Asynchronous Pulse Logic

Thesis by

Mika Nystrom

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2001
(Defended May 14, 2001)

ii

© 2001
Mika Nystrom
All Rights Reserved

iit

Acknowledgments

What am I doing in graduate school? My interest in computing goes back to when I disassembled,
with my father, an Original-Odhner pinwheel calculating machine. I must have been about four or
five years old at the time, and like most four-or-five -year-olds who have a passing acquaintance with
addition and subtraction, arithmetic is something very mysterious. The sight of the many, many
tiny gears in the insides of that calculator has dogged me ever since. I have been determined to
figure out how it worked. Today I think I have a fair idea.

This thesis is first and foremost dedicated to my parents, who started it all—in more ways than
one. I am sad to say that they did not live to see me through school; I should not have been here
without their insistence on education before all else. I shall always be baffled by my mother’s courage
in sending me to a school where a foreign language-—English—was the only one we young students
could communicate in. Eventually it led to my leaving my native Sweden just as she once left her
native Finland.

One’s own insistence is not enough. I have been lucky to live in a world where willing and able
teachers are plentiful. Starting with Lynn Carlisle, whom I still blame when my accent marks me
a Midwesterner, I have had many: Maurice Naddermier, who first opened my eyes to the vastness
of science; Simeon Leet, who in three years of high school taught me most of the mathematics that
I know to this day and gave me a strong appreciation for the place of science and technology in
the larger universe of human wisdom; and latest but not least, my advisor, Alain J. Martin, whose
patience in the last seven years with the many things I have enjoyed myself working on has seemed
infinite. I have had many other inspiring teachers in between; and if I were to list also those teachers
that have taught me through their writings, the list would go on forever (some of their names appear
in the Bibliography).

I came to graduate school so that I could continue learning; in this, I have been successful.
Our Friday morning group meetings have always been nourishing food for thought; I remember
many inspiring debates with José Tierno, Tony Lee, Marcel van der Goot, Jessie Xu, Peter Hofstee,
Andrew Lines, Rajit Manohar, Paul Pénzes, Robert Southworth, Uri Cummings, Eitan Grinspun,
Cathy Wong, Karl Papadantonakis, Abe Ankumah, and many occasional visitors. Andrew and

Rajit, with their two very different but complementary world-views, have especially inspired me,

iv
and much of what I write about here originally came from their minds and only made a detour
through mine before landing on paper.

The members of my thesis committee, André DeHon, Alain Martin, Rajit Manohar, and Ali
Hajimiri, have read the thesis carefully and suggested many changes. I have tried to control my own
stubbornness and take as much of their advice as possible, but I have not always been successful in
this.

Several others have read the thesis out of the goodness of their hearts and given me hundreds of
helpful comments: Karl Papadantonakis, Cathy Wong, Eitan Grinspun, Paul Pénzes, Abe Ankumah,
and the anonymous Institute Proofreader. Especially Chapter 3 owes much of its Greek clarity to
Karl’s demands. Again, these kind readers’ comments have had a powerful foe in my stubbornness,
and remaining errors are all mine.

This thesis is written in English (or American; but I think they are the same), a language that I
learned (from Lynn) when I was four years old. Writing a Ph.D. thesis is something one tries to do
carefully, so before I embarked on it, I decided to try to improve my writing by reading up on the
English language. I may have succeeded, but I have also acquired some unusual habits of expression
that I should perhaps caution the reader of. {Such as obstinately putting prepositions at the ends of
sentences whenever I deem it appropriate.) These habits have been inspired by H. W. Fowler.! As
I am writing computer-science English, I am permitted a great degree of leeway. 1 do not know why
5o many computer scientists write such sloppy English; we that are used to expressing ourselves with
such exactitude when dealing with machines seem to often fall flat on our faces when trying to deal
with human readers. I have tried to use my technical writer’s leeway to write unambiguously rather
than sloppily; in this I have made fewer concessions to convention than Fowler himself would have.
No doubt sometimes all that I have achieved is annoyingly unconventional writing, and for all my
efforts I have not managed to completely banish the sloppy mistakes; I am for instance convinced
that hyphenation in English, especially noun-stacking technical English, walks a thin line between
illogicality and illegibility. I cannot blame Fowler for these failings: they are due to my own pedantry
and my sometimes foolish wish for consistency.

We live in a practical world, and research does not come of the mind alone. Many generous
sponsors have made the work described here possible: it has been supported by the Defense Advanced
Research Projects Agency (DARPA) for a long time, and I have been directly supported by the
Okawa Foundation and by a two-year Graduate Research Fellowship from IBM Corporation. The
computers used for the work were donated by Intel Corporation.

I am happy I came to graduate school at Caltech. It took longer than I thought possible, but

'H. W. Fowler and F. G. Fowler, The King’s English, third edition (Oxford: Oxford University Press, 1931);
H. W. Fowler, A Dictionary of Modern English Usage, first cdition (Oxford: Oxford University Press, 1926). Both of
these, as well as several lesser editions of Modern Inglish Usage, are still in print. The King’s English is also available
on the Internet.

v

Caltech is a truly remarkable place filled with remarkable persons. On the practical side, my stay as
a graduate student has been made less stressful by the hard work of many Computer Science staff
members; especially Cindy Ferrini, Jeri Chittum, and Betta Dawson.

I thank Deidre for her patience with me.

vi

This page intentionally left blank.

vii

Abstract

This thesis explores a new way of computing with CMOS digital circuits, single-track—handshake
asynchronous pulse-logic (STAPL). These circuits are similar to quasi delay-insensitive (QDI) cir-
cuits, but the normal four-phase QDI handshake is replaced with a simpler two-phase pulsed hand-
shake. While a delay-insensitive two-phase handshake requires complicated decoding circuits, the
pulsed handshake maintains the simpler, clectrically beneficial signaling senses of four-phase hand-
shaking by using timing assumptions that are easy to meet.

We cover many aspects of designing moderately large digital systems out of STAPL circuits,
from the communicating-process level to the production-rule and transistor level.

We study the theory of operation of pulsed asynchronous circuits, starting with simple pulse
repeaters; hence we progress to a general theory of operation for pulsed asynchronous circuits. This
theory is a generalization of the theory of operation of synchronous digital circuits.

We then develop the family of STAPL circuits. This is a complete family of dataflow processes:
the presented circuits can compute unconditionally as well as conditionally; they can also store state
and arbitrate.

Next, we present some aspects of automatic design-tools for compiling from a higher-level de-
scription to STAPL circuits. Many of these aspects apply equally well to tools for QDI circuits; in
particular, we study boolean-simplification operations that may be used for improving the perfor-
mance of slack-elastic asynchronous systems.

Finally, a simple 32-bit microprocessor is presented as a demonstration that the circuits and
design methods work as described. Comparisons are made, mainly with QDI asynchronous design-
styles: SPICE simulations in 0.6-pum CMOS suggest that a system built out of automatically com-
piled STAPL circuits performs at about three times higher throughput (650-700 MHz in 0.6-pm
CMOS) compared with a similar system built out of carefully hand-compiled QDI circuits; the
STAPL system uses about twice the energy per operation and twice the area; in other words, the
STAPL system improves on the QDI system by four to five times as measured by the Et? and At?

metrics.

viil

This page intentionally left blank.

ix

Contents

Acknowledgments iii
Abstract vii
1 Introduction 1
1.1 The VLSI design process e e 2

1.2 From physics to computer science e 2

1.3 Asynchronous digital design Lo 3

1.4 Asynchronous design-styles 3
1.4.1 Bundled-data design o 4

1.4.2 Delay-insensitive design-styles L L L 4

1.5 Contributions L 5

2 Preliminaries 7
2.1 Quasi delay-insensitive design oL 7
2.2 High-speed CMOS-circuits e 7
2.3 Asynchronous protocols and delay-insensitivecodes L. L. 9
2.4 Productionrules 9
2.5 The MiniMIPS processor. 10
2.6 Commonly used abbreviations oL 12

3 Asynchronous—Pulse-Logic Basics 13
3.1 Road map of thischapter 15
3.2 Thepulserepeater e 16
3.2.1 Timing constraints in the pulse repeater, 17

3.2.2 Simulating the pulse repeater L L ... 17

3.2.3 The synchronous digital modelo 24

3.2.4 Asymmetric pulse-repeaters 24

3.3 Formal model of pulse repeater L. 25

3.3.1 Basicdefinitions e
3.3.2 Handling the practical simulations L.
3.3.3 Expanding themodel 0oL
3.3.4 Using the extended model
3.3.5 Noisemargins. L e
3.4 Differential-equations treatment of pulse repeater
3.4.1 Input behavior of pulse repeatero
3.4.2 Generalizations and restrictions oL

Computing With Pulses

4.1 Asimple logic example L
4.2 Pulse-handshake duty-cycle
4.3 Single-track-handshake interfaces o oL oL oL
4.4 Timing constraints and timing “assumptions”o oo
4.5 Minimum cycle—transition-counts Lo L Lo
4.6 Solutions to transition-count problem
4.7 The APL design-styleinshort Lo L oL

A Single-Track Asynchronous—Pulse-Logic Family: I. Basic Circuits

5.1 Introduction
5.2 Preliminaries
5.2.1 Transition counting in pipelined asynchronous circuits
5.2.2 Transition-count choices in pulsed circuitso
523 Executionmodel
5.2.4 Capabilities of the STAPL family
5.2.5 Design philosophy
5.3 The basic template e
53.1 Bit generator
532 Bitbucket
5.3.3 Leftright buffer
5.4 Summary of properties of the simple circuits

A Single-Track Asynchronous—Pulse-Logic Family: II. Advanced Circuits

6.1 Multiple input and output channels L L.
6.1.1 Nalve implementation o
6.1.2 Double triggering of logic block in the naive design
6.1.3 Solution

37

39
40
44
46
47
48
49
49

51
51
51
52
53
56
96
57
58
58
62
66
71

73
73

X1

6.1.4 Timing assumptions e 78
6.2 General logic computationso 78
6.2.1 Inputs whose values arenot used 79
6.3 Conditional communications Lo 82
6.3.1 The same program can be expressed in several ways 82
6.3.2 Simple techniques forsends 84
6.3.3 General techniques for conditional communication-actions 85
6.4 Storingstate L L L e 90
6.4.1 The general state-storing problem 00000 91
6.4.2 Implementing state variables oo L. 92
6.4.3 Compiling the state bit oL 93
6.5 Special circuits L 96
6.5.1 Arbitration 97
6.5.2 Four-phase converters 0 o 99
6.6 Resetting STAPL circuitso 101
6.6.1 Previously used resetting schemes o 0oL 102
6.6.2 Anexample L e 104
6.6.3 Generating initial tokens Lo 105
6.7 How our circuits relate to the design philosophy 105
6.8 Noise. e 106
6.8.1 External noise-sources 106
6.8.2 Chargesharing 107
6.8.3 Crosstalk 108
6.8.4 Design inaccuracies L 109
Automatic Generation of Asynchronous—Pulse-Logic Circuits 111
7.1 Straightforwardly compiling from a higher-level specification 112
7.2 An alternative compilation method 113
7.3 What we compile 113
7.4 ThePLllanguage 114
7.4.1 Channels or shared variables? L. 115
7.4.2 Simple description of the PL1 language 115
7.4.3 An example: the replicator L 117
7.5 Compiling PL1 118
7.6 PLl-compiler front-end 120

7.6.1 Determinism conditions, 120

xii

7.6.2 Dataencoding e 122

7.7 PL1-compiler back-end 124
771 Slack . . . o 125

7.7.2 Logicsimplification Lo 127

7.7.3 Code generation L e 131

8 A Design Example: The SPAM Microprocessor 133
8.1 The SPAM architectureo 133
8.2 SPAM implementation e 134
8.2.1 Decomposition 134

8.2.2 Arbitrated branch-delay L L oL 135

8.23 Byteskewingo 136

8.3 Design examples 140
83.1 The PCUNIT e e e e s s s e 140

8.3.2 The REGFILE e 152

8.4 Performance measurements on the SPAM implementation 156
8.4.1 Straightline program Lo 157

8.4.2 Computing Fibonacci numbers oo Lo 159

8.4.3 Energy measurementso 160

8.4.4 Summary of SPAM implementation’s performance 161

8.4.5 Comparison with QDI 162

9 Related Work 165
9.1 Theory. e 165
9.2 STAPL circuit family 165
9.3 PLllanguage e 167
9.4 SPAM microprocessor 168

10 Lessons Learned 169
10.1 Future Work 169
10.2 Conclusion 170

A PL1 Report 171
A1 Introduction 171
A1l Scope ... 171

A12 Structureof PL1 172

A2 Syntaxelements 172

A21 Keywords, 172

A22 Comments.
A23 Numericals e
A24 Tdentifiers
A.2.5 Reserved special operators
A.2.6 Expression operators
A2.7 Expression syntax
A28 Actions L
A.3 PL1 process description e e
A.3.1 Declarations. e
A.3.2 Communication statement
A.3.3 Process communication-block oo o000
A4 Semantics
A41 Expression semantiCs v o i e e
A4.2 Action semanticso
A.4.3 Execution semantics
A44 Invariants e
A45 Semanticsintermsof CHP
A.4.6 Slack elasticity
A5 Examples

B SPAM Processor Architecture Definition

B.1 Imtroduction
B.2 SPAM overview
B.3 SPAM instruction format Lo
B.4 SPAM instruction semantics

B.4.1 Operand generation

B.4.2 Operation definitions
B.5 Assembly-language conventions L,

B.5.1 The SPAM assembly format

C Proof that Definition 3.2 Defines a Partial Order
C.1 Remark on Continuity

Bibliography

173

175

187
187
187
188
189
189
190
192
192

195
196

199

xiv

This page intentionally left blonk.

XV

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8
3.9
3.10

3.11
3.12
3.13

4.1
4.2
4.3
4.4
4.5

5.1

One stage of domino logic. L L oo 8
Dual-rail encoding of one bit of data. L. 9
Three-stage pulse repeater. e 16
Five-stage pulse repeater. 17
A long pulse almost triggers a pulse repeater twice. L. 19
Shmoo plot for three-stage pulse repeater. 19
Shmoo plot for five-stage pulse repeater., 20
Input-output relationship of pulse lengths for five-stage pulse repeater; this particular

circuit stops working for input pulses longer than 1.47ns. 20
Qualitative interpretation of shmoo plots. 22
Mapping of input to output pulse parameters. 23
Asymmetric 3-5-stage pulse repeater. Lo 25
(a) the function f and two members j, k € P(P). Here j < f < k. (b) parameter-

space representation of sets J(f) and K(f) and the points j and k (more properly

Pl and P71(k)) picked by M. 29
Input circuitry of a pulse repeater. Lo 33
Pulse repeater modeled with inverting inertial delay. 35
Two different input-pulse scenarios and their corresponding intermediate-node values

and output values. L 36
Input transistors in QDI merge. 41
APL circuit, version with diodes. L L 41
APL circuit, version with diodes and reset transistors. 42
APL circuit; diodes implemented with transistors. 43
Pseudo-static C-element. 47

Path from input’s arriving to acknowledge in QDT circuit: dotted, forward path;

dash-dotted, backward path.o L 54

5.2

5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

7.1

7.2
7.3

8.1
8.2
8.3

8.4
8.5

Xvi

Path from input’s arriving to its being removed in STAPL circuit: dotted, forward

path; dash-dotted, backward path. L o 0oL 55
Forward (compute) path of STAPL bit generator. 60
Complete STAPL bit generator. 61
STAPL bit bucket. e 65
STAPL left-right buffer. 68
Paths implementing the delays St¢rue, Sfalse, Ttrue, dNA Talse: « « « = v« v v v o v . . 70
Schematic version of unconditional STAPL template. 83
Schematic version of conditional STAPL template. 88
Basic state bit. e 93
Nalve state-variable compilation. L0 L. 94
Sophisticated state-variable compilation.o 97
“Mead & Conway” CMOS arbiter. e 98
Complete STAPL ARB process. it 98
QDI-to-STAPL interfacing cell built from a QDI and a STAPL buffer. 100
STAPL-to-QDI interfacing cell built from a STAPL and a QDI buffer. 101
Circuit alleviating charge-sharing problems. Resistor implemented with weak transistor.108

“Load lines” of pulsed circuit. 1: pulse becomes lower when the circuit is overloaded;

2: pulse becomes lower and longer. Lo Lo L. 110

Structure of the PL1 compiler. Files are shown in dashed boxes; program modules in

solid. .« . L e 119
Relevant parts of declaration of sum-of-products data structure in Sop.i3.. 129
Modula-3 code for boolean simplification. 130
Sequential CHP for SPAM processor. 134
Overview of SPAM decomposition. 134

Three ways of distributing control, shown on a hypothetical datapath operating on 32
bits encoded as 16 1-of-4 values. (a) MiniMIPS method: two-stage copy to four byte-
wide processes. (b) Asynchronous-filter method: linear tree (list) of control copies to
16 processes operating on 1-of-4 data (bit skewing). (¢) SPAM method: linear tree of

control copies to four four-way copies and thence to 16 processes operating on 1-of-4

Top-level CAST decomposition of SPAM PCUNIT (without, arbiter). 141
Process graph of PCUNIT. Data channels are drawn solid; control channels dotted.

Initial tokens are shown as circles., 142

8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13

8.14
8.15
8.16
8.17
8.18
&.19

8.20

8.21

8.22
8.23

8.24

xvil

PL1 program for a single 1-of-4 processof psel. 143
PL1 program for pcunitctrl.00 144
Block diagram of pc incrementer; layout alignment. Flow of data is from left to right. 145
Block diagram of pc incrementer; time alignment. Lo 146
Behavior of expc[1] after reset; no branches.o 148
Behavior of control for pe-selector psel; a branch is reported at t =12 ns. 148
Current draw of PCUNIT in amperes; no branching. Go active at t =6.5ns.. 149

Current draw of PCUNIT in amperes; constant branching after £ = 12 ns. Go active

at t=6.5 108 . .. e 150
Arrival of least and most significant 1-of-4 codesof pe. 150
Charge sharing in the pcincrementer. 151
Circuit diagram of compute logic for the upper 1-of-4 code in pc-incrementer. 152
Top-level CAST decomposition of SPAM REGFILE. 154

Process graph of REGFILE. Data channels are drawn solid; control channels dotted. 155
Block diagram of 8 x 8 register-core cell; input and output channels are each four
l-of-d codes. 156
Circuitry associated with each pair of state bits in register core. Dummy-write cir-
cuitry not shown. L L e e 157
Overall arrangement of register-core cell. A two 1-of-4-code tall, three-register wide
chunk is shown. L 158
SPAM program for computing Fibonacci numbers. 159
Part of the critical-path transition-trace of running the program of Figure 8.22. Time
goes upwards; each transition delay is counted as 100 time units. 160

SPAM program for computing Fibonacei numbers, unrolled once. 161

xviii

This page intentionally left blank.

Chapter 1

Introduction

For ’tis your thoughts that now must deck our kings,
Carry them here and there; jumping o’er times,
Turning th’accomplishment of many years
Into an hour-glass: for the which supply,
Admit me Chorus to this history;
Who, prologue-like, your humble patience pray,
Gently to hear, kindly to judge, our play.
— William Shakespeare, The Hist.ory; of King Henry the Fifth (1599)

In January of 1979, the first of a series of conferences on “Very Large Scale Integration” took place
at Caltech. The two keynote speakers, Gordon Moore of Intel and Carver Mead of our Computer
Science Department, both spoke of the same concern, but from two very different viewpoints. Their
concern was design complexity.

Moore, the conservative industrialist, questioned whether the electronics industry was really
ready for VLSIL: “If the semiconductor industry had a million-transistor technology like VLSL,” he
wrote in the article accompanying his talk, “I'm not so sure it would know what to do with it.” [62]
He seemed to find it a far-fetched idea that a circuit designer should possibly know how to make use
of a canvas large enough to hold a system as complex as VLSI would allow.

Mead, on the other hand, recognized that VLSI was going to be an inevitable development,
whether the designers know what to do with their canvases or not, and we should probably all agree
today that his article to a large extent explains why Moore was concerned. “VLSIL,” Mead wrote,
“is a statement about system complexity, not about transistor size or circuit performance.” He
continued, “Many fundamental ideas [pertaining to large-system design] have yet to be discovered.
The architecture and algorithms for highly concurrent systems is even less well developed.” [59]
This introducing of the ideas of computer science into what until then had been thought of as mere

circuit design was a step that was to have far-reaching effects. Mead’s article went on to predict that

2

the large-system design problem would in time be tackled, as the fundamental problems of device
physics and fabrication had been before it.

A quarter century will soon have passed since these words were written. In this time, there have
been great advances, along the lines Mead predicted, in circuit design techniques and in computer-
aided design and design automation. But the fact remains that most of today’s VLSI systems are
understood in terms of the same finite-state machines that were used for describing the mainframes
of the 1960’s; the fact remains that highly concurrent systems are poorly understood, especially by
circuit designers.

The inevitable conclusion is that today’s multi-million—transistor chips have been made possible
not mainly by new fundamental ideas, but by the alimost superhuman efforts made in exploiting the
old ones. Though the fact may puzzle him that reads in today’s newspapers that he stands in the

middle of a “tech revolution,” Carver Mead’s VLSI revolution, 25 years in coming, is yet unfulfilled.

1.1 The VLSI design process

VLSI-system design is the process of implementing and realizing a system specification, the archi-
tecture, as an electronic circuit. We shall assume that the architecture is given to us and that the
fabrication is not our concern. Longtime tradition, due to IBM [11], divides the design process into
two stages beyond computer architecture: implementation of the architecture by a micro-architecture
and realization of the micro-architecture by a physical circuit design.

The border between implementation and realization, like that between the United States and
Mexico, is an artificial demarcation drawn for political purposes. The VLSI border traditionally
serves to separate high-level logical reasoning from electronic-circuit design, tasks usually performed

by different people, or at least by different software systems.

1.2 From physics to computer science

It has slowly been realized that, as Carver Mead suggested, VLSI system design contains aspects of
both software design and electrical engineering. In VLSI, the imagination of the mathematician and
enthusiasm of the programmer finally meet with the pragmaticism of the engineer. ¢, we are told,
is the speed limit; A is the accuracy that we can build things with. But most of us would rather
ignore the problems of others. So when we imagine and program a VLSI system, we do not allow ¢
and A to constrain our imagination or to damp our enthusiasm. We design our systems as if ¢ and

”

A did not exist, and then we tell the engineer, “Immplement this.” When the wafers return, we say
that the poor performance is not our fault: we cannot be blamed for any failure to deal with ¢ and

A since we left this task to our friend, the engineer.

3
1.3 Asynchronous digital design

Poor performance is usually unacceptable for a VLSI system. Optimists have long studied asyn-
chronous design techniques, hoping that they have found at least a partial solution to the design
problem. While it is true that proponents of asynchronous design like claiming that asynchronous
circuits offer speed and power advantages, the author believes that the main advantage of asyn-
chronous design is more subtle than these: it is the designer’s ability of easily composing circuits
that operate at different points in the design space (characterized by speed, power, and design effort)
without destroying the beneficial properties of any of the circuits.

What makes a digital system asynchronous? A system is asynchronous if, in short, it does not
use a clock for sequencing its actions. Asynchronous logic has been used for computer design since
the 1950’s, when several members of the ILLIAC series of computers were designed partly asyn-
chronously [45]; somewhat later, Digital Equipment Corporation’s PDP-6 computer was a modest
commercial success [20].

What unites all methods of asynchronous circuit design is that they all strive for making the
speed of computing dependent on the operations that are being carried out. A slow operation is
allowed to take longer than a fast one; the system continues to the next operation only once the
previous one is completed.

It is as if we could assemble a troika consisting of an Arabian, a Shetland pony, and a draught
horse, without losing the useful qualities of the individual horses. If we should try this with real
horses, the harness would act much as the clock does in a synchronous system and render the exercise
pointless. But the asynchronous troika may be able to pull its load better than even a well-matched
synchronous team, because the horses are not harnessed together by the clock—the draught horse
does not have to keep up with the Arabian, and we do not have to feed the big horses if we only
have need for the pony.

By allowing us to divide up a system into smaller, more independent pieces, the asynchronous
design technique simplifies the large-system design problem: the main goal of asynchronous design

is addressing Carver Mead’s concern of 1979.

1.4 Asynchronous design-styles

In a synchronous system, it is easy to know when a computation is done. When the clock edge
arrives, we read out the results of the computation. If it is not finished by then, we say that the
system is wrong and throw it on the trash heap. (Or—Iless violently—adjust the clock speed.) The
computation must necessarily be done by the time the clock edge arrives, or else the synchronous

model would not make sense.

4

In contrast, the chief difficulty in asynchronous design is knowing when a specific computation is
done. If we encode data in the same way as in a synchronous system, e.g., using two’s-complement
numbers, and start an operation f(z), and the number “5” should appear on the result bus of our
asynchronous system, how are we to know that it signifies the result of the present computation, and
not of the previous? Worse, might it not be the bitwise combination of the results of the previous

and current computations?

1.4.1 Bundled-data design

The early asynchronous computers were designed in what we shall call the bundled-data style. De-
signing in this style, the designer assumes that he can build a delay that matches whatever the
delay is of the computation that he is really intercsted in. This matched delay is used as an “alarm
clock” that is started when f(z) is started and that rings when we can be sure that f(z) has been
completely computed. The design style is called bundled data because the data travels in a “bundle”
whose timing is governed by the control signal that we called the “alarm clock.” As one might guess,
arranging for the matched delay is the Achilles’ heel of the bundled-data style. If the delay is too
short, the system will not work; if too long, then it will work slowly. Especially if computation times
are data-dependent, the matched delay can easily become a designer’s nightmare. The matched
delay mechanism’s working rests on a form of a priori knowledge of relative timing; we shall call

making use of such knowledge a timing assumption.

1.4.2 Delay-insensitive design-styles

Originally conceived of at about the same time as the bundled-data design-style, delay-insensitive
logic design attempts using the data bits themselves for sequencing. By making every input transition
(change in logic level) cause, either in itself or within a cohort of input transitions, an output
transition or a detectable pattern of output transitions, we can at least make interfaces between
processes delay-insensitive.

Systems built using the delay-insensitive philosophy range from the speed-independent investi-
gated by D. E. Muller in the 1950’s [63], which work under the assumption that all wire delays
are negligible compared with the operator delays (which may be of any length), to the truly delay-
insensitive, in which both operator delays and wire delays may be arbitrary. Martin has shown
that, using a reasonable operator model,! truly delay-insensitive systems are of little use [51]; the
work in our research group has mainly been within the quasi delay-insensitive (QDI) model, which

is essentially Muller’s speed-independent model with information added for distinguishing between

I This “reasonable” operator model defines an operator as a single-output device; using the “unreasonable” model
that an operator must be nothing more than a transistor, it is easy to see that building a nontrivial delay-insensitive
circuit with repetitive behavior is absolutely impossible.

5

wires whose delays must be short compared with the operator delays and wires whose delays may
be arbitrarily long.

We cannot possibly do justice to the many different design methods that have been proposed
for asynchronous-circuit design;?> bundled-data and QDI design will however serve as convenient
extremes that we can compare with.

Assembling a working system out of QDI parts is almost frighteningly easy: start from a correct
sequential program, decompose it into communicating processes, compile these processes into cir-
cuits, put the pieces together, and everything works. The chief advantage of this way of designing
systems is that once we have decomposed, the design style is completely modular: there is no implicit
use of global information (i.e., no clock), and the different parts can be designed independently.

In this sense, QDI design comes close to finally putting Carver Mead’s concern to rest. But
there is one difficulty with QDI design: the requirement that the circuits work properly even if
all operator delays were to vary unboundedly is a difficult one to satisfy; our satisfying it involves
inserting much circuitry whose only purpose is checking for the occurrences of transitions that we
may know would in any case take place.® We should say that QDI systems must still be designed
“within reason”: it is possible to make things not work by designing them very poorly; likewise,
it still takes considerable work and skill to achieve good performance. Yet, with these things in
mind, the message-passing QDI design-style allows the design of large, well-performing systems with

relatively little design effort [53, 18, 55].

1.5 Contributions

This thesis makes its main contribution by developing a design style that allows making use of limited
amounts of timing information, i.e., limited use of timing assumptions, without destroying the most
important, system-simplifying property of QDI design, namely that of the data’s carrying its own
timing information. We do this by replacing some of the four-phase (return-to-zero) handshakes
in a QDI circuit with pulses, thus breaking the timing dependencies that are the source of the
performance problems of QDI circuits. Our ultimate goal is that of improving the performance of
modular asynchronous systems so much that it becomes possible to use asynchronous techniques for
implementing large systems that perform well, yet are easy to design.

The organization of the thesis is as follows:

2The interested reader should see Hauck’s paper for a balanced introduction [34].

3The reader with experience in designing CMOS circuits will realize that the situation is especially bad with regard
to the checking for the occurring of downward (true to false) transitions, since such checking must be done with
p-transistors. If we know that a signal & has switched from false to true, and the signal y is the output of an inverter
whose input is z, then what harm is there in assuming that y has switched from true to false? In practice there may
be none; but in the QDI model, there is great harm, whence the QDI designer will find it necessary to check for y’s
going false with the dreaded extra p-transistor.

L

I

I11.

Iv.

6

We develop a theory that accounts for the proper functioning of pulsed asynchronous circuits

(Chapter 3).

We develop a new target for the compilation of CHP programs, the single-track—handshake
asynchronous-pulse-logic (STAPL) circuit (Chapters 5 and 6). These circuits are as easy to
compose as QDI circuits, yet they operate faster: they have fewer transitions per execution
cycle (10 instead of QDI’s 18 for many nontrivial circuits), and they have less loading from
p-transistors (no input-completion circuitry in most cases, and even when it is present, it has

no p-transistors).

We explore some properties of Pipeline Language 1 (PL1), a simple yet expressive language
for describing asynchronous bit-level processes (Chapter 7). PL1 is a convenient language for
expressing the behavior of basic dataflow-style processes. It succinctly captures all the capabil-
ities we should like to have and that are easy to implement for simple asynchronous processes.
The particular capabilities that we choose for the language are inspired by the MiniMIPS
work: we thus have evidence that the capabilities are enough for implementing large and well
performing asynchronous digital VLSI systems. It is much easier to work with descriptions at
this level than in terms of production-rule systems; compared with CHP programs, the PL1
language allows only a subset that can be straightforwardly and automatically compiled. The

PL1 language is intended to be used for both STAPL and QDI design.

Putting the methods developed in previous chapters to the test, we study a microprocessor
design consisting of STAPL circuits, most of which were themselves designed using the PL1
language (Chapter 8). The microprocessor is a simple 32-bit one; the design shows how best
to take advantage of the capabilities of the STAPL circuit family. The results of the test
are good: the STAPL family is shown to be capable of significantly higher throughput than
QDI circuits at a small extra cost in energy; the overall improvement using the Et? metric is

approximately a factor of five.

Chapter 2

Preliminaries

—And why not the swift foot of Time? had not that been as proper?
—By no means, sir. Time travels in divers paces with divers persons.

— William Shakespeare, As You Like It (1599)

2.1 Quasi delay-insensitive design

This thesis aims at establishing a new target for hardware designers; while asynchronous, the new
pulsed-logic design-style depends on timing assumptions for working properly, which quasi delay-
insensitive (QDI) circuits do not. Still, many of the design issues are very similar, especially at the
higher levels of the design; consequently, we shall be able to reuse much of what is known of QDI
design.

We shall use much of the same terminology and notation as QDI designers do. To wit, we
shall compile our circuits starting from the Communicating Hardware Processes (CHP) language,
a language based on Hoare’s Communicating Sequential Processes (CSP) [36]; we shall describe
our communication protocols using the notation of the Handshaking Expansion (HSE) language
used by QDI designers; we shall describe our transistor networks using the Production-Rule Set
(PRS) notation. These languages are all explained in detail by Martin [48, 54]; some more recent
extensions to CHP, whose syntax was suggested by Matthew Hanna, are described by Hanna [33]

and the author [66].

2.2 High-speed CMOS-circuits

Over time, the Caltech group’s way of designing of asynchronous circuits has converged with some
of the ways that high-speed synchronous circuits are designed. Most of what we shall discuss in
this thesis falls into the broad category of “precharge domino logic.” The basic techniques used for

designing these kinds of circuits are well illustrated by Glasser and Dobberpuhl [29].

Vdd

out

s+ inetwork of
n—transistors

=
GND

Figure 2.1: One stage of domino logic.

Here we shall only cover a few issues in nomenclature. A basic CMOS domino-logic “stage” is
shown in Figure 2.1. The part on the left of the figure is the “precharged domino” part of the circuit.
When the control signal C goes low, the stage precharges—the node z rises and the output out falls.
When C next goes high, depending on the values on the in wires, the domino may or may not “fall”
(i.e., z may or may not fall to GND). The name “domino logic” comes from these circuits’ ability of
being cascaded within a single clock-phase in a synchronous system. Confusingly, while Figure 2.1
depicts a single “domino stage,” the same structure can also be called two “stages of logic”—the
domino block plus the inverter. In the design style that we use, a block like this also implements an
entire “pipeline stage”; i.e., cascaded dominos cycle independently (to an extent determined by the
“reshuffling” of the handshake).

The important features of domino logic are as follows. There are few p-transistors; because of the
much higher mobility in silicon of electrons compared with holes, this means that domino logic will
usually be much faster than combinational logic, where pulling up the outputs has to be handled by
the inputs. Furthermore, if we wish to cascade the dominos, each computation stage takes two logic
transitions (one for the domino, one for the inverter)—this we call the forward latency of the stage;
alternating “n-dominos” with “p-dominos” is possible, but the performance gain, if any, compared
with standard domino logic, is small; owing to the many p-transistors in the p-dominos, this style
can indeed be slower. An important drawhack of domino logic is that it is more sensitive to different
kinds of noise than combinational logic is.

In asynchronous circuits, the control transistor gated by C is sometimes replaced with several

control transistors; this is necessary for accomplishing the more complicated synchronization that

Rail Value
.0 false true false true
z.1 false false true true
Meaning Nodata =0 ax=1 Illegal

Figure 2.2: Dual-rail encoding of one bit of data.

can be required by asynchronous data-transfer protocols.

2.3 Asynchronous protocols and delay-insensitive codes

Asynchronous systems are based on handshaking protocols; i.e., two processes wishing to transfer
data between each other synchronize the data transfers with signals that the processes themselves
generate. It is most straightforward for us first to envision the handshake itself and then to add
the data transfers in later. This way of designing things allows transferring data using conceptually
simple protocols. Omne property that must be satisfied by the data is that it is encoded using a
delay-insensitive code.

This means informally that the data encoding contains the same information that was present
in the original “bare” handshake (i.e., data present or not-present) and that the data is encoded so
that transitioning between the data present and not-present states is free from timing assumptions
(i.e., it does not matter in which order the transitions are received). The most basic encoding that
satisfies these conditions is the dual-rail encoding of a single bit (Figure 2.2); one that will also be
seen often in this thesis is the 1-of-4 encoding of two bits.

Generalizing from bare handshakes to using delay-insensitive codes leads naturally to needing
circuits for determining whether data is present or not-present. This we loosely refer to as “comple-

»

tion circuitry.” For instance, a two-input OR-gate can be used for completing a dual-rail channel,

as can a four-input OR-gate for a 1-of-4—coded channel.

2.4 Production rules

In this thesis, we shall not generally describe circuits at the level of transistor netlists; this would
be unnecessarily much detail. Instead, we shall use production rules. A production rule (PR) is a

statement of the form
G — z = ¢

where G is a boolean expression called the guard and the assignment z := ¢ is the command. In a

production rule, ¢ can only be true or false; nothing more complicated is allowed. We abbreviate

10

z := true as z1 (read as “z up”) and z := false as z| (read as “z down”). At the circuit level, the
effect of such an elementary assignment is a transition on z from a low to a high or from a high to
a low voltage.

In a given system, we must necessarily have rules for the setting of each node z that transitions
more than once both to true and to false; the combination of the two rules is called an operator.
In other words, an operator is a device with one or more inputs and a single output. The mapping
from operators to circuit gates is fairly direct, but we do not consider it in detail in this thesis; nor
do we consider layout issues in detail.

Before proceeding, it must be pointed out that although we use the same notation, our using
timing assumptions means that we cannot ascribe quite the same semantics to HSE and PRS as we
can in QDI designs. We shall have more to say about this later; in short, we disallow “stuttering”
in HSE and we shall use a timed execution model for production rules instead of the weakly-fair—

interleaving model that can be used for QDI circuits.

2.5 The MiniMIPS processor

The MiniMIPS processor, designed by the Caltech group during 1995-1998, represents the state of
the art in QDI asynchronous design today [55].

The MiniMIPS processor consists of two million transistors; it has been fabricated in 0.6-pm
CMOS, and in this technology, it runs approximately 170 MHz at the nominal process voltage
(3.3V).

A few notable features of the MiniMIPS processor are the following:

e Almost complete reliance on QDI circuits. (The exceptions are the low-level implementation

of the cache-write mechanism and the off-chip bundled-data asynchronous interface.)
e Extensive use of 1-of-4 data-encoding to minimize completion delays and save switching power.

e Use of pipelined completion to minimize completion delays. Using pipelined completion results
in a processor that can be thought of as an array of byte-slice processors, with a minimum
of synchronization between the byte slices. The QDI model, which we used to verify that
the design is correct, refuses to deal in delays; hence we know that the processor would work
for a wide range of delays, and we simply try to pick those delays that shall result in the
most efficient (i.e., the fastest) implementation. Thus the byte-slice processors nevertheless
operate in synchrony most of the time, and we receive the benefits of a highly concurrent
design with short, well-matched delays without paying the price of having to impose unwanted

synchronization throughout our design model.

11

e Universal use of precharged, pseudo-static! domino-logic.

e A deeply pipelined design with buffering in every domino stage. The processor can execute

many programs at an average speed of 182/; logic transitions per fetch cycle.

As important as the MiniMIPS processor itself are the techniques used to design it:

Initial specification as a sequential CHP program and stepwise refinement to a collection of

concurrent processes.

Use of slack elasticity [45] to allow variable latencies yet ensure deterministic behavior.

Final, formal specification in terms of a hierarchical production-rule set (PRS), using the CAST

language.

Universal use of full-custom physical design, in terms of a magic cell hierarchy. Several man-

years were spent on this aspect of the design.

1See footnote on p. 47.

12

2.6 Commonly used abbreviations

APL
BDD

C
CAST
CHP
CMOS
CcspP
DI
DRAM
ER
GND
HP
HSE
IBM
MIPS
MOS
PCHB
PL1
PR
PRS
QDI
RISC
SPAM
SRAM
STAPL
vdd
VLSI
WCHB

Asynchronous pulse-logic

Binary-decision diagram

Consensus (in “C-element”)

Caltech asynchronous synthesis tools (hardware description language)
Communicating hardware processes
Complementary metal-oxide-semiconductor [field-effect transistor]
Communicating sequential processes

Delay insensitive

Dynamic random-access memory

Event rule

Ground (circuit node)

Hewlett-Packard [Corp.]

Handshaking expansion

International Business Machines [Corp.]
Microprocessor without interlocked pipeline-stages
Metal-oxide-semiconductor [field-effect transistor]
Precharged half-buffer

Pipeline language 1

Production rule

Production-rule set

Quasi delay-insensitive

Reduced—-instruction-set computer

Simple pulsed asynchronous microprocessor

Static random-access memory
Single-track—handshake asynchronous pulse-logic
Positive power supply (circuit node)

Very large-scale integration

Weak-condition half-buffer

13

Chapter 3

Asynchronous—Pulse-Logic Basics

All delays are dangerous in war.

— John Dryden, Tyrannic Love (1669).

Over the years, asynchronous design techniques have gone from Muller’s simple handshaking
circuits and the carefully timed bundled-data circuits used in the PDP-6 to the sophisticated, yet
easy to design, dataflow techniques used for the MiniMIPS design. It remains, however, that the
MiniMIPS processor operates, under ideal conditions, at a fetching rate of 182/3 CMOS transitions
per instruction fetch, and designing a QDI microprocessor that fetches much faster than this seems
an impossible challenge. This number compares favorably with the performance achievable by most
synchronous design techniques, but it falls short of the 10-14 transitions per cycle that the most
aggressive (and hard-working) synchronous designers achieve.

The barrier that prevents QDI circuits from achieving higher performance lies in the QDI hand-

shake. By insisting on the four-phase handshake, e.g.,
*[[l]; (compute outputs); lot; [-l]; lo] 1,

we demand that any process in our system shall, after it has acknowledged receipt of its inputs,
wait for those inputs to reset to neutral. This is cxpensive because checking inputs’ neutrality is
done in p-transistors: hence it must be decomposed into several stages, and it also loads the inputs
heavily. (Of course, switching to inverted logic does no good since then computing the outputs and
checking the validity of the inputs must instead be done in p-transistors, which would be even worse
than before.) The most trivial four-phase-handshaking QDI circuit takes ten transitions per cycle,!
and anything nontrivial takes 14; inescapably, the complicated control-processes take 18. (These
numbers are taken from the MiniMIPS [55] and Lines’s work [43].)

Various authors have suggested that the solution to the performance problems that plague four-

phase QDI circuits is that we should use two-phase signaling instead. Many variants exist; the

!Building a chain of buffers that take six transitions per cycle while remaining QDI is possible, but it cannot be
done without inverting the signal senses from a buffer’s input to its output.

14

simplest is:
*x[[li # lo}; (compute outputs); lo =i]

Some things can be implemented well with this protocol, but designers struggle fruitlessly with
anything but the simplest specifications when they must design logic. This is why: on each iteration
of the loop, the sense of the input signal changes. At one moment, an input near Vdd means a true
input; at another, it means a false input. Who can make sense of that??

What we want is a design style that combines the straightforward logic of four-phase QDI with
the timing of two-phase logic. Obviously, we cannot expect to have all the desirable properties at
once. Accordingly, we shall no longer demand that the circuits be QDI; yet they will in many ways
operate similarly to the QDI circuits we used in the MiniMIPS.

But is it even possible to use the MiniMIPS design-style for designing anything but QDI circuits;
shall we not have to abandon all that we know of asynchronous design and start over?

It turns out that most QDI circuits that have been designed can be sped up considerably by
introducing weak timing-assumptions, without our having to rethink the high-level design. The
reason for this is simple: while using a four-phase handshake for implementing two synchronization
actions is certainly possible (indeed, this technique is used in some special circuits, such as the
distributed mutual-exclusion circuit designed by Martin [50}), this is not commonly done. In the
dataflow-style processes used in the MiniMIPS, it is never done. Hence, out of the four phases of
the four-phase handshake, only two are used: send and acknowledge. The remaining two, resetting
the data and resetting the acknowledge, are not used for synchronization. These phases are entirely
superfluous from the point of view of the specification.

Each phase consists of two actions: an assignment and the wait for that assignment. We can make
use of the phases’ being superfluous by eliminating the waits, even though we keep the assignments;
by removing the waits, we get the synchronization behavior of two-phase handshaking; but by
keeping the assignments, we keep the encoding properties of four-phase. What we propose doing
is allowing communicating circuits to reset their interface nodes in parallel; in other words, once
we acknowledge an input, we assume it will resct “quickly.” This achieves the desiderata: the
inputs may still always be in positive logic, yet their synchronization behavior will have many of the
characteristics of two-phase signaling, since we only wait for the first phase of the inputs. Waiting
for the first phase of the inputs is anyway normally required for computing the outputs, so what
remains will definitely be closer to optimal.

In this chapter, we shall study a few simple pulsed circuits and then develop a theory that may

be used to account for the proper functioning of a wide class of pulsed circuits and show how that

2The reader who finds this comment facetious is urged to contemplate the designing of a circuit that has several
conditional inputs. Such a circuit will have to combine inputs of arbitrarily different senses, potentially in a different
arrangement of senses for each iteration.

15

theory may be applied to the specific simple pulsed circuits.

3.1 Road map of this chapter

This is the most challenging chapter of this thesis as we make the needed connection between physics
and computer science. So that the reader will not get lost in the chapter, let us first discuss the
main points.

We shall first study the designing and simulating of a basic pulsed asynchronous circuit, viz.
the pulse repeater. This will be an ad hoc discussion based on properties easily observable by and
well-known to the electrical engineer: pulse lengths® (widths) and heights.

Secondly, we shall explore why these simple and readily observable properties are not enough
for describing the full range of possible pulse-repeater behaviors. Simply speaking, the essential
shortcoming of the pulse length and pulse height is that these two properties, while they may suffice
for specifying a testing pulse that is applied to a circuit, do not suffice for completely describing the
shape of the output waveform produced by that circuit.

Thirdly, we shall generalize the legal-logic-range-noise-margin argument commonly made for es-
tablishing the correctness of traditional synchronous circuits. This generalizing serves two purposes:
on the one hand, it establishes a framework that we can understand the logic family of Chapters 5
and 3 within; on the other hand, it serves the wider purpose of taking a baby step towards establish-
ing a formal model for the functioning of asynchronous circuits with the simple understandability
of the synchronous model. The mathematical argument in this section may seem overly formal, but
it is really a straightforward generalization of the synchronous argument.

In generalizing we consider uncountably infinite sets of waveforms instead of the simple voltage-
ranges used by the synchronous argument. By specifying the sets of waveforms as “the set of all
functions f(t) such that each f(t) is bounded below by the function j(t) and above by k(t),” we
reduce the argument to one where j(¢) and k(t) play the leading roles instead of the much more
cumbrous infinite sets of functions. This corresponds to understanding the synchronous argument
in terms of the boundaries between the voltage ranges rather than having to consider every possible
intermediate voltage separately.

Fourthly, we shall recognize that, given certain desirable properties of the circuits that we study,
establishing the correctness of an asynchronous—pulse-logic family can be done entirely in terms
of functions j(t) and k(t); we shall determine what properties are necessary for allowing this vast
simplification.

Lastly, we shall argue that the pulse repeaters we first studied in such an ad hoc way actually

satisfy the conditions allowing the simplification. At this point, we shall have to appeal to more

3Also called “pulse width”; see the footnote on p. 17 for our Justifying the “pulse length” nomenclature.

16

vaguely known things, such as transistor equations and circuit parameters; this argument is hence

specific to the kind of circuits we are studying.

3.2 The pulse repeater

The first pulsed asynchronous circuit that we shall investigate is the “pulse repeater.” A pulse
repeater copies input pulses to its output. While this function could be performed by a wire or an
open-loop amplifier, the pulse repeater has feedback; using the feedback, it restores the quality of

the signals, both in the time domain and the voltage domain.

X out

—

Figure 3.1: Three-stage pulse repeater.

The circuit in Figure 3.1 is a simple three-stage pulse repeater. In its idle state, both the input
and the output are at a logic zero, and the internal node z is at a logic one; this is the only stable
state of the circuit. When the input voltage is raised towards a logic one, the voltage on z begins
to fall; which then causes out to rise, and finally, at least if in has meanwhile returned to zero, z
to rise back to the idle state. The circuit can mishchave if in remains at a logic one for too long.
Characterizing the misbehavior and finding ways of avoiding it are the main topic of the rest of this
chapter.

In the three-stage pulse repeater, the node out (when repeaters are cascaded, in is a neighbor’s
out) is driven by an inverter, as is the node y. We shall see that, even as we introduce more and more
dynamic nodes for handling complicated protocols, there will be nodes that shall remain driven by
combinational logic. These nodes do not offer much opportunity for computing, so we shall direct

our attention to the node z.

17

3.2.1 Timing constraints in the pulse repeater

The pulse repeater is a difficult circuit to get working reliably, owing to the timing assumptions that
are necessary for verifying its correctness. If we will ensure that a pulse on in is noticed by the
repeater, we must arrange that its length* exceed some minimum. On the other hand, the pulse
must not be too long; if it is, then the circuit may produce multiple outputs for a single input.
(Depending on device strengths, it may instead stretch the output pulse. We might endeavor to
design a pulse repeater so that this stretching could be used to keep the circuit reliable even with
arbitrarily long input-pulses. Owing to the difficult design problems posed by the transistor-ratioing
constraints, designing a reliable pulse repeater along these lines is difficult.)

We shall not consider the possibility that two input pulses arrive so close together that they
appear as a single pulse—for two reasons: first, the problem of the pulses’ arriving too close together
can be understood similarly to how we understand the single too-short and too-long pulses; secondly,
we shall see that the issue is not of much concern in the APL circuit-family because the pulse-
handshake protocols require inserting an acknowledgment of some sort between the two pulses (i.e.,
we ensure at a higher level of the design that we never have two pulses sent without the target’s

responding with an acknowledgment in between).

A
=

In

Figure 3.2: Five-stage pulse repeater.

3.2.2 Simulating the pulse repeater

The author has simulated a few variants of the pulse-repeater design described above with input
pulses of varying lengths and heights applied, thus illustrating the timing margins of the pulse
repeater. The repeaters that were simulated are similar to the simple three-stage version described

above. The differences are that the input and output were negative-logic (i.e., the input transistor

41t is conventional to speak of pulse “widths” and interval “lengths”; using both concepts together, as we do, is
apt to lead to confusion if this convention is adhered to. For this reason, we shall talk about pulse “lengths,” thereby
meaning the same as the conventional pulse “width.” Similarly for “long” and “wide.”

18

is a p-transistor) and that “keeper” resistors were used on the z nodes. We shall see the results
for two separate circuit designs: a three-stage version, and a five-stage version that differs only in
two extra inverters’ being used in the feedback path from z to y (Figure 3.2). The author produced
layout for the pulse repeaters using the magic layout editor and simulated them with the aspice
circuit simulator. The assumed technology is HP’s 0.6-pm CMOS via MOSIS; the supply voltage,
Vdd, is 3.3 volts for all simulations presented in this thesis.?

In what follows, we shall mainly aim at understanding the behavior of a single pulse traveling
down an infinite chain of pulse repeaters. Will the pulse die down? Will it lengthen until it becomes
several pulses? Or will it—as we hope—travel down the chain unscathed?

Two things can go wrong with the pulse repeater. The input pulse can be too weak for the circuit
to detect it, or the input pulse can be of such long duration that it is detected as multiple pulses. An
example of a pulse repeater on the verge of mishehaving owing to a too-long input pulse is shown
in Figure 3.3. The nodes are labeled as follows: input, r.in; internal node, r.il; output, r.out; their
senses are inverted compared with the pulse repeaters in the text. Here the input pulse is 1.5 ns
long, beginning at ¢t =10 ns. As we can see from the graph, the internal node r.71 starts rising
almost instantly, causing the output to fall about 200 ps later. At ¢+ = 11 ns, the internal node rises
again, thus re-arming the circuit. Slightly before ¢ = 11.5 ns, the re-armed circuit starts detecting
the input—which has by now overstayed its welcome—as a second pulse, but the detecting transistor
is cut off by the input, which falls back to GND barely in time to avoid being double-latched.

Figure 3.4 shows the results of applying pulses of varying lengths and heights to the three-stage
pulse repeater. The pipe-shaped region shows when a single input pulse results in a single output
pulse, as desired. The other two regions correspond to forms of misbehavior: the region to the right
of the pipe shows when a single input pulse results in several output pulses, i.e., when the input
pulse is too long to be properly detected as a single pulse; the region to the left of the pipe shows
when the input pulse is too feeble to elicit any response at all. (The gaps in the plot are due to
irrelevant practical difficulties with the simulations.)

Figure 3.5 shows the results for the five-stage pulse repeater. Figure 3.6 shows a plot for the
five-stage pulse repeater of the length of the output pulse for different lengths of the input pulse,
the input swing here being from GND to Vdd. The solid line shows the data; “0,” “1,” “2,” and
*3” indicate operating regions explained below. The diagonal dashed line in Figure 3.6 denotes the
stability constraint that the output pulse is as long as the input pulse; we should expect that in
an infinite chain of pulse repeaters, the pulses will eventually have the parameters implied by the

intersection of the input-output curve and the stability constraint.®

5The parameters used are known to be inaccurate. The circuit speeds indicated by the simulations are 15—
20 percent higher than what one can reasonably expect from fabricated parts. These parameters keep the simulations
straightforwardly comparable with most of the work done in the Caltech group in the last five years.

6As will be clear from the rest of this chapter, this is a very najve understanding of the situation; we are here
trying to project the behavior of a many-dimensional system onto a single scalar dimension: the pulse length. The

19

rin

rit -

3.5

2.5

[AUA

10 10.5 11 1.5 12 12.5 13
v[ns]

9.5

Figure 3.3: A long pulse almost triggers a pulse repeater twice.

T

T

1

T
1

b

3.5

N 0

-

2.5

[AlauBisy asind induy

0.5 F

1.2 1.4

0.8
Input pulse length/[ns]

0.4 0.6

0.2

Figure 3.4: Shmoo plot for three-stage pulse repeater.

20

AR AR AR AT A

{RRIRRIREIR)]

I

T
1§

0T

I BEIR IR

T

T i

I8IRaIREN

RN ERIE)

PR EBLE

AL a
O,
HHHEH R

NRENRINATE
117
Ty

T
T

T

T
T
T
IS RIRAN

1T
T
T
NIRS]

18]
V@RI
sl 1]

1
T

1 EaT)

3.5

2.5

o 0

—

[Alaubiay esind induy

0.5

1.5

0.5

Input pulse length/[ns]

Figure 3.5: Shmoo plot for five-stage pulse repeater.

0.8 -

[sulyyiBusyi esind indino

0.8 1.2 1.4
Input pulse length/[ns]

0.6

0.4

0.2

Figure 3.6: Input-output relationship of pulse lengths for five-stage pulse repeater; this particular

circuit stops working for input pulses longer than 1.47 ns.

21

3.2.2.1 Analysis of pulse repeater data

There are two important questions we should ask when analyzing the pulse repeater data: First,
can we cascade the circuits—can we connect them so that they work properly when the output of
one is the input of another? Secondly, do the circuits work over a reasonable range of parameter
variations?

The “shmoo” plots, Figure 3.4 and Figure 3.5, are caricatured in Figure 3.7.7 Normally, if the
input pulse is of a reasonable height and length (see below), then the gain of the pulse repeater will
force the output pulse to be approximately characterized by the point marked “X” in the caricature.
Furthermore, the line “A” describes the minimum pulse length that can be detected by the pulse
repeater. This is set by circuit parameters, mainly by the strength of the input transistor and the
load on its output. The other line, “B,” marks the longest pulse length that will lead to a single
output pulse.

The reason there is a maximum length that the repeater will not work properly beyond is that the
repeater “double-latches” when the input pulse is so long that it is still present when the repeater has
gone through the entire cycle zl; ... y);zT;... yT; furthermore, the up- and down-going behaviors of
the pulse repeater are roughly similar; the same number of transitions is exercised, through roughly
similar circuitry. Taken together, this means that the interval zl; yl; 21T (approximately the same
length as the output pulse) is about the same length as the interval z1; y1; z), where the final z
is the misfiring resulting from the too-long input pulse. Hence, the pulse length along “B” will be

about twice the length of the normal pulse “X.”

3.2.2.2 Digital-analog correspondence

If we restrict ourselves to the digital domain, we can understand the pulse repeater’s behavior for
different input pulse lengths by considering the input pulse as two transitions int;inl. The length
of the input pulse is the length of the time interval between int and inl. int begins the operation

of the pulse repeater; leaving out inl, the sequence of transitions is
ity zly outt; yl; aty outl; yt .

Changing the input pulse length amounts to changing the position of in} in this trace (we are here
assuming that the sequence continues even in the absence of inl; i.e., in the presence of interference).

There are five main possibilities:

0. inl occurs so early that the pulse on in is too short to trigger the pulse repeater—then there

will be no sequence z|; outT; etc. The repeater fails.

impatient reader is urged to take a peek at Section 3.3 and then to return here.
7An Internet search reveals the spelling “shmoo plot” as being five times more commonly used than the variant
“schmoo plot.”

22

1. 4nl} occurs long enough after in?t that the input pulse is noticed, but it occurs before y}. This

is the ideal situation. There is no interference. The repeater works perfectly.

2. inl} occurs during yJ. There is some interference, but because the input behavior is monotonic
(the inputs tend to drive z strictly more towards Vdd as time goes by), the interference is

fairly harmless—a slightly lengthened output pulse may result. The repeater still works.

3. ind occurs after yl but not long enough after it to trigger the repeater again. The repeater

still works, but it draws a great deal of short-circuit current.

4. inl] occurs long enough after yl| that 21 has already occurred; z} is triggered again, and the

repeater generates a second output pulse. The repeater fails.

We may draw an analog connection: the possibilities 0.-3. correspond to the so labeled segments of
Figure 3.6 (the part of the curve for possibility 4. is not shown). In normal operation, the repeater
is thus operating at the border between possibilities 1. and 2. This is not surprising, since the input

pulse is approximately the same length as the resetting pulse on y.

3.2.2.3 The cascaded repeater

[AlAubtay indul

I
|
{
I
1
|
|
|
1
|
|
I
|
!
I
|
|
|
|
|
|
|
1

input length/[ns]

Figure 3.7: Qualitative interpretation of shmoo plots.

Now we shall justify the location of the point marked “X” in Figure 3.7. Is it really true that

the output pulse will have the characteristics implied by the location of X, almost regardless of the

23

characteristics of the input pulse? Yes, it is. We can see this® from Figure 3.6. This figure shows
that, in this fabrication technology, for input pulse lengths in the wide range from 0.12 to 1.47 ns,
the output pulse lengths range only from 0.57 to 0.85 ns. (Note that the scale along the abscissa is
not the same as that along the ordinate.) Since five transitions take about 0.61 ns here, we can say
that in technology-neutral terms, the input pulse lengths may vary from about 1.0 normal transition
delays to about 12 delays for an output variation from 4.7 to 7.0 delays.

Since the range of input pulse lengths comfortably contains the range of output pulse lengths,
we should have to add considerable load, or we should have to fall victim to extreme manufacturing
variations to make the pulse either die out or double up as it travels down a pipeline of pulse
repeaters of this kind. Since, further, the input-output relationship of the pulse lengths is almost
entirely monotonic, we can summarize the behavior of the pulse repeater thus: an input pulse of
length between about 1.0 and 12 transition-delays will generate a single legal output pulse; the

length gain averages 4.8.

output
i p

[Alaubiey ssind

pulse length/[ns]

Figure 3.8: Mapping of input to output pulse parameters.

Figure 3.8 is another caricature of the operation of pulsed circuits. The input pulses within the

input pipe lead to output pulses within the indicated output region.®

8Note that the various shmoo plots and the width-gain plot are drawn for several different circuits, so the numerical
values are not necessarily directly comparable across them; also the criterion for a pulse’s being legitimate is somewhat
over-strict in the shmoo plots. We shall formalize the conditions later.

9The continuity of physics demands that the output region also goes to infinity where the input pipe does so.
This is a nicety that we ignore because, in any case, a pulse repeater operating in this region would be unstable and
fickle. Furthermore, as we shall see in Section 3.3.5, allowing the input pipe’s being the largest possible for generating
properly shaped output pulses will not work, since if we o that, continuity will demand that the output shape

24

3.2.3 The synchronous digital model

The correctness of synchronous digital logic is justified by a two-part model that is familiar to every
electrical engineering undergraduate. The first part explains what it means to be a valid logic-
level by dividing the possible analog voltages of a digital circuit into a few ranges with the right
properties to guarantee that noise is rejected; this division we call the digital logic-level-discipline,'®
or logic discipline for short. The second part introduces a synchronous timing-discipline. The
timing discipline can be introduced in several ways, which all rely on defining the times when circuit
elements are allowed to inspect the analog voltages (i.e., when they can be proved to obey the logic
discipline) and defining the times when the circuit may change the voltages (when the voltages
cannot be shown to obey the logic discipline of the model). The timing discipline is normally
maintained by introducing latches and a clock and specifying setup and hold times for the latches.
Comparing Figure 3.8 with the synchronous logic-discipline, we can identify the big pipe with the
legal input-range for a logic value; the little pipe, with the legal output range; the difference between
the two is, intuitively speaking, the noise margin.

The synchronization behavior of asynchronous circuits is sufficiently different from the syn-
chronous timing-discipline that we shall have to develop a different timing model. The synchronous
logic-discipline, on the other hand, rests on a transitive-closure property of synchronous digital cir-
cuits that we may emulate for deriving sufficient conditions for the correctness of APL circuits. In
the synchronous world, introducing legal-voltage ranges and noise margins establishes the correct-
ness of the digital model; having introduced these constructs, we can show that voltages that have
clear digital interpretations will be maintained throughout a circuit as long as the noise that is
present is less than the noise margins [84]. We shall generalize this one-dimensional model for the

asynchronous pulses.

3.2.4 Asymmetric pulse-repeaters

We noted above (Section 3.2.2.2) that the pulse repeater normally operates on the border between
the “ideal” domain and the “fairly harmless” domain. The reason for this is that, in a long chain of
cascaded inverters, the reset pulse on y is about the same length as the input pulse on in.
Practically speaking, there is interference in the “fairly harmless” domain; this means that the
circuit generates extra noise and uses more power than necessary. Furthermore, many theoretical
difficulties are caused by this interference, as we shall see below. Is there no way of avoiding this?
In fact, it is fairly easy to avoid the in pulse’s interfering with the y pulse. What we need is a

circuit that generates pulses of different lengths on y and out; the pulse on out needs to be shorter

shall touch the input shape. Hence, the pipe shown in Figure 3.8 is actually a little smaller than the ones shown in
Figures 3.4 and 3.5 (by about 1/5).
'0The terms “logic discipline,” “timing discipline,” etc., are taken from Ward and Halstead [84).

25

than the one on y. An example of a circuit with this behavior is shown in Figure 3.9.

oo o]

Figure 3.9: Asymmetric 3-5—stage pulse repeater.

We shall not mention these circuits further, except now and then to lament that we should be
lucky to be blessed with their non-interference. The theory of these circuits may be simpler!! and
the power consumption lower; but the output pulse is shorter and driven by a more complicated gate
(hence weaker), and there are two stages of logic that we can no longer use as fully as before. For
these reasons, we should probably have to stretch the timing of this pulse repeater to 5-7 transitions

instead of 3-5. The losses would outweigh the gains.

3.3 Formal model of pulse repeater

Formally, we may divide what we are doing with the pulse-repeater problem into three steps: our
generating input excitations, the circuit’s reacting to the input excitations by producing output
waveforms, and our measuring of the output waveforms. The question we should like to ask is if it
is possible to combine several pulse repeaters, i.e., if cascading the pulse repeaters will maintain the
pulse shape.

We shall study the behavior of a pulse repeater when presented with a single input pulse; we

shall not directly consider a single pulse repeater’s being presented with several pulses in succession.

3.3.1 Basic definitions

The waveforms that we saw in the pulse repeater experiments are parameterized by two parameters,
the voltage V' and the time t; for the particular parameterization we chose, it made sense to speak

of the height h and the length /. For instance, let us assume that we would use rectangular pulses

11But in the light of the following theory, which establishes that the symmetric pulse repeaters work, the suggested
asymmetric-repeater theory might be considered dishonest. If the symmetric repeaters work despite interference,
would not the asymmetric ones too? And would not the asymmetric-repeater designer be tempted to allow his
circuits’ operating in this domain?

26

as excitations for characterizing the behavior of some pulsed circuit. We could then parameterize

the pulses that we use as!?

”Huyﬁhx(un_fu_ny (3.1)

where I(z) is the unit step function [76]:

0 ifz <0,
I(z) = (3.2)
1 ifz>0.
We first define the set 7 of functions over time that have their global maximum in finite time,
ie.,
T {fito>VAQBKF Nz >k: flx) <F)AQz: f(z) > F))}. (3.3)

The need for the restriction is explored in Appendix C.

We say that two functions'® f,g: R — R are equivalent under translation if there existsa A € R
such that f(t) = g(t — A) for some A; we write this f ~ g. We shall mainly deal with the partition
of 7 into equivalence classes under translation; we call this partition F. The equivalence class that
contains f we write 7(f).

We can think of the p waveforms as a mapping from pairs of real numbers, i.e., members of the

set
Py Xt (3.4)

to functions in F. The mapping itself, P : P — F, is defined as

P (['ZD def O (3.5)

we write P(P) for the subset of F that represents all such rectangular pulses.

Secondly, the circuit’s reaction to the input may again be thought of as a mapping, this time from
input to output functions. We may write this ¢ : 7 — 7T, interpreting a translation of the input as
causing an identical translation of the output (the circuits themselves are of course time-invariant),
we may also write

T:F o F. (3.6)

Lastly, we consider measuring the output waveforms. Nalvely speaking, we want to characterize
the output waveforms in the simplest way; since we use P to parameterize the inputs, it would seem

convenient to extract the same parameters of the output waveforms. Perhaps we can phrase the

12We use the vector notation [i] mainly for making things typographically clear; the functions we are considering
are generally nonlinear, whence the analogy with matrices and linear transformations is not so useful.
131f nothing to the contrary is stated, then we shall assume that a function f maps from real numbers to real

numbers.

27

questions about the pulses in terms of the parameters of the pulses.

3.3.2 Handling the practical simulations

If we want to determine the mapping for a real circuit, we should run a set of simulations to check
the behavior of our circuit for a variety of input pulses of the shape p[,l], with 2 =0,1,2,.... In
order to determine the mapping of Figure 3.8, we measure the length and height of the output pulses.
This we could do, for instance, by measuring the highest voltage recorded by SPICE and measuring
the time interval between the upward crossing of Vdd/2 and the following downward crossing. (If we
should not detect any crossings of Vdd/2, or if we should detect more than these two crossings, we

4

should be able to conclude that the input pulse was outside the “pipe.”) With these measurements
in hand, we could then draw Figure 3.8, and if the area covered by the output pulses should be
contained within that of the input pulses, then we could finally conclude that the circuit we have
tested can be used as a pulse repeater because the input-output relationship is stable.

In other words, we have the commutative diagram:

1] = e (li])

lp Tp—l (3.7)

The upper part of the diagram defines the function G : P — P on the parameter space. In practice,
we study G by computing P~ o ® o P. We ultimately want to know if P! o " o P converges as
n — 00; we can now ask the same thing of G".

Unfortunately, there is an important flaw in the described testing procedure. While it is true
that the input, p[;l.](t), is properly characterized by h and [, and that our measuring the height and
length of the input pulses would indeed result in the values we specified in the definition of p, our
measurements of the output pulses only incompletely characterizes them. This is understandable:
even though a simple mathematical function describes the input pulses, the waveforms of the output
are unlikely to obey some p[zll](t) for any values of h and I. Indeed we should be surprised if
they did, given that there is an infinite variety of possible output waveforms, depending on circuit
parameters, environmental conditions, noise, etc. In fact, we know that the output pulses cannot
possibly be characterized by p["] since the function p has discontinuities, whereas—given the nonzero
capacitances that are present—the output voltage cannot have discontinuities if all the currents in
the circuit are finite. Formally, we should say that P~! only exists for members of P(P), not for

arbitrary functions.

28

3.3.3 Expanding the model
We instead define a partial order on functions in the obvious way:

Definition 3.1 (Partial ordering of functions in 7)) Given 8,¢ € T, we say that § < ¢ if and
only if 0(t) < @(t) for all t. We say that 6 equals ¢ if 0 < ¢ and ¢ < 6;

and extend it to our translation invariant representatives in F:

Definition 3.2 (Partial ordering of members of F) Given f,g € F, we say that f < g if and

only if there exist representatives 6 € f and ¢ € g (with 0,¢ € T) such that 6 < ¢.

Appendix C shows that Definition 3.2 establishes a partial order (i.e., a relation that is transitive,
reflexive, and anti-symmetric) of functions obeying (3.3) if by two functions’ being equal we mean
that they are members of the same equivalence class in F.

If we consider a member f € F (f is an equivalence class of functions; we can loosely speak of it
as a function if we by that mean some canonical representative), we can define the mapping taking

it to the subset of rectangular pulses P(P) dominated by it as
J.F 2P, (3.8)

ag € P(P)isalso in J(f) if and only if g < f.

Similarly, we define the subset of P(P) that dominates f as K(f). Figure 3.10 illustrates the
situation as it applies to an arbitrary waveform when P consists of the rectangular functions P[x]) =
hox (I(t)—I(t—1)).1

As we know, an arbitrary f is most unlikely to be in P(P). Hence we shall not attempt to define
a mapping directly from F to P; instead, we define a mapping M : F — P(P) x P(P). (M stands
for “measuring mapping.”) Starting from J(f) and K(f), M picks an ordered pair [fc] such that
7 € J(f) and k € K(f)—in other words some pair [” such that j < f and f < k; we further write
M, for j and Mg for k; we can also define M : F — P x P by M def [g:igﬁ;g] It is clear that
Jj i1s somewhat arbitrary (m satisfies the same condition as j), but there is no reason for choosing k&
different from the corner of the square region. Obviously, [Z] is not unique, so M is not unique; as
we shall see, picking M properly is important.'®

Let us now define ® to work on sets of functions as well as on functions. We define ® ;: 27 — 2%

B(S) Y (t: (Fs:seS:t=d(s))} (3.9)

1415 order that we may keep the exposition manageable, we have simply truncated all the waveforms at the threshold
voltage—any activity below the threshold we have assumed to be negligible.

15Figure 3.10 applies to the particular case when P(P) consists of the rectangular functions p,-. Here it is clear
1

that there is no reason for picking a k different from the vertex of the square area. Which 7 is best is a different story;
picking the j that maximizes the product h x [is likely a good heuristic. In the general case when a more complicated
P(P) is used, k can also be open to question. We might then choose the k € K(f) that minimizes fk(t) dt and the

7 € J(f) that maximizes fj(t) dt.

29

(a) (b)

Figure 3.10: (a) the function f and two members 4, k € P(P). Here j < f < k. (b) parameter-space
representation of sets J(f) and K(f) and the points j and k (more properly P~1(5) and P~1(k))
picked by M.

Similarly, we may define M on sets, so that M : 29 — P(P) x P(P); thus,

(3.10)

M(S) & {MO, (minf(S)) }

My (maxf(S))

def

where minf : 27 — F, with [minf(S)](z) = [inf; s](x), where we use Definition 3.2 for < and the
s€8
corresponding inf; and analogously for maxf. Finally, let us define the map F : P(P) x P(P) — 27

that generates all functions between two reference pulses j, k; hence,

F (M) Wipj<f<h (3.11)

It should be clear that M o F ([{]) = ([/]) as long as j < k; hence we could define

M- Ep, (3.12)

but we must then keep in mind that M~! o M(S) for a set of functions S does not necessarily equal

S; we do however have that

195
N

M~ o M(S). (3.13)

30
3.3.4 Using the extended model

Now we can ask questions about the behavior of the parameterized waveforms when & is iterated.

If we consider I < im ®"(f), we know by (3.13) that I; € lim M '(Mo & oM 1)*(Mf). We
n—o0) n—r00

hence define the mapping from input to output in terms of the reference pulses as G : P(P)xP(P) —

P(P) x P(P)

G ¥ Mod oML (3.14)

if we should prefer considering the behavior in the parameter space P, we can write G : PxP — PxP

as Ty [P w82
GM<[(I]> - P410M110¢0M—1([E§Z§]) . (3.15)

The M subscripts serve to remind that there is some arbitrariness in the choice of M, which infects

G and G too. Thus we have soundly fixed the commutative diagram, (3.7); we should write:

H —”ﬁ e ([1])

[mmtor ([1Emem] (3.16)
{(F:PO<F<P@} 5 {g:(3f:Pp) < f<Pg):g=2(f)}

We can think of [,{] as defining a rectangle!® in P-space, whence we may have:

Definition 3.3 (Stable function mapping) We say that G is stable under M if there exists a
rectangle [rfz] such that Gn ([;)D C [751] . We call [751] a region of stability of G (and by extension
of ®).

The connection with pulse repeaters should be clear. We find that if we can arrange that the inputs
z; to a chain of pulse repeaters will obey M(x;) C [757’], then all nodes along the chain will also
obey that relation.

In topological terms, the stable G’s causing pulses to remain well-behaved is a weak application
of the “contraction principle” used by Gamelin and Greene [27]; if we could guarantee that for all
[sz] in a region of the plane, we could define a metric d measuring [Til] such that it decreases for
each iteration of ®, then we should have a true contraction mapping, in which case the pulse would
converge to a single well-defined shape as it travels down the chain of pulse repeaters. This very
often happens in practice, but as should be clear from our argument, so strong a property is not

required for the pulses’ remaining well-defined.

186When P-space is two-dimensional; it should be clear that P-space could have any desired dimensionality, and

[i] generally defines a coordinate-aligned rectangular hyperprism. The rest of the argument is the same for any

dimensionality of P. We might for instance handle the threshold-voltage issue (see footnote on p. 28) by adding an
extra parameter to the P-space.

31

What have we gained—why should M o® oM™ be casier to handle than & itself? One situation
when it is easier to handle G is when @ is locally monotonic, i.e., if it is true that Vf,g: j < f <
g < k: ®(f) < ®(g). If this is true, then it is also true that ® o M~* ([ZD cM™! ([g((,]cg]),
which means that we need only operate on pairs of functions j and k to determine the boundaries
of the region of stability (rather than on the infinite sets of functions M~! ([i])), i.e., our naive
pulse-repeater experiments then carry enough information for determining whether a given pulse is

a legal input pulse to the circuit.

3.3.5 Noise margins

If we consider a region of stability [,,:L] of ®, we know that for any input signal f that satisfies
M(f) ¢ [72], it is true that Mo ®(f) C [,i,] If the region of stability is finite (which it normally

is), then there exists at least one maximal region of stability [Linax], which has the property that

Mmax

Mmax Tmax

there is no larger region of stability [;] D [I] . It can be proved that [Fma] allows at least one
input function f that differs only infinitesimally from an input function g that would take the circuit
out of the region of stability. Hence, if we allow as legal any pulse for which M(f) = [Ti;’::x], then
the circuit’s noise margin will be zero. (In traditional synchronous logic, this would be equivalent
to considering as a legal digital input one that is exactly at the switching threshold.)

If we instead define a norm on the noise margin, i.e., on the function-set difference M ! ([Til]) -

d (M_l ([751])), we can say that the [,fl] that we should choose as our legal range of pulse inputs
is the one that maximizes HM_I ([! D - (I\/I_1 ([! D) H The legal range of pulse outputs is

m m

l

the corresponding ® (M'l ([7])) We define the noise margin

7

=P () -+ 0 (L] 51

Choosing this norm properly is likely a difficult matter, although simplistic versions are not too hard
to come up with. Saying more about noise here would be premature; how we treat noise depends
to a large extent on what we shall do with pulsed circuits. The interested reader is referred to

Section 6.8.

3.4 Differential-equations treatment of pulse repeater

How do we find out if ¢ is locally monotonic, as would make the previous section’s results applicable?
First, we shall reiterate (almost verbatim) the definition of a strong upper fence given by Hubbard

and West [38].

Definition 3.4 (Strong upper fence) For the differential equation ' = f(t,z), we call a con-

32

tinuous and continuously differentiable function B(t) a strong upper fence over the interval I if

f(t.B@1) < B'(t) forallt € 1.

Theorem 3.1 If 3(t) is a strong upper fence on ©' = f(t,x), then for any solution u(t) with
u(to) < B(to), u(t) < B(t) for all t >ty in any interval contained in I where u'(t) = f(t,u(t)).

Proof. See Hubbard and West.

Let us now consider the boundary value problem of a differential equation in z(t) of the type

dix:
i f(f,7 :1:,'11)(15)), (3.18)

with boundary condition
z(0) = @y. (3.19)

To save the reader’s patience, let us right away call ¢ the time, w the excitation, and z the response.
Without loss of generality, define I so that I = {#:0 <t < T }. Furthermore, let it be the case
that over the entire domain of f, an increased excitation tends to drive the response downward; i.e.,

formally, let everywhere

of

5 <O (3.20)

Now we should like to characterize the behavior of the solutions to the boundary value problem (3.18)
for different choices of the excitation function w. Let us specifically have in mind two excitations

wg and wy such that

we(t) > we(t) for all t € T, (3.21)
we shall for convenience refer to the responses given these excitations as z4 and zg. Then:
Lemma 3.1 z4(t) is a strong upper fence for the differential equation dx/dt = f(t,z(t),we(t)).
Proof. From Theorem 3.1, we know that we need to show that

f{tmo(t),we(t)) < % (3.22)

But we also know that z4(t) solves the boundary value problem (3.18) for the excitation wy(t), so

that we have to prove

f(t,zo(t), ’zz)q‘)(t)) < f(t,wo(t), we (t)) (3.23)

This relationship is obvious from (3.20) and (3.21). Therefore z4(f) is a strong upper fence for

da/dt = f(t,z(t), we(t)). Q.E.D.

We can now state the desired relationship between x4 and z.

33

Theorem 3.2 If wy(t) > wq(t) for allt € 1, then x4(t) < xo(t) for allt € L.

Proof. Recall that z4(0) = z4(0) = zo. Thus, in Theorem 3.1, u(0) = 5(0), and therefore z4(t) <
zp(t) for all t € I. Q.E.D.

3.4.1 Input behavior of pulse repeater

Figure 3.11 illustrates the input circuitry of a pulse repeater. We shall discuss the time behavior of

the node z as an input pulse arrives. The input pulse may have any shape.

N
y

X

1
Lt v

in

Cx

Figure 3.11: Input circuitry of a pulse repeater.

If we assume that the circuit starts out with a known voltage on the node z at time t,, vz (ta),

we may write

U.’I}(t)l = 61“ (i:l:(t) + i+(t))7 (324)

€I

or in integral form, replacing the boundary condition with the term v, (%,),

%@:%f@m+uma+mm. (3.25)

Since the input pulse ends at some time—call it #,-—we are mainly concerned with the value
of the right-hand-side expression at time #;,. The relationship between 7, and v, follows from the

transistor equations and the shape of v;y,, but what do we know about i, (1)?

34

3.4.1.1 Inertial approximation

Let us first assume that we can model the behavior of the circuit as “inertial”; i.e., we will consider
only the behavior of the pulse repeater in situations when the input pulse has not yet acted so long
that 74 has been affected via the feedback path (y in Figure 3.1) by the change in z. Understanding
exactly where this is true would involve understanding exactly when Equation 3.20 with the proper
variable renamings holds, i.e., when it is true that

8(7:+ + ’i,,,)

0. 3.26
Ovin = ()

We intuitively justify the approximation by noting that (3.26) holds as long as y (the input to the
pullup p-transistor, see Figure 3.1) is approximately Vdd. That this is true for a while can be

seen from the transistor equations. We can for instance use the familiar Sah model to model the

transistors [73, 2]. Under this model, since the p-transistor is in the forward active region,!” and
the n-transistor is in saturation during most of the beginning of the input pulse, we may write
. - (V — 'U-r)z
Ty = k,,(V - VTp)(‘/ - 'U;,,) - ———2-— (327)
and
7::1: = _kn(vin - VTH,)2- (328)
Now we verify (3.26) for this model:
0o + 1y
Oliv +ie) _ _gp (3.29)
a’”in

The partial derivative (3.29) is certainly negative as long as vy, is positive, as it must be under our
assumption that the transistor is in saturation. This may not be accurate for all input pulses, so we
must re-check the conditions in the linear region; this work is not shown.

We may identify C% (ie(t) + i+ (t)) with w in (3.18). Hence, as long as (3.26) holds, we can apply
the theorem and conclude that if we have three pulses p, q, r and p < q < r and both p and r are

legal input pulses for a pulse repeater, then so is q.

3.4.1.2 Non-inertial behavior

But is it really true that we can ignore the feedback path that could affect 17 Let us slightly refine
the model for the pulse repeater. Basing our argument on Figure 3.1, we can see that the output
inverter is used for two purposes: first, it generates the output; and secondly, it provides a feedback

path, which eventually resets the output, thus generating a pulse. If we break up the two functions,

17 Also called linear region, triode region.

35
we have the circuit of Figure 3.12 instead. Here we have modeled the feedback path, which creates
the pulse, as an inverting inertial delay called D. If the amount of delay introduced is A, we should
normally write y(t) = Vdd —z(t — A). Writing y thus would however neglect the gain of the inverter
or inverters on the delay path (two in the case of the three-stage repeater, four in the case of the

five-stage repeater). Hence we shall instead write
y(t) = C(z(t — A)), (3.30)

where C represents the “inverting clamping function” that is Vdd if the input is less than Vdd/2
and is 0 if the input is more; we thus assume that the gain along the delay path is enough that we
can consider y a purely digital signal. (In other words, the gain is infinite.) We further assume that
the output inverter’s logic threshold is at least as low as the inertial delay’s (i.e., the output inverter

will not trigger before the inertial delay).

inverting inertial delay D

; o

ou

.

n

Figure 3.12: Pulse repeater modeled with inverting inertial delay.

Can we get away without the special inertial-delay element? Unfortunately not: the length of the
output pulse will be approximately A long; if that is also the length of the input pulse, then it means
that the current iy will begin changing approximately at the same time as the input pulse ends; we
should hence be concerned that the monotonicity condition may be violated for input pulses longer
than A; this corresponds approximately to the later half of the “pipe,” at least near its top.

Consider the two input-pulses in the scenarios A and B of Figure 3.13 (as usual, we have ignored
the irrelevant time-translation of the various signals). The pulse repeater whose behavior we are
plotting must be avoided because it misbehaves: the weaker input-pulse causes a stronger output-
pulse. Both A and B are slightly longer than A; hence there will be some interference on the node
z during the later parts of the input pulses. The pulse in A is slightly “weaker” than in B during

the first A, as shown by the notch at the top; we have assumed in the z waveform that the weak

36

strong output driver———
output rises even though x is weak

“ho intefference——
output remaing high

in X out

strong inputi-'

strohg interference later |- -m /" e J
interference |causes$ output

to fall early

Figure 3.13: Two different input-pulse scenarios and their corresponding intermediate-node values
and output values.

ina merely causes a slow transition.

If we first consider, as in Figure 3.13, a circuit whose inertial delay has no gain, it is clear that the
monotonicity property is in danger. This is because if y(t) merely mirrors x(t), then the interfering
i+ will be less for scenario A than it will be for scenario B. Hence, in scenario A, the signal on z
could actually have a larger (more negative) swing than in scenario B, and the ultimate output-pulse
on node out could be larger than in scenario B.

Now let us see how our assumptions about D solve the problem. There are two possibilities we

need to consider:

I. First, the pulse ing may be so weak that it does not trigger D until much later than the pulse
in scenario B. But we said that if D is not triggered, then the output inverter is not either,

and we know that the output pulse will then start later than in scenario B.

II. Secondly, the pulse ina may be strong enough that it triggers D immediately. But since D

has infinite gain, ¢4 will now be the same in the two scenarios.

This argument shows that monotonically stronger input-pulses will still cause monotonically
stronger output-pulses, even in the presence of interference when the input pulses are more than A

long. (The reader may wish to verify that our argument with respect to possibility I. holds as long

37

as the input pulses are no longer than approximately 2A.)

3.4.2 Generalizations and restrictions

Because of the simple requirements of the Fence Theorem, Theorem 3.1, we should find it easy to
verify the fence conditions for (3.24) even for a complicated transistor model, because all that is
required is that the circuit’s response—the instantaneous current flowing to z—is strictly antimono-
tonic in the input voltage.

Of course, physics is never quite as simple as we have made it seem. First, we have used a
very simplistic model; the behavior of the cascaded inverters is only imperfectly captured by an
infinite-gain inertial delay. Secondly, the data in the pipe figures was captured with a rudimentary
technique that does not directly correspond to the theory we have developed. Both of these are
reasons for mistrusting some aspects of the pipe figures; especially the data around the edges of the
pipes are suspect. Lastly, we may expect that the pulse-logic designer loses sleep over not being able
to verify that his circuit satisfies the fence condition (3.20) at all times. If 9f/Ow can sometimes
be positive (e.g., owing to second-order effects in the transistors; the MOS Miller effect comes to
mind), but this deviation from the fence condition is small, then how does the designer prove that
the required monotonicity-property for the pulses still holds? We could perhaps save the day with
more detailed analysis. In practice, we could also use differently shaped test signals to eliminate or

minimize the unwanted behavior of 8f/dw.1®

!8Note that the partial derivative is with respect to changes in w from one waveform to another, not with respect to
changes in w over time in a single waveform; this means that although we cannot avoid the Miller effect’s suggesting
that dz/dt can sometimes be positive in response to a positive dw/dt, we may conjecture that we shall still be able
to shape the input pulses so as to keep 9f/0w < 0.

38

This page intentionally left blank.

39

Chapter 4

Computing With Pulses

My pulse, as yours, doth temperately keep time

— William Shakespeare, Hamlet, Prince of Denmark (1603)

As undergraduates, we learned that while important, the logic discipline alone does not suffice for
building digital systems that shall be able to compute arbitrary functions repeatedly. Two further
attributes are required before a circuit-design method can be used for implementing a wide range of
digital systems: timing discipline—in essence, design properties allowing the reuse of circuitry (i.e.,
as repetitive systems); and logic—our circuits’ ability of computing arbitrary boolean functions.

In traditional synchronous design, simplicity requires treating timing discipline and logic sepa-
rately; this approach leads to design styles that alternate “latching elements” with “combinational
logic.” This is taken to an extreme in automated design systems: the latching elements are spe-
cial library cells and no feedback paths whatsocver are allowed in the logic—a formally complete
separation of logic and timing.

Over the years, however, designers of high-performance synchronous systems have begun inves-
tigating techniques that more and more mix logic and timing. We see a familiar example of this
in “precharge logic” or “domino logic.” Precharge logic is more difficult to design because of the
mixture of timing and logic; the precharge-logic designer must renounce attempting to implement
logical specifications that do not fit in the precharge timing-discipline. The mixing trend has not
abated over the years; currently, “self-resetting” (or “post-charged”) logic [71] is an active area of
research in synchronous systems—this type of logic is in many ways the synchronous parallel to the
asynchronous pulse-logic that is the subject of this thesis. Self-resetting synchronous circuits are
indeed asynchronous to the extent that some of their timing is data driven. Unfortunately, using
the clock for synchronizing these circuits globally, albeit less frequently, still spoils the broth. De-
signers of self-resetting synchronous circuits hence face the worst of both worlds: the system-design
difficulties of synchronous systems and the circuit-design difficulties of asynchronous circuits.

Asynchronous-circuit design-styles inherently require that the logic computations carry timing

40

information. This can mean either that the computations explicitly carry timing information (as in
QDI or speed-independent design) or that implicit timing-assumptions are made (as in bundled-data
design); from the historical trends in synchronous design, we may infer that we need not apologize
for the mixing of timing and logic—everyone that builds fast circuits mixes. Neither should we be
surprised to find out that the subtleties of asynchronous pulse-logic are due mainly to dependencies

between logic and timing,.

4.1 A simple logic example

The next pulsed circuit we shall examine is what we call a “pulse merge.” We can think of this as

the implementation of the CHP program
«[L0, Ll; R1],

where L0, L1, and R are ports (i.e., the mention of L0 etc. in the program signifies a communi-
cation on that channel). The synchronization of L0 and L1 is here explicit in the CHP program,
but the kinds of circuit structures required for this explicit synchronization are also used for im-
plementing data computations, where implicit synchronizations capture the fact that output values
of a logical function cannot be computed until inputs are available. For instance, the program
*[A%7a, B7b; C!(a + b)] explicitly synchronizes at the explicit semicolon and at the “loop semicolon”
between loop iterations, and it also implicitly synchronizes the data because producing a value on
C is impossible before inputs have arrived on A and B. The explicit synchronizations are mainly
for the convenience of human understanding—they could, and should, eventually be removed; the
data dependencies cannot be—the real task of the system designer lies in minimizing the need for
data synchronization.

For the time being, let us keep pretending that the circuits we design will only have to be used
once. It should right away be obvious that a QDI-inspired structure for the merge such as the one
seen in Figure 4.1 (where [0, 11, etc. signify the circuit implementations of the channels—i.e., the

corresponding electrical nodes) and described by the PRS

ANIOATE =)
T = r]

-r. — rt,

will not do.! The QDI merge behaves like a C-element; in other words, it waits until both inputs
have become asserted and then asserts its output. This will not work for pulses because the pulses

are ephemeral: the high voltage-level signifying a positive pulse is only present for a short time.

1 The ellipsis indicates that some details about the internal synchronization of the circuits have been left out. In QDI
circuits, we should have various “state variables” in this place for sequencing the actions of the circuit properly [43).
Synchronous designers will see the analogy with the “foot” transistor of clocked domino-stages.

41

Unless we are willing—and we are not—to insist that outside agents shall synchronize the arrivals

of 10 and [1, attempting to work with coincident pulses will get us nowhere.

Figure 4.1: Input transistors in QDI merge.

If we are to design circuits that generate outputs computed from pulse inputs that can arrive at
different times, we shall have to capture the pulses somehow and “remember” them. The circuit in
Figure 4.2 is a conceptual solution to the problem. Incoming pulses on [0 and I1 are captured by the

diodes; the maximum voltage during the pulse is stored on the gate capacitance of each transistor.

Figure 4.2: APL circuit, version with diodes.

The diode-transistor combination captures pulses by turning them into voltage levels. This is
enough for using the circuit just once, but we seem to have pushed part of the problem ahead of us;
if we capture a pulse by converting it into a voltage level with a one-way device, how do we reset the

circuit so that we can use it again? A straightforward way of doing this is shown in Figure 4.3; here

42

we have added reset transistors that are exercised by a separate reset pulse—the gates of the reset
transistors are marked R in the figure; presumably, the generation of the reset pulse is contingent
on the circuit’s having produced its outputs, thus ensuring that the inputs are no longer required.
(Of course, we shall have to explore this presumption later.) In simple circuits, the reset signal can
often be the same for all inputs, as shown. In the case of data, the reset signal can also fan out to
all the data rails, i.e., to inputs that have not necessarily been asserted, since vacuously? resetting a
data rail that was not previously set by an incoming pulse is harmless. When we reuse the circuit,
we shall have to arrange things so that the pulse on I avoids interfering with the input pulses on 10

and 1, or chaos will ensue.

I1_{>{ e
QH .

Figure 4.3: APL circuit, version with diodes and reset transistors.

Now we must get our signal senses in order. For simplicity, we have so far preferred discussing
positive (i.e., from a stable low value: up, then down back to low) pulses. This turns out to be
the wrong choice. We shall not discuss all the reasons why this is so; instead, we justify our choice
of signaling senses by observing that in our example circuit, r- will certainly be in the negative
sense; i.e., it goes to false rather than to true when it produces an output. The obvious choice is
to make the logic-gate signals, {0c and [1¢ in Figure 4.3, positive logic; and r_ negative logic, as
indicated by the figure. Furthermore, we can see that the minimum number of stages of logic that
we can use is two—one for implementing ... A [0c A llc — r_| and one for the diode; this means
that we shall have to design the circuit so that r_ is pulsed. While we might entertain the idea
of using an actual diode (a substrate diode or a transistor with the drain and gate tied), normally
using a transistor will be better; the transistor has gain, and foundries optimize CMOS processes

for producing good transistors, not diodes. Figure 4.4 shows the modified circuit; the kinship with

2An assignment z := a is called vacuous if = already has the value a before the assignment; else it is effective.

43

synchronous domino-logic and QDI-asynchronous precharge-logic (see Lines [43]) is obvious.

1%FR -

—L_l 1c
j;FR i

11_

Figure 4.4: APL circuit; diodes implemented with transistors.

In the form of a PRS, then, we may write the asynchronous—pulse-logic implementation of

*[L0, L1; R] as

-10_ — 10ct
=l = llet
AN lle = rld
- r_?
R — [0cl
R — el .

Here, the p-transistors denoted by —I[0. — [0c¢T and —l1_ — l1c¢t are implementations of inverting
diodes. The inversion at the “diode” means that we may (or must) merge the diode with the inverter
of Figure 4.3; removing the inverter completely is usually preferable to adding another. There
remains filling in the implementation of the ellipses, but the general form of this circuit is what we
shall see throughout the rest of this thesis: a negative pulse appears; a single p-transistor captures
the pulse; the captured pulse, now a high voltage-level, gates a transistor in a logic network, which
computes the desired function and produces an output pulse, negative like the original pulse; the
output pulse having been produced, a suitably generated reset pulse removes the original, captured

pulse.

44
4.2 Pulse-handshake duty-cycle

Let us now consider two repetitive processes, named P and @, that synchronize once per iteration
by means of a channel. We refer to the nodes used for implementing the channel as interface nodes
when necessary for distinguishing them from other nodes in the system (e.g., nodes that are private
to the implementations of P and Q).

The standard QDI handshake?® is

P . %[[rel; rd?; [—rel; vdl 1 || Q : *C ret; {rdl; rel; [-rd] 7 .

This handshake in theory has two synchronization points (e.g., the up- and down-going phases on
rd), but the difficulties attached to designing circuits that compute on a downgoing transition are
enough to convince us that using the handshake for more than a single synchronization is usually a
bad idea.

We first consider a simple adaptation of the QDI handshake to the pulsed world by writing the
pulse generation on a node as z{ (read “x pulse down”) and z?3 (read “x pulse up”). If a process
executes z3, £ will from then on evaluate to true, until some process executes z¢. This corresponds
directly to the “diode-capacitor-transistor” model we used in the previous section.

Now we can write a pulse handshake corresponding to the QDI handshake thus:
P o x[[rel; nd$, red) || Q : red; =[[rd]; rd{, re?]

(Note that already this handshake is not delay-insensitive; unless we add timing constraints, there
may be interference.) But, secondly, we should realize that if we allow P’s directly detecting that @
has executed rd{, then the pulse re$ is unnecessary, since simply by knowing that rd¢ has completed,
P may know it can safely send another rd3. P can glean the necessary knowledge by monitoring rd
(at the perhaps significant cost of using p-transistors in series).

By thus eliminating the communicating on re, we go further than the QDI designer; he had the
freedom to release and leave floating his nodes early but could choose not to use that freedom—we
shall require the nodes’ early release. We call the resulting protocol the single-track handshake.*-5

The removal of the acknowledgment wire and pulse does somewhat reduce the flexibility of the
allowable family of pulsed circuits, because one extra means for flow control has been removed: in

the example, delaying P further is not possible once 7d{ has been executed, because no further

3Here we have written the handshake with an inverted acknowledge, called the enable. This choice of senses
improves circuit implementations; while this is admittedly a weak reason for choosing the sense at the HSE level,
there is really no reason at all except convention itself for choosing the conventional sense for the acknowledge. Perhaps
also the term “enable” is more suggestive of a pipcline with “flow conirol” than of an orderly handshake between two
otherwise independent processes.

4The name single-track handshake was coined by van Berkel and Bink [8].

5Let the reader beware: the terms “single-track” and “single-rail” mean quite different things. “Single-track” refers
to a handshake whose transmit and receive phases occur on the same wire or wires; whereas “single-rail” refers to the
practice of encoding data one bit to a wire, conventionally used in synchronous and “bundled-data” systems. This
thesis speaks only of “single-track” circuits; the author feels that the problems involved in using “single-rail” data
encoding are doomfully severe, whence we shall not explore it.

45

notice will be given that it is all right for P to send another datum; rd{ is now the only signal to
notify P, whereas we previously both removed the old datum and acknowledged it, either of which
could have been used by P for determining that @ is ready for more input. But the flexibility that
we thus remove is actually an unfamiliar one: for instance, it does not even exist in QDI systems,
since these usually also have only one mechanism for flow control (the acknowledge).

Hence we shall in what follows restrict our attention to circuits that use the same wires for
sending data as they do for receiving acknowledges and the same wires for receiving data as they do

for sending acknowledges. The single-track handshake may be written in terms of HSE:
P : x[[=rd); rdt] || Q : [[rd); rd)]

Note, however, that even though the syntax for the pulsed program looks similar to that used
in the HSE describing ordinary QDI circuits, the semantics may be quite different. In QDI-HSE, it
does not matter whether the driver for rd has three states (driving up, not driving, driving down) or
two (driving down, driving up) in the implementation of the program *[[rel; rdt; [-rel; rdl]. The
driver could, e.g., be implemented with an inverter, in which case rd is always driven (a combinational
node). In general, what this means is that in QDI-HSE, a process that executes a sequence of
commands S;rdt; T;rd] , where S and T are arbitrary program parts, may choose to stop driving
up rd and leave it floating at any time after rd1 has completed, i.e., before T, during T, or after T,
as long as the rd| action has not yet begun.® This is no longer allowed.

We shall take the following complementary specifications as given:

Definition 4.1 (Maximum single-track hold time (maximum impulse)) If a process P be-
gins driving an interface node to a new value v at time t, then P must have stopped driving the node
at time t + o, where g, is a (system-wide) global constant; P may not again drive the node to v

until it has detected that the node has left v (see Definition /.2).

Definition 4.2 (Minimum single-track setup time (minimum inertia)) If a process P de-
tects that an interface node has switched to a new value v at time ¢, then P must not drive that node

away from v until the time t + &,, where £, is a (system-wide) global constant.
We should like to design our circuits so that they satisfy:

Definition 4.3 (single-track—handshake constraint) A set of processes S satisfies the single-

track-handshake constraint if £, > o,, for all v and all processes in S.

6This is a big freedom. The conservative would say that this freedom should be approached with respect, because
he thinks that it is difficult to design the state-holding circuits that must be used if any appreciable amount of time is
allowed between the abandonment of rdt and the start of rd|. (The electrical engineer refers to the state of the circuit
during this period of time as “high-impedance” or “high-Z”; we shall call it floating.) On the other hand, the designer
of traditional QDI circuits is apt to use this frecdom to great effect for simplifying many aspects of his design; the
freedom might perhaps allow his inserting inverters in convenient places without violating the rules of the QDI game.
What this means is explained in detail in the QDT literature, e.g., by Martin, who explains the need for having such
freedoms under the heading “bubble reshuffling” [54]. Martin also uses a technique called “symmetrization,” which
involves replacing z1;...;z] with the “stuttering” z71;...;z1;...; 2} when this simplifies the circuit realization.

46
This property will guarantee that there shall never be interference between the two actions z1T and
z}. We may in practice choose to be lax about this, allowing some interference (see Section 3.2.2.2).
The rationale for allowing a different o and £ for each possible value of v (usually only true and
false are allowable values for v) is that this allows implementing z| and 271 differently. But because

the constants are global, we must still implement z| similarly throughout a system, and likewise for

zt.”

4.3 Single-track—handshake interfaces

We must remember that the adoption of the single-track handshake, while it appears to follow
naturally from the pulsed version of the four-phase handshake, does not in itself involve exchanging
pulses between communicating processes. One process sets & and another, having seen the activity,
resets z as an acknowledgment. At this level, no pulses are visible, and the processes may defer the
actions on z indefinitely, if they should prefer doing so. In this design style, we oblige no process
to respond immediately to an input any more than we do a QDI process. What a single-track-
handshake process may never do, on the other hand, is to drive one of its interface nodes for a long
period of time (to either rail); it may also not drive one of its inputs too soon after it has changed.

Where did the pulses go? The single-track processes use pulses internally for guaranteeing that
the single-track—handshake constraint is satisfied. If we compare the single-track processes with the
straightforward translation of QDI handshakes into pulsed handshakes, the main change is that we
have moved the “diode” transistors at the inputs of the “diode-capacitor-transistor” circuits to the
transmitting process.

We should note that the requirement that single-track processes use pulses internally is fundamen-
tal. There is simply not enough information available to a process for it to implement * [[—rd]; rd1]

quasi delay-insensitively.

7The careful reader will notice that we really only need to satisfy the constraints on each channel instance separately;
there is in theory no need for making the constraints global. We shall not discuss such refinements in this thesis. On
the one hand, our making the constraints local would break the modularity of the design style, and this is reason
enough for saying no.

On the other hand, we could profitably take the view that: first, we should design systems as if the constraints
were to be globally satisfled—thus ensuring that the digital design could be sized to operate properly; secondly, the
final sizing should be done with only local constraints, local values of &, and o,—thus making best use of the silicon:
this compromise should allow the design of formally modular systems without paying the practical price of complete
modularity. The required automatic design-tools have yet to be written.

8Seitz [75] rejected pulsed asynchronous circuits for this reason; but on closer inspection, the reason is weak: he
replaces the timing assumption required for proper pulsed operation with others that appear to be just as difficul