristics, and then we built up

the entire family around that pulse.

Earlier work with "post-charge logic," whose circuit realizations are similar to the pulsed asyn

chronous, was done in synchronous contexts by Proebsting [71], Simon [77, 17], and is today an

active field of research and development. The work in this thesis was in part inspired by the work

on the AMD K6 processor by Draper et al. [22].

The STAPL circuits are also in some respects similar to the "neuromorphic" circuits pioneered by

Mead and his group [58]; the "silicon neuron" of Mahowald and Douglas [44] is the closest to compare

with. The silicon neuron integrates analog inputs and then generates a carefully timed spike, which

resets its inputs and which can be integrated by other neurons; in basic principle it is similar to the

STAPL template. The details, however, differ markedly: the silicon neuron is built using transistors

operated in (slow) analog configurations (especially if they are operated in the subthreshold regime;

this would be done to make the modeling easier), it uses inputs that are encoded differently (i.e., as

analog levels), and it is much slower (the speed difference is as much as six decades). To some extent,

the slowness is intentional on the part of Mahowald and Douglas; their claim is that since the silicon

neuron is intended for building "machines that interact with real-world events in the same way as

biological nervous systems," this is the right thing to do. Nevertheless, the author cannot deny

that the present work has been strongly influenced by the idea that forms the basis of the silicon

neuron, viz. the idea of waiting for inputs to arrive and then, when appropriate, generating a single

output pulse of well-known characteristics; as we saw earlier, the careful internal-pulse-timing is one

of the main differences between the STAPL family and earlier single-track-handshake asynchronous

circuits.

167

9.3 PLI language

The PLI language is used for specifying the behavior of small asynchronous processes that are then

composed (using the CAST language) into a larger system. The PLI language describes processes

that are similar to the computational elements described in the 1970s and 1980s by Dennis and

other authors in the dataflow computer field [19]. Necessary conditions for deterministic behavior of

these systems were implicit in much of their work; the ideas of slack-elasticity were later elucidated

by Manohar [45], who proved the properties of slack-elasticity for deterministic and certain nonde

terministic systems that our work and the MiniMIPS depend on. Slack-elasticity in deterministic

systems was to the author's knowledge first used in the Caltech Asynchronous Filter [18]; how to

compile the processes needed for building such systems was described by Lines [43], but some of the

ideas are already present in Burns's [14] and Williams's [85] work.

The asynchronous slack-elastic method of designing hardware itself was explored in the frame

work of QDI design, first proposed by Martin [51] as the most conservative, yet realizable compromise

between speed-independent and delay-insensitive design methods. (We mentioned some of the back

ground to the earliest work in the Introduction.) QDI design has really been the main inspiration

for this work: this was the way the first [53] and largest and fastest [55] (i.e., the MiniMIPS) asyn

chronous microprocessors were designed. The byte skewing we described for the control distribution

of the SPAM is a hybrid of the bit skewing used in the Asynchronous Filter [18] and the pipelined

completion used in the MiniMIPS [55].

Our pulsed circuits were initially inspired by the problems of compiling from HSE to PRS via ER

systems; CHP, HSE, and PRS were described by Martin [48, 54]; ER systems are due to Burns [14]

and were extended by Lee [42]. Taking a different approach to the problem, Myers and Meng [64]

and Takamura and others [81] have described methods for introducing timing assumptions into a

QDI system. However, these authors essentially start from QDI systems and attempt to improve

their performance by removing unnecessary transistors, whereas the method described in this thesis

leads to quite different circuits, since it does not make the QDI detour.

The ideas of modular, delay-insensitive asynchronous design owe much to basic work in con

currency. Hoare's CSP language [36], itself related to Dijkstra's guarded-command language [21],

is the basis of our CHP. Chandy and Misra's UNITY language [16] may be thought of as a more

powerful (and hence not directly implement able) version of production-rule sets; UNITY is also an

application of the guarded-command language. There is a definite scale of semantics: Dijkstra's

guarded-command language allows arbitrary sequential statements to be executed; UNITY allows

arbitrary atomic assignments (but no sequencing); and the production-rule language allows only sin

gle, boolean assignments. In a sense, the STAPL processes themselves are higher-level "production

rules" with more powerful semantics than in the usual PRS model; in this sense the STAPL model

168

is most similar to UNITY.

9.4 SPAM microprocessor

The SPAM microprocessor is itself not revolutionary. It is essentially a simplified MIPS processor;

this allows us to take maximum advantage of the experiences of the MiniMIPS project. The register

locking mechanism is the same as that used in the MiniMIPS, and the arbitrated-branch mechanism

was inspired by the MiniMIPS exception mechanism; it is to a lesser degree similar to the arbitrated

branch and exception system of the AMULET1 processor [88].

169

Chapter 10

Lessons Learned

If a man will begin with certainties, he shall end ill doubts; but if he will be content to begin with

doubts, he shall end in certainties.

- Francis Bacon, The Advancement of Learning (1605)

10.1 Future Work

Things remain to be done. The SPAM processor demonstration is yet unfinished, and it would be

more convincing with working silicon. This is the most immediate task.

Furthermore, there remain several unanswered questions. For instance, in Section 4.1, we men

tioned a possible and tantalizing way of dealing with interference: with the ordering of transistor

strengths opposite to the (worst-case) ordering we chose, it. might be possible t.o build pulsed circuits

that., instead of failing, operate as NMOS circuits when the inputs are stable for too long. Another

issue that needs to be explored further is the kinds of waveforms we should use for characterizing the

pulse generators; speaking from int.uition, t.he rectangular pulse shapes we used do not fit the actual

pulses observed as well as certain trapezoidal shapes, whence we should expect trapezoidal test

pulses to yield a better quantitative underst.anding of the behavior of the pulsed circuits. Finally,

we should of course be happy to remove the infinite-gain inertial-delay; are there more reasonable

conditions that the circuits can be underst.ood undt~r?

When it. comes to the circuit family it.self, several quest.ions are unanswered. Is there a more

parsimonious way of implementing the STAPL handshakes? What can we do about tolerating noise

(Section 6.8)-should we have some feedback from t.he output in the pulse generator, less internal

feedback, or some other feedback arrangement (see t.he description of "load lines" in Section 6.8.4)?

There is a vast space of circuit designs that. has not been explored: one big question is if we

should always design the circuits so that the transition counts match up; in Section 5.2.1, we note

that it may not always be optimal to maintain this assumption; either way, t.here are serious timing

verification issues that. need to be tackled if we want. to ensure that a given circuit design satisfies the

170

single-track-handshake constraint. Our simulations suggest that the circuit family we have given

works, but that is not enough: we should like to know more exactly how the transistor delays relate

to the handshake constraints (e.g., Eqs. 5.2 and 5.3). What we need to do here is show how each s

and x relates to the transistor delays themselves.

As far as programming tools go, the connection between the PL1language and CAST has not yet

been made complete; the PL1 compiler also has several annoying "features" that make it somewhat

difficult to use.

The SP AM implementation could, aH we noted at the end of Chapter 8, easily be improved.

The current design is very promising: the circuits are very fast, and we almost achieve the design

objective of ten transitions per cycle. But it only works well on straightline code and on code that

does not subtract small numbers from each other. What needs to be done to improve it is fairly

obvious: a change to the writeback mechanism, a new adder, and~in the slightly longer term~more

sophisticated branch-prediction.

10.2 Conclusion

In this thesis, we have seen the development of STAPL, a new way of building digital logic sys

tems. The discussion has gone from a simple experiment, through elementary theory, more specific

circuit theory, a family of circuits that realizes the theory, automatic design tools, and finally to a

microprocessor-design example. As we said in the Introduction, we should follow Carver Mead and

make the handling of system complexity the touchstone for this new implementation and realization

technology. The contribution of this thesis is making it possible to build modular asynchronous

systems without sacrificing performance.

So the question is: how did we do with the SPAM processor? Overall, the results were encour

aging: it was easy to design the processor with the new PL1 language and the old CAST language

together; the circuit performance was spectacularly good for such a comprehensive circuit technol

ogy; the performance problems that we ran into were not related to the design style, and they could

easily be remedied. The chief drawbacks of our new design-style are the high transistor-count (our

SPAM example has about twice as many transistors for implementing the same function as the cor

responding hand-compiled MiniMIPS parts) and the high power-consumption; the transistor count

is something we should not worry about (at least for logic; the REGFILE design shows that it is

possible to save transistors by compiling things by hand), and the power consumption is mainly due

to the speed of the circuits. In terms of the Et2 and At2 metrics, the parts of the SPAM processor

design that we studied suggest that the STAPL circuits are a definite improvement over all previ

ously known implementation technologies: the improvement is a factor of five over the MiniMIPS,

which itself is as good as any other single-issue 32-bit microprocessor [55].

171

Appendix A

PLI Report

We have no very useful techniques for protecting the system from software bugs. We are reduced to

the old-fashioned method of trying to keep the bugs from getting into the software in the first place.

This is a primary reason for programming the system in PL/I. ..

~ Vyssotsky, Corbat6, Graham: Structure of t.he Multics Supervisor (1965)

A.I Introduction

This report describes Pipeline Language 1 (PL1), a specification language for processes used in

highly concurrent VLSI systems. The design of PL1 was inspired by developments in asynchronous

digital VLSI, especially slack elasticit.y and pipelined completion, but the main concepts are also

familiar from earlier work on the represent.ation of computations as dataflow graphs.

A.1.1 Scope

We shall make frequent reference to pr·ocesses in this report. Traditionally, processes are thought

of as the sequential building blocks of a parallel system. Restricting internal concurrency is too

narrow a view, and we take the position that processes are simply parts of a parallel system that

communicate with each other on channels. Arbitrary shared variables are hence not allowed between

processes. The reader that is satisfied with using shared variables is urged to ignore the metaphysical

implications of something's being a process; hp can simply t.ake the process as a syntactic construct

that we introduce for structuring a conCUlTPnt systpm.

Programs written in PL1 describe processes, not. entire systems. The hierarchy required for

describing an entire system is expounded in some othpr language, such as the CAST language [46, 78]

or a general-purpose language like C or Modula-3.

172

A.1.2 Structure of PLI

The PL1 language is defined by proceeding through several levels. At the lowest level are the

syntactic tokens, such as keywords and identifiers. These tokens are combined to make expressions

and actions. Finally, the expressions and actions are arranged to make a process description.

We discuss the syntax of the language first and the semantics later.

A.2 Syntax elements

We describe the PL1 syntax bottom-up: We start with the lexical definition of tokens and proceed

later to the grammatical definition of language components.

The lexical components of a PL1 program are comments, keywords, integers, identifiers, expres

sion operators, and special operators. Out of these components are built expressions and actions.

We shall use regular expressions [1] for describing the lexical elements of PLl.

A.2.1 Keywords

The following are keywords with special meaning in PLl: true, false, void, define, communicate,

goto, go to, invariant. Keywords may not be used as identifiers.

A.2.2 Comments

A comment is, as in the C language, started by /*. The comment includes all the text to the

next occurrence of */ . Comments do not nest. The text in a comment is without meaning in the

language.

A.2.3 Numericals

Numerical data is limited to integers and can be expressed either in hexadecimal (base 16) or in

decimal. Hexadecimals begin with the special sequence Ox.

< numerical >:= [0-9J [0-9J * I Ox [0-9a-fJ [0-9a-fJ *

A.2.3.1 Boolean numbers

For convenience, the keyword true is understood, in all contexts, as the integer 1, and the keyword

false is likewise understood as the integer o.

< integer >:= < numerical >Itruelfalse

173

A.2.4 Identifiers

As identifiers, anything is legal that is not a keyword, a numerical, a type identifier (see Sec

tion A.3.1), or the sequence Ox, and further is described by

< identifier >:= [$a-zA-Z_O-9] [$a-zA-Z_O-9] * .

A.2.5 Reserved special operators

PL1 reserves a few tokens as special operators-they can appear outside expressions, with different

meaning than when they appear within expressions. The special operators are ->, =, !, and? . Of

these, ? and -> can never appear in an expression.

A.2.6 Expression operators

The PL1 expression operators are inspired by C. Operators are either unary or binary. Note that

- can be either the unary negation operator or the binary subtraction operator; the distinction is

made in the grammar. A similar duality applies to +.

< unary operator >:= -\+\! \-
< binary operator >:= *\/\%\«\»\+1-\<1<=\=<\>\>=\=>\==\ !=\&\-\I\&&\II\#>

A.2.7 Expression syntax

Expressions are written as infix or prefix strings of operations on integers and identifiers, as in normal

mathematical notation or as in C. l

< expression>:= < identifier> \ < integer> \ < unary operator> < expression> \

< expression >< binary oper·ator >< c:rpression > \ « expression»

A.2.B Actions

PL1 programs execute actions. Three types of actions are defined: send actions, receive actions,

and state actions.

< action>:= < send action> \ < rece'ivc acbon > \ < state action>

< action subject >:=< identifier>

< action object >:=< expression>

< send action >:= < action subject>! < action object>

< receive action >:= < action s1tbJ·ect >7

< state action >:= < action s7tbject >=< action object>

1 Note that parentheses are allowed in expressions. The parentheses that denote optional elements in the grammar
are set in a larger and lighter font.

174

A.2.8.1 Implicit declaration by actions

Making an identifier the subject of a send action implicitly declares the identifier as an output

channel. Conversely, making an identifier the subject of a receive action implicitly declares the

identifier as an input channel.

A.3

175

PLI process description

The actions and expressions are arranged to make a PL1 process description. For completeness, we

also define declarations and invariants.

A.3.1 Declarations

All PL1 variables must be mentioned in declarations before being used. Declarations can be of

two kinds: argument declarations and local declarations. Argument declarations declare the input

output channels of a process; thus, argument declarations define variables that have a type denoted

by channel type-identifiers. Conversely, local declarations define variables whose types are denoted

by local type-identifiers. Currently we define a restricted set of data types, viz.,

< channel type identifier >:= elof [1-9] [0-9] *

and

< local type identifier >:= 10f [1-9] [0-9] * .

We currently also enforce the further restriction that all variables are of type lofx or elofx where

x = 2n for some non-negative integer n < N, where N is implementation-dependent. The restriction

that x must be a power of two may be removed in a future implementation, but the restriction that

x must be bounded is likely to remain.

Thus:

< argument decl >:=

< channel type ident~fier > < identifier> (, < identifier»· ..

< local decl >:=

< local type identifier> < identifier> (,< identifier»· ..

No syntax is provided for making the explicit distinction between input and output channels.

However, the implementation will enforce the distinction by checking that either only receive or only

send actions are performed on a given channel.

The distinction between argument types and local types is intrinsic to the language, but the

specific data types provided are subject to change.

A.3.2 Communication statement

The communication statement joins a communication condition, in the form of an expression, with

the relevant actions.

< guard >:=< expression>

< communication statement >:= < guard> -> < action> (, < action»·· .

176

A.3.3 Process communication-block

A PL1 process consists of the following parts, in order: a process declaration, a list of local declara

tions, a list of invariant statements, and a communication block. Each component is optional except

the process declaration itself.

< communication block >:= communicate {

< communication statement> (;< cmnmunication statement».· .

}

< invariant >:= invariant { < expr'ession > }

< process >:=

define < identifier> ((< argument decl > (; < argument decl » ...) {

« local decl >(;< local decl » ...)

« invariant> « invariant» . ..)

« comm'u,nication blocK: »
}

The process is the highest-level syntactic element in PLl. The interactions between processes

are handled externally to the language.

177

A.4 Semantics

The semantics of PL1 may be broadly divided into three categories: expression semantics, action

semantics, and concurrency semantics.

AA.l Expression semantics

All PL1 expressions are evaluated as two's-complement binary quantities.

We have already covered the syntactic appropriateness of the various PL1 language operators.

The operations defined in the grammar have the following meanings defined in the following tables.

A.4.1.1 Binary operators

The binary operators in PL1 have operator precedence as in C. In the following table, the precedence

is indicated by grouping, with the precedence falling as we descend down the table. All binary

operators are left-associative. (In contrast to C, the right-associative assignment is not an operator

as such in PL1; it is instead part of an action statement.)

178

Operator Interpretation Operand(s) Result

* Multiplication integer integer

/ Division integer integer

% Remainder integer integer

+ Addition integer integer

- Subtraction integer integer

« Left shift integer integer

» Right shift integer integer

< Less than integer boolean

<=,=< Less than or equal integer boolean

> Greater than integer boolean

>=,=> Greater than or equal integer boolean

-- Equal integer boolean

!= Not equal integer boolean

& Bitwise AND integer integer

- Bitwise XOR integer integer

I Bitwise OR integer integer

&& Logical AND boolean boolean

II Logical OR boolean boolean

#> Logical IMPLIES boolean boolean

A.4.1.2 Unary operators

The unary operators have higher precedence than any binary operators and are listed in the following

table.

Operator Interpretation Operand(s) Result

! Logical NOT boolean boolean

- Bitwise NOT integer integer

- Negation integer integer

+ integer integer

Because of the syntax of actions, expression operators have higher precedence than delimiters

179

used in actions.

A.4.1.3 Boolean type-coercion

As in C, coercion between boolean values and integer values is done as follows:

1. A boolean result used as an operand to an integer operator is interpreted as 1 if it evaluates

to true and as 0 if it evaluates to false.

2. An integer result used as an operand to a boolean operator is interpreted as false if it evaluates

to 0 and as true in all other cases.

These are the same rules as are used for converting the constants true and false to integers.

A.4.1.4 Integer type-coercion

If the size (in bits) of the result of an evaluation does not match the size of the variable that it is

assigned to or the size of the channel that it is sent on, the result is either sign-extended (if it is

too narrow) or bitwise truncated (if it is too wide). The use of negative quantities is, in general,

discouraged since all built-in datatypes are unsigned.

A.4.1.5 Use of channel identifiers

An identifier used in an expression that refers to a channel or to a state variable evaluates to the

current value of the channel or state variable in question. If there is no current value (because

none has been sent on that channel), then the expression does not evaluate. There is no way of

accessing a value corresponding to the "undefined" or "no-data" state of a channel. The channel

value cannot change during the current round of execution because it can only be updated after it

has been removed by the receiving process.

A.4.2 Action semantics

Three types of variables with associated actions are defined in PL1. Send actions are defined for

output channels, receive actions are defined for input channels, and assignment actions are defined

for state variables. Channels between processes are first-in-first-out.

A.4.2.1 Receive actions

When a receive action is enabled for an input channel, the value present on the input channel will

be disposed of, after it has been used in any expressions that it appears in. On the next round of

execution of the process, the next value will be provided, if necessary.

180

A.4.2.2 Send actions

When a send action is enabled for an output channel, a value equal to the current value of the

expression that is the object of the send action will be sent on the channel.

A.4.2.3 Assignment actions

When an assignment action is enabled for a state variable with an object expression that evaluates

to w, the value present in the state variable on the current round will be disposed of. On the next

round of execution of the process, the next value Vi+l = 1U will be provided, if necessary.

A.4.3 Execution semantics

The semantics of a PLI process may be defined in terms of an execution. The execution of the

process may either fail, in which case no actions are performed, or it may succeed, in which case all

enabled actions are performed concurrently. If the execution fails, it will be retried at a later time.

The execution of a PLI process can be thought of as the infinite loop:

Wait until it can be determined, for each g1janl, whether it evaluates to true or false;

Wait until all values required for computing action object.s are available;

Concurrently execute all enabled actions.

The execution of a PLI process may succeed only if enough operands are available such that

it is possible to evaluate all communication-statement guards either to true or to false (using the

type-coercion rules, if necessary) and if all values required for computing the objects of the send

and assignment actions are available. If these conditions do not obtain, the execution will fail.

The evaluation of the guards and the variables required for computing the objects of the actions

may be performed concurrently; likewise, the actions may be performed concurrently. However, the

evaluation of the guards and the variables required for computing the objects of the actions strictly

precedes the actions themselves-this ensures that the guards and action ob.iects are stable.

A.4.4 Invariants

Invariants are provided as a convenience. The programmer indicates that some predicate will hold as

a precondition of the execution of a program, given that the involved values may be computed. The

invariant may be used to simplify the implementation, and the implementation may optionally check

that the invariant is always satisfied and else abort the computation in an implementation-dependent

way.

181

A.4.5 Semantics in terms of CHP

The execution semantics of a PL1 program may be described in terms of the extended CHP language,

which includes the value probe and peek [66].

AA.5.1 The channel peek

The peek i works like a receive, except that it leaves the channel in the state it was in before the

peek was executed.

AA.5.2 Channel values

We use the idea of the value on a channel for defining the value probe. The same idea is also used

for defining the semantics of expressions in PLl. The value on a channel X, val(X) may be defined

in terms of Hoare triples as follows:

{val(X) = v 1\ X}X'?x{x = v}

{val(X) = v 1\ X}Xl..x{:r = v}

(But of course X?x and Xix have different effects on the next value that shall be seen on the

channel.)

AA.5.3 The value probe

Slack elasticity allows the value probe

<, i :: Xi >: P(<, i :: Xi »

to be defined for one channel as

X : P(X) = X 1\ P(X)/
X-+va\(X)

and extended to predicates involving multiple channels as

X, Y: S(X) 1\ S(Y) = X: S(X) 1\ Y: S(Y) (*)

X, Y: S(X) V S(Y) = X: S(X) V Y: S(Y) (t).

An alternative definition is possible by defining the value probe directly for multiple channels and

replacing the equivalence with =00 in (*) and (t), where =00 denotes equivalence under infinite slack.

182

Alternatively, a direct definition of the value probe is possible:

{X: P(X)}X?v{P(v)}

{X 1\ ,X: P(X)}X?v{,P(v)}

{~ X : P(X)}X?v{ ,P(v)}

However, in PL1 the concept of val(X) is ubiquitous, since it is used directly in expression evaluation.

A.4.5.4 Semantics in terms of value probe

To define the semantics of the PL1 process, we must specify what is meant by "waiting until it can

be determined, for each guard, whether it evaluates to true or false." We therefore introduce the

tilde operator as follows:

~ X : P(X) == X : ,P(X)

For instance,

~ X, Y: S(X) V S(Y) = X: ,S(X) 1\ Y: ,S(Y).

At this point, we can define the semantics of the PL1 program. The program

communicate{ Go -+ Co;·· . ; Gn -+ Cn }

where the Ci's do not use variables and no action is enabled more than once on a single iteration of

the program is defined as

* [[< 1\ i : n : Gi V ~ Gi >];

<II i : n: [Gi ---+ C 0 ~ Gi ---+ skip] >

] .

If the Ci's use variables, these must be renamed so that there is no conflict in executing the Ci's

concurrently. We introduce the notation vars(X) for the set of variables that the action X depends

on. The program definition is then

183

* [[< 1\ i : n : Gi V '" Gi >];

<II i : n: [Gi ~ < v: v E vars(C,) : Lvl.Av > 0 '" Gi ~ skip] >;

<II i : n : [Gi ~ Cilv:vEvars(Ci):V-+'\" 0 '" G i ~ skip] >
] ,

where Lv denotes the input channel associated with the name v and Av is a temporary local variable;

the notation v -+ Av means that we replace each variable v with the temporary Av.

If any actions are enabled more than once on a single iteration, the actions must have the same

action objects (i.e., the same values for sends); multiply enabled actions behave like the single

execution of one of the actions.

AA.6 Slack elasticity

Slack elasticity allows leeway in terms of the exact ordering of actions by PL1 programs. If a system

is slack elastic, then it does not matter when values are sent on channels, as long as they are sent in

the right order. The informal definition of the execution semantics of PL1, as well as the definition

in terms of CHP, provides the least amount of slack possible. Given that the system being designed

is slack-elastic, the only way in which the specification could be violated by the implementation is

through the introduction of deadlock. Since the PL1 semantics as defined here has the least slack

of all possible implementations, any slack-elastic system that behaves correctly and avoids deadlock

with the PL1 semantics will behave correctly and avoid deadlock using any legal implementation.

In practice, an implementation of a PL1 process in a slack-elastic system is allowed to produce

output values as soon as they can be determined, which can be before all the guards have been

checked. This property can be used to great effect, e.g., in production-rule implementations.

184

A.5 Examples

A process that repeatedly sends the value 1 on its output channel would be written as follows:

define bitgen(e1of2 r)

{

}

communicate {

true -> r!l;

}

A full-adder would be written as follows:

define fu11adder(e1of2 a,b,c; e1of2 s,d)

{

communicate {

true -> s!(a+b+c)&Oxl,d!(! !((a+b+c)&Ox2)),a?,b?,c?;

}

}

In the mysterious expression d! (!! ((a+b+c)&Ox2)), the first exclamation mark denotes the send

communication, whereas the next two are C-style inversions. (The value of the expression !! x is

zero if x is zero and one otherwise.)

A two-input merge would be written as follows:

define merge(elof2 10,11,s; e1of2 r)

{

}

communicate {

true -> s?;

}

s == ° -> r!10, 10?;

s == 1 -> r!11, Ii?;

185

A contrived example PL1 program that does nothing very interesting (except illustrate some of the

syntax of the language) is shown here:

define eontrivedExample(e1of2 10, 11, e; e1of2 r, z)

{

}

invariant { 10 + 11 + 2*e > 1 }

communicate {

!(e == 1) -> r!10, 10?, z! (e + 10);

e -- 1 && 11 ° -> r!l1, z!1;

e -- 1 && 11 1 -> r!O;

e -- 1 -> 11?;

true -> e?· . ,

}

Illustrating the use of state variables, we may write an alternator as follows:

define alternator(e1of2 r)

{

}

10f2 s;

communicate {

true -> s=!s,r!s;

}

186

This page intentionally left blank.

187

Appendix B

SP AM Processor Architecture
Definition

Nevertheless, The year's penultimate month is not in trllth a good way of saying November.

- H. W. Fowler, A Dictionary of Modern English Usage (1926)

B.1 Introd uction

This appendix describes the Simple Pulsed Asynchronous Microprocessor (SPAM) architecture.

SPAM is a simple 32-bit RISC architecture intended for hardware demonstration projects. Its

design reflects a desire of making a high-performance implementation as easy as possible. This is

not without merit on the software level; for instance, as a result of the desire of keeping the hardware

as simple as possible, the instruction set of the SPAM processor is completely orthogonal; i.e., all

instructions use the same addressing mode and instruction format.

B.2 SPAM OVerVIeW

The SPAM architecture defines eight general-purpose registers, gpr [OJ through gpr [7J, of which

gpr [OJ is always read as zero, although it may be written by any instruction. Apart from these,

the processor state consists only of the program counter, pc. The instructions provided are arith

metic instructions, load-store instructions, and pc-changing instructions. Changes to pc take effect

immediately-there is no "branch delay slot." The architecture does not define floating-point oper

ations, interrupts, or exceptions.

B.3

188

SP AM instruction format

All SPAM instructions have the same format. The instruction format is a four-operand RISe

format with three register operands and a single immediate operand. The opcode format has two

fields, which are also the same across all instructions. These fields are the operation unit and

the operation function. The operation "Y-mode," which determines the addressing mode used for

conjuring operand opy, is further defined in a fixed position in the instruction.

SPAM instructions are 32 bits wide. Considering a SPAM instruction i as a 32-bit array of bits,

we identify the fields of the instruction:

1. The opcode = i[31 ... 27]' further grouped into:

(a) The unit number unit = i[31 ... 30].

(b) The function fxn = i[29 ... 27].

2. The V-mode ymode = i[26 ... 25].

3. The result register number rz = 'i[24 . .. 22].

4. The X-operand register number rx = i[21 . .. 19].

5. The V-operand register number ry = i[18 . .. 16].

6. The immediate field imm = i[15 . .. 0].

B.4

189

SP AM instruction semantics

Because the SPAM instruction set is orthogonal, we may define the semantics of instructions in a

modular way. An instruction execution consists of the following steps:

1. Generating the operands:

opx := gpr [i. rxJ and opy := YMODE(i. ymode) (gpr [i. ryJ ,i. imm)

2. Computing the result:

opz:= OP(i.opcode) (opx,opy)

(a) Computing the next pc:

pc := PCOP(i.opcode) (pc,opx,opy)

3. Writing back opz:

gpr ['i. rzJ := opz

All instructions are executed in these three steps. Hence, all instructions produce a result that is

written back in the register file; if the value is not needed for further computation, it should be

discarded by setting i. tz to zero (in the assembly language, this can be accomplished by leaving

out the target register). In what follows, we shall mainly deal with how opz is computed (i.e., the

part above denoted by OP), since all else is the same for all instructions, except that branches also

need to compute pc (denoted by PCOP).

B.4.1 Operand generation

The first operand, opx, is always the contents of gpr [i. rxJ. The second operand, opy, is computed

from the contents of gpr [i. ry J and the immediate field, depending on i. ymode.

Allowable values for i. ymode are as follows, where sext signifies sign extension:

i . ymode Mnemonic Decimal value Operand generated

YMODK..REG 0 opy gpr [i. ryJ

YMODLIMM 1 opy .= sext (i . imm)

YMODLIMMSHIFT 2 opy .= i. imm « 16

YMODK..REGIMM 3 opy gpr [i. ryJ + sext(i. imm)

190

B.4.2 Operation definitions

Operations are defined on two's-complement numbers. There are no flags or condition codes. We

group the operations by unit:

B.4.2.1 ALU operations 'i.unit = UNILALU = 0

All ALU operations take two operands and produce one result. The bitwise_NOR is included in the

instruction set for the express purpose of computing the bitwise inverse of opx using a zero operand

for opy.

Mnemonic Name i. fxn Operation

add Add 0 opz := (opx + opy) 31...0

sub Subtract 1 opz (opx - opy) 31...0

nor NOR 4 opz bitwise_NOR (opx ,opy)

and AND 5 opz bitwise_AND (opx, opy)

or OR 6 opz := bitwise_OR (opx ,opy)

xor Exclusive OR 7 opz .= bi twise_X ° R (opx , opy)

B.4.2.2 Branch operations i. unit = UNILBRCH = 1

Branch operations include unconditional jumps (j mp) and the halt instruction (hl t). All branch

operations unconditionally produce the same result, namely the value of pc, right-shifted by two;

this value is used for opz. Likewise, a hranch taken will branch to the address denoted by opy

incremented by one and left-shifted by two. The shifting avoids having to define the behavior of

alignment errors and allows larger immediate branch-offsets.

Note that the mechanism described for branch addresses allows a simple compilation of function

call-return linkage. The function-call jump saves the current PC, and then the function-return

jump calls back through the saved address. Coroutine linkage is compiled similarly. (The SPAM

architecture leaves unspecified function-parameter-linkage conventions and register-save masks, etc.)

The hlt instruction halts the machine. An external action, not defined within the architecture,

is required for restarting it.

Conditional branches branch on the value of opx.

191

Mnemonic Name i .fxn Branch if Target

h1t Halt 0 true ..l

beq Branch on Equal 1 opx =0 (OPY29 ... 0 + 1)100

bne Branch on Not Equal 2 opx fO (OPY29 ... 0 + 1)100

bgt Branch on Greater Than 3 opx >0 (OPY29 ... 0 + 1)100

blt Branch on Less Than 4 opx <0 (OPY29 .. 0 + 1)100

b1e Branch on Less or Equal 5 opx ::;0 (OPY29 ... 0 + 1)100

bge Branch on Greater or Equal 6 opx >0 (OPY29 ... 0 + 1)100

jmp Jump 7 true (OPY29 ... 0 + 1)100

B.4.2.3 Memory operations i. uni t = UNILDMEM = 2

Only two memory operations are defined: load word, 1w; and store word, sw. The address of the

memory access is determined by opy. On a memory load, opx is ignored; whereas on a store, it

becomes the value stored. A store returns 0PY (the computed address) as opz; this allows coding

postincrement and postdecrement addressing-modes in a single instruction.

Mnemonic Name 'i.fxn Operation

1w Load Word 0 opz := dmem[opy]

sw Store Word 1 dmem[opy] := opx, opz .- °PY

B.4.2.4 Shifter operations i. uni t = UNILSHFT = 3

The SPAM architecture defines a restricted shifter that is capable only of logical shifts. Arithmetic

shifts must be simulated using blt. The SPAM shifter can shift by one or eight. Shifts-by-eight are

provided so that byte memory-operations can proceed at a reasonable speed.

Mnemonic Name i. fxn Operation

sri Shift Right by One 0 opz .- °loPY31...1

sr8 Shift Right by Eight 1 opz .- 00000000IoPY31. .. 8

s11 Shift Left by One 2 opz .- °PY30 010

s18 Shift Left by Eight 3 opz .- °PY23 .. 0100000000

192

B.4.2.5 Undefined operations

Operations not yet defined are reserved for future expansion and must not be used. The behavior

of the undefined operations is UNDEFINED (the machine may take any action, which includes the

possibility of its hanging [3]).

B.4.2.6 System reset

The mechanism for causing a system reset is implementation-dependent. On system reset, the

processor starts execution with pc = 8 and arbitrary data in all general-purpose registers except

gpr[O] .

B.5 Assembly-language conventions

The SPAM architecture uses a simple, understandable assembly-language syntax that is free from

the traditional confusion about which register identifier names the operand and which names the

result.

B.5.1 The SPAM assembly format

The SPAM assembly format is best illustrated with an example (this example mainly illustrates the

syntax of the format; a more reasonable program from the point of view of efficiency is the Fibonacci

program of Section 8.4.2):

193

Compute sum of 100 first integers

" , Do some other things to test the processor

.=Ox8

jmp Start comment

.=Oxl00

Start:

li rl=100

li r2=OU upper immediate

jmp r3=Detour comment

Label: comment

add r2=rl, r2

sw r2, (100)

lw r2=(rl+0x3ff)

lw r2=(100)

sub rl=rl,l

bne rl,Label

hlt

jmp zero shouldnt get executed

nop

.=Ox200 test comment

Detour: jmp r3

B.5.1.1 AsseIllbly instruction syntax

In the example, we see the use of some standard assembler conventions, such as the use of "." for

setting the desired memory location of the current instruction. We also see that the syntax of the

instructions is < mnemonic >< result T'(~gister >=< operands >. Register indirect and indexed

register-indirect memory-instructions are written with parentheses, similarly to the MIPS assembly

format.

Labels can be used directly by the branches. Any field not specified will be assembled as zero;

this has several benefits-e.g., not specifying the target register of an operation makes the target

gpr [OJ, which means that the result shall be discarded.

194

B.5.1.2 Specification of immediates

Immediates are specified either in decimal or in hexadecimal. Hexadecimal numbers must be pre

ceded with the string Ox to flag their base. Following an immediate with the roman capital U flags

it as being an "upper" immediate; i.e., it will be shifted 16 bits left before it is used.

B.5.1.3 Pseudo-instructions

There are also several pseudo-instructions in the example program that are understood by the assem

bler and mapped to the machine-language instructions presented earlier. The pseudo-instructions

understood by the assembler are as follows:

Pseudo-instruction Name Operation

li rz=opy Load immediate or rz=rO,opy

nop No operation add rO=rO,rO

not rz=opy NOT nor rz=O,opy

Notice that the nop pseudo-instruction conveniently assembles to an all-zeros instruction word.

195

Appendix C

Proof that Definition 3.2 Defines a
Partial Order

-How now, you secret, black, and midnight hags! lVlwt is't you do?

-A deed without a name.

- William ShakespeclTe, Macbeth (c. 1605)

In an earlier version of the manuscript, Definition 3.2 was claimed to apply to the equivalence

classes under translation of all functions {f : t -+ 1/}. This is not quite true. Consider! f(x) = x

and g(x) = x + I(x), which do not obey the restriction

(3k,F:: (Vx: Ixl > k: f(x) < F) 1\ (3x:: f(x) > F)). (C.l)

It is here clear that by Definition 3.2, T(g) :S T(.f) and T(.f) :S T(g), yet under the normal concept

of equality, it is not the case that T(j) = T(g); in other words, it is not true that 30 :: (Vx :: g(x) =

f(x - 0)). The three requirements for a relation's being a partial order, viz. reflexivity (a :S a),

transitivity (a :S b 1\ b :S c :::} a :S c), and anti-symmetry (a :S b 1\ b :S a :::} a = b), are thus not

satisfied for equivalence classes under translation unless we change to a different notion of equality;

specifically, our :S is not anti-symmetric.

Changing the notion of equality would however upset the definition of F; we should also notice

that for anything that intuitively looks like a "pulse" (as well as for many other functions), Defi

nition 3.2 seems quite reasonable in conjunction with the normal definition of equality. It is hence

simpler to restrict the functions under consideration.

Our restriction (C.l) solves the problem. We shall prove the following theorem.

Theorem C.l For equivalence classes under· translation of continuous functions that satisfy (C.l),

Definition 3.2 defines a partial order.

II(x) represents the unit-step function; see Eq. 3.2, p. 26.

196

Proof. Reflexivity and transitivity hold; this is true by inspection. We prove anti-symmetry for

equivalence classes of continuous functions T(f) and T(g), where f and 9 are arbitrary representatives

of the chosen classes. Assume that there exist g(x) and f(x) satisfying the "pulse restriction" (C.1)

such that T(g) ~ T(f) A T(f) ~ T(g). We have by T(g) ~ T(f) A T(f) ~ T(g) that

(C.2)

(C.3)

or more simply stated,

:36 :: f(x) ~ f(x - 6). (C.4)

We say that either (1) 6 = 0 (i.e., 61 = 62 and hence V.T :: g(x) ~ f(x - 6d A f(x - 6d ~ g(x), in

other words Vx :: g(x) = f(x - 6d); or (2) f is wcinl.

But no continuous f that satisfies (C.1) is weird. Consider the part of the domain of f where f

equals or exceeds F. There is a smallest value I where f equals F; this is defined by f(l) = FA (Vx :

x < I : f(x) < F); likewise there is a greatest m defined by f(m) = FA (Vx : x > m : f(x) < F);

we know that I and m exist because f is continuous and Vx : x < -k V x > k : f(x) < F by (C.1).

Now consider f(x) = f(x - 6). If 6> 0, then the equation cannot hold because f(l- 6) < F = f(l),

and likewise for m and 6 < O. Hence any f satisfying (C.1) is non-weird and Vx :: g(x) = f(x - 6d.

Thus T(g) ~ T(j) AT(f) ~ T(g)::::}:3J:: (V:1;:: g(:r) = f(x - 6)), or more succinctly,

T(g) ~ T(f) A T(f) ~ T(g) ::::} f ~ 9 (C.5)

under Definition 3.2 and translation equivalence; in other words,

T(f) ~ T(g) A T(g) ~ T(f) ::::} T(j) = T(g), (C.6)

i.e., ~ is anti-symmetric over the equivalpnce classes under translation containing continuous func-

tions satisfying (C.1). Q.E.D.

C.l Remark on Continuity

We have proved that our definition of ~ establishes a partial order over equivalence classes under

translation of continuous functions satisfying the restriction C.l. It is not difficult to generalize the

proof so that it covers functions that are not continuous but still satisfy (C.1), but the argument

2This simple & crucial observation was made by Karl Papadantonakis.

197

becomes considerably more opaque. The chief difficulty is that we have asserted that "there is a

smallest value l defined by f (l) = F 1\ (\1:1: : x < I : f (x) :S F)"; this need no longer be true if f

has discontinuities, since we might have that f(x) < F for x :S Xo and f(x) > F for x > Xo; i.e., f

exceeds F over an open interval. Changing the definition of l to make it clear that l exists would

consequentially mean using a more complicated argument for showing that f is non-weird, because

it may be that directly evaluating f(l) does not yield the desired value; in other words, we should

have to consider the values of f in a neighborhood of I instead of just at l itself.

We omit the more general proof because only continuous functions are of physical interest, and

the extra complications would only obscure the basic idea of the restriction C.l. Yet we should

remember that the testing pulses that we used in Chapter 3 were not continuous, so putting the

theory on entirely solid ground would require either finishing this proof or changing those pulses to

be continuous~neither of which would change the essence of the mathematics.

198

This page intentionally left blank.

199

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools.

Reading, Mass.: Addison-Wesley, 1986.

[2] Phillip E. Allen and Douglas R. Holherg. CMOS Analog Circuit Design. Oxford: Oxford Uni

versity Press, 1987.

[3] Alpha Architecture Committee. Alpha Architect'ure Reference Manual, third edition. Boston,

Mass.: Digital Press, 1998.

[4] Abraham Ankumah. Designing an Energy-Efficient Asynchronous 80C51 Microcontroller. B.s.

thesis, California Institute of Technology, Division of Engineering and Applied Science, Depart

ment of Electrical Engineering, 2001.

[5] .1. W. Backus, F. L. Bauer, .1. Green, C. Katz,.1. McCarthy, P. Naur, A . .1. Perlis, H. Rutishauser,

K. Samelson, B. Vauquois, .1. H. Wegstein, A. van Wijngaarden, and M. Woodger. Revised

Report on the Algorithmic Language ALGOL 60. Berlin: Springer-Verlag, 1969.

[6] Ganesh Balamurugan and Naresh R. Shanbhag. The Twin-Transistor Noise-Tolerant Dynamic

Circuit Technique. IEEE Journal of Solid State Circuits, 36(2), February 2001.

[7] Kees (C. H.) van Berkel. Beware the Isochronic Fork. Integration, the VLSI Journal. 13(2),

June 1992, pp. 103-128.

[8] Kees van Berkel and Arjan Bink. Single-Track Handshake Signaling with Application to Mi

cropipelines and Handshake Circuits. In Proceedings of the Second International Symposium on

Advanced Research in Asynchronous Circuits and Systems. Los Alamitos, Calif.: IEEE Com

puter Society Press, 1996.

[9] K. van Berkel, .1. Kessels, M. Roncken, R. Saeijs, and F. Schalij. The VLSI-programming

language Tangram and its translation into handshake circuits. In Proc. European Conference

on Design Automation, pp. 384-389, 1991.

[10] Dileep Bhandarkar. Alpha Implementations and Architecture: complete reference and guide.

Newton, Mass.: Digital Press, 1996.

200

[11] Gerrit A. Blaauw and Frederick P. Brooks, Jr. Computer Architecture: Concepts and Evolution.

Reading, Mass.: Addison-Wesley, 1997.

[12] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans

actions on Computers, C-35(8), August 1986, pp. 677-691.

[13] Steven M. Burns. Automated Compilation of ConCll,rrent Programs into Self-timed Circuits.

M.S. thesis, Caltech CS-TR-88-2, California Institute of Technology, 1988.

[14] Steven M. Burns. Performance Analysis and Optimization of AsynchT'Onous Circuits. Ph.D.

thesis, California Institute of Technology, 1991.

[15] Steven M. Burns and Alain J. Martin. Performance Analysis and Optimization of Asynchronous

Circuits. In Carlo H. Sequin, ed., Advanced Research in VLSI: Proceedings of the 1991 UC Santa

Cruz Conference. Los Alamitos, Calif.: IEEE Computer Society Press, 1991.

[16] K. Mani Chandy and Jayadev Misra. PaT'(},"el Program Design. Reading, Mass.: Addison-Wesley,

1988.

[17] T. 1. Chappell, B. A. Chappell, S. E. Schuster, J. W. Allan, S. P. Klepner, R. V. Joshi, and

R. L. Franch. A 2-ns cycle, 3.8-ns access 512-kb CMOS ECL SRAM with a fully pipelined

architecture. IEEE Journal of Solid State Cir'cnits, 26(11), November 1991.

[18] U. V. Cummings, A. M. Lines, and A . .1. Martin. An Asynchronous Pipelined Lattice Structured

Filter. In Proceedings of the International Syrnposiv.rn, on Advanced Research in Asynchronous

Circuits and Systems. Los Alamitos, Calif.: IEEE Computer Society Press, 1994.

[19] Jack B. Dennis. Data Flow Supercomputers. Comp1JteT', November 1980, pp. 48-56. IEEE Com

puter Society, 1980.

[20] Digital Equipment Corporation. PDP-6 Arithmetic Processor 166 Instruction Manual. May

nard, Mass.: Digital Equipment Corporation, c. 1960. This can currently be obtained from Tom

Knight's web page at MIT: http://www.ai .mit. edu/people/tk/pdp6/pdp6 .html

[21] Edsger W. Dijkstra. A Discipline of Progrmn:ming. Englewood Cliffs, N.J.: Prentice-Hall, 1976.

[22] Don Draper, Matt Crowley, John Holst, Greg Favor, Albrecht Schoy, Jeff Trull, Amos Ben

Meir, Rajesh Khanna, Dennis Wendell, Ravi Krishna, Joe Nolan, Dhiraj Mallick, Hamid Par

tovi, Mark Roberts, Mark Johnson, and Thomas Lee. Circuit Techniques in a 266-MHz MMX

Enabled Processor. IEEE Jonrnal of Solid-State Circnits, 32(11), November 1997, pp. 1650-

1664.

201

[23] J. Ebergen. Squaring the FIFO in GASP. In ASYNC 2001: Proceedings of the Seventh Interna

tional Symposium on Asynchronous Ci'rcuits and Systems. Los Alamitos, Calif.: IEEE Computer

Society Press, 2001.

[24] Raphael A. Finkel. Advanced Programming Language Design. Menlo Park, Calif.: Addison

Wesley, 1996.

[25] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods. A micropipelined ARM.

Proceedings of the VII Banff Workshop: Asynchronous Hardware Design, August 1993.

[26] S. B. Furber, J. D. Garside, P. Riocreux, S. Temple, P. Day, J. Liu, and N. C. Paver.

AMULET2e: An Asynchronous Embedded Controller. Proceedings of the IEEE, 87(1), 1999.

[27] Theodore W. Gamelin and Robert Everist Greene. Introduction to Topology, second edition.

Mineola, N.Y.: Dover Publications, 1999.

[28] J. D. Garside, S. Temple, and R. Mehra. The AMULET2e cache system. In Proceedings of the

Second International Symposium on Advanced Research in Asynchronous Circuits and Systems.

Los Alamitos, Calif.: IEEE Computer Society Press, 1996.

[29] Lance A. Glasser and Daniel W. Dobberpuhl. The Design and Analysis of VLSI Circuits.

Reading, Mass.: Addison Wesley, 1985.

[30] Marcel R. van der Goot. Semantics of VLSI Synthesis. Ph.D. thesis, California Institute of

Technology, 1996.

[31] Mark R. Greenstreet and Ian Mitchell. Reachability Analysis Using Polygonal Projections.

In Proceedings of the Second International Wor-kshop on Hybr-id Systems: Computation and

Control, March 1999, pp. 103~ 116. In series: Lect'uTe Notes in Computer' Science, 1569. Berg en

Dal, the Netherlands: Springer-Verlag, 1999.

[32] Mark R. Greenstreet and Tarik Ono-Te,;faye. A Fast ASP* RGD Arbiter. In Proceedings of the

Fifth Inter-national Symposium on Resear-ch in Asynchronous Circuits and Systems, Barcelona,

Spain. Los Alamitos, Calif.: IEEE Computer Society Press, 1999.

[33] Matthew Hanna. CHP. Unpublished, California Institute of Technology Computer Science De

partment, 2000. May be obtained from the author.

[34] Scott Hauck. Asynchronous Design Methodologies: An Overview. Proceedings of the IEEE,

83(1), 1995.

[35] John Hennessey and David Patterson. Computer- Ar-chitectur-e: A Q71,antitative Approach, first

ed. San Mateo, Calif.: Morgan-Kaufmann, 1990.

202

[36) C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM, 21(8):666-

677,1978.

[37) H. Peter Hofstee. Synchronizing Processes. Ph.D. thesis, California Institute of Technology;

Division of Engineering and Applied Science, 1995.

[38) J. H. Hubbard and B. H. West. Differential Equations: A Dynamical Systems Approach (Ordi

nary Differential Equations). New York, N.Y.: Springer-Verlag, 1991.

[39) John H. Hubbard and Barbara Burke Hubbard. Vector Calculus, Linear Algebra, and Differen

tial Forms: A Unified Approach. Upper Saddle River, N.J.: Prentice-Hall, 1999.

[40) Gerry Kane and Joe Heinrich. MIPS RISC Architect'u,T·e. Englewood Cliffs, N.J.: Prentice-Hall,

1992.

[41) Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, second ed. Engle

wood Cliffs, N.J.: Prentice-Hall, 1988.

[42) Tak Kwan (Tony) Lee. A General Approach to Performance Analysis and Optimization of

Asynchronous Circuits. Ph.D. thesis, Caltech-CS-TR-95-07. California Institute of Technology,

Division of Engineering and Applied Science, 1995.

[43) Andrew Lines. Pipelined Asynchrono'u,s Cirwits. M.S. thesis, California Institute of Technology

CS-TR-95-21, 1995.

[44) Misha Mahowald and Rodney Douglas. A silicon neuron. Nature, 354, 19/26 December 1991,

pp. 515-518.

[45) Rajit Manohar. The Impact of Asynchrony on Computer Architecture. Ph.D. thesis, CS-TR-98-

12, California Institute of Technology, July 1998.

[46) Rajit Manohar. Cast: Caltecl~ Asynchmnous Tools. TEXinfo documentation package. Unpub

lished, California Institute of Technology Department of Computer Science/Cornell University

Department of Electrical Engineering, 1998-2001.

[47] Rajit Manohar, Mika Nystrom, and Alain .1. Martin. Precise Exceptions in Asynchronous Pro

cessors. In Erik Brunvand and Chris Myers, e<is., Proceedings of the 2001 Conference on Ad

vanced Research in VLSI (ARVLSI 2001). Los Alamitos, Calif.: IEEE Computer Society Press,

2001.

[48J Alain J. Martin. Compiling Communicating Processes into Delay-insensitive VLSI circuits. Dis

tributed Computing, 1(4), 1986.

203

[49] A. J. Martin. Synthesis of Asynchronous VLSI Circuits. In J. Staunstrup, ed., Formal Methods

for VLSI Design. North-Holland, 1990.

[50] Alain J. Martin. Asynchronous CirCl1:its for Token-Ring MutMl Exclusion. Caltech Computer

Science Technical Report CS-TR-90-09. Pasadena, Calif.: California Institute of Technology

Computer Science Department, 1990.

[51] A. J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In W. J. Dally, ed.,

Sixth MIT Conference on Advanced Research in VLSl. Cambridge, Mass.: MIT Press, 1990.

[52] A. J. Martin. Programming in VLSI: From communicating processes to delay-insensitive VLSI

circuits. In C. A. R. Hoare, ed., Developments in Concurrency and Communication, in UT Year

of Programming Series, pp. 1-64. Englewood Cliffs, N.J.: Addison-Wesley, 1990.

[53] Alain J. Martin, Steven M. Burns, Tak-Kwan Lee, Drazen Borkovic, and Pieter J. Hazewindus.

The design of an asynchronous microprocessor. In Charles L. Seitz, ed., Advanced Research

in VLSI: Proceedings of the Decennial Caltech Conference on VLSI, pp. 351-373. Cambridge,

Mass.: MIT Press, 1991.

[54] Alain J. Martin. Synthesis of Asynchronous VLSI Circuits. Caltech Computer Science Technical

Report CS-TR-93-28. Pasadena, Calif.: California Institute of Technology Computer Science

Department, 1993.

[55] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth, U. Cummings,

and T. K. Lee. The Design of an Asynchronous MIPS R3000 Processor. In R. B. Brown and

A. T. Ishii, eds., Proceedings of the 17th ConJerence on Advanced Research in VLSl. Los Alami

tos, Calif.: IEEE Computer Society Press, 1997.

[56] Alain J. Martin, Andrew M. Lines, and Uri V. Cummings. Pipelined Completion for Asyn

chronous Communication. U.S. Patent 6,038,656. Mar. 14, 2000.

[57] Alain J. Martin. Towards an energy complexity of computation. Information Processing Letters,

77(2001), pp. 181-187.

[58] Carver Mead. Analog VLSI and NeuT(],l Systems. Reading, Mass.: Addison-Wesley, 1989.

[59] Carver A. Mead. VLSI and Technological Innovation. In Charles L. Seitz, ed., Proceedings of

the Caltech Conference on Very Large Scale Integration, Pasadena, Calif.: California Institute

of Technology Computer Science Department, 1979.

[60] Carver Mead and Lynn Conway, Intmduction to VLSI Systems. Reading, Mass.: Addison

Wesley, 1980.

204

[61] C. E. Molnar, 1. W. Jones, W. S. Coates, J. K. Lexau, S. M. Fairbanks, and 1. E. Sutherland.

Two FIFO Ring Performance Experiments. Proceedings of the IEEE, 87(1), 1999.

[62] Gordon E. Moore. Are We Really Ready for VLSI? In Charles L. Seitz, ed., Proceedings of the

Caitech Conference on Very Large Scale Integration, Pasadena, Calif.: California Institute of

Technology Computer Science Department, 1979.

[63] D. E. Muller and W. S. Bartky. A theory of asynchronous circuits. In The Annals of the Compu

tation Laboratory of Harvard Univer8ity. Volume XXIX: Proceedings of an International Sym

posium on the Theory of Switching, Part 1., 1959, pp. 204-243.

[64] C. Myers and T. H.-Y. Meng. Synthesis of timed asynchronous circuits. IEEE Transactions on

VLSI Systems, 1(2), June 1993, pp. 106-119.

[65] Greg Nelson, ed. Systems Programming with Modv,la-S. Englewood Cliffs, N.J.: Prentice Hall,

1991.

[66] Mika Nystrom. Pipelined Asynchronous Cache Design. M.S. thesis, California Institute of Tech

nology CS-TR-97-21, 1997.

[67] Ad Peeters and Kees van Berkel. Synchronous Handshake Circuits. In ASYNC 2001: Proceedings

of the Seventh International Symposi1J,m on Asynchrono1J,s Circ1J,its and Systems. Los Alamitos,

Calif.: IEEE Computer Society Press, 2001.

[68] Ad M. G. Peeters. Single-Rail Handslwke Oi7"C1J'its. Ph.D. thesis, University of Eindhoven (Tech

nische Universiteit Eindhoven), 1996.

[69] Paul I. penzes. The design of high performance asynchronous circuits for the Caitech MiniMIPS

processor. M.S. thesis, California Institute of Technology, 1999.

[70] Paul 1. penzes. Private communication, 200l.

[71] Robert J. Proebsting. Speed Enhancement Techniques for CMOS Circuits. U.S. Patent

4,985,643. Jan. 15, 1991.

[72] William F. Richardson. Architectural Considerations in a Self- Timed Processor Design. Ph.D.

thesis, Department of Computer Science, University of Utah, 1996.

[73] C. T. Sah. Characteristics of the Metal-Oxide-Semiconductor Transistors. IEEE Transactions

on Electron Devices, ED-II, 1964, p. 324.

[74] S. Schuster, W. Reohr, P. Cook, D. Heidel, M. Immediato, and K. Jenkins. Asynchronous

Interlocked Pipelined CMOS Circuits Operating at 3.3-4.5MHz[sic! should be GHz; may be

205

corrected in final version]. Paper 17.3 in Technical Digest of 2000 IEEE International Solid-State

Circuits Conference (ISSCC) , San Francisco, Calif., 2000.

[75] Charles L. Seitz. "System timing," Chapter 7 in [60].

[76] William M. Siebert. Circuits, Signals, and Systems. Cambridge, Mass.: MIT Press, 1986.

[77] Thomas D. Simon. Fast CMOS Buffering With Post-Charge Logic. S.M. thesis, Massachusetts

Institute of Technology, 1994.

[78] Robert Southworth, Matthew Hanna, and Rajit Manohar. CAST 2.000. Unpublished, California

Institute of Technology Computer Science Department, 2000. May be obtained from the author.

[79] Ivan Sutherland, Bob Sproull, and David Harris. Logical Effort: Designing Fast CMOS Circuits.

San Francisco, Calif.: Morgan Kaufmann, 1999.

[80] I. Sutherland and S. Fairbanks. GasP: A Minimal FIFO Control. In ASYNC 2001: P'T"Oceedings

of the Seventh International Symposium on Asynch'T"Onous Circuits and Systems. Los Alamitos,

Calif.: IEEE Computer Society Press, 2001.

[81] A. Takamura, M. Kuwako, M. Imai, T. Fuji, M. Ozawa, 1. Fukasaku, Y. Ueno, and T. Nanya.

TITAC-2: An asynchronous 32-bit microprocessor based on Scalable-Delay-Insensitive model.

In P'T"Oceedings of the International Conference on Computer Design (ICCD) , 1997.

[82] C. D. Thompson. Area-Time Complexity for VLS1. In Charles L. Seitz, ed., P'T"Oceedings of the

Caltech Conference on Very Large Scale Integmtion, Pasadena, Calif.: California Institute of

Technology Computer Science Department, 1979.

[83] Jose Tierno. Private communication, 2001.

[84] Stephen A. Ward and Robert H. Halstead, Jr. Computation Structures. Cambridge, Mass.: MIT

Press, 1990.

[85] Ted E. Williams. Self- Timed Rings and their Application to Division. Ph.D. thesis, Computer

Systems Laboratory, Stanford University, 1991.

[86] Catherine G. Wong. A Graphical Method for Process Decomposition. M.S. thesis, California

Institute of Technology, 2000.

[87] Catherine G. Wong and Alain J. Martin. Data-Driven Process Decomposition for the Synthesis

of Asynchronous Circuits. Submitted for publication to ICECS 2001 (Sept. 2001).

[88] J. V. Woods, P. Day, S. B. Furber, .1. D. Garside, N. C. Paver, and S. Temple. AMULETl:

An Asynchronous ARM Microprocessor. IEEE Transactions on Computers, 46(4), April 1997,

pp. 385-397.

