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Abstract 

This thesis explores a new way of computing with CMOS digital circuits, single-track-handshake 

asynchronous pulse-logic (STAPL). These circuits are similar to quasi delay-insensitive (QDI) cir­

cuits, but the normal four-phase QDI handshake is replaced with a simpler two-phase pulsed hand­

shake. While a delay-insensitive two-phase handshake requires complicated decoding circuits, the 

pulsed handshake maintains the simpler, electrically beneficial signaling senses of four-phase hand­

shaking by using timing assumptions that are easy to meet. 

We cover many aspects of designing moderately large digital systems out of STAPL circuits, 

from the communicating-process level to the production-rule and transistor level. 

We study the theory of operation of pulsed asynchronous circuits, starting with simple pulse 

repeaters; hence we progress to a general theory of operation for pulsed asynchronous circuits. This 

theory is a generalization of the theory of operation of synchronous digital circuits. 

We then develop the family of STAPL circuits. This is a complete family of dataflow processes: 

the presented circuits can compute unconditionally as well as conditionally; they can also store state 

and arbitrate. 

Next, we present some aspects of automatic design-tools for compiling from a higher-level de­

scription to STAPL circuits. Many of these aspects apply equally well to tools for QDI circuits; in 

particular, we study boolean-simplification operations that may be used for improving the perfor­

mance of slack-elastic asynchronous systems. 

Finally, a simple 32-bit microprocessor is presented as a demonstration that the circuits and 

design methods work as described. Comparisons arc made, mainly with QDI asynchronous design­

styles: SPICE simulations in 0.6-ILm CMOS suggest that a system built out of automatically com­

piled STAPL circuits performs at about three times higher throughput (650-700 MHz in 0.6-lLm 

CMOS) compared with a similar system built out of carefully hand-compiled QDI circuits; the 

STAPL system uses about twice the energy per operation and twice the area; in other words, the 

STAPL system improves on the QDI system by four to five times as measured by the Et2 and At2 

metrics. 
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Chapter 1 

Introduction 

For 'tis your thoughts that now must deck ollr kings, 

Carry them here and there; jumping o'er times, 

Turning th'accomplishment of many years 

Into an hour-glass: for the which supply, 

Admit me Chorus to this history; 

Who, prologue-like, your humble patience pray, 

Gently to hear, kindly to judge, our play. 

- William Shakespeare, The History of King Henry the Fifth (1599) 

In January of 1979, the first of a series of conferellces on "Very Large Scale Integration" took place 

at Caltech. The two keynote speakers, Gordon :!VIoore of Intel and Carver Mead of our Computer 

Science Department, both spoke of the same concern, but from two very different viewpoints. Their 

concern was design complexity. 

Moore, the conservative industrialist, questioned whether the electronics industry was really 

ready for VLSI: "If the semiconductor industry had a million-transistor technology like VLSI," he 

wrote in the article accompanying his talk, "I'm not so sure it would know what to do with it." [62] 

He seemed to find it a far-fetched idea that a circuit designer should possibly know how to make use 

of a canvas large enough to hold a system as complex as VLSI would allow. 

Mead, on the other hand, recognized that VLSI was going to be an inevitable development, 

whether the designers know what to do with their canvases or not, and we should probably all agree 

today that his article to a large extent explains why Moore was concerned. "VLSI," Mead wrote, 

"is a statement about system complexity, not about transistor size or circuit performance." He 

continued, "Many fundamental ideas [pertaining to large-system design] have yet to be discovered. 

The architecture and algorithms for highly concurrent systems is even less well developed." [59] 

This introducing of the ideas of computer scienee illto what until then had been thought of as mere 

circuit design was a step that was to have far-reaching effects. Mead's article went on to predict that 
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the large-system design problem would in time be tackled, as the fundamental problems of device 

physics and fabrication had been before it. 

A quarter century will soon have passed since these words were written. In this time, there have 

been great advances, along the lines Mead predicted, in circuit design techniques and in computer­

aided design and design automation. But the fact remains that most of today's VLSI systems are 

understood in terms of the same finite-state machines that were used for describing the mainframes 

of the 1960's; the fact remains that highly concurrent systems are poorly understood, especially by 

circuit designers. 

The inevitable conclusion is that today';; multi-million-transistor chips have been made possible 

not mainly by new fundamental ideas, but by the almost superhuman efforts made in exploiting the 

old ones. Though the fact may puzzle him that reads in today's newspapers that he stands in the 

middle of a "tech revolution," Carver Mead's VLSI revolution, 25 years in coming, is yet unfulfilled. 

1.1 The VLSI design process 

VLSI-system design is the process of implementing and realizing a system specification, the archi­

tecture, as an electronic circuit. We shall assume that the architecture is given to us and that the 

fabrication is not our concern. Longtime tradition, due to IBM [11], divides the design process into 

two stages beyond computer architecture: irnple'fnentation of the architecture by a micro-architecture 

and realization of the micro-architecture by a physical circuit design. 

The border between implementation and realiza.tion, like that between the United States and 

Mexico, is an artificial demarcation drawn for political purposes. The VLSI border traditionally 

serves to separate high-level logical reasoning from electronic-circuit design, tasks usually performed 

by different people, or at least by different software systems. 

1.2 From physics to computer SCIence 

It has slowly been realized that, as Carver Mead suggested, VLSI system design contains aspects of 

both software design and electrical engineering. In VLSI, the imagination of the mathematician and 

enthusiasm of the programmer finally meet with the pragmaticism of the engineer. c, we are told, 

is the speed limit; oX is the accuracy that we can build things with. But most of us would rather 

ignore the problems of others. So when we imagine and program a VLSI system, we do not allow c 

and oX to constrain our imagination or to damp our enthusiasm. We design our systems as if c and 

oX did not exist, and then we tell the engineer, "Implement this." When the wafers return, we say 

that the poor performance is not our fault: we cannot be blamed for any failure to deal with c and 

oX since we left this task to our friend, the engineer. 
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1.3 Asynchronous digital design 

Poor performance is usually unacceptable for a VLSI system. Optimists have long studied asyn­

chronous design techniques, hoping that they have found at least a partial solution to the design 

problem. While it is true that proponents of asynchronous design like claiming that asynchronous 

circuits offer speed and power advantages, the author believes that the main advantage of asyn­

chronous design is more subtle than these: it is the designer's ability of easily composing circuits 

that operate at different points in the design space (characterized by speed, power, and design effort) 

without destroying the beneficial properties of any of the circuits. 

What makes a digital system asynchronous'! A system is asynchronous if, in short, it does not 

use a clock for sequencing its actions. Asynchronous logic has been used for computer design since 

the 1950's, when several members of the ILLIAC series of computers were designed partly asyn­

chronously [45]; somewhat later, Digital Equipment Corporation's PDP-6 computer was a modest 

commercial success [20]. 

What unites all methods of asynchronous circuit design is that they all strive for making the 

speed of computing dependent on the operations that are being carried out. A slow operation is 

allowed to take longer than a fast one; the system continues to the next operation only once the 

previous one is completed. 

It is as if we could assemble a troika consisting of an Arabian, a Shetland pony, and a draught 

horse, without losing the useful qualities of the individual horses. If we should try this with real 

horses, the harness would act much as the clock does in a synchronous system and render the exercise 

pointless. But the asynchronous troika may he ahle to pull its load better than even a well-matched 

synchronous team, because the horses are not harnessed together by the clock-the draught horse 

does not have to keep up with the Arabian, and we do not have to feed the big horses if we only 

have need for the pony. 

By allowing us to divide up a system into smaller, more independent pieces, the asynchronous 

design technique simplifies the large-system design problem: the main goal of asynchronous design 

is addressing Carver Mead's concern of 1979. 

1.4 Asynchronous design-styles 

In a synchronous system, it is easy to know when a computation is done. When the clock edge 

arrives, we read out the results of the computation. If it is not finished by then, we say that the 

system is wrong and throw it on the trash heap. (Or-less violently-adjust the clock speed.) The 

computation must necessarily be done by the time the clock edge arrives, or else the synchronous 

model would not make sense. 
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In contrast, the chief difficulty in asynchronous design is knowing when a specific computation is 

done. If we encode data in the same way as in a synchronous system, e.g., using two's-complement 

numbers, and start an operation f(x), and the number "5" should appear on the result bus of our 

asynchronous system, how are we to know that it signifies the result of the present computation, and 

not of the previous? Worse, might it not be the bitwise combination of the results of the previous 

and current computations? 

1.4.1 Bundled-data design 

The early asynchronous computers were designed ill what we shall call the bundled-data style. De­

signing in this style, the designer assumes that he can build a delay that matches whatever the 

delay is of the computation that he is really interested in. This matched delay is used as an "alarm 

clock" that is started when f (x) is started and that rings when we can be sure that f (x) has been 

completely computed. The design style is called bundled data because the data travels in a "bundle" 

whose timing is governed by the control signal that we called the "alarm clock." As one might guess, 

arranging for the matched delay is the Achilles' heel of the bundled-data style. If the delay is too 

short, the system will not work; if too long, then it will work slowly. Especially if computation times 

are data-dependent, the matched delay can easily become a designer's nightmare. The matched 

delay mechanism's working rests on a form of a pn;ori knowledge of relative timing; we shall call 

making use of such knowledge a timing (lss'umption. 

1.4.2 Delay-insensitive design-styles 

Originally conceived of at about the same time as the bundled-data design-style, delay-insensitive 

logic design attempts using the data bits themselves for sequencing. By making every input transition 

(change in logic level) cause, either in itsdf or within a cohort of input transitions, an output 

transition or a detectable pattern of output transitions, we can at least make interfaces between 

processes delay-insensitive. 

Systems built using the delay-insensitive philosophy range from the speed-independent investi­

gated by D. E. Muller in the 1950's [63], which work under the assumption that all wire delays 

are negligible compared with the operator delays (which may be of any length), to the truly delay­

insensitive, in which both operator delays and wire delays may be arbitrary. Martin has shown 

that, using a reasonable operator model,J truly delay-insensitive systems are of little use [51]; the 

work in our research group has mainly beel! within the q'u,(lsi delay-insensitive (QDI) model, which 

is essentially Muller's speed-independent model with information added for distinguishing between 

IThis "reasonable" operator model defines all operator as a single-output device; using the "unreasonable" model 
that an operator must be nothing more than a transistor, it is easy to see that building a nontrivial delay-insensitive 
circuit with repetitive behavior is absolutely impossible. 
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wires whose delays must be short compared with the operator delays and wires whose delays may 

be arbitrarily long. 

We cannot possibly do justice to the many different design methods that have been proposed 

for asynchronous-circuit design;2 bundled-rlata and QDr rlesign will however serve as convenient 

extremes that we can compare with. 

Assembling a working system out of QDI parts is almost frighteningly easy: start from a correct 

sequential program, decompose it into communicating processes, compile these processes into cir­

cuits, put the pieces together, and everything works. The chief advantage of this way of designing 

systems is that once we have decomposed, the design style is completely modular: there is no implicit 

use of global information (i.e., no clock), and the different parts can be designed independently. 

In this sense, QDI design comes close to finally putting Carver Mead's concern to rest. But 

there is one difficulty with QDr design: the requirement that the circuits work properly even if 

all operator delays were to vary unbouncledly is a difficult one to satisfy; our satisfying it involves 

inserting much circuitry whose only purpose is checking for the occurrences of transitions that we 

may know would in any case take place.:' We should say that QDI systems must still be designed 

"within reason": it is possible to make things not work by designing them very poorly; likewise, 

it still takes considerable work and skill to achieve good performance. Yet, with these things in 

mind, the message-passing QDr design-style allows the design of large, well-performing systems with 

relatively little design effort [53, 18, 55]. 

1.5 Contributions 

This thesis makes its main contribution by developing a design style that allows making use of limited 

amounts of timing information, i.e., limited use of timing assumptions, without destroying the most 

important, system-simplifying property of QDI design, namely that of the data's carrying its own 

timing information. We do this by replacing some of the four-phase (return-to-zero) handshakes 

in a QDr circuit with pulses, thus breaking the timing dependencies that are the source of the 

performance problems of QDI circuits. Our ultimate goal is that of improving the performance of 

modular asynchronous systems so much that it becomes possible to use asynchronous techniques for 

implementing large systems that perform well, yet are easy to design. 

The organization of the thesis is as follows: 

2The interested reader should see Hauck's paper for a b;tlanced introduction [34J. 
3The reader with experience in designing CMOS circuits will realize that the situation is especially bad with regard 

to the checking for the occurring of downward (true to false) transitions, since such checking must be done with 
p-transistors. If we know that a signal x has switched from false to true, and the signal y is the output of an inverter 
whose input is x, then what harm is there in assuming that 11 has switched from true to false? In practice there may 
be none; but in the QDI model, there is great harm, whence the QDI designer will find it necessary to check for y's 
going false with the dreaded extra p-transistor. 
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I. \Ve develop a theory that accounts for the proper functioning of pulsed asynchronous circuits 

(Chapter 3). 

II. We develop a new target for the compilation of CHP programs, the single-track-handshake 

asynchronous-pulse-Iogic (STAPL) circuit (Chapters 5 and 6). These circuits are as easy to 

compose as QDI circuits, yet they operate faster: they have fewer transitions per execution 

cycle (10 instead of QDI's 18 for many nontrivial circuits), and they have less loading from 

p-transistors (no input-completion circuitry ill most cases, and even when it is present, it has 

no p-transistors). 

III. We explore some properties of Pipeline Language 1 (PLl), a simple yet expressive language 

for describing asynchronous bit-level processes (Chapter 7). PLI is a convenient language for 

expressing the behavior of basic dataflow-style processes. It succinctly captures all the capabil­

ities we should like to have and that are easy to implement for simple asynchronous processes. 

The particular capabilities that we choose for the language are inspired by the MiniMIPS 

work: we thus have evidence that the capabilities are enough for implementing large and well 

performing asynchronous digital VLSI systems. It is much easier to work with descriptions at 

this level than in terms of production-rule systems; compared with CHP programs, the PLI 

language allows only a subset that can be :.;traightforwardly and automatically compiled. The 

PLI language is intended to be used for both STAPL and QDI design. 

IV. Putting the methods developed in previous chapters to the test, we study a microprocessor 

design consisting of STAPL circuits, most of which were themselves designed using the PLI 

language (Chapter 8). The microprocessor is a simple 32-bit one; the design shows how best 

to take advantage of the capabilities of the STAPL circuit family. The results of the test 

are good: the STAPL family is shown to he capable of significantly higher throughput than 

QDI circuits at a small extra cost in energy; the overall improvement using the Et2 metric is 

approximately a factor of five. 
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Chapter 2 

Preliminaries 

-And why not the swift foot of Time? lwei not that been as proper? 

-By no means, sir. Time travels in divers paces 1vitil divers persons. 

~- William Shakespeare, As You Like It (1599) 

2.1 Quasi delay-insensitive design 

This thesis aims at establishing a new t.arget for hardware designers; while asynchronous, the new 

pulsed-logic design-style depends on timing assnmptions for working properly, which quasi delay­

insensitive (QDr) circuits do not. Still, many of the design issues are very similar, especially at the 

higher levels of the design; consequently, we shall be able to reuse much of what is known of QDr 

design. 

We shall use much of the same terminology and not.ation as QDr designers do. To wit, we 

shall compile our circuits starting from the Communicat.ing Hardware Processes (CHP) language, 

a language based on Hoare's Communicating Sequential Processes (CSP) [36J; we shall describe 

our communication protocols using the not.ation of the Handshaking Expansion (HSE) language 

used by QDr designers; we shall describe our t.ransistor networks using the Production-Rule Set 

(PRS) notation. These languages are all explained in detail by Martin [48, 54]; some more recent 

extensions to CHP, whose syntax was suggested by Matthew Hanna, are described by Hanna (33J 

and the author [66]. 

2.2 High-speed CMOS-circuits 

Over time, the Caltech group's way of designing of asynchronous circuits has converged with some 

of the ways that high-speed synchronous circuit.s are designed. Most of what we shall discuss in 

this thesis falls into the broad category of "precharp;e domino logic." The basic techniques used for 

designing these kinds of circuit.s are well illustrated by Glasser and Dobberpuhl (29J. 
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Vdd 

c-4 
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n-transistors 
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Figure 2.1: One stage of domino logic. 

Here we shall only cover a few issues in nomenclature. A basic CMOS domino-logic "stage" is 

shown in Figure 2.1. The part on the left. of the f:igun~ is the "precharged domino" part of the circuit. 

When the control signal C goes low, the stage precharges--the node x rises and the output out falls. 

When C next goes high, depending on the values on the in wires, the domino mayor may not "fall" 

(i.e., x mayor may not fall to GND). The llame "domino logic" comes from these circuits' ability of 

being cascaded within a single clock-phase in a synchronous system. Confusingly, while Figure 2.1 

depicts a single "domino stage," the same structurp can also be called two "stages of logic" -the 

domino block plus the inverter. In the design style that we use, a block like this also implements an 

entire "pipeline stage"; i.e., cascaded dominos cycle independently (to an extent determined by the 

"reshuffling" of the handshake). 

The important features of domino logic: are as follows. There are few p-transistors; because of the 

much higher mobility in silicon of electrons compared with holes, this means that domino logic will 

usually be much faster than combinational logic, where pulling up the outputs has to be handled by 

the inputs. Furthermore, if we wish to cascade the dominos, each computation stage takes two logic 

transitions (one for the domino, one for the inverter)-this we call the forwarrllatency of the stage; 

alternating "n-dominos" with "p-clominos" is possible, hut the performance gain, if any, compared 

with standard domino logic, is small; owing to the lIlany p-transistors in the p-dominos, this style 

can indeed be slower. An important drawback of domino logic is that it is more sensitive to different 

kinds of noise than combinational logic is. 

In asynchronous circuits, the control transistor gated by C is sometimes replaced with several 

control transistors; this is necessary for accomplishing the more complicated synchronization that 



9 

Rail Value 

x.O false true false true 
x.l false false true true 

Meaning No data :r: = 0 :r; = 1 Illegal 

Figure 2.2: Dual-rail encoding of one bit of data. 

can be required by asynchronous data-transfer protocols. 

2.3 Asynchronous protocols and delay-insensitive codes 

Asynchronous systems are based on handshaking protocols; i.e., two processes wishing to transfer 

data between each other synchronize the data transfers with signals that the processes themselves 

generate. It is most straightforward for us first to envision the handshake itself and then to add 

the data transfers in later. This way of designing things allows transferring data using conceptually 

simple protocols. One property that must be satisfied by the data is that it is encoded using a 

delay-insensitive code. 

This means informally that the data encoding contains the same information that was present 

in the original "bare" handshake (i.e., data present or not-present) and that the data is encoded so 

that transitioning between the data present and not-present states is free from timing assumptions 

(i.e., it does not matter in which order the transitions are received). The most basic encoding that 

satisfies these conditions is the dual-rail ellcoding of a single bit (Figure 2.2); one that will also be 

seen often in this thesis is the l-of-4 encoding of two bits. 

Generalizing from bare handshakes to using delay-insensitive codes leads naturally to needing 

circuits for determining whether data is present or not-present. This we loosely refer to as "comple­

tion circuitry." For instance, a two-input OR-gate can be used for completing a dual-rail channel, 

as can a four-input OR-gate for a l-of-4-cocled channel. 

2.4 Production rules 

In this thesis, we shall not generally describe circuits at the level of transistor netlists; this would 

be unnecessarily much detail. Instead, we shall use pr-odnction rules. A production rule (PR) is a 

statement of the form 

G --7 x := c 

where G is a boolean expression called the gnILrd and the assignment x := c is the command. In a 

production rule, c can only be true or false; nothing more complicated is allowed. We abbreviate 
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x := true as xt (read as "x up") and .'f := false as 1;+ (read as "x down"). At the circuit level, the 

effect of such an elementary assignment is a transition on 1: from a low to a high or from a high to 

a low voltage. 

In a given system, we must necessarily have rules for the setting of each node x that transitions 

more than once both to true and to false; the combination of the two rules is called an operator. 

In other words, an operator is a device with one or more inputs and a single output. The mapping 

from operators to circuit gates is fairly direct, but we do not consider it in detail in this thesis; nor 

do we consider layout issues in detail. 

Before proceeding, it must be pointed out that although we use the same notation, our using 

timing assumptions means that we cannot ascribe quite the same semantics to HSE and PRS as we 

can in QDI designs. We shall have more to say about this later; in short, we disallow "stuttering" 

in HSE and we shall use a timed execution model for production rules instead of the weakly-fair­

interleaving model that can be used for QDI circuits. 

2.5 The MiniMIPS processor 

The MiniMIPS processor, designed by the Caltech group during 1995-1998, represents the state of 

the art in QDI asynchronous design today [55]. 

The MiniMIPS processor consists of two million transistors; it has been fabricated in 0.6-JLm 

CMOS, and in this technology, it runs approximately 170 MHz at the nominal process voltage 

(3.3 V). 

A few notable features of the MiniMIPS processor an~ the following: 

• Almost complete reliance on QDI circuits. (The exceptions are the low-level implementation 

of the cache-write mechanism and the off-chip bundled-data asynchronous interface.) 

• Extensive use of 1-of-4 data-encoding to minimize completion delays and save switching power. 

• Use of pipelined completion to minimize completion delays. Using pipelined completion results 

in a processor that can be thought of as an array of byte-slice processors, with a minimum 

of synchronization between the byte slices. The QDI model, which we used to verify that 

the design is correct, refuses to deal in delays; hence we know that the processor would work 

for a wide range of delays, and we simply try to pick those delays that shall result in the 

most efficient (i.e., the fastest) implementation. Thus the byte-slice processors nevertheless 

operate in synchrony most of the time, and we receive the benefits of a highly concurrent 

design with short, well-matched delays without paying the price of having to impose unwanted 

synchronization throughout our design model. 
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• Universal use of precharged, pseudo-static1 domino-logic. 

• A deeply pipelined design with buffering in every domino stage. The processor can execute 

many programs at an average speed of 18 2/1 logic transitions per fetch cycle. 

As important as the MiniMIPS processor itself a.re the techniques used to design it: 

• Initial specification as a sequential CHP program and stepwise refinement to a collection of 

concurrent processes. 

• Use of slack elasticity [45] to allow variable latencies yet ensure deterministic behavior. 

• Final, formal specification in terms of a hierarchical production-rule set (PRS), using the CAST 

language. 

• Universal use of full-custom physical design, in terms of a magic cell hierarchy. Several man­

years were spent on this aspect of the design. 

lSee footnote on p. 47. 
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Commonly used abbreviations 

Asynchronous pulse-logic 

Binary-decision diagram 

Consensus (in "C-element") 

Caltech asynchronous synthesis tools (hardware description language) 

Communicating hardware processes 

Complementary metal-oxide-semiconductor [field-effect transistor] 

Communicating sequential processes 

Delay insensitive 

Dynamic random-access memory 

Event rule 

Ground (circuit node) 

Hewlett-Packard [Corp.] 

Handshaking expansion 

International Business Machines [Corp.] 

Microprocessor without interlocked pipeline-stages 

Metal-oxide-semiconductor [field-effect transistor] 

Precharged half-buffer 

Pipeline language 1 

Production rule 

Production-rule set 

Quasi delay-insensitive 

Reduced-instruction-set computer 

Simple pulsed asynchronous microprocessor 

Static random-access memory 

Single-track-handshake asynchronous pulse-logic 

Positive power supply (circuit node) 

Very large-scale integration 

Weak-condition half-buffer 
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Chapter 3 

Asynchronous-Pulse-Logic Basics 

All delays are dangerous in war. 

- .101111 Dryden, Tyrannic Love (1669). 

Over the years, asynchronous design techniques have gone from Muller's simple handshaking 

circuits and the carefully timed bundled-data circuits used in the PDP-6 to the sophisticated, yet 

easy to design, dataflow techniques used for the MiniMIPS design. It remains, however, that the 

MiniMIPS processor operates, under ideal conditions, at a fetching rate of 18 2/3 CMOS transitions 

per instruction fetch, and designing a QDI microprocessor that fetches much faster than this seems 

an impossible challenge. This number compares favorably with the performance achievable by most 

synchronous design techniques, but it falls short of the 10--14 transitions per cycle that the most 

aggressive (and hard-working) synchronous designers achieve. 

The barrier that prevents QDI circuits from achieving higher performance lies in the QDI hand­

shake. By insisting on the four-phase handshake, e.g., 

* [ [li]; (compute outputs); lot; [.h]; loJ- ], 

we demand that any process in our system shall, after it has acknowledged receipt of its inputs, 

wait for those inputs to reset to neutral. This is expensive because checking inputs' neutrality is 

done in p-transistors: hence it must be decomposed into several stages, and it also loads the inputs 

heavily. (Of course, switching to inverted logic docs no good since then computing the outputs and 

checking the validity of the inputs must instead be done in p-transistors, which would be even worse 

than before.) The most trivial four-phase-handshaking QDI circuit takes ten transitions per cycle,! 

and anything nontrivial takes 14; inescapably, the complicated control-processes take 18. (These 

numbers are taken from the MiniMIPS [55] and Lines's work [43].) 

Various authors have suggested that the solution to the performance problems that plague four­

phase QDr circuits is that we should use two-phase signaling instead. Many variants exist; the 

1 Building a chain of buffers that take six transitions per cycle while remaining QDI is possible, but it cannot be 
done without inverting the signal senses from a buffm's input to its output. 
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simplest is: 

* [ [Ii -=I- 10]; (compute outputs); 10:= li ] 

Some things can be implemented well with this protocol, but designers struggle fruitlessly with 

anything but the simplest specifications when they must design logic. This is why: on each iteration 

of the loop, the sense of the input signal changes. At one moment, an input near Vdd means a true 

input; at another, it means a false input. Who can make sense of that?::! 

What we want is a design style that combines the straightforward logic of four-phase QDI with 

the timing of two-phase logic. Obviously, we cannot expect to have all the desirable properties at 

once. Accordingly, we shall no longer demand that the circuits be QDI; yet they will in many ways 

operate similarly to the QDI circuits we used in the MiniMIPS. 

But is it even possible to use the MiniMIPS design-style for designing anything but QDI circuits; 

shall we not have to abandon all that we know of asynchronous design and start over? 

It turns out that most QDI circuits that have heen designed can be sped up considerably by 

introducing weak timing-assumptions, without our having to rethink the high-level design. The 

reason for this is simple: while using a four-phase handshake for implementing two synchronization 

actions is certainly possible (indeed, this technique is used in some special circuits, such as the 

distributed mutual-exclusion circuit designed by Martin [50]), this is not commonly done. In the 

dataflow-style processes used in the MiniMIPS, it is never done. Hence, out of the four phases of 

the four-phase handshake, only two are used: send and acknowledge. The remaining two, resetting 

the data and resetting the acknowledge, are not used for synchronization. These phases are entirely 

superfluous from the point of view of the specification. 

Each phase consists of two actions: an assignment and the wait for that assignment. We can make 

use of the phases' being superfluous by eliminating the waits, even though we keep the assignments; 

by removing the waits, we get the synchronization behavior of two-phase handshaking; but by 

keeping the assignments, we keep the encoding properties of four-phase. What we propose doing 

is allowing communicating circuits to reset their interface nodes in parallel; in other words, once 

we acknowledge an input, we assume it will reset "quickly." This achieves the desiderata: the 

inputs may still always be in positive logic, yet their synchronization behavior will have many of the 

characteristics of two-phase signaling, since we only wait for the first phase of the inputs. Waiting 

for the first phase of the inputs is anyway normally required for computing the outputs, so what 

remains will definitely be closer to optimal. 

In this chapter, we shall study a few simple pulsed circuits and then develop a theory that may 

be used to account for the proper functioning of a wide class of pulsed circuits and show how that 

2The reader who finds this comment facetious is urged to contemplate the designing of a circuit that has several 
conditional inputs. Such a circuit will have to combillc inputs of arbitrarily different senses, potentially in a different 
arrangement of senses for each iteration. 
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theory may be applied to the specific simple pulsed circuits. 

3.1 Road map of this chapter 

This is the most challenging chapter of this thesis as we make the needed connection between physics 

and computer science. So that the reader will not get lost in the chapter, let us first discuss the 

main points. 

We shall first study the designing and simulating of a basic pulsed asynchronous circuit, viz. 

the pulse repeater. This will be an ad hoc discussion based on properties easily observable by and 

well-known to the electrical engineer: pulse lengths:l (widths) and heights. 

Secondly, we shall explore why these simple and readily observable properties are not enough 

for describing the full range of possible pulse-repeater behaviors. Simply speaking, the essential 

shortcoming of the pulse length and pulse height is that these two properties, while they may suffice 

for specifying a testing pulse that is applied to a circuit, do not suffice for completely describing the 

shape of the output waveform produced by that circuit. 

Thirdly, we shall generalize the legal-logic-range-noise-margin argument commonly made for es­

tablishing the correctness of traditional synchronous circuits. This generalizing serves two purposes: 

on the one hand, it establishes a framework that we can understand the logic family of Chapters 5 

and 3 within; on the other hand, it serves the wider purpose of taking a baby step towards establish­

ing a formal model for the functioning of asynchronous circuits with the simple understandability 

of the synchronous model. The mathematical argument in this section may seem overly formal, but 

it is really a straightforward generalization of the synchronous argument. 

In generalizing we consider uncountably infinite sets of waveforms instead of the simple voltage­

ranges used by the synchronous argument. By spncifying the sets of waveforms as "the set of all 

functions f(t) such that each f(t) is bounded below by the function j(t) and above by k(t)," we 

reduce the argument to one where j(t) and k(t) play the leading rOles instead of the much more 

cumbrous infinite sets of functions. This corresponds to understanding the synchronous argument 

in terms of the boundaries between the voltage ranges rather than having to consider every possible 

intermediate voltage separately. 

Fourthly, we shall recognize that, given certain desirable properties of the circuits that we study, 

establishing the correctness of an asynchronous-pulse-logic family can be clone entirely in terms 

of functions j(t) and k(t); we shall determine what properties are necessary for allowing this vast 

simplification. 

Lastly, we shall argue that the pulse n~peaters we first studied in such an ad hoc way actually 

satisfy the conditions allowing the simplification. At this point, we shall have to appeal to more 

3 Also called "pulse width"; see the footnote on p. 17 for Ollr jUHtifying the "pulse length" nomenclature. 
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vaguely known things, such as transistor equations and circuit parameters; this argument is hence 

specific to the kind of circuits we are studying. 

3.2 The pulse repeater 

The first pulsed asynchronous circuit that we shall investigate is the "pulse repeater." A pulse 

repeater copies input pulses to its output. While this function could be performed by a wire or an 

open-loop amplifier, the pulse repeater has feedback; llsing the feedback, it restores the quality of 

the signals, both in the time domain and the voltage domain. 

x out 

i;-1 

Figure 3.1: Three-stage pulse repeater. 

The circuit in Figure 3.1 is a simple three-stage pulse repeater. In its idle state, both the input 

and the output are at a logic zero, and the internal node :1: is at a logic one; this is the only stable 

state of the circuit. When the input voltage is raised towards a logic one, the voltage on x begins 

to fall; which then causes 07J,t to rise, and finally, at least if in has meanwhile returned to zero, x 

to rise back to the idle state. The circuit can misbehave if in remains at a logic one for too long. 

Characterizing the misbehavior and finding ways of avoiding it are the main topic of the rest of this 

chapter. 

In the three-stage pulse repeater, the node o'u,t (when repeaters are cascaded, in is a neighbor'S 

out) is driven by an inverter, as is the node y. We shall see that, even as we introduce more and more 

dynamic nodes for handling complicated protocols, there will be nodes that shall remain driven by 

combinational logic. These nodes do not offer much opportunity for computing, so we shall direct 

our attention to the node x. 
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3.2.1 Timing constraints in the pulse repeater 

The pulse repeater is a difficult circuit to get working reliably, owing to the timing assumptions that 

are necessary for verifying its correctness. If we will ensure that a pulse on in is noticed by the 

repeater, we must arrange that its length4 exceed some minimum. On the other hand, the pulse 

must not be too long; if it is, then the circuit may produce multiple outputs for a single input. 

(Depending on device strengths, it may instead stretch the output pulse. We might endeavor to 

design a pulse repeater so that this stretching could be used to keep the circuit reliable even with 

arbitrarily long input-pulses. Owing to the difficult design problems posed by the transistor-ratioing 

constraints, designing a reliable pulse repeater along these lines is difficult.) 

We shall not consider the possibility that two input pulses arrive so close together that they 

appear as a single pulse-for two reasons: first, the problem of the pulses' arriving too close together 

can be understood similarly to how we understand the single too-short and too-long pulses; secondly, 

we shall see that the issue is not of much concern in the APL circuit-family because the pulse­

handshake protocols require inserting an acknowledgment of some sort between the two pulses (i.e., 

we ensure at a higher level of the design that we never have two pulses sent without the target's 

responding with an acknowledgment in between). 

x out 

i;-1 

Figure 3.2: Five-stage pulse repeater. 

3.2.2 Simulating the pulse repeater 

The author has simulated a few variants of the pulse-repeater design described above with input 

pulses of varying lengths and heights applied, thus illustrating the timing margins of the pulse 

repeater. The repeaters that were simulated are similar to the simple three-stage version described 

above. The differences are that the input and output were negative-logic (i.e., the input transistor 

4It is conventional to speak of pulse "widths" and interval "lengths"; using both concepts together, as we do, is 
apt to lead to confusion if this convention is adhered to. For this reason, we shall talk about pulse "lengths," thereby 
meaning the same as the conventional pulse "width." Similarly for "long" and "wide." 
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is a p-transistor) and that "keeper" resistors were used on the x nodes. We shall see the results 

for two separate circuit designs: a three-stage version, and a five-stage version that differs only in 

two extra inverters' being used in the feedback path from x to y (Figure 3.2). The author produced 

layout for the pulse repeaters using the magic layout editor and simulated them with the aspice 

circuit simulator. The assumed technology is HP's O.6-ILm CMOS via MOSIS; the supply voltage, 

V dd, is 3.3 volts for all simulations present(~d in this thesis. ,S 

In what follows, we shall mainly aim at understanding the behavior of a single pulse traveling 

down an infinite chain of pulse r·epeater>8. Will t.lw Imlse die down? Will it lengthen until it becomes 

several pulses? Or will it~as we hope~travel down the chain unscathed? 

Two things can go wrong with the pulse repeater. The input pulse can be too weak for the circuit 

to detect it, or the input pulse can be of such long duration that it is detected as multiple pulses. An 

example of a pulse repeater on the verge of misbehaving owing to a too-long input pulse is shown 

in Figure 3.3. The nodes are labeled as follows: input, T.in; internal node, T.il; output, T.out; their 

senses are inverted compared with the pulse repeaters in the text. Here the input pulse is 1.5 ns 

long, beginning at t =10 ns. As we can see from t.he graph, the internal node T.il starts rising 

almost instantly, causing the output to fall about 20D ps later. At t = 11 nfl, the internal node rises 

again, thus re-arming the circuit. Slightly before t = 11.5 ns, the re-armed circuit starts detecting 

the input~which has by now overstayed its welcome~as a second pulse, but the detecting transistor 

is cut off by the input, which falls back to GND barely in time to avoid being double-latched. 

Figure 3.4 shows the results of applying pulses of varying lengths and heights to the three-stage 

pulse repeater. The pipe-shaped region shows when a single input pulse results in a single output 

pulse, as desired. The other two regions correspond to forms of misbehavior: the region to the right 

of the pipe shows when a single input puls() results in several output pulses, i.e., when the input 

pulse is too long to be properly detected as a single pulse; the region to the left of the pipe shows 

when the input pulse is too feeble to elicit any response at all. (The gaps in the plot are due to 

irrelevant practical difficulties with the simulatiomi.) 

Figure 3.5 shows the results for the five-stage pulse repeater. Figure 3.6 shows a plot for the 

five-stage pulse repeater of the length of the output pulse for different lengths of the input pulse, 

the input swing here being from GND to Veld. The solid line shows the data; "0," "1," "2," and 

"3" indicate operating regions explained below. The diagonal dashed line in Figure 3.6 denotes the 

stability constraint that the output pulse is as long as the input pulse; we should expect that in 

an infinite chain of pulse repeaters, the pulses will eventually have the parameters implied by the 

intersection of the input-output curve and the stability constraint. 6 

5The parameters used are known to be inaccurate. The circuit speeds indicated by the simulations are 15-
20 percent higher than what one can reasonably expect from fabricated parts. These parameters keep the simulations 
straightforwardly comparable with most of the work done ill the Caltech group in the last five years. 

6 As will be clear from the rest of t.his chapter, this is a very naive understanding of the situation; we are here 
trying to project the behavior of a many-dimensional system onto a single scalar dimension: the pulse length. The 
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Figure 3.4: Shmoo plot. for three-stage pulse repeater. 
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3.2.2.1 Analysis of pulse repeater data 

There are two important questions we should ask when analyzing the pulse repeater data: First, 

can we cascade the circuits-can we connect them so that they work properly when the output of 

one is the input of another'? Secondly, do the circuits work over a reasonable range of parameter 

variations? 

The "shmoo" plots, Figure 3.4 and Figure 3.5, are caricatured in Figure 3.7.7 Normally, if the 

input pulse is of a reasonable height and length (see below), t.hen the gain of the pulse repeater will 

force the output pulse to be approximately characterized by t.he point. marked "X" in the caricature. 

Furthermore, the line "A" describes the minimum pulse length t.hat can be detected by the pulse 

repeater. This is set by circuit parameters, mainly by t.he strength of the input transistor and the 

load on its output. The other line, "B," marks t.he longest. pulse length that. will lead to a single 

output pulse. 

The reason there is a maximum lengt.h t.hat. the repeat.er will not work properly beyond is that the 

repeater "double-latches" when the input. pulse is so long t.hat it is still present when the repeater has 

gone through the entire cycle x-L-; ... y-L-; :rt; ... yt; furthermore, the up- and down-going behaviors of 

the pulse repeater are roughly similar; t.he salIle numher of transitions is exercised, through roughly 

similar circuitry. Taken t.oget.her, this means t.hat the interval .T.!-; y.!-; xt (approximately the same 

length as the output pulse) is about t.he same lengt.h as t.he interval xt; yt; x-L-, where the final x-L­

is the misfiring resulting from the too-long input pulse. Hence, t.he pulse length along "B" will be 

about twice the length of the normal pulse "X." 

3.2.2.2 Digital-analog correspondence 

If we restrict ourselves to the digit.al domain, we can underst.and the pulse repeater's behavior for 

different input pulse lengths by considering the input pulse as two t.ransit.ions int; in.!-. The length 

of the input pulse is the length of the time interval bet.ween int and inl int begins the operation 

of the pulse repeater; leaving out in.!-, the sequence of t.ransit.ions is 

int; x-L-; outt; y-L-; xt; out-L-; yt . 

Changing the input pulse length amounts t.o changing the position of in-L- in this trace (we are here 

assuming that the sequence continues even in the absence of in-L-; i.e., in the presence ofinterference). 

There are five main possibilities: 

O. in-L- occurs so early that the pulse on in is t.oo short t.o trigger the pulse repeater-t.hen t.here 

will be no sequence x-L-; O'll,tt; etc. The repeater fails. 

impatient reader is urged to take a peek at Section :3.3 and t.heu to return here. 
7 An Internet search reveals the spelling "shmoo plot" as being five times more commonly used than the variant 

"schmoo plot." 
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1. in-J,. occurs long enough after int that the input pulse is noticed, but it occurs before y-J,.. This 

is the ideal situation. There is no interference. The repeater works perfectly. 

2. in-J,. occurs during y+- There is some interference, but because the input behavior is monotonic 

(the inputs tend to drive :r: strictly more towards Vild as time goes by), the interference is 

fairly harmless-a slig"htly lengthened output pulse may result. The repeater still works. 

3. in-J,. occurs after y-J,. but not long enough after it to trigger the repeater again. The repeater 

still works, but it draws a great deal of short-circuit current. 

4. in-J,. occurs long enough after y-J,. that :r:t has already occurred; x-J,. is triggered again, and the 

repeater generates a second output pulse. The repeater fails. 

We may draw an analog connection: the possibilities 0.-3. correspond to the so labeled segments of 

Figure 3.6 (the part of the curve for possibility 4. is not shown). In normal operation, the repeater 

is thus operating at the border between possibilities 1. anel 2. This is not surprising, since the input 

pulse is approximately the same length as the resetting pulse on y. 

3.2.2.3 The cascaded repeater 
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Figure 3.7: Qualitative interpretation of shmoo plots. 
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F 

Now we shall justify the location of the point marked "X" in Figure 3.7. Is it really true that 

the output pulse will have the characteristics implied by the location of X, almost regardless of the 
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characteristics of the input pulse? Yes, it is. We can see this8 from Figure 3.6. This figure shows 

that, in this fabrication technology, for input pulse lengths in the wide range from 0.12 to 1.47 ns, 

the output pulse lengths range only from 0.57 to 0.85 ns. (Note that the scale along the abscissa is 

not the same as that along the ordinate.) Since five transitions take about 0.61 ns here, we can say 

that in technology-neutral terms, the input pulse lengths may vary from about 1.0 normal transition 

delays to about 12 delays for an output variation from 4.7 to 7.0 delays. 

Since the range of input pulse lengths comfortably contains the range of output pulse lengths, 

we should have to add considerable load, or we should have to fall victim to extreme manufacturing 

variations to make the pulse either die out or double up as it travels down a pipeline of pulse 

repeaters of this kind. Since, further, the input-output relationship of the pulse lengths is almost 

entirely monotonic, we can summarize the behavior of the pulse repeater thus: an input pulse of 

length between about 1.0 and 12 transition-delays will generate a single legal output pulse; the 

length gain averages 4.8. 

~~ 
/~ input 

\~ 

pulse length/[ns] 

Figure 3.8: Mapping of input to output pulse parameters. 

Figure 3.8 is another caricature of the operation of pulsed circuits. The input pulses within the 

input pipe lead to output pulses within the indicated output region. 9 

8Note that the various shmoo plots and the width-p;ain plot are drawn for several different circuits, so the numerical 
values are not necessarily directly comparable across them; ,L1so the criterion for a pulse's being legitimate is somewhat 
over-strict in the shmoo plots. We shall formalize the conditions later. 

9The continuity of physics demands that the output rep;ion also goes to infinity where the input pipe does so. 
This is a nicety that we ignore because, in any case, a pulse repeater operating in this region would be unstable and 
fickle. Furthermore, as we shall see in Section 3.3.5, allowing the input pipe's being the largest possible for generating 
properly shaped output pulses will not work, since if we do that, continuity will demand that the output shape 
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3.2.3 The synchronous digital model 

The correctness of synchronous digital logic is justified by a two-part model that is familiar to every 

electrical engineering undergraduate. The first part explains what it means to be a valid logic­

level by dividing the possible analog voltages of a digital circuit into a few ranges with the right 

properties to guarantee that noise is rejected; this division we call the digital logic-Ie vel-discipline , 10 

or logic discipline for short. The second part introduces a synchronous timing-discipline. The 

timing discipline can be introduced in several ways, which all rely on defining the times when circuit 

elements are allowed to inspect the analog voltages (i.e., when they can be proved to obey the logic 

discipline) and defining the times when the circuit may change the voltages (when the voltages 

cannot be shown to obey the logic discipline of the model). The timing discipline is normally 

maintained by introducing latches and a clock and specifying setup and hold times for the latches. 

Comparing Figure 3.8 with the synchronous logic-discipline, we can identify the big pipe with the 

legal input-range for a logic value; the little pipe, with the legal output range; the difference between 

the two is, intuitively speaking, the noise margin. 

The synchronization behavior of asynchronous circuits is sufficiently different from the syn­

chronous timing-discipline that we shall have to develop a different timing model. The synchronous 

logic-discipline, on the other hand, rests on a transitive-closure property of synchronous digital cir­

cuits that we may emulate for deriving sufficient conditions for the correctness of APL circuits. In 

the synchronous world, introducing legal-voltage ranges and noise margins establishes the correct­

ness of the digital model; having introduced these constructs, we can show that voltages that have 

clear digital interpretations will be maintained throughout a circuit as long as the noise that is 

present is less than the noise margins [84]. We shall generalize this one-dimensional model for the 

asynchronous pulses. 

3.2.4 Asymmetric pulse-repeaters 

We noted above (Section 3.2.2.2) that the pulse repeater normally operates on the border between 

the "ideal" domain and the "fairly harmless" clomaill. The reason for this is that, in a long chain of 

cascaded inverters, the reset pulse on y is about the same length as the input pulse on in. 

Practically speaking, there is interference in tht~ "fairly harmless" domain; this means that the 

circuit generates extra noise and uses more power than necessary. Furthermore, many theoretical 

difficulties are caused by this interference, as we shall see below. Is there no way of avoiding this? 

In fact, it is fairly easy to avoid the 'in pulse's interfering with the y pulse. What we need is a 

circuit that generates pulses of different lengths on y and 011,t; the pulse on out needs to be shorter 

shall touch the input shape. Hence, the pipe Rhown in Figure 3.8 is actually a little smaller than the ones shown in 
Figures 3.4 and 3.5 (by about 1/5). 

laThe terms "logic discipline," "timing disciplilw," etc., iLrc tiLkcn from Ward and Halstead [84J. 
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than the one on y. An example of a circuit with this behavior is shown in Figure 3.9. 

out 
x 

Figure 3.9: Asymmetric 3-5-stage pulse repeater. 

We shall not mention these circuits further, except now and then to lament that we should be 

lucky to be blessed with their non-interference. The theory of these circuits may be simplerll and 

the power consumption lower; but the output pulse is shorter and driven by a more complicated gate 

(hence weaker), and there are two stages of logic that we can no longer use as fully as before. For 

these reasons, we should probably have to stretch the timing of this pulse repeater to 5-7 transitions 

instead of 3-5. The losses would outweigh the gains. 

3.3 Formal model of pulse repeater 

Formally, we may divide what we are doing with tlw pulse-repeater problem into three steps: our 

generating input excitations, the circuit's reacting to the input excitations by producing output 

waveforms, and our measuring of the output waveforms. The question we should like to ask is if it 

is possible to combine several pulse repeaters, i.e., if cascading the pulse repeaters will maintain the 

pulse shape. 

We shall study the behavior of a pulse repeater when presented with a single input pulse; we 

shall not directly consider a single pulse repeater's being presented with several pulses in succession. 

3.3.1 Basic definitions 

The waveforms that we saw in the pulse repeater experiments are parameterized by two parameters, 

the voltage V and the time t; for the particular parameterization we chose, it made sense to speak 

of the height h and the length l. For instance, let us assume that we would use rectangular pulses 

11 But in the light of the following theory, which establishes that the symmetric pulse repeaters work, the suggested 
asymmetric-repeater theory might be considered dishOIwst. If the symmetric repeaters work despite interference, 
would not the asymmetric ones too'? And would not the asymmetric-repeater designer be tempted to allow his 
circuits' operating in this domain'? 
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as excitations for characterizing the behavior of some pulsed circuit. We could then parameterize 

the pulses that we use as12 

P[,;](t) (~f h x (l(t) - l(t -I)), 

where lex) is the unit step function [76]: 

l(.r.) ~ { ~ if x < 0, 

if:1: 2 o. 

(3.1) 

(3.2) 

We first define the set T of functions over time that have their global maximum in finite time, 

i.e., 

T ~f {f : t --+ 111\ (3k:, F :: (V.T : 1:1:1 > k : f(:r:) < F) 1\ (3x :: J(:1:) > F))}. (3.3) 

The need for the restriction is explored ill Appendix C. 

We say that two functions13 f, g : R --+ R are equivalent under translation if there exists a 6. E R 

such that J(t) = get - 6.) for some 6.; we write this f ~ g. We shall mainly deal with the partition 

of T into equivalence classes under translation; we call this partition F. The equivalence class that 

contains J we write 7(1). 

We can think of the p waveforms as a mapping from pairs of real numbers, i.e., members of the 

set 

(3.4) 

to functions in F. The mapping itself, P : P --+ F, is defined as 

P ([
11,]) (~f . 
I - P[',']' (3.5) 

we write PCP) for the subset of F that represents all such rectangular pulses. 

Secondly, the circuit's reaction to the input may again be thought of as a mapping, this time from 

input to output functions. We may write this <P : T --+ T; interpreting a translation of the input as 

causing an identical translation of the output (tlw circuits themselves are of course time-invariant), 

we may also write 

<p:F--+F. (3.6) 

Lastly, we consider measuring the output waveforms. NaIvely speaking, we want to characterize 

the output waveforms in the simplest way; since we use P to parameterize the inputs, it would seem 

convenient to extract the same parameters of the output waveforms. Perhaps we can phrase the 

12We use the vector notation [i.] mainly for making things typographically clear; the functions we are considering 
are generally nonlinear, whence the analogy with matrices and linear transformations is not so useful. 

13If nothing to the contrary is stated, then we shall assnme that a function f maps from real numbers to real 
numbers. 
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questions about the pulses in terms of the parameters of the pulses. 

3.3.2 Handling the practical simulations 

If we want to determine the mapping for it real circuit, we should run a set of simulations to check 

the behavior of our circuit for a variety of input pulses of the shape P[';ii J' with i = 0,1,2, .... In 

order to determine the mapping of Figure 3.8, we measure the length and height of the output pulses. 

This we could do, for instance, by measuring the highest voltage recorded by SPICE and measuring 

the time interval between the upward crossing of Vdd/2 and the following downward crossing. (If we 

should not detect any crossings of Vdd/2, or if we should detect more than these two crossings, we 

should be able to conclude that the input pulse was outside the "pipe.") With these measurements 

in hand, we could then draw Figure 3.8, and if the area covered by the output pulses should be 

contained within that of the input pulses, then we could finally conclude that the circuit we have 

tested can be used as a pulse repeater because the input-output relationship is stable. 

In other words, we have the commutative diagram: 

[',' ] c; 
---+ 

lp (3.7) 

'1' 
P[':] ---+ 

The upper part of the diagram defines the function e : P --+ P on the parameter space. In practice, 

we study e by computing p-l 0 <]) 0 P. We ultimately want to know if p-l 0 <I>n 0 P converges as 

n --+ 00; we can now ask the same thing of en. 
Unfortunately, there is an important fiaw in the described testing procedure. While it is true 

that the input, P[7](t), is properly characterized by h andl, and that our measuring the height and 

length of the input pulses would indeed result in the values we specified in the definition of p, our 

measurements of the output pulses only incompletely characterizes them. This is understandable: 

even though a simple mathematical function describes the input pulses, the waveforms of the output 

are unlikely to obey some P[,;](t) for any values of hand l. Indeed we should be surprised if 

they did, given that there is an infinite variety of possible output waveforms, depending on circuit 

parameters, environmental conditions, noise, etc. In fact, we know that the output pulses cannot 

possibly be characterized by P[:'] since the function ]I has discontinuities, whereas-given the nonzero 

capacitances that are present-the output voltage cannot have discontinuities if all the currents in 

the circuit are finite. Formally, we should say that p-l only exists for members of PCP), not for 

arbitrary functions. 
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3.3.3 Expanding the model 

We instead define a partial order on functions in the obvious way: 

Definition 3.1 (Partial ordering of functions in T) Given H, ¢ E T, we say that H ::::; ¢ if and 

only if H(t) ::::; ¢(t) for all t. We say that f} f'.lJuals qJ if H ::::; ¢ and ¢ ::::; H; 

and extend it to our translation invariant representatives in F: 

Definition 3.2 (Partial ordering of members of F) Given f, 9 E F, we say that f :::; 9 if and 

only if there exist representatives (J E f and ¢ E 9 (with (J, qJ E T) such that (J :::; ¢. 

Appendix C shows that Definition 3.2 establishes a partial order (i.e., a relation that is transitive, 

reflexive, and anti-symmetric) of functions obeying (3.3) if by two functions' being equal we mean 

that they are members of the same equivalence class in F. 

If we consider a member f E F (f is an equivalence class of functions; we can loosely speak of it 

as a function if we by that mean some canonical representative), we can define the mapping taking 

it to the subset of rectangular pulses PCP) dominated by it as 

(3.8) 

agE PCP) is also in J(f) if and only if g::::; f. 

Similarly, we define the subset of PCP) that dominates f as K(f). Figure 3.10 illustrates the 

situation as it applies to an arbitrary waveform when P consists of the rectangular functions P[ 7] (t) = 

h x (l(t) - l(t -l)).14 

As we know, an arbitrary f is most unlikely to be in PCP). Hence we shall not attempt to define 

a mapping directly from F to P; instead, we define a mapping M : F -+ PCP) x PCP). (M stands 

for "measuring mapping.") Starting from J(f) and K(f), M picks an ordered pair U] such that 

j E J (f) and k E K(f)-in other words some pair U] such that j ::::; f and f ::::; k; we further write 

Me> for j and M{3 for k; we can also define M : F -+ P x P by M (~f [:=:i~;n. It is clear that 

j is somewhat arbitrary (m satisfies the same condition as j), but there is no reason for choosing k 

different from the corner of the square region. Obviously, U] is not unique, so M is not unique; as 

we shall see, picking M properly is important. if> 

Let us now define <Jl to work on sets of functions as well as on functions. We define <Jl : 2:F -+ 2:F: 

<Jl(5) (~f {t: (38: s E 5: t = <Jl(s))} (3.9) 
-~------------------------------

14In order that we may keep the exposition manageable, we have simply truncated all the waveforms at the threshold 
voltage-any activity below the threshold we have assumed to be negligible. 

15Figure 3.10 applies to the particular case when P(F) consists of the rectangular functions p [7]. Here it is clear 

that there is no reason for picking a k different from t.he vert.ex of t.he square area. Which j is best is a different story; 
picking the j that maximizes the product h x I is likely a good heurist.ic. In the general case when a more complicated 
P(P) is used, k can also be open to question. We might then choose the k E K(f) that minimizes J k(t) dt and the 

j E J(f) that maximizes J j(t) dt. 
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Figure 3.10: (a) the function f and two members), k E P(P). Here j :::; f :::; k. (b) parameter-space 
representation of sets J(f) and K(f) and the points j and k (more properly p-l(j) and P-l(k)) 
picked by M. 

Similarly, we may define M on sets, so that M : 2:F --t P(P) x P(P); thus, 

de[ [Mn(lIlinf(S)) 1 
M(S) = ( )' M(1 maxf(S) 

(3.10) 

where minf : 2:F --t F, with [minf(S)](:r) (~f[in(8](:r), where we use Definition 3.2 for:::; and the 
sEc'; 

corresponding inf; and analogously for maxf. Finally, let us define the map F : P(P) x P(P) --t 2:F 

that generates all functions between two reference pulses j, k; hence, 

F ([~:]) (~f {f : j :::; f :::; k}. (3.11) 

It should be clear that M 0 F ([ i, J) = ([ f J) as long as .i :::; k; hence we could define 

(3.12) 

but we must then keep in mind that M-1 
0 M(S) for a set of functions S does not necessarily equal 

S; we do however have that 

S ~ M-1 
0 M(S). (3.13) 
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3.3.4 U sing the extended model 

Now we can ask questions about the behavior of the parameterized waveforms when <I> is iterated. 

If we consider If ~f lim <I>"(f) , we know by (3.13) that if E lim M-1(M 0 <I> 0 M-l)n(Mf). We 
n~= . n~= 

hence define the mapping from input to output in terms of the reference pulses as G : P(P) x P(P) -t 

P(P) x P(P) 

G def M <I M-1 
M = 0) 0 ; (3.14) 

if we should prefer considering the behavior in the parameter space P, we can write G : P x P -t P x P 

as 

(3.15) 

The M subscripts serve to remind that thpre is some arbitrariness in the choice of M, which infects 

G and G too. Thus we have soundly fixed the commutative diagram, (3.7); we should write: 

GM ([~]) 
1 M-1oP 

{f : P(p) sf s P(q)} 

r [:=:::; ] 
'I> ( ) ----+ {g: 3.f: P(p) sf s P(q) : 9 = <I>(f) } 

(3.16) 

We can think of U] as defining a rectangle16 in P-space, whence we may have: 

Definition 3.3 (Stable function mapping) Wc say that G is stable under M if there exists a 

rectangle [~] 
of <I». 

such that GM ([ I ]) C [ I ]. We call [ I] a region of stability of G (and by extension 
111, 'fn 'In 

The connection with pulse repeaters should be clear. We find that if we can arrange that the inputs 

Xi to a chain of pulse repeaters will obey M(x;) C [~l]' then all nodes along the chain will also 

obey that relation. 

In topological terms, the stable G's causing pulses to remain well-behaved is a weak application 

of the "contraction principle" used by Gamelin and Greene [27]; if we could guarantee that for all 

[~] in a region of the plane, we could define a metric d measuring [~t] such that it decreases for 

each iteration of <I>, then we should have a true contmciion mapping, in which case the pulse would 

converge to a single well-defined shape as it t.ravels down t.he chain of pulse repeaters. This very 

often happens in practice, but as should be clear from our argument, so strong a property is not 

required for the pulses' remaining well-defined. 

16When P-space is two-dimensional; it should be clear that P-space could have any desired dimensionality, and 
[{] generally defines a coordinate-aligned rectangular hyperprism. The rest of the argument is the same for any 
dimensionality of P. We might for instance handle the threshold-voltage issue (see footnote on p. 28) by adding an 
extra parameter to the P-space. 
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What have we gained-why should M 0 1> 0 M~l be easier to handle than 1> itself? One situation 

when it is easier to handle G is when 1> is locally monotonic, i.e., if it is true that \if j, 9 : j ~ j ~ 

9 ~ k : 1>(f) ~ 1>(g). If this is true, then it is also true that 1> 0 M~l ([i]) C M~l ([:W]), 
which means that we need only operate on pairs of functions j and k to determine the boundaries 

of the region of stability (rather than on the infinite sets of functions M~l ([ t])); i.e., our naive 

pulse-repeater experiments then carry enough information for determining whether a given pulse is 

a legal input pulse to the circuit. 

3.3.5 Noise margins 

If we consider a region of stability [,;,] of 1>, wp know that for any input signal f that satisfies 

M(!) C [!n), it is true that M 0 1>(.f) C ['~I]' If the region of stability is finite (which it normally 

is), then there exists at least one maximal region of stability [~;:::J, which has the property that 

there is no larger region of stability ['f'] =:> [1m", ]. It can be proved that [l"'"x ] allows at least one 
S InnH1x IH ll1ax 

input function f that differs only infinitesimally from an input function 9 that would take the circuit 

out of the region of stability. Hence, if we allow as legal any pulse for which M(f) = [lm.x ] , then m ITlax 

the circuit's noise margin will be zero. (In traditional synchronous logic, this would be equivalent 

to considering as a legal digital input one that is exactly at the switching threshold.) 

If we instead define a norm on the noise margin, i.e., on the function-set difference M~l ([!n]) -
1> (M~l ([!n])), we can say that the [I:'] that we should choose as our legal range of pulse inputs 

is the one that maximizes II M~l ([ ,:,]) - 1> (M~ 1 ([ I:']) ) II. The legal range of pulse outputs is 

the corresponding 1> (M~l ([ ,;,]) ). We define the noise nw:rgin 

(3.17) 

Choosing this norm properly is likely a difficult matter, although simplistic versions are not too hard 

to come up with. Saying more about noise here would be premature; how we treat noise depends 

to a large extent on what we shall do with pulsed circuits. The interested reader is referred to 

Section 6.8. 

3.4 Differential-equations treatment of pulse repeater 

How do we find out if 1> is locally monotonic, as would make the previous section's results applicable? 

First, we shall reiterate (almost verbatim) the definition of a str'ong npper- fence given by Hubbard 

and West [38]. 

Definition 3.4 (Strong upper fence) For- the differ"ential equation x' f(t,x), we call a con-
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tinuous and continuously d'ijjer'entiable function (3 (t) a strong upper fence over the interval I if 

f(t,(3(t)) < f3'(t) for all tEl. 

Theorem 3.1 If f3(t) is a strong upper fence on x;' = f(t,x;), then for any solution u(t) with 

u(to) ~ f3(to), u(t) < f3(t) for all t > to in (Lny interval contained in I where u'(t) = f(t,u(t)), 

Proof. See Hubbard and West. 

Let us now consider the boundary value problem of a differential equation in x(t) of the type 

d:r ( ) - = f t,:D,W(t) , 
elt 

(3.18) 

with boundary condition 

x;(O) = :D(). (3.19) 

To save the reader's patience, let us right away call t the t'ime, w the excitation, and x the response. 

Without loss of generality, define I so that 1= {t : 0 ~ t ~ T}. Furthermore, let it be the case 

that over the entire domain of f, an increased excitation tends to drive the response downward; i.e., 

formally, let everywhere 
af' 
-' <0. ow (3.20) 

Now we should like to characterize the behavior of the solutions to the boundary value problem (3.18) 

for different choices of the excitation function w. Let us specifically have in mind two excitations 

w¢ and We such that 

w¢(t) > wo(t) for all tEl; (3.21 ) 

we shall for convenience refer to the respOIUies given these excitations as x¢ and Xe. Then: 

Lemma 3.1 xe(t) is a strong upper fence for the d~fferential equation dx/dt = f(t,x(t),w¢(t)). 

Proof. From Theorem 3.1, we know that we need to show that 

d:ce 
f(t,:DI!(t),WqJ(t)) < -. 

dt 
(3.22) 

But we also know that xe(t) solves the boundary value problem (3.18) for the excitation we(t), so 

that we have to prove 

f(t,xe(t),w(!J(t)) < f(t,x;e(t),we(t)). (3.23) 

This relationship is obvious from (3.20) and (3.21). Therefore xe(t) is a strong upper fence for 

dx/dt = f(t,x(t),w¢(t)). Q.E.D. 

We can now state the desired relationship between .T¢ and Xe. 
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Theorem 3.2 Ifw</>(t) > we(t) for all tEl, then x</>(t) :::; xe(t) for all tEl. 

Proof. Recall that x</>(O) = xe(O) = Xo. Thus, in Theorem 3.1, u(O) = $(0), and therefore x</>(t) :::; 

Xe (t) for all tEl. Q.E.D. 

3.4.1 Input behavior of pulse repeater 

Figure 3.11 illustrates the input circuitry of a pulse repeater. We shall discuss the time behavior of 

the node x as an input pulse arrives. The input pulse may have any shape. 

1+. , 
X 

i~ ! 7
CX 

IX 

Figure 3.11: Input circuitry of a pulse repeater. 

If we assume that the circuit starts out with a known voltage on the node x at time ta, Vx(ta), 

we may write 

(3.24) 

or in integral form, replacing the boundary condition with the term Vx (ta), 

(3.25) 

Since the input pulse ends at some time-call it t/)--we are mainly concerned with the value 

of the right-hand-side expression at time til. The relationship between ix and Vx follows from the 

transistor equations and the shape of Vi", but what do we know about i+(t)? 
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3.4.1.1 Inertial approximation 

Let us first assume that we can model the behavior of the circuit as "inertial"; i.e., we will consider 

only the behavior of the pulse repeater in situations when the input pulse has not yet acted so long 

that i+ has been affected via the feedback path (y in Figure 3.1) by the chang'e in x. Understanding 

exactly where this is true would involve understanding exactly when Equation 3.20 with the proper 

variable renamings holds, i.e., when it is true that 

(3.26) 

We intuitively justify the approximation by noting that (3.26) holds as long as y (the input to the 

pullup p-transistor, see Figure 3.1) is approximately Vrlrl. That this is true for a while can be 

seen from the transistor equations. We can for instance use the familiar Sah model to model the 

transistors [73, 2]. Under this model, since the p-transistor is in the forward active region,17 and 

the n-transistor is in saturation during most of the beginning of the input pulse, we may write 

(3.27) 

and 

(3.28) 

Now we verify (3.26) for this model: 

(3.29) 

The partial derivative (3.29) is certainly negative as long' as Vin is positive, as it must be under our 

assumption that the transistor is in saturation. This may not be accurate for all input pulses, so we 

must re-check the conditions in the linear region; this work is not shown. 

We may identify J, (ix(t) +i+(t)) with w in (3.18). Hence, as long as (3.26) holds, we can apply 

the theorem and conclude that if we have three pulses p, q, rand p < q < r and both p and rare 

legal input pulses for a pulse repeater, then so is q. 

3.4.1.2 Non-inertial behavior 

But is it really true that we can ignore the feedback path that could affect i+? Let us slightly refine 

the model for the pulse repeater. Basing our argument on Figure 3.1, we can see that the output 

inverter is used for two purposes: first, it generates the output; and secondly, it provides a feedback 

path, which eventually resets the output, thus generating a pulse. If we break up the two functions, 

17 Also called linear region, triode region. 
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we have the circuit of Figure 3.12 instead. Here we have modeled the feedback path, which creates 

the pulse, as an inverting inertial delay called D. If the amount of delay introduced is .6., we should 

normally write y(t) = Vdd - x(t - .6.). Writing y thus would however neglect the gain of the inverter 

or inverters on the delay path (two in the case of the three-stage repeater, four in the case of the 

five-stage repeater). Hence we shall instead write 

y(t) = C(:z:(t - .6.)), (3.30) 

where C represents the "inverting clamping function" that is Vdd if the input is less than Vdd/2 

and is 0 if the input is more; we thus assume that the gain along the delay path is enough that we 

can consider y a purely digital signal. (In other words, the gain is infinite.) We further assume that 

the output inverter's logic threshold is at least as low as the inertial delay's (i.e., the output inverter 

will not trigger before the inertial delay). 

y inverting inertial delay 0 

~x------------------~~ 

i~ 

Figure 3.12: Pulse repeater modeled with inverting inertial delay. 

Can we get away without the special inertial-delay element? Unfortunately not: the length of the 

output pulse will be approximately .6. long; if that is also the length of the input pulse, then it means 

that the current i+ will begin changing approximately at the same time as the input pulse ends; we 

should hence be concerned that the monotonicity condition may be violated for input pulses longer 

than .6.; this corresponds approximately to the later half of the "pipe," at least near its top. 

Consider the two input-pulses in the scenarios A and B of Figure 3.13 (as usual, we have ignored 

the irrelevant time-translation of the various signals). The pulse repeater whose behavior we are 

plotting must be avoided because it misbehaves: the weaker input-pulse causes a stronger output­

pulse. Both A and B are slightly longer than .6.; hence there will be some interference on the node 

x during the later parts of the input pulses. The pulse in A is slightly "weaker" than in B during 

the first .6., as shown by the notch at the top; we have assumed in the x waveform that the weak 
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strong output driver---
output rises even though x is weak 

. . . . . . . . . 

A 

no/ eak· . 
~-.. in erference· ....... . ·no int rference--

out ut remain high 

in x out 

B 
st ong input-

stro g interfere ce ·Iater ... ~ . . . . . . 

interference cause 
'---''---_ 

to fall early 

Figure 3.13: Two different input-pulse scenarios ane! their corresponding intermediate-node values 
and output values. 

inA merely causes a slow transition. 

If we first consider, as in Figure 3.13, a circuit whose inertial delay has no gain, it is clear that the 

monotonicity property is in danger. This is because if y(t) merely mirrors x(t), then the interfering 

i+ will be less for scenario A than it will be for scenario B. Hence, in scenario A, the signal on x 

could actually have a larger (more negative) swing t.han in scenario B, and the ultimate output-pulse 

on node out could be larger than in scenario B. 

Now let. us see how our assumptions about. D solve the problem. There are two possibilities we 

need to consider: 

1. First, the pulse inA may be so weak t.hat it. does not trigger D until much later than the pulse 

in scenario B. But we said that if D is not t.riggered, then the output inverter is not either, 

and we know that the output pulse will then start later than in scenario B. 

II. Secondly, the pulse inA may be st.rong enough that it triggers D immediately. But since D 

has infinite gain, i+ will now be the same in t.he two scenarios. 

This argument shows that monotonically stronger input-pulses will still cause monotonically 

stronger output-pulses, even in the presence of interference when the input pulses are more than II 

long. (The reader may wish to verify that our argument with respect to possibility 1. holds as long 
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as the input pulses are no longer than approximately 2~.) 

3.4.2 Generalizations and restrictions 

Because of the simple requirements of the Fence Theorem, Theorem 3.1, we should find it easy to 

verify the fence conditions for (3.24) even for a complicated transistor model, because all that is 

required is that the circuit's response-the instantaneous current flowing to l;-is strictly antimono­

tonic in the input voltage. 

Of course, physics is never quite as simple as we have made it seem. First, we have used a 

very simplistic model; the behavior of the cascaded inverters is only imperfectly captured by an 

infinite-gain inertial delay. Secondly, the data in the pipe figures was captured with a rudimentary 

technique that does not directly correspond to the theory we have developed. Both of these are 

reasons for mistrusting some aspects of the pipe figures; especially the data around the edges of the 

pipes are suspect. Lastly, we may expect that the pulse-logic designer loses sleep over not being able 

to verify that his circuit satisfies the fence condition (3.20) at all times. If oj/ow can sometimes 

be positive (e.g., owing to second-order effects in the transistors; the MOS Miller effect comes to 

mind), but this deviation from the fence condition is small, then how does the designer prove that 

the required monotonicity-property for the pulses still holds? We could perhaps save the day with 

more detailed analysis. In practice, we could also use differently shaped test signals to eliminate or 

minimize the unwanted behavior of oj / ow .lS 

18Note that the partial derivative is with respect to changes in w from one waveform to another, not with respect to 
changes in w over time in a single waveform; thiR means that although we cannot avoid the Miller effect's suggesting 
that dx I dt can sometimes be positive in responsp to a pORitive dw I dt, we may conjecture that we shall still be able 
to shape the input pulses so as to keep af law < o. 
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Chapter 4 

Computing With Pulses 

My pulse, as yours, doth temperately keep time 

- William Shakespeare, Hamlet, Prince of Denmark (1603) 

As undergraduates, we learned that while important, the logic discipline alone does not suffice for 

building digital systems that shall be able to compute arbitrary functions repeatedly. Two further 

attributes are required before a circuit-design method can be used for implementing a wide range of 

digital systems: timing discipline-in essence, design properties allowing the reuse of circuitry (i.e., 

as repetitive systems); and logic-our circuits' ability of computing arbitrary boolean functions. 

In traditional synchronous design, simplicity requires treating timing discipline and logic sepa­

rately; this approach leads to design styles that alternate "latching elements" with "combinational 

logic." This is taken to an extreme in automated design systems: the latching elements are spe­

cial library cells and no feedback paths whatsoever are allowed in the logic-a formally complete 

separation of logic and timing. 

Over the years, however, designers of high-performance synchronous systems have begun inves­

tigating techniques that more and more mix logic and timing. We see a familiar example of this 

in "precharge logic" or "domino logic." Precharge logic is more difficult to design because of the 

mixture of timing and logic; the precharge-logic designer must renounce attempting to implement 

logical specifications that do not fit in the precharge timing-discipline. The mixing trend has not 

abated over the years; currently, "self-resetting" (or "post-charged") logic [71] is an active area of 

research in synchronous systems-this type of logic is in many ways the synchronous parallel to the 

asynchronous pulse-logic that is the subject of this thesis. Self-resetting synchronous circuits are 

indeed asynchronous to the extent that sorne of their timing is data driven. Unfortunately, using 

the clock for synchronizing these circuits globally, albeit less frequently, still spoils the broth. De­

signers of self-resetting synchronous circuits hence face the worst of both worlds: the system-design 

difficulties of synchronous systems and the circuit-design difficulties of asynchronous circuits. 

Asynchronous-circuit design-styles inherently require that the logic computations carry timing 
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information. This can mean either that the computations explicitly carry timing information (as in 

QDI or speed-independent design) or that implicit timing-assumptions are made (as in bundled-data 

design); from the historical trends in synchronous design, we may infer that we need not apologize 

for the mixing of timing and logic-everyone that builds fast circuits mixes. Neither should we be 

surprised to find out that the subtleties of asynchronous pulse-logic are due mainly to dependencies 

between logic and timing. 

4.1 A simple logic example 

The next pulsed circuit we shall examine is what we call a "pulse merge." We can think of this as 

the implementation of the CHP program 

* [ LO, L1; R J , 

where LO, L1, and R are ports (i.e., the mention of LO etc. in the program signifies a communi­

cation on that channel). The synchronization of LO and L1 is here explicit in the CHP program, 

but the kinds of circuit structures required for this explicit synchronization are also used for im­

plementing data computations, where implicit synchronizations capture the fact that output values 

of a logical function cannot be computed until inputs are available. For instance, the program 

* [A? a, B? b; C!( a + b)J explicitly synchronizes at the explicit semicolon and at the "loop semicolon" 

between loop iterations, and it also implicitly synchronizes the data because producing a value on 

C is impossible before inputs have arrived on A and B. The explicit synchronizations are mainly 

for the convenience of human understanding-they could, and should, eventually be removed; the 

data dependencies cannot be-the real task of the system designer lies in minimizing the need for 

data synchronization. 

For the time being, let us keep pretending that the circuits we design will only have to be used 

once. It should right away be obvious that a QDI-inspired structure for the merge such as the one 

seen in Figure 4.1 (where 10, 11, etc. signify the circuit implementations of the channels-i.e., the 

corresponding electrical nodes) and descrih("d by tlw PRS 

... 1\101\11 --t '-.J.. 
,-
-" - --t ,t, 

will not do. 1 The QDI merge behaves like a C-dcment; in other words, it waits until both inputs 

have become asserted and then asserts its output. This will not work for pulses because the pulses 

are ephemeral: the high voltage-level signifying a positive pulse is only present for a short time. 

1 The ellipsis indicates that some details about the internal synchronization of the circuits have been left out. In QDI 
circuits, we should have various "state variables" in this place for sequencing the actions of the circuit properly [43J. 
Synchronous designers will see the analogy with the "foot" transistor of clocked domino-stages. 
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Unless we are willing~and we are not~to insist that outside agents shall synchronize the arrivals 

of to and ll, attempting to work with coincident pulses will get us nowhere. 

10-1 

I 

V 

Figure 4.1: Input transistors in QDI merge. 

If we are to design circuits that g"enerate outputs computed from pulse inputs that can arrive at 

different times, we shall have to capture the pulses somehow and "remember" them. The circuit in 

Figure 4.2 is a conceptual solution to the problem. Incoming pulses on 10 and II are captured by the 

diodes; the maximum voltage during the pulse is stored on the gate capacitance of each transistor. 

r 

10 ---N---1 

Figure 4.2: APL circuit, version with diodes. 

The diode-transistor combination captures pulses by turning them into voltage levels. This is 

enough for using the circuit just once, but we seem to have pushed part of the problem ahead of us; 

if we capture a pulse by converting it into a voltag(~ level with a one-way device, how do we reset the 

circuit so that we can use it again? A straightforward way of doing this is shown in Figure 4.3; here 
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we have added reset transistors that are exercised by a separate reset pulse-the gates of the reset 

transistors are marked R in the figure; presumably, the generation of the reset pulse is contingent 

on the circuit's having produced its outputs, thus ensuring that the inputs are no longer required. 

(Of course, we shall have to explore this presumption later.) In simple circuits, the reset signal can 

often be the same for all inputs, as shown. In the case of data, the reset signal can also fan out to 

all the data rails, i.e., to inputs that have not necessarily been asserted, since vacuously2 resetting a 

data rail that was not previously set by an incoming pulse is harmless. When we reuse the circuit, 

we shall have to arrange things so that the pulse Oil R avoids interfering with the input pulses on lO 

and ll, or chaos will ensue. 

~R 
IDe 

11c 

~R 

Figure 4.3: APL circuit, version with diodes and reset transistors. 

Now we must get our signal senses in order. For simplicity, we have so far preferred discussing 

positive (i.e., from a stable low value: np, then dmvn back to low) pulses. This turns out to be 

the wrong choice. We shall not discuss all the reasons why this is so; instead, we justify our choice 

of signaling senses by observing that in our example circuit, r _ will certainly be in the negative 

sense; i.e., it goes to false rather than to true when it produces an output. The obvious choice is 

to make the logic-gate signals, ZOe and II c in Figure 4.3, positive logic; and r _ negative logic, as 

indicated by the figure. Furthermore, we can sec" that the minimum number of stages of logic that 

we can use is two-one for implementing ... /\ 10 c /\ 11 c --+ r _ -L- and one for the diode; this means 

that we shall have to design the circuit so that T_ is pulsed. While we might entertain the idea 

of using an actual diode (a substrate diode or a trallsistor with the drain and gate tied), normally 

using a transistor will be better; the transistor has gain, and foundries optimize CMOS processes 

for producing good transistors, not diodes. Figure 4.4 shows the modified circuit; the kinship with 

2 An assignment x := a is called vacuous if:c already has the value a before the assignment; else it is effective. 
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synchronous domino-logic and QDI-asynchronous precharge-logic (see Lines [43]) is obvious. 

~R 
IDe 

11c 

~R 

Figure 4.4: APL circuit; diodes implemented with transistors. 

In the form of a PRS, then, we may write the a.'iynchronous-pulse-logic implementation of 

* [LO, Ll; RJ as 

--t lOet 

--t lIef 

... 1\ lOe 1\ lIe --t 7'_+ 

--t 7'-t 

R --t [Oe+ 

R --t lId· 

Here, the p-transistors denoted by .[0_ --t lOet and .lL --t lIet are impl(~mentations of inverting 

diodes. The inversion at the "diode" means that we Illay (or must) merge the diode with the inverter 

of Figure 4.3; removing the inverter completely is usually preferable to adding another. There 

remains filling in the implementation of the ellipses, but the general form of this circuit is what we 

shall see throughout the rest of this thesis: a negative pulse appears; a single p-transistor captures 

the pulse; the captured pulse, now a high voltage-level, gates a transistor in a logic network, which 

computes the desired function and produces an output pulse, negative like the original pulse; the 

output pulse having been produced, a suitably generated reset pulse removes the original, captured 

pulse. 
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Pulse-handshake duty-cycle 

Let us now consider two repetitive processes, named P and Q, that synchronize once per iteration 

by means of a channel. We refer to the nodes used for implementing the channel as interface nodes 

when necessary for distinguishing them from other nodes in the system (e.g., nodes that are private 

to the implementations of P and Q). 

The standard QDI handshake:l is 

P : * [ [re]; rdt; [-or-e]; rrJt] II Q : * [ret; [rd]; reJ.; [-ord] ] . 

This handshake in theory has two synchronization points (e.g., the up- and down-going phases on 

rd), but the difficulties attached to designing circuits that compute on a downgoing transition are 

enough to convince us that using the handshake for more than a single synchronization is usually a 

bad idea. 

We first consider a simple adaptation of the QDI handshake to the pulsed world by writing the 

pulse generation on a node x as :r{ (read "x pulse down") and x~ (read "x pulse up"). If a process 

executes x~, x will from then on evaluate to true, until some process executes x{ This corresponds 

directly to the "diode-capacitor-transistor" model we used in the previous section. 

Now we can write a pulse handshake corresponding to the QDI handshake thus: 

P 

(Note that already this handshake is not delay-insensitive; unless we add timing constraints, there 

may be interference.) But, secondly, we should realize that if we allow P's directly detecting that Q 

has executed rd{, then the pulse re~ is unnecessary, since simply by knowing that rd? has completed, 

P may know it can safely send another nir P can glean the necessary knowledge by monitoring rd 

(at the perhaps significant cost of using p-transistors in series). 

By thus eliminating the communicating on re, we go further than the QDI designer; he had the 

freedom to release and leave floating his nodes early but could choose not to use that freedom-we 

shall require the nodes' early release. We call the resulting protocol the single-track handshake.4 ,5 

The removal of the acknowledgment wire and pulse does somewhat reduce the flexibility of the 

allowable family of pulsed circuits, becausf~ one ("xtra means for flow control has been removed: in 

the example, delaying P further is not possible once rd{ has been executed, because no further 

3Here we have written the handshake with an inverted acknowledge, called the enable. This choice of senses 
improves circuit implementations; while this is admittedly a weak reason for choosing the sense at the HSE level, 
there is really no reason at all except convention itself for choosing the conventional sense for the acknowledge. Perhaps 
also the term "enable" is more suggestive of a pipeline with "flow control" than of an orderly handshake between two 
otherwise independent processes. 

4The name single-track handshake was coined hy van Berkel and Bink [8]. 
5Let the reader beware: the terms "single-track" and "single-rail" mean quite different things. "Single-track" refers 

to a handshake whose transmit and receive phases occur on the same wire or wires; whereas "single-rail" refers to the 
practice of encoding data one bit to a wire, cOllventionally used in synchronous and "bundled-data" systems. This 
thesis speaks only of "single-track" circuits; the author feels that the problems involved in using "single-rail" data 
encoding are doomfully severe, whence we shall not explore it. 
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notice will be given that it is all right for P to send another datum; rd? is now the only signal to 

notify P, whereas we previously both removed the old datum and acknowledged it, either of which 

could have been used by P for determining that Q is ready for more input. But the flexibility that 

we thus remove is actually an unfamiliar one: for instance, it does not even exist in QDI systems, 

since these usually also have only one mechanism for flow control (the acknowledge). 

Hence we shall in what follows restrict our attention to circuits that use the same wires for 

sending data as they do for receiving acknowledges and the same wires for receiving data as they do 

for sending acknowledges. The single-track handshake may be written in terms of HSE: 

P *[ [....,rd]; rdt] II Q * [ [n1]; nLj. ] . 

Note, however, that even though the syntax for the pulsed program looks similar to that used 

in the HSE describing ordinary QDI circuits, the semantics may be quite different. In QDI-HSE, it 

does not matter whether the driver for rd has three states (driving up, not driving, driving down) or 

two (driving down, driving up) in the implementation of the program * [[re] ; rdt; [ore]; rd.!-J. The 

driver could, e.g., be implemented with an inverter, in which case rd is always driven (a combinational 

node). In general, what this means is that in QDI-HSE, a process that executes a sequence of 

commands S; rdt; T; rd..!- , where Sand T are arbitrary program parts, may choose to stop driving 

up rd and leave it floating at any time after nit has completed, i.e., before T, during T, or after T, 

as long as the rd..!- action has not yet begun. G This is no longer allowed. 

We shall take the following complementary specifications as given: 

Definition 4.1 (Maximum single-track hold time (maximum impulse» If a process P be­

gins driving an interface node to a new val-ue v at ti'fne t, then P must have stopped driving the node 

at time t + o"v, where o"v is a (system-'l1}'ide) global ronstant; P may not again drive the node to v 

until it has detected that the node has left v (see Definition 4.2). 

Definition 4.2 (Minimum single-track setup time (minimum inertia) If a process P de­

tects that an interface node has switched to (J, nrw vll,lne 'U at time t, then P must not drive that node 

away from v until the time t + ~v, where ~" 'is a (system-wide) global constant. 

We should like to design our circuits so that tlwy satisfy: 

Definition 4.3 (single-track-handshake constraint) A set of processes S satisfies the single­

track-handshake constraint if ~v 2:: 0" v, fm' all 'U and all processes in S. 

6This is a big freedom. The conservative would say that this freedom should be approached with respect, because 
he thinks that it is difficult to design the state-holding circuits that must be used if any appreciable amount of time is 
allowed between the abandonment of "fit and the start of ni.).. (The electrical engineer refers to the state of the circuit 
during this period of time as "high-impedance" or "high-Z"; we shall call it floating.) On the other hand, the designer 
of traditional QDI circuits is apt to use this freedom to great effect for simplifying many aspects of his design; the 
freedom might perhaps allow his inserting inverters in cOllvenient places without violating the rules of the QDI game. 
What this means is explained in detail in the QDJ literature, e.g., by Martin, who explains the need for having such 
freedoms under the heading "bubble reshuffling" [54J. Martin also uses a technique called "symmetrization," which 
involves replacing xt; ... ; x.). with the "stuttering" .7:t; ... ; :l:t; ... ; :1:.). when this simplifies the circuit realization. 
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This property will guarantee that there shall never be interference between the two actions xt and 

x-J,.. We may in practice choose to be lax about this, allowing some interference (see Section 3.2.2.2). 

The rationale for allowing a different (f and ~ for each possible value of v (usually only true and 

false are allowable values for v) is that this allows implementing x-J,. and xt differently. But because 

the constants are global, we must still implement x-J,. similarly throughout a system, and likewise for 

xt·7 

4.3 Single-track-handshake interfaces 

We must remember that the adoption of the siIl/!;le-track handshake, while it appears to follow 

naturally from the pulsed version of the four-phase handshake, does not in itself involve exchanging 

pulses between communicating processes. One process sets :r: and another, having seen the activity, 

resets x as an acknowledgment. At this level, no pulses are visible, and the processes may defer the 

actions on x indefinitely, if they should prefer doing so. In this design style, we oblige no process 

to respond immediately to an input any more than we do a QDI process. What a single-track­

handshake process may never do, on the other hand, is to drive one of its interface nodes for a long 

period of time (to either rail); it may also not drive one of its inputs too soon after it has changed. 

Where did the pulses go? The single-track processes use pulses internally for guaranteeing that 

the single-track-handshake constraint is satisfied. If we compare the single-track processes with the 

straightforward translation of QDI handshakes into pulsed handshakes, the main change is that we 

have moved the "diode" transistors at the inputs of the "diode-capacitor-transistor" circuits to the 

transmitting process. 

We should note that the requirement that single-track processes use pulses internally is fundamen­

tal. There is simply not enough information available to a process for it to implement * [[ -,rdJ ; rdtJ 

quasi delay-insensitively. 8 

7The careful reader will notice that we really only need to satisfy the constraints on each channel instance separately; 
there is in theory no need for making the constraints !!,lobal. \TIle shall not discuss such refinements in this thesis. On 
the one hand, our making the constraints local would break the modularity of the desi[';n style, and this is reason 
enough for saying no. 

On the other hand, we could profitably take the view that: first, we should design systems as if the constraints 
were to be globally satisfied-thus ensuring that the digital design could be sized to operate properly; secondly, the 
final sizing should be done with only local constraints, local values of Ev and <Tv-thus making best use of the silicon: 
this compromise should allow the design of formally modular systems without paying the practical price of complete 
modularity. The required automatic design-tools have yet to be written. 

8Seitz [75] rejected pulsed asynchronous circuits for this reason; but on closer inspection, the reason is weak: he 
replaces the timing assumption required for proper pulsed operation with others that appear to be just as difficult 
to satisfy. Admittedly, this comparison is a bit unfair: if we were transported back in time to 1980, the reason we 
should reject the pulsed circuits developed in this thesis woule! be the hi[';h transistor-count; the dataflow-influenced 
QDI style used in the MiniMIPS would likely have to be rejected for the same reason. 
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4.4 Timing constraints and timing "assumptions" 

One of the great strengths of QDI circuits is their reliability when faced with uncertainties or 

variabilities in the timing characteristics of their constituent circuit elements. Unfortunately, the 

requirement that the circuits must have internal equipotential regions (isochronic forks) means that 

even QDI circuits are not immune to reliability problems that result from timing mismatches. We 

should also remember that, while we should not normally consider a single operator to have internal 

isochronic forks, this is merely a convenient fiction resulting from a simplistic model for QDI circuits. 

We consider implementing the inverting C-element: 

aAb 

c 

a---1 

Figure 4.5: Pseudo-static C-element. 

The simplest implementation of the C-element is the pseudo-static9 version shown in Figure 4.5. The 

wire that connects the gate of an n-transistor with the corresponding p-transistor in the C-element 

can behave like an isochronic forle For instance, we might have that the input a changes very slowly 

from a valid logic-zero to a valid logic-one. During the time when a is between the two legal logic 

levels, both the n-transistor and the p-transistor connected to that a will be turned on. As long as 

this situation persists, the C-element behaves like a slow inverter with respect to b; this behavior is 

not at all what we should like. If the transition on (J, is extremely slow with respect to the circuitry 

that acknowledges b, the circuit may misfire, which would likely result in a system failure. 

9 An operator U -t xt, D -t x+ is called static or comhinational if U = ~D; if not, it is dynamic, but if a dynamic 
operator is realized with a staticizer (keeper), we call it pseudo-static. 
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The possibility that the circuit should misfire is especially menacing for the pseudo-static imple­

mentation that we have shown (and even more so for fully dynamic versions). The reason is that the 

switching thresholds of a pseudo-static operator are moved unsafely towards the power rails because 

there is no "fight" between the transistor that is just turning on and the one that in combinational 

logic would be about to turn off; i.e., the noise margins are reduced. We can remedy the situation 

either by making the staticizer larger or by changing the circuit so that it is fully or partially static, 

thus re-introducing the fight [7]. In an extreme case, we can even make the C-element hysteretic 

(like a Schmitt trigger; see Glasser & Dohhprpuhl [29]). The reason we shall not do these things is 

that we should lose much of the performance advantage of the dynamic implementation. The energy 

dissipation would also increase, compounding the undesirability of the design. 

4.5 Minimum cycle-transition-counts 

We can say that a QDI circuit is correct only if each signal within it satisfies certain timing con­

straints. The rise time of the signal must be small compared with the delay of the cycle of transitions 

that invalidates that signal. As we have se(~n above, these constraints must be satisfied also by sig­

nals that are not on isochronic forks in the normal sense, i.e., those that are checked in both the 

up- and down-going directions. Since the delay of a cycle of transitions can be thought of as a 

linear combination of rise (and fall) times, the constraint is two-sided as stated: we cannot allow a 

transition to be slow compared with its environment, and we cannot allow a sequence of transitions 

to be fast compared with their environment. Because we are trying to keep a single transition faster 

than the sum of delays of a sequence of transitions, the difficulty in maintaining reasonable rise 

times becomes lesser if we design circuits so that every cycle has a minimum number of transitions 

before invalidating the input, e.g., five. 

On the other hand, the number of transitions on a cycle acts as a minimum constraint on the 

cycle time of a system; in other words, the fewer the transitions on the cycles, the faster the circuits 

run. This suggests that we should decrease the number of transitions on the cycles to the minimum 

possible. 

Summing up, we see that part of the reliability of a QDI circuit is determined by the minimum 

number of transitions on any cycle, and at the same time, the maximum speed of the circuit is 

determined by the maximum number of transitions on any cycle that is exercised frequently. A 

reasonable design approach in the face of this dichotomy is to aim at a roughly constant number of 

transitions in each cycle of the system. If the target number of transitions is small, then the circuits 

designed will be fast and unsafe (i.e., difficult to verify the correctness of); conversely, if the number 

is large, the circuits will be slow and safe. 
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4.6 Solutions to transition-count problem 

Obviously, we must be careful when dealing with pseudo-static non-combinational circuits. In simple 

cases, we could follow van Berkel's advice [7] and use techniques that add hysteresis to the circuits; 

but these techniques are often inconvenient, and they always complicate the circuits, as well as raise 

their power consumption and increase their latency. In any case, we did not use these techniques 

in the circuits used in the MiniMIPS processor; instead, we used pseudo-static circuits and hoped 

for the best. In honesty, it should be mentioned that our hope was supported by extensive aspice 

simulations and mechanical circuit-verifications that verified that the worst-case ratio of the rise 

time Ta to the delay Tc-tb was small. 

The fact that the MiniMIPS processor and other chips using the same circuit techniques were 

functional is evidence that timing assumptions involving isochronic forks in QDI circuits are man­

ageable, even when the circuits involved are complex. In APL circuits, we shall take a different 

approach: the timing assumptions used in APL circuits depend on internal operator delays; thus, 

they are formally more restrictive. On the other hand, as we shall see, the timing assumptions ap­

pear under much more controlled circumstances than in QDI circuits; under certain circumstances 

APL circuits may be more reliable than QDI circuits because of the APL circuits' simpler internal 

timing relationships. 

4.7 The APL design-style in short 

The APL design method aims at describing how to compile CHP programs into circuits; it is thus 

similar to the QDI design method. But whereas we strive for designing circuits with a minimum 

of timing assumptions when designing QDI circuits, we use internal pulses for implementing the 

single-track handshake when designing APL circuits. 

We could introduce timing assumptions in many different ways for the purpose of simplifying 

or increasing the performance of QDI circuits; several schemes have been mentioned already. Our 

APL scheme takes a simple approach: we use a single-track external handshake, and we minimize 

the number of timing assumptions at the interfaces between processes; internally, in contrast, we 

design the circuits so that they generate predictably timecl internal pulses. This is a separation of 

concerns: most ofthe variable parts of an APL circuit (i.e., those parts that vary depending on what 

CHP is being implemented) are arranged so that their delays do not matter much for the correct 

operation of the circuit; conversely, the pulse generator, whose internal delays do matter for the 

correct operation of the circuit, does on the other hand not vary much. 

We consider the implementation of some CHP as an APL circuit in O.6-ILm CMOS (the same 

technology that we used for the pulse repeater demonstrations). We should not expect to be able 
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to say much about the delay from the inputs' arriving to the outputs' being defined; in contrast, 

we should expect that the internal pulses always are approximately 0.7 ns long. Before we fabricate 

a chip, we want to verify that there is a good chance that it will work as designed. This is when 

we benefit from the invariability of the pulse length: since the pulse length varies so little (this is 

a different way of saying that the pulse repeater has a high length-gain), we commit only a minor 

infraction if we assume that the length is constant. 

The simplifying power of this assumption can hardly be overstated: once we have assumed that 

the pulse length is given, we need only verify that the circuitry generating the pulse and the circuitry 

latching the pulse work properly given that pulse length, and-this is the important part-we need 

not consider the effects of the inputs and outputs on the pulse length. This means that we can 

verify our timing properties locally. In effect, we have reduced a problem consisting of verifying 

the properties of the solution to a system of N coupled nonlinear equations into one involving N 

uncoupled nonlinear equations: we have gone from a task that seems insurmountable to one that is 

(in theory at least) easy. 
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Chapter 5 

A Single-Track 
Asynchronous-Pulse-Logic Family: 
I. Basic Circuits 

Remember that the slowest link in the APL system is you, the user. You are limited by the speed 

with which you can enter information via the keyboard. 

- L. Gilman and A . .1. Rose, APL, An Interactive Approach (1970) 

5 .1 Introduction 

In Chapters 3 and 4, we developed a theory that accounts for the proper operation of pulsed circuits, 

and we described some experiments bearing out the theory in practice. In this chapter, we apply 

the theory to the design of a family of circuits that can be used for implementing a wide variety 

of logic functions. The particular features that we choose to implement directly in our logic family 

are strongly influenced by the MiniMIPS work; tlw QDI circuits developed for the MiniMIPS will 

here have their single-track-handshake APL counterparts. For brevity, we shall abbreviate "single­

track-handshake asynchronous-pulse-logic" as STAPL. 

5.2 Preliminaries 

Chapter 4 has established a number of constraints that STAPL circuits must obey. These constraints 

are inequalities, however, and there remains a great deal of freedom in our choosing the design 

parameters (e.g., ~v and O"v in Definition 4.3). These parameters are somewhat arbitrary. Some 

of the things that influence them are outside the scope of the thesis; for instance, we should like 

a simple software implementation of the design tools (leading to uniform choices of ~v and 0",,); 

also, the author finds it easier to make a convincing argument about the quality of the STAPL 
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design style in terms of high-speed circuits rather than in terms of low-power circuits, because the 

speed advantage of STAPL is obvious compared with QDI, whereas the power advantage-if any-is 

harder to quantify. We shall compare the QDI and STAPL design-styles for speed and energy later; 

see Section 8.4.5. 

5.2.1 Thansition counting in pipelined asynchronous circuits 

We may get a rough estimate of timing by "counting transitions," i.e., the number of stages of logic 

that a signal must pass through. At first thought, this may seem an inaccurate way of estimating 

timing information; is it not the case that only the nai·ve would attach any weight to a timing 

estimate that reckons an inverter delay to be the same as the delay of a complicated precharge-logic 

gate, and that the sophisticated man must deal in more sophisticated delay models? 

Our experience in the MiniMIPS project has first of all shown that when dealing with pipelined 

asynchronous circuits, transition counts are a useful delay measure, at least when the circuits are 

designed for maximum reasonable speed. 'Ve encountered many instances of circuits for computing 

some useful eight-bit operations, designed by someone reasonable and intended by him to operate at 

around 280-300 MHz according to our 0.6-I1.m parameter set. We saw almost universally that when 

such a circuit was implemented so that it cycled in 14 transitions (i.e., could accept a new input 

datum every 14 transitions), we had to size the transistors far larger than reasonable, compared 

with the transistors in an 18-transition-per-cycle implementation capable of running at the same 

speed. Increasing the transition count in the circuit to 22, we found that achieving the desired 

throughput becomes impossible. Only very carefully designed circuits (e.g., in the MiniMIPS, the 

register file) operating at 20 transitions per cycle could compete with the 18-transition-per-cycle 

implementations. 

Secondly, to some extent also in explanation of the MiniMIPS results, asynchronous circuits by 

their nature mix computation and communication. While the logic delays of computation may vary 

greatly-even dynamically, depending on the data-the communication delays are often much more 

predictable. For example, an eight-bit QDI unit is difficult to implement in less than 18 transitions 

per cycle. Of these 18, only two are transitions of the logic, and one of these may even be masked 

by communication transitions (both transitions' bceing so masked would indicate a poor design). 

As a result, only a small part of the cycle time of a QDI unit will be affected by the delays of 

computation. One of Our design objectives for pulsed circuits is to increase the proportion of the 

cycle that is the logic delay. As we shall see, however, we do not attempt bringing the cycle time for 

a complex system below ten transitions per cycle. Also, owing partly to Our way of automating their 

compilation, the pulsed circuits will have more uniform completion-delays than the QDI circuits we 

are familiar with. We should keep in mind that the logic delay that is the largest and the most 

variable is the "falling domino" transition. Increasing the delay of this transition can only improve 
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things so far as the circuit's satisfying the single-track-handshake constraint goes; in other words, 

if the uniform-delay model suggests that a pulsed circuit is correct, then the real circuit delays will 

only improve the operating margins if the logic-computation delay is increased compared with the 

other delays. 

Thirdly but not least importantly, the equal transition-counts assumption can for several reasons 

be self-fulfilling. For instance, let us assume that we have decided to use a uniform implementation 

for pipeline stages, i.e., an implementation whose every stage runs at the same speed, counted in 

transitions per cycle. As we have seen, the compiction circuitry will be similar from stage to stage. 

Thus, if a process is part of a pulsed pipelinQ, and the completion delays are uniform throughout the 

pipeline, then the designer will feel an urge for making the logic delays equal also, since the cycle 

time of the pipeline as a wholQ will be determined by the slowest stage. 

In summary: the MiniMIPS experiQnce shows that our assuming the transition delays to be 

equal can be a useful model; the general nature of pipelined asynchronous circuits suggests that 

equal transition-counts are not, as we might fear, an unnatural design corner for the circuits to 

be shoehorned into; on the contrary, a good designer's tending to equalize delays throughout an 

asynchronous pipeline will lead to a circuit with roughly equal transition delays. Hence equal 

transition delays are likely a natural endpoint in the design space. 

If we consider circuits that are desigrwd more with reducing energy dissipation in mind, not for 

maximum speed as we assumed above, the situation can become more difficult; we might not want 

to match equal transition counts. But this is not an essential difference: in either case, we shall 

eventually have to verify that the transistor implementations of the pulsed circuits have delays that 

satisfy the single-track-handshakQ constraint to an acceptable degree. 

5.2.2 Transition-count choices in pulsed circuits 

The preceding section has made the case that transition counting can be an effective way of esti­

mating delays in asynchronous circuits, with the caveat that the prophecy of equal delays for equal 

transition counts partly needs to be self-fulfilling. A corollary of our using transition counts for 

estimating delays is that when we should like particular delays to be equalized or ordered (i.e., in 

amount: we might always want the delay from transition (), to transition c to be larger than that from 

transition b to transition d) in a circuit, a first-order approximation of the required delay-ordering 

is arrived at simply by requiring the corresponding ordering of the transition counts. 

The inverting property of restoring CMOS logic implies that the number of transitions per 

execution cycle must be even if we will ensure thu possibility of a circuit's returning to its initial 

state (e.g., as in an execution cycle of a CHP program); furthermore, any circuit that is symmetric 

in the sense that up- and down-going transitions take similar paths-e.g., through the same circuit 
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elements-must have a transition count per cycle of the form 4n + 2.1 While the simplest QDI 

circuits are symmetric in this sense, this is only one way to design things. And just as for the QDI 

circuits, it is not necessary for the pulsed circuits to have this kind of symmetry: on the contrary, 

one of the purposes of our developing pulsed circuits is that these circuits can be asymmetric; the 

asymmetry allows our avoiding a good deal of work due t.o the circuits' checking for the occurrence of 

transitions that we know must. anyway occur. The asymmetry is illustrated by Figures 5.1 and 5.2; 

the fact that the up- and down-going transitions follow the same path in the QDI implementation in 

Figure 5.1 is illustrated by the forward-path (for the QDI circuit, [ri]; ret , for the STAPL circuit, 

[ri]; ... ) and backward-path arrows (QDI, [,r"i]; r'ct , STAPL, ... ; rit) in the middle process and 

[,ra]; ret in the one on the left), which hoth go through the completion circuitry, whereas they do 

not in the STAPL implementation in Figure 5.2. 

~-----------------

logic , ., 
block 

c 

,------------------

"' i· 1 , 
"' \" .. 

------------------

\""/ 
'.c. 
~". " 
1'<" , " 

------------------

c 

Figure 5.1: Path from input's arriving to acknowledge in QDI circuit: dotted, forward path; dash­
dotted, backward path. 

If we want the single-track-handshake timing-const.raint to be satisfied in terms of transition 

counts, we have the following choices: each lTv must be equal to the delay of an odd number of 

transitions, at least three (because a self-invalidating CMOS-gate does not work), and each ~v must 

be given an odd number of transitions larger than the corresponding av (but see below). 

As we earlier alluded to, a happy-go-lucky design-style might allow ~v ~ a v ; in this case, we 

could allow the transition counts to be equal. SPICE simulations show that this may be reasonable. 

In practice, a choice of ~v ~ a v may lead to the single-track-handshake constraint's being violated. 

The result of this need not be disastrous, however. Because the violation persists for only a short 

ITo see why this is so, consider the handshake [r'e]; nit; [~re]; nIt. Since the total effect of executing the path 
from rdt to rd.j,. amounts to an inversion of rd (in addition to possibly many other activities), this path must consist 
of an odd number of stages of logic, e.g., 2n + 1. If now the circuit is symmetric iu the way described, then the path 
from rd.j,. to rdt is the same length, so that the total cycle time tc = t"dt-->rdt + trdt-->""dt = 4n + 2. 
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Figure 5.2: Path from input's arriving to its being removed in STAPL circuit: dotted, forward path; 
dash-dotted, backward path. 

period of time, and because the violation occurs during a "handoff" (the driving of the node is passed 

from the sender to the receiver; the sender becomes the receiver, and the receiver, the sender) that 

guarantees the inputs' being monotonic, the effect is merely some extra power consumption because 

a node is briefly being driven both to Vdd and to GND. If the timing mismatches are not too large, 

then this situation is no different from what occurs in normal combinational logic when the input 

switches through the forbidden region, during which time both the pull-up and pull-down transistors 

are (weakly & briefly) tied. We must also remember that this particular problem is present in many 

modern synchronous clocking schemes for the very same reason that we see it in pulsed asynchronous 

circuits. 2 Finally, it is also present in the pulse repeaters we studied in Chapter 3. 

To determine the cycle time of a STAPL handshake, let us refer back to 

P : * [ [....,rd]; rdt] II Q : * [ [ni]; 1'(1+] . 

The trace of executing this handshake is nit; ni..[.; nit; rd..[.; .... We shall compute the time taken 

from an rdt to the next rdt; this is the cycle time. 

After the rising edge of rdt, the driving process must not hold rd high for more than O"true 

time units. Likewise, the receiving process must not begin executing rd..[. until ~true time units have 

passed. Since we have ~true 2: O"true, we know that rd..[. can begin at the earliest after ~true time 

units have passed. Repeating the argument for tIl() down-going part of the handshake, we should 

find that the cycle time for a STAPL circuit is constrained so that 

tc 2: l;true + l;false. (5.1) 

We have previously experienced problems whell building asynchronous circuits with very fast 

feedback paths; in Section 4.4, for instance, we saw what could go wrong if the delays on a three­

transition feedback path were not carefully adjusted. This is a strong reason for avoiding three­

transition feedback paths and hence for requiring 0"" 's being at least five transitions' worth of delay. 

2High-performance clocking schemes using a "delayed reset" suffer from the same problem; the designers' response 
has been to make an effort to match the delays to minimize the crowbar currents [83]. 
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The author believes that a design with ~v ;:::: O"v with all these equal to five transitions is safer than 

one where ~v is five and O"v is three transitions. Whether this justifies the inevitable performance 

loss that results from our going from an eight-transition cycle time to a ten-transition cycle time 

is unclear; but we might also find it difficult to implement the amount of logic we should like in a 

single process in as little as eight transitions per cycle (see Section 6.3), and we should remember 

that a circuit with different numbers of transitions on its set and reset phases will necessarily have 

to be implemented asymmetrically, which makes designing it more difficult (see Section 3.2.4). 

For all these reasons, we shall mainly study STAPL circuits with ~v ;:::: (J" and all equal to five 

transitions' delay. These circuits will also have thf~ minimum reasonable input-to-output latency, 

which is two transitions' delay. 

5.2.3 Execution model 

In the next few chapters, we shall see the STAPL circuit family described in terms of production­

rule sets (and the corresponding transistor networks according to the usual transformation rules 

developed for CMOS QDI circuits). Because the PRS of a STAPL system is not QDI (or speed 

independent), we cannot use a model where every PR can take an arbitrary time before it fires. We 

shall instead assume that all PRs take a single time unit from becoming enabled to firing, except 

when we say otherwise. PRs that take more time to fire will be labeled thus: (n) a -7 bt will take 

n time units from becoming enabled to firingY 

5.2.4 Capabilities of the STAPL family 

Lines's work, which establishes a straightforward way of compiling QDr circuits with reasonable 

capabilities, has inspired the capabilities that we !mclow our STAPL circuit family with. His methods 

deviate from earlier practice: the more traditional asynchronous design procedure starts from a high­

level CHP program, decomposes it into many small CHP programs, picks reshuffiings (HSE), and 

thence compiles into production rules. Linus's work, on the other hand, suggests that a large class 

of QDr circuits can be built efficiently by translating rnonc or less directly from decomposed CHP 

processes to production rules, thus avoiding the frequent explicit use of the HSE level of description 

(naturally, the compilation procedure itself implicitly represents the HSE).4 

For pulsed circuits, the reshuffiings arc necf~ssarily simpler than the allowable four-phase QDI 

reshuffiings; consequently, the HSE is ev(m less important for the working deSigner (the use of HSE 

3What happens if a PR's delay is different in re,tlity from what we have assumed? See Section 5.2.5. 
4This is not to say that Lines's work was the first to be able to compile directly from CHP to PRS. In early 

work, Burns and Martin [13, 15] translated directly from CliP syntax to PRS; later on, the Philips group's work on 
Tangram has done the same [9]. Indeed, Lines does not prescnt a completely automatic way of doing the translation: 
the difference between Lines's work and the other direct ClIP-to-PRS work is his (implicit) use of a slack-elastic 
dataflow model and process templates at the lcvel of a QDI buffer rather than at the much lower level of the various 
syntactic constructs of CHP. 
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is crucial in this thesis, where we are examining the reshllfflings themselves; but once a reshuffling 

has been picked, there is much less leeway for the designer to affect the protocols that processes 

use to communicate). Also, the meaning of production rules is less clear for pulsed circuits; in this 

thesis, the author has chosen to use production rules as a convenient representation for transistor 

networks; the reader should not infer from the syntactic: similarity to the PRS used in QDI cir­

cuits that the properties that are true of production-rule sets in QDI circuits-viz., stability and 

noninterference [54]-also are true of pulsed circuits. 

The differences between QDI and APL circuits at the HSE and PRS levels are a good reason for 

our taking a higher-level view in describing the family of STAPL circuits. The higher-level approach 

will require our compiling directly from a level of description corresponding to small CHP programs 

into circuits. We shall see how to formalize the compilation in Chapter 7; for the time being, we 

refer to the capabilities informally. 

STAPL circuits should be capable of basic dataflow operations: 

• Computing an arbitrary logical function 

• Computing results conditionally 

• Receiving operands conditionally 

• Storing state 

• Making non-deterministic decisions 

• Communicating with four-phase QDI circuits 

In the rest of this chapter, we shall explore how to provide each one of these capabilities in 

STAPL circuits. Our final goal will be a circuit template that simultaneously admits of as many of 

these capabilities as possible, because such a template will allow the direct compilation of as wide a 

class of CHP programs as possible. 

Most of the work we have to do in implementing the STAPL family consists of reconciling the 

handshake specification of O"v ~ ~11 ~ 5 transitions with the CHP specification of each circuit. We 

build up the circuits gradually, showing at each stage how the mechanisms required for building any 

desired STAPL circuit may be combined. 

5.2.5 Design philosophy 

In this chapter, the various techniques that we need for implementing the building blocks that 

we shall ultimately want are presented one at a time. Therefore, the reader is here cautioned 

that, especially in the earlier sections of tlw chapter, many of the circuits will be presented in an 
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incomplete or at least not generalizable way so that they shall remain understandable. The sum of 

the techniques is what we should properly call the STAPL design-style. 

Since our circuits depend on satisfying certain timing assumptions to work, we shall have to 

proceed carefully. We shall use a few simple techniques for guaranteeing that the circuits will stand 

a good chance of working properly. First, we shall always use the same circuit for generating the a 

delays: a five-stage pulse generator. Secondly, we shall insist that the delay margins shall always be 

(in the limit of instantaneous transitions) half a cycle, or five transitions: this is the best that can 

be done uniformly. (This insistence will kad to our rejecting a "naIve" design in Section 6.4.3.1. We 

will still sometimes make an exception from this rule when we can thereby remove the foot transistor 

in simple circuits.) Lastly, the complicated logic will always be responsible for implementing the ~ 

delays; hence, if the logic gets slower (e.g., more heavily loaded), satisfying the timing assumptions 

becomes easier, not harder. 

The basic template that we shall implement will be of the following form: produce each output 

as soon as possible (when the necessary inputs are available and when there is space in the output 

channels), then wait for the other inputs that are to be received; when all inputs that are to be 

received on a given cycle have arrived anel all outputs that are to be produced on that cycle have 

been produced, reset all the inputs; and repeat. 

5.3 The basic template 

We start with a few simple STAPL circuits; thus we illustrate the basic properties of the circuit 

family. The simplest useful circuits in the family are the bit generator, the bit bucket, and the 

left-right buffer. 5 

5.3.1 Bit generator 

The STAPL bit generator implements the CHP program 

p == * [ R!O ] , 

or in terms of HSE, 

5The reader should be cautioned that some of the mechanisms that we develop may appear to be very ad hoc. 
In some cases, it may even seem that there are milch Himpler waYH of implementing the specifications. This is true: 
the bit bucket and left-right buffer could be implemented more simply without violating the single-rail-handshake 
constraint. The reason for the more complicated implementations we give here is that they generalize; i.e., they lead 
naturally to the implementations in Sections 6.3.3.2 and 6.;3.3.3. The author feels that this method of exposition, while 
slightly illogical, is more understandable and pedagogical thau the alternative of first presenting the full template and 
then presenting as examples the special cases that we now Htart with. 
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The bit generator will illustrate how to transmit data in the STAPL family. The basics are simple: 

we wish to send a zero value on R repeatedly. For each value we send: P must first wait until its 

communication partner-call it Q-signals that it is ready to receive, which Q does by lowering 

any asserted data wire; secondly, after the imposed setup-time ~false, P asserts the zero rail of the 

channel; thirdly, we must ensure that P no longer drives the rail after the hold time O"true has passed 

after the rail's being asserted. 

5.3.1.1 Output completion 

Using the precharged implementation suggested previously for the circuits, we find that the mini­

mum delay in a STAPL stage from an input's being asserted to an output's being asserted is two 

transitions. Furthermore, a STAPL stage is not allowed to produce outputs until five transitions 

after its partner has removed the previous output fi"OIn the channel. This means that the logic path 

bringing flow control from the output rails to the domino block must be three (5 - 2) transitions 

long. 

5.3.1.2 Forward path 

Since the bit generator does nothing besides generating outputs, we can now start deriving a STAPL 

implementation. The only thing that remains to sort out is what to do with the remaining rails 

of the channel: since we know that only P will scnd on R, we can tie the other rails to GND and 

ignore them in P. This results in the HSE 

straightforward compilation of the "forward path" [,rOJ; rOt results in the partial PRS 

(3),rO --+ ret 

re --+ rO_+ 

,rO_ --+ rOt, 

where the annotation "(3)" means that the produdion rule in question shall take three transitions 

to execute. The corresponding circuit is shown in Figure 5.3; the use of the NOR gate in the figure 

in place of the inverter of the PRS suggests how the R channel could be generalized to multiple rails. 

5.3.1.3 Pulse generation 

We shall finally see how rO_ is precharged. The bit generator is particularly simple, and all that is 

required for pre charging is a sequence of inverters. The final PRS, with the PRs listed in order of 

execution, is as follows: 
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rO 

Figure 5.3: Forward (compute) path of STAPL bit generator. 

(3).rO -t ret 

re -t rO_-l-

.rO_ -t rot 

(4).rO_ -t rH 

(3)rO -t re-l-

.rf -t rO_t 

(4)rO_ -t rft 

The final circuit is shown in Figure 5.4, where we see the expanded version of each PR. Although it 

is not shown in the diagram, all nodes that are dynamic must be staticized; nodes that are pulsed 

may be staticized with a resistor to Veld, whereas those that hold state must be staticized with a 

cross-coupled inverter-pair with weak feedback or an equivalent latching circuit. (The bit generator 

does not have any nodes that hold state.) 

5.3.1.4 Execution 

It will be instructive to make a timeline for P's execution, labeling each transition with the time 

when it occurs. Starting with the fall of rO at t = - 3 (the rationale for this choice is that we shall 
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Figure 5.4: Complete STAPL bit generator. 

consistently have the inputs to the domino block become active at t = 0), we get the following: 

action 

root 
ret 

rO_t 

rOt 

rit, ret 
rO_t 

rOt 

rit 

ret 

-3 

() 

1 

2 

5 

6 

7 +() 

10 

H)+il 

--

--

time 

(-3) + 3 

1+4 

2 + (5 + il) 
6+4 

(7 + 8) + 3 

-- 2+3 

An arbitrary delay, 6, has been added to the response time of process Qo This 6 accounts for the 

pulse-signaling constraint's being single-sided on the response time of Q: Q may respond to rOt 

after ~false has elapsed, but it need not; the arbitrary extra time that Q lingers in a particular 

execution is captured by 6. This allowed, arbitrary il is what makes the design style asynchronous 

and composable. 

5.3.1.5 Constraint satisfaction 

Let us verify that this circuit satisfies the single-track-handshake constraint. Calling the pulse 

generator P and its neighbor Q, we must check that P obeys O"true and ~false on 1'0 and Q obeys 

O"false and ~true. We assume all the O"S and ~H are five time units (transition times). Since we are 
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here describing the bit generator, we shall postpone the verification for Q to the section on the bit 

bucket; we shall assume that Q does its part and resets rO at the earliest five time units after P has 

set it to true and that Q holds it false for no more than five time units. 

Process P drives rO from the time rO_ goes down until it goes back up; this is 6 - 1 = 5 time 

units, as desired. Likewise, after rO goes down at -3, P does not attempt driving it until at 2, again 

five time units. These things are clear from the production rules. 

We should note that the pull-up transistor that causes rot must be sized large enough to drive 

the actual output most of the way to Vrlrl during the pulse. This means, for instance, that the 

only way of handling intrinsically long-delay outputs (e.g., outputs that themselves behave like RC 

loads rather than, as we have assumed, mere capacitive loads) is to slow down the circuits. We 

should hence not expect to use STAPL signaling off-chip or even on very long on-chip wires (see 

Section 8.2.3). 

5.3.1.6 Remarks 

A few things are noteworthy in the trace of P: r:f t and ret occur after the same number of transitions; 

falling transitions occur at odd time indices, rising transitions at even indices; there are two "extra" 

transitions in -lTO --t ret, and three in -,rlL --t r:f t, that we have not made use of (in the sense that 

they are realized with inverters, but we could conceivably introduce logic instead; we cannot remove 

them completely since then the circuit would no longer satisfy ~false). 

First, the fact that rf t and ret occur at the same time is evidence that an important general 

design principle has not been ignored: the inputs to a logic gate's arriving simultaneously ensures 

that the gate spends the least possible time in an idle state. We shall see later that we cannot 

always trust re as sufficient How control, and we shall sometimes have to use re 1\ rf in the pulldown 

network; re and rf's being synchronized will then be of even more value. 

Secondly, the strict alternation of falling and rising transitions suggests that a direct CMOS 

implementation is possible. We shall see that we can maintain this property while generalizing the 

design of the bit generator. 

Lastly, we shall also find the "extra" transitions useful in generalizing the circuits; it is for instance 

obvious that the three transitions allotted to the path -,r() --t r·et could be used for implementing 

the neutrality and validity checks of wide channels, e.g., 1-of-8 codes. 

5.3.2 Bit bucket 

The bit bucket is the counterpart to the bit generator; its CHP is 
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where the use of the underscore variable _ signifies that the process should discard the incoming 

values, which it has read on L. The corresponding HSE is 

* [ [zo V 11J; lOt, 11t J , 

where every lOt, 11t except one is vacuous. The bit bucket's specification is similar to the bit gener­

ator's; and this suggests that we might be able to reuse the bit generator design, with appropriate 

modifications. However, this approach would not be suitable for generalization to the more complex 

units that we shall study later, because of our asymmetric choice of delays in the STAPL family: 

two transitions for the path inputt-to-outputt (the forward latency), but five transitions for inputt­

to-inputt (= ~true). Therefore, we develop the bit bucket quite differently from how we developed 

the bit generator; this will serve the purpose" of providing an example of the input circuitry required 

in a generic STAPL unit. 

5.3.2.1 PRS implementation 

Although the bit bucket does not require the input values on L for any computation, it obviously 

cannot work without detecting the presence of inputs. We introduce a "dummy output" for this 

purpose; it is convenient to choose this output to he a single-rail channel-we call it X -, which 

cycles for every L received. The node implementing X, :L, is precharged in the same way that the 

domino output is precharged in the bit generator. The corresponding PRS is 

lO V 11 ~ x-t 
(4)....,x_ ~ .7:H 
....,xf ~ x_ t 
(4)x_ ~ xft. 

If we consider the case when 10 is the asserted input at t = 0, the execution trace is as follows: 

action time 

lOt 0 

x-t 1 

xH 5 - 1+4 -

x-t 6 

xft 10 - 6+4 -

What remains is for us to ensure that tht~ input is removed at time index 5. We do this by, first, 

adding output-validity circuitry (even though all we have is a dummy output); we call the node 

that checks the output validity xv. Since :L is here a single-rail signal, this amounts to an inverter. 



64 

Secondly, we add a pulse generator for generating the pulse that resets the inputs. To minimize the 

number of different circuits that shall need to be verified for timing and other properties, we arrange 

that this pulse generator is as similar as possible to the :L pulse generator; i.e., it will generate 

negative pulses; this being the case, the actual reset pulse will have to be generated by an inverter. 

We introduce the names p for the intprnal, ne[!;ative pulse; pf for the precharge of p; and R4 

for the positive reset pulse, where the "4" conveniently denotes that the pulse becomes active four 

transitions after the input arrives (recall our convention of choosing for t = 0 the time of the input's 

becoming defined). Hence the PRS: 

lOvll -+ x-i 

,x_ -+ xvt 

( 4),x_ -+ xf-i 

xv -+ pi 

'p -+ R4t 

(4),p -+ pf-i 

R4 -+ lOi, lli 

,pi -+ pt 
p -+ R4i 

(4)p -+ Pft 

,xl -+ x-t 
,x_ -+ xvi 

(4)x_ -+ xft 

The circuit diagram IS shown in Figure G.5. Note that we have shown :rv as being within the 

first-stage pulse-generator because we should consider it part of the output completion of the pulse 

generator, not as an output. In other words, a pulse generator with a wide output channel would 

still have only a single xv output. 
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first-stage pulse-generator 

, , 
\ 

f 

f 

second-stage pulse-generator 
----------- ---------

Figure 5.5: STAPL bit bucket. 

, 
\ 



5.3.2.2 Execution 

The execution trace becomes as follows: 

action 

lOt 
L+ 
p+ 
R4t 

10+, xf + 

x-t 
pH 
pt 
R4+ 

xft 
lOt 

x_+ 
Pft 

o 
1 

3 

4 

5 

6 

7 

8 

9 

10 

10+6 

11+6 

12 

66 

time 

4+1 -- 1+4 

3+4 

5 + (5 + 6) 

8+4 

We should now verify that the bit bucket satisfies the timing constraints we claimed for it when 

we verified the bit generator, in Section 5.3.1.5. There we claimed that the bit bucket does its part 

and resets 10 (the bit generator's 1'0) at the earliest five time units after the bit generator has set it 

to true and that the bit bucket holds it false for no morc than five time units. 

We see from the production rules and the execution trace that the bit bucket indeed takes five 

transitions to respond, satisfying ~true. Furthermore, the resetting of the input is handled by the 

signal R4; this signal is active (high) for five transitions too, which satisfies {Jfalse. 

We observe that the remarks of Section 5.3.1.6 hold for the bit bucket also. 

5.3.3 Left-right buffer 

We have seen enough detail in the description of the bit bucket and bit generator that we can 

combine the two to build a left-right buffer. The CHP specification for the buffer is 

BUF == * [ L?x; R!x ] . 

We shall give the implementation of BUF for the case when Land R are one-bit (1-of-2) channels. 

The HSE for B UF is then 
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* [[ lO -----+ rOt D 1I -----+ rl t ]; 10-1-, lI-l-, [--,r'O /\ --,rl] ] . 

5.3.3.1 PRS implementation 

Except for the fact that both the output rails are used (and thus must be checked for validity), the 

output looks like that of the bit generator, in other words, 

(3)--'1"0/\ --,rl -+ ret 

re /\ lO -+ r'O_-I-

re /\ 1I -+ rL-I-

--'1"0_ -+ rot 

--'1"1_ -+ rlt 

(4)--'1"0_ V --,rL -+ rH 

(3)1"0 V rl -+ ret 
--'1"1 -+ 1"0_ t, r'L t 

(4)1"0_/\ rL -+ r/t 

the inputs are handled as in the bit bucket: 

--'1"0_ V --,rL -+ rvt 

1"0_/\ rL -+ rv-l-

rv -+ P-I-

--,p -+ R4t 

(4)--,p -+ pH 

R4 -+ lO-I-, lI-l-

--,pI -+ pt 

P -+ R4-1-

(4)p -+ Pit 

The only thing that is different in B UF compared with the program that should result from 

merging the PRs for the bit bucket and the bit generator is the two rules re /\ lO -+ 1"0_-1- and 

re /\ 1I -+ rL-I-. These rules are responsible for the computation of the output, when a value arrives 

on L, as well as for flow control, when the process that receives R is slow to respond. The complete 

circuit is shown in Figure 5.6. An n-input pulse generator is made by replacing the first inverter in 

the I-input pulse generator with an n-input NAND-gate, as suggested by the PRS. 
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Figure 5.6: STAPL left-right buffer. 

xv 



69 

5.3.3.2 Execution 

The execution trace for this process, assuming that the first L and the first ret both arrive at t = 0 

and that the counterpart on L sends 0, 1, ... , is as follows: 

action 

lOt, ret 
rO_t 
r'Ot 

pt 
R4t 

lOt, 1'/ t, ret 

ro_t 
pH 
rot 
pt 
R4t 

rft 

lIt 

ret 
rLt 
pft 

o 
1 

2 

3 

4 

5 

6 

7 

7+f 

8 

9 

10 

10+15 

10+f 

ll+max(15,f) 

12 

time 

2+(5+f) 

5 + (5 + b) 

(7 + f) + 3 

max((10 + b) + 1, (10 + f) + 1) 

8+4 

Arbitrary delays 15 and f have been inserted where the neighbor processes are allowed to linger; these 

delays have the same meaning as the 15 of Section 5.3.1.4. Again, these allowable extra delays are 

what make this design style asynchronous, i.e., compos able and modular. 

5.3.3.3 Timing assumptions 

Figure 5.7 shows how the different parts of the circuit satisfy the timing constraints: as promised, the 

IJ pulse-lengths are controlled with pulse generators, and the ~ response-delays are delays through 

the logic. We call the actual delays of the circuit, as opposed to the timing constraints, Strue, SfaIse, 

Xtrue, and Xfalse. 

While the single-track-handshake constraint only requires the conditions ~true ;::: IJtrue and 

~false ;::: IJfaIse, our circuit implementations depend on lIlore than that. The handshake constraint 

gives us the following constraints on Strue, 8false, :Dtrue, and Xfalse: 
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Figure 5.7: Paths implementing the delays 8true, Sfalse, Xtrue, and Xfalse. 
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Strue < Utrue (5.2) 

8false < O"false (5.3) 

:r:true > ~true (5.4) 

;r;false > ~false (5.5) 

As we have remarked earlier, we always handle the 0" constraints with pulse generators; hence we 

should expect Strue ~ Sfalse; O"true and O"false are abo of course approximately equal to the s's. Since 

we have the difficult task of making sure that S is long enough for latching the output transistor yet 

not too long to violate (5.2) or (5.3), choosing to generate oS with a single, well-characterized circuit 

is the right thing to do. 

The only part of the circuit that can be slowed down arbitrarily is the domino pull-down that 

computes the logic; if the reset pulse is delayed, then the circuit may double-latch the inputs, and 

if the flow control through the NOR gate and inverters to r'e is slowed down, then the circuit may 

produce another output before it is allowed to do so. 

5.3.3.4 Remarks 

The left-right buffer consists mainly of a domino block and two pulse generators. One pulse generator 

is used for generating the outputs of the circuit; the other is used for clearing the inputs. 

Again, the remarks of Section 5.3.1.6 hold. We note that TL..(. happens only after both the 

arbitrary extra delays before 11 t and TO.). have be~m accounted for; this means that, as required, the 

circuit will not produce a new R until ~false time units after the old R has been consumed, nor will 

it attempt removing the new L until ~true time units aftE~r the new L has arrived. Furthermore, we 

should note with satisfaction that lO..(., rf..l., and r·e..!. are perfectly synchronized and will stay thus as 

long as £5 and E are both zero; connecting buffers in a long chain with a bit generator at one end 

and a bit bucket at the other end will keep them at Z(~ro. But it is a bad sign for efficiency that 

several transistors in series are required in some places, viz. in the gates that compute TV and Tf; 

we should like to avoid this kind of variance from tIl(" template because it introduces delays that are 

more difficult to keep uniform across a large syst.em with diverse circuits. 

5.4 Summary of properties of the simple circuits 

So far, we have seen three STAPL circuits: the bit generator, the bit bucket, and the STAPL 

dual-rail left-right buffer. The following properties hold. 
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1. Each circuit takes at minimum 10 transitions for a cycle (the time it takes to return to a state 

once it has been departed). 

2. If the environment of the circuit does not impose further timing constraints (in our discussion, 

by setting 6 > 0 or E > 0), then the circuit takes exactly 10 transitions per cycle. 

3. The forward latency of the left-right buffer is two transitions. 

4. If the environment imposes 6 > 0 or f > 0, then the circuit slows down accordingly; i.e., flow 

control is automatic. 

5. The circuits can be implemented in CMOS; i.e., all the PRs are antimonotonic. 

6. If the environment does not impose 6 > 0 or f > 0, then every input to every conjunctive gate 

arrives simultaneously. 

7. The static slack of the left-right buffer is one; its dynamic slack is, to first order, 1/5.6 

8. Foot transistors, except for the flow-control transistor, are unnecessary. 

9. The inputs of the left-right buffer lead only to the domino block; no extra completion is 

necessary. 

10. One or several NAND-gates with fanin equal to the width of the output channel are required 

in the circuit. 

Each one of these except the last is a desirable property. Unfortunately, not all of the desirable 

properties can be maintained in more complex situations: specifically, we shall need foot transistors 

and extra completion-circuitry in some cases. We shall be able to remove the NAND-gates' series 

transistors, however. 

6The static slack is the maximum number of tokens (data items) that a chain of bufters can hold when deadlocked; 
the dynamic slack is the number of tokens held at maximum throug;hput. See also Lines [43J and Williams [85J. 
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Chapter 6 

A Single-Track 
Asynchronous-Pulse-Logic Family: 
II. Advanced Circuits 

Beware of the man who won't be bothered with details. 

- William Feather 

In Chapter 5, we saw how to design simple circuits in a pulsed asynchronous style: bit buckets, 

bit generators, and a simple left-right buffer. This is not enough to do much of interest: even simple 

processes like an adder or a controlled merge have behaviors that are not captured by these trivial 

circuits. 

We shall develop the modifications to the basic circuits by considering how to add the necessary 

functions without breaking the mechanisms we have addecl before. 

6.1 Multiple input and output channels 

Let us consider the program 

DBUF == * [ L?x, M?y; R!x, S!y ] , 

which is a simple example of synchronized input and output channels. In this form, this is not a very 

useful program; as we mentioned, the compntation model that we are working in assumes that only 

the sequence of values sent on every channel-not the relative timing of the communications-has 

meaning, so DBUF could equally well be written * [L'?:r:; R!:z;] II * [M?y; S!y]. In a slack-elastic 

program, the syntactic semicolon, like tIl() one in DB UF, is not what demands synchronization; 

dependencies between different data computations are what demand it. But still we study DBUF 

so that we shall see synchronizations in their simplest form; we do not yet want to think about the 

reasons for and extents of data dependencies. 1 

lWe discuss these issues more fully in Sections G.2 aile! 7.7.2. 



74 

We would never introduce unnecessary synchronization on the compute path of a STAPL process; 

accordingly, we shall not invent an artificial scheme for synchronizing DBUF exactly as the CHP 

has been written. Instead, we shall implement the program 

DBUF2 == * [ (L?x; R!x) , (M?y; Sly) ] . 

The synchronization between L, Rand M, Sin DBUF2 lies in the implied semicolon at the end of 

the loop, which keeps the channels loosely synchronized (i.e., eL - eM ::; 1, etc. at all times). 

We shall not burden our circuits with synchronization on the forward path (except for the needed 

data synchronization); hence, at the HSE level, DB UF's synchronizes the channels on the reset phase. 

In other words, assuming single-rail data, 

DBUF == *[ ([Z 1\ 'rJ;rt),([rn 1\ .sJ;st) Z+, m+ ] . 
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6.1.1 Naive implementation 

Most of the PRS implementation of DBUF is a straightforward composition of the two left-right 

buffers we saw above; one may surmise that certain parts will have to be shared in order to accomplish 

the synchronization, and that other parts cannot easily be shared. Examining the structure of the 

left-right buffer (see Section 5.3.3.4), we see that we may attempt generalizing it~at first incorrectly, 

it will turn out~into a new circuit that can handle several channels by using one pulsed domino block 

for each output channel and one extra pulsed block for generating the clear signal for the inputs. 

(The general scheme we use for generalizing the buffer's circuit structure is shown in Figure 6.1.) 

The block generating the clear signal will accomplish the simultaneous reset of I and m specified by 

the HSE. We should thus get the following PRS: 

(3)'r -+ ret 1"1; A sv -+ p-J.. 

re A I -+ r--J.. 'P -+ R4t 
'r_ -+ rt (4),p -+ pf-J.. 

(4),r_ -+ rt-J.. R4 -+ 1.J,.,m.J,. 

(3)r -+ re.J,. 'pf -+ fit 
'rf -+ r_t p -+ R4.J,. 

(4)r_ -+ rft (4)p -+ Pit; 

,r _ -+ rvt 

r_ -+ rv.!. 

(3),s -+ set 

se A m -+ s_.J,. 

,s_ -+ st 

(4),s_ -+ st-J.. 

(3)s -+ se.J,. 

,sf -+ s-t 
(4)s_ -+ sft 

,s_ -+ svt 

s_ -+ sv-J.. 

note that the only PR that synchronizes the activities of the L - R block with those of the M - S 

block is rv A sv -+ p.!.. 

6.1.2 Double triggering of logic block in the naIve design 

From the experiments with the pulse repeaters of Section 3.2 we remember that an input staying 

active for too long could cause a pulse repeater's consE)cutively interpreting that input as several; 
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the same problem could occur in DB UF. If for instance an input arrives by way of It but some 

delay should intervene before the arrival of mt, then DBUF would not quickly reach the action l-!.; 

as a result, I could stay true for an arbitrarily long time. The trouble this would cause is apparent 

from an examination of the relevant PRs, those of the L - R block, viz. 

(3)""'r -t ret ""'r:f -t r'_ t 

re 1\ I -t r_-!. (4)r_ -t rft 

....,r _ -t rt -,r'_ -t "''/It 
(4)....,,,. _ -t ".n. r'_ -t r''/I+; 

(3)r -t re-!. 

there is here no mention of R4 nor of p; since it does not wait for these signals, this circuit would 

read I as being true repeatedly; this would continue until mt occurs, when p and R4 will at last 

pulse, removing I from the input and finally·-alas, too late!-putting an end to the nonsense. 

The way to eliminate the repeated triggering of the L - R block is obvious. The issue is simply 

that we did not properly implement the final semicolon in * [( [[1\ ....,r] ; rt), ( [m 1\ ....,s] ; st); l-!., m-!.] . 

We cannot allow the L - R block's cycling twice before the M - S block has had its say. This is not 

hard to do; we change the pulse generator so that it will have to be "armed" before it will cycle. We 

do this by making the pullup of rl conditional on the arming Signal, which we call Rx. But is then 

the PR r _ -t rit necessary"! Not if we guarantee that R:rt can cause rit only after r _ would have 

caused it in the na'ive design; and this is easy to do, because we know exactly when r _ will go back 

up, viz. at transition 6. 
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6.1.3 Solution 

The naive design works properly and efficiently when I and m are synchronized; as long as they are 

synchronized, Rx must re-arm the pulse generator at the same as in the naIve design. When I and 

m are not synchronized, Rx needs to re-arm both pulse generators exactly when the later of I and 

m should have re-armed it. From this discllssion, it is obvious that R.T can be a delayed version of 

R4 since R4 already waits for the later of I and m. 

Thus we arrive at a satisfying design that not only can be generalized to multiple outputs but 

also does away with the pesky series n-transistors that were required by the static-logic design when 

r _ carries data. The production rules for rf become 

(4)-,r _ -+ rf.!­

(?)Rx -+ rft. 

By comparing the transition time-indices of Rx, R4, and the inputs, we find that rft should be 

enabled at t = 10, whence we deduce that 

(2)R4 -+ R6t 

(2)-,R4 -+ R6..1-

(4)-,r_ -+ rf..l­

(4)R6 -+ rft 

will do the job. 

For the scheme to work completely, we must eliminate the possibility that the inputs cause the 

path re /\ I -+ r -..I- to turn on at the same time that rf is pulling 7"_ up. This is our first encounter 

with the problem because of the fortuitous (and fortunate) way that the timing of rf always aligned 

with that of re in the bit generator and in the left-right buffer. The solution lies in adding a foot 

transistor to the PR for r -..I-; the foot's being gated by 'If will prevent the unwanted interference 

(in the simple circuits of Chapter 5, the foot transistor is not required because the re node cuts off 

the pull down path; since no other outputs are being generated, the pulse generator always re-arms 

immediately-eight transitions-after the output is produced). Observe that the foot transistor 

is required in an input-output domino-block if and only if there is in the process more than one 

input-output block; i.e., it is required for all output channels if and only if there are in total two or 

more output channels. No extra foot transistor is n~qllired in the p block. 

We should of course make the corresponding changes for the S - M block; we can also introduce 

a signal R8, defined in analogy with R6, thus removing the combinational pullup for p; as far as we 

know at present, the only reason we should do this is to maintain the similarity between the L - R 

and M - S pulse generators on the one hand and the p - R:I: pulse generator on the other; but see 

Section 6.3 for a better reason. 
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Summing up, we have the PRS for DBUF: 

(3).1' -t ret -'1'_ -t r'vt 

rf 1\ re 1\ I -t r_.j.. 1'_ -t rv+ 

.1' _ -t rt (3).s -t set 

(4).1'_ -t rf.j.. sf 1\ se 1\ m -t L.j.. 

(3)1' -t re.j.. ·s_ -t st 

.rf -t r_t (4)'8- -t sf.j.. 

(4)R6 -t rft 

(3)s -t se.j.. (4).p -t pf.j.. 

.sf -t s_t R4 -t l.j..,m.j.. 

(4)R6 -t sft ·pf -t pt 

·s_ -t svt P -t R4.j.. 

s_ -t sv.j.. (4)p -t Pit 

rv 1\ sv -t p.j.. (2)R4 -+ R6t 

.p -t R4t (2).R4 -t R6.j.. . 

6.1.4 Timing assumptions 

With the addition of the R6 circuitry, some of the timing constraints that were present in the 

simple circuits have become easier to satisfy: this is good because it may be more difficult to 

predict the delays in these more complicated circuits. Specifically, the two constraints mentioned in 

Section 5.3.3.3 are now easier to satisfy: the reset pulse's being delayed now cannot cause the circuit 

to double-latch the inputs, because the reset pulse is used for re-arming the pulse generators, which 

must happen before another output can be producl~d; similarly, adding the foot transistor removes 

the need for re's switching early enough to keep the circuit from producing another output during 

the same cycle. 

6.2 General logic computations 

We need to change very little in the buffer template that we have been studying for it to be used for 

more general computations. If we consider DBUF from the previous section and compare it with a 

half-adder, HADD, the kinship is obvious because 

DBUF == * [ L?x, M?y; R!x, Sly ] , 

and 
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HADD == * [ A?a, B?b; S!(a + b)o, D!(a + bh J , 

where the subscripts denote bit indexing. If we implement the computation of a + b directly on the 

input rails, the calculation is self-synchronizing; i.e., no result will be produced till the inputs have 

arrived. The only PRs for HADD that we need state are 

se /\ sf /\ (a.O /\ b.O V a.l /\ b.l) -+ !L.O.} 

se /\ sf /\ (a.l /\ b.O V a.O /\ b.l) -+ LH 

de/\df/\(a.OVb.O) -+ (La.} 

de /\ df /\ (a. 1 /\ b.l) -+ d_.l.}; 

the reader can easily infer the rest from the descriptions of the left-right buffer and DBUF. 

6.2.1 Inputs whose values are not used 

We can only trust the simple compilation, which appears to work in the case of HADD and DBUF, 

when the logic computation is itself enough to implement the required handshaking behavior. When 

the logic computation does not suffice for this, we shall have to add further circuitry. 

An example will clarify. Let us consider a circuit that generates only the carry output of a 

full-adder, 

CADD == * [ A?a, B?b, C?c; D!(a + b + C)l J , 

where the subscript "1" denotes bit indexing. By following the procedure we used for HADD, we 

should arrive at the following: 

de /\ df /\ (a.O /\ b.O V a.O /\ c.o V b.O /\ c.O) -+ (La.} 

de /\ df /\ (a.l /\ b.l V a.l /\ c.l V b.l /\ c.l) -+ (LH 

What is the HSE that we must implement? Omitting the details of the data computations, we can 

say that it is at least 

* [ [a.O V a.I] , [b.O V b.lJ , [c.O V c.l] ; 

[ ... -+ d.OtD ... -+ d.ltJ , a.O.}, (d.}, b.O.}, b.l.}, c.O.}, c.l.} J 

But neither a.O /\ b.O V a.O /\ c.O V b.O /\ c.O nor a.l /\ b.l V a.l /\ c.l V b.l /\ c.l actually implements 

[a.O V a.l], [b.O V b.lJ, [C.O V c.l], whence we must believe that something is amiss with this 

implementation of CADD. 

6.2.1.1 Aside: Comparison with QDI precharge half-buffer 

The following discussion has been prepared for those familiar with the implementation of the QDI 

precharge half-buffer (peRB) and the QDr weak-condition half-buffer [43J. 
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We may write the simple (dataless) QDI process2 * [A? _, B? _, CU in terms of HSE as 

*[ ([aiJ; aot; [--.aiJ; ao,1-) , ([b'iJ; /Jot; [--.biJ; /Jo+) , (cot; [ciJ; cot; [--'ciJ) J ; 

at present, we shall only be concerned with the inputs ni and bi, The handshake on an input, 

[aiJ; not; [--.aiJ; ao-!-, may be broken down into the rising-edge input completion (also called input 

validity) [aiJ, the acknowledgment aot, the falling-edge input completion (also called input neu­

trality) [--.aiJ, and the reset phase of acknowledgment ao+, If data is used instead of merely bare 

handshakes, then [aiJ becomes instead [nO Val V ' ',J, and [--.aiJ becomes [--.aO A --.al A ". J. 

The essential insight that establishes that the PCHB compilation is often superior to the weak­

condition half-buffer (WCHB) compilation is that it is unnecessary and usually unwanted to perform, 

as the WCHB does, the waits required by a process's handshaking specification in the same opera­

tors as the logic computation is performed. Performing the waits with these operators often means 

strengthening the operators, which reduces their performance for two reasons: it adds extra tran­

sistors in series, and it means that inputs that are not required for the computation of the outputs 

are still waited for; and while our having to insert these waits is troubling enough, in the WCHB 

we also have to insert neutrality waits for the down-going phase of the handshake; the terror when 

we realize that this can compile to one additional p-transistor in series for every rail in every input 

channel! 

The PCHB avoids the completion difficulties of the WCHB by our compiling the two functions 

of handshaking and completion into separate circuitry; the two parts are joined on the input with 

isochronic forks, and on the output synchronized by a C-element, The very simple requirements 

on the handshaking part allow an implementation that can be decomposed into OR-gates and C­

elements; these operators can be further decomposed, if that should be deemed necessary. 

If we observe a PCHB circuit, e.g" an implementation of our offending CADD, in operation, we 

shall see the following. Sometimes, the logic part of the circuit uses enough information about the 

inputs in computing its outputs that the input validity may thence be inferred; since, however, the 

logic part has no p-transistors, it cannot possibly compute the input neutrality. In contrast, the 

completion part of the circuit always checks both the input validity and the input neutrality. 

In a STAPL circuit, input neutrality need not be checked. In effect, our timing constraints 

guarantee that the inputs are neutral when required-·no p-transistors are required for this, and this 

is of course one of the reasons that STAPL circuits are faster than QDI circuits. 

In summary: the QDI circuit often needs only the p-transistors in the completion network; the 

n-transistors are added so that the completion network itself shall be delay-insensitive. The STAPL 

2 Traditionally, authors-Martin among others--havp uspd the notation A to signify a dataless synchronization, 
thus emphasizing that a dataless synchronization is symmetric. This is sensible when there is no "direction" in the 
synchronization, But communications almost always have a definite send-receive direction in the design style that 
we are exploring in this thesis-the only reason for introducing dataless synchronizations is, with few exceptions, 
pedagogy, This is why we shall still normally identify the direction of the synchronization, i.e" the party that sends 
(AL) and the one that receives (A?_). 
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circuit does not need the p-transistors; hence we can also omit the n-transistors, except in those 

unfortunate circumstances (as in CADD) where the logic computation is insufficient for always 

checking for the arrival of inputs. In other words, in STAPL circuits the need for the completion 

circuitry is much diminished, but not eliminated. 

6.2.1.2 Solving the problelll 

Obviously we shall need to add completion circuitry to solve the problem posed by the CADD 

compilation. One way of doing this is simply to make the circuit's producing the outputs always 

depend on its receiving inputs on all channels: this amounts to checking for the arriving of unneeded 

inputs in the compute logic. Sometimes this is the preferred way of doing things; but it reduces the 

slack and increases the number of transistors in series, so it often is not. 

Indeed, the bit-bucket compilation suggests what needs to be done if we want to complete the 

inputs without complicating the computing logic. We add to the circuit a dummy output 8 whose 

task is checking that all the inputs have arrived before the Rx reset pulses are generated. While it 

may sometimes be possible to do tricky things with the dummy output, it seems simplest to make it 

an unconditional output that indicates only that all the inputs have arrived and nothing else; if the 

normal outputs always check the arrival of certain inputs but not others, the dummy output needs 

only check the others. We can specify it thus at the HSE level: 

* [ ([a.O V a.1J, [b.O V b.1J, [c.O V c.l]; 8t), [ ... --+ d.OtD ... --+ d.lt] 

8t, a.Ot, a.lt, b.Ot, b.lt, c.ot, c.H] ; 

the negated sense of 8 allows implementing it as we implement the a_.x operators. The implied PRS 

is 

se /\ sf /\ (a.O /\ b.O V a.l/\ b.l) -t Lot 
se /\ sf /\ (a.I/\ b.O V a.O /\ b.l) -t LIt 

de /\ df /\ (a.O V b.O) -t (LOt 

de /\ df /\ (a.l/\ b.l) -t d_.lt 

8f /\ (a.O V a.l) /\ (b.O V b.l) /\ (d.O V d.l) -t 8t ; 

since 8 does not leave the process, no 8e node need exist. Note that we get to keep the desirable 

property that no p-transistors are required for the completion of the unused inputs. 

6.2.1.3 Unconditional process telllplate 

We now know how to implement as a STAPL circuit any process of the form3 

3We may deplore the outward similarity of the parallel "," in <,'; :: Li?X, > to the merely syntactic function-call 
"," in h( <, i :: Xi ». Making matters worse, the last comma on the program line is part of the English text; written 
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*[ <,i:: Li?Xi > ; <,j:: Rj!/j«,i:: Xi » > J , 

as long as the process is reasonably simple; what is reasonable varies with technology and application. 

In terms of circuits, the unconditional process template is schematically illustrated by Figure 6.l. 

Any unconditional STAPL process can be built out of these pieces: one output block for generat­

ing the data on each output channel, an input-clearing block for clearing all the inputs, and the 

acknowledgment block for implementing the necessary sequencing in the process. Dummy channels 

as mentioned in the previous section are simply implemented as output channels without the out­

put p-transistors or flow-control NOR-gates. The areas marked "LD" in the figure will contain the 

circuitry for evaluating the output functions. 4 

6.3 Conditional communications 

As is obvious from synchronous systems, in which we may consider the value that each node assumes 

on every clock cycle as the result of a communication, the unconditional template we have so far 

developed is enough for building a system that implements any arbitrary high-level specification. 

As is equally obvious from the CHP programming-model, however, our using only unconditional 

processes is not the only~or even the obvious~way to build message-passing systems: lately, even 

synchronous designers are investigating conditionally message-passing systems; they do this in the 

hope that they will thus be able to avoid the costs involved in communicating unnecessarily often. 

It is not always clear when introducing conditionality into a system is a good idea, and deter­

mining whether it is a good idea in a given situation would take us too far afield from the main 

subject of this thesis; we shall simply assume that conditionality may be specified in the CHP, and 

that when it is specified, it must be implemented. 

6.3.1 The same program can be expressed in several ways 

An elementary example of conditional communication is the split, viz., 

SPLIT = *[C?c, L?x; [c = 0 ----+ RO!:r Dc = 1----+ R1!x JJ 

another is the merge, 

MERGE = *[C?c; [c=O----+LO'?x Oc=1----+L1'?x J; R!x J. 

The asymmetry (most noticeably, the differing number of semicolons) between SPLIT and MERGE 

is somewhat illusory, due in part to syntactic issues with the CHP language. We might, e.g., write 

thus, the program satisfies the author's sense of order but admittedly leaves him answerable to the charge of pedantry. 
4The reason the circuit in Figure 6.1 does not generate [1,6 directly from R4 is to avoid that the designer's 

imprudently overloading R4 should affect the pulse shape 011 R6. 
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Figure 6.1: Schematic version of unconditional STAPL template. 



84 

SPLIT == * [C?c; [c = 0 -+ RO!(L?) Dc = 1 -+ Rl!(L?) ] ], 

MERGE == *[C?c; [c=O-+R!(LO?) Oc=l-+R!(Ll?)]]; 

in the slack-elastic model, rewriting like this in no way changes the meanings. Inventive persons have 

carried this argument further, noticing that the receiving of c into an internal variable is needless; 

the output or outputs depend on c as much as they depend on I, only in a different way. If we 

insisted on our code's reflecting the symmetry between c and I, we should for example have that, 

written with a single, implied semicolon, 

SPLIT == 
*[[ C=O -+ C?_, RO!(L?) 

o C = 1 -+ C? _, Rl!(L?) 

]] 

While SPLIT seems at home with this transformation, the same could not be said for many more 

complex processes; the synchronization behavior implied by our writing the processes in this way may 

be closer to what we aim at in our HSE-PRS compilation, but the semantic advantage is outweighed 

by the degree that the code is obscured to, and we hence shall usually take the position that slack 

elasticity allows us: all the programs for SP LIT w(~ have given in this section are equivalent and 

should compile the same. 

6.3.2 Simple techniques for sends 

There is a wide variety of ad hoc techniques available for adding conditional sends to QDI process 

templates; we shall briefly study the simplest one before proceeding to general methods. 

Consider the "filter" process 

FILTER == *[C7c, L?:c; [c = 0 -+ R!:c Dc = 1 -+ skip] ] . 

The simplest QDI implementation of this process is arrived at by starting with a QDI left-right 

buffer and to it adding an extra, dummy output-rail of '(' _; this appears not to work so well in the 

STAPL family, because it appears that we shall need to add a dummy block for completing L when 

c = 1. However, that the dummy block is required is a property of the output function-not of its 

implementation; the dummy block would ill allY case be required because the outputs do not always 

complete the inputs. For other circuits with conditional outputs, the dummy block may not be 

required, because the input could be completed by some other, unconditional, output; or conversely 

the dummy block may be needed because the output functions do not compute the input completion 

even when the outputs are generated, as happened with CADD. 

We give the PRS for '(' _ : 



re A c.O A l.0 -+ r _.0+ 

reAc.OAl.1 -+ r_.1+ 

c.1 
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using re in the PR for r _.00+ is quite legal, but unnecessary. (Sharp eyes and minds will notice 

that replacing the PR for r _. 00+ with c.1 A (l. 0 V l.l) --+ r _.00+ will, in this special case, obviate the 

dummy block.) Being only an internal signal in FILTER, r _.00 has no output p-transistor. 

6.3.3 General techniques for conditional communication-actions 

We may solve the problem of conditional outputs by adding a dummy rail, but this is not always 

the most efficient way of doing it; thinking about the behavior of the circuit, we should realize that 

while no outputs are generated when r _.00 cycles, there is still much internal activity going on. 

The situation becomes especially bad if most output circuits are not generating outputs on a given 

cycle-they shall still have to cycle their dummy rails. 

More seriously, the dummy-rail technique helps not at all if what we want is a conditional input. 

That satisfying this desire is more difficult is clear if we consider that a conditional input implies, 

among other things, conditional reset pulses. We cannot sidestep this difficulty by resetting inputs 

that are not being used because we are required to keep our circuits slack-elastic: inputs must be 

allowed to arrive arbitrarily early; hence resetting inputs that are not being used would violate the 

handshaking specification. 

6.3.3.1 A general method 

We shall solve the problem of general conditional communications by introducing another domino­

logic block. This domino-logic block will compute which inputs and outputs the process uses on 

a given cycle. We shall avoid introducing new fundamental constructs by using the same kind of 

domino block for the conditions as for the logic computations; this means that this conditions block 

shall have a one-hot (i.e., l-of-n) output. In other words, depending on the input, the conditions 

block computes which of several possible commu'TI,'';ca,tion patterns is being followed. 

We shall illustrate the method by implementing SPLIT and MERGE. 

6.3.3.2 SPLIT implementation 

The SPLIT process has only conditional outputs; this will make the compilation simpler than for 

MERGE. We first introduce an internal channel p_ that denotes the communication pattern. There 

are two mutually exclusive communication patterns followed by SPLIT: receive on C, receive on 

L, send on RO; and receive on C, receive on L, send on Rl: we call the former p_.O, and the latter 
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p_.1. Furthermore, we may consider p_ as the manifestation of an internal, unconditional channel 

P, whence we may summarize the communication patterns in the table: 

Condition When true Channels exercised 

p.O C.O C L RO P 

p.1 c.1 C L R1 P 

Why can we not use c directly instead of generating the middleman p_? Admittedly, SPLIT is 

a special case where we could implement the conditional communications more simply; but one of 

the main problems is that if we try to use c directly, it becomes defined and needs to be reset at 

the wrong times, viz. in each case two transitions after the other inputs. (Recall that the logic block 

synchronizes c and l because they are both llsed in the same production rules; hence we cannot simply 

require that c be presented two stages later by the environment.) This is an unwanted asymmetry 

in the circuit; furthermore, the additional two stages of delay introduced by the conditions block 

also allow our using much more complex conditions. 

We make all the activity in the acknowledge block conditional on the communication pattern; 

thus, p, R4, and R6 become one-hot codes (one-"cold" for p). 

In any case, the PRS consists of the usual compilation for the outputs and additionally of 

conditional-communication circuitry. First, the PRs for p_ and pare 

pi 1\ c.O -+ p_.O..l­

pi 1\ c.1 -+ p_.1..1-

-+ p.ot 

-+ p·lt· 

Secondly, since we need separate resets for the output channels, we can re-use them for resetting the 

p's, so we have 

R6.0 -+ p.O..l­

R6.1 -+ p.1..1-. 

Thirdly, the PRs for re-arming the pulse generators are now different for the different outputs 

(strictly speaking, this is not required for the SPLIT, but in the general case, slack-elasticity requires 

it; also, if a single output channel participates in several communication patterns, each one of the 

corresponding R6's must be able to reset it), so that the pulse generators now become 



-'1'0.0_ V -.rO.L 

(4)R6.0 

R6.0 

-t rOvt 

-t rOft 

-t rOvt 

(4)-'1'1.0_ V -.r1.L -t rlft 

-.1'1.0_ V -.rl.L -t rlvt 

(4)R6.1 -t dft 

R6.1 -t rlvt. 

Lastly, the PRs for p, R4, and R6 are 

p.O /\ rOv -t p.ot 

p.l/\rlv -t p·H 

p.O -t R4.0t 

p.l -t R4.lt 

(2)R4.0 -t R6.0t 

(2)-.R4.0 -t R6.0t 

(2)R4.1 -t R6.lt 

(2)-.R4.1 -t R6.lt· 
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Happily, all the input channels are completed by the outputs. In this compilation, all the logic 

blocks (including the conditions block) require the extra foot transistor; as always, the p block does 

not. Schematically, the arrangement is shown in Figure 6.2. 

We may generalize the conditional communications of the SPLIT, thus implementing any process 

of the type 

* [ <, i :: Li?xi > ; <,j:: [Gj(x) ---t Rj!fj(x)D-.G) (x) ---t skip] > ] , 

where we for simplicity write x for <, i :: :1:; >. 
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i= ------ ---------------------------
acknowledgment block (only one rail shown) 
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input-output block 

R~ 

inputs 

onditions block 

Figure 6.2: Schematic version of conditional STAPL template. 
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6.3.3.3 MERGE implementation 

The MERGE is similar to the SPLIT except for its conditional inputs, to wit 

MERGE - * [C?c; [c = 0 ----t R!(LO?) Uc=1----tR!(L1?) ] ] , 

which compiles (in the dual-rail case) to 

* [[ c.O 1\ -'(1'.0 V 1'.1) 1\ 10.0 ----t r.ot , ZO.O-J,. , c.O-J,. 

U c.O 1\ -'(1'.0 V 1'.1) 1\ ZO.1 ----t r.1t , 10.1-J,. , c.O-J,. 

U c.1 1\ -'(1'.0 V 1'.1) 1\ n.D ----t T·.ot , ll.O-J,. , c.1.j,. 

U c.1 1\ -'(1'.0 V 1'.1) 1\ 1l.1 ----t r·.l t , 11.l-J,. , c.l-J,. 

]] 

We shall need separate reset signals for the channels 10 and 11; since we must in any case have these 

separate reset signals, we can take advantage of them and give c.O and c.1 separate resets; however, 

introducing separate reset signals for each of the values of the channels ZO and 11 is needless and 

would lead to a more complex circuit. Hence the program we implement is better described as 

* [[ c.O 1\ -'(1'.0 V T'.l ) 1\ 10.0 ----t T'.ot , ZO.O-J,., ZO.l-J,. , c.O-J,. 

U c.O 1\ -'(1'.0 V 1'.1) 1\ 10.1 ----t T'.lt , 10.0-J,.,10.l-J,. , c.0-J,. 

U c.1 1\ -'(1'.0 V 1'.1) 1\ 11.0 ----t dlt, l1.0-J,.,I1.l-J,. , c.l-J,. 

U c.1 1\ -'(1'.0 V T'.1) 1\ ILl ----t T·.lt , 11.0-J,.,11.1-J,. , c.l-J,. 

]] 

We compile MERGE in much the same way as SPLIT. If we introduce P the same way as 

before, the condition table for MERGE hecomes 

Condition When true Channels exercised 

p.O C.O C LO R P 

p.l c.l C L1 R P 

The condition computation is identical to SPLIT's, but we shall have to generate the two reset 

signals from two separate p signals; the PRS becomes 



pf /\ c.O -+ p_.O-1-

pf /\ c.l -+ p_.l-1-

--,p_.O -+ p.ot 

--'p_.l -+ p.lt 

p.O /\ rv -+ p.O-1-

p.l/\ rv -+ p.l-1-

--,p.O -+ R4.0t 

--,p.l -+ R4.lt 

(2)R4.0 v R4.l -+ R6t 

R6 -+ p.O-1-

R6 -+ p.l-1-

(2)R6 -+ R8t 

(2)--,R6 -+ R8-1-

(4)R8 -+ p.ot 

(4)R8 -+ p.lt, 

90 

where we see that introducing R8 becomes necessary (see Section 6.1.3) if we insist on avoiding the 

long pulldowns of a static implementation of pf. The only drawback to our introducing R8 in this 

way is that part of the path to the p pullups becomes dynamic, but this is a drawback that we have 

long ago accepted for the first-stage logic blocks, so why not here too? 

Conceptually, we should not find difficult generalizing the template of Section 6.2.1.3 so that it 

covers conditional receives; however, the CRP language does not have the necessary constructs for 

easily and unambiguously describing the semantics that we can implement, whence we defer this 

issue to the next chapter and to Appendix A (see p. 182). 

6.4 Storing state 

Any method of digital design that aims at components' being used repeatedly must allow state to be 

stored across circuit iterations. A simple circuit that requires storing state is given by the alternator, 

which is specified by the CRP program 

ALT == * [ R!O; R!l ] . 
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During an execution of P, it may be that ALT has lately executed R!O and will presently execute 

R!l; that this is so and not the other way around (i.e., that ALT has lately executed R!l, et seq.) 

need not be a fact inferable from any outside information. Therefore P must store state within itself. 

6.4.1 The general state-storing problem 

We have expressed all our programming problems in terms of repetitive programs with two parts: 

receiving inputs, then producing results. In these general terms, a circuit's storing state becomes 

necessary when actions in a later iteration depend OIl events in an earlier iteration. We shall extend 

the template given in Section 6.2.1.3 t05 

* [ <, i :: Li?Yi > , <, k :: Xk := :r£ > ; 

<,j :: RjlfJ(y, x) > , <, k :: .'Ck := gdy, x) > 

] , 

whence it is already clear that the updating of a state variable is similar to receiving and sending 

values on a channel-unsurprisingly so, since sending and receiving together implement a distributed 

assignment. We may note in passing that complicating matters with conditional actions is unneces­

sary since 

... , [ Go ---7 x ---7 skip] 

is identical in effect to 

... ; [ Go ---7 x := go a -., Go ---7 :/: := :/:] ; ... ; 

hence all state variable updates may, without loss of generality, be made unconditional. 

How would one use the template? ALT will serve as an example. We need to rewrite ALT so that 

it contains only a single send action per iteration; we replace the sequencing implied by the semicolon 

with loop iterations and introduce a state variable for keeping track of the program's progress with 

respect to the semicolon. The similarity to software compilation into assembly language statements 

is clear: one could introduce a program counter to fold an arbitrarily complex sequential program 

into a single statement. We have 

ALT == x:= 0; 

* [[ x = 0 ---7 R!O; x:= 1 

a x = 1 ---7 R!l; x:= 0 

]] 

A final rewriting will merely introduce the special intermediate variable x'; hence 

ALT == 

x' := 0; * [ x:= x' ; R!:I:, [:1: = 0 ---7 :/:':= 1 a x = 1 ---7 X':= 0 ] ] 

5If the program seems puzzling, please see Section 6.:3.:3.2 and also the footnote to Section 6.2.1.:3. 
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6.4.2 Implementing state variables 

Observing that state-variable updates are similar to channel sends and receives, we can see that 

state variables could be implemented with feedback loops-channels that lead from a process P, 

possibly through buffering, back to P. P would send the updated state variable on, e.g., X' and 

receive the new value, some time later, on X. This approach works, is easy to implement, and can 

be reasonably efficient if there are not too many state variables in a system; it also has the advantage 

that we can in some situations easily add pipelining, since it is now straightforward to pipeline the 

state variable-the procedure we are alluding to is similar to loop unrolling and software pipelining, 

and it was extensively used in the MiniMIPS processor. 

The high costs of implementing state variables with feedback loops are obvious in the Min­

iMIPS processor: they are due to the channel mechanism's being more powerful than is required 

for state variables; in other words, channels carry more information-specifically, synchronization 

information-than variables that may be read and assigned at any time; they hence work in many 

situations where (shared) variables are insufficiently powerful; but using channels where variables are 

sufficiently powerful is wasteful: taking the dynamic slack properties of Williams [85] and Lines [43] 

into account, we can deduce that implementing a single-bit state variable may require as many as 

four or five left-right buffers, which adds up to an exorbitant cost of several hundred transistors. In 

short, the approach may be acceptable for infrequent use in control circuitry, but we should avoid 

using it in datapath circuitry. 

6.4.2.1 Issues with direct implementation 

The better way of implementing state variables is implementing them directly. The main obstacle to 

this is that, till now, all nodes in our STAPL circuits have had the same switching behavior; namely, 

if we consider an iteration of such a circuit, each node either remains idle or switches with (ideally) 

a 50 percent duty cycle, which means that in the circuits studied so far, the node goes active for five 

transitions, then returns to its neutral value for another five transitions, and may go active again 

at that time;6 as we have explored the handshake phases may be longer, but not shorter, than five 

transitions in the presence of external synchronizations. 

The symmetric and long pulses that appear ill normal asynchronous circuitry are due to the 

handshake protocols that are used for moving data around. These protocols come at a high cost, 

but this is often unobjectionable when the computation that is implemented is logically complex, as 

is often the case in normal control or datapath circuitry. In the case of state variables, however, the 

mass of extra circuitry that is needed for generating the desired symmetric pulses does in fact give 

rise to the feedback loops that we have already deprecated. 

60ur using the terms "active" and "neutral" ill place of true and false indicates that the argument applies to 
logic that can be either positive or negative. 
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6.4.3 Compiling the state bit 

To find our way out of the timing conundrum, we must abandon the similarity between handshake 

variables and state variables. We shall instead explore a STAPL circuit with characteristics similar 

to the state-variable compilation given by Lines for QDI circuits [43]. Our new compilation uses the 

fact that the state variable is embedded inside a circuit that we already have timing information 

about; in this way, we can achieve a very simple state-variable implementation that allows of using a 

simple dual-rail, non-handshaking state-bit, but which at the same time can safely be accessed by its 

parent circuit according to the parent's handshake timing. We shall see that the timing signals that 

are necessary for a simple state-variable compilation are already available in the STAPL template. 

6.4.3.1 Circuits 

The simplest state variable (that does not need to be refreshed) is the SRAM cell, which consists 

of two cross-coupled inverters and read-write circuitry. Whereas a standard SRAM has pass-gates 

for reading out and writing the stored bit, we shall use different circuits, which will implement the 

conversion between handshaking protocols and the state variable. 

The state bit is shown conceptually in Figure 6.3. 

read 1 read 0 

write 1 write 0 

read select 

Figure 6.3: Basic state bit. 

How can we generate the appropriate control signals for the state bit? Recalling the timing of 

a STAPL process, we know that once we have generated the outputs (on transition 1 internally, 

transition 2 for the outputs), we shall have eight transitions for getting the circuit ready for the 

next set of inputs. We shall find it convenient to synchronize the arrival of the new state-bit value 
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with the next set of data inputs; this allows us the maximum time for computing the new state bit 

without incurring a delay penalty on the next iteration. 

Our first implementation of the STAPL state bit works as follows: on transition 1, the internal 

nodes begin their active-low pulse; we use p-transistors to write the state bit immediately on tran­

sition 2; this being done, the last reset pulse RS copies the new state bit to the input side of the 

process. This circuit is shown in Figure 6.4. 

other inputs 

Figure 6.4: Naive state-variable compilation. 

The corresponding PRS is 

....,X_.o ~ 

....,x_.l ~ 

88_.0/\ x_.l ~ 

88_.1/\ x_.O ~ 

88_.0 ~ x.ot 

88-.1 ~ x.lt 

....,88_.0 ~ x.ot 

8LOt 

8LIt 

8LIHt) 

8LOHt) 

RS/\ .T.O ~ .TX_.0.t. 

RS/\ .7:.1 ~ .TL.lt 

....,.T:L.O ~ 8.0t 

....,:r::L.l ~ 8.1t 

....,RS ~ :1:L.Ot 

....,RS ~ J:;L.lt. 

s.1 

s.O 

Here, we call the input to the circuit x_; this is the "output" of the parent. Conversely, the output 

of the circuit, also the "input" of the parent, is called 8. The production rules marked (t) are 

implemented with interference (weak feedback). 

6.4.3.2 ProbleIlls 

What are the problems that introducing this circuit into the STAPL family can give rise to? 
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We first note that we may have a problem when an input is asserted and it attempts setting the 

state bit to a new value. When this happens, the n-transistor pulldown chain that is responsible for 

setting the new value turns on at the same time that the opposing p-transistor is turned on. Hence, 

we must make arrangements that ensure this situation's happy resolution; this is an instance of a 

ratioing assumption. The only way we can solve this problem (short of using a much more complex 

implementation) is by careful sizing and verification. This being a familiar problem, it should not 

concern us too deeply. 

Secondly, the worries that we had regarding tlw unusual timing relationships of the state-variable 

nodes must be considered. When one side of the cross-coupled inverter pair is pulled down to GND, 

the other side is pulled up one transition later; it may be a slow transition, but in either case, 

there is no reason to believe that the timing relationship between this transition and the transitions 

otherwise seen in STAPL circuits should be predictable. If we compare the behavior of a dual-rail 

STAPL channel with the state bit, we see that the dual-rail channel ideally is defined five transitions 

out of ten; the state bit ideally nine or-when it does not change-ten out of ten. The main issue 

that we need to worry about is the new value's being generated too early and hence its triggering 

an illegal 1-1 state (because it may be read one cycle early, when the old value is still available). 

This is a real problem. R8 is, as we know, active (high) for five transitions, going high at 

transition 8 and low at 13. If the state variable changes, however, the new value of x goes high at 

transition 4, viz. transition 14 of the previolls cycle. Terror strikes! We have only a single transition 

of delay margin; should x go high a little early or R8 be a little slow to reset, then the circuit may 

enter the illegal 1-1 state, and all is lost. 

Since solving the state variable's timing problem by delaying the variable's update would defeat 

the purpose (this solution would turn the state variable back into some sort of feedback loop with 

the same kind of timing as a channel), we must use something more unconventional. The problem 

we wish to avoid can be seen from the following partial trace: 

action tiIlle 

.T.1t 4 

R8t 8 

:c:L.Lj,. 9 

R8-l- 13 

J;.(lt 14 

whence we see that if the reset of R8 is dPlayed slightly, then .T:L.0-l- may become enabled at time 

index 14. We introduce an interlock; this is a mechanism that keeps the circuit from getting into 

the 1-1 state. Since xx_.l has fallen at time index 9, it is the obvious choice for the interlock; the 



PRS for the state variable becomes 

-+ SL.Ot 

-+ sLIt 

SS_.o /\ x_.l -+ SLLI· 

sL.l/\ x_.O -+ SLOt 

8S_.0 -+ x.ot 

SL.l -+ x.lt 

'S8_.0 -+ x.ot 
,ss_.1 -+ x.lt 

R8/\ x.O /\ xx_.l -+ xx_.ot 

R8/\ x.l/\ xx_.O -+ xx-.H 

'xx_.o -+ s.ot 

'xx_.l -+ 8.1t 

,R8 -+ xx_.ot 

,R8 -+ xx-.It· 
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The circuit is shown in Figure 6.5. Compiled thus, the state variable is again resistant to minor 

timing variations; in fact, the interlock makes the production rules for xx_ more resistant to timing 

variations than the other parts of the STAPL circuit-the margin on xx_ is nine transitions, rather 

than the usual five. 

6.5 Special circuits 

So far, we have seen circuits for buffering data, computing functions, performing conditional commu­

nications, and remembering state. These are enough for implementing deterministic computations 

that take place entirely within the STAPL model. The reader should see-if he does not, he might 

want to look at the next chapter-that any deterministic logical specification could be implemented 

straightforwardly in these terms. 

The things that most clearly are missing from our model are nondeterministic devices (i.e., 

arbiters) and devices that allow us to communicate with systems built in different design-styles, e.g., 

QDI systems. The devices that we shall present al') solutions to these problems are different from 

the ones presented so far in that they are not necessarily intended to be generalized. 
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s.1 

other in--,-p_ut_s __ , 

s.O 

Figure 6.5: Sophisticated state-variable compilation. 

6.5.1 Arbitration 

Whereas the prudent asynchronous VLSI designer avoids nondeterministic choice when possible, 

he will find, prejudices notwithstanding, that there are situations in which nondeterministic choice 

simplifies or allows a more "asynchronous" implementation. In the MiniMIPS for instance, we 

introduced non determinism in two places where it naively appeared unnecessary: in merging the 

cache operations in the off-chip memory-interface, and in the exception mechanism. In the former 

case, the non determinism simplified; in the latter, it allowed a more asynchronous implementation 

because it allowed the system's being designed without any prior knowledge of actual pipeline depths. 

We shall implement arbitration in one way only; this we do with the program 

ARB == 

*[[ if -+ A,R!O 

I B -+ B,R!1 

]] 

The reader will recognize that this program is at least sufficient, although perhaps not always the 

most convenient, for implementing most interesting kinds of nondeterministic choice (but see also 

Section 6.5.2). 

We shall use the standard QDI arbiter (Figure 6.6) as the central building block of the STAPL 

ARB. The only difficulty this causes is that the QDI arbiter takes more than one stage of logic; hence 

we cannot simply insert it into a normal STAPL circuit. Instead, we provide for the extra delay by 

omitting the second stage (the completion stage) from the circuit and instead using the grant lines 

to reset the request lines directly. The resulting ARB is shown in Figure 6.7. In terms of PRS, the 

circuit consists of the usual arbiter-filter combination [54], the usual STAPL pulse generator, and 
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filter 
I------------~ 

I 
I 

u 

v 

Figure 6.6: "Mead & Conway" CMOS arbiter. 

rf 

g.O 

xa 

pulse 

gen. 

re 

Figure 6.7: Complete STAPL ARB process. 

'---i __ .---- r.1 

L........! __ '----.-- r.O 
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re 1\ rf 1\ g.O 1\ r _.1 -+ r _.0..1-

re 1\ rf 1\ g.11\ r _.0 -+ r _.1..1-

r _.0 -+ xa..l-

-.r _.0 -+ xat 

r _.1 -+ xb-J-

-'r _.1 -+ xbt 

xa -+ a..l-

xb -+ b.!-

-.r _.0 -+ r.Ot 

-'r _.1 -+ r·lf . 

Since the circuit used here is slightly different from what we have used in STAPL circuits so far, 

some care may be necessary to ensure that the circuit verifiably works. 

Attentive readers will have noticed that the interlock we introduced for the state variable has 

appeared again in ARB. We see why: the S-R latch used for arbitration is indeed a state-holding 

element (albeit one that in these enlightened times is considered somewhat archaic); it has timing 

characteristics similar to those of the cross-coupled inverters used in the state-variable compilation. 

Consider a scenario that both inputs to the arbiter are asserted in. The arbiter chooses one, setting 

in motion a train of events that ends in the chosen input's being deasserted. At this time, the output 

of the arbiter will quickly change from a 1-0 state to a 0-1 state, in exactly the same troublesome 

way that a state variable can change. This shows that if the interlock were not added, one output's 

rising a mere single transition later than designed could cause fatal confusion. 

6.5.2 Four-phase converters 

Why would we ever convert to four-phase logic? Have we not covered all the kinds of circuits 

necessary for building any system we might desire'? The practical man will know that sometimes 

he will be called upon to interface his circuits with the outside world, from time to time even 

to interface with inferior things he has little or no control over. In these cases, he may find the 

synchronizer useful; and it is otherwise also one of the most practical circuits that we have not 

given a STAPL implementation for. Our introduction of means for converting between the STAPL 

family and four-phase QDI circuits ensures that the existing QDI synchronizer implementations can 

be used; it also obviously allows our carrying over other convenient QDI circuits. For instance, the 

extra design freedoms of four-phase logic appear to allow designing circuits that are very efficient in 
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terms of energy consumption or number of devices, by using creative and non-obvious reshuffiings 

that efficiently encode complex control [54]. 

There are enough similarities between the STAPL handshake and the QDI handshake that con­

verting between the two is not too difficult. The only thing that needs to be done is to make the 

STAPL circuit respect the falling edge of the QDI handshake; i.e., it now has to wait for [-,li]. 

Because of the timing assumptions in the interface of STAPL circuits (0" and 0, the QDI circuit 

that is to be interfaced with has to obey certain timing constraints. The easiest way of solving the 

problem is probably to make a standard cell with a QDI interface on one side and a STAPL interface 

on the other. Using the cells that we have already built, we can put together a QDI "weak-condition 

half buffer" [43] and a STAPL half-buffer. We force the STAPL buffer to respect the QDI handshake 

by not re-arming the pulse generator until [li] has occurred; for this purpose, we generate R6 by 

completing the input channel rather than in the usual way. Figure 6.8 shows the resulting circuit; 

notice how little extra circuitry is required. 

q.e.;.. ____ --' 

, 

-----------------------------------------------------

"R6" 

, 
qi.1: 

I qi.O 

xv 

, , , 

~ _______________________________ J 

QDI WCHB 

vqi 
qi.e 

, : 
1 ______ ----------------------------------------------- ________________ _ 

STAPL left-right buffer 

Figure 6.8: QDI-to-STAPL interfacing cell built from a QDI and a STAPL buffer. 

Converting from STAPL to QDI is about as easy. A circuit for doing it is shown in Figure 6.9; 

the main changes from standard QDI and STAPL buffers are that the QDI buffer needs to reset its 

inputs with a pulse, easily generated from its acknowledge; and the STAPL buffer waits for the QDI 

acknowledge as well. 



101 

~-------------------------------------------------, , 
pulse xv 
gen. 

1---------------- 1 , , 
qi.1 xr--,-,- r. 1 

>---- -:- r.e 
qi.O 

QDI buffer 

~ ________________________________________________ J 

ST APL buffer 

Figure 6.9: STAPL-to-QDI interfacing cell built from a STAPL and a QDI buffer. 

Simpler circuits could probably be designed for converting between the STAPL and QDI proto­

cols. The ones we have seen however have the advantage that, since the conversion is implemented 

with a pair of buffers and a few extra transistors, they easily generalize much the same as other 

STAPL and QDI circuits do. 

6.6 Resetting STAPL circuits 

It should be understood that out of the 2N states that a digital STAPL circuit of N nodes can 

be in, only a small minority are meaningful; for instance, any circuit that has more than one node 

out of a one-hot channel true is in an illegal nonsense-state. Until now, we have been concerned 

with describing the repetitive operation of STAPL circuits; we have described mechanisms whose 

incorporation into circuits will allow these circuits' repetitively computing useful things, all the while 

remaining in the legal parts of their state spaces; but how do we initially coax them thither? 

Since an asynchronous circuit has no clock that governs its timing, it is in general difficult to 

predict when it shall respond to a presented input. What is more frightening is that an asynchronous 

circuit is by its nature self-invalidating; i.e., there is no legal stable state for an asynchronous circuit 

to be in, because if there were, then the circuit would never get out of that state. Hence it is clear 
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that what we seek to do in resetting an asynchronous system is to put it in an unstable state, whence 

it may proceed to execute normally. On the other hand, there is no requirement that the reset state 

itself be a legal state that could be encountered later during execution, as long as we can show that 

from the reset state we shall eventually encounter only legal states. 

6.6.1 Previously used resetting schemes 

The most commonly used resetting scheme in QDI circuits consists of introducing a single active-low 

reset node called ReseL together with its active-high inverse Reset; this has been used in most QDI 

projects undertaken at Caltech. The scheme works by resetting the circuit nodes to a known state, 

call it n, when the reset nodes are asserted. Interference between production rules is allowed during 

the beginning of the reset period, as long as it resolves itself within a limited time; no interference 

is allowed afterwards. The time allotted to resetting is "long"; i.e., the timing of the reset pulse is 

handled through a comfortably safe timing assumption. When the reset nodes are finally deasserted, 

the circuit begins executing. 

From the preceding, we understand that the actual initial state of the circuit from the point of 

view of the CHP specification is not the reset state that is the fixed point achieved by asserting 

the reset nodes, but rather it is the special state nlR t f' I R t t ,achieved just after our ese ----* a se, ese _--+ rue 

deasserting the reset nodes. Designing the MiniMIPS, we realized that-while the timing assumption 

governing the length of the reset pulse is unavoidable-it would be inadvisable to trust that the two 

transitions ReseLt and Reset4-. occur simultaneously; we avoided trusting this by using Reset only 

in downgoing production rules, i.e., by making the transition Rcsct4-. undetected by the circuit. To 

complete the reset protocol, we arranged things so that the Rcsct4-. transition always occurs before 

the ReseLt transition. Hence, the MiniMIPS reset procedure consists of the following succession of 

states (where _ denotes an arbitrary state, which need not be legal): 

-:::::;. n:::::;. nlR C I :::::;. niH f'l R eset--+.a se ,eset--+ a se, eseL--+true (6.1) 

Since Reset4-. is unchecked, no circuit activity can take place between the second and third states in 

the sequence, and we may again use a comfortably safe timing assumption. In practice, whereas we 

handled the reset-length timing-assumption by gfmerating a pulse of the appropriate length off-chip, 

the second timing assumption is most easily handled by a few on-chip inverter delays. 

6.6.1.1 Go signal 

There are obvious problems with the described resetting scheme. The first and most obvious is the 

timing assumption used for sequencing Rcsct4-. and RcscLt. Secondly, the transition ReseLt causes 

other transitions to occur immediately; hence, making this transition too slow could conceivably 
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lead to problems of the kind described in Section 4.4. The first of these problems can be eliminated 

and the second alleviated by introducing a third reset signal, which we call Go. In the resulting 

reset scheme, we cause the transitions to occur in the following order: first, reset in the state where 

Reset = true, ReseL = false, Go = false; secondly, Reset.!. and ReseLt occur in any order; lastly, 

Got shall occur after a comfortably long delay. The reason that this scheme is better is that ReseLt 

no longer needs to do the double duty of on the one hand establishing R and on the other holding 

back the execution; in other words, most of the load that was on ReseL can be kept on it and only 

a small part shifted to Go, which is the signal that must switch reasonably quickly. The progression 

of states is now: 

=} R =} RI =} R I = R' =} R'I . - Reset-.;ralse' Reset-.;ralse,ReseL-.;true - Go-.;true' 
(6.2) 

we have here labeled the two stable reset states, Rand R', separately. 

On the system-design level, a third problem occurs with the QDI reset scheme. Consider a "token 

ring," i.e., a chain of buffers connected in a ring. We should like to think of these buffers as being 

all of the same type, viz., 

BUF = * [ L?x; R!x ] . 

Such a ring cannot be useful. It will do nothing, since all processes are attempting to receive but no 

one is sending~sadly reminding us of dining philosophers that starve. 

We can simply solve the ring-resetting problem by introducing an asymmetry; we shall then have 

two types of buffer process, viz., 

BUFO 

BUFI 

*[ L?x; R!x ] 

*[ R!x; L?x ] 

and 

The number of buffers of type 1 used determines the number of "initial tokens" in the system. While 

correct and conventional, the solution leaves us unsatisfied. More precisely: when we are dealing 

with a system that is described in slack-elastic terms, we are allowed to add slack after the CHP 

description has been completed, during its compilation to PRS and circuits; we might want to put 

the initial tokens in that extra slack when possible, but the form of description we have chosen does 

not allow that; furthermore, once the decision has been made at the CHP level to call one buffer 

BUFO and another BUFl, should we not expect that the top-down compilation procedure will yield 

different implementations? But the same specification (and hence implementation) could be used 

for both if the initial tokens could be shifted into the extra slack. 

We thus get the impression that the placing of initial tokens should properly occur in a separate 

phase of the design; it would then be possible that our ring of buffers should have processes only of 

the type BUF. At this point, the possibility of using a single implementation of BUF may seem like 
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an insignificant advantage, but we shall see later (or may imagine now) that it would allow our using 

a vastly simpler template for describing the CHP processes, which need not make reference to the 

initial state: we should realize that the simplification, small for B UF, will be much more significant 

for complicated processes, since a process with N channels may at reset have a token (or not) on 

each of them. 

Let us not deal further in hypotheticals: there is a catch. Normally, QDI processes have combi­

national logic at their outputs. Hence, any scheme that should attempt resetting QDI processes in 

two phases as suggested must have knowledge about their internals (it must reset the inputs of the 

combinational logic, not the outputs). 

Here the STAPL circuits have a definite advantage: they have a single transistor on their outputs, 

so it is possible to create the initial tokens directly on the channels between processes. The reset 

protocol that we use is the same as the modified QDI protocol: Reset = true, ReseL = false, Go = 

false. Now we can choose to identify the two reset states Rand R' thus: R will be the starving 

philosophers' state, i.e., when all processes are ready to receive and none is sending; R' will be the 

state when all tokens that shall be created on reset have been created. The happy conclusion is that 

we can design all processes so that they themselves attain R (when Reset 1\ ...,ReseL holds); we shall 

separately add circuitry for getting from R to R' (when ...,Reset 1\ ..., Go holds). 

6.6.2 An example 

Let us now turn to a simple example. How should we reset the STAPL left-right buffer? From 

above, we know that we need only concern ourselves with the empty-pipeline case. The goal will be 

resetting the circuit with as few transistors as possible. 

The most obvious places for inserting reset circuitry are the pulse generator and sequencing 

circuits that must always be present in the same way. Considering the HSE for the (dual-rail) 

left-right buffer, 

*[(tH to -+ rot 0 II -+ rlt J; lOt, llt, [...,rO 1\ ...,rlJ J , 

we should like to reset into the state marked (t). Given a set of processes to reset, we choose the 

following division of labor: each process shall be responsible for resetting its own internal nodes 

and its own inputs. Hence, we shall have the various R4 nodes resetting in the true state (which 

incidentally violates the otherwise sound property of their being mutually exclusively true): this 

will clear the inputs. As for the internal nodes, we make the pulse generators reset into the state 

where the precharge signal is active. 
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6.6.3 Generating initial tokens 

So far we know how to reset a system so that all processes begin by receiving. We earlier mentioned 

that we should like to create the initial tokens during the period when ,Reset 1\ ,Go holds. Doing 

this is straightforward: tokens between processes are signified by true nodes; hence, all we shall need 

to do is pull the nodes that we wish to reset up with two p-transistors implementing ,Reset 1\ ,Go. 

Of course, we must check that Go switches fast enough that the isochronic fork is unimportant. 

If we feel that we cannot arrange this, then we might have to add yet another reset node, e.g., 

ReallyGo, since strictly speaking, using Go for generating initial tokens violates a property implied 

by Section 6.6.l.1, namely, the property that Go should be used only for holding tokens back from 

execution, not for resetting things. 

6.7 How our circuits relate to the design philosophy 

In Section 5.2.5, we outlined a few guidelines that our circuits should obey. We have since developed 

the bit generator, bit bucket, left-right buffer, multiple-input and multiple-output circuits, circuits 

that compute arbitrary functions, circuits that do not use certain inputs, as well as a number of 

specialized circuits. 

For each one of the designs, it may have seemed that a new mechanism was invented out of thin 

air. Of course, if we take a different view of things-if we consider the simpler circuits as special 

cases-then these mechanisms may not seem so ad hoc. 

Let us therefore examine Figure 6.2. How much of the design presented there is an inevitable 

consequence of our design philosophy, and how much of it simply the result of arbitrary design 

decisions? 

First, while it is not exactly part of the design philosophy, the choice of two transitions' delay for 

the forward path is a natural one: this choice minimizes the delay, given that we want to maintain 

the same signal senses at the outputs as at the inputs. Using a single p-transistor per output rail 

is clearly the simplest way of implementing the output part of the handshake, as is using a single 

n-transistor per input rail for implementing the resetting of the inputs. 

Secondly, we stated that we were going to implement the (j delays everywhere with pulse gen­

erators: this gives us the puIlups for t.he internal nodes. But why can we sometimes get. away 

with combinational pulse-generators and why do we sometimes need to use ones that are one-shot, 

i.e., explicitly re-armed? Similarly, why do we sometimes need the foot transistor and why do we 

sometimes not need it? The answer to these quest.ions is the same: in general, the one-shot pulse 

generators and foot transistors are required. It is only in the very special case of a single output 

that they are overkill, because with only a single output we can make an additional timing assump­

tion; namely, we can assume that once we have produced the output, all the necessary inputs have 
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arrived; this is true even if some inputs are being ignored since we are counting dummy outputs 

used for completion as separate outputs. We should note that the timing assumptions are slightly 

more difficult to meet when we omit the foot transistor: if the foot transistor is used, we know that 

the pulse generator cannot re-arm until the second stage has reset it; if it is not used, then a slow 

falling transition on the output can cause the pulse generator to fire twice. 

Thirdly, why do we use a second stage for computing what to acknowledge, and why does the 

second stage have the form we have seen? Here we have mainly tried to keep things simple: the 

same implementation is used for the second stage as for the first. Note that the reason that we can 

omit the foot transistor in the second stage is that we can consider the second stage as having a 

single output; namely, the internal channel R4, which always produces a result. As we have seen in 

Section 6.3.2, there are other ways of implementing the functionality provided by this second stage. 

Lastly, what of the special circuits: the arbiter, state bit, and four-phase converters? These 

circuits are harder to understand directly within the stated design philosophy. The reason this is 

so is not hard to see: the state bit is essentially a transistor-saving trick that eliminates much of a 

feedback loop that could as well have been implemented with buffers, and the arbiter has the same 

timing characteristics. In the case of the four-phase converters, we are dealing with circuits that in 

any case do not obey our design philosophy, so it is not surprising that these circuits should look a 

little odd. 

6.8 Noise 

When we speak of "noise," the implicit assumption is often that noise is due to some external 

mechanism, or at least to some mechanism that we are not modeling properly, e.g., shot noise, 

thermal noise, noise from outside electronic systems. But in more performance-oriented design­

styles, the digital model is often just an approximation; the difference between the pure digital 

model and the physical behavior of the system we can also loosely call "noise." Hence, we shall use 

the term "noise" to denote any deviation from ideal conditions. 

6.S.1 External noise-sources 

External noise-sources are the easiest to deal with. In Section 3.3.5, we defined what noise margins 

mean in pulsed circuits and left it up to the reader to come up with a metric suitable for making 

sense of the multi-dimensional noise that we should find in such circuits. The noise has as many 

dimensions as the test pulses in P have parameters, to use the terminology of Section 3.3; but apart 

from this mathematical annoyance, noise margins in STAPL circuits are really of the same form as 

in synchronous circuits, and may be treated similarly. 

Are the noise margins wide enough in the circuits that we have studied? This is a quantitative 
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question, and there are several ways of answering it. First, we can flip back to Section 3.2.2.3, where 

we should see that the input pulse lengths can vary between 1.0 and 12 normal transition delays, 

and the circuit will still work as intended; this will probably satisfy most readers. Secondly, we 

note that we can build STAPL circuits with any desired noise margins by manipulating the delay 

in the feedback loops and the thresholds of the input logic; as long as the noise is smaller than the 

signals we are looking for, we can build a STAPL circuit that works. Lastly, we can rephrase the 

question thus: do STAPL circuits give higher performance for the same degree of noise immunity 

than implementation technology X? This question is harder to answer; it does seem that the STAPL 

circuits can be made almost as noise-immune as QDI circuits at much higher performance levels, and 

compared with the highest-performance synchronous logic-styles, STAPL circuits achieve the same 

or better performance. But the question will probably not be answered to everyone's satisfaction 

until STAPL chips have been fabricated and are found to work reliably. 

6.8.2 Charge sharing 

The STAPL circuit family makes great use of dynamic (or at least pseudo-static) logic. Charge 

sharing (between internal parasitic capacitances in a domino block and the output node) is the 

bane of dynamic logic styles. The situation could be particularly bad in STAPL circuits because we 

cascade dynamic-logic stages. (In the MiniMIPS, for instance, an effort was made to avoid cascading 

dynamic logic by attempting to alternate dynamic and static logic as much as possible.) 

The good news is, first, that the STAPL circuit family never makes use of p-transistors in series 

driving dynamic nodes (the only p-transistors in series are in the circuitry that generates the re 

signals), and secondly, that the timing behavior of STAPL circuits is much simpler than it is for 

QDI circuits. For these reasons, we should not generalize all the bad experiences from high-speed 

QDI design and think that things are only going to be worse in STAPL. The simpler timing behavior, 

especially, allows using much simpler circuitry for avoiding problems with charge sharing. Since the 

domino block never has its outputs "floating low" except potentially for a very short period of time 

(because they are pulsed), we need not worry about sneak paths from Vdd to the output rails, as 

long as the transistors along these paths are weak. Concretely speaking, we can systematically use 

the circuit in the dashed box of Figure 6.10 for reducing charge-sharing problems. (This circuit will 

not work in QDI circuits, because sneak paths from the resistor to the output could pull up the 

outputs out of sequence when they are left floating.) The costs of using such charge-sharing avoiders 

are that the circuits are a little slower and that static power dissipation is possible if some of the 

inputs arrive but not the others (so one has to be a bit careful when introducing these circuits if low 

power should be an important design objective). 
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Figure 6.10: Circuit alleviating charge-sharing problems. Resistor implemented with weak transistor. 

6.8.3 Crosstalk 

Aside from charge sharing (more properly "static" charge sharing), something that causes reliability 

problems in modern VLSI circuits is crosstalk (also variously called coupling noise or "dynamic" 

charge sharing). Some authors (e.g., Balamurugan and Shanbhag [6]) have even suggested that 

crosstalk noise gets worse when device sizes are scaled down. While arguments suggesting that 

crosstalk noise gets worse because of Vrlrl scaling should be eyed with suspicion, it is on the other 

hand true that the aspect ratio of minimum-size wiring on modern chips has made crosstalk worse: 

using wires that are tall and narrow means that most of a wire's capacitance is to its horizontal 

neighbors, not to the substrate. 

The STAPL circuit family offers no special remedies for crosstalk noise; the dynamic nature of 

STAPL circuits indeed suggests that they are susceptible to it. At the same time, we should not 

exaggerate the problem: 1-of-4 encodings for instance allow signals to be routed so that a wire is 

never routed adjacent to two "aggressors" (i.e., circuit nodes that couple strongly to the wire in 

question). Furthermore, as we have stated elsewhere, a well-designed asynchronous circuit will have 

most of its capacitance in the transistor gates (see footnote on p. 147). Finally, we can use our 

circuits' being asynchronous by inserting extra buffering: this is easier than in synchronous systems, 

since our timing constraints are less rigid. 

In practice, the avoiding of destructive crosstalk noise will have to be done with design tools: we 

shall have to map the noise margins that we have defined for STAPL circuits to specific circuit-design 

guidelines. 
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6.8.4 Design inaccuracies 

The most serious issue with STAPL circuits-the most serious way that the real world deviates from 

ideal conditions-is probably design errors or design uncertainties. The reader has probably guessed, 

for instance, that mis-sizing transistors in a STAPL circuit can cause the circuit to fail. Many 

designers will be reluctant to give up their "ratioless" CMOS logic. It would also be unsatisfactory 

if every instance of every circuit in a large STAPL system had to be sized specially just to keep 

things working. 

We can phrase it thus: assume that we have a STAPL circuit designed to work well in a particular 

environment, and now it turns out that, e.g., the capacitance on its outputs is much higher than 

anticipated-this can happen because our extractor is inaccurate or because we are lazily trying to 

reuse a piece of layout that was designed for something else-what happens? 

If we overload one of the STAPL circuits presented in this chapter, then its internal pulse may 

not be quite enough for setting the output signal to Vrlrl; equivalently, we may consider the situation 

when the output p-transistor is sized very large and the internal pulse is too feeble to set the output 

to V dd. We can think of this as moving the normal operating point of the circuit to one where the 

output pulse has a smaller height; in terms of the pipe diagrams, the operating point is moving more 

or less along the arrow marked "I" in Figure 6.11. We can see that we shall have to overload the 

circuit considerably before it fails (until the pulse height is about one half of normal-this is more 

than double capacitance because the pulses have fiat tops/bottoms; they are not normally triangle 

waves). 

The ideal situation would be if the circuit could move along the arrow marked "2"; if it did that, 

then we should have the largest possible noise margin. The STAPL circuits naturally move their 

operating points somewhat to the right in the figure when they are overloaded by a too-large output 

transistor because the pulsed node drives that transistor directly; the transistor's being larger than 

expected causes the internal pulse to be wider than designed because it delays the rise and also the 

fall of the pulsed node. It is possible to add further feedback from the output node (i.e., we could 

add a transistor that senses that the output is being pulled up too slowly and then adds extra drive). 

By using these kinds of mechanisms, we could aim the load line down the pipe and thus achieve very 

good noise margins. 

Single-track circuit-families have been studied in the past [8, 83]. These have tended to use much 

stronger output-feedback than our STAPL family-recall that the STAPL family's circuits wait until 

the inputs have arrived, but once they have been detected, the timing of the pulse is almost entirely 

locally determined. As we have seen, the feedback wuld be a good thing, if it aims the load line in 

the proper direction. 

Why have we not studied these other kinds of circuits in more detail? The reason is that the 

output feedback, via the internal-pulse length and height, affects the pulse widths that can be 
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Figure 6.11: "Load lines" of pulsed circuit. 1: pulse becomes lower when the circuit is overloaded; 
2: pulse becomes lower and longer. 

tolerated on the inputs and it also affects-in the more complex STAPL circuits-the behavior of 

the second stage of the circuit (the acknowledgment stage). In other words, the theory required for 

explaining the circuit behavior becomes more difficult because changes at the outputs now cause 

changed input behavior (i.e., we have to solve equations rather than just propagate functions; the 

simple conditions on (J" and ~ will no longer be so simple). This will undoubtedly be an interesting 

area for further research. 
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Chapter 7 

Automatic Generation of 
Asynchronous-Pulse-Logic Circuits 

You cannot fight against the future. Time is on OUl" side. 

- Gladstone (1866) 

We have so far developed a theory accounting for the proper functioning of asynchronous-pulse 

circuits, and we have developed some example circuits. While he who is skilled in slack-elastic QDI 

design will see how, following the guidelines that we have laid down, he could realize any desired 

computation in STAPL circuits, those not so skilled may not see as clearly how this should be 

done. Furthermore, we should like to automate the design procedure from CHP-Ievel specification 

to STAPL circuit, so that we may avoid both needless labor and the making of careless mistakes. 

For these reasons, we shall now take a step back from the STAPL circuits and explain how we can 

succinctly describe processes of the kinds that we discussed in Chapters 5 and 6. 

We will design circuits at a high level of abstraction, i.e., in terms of digital abstractions. For 

this, the abstract CHP-Ievel of description is ideal. Eventually, of course, we will compile from the 

CHP to transistor networks, and thence finally to concrete geometric layout. In most situations, we 

should like human designers to have to do as little work as possible: they are best at the abstract 

work needed for generating the original CHP; they are not so good at intricate but mindless tasks 

like logic minimization; and they are lazy. Hence, we should aim at designing processes or circuits 

as much as possible at the CHP level, and we should permit describing the processes in as abstract 

terms as necessary. 
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7.1 Straightforwardly compiling from a higher-level specifi-

cation 

In software systems, we usually compile a program as follows. First, we convert the high-level 

program into an intermediate-language representation; this is mainly a syntactic transformation 

for streamlining the syntax of the program to simplify automatic translation tools' analysis of the 

statements of the program. Secondly, we convert the intermediate-level representation into a dataflow 

graph, which is an abstract representation of how each vallIe computed by the program depends on 

previous operations and of how later operations depend on the value. Thirdly, we manipulate the 

dataflow graph, aiming at lowering the cost of evaluating the statements it implies, but maintaining 

its meaning. Lastly, we convert the optimized dataflow graph into a machine language program, 

which can be loaded and executed by a processor when desired. 

The technique that has been evolved for compiling software programs into machine language is 

attractive because it cleanly separates the question of what is computed from how it is computed. 

Specifically, given a simple program that performs actions that are independent, the dataflow graph 

can be used to deduce this property. Having determined that the actions are independent, the 

compiler can convert them separately into the target language. The dataflow graph also represents 

the constraints on the reordering of actions in the program. 

The dataflow technique can be applied to the compiling of HSE into PRS, but because the 

necessary properties (stability and noninterference [54]) are global system properties, this is not 

simple. The only known algorithms that work on general HSE programs conduct exhaustive state­

space exploration. As far as is known, these algorithms all take exponential time in the worst case, 

and they do not in practice work on large systems. 

The difficulties of directly compiling from a higher-level description to PRS suggest that this is 

the wrong way of going about things. A description of an algorithm at the level of the sequence of 

actions on each bit (or electrical node) of a system is simply at too fine a level for most purposes. 

Once an algorithm has been described in this much detail, it has been over-sequenced; and removing 

the extra sequencing is too difficult. The bad level of specification that we speak of is exactly the 

HSE level. 

That the compilation from HSE to PRS is hard is not the only problem with this approach. 

Another is that we have no trustworthy metrics for determining when one compilation is better than 

another. While we could possibly develop such metrics for determining when a given compilation 

result will run faster than another in a known environment, we may not know a priori all the 

parameters of the environment where a circuit will operate; if we had to know these parameters 

before compiling the circuit, we should certainly not be able to claim that the compilation procedure 

is modular. And modularity is the principle, above all others, that we strive for in asynchronous 
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design. Better then to abandon the HSE level in our day-to-day design work and use PRS templates 

for compiling directly from CHP to PRS; the resulting PRS could be trusted to work efficiently in 

most environments. 1 

7.2 An alternative compilation method 

Because HSE is difficult to compile, we shall in this thesis-as we did in the MiniMIPS project­

take the position that we should like to compile ab initio as seldom as possible. (In the MiniMIPS 

project, we used only a few templates to compile almost all the processes into QDI circuits. Lines 

describes most of these templates in detail [43].) 

Compiling arbitrary CHP programs directly (i.e., syntactically) into circuits is possible [13, 9]; 

doing it efficiently is difficult. This is why we have chosen to compile only a restricted subset of 

CHP programs into circuits; the particular subset we have chosen is approximately those processes 

that are described by the capabilities mentionecl in Section 5.2.4, namely that the circuits should be 

capable of the following; 

• Computing an arbitrary logical function 

• Computing results conditionally 

• Receiving operands conditionally 

• Storing state 

• Making non-cleterministic decisions 

• Communicating with four-phase QDI circuits 

Since we explained how to implement each of these capabilities in terms of STAPL circuits in 

Chapter 5, the methods we saw will form the basis for the discussion. In short, we shall bridge the 

gap between those circuits and CHP programs. 

7.3 What we compile 

We should realize that the last two capabilities in the list of Section 5.2.4 are used infrequently, and 

as we pointed out in Section 6.5, these circuits are not easily generalizable; hence we shall drop these 

1 We should make it clear that we are not condemning the HSE language itself. The HSE notation is, as we have 
seen, extremely useful for designing the template~ used for compiling from CHP to PRS; the HSE language is indeed 
the most convenient of the languages we use for describing handshaking behaviors (as it should be). What we are 
suggesting is however that we should probably not manipulate the HSE descriptions of processes too frequently; we 
should do it only when we are developing the compilation templates or when we have to design some special circuit 
that we do not know how to design well using the day-to-day templates. 
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capabilities from the list of what an automatically-compilable process needs to be able to do, and 

we are left with the following four capabilities: 

• Computing an arbitrary logical function 

• Computing results conditionally 

• Receiving operands conditionally 

• Storing state 

We should realize that there is nothing in these capabilities that is specifically tied to STAPL 

implementations, or even anything that is necessarily tied to hardware implementations: we could 

from these abstractions equally well build up a software-programming methodology. What is however 

clear is that these capabilities are fundamentally "asynchronous"; it is possible to introduce a clock 

to sequence the actions further-if we should for some reason be frightened of the prospect of 

asynchronous-circuit design-but as the send and receive actions already in themselves supply the 

necessary synchronization, this would seem otiose. 2 

The STAPL circuits that we have developed have the capabilities we desire, but they have no 

further means of control. Hence, the only programs that they can implement have the structure of 

the templates described in the previous chapter, viz., 

* [ <, i :: Li?Xi > <,j:: RNj(x) > ] , 

* [ <, i :: Li?Xi > <,j:: [Gj(x) ---+ Rj!fj(x)D.Gj(x) ---+ skip] > ] 

*[ <,i:: Li?Yi > , <,k:: Xk:= .'E£ > ; <,j:: RNj(Y,x) > , <,k:: x£:= 9k(Y,X) > ] , 

as well as the conditional-inputs template (see Section 6.3.3.3) that we have not made explicit, and 

combinations of any of these templates. 

The conditional-inputs template is not easy to describe in terms of CHP; let us merely say here 

that any of the inputs can be conditional. A more accurate definition of what we can and cannot 

do is given in Appendix A, p. 182. 

7.4 The PLI language 

A CHP program fitting the templates described in Section 7.3 is easy for us to compile because it 

uses only a small, carefully chosen part of the CHP language. For the purposes of making clear 

the compilation procedure and simplifying the compiler as well as carefully delineating the kinds of 

conditional programs we can compile, we shall describe the programs in terms of a language that 

2Por various reasons, synchronous "asynchronous" systems have been investigated by Philips [67]. The dataflow 
models used in the early 80's and in current work in reconfigurable computing are also related [19]. 
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compactly captures exactly those behaviors that we know how to compile; this language we call 

Pipeline Language, version i: abbreviate as PLio 

The precise scope and syntax of the PLllanguage are given in Appendix A; here we shall mainly 

be concerned with justifying the design decisions of the language and showing how one may compile 

PLI programs into STAPL circuits. 

7.4.1 Channels or shared variables? 

Although CHP processes communicate with each other on channels, once the processes are imple­

mented as circuits, the channels are implemented as shared variables. The shared variables' being 

products of such a compilation implies certain properties about them: for instance, a (slack-zero) 

channel is never "written" (i.e., sent on) twice without an intervening read. These properties may 

be useful for further compilation or for verification, but a na·ive outside observer would not be able 

to tell that the shared variables resulted from a channel compilation. A single semantic construct 

hence can be described as either a channel, at the CHP level; or as a shared variable, at the circuit 

level. 

It is almost certain that some useful operations are difficult to do with only the CHP constructs; 

it is even more certain that shared-variable hardware design is far more difficult, far less modular, 

and far more time-consuming than CHP hardware design. The PLI language aims at combining 

the channel and shared-variable constructs in a way that, for the present circuit-design purposes, 

improves upon both the CHP and shared-variable (HSE or PRS) descriptions. The innovation is 

straightforward: in the PLllanguage, we read and write channels as if they were shared variables, but 

the implementation~not the programmer~ensures that all channel actions are properly sequenced. 

The language forbids interfering constructs. 

The PLI language also only allows "safe" constructs. As we shall see, writing many simple 

CHP processes in terms that are close to our desired implementations involves the frequent use of 

constructs like the value probe or the peek operation. While the responsible use of these constructs 

is unobjectionable, the untrained eye cannot easily determine if the use has been responsible or not. 

Irresponsible uses quickly lead to nondeterministic programs, non-slack-elastic programs, and other 

abominations. 

7.4.2 Simple description of the PL1 language 

The PLI language is a simple language for describing the small processes that we should like to 

build hardware systems out of. The semantics of the PLI language allow the implementation to 

add more slack than exists in the specification; hence the language is appropriate for the design of 

slack-elastic systems. 
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In most message-passing programming languages (CHP in particular), using a data value that 

arrives on a channel first requires receiving it. In the hardware implementation, however, we can 

use and receive the value at the same time, or even delay the acknowledging of the value so that 

it remains pending. This functionality we have added to CHP with the value probe and peek 

operations. In the PL1 language the value probe and peek are the most basic operations: receiving 

a value is done by first using it (the peek), and then acknowledging it as a separate action. 

PL1 programs consist of sets of guarded commands. The guards are not necessarily mutually 

exclusive. The semantics are that the process waits 11ntil it can determine, for each guard, whether 

or not it will be true for the next set of values that shall arrive. For instance, determining whether 

the guard a==l is true requires knowing the value of a. It is not enough that no value of a be present, 

since this would not be slack-elastic: the value 1 could have been delayed en route; hence if there 

is no value of a yet present and a==l is evaluated, the process will suspend. Of course, a value of 

o does establish that a will not next be 1. Thus we can evaluate expressions while banishing from 

our language the "undefined" value of a channel: there is in PL1 no way of writing the true negated 

probe. 

Let us examine at a simple example PL1 program: 

define filter (e1of2 c, 1, r) 

{ 

} 

communicate { 

c==l -> r!l; 

true -> l?,c?; 

} 

The expression syntax is the same as in the C language [41]. The first line is the prototype for the 

process. The declaration of the parameters as e1of2 means that these are channels that can hold 

the values 0 and 1. Hence, evaluating c==l requires receiving a value on c. 

If c==l evaluates to false (i.e., if c should get the value 0), then only the second guarded command 

is executed, and the values on 1 and c are received and acknowledged; the process suspends until 

values are present on both the channels. 

If c==l evaluates to true (i.e., if c should get the value 1), then both the guarded commands will 

execute; the value received on 1 will be sent on r as well. 

The PL1 language is defined so that programs like this one are meaningful, even though 1 and 

c are each used in two places at the same time. In essence, all the uses that require the value are 

performed first, then it is acknowledged. Only strictly contradictory programs are disallowed (see 

below). Appendix A has more details. 
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7.4.3 An example: the replicator 

It is often useful to be able to replicate data sequentially; let us therefore consider the process 

REPl:::: * [ L?x; c:= true; * [ c ---+ R!:r ; C?c ] ] . 

If we are to implement REP with the methods of Chapter 5, we shall have to remove the nested 

loop from this program and rewrite it using value probes. The result of this is3 

REP2:::: 

*[[ C=true ---+ R!(Li.), C? 

o C = false ---+ R!(L?), C? 

]] 

The REP2 program is not, strictly speaking (given the usual semantics of CHP), equivalent to 

REPl; but it is equivalent under the assumptions of slack-elasticity. The transformation from 

REPl to REP2 is anything but obvious; it is difficult to explain what it is that makes REP2 a 

reasonable program for an implementor to compile into a circuit and what it is that makes REPl 

unreasonable. 

In the PLl language, we must declare the variables; this is no drawback, since declarations 

would anyhow be necessary for specifying the variable types at some point before compilation into 

the target PRS/circuit; we thus arrive at, e.g.,4 

define rep3(e1of2 c,l,r) 

{ 

communicate { 

true -) c?,r!l; 

c==O -) 1?; 

} 

} 

There are two executable statements in this PLl program: 

true -) c?,r!l; 

c==O -) 1?; 

3The Spanish inverted question mark, j" is the notation used for the recently introduced channel peek operation 
in CHP [33, 66). 

4We should note that the semicolons at the end of each line are syntactic, separating the two possibly concurrent 
statements true -) c?,r!1 and c == 0 -) 1?: in this regard, these semicolons have the same role as the commas in 
the interface declaration elof2 c ,1, r; on the other hand, the comma in c? ,r! 1 is semantically meaningful, signifying 
parallel execution. There should be no confusion since there is no way of specifying sequential execution in the PLI 
language beyond the global sequencing that is implied by the process structure itself. 
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We call the construct c==O -> l? a guar'derl command (the guarded-command idea is due to Dijk­

stra [21]), where c==O is called the gua.rd, and l? the command or action; 1 we occasionally shall 

refer to as an action variable. 

It is worthwhile stating here-the appendix explains in more detail-that the semantics of PL1 

are such that a process's concurrently executing r! 1 and l? presents no t.rouble: the actions are 

sequenced by the implementation so that they shall be non-interfering. Likewise, the implementation 

will see to it that the action c? is delayed enough that. the condition c==O may be safely evaluated. 

Why should we use the PL1 language, and in what. sense is it preferable to CHP? The answer 

to these questions follows from the PL1language's being capable of expressing only a small fraction 

of what the CHP language can express; however, it is a fraction that we know how to compile into 

efficient APL and QDI circuits. To some extent, we use the PLI language so that the compiler may 

avoid the difficult problem of determining that REP2 is a reasonable implementation of REPI or 

that rep3 is a reasonable implementation of either; we should also like to avoid stating exactly what 

subset of CHP shall be a legal input to our circuit compilation method. 

The PLI language is not intended to replace the CHP language; on the contrary, the author 

expects that software tools will be written t.hat shall be able to automatically convert CHP into 

PLl, or better yet, into PL1-equivalent data struct.ures. 5 

7.5 Compiling PLI 

Compiling PLI programs, regardless of the target language, is a task best carried out in phases. 

The first phase, parsing and analysis of the input. program, is common to each target; the sec­

ond, generating the output, varies with the t.arget. Figure 7.1 shows the resulting structure of the 

compiler: here we have shown the three back-end modules for generating different kinds of target 

representations, viz., one module that generat.es Modllla-3 [65] code that shall compile and link as 

part of a Modula-3 simulation system, another for generating QDI circuit descriptions, and a third 

for generating STAPL circuit descriptions; the last QDI and STAPL generators generate CAST that 

describes a single process and that shall have to bp combined with some infrastructure ("header 

files") to be useful. 6 

The intermediate form of the compiler is a Modula-3 data structure, not a file. This data structure 

5 Unfortunately, we do not have such tools today, and he hopes that by making explicit the kinds of information 
that can easily be compiled from, minds will be stimulated into solving the CHP-PLI compilation problem. 

6 At the time of writing, there are two PLI compilers. The first, written in C, generates C code (not Modula-3) 
that will work within a fast but rudimentary simulation environment.: in this environment, function calls are used 
for context switches; hence, execution speeds are approximat.ely 3 x higher than for the same code using even very 
light-weight threads. This compiler can also generat.e rudimentary QDI production rules, which are correct but 
inefficient. 

The second, written in Modula-3, generates efficient &; optimized STAPL circuits; it can also (this work, still 
in progress, is due to Abe Ankumah [4]) generate QDI circuits; its abilities of generating high-level language code 
(Modula-3) for simulation purposes are yet unfinished work. 

We shall mainly be concerned with the structure of the second compiler and especially with its STAPL back-end. 
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Figure 7.1: Structure of the PL1 compiler. Files are shown in dashed boxes; program modules in 
solid. 

is an object, called a PLlprocess. T. The back-end modules are implemented similarly: each back­

end module specifies an object type that inherits many of its properties from a generic "process 

object-type," ProcessSpec. T, which incidentally is also the supertype of the PLlprocess. T. 
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7.6 PLl-compiler front-end 

The PL1 compiler represents the program being compiled as a Modula-3 object; all guards and 

actions of the program are represented in terms of binary decision diagrams (BDDs) [12].7 Three 

levels of representation are used for data: first, the compiler front-end evaluates all PL1-language 

expressions as two's-complement numbers (a BDD expression is used for each bit of the numbers, 

the unspecified bits being treated as false); secondly, when the front end passes the results of its 

analysis to the back end, it uses a unary encoding, which makes the results suitable for the back 

end's compiling into circuits that use delay-insensitive codes; lastly, the back end generates the PRS 

for the circuit using a sum-of-products representation. 

7.6.1 Determinism conditions 

After parsing the input program and generating the appropriate BDD representations for the ex­

pressions used in it, the first task of the compiler front-end is the checking of some remaining 

determinism8 conditions: while the slack-elastic design-style handles determinism issues well, the 

syntax of PL1 allows the programmer to specify meaningless, nondeterministic programs, e.g., 

define mistake(elof2 r) 

{ 

communicate { 

true -> rIO; 

true -> r!l; 

} 

} 

We cannot tell if the programmer intended that mistake should send a ° or a 1 repeatedly on 

r; or perhaps he intended some interleaving? The two henefits of ruling out mistakes like this one 

are: first, that programming mistakes are caught and programs will have well-defined meanings; 

and secondly, that the back-end of the compiler can now use the expressions of the PL1 program 

directly in generating its target PRS: the logical expressions of the PL1 program can be converted 

into production rules without further ado. 

While at first glance it may seem easy to banish programs like our mistake, a moment's reflection 

will show that this is not so. The first-glance solution is to require that actions on a particular 

interface variable or state variable appear syntactically in a single place in the program for each 

7The BDD package used in the compiler was written in C by Ra.iit Manohar. 
SIn light of the fact that the only non-deterministic programs that can be specified in PLl have the kinds of 

nonsensical behaviors discussed here, these might as well be called "meaningfulness conditions." 
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such variable. This is unsatisfactory because it is often desirable to use a particular variable in two 

completely different ways, the choice being based on some arbitrary piece of information: consider 

a process that could either add or multiply its two data inputs based on a control signal; writing 

c==O -> r! (a+b); c==l -> r! (a*b) ; is easy, but if we had to combine the + and * operators in 

a single boolean expression?-at best, a confusing program; much more likely, an incorrect one. 

At second glance, we could simply forbid that the actions on interface variables or state variables 

"appear dynamically" in several places on the same execution cycle of a program. With this view, 

define buffer(e1of2 c,r) 

{ 

} 

communicate { 

true -> c?; 

c==l -> r!l; 

c==O -> r!O; 

} 

would be right, but mistake would be wrong. But what should we make of 

define dubious_buffer(e1of2 c,r) 

{ 

communicate { 

true -) c?; 

c==l -) r!l; 

true -> r!c; 

} 

} ? 

He who would take the position that dubious_buffer is another mistake would not injure reason, 

but the PL1language described in the appendix allows dubious_buffer as having the same meaning 

as buffer. The grounds for allowing it arc a very simple execution model for PL1 programs: on a 

given execution of a PL1 program, all enabled actions are collected and then executed concurrently, 

at most one action to an interface variable or state variable; on the next execution of the program, 

no memory of these events is retained except as specified in explicit state variables. We hence must 

forbid x! 0 ,x! 1; but of the two interpretations of x ! 0 ,x! 0, viz. forbidden and idempotent, we choose 
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the latter (i.e. x!o). 

To check the determinism conditions, the compiler must make certain that whenever two com­

mands are enabled at the same time, any overlapping state variables or send channels are treated 

the same way. In practice, we can also consider any invariant I that the programmer should care to 

mention; to check the conditions for the PL1 program Go -> So (Gso) 0 G1 -> Sl (Gs 1 ) . .. , the 

compiler hence has to run the following: 

forall P = Gi II Gj II I 

if P =j. false then 

forall a E vars( Gsi ) n vars( GSj ) 

assert val(b",Gs i I P)=val(b",Gsj I P) 

end 

end 

end 

What this program does is the following: for each pair of guards Gi and Gj , we check for a non-zero 

overlap of the pair of guards given the invariant I. If a pair of guards does overlap (i.e., if it is 

conceivable that they should both be enabled at the same time), we must check the equivalence 

of expressions sent on the same channels; the channels that are mentioned for both the guarded 

commands are given by the expression vars(Gs i ) nvars(Gsj). The last step is checking that the 

values that are sent do match; we check this conditionally on every bit of the two's-complement vector 

ofBDDs, given the overlap condition P-this is denoted by assert val(b",Gsi I P)=val(b",Gsj I P). 

He that yet insists that we should forbid x! 0 ,x! 0 cannot cite the complexity of determinism­

checking in his favor: it would be quite as difficult to figure out, as we anyway must, which guards 

overlap as it is to carry out the described determinism checks; the programmer's extra freedom 

coming at so little cost, we should be miserly to deny him it. 

7.6.2 Data encoding 

Once the compiler front-end has checked the determinism conditions, it generates the expressions for 

assignments and sends in terms of two's-complement BDD expressions. Expressions that can take 

on more than two values, e.g., for those variables declared 10f4, 10f8, etc., are thus represented by 

a vector of BDDs.9 The expressions are first generated in terms of sets of guard-value pairs (G, E) 

for sends and assignments and simply guards G for receives; the list entries are collectively called 

actions. 

9It is a current implementation-restriction that variable8 must be of the form lofn, where n is a power of two. 
The e in elof2 is present for historical reasons only; being logical, we should write 10f2 in the declaration and leave 
the e to be filled in by the QDI-compiler back-end. 
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Let us use as an example the two-way, 1-of-4 merge: 

define merge2_4Celof2 c; elof4 la, lb , s) 

{ 

communicate { 

c==O -> s!la,la?,c?; 

c==l -> s!lb,lb?,c?; 

} 

} 

The BDD representation will be: for c, be; for la, the vector [b,a,o, bla,d; for lb, the vector [blb,O, bZb,I]; 

and for s, the vector [bs,o, bs,I]. The guard-value set for s is {(be, [bZb,o, blb,l]), (,be, [bZa,I, bla,o])}· 

The compiler's first step towards generating the logic expressions for sends and assignments from 

the BDD representations is to loop through all the possible values v for the outputs. If we consider 

an action variable x, then we may state the condition c that v is sent on or assigned to x by a single 

action (G, E) thus: c = (E = v) 1\ G. Since we have ensured that actions are non-interfering, we 

can aggregate the conditions for v on x for each of the actions in the action set for x, Ax; we now 

introduce Xv as being the (unqualified) condition upon which the value v is sent on or assigned to x: 

.T v = V (E; = v) 1\ G; 
iEA" 

(7.1) 

In terms of our example, we may illustrate by considering S2: v = 2 is equivalent to [false, true]. 

Considering the first element of the guard-value set, we may compute c = (E = v) 1\ G: ,bZb,o 1\ 

blb,l 1\ be; considering the second, we compute ,b,a,o 1\ bla,l 1\ ,be. Hence 

(7.2) 

The next issue that we need to handle is that the expression that we have computed for determin­

ing whether we shall send a value Xv is in terms of a BDD on the two's-complement representation of 

PL1 variables, whereas Xv itself is already suitable for a unary encoding. Hence we shall have to con­

vert the representation of the BDD for Xv to a unary representation. Substituting unary expressions 

for the two's-complement expressions is tlw most straightforward way of doing this. We introduce 

the unary "rails expression" T:r,i as the BDD describing the condition when action variable x takes 

on value i; we now have that we should in our example replace be f-t Te,l and bza,o f-t Tla,l V Tza,3' 
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We also have the useful invariants, due to the l-of-n encodings, that 

"Ix :: Vi :: Vj :.i I- i : r',",i =? ,rx,j' (7.3) 

Returning to our example, we see that we may write S2 in terms of the T'S as 

It is immediately obvious that some simplifications can be made; e.g., we observe that Tlb,3 is 

unnecessary in '(Tib,l V Tib,3) /\ (r'uI,2 Vrlb,:J) /\ 7'e,l since it appears in the form ,x /\ ,rlb,3 /\ (Tib,2 Vrlb,3), 

and rlb,2 =? 'Tib,3' Following this hint, we simplify using Equation 7.3 and get that 

S2 = 7'lb,2 /\ T c ,l V Tia,2 /\ ,r c,l· (7.5) 

This is almost what we should like to see, hut ,re ,l is cause for concern. The reader will recall that 

our final objective is the generating of domino 10gic. 1O The evaluation part of domino logic consists 

of n-transistors only, and with the data encodings that we use, we cannot directly test a negative 

expression like ,re,l' What we should realize is that ,re ,l is not to be understood as testing that 

"the voltage on the circuit node c.l is close to GND" -after all, we have not brought up anything 

at all about circuits in our discussion of PLl, so why should we think this?-instead, it is to be 

understood as meaning "the value of c.l will not become close to Vdd on this execution cycle": 

the very same statement that can in a slack-elastic system only be tested by "the value of c.O has 

become close to Vdd," i.e., we must replace ,re ,l f-7 7'c,o, and we should similarly treat any other 

negated literals that remain after simplification. Once we have done this, we may directly identify 

the rx,i BDD literals with the actual circuit nodes :r:.i. 

7.7 PLl-compiler back-end 

The PL1-compiler back-end is implementation-technology dependent, and therefore what we learn 

here need not apply to all back ends; broadly speaking, the back ends that the author has imple­

mented have fallen into two categories: circuit generators and software generators. 

The software generators are useful for fast high-level simulation that captures enough of the 

synchronization behavior of processes to ensure that the system being designed does compute the 

right thing and does not deadlock or exhibit other unwanted characteristics; simulation at this level 

lOWhile this discussion is phrased in terms of circuits, the reader should bear in mind that it applies equally well to 
software implementations that use shared variables: the na'ive implementation of .re,l that we avoid in the hardware 
would in the software involve the testing of a channel's being empty, i.e., a negated probe. Either na'ive implementation 
destroys slack-elasticity, whence they must be avoided and the semantic interpretation that we take in the text must 
be substituted. 
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is even useful for capturing reasonably accurate performance estimates. Simulation at this level is 

much faster than what is possible with PRS-level simulators (on the order of two to three orders of 

magnitude). 

7.7.1 Slack 

Because predicting the exact amount of slack that shall be present in a circuit implementation of a 

PLl program can be difficult (we shall see reasons why this may be so), we desire that the software­

simulator implementation of the program should have an amount of slack that helps in finding bugs. 

Manohar has proved [45) that adding slack to certain kinds of deterministic and non-deterministic 

systems (which he calls slack-elastic) cannot change the degree of nondeterminism or cause deadlock, 

whereas it is obvious that removing slack may cause deadlock; hence the software simulator should 

provide, as far as possible, at most as much slack as the hardware implementation. Things having 

been thus arranged, we should know that if the software implementation runs correctly, then the 

hardware implementation, which has at least as much slack everywhere, must also run correctly. 

Why should it not be entirely obvious how much slack a hardware implementation of a PLl 

program shall have? The answer is that we should prefer allowing the compiler back-end to adjust 

the amount of slack, if it can thereby improve the circuit implementation. 

Let us consider two examples. First, the full-addprY 

define fa(elof2 a,b,c, s,d) 

{ 

communicate { 

true -> a?,b?,c?,s! (a+b+c)&Oxl,d!!! ((a+b+c)&Ox2); 

} 

} 

If we compile fa into a circuit (either STAPL or QDI), we find that the obvious production rules 

for the carry-out d have the form 

... /\ ((a.O /\ b.O /\ c.O) V (a.O /\ b.O /\ (.1) V (n.O /\ b.l/\ c.O) V (a.l/\ b.O /\ c.O)) -t d_.O-J,. 

... /\ ((a.l/\ b.l/\ c.l) V (a.l/\ b.l/\ c.O) V (a.l/\ b.O /\ c.l) V (a.O /\ b.l/\ c.l)) -t d_.l-J,., 

where· .. stands for technology-dependent control signals. Because a slack-elastic system's correct­

ness depends only on the sequence of values sent on its channels and not on the timing of those 

llThe syntax of d!!! ((a+b+c)&Ox2) is something of a puzzle to the uninitiated, but should not frighten him that 
has experience with both C and CHP programming: the first exclamation represents the channel send and the 
next two represent logical inversions. In Moclula-3, the same statement would be written far more clearly, e.g.: 
d.send(Word.And(a+b+c,2)#O). 
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values, and because we may assume that a correct system does not deadlock, we may infer that 

the expression a.O /\ b.O /\ c.O V a.O /\ b.O /\ c.l may be "simplified" to a.O /\ b.O. This is especially 

desirable for the full-adder, because cascading full-adders into an n-bit adder will lead to a design 

whose latency is limited by the length of the carry chain; if we do not make the "simplification," 

then n will always determine the input-to-output latency of the circuit, since the carry information 

must always propagate from the least significant bit to the most significant bit, regardless of the 

disposition of the data; if on the other hand we do "simplify," then what matters is only the length of 

the longest string of carry-propagates for the particular pair of n-bit numbers being added. (Asyn­

chronous designers are familiar with this result; but see Section 8.4.2 for some disturbing & relevant 

observations.) There is really no reason for avoiding the replacement: the circuit will be simpler and 

faster, and it will have more slack, slack that may allow the system to run faster because there are 

fewer data dependencies. 

Secondly, let us consider the two-way merge: 

define merge(elof2 c,la,lb,r) 

{ 

} 

communicate { 

true -> c?; 

} 

c==O -> r!la,la?; 

c==l -> r!lb,lb?; 

For this program, the obvious production rules would be as follows: 

... /\ (c.O /\ la.O V c.l /\ lb.O) -t r·_.O-J­

... /\ (c.O /\ la.l V c.1 /\ lb.1) -t r·_.l-J-

Can we make the same sort of "simplification" as we did for the full-adder? Yes and no. In logical 

terms, the "simplification" can be stated as a weakening of the production rules that respects the 

determinism conditions; any such weakening is permitted. In merge, we are permitted to weaken 

the above thus: 

... /\ (c.O /\ la.O V c.1 /\ lb.O V la.O /\ lb.O) -t '{"_.0J. 

... /\ (c.O/\ la.1 V c.1 /\ lb.1 V la.1 /\ lid) -t 'f"_.1J. 

But how is this a "simplification"? We have added slack by logical weakening, as before, but the 

circuit has now become more complicated-it has more transistors than before the transformation. 

Except under special circumstances, we should probably avoid this kind of transformation. And 
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he that would say that the extra transistors are a small price well worth our paying would be wise 

to refer to Section 6.2.1: when the la.O /\ lb.O disjunct is enabled (true), the input value on c is 

completely ignored, and we shall have to add completion circuitry; the price was not so small after 

all! 

7.7.2 Logic simplification 

The previous section makes it clear that there are choices to be made at the circuit level. Given 

the BDD representation of c.O /\ la.O V c.1/\ lb.O, which need indeed not look at all similar to the 

straightforward sum-of-products form c.O /\ la.O V c.1/\ lb.O, what production rulel2 should we gen­

erate? Should we weaken maximally? Not at all? 

The answers to these questions depend, of necessity, on things such as the implementation tech­

nology, and in general we should not be surprised to learn that the optimal answers vary from 

situation to situation, even within a single system implemented in a single technology. Instead of 

examining all the possible cases, we shall develop a heuristic procedure for going from the BDDs 

to production rules that are reasonably efficient. In particular, this procedure makes the "right" 

choices for both fa and merge of the previous section. 

Let us take as an example the merge logic described above. The details of the structure of the 

BDD representing c.O /\ Za.O V c.1/\ Zb.O need not concern us overly here, because we are not going 

to make any more use of the special properties of the BDD data structure; the main thing for us 

to remember about it is that it looks nothing like what we want for our circuit implementation: in 

fact, it happens to have the form (the particulars depend on an arbitrary variable ordering, so this 

is only an example): 

re,a /\ (rla,a /\ true V (re,l /\ (rll),a /\ true V false /\ ·rtb,a) V false /\ .rc,d /\ .rla,a) 

V(rc,l /\ rlb,O /\ (true V false /\ .rlb,a) V false /\ 're,l) /\ .re,a (7.6) 

Following the procedure for negated literals we mentioned above, we should arrive at-now repre­

sented as a sum-of-products expression-

c.O /\ Z!L.O V c1/\ lb.O /\ c.1, (7.7) 

where the extra c.1 is obviously superfluous. 

How do we know that the c.1 is superfiuous? Quite simply because 

c.O /\ la.O V c.1/\ Zb.O /\ c.1 == c.O /\ Z!L.O V c.1/\ Zb.O (7.8) 

12Here we are not even considering the important question of how we should convert production rules into transistor 
networks; in this process, there are also choices to be made. 
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for all values of the literals. More generally, we are interested in not the unqualified equivalence of 

boolean expressions, but rather in their equivalence under known invariants. Hence if two boolean 

expressions Band C satisfy 

(7.9) 

for all values of their literals, where I is some invariant known to be true of the system, then 

we should pick between Band C the one that we should prefer to implement; this choice would 

commonly be guided by which of B or C has better performance or lower cost. The weakest invariant 

is true, which was yet enough for the trivial example of removing c.l. More commonly, we shall use 

the invariant of Equation 7.3; this way, we should for instance see that we could simplify c.O A c.l 

as false. 

In fact, several transformations that we do can be treated as boolean simplifications under various 

"invariants." Taking advantage of this, we introduce three separate boolean expressions, as follows: 

• The invariant, I: this is the invariant of Equation 7.3 strengthened with any invariants that 

the user should care to specify in the PL1 source code. For merge, I is ...,(c.O A c.1) A ...,(la.O A 

la.1) A ...,(lb.O A lb.1)P 

• The slack-elastic invariant, S: this is what can always be true in a slack-elastic system, 

namely the statement that some value has arrived on each of the input channels. For merge, 

Sis (c.O V c.l) A (la.O V la.1) A (lb.O V Ib.1). (This is not really an invariant at all, but we call 

it that anyhow because we use it in the same way as the real invariant.) 

• The eventual invariant, £: this is what eventually must be true of the inputs to a process if 

the system is not to deadlock; in other words, [; is exactly the progress condition under which 

a process shall finish its current execution cycle. For merge, [; is (c.O A (la.O V la.l)) V (c.IA 

(lb.O V Ib.1)). (This is a bit more like the usual notion of an invariant than S.) 

We use a simple, greedy algorithm for simplification of the sum-of-products expressions; the 

Modula-3 code for it is given in Figure 7.3. In English, these are the steps: 

• First, clean out any disjuncts that must be false under I. 

• Secondly, try removing literals from the disjuncts, starting with the longest disjunct first-the 

disjuncts are sorted so that this should be easy. The simplifying invariant that is appropriate 

for this operation is I A S. The reason we can remove literals under S is that removing literals 

is a logical weakening operation, which hence increases the slack of the process; any behaviors 

that we thus introduce are allowable under the assumptions of slack-elasticity (this is the 

weakening that we spoke of in Section 7.7.1). 

13Whether we choose to include output variables in the invariants has no effect on the simplification procedure; in 
any case, we leave them out here to keep down the typographical clutter. 
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Disjunct = REF ARRAY OF SopLiteral.T; 
Rep = REF ARRAY OF Disjunct; 

Public = OBJECT METHODS 
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init( from: Bool.T ) : T; (* initialize from a Bool.T literal *) 

toBool() : Bool.T; 
invariantSimplify( invariant, 

disjunctivelnvariant, 
eventuallnvariant : Bool.T) T; 

END; 

T = Public BRANDED "Sop Expression" OBJECT 
rep : Rep; 
bool : Bool.T; 

OVERRIDES 
init := Init; 
format := Format; 
toBool := ToBool; 
invariantSimplify 
map .- Map; 

END; 

InvariantSimplify; 

Figure 7.2: Relevant parts of declaration of sum-of-products data structure in Sop. i3 . 

• Thirdly, try removing whole disjuncts, again starting with the longest disjunct first. We cannot 

use S now because while S may always be true, there is no guarantee that it will: we cannot, 

in the hope that we may simplify the transistor networks, force a process to wait for an input 

on a channel that is not going to be used on the present cycle: that input may never arrive, 

whence the system may deadlock. On the other hand, all that we need to do is to avoid 

deadlock; since [; specifies the conditions that must anyway obtain for avoiding deadlock, we 

can use II\ [; for the simplifying invariant here . 

• Lastly, if anyone of the simplifying steps should succeed, then recurse. 

Referring to the Modula-3 code, we should make it clear that Bool represents the BDD library: 

even though we are here simplifying sum-of-products expressions, we convert the expressions back 

into BDDs so that we may conveniently check the logical equivalences that we must check. Bool. And, 

etc., are the BDD library routines for performing logical operations on BDDs. 

The InvSimplify routine is normally called as a method on a sum-of-products-expression object; 

this expression is referred to as self in the code. Normally, the routine would be called with I in 

inv, S in weakeninglnv, and [; in eventualInv. The sum-of-products expression itself is declared 

as shown in Figure 7.2; i.e., the data structure is an array of arrays of literals, each of which may 

be negated. 

So far, we have phrased the boolean-simplification problem in terms of simplifying the logic used 
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PROCEDURE InvSimplify(self : T; inv, weakeningInv, eventualInv Bool.T) T 
VAR 

res := Copy(Simplify(self»; (* pre-process *) 

fullInv := Bool.And(inv,weakeningInv); 
BEGIN 

SortSopDisjunct.Sort(res.rep-); 
(* first remove all disjuncts that are false under the inv *) 

FOR i := LAST(res.rep-) TO FIRST(res.rep-) BY -1 DO 
IF Bool.And(FromDisjunct(res.rep[i]) .toBool(), inv) = Bool.False() THEN 

res. rep .- DeleteDisjunct(res.rep,i) 
END 

END; 
VAR simplify := FALSE; BEGIN 

FOR i := LAST(res.rep-) TO FIRST(res.rep-) BY -1 DO 
(* for each disjunct, try removing literals, one by one *) 

WITH c = res.rep[i] DO VAR oldc : Disjunct; BEGIN 
FOR j := LAST(c-) TO FIRST(c-) BY -1 DO 

oldc := c; 
c := DeleteLiteral(c,j); 
IF Bool.And(res.toBool(),fullInv) 

Bool.And(self.toBool(),fullInv) THEN 
simplify := TRUE; 

ELSE c := oldc END 
END 

END END 
END; 
IF simplify THEN 

RETURN res. invSimplify(inv, weakeningInv ,eventualInv) 
END 

END; 
VAR oldRep := res. rep; BEGIN 

(* try removing disjuncts *) 
FOR i := 0 TO LAST(res.rep-) DO 

res.rep := DeleteDisjunct(res.rep,i); 
IF Bool.And(res.toBool() ,eventualInv) 

Bool.And(self.toBool(),eventualInv) THEN 
RETURN res.invSimplify(inv,weakeningInv,eventualInv) 

ELSE res.rep := oldRep END 
END 

END; 
RETURN res 

END InvSimplify; 

Figure 7.3: Modula-3 code for boolean simplification. 
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for computing the output values. We can use the same simplification methods for simplifying the 

control signals introduced in Section 6.3.3.1 for the handling of general conditional communications. 

7.7.3 Code generation 

At this point, we have seen how we should generate the logic production-rules. Our compilation job 

is now mostly done. What we have left is the code-generation phase. 

For the most part, code generation for STAPL circuits is straightforward; it consists chiefly of 

adding control signals in the manner described in detail in Chapter 5 and then formatting and 

printing the resulting logical equations. There is little flexibility in this and few real traps that we 

could fall into. Mainly, we need to be concerned with whether we need the "pattern" logic block, 

owing to the presence of conditional communications (Section 6.3.3.1); whether we need to use a 

pulse generator that can be re-armed in several ways, owing to the process's having conditional sends 

(Section 6.3.3.3); whether we need to add foot transistors, owing to the presence of multiple outputs 

(Section 6.1.3); and whether we need to add extra completion circuitry, owing to the presence of 

inputs that go unchecked by the logic computations (Section 6.2.1). 

We having already decided on the compilation method to the extent described in Chapter 5, the 

only real difficulty that remains is the detecting of inputs that go unchecked by the logic computa­

tions. As should be clear from what we have said above of boolean-logic manipulations, an input's 

being acknowledged by an output can be affected by these manipulations. Whereas we could design 

the compiler to take these manipulations into account (in the best of worlds, the compiler should 

treat the boolean-logic manipulations and the completion-circuitry generation as a single problem); 

this has not yet been done, and may even be an unreasonable thing to ask for. The current compiler 

uses a simple (and safe) heuristic for determining whether an input will always be acknowledged by 

the generated outputs. The heuristic works well for all cases that have so far been tested, and it al­

lows a more modular compiler-design than would be possible with a more complicated and accurate 

method. 

The heuristic we use for checking whether a value on an input channel L is acknowledged by the 

outputs has two parts, both of which err on the safe side: 

• First, check if the logic of the computed outputs is such that the outputs must acknowledge 

the input in question. This is the case if, regardless of the disposition of the other inputs, it is 

always the case that the value on L will affect the computed output-i.e., if regardless of the 

other inputs, the value arriving on L can always force a choice between at least two alternative 

outputs on some output channel. If this is so, then no amount of boolean manipulation can 

remove the outputs' checking of the L-value. 

• Secondly, check the generated logic for each output channel: does it require the presence of one 
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literal of L before it will produce an output? The conditions that we can thus determine that 

L will be acknowledged under are the union of the communication conditions for the output 

channels that contain a literal of L in every disjunct of their output logic. 

If either one of the two checks should always succeed, then L is known to be acknowledged by the 

outputs, and no further checking is necessary. Strictly speaking, we should prefer using only the first 

condition (since this is the modular one-the second condition is implementation-dependent), but 

the author has unfortunately found that processes requiring the second condition's being checked 

before they would compile without unnecessary input-completion circuitry are fairly common. 



133 

Chapter 8 

A Design Example: The SP AM 
Microprocessor 

NONSENSE, n. The objections that are urged against this excellent dictionary. 

- Ambrose Bierce, The Devil's Dictionary (1881-1906) 

In the Introduction (Chapter 1), we said-following Carver Mead-that VLSI is a statement 

about system complexity, not about circuit performance or sheer circuit size. Consequently, the 

touchstone that shall determine whether a way of building VLSI is worth pursuing must involve the 

designing of complex systems. Unfortunately "system complexity" is impossible to define directly 

and objectively. The best we can do is to design a real system of at least moderate complexity. If 

we should find that the system so designed performs well or was particularly easy to design or had 

some other attractive feature, then we should know that we are on the right track. 

And this is why this chapter has been written: the only way we could possibly tell whether 

STAPL circuits are any good or whether the PL1 language is at all useful is by designing, with 

them, a complex concurrent system. 

8.1 The SPAM architecture 

The SPAM (Simple Pulsed Asynchronous Microprocessor) architecture is defined in detail in Ap­

pendix B. The SPAM architecture defines a simple 32-bit RISC instruction set. It defines eight 

registers and a number of integer operations, and it is generally intended to be easy to implement 

without making any real sacrifices of functionality. The instruction set is completely orthogonal; 

i.e., all instructions have the same addressing modes, always specified by the same bit fields in the 

instruction word. 

Given what we are trying to accomplish and the resources that have been available, the SPAM 

processor is somewhat more complicated than would have been attempted with the same resources, 

had for instance the PL1 language not existed. \Vc make no comments about the designer's rela-
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SEQSPAM == 
*[ i ;= imem[pc]; 

OpX := gpr [i.r·x] , opy := YMODE(i.ymode)(gpr [i.ry], i.imm); 
opz := OP(i.opcode)(opx,opy), pc := PCOP(i.opcode) (pc, opX, opy); 
gpr[i.rz] .- opz 

] 

Figure S.l: Sequential eRP for SPAM processor. 

tive abilities, and appeal only to general notions of honesty when it comes to the accuracy of the 

simulations. 

8.2 SPAM implementation 

The sequential SPAM is specified by the remarkably simple program of Figure S.l; this program is 

a restatement of the English description in the appendix of how the processor executes instructions. 

8.2.1 Decomposition 

We shall study the decomposition of the SPAM processor into the processes shown in Figure 8.2; 

the decomposition is similar to but not identical to the one chosen for the MiniMIPS. 

+ 
I 
I 
I 
I 
I 

PCUNIT r--- IMEM r---..- DECODE I 
I 
I branch 
I 

J J 
I 
I 

I 
I 

1 
f 

t I 

REGFILE ,. OPER ~ EXEC ~ WB ~ REGFILE 

Figure 8.2: Overview of SPAM decomposition. 

Seven units are identified in the figure: 

• PCUNIT, responsible for generating the program-counter values representing the addresses 

in the instruction memory of the instructions that are to be executed. PCUNIT corresponds 

to the operation pc := PCOP(i.opcode)(pc, OpT, opy) of SEQSPAM. 
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• IMEM, the instruction memory. In the simple test-processor we are speaking of here, there is 

no off-chip memory; i.e., IMEM is a memory, not a cache. IMEM corresponds to 

i := imem [pc]. 

• DECODE, the instruction-decode unit. This unit generates the control signals for the units 

that are to execute the fetched instruction. DECODE corresponds to computing i.ymode, 

i. 'T"X , i.'T"Y, i.imm, i.opcode, and i.'T"z. 

• REGFILE, the register file. It contains eight registers. It appears twice in the figure, which 

signifies that it conceptually acts twice for each instruction that is executed: once to fetch 

the operands and once to write back the result. REGFILE corresponds to computing 

gpdi.'T"Y] , opx := gp'T"[i.'T"x] and performing gpdi.r·z] := opz. 

• OPER, the operands-generation unit. This unit is responsible for computing opy in 

Figure 8.1; hence it contains a conditional shift-add combination (see table on p. 190). 

OPER corresponds to YMODE(i.ynwde)(gpr· [i.'T"Y] , i.imm). 

• EXEC, the instruction-execution unit. This unit internally consists of several sub-units: an 

arithmetic-logic unit (ALU), a shifter, and a data-memory unit. EXEC corresponds to 

OP(i.opeode)(opx,opy). In this decomposition, it also contains the part of 

PCOP(i. opeode) (pe, opx, opy) that uses the registers, i.e., the branch comparator. 

• WE, the writeback unit. This unit is responsible for canceling instructions whose results 

should not be written back (see Section 8.2.2); it also notifies the PCUNIT of taken 

branches. WE is not present in SEQSPAM, because it is used only for providing sequencing 

in the decomposed, concurrent version. 

8.2.2 Arbitrated branch-delay 

Most programs that are run on general-purpose processors have unpredictable control-flow; they 

are not simple, straightline programs. The straightline program-flow is interrupted by branches or 

exceptions; it is well-known that programs for these processors execute on average only five to ten 

instructions for every branch that they execute. If we treat exceptions similarly to how we treat 

branches, the rate increases further: on some architectures nearly every instruction may raise an 

exception. 

Especially if we treat exceptions and branches together, it is clear that processor performance 

can be improved by adding some sort of Immeh p'T"eri'iction mechanism. Such a mechanism has two 

fundamentally distinct parts: predicting whether a given instruction will branch, raise an exception, 

or do neither; and dealing with mispredictions. While the details of how we might predict whether 
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a branch will be taken or an exception will be raised are outside the scope of our present discussion, 

the mechanism for dealing with mispredictions is not. 

A mechanism for arbitrated precise-exception-handling, used in the MiniMIPS processor, has 

been presented by Manohar, Martin, and the author [47]; a similar one by Furber et al. [88]. The 

SPAM processor uses such an arbitrated mechanism for normal branches; since it does not have 

exceptions, there is no need for a precise-exception mechanism; but having handled branches in this 

way, adding exceptions should be easy. 

The details of the mechanism are available in the paper, but the basic idea is very simple: the 

PCUNIT generates the sequence of program-countpr values that we a priori believe to be the most 

likely. The corresponding instructions are fetched from instruction memory and executed. Results 

are written back to the register file and data memory in program order; if the control flow takes an 

unanticipated turn, the instructions that were fetched but should not be executed are yet executed, 

but the results of these executions are discarded. Finally, the PC UNIT is informed that the control 

flow has changed; it then begins fetching the instructions corresponding to the updated control flow. 

As is easily understood from the preceding description, the arbitrated mechanism is flexible and 

could accommodate a wide variety of predicted control-flows. In practice, we have as yet only used it 

predicting a straightline control-flow. l In other words, the processor fetches instructions sequentially, 

assuming (in the MiniMIPS) no exceptions or (in the SPAM) no branches; if the assumption turns 

out to have been wrong, the unwanted instructions are discarded and fetching begins from the 

exception-handler address (in the MiniMIPS) or from the branch-target address (in the SPAM). 

The arbitrated mechanism allows informing the PCUNIT of control-flow changes only when they 

occur; it becomes unnecessary to inform it, for each instruction that does not change the control 

flow, that they do not occur. This means that the fetching of instructions is effectively decoupled 

from the executing of them. 

In the SPAM processor, the canceling of unwanted instructions and the informing of the PCUNIT 

of control-flow changes are handled by the write back unit, WE. When a branch is executed and an 

impending control-flow change becomes apparent (in the EXEC), this information passes via the 

WE on a channel to the PCUNIT. As we noted, the communications on this channel are conditional. 

In Figure 8.2, this is illustrated by the channel's being drawn dashed. 

8.2.3 Byte skewing 

Classic QDI design-styles, such as the one used ill the design of the Caltech asynchronous micro­

processor [53] and the Philips Tangram system [9], treat QDI-system design in a control-centric 

way: first, the control structures that are necessary for implementing bare, dataless handshakes are 

1 We should point out that the MiniMIPS processor has a second mechanism, different from the one described here, 
for performing branch prediction; this branch predictor uses the slightly more sophisticated backward-taken-forward­
not-taken ("BTFN") predictor. 
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designed, and then the bare channels are widened to carry data; logic for computing can be inserted 

in appropriate places.2 

While this method of designing the circuits elegantly takes us from a collection of small processes 

that implement only the handshakes to processes that communicate (and compute) with data, the 

large drawback is that the slack of the system is fixed at the time that the control is designed, unless 

special measures are taken. For instance, handshakes between units (which for control circuitry 

consist only of bare wires but are much more complicated in the finished system) can limit the 

performance of a system. 

One of the main innovations of the MiniMIPS processor project was the slack-elastic design­

style [55]. The slack-elastic style allows the introducing of slack gradually during the decomposition 

instead of all at once at the beginning; among other things, this allows our breaking the handshake 

cycles into smaller pieces, thus achieving higher system throughput. 

In the MiniMIPS, we distributed the control to the datapath via a logarithmic tree. In other 

words, if control information is required at the level of hit processes (or more commonly, at the 

level of l-of-4 processes), this information is copied out in a pipelined tree. Normally, a four-way 

copy would copy the control information to each of the bytes, and the bytes would be designed as 

single, large processes, with the bit or l-of-4 "processes" actually being fragments and not complete 

processes (i.e., the smallest part of the design that communicates with its environment entirely on 

channels is the byte-sized process). 

The MiniMIPS logarithmic tree is not the only way of distributing the control. If throughput is 

the only concern and the latency of computation is a secondary issue (e.g., in DSP applications), 

each bit of the datapath can be made to copy the received control at the same time as it performs its 

data computation. This approach, called bit skewing, was used in the asynchronous filter designed 

by Lines and Cummings [18]. 

Any number of compromises can be imagined. Figure 8.3 shows three ways of distributing 

the control. Importantly, in a slack-elastic system, which way we finally choose is not visible in the 

high-level description. Datapath processes are marked "D" in the figure; the remaining processes are 

simple copies, although the initial copy can sometimes be combined with the preceding process. For 

the SPAM implementation, we choose method (c), which combines aspects of both the logarithmic­

tree method and the bit-skewing method. We call this byte skewing. 3 

2 A good intuitive understanding of this procedure can be had by comparing with how the Incas built suspension 
bridges across gullies in the Andes. First, they would send a runner through the jungle with a light rope; having done 
this, they would pull the rope up from the jungle Hoor until it fan across the gUlly. Then they would use the thin rope 
to haul a much thicker rope across, a rope thick and strong enough to carry the persons, llamas, etc., that needed to 
cross the bridge. The bare handshakes are the "thin ropes" and the full-fledged data channels with computation are 
the "thick ropes." 

3We should note that the datapath operation's being implemented in eight-bit chunks in (a) and in two-bit chunks 
in (c) is an issue separate from t.hat of byte skewing. The chief reason we choose to implement the operations in 
two-bit chunks in the SPAM processor is because many of t.he algorit.hms used for compiling PLl programs (mainly 
the BDD code) require resources that are roughly exponential in t.he size of the process being compiled; hence, it is 
much easier to compile these smaller pieces automatically than it would be to compile the eight-bit MiniMIPS chunks. 
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D 

(a) (b) (c) 

Figure 8.3: Three ways of distributing control, shown on a hypothetical datapath operating on 32 
bits encoded as 16 1-of-4 values. (a) MiniMIPS method: two-stage copy to four byte-wide processes. 
(b) Asynchronous-filter method: linear tree (list) of control copies to 16 processes operating on 1-
of-4 data (bit skewing). (c) SPAM method: linear tree of control copies to four four-way copies and 
thence to 16 processes operating on 1-of-4 data. 
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The reason we should avoid method (b) in a general-purpose processor design should be obvious: 

the latency penalty is simply not acceptable. But what is wrong with (a), the MiniMIPS method? 

Compared with it, byte skewing as in (c) has the following advantages: 

• The method is easily scalable; going from 32 bits to 64 bits is simply a matter of arraying more 

cells. This is why we have "grounded" the top of the figure: by using a bit bucket here, we 

pay a small penalty of unnecessary data-replication but gain the benefit of being able to array 

identical datapath-cells. Scaling the datapath for method (a) involves adding an additional 

level to the tree as well as new wires that cross the datapath (new wiring slots must be found 

for these). 

• The wires are shorter-no wires cross the entire width of the datapath. 

• There are fewer wires; instead of O(logn) sets of wires, each enough for crossing the entire 

width of the datapath, there is only one such set. In the limit of wide datapaths, (c) will hence 

use less energy than (a). 

• Byte skewing allows for simpler implementations of many arithmetic operations, e.g., addition. 

• The layout is far simpler. 

The importance of the shorter wires and the simpler layout should not be underestimated. 

Naysayers would retort that byte skewing adds to the latency of computing, which in itself is 

enough for them to say no; this is true, but only to an extent. Comparing (a) and (c) in Figure 8.3, 

the latency difference for control to arrive at the top bit of the datapath is really only two stages (we 

should not count the extra pipelining that was added for other reasons); at the same time, we should 

realize that control, generally speaking, arrives sooner at the less-significant bits. In any case, the 

naysayers' argument is weak: the added latency matters only on branches, and the amount of added 

latency is insignificant compared with the average time between branches; it seems likely that the 

throughput advantage and simple design of the byte-skewed control distribution will outweigh it.4 

In the SPAM implementation, byte-skewing is llsed in many places where it might not at first 

seem obvious that it is a good idea. For instance, the bits of the instruction word are rearranged so 

that the register identifiers rx and ry come out of the memory before the other bits of the instruction 

word. This way, producing the instruction operands early is possible; indeed, earlier than would be 

possible using the logarithmic-tree control distribution of the MiniMIPS. 

We should also note that the second stage of the control distribution tree in (a) in many ways behaves electrically like 
a four-way copy, even though it may not do so logically. Fiually, implementing the operations in this finer-grained 
way adds extra pipelining to the processor, the desire for which should be clear from our going from 18 2/ 3 transitions 
per cycle in the MiniMIPS to 10-12 in the SPAM. 

4In the SPAM processor, the only arithmetic operatiou that gets slower under byte skewing is shifting right. But 
of course shifting left becomes simpler and gets faster. 
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8.3 Design examples 

We shall now study two parts of the SP AM design to see two different ways that we can design 

large STAPL-based systems in. First, we shall study the PCUNIT of the SPAM processor; this we 

shall be able to understand completely as a composition of PL1 programs. Secondly, we shall study 

the REGFILE; this design example will show that the compilation methods that we gave in the 

previous chapter are not the only way that STAPL circuits can be compiled in. 

8.3.1 The PCUNIT 

The sequential CHP of a non-arbitrated PCUNIT would be 

pc := iniLpc; 

* [ IMEM _ADDR!pc; pc + = 4; 

DOBRANCH?d; 

] ; 

[ d -+ pc := bmnclLtarget 0 --.d -+ skip 

] 

the PCUNIT learns by reading DOBRANCH whether it has to branch. With the arbitrated mech­

anism, the program becomes instead 

pc := iniLpc, va := false; 

* [ IMEM _ADDR!pc, VAlva; pc + = 4, va := false; 

] ; 

[DOBRANCH -+ pc .- Iwancldm'get - 4, va .- true, DOBRANCH 

o --.DOBRANCH -+ skip 

] 

the reader is referred to Manohar, Nystrom, and Martin [47] for the purpose of the VA channel and 

the implementation of the negated probe --.DOBRANCH. We further add a channel, EXPC, for 

informing the EXEC of what it needs for computing the target of relative branches and another for 

reading the as yet unspecified bmnch_tatget, which gets us to 

pc := iniLpc, va := false; 

* [ IMEM _ADDR!pc, EXPC!pc, VAlva; pc + = 4, va := false; 

[DOBRANCH -+ BRANCH _TARGET?pc, va := true, DOBRANCH 

o --.DOBRANCH -+ skip 

] 

J, 

where we have assumed that the branch target is computed elsewhere. 
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define pcunit_noarb() (10f(2) d; 10f(4) [16J branchto; 10f(4) [16J expc; 
10f(4) [16J imem_addr; 10f(2) va) 

{ 

} 

10f(2) bc, dup_ctrl; 
10f(4)[16J incpc, incpc2, genpc, newpc, pc2; 
10f(2) [32J addend, aug, genpc2; 

pc_sel32() psel(bc, incpc2, genpc, newpc); 
pc_copy() pcopy(newpc, imem_addr, expc, pc2); 
pc_incr() pinc(pc2, incpc); /* INCPC <- PC2 + 8 */ 

/* initialize tokens: output of incrementer gets 8, input gets 4 */ 
<i:16: [ i != 1 -> reset10f(4,O) r_pc2[iJ (pc2[i]), r_incpc[iJ (incpc[i]);] > 
reset10f(4,1) r_pc2_1(pc2[1]); reset10f(4,2) r_incpc_1(incpc[1]); 

slack(4,16,3) sm_incpc(incpc,incpc2); /* slack match common case */ 

/* branch path */ 
addend_dupe) pdup(dup_ctrl, branchto, addend); 

<i:32: [ i!=2 -> zero_gen(2) a[iJCaug[i]);J [ i==2 -> alternatorC) a2(aug[2]) ;]> 
pc_adder() padd(addend, aug, genpc2); 

<i:16: buf_2to4 b24_pc[i] ({genpc2[2*i],genpc2[2*i+1J},genpc[iJ); > 

10f(2) p_ns, p_s; 
singlewidth_slack(2,4) p_s_slaek( p_ns , p_s ); reset10f(2,O) r_s_slack(p_s); 

pcunitctrl() p(d, be, dup_etrl, va, p_s, p_ns); 

Figure 8.4: Top-level CAST decomposition of SPAM PCUNIT (without arbiter). 

8.3.1.1 Adding slack 

Originally, the implementation of the PCUNIT program used in the SPAM processor was designed 

with an amount of pipelining that could be chosell when the system is reset. This was accom­

plished by using a fixed datapath and a number of initial tokens that could be chosen at reset time. 

Considering only the pc-increment function of the PCUNIT, we could write this as the program: 

* [L?oldpc ; R!(oldpc + n * 4)J II SLACK(R, L) , 

where the process SLACK implements a high-slack channel. At reset time, this channel is initialized 

with n tokens, iniLpc, iniLpc + 4, iniLpc + 8, ... , 'imLpc + 4(n - 1), corresponding to the first n 

pc-values. 5 

It turns out, however, that a much simpler design is obtained if the number of tokens is fixed. 

In the program that we shall see, n = 2. 

5 As mentioned in Appendix B, iniLpc = 8 in the SPAl"I architecture, 
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Figure 8.5: Process graph of PCUNIT. Data channels are drawn solid; control channels dotted. 
Initial tokens are shown as circles. 
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define pc_sel(elof2 c; elof4 incpc, genpc, newpc) 
{ 

communicate { 
true -) c?, incpc?; 
c == 0 -) newpc!incpc; 
c == 1 -) newpc!genpc, genpc?; 

} 

} 

Figure 8.6: PL1 program for a single 1-of-4 process of psel. 

8.3.1.2 CAST decomposition 

The top-level CAST decomposition of the PCUNIT (without the arbiter-the arbitrated branch­

mechanism is handled outside this program) is shown in Figure 8.4. This program corresponds 

exactly to the CHP above, except that two pc-operations are in progress at the same time; the 

transformations used for getting hither are described by Penzes [69]. 

8.3.1.3 Subprocesses 

The process graph is illustrated in Figure 8.5. The top cycle in the figure is the one usually exercised: 

an old pe appears on pe2; pine increments it by eight (since two tokens are in the pc-increment loop, 

this is the right amount to increment by); sm_incJlc slack-matches it so that all the processes are 

given enough time to reset their handshakes; psel selects it (as long as there has been no branch); 

pcopy copies it to the various places it is needed. The bottom path, from bmnchto to newpc, is only 

used during branches. This allows a simple ripple-carry adder's being used for padd. The unit that 

follows padd, b24_pc, converts the result of the addition from 32 1-of-2 codes (bits) to the 16 1-of-4 

codes usually used for representing the JlC value. All the processes are byte skewed; for instance, the 

lower bits of an operation in pcopy in time overlap the higher bits in psel. 

Branches are handled by discarding the two tokens in the pc loop and regenerating them. When 

a branch has been detected, pdup sends the branch target address received on bmnchto twice on the 

addend channel. The augend channel meanwhile carries the two tokens 0 and 4. (The alternator 

process driving bit 2 of augend accomplishes * [angend!O; (wgend!4].) 

As is clear from the above, psel is what we can call an "asymmetric select" process. It either 

simply reads and copies incpc2 to newpc or else it reads and discards the value on incpc2 and reads 

and copies the value on genpc to newpc (on branches). The PL1 code for a single bit of psel is shown 

in Figure 8.6. 

The most complex of the PC UNIT processes is the control process pcuni tctrl; this was imple­

mented with a single PL1 program, seen in Figure 8.7. 6 

6The only reason that the state variable s ill this program was implemented using a feedback loop is that the 
PLl compiler as yet does not handle state variables properly; making the replacement manually would save a few 
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define pcunitctrl(elof2 d, selctl, dctl, wbva, s, ns) 
{ 

} 

1* EVENTUALLY c(d) = c(wbva) 
invariant { s == 1 #> d != 1 } 
communicate { 

c(selctl) *1 

true -> s?, d?; 

1* normal op *1 
s == ° && d == ° -> ns!O, wbva!O, selctl!O; 

1* start branching *1 
s == 0 && d == 1 -> ns!1, wbva!1, selctl!1, dctl!1 1* copy *1; 

1* stop branching *1 
s == 1 -> ns!O, wbva!O, selctl!l, dctl!O 1* pass *1; 

} 

Figure 8.7: PL1 program for pcunitctrl. 

The reason that slack-matching is required (s'fTL'incpe) is that the PCUNIT needs to produce a 

new pc every ten transitions, so the loop pine-s7TLinepe-psel-pcopy_· .. should take twenty transi­

tions, but pine takes only ten transitions; hence there are six transitions left (psel and pcopy only 

take two each) that need to be absorbed if we want the system to be able to run at full speed. 

8.3.1.4 32-bit incrementer 

The most interesting of the datapath units is the incrementer. This unit computes, on 1-of-4 data, 

pc2 := pc + 8. As mentioned above, it does this in ten transitions (i.e., five stages). However, it is 

still a very simple unit-the byte skewing allows this. The incrementer consists of three types of 

cells: a bottom adder cell for adding the actual increment, a carry cell that is specialized for adding 

zero plus a carry in, and a buffer for slack-matching. 

Because of the byte skewing, carrying across a byte boundary costs no extra latency; however, 

carrying within a byte does cost. Hence, carrying across byte boundaries is done with a rippling 

carry, and carrying within bytes is done with a carry forwarded to the next pipeline stage. By 

increasing the number of bits that can he incremented at the same time, we can minimize the 

number of carries that need to be done within bytes, which will thus minimize the number of stages 

required for the increment. It appears to he practical to increment pairs of 1-of-4 codes. Hence, the 

incrementer overall gets the structure seen in Figure 8.8. In the figure, only the carry paths have 

been drawn; "S" signifies a slack-matching stage (i.e., a buffer), and "I" signifies an incrementer 

stage. The diagram has been redrawn in Figure 8.9; the beneficial effects of the byte skewing are 

here clear: the structure behaves in time as a pure carry-forward incrementer. 

transistors, but it would also make modifying the program more difficult. 
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8.3.1.5 Implementation and simulation 

The author produced layout for the PCUNIT described here using the magic layout tool, using 

design rules for the HP /MOSIS 0.6-p,m process (see Section 3.2.2). Most of the layout was "quick 

and dirty"; the transistors were sized by hand to avoid bad cases of static charge-sharing (the cir­

cuits included charge-sharing avoidance measures, as well) and for reasonable performance. Shared­

transistor networks were used where performance was an issue. 

The complete PCUNIT contains 54,786 transistors (this includes weak transistors in staticiz­

ers/bleeders and the transistors used for charge-sharing avoidance). The simulation results we shall 

see were obtained using the aspice circuit simulator without considering wiring resistance or capac­

itance. Because of the byte-skewed design-style and its relatively short wires, it seems likely that 

wiring resistance would not be an issue, even in more recent deep-submicron technologies; the extra 

wiring capacitance would cause a performance loss of from 20--40 percent, depending on how much 

the designer cares about speed relative to energy. 7 

Spice simulations show that the STAPL PCUNIT runs at about 1 GHz in its unwired state; this 

is about three times as fast as the QDI unit used in the MiniMIPS. Given that the MiniMIPS would 

be capable of operating at about 220 MHz if a layout bug were fixed, we should expect a fabricated 

STAPL PCUNIT to run at 650-700 MHz in the same technology. 

Some simulation results are shown in Figure 8.10 and Figure 8.11. Figure 8.10 shows expc [1], 

i.e., bits 2 and 3 of the pc, just after reset. Figure 8.11 illustrates the latency of detecting a branch 

from the arbiter input's rising at t = 12 ns to the control for psel's being produced at t;:::;! 13.3 ns; 

the datapath's producing the first branched-to JlC value takes 2-5 more stages, so the total latency 

is about 2 ns. Each 40-ns simulation takes about four hours to run on a 1 GHz single-processor Intel 

Pentium III Xeon computer with 512 megabytes of memory, running FreeBSD 4.2. 

The current consumption ofthe PCUNIT is shown in Figure 8.12 and in Figure 8.13; Figure 8.12 

shows the current consumption when there is no branching, whereas Figure 8.13 shows it for constant 

branching. For the no-branching case, the power consumption is about 1.2 A x 3.3 V ;:::;! 4 W, or 

about 4 nJ per operation. While this lIlay seem a high number (the MiniMIPS fetch unit uses 

about 2.6 nJ per instruction [70]), we must remember that the circuits were not carefully designed 

at the analog level, that they run at 1 GHz, and that whereas the power consumption is high, at 

least the noise-inducing dI / dt is very low. Finally, the latency due to byte skewing is illustrated in 

Figure 8.14; in this figure, we can see that expc [15] is produced about 0.5 ns later than expc [1]. 

7It is fairly easy to show that if a circuit is well-balanced in the sense that its different parts run all at about the 
same speed and respond to sizing in about the same way and we are sizing the circuit for minimum Etn , where n is 
some constant, then we should expect the optimal transistor-sizing to yield a speed that is roughly n/(n + 1) of the 
simulated speed without parasitics. For many applications, 'It = 2 is a reasonable choice [55J; this choice can also be 
justified on theoretical grounds, as long as we are allowed to vary the supply voltage of the system being designed. 
For n = 2 we should expect the optimally sized circuit to run about 70 percent as fast as the ones we are presenting 
here. (Note that the circuits we present here are not entirdy unloaded-some wires are present, and some transistor 
parasitics, e.g. edge capacitances, are also present.) 
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We should point out that the circuit is a simplistic one: the slack-matching of the incrementer 

is done with standard left-right buffers. Since the number of tokens is known at compile time, we 

could easily use higher-slack buffers that use less energy and fewer transistors for the same amount 

of slack. It seems likely that nearly half the energy could thus be saved. A little less easily, the 

PCUNIT could be redesigned to have the same input-output specification but to use an algorithm 

optimized for the average case; studies of the MiniMIPS have shown that even greater savings would 

be possible in this way. 

1.4 .----...,.---__,_---~--__r---__,_---._--__y---_, 
"<I OVdd I -/research/apl/apl_uP/deriv/FreeBSD3/deriv" --

1.2 

0.8 

<' 0.6 s-

0.4 

0.2 

0 

-0.2 
0 5 10 15 20 25 30 35 40 

t/[ns] 

Figure 8.12: Current draw of PCUNIT in amperes; no branching. Go active at t = 6.5 ns. 

The most difficult part of the PCUNIT for the circuit designer is the pc incrementer. In our 

decomposition, this unit is used on every instruction fetch; hence the number of 1-of-4 codes that can 

be incremented in a single stage of logic to a large extent determines how fast the whole processor can 

run, for a given degree of speculation. For this reason, carefully designing the pc-incrementer stage 

so it achieves the highest possible throughput and the smallest possible latency becomes necessary. 

In the domino-logic design-style that we use, the circuits perform fastest if transistors are shared 

in the pUlldown paths; in the pc incrementer this sharing is necessary if we want to get acceptable 

performance. The sharing leads to large internal parasitic capacitances and hence to difficulties 

with charge sharing. An example of the had effects of charge sharing is seen in Figure 8.15. The 

figure shows one of the output-logic nodes of the more-significant incrementer-domino as the carry-in 
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Figure 8.13: Current draw of PCUNIT in amperes; constant branching after t = 12 ns. Go active at 
t = 6.5 ns. 
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changes (the output goes from zero to one); because the incrementer computed a result of zero on the 

previous cycle, the internal nodes are charged up, and hence the figure shows almost the worst-case 

charge-sharing possible in this circuit, 

The circuit diagram of the pull-down logic is shown in Figure 8,16; the node that is the source of 

our charge-sharing troubles is marked "X" in the figure, The p-transistors to Vdd and the parallel 

resistors (implemented by weak p-transistors to Vdd with their gates grounded) are used for reducing 

the effects of charge sharing by charging the internal nodes away from GND when the circuit resets, 

By sizing them larger, we can reduce or eliminate the charge-sharing problem, at the cost of a slower, 

more power-hungry circuit, 

:> 
~ 

4 
dut.p,pinc,stage[2j,incr2[Oj,r _[1j,O --
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Figure 8,15: Charge sharing; in the pc incrementer. 

21,5 22 

The PCUNIT was implemented mainly with PL1 processes, Those things that were not designed 

as PL1 processes either already existed (they were simple, hand-compiled processes like the copy 

processes and merge processes required in any STAPL design of moderate complexity) or they were 

hand-designed for flexibility (e,g" the 2 x 1-of-4 code incrementer cell was parameterized to allow easy 

experimenting with different arrangements; the result of compiling a PL1 program implementing the 

finally chosen design would have been similar if not identical to the hand-designed circuit with the 

finally chosen parameters), 
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Figure 8.16: Circuit diagram of compute logic for the upper 1-of-4 code in pc-incrementer. 

8.3.2 The REGFILE 

In the PC UNIT design that we have just seen, we were able to decompose the large-scale unit into a 

collection of PL1 processes, i.e., into a collection of processes whose implementation exactly followed 

the rules of Chapters 5-7. This already snggests that the STAPL technique and the PL1 language 

let us build digital logic systems. One cause for concern is that the transistor count for STAPL 

circuits is fairly high. While technology changes are making this more and more acceptable in logic 

circuits, high transistor-counts are still cause for concern in array circuits, e.g., SRAMs and DRAMs. 

The SPAM processor implementation has three array structures: an instruction memory, a data 

memory, and a register file. As a first step in applying APL techniques to the design of such 

circuits, the register file is a ten-transition-per-cycle APL circuit, using single-track handshaking. 8 

The design that we shall see here uses an additional timing assumption for the purpose of reducing 

the transistor count; it implements an 8 x 8-bit register array in a single process, which would not 

be possible if we were to strictly follow the rules of Chapter 6. It also uses a higher-level design-trick 

inherited from the MiniMIPS design for the purpose of increasing the slack: a special type of buffer 

is used for distributing the register control to the register file in such a way that conflicting register 

accesses (Le., reads and writes, or writes and writes, referring to the same register) are properly 

sThe instruction memory and data memory are simplified versions of the register file: the instruction memory has 
one read port and no write port; the data memory has one read port and one write port. The register file itself of 
course has two read ports and one write port. 
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sequenced, but other accesses can be performed out of order. 

8.3.2.1 REGFILE specification 

The SPAM REGFILE has 8 registers numbered 0--7, of which register 0 is always zero (it may be 

written, but such writes will be ignored); it has two read ports, x and y, and one write port, z. 

Because of the SPAM architecture's orthogonal instruction set, there is nothing very mysterious 

about the REGFILE: it is simply consulted for the execution of every instruction. Hence, its CHP 

specification is 

REGFILE == 
gpr [0] := 0; 

* [ I?i; 

] 

Xlgpdi.rx] , Ylgpdi.ry]; 

[ i.rz 0 -+ Z?_ 

o i.rz i- 0 -+ Z?gpr[i.r·z] 

] 

We should like to implement the REGFILE in a way that allows the reading and writing of registers 

in the core to be performed concurrently; the register core will then be specified as: 

REG CORE == 
gpr[O] := 0; 

* [ I?i; Xlgpdi.rx] , Ylgpdi.ry] , Z?gpdi.r·z] 

If we can implement the REG CORE thus, we shall be able to use simpler circuit realizations of the 

register bits than the general state-bit described in Section 6.4.3.1 (the general state-bit can be read 

and written at the same time, whence it is necessary to copy the value between iterations so that 

the reading does not result in the new value or confusion). 

The main thing that raises concern here is that a register may be read and written on the 

same iteration of REGFILE, but this is not true of the REG CORE program. A register-bypass 

mechanism solves this problem: we copy the input value three ways, delay the write to the register 

file by one iteration, and if the same register is read on the iteration following the one it was written 

on, the value is read from the bypass unit rather than from the register core. The bypass mechanism 

also reduces the read latency for reads of registers that have lately been written. The mechanism is 

essentially identical to the one used in the MiniMIPS. 
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define regfile()(1of(2)[3J rx, ry, rz; 1of(4) [16J x, y; 1of(4) [16J zO, z1, z2; 
1of(2) reg_wb) 

{ 

} 

1of(4)[16J corex, corey, corezO; 
1of(S) cx, cy, cz; 1of(2) bx, by, bxs, bys; 

regctrl() rct(rx,ry,rz, reg_wb, cx, cy, cz, bx, by); 
slack(2,1,3) s_bx({bx},{bxs}), s_by({by},{bys}); 
bypass() b(bxs, bys, x, y, zO, z1, z2, corex, corey, corezO); 
reg_core(true) rco({ cx,cy }, cz, , corezO); 

rco.r[O .. 15,OJ = corex[O .. 15J; reo.r[O .. 15,1J eorey[O .. 15] ; 

Figure 8.17: Top-level CAST decomposition of SPAM REGFILE. 

8.3.2.2 REGFILE decomposition 

The REGFILE is decomposed into three main pieces: the bypass unit, the register core, and the 

register control; the decomposition is shown in Figures 8.17 and 8.18. The register control and 

bypass are further decomposed into sets of PL1 processes, which are then compiled into STAPL 

circuits. The register core is a hand-compiled circuit that obeys the STAPL timing constraints. 

Note that we have split the input channel Z into three: ZO, Zl, and Z2. It turned out that the 

unit merging the results from the different execution units (arithmetic, function block, shifter, and 

so on) was a simple one and could easily take on additional functions. By combining the copying 

of Z that would normally have to occur in REGFILE with the merging function, we are able to 

remove one stage of pipelining from the execution loop, at the cost of this minor cluttering of the 

REGFILE interface. 

8.3.2.3 Register-core cell 

The register-core cell holds eight bits in eight registers (64 state bits) in a single process. The read 

and write ports may be treated as separat(~ units; this is possible because the register control issues 

only non-conflicting reads and writes to the core (n)call that this was the purpose of introducing the 

bypass). 

The (two-read-port, one-write-port) core cell consists of five distinct parts: two read-port sub­

cells, one write-port subcell, one dummy-write subcell, and the state bits themselves. A block 

diagram is shown in Figure 8.19. 

The state bits are organized in pairs; this allows generating the read outputs directly as l-of-

4 codes in the core. The circuitry used for each pair of state bits is shown in Figure 8.20. The 

arrangement of the state bits, the word (i.e., byte) lines, bit lines, pulse generators, etc. is shown 
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Figure 8.18: Process graph of REGFILE. Data channels are drawn solid; control channels dotted. 
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Figure 8.19: Block diagram of 8 x 8 register-core cell; input and output channels are each four 1-of-4 
codes. 

in Figure 8.21.9 As usual, the control wires have been drawn dotted. There are in reality four data 

wires for each of X, Y, and Z. 

Simulations show that this register file operates at about the same speed as the logic circuitry we 

have seen before, i.e., about 1 GHz in 0.6-tLm CMOS without wiring, according to our simulations; 

this indicates that the speed for fabricated parts would be 650-700 MHz. 

8.4 Performance measurements on the SPAM implementa-

tion 

The design of the SPAM processor is complete to the PRS level. Using the assembler mentioned 

in Appendix B, we can assemble programs for it and run them on the simulator. We shall study 

the results of running two small programD on the SPAM: first, a simple straightline program that 

tests the maximum speed of the SPAM processor; and secondly, the program shown in Figure 8.22, 

which computes the nth Fibonacci number. The results were obtained by the author's simulating 

9 Jose Tierno has kindly pointed out to the author that this register file could easily be extended to 32 registers 
while maintaining almost the same performance by making four of the 8 x 8 bit cores we have here but then ganging 
them together simply by putting the output p-transistors ill p;trallel (some modifications to the control circuitry would 
also be needed). This would allow a MIPS- or Alpha-style :~2-elltry register file in a single pipeline stage, operating 
at ten transitions per cycle. 
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Figure 8.20: Circuitry associated with each pair of st.ate bits in register core. Dummy-write circuitry 
not shown. 

the SPAM processor design at the PRS level on a 1 GHz Pentium III Xeon computer with 512 MB 

of RAM, using the csim production-rule simulator; the simulation runs at several instructions per 

second. lo 

8.4.1 Straightline program 

The first program consists of the assembly instruction and rO=rO, rO repeated enough times to 

fill the memory (our implementation has 512 bytl~s of instruction memory; i.e., the instruction is 

repeated 128 times). Because logical operations can proceed at ten transitions per cycle, and because 

the PCUNIT can fetch at that speed, we should expect the processor to be able to execute this trivial 

program at that speed. Running the simulation shows that this is not so. If we average over 260 

instructions, the SPAM processor runs at 12 2/3 transitions per cycle. 

The reason that the SPAM processor cannot completely manage its intended ten transitions 

per cycle is to be found in the register file-execution unit loop. In an effort to keep the SPAM 

simple, the implementation was designed with only a single writeback bus (Z); this causes slack­

matching problems because the execution unit-bypass-execution unit loop is too long: to manage 

full throughput, we should have to have at most five pipeline stages in this loop; we have seven. This 

problem was avoided in the MiniMIPS partly by splitting the writeback bus Z into two separate 

busses that are used alternately; this technique could be used in the SPAM.l1 The fact remains, 

laThe csim simulator was writt.en by Matthew Hanna and Eitan Grinspun as part of the MiniMIPS project. 
llThe other reason that this problem was less t.roublesome in the MiniMIPS was that many circuits used in the 
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Figure 8.21: Overall arrangement of register-core cell. A two 1-of-4-code tall, three-register wide 
chunk is shown. 
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;;; Compute the n+ith Fibonacci number 
.=Ox8 

1i 
1i 
1i 

Start: beq 

End: 

add 
or 
or 
sub 
jmp 
hlt 

ri=15 
r2=O 
r3=1 
ri, End 

r4=r3,r2 
r2=r3,O 
r3=r4,O 
ri=ri,i 
rO=Start 

n 
fib(O) 
fib(1) 

fib(f+i) . = fib(f) + fib(f-i) 

halt the processor--result is in r2 

Figure 8.22: SPAM program for computing Fibonacci numbers. 

however, that back-to-back data-dependent instructions in the SPAM simply cannot execute at full 

speed, because the latency through our units is slightly too long, notwithstanding our efforts to keep 

the forward latency short. 

8.4.2 Computing Fibonacci numbers 

The second program we try is shown in Figure 8.22. It computes the sixteenth Fibonacci number 

using the simple iterative algorithm. 

The Fibonacci-number program needs to execute 5 + 6n instructions; 95 for n = 15. Simulating 

it, we see that it takes 4048 transitions to execute the program (to the point where zero is written 

to rl-92 instructions after reset). In this time, we should have been able to execute roughly 400 

instructions (or at least 300, taking into account or 12 2/3 transitions' minimum cycle time). We 

should expect that the arbitrated-branch mechanism steals a few cycles for every branch, but at 

worst that should take us up to 150 instructions or so. Obviously something else is stealing the 

time. What is the problem here? 

If we examine an execution trace using csim's critical feature, which deduces what transitions 

are on the critical path, we see that the culprit is the instruction sub ri=ri, 1. The pertinent part 

of the trace is shown in Figure 8.23. 

Examining these production rules, we see that the critical path is the carry chain of the datapath 

adder. But was not the point of using a simple ripple-carry adder that we could demonstrate the 

superior average-case performance of asynchronous design? 

It turns out that asynchronous intuition fails us here. It is true that on average, for random data, 

the longest sequence of carries in a ripple-carry adder goes only as log n, where n is the width of 

MiniMIPS were in fact faster than the 18 2/3 cyclf~S per transition that the processor as a whole managed. Since we 
are with the SPAM design aiming at the entire processor's executing at the maximum speed of the individual blocks, 
this option is not open to liS. However, "binary tn,e FIFOs" [18] and similar structures have the effect of absorbing 
slack mismatches even in STAPL systems operating at ten transitions per cycle overall. 
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-dut.e.a.a.f[6].d_.1 -> dut.e.a.a.d[7] .1+ at 405100 
dut.e.a.a.f[6] .fd & dut.e.a.a.f[6].de & dut.e.a.a.b[6].1 & dut.e.a.a.d[6].1 -> dut.e.a.a.f[6] .d_.1- at 405000 
-dut.e.a.a.f[5].d_.1 -> dut.e.a.a.d[6] .1+ at 404900 
dut.e.a.a.f[5] .fd & dut.e.a.a.f[5] .de & dut.e.a.a.b[5].1 & dut.e.a.a.d[5].1 -> dut.e.a.a.f[5].d_.1- at 404800 
-dut.e.a.a.f[4] .d_.1 -> dut.e.a.a.d[5] .1+ at 404700 
dut.e.a.a.f[4].fd & dut.e.a.a.f[4].de & dut.e.a.a.b[4].1 & dut.e.a.a.d[4].1 -> dut.e.a.a.f[4] .d_.1- at 404600 
-dut.e.a.a.f[3].d_.1 -> dut.e.a.a.d[4].1+ at 404500 
dut.e.a.a.f[3].fd & dut.e.a.a.f[3].de & dut.e.a.a.b[3].1 & dut.e.a.a.d[3].1 -> dut.e.a.a.f[3].d_.1- at 404400 
-dut.e.a.a.f[2].d_.1 -> dut.e.a.a.d[3].1+ at 404300 
dut.e.a.a.f[2].fd & dut.e.a.a.f[2] .de & dut.e.a.a.b[2].1 & dut.e.a.a.d[2].1 -> dut.e.a.a.f[2] .d_.1- at 404200 
-dut.e.a.a.f[1).d_.1 -> dut.e.a.a.d[2].1+ at 404100 
dut.e.a.a.f[l).fd & dut.e.a.a.f[l] .de & dut.e.a.a.b[l].l & dut.e.a.a.d[l].l -> dut.e.a.a.f[l].d_.1- at 404000 
-dut.e.a.a.f[0).d_.1 -> dut.e.a.a.d[l].l+ at 403900 
dut.e.a.a.f[O].fd & dut.e.a.a.f[O] .de & dut.e.a.a.a[O].l & dut.e.a.carry_in.1 -> dut.e.a.a.f[O] .d_.1- at 403800 

Figure 8.23: Part of the critical-path transition-trace of running the program of Figure 8.22. Time 
goes upwards; each transition delay is counted as 100 time units. 

the adder in bits; it is furthermore true that most numbers that are added by the average program 

may have better behavior even than that b(,cause they are more commonly small than large. Hence, 

for adding or subtracting random numbers to and from each other or for adding small numbers 

to each other, an asynchronous ripple-carry adder is a good and far simpler alternative to a carry­

lookahead or carry-select adder. But what we are doing in the Fibonacci program is subtracting small 

integers from each other. In this case, the ripple-carry adder achieves its worst-case performance; 

and consistently so. 

The way we can improve the performance of the Fibonacci program is familiar to every hacker: 

we unroll the loop. Thus we remove a large fraction of the subtract instructions (and incidentally also 

of the branches, which themselves are a bit costly). The improved program is shown in Figure 8.24. 

Executing it takes 2324 transitions, a speedup of 1.7. I3ut the critical path still mainly goes through 

the adder. 

8.4.3 Energy measurements 

The author has run the unrolled Fibonacci program through the esim production-rule and energy 

simulator. 12 Using a fanout-weighted transition-counting model that has been calibrated on the Min­

iMIPS, running the unrolled program took 21.5 x lOG esim energy units. Penzes's observations [70] 

of the MiniMIPS suggest that each energy unit corresponds to about 160 f.J; the author calibrated 

the model against the PCUNIT, which took 4.82 x lOu of the energy units to fetch 126 instructions, 

suggesting that the number is a bit smaller for the SPAM (about 105 fJ), if we assume that the 

energy cost of adding all the wiring will approximately cancel the benefit of more careful sizing. 

(Recall that the PCUNIT uses about 4 n.J per operation; see Section 8.3.1.5.) This is not surprising 

since the MiniMIPS does not have the STAPL feedback-path transitions; also esim overestimates 

the energy dissipation for the SP AM because the gate-sharing information was not included in the 

measurements. The unrolled Fibonacci program executes 60 instructions; in the simulation it fetches 

12The author is indebted to Paul Penzes for his providing the esim simulator and helping to run it. 
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n+1th Fibonacci number, unrolled 

r1=15 
r2=O 
r3=1 
r4=r1,1 
r4, StartEven 

r4=r3,r2 
r2=r3,O 
r3=r4,O 
r1=r1,1 

r1, End 
r4=r3,r2 
r2=r4,O 
r5=r4,r3 
r3=r5,O 
r1=r1,2 
rO=StartEven 

n 
fib(O) 
fibO) 

fib(f+1) fib(f) + fib(f-1) 

fib(f+1) := fib(f) + fib(f-1) 

fib(f+2) fib(f+1) + fib(f) 

halt the processor--result is in r3 

Figure 8.24: SPAM program for computing Fibonacci numbers, unrolled once. 

126. We can hence estimate that the energy per operation is 37 nJ per effective instruction or 18 nJ 

per fetched instruction. The MiniMIPS consumes about 34 nJ per arithmetic instruction and about 

21 nJ for a no-operation instruction [70]. 

8.4.4 Summary of SPAM implementation's performance 

The SPAM implementation performs reasonably wdl. In fact, for programs that do not use the 

ripple-carry adder in the worst-case way of the Fibonacci program (unfortunately, all programs 

with short for-loops use the adder thus), the performance is very good: 12 2/3 transitions per cycle 

would correspond to an average fetching rate of over 500 MHz in the now-obsolete 0.6-fLm CMOS 

technology. (This is an honest figure for a hypothetical fabricated chip.) At the same time, we have 

identified a few serious bottlenecks: first, the loop restricting the speed to 12 2/3 transitions per cycle 

could be removed by redesigning the writeback mechanism along the lines of the MiniMIPS; secondly, 

changing the datapath adder from a ripple-carry adder to a traditional carry-Iookahead adder would 

bring us much closer to the goal of executing real programs at ten transitions per cycle.13 We should 

finally remember that the bottlenecks we have identified are not due to the STAPL realization but 

rather due to a microarchitecture that is it bit too simple to be able to achieve the performance 

13Note that we should not redesign the adder without fimt fixing the writeback bottleneck; the author has tried 
replacing the ripple-carry adder with a simple carry-Iookahead add(,r (with full carry-Iookahead across eight bits), and 
this resulted in the Fibonacci program's running slightly slower because of the added latency of the carry-Iookahead 
adder. 
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target. 

8.4.5 Comparison with QDI 

We have now seen the design of a large, concurrent system using the STAPL circuit family. The 

speed and energy advantages of QDI design have been established before [55]; can we compare the 

two design styles? 

The only way of truly fairly comparing' STAPL and QDI would be taking a single specification, 

e.g., the SPAM architecture, and implementing it as well as possible using each of the design styles, 

We have not done this, and obviously it would be a lot of work to do so; most likely no way of doing 

it would even convince the skeptics. 

Nevertheless, we should not shirk our duty of comparing STAPL with previously known tech­

niques. There are four chief dimensions of interest: case of design, speed, energy consumption, and 

reliability; reliability may include tolerance to design errors and noise, and the ability of operating 

over a wide range of environmental conditions. 

8.4.5.1 Ease of design 

Are STAPL circuits easier to design than their QDI counterparts? The PLllanguage shows that it is 

easy to design STAPL circuits, so easy a computer can do it well. But given the similarities between 

STAPL and QDI circuits, it would be easy to write the same software tools for QDI circuits (indeed 

the work is already in progress). And QDI circuits are easier to generalize: there is a compilation 

technique that will take us from eRP all the way to PRS. We must also remember that STAPL 

circuits are more sensitive to sizing; it is not clear how important this is for the designer, since QDI 

sizing must also be verified before fabrication. 

8.4.5.2 Speed 

Do STAPL circuits run faster than QDI circuits'! Undoubtedly. The SPAM example shows that 

something as large as a microprocessor can be designed with circuits that all run at ten transitions 

per cycle, whereas it would be very difficult to do so in less than 18 with only QDI circuits. The 

reason for the difference is that STAPL circuits remove many waits that are necessary for maintaining 

QDI protocols and replace them with timing assumptions. Furthermore, STAPL circuits load their 

inputs less than do QDI circuits, because they generally do not need the completion circuitry that 

is needed in QDI circuits. The SPAM processor parts that we have simulated run three times as 

fast as similar parts from the MiniMIPS. 

It should be noted that STAPL circuits do not offer a magic bullet for dealing with latency 

issues. The latency through a STAPL stage is somewhat smaller than through the same stage of 
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QDr computation, because of the lesser loading of the inputs; but the difference is minor. Some 

might say that STAPL circuits make the job harder for the microarchitect, much as the faster 

improvement in processor speed compared with the improvement in DRAM access-time has made 

his job harder. 

8.4.5.3 Energy 

How do STAPL and QDr circuits compare on energy? To first order, there is no reason to believe 

that they should use very different amount" of energy. The reason is that STAPL circuits have most 

of the paths that are present in QDr circuits: the logic is the same, much of the output completion is 

the same. There is no input completion, nor are there acknowledge wires, but on the other hand, the 

QDr circuits do not have pulse generator". E"timating the energy lost to interference is difficult, but 

so is estimating the energy lost to "shoot-through" current in the combinational completion-networks 

in QDI circuits. 

There is a little more to this story, however. A circuit carrying out the STAPL handshake uses 

the same wires for receiving data as it does for acknowledging it; hence in the limit of single one-hot 

codes, there are only half as many transitions on the interface nodes of STAPL circuits as there 

are for QDI circuits. But in QDI circuits, one can combine the acknowledges by synchronizing at a 

slightly larger grain-size: e.g., in the MiniMIPS, most "elementary" processes (meaning those that 

communicate with their environment entirely on channels) are eight-bit processes, thus amortizing 

the cost of the acknowledge across all eight bits. But in STAPL circuits, little would be gained by 

this. Hence the STAPL circuits invite deeper pipelining. 

In short, this means that while STAPL and QDI circuits can be built that look nearly identical, 

that may be an artificial thing to do. And hence we cannot say that, given a high-level specification, 

its well-designed STAPL and QDI implementations will dissipate the same amount of energy per 

operation. We cannot, for instance, say that STAPL circuits will run three times faster and use the 

same amount of energy as QDI circuits: the higher degree of pipelining in STAPL circuits will use 

a little more energy than that. 

Let us evaluate STAPL and QDI circuits using the Et2 metric; this metric captures the fact 

that by our varying the supply voltage of a CMOS circuit, any speed improvement can be traded 

for roughly twice that improvement in energy. The 1:2 tradeoff is reasonably accurate for a wide 

range of operating voltages. The Et2 metric was introduced in the context of the MiniMrpS by 

Martin et al. [55]; it is more fully explored by Martin [57]. STAPL circuits are about three times 

faster for the circuits we have studied; the transistor count is about twice as high, and there is 

an extra handshake for each 1-of-4 code that is not present for the QDI implementations that we 

compared with. Hence, conservatively estimating' (E t-+ 2E, t t-+ t/3) the improvement in Et2 gives 

that STAPL circuits improve by a factor of about five; to first order, the change in At2 (a metric 
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introduced by Thompson [82]) would be about the same. How this comparison would turn out if we 

compared PL1-described STAPL with similarly generated QDI circuits is less clear, because some 

part of the higher transistor-count of the STAPL circuits is due to our using higher-level design tools 

rather than to the circuit family itself. (The MiniMIPS processor, whence come the QDI circuits we 

are comparing with, was designed entirely by hanel.) 

8.4.5.4 Reliability 

How reliable are STAPL circuits? Since we have not yet seen a fabricated chip, this is not the easiest 

question to answer. The timing assumptions in STAPL circuits are definitely cause for concern. In 

simulations, the author has noticed that. STAPL circuits, when their supply voltage is lowered away 

from the nominal, appear to stop working sooner (at a higher voltage: ~ 1 x VT) than do QDI 

circuits (the author has in the lab successfully operated the 1989 QDI, 1.6-tLm microprocessor [53] 

with Vdd ~ VT/3). These failures are due to the various circuit delays' not changing at the same 

rate as the supply voltage is changed; the STAPL circuits could be engineered to be more tolerant 

to supply-voltage changes by making sure t.hat (7 decreases and ~ increases as the supply voltage 

changes instead of the other way around. Recall that the single-track handshake involves four timing 

constraints; these are captured by (7true, (7faise, ~true, and ~faise (see Figure 5.7). 

As for injected noise, it does not seem that either STAPL circuits or QDI circuits are particularly 

trustworthy. Both design st.yles make much use of dynamic logic; both design st.yles achieve high 

performance when gate sharing is used, which leads t.o charge sharing and t.hence to problems with 

the dynamic nodes. The STAPL circuits do use more dynamic st.ages than do the QDI circuits, but 

on the other hand, charge-sharing-avoiding circuits are easier to design in STAPL circuits. 

STAPL circuits are less tolerant to design errors than are QDI circuits. In a STAPL circuit, a 

single mis-sized transistor can easily lead to complet.e system failure, whereas in QDI circuits, the 

same thing can usually only happen under extreme circumstances (a badly mis-sized transistor on 

a three-transition feedback-loop, for instance). This, however, is something that we can understand 

theoretically, and we saw in Section 6.8.4 how we might deal with the issue. 
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Chapter 9 

Related Work 

Quidquid latine dictum sit, altum viditur. 

~ Anon.Ymous 

This thesis is about asynchronous pulse logic: in essence, it argues that APL circuits are possible; 

that they will compute reliably; and that their performance is better than that of QDI circuits, for 

about the same degree of design difficulty. We have had to cover a wide range of subjects to make 

the argument stick. 

9.1 Theory 

In Chapter 3, we developed a theory for the functioning of APL circuits. No comprehensive theory 

exists that manages establishing the connection from device physics to digital asynchronous logic. 

There have been small steps towards one for QDI circuits. Martin [52] suggested that as long as 

signals ramp monotonically (and quickly), the circuits can be proved to be correct realizations of the 

specifications. Later, van Berkel discovereel that not arranging the signals to behave well can cause 

problems [7]. Greenstreet has come further than others in making the connection complete; his 

work relies on dynamical-systems theory (which to some extent ours does too) [31]. Our work differs 

from these authors' in that we have chosen the pulse as the basic abstraction, whereas Martin and 

van Berkel considered the transition (which is natural since they were dealing with QDI systems) 

and Greenstreet used a more complicated (and more powerful) dynamical-systems model. 

9.2 STAPL circuit family 

We next, in Chapters 5 and 6, developed a family of practical circuits for implementing any digi­

tal specification. These circuits are similar to the "asP" circuits studied by Greenstreet, Molnar, 

Sutherland, Ebergen, and others [32, 61, 80]. The work at Sun (Sutherland, Ebergen, and others) 
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seems aimed mainly at very fast (six transitions per cycle) FIFO controls intended for driving a 

bundled-data datapath. Our work differs considerably from this in that we design the entire system, 

control as well as datapath, using the STAPL model (see section below on PL1 language). These 

other authors also have not studied circuits as complicated or powerful as ours; it seems unlikely 

that the circuits that we have studied should be possible with only six transitions per cycle. The 

"IPCMOS" circuits studied by Schuster et al. at IBM Yorktown Heights [74] are in essence the same 

as the Sun circuits, although the low-level realizations differ slightly. 

Single-track handshakes have been studied before [8, 83]. The chief difference between the earlier 

work and the STAPL family is that the STAPL family is aimed at implementing in a single template 

all the functions that we should care to see in a single process; earlier single-track circuits have 

generally started from a QDI specification and gradually worked in the timing assumptions. We 

have instead started with the idea of a pulse with well-known characteristics, and then we built up 

the entire family around that pulse. 

Earlier work with "post-charge logic," whose circuit realizations are similar to the pulsed asyn­

chronous, was done in synchronous contexts by Proebsting [71], Simon [77, 17], and is today an 

active field of research and development. The work in this thesis was in part inspired by the work 

on the AMD K6 processor by Draper et al. [22]. 

The STAPL circuits are also in some respects similar to the "neuromorphic" circuits pioneered by 

Mead and his group [58]; the "silicon neuron" of Mahowald and Douglas [44] is the closest to compare 

with. The silicon neuron integrates analog inputs and then generates a carefully timed spike, which 

resets its inputs and which can be integrated by other neurons; in basic principle it is similar to the 

STAPL template. The details, however, differ markedly: the silicon neuron is built using transistors 

operated in (slow) analog configurations (especially if they are operated in the subthreshold regime; 

this would be done to make the modeling easier), it uses inputs that are encoded differently (i.e., as 

analog levels), and it is much slower (the speed difference is as much as six decades). To some extent, 

the slowness is intentional on the part of Mahowald and Douglas; their claim is that since the silicon 

neuron is intended for building "machines that interact with real-world events in the same way as 

biological nervous systems," this is the right thing to do. Nevertheless, the author cannot deny 

that the present work has been strongly influenced by the idea that forms the basis of the silicon 

neuron, viz. the idea of waiting for inputs to arrive and then, when appropriate, generating a single 

output pulse of well-known characteristics; as we saw earlier, the careful internal-pulse-timing is one 

of the main differences between the STAPL family and earlier single-track-handshake asynchronous 

circuits. 
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9.3 PLI language 

The PLI language is used for specifying the behavior of small asynchronous processes that are then 

composed (using the CAST language) into a larger system. The PLI language describes processes 

that are similar to the computational elements described in the 1970s and 1980s by Dennis and 

other authors in the dataflow computer field [19]. Necessary conditions for deterministic behavior of 

these systems were implicit in much of their work; the ideas of slack-elasticity were later elucidated 

by Manohar [45], who proved the properties of slack-elasticity for deterministic and certain nonde­

terministic systems that our work and the MiniMIPS depend on. Slack-elasticity in deterministic 

systems was to the author's knowledge first used in the Caltech Asynchronous Filter [18]; how to 

compile the processes needed for building such systems was described by Lines [43], but some of the 

ideas are already present in Burns's [14] and Williams's [85] work. 

The asynchronous slack-elastic method of designing hardware itself was explored in the frame­

work of QDI design, first proposed by Martin [51] as the most conservative, yet realizable compromise 

between speed-independent and delay-insensitive design methods. (We mentioned some of the back­

ground to the earliest work in the Introduction.) QDI design has really been the main inspiration 

for this work: this was the way the first [53] and largest and fastest [55] (i.e., the MiniMIPS) asyn­

chronous microprocessors were designed. The byte skewing we described for the control distribution 

of the SPAM is a hybrid of the bit skewing used in the Asynchronous Filter [18] and the pipelined 

completion used in the MiniMIPS [55]. 

Our pulsed circuits were initially inspired by the problems of compiling from HSE to PRS via ER 

systems; CHP, HSE, and PRS were described by Martin [48, 54]; ER systems are due to Burns [14] 

and were extended by Lee [42]. Taking a different approach to the problem, Myers and Meng [64] 

and Takamura and others [81] have described methods for introducing timing assumptions into a 

QDI system. However, these authors essentially start from QDI systems and attempt to improve 

their performance by removing unnecessary transistors, whereas the method described in this thesis 

leads to quite different circuits, since it does not make the QDI detour. 

The ideas of modular, delay-insensitive asynchronous design owe much to basic work in con­

currency. Hoare's CSP language [36], itself related to Dijkstra's guarded-command language [21], 

is the basis of our CHP. Chandy and Misra's UNITY language [16] may be thought of as a more 

powerful (and hence not directly implement able) version of production-rule sets; UNITY is also an 

application of the guarded-command language. There is a definite scale of semantics: Dijkstra's 

guarded-command language allows arbitrary sequential statements to be executed; UNITY allows 

arbitrary atomic assignments (but no sequencing); and the production-rule language allows only sin­

gle, boolean assignments. In a sense, the STAPL processes themselves are higher-level "production 

rules" with more powerful semantics than in the usual PRS model; in this sense the STAPL model 
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is most similar to UNITY. 

9.4 SPAM microprocessor 

The SPAM microprocessor is itself not revolutionary. It is essentially a simplified MIPS processor; 

this allows us to take maximum advantage of the experiences of the MiniMIPS project. The register­

locking mechanism is the same as that used in the MiniMIPS, and the arbitrated-branch mechanism 

was inspired by the MiniMIPS exception mechanism; it is to a lesser degree similar to the arbitrated 

branch and exception system of the AMULET1 processor [88]. 
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Chapter 10 

Lessons Learned 

If a man will begin with certainties, he shall end ill doubts; but if he will be content to begin with 

doubts, he shall end in certainties. 

- Francis Bacon, The Advancement of Learning (1605) 

10.1 Future Work 

Things remain to be done. The SPAM processor demonstration is yet unfinished, and it would be 

more convincing with working silicon. This is the most immediate task. 

Furthermore, there remain several unanswered questions. For instance, in Section 4.1, we men­

tioned a possible and tantalizing way of dealing with interference: with the ordering of transistor 

strengths opposite to the (worst-case) ordering we chose, it. might be possible t.o build pulsed circuits 

that., instead of failing, operate as NMOS circuits when the inputs are stable for too long. Another 

issue that needs to be explored further is the kinds of waveforms we should use for characterizing the 

pulse generators; speaking from int.uition, t.he rectangular pulse shapes we used do not fit the actual 

pulses observed as well as certain trapezoidal shapes, whence we should expect trapezoidal test­

pulses to yield a better quantitative underst.anding of the behavior of the pulsed circuits. Finally, 

we should of course be happy to remove the infinite-gain inertial-delay; are there more reasonable 

conditions that the circuits can be underst.ood undt~r? 

When it. comes to the circuit family it.self, several quest.ions are unanswered. Is there a more 

parsimonious way of implementing the STAPL handshakes? What can we do about tolerating noise 

(Section 6.8)-should we have some feedback from t.he output in the pulse generator, less internal 

feedback, or some other feedback arrangement (see t.he description of "load lines" in Section 6.8.4)? 

There is a vast space of circuit designs that. has not been explored: one big question is if we 

should always design the circuits so that the transition counts match up; in Section 5.2.1, we note 

that it may not always be optimal to maintain this assumption; either way, t.here are serious timing 

verification issues that. need to be tackled if we want. to ensure that a given circuit design satisfies the 
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single-track-handshake constraint. Our simulations suggest that the circuit family we have given 

works, but that is not enough: we should like to know more exactly how the transistor delays relate 

to the handshake constraints (e.g., Eqs. 5.2 and 5.3). What we need to do here is show how each s 

and x relates to the transistor delays themselves. 

As far as programming tools go, the connection between the PL1language and CAST has not yet 

been made complete; the PL1 compiler also has several annoying "features" that make it somewhat 

difficult to use. 

The SP AM implementation could, aH we noted at the end of Chapter 8, easily be improved. 

The current design is very promising: the circuits are very fast, and we almost achieve the design 

objective of ten transitions per cycle. But it only works well on straightline code and on code that 

does not subtract small numbers from each other. What needs to be done to improve it is fairly 

obvious: a change to the writeback mechanism, a new adder, and~in the slightly longer term~more 

sophisticated branch-prediction. 

10.2 Conclusion 

In this thesis, we have seen the development of STAPL, a new way of building digital logic sys­

tems. The discussion has gone from a simple experiment, through elementary theory, more specific 

circuit theory, a family of circuits that realizes the theory, automatic design tools, and finally to a 

microprocessor-design example. As we said in the Introduction, we should follow Carver Mead and 

make the handling of system complexity the touchstone for this new implementation and realization 

technology. The contribution of this thesis is making it possible to build modular asynchronous 

systems without sacrificing performance. 

So the question is: how did we do with the SPAM processor? Overall, the results were encour­

aging: it was easy to design the processor with the new PL1 language and the old CAST language 

together; the circuit performance was spectacularly good for such a comprehensive circuit technol­

ogy; the performance problems that we ran into were not related to the design style, and they could 

easily be remedied. The chief drawbacks of our new design-style are the high transistor-count (our 

SPAM example has about twice as many transistors for implementing the same function as the cor­

responding hand-compiled MiniMIPS parts) and the high power-consumption; the transistor count 

is something we should not worry about (at least for logic; the REGFILE design shows that it is 

possible to save transistors by compiling things by hand), and the power consumption is mainly due 

to the speed of the circuits. In terms of the Et2 and At2 metrics, the parts of the SPAM processor 

design that we studied suggest that the STAPL circuits are a definite improvement over all previ­

ously known implementation technologies: the improvement is a factor of five over the MiniMIPS, 

which itself is as good as any other single-issue 32-bit microprocessor [55]. 
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Appendix A 

PLI Report 

We have no very useful techniques for protecting the system from software bugs. We are reduced to 

the old-fashioned method of trying to keep the bugs from getting into the software in the first place. 

This is a primary reason for programming the system in PL/I. .. 

~ Vyssotsky, Corbat6, Graham: Structure of t.he Multics Supervisor (1965) 

A.I Introduction 

This report describes Pipeline Language 1 (PL1), a specification language for processes used in 

highly concurrent VLSI systems. The design of PL1 was inspired by developments in asynchronous 

digital VLSI, especially slack elasticit.y and pipelined completion, but the main concepts are also 

familiar from earlier work on the represent.ation of computations as dataflow graphs. 

A.1.1 Scope 

We shall make frequent reference to pr·ocesses in this report. Traditionally, processes are thought 

of as the sequential building blocks of a parallel system. Restricting internal concurrency is too 

narrow a view, and we take the position that processes are simply parts of a parallel system that 

communicate with each other on channels. Arbitrary shared variables are hence not allowed between 

processes. The reader that is satisfied with using shared variables is urged to ignore the metaphysical 

implications of something's being a process; hp can simply t.ake the process as a syntactic construct 

that we introduce for structuring a conCUlTPnt systpm. 

Programs written in PL1 describe processes, not. entire systems. The hierarchy required for 

describing an entire system is expounded in some othpr language, such as the CAST language [46, 78] 

or a general-purpose language like C or Modula-3. 
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A.1.2 Structure of PLI 

The PL1 language is defined by proceeding through several levels. At the lowest level are the 

syntactic tokens, such as keywords and identifiers. These tokens are combined to make expressions 

and actions. Finally, the expressions and actions are arranged to make a process description. 

We discuss the syntax of the language first and the semantics later. 

A.2 Syntax elements 

We describe the PL1 syntax bottom-up: We start with the lexical definition of tokens and proceed 

later to the grammatical definition of language components. 

The lexical components of a PL1 program are comments, keywords, integers, identifiers, expres­

sion operators, and special operators. Out of these components are built expressions and actions. 

We shall use regular expressions [1] for describing the lexical elements of PLl. 

A.2.1 Keywords 

The following are keywords with special meaning in PLl: true, false, void, define, communicate, 

goto, go to, invariant. Keywords may not be used as identifiers. 

A.2.2 Comments 

A comment is, as in the C language, started by /*. The comment includes all the text to the 

next occurrence of */ . Comments do not nest. The text in a comment is without meaning in the 

language. 

A.2.3 Numericals 

Numerical data is limited to integers and can be expressed either in hexadecimal (base 16) or in 

decimal. Hexadecimals begin with the special sequence Ox. 

< numerical >:= [0-9J [0-9J * I Ox [0-9a-fJ [0-9a-fJ * 

A.2.3.1 Boolean numbers 

For convenience, the keyword true is understood, in all contexts, as the integer 1, and the keyword 

false is likewise understood as the integer o. 

< integer >:= < numerical >Itruelfalse 
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A.2.4 Identifiers 

As identifiers, anything is legal that is not a keyword, a numerical, a type identifier (see Sec­

tion A.3.1), or the sequence Ox, and further is described by 

< identifier >:= [$a-zA-Z_O-9] [$a-zA-Z_O-9] * . 

A.2.5 Reserved special operators 

PL1 reserves a few tokens as special operators-they can appear outside expressions, with different 

meaning than when they appear within expressions. The special operators are ->, =, !, and? . Of 

these, ? and -> can never appear in an expression. 

A.2.6 Expression operators 

The PL1 expression operators are inspired by C. Operators are either unary or binary. Note that 

- can be either the unary negation operator or the binary subtraction operator; the distinction is 

made in the grammar. A similar duality applies to +. 

< unary operator >:= -\+\! \-
< binary operator >:= *\/\%\«\»\+1-\<1<=\=<\>\>=\=>\==\ !=\&\-\I\&&\II\#> 

A.2.7 Expression syntax 

Expressions are written as infix or prefix strings of operations on integers and identifiers, as in normal 

mathematical notation or as in C. l 

< expression>:= < identifier> \ < integer> \ < unary operator> < expression> \ 

< expression >< binary oper·ator >< c:rpression > \ « expression» 

A.2.B Actions 

PL1 programs execute actions. Three types of actions are defined: send actions, receive actions, 

and state actions. 

< action>:= < send action> \ < rece'ivc acbon > \ < state action> 

< action subject >:=< identifier> 

< action object >:=< expression> 

< send action >:= < action subject>! < action object> 

< receive action >:= < action s1tbJ·ect >7 

< state action >:= < action s7tbject >=< action object> 

1 Note that parentheses are allowed in expressions. The parentheses that denote optional elements in the grammar 
are set in a larger and lighter font. 
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A.2.8.1 Implicit declaration by actions 

Making an identifier the subject of a send action implicitly declares the identifier as an output 

channel. Conversely, making an identifier the subject of a receive action implicitly declares the 

identifier as an input channel. 
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PLI process description 

The actions and expressions are arranged to make a PL1 process description. For completeness, we 

also define declarations and invariants. 

A.3.1 Declarations 

All PL1 variables must be mentioned in declarations before being used. Declarations can be of 

two kinds: argument declarations and local declarations. Argument declarations declare the input­

output channels of a process; thus, argument declarations define variables that have a type denoted 

by channel type-identifiers. Conversely, local declarations define variables whose types are denoted 

by local type-identifiers. Currently we define a restricted set of data types, viz., 

< channel type identifier >:= elof [1-9] [0-9] * 

and 

< local type identifier >:= 10f [1-9] [0-9] * . 

We currently also enforce the further restriction that all variables are of type lofx or elofx where 

x = 2n for some non-negative integer n < N, where N is implementation-dependent. The restriction 

that x must be a power of two may be removed in a future implementation, but the restriction that 

x must be bounded is likely to remain. 

Thus: 

< argument decl >:= 

< channel type ident~fier > < identifier> (, < identifier»· .. 

< local decl >:= 

< local type identifier> < identifier> ( ,< identifier»· .. 

No syntax is provided for making the explicit distinction between input and output channels. 

However, the implementation will enforce the distinction by checking that either only receive or only 

send actions are performed on a given channel. 

The distinction between argument types and local types is intrinsic to the language, but the 

specific data types provided are subject to change. 

A.3.2 Communication statement 

The communication statement joins a communication condition, in the form of an expression, with 

the relevant actions. 

< guard >:=< expression> 

< communication statement >:= < guard> -> < action> (, < action»·· . 
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A.3.3 Process communication-block 

A PL1 process consists of the following parts, in order: a process declaration, a list of local declara­

tions, a list of invariant statements, and a communication block. Each component is optional except 

the process declaration itself. 

< communication block >:= communicate { 

< communication statement> (;< cmnmunication statement».· . 

} 

< invariant >:= invariant { < expr'ession > } 

< process >:= 

define < identifier> (( < argument decl > (; < argument decl » ... ) { 

« local decl >(;< local decl » ... ) 

« invariant> « invariant» . .. ) 

« comm'u,nication blocK: » 
} 

The process is the highest-level syntactic element in PLl. The interactions between processes 

are handled externally to the language. 
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A.4 Semantics 

The semantics of PL1 may be broadly divided into three categories: expression semantics, action 

semantics, and concurrency semantics. 

AA.l Expression semantics 

All PL1 expressions are evaluated as two's-complement binary quantities. 

We have already covered the syntactic appropriateness of the various PL1 language operators. 

The operations defined in the grammar have the following meanings defined in the following tables. 

A.4.1.1 Binary operators 

The binary operators in PL1 have operator precedence as in C. In the following table, the precedence 

is indicated by grouping, with the precedence falling as we descend down the table. All binary 

operators are left-associative. (In contrast to C, the right-associative assignment is not an operator 

as such in PL1; it is instead part of an action statement.) 
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Operator Interpretation Operand(s) Result 

* Multiplication integer integer 

/ Division integer integer 

% Remainder integer integer 

+ Addition integer integer 

- Subtraction integer integer 

« Left shift integer integer 

» Right shift integer integer 

< Less than integer boolean 

<=,=< Less than or equal integer boolean 

> Greater than integer boolean 

>=,=> Greater than or equal integer boolean 

-- Equal integer boolean 

!= Not equal integer boolean 

& Bitwise AND integer integer 

- Bitwise XOR integer integer 

I Bitwise OR integer integer 

&& Logical AND boolean boolean 

II Logical OR boolean boolean 

#> Logical IMPLIES boolean boolean 

A.4.1.2 Unary operators 

The unary operators have higher precedence than any binary operators and are listed in the following 

table. 

Operator Interpretation Operand(s) Result 

! Logical NOT boolean boolean 

- Bitwise NOT integer integer 

- Negation integer integer 

+ integer integer 

Because of the syntax of actions, expression operators have higher precedence than delimiters 
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used in actions. 

A.4.1.3 Boolean type-coercion 

As in C, coercion between boolean values and integer values is done as follows: 

1. A boolean result used as an operand to an integer operator is interpreted as 1 if it evaluates 

to true and as 0 if it evaluates to false. 

2. An integer result used as an operand to a boolean operator is interpreted as false if it evaluates 

to 0 and as true in all other cases. 

These are the same rules as are used for converting the constants true and false to integers. 

A.4.1.4 Integer type-coercion 

If the size (in bits) of the result of an evaluation does not match the size of the variable that it is 

assigned to or the size of the channel that it is sent on, the result is either sign-extended (if it is 

too narrow) or bitwise truncated (if it is too wide). The use of negative quantities is, in general, 

discouraged since all built-in datatypes are unsigned. 

A.4.1.5 Use of channel identifiers 

An identifier used in an expression that refers to a channel or to a state variable evaluates to the 

current value of the channel or state variable in question. If there is no current value (because 

none has been sent on that channel), then the expression does not evaluate. There is no way of 

accessing a value corresponding to the "undefined" or "no-data" state of a channel. The channel 

value cannot change during the current round of execution because it can only be updated after it 

has been removed by the receiving process. 

A.4.2 Action semantics 

Three types of variables with associated actions are defined in PL1. Send actions are defined for 

output channels, receive actions are defined for input channels, and assignment actions are defined 

for state variables. Channels between processes are first-in-first-out. 

A.4.2.1 Receive actions 

When a receive action is enabled for an input channel, the value present on the input channel will 

be disposed of, after it has been used in any expressions that it appears in. On the next round of 

execution of the process, the next value will be provided, if necessary. 
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A.4.2.2 Send actions 

When a send action is enabled for an output channel, a value equal to the current value of the 

expression that is the object of the send action will be sent on the channel. 

A.4.2.3 Assignment actions 

When an assignment action is enabled for a state variable with an object expression that evaluates 

to w, the value present in the state variable on the current round will be disposed of. On the next 

round of execution of the process, the next value Vi+l = 1U will be provided, if necessary. 

A.4.3 Execution semantics 

The semantics of a PLI process may be defined in terms of an execution. The execution of the 

process may either fail, in which case no actions are performed, or it may succeed, in which case all 

enabled actions are performed concurrently. If the execution fails, it will be retried at a later time. 

The execution of a PLI process can be thought of as the infinite loop: 

Wait until it can be determined, for each g1janl, whether it evaluates to true or false; 

Wait until all values required for computing action object.s are available; 

Concurrently execute all enabled actions. 

The execution of a PLI process may succeed only if enough operands are available such that 

it is possible to evaluate all communication-statement guards either to true or to false (using the 

type-coercion rules, if necessary) and if all values required for computing the objects of the send 

and assignment actions are available. If these conditions do not obtain, the execution will fail. 

The evaluation of the guards and the variables required for computing the objects of the actions 

may be performed concurrently; likewise, the actions may be performed concurrently. However, the 

evaluation of the guards and the variables required for computing the objects of the actions strictly 

precedes the actions themselves-this ensures that the guards and action ob.iects are stable. 

A.4.4 Invariants 

Invariants are provided as a convenience. The programmer indicates that some predicate will hold as 

a precondition of the execution of a program, given that the involved values may be computed. The 

invariant may be used to simplify the implementation, and the implementation may optionally check 

that the invariant is always satisfied and else abort the computation in an implementation-dependent 

way. 
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A.4.5 Semantics in terms of CHP 

The execution semantics of a PL1 program may be described in terms of the extended CHP language, 

which includes the value probe and peek [66]. 

AA.5.1 The channel peek 

The peek i works like a receive, except that it leaves the channel in the state it was in before the 

peek was executed. 

AA.5.2 Channel values 

We use the idea of the value on a channel for defining the value probe. The same idea is also used 

for defining the semantics of expressions in PLl. The value on a channel X, val(X) may be defined 

in terms of Hoare triples as follows: 

{val(X) = v 1\ X}X'?x{x = v} 

{val(X) = v 1\ X}Xl..x{:r = v} 

(But of course X?x and Xix have different effects on the next value that shall be seen on the 

channel.) 

AA.5.3 The value probe 

Slack elasticity allows the value probe 

<, i :: Xi >: P( <, i :: Xi » 

to be defined for one channel as 

X : P(X) = X 1\ P(X)/ 
X-+va\(X) 

and extended to predicates involving multiple channels as 

X, Y: S(X) 1\ S(Y) = X: S(X) 1\ Y: S(Y) (*) 

X, Y: S(X) V S(Y) = X: S(X) V Y: S(Y) (t). 

An alternative definition is possible by defining the value probe directly for multiple channels and 

replacing the equivalence with =00 in (*) and (t), where =00 denotes equivalence under infinite slack. 
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Alternatively, a direct definition of the value probe is possible: 

{X: P(X)}X?v{P(v)} 

{X 1\ ,X: P(X)}X?v{,P(v)} 

{~ X : P(X)}X?v{ ,P(v)} 

However, in PL1 the concept of val(X) is ubiquitous, since it is used directly in expression evaluation. 

A.4.5.4 Semantics in terms of value probe 

To define the semantics of the PL1 process, we must specify what is meant by "waiting until it can 

be determined, for each guard, whether it evaluates to true or false." We therefore introduce the 

tilde operator as follows: 

~ X : P(X) == X : ,P(X) 

For instance, 

~ X, Y: S(X) V S(Y) = X: ,S(X) 1\ Y: ,S(Y). 

At this point, we can define the semantics of the PL1 program. The program 

communicate{ Go -+ Co;·· . ; Gn -+ Cn } 

where the Ci's do not use variables and no action is enabled more than once on a single iteration of 

the program is defined as 

* [ [< 1\ i : n : Gi V ~ Gi >]; 

<II i : n: [Gi ---+ C 0 ~ Gi ---+ skip] > 

] . 

If the Ci's use variables, these must be renamed so that there is no conflict in executing the Ci's 

concurrently. We introduce the notation vars(X) for the set of variables that the action X depends 

on. The program definition is then 
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* [ [< 1\ i : n : Gi V '" Gi >]; 

<II i : n: [Gi ~ < v: v E vars(C,) : Lvl.Av > 0 '" Gi ~ skip] >; 

<II i : n : [Gi ~ Cilv:vEvars(Ci):V-+'\" 0 '" G i ~ skip] > 
] , 

where Lv denotes the input channel associated with the name v and Av is a temporary local variable; 

the notation v -+ Av means that we replace each variable v with the temporary Av. 

If any actions are enabled more than once on a single iteration, the actions must have the same 

action objects (i.e., the same values for sends); multiply enabled actions behave like the single 

execution of one of the actions. 

AA.6 Slack elasticity 

Slack elasticity allows leeway in terms of the exact ordering of actions by PL1 programs. If a system 

is slack elastic, then it does not matter when values are sent on channels, as long as they are sent in 

the right order. The informal definition of the execution semantics of PL1, as well as the definition 

in terms of CHP, provides the least amount of slack possible. Given that the system being designed 

is slack-elastic, the only way in which the specification could be violated by the implementation is 

through the introduction of deadlock. Since the PL1 semantics as defined here has the least slack 

of all possible implementations, any slack-elastic system that behaves correctly and avoids deadlock 

with the PL1 semantics will behave correctly and avoid deadlock using any legal implementation. 

In practice, an implementation of a PL1 process in a slack-elastic system is allowed to produce 

output values as soon as they can be determined, which can be before all the guards have been 

checked. This property can be used to great effect, e.g., in production-rule implementations. 
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A.5 Examples 

A process that repeatedly sends the value 1 on its output channel would be written as follows: 

define bitgen(e1of2 r) 

{ 

} 

communicate { 

true -> r!l; 

} 

A full-adder would be written as follows: 

define fu11adder(e1of2 a,b,c; e1of2 s,d) 

{ 

communicate { 

true -> s!(a+b+c)&Oxl,d!(! !((a+b+c)&Ox2)),a?,b?,c?; 

} 

} 

In the mysterious expression d! (!! ((a+b+c)&Ox2)), the first exclamation mark denotes the send 

communication, whereas the next two are C-style inversions. (The value of the expression !! x is 

zero if x is zero and one otherwise.) 

A two-input merge would be written as follows: 

define merge(elof2 10,11,s; e1of2 r) 

{ 

} 

communicate { 

true -> s?; 

} 

s == ° -> r!10, 10?; 

s == 1 -> r!11, Ii?; 
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A contrived example PL1 program that does nothing very interesting (except illustrate some of the 

syntax of the language) is shown here: 

define eontrivedExample(e1of2 10, 11, e; e1of2 r, z) 

{ 

} 

invariant { 10 + 11 + 2*e > 1 } 

communicate { 

!(e == 1) -> r!10, 10?, z! (e + 10); 

e -- 1 && 11 ° -> r!l1, z!1; 

e -- 1 && 11 1 -> r!O; 

e -- 1 -> 11?; 

true -> e?· . , 

} 

Illustrating the use of state variables, we may write an alternator as follows: 

define alternator(e1of2 r) 

{ 

} 

10f2 s; 

communicate { 

true -> s=!s,r!s; 

} 
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Appendix B 

SP AM Processor Architecture 
Definition 

Nevertheless, The year's penultimate month is not in trllth a good way of saying November. 

- H. W. Fowler, A Dictionary of Modern English Usage (1926) 

B.1 Introd uction 

This appendix describes the Simple Pulsed Asynchronous Microprocessor (SPAM) architecture. 

SPAM is a simple 32-bit RISC architecture intended for hardware demonstration projects. Its 

design reflects a desire of making a high-performance implementation as easy as possible. This is 

not without merit on the software level; for instance, as a result of the desire of keeping the hardware 

as simple as possible, the instruction set of the SPAM processor is completely orthogonal; i.e., all 

instructions use the same addressing mode and instruction format. 

B.2 SPAM OVerVIeW 

The SPAM architecture defines eight general-purpose registers, gpr [OJ through gpr [7J, of which 

gpr [OJ is always read as zero, although it may be written by any instruction. Apart from these, 

the processor state consists only of the program counter, pc. The instructions provided are arith­

metic instructions, load-store instructions, and pc-changing instructions. Changes to pc take effect 

immediately-there is no "branch delay slot." The architecture does not define floating-point oper­

ations, interrupts, or exceptions. 
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SP AM instruction format 

All SPAM instructions have the same format. The instruction format is a four-operand RISe 

format with three register operands and a single immediate operand. The opcode format has two 

fields, which are also the same across all instructions. These fields are the operation unit and 

the operation function. The operation "Y-mode," which determines the addressing mode used for 

conjuring operand opy, is further defined in a fixed position in the instruction. 

SPAM instructions are 32 bits wide. Considering a SPAM instruction i as a 32-bit array of bits, 

we identify the fields of the instruction: 

1. The opcode = i[31 ... 27]' further grouped into: 

(a) The unit number unit = i[31 ... 30]. 

(b) The function fxn = i[29 ... 27]. 

2. The V-mode ymode = i[26 ... 25]. 

3. The result register number rz = 'i[24 . .. 22]. 

4. The X-operand register number rx = i[21 . .. 19]. 

5. The V-operand register number ry = i[18 . .. 16]. 

6. The immediate field imm = i[15 . .. 0]. 
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SP AM instruction semantics 

Because the SPAM instruction set is orthogonal, we may define the semantics of instructions in a 

modular way. An instruction execution consists of the following steps: 

1. Generating the operands: 

opx := gpr [i. rxJ and opy := YMODE(i. ymode) (gpr [i. ryJ ,i. imm) 

2. Computing the result: 

opz:= OP(i.opcode) (opx,opy) 

(a) Computing the next pc: 

pc := PCOP(i.opcode) (pc,opx,opy) 

3. Writing back opz: 

gpr ['i. rzJ := opz 

All instructions are executed in these three steps. Hence, all instructions produce a result that is 

written back in the register file; if the value is not needed for further computation, it should be 

discarded by setting i. tz to zero (in the assembly language, this can be accomplished by leaving 

out the target register). In what follows, we shall mainly deal with how opz is computed (i.e., the 

part above denoted by OP), since all else is the same for all instructions, except that branches also 

need to compute pc (denoted by PCOP). 

B.4.1 Operand generation 

The first operand, opx, is always the contents of gpr [i. rxJ. The second operand, opy, is computed 

from the contents of gpr [i. ry J and the immediate field, depending on i. ymode. 

Allowable values for i. ymode are as follows, where sext signifies sign extension: 

i . ymode Mnemonic Decimal value Operand generated 

YMODK..REG 0 opy gpr [i. ryJ 

YMODLIMM 1 opy .= sext (i . imm) 

YMODLIMMSHIFT 2 opy .= i. imm « 16 

YMODK..REGIMM 3 opy gpr [i. ryJ + sext(i. imm) 
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B.4.2 Operation definitions 

Operations are defined on two's-complement numbers. There are no flags or condition codes. We 

group the operations by unit: 

B.4.2.1 ALU operations 'i.unit = UNILALU = 0 

All ALU operations take two operands and produce one result. The bitwise_NOR is included in the 

instruction set for the express purpose of computing the bitwise inverse of opx using a zero operand 

for opy. 

Mnemonic Name i. fxn Operation 

add Add 0 opz := (opx + opy) 31...0 

sub Subtract 1 opz (opx - opy) 31...0 

nor NOR 4 opz bitwise_NOR (opx ,opy) 

and AND 5 opz bitwise_AND (opx, opy) 

or OR 6 opz := bitwise_OR (opx ,opy) 

xor Exclusive OR 7 opz .= bi twise_X ° R (opx , opy) 

B.4.2.2 Branch operations i. unit = UNILBRCH = 1 

Branch operations include unconditional jumps (j mp) and the halt instruction (hl t). All branch 

operations unconditionally produce the same result, namely the value of pc, right-shifted by two; 

this value is used for opz. Likewise, a hranch taken will branch to the address denoted by opy 

incremented by one and left-shifted by two. The shifting avoids having to define the behavior of 

alignment errors and allows larger immediate branch-offsets. 

Note that the mechanism described for branch addresses allows a simple compilation of function 

call-return linkage. The function-call jump saves the current PC, and then the function-return 

jump calls back through the saved address. Coroutine linkage is compiled similarly. (The SPAM 

architecture leaves unspecified function-parameter-linkage conventions and register-save masks, etc.) 

The hlt instruction halts the machine. An external action, not defined within the architecture, 

is required for restarting it. 

Conditional branches branch on the value of opx. 
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Mnemonic Name i .fxn Branch if Target 

h1t Halt 0 true ..l 

beq Branch on Equal 1 opx =0 (OPY29 ... 0 + 1)100 

bne Branch on Not Equal 2 opx fO (OPY29 ... 0 + 1)100 

bgt Branch on Greater Than 3 opx >0 (OPY29 ... 0 + 1)100 

blt Branch on Less Than 4 opx <0 (OPY29 .. 0 + 1)100 

b1e Branch on Less or Equal 5 opx ::;0 (OPY29 ... 0 + 1)100 

bge Branch on Greater or Equal 6 opx >0 (OPY29 ... 0 + 1)100 

jmp Jump 7 true (OPY29 ... 0 + 1)100 

B.4.2.3 Memory operations i. uni t = UNILDMEM = 2 

Only two memory operations are defined: load word, 1w; and store word, sw. The address of the 

memory access is determined by opy. On a memory load, opx is ignored; whereas on a store, it 

becomes the value stored. A store returns 0PY (the computed address) as opz; this allows coding 

postincrement and postdecrement addressing-modes in a single instruction. 

Mnemonic Name 'i.fxn Operation 

1w Load Word 0 opz := dmem[opy] 

sw Store Word 1 dmem[opy] := opx, opz .- °PY 

B.4.2.4 Shifter operations i. uni t = UNILSHFT = 3 

The SPAM architecture defines a restricted shifter that is capable only of logical shifts. Arithmetic 

shifts must be simulated using blt. The SPAM shifter can shift by one or eight. Shifts-by-eight are 

provided so that byte memory-operations can proceed at a reasonable speed. 

Mnemonic Name i. fxn Operation 

sri Shift Right by One 0 opz .- °loPY31...1 

sr8 Shift Right by Eight 1 opz .- 00000000IoPY31. .. 8 

s11 Shift Left by One 2 opz .- °PY30 010 

s18 Shift Left by Eight 3 opz .- °PY23 .. 0100000000 
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B.4.2.5 Undefined operations 

Operations not yet defined are reserved for future expansion and must not be used. The behavior 

of the undefined operations is UNDEFINED (the machine may take any action, which includes the 

possibility of its hanging [3]). 

B.4.2.6 System reset 

The mechanism for causing a system reset is implementation-dependent. On system reset, the 

processor starts execution with pc = 8 and arbitrary data in all general-purpose registers except 

gpr[O] . 

B.5 Assembly-language conventions 

The SPAM architecture uses a simple, understandable assembly-language syntax that is free from 

the traditional confusion about which register identifier names the operand and which names the 

result. 

B.5.1 The SPAM assembly format 

The SPAM assembly format is best illustrated with an example (this example mainly illustrates the 

syntax of the format; a more reasonable program from the point of view of efficiency is the Fibonacci 

program of Section 8.4.2): 
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Compute sum of 100 first integers 

" , Do some other things to test the processor 

.=Ox8 

jmp Start comment 

.=Oxl00 

Start: 

li rl=100 

li r2=OU upper immediate 

jmp r3=Detour comment 

Label: comment 

add r2=rl, r2 

sw r2, (100) 

lw r2=(rl+0x3ff) 

lw r2=(100) 

sub rl=rl,l 

bne rl,Label 

hlt 

jmp zero shouldnt get executed 

nop 

.=Ox200 test comment 

Detour: jmp r3 

B.5.1.1 AsseIllbly instruction syntax 

In the example, we see the use of some standard assembler conventions, such as the use of "." for 

setting the desired memory location of the current instruction. We also see that the syntax of the 

instructions is < mnemonic >< result T'(~gister >=< operands >. Register indirect and indexed 

register-indirect memory-instructions are written with parentheses, similarly to the MIPS assembly 

format. 

Labels can be used directly by the branches. Any field not specified will be assembled as zero; 

this has several benefits-e.g., not specifying the target register of an operation makes the target 

gpr [OJ, which means that the result shall be discarded. 
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B.5.1.2 Specification of immediates 

Immediates are specified either in decimal or in hexadecimal. Hexadecimal numbers must be pre­

ceded with the string Ox to flag their base. Following an immediate with the roman capital U flags 

it as being an "upper" immediate; i.e., it will be shifted 16 bits left before it is used. 

B.5.1.3 Pseudo-instructions 

There are also several pseudo-instructions in the example program that are understood by the assem­

bler and mapped to the machine-language instructions presented earlier. The pseudo-instructions 

understood by the assembler are as follows: 

Pseudo-instruction Name Operation 

li rz=opy Load immediate or rz=rO,opy 

nop No operation add rO=rO,rO 

not rz=opy NOT nor rz=O,opy 

Notice that the nop pseudo-instruction conveniently assembles to an all-zeros instruction word. 
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Appendix C 

Proof that Definition 3.2 Defines a 
Partial Order 

-How now, you secret, black, and midnight hags! lVlwt is't you do? 

-A deed without a name. 

- William ShakespeclTe, Macbeth (c. 1605) 

In an earlier version of the manuscript, Definition 3.2 was claimed to apply to the equivalence 

classes under translation of all functions {f : t -+ 1/}. This is not quite true. Consider! f(x) = x 

and g(x) = x + I(x), which do not obey the restriction 

(3k,F:: (Vx: Ixl > k: f(x) < F) 1\ (3x:: f(x) > F)). (C.l) 

It is here clear that by Definition 3.2, T(g) :S T(.f) and T(.f) :S T(g), yet under the normal concept 

of equality, it is not the case that T(j) = T(g); in other words, it is not true that 30 :: (Vx :: g(x) = 

f(x - 0)). The three requirements for a relation's being a partial order, viz. reflexivity (a :S a), 

transitivity (a :S b 1\ b :S c :::} a :S c), and anti-symmetry (a :S b 1\ b :S a :::} a = b), are thus not 

satisfied for equivalence classes under translation unless we change to a different notion of equality; 

specifically, our :S is not anti-symmetric. 

Changing the notion of equality would however upset the definition of F; we should also notice 

that for anything that intuitively looks like a "pulse" (as well as for many other functions), Defi­

nition 3.2 seems quite reasonable in conjunction with the normal definition of equality. It is hence 

simpler to restrict the functions under consideration. 

Our restriction (C.l) solves the problem. We shall prove the following theorem. 

Theorem C.l For equivalence classes under· translation of continuous functions that satisfy (C.l), 

Definition 3.2 defines a partial order. 

II(x) represents the unit-step function; see Eq. 3.2, p. 26. 
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Proof. Reflexivity and transitivity hold; this is true by inspection. We prove anti-symmetry for 

equivalence classes of continuous functions T(f) and T(g), where f and 9 are arbitrary representatives 

of the chosen classes. Assume that there exist g(x) and f(x) satisfying the "pulse restriction" (C.1) 

such that T(g) ~ T(f) A T(f) ~ T(g). We have by T(g) ~ T(f) A T(f) ~ T(g) that 

(C.2) 

(C.3) 

or more simply stated, 

:36 :: f(x) ~ f(x - 6). (C.4) 

We say that either (1) 6 = 0 (i.e., 61 = 62 and hence V.T :: g(x) ~ f(x - 6d A f(x - 6d ~ g(x), in 

other words Vx :: g(x) = f(x - 6d); or (2) f is wcinl. 

But no continuous f that satisfies (C.1) is weird. Consider the part of the domain of f where f 

equals or exceeds F. There is a smallest value I where f equals F; this is defined by f(l) = FA (Vx : 

x < I : f(x) < F); likewise there is a greatest m defined by f(m) = FA (Vx : x > m : f(x) < F); 

we know that I and m exist because f is continuous and Vx : x < -k V x > k : f(x) < F by (C.1). 

Now consider f(x) = f(x - 6). If 6> 0, then the equation cannot hold because f(l- 6) < F = f(l), 

and likewise for m and 6 < O. Hence any f satisfying (C.1) is non-weird and Vx :: g(x) = f(x - 6d. 

Thus T(g) ~ T(j) AT(f) ~ T(g)::::}:3J:: (V:1;:: g(:r) = f(x - 6)), or more succinctly, 

T(g) ~ T(f) A T(f) ~ T(g) ::::} f ~ 9 (C.5) 

under Definition 3.2 and translation equivalence; in other words, 

T(f) ~ T(g) A T(g) ~ T(f) ::::} T(j) = T(g), (C.6) 

i.e., ~ is anti-symmetric over the equivalpnce classes under translation containing continuous func-

tions satisfying (C.1). Q.E.D. 

C.l Remark on Continuity 

We have proved that our definition of ~ establishes a partial order over equivalence classes under 

translation of continuous functions satisfying the restriction C.l. It is not difficult to generalize the 

proof so that it covers functions that are not continuous but still satisfy (C.1), but the argument 

2This simple & crucial observation was made by Karl Papadantonakis. 
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becomes considerably more opaque. The chief difficulty is that we have asserted that "there is a 

smallest value l defined by f (l) = F 1\ (\1:1: : x < I : f (x) :S F)"; this need no longer be true if f 

has discontinuities, since we might have that f(x) < F for x :S Xo and f(x) > F for x > Xo; i.e., f 

exceeds F over an open interval. Changing the definition of l to make it clear that l exists would 

consequentially mean using a more complicated argument for showing that f is non-weird, because 

it may be that directly evaluating f(l) does not yield the desired value; in other words, we should 

have to consider the values of f in a neighborhood of I instead of just at l itself. 

We omit the more general proof because only continuous functions are of physical interest, and 

the extra complications would only obscure the basic idea of the restriction C.l. Yet we should 

remember that the testing pulses that we used in Chapter 3 were not continuous, so putting the 

theory on entirely solid ground would require either finishing this proof or changing those pulses to 

be continuous~neither of which would change the essence of the mathematics. 
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