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Abstract 

Optical information storage and optical information processing are two major ap­

plications of holography, with significantly different holographic philosophies. For a 

holographic memory system, a complex holographic pattern encoded with the storage 

data is recorded first, and is read out later by a simple pre-designed reference beam. 

For a holographic information processing system, a pre-designed holographic pattern 

is stored in the medium first, and is probed by complex incident signal wave fronts. 

The pre-designed hologram extracts certain components from the complex input and 

diffract them as specific reference wave fronts. Holographic resolution, or Bragg phase 

selectivity in spatial and spectral dimensions, plays a key role in both applications. 

It determines the information capacity to be stored in and reconstructed from the 

hologram memory, or the information capacity to be extracted and processed by a 

hologram from the complex signal input. In this thesis, we investigate the holographic 

resolution in volume holograms and its specific issues in both applications. 

In a phase conjugate holographic memory system, we demonstrate the recording 

and reconstruction of a submicron pixel resolution, leading to the potential of storing 

1 Gbit in 1 cm3 volume holographically. Phase conjugate reconstruction eliminates 

the optical resolution limit by the imaging optics and reduces the system volume and 

cost. Phase conjugate reconstruction and its multiplexing in a compact holographic 

module are investigated. 

In general, a volume hologram has two degenerate Bragg phase-matching dimen­

sions besides the spatial and spectral selectivity, in which significant diffraction is 

present. They provide a potential ability for optically sectioning a two-dimensional 

slice from the spatial plus spectral hyperspace and for linearly transferring the infor­

mation onto a two-dimensional sensor array by a single hologram. The resolution of 

optical sectioning and information transformation is not only determined by the vol­

ume hologram diffraction intensity selectivity but also by the holographic architecture 
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and the transformation aberration. 

We study two holographic architectures theoretically and experimentally, on issues 

of optical sectioning and linear transformation for imaging application. By designing 

a transmission geometry system, we have achieved a linear 2-D optical sectioning 

and imaging from a 4-D object hyperspace (3-D spatial plus spectral dimension). 

By optical sectioning of multiplexed holograms, the ability of imaging 3-D spatial 

information from an object without a scanning mechanism is demonstrated by a 

holographic imaging system. 



Vlll 

Contents 

Acknowledgements 

Abstract 

1 Introduction 

2 Holographic Bandwidth and Resolution 

2.1 Theoretical simulation . . . 

2.2 Experimental measurement 

2.3 Discussion 

2.4 Derivation 

3 Holographic Phase Conjugate Memory 

3.1 Phase conjugate reconstruction 

3.2 Pixel matching and 8LM 

3.3 Capacity and pixel size 

3.4 Discussion 

4 Four-Dimensional Holographic Imaging 

4.1 Theoretical principles 

iv 

VI 

1 

4 

5 

9 

14 

15 

25 

27 

44 

48 

54 

68 

70 

4.2 Imaging properties of a 90-degree geometry volume hologram 78 

4.2.1 Experimental studies on the imaging quality . 80 

4.2.2 Theoretical simulation on the imaging quality 85 

4.3 Imaging properties of a transmission geometry volume hologram 101 

4.3.1 Selectivities and imaging transformation 106 

4.3.2 Degenerate directions and imaging quality . 115 

4.3.3 Experimental measurements . . . . . . . . . 122 



IX 

4.4 Experimental 3-D imaging . . . . . . . . . . . . . . . . . . . 126 

4.4.1 Experimental demonstration with multiplexed holograms 128 

4.4.2 3-D imaging of fluorescent microspheres 

4.4.3 Discussion 

5 M-number for Spectral Hole Burning Material 

5.1 

5.2 

5.3 

5.4 

5.5 

Spectral hole burning material 

Absorption bleaching model 

Dynamic modeling . . . . . 

Couple wave theory for nonuniform grating 

Experimental measurement 

Bibliography 

129 

130 

137 

137 

140 

149 

156 

158 

163 



x 

List of Figures 

2.1 The gO-degree geometry for holographic recording in a photorefractive 

crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 

2.2 Theoretical calculation of the normalized phase grating strength as a 

function of the signal beam spatial frequencies ky, k z . . . . . . . . .. 7 

2.3 The theoretical simulation of the holographic recording and reconstruc­

tion amplitudes of DiNb03 (Fe) in gO-degree geometry as a function of 

the signal incident angle in the signal-reference plane (a) and out of 

the signal-reference plane (b). . . . . . . . . . . . . . . . . . . . . .. 8 

2.4 Experimental setup for holographic bandwidth measurement. M: mir­

ror; Sig.: signal beam; Ref.: reference beam; PM: power meter; ),,/2: 

half-wavelength plate. For in-plane measurement, Sig.#2 rotates by 

ei and is adjusted to have the same intensity as the normal incident 

Sig.#1 inside the crystal by considering the Fresnel reflection loss. 

The diffraction efficiency for Sig.#2 is measured relative to the Sig.#1 

diffraction efficiency. For out-of-plane measurement, only the Sig.#1 

is used. The crystal and the reference polarization direction are rotated 

by eo around reference beam direction. . . . . . . . . . . . . . . . .. g 

2.5 (a) The experimental data (0) and the theoretical calculation of holo­

graphic efficiency in the signal reference plane; (b) The experimental 

data (0) and the theoretical calculation of the holographic efficiency 

out of signal reference plane. . . . . . . . . . . . . . . . . . . . 

2.6 The direct image of a resolution photomask with pixels from 2 x 2 

10 

/-Lm2 to 0.2 x 0.2 /-Lm2. (Imaged by a Nikon x40 NA 0.65 objective lens) 12 

2.7 The holographic phase conjugate reconstruction of the photomask. 

(Imaged by a Nikon x40 NA 0.65 objective lens) . . . . . .. 12 



Xl 

2.8 The direct image pixel size of a resolution photomask with pixels from 2 

x 211m2 to 0.2 x 0.2 11m2. (Imaged by a Nikon x40 NA 0.65 objective 

lens) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13 

2.9 The image pixel size of holographic phase conjugate reconstruction of 

the photomask. (Imaged by a Nikon x40 NA 0.65 objective lens) 13 

2.10 The coordinates of the normal 90-degree recording geometry along the 

crystal axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 21 

2.11 Theoretical calculation of the normalized phase grating strength as a 

function of the signal beam spatial frequencies ky, kz, for an oven-fresh 

crystal without external applying electric field. . . . . . . . . . . . .. 24 

2.12 The theoretical simulation of the holographic recording and reconstruc­

tion amplitudes of LiNb03 (Fe) in 90-degree geometry as a function of 

the signal incident angle: (a) in the signal-reference plane and (b) out 

of the signal-reference plane, for an oven-fresh crystal without applying 

electric field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24 

3.1 Experimental setup for a holographic random access data storage sys­

tem with angle multiplexing in a photorefractive crystal of 90-degree 

geometry. ................ 26 

3.2 Propagation of phase conjugate waves. 

3.3 Compared to a normal forward reconstruction of a hologram, a phase 

conjugate reconstruction can regenerate a real image of the signal at 

29 

the original location without a lens. . . . . . . . . . . . . . . . . . .. 32 

3.4 An experimental demonstration setup of the compact phase conjugate 

holographic memory system, and a phase conjugate reconstruction of 

one data page (pixel size 12 x 12 11m2).. . . . . . . . . . . . . . . .. 33 

3.5 The wave fronts of the recording reference beams and their counter-

propagating beam for phase conjugate reconstruction. . . . . . . . .. 34 



xu 

3.6 (a) A simple model of spherical reference beam and its reflection for 

holographic readout. (b) The numerical simulation of the diffraction 

intensity as a function of the wave front deviation of the reference beam 

from a plane wave. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 

3.7 (a) A simple 90-degree geometry recording with two well-collimated 

plane waves. (b) The holographic angular selectivity measurement 

with different reference beams. . . . . . . . . . . . . . . . . . . . . .. 37 

3.8 The angular selectivity of the hologram by a forward reference beam, 

which is (a) the original recording plane wave reference beam; (b) 

a plane wave reference beam going through crystal #1; (c) a plane 

wave going through a commercial beamsplitter; (d) a plane wave go­

ing through crystal # 1 difference area; (e), (f), (g) a plane wave going 

through crystal #2, #3, #4 respectively. . . . 

3.9 The angle selectivity of the hologram by (a) the original recording 

plane wave reference beam; (b) a phase conjugate beam of the forward 

reference beam through the crystal; (c) the reflection of the forward 

38 

reference beam through the crystal by a plane mirror. . . . . . . . .. 39 

3.10 The angle selectivity of the hologram by a forward reference beam (a) 

(c), or its reflection by a plane mirror for the forward reference beam 

through the crystal (b) (d). (a), (c) are the same weak hologram, and 

(b), (d) from a same strong hologram, which leads to a broadened 

selectivity due to the photorefractive effect. . . . . . . . . . . . . . .. 40 

3.11 The forward reconstruction comb function of 40 angle multiplexed holo-

grams with plane waves as signal beams. 41 

3.12 The phase conjugate reconstruction comb function of 40 angle multi-

plexed holograms with plane waves as signal beams. . . . . . . . . .. 41 



xiii 

3.13 The angle selectivities of the 40 angle multiplexed holograms, (a) for­

ward reconstruction of the last recorded holograms; (b) forward recon­

struction of the first recorded holograms; (c) phase conjugate recon­

struction of the last recorded holograms; (d) phase conjugate recon-

struction of the first recorded holograms. 

3.14 The forward reconstruction comb function of 100 angle multiplexed 

42 

holograms with plane waves as signal beams. ............. 42 

3.15 The phase conjugate reconstruction comb function of 100 angle multi-

plexed holograms with plane waves as signal beams. . . . . . . . . .. 43 

3.16 The phase conjugate reconstruction intensity comb function of 50 angle 

multiplexed data pages and the background measurement. .. . . .. 43 

3.17 The phase conjugate diffraction efficiency comb function of 50 angle 

multiplexed data pages. ......................... 44 

3.18 The phase conjugate reconstruction intensity comb function of 50 angle 

multiplexed data pages and the background measurement. ...... 45 

3.19 The phase conjugate diffraction efficiency comb function of 50 angle 

multiplexed data pages. ......................... 46 

3.20 The phase conjugate reconstruction SNR measurement for M multi-

plexed data pages. ............................ 47 

3.21 The phase conjugate reconstruction of data pages from multiplexed 

holograms: (a) SNR=5.4 for AI = 10; (b) SNR=4.4 for !vI = 20; (c) 

SNR=4.0 for AI = 40; (d) SNR=3.5 for !vI = 50. ........... 48 

3.22 (a) A 90-degree angle-multiplexing holographic memory system, with 

an imaging system to pixel-match the SLM to the detector array. (b) 

A compact phase conjugate holographic memory system, with a pair 

of SLM and detector array of the same pixel size and aligned with 

pixel-to-pixel matching.. . . . . . . . . . . . . . . . . . . . . . . . .. 49 

3.23 A compact phase conjugate holographic setup on optical bench, with 

a pair of SLM (pixel 24 x 24 fLm2
) and detector array (pixel 12 x 12 

fLm2
) aligned with pixel-to-pixel matching. . . . . . . . . . . . . . .. 50 



XIV 

3.24 Pixel-matched images by the forward 4-F imaging system: (a) an 8 x 8 

superpixel check board; (b) patterns with single pixel horizontal and 

vertical lines. 

3.25 Pixel-matched image of a single pixel check board by the forward 4-F 

imaging system~ where only the central detector pixel out of every 2 x 

51 

2 detector pixels is sampled. . . . . . . . . . . . . . . . . . . . . . .. 52 

3.26 The intensity distribution of a pixel-matched image of a single pixel 

check board by the forward 4-F imaging system, where AloN = 110.4, 

Jtl0FF = 29.9, DON = 7.67, DOFF = 8.01. . . . . . . . . . . . . . . .. 53 

3.27 The pixel-matched images from the 4-F direct image system. The last 

row are images of 2 x 2 pixel check board and single pixel check board 

patterns with only center pixels from every 2 x 2 detector superpixel 

being shown. ............................... 54 

3.28 The pixel-matched holographic reconstruction images from the 4-F 

direct image system. The last row are images of 2 x 2 pixel check 

board and single pixel check board patterns with only center pixels 

from every 2 x 2 detector superpixel being shown. ....... 55 

3.29 The pixel-matched images from phase conjugate reconstruction. The 

last row are images of 2 x 2 pixel check board and single pixel check 

board patterns with only center pixels from every 2 x 2 detector su-

perpixel being shown. .......................... 56 

3.30 The intensity distribution of a pixel-matched image of a single pixel 

check board by the phase conjugate reconstruction. . . . . . . . . .. 57 

3.31 The quantitative comparison of pixel-matched image SNR between 

normal forward holographic reconstruction and phase conjugate re-

construction. 

3.32 A compact phase conjugate holographic memory module with a pho­

torefractive crystal and optical elements seating on top of an opto­

electronic integrated circuit interface. The SLM and the necessary 

multiplexing laser source are not shown. 

57 

58 



xv 

3.33 The experimental setup for holographic recording and phase conjugate 

reconstruction of a binary data mask with various pixel sizes. . . . .. 59 

3.34 The direct images of random binary data masks with pixels ranging 

from 8 x 8 pm2 to 1 x 1 pm2
, and their SNR measurements. . . . .. 60 

3.35 The phase conjugate reconstruction of random binary data masks with 

pixels ranging from 8 x 8 pm2 to 1 x 1 Wn,2, and their SNR measurements. 61 

3.36 The SNR measurements for direct image and phase conjugate recon-

struction of binary data masks as a function of the pixel size. . 64 

3.37 The information channel capacity with an error rate p. ... . 64 

3.38 The compact phase conjugate module with a VCSEL array for angular 

multiplexing. (a) one VCSEL source is selected for recording a certain 

page; (b) the symmetric VCSEL source is selected to generate the 

pseudo phase conjugate readout beam in the medium. . . . . . . . .. 65 

3.39 The compact phase conjugate module with a tunable laser diode for 

wavelength multiplexing. . . . . . . . . . . . . . . . . . . . . . . . .. 65 

3.40 The uniformity comparison between (a) a TI DMD device and (b) a 

Kopin liquid crystal SLM. . . . . . . . . . . . . . . . . . . . . . . .. 66 

3.41 The holographic reconstruction of images recorded with (a) a TI DMD 

device and (b) a Kopin liquid crystal SLM. . . . . . . . . . . . . . .. 66 

3.42 The SNR measurement from the holographic reconstruction of images 

recorded with (a) a TI DMD device and (b) a Kopin liquid crystal SLM. 

The SNR is measured as a function of the spatial frequency, where the 

LC-SL:M image SNR decreases as the spatial frequency increases, while 

TI DMD images are almost independent of the spatial modulation 

frequency. . ..... 

3.43 The holographic reconstruction of a hologram recorded with a TI DMD 

device in a frame rate of 10 fiB in Dupont polymer. 

4.1 Planar imaging by an optical lens. . . . . . . . . . . 

67 

67 

70 



XVI 

4.2 The intensity distribution around a focus point of an ideal aberration-

free lens, ( a) in the geometric focal plane, or (b) along the axis. 73 

4.3 The confocal microscope architecture. . . . . . . . . . . . . . . . 74 

4.4 The confocal microscope architecture with a volume hologram filter. 74 

4.5 The recording of a volume holographic spatial filter with a point source 

and its corresponding coherent plane wave reference beam in 90-degree 

geometry. Another point source at different wavelength is used as a 

probe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 

4.6 A numerically calculated degenerate surface (space and color) of the 

architecture in Fig. 4.5. The shape drawn in the figure represents the 

shape of the 2-D slice that the sensor extracts from the 4-D object 

and projects onto a contiguous area of the detector. (Each point on 

the grid represents one object texel and its corresponding pixel on the 

detector [9].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 78 

4.7 Multiple volume holograms optically section different hyperplanes from 

an object 4-D hyperspace and project them onto different 2-D image 

sensors. 

4.8 Experimental scheme for testing holographic imaging performance by 

a 90-degree volume hologram between a spherical wave and a plane 

reference wave. The spherical wave is generated by a focused beam 

with an objective lens. The diffracted reference beam is measured by 

79 

an intensity detector or a Fourier plane image sensor. . . . . . . . .. 81 

4.9 The holographic Bragg phase-matching reconstruction in Fig. 4.8: (a) 

the diffracted reference beam profile inside the crystal due to the nu­

merical aperture of the signal beam by an objective lens N A = 0.65; 

(b) the Fourier plane image of the diffracted reference beam by a lens 

with focal length 15 em. . . . . . . . . . . . . . . . . . . . . . . . .. 82 



XVll 

4.10 The holographic spatial selectivity measurement of 90-degree geome­

try with a spherical wave as the signal beam in Fig. 4.8. (a) the shift 

selectivity along the x direction in logarithm scale; (b) the shift selec­

tivity along the degenerate y direction; (c) the shift selectivity along 

the depth z direction. 

4.11 The holographic spatial shifting measurement of 90-degree geometry 

with a spherical wave as the signal beam in Fig. 4.8. (a) the holographic 

diffraction intensity distribution for spatial shifting in the transverse 

x - y plane; (b) the holographic diffraction intensity distribution for 

spatial shifting in the longitudinal x - z plane. 

4.12 The holographic diffraction image patterns in 90-degree geometry with 

a spherical wave as the signal. (a) the image patterns as the signal 

point source shifts along the x direction, 2 jJxn for each step; (b) the 

image patterns as the signal point source shifts along the degenerate 

y direction, 10 f-Lm for each step; (c) the image patterns as the signal 

point source shifts along the depth z direction, 6 J-lrn for each step. 

Due to the selectivity in the x, z directions, images in ( a) and (c) are 

enhanced for visibility. The arrows point to the Bragg phase-matching 

83 

84 

position with the signal at the recording position. . . . . . . . . . .. 86 

4.13 The 3-D integral of a small cubic volume of the holographic grating. 

The small cubic volume ~ F = ~x x ~y x ~z is centered at rio The 

full integral over the volume 1T is III" d3 r = .Li III6v; d3 8r. 

4.14 The numerical simulation and theoretical calculation of shift selec­

tivity of 90-degree geometry. The simulation parameter is assumed 

NA = 0.5, n = 2.2. (0): the numerical simulation; (solid line): the­

oretical integral of selectivity curve in equation (4.49); (dot line): the 

approximation as a sine function in equation (4.50). 

4.15 The phase integral approximation along the Bragg diffraction path for 

selectivity calculation. 

90 

92 

93 



XVlll 

4.16 The experimental measurement of (a) shift selectivity, (b) depth selec-

tivity, and their theoretical phase integral approximation. ...... 94 

4.17 A function of Fresnel integrals, where the first minimum at s = 1.91. 95 

4.18 Numerical simulation and theoretical calculation of depth selectivity of 

90-degree geometry. The simulation parameters are N A = 0.5, n = 2.2. 

(0): the numerical simulation; (solid line): theoretical phase integral 

of selectivity curve in equation (4.52); (dot line): the approximation 

as a Fresnel function in equation (4.53). 

4.19 The numerical simulation and theoretical calculation of wavelength se­

lectivity of 90-degree geometry. The simulation parameters are: N A = 

0.5, n = 2.2. (0): the numerical simulation; (solid line): theoretical 

phase integral of selectivity curve in equation (4.62); (dot line): the 

approximation as a sine function in equation (4.60). 

4.20 Numerical simulation of the image pattern as the probe beam is shifted 

along the selective directions. The simulation parameters are: NA = 

0.5, n = 22. (a) The probe beam is shifted along the x direction by 3: 
for each step, causing weaker and distorted image patterns. (b) The 

probe beam is shifted along the depth z direction by 1~>' for each step. 

The intensity of the image decay is slower than x shifting, and the in­

tensity deviates dramatically along the y direction. (c) The simulated 

image pattern as the wavelength of the probing beam is shifting from 

96 

97 

the original recording wavelength by ~>. = 4 x 10-5 for each pattern. 99 

4.21 The numerical simulation of a series of point sources aligned on the x 
direction. Simulation parameters are: NA = 0.5, 11 = 2.2. (a) shift 

selectivity curves and the location of objective point sources; (b) image 

intensity pattern for the central Bragg-matched object point source; (c) 

background pattern from the mismatched object points along x direction.IOO 



XIX 

4.22 Numerical simulation of a series of point sources aligned on the z di­

rection and the image pattern and background. Simulation parameters 

are: NA = 0.5, n = 2.2. (a) depth selectivity curves and the location 

of objective point sources; (b) image intensity pattern for the central 

Bragg-matched object point source; (c) background pattern from the 

mismatched object points along the z direction. . . . . . . . . . . .. 102 

4.23 Numerical simulation of a chromatic point source located at the original 

Bragg phase-matching position. Simulation parameters are: NA = 0.5, 

n = 2.2. (a) wavelength selectivity curves and the intensity spectrum 

of a chromatic objective point source; (b) image intensity pattern for 

the central Bragg-matched wavelength from the object point source; 

(c) background pattern from the mismatched wavelength components 

from the same object point. .. . . . . . . . . . . . . . . . . . . . .. 103 

4.24 Numerical simulation of a point source shifting along the degenerate 

fj direction. Simulation parameters are: N A = 0.5, n = 2.2. (a) 

image patterns as a point source is shifted along the fj direction by 

2~A between each step. (b) image plane responses for a set of point 

source linearly aligned on the fj direction. The large aberration leads 

to decaying "butterfly" intensity distributed patterns. 

4.25 The transmission geometry hologram recording with point source (xr' 

104 

YTl Zr, ,\.) and probing with another point source (xp, YP' zP' Ap).. .. 105 

4.26 The angle selectivity of a general transmission geometry hologram by 

two plane waves R, S, and readout with a tilted reference R'. The 

hologram is assumed wit.h infinit.e transverse dimension along T1 and 

a thickness D along T2' . . . . . . . . . . . . . . . . . . . . . . . . .. 106 

4.27 The angular selectivit.y of a general transmission geometry hologram 

in Fig. 4.25. The simulation condition is: Ie = Ii = 104 A, D = 1400A, 

N A = 0.5, n = 2.2, OR = Os = 1[" /4. (0) the simulation results of the 

intensity integral over the 2-D image pattern on image plane. (solid 

line): the theoretical s'inc2 function in equation (4.72). 108 



xx 

4.28 The intensity distribution pattern on the image plane of a general 

transmission geometry hologram in Fig. 4.25. The simulation condi-

tions are the same as in Fig. 4.27. From top to bottom, the probing 

point source at the recording wavelength is moving from the record-

ing position to the xp direction by 2>' per step. The image pattern 

intensity and location change are as in equations (4.72), (4.70).. . .. 109 

4.29 The intensity distribution pattern on the image plane of a general 

transmission geometry hologram in Fig. 4.25 for linear distributed 

point sources with spacing 2>' along the xp direction in objective space. 

The simulation conditions are the same as in Fig. 4.27. The fullwidth 

of half magnitude of the intensity profile gives the spatial resolution 

along xp at 12>' in objective space. . . . . . . . . . . . . . . . . . .. 110 

4.30 The diffraction intensity on the image plane of a general transmission 

geometry hologram in Fig. 4.25 as the wavelength of the probing point 

source changes at the original recording location. The simulation con-

ditions are the same as in Fig. 4.27 ..... 

4.31 The intensity distribution pattern on the image plane of a general 

transmission geometry hologram in Fig. 4.25 as the probing point 

source changes wavelength from the recording wavelength by 6>'/>'= 

-4 x 10-4 for each step. The simulation conditions are the same as in 

Fig. 4.27. 

4.32 The intensity distribution pattern on the image plane of a general 

transmission geometry hologram in Fig. 4.25 for a chromatic point 

source located at the original recording position with wavelength sam­

pling rate ~).. = 4 X 10-4 . The simulation conditions are the same as 

in Fig. 4.27. The fullwidth of half magnitude of the intensity profile 

gives the spatial image resolution along Zf d at 120 normalized units 

111 

112 

(= 10-5 Ii in our simulation) on the image plane. . . . . . . . . . . ., 113 



XXI 

4.33 The diffraction intensity on the image plane of a general transmission 

geometry hologram in Fig. 4.25 as the probing point source shifts along 

the depth zp direction. The simulation conditions are the same as in 

Fig. 4.27. (circle) the numerical simulation; (solid line) the approxi-

mate integral as in equation (4.82). . . . . . 

4.34 The diffraction intensity on the image plane of a general transmis-

115 

sion geometry hologram in Fig. 4.25 as the probing point source shifts 

along the depth zp direction by 20A for each step, at the recording 

wavelength. The simulation conditions are the same as in Fig. 4.27. . 116 

4.35 The diffraction intensity distribution on the image plane of a general 

transmission geometry hologram in Fig. 4.25 (a) hy the probing point 

source located at the original recording location; (b) a series of point 

sources located on the zp axis with a distance of 20A, except the Bragg 

phase-matching position in (a). ..................... 117 

4.36 The diffraction intensity on the image plane of a general transmission 

geometry hologram in Fig. 4.25 as the probing point source shifts along 

the depth zp at different wavelengths (a) the original wavelength ~A = 

0; (b) ~A = -5 x 10-4 ; (c) ~A = -10-a; (d) ~A = 5 x 10-\ (e) 

~A = lO-a. The simulation conditions are the same as in Fig. 4.27. 118 

4.37 The diffraction intensity on the image plane of a general transmission 

geometry hologram in Fig. 4.25 as the probing point source shifts along 

the YP direction at the original wavelength. The simulation conditions 

are the same as in Fig. 4.27. ...................... 119 

4.38 The diffraction image pattern on the Fourier plane of a general trans­

mission geometry hologram in Fig. 4.25 as the probing point source 

shifts along the YP direction by 50A for each step at the original wave-

length. The simulation conditions are the same as in Fig. 4.27. 120 



XXll 

4.39 The wave vector k-sphere for a holographic grating K recorded by 

R 1 ,81 at wavelength ko. The hologram can be Bragg phase-matched 

by a pair of beams R 2 , 8 2 rotated around K direction at the same 

wavelength. At a different wavelength k 1, there is another pair of 

beams R 3 ,83 with corresponding tilting angle, that can be Bragg 

phase-matched while rotated around the K direction. . . . 

4.40 The Bragg phase-matching transformation from the objective plane 

to the image plane in the transmission geometry imaging system in 

121 

Fig. 4.25. For the same wavelength, the spatial degenerate shifting is 

determined by equations (4.91- 4.95). For a different wavelength, the 

Bragg phase-matching position shifts horizontally by equation (4.96). 122 

4.41 The experimental setup for holographic imaging with a transmission 

geometry. (a) A transmission geometry hologram is recorded using two 

collimated plane waves. (b) The probing light source is collimated and 

illuminates the hologram, which can be directly imaged by a micro­

scope system composed of a collimating lens and a forward imaging 

lens. The diffracted beam from the hologram is collected by another 

imaging lens and detected by either a power meter or 2-D image sensor. 123 

4.42 Experimental measurements and theoretical intensity selective calcu­

lation of shift selectivity of DuPont polymer 100 p,m thick in a trans­

missioll geometry in Fig. 4.41. The collimating objective lens is x 10, 

NA= 0.25, the DuPont polymer is assumed n = 1.5, and the wave­

length 488 nm. (a) Shift selectivity in xp direction, where equation 

(4.70) gives !:l:r:p = 104 p,m at the first null. (b) Depth selectivity in zp 
direction, equation (4.85) gives !:lzp~ = 400 p,m at the half magnitude. 125 



XXlll 

4.43 The experimental demonstration of Bragg phase-matching by wave­

length shift coupling in a transmission geometry in Fig. 4.41. The 

experimental parameters are: LiNbOl crystal thickness [) mm, colli­

mating objective lens x 10, NA = 0.25, and the recording wavelength 

488 nm. (a) The image pattern while the probing pinhole is illumi­

nated by 488 nm. (b) The image pattern as the white light illumi­

nated pinhole is shifting in xp direction. The image point is shifted 

correspondingly in Z'd direction with different wavelength component 

determined by equations (4.96 ~ 4.97). .. . . . . . . . . . . . . . .. 126 

4.44 The experimental demonstration of 2-D imaging by the Bragg phase­

matching in spatial and wavelength-shift coupling dimension of a sin-

gle transmission geometry hologram in Fig. 4.41. The experimental 

parameters are the same as in Fig. 4.43. (a) The image pattern of 

a 2-D mask across the original recording point source location and 

illuminated by 488 nm. A vertical line image is formed due to the 

spatial degeneracy along Up direction. (b) The image pattern as the 

white light illuminating the 2-D mask. At different Z'd position, dif­

ferent wavelength component Bragg phase matches and forms the 2-D 

color-coded image, determined by equations (4.96 ~ 4.97).. . . . . .. 127 

4.45 The depth selectivity measurement and comparison to the theoretical 

prediction in a PQ polymer of 2 mm thick. Experimental setup is as in 

Fig. 4.41 with: collimating objective lens x40 NA=0.65, wavelength 

488 nm. (a) A single strong hologram with diffraction efficiency> 

15%. The depth selectivity is consistent with the theoretical calculation 

by equation (4.82). (b) Three holograms multiplexed with different 

recording depth Zr at 50 pm apart. . . . . . . . . . . . . . . . . . .. 132 



XXIV 

4.46 The image pattern as a single-point source is scanned along the depth 

of the three multiplexed holograms. (a) The probing source is Bragg­

matched to the first hologram, generates a bright point image for it, 

with two weak depth mismatched patterns for the other two depths. 

(b) The probe point source is Bragg-matched to the second hologram. 133 

4.47 The images of fluorescent microspheres (15 pm diameter) excited by 

488 nm and emitting at peak fluorescent wavelength 515 nm, by holo­

graphic and normal microscope imaging systems with the same colli­

mating and imaging lenses in Fig. 4.41. 

4.48 The images of fluorescent microspheres (15 pm diameter) in a liquid 

sample, excited by 488 nm and emitting at peak fluorescent wavelength 

515 nm. (a) Using a single hologram with the depth sectioning ability 

as in Fig. 4.45 (a). (b) Using three multiplexed holograms to image 

three different-depth optical sections. . . . . . . . 

4.49 (a) The experimental setup on the optical table m the lab. (b) A 

potential holographic imaging module system design. 

5.1 Diffraction efficiency TJ versus the average exposure energy E j.U for 

134 

135 

136 

AI = 10 multiplexed absorption holograms. The normalized optical 

density OD = c~sdO and the nonburnable absorption constant B = 0.. 145 

5.2 AI # of absorption holograms (Awrite = Aread) as a function of the 

normalized optical density OD = ~~~, where ao = A + B. 

5.3 AI# of II-index holograms (ATead = (Abl + Ab2)/2) as a function of the 

normalized optical density OD = QOdO' where ao = A + B. cos 

5.4 AI # ratio between index holograms by IT-exposure (Aread = (Abl + 
Ab2) /2) and pure absorption holograms as a function of the normal­

ized bleachable optical densi tv 0 Db = AdO. For the theoretical ap-, cos 

proximation model, AI # ratio is independent of the nonburnable ab­

sorption B. For dynamic numerical simulation results, AI # does de­

pend on B. 

146 

149 

150 



xxv 

5.5 Comparison of JI/I # for absorption holograms between theoretical ap­

proximation model and the numerical simulation (Awrite = Aread) as 

functions of the normalized amplitude optical density 0 D 

ao = A+B. 

nod 
cos 0' 

151 

5.6 The recording schedule of 10 equalized holograms for OD=1 or 5. 152 

5.7 The grating strength distribution of 10 holograms with equal diffraction 

efficiency inside the material with OD =1 or 5, B = O. ........ 153 

5.8 Iv1 # for absorption holograms as a function of the number of holograms 

in materials of normalized optical densities OD = 0.5, B = 0 and 

OD = 1.0, B = 0.5 ao, (Awrite = Aread). . ..... . 

5.9 Comparison of AI # for IT-index holograms and pure absorption holo­

grams by dynamic numerical simulation. The normalized optical den-

sity OD = :o~~, and ao = A + B. . ..... . 

5.10 Experimental setup for spectral hole burning. 

5.11 Experimental absorption kinetics and the prediction of ./1,1# by numer-

ical simulation. . . . . . . . . . . . . . . . 

5.12 Hologram reading curve by a plane wave. 

5.13 Angle selectivity without the iris filter. 

5.14 Angle selectivity with the iris filter. 

5.15 Multiplexing 3(A), 5(B), 7(C), and 10(D) plane wave holograms in 

spectral hole burning material. . 

5.16 Experimentally measured !vI #. 

154 

155 

158 

160 

160 

161 

161 

162 

162 



XXVI 

List of Tables 

2.1 Variables in Kukhtarev equations (2.6)-(2.9). 16 

2.2 Numerical values of the variables in Kukhtarev equations for LiNb03 (Fe) 

crystal in our experiment. ........................ 22 

3.1 Estimated cost of components in the holographic memory module, as-

suming production in large quantities. 51 



1 

Chapter 1 Introduction 

Holography was invented by Dennis Gabor in 1948 [46], when the new imaging tech­

nique using two coherent waves was proposed to enhance the image resolution in 

microscope application. Since 1960s when the coherent light source - laser was avail­

able, holography has been intensively studied on the interests of three dimensional 

(3-D) object imaging and projection [74], in which the holography can be treated as 

an analog memory system. The complex signal wave front diffracted from an object 

is recorded including both amplitude and phase information, inside either a volume 

photorefractive material, or a thin photosensitive film. It can be reconstructed later, 

regenerating an image of the object. In the last one or two decades, the majority 

of research interests on holography application have been concentrated on the new 

generation digital data storage techniques [104, 108], thanks to the fast development 

of computer technology and internet that has been driving data memory technology 

to evolve exponentially on larger capacity and faster access time. 

Holographic resolution plays a key role in both holographic imaging and holo­

graphic memory applications. It determines the information capacity of hologram 

storage or information capacity processed by a single hologram. 

In a general holographic memory system, the complex signal beam interferes with a 

coherent reference beam, which is a simple or predesigned wave front and can be easily 

reproduced. The signal information is recorded as the complex holographic patterns 

inside the' material. The reproduced reference beam is diffracted by the holographic 

grating inside the storage medium, and recovers the signal wave front. The achievable 

reconstruction resolution, determined by the holographic recording and reconstruction 

bandwidth, gives the information capacity each hologram contains. For large capacity 

data storage, hologram multiplexing technology is normally used. The multiplexing 

selectivity due to volume Bragg phase-matching determines the reference resolution 

required for reconstructing a certain page of data. 
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In a general holographic imaging application, the predesigned holographic grat­

ings are recorded inside the medium, which can work as a signal filter or an optical 

processor. As a complex probing signal illuminates the hologram, only those wave 

front components Bragg phase-matching the hologram are diffracted significantly and 

projected into the reference beams. The projected reference beams can be different 

from the signal components with a certain information representation, such as in op­

tical correlators and optical interconnects [103, 80]. Or the projected reference beams 

are a linear transformation of the signal beams, such as in applications of diffractive 

elements [119], and holographic imaging. The spatial and spectral selectivities of 

the hologram determine how accurate the signal can be selected and extracted from 

the complex probing input, and then be projected into a high-resolution information 

representing reference beam. 

In this thesis, we study the holographic resolution in volume holograms exper­

imentally and theoretically in Chapter 2, and address the specific issues in both 

applications of memory (Chapter 3) and imaging (Chapter 4). 

For holographic memory system, submicron resolution pixel patterns are demon­

strated. To achieve the holographic resolution in a holographic memory system, phase 

conjugate reconstruction is used to eliminate the optical resolution limit by imaging 

system and to reduce the system cost and volume in a compact holographic memory 

module. The phase conjugate reconstruction and multiplexing are demonstrated and 

investigated on the issues of efficiency and system performance. 

For holographic imaging, the imaging resolution and aberration are investigated 

theoretically and experimentally for two holographic architectures in Chapter 4. 3-D 

imaging without a scanning mechanism by a multiple-hologram imaging system is 

demonstrated. 

Both the hologram reconstruction resolution in memory application and the holo­

graphic imaging resolution are dominantly determined by the geometric volume Bragg 

phase-matching effect at one wavelength. On the other hand, there is another inter­

esting resolution issue on the frequency domain or time domain holograms, which 

depends on the material frequency response properties, the material response time 
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and relaxation time constant. The frequency or time domain resolution is very in­

teresting to the applications in pulse shaping or fast image recording, where spectral 

hole burning material is widely used. In Chapter 5, we investigate the dynamic range 

properties on spectral hole burning material, with the concern for data storage instead 

of properties in frequency domain. 



Chapter 2 

Resolution 

4 

Holographic Bandwidth and 

Holographic image resolution and the quality of holograms have been studied since 

1960s when the laser and hologram technologies were proposed and demonstrated [83, 

24, 25]. The major applications with consideration of holographic image resolution 

are 3-D image recording and projection such as its application in modern holographic 

particle velocimetry [12, 13, 58, 133, 116], and 2-D image capture and projection, such 

as holographic imaging element development [98, 42] and holographic high-resolution 

lithography [51, 53, 52, 78, 34, 77]. Most of the studies are on thin recording media 

or thin holographic imaging elements. In this thesis, we will concentrate on the 

properties of volume holograms, which have the advantages of large dynamic range 

and fine spatial/wavelength selectivities. The ability of hologram multiplexing in 

volume holographic media is also crucial for applications in data storage (Chapter 3) 

and holographic imaging (Chapter 4). 

There are two different issues for the holographic image resolution. These two is­

sues coexist in all applications, however with different concerns. One is the resolution 

of the recovered holograms, \vhich determines the minimum feature size generated 

by holograms. In other words, it determines how much information can be recovered 

from the holograms, such as in velocimetry and lithography, where all the optical 

information is stored in holograms and then regenerated. The resolution of the holo­

gram is determined by the bandwidth of the optical system including the holographic 

material recording and readout bandwidth, or the effective numerical aperture (NA) 

of the system [50]. Another resolution is related to the alignment of Bragg phase­

matching and the aberration caused by the hologram. This is the major concern in 

the holographic element development, where information is coming from outside as 

a complex signal wave front and is processed, filtered, and projected by the holo-
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graphic element. It is determined by the holographic diffraction characteristics, such 

as grating distribution, size and phase-matching of the holographic gratings. 

In this chapter, we study the resolution of reconstructed holograms in LiNb03 

gO-degree geometry, with concerns of data storage application in Chapter 3. Later 

in Chapter 4, we study the resolution and imaging properties of volume holographic 

elements and their potential application. 

2.1 Theoretical simulation 

For a normal imaging system, such as a telescope or microscope, the fundamental 

image resolution is determined by the diffraction limit of the optical system, or the 

numerical aperture NA [50, 16]. 

For a holographic system to record an input optical field in a holographic medium, 

and then to recover the optical field, the final image resolution is limited by both the 

diffraction limit of optical system in the same way as a normal imaging system, and 

the effects of the holographic recording and reading out, which we define as holo­

graphic recording and readout bandwidth. For a complex input optical field with 

different spatial frequency components, different grating components are generated 

and recorded by interference with a reference beam inside the holographic recording 

medium, such as a photorefractive crystal or photopolymer. However, these different 

grating components have different recording and readout strength because of the vari­

ous grating direction, period, and polarization, i. e., angle-dependent grating strength, 

which depends on the material properties and the grating formation [137]. 

Here, we study the relativE' holographic recording and reconstruction strE'ngth 

in LiNb03 of gO-degree geometry with a complex signal optical field and a simple 

plane wave reference beam, as shown in Fig. 2.1, which is widely used for holographic 

correlators and data storage as in Chapter 3. For other geometries, such as trans­

mission [137] and reflection geometry, the difference is only on the angle between 

the signal beams and reference beam, which induces the different grating period and 

direction distribution relative the c-axis of the crystal. The holographic bandwidth 
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Figure 2.1: The gO-degree geometry for holographic recording in a photorefractive 
crystal. 

for different geometry shows similar behavior from theoretical simulation. 

For gO-degree geometry, the crystal is 45-degree cut with c-axis along direction 

(1, -1, 0) in Fig. 2.1. The reference beam is assumed as a plane wave, coming into the 

crystal at normal direction with wave vector (0, ko, 0) and an ordinary polarization 

PR = (0,0,1). The signal beam consists of various spatial frequency components 

ky, k z in or out of the plane of c-axis and reference beam. 

Considering one spatial frequency component with transverse wave vector (ky, k z ), 

the signal beam comes into the crystal with wave vector (kx, ky, kz). Here, we consider 

all optical waves inside the crystal only, and ignore the interface between air and the 

crystal, which are calculated later for comparison with experiments in section 2.2. 

Therefore, k; + k~ + k; = k6 = (27fnj >..)'2, where n is the refractive index of the 

material, and the signal beam has an ordinary polarization Ps , 

Ps (2.1) 

The grating vector is G = (kx, ky - ko, kz), and both the magnitude G and the 
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direction 9 are functions of ky, k z . With the assumption of equal intensity for the 

reference and signal beams, and using the known parameters of the material, such 

as the total dopant (Fe) density, initial Fe3+ concentration, acceptors density, pho­

tovoltaic parameter , photoexcitation cross-section, t he carrier combination rate and 

carrier mobility from previous studies, we can calculate t he spatial charge field Eg 

as a function of ky and k z by solving the Kukhtarev equations [68, 69]. The detail 

derivation is shown in the following section 2.4. 

T he effective phase grating caused by the space charge field is given by Pockels' 

effect [118, 129] 

(2.2) 

where r is the electro-optic tensor. The effective grating strength as a function 

of ky /ko, k z/ko is simulated and shown in Fig. 2.2. Consider two special cases in 

1.2 

1 
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Figure 2.2: Theoretical calculation of the normalized phase grating strength as a 
function of the signal beam spatial frequencies ky, k z . 

details. First, t he signal beams are in the X - Y plane as a function of ky with 
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kz = o. The grating vectors G is also in the plane, and tilted away from the c­

axis. And the grating period is a function of kyo The modulation depth keeps as 

a constant while signal polarization keeps the same as of the reference along the 

(0,0,1) direction. On the other hand, the signal beam tilts in the X - Z plane 

with various signal spatial frequency kz and ky = o. In addition to the angle­

dependent grating direction and period, the polarization of the signal beam is not 

the same as that of the reference beam, which decreases the modulation depth and 

the effective photorefractive coefficient. In Fig. 2.3, the theoretical simulation results 

1.2,.-----r---.-----r---r---...--..---, 

--.c: --t 
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Figure 2.3: The theoretical simulation of the holographic recording and reconstruction 
am pli tudes of LiN b03 (F e) in gO-degree geometry as a function of the signal incident 
angle in the signal-reference plane (a) and out of the signal-reference plane (b). 

of the recording and reconstruction efficiencies are shown as functions of the signal 

external incident angle, which correspond to spatial frequency ky with kz = 0 in 

X - Y plane, or spatial frequency kz with ky = 0 with consideration of the refraction 

effect at the interface. It indicates that the holographic bandwidth of the LiNb03 (Fe) 

is very broad and can record the spatial frequency as broad as pixel size of submicron 

with wavelength 0.5 jlrn. 
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2.2 Experimental measurement 

Theoretical simulation on holographic recording and reconstruction in LiNb03 (Fe) 

of gO-degree geometry indicates a broad bandwidth. Here we confirm the theoretical 

studies by direct measurement of the holographic recording and readout bandwidth, 

and a holographic reconstruction of a photomask with gradient pixel sizes ranging 

from 2 x 2 f-lrn 2 to 0.2 x 0.2 ILrn2
. 

Measurement of the holographic bandwidth 

Fig. 2.4 shows the setup for holographic recording and readout in a LiNb03 (Fe) 

gO-degree geometry. The reference beam is a plane wave of ordinary polarization 

incident at normal direction of the interface. The signal beam is another plane wave 

corning at different angle in or out of the reference-c-axis plane. All the holograms 

are recorded and read out with normalization to the strength of the normal signal 

beam incidence. 

A/2 

Ref 

Crystal 
9i PM 

.~------'---........ -+, 
Sig.#l , ... 

" 

"':' 

PM 

A/2 
M 

Figure 2.4: Experimental setup for holographic bandwidth measurement. M: mirror; 
Sig.: signal beam; Ref.: reference beam; PM: power meter; ),,/2: half-wavelength 
plate. For in-plane measurement, Sig.#2 rotates by (}i and is adjusted to have the 
same intensity as the normal incident Sig.# 1 inside the crystal by considering the 
Fresnel reflection loss. The diffraction efficiency for Sig.#2 is measured relative to 
the Sig.#l diffraction efficiency. For out-of-plane measurement, only the Sig.#l is 
used. The crystal and the reference polarization direction are rotated by (}o around 
reference beam direction. 

'We measure the relative holographic recording and reconstruction intensity for 
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different signal incident angles in and out of the reference-c-axis plane. The measure­

ment of the hologram intensity is shown in Fig. 2.5 and compared with the theoretical 

simulation from section 2.1. The Fresnel reflection losses are also taken into consid-

1.4 

1.2 

1 
~ ..... . -t:: 

0.8 ;:::l 
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1-0 
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0.6 '-" 
;>, ..... . -m 
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Figure 2.5: (a) The experimental data (0) and the theoretical calculation of holo­
graphic efficiency in the signal reference plane; (b) The experimental data (0) and 
the theoretical calculation of the holographic efficiency out of signal reference plane. 

eration in Fig. 2.5 because the crystal used in the experiment is not antireflection 

coated. The transmission factors at the interface are functions of the signal beam 

incident angle for in- and out-of-plane components [16] 

Tl.. (2.3) 

711 (2.4) 

where Tl.., 711 are the intensity transmission for polarization perpendicular and parallel 

to the incident plane, and the Snell's law of incident and refraction angles n1 sin 01 = 

The experimental data are consistent with the theoretical simulation and indicate 
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broad holographic bandwidth even with consideration of the interface effects. 

Experimental demonstration of holographic pixel size 

Both the holographic bandwidth calculation and measurement indicate a broad 

bandwidth for holographic recording and reconstruction of submicron pixels. To 

demonstrate it experimentally, we design and fabricate a photomask with gradient 

pixel size ranging from 2 x 2 Ji/m2 to 0.2 x 0.2 flm 2
. The photomask is used as 

a spatial light modulator for the signal beam, which is recorded as holograms and 

reconstructed. Due to the extremely large spatial frequency, high numerical aperture 

objective lens is required to magnify the image of the mask. Shown in Fig. 2.6, is 

the direct image of the photomask observed by a Nikon x40 (NA 0.65) objective lens 

illuminated by 488 nm Argon laser line. The smallest pixel 0.2 x 0.2 flm2 is already 

beyond the resolution power of the lens. 

To study the quality of the holographic recording and its reconstruction, we use 

the phase conjugate reconstruction and image it with the same objective lens, as 

shown in Fig. 2.7. 

Comparing the phase conjugate reconstruction of the hologram with the image 

quality of the photomask by direct imaging, there is no degradation from the direct 

image, which is limited by the resolving power of the objective lens. To study quan­

titatively the resolution of the images, the image width of the pixel is plotted as a 

function of the actually physical width designed and assumed accurately etched on 

the photomask by electron beam lithography. Fig 2.8 shows the flattening of the 

image size as the pixel size gets comparable and smaller than the wavelength 488 

nm. The solid curve is the theoretical width by convolutions of the pixel physical 

\"idth and the objective lens resolution .6.[ ~ 0.61),/NA [50, 16]. The same theo­

retical curve is shown in Fig. 2.9, and compared with the pixel image width of the 

phase conjugate construction through the same objective lens. The flattened image 

size indicates the final resolution of the phase construction image, which depends on 

the objective lens resolving power and the holographic recording and reconstruction 

bandwidth. The results in Fig. 2.9 indicate that the final image resolution is predom­

inantly limited by the objective lens NA 0.65 in our experiments. In other words, 
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Figure 2.6: The direct image of a resolution photomask with pixels from 2 x 2 J-lm2 

to 0.2 x 0.2 J-lm2. (Imaged by a Nikon x40 NA 0.65 objective lens) 

Figure 2.7: The holographic phase conjugate reconstruction of the photomask. (Im­
aged by a Nikon x40 NA 0.65 objective lens) 
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The image pixel size vs. the mask pixel size 
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Figure 2.8: The direct image pixel size of a resolution photomask with pixels from 2 
x 2 pm2 to 0.2 x 0.2 fLrn2

. (Imaged by a Nikon x40 NA 0.65 objective lens) 

Hologram image pixel size vs. the mask pixel size 
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the holographic recording and reconstruction bandwidth is comparable with or larger 

than the objective lens with NA 0.65. 

2.3 Discussion 

From the theoretical studies and experimental measurement, we show a wide holo­

graphic recording and reconstruction bandwidth and demonstrate high resolution of 

hologram reconstruction in LiN b03 (F e) crystals in gO-degree geometry. This high 

bandwidth leads to a potential superfine pixel recording in data storage application 

if the spatial light modulator is attached directly to the crystal, or matching liquid 

is used to overcome the diffraction limit in the air. This is in principle the same 

mechanism used for oil immersion lenses. 

This high holographic bandwidth depends on the property of the photorefractive 

materials, and is related to the grating orientation and period inside the medium. 

We study experimentally the same holographic recording and reconstruction of the 

gradient photomask in Dupont polymer with transmission geometry and fail to re­

construction the 2 x 2 pm2 pixel size with reasonable quality. The possible reason 

is a much smaller intrinsic holographic bandwidth in Dupont polymer due to the 

holographic recording dynamics dependence on grating periods and the shrinkage. 

Another potential application of the high bandwidth of the holograms is image 

processing, i. e., extracting the superfine features from outside signal beams and pro­

jecting them onto imaging plane. The high bandwidth hologram works more like 

a fine spatial filter selecting only the features used for recording from the complex 

signal input and projecting them in the reference direction, such as the usage in a 

confocal microscope [8]. More detailed studies on imaging with a volume hologram in 

Chapter 4 show that the resolution is primarily dependent on the alignment and the 

aberration caused in the degenerate direction, instead of the holographic bandwidth. 
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2.4 Derivation 

In this section, we give the derivation of the angle-dependent phase grating strength in 

LiNb03 (Fe) of 90-degree geometry. The derivation follows the solution of Kukhtarev 

equations, which is widely used as a general model for photorefractive effects [68, 

69, 88, 89]. We follow the steps and use the known parameters of the material in 

previous works [54, 19, 21], while ignoring the thermal generation and non-isotropic 

of the materials for simplicity. 

Formation of Spatial Charge Field 

When an intensity pattern is illuminated inside a LiNbO?, crystal, 

(2.5) 

electrons are excited from the traps by absorbing photon energies and are described 

by the Kukhtarev equations: 

Rate equation ()Nh = (s1 + jJ)(ND - Ni;) - 'RNi;n, (2.6) --at 

Continuity equation an = aNi; + ~ v 0 J. (2.7) at at q . 

Current density J = qfJ,nE + kBTfJ,Vn - p(ND - Ni;)1(r)c, (2.8) 

Poisson's equation VocE = q(Nt - n - N.4), (2.9) 

where the assorted parameters are listed in Table 2.1. 

To linearize the equations, the distributions are assumed to have DC and first-

order components: 

E 

n 

J 

E E jG·r 0+ Ie , 

T + J ejG .r 
.10 1 . , 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
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N D Densi ty of dopants (total Fe concentration) 
NiJ Density of ionized dopants (Fe3+ concentration) 
n Density of electrons in the conduction band 
NA Compensative acceptors 
1 (r) Optical intensity in the crystal 
E Total electric field 
J Total current density 
(3 Thermal generation rate 
s Photoexcitation cross-section 
rR Carrier recombination rate 
p Photovoltaic constant 
p Carrier mobility 
E Dielectric constant of the crystal 
q Charge of the electron 
kB Boltzmann's constant 
T Temperature 
t Time 

Table 2.1: Variables in Kukhtarev equations (2.6)~(2.9). 

Substituting them into the Kukhtarev equations and first considering the DC 

response only, we get the solution as 

(2.14) 

(2.15) 

(2.16) 

where the recombination rate rRNiJo is much higher than the excitation rate slo(ND -

N~o). Therefore, the free electron density no reaches a small equilibrium value rapidly, 

which we treat as a constant function of light intensity 10 . In equation (2.16), there 

exists a constant current density J o, which is dominated by the photovoltaic effect. 

If there is no outside applied voltage, the current density will eventually drop to 

zero when a constant photovoltaic field Eo = E Oph = P(ND-NA)IoC is generated by 
qJ.LnO 
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accumulated surface charges. 

Now for the first-order terms, the Kukhtarev equations give 

(2.17) 

(2.18) 

J 1 qf-LnoE1 + qpnlEo + jkB T pnJ G 

-p(ND - N A )I1c + pNtnIoc, 

jGo(EEl) = q(NtJl - nd· 

(2.19) 

(2.20) 

Simplifying the equations for nl, Ntl' we get two equations 

aNtI 
at 

anI aNtI 
----at at 

(2.21) 

[
. G E jJ,kBTG

2 
qpno] N+ [qpno .PIoGoC] nl]p 0 0- --- + --+]---

q E Dl E q 

pG ° C 
-j (ND - NA)IJ • (2.22) 

q 

By substituting equation (2.21) into equation (2.22) to get a second-order differential 

equation, and ignoring the second-order derivative g~ (121 - Ntl) [19], we can finally 

find the solution for the space charge field El along the direction of the grating G 

with the approximations rRNA » sIo and NA » no: 

E 100 (1 - e-t/ T
) , (2.23) 

j h kBTG2 + jqGcEo + j:~R NA Gc -- (2.24) 
GIOq+ E [ND(kBTG2+]·G~Eo)+-.L'YRNAG~]' ND-NA NA q C q/lS I C 

G . c. (2.25) 
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By using the traditional photorefractive notations: 

modulation depth It 
Tn 

10' 
(2.26) 

diffusion field ED 
kBTG2 

qGc 
, (2.27) 

saturation space charge field Eq 
qNA(ND - lV-i) 

EGcND 
(2.28) 

photovoltaic field EOph 
[y'fRN4 

qjJS 
(2.29) 

drift field EJi 
rRNA 

pG 
, (2.30) 

drift field E A 

rRNA 
JiC IlGC 

, (2.31 ) 

dielectric relaxation time 1 f rRlV4 
Td qjJ sIo(ND - NA)' 

(2.32) 

we can simplify equation (2.24) as 

(2.33) 

Also, the complex time constant 7 in equation (2.23) is given by 

1 ~ 1 + W,; + j (Eo + ~ EOph ) / Eq 

7d 1 + ED + j Eo E A 

Ell- p.C 

(2.34) 
7 

\\Then a large number of holograms are multiplexed in the same location, the 

recording time t for each hologram is much smaller than the time constant 171, there­

fore the space charge field grating has the amplitude 

~ rn 
E'b + (Eo + EOph )2 E ~ 
(Ep.c + E D)2 + EZ J'7d 

Phase grating by electro-optic effects 

(2.33) 

The dielectric constant of the material changes under the applied electric field due 



to the Pockel's and Kerr's effects [129]: 
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1- -­
--E' !:::.Tj. E, 

EO 

r·E+SEE. 

(2.36) 

(2.37) 

In photorefractive LiNb03 crystal, the linear Pockel's effect in equation (2.37) is 

dominant. 

Due to the 3m symmetry of the LiNb03 crystal, the electro-optic tensor r is given 

as 

rxxx r xxy rxxz 0 -r22 r13 

ryyx ryyy ryyz 0 r22 r13 

rzzx r zzy r zzz 0 0 r33 
r= (2.38) 

r23x r23y r23z 0 r51 0 

r13x r13y T13z r51 0 0 

r12x r12y r12z -r22 0 0 

and the dielectric tensor 

E1 0 0 

E= 0 E1 0 

0 0 E3 

Using the conventional orthogonal coordinates along the crystal axes to represent the 

electric field grating in equation (2.35), El = (E1a , Ed)' E1C )' the dielectric tensor 



grating from equation (2.36) is 

~f _ EI ( 

EO 
-r22 

r51 ~ 
Ej 

r13 0 

+ 0 r13 

0 0 

o 
o 

o 
o 

r51 ~ 
£1 

0 

0 
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Eli], + 

Angle-dependent diffraction efficiency 

-r22 0 0 

0 r22 r51 ~ EA 
Ej lb 

0 r £3 
51~ 0 

(2.39) 

The diffraction efficiency of the phase grating in equation (2.39) can be calculated 

with Born approximation, due to the weak gratings usually recorded in data storage 

applications [19, 137]. \\Te have the diffraction field amplitude Ed ex I~EI under 

the Bragg phase-matching condition, where we ignore the geometric volume integral 

effects for different signal beam angles, and only consider the effective grating strength 

I~EI, which is strongly dependent on the beam angles and polarization PR, Ps: 

(2.40) 

Considering the normal 90-degree recording geometry as shown in Fig. 2.1 and 

transforming the coordinates along the crystal axes (a, b, c) in Fig. 2.10, we have the 

normal reference plane wave vector KR = ko( - V;a, 0, V;c), where ko = 2~n, and 

ordinary polarization P R = b. For the signal beam with transverse spatial frequency 

Ks = kxx + kyY + kzz, we have 

Ks 

Ps 

ko ( - cos a cos /3a, - sin oob, - cos a sin /3 c) , 

(- sin a cos /3a, cos oob, - sin a sin /3c), 

(2.41) 

(2.42) 
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Figure 2.10: The coordinates of the normal 90-degree recording geometry along the 
crystal axes. 

where 

. 7r 
kocosasm(4 - fJ), 

-ko sin a. 

The grating vector is 

G KR-KS 

k 
( 

J2 j3 ~. b~ J2 . j3~) 
'0 - 2 + cos a cos a, sm a '2 + cos a SlIl C . 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

Plugging equations (2.35, 2.39, 2.42, 2.46) into the effective grating strength equa-



Room temperature 
Dielectric constant 

Electro-optical coefficients 

Electron mobility 
Ordinary refractive index 
Dopant density 
Acceptor density 
Photoexcitation cross-section 
Recombinaton rate 
Photovoltaic field 

Drift field 
Diff'usion field 
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kBTlq = 0.0259" 
E1 = 78 
E3 = 32 
1'13 = 9.6 x 1O-1°em/1 i

' 

1'22 = 6.8 x 1O-10eml" 
1'33 = 30.9 x 1O-lOem/1 l 

1'51 = 32.6 x lO-lOem/l T 

J1 = 16em2 I" sec 
no = 2.3489 
ND = 1.89 x 1018em-3 

NA = 1 x 1018em-3 

s = 0.97em2 I J 
SlrR = 5.45 x 105 seel J . em 
EOph = 1.1 x 1041l lcm 

E Jl = 2.6 X 105 1ko 
1T I em 

ED = 1.11 x 104 y'2~02G A "I em 
c 

Table 2.2: Numerical values of the variables in Kukhtarev equations for LiNb03 (Fe) 
crystal in our experiment. 

tion (2.40), we have the eff'ective angle-dependent grating strength 

Ei ko E [v'2. (3 . ( 2 (3) v'2 - G 1 - -1'22 sm 0: cos + 1'22 sm 0: cos 0: 1 + cos + -1'l3 cos 0: 
EO 2 2 

2 . (3 E3. 2 . (3] +1'l3 cos 0: sm - 1'51 - sm 0: sm , 
E1 

where the space charge field E1 is given by equation (2.35) and 

G 

GA 
C 

ko J 2 + J2 cos o:(sin (3 - cos (3), 

G·c 

ko ( '7 + COS" si n i3 ) 

(2.47) 

(2.48) 

(2.49) 

By numerical calculation with the known parameters of the LiNb03 in previous 

studies [129, 54, 19, 21, 99, 86, 127], we get all the parameters and the field in 

equations for)' = 488 nm in Table 2.2. 
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Calculating the relative grating strength in equation (2.47) as a function of sig­

nal beam angle 0;, /3, and expressing it relative to the spatial frequencies in equa­

tions (2.43), (2.44), we get a 2-dimensional distribution function as shown in Fig. 2.2. 

We notice that in equation (2.16), when there is no applied voltage Eo = 0, 

there is a constant current density inside the crystal due to the photovoltaic effect. 

This current finally diminishes due to the surface charge buildup, which generates 

a constant field Eo = p(ND-NA)IoC. For a large number of holograms multiplexing 
qlmo 

in data storage application, the surface charge is saturated most of the time, i. e., 

Eo = p(ND-NA)IoC. Under this condition, the angle-dependent grating strength is 
q/mo 

calculated as shown in Fig. 2.2. In the case of an oven-fresh crystal, Eo = 0, the 

angle-dependent grating strength from equation (2.47) is shown in Fig. 2.11, which 

is similar to the saturation result. The comparison of the results on the cross-section 

between in and out of reference-c-axis plane is shown in Fig. 2.12. Both cases show a 

broad holographic recording and reconstruction bandwidth, without considering the 

interface Fresnel losses. 
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Figure 2.11: Theoretical calculation of the normalized phase grating strength as a 
function of the signal beam spatial frequencies ky, kz , for an oven-fresh crystal with­
out external applying electric field. 

1.2...--..----.---....----r----,----. 
~ 
c 

::::::> 

.0 0.8 
~ o ............. 
Q) 0.6 

"0 
:J 0.4 

:t= 

__ •• __ •• • • •• ••• • ••• ~ •••• • •••• 4 • • ••• __ ••• • . . . 

. . .... ... ~ .. -. . . .. . . ;. . . . . . . . . . . ...... : .... --.. . 
:: : . . . 

0. E 0 .2 .... ··· .. ·;··· .·· .. ··; ... ·· .... ·; ·· · ..... , .......... . .. 

« 0 
-9LO-_~~0---3~0-~0~~3~0-~6~0---90 

External Incident Angle (deg.) 

Figure 2.12: The theoretical simulation of the holographic recording and reconstruc­
tion amplitudes of LiNb03 (Fe) in gO-degree geometry as a function of the signal 
incident angle: (a) in the signal-reference plane and (b) out of the signal-reference 
plane, for an oven-fresh crystal without applying electric field. 
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Holographic Phase Conjugate 

Holographic memory is a potential data storage technology that can provide very 

large storage density and high recording and accessing speed [108, 59, 55, 111, 105]. 

The theoretical storage capacity of this technology is on the order of VI.,\3 [126] (where 

11 is the volume of the holographic medium and .,\ is the wavelength of light), i.e., a 

storage density limit of about one bit per cubic wavelength. Furthermore, holography 

has the inherent advantage of massive parallelism. Unlike conventional storage media, 

such as magnetic hard disks and CD-ROMs, which access only one bit at a time, each 

access of a holographic memory yields an entire data page - potentially megabits at 

a time. 

Due to Bragg phase-matching effects, thousands of holograms can be multiplexed 

within the same volume of recording material by angular multiplexing [125, 90, 92, 

5, 6], shift multiplexing [107], fractal multiplexing [106, 103], peristrophic multiplex­

ing [31], wavelength multiplexing [131, 112, 114, 130, 136], offering the potential of 

very high storage densities. 

Figure 3.1 shows a typical angle-multiplexed holographic memory in 90-degree 

geometry. Information is recorded in the holographic medium through the interference 

of two coherent beams of light. We refer to the information carrying beam as the signal 

beam, and the interfering beam as the reference beam. The resulting interference 

pattern causes an index grating (the hologram) to be written in the material. When 

the hologram is subsequently illuminated with one of the original writing reference 

beams, light is diffracted from the grating in such a way that the signal beam is 

reproduced. 

Much of the progress that has been made can be attributed to better understand­

ing on how to take advantage of the Bragg selectivity of 3-D to multiplex holograms, 
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I 
4-Fsystem reference arm 

'\ 

signal arm 

data page 

Figure 3.1: Experimental setup for a holographic random access data storage system 
with angle multiplexing in a photorefractive crystal of gO-degree geometry. 

as well as continuous research on holographic material properties and dynamics. The 

major barriers to develop a commercial holographic memory system are the mate­

rials (dynamic range, stability) , the optical-electronic components (such as spatial 

light modulator (SLM), detector array, multiplexing mechanism and devices), and 

the large system volume and high cost. 

In this chapter, we investigate a holographic random access memory (HRAM) 

module with phase conjugate reconstruction and present experimental results from 

this architecture. It has faster random access time than hard disk (100 f1,sec or less) 

and similar bandwidth as silicon storage with a lower cost. The phase conjugation 

leads to high-resolution signal image recovery with a compact and inexpensive optical 

system. And we believe that HRAM can be a competitive memory technology if 

optoelectronic technology can achieve the following three milestones: 

1) small SLM and detector pixel sizes on the order of 1 f1,m; 

2) high recording sensitivity of the holographic material with no more than 1 J/cm2 

to reach saturation; 

3) inexpensive high spatial density laser diodes with at least 500 mW of output power 
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in the near-infrared or visible wavelength. 

3.1 Phase conjugate reconstruction 

Despite the high theoretical limit on the storage density of volume holographic stor­

age (one bit per cubic wavelength of material) [126], the practical implementation 

of holographic systems is often bulky due to the large space occupied by the various 

components that are necessary to provide the recording and readout mechanisms for 

the crystal. The system of Figure 3.1 is fairly simple with a relatively small number 

of components; however, the spacing requirements of the imaging lenses impose con­

strains on how closely these components can be placed. For example, assuming SLM 

and detector array dimensions of 1 cm and high quality lenses with F/# = 1, the 

focal distance between the arrays, lenses, and crystal must also be at least 1 cm. The 

system of Figure 3.1 would then occupy a volume of approximately 6 cm x 5 em xl 

cm which is 30 times larger than the volume of the recording material [27]. 

The reason we normally need to place lenses within the signal path is to undo 

the effects of diffraction. \;\7hen we record a hologram of the signal beam diverging 

from the input SLM and reconstruct it with the original reference beam, we produce 

a virtual image of the input data page at the position of SLM, and thus require a lens 

to refocus it onto the detector array. We can eliminate the lens system between the 

SLM and detector array if we reconstruct a real image instead of a virtual one. One 

way to do this is to use phase conjugate readout [37, 38, 45]. 

Phase conjugation 

Phase conjugate definition comes from the complex analytic description of op­

tical field in electromagnetic waves [128, 51]. Considering an electromagnetic wave 

propagating along the forward z-direction, its electric field can be written as 

E = A( T )ej(wt-kz-¢(T)), (3.1) 

where w is the frequency and k is the wave number. The amplitude A and the phase 
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¢(r) are real functions of position (x, y, z). Defining a complex amplitude 

(3.2) 

the electric field written in analytic representation would be 

E (3.3) 

The phase conjugate wave of an electric field in equation (3.3) is given as 

E* (3.4) 

which is the complex conjugate of the spatial dependence in equation (3.3). It rep­

resents an electromagnetic wave propagating along the backward z-direction with a 

complex amplitude Ac( r)*, and it has exactly the same wave fronts at any point in 

space as the wave in equation (3.3). 

To consider the electromagnetic wave m equation (3.3) propagating along z­

direction in a diffracting medium, such as a holographic material with a nonuniform 

refractive index n(x, y, z), the wave equation by Maxwell's equations is 

0. (3.5) 

The complex amplitude Ac( r) must satisfy 

2 [W2 2 ( ) 2] . fJ V'.lAc+ c2n x,y,z -k A c -2Jk
fJz

A c 0, (3.6) 

where the subscript ..1 represents spatial derivatives transverse to the z-axis, and the 

complex amplitude is assumed varying slowly so that we ignore the second derivative 

IfJ2 Ac/ fJz 2
1 « IkfJAc/ fJzl. At the same time, considering the complex conjugate of 



29 

(3.6), and assume that the refractive index E = Eon2 is real 

0, (3.7) 

this is exactly the same wave equation for the phase conjugate wave in equation (3.4) 

propagating the backward z-direction. Physically this means that if there is a phase 

conjugate wave E* generated for E in equation (3.3), the phase conjugate wave have 

exactly the same wave front as E while propagating along the backward direction 

inside the medium, as shown in Fig. 3.2. 

Distorting 
Medium 

Phase 
conjugator 

Figure 3.2: Propagation of phase conjugate waves. 

Phase conjugation in an absorption medium 

For all the phase conjugate discussion, the phase conjugate wave equation (3.7) 

is true only if the medium is assumed as lossless. However, for all practical materials 

and photorefractive recording crystals, there is absorption inside. 

To consider the effect of the absorption on the phase conjugation, we assume 

E = Eon2 - j 13, where the refractive index n( r) and absorption coefficient j3( r) are real. 

The electromagnetic wave propagating along z-direction in the absorption medium 

and its phase conjugate wave are assumed as 

E 

E* 

(3.8) 

(3.9) 

where 0: is a real constant. Substituting the wave (3.8) into the Maxwell's equation 
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(3.5), the complex amplitude Ac{r) satisfies 

2(0: + jk) %z Ac 

j(Mow2 fJ - 2ko:)Ac. (3.10) 

Under condition that Mow 2fJ(r) 

medium, the equation (3.10) is 

2ko:, z. e., the absorption IS uniform inside the 

o. (3.11) 

And its mathematical complex conjugate gives 

0, (3.12) 

which is exactly the wave equation of the phase conjugation in (3.9). Therefore, in 

a uniform absorption medium, when an identical wave front is generated with oppo­

site propagation direction, the phase conjugate wave front will be exactly the same 

as the original one inside the medium, except the amplitude exponential decaying 

dependence along the propagation direction. 

When the absorption is not uniform, and we assume that: Mow 2fJ(r) 

MOw 20:1(r), the equation (3.10) is 

2 W 2 2 2 [2] \7 ~ Ac + c2 n (x, y, z) - k + 0: Ac 2(0: + jk) %z Ac 

. 2 A J MoW 0:1 c, 

and its mathematical complex conjugate 

2(0: - jk)~A* oz c 

. 2 A* -JMoW 0:1 c· 

2ko: + 

(3.13) 

(3.14) 
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However, for an electromagnetic wave propagating along the (-z )-direction as 

(3.15) 

Maxwell's equation leads to 

2 W 2 2 2 [2] V' l.. AC2 + c2 n (x, y, z) - k + 00 AC2 2(00 - jk) :z AC2 

. 2 A J /-LoW 001 c2, (3.16) 

which is different from the complex conjugate in (3.14). 

Therefore, for a medium with nonuniform absorption distribution, which usually 

happens in the real world, there is no phase conjugate wave front which has the 

identical wave front inside the medium as the forward propagating wave. 

However, by Born approximation, we can write the counter-propagating wave as 

AC2 = A~ + A!, where A~ satisfying equation (3.14). Then from equation (3.16), we 

have 

2t W 2 22 t [2] V'l.. AC2 + c2 n (x, y, z) - k + 00 AC2 2(00 - jk) :z AC2 

j /-LOW2OO1 (A! + 2A~), (3.17) 

which leads to 1 A~ 1 » 1 A! 1 under approximation 2koo » /-LoW 2 
1 001 (r) I· Therefore, for 

an absorption medium with a relative small nonuniform absorption grating inside, 

the counter-propagating beam is consisted of the phase conjugate beam plus a small 

scattered wave front from the absorption grating. In practical materials with more or 

less nonuniform absorption distribution, this means that the phase conjugation does 

exist with a background from the scattering noise. 

Phase conjugation in holography 

Phase conjugation is normally achieved and correctly explained by four-wave mix­

ing in nonlinear media [51] either through stimulated Brillouin scattering, nonlinear 

Kerr effect in real time, or through the photorefractive effect in holography, where 
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recording and readout are separated. From either process, three electromagnetic 

waves are mixed and generate the fourth wave as E4 ex: ElE;E;'. When El , E2* are 

a phase conjugate pair such that E 1E2* rv canst ., the fourth wave will be the phase 

conjugation as E4 rv E;'. 

The dilemma of requiring one pair of phase conjugate beams to generate another 

pair of phase conjugate beams is solved by using two counter propagating plane 

waves for El and E2, which can be achieved by two beams from outside or by internal 

reflection in a self-pumped phase conjugate mirror architecture [51]. By this simple 

arrangement, the phase conjugation of a complex wave front E3 can be achieved. 

Based on this principle, a lensless phase conjugate holographic memory system 

can be achieved as shown in Fig. 3.3, in which a hologram is recorded in the normal 

Recording 

Conventional Readout 

u 
&l o 

.. . . 

.. .. 

Conjugate Readout 

reference 

detector array 

Figure 3.3: Compared to a normal forward reconstruction of a hologram, a phase 
conjugate reconstruction can regenerate a real image of the signal at the original 
location without a lens. 

gO-degree geometry between the signal beam encoded by a spatial light modulator 

and a reference beam. The hologram is read out with the phase conjugate of the 
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reference beam, propagating in the opposite direction as the one used for recording. 

This causes the signal reconstruction from the hologram to propagate back along the 

direction from which it originally comes, reversing the original signal diffraction, and 

refocusing exactly at the plane of the SLM array. To generate the conjugate reference 

we may use a phase conjugate mirror [38], or in the case of a plane wave reference 

beam, we may simply use a counter-propagating plane wave at each angle. The 

experimental demonstration of the phase conjugation by plane wave reference beams 

and its quality are also shown in Fig. 2.7. A more realistic compact demonstration 

module on optical bench is shown in Fig. 3.4 with a phase conjugate reconstruction 

of one data page. 

Figure 3.4: An experimental demonstration setup of the compact phase conjugate 
holographic memory system, and a phase conjugate reconstruction of one data page 
(pixel size 12 x 12 p,m2

). 

The quality of the counter-propagating reference beam 

From the discussion above, the counter-propagating reference beam is required to 

have the same wave front along the path as the reference beam used for recording. 

For plane wave reference beams, this means that the reference beam should be well 

collimated and have no deformation when going through the recording medium and 

being reflected by the plane mirror. 

However, this is very difficult in the real world. As shown in Fig. 3.5, the reference 
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Figure 3.5: The wave fronts of the recording reference beams and their counter­
propagating beam for phase conjugate reconstruction. 

beam and its counter-propagating beam can deviate from a perfect plane wave due to 

collimating quality, the quality of all optical interface and the mirror surface, plus the 

deformation due to the refractive index nonuniformitv inside the crvstal. To studv . . . 
the sensitivity of the phase conjugate reconstruction on the wave front changes of the 

reference beam and its reflection, we simulate it numerically by a simple assumption 

of a spherical reference beam instead of a plane wave, as shown in Fig. 3.6. Due to 

the opposite propagation direction, the readout reference beam has a different wave 

front from the recording beam inside the crystal, which causes the phase mismatching 

along the signal diffraction direction. By Born approximation and considering to the 

first order of the diffracted signal along the ray direction only [75], the diffracted field 

is given by 

(3.18) 

(3.19) 

where the radius R is the spherical wave curvature, and D is the thickness of the 

crystal along the signal path. Due to the curvature of the spherical wave front, there 

is a phase delay UJ = Jr (x2 + Z2) / (RA) from a perfect plane wave. Using the counter­

propagating reference beam to read out, the wave front phase difference between 

the recording and readout is 260, which leads to a phase mismatch along the signal 
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(b) 
Figure 3.6: (a) A simple model of spherical reference beam and its reflection for 
holographic readout. (b) The numerical simulation of the diffraction intensity as a 
function of the wave front deviation of the reference beam from a plane wave. 
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construction path. The numerical simulation shows the signal diffraction intensity 

as a function of the deviation of the reference from a plane wave measured by the 

maximal phase delay at the crystal aperture in Fig. 3.6 (b). 

It indicates that the phase conjugate signal reconstruction is very sensitive to the 

reference beam deviation from a perfect plane wave. When the wave front has a vari­

ation of one-fifth of the wavelength, the signal intensity drops to half. This explains 

the experimental phenomena that the phase conjugate reconstruction diffraction ef­

ficiency is always much lower than the normal forward construction in the lab. The 

simple model used here assumes the reference beams as spherical waves, however 

similar results apply for the cases when the reference beam is deviated from plane 

wave with a random phase deformation, either due to the interface non-smoothness 

or the phase modulation going through the crystal. Also, the wave front deformation 

sensitivity is consistent with the angle selectivity of a plane wave readout. The first 

null of the angle selectivity ~() = AID, corresponds to a phase changes up to ±A/2 

across the wave front comparing with the one used for recording. This consistency 

comes from the Bragg phase-matching. vVhen the reading beam has a wave front 

phase changes up to A, the diffracted signals start to cancel each other and average 

out the amplitude instead of adding together constructively. 

Experimental studies of the reference quality for phase conjugation 

Due to the interface quality, the phase deformation through the crystal in the 

lab, and the experimental collimating quality which is at the order of one-wavelength 

across the beam aperture in the lab, we observe a large uncertainty of the phase 

conjugate reconstruction efficiency. To determine the significance of various effects, 

we use the angle selectivity measurement to evaluate the beam deformation from the 

collimated beam in the lab. 

The experimental setup is shown in Fig. 3.7, where a simple gO-degree LiNb03 

crystal is used for recording between two well-collimated plane waves in the lab. 

And the angle selectivity by the same reference beam is measured, which gives the 

intrinsic angle resolution or Bragg phase-matching selectivity of the volume hologram 

at ~() = AID. Then, different beams either by forward direction Rl or counter-



37 

propagation R2 are used to readout and their angle selectivities are compared with 

the selectivity curve by the original reference beam. 

l Sig. 

EJ .. Ref. 

( a) recording 

Detector 2 

hologram f .........•... ; ............... 1 -.. ...... . 

R2: 
• .. 

Detector 1 

(b) readout 

Rl 
~ 

Test Crystal 

Figure 3.7: (a) A simple gO-degree geometry recording with two well-collimated plane 
waves. (b) The holographic angular selectivity measurement with different reference 
beams. 

Fig. 3.8 shows various results by forward reference beam R1 going through dif­

ferent testing objects. Curve (a) shows the angle selectivity of the volume hologram 

measured with the original plane wave reference, which gives the angle resolution of 

the hologram. For a reference beam R1, which has a different angle spectrum from 

the original plane wave, its angle selectivity on this volume hologram gives its angular 

spectrum with a resolution limited by curve (a). As shown in Fig. 3.8, the plane wave 

passes through a commercial beamsplitter or an oven-freshed photorefractive crystal. 

Assuming the beamsplitter or crystals are optically uniform inside, the plane wave 

is deformed only by the interface surface quality. The commercial beamsplitter and 

crystal #1 - #3 give angle selectivity curves comparable to (a) with slightly broad­

ening effects. Curves (d) and (g) give large broaden effects, which indicate a severe 

deformation to the wave front. We test all the crystal used in the lab, the surface 

quality of some of them are definitely not good. Even though they cause no trouble 

for normal holographic recording and reconstruction, they can not be phase conjugate 

reconstructed by assuming the reference beams as plane waves after going through 

the crystal. 



Figure 3.8: The angular selectivity of the hologram by a forward reference beam, 
which is (a) the original recording plane wave reference beam; (b) a plane wave 
reference beam going through crystal # 1; (c) a plane wave going through a commercial 
beamspli tter; (d) a plane wave going through crystal # 1 difference area; (e), (f), (g) a 
plane wave going through crystal #2, #3, #4 respectively. 

Similar wave front deformation effects also happen inside the crystal when it is 

used for the holographic recording. This is caused not only by the surface polishing 

quality, but also by the nonuniform refractive index due to the photorefractive effects 

during hologram recording. Fig. 3.9 and 3.10 show the angle selectivity curves by 

counter-propagating reference beam R2 in Fig. 3.7. 

Fig. 3.9 demonstrates the effect of the wave front deformation on the pseudo phase 

conjugate by reflection from a plane mirror when the reference beam passed through 

the photorefractive crystal. On the other hand, for a real phase conjugate reconstruc­

tion of the reference beam, the angle selectivity matched the original forward beam 

even though the wave front is deformed by the same phase modulation through the 

crystal. 

Fig. 3.10 has a large reference beam aperture D, which leads to a stronger depen­

dence on the wave front deformation as shown in Fig. 3.6. Therefore, for the normal 
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Figure 3.9: The angle selectivity of the hologram by (a) the original recording plane 
wave reference beam; (b) a phase conjugate beam of the forward reference beam 
through the crystal; (c) the reflection of the forward reference beam through the 
crystal by a plane mirror. 

forward readout in (a-b), the angle selectivity is narrower than Fig. 3.9(a-b). On the 

other hand, the pseudo phase conjugate readouts (c-d) have much wider selectivity 

than Fig. 3.9 (c). Also demonstrated in Fig. 3.10 is that during the recording process, 

the phase deformation effect inside the crystal gets worse due to the photovoltaic ef­

fect. As shown, when the hologram is recorded longer, the angular selectivities in (b) 

or (d) are both wider than (a) or (c) from a weak hologram. Experimental studies 

indicate an inconsistent behavior of the phase modulation effect inside the crystal, 

which depends on the crystal processing procedure, such as oven refreshing, cooling 

condition, recording intensity, et al. 

Hologram multiplexing and pseudo phase conjugate reconstruction 

To demonstrate the multiple hologram recording and phase conjugate reconstruc­

tion in a compact architecture as shown in Fig. 3.4, we study the angular multiplexing 

with plane wave reference beams and a fixed random binary data mask as the signal 

beam. 

Fig. 3.11 shows the comb function of multiplexing 40 holograms with plane waves 

as signal beams, with fvl# = 1. Fig. 3.12 shows the comb function for phase conjugate 

reconstruction for the same 40 holograms by reflection of the plane reference beam 



.£0.8 
'" ::: 
(j) :s 0.6 

"0 
(j) 

~ 0.4 
ce 

E Z 0.2 

a 

40 

b 
C N\d 

f~ 

j V \. 
50 100 150 200 

Angle (I 0-3 deg.) 

Figure 3.10: The angle selectivity of the hologram by a forward reference beam (a) 
( c ), or its reflection by a plane mirror for the forward reference beam through the 
crystal (b) (d). ( a), (c) are the same weak hologram, and (b), (d) from a same strong 
hologram, which leads to a broadened selectivity due to the photorefractive effect. 

passing through the crystal, with AI # = 0.5. Due to the wave front deformation 

of the pseudo phase conjugate reference beams, the phase conjugate has wider angle 

deviation and lower diffraction efficiency than the forward reconstruction, as shown 

in Fig. 3.13. Also shown is the angle broadening effect due to the phase modulation 

inside the crystal during hologram recording, which leads to a broadened angular 

selectivity for the first recorded holograms than the last recorded ones. This effect 

impacts more to phase conjugate readout than forward ones, and has the same impact 

on all phase conjugate holograms. Similar comb functions for 100 angle multiplexed 

holograms are shown in Fig. 3.14 and 3.15, with AI# ~ 0.2. !I{# for forward 

reconstruction is relatively lower due to the erasure of the holograms during the first 

scanning of the phase conjugate comb function. 

Encoding the signal beam by a fixed random binary data mask with pixel size 

12 x 12 j.tm2 , the signal beams scatter around the compact setup, which not only 

increases the scattering background due to the limited space for spatial filtering, but 

also makes phase conjugate reconstruction more sensitive to the reference wave front 

deformation. Fig. 3.16 shows the phase conjugate reconstruction comb function of 50 

angle multiplexed pages and its scattering background measurement. As it shows, the 
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Figure 3.11: The forward reconstruction comb function of 40 angle multiplexed holo­
grams with plane waves as signal beams. 
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Figure 3.12: The phase conjugate reconstruction comb function of 40 angle multi­
plexed holograms with plane waves as signal beams. 

signal intensity is at the level of the background. By correcting the background profile, 

we can have the diffraction efficiency of 50 phase conjugate readout in Fig. 3.17, where 

Al# ~ 0.1. To multiplex more holograms into the crystal, the phase conjugate signal 

level gets so small due to the limited !vI # and the wave front deformation to the 

pseudo phase conjugation as shown in Fig. 3.18 - 3.19, that the detector array we 

used in the lab can not extract the data image with reasonable signal to noise ratio 

(SNR). Fig. 3.20 shows the SNR measurement for phase conjugate reconstruction of 

multiplexed data pages up to AI = 50, where the reconstructed image samples are 

shown in Fig. 3.21. 
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Figure 3.13: The angle selectivities of the 40 angle multiplexed holograms, (a) for­
ward reconstruction of the last recorded holograms; (b) forward reconstruction of 
the first recorded holograms; (c) phase conjugate reconstruction of the last recorded 
holograms; (d) phase conjugate reconstruction of the first recorded holograms. 
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Figure 3.14: The forward reconstruction comb function of 100 angle multiplexed 
holograms with plane waves as signal beams. 
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Figure 3.15: The phase conjugate reconstruction comb function of 100 angle multi­
plexed holograms with plane waves as signal beams. 
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Figure 3.16: The phase conjugate reconstruction intensity comb function of 50 angle 
multiplexed data pages and the background measurement. 
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Figure 3.17: The phase conjugate diffraction efficiency comb function of 50 angle 
multiplexed data pages. 

3.2 Pixel matching and SLM 

To read out the holographic images, normally a 2-D sensor, such as CCD or CMOS 

detector, is used, where the pixel size in the 2-D sensor determines the spatial reso­

lution of the image. To retrieve all the information from the holograms, we always 

oversample the image by amplifying the holographic image so that the image spatial 

resolution is larger than the image sensor pixel size. 

For the binary data storage application, holographic image or binary black/white 

is used, which requires only one corresponding detector pixel for reconstruction. Over­

sampling not only wastes the hardware resource, but also makes the 0/1 discrimina­

tion algorithm sophisticated. Therefore, a pixel-to-pixel matching is expected for the 

hologram and the image sensor. Due to the intrinsic back-tracking property of the 

phase conjugate reconstruction, a real image of the same size and location as the SLM 

is reconstructed, which makes phase conjugation a natural method for pixel-to-pixel 

matched readout. 

One ideal solution is to implement a smart pixel with both functions of SLM 

and photo sensor by merging liquid crystal and silicon technologies [30, 64]. During 

recording, the signal beam is encoded by the liquid crystal modulator before entering 
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Figure 3.18: The phase conjugate reconstruction intensity comb function of 50 angle 
multiplexed data pages and the background measurement. 

the storage medium. During readout, the same pixel pattern is reconstructed onto 

the pixel and is detected by the sensor. A prototype of the smart pixel chip is 

demonstrated in the system [41, 39, 27], but combining liquid crystal and silicon 

technologies makes the chip design and fabrication complicated, also increases the 

pixel size, which leads to a decreased data page size and smaller storage capacity. 

Another method is to use a beamsplitter to direct the signal reconstruction to a 

detector array with the same pixel size as the SLM. This architecture is simple, opt 

to commercial SLM and detector array, with the drawback of lower photon efficiency 

and required pixel-match alignment. 

Experimentally we demonstrate the pixel-matching reconstruction of holograms 

and compared the image quality between the phase conjugate reconstruction and 

the normal forward reconstruction, as shown in Fig. 3.22. Fig. 3.22 (a) shows the 

normal forward reconstruction of 90-degree geometry with angle multiplexing. A pair 

of custom-designed lenses form a 4-F system to deliver 1 : 1 image of the SLM onto a 

CMOS detector. Fig. 3.22 (b) shows a compact phase conjugate readout with plane 

wave reference for recording and its reflection for readout. In both setups, we use 

a Kopin liquid crystal SLM with pixel size 24 x 24 /-lm2 and effective area of each 

pixel around 12 x 15 J-lTn 2
. A CMOS detector with pixel size of 12 x 12 Itm2 is 
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Figure 3.19: The phase conjugate diffraction efficiency comb function of 50 angle 
multiplexed data pages. 

carefully aligned to corresponding pixels on the SLM image. For the phase conjugate 

reconstruction , the physical size of the image and the SLM are identical through 

the SLM area, while for the 1 : 1 imaging system for the forward reconstruction, 

delicate alignment for the correct image size and pixel matching alignment across the 

whole image area are required. Fig. 3.23 shows these instruments in the setup for the 

compact phase conjugate system in our lab. 

Fig. 3.24 shows the experimental demonstration of the forward pixel matching 

by the 4-F imaging system. Single pixel horizontal and vertical lines can be seen on 

the images. Also, an image of an 8 x 8 superpixel check board on SLM is shown. 

Due to the fi ll-in factor of the SLM pixel effective area and the oversampling of each 

SLM pixel by 2 x 2 detector pixel, we align the detector pixels so that one in every 

2 x 2 pixels gives the strongest signal for each ON pixel on SLM. Therefore, in every 

two vertical pixels, there is a dark one next to it due to the 50% fill-in factor in this 

direction. By picking up only the signal from the central detector pixel, sharp single 

pixel check board can be extracted and demonstrated the pixel-matching, as shown 

in Fig. 3.25. 

To study the quality of the image quantitatively, we use a simple signal to noise 
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Figure 3.20: The phase conjugate reconstruction SNR measurement for 1\1 multi­
plexed data pages. 

ratio (SNR) definition for the binary images. SNR is defined as 

SNR 
Jl.;fON - JI.fOFF 

. / 2 2' 
yDON + DOFF 

(3.20) 

where Jl.;fON , Jl.;IOFF are the mean intensity values of ON/OFF pixels, and DON, DOFF 

are the deviation of ON /OFF pixel intensity distribution. Fig. 3.26 shows the his­

togram of the intensities of a pixel-matched image, which leads to a SN R = 7.25. 

Attached figures 3.27, 3.28, and 3.29 are some image samples of the direct pixel 

match by the 4-F imaging system, holographic reconstruction in the forward architec­

ture and the phase conjugate reconstruction. All of them demonstrate the pixel level 

matching resolution, with Fig. 3.30 showing a pixel intensity histogram from a phase 

conjugate reconstruction. To compare the image reconstruction qualities between 

the normal forward reconstruction and the phase conjugate reconstruction, the SNR 

results are compared in Fig. 3.31. They have comparable SNR results, while phase 

conjugate reconstruction gives more reliable performance due to the easier alignment 

than the 4- F imaging system. 
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(0) (b) 

( C) (d) 

Figure 3.21: The phase conjugate reconstruction of data pages from multiplexed 
holograms: (a) SNR=5.4 for M = 10; (b) SNR=4.4 for M = 20; (c) SNR=4.0 for 
!I! = 40; (d) SNR=3.5 for !II = 50. 

3.3 Capacity and pixel size 

With a photorefractive crystal sitting on top of silicon, as shown in Fig. 3.32 [38, 39], 

a read/write holographic random access memory (HRAM) is a potential competitive 

technique to store more data with faster data accessing rate, smaller silicon area, lower 

cost and smaller volume, compared with the traditional silicon Dynamic Random 

Access Memory (DRAM). Instead of storing data on the silicon area, pages of data 

are stored as holograms inside the same crystal volume. The silicon devices are only 

interfaces to read/write holograms to the memory. 

Semiconductor electronics have been and will continue to be the driving force 

on developing faster , smaller, cheaper and more powerful computer and memory 

system. According to the National Technology Roadmap For Semiconductors [lJ, the 

semiconductor industry has maintained a 25-30% peryear cost reduction per function 

and the average 10.5% per year reduction rate in feature size throughout its history. 

It is projected to keep this historic trend for another decade until it reaches physical 

limits as feature sizes approach 100 nm. 
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Figure 3.22: (a) A gO-degree angle-multiplexing holographic memory system, with an 
imaging system to pixel-match the SLM to the detector array. (b) A compact phase 
conjugate holographic memory system, with a pair of SLM and detector array of the 
same pixel size and aligned with pixel-to-pixel matching. 
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Figure 3.23: A compact phase conjugate holographic setup on optical bench, with a 
pair of SLM (pixel 24 x 24 p,m2 ) and detector array (pixel 12 x 12 p,m2 ) aligned with 
pixel-to-pixel matching. 

To build a holographic memory competitive with silicon storage, it is essential to 

be more cost-efficient, faster data accessing and smaller in volume. 

Cost per megabyte and pixel size 

For the holographic module, the cost includes mainly three parts: silicon inter­

face CSi, optical elements COpt , including crystals and liquid crystal array, and the 

multiplexing optical source CLaser, such as VeSEL array. Table 3.1 gives a rough 

estimation of the cost for large number of production. To compare with the cost of 

silicon storage DRAM , which is proportional to the silicon area, we assume the same 

cost for the same silicon area in both holographic memory and DRAM. The cost ratio 

per megabyte Rc of holographic memory to the silicon storage will be 

C Si + COpt + CLaser Rp 
Csi . 111' (3 .21) 

where the Rp is t he ratio of each pixel area for the SLM and detector in HRAM to 

each pixel area on DRAM silicon chip, !VI is the number of holograms multiplexed 
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Figure 3.24: Pixel-matched images by the forward 4-F imaging system: (a) an 8 x 8 
superpixel check board; (b) patterns with single pixel horizontal and vertical lines. 

I Component I Estimated cost I 
LiNb03 (lcm3 ) $10 
Liquid crystal $5 
Beamsplitters and lens $6 
Silicon (lcm2

) $115 
Laser diode array (500) $25-100 

I Total: I $161-236 

Table 3.1 : Estimated cost of components in the holographic memory module, assum­
ing production in large quantities. 

in the crystal on top of the silicon. With the fixed cost of silicon area GS i , optical 

elements Gopt , and laser source GLaser, the key to have a small cost ratio Rc is to have 

small Rp and large AI, which means a high storage density in holographic memory 

comparing with the DRAM. 

The number of holograms to be recorded and readout with reasonable bit error 

rate, is limited by the dynamic range and sensitivity, or A1# of the material [91J. 

Even though recording and reading 10,000 holograms at one location of a Li b03 

crystal was demonstrated wit h a similar system [5, 6], it requires tremendous technical 

efforts. 

For current state-of-the-art commercial SLM and detector array, the pixel area 

is typically 5 x 5 /-Lm2 or larger. The current commercial DRAM is 1 /-Lm2 per 
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Figure 3.25: Pixel-matched image of a single pixel check board by the forward 4-F 
imaging system, where only the central detector pixel out of every 2 x 2 detector 
pixels is sampled. 

bit [1], which leads to a pixel area ratio Rp = 16. With typical M = 1000, we have 

Rp/ J\l1 = 1.6%, which leads to a small and promising Re. However , if the DRAM 

keeps the historical shrinking trend as projected, the DRAM cell will be 0.04 /-lm2/bit 

in 2006. To keep the Rp around 25 , the pixel size of the holographic data pages has to 

be 1 x 1 /-lm2 or even smaller, which is achievable for the holographic memory system, 

as shown in Chapter 2. 

Experimental demonstration of different pixel sizes 

Fig. 3.33 shows the experimental setup for the holographic recording and phase 

conjugate reconstruction with different pixel size. Binary random data mask is used 

for signal encoding, and a telescope system is used to image the data page or its 

hologram reconstruction, since there is no detector with such small pixel size for pixel 

matching experiments. 

Pixel size ranges from 8 x 8 /-lm2 to 1 x 1 /-lm2 for binary data. The direct images 

by the imaging system and their SNR measurements are shown in Fig. 3.34. The 

similar results of the phase conjugate reconstruction are shown in Fig. 3.35. 

Fig. 3.36 shows the SNR measurements of the direct images and the phase con-
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Figure 3.26: The intensity distribution of a pixel-matched image of a single pixel 
check board by the forward 4-F imaging system, where MON = 110.4, AloFF = 29.9, 
DON = 7.67, DOFF = 8.01. 

jugate reconstruction as a function of the pixel size. The SNR decreases as the pixel 

size gets smaller due to the imaging quality of the telescope system and the electronic 

noise of the detector. For the data recovery, it is more important to know the bit 

error rate (BER), which defines the possibility of readout 0/1 , when a real bit of 

data 1/0 is recorded, as shown in Fig. 3.37. By assuming a Gaussian distribution of 

the ON/OFF pixel intensity on the images, the BER can be calculated as shown in 

Fig. 3.34 - 3.35. If we assume that the BER p is caused by random noise , the real 

capacity of the recording channel can be calculated by Shannon's theory as [23] 

I (3.22) 

When there is no BER p = 0, I = 1 bit for each binary pixel. When BER p > 0, I 

represents the information capacity for each binary pixel in out storage system. For 

the BER we got in our phase conjugate reconstruction in Fig. 3.35, p < 1 x 10-4, 

which gives I > 0.99 bit per pixel. Therefore, the capacity is approximately inversely 

proportional to the pixel area down to 1 x 1 p,m2
. 
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Figure 3.27: The pixel-matched images from the 4-F direct image system. The last 
row are images of 2 x 2 pixel check board and single pixel check board patterns with 
only center pixels from every 2 x 2 detector superpixel being shown. 

3.4 Discussion 

To achieve a practical working compact memory module, t here are a few more tech­

nically challenging issues on the components . 

Multiplexing laser source and data rate 

With the recent development of compact laser emitters, such as laser diodes and 

Vertical-Cavity Surface-Emitting Laser (VCSEL) devices [63, 26, 115], it has become 

feasible to consider the possibility of incorporating arrays of hundreds of microscopic 

laser sources in a holographic memory. We can implement a VeSEL array into a 

compact phase conjugate memory module, in which each angle multiplexed hologram 

is addressed by a dedicated laser source, as shown in Fig. 3.38. The properly aligned 

laser array elements have the wavelength deviation much smaller than the hologram 

wavelength selectivity (10- 5 ). for 1 cm-thick crystal). With a mirror placed on the 
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Figure 3.28: The pixel-matched holographic reconstruction images from the 4-F direct 
image system. The last row are images of 2 x 2 pixel check board and single pixel 
check board patterns with only center pixels from every 2 x 2 detector superpixel 
being shown. 

opposite face of the crystal, such that it lies at the focus of the Fourier transforming 

lens, the proper conjugate beam can be generated with the symmetrically opposite 

laser source and overlap the original writing beam path inside the crystal. 

Another potential multiplexing method is to use a wavelength tunable source. 

Tunable laser is intensively studied in terms of tuning range, stability, power, and 

working wavelength in the areas of DWDM (Dense Wavelength Division Multiplexing) 

and data storage [57, 33, 66, 87J. With only one emitting source, there is no beam 

shifting inside the crystal as the angle multiplexing, as shown in Fig. 3.39. 

Since the time it takes to produce the proper readout reference beam is determined 

by the switching time of the laser sources, which is in the nanosecond regime for 

VeSEL array or microsecond regime for distributed Bragg reflector (DBR) tunable 

laser, the random access time and the readout rate become limited by the required 
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Figure 3.29: The pixel-matched images from phase conjugate reconstruction. The 
last row are images of 2 x 2 pixel check board and single pixel check board patterns 
with only center pixels from every 2 x 2 detector superpixel being shown. 

integration time of the detector , which is 

N ehvN2 

Detector integration time = ---;;--el;:)2 Pi' 
(3.23) 

where Ne is the number of electrons per pixel that we need to integrate for the given 

detector sensitivity and level of background noise, h is Planck's constant (6.63 x 10-34 

J ·s) , v is the light frequency, N 2 is the total number of pixels in the detector array, M # 

is the system metric [102] of the holographic medium, M is the number of multiplexed 
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Figure 3.30: The intensity distribution of a pixel-matched image of a single pixel 
check board by the phase conjugate reconstruction. 
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Figure 3.31: The quantitative comparison of pixel-matched image SNR between nor­
mal forward holographic reconstruction and phase conjugate reconstruction . 
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Figure 3.32: A compact phase conjugate holographic memory module with a photore­
fractive crystal and optical elements seating on top of an optoelectronic integrated 
circuit interface. The 8LM and the necessary multiplexing laser source are not shown. 

holograms, and Pi is the incident readout power. For example, if we use a crystal 

of !ll # = 10 to record 500 holograms of a 1000 x 1000 pixel array, and we read out 

with 100 m W of laser power, requiring 300 electrons per pixel, the integration time, 

and hence the random access time, would be 2.4 J-lS. This corresponds to a sustained 

readout transfer rate, from the hologram to the silicon detectors, of 53 GB/s. 

System volume density, recording rate and pixel size 

An analysis of the system storage density (including the recording medium and 

all the optical components) of the holographic memory module of Figure 3.38 shows 

that the module storage density peaks at about 40 Mb/cm3 for an optimum pixel 

size of 5 f-im [27]. There is an optimum pixel size because as the pixel size decreases, 

the light in the signal path spreads more due to diffraction, causing us to use larger 

apertures for the crystal and beamsplitters. 

A more aggressive design is to rely on total internal reflection to contain the 

beam difFraction within the boundaries of the module, so that the optical elements 

can be made close to the size of the 8LM array, as far as the size of the laser array 

is relatively much smaller than the 8LM. Experiments demonstrated that accurate 

recordings and phase conj ugate reconstruction are obtained for the internally reflected 
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Figure 3.33: The experimental setup for holographic recording and phase conjugate 
reconstruction of a binary data mask with various pixel sizes. 

signal beams [95]. In this case, the system density can be raised to the order of 2 

Gb/cm3 , if 8LM pixel sizes fall to 1 Mm. 

In addition, a larger page capacity increases the recording rate of the memory 

module, which is 
. N 215Lp 

Recordmg rate = (M # ) 1M (3.24) 

where N 2 is the total number of pixels per data page, 1 is the incident recording 

intensity, 5 is the sensitivity per unit length of the recording medium, L is the crystal 

thickness, and p is the light efficiency of the 8LM. Assuming a crystal of NI # = 10 

to record 500 holograms of a 1000 x 1000 pixel array, with 1=100 mW/cm2
, 5=0.1 

cm/J, L=l cm, and p=50%, we obtain a recording rate of 31 kB/s. This is typical 

for experiments currently performed. 

Increasing the recording rate to make it comparable to the readout rate is highly 
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Figure 3.34: The direct images of random binary data masks with pixels ranging from 
8 x 8 pm2 to 1 x 1 pm2 , and their SNR measurements. 

desirable for a practical system. By bringing the pixel SIzes down to 1 pm and 

increasing the size of each data page to 10, 000 x 10, 000 pixels while still holding 

the array size to about 1 cm2
, we immediately gain two orders of magnitude in the 

sustained recording rate due to the increased parallelism. The trade-off is to give up 

some readout speed due to increasing the detector integration time for each pixel in 

equations (3.23). 

Liquid crystal SLM and digital mirror array device(DMD) 

For a spatial light modulator (SLM), the most important characterization is the 

energy efficiency, contrast ratio, and uniformity. A new micro-electro-mechanical 

system (MEMS) device is developed at Texas Instrument, Inc. (TI) , digital mirror 

array (D MD) , which tilts an array of tiny mirrors fabricated on a silicon wafer to 
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Figure 3.35: The phase conjugate reconstruction of random binary data masks with 
pixels ranging from 8 x 8 pm2 to 1 x 1 pm2

, and their SNR measurements. 

generate On/OFF pixels by individual mirror element. Due to the high fill-in factor , 

high refiection efficiency and fast responding time, it leads much better image quality 

as a spatial light modulator comparing with traditional transparent liquid crystal 

SLM on issues of uniformity, refreshing rate contrast, and efficiency. Also , it is easier 

to be scaled down to micrometer pixel size, comparing to the liquid crystal cell limited 

a certain thickness requirement. 

In this study, we compare the performance between a liquid crystal SLM (Kopin 

model LVGA AMLCD evaluation kit) and the TI DMD SVGA device. The Kopin 

liquid crystal SLM has 640 x 480 pixels , with pixel pitch 24 pm, and contrast speci­

fication at 100. The TI DMD device has 800 x 600 pixels, with pixel pitch 17 pm. 

The liquid crystal SLM modulates the light intensity going through the liquid 
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crystal by changing the polarization direction of the lights inside the liquid crystal. 

Because of the necessary wiring for each pixel control and the edge effects at each 

pixel, the effective area of each pixel is only 33%. The light throughout efficiency 

for all pixel ON is measured as only 27% in the lab. The contrast ratio is measured 

as 107 between all ON and all OFF pixels. On the other hand, the TI DMD device 

consists of MEMS mirror array on silicon bases with all control circuit behind the 

mirror, which leads to high reflection efficiency and large effective area at 16 x 16 

tLm2 out of 17 x 17 tLm2 for each pixel. The experimental measurement gives 76% 

of energy efficiency for all ON pixels, and contrast ratio of 736 between all ON and 

OFF pixels. 

The other concern for SLM is uniformity. The liquid crystal normally has a poor 

uniformity, because it is sensitive to the thickness variation through the whole screen. 

A nonuniform image causes poor signal-noise ratio, or requires special algorithm to 

distinguish the local ON / 0 F pixel during hologram readout, because of the tight 

photon budget of hologram readout. Fig. 3.40 shows the comparison between the TI 

DMD device and the Kopin SLM. The pixel intensity deviation of the DMD device 

is only half of that from liquid crystal SLM. 

Due to the higher energy efficiency, higher contrast, and more uniform images, 

the TI DMD device is a better choice as SL?vI for holographic recording and recon­

struction. 

In Fig. 3.41, holograms with different spatial frequency on the D?vID device and 

liquid crystal SLM are recorded and read out. The image contrast from the LC SL?vI 

is getting worse when the spatial frequency gets higher. On the other hand, the 

image on DMD is uniform and sharp. The quantitative measurements of the SNR 

clearly show a better result for DMD device in Fig. 3.42. Also shown is the SNR 

measurement of the random binary data pages. On average, the SNR from the Dl\ID 

hologram recording is much better than the results from LC SL?vr. 

For liquid crystal SLM, the refreshing rate is normally less than 100 frames per 

second due to the slow response time of liquid crystal. On the other hand. the TI 

D?vID device has a responding time < 20 tLs for each pixel, ,vhich makes it possible 
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for fast hologram recording. To demonstrate the application of the fast hologram 

recording, Dupont polymer is used for the hologram recording. Fig. 3.43 shows the 

holograms recorded in polymer with a refreshing rate of 10 !-lB. No holograms can be 

achieved by LC SLM with this refreshing rate. 



64 

10 

14 f 
12 

0:: 10 + 
Z ~ Cf) 8 I. 

T 

6 .. ! ! 

4 , • Direct image 

• Phase conjugation 

2 

0 2 4 6 8 10 

Pixel Size (J-lm) 

Figure 3.36: The SNR measurements for direct image and phase conjugate recon­
struction of binary data masks as a function of the pixel size. 
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Figure 3.37: The information channel capacity with an error rate p. 
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Figure 3.38: The compact phase conjugate module with a VeSEL array for angular 
mUltiplexing. (a) one VeSEL source is selected for recording a certain page; (b) the 
symmetric VeSEL source is selected to generate the pseudo phase conjugate readout 
beam in the medium. 
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Figure 3.39: The compact phase conjugate module with a tunable laser diode for 
wavelength multiplexing. 



~IOO .. 
'Q. 

o 

~ 50 
E 

~ 

Standard deviation 0.086 

I 1.5 
:'IoIormalized intensity (arb. Unit) 

(a) 

66 

Standard deviation 0.18 
150.---,...---.,.--------, 

:1100 
.Q. 

= 
~ 50 ·· 
= 7. 

1 
:"IIormalized intensity (arb. Unit) 

(b) 

Figure 3.40: The uniformity comparison between (a) a TI DMD device and (b) a 
Kopin liquid crystal SLM. 
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Figure 3.41: The holographic reconstruction of images recorded with (a) a TI DMD 
device and (b) a Kopin liquid crystal SLM. 
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Figure 3.42: The S R measurement from the holographic reconstruction of images 
recorded with (a) a TI DMD device and (b) a h:opin liquid crystal SLM. The S R 
is measured as a function of the spatial frequency, where the LC-SLM image SNR 
decreases as the spatial frequency increases, while TI DMD images are almost inde­
pendent of the spatial modulation frequency. 

Figure 3.43: The holographic reconstruction of a hologram recorded with a TI DMD 
device in a frame rate of 10 p,s in Dupont polymer. 
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Chapter 4 Four-Dimensional 

Holographic Imaging 

Imaging recording and projection m three-dimensional (3-D) spaces used to be a 

driving factor for holography research and application development. In 1948, Dennis 

Gabor proposed a new imaging technology [46] as ho[ogmphy, in which coherent waves 

were used in a two-step, lensless imaging process. Later, he demonstrated its appli­

cation in microscope imaging [47, 48]. Holography did not attract public attention 

until the 1960s, when E. N. Leith demonstrated the imaging and reconstruction of 

three-dimensional objects [74]. In all these imaging applications, a coherent reference 

wave is used to generate an interference pattern with the scattered coherent waves 

from the objects. This interference pattern is recorded on a photosensitive material 

as a hologram, which reconstructs the signal wave front when the same reference 

wave is illuminated on the material. All the information from the signal wave front, 

including amplitude and phase, is stored inside the material and can be reconstructed 

as original \vave fronts. In 1971, Gabor was awarded the Nobel prize in physics for 

his invention. 

However, due to the limits of the material performance, the quality and feasibility, 

the 3-D imaging and projection has not been the major application for holography. 

Instead, holography has been intensively investigated as a potential information stor­

age technology [49, 72, 101, 108. 40, 40, 20, 104]' as discussed in Chapter 3, or 

information processing elements, such as in neural networks [103, 80, 109], optical 

corrclators [76, 110, 62], optical interconnections [71, 18, 122, 123], and diffracting 

elements [124, 73, 120, 119]. In these applications, known information or diffraction 

patterns are designed and recorded as holograms inside the holographic material. 

Signals with unknown wave front or information illuminate the hologram and are 

diffracted, filtered, and optically processed by the holographic pattern due to the se-
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lective Bragg phase-matching ability of holograms. By properly designing holograms 

and architecture, it is possible to use a hologram as an imaging element to extract 

and form an image onto an image sensor. 

Modern imaging technology is widely used in all areas of daily life and scientific 

practices, where image information is expected to be projected by an optical system 

onto a two-dimensional (2-D) image sensor, such as films, or more widely used nowa­

days, charge-coupled devices (CCD) and complementary metal oxide semiconductor 

(CMOS) devices, which can digitize the intensity information and store, process and 

reconstruct them in computers. To extract the 3-D spatial information from an object 

with the 2-D sensors, an instrument with the ability to selectively extract informa­

tion from the 3-D information and to project it correspondingly onto 2-D is required, 

which is called optical sectioning. Current imaging optics can only extract informa­

tion of a single 2-D section from 3-D spaces, such as a normal microscope with an 

imaging lens of small focal depth, or as a single point, such as a confocal microscope 

with a pinhole spatial filter and a near-field microscope with a point light source. To 

extract 3-D information, there must be some scanning mechanism, either mechan­

ical scanning, such as thE' focus depth of objective lens scanning, the illumination 

point source scanning [85, 15], laser scanning confocal microscope [56, 36], or optical 

scanning, such as coherent phase interference scanning [134, 65]. 

By combining the abilities of selectivE' wave front processing and multiplexing, 

volume holograms can achieve multi-dimensional tomographic imaging [9]. The key 

advantages are: 

1. Volume holograms are selective diffraction elements duE' to the sensitivE' Bragg 

phase-matching. For a certain hologram, only the Bragg matching wave front IS 

diffracted strongly and extracted with none other signal component affected. 

2. Multiplexing ability makes it possible to process different wave front components 

at the same time without affecting each other. 

In this chapter, we study two holographic architectures used for 3-D imaging 

theoretically and experimentally. Real-time 3-D imaging of fluorescent rnicrospheres 

is demonstrated. To our knowledge, this technique is currently the only method that 
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allows simultaneous 3-D spatial imaging and spectroscopic imaging without use of a 

scanning mechanism. 

4.1 Theoretical principles 

Three-dimensional imaging and the confocal microscope 

All optical imaging systems transfer the information about an object to the re­

ceiver, where the information carrying light is delivered and diffraction-corrected by 

the optical elements to the proper photosensor. l\Iost of the imaging elements work 

on planar objects and deliver the image by applying an analog linear transformation 

on the transverse field intensity distribution. as shown in Fig. 4.1. To get the images 

object 
plane 

lens 

image 
plane 
yl 

Figure 4.1: Planar imaging by an optical lens. 

of different planes along different depths, we can change the focal length or scan the 

image plane. 

One practical example is the human eyes, which just work as lens, collecting the 

light from the outside world and forming a real image onto the retina. Vie look at 

objects at different distances by adjusting the focal length of our eyes. However, the 

depth sensitivity is not very high for human eyes, which gives us a comfortable vie\v 

of the world with all distances even when the eyes are focused only on a single plane 

at one time. 
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The light distribution around the geometrical focal plane is well-known and was 

first calculated by Zernike and Nijboer in 1949 [132, 16]. Considering the light distri­

bution near a focal point 0 of an aberration free lens with circular aperture, the light 

intensity at point P relative to focus point 0 with a depth transition z and transverse 

distance r is given as [16] 

1(/1, v) 

v 

10 

2 2 2 '2] ( -) [U1 (u, v) + U'1 (u, v) 10 , 
U 

21f(~)'1 
A f Z, 

21f (~)r 
A f ' 

(
1fa'1I AI'1)2 

AP , 
00 

L( _l)S( ~)n+'1s I n+'1s ( v), 
v 

8=0 

(4.1 ) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

where a is the radius of the circular aperture, A is the light amplitude at the aperture, 

f is lens focal length, Un represents Lommel functions and I n is Bessel functions. 

For the light intensity distribution in the geometrical focal plane, z = 0, 

l(O,v) 

which is the familiar Airy formula [3] determining the image resolution 

br 

NA 

A 
0.610 NA' 
a 

.r 
For the light intensity along the axis, v = 0, 

(
sin U/4) 2 

l(u,O) = u/4 10 , 

(4.6) 

(4.7) 

(4.8) 

(4.9) 



where the first null is 

r5z 

72 

2>­
(N A)2' 

with numerical aperture NA in equation (4.8). 

( 4.10) 

For the traditional concept, where a loss of 20% in intensity from the center of 

the imagp is regarded as permissible [16], the focal tolerancp r5z for I(u, 0) :::::: 0.810 is 

given as 

r5z' 
0.5>­

(NA)2' (4.11) 

Fig. 4.2 shows the intensity distribution function in the geometrical focal plane and 

along the axis in equations (4.6-4.9). 

The transverse resolution and the focal depth tolerance determine the spatial reso­

lution of the object in 3-D space, which is called voxel, when the object is illuminated 

uniformly. Due to the shift invariance in the transverse dimension, a transverse op­

tical section across the focal point is projected onto the image plane as pixels with 

resolution determined by r5T in equation (4.7). All the light from other locations in 

the 3-D object is out of focus and generates a relatively uniform background on the 

image plane, which determines the image contrast and signal to noise ratio. To get 

the full 3-D spatial information, scanning along the axis direction is required. 

In the confocal microscope in Fig. 4.3, the object is illuminated by a focused 

beam, which gives the same spatial intensity illumination profile as determined by 

equation (4.1). Collecting the scattered signal, the intensity distribution function 

at the image plane will be I(u, V)2, which leads to a higher transverse and depth 

resolution for each voxel, at the expense of detecting a single voxel at a time. Using a 

pinhole of the same size as the transverse resolution to filter the image point in front 

of the detector, the stray lights from the different locations except the illuminated 

focused point are blocked, which achieves a high signal to noise ratio for the intensity 

from the' focused object point. A 3-D scanning is required to get the full spatial 
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Figure 4.2: The intensity distribution around a focus point of an ideal aberration-free 
lens, ( a) in the geometric focal plane, or (b) along the axis. 
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Figure 4.3: The confocal microscope architecture. 

Due to the Bragg phase-matching, a volume hologram can selectively diffract a 

certain wave pattern while leaving other components in the signal beam untouched. 

This can serve as a good spatial or spectral filter, and is very important for 3-D 

information extraction, as shown in Fig. 4.4. A confocal microscope with volume 

holograms as the filter instead of a pinhole has been demonstrated [8]. 

imaging 

volume hologram ... ~.~ 

pinhole __ :v __ _ 

detector~ 
Figure 4.4: The confocal microscope architecture with a volume hologram filter. 

Imaging using volume holograms 
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The previous holographic spatial filter can be recorded with a point source and 

its corresponding coherent reference beam, as shown in Fig. 4.5. The recording signal 

probing 
point source 

(Xp, Y P' ZP' Ap) 

(Xp yp Zp Ar) 
recording 
point source 

x 

~z 

coherent 
reference 

pinhole -y-­
detector~ 

volume 
hologram 

Figure 4.5: The recording of a volume holographic spatial filter with a point source 
and its corresponding coherent plane wave reference beam in gO-degree geometry. 
Another point source at different wavelength is used as a probe. 

beam from a point source (xr, Yr, Zn Ar) and its coherent reference plane wave beam 

along x axis with a small angle 11, « 1 are 

[
. Z - Zr . (:r - :1:r)2 + (y - Yl.)2] 

exp z27r-- + Z7r \ ( _ ')' ) , 
Ar Ar Z -r 

( 4.12) 

[ ( 
11,'2) X Z ] exp -i27r 1 - - - + i27r'u- . 
2 AT AT 

(4.13) 

The recorded modulation of the material refractive index inside the material is given 
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IErej(r) + Es(r)12 

rv E<:(r)Erej(r), 

( 4.14) 

( 4.15) 

where the other three terms in the interference pattern are mismatched in our recon-

struction. Here, we do not consider the holographic recording and readout bandwidth 

as we discussed in Chapter 2. The holographic recording and reconstruction deter­

mine the fundamental spatial resolution that the volume hologram can reconstruct 

or spatially distinguish in the imaging application. However, comparing the spatial 

resolution discussed in this chapter and the results obtained in Chapter 2, we see that 

the spatial resolution by shift selectivity in imaging applications is much larger than 

the fundamental holographic resolution, which is limited by the holographic band­

width. Therefore, we ignore the holographic bandwidth effect and treat the hologram 

pattern here as one achieved by a perfect point source. 

'When a probing point source (xp, YP' zP' Ap) illuminates the volume hologram, 

E ( ) _ ['2 Z - zp +' (:1' - Xp)2 + (y - yp)2] 
p r - exp Z 1f \ Z 1f \ ( _"') , 

/l l' /lp Z '"l' 
(4.16) 

the diffracted field integrated over the holographic grating by Born approximation is 

given as 

Ed(r') = .lll. El'(r)~c(r) exp (i21f Ir ~l' r'l) (Pr. ( 4.17) 

The diffraction is phase-matclwd and significant, when the probing point source 

is identical to the recording source (:rn Yr, Zr, Ar) = (xl" Yl" ZI" Ap). Otherwise, the 

diffraction is Bragg-mismatched and can be ignored. The phenomenon is called an­

gle, shift or wavelength selectivity depending on the changes between the recording 

and probing sources. This sensitive spatial and spectral selectivity is the main motiva­

tion for using a volume hologram as spatial filter in confocal microscope. In addition 

to the spatial filtering, the hologram diffraction also depends on the wavelength of 
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the recording and probing beams. Therefore, the confocal microscope with a volume 

hologram actually detects the light intensity from a voxel in 3-D object space within 

a certain wavelength range .6.'\' determined by the volume hologram wavelength se­

lectivity. This 3-D spatial voxel plus spectral resolution is defined as a texel in 4-D 

hyperspace. 

There are normally two degenerate directions existing in a single hologram. One 

is the direction out of signal-reference plane, along which the wave vector changes 

are minimized in K-sphere. Another is a combination with wavelength and spatial 

shifting, which forms a new wave vector matching conditioIl for the same holographic 

gratings in a different K-sphere. The signals from these degeneracies are also Bragg 

matched and diffracted significantly. These degeneracies are normally avoided in holo­

graphic storage applications, because the diffraction intensity invariance along these 

directions causes cross-talks between difference data pages during reconstruction. 

In confocal microscope applications, these degenerate directions are perpendicular 

to the axis of illumination, therefore their effect is limited by the confocal illumination. 

On the other hand, these invariances can be used for a single hologram to optically 

section a 2-D slice from an illuminated 3-D spatial plus spectrum - 4-D hyperspace 

of an object, and to diffract them in the reference direction. 

With a geometry in Fig. 4.5, numerical studies [9] have shown that an optically 

sectioning curved surface in the 3-D object spatial and spectral space can be achieved 

by the single hologram recorded with a point source at certain wavelength in Fig. 4.6. 

By multiplexing different holograms recorded with point sources at different spa­

tiallocations and wavelengths, multiple sections from the object lying in 4-D hyper­

space can be obtained and projected onto different portion of a 2-D sensor, leading 

to an imaging system with the ability to extract information from 4-D space without 

need of scanning mechanism, as shown in Fig. 4.7. 

In the following sections, we investigate the imaging ability of a single hologram 

under different geometries theoretically and experimentally. 
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Figure 4.6: A numerically calculated degenerate surface (space and color) of the 
architecture in Fig. 4.5. The shape drawn in the figure represents the shape of the 
2-D slice that the sensor extracts from the 4-D object and projects onto a contiguous 
area of the detector. (Each point on the grid represents one object texel and its 
corresponding pixel on the detector [9].) 

4.2 Imaging properties of a 90-degree geometry 

volume hologram 

Numerical studies on the spatial and wavelength selectivity of a single volume holo­

gram recorded using a spherical wave and a plane reference wave in 90-degree geom­

etry shmv significant diffraction from an optical cross-section in the 3-D spatial plus 

spectral object hyperspace [9], as shown in Fig. 4.5 and 4.6. The optical sectioning 

resolution. or the minimum distinguishable texel dimension by a volume hologram 

is determined by the spatial angle, shift, and wavelength selectivity. They are well 

understood through all the studies of holographic storage applications with various 

multiplexing mechanisms [125, 131, 112, 114, 130,31, 10, 71, 17, 107, 79]. In all these 

studies on storage, only the intensity diffraction efficiency is considered, without con­

sidering the details of diffracted patterns around the Bragg-mismatching area. They 

are not important to the storage data, which are only intended to be read out at the 
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Figure 4.7: Multiple volume holograms optically section different hyperplanes from 
an object 4-D hyperspace and project them onto different 2-D image sensors. 

Bragg phase-matching condition. However, for the imaging application with a com­

plex signal incident, the diffraction pattern around the Bragg-mismatching condition 

leads to the background noise from the mismatching light source next to the Bragg 

phase-matching light source, which determines the imaging contrast and signal noise 

ratio. 

Also, in data storage applications, the diffraction invariance along the degenerate 

directions in the optical sectioning hyperplane are generally not used, due to the 

nonperfect phase-matching condition in degenerate directions. The nonperfect phase­

matching causes the signal bearing information to be distorted. For some special 

applications, these phenomena are investigated and demonstrated, such as the spatial 

degeneracy in hologram control and optical correlators [76, 71], or the wavelength 

degeneracy in two-wavelength nondestructive hologram reconstruction [11, 70, 135, 

28, 35], where special care and design are required to correct and control the quality 

of the reconstructed signal beams. 

By making use of the degenerate directions for imaging applications, we expect 

the hologram diffraction to generate an analog linear transformation from the optical 

section to the 2-D image sensor. The imaging transformation and aberration along 
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the degenerate direction are more critical than having a strong diffraction efficiency in 

the optical section plane. Here, we study and demonstrate the imaging performance 

in 90-degree geometry with a spherical wave used as a signal by experiments and 

numerical simulation. 

4.2.1 Experimental studies on the imaging quality 

To verify and investigate the imaging performance by a single volume hologram in 90-

degree geometry, we experimentally record a volume hologram using a point source, 

and test its diffraction intensity and image performance using a probing point source, 

as shown in Fig. 4.8. Due to lack of a tunable laser source, we study only the 3-D 

spatial imaging effect in experiments, and investigate the behavior in the wavelength 

dimension by theoretical simulation. 

Spatial selectivity of holographic intensity diffraction 

A 45-degree cut LiNb03 (Fe) cubic crystal is used as the holographic recording 

medium. A plane wave reference beam comes into the crystal at -x direction. An 

objective lens x40, NA = 0.65 focuses a collimated plane wave as a point source for 

signal beam at rv 2 mm from the crystal surface. Reading out the hologram at the 

same location with the same wavelength, a plane wave is diffracted in the reference 

direction, as shown in Fig. 4.9, where (a) shows the signal beam profile recorded by 

the holograms with the beam angle deviation corresponding to numerical aperture 

N A = 0.65 inside the crystal of n = 2.21, and (b) is the Fourier plane image by a 

lens of 15 em focus length, located at the same location as the reference beam's focal 

point on the detector during hologram recording. 

In the ideal case, when the probing point source is shifted in either the x or z 

direction at the same wavelength, there is no diffraction due to Bragg mismatching. 

\Vhile shifting in the fj direction at the same wavelength, the diffraction intensity is 

as strong as the Bragg phase-matching condition due to the degeneracies. Fig. 4.10 

shows the experimental spatial selectivity curves. 

The x direction is the typical shift multiplexing direction [107, 10, 107, 76, 7, 75], 
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Figure 4.8: Experimental scheme for testing holographic imaging performance by a 
90-degree volume hologram between a spherical wave and a plane reference wave. The 
spherical wave is generated by a focused beam with an objective lens. The diffracted 
reference beam is measured by an intensity detector or a Fourier plane image sensor. 

where the first null is 

~x 
A 

2NA· ( 4.18) 

Considering the transverse size of the focused spot during recording, the practical 

selectivity is given as 

~:L" ( 4.19) 

For the numerical aperture NA = 0.65 at wavelength 480 nm, the shift selectivity is 

0.74 J1,m, smaller than the experimental translation resolution, and consistent with 
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(0) (b) 
Figure 4.9: The holographic Bragg phase-matching reconstruction in Fig. 4.8: (a) the 
diffracted reference beam profile inside the crystal due to the numerical aperture of 
the signal beam by an objective lens N A = 0.65; (b) the Fourier plane image of the 
diffracted reference beam by a lens with focal length 15 em. 

the measurements in Fig. 4.10 (a). 

The y direction in Fig. 4.8 is Bragg degenerate, and the diffraction efficiency is 

uniform in a large range, as shown in the measurements in Fig. 4.10. Due to the 

limited experimental alignment accuracy and the small shift selectivity tolerance in 

the x direction, a small coupling between the x and y translation stages in the lab 

leads to the changes of the diffraction efficiency measurements along the y direction. 

Similar coupling effects can also be observed in the measurements in the z direction 

depth selectivity, which leads to twin peaks due to the nonstability of the translation 

stage in the x direction while moving along the z direction. The intensity distribution 

of shifting in the transverse x - y plane is also shown in Fig. 4.11 (a), where only a 

thin line along the y direction is Bragg-matched. 

The depth selectivity along the z direction is shown in Fig. 4.10 (c) with a larger 

shift peak than the x direction. The selectivity i due to the change of the signal beam 

angle inside the crystal while the point source is shifted along the depth. However, 

due to the spherical wave nature, the central paraxial part is always Bragg-matched. 

This is also obvious in the 2-D intensity distribution when shifting in the horizontal 

x - z plane as shown in Fig. 4.11 (b) , where the holographic diffraction is always 

partially Bragg matched when the point source is shifting within the range of the 

numerical aperture. The experimental bias in intensity to one tilting direction is due 
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Figure 4.10: The holographic spatial selectivity measurement of gO-degree geometry 
with a spherical wave as the signal beam in Fig. 4.8. (a) the shift selectivity along 
the x direction in logarithm scale; (b) the shift selectivity along the degenerate iJ 
direction; (c) the shift selectivity along the depth z direction. 
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Figure 4.11: The holographic spatial shifting measurement of 90-degree geometry 
with a spherical wave as the signal beam in Fig. 4.8. (a) the holographic diffraction 
intensity distribution for spatial shifting in the transverse x - fj plane; (b) the holo­
graphic diffraction intensity distribution for spatial shifting in the longitudinal x - 2 
plane. 

to the absorption effects in the crystal and the nonuniformity of the signal intensity 

along the 2 direction. When the point source is shifting along the (x, 0, -2) direction , 

the Bragg phase-matching part of the angle range is along this direction also in the 

crystal, and is closer to the reference diffraction output surface along the 2 direction, 

and has less absorption. On the other hand, when the point source is shifted along 

the +2 direction, the light intensity inside the crystal is higher due to the energy 

dissipation along the angle spreading, which leads to higher diffraction intensity in 

the lower side of Fig. 4.11 (b) . 

The depth selectivity along the 2 direction is studied and analyzed theoretically 

in more details in section 4.2.2. 

The image pattern of spatial shifting 

As predicted in theoretical calculations in reference [9] and confirmed in experi­

ments as shown in Fig. 4.10- 4.11, one line along the fj direction through the recording 

point source in the object 3-D space is Bragg-matched with the same wavelength as 
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the recording beams. This vertical line is expected to be linearly transformed into 

the image plane, as shown in Fig. 4.11 (a). All the other locations shifted from the 

recording point along the X, Z direction are Bragg mismatched and generate only a 

weak scattering background to the image plane. vVith another degeneracy in wave­

length dimension, different y-degenerate lines at different wavelengths are linearly 

transformed into the image space, which forms a curved 2-D image plane in the 4-D 

image hyperspace as predicted by theory [9]. 

Here, we measure the detailed image patterns for the spatial shifting effects at the 

recording wavelength. The wavelength dimension is studied theoretically due to the 

lack of a proper tunable laser source. 

Fig. 4.12 shows the measured Fourier plane image patterns when the point source 

is shifted in either X, fI or z direction. 

As shown in (a) and (c) shifting in X, z directions, the intensity of the image 

decreases significantly and the patterns spread out along the vertical direction in the 

image plane. The interesting patterns are those in (b), when the signal is shifted along 

the degenerate fI direction, where we expect to have a linear transformation without 

decaying intensity. All images in (b) show strong diffraction patterns and shift along 

the vertical direction accordingly to the signal point source translation. However, 

the image pattern is not kept as a point image, instead having strong aberration 

effects. This ,vill cause large distortion of the image along the fI direction, which is 

not acceptable in an imaging application. 

The holographic imaging aberration in this 90-degree geometry can be corrected 

digitally after the image is captured by the detector, or maybe corrected optically 

by specially designing the hologram recorded inside the crystal. To fully understand 

the aberration pattern, we need to have a better theoretical understanding and a 

numerical model for holographic design. 

4.2.2 Theoretical simulation on the imaging quality 

Numerical model 
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(0) 

(b) 

( c) 

Figure 4.12: The holographic diffraction image patterns in gO-degree geometry with 
a spherical wave as the signal. (a) the image patterns as the signal point source shifts 
along the x direction , 2 11m for each step; (b) the image patterns as the signal point 
source shifts along the degenerate y direction, 10 11m for each step; (c) the image 
patterns as the signal point source shifts along the depth z direction , 6 11m for each 
step. Due to the selectivity in the x, z directions, images in (a) and (c) are enhanced 
for visibility. The arrows point to the Bragg phase-matching position with the signal 
at the recording position. 
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The 3-D spatial diffraction by a holographic pattern with a finite volume is a dif­

ficult mathematical problem due to the three-dimensional dependence. For gO-degree 

geometry shown in Fig. 4.8, the diffraction field by a probing beam (:1:p, YP' zP' Ap) is 

determined by equation (4.17) using the Born approximation. There is no simple an­

alytic solution to the 3-D spatial integral for a complex holographic grating inside the 

material. Numerical solution also requires tremendous computing time and memory, 

because the spatial resolution of the numerical integral has to be much smaller than 

the wavelength due to the phase sensitivity of the integral. 

In reference [9], Dr. Barbastathis, et al. simplify the 3-D spatial integral down 

to a 1-D integral using paraxial and geometrical approximations. However, the for­

mulas are still mathematically sophisticated, not physically intuitive, and hard to 

apply to different holographic geometries due to the specific geometry dependency 

in the formulas. Here, we develop a simple numerical model just for the 3-D spatial 

numerical integral with much fewer requirements on computing time and memory, 

which can also be applied to any geometric structure for holographic recording and 

reconstruction close to Bragg phase-matching condition. 

As shown in equation (4.17), the diffracted field from the holographic pattern is 

given by 

( 4.20) 

where we ignore a normalization constant factor. Also, the interface effects are not 

considered in this model, which is taken into account easily by calculating the refrac­

tion angle numerically during the computation. 

As shown in Fig. 4.8, we are interested in calculating the intensity pattern for the 

y" - z" Fourier plane image by a lens of focal length f, which is determined by the 

Fourier transformation of equation (4.20): 
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By equations (4.15),(4.20) and using the paraxial approximation, we get 

where the diffracted wave front Ed(r; r", Ap) is defined by 

( 4.22) 

( 4.23) 

(4.24) 

(4.25) 

( 4.26) 

i.e., a plane wave propagating along the -x direction with transverse spatial fre­

quency 7kfj + z;' ki at wavelength Ap, 

( 4.27) 

Substituting the recording and probing beams in equations (4.12)-(4.16)' and 
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representing them in terms of wavevector k-space, 

Es(r; rTl A1') exp (i k s· (r - r l' )) , 

k s ( r; r1', AT) 
27f r - rr 

AT Ir - r1'l' 

Ep(r; r p, Ap) exp( ikp·( r - r p), 

kp(r; r p, Ap) 
27f r - rp 

Ap Ir - rpl' 

E1'ej(r, A1') exp(ik1'ej"r), 

k1'ej(A1') 2n [( U')' 1 A1' - 1 -:2 x + uz , 

the diffracted image pattern in equation (4.24) is 

E ( I f " ") FX-.,Y,Z 11 I. d3r exp [ikp.(r - rp) - iks·(r - r1')] 

x exp [i(k1'ej - k d) . r]. 

(c!.28) 

(C!.29) 

( 4.30) 

(c!.31) 

( 4.32) 

( 4.33) 

(4.34) 

Equation (4.34) is the typical form of four wave mixing, or holographic Bragg 

phase-matching integral. The integral is maximized under Bragg phase-matching 

condition, when the phase factor: 

o. ( 4.36) 

For simple geometries, where the four wave vectors kp, ks, k 1'ej and kd are simple 

functions of r, the diffracted field can be integrated analytically from equation (4.3c!). 

For more gcncral conditions, such as the spherical waves in Fig. 4.8, no simple analytic 

form can be achieved due to the complex functions for kp, ks in equations (4.29),(4.31). 

Only a numerical solution is possible. 

To simplify the numerical integral, we consider the integral in equation( 4.34) over 

a small cubic volume ..6.1i centered around ri only, as shown in Fig. 4.13. For point 

sources at r r, r P' the integral area ..6.1i is wi thin the far field and the wave front is 
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Figure 4.13: The 3-D integral of a small cubic volume of the holographic grating. The 
small cubic volume ~ F = ~:1: x ~y x ~z is centered at Ti' The full integral over the 

volume V is III," d:lT = Li JJIil'"i d
3

t5T. 

approximately a plane wave [75, 50], its wavevectors in equations (4.29),(4.31) can be 

simplified as 

where t5T n, t5T ~2 are the components of t5T perpendicular to Ti - TTl Ti - Tp respec­

tively 

(4.39) 

(4.40) 

By using the far-field approximation It5TI « IT; - Trl, ITi - Trl, we have the phase 
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factor in equation (4.35) in volume ~ li as 

¢>(dr; ri) 

¢>i (r i) 

(4.41 ) 

( 4.42) 

( 4.43) 

The 3-D integral of the diffracted field in equation (4.34) is reduced to a finite 

summation over a finite volume 

E ( I f " ") F:J:- ,/J,Z ( 4.44) 

( 4.45) 

where the small cubic volume ~ 1 r = ~X x ~1 r x ~Z. 

Equation (4.45) gives the basics for our numerical model, which can be used to all 

different simple geometries we consider for holographic imaging applications, as far as 

the far field and Born approximations are valid. The validity of the model is checked 

numerically by verifying well-known simple holographic geometries, such as angle 

and wavelength selectivity of plane waves in transmission, reflection and 90-degree 

geometry. Also, the simulation on holographic imaging is compared and proven to be 

consistent with experimental measurements, as shown in following sections. 

Selectivity by simulation and comparison with experiments 

The selectivities of the X, Z directions and wavelength determine the final reso-

lution of the holographic imaging. To better understand the resolution, we need to 

be able to calculate the selectivity theoretically. From the numerical model, we can 

simulate the diffraction efficiencies as the probing condition changes, and from the 

simulation results, we expect to derive a simple approximation formula to calibrate 

the selectivities analytically. 
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1. Shift selectivity: 

In Fig. 4.14, the numerical simulation of the diffraction efficiency across the de­

tector is calculated as a function of the horizontal translation 6:1:. A sharp selectivity 

curve is achieved, as we expected from experiments in Fig. 4.10. 

1 0-4 
1I..u.1..LI.I..I:u..w... 

-30 -20 -10 o 10 20 30 

X-shift (A/n) 

Figure 4.14: The numerical simulation and theoretical calculation of shift selectivity 
of 90-degree geometry. The simulation parameter is assumed NA = 0.5, n = 2.2. 
(0): the numerical simulation; (solid line): theoretical integral of selectivity curve in 
equation (4.49); (dot line): the approximation as a sine function in equation (4.50). 

The shift selectivity is well studied in [107, 10, 76, 7, 75], where paraxial ap­

proximation, or the phase integral along the path are used to get approximate analytic 

expressions. However, the accuracy of these results for a large numerical aperture we 

expect to use in holographic imaging system need to be justified. 

For the path integral approximation [75], the ray optics approximation is assumed 

and the integral of the phase along the ray path is calculated to give the diffraction 

efficiency. This approximation can be justified by equation (4.45) in the numerical 

simulation model. Even though the Bragg mismatched diffracted pattern is not con­

centrated on the center of Bragg phase-matching condition, the diffracted intensity 

is still dominated at the Bragg phase-matching direction, therefore only the single 

diffraction component along this direction need to be calculated. The diffracted 
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amplitude along this direction is determined by the phase factor <Pi (Ti) in equation 

(4.45). 

For shift selectivity along the x direction 6..1: « zo, the phase changes along the 

Bragg phase-matching or the recording/diffracting direction is, as shown in Fig. 4.15 

~7r (v(:r + 6.x)2 + Z5 - V XL + Z5, 
An 

( 4.46) 

27r 6.xx 

An Jl;2 + Z5' 
(4.47) 

l D/2 d . (. 27r 6.1;X ) 
xexp z- , 

-D/2 An Jx2 + Z5 
(4.48) 

j"NA/n 27r6.x 0: 
do:exp(i-- ), 

-NA/n An }1+0:2 
( 4.49) 

where An = Ao/n, numerical aperture N A = ~~, and the final integral is independent 

to the depth Zoo \;Vhen the numerical aperture N A/n is small, using the first order 

approximation v'1~Q2 ~ 0:, equation (4.49) is simplified to 

I I . (2NA6.X) 
Ed c::::: SlIlC Ao ' ( 4.50) 

which gives a sine function with the first null at 2~A' as shown in equation (4.18). 

i1x --­' .. ....... ... ...... 
E ······ p ••• 

D 

Figure 4.15: The phase integral approximation along the Bragg diffraction path for 
selectivity calculation. 
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For NA = 0.5, n = 2.2 in our numerical simulation, the phase integral and the 

first order sine approximation have little difference, and both give a nice representa­

tion of the shift selectivity profile, as shown in Fig. 4.14. Also, compared with the 

experimental results as shown in Fig. 4.16 (a), the sine approximation is consistent. 

,-., 1 
...... .-
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Figure 4.16: TIl(' experimental measurement of (a) shift selectivity, (b) depth selec­
tivity, and their theoretical phase integral approximation. 

2. Depth selectivity along the z direction 

Using the same procedure as for the shift selectivity in the x direction, a phase 

integral model is constructed for an analytic expression of the depth selectivity. The 

phase changes along the Bragg phase-matching direction for depth shifting ilz « zo 
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are 

2fT ~zzo 

\ / 2 2 ' 
An V:r + Zo 

(4.51) 

[

NAln 2fT~Z 1 
do; exp(i-- 2)' 

. -NAln An \11 + 0; 
( 4.52) 

To the first order approximation, Vl~Q2 ,...., 1 - 0;2/2, we have the depth selectivity 

as Fresnel integrals C ( 8 ), S ( 8 ) 

IEdl 
JC2(8) + S2(8) 

8 
( 4.53) 

8 NAJ~~:, ( 4.54) 

C(8) 18 

fTe cos(_· ) dt, 
o 2 

(4.55) 

S(8) 18 

fTe sin(-) dt. 
o 2 

( 4.56) 

Tl fi 
. . f f . ylC2(s)+S2(8) 

le rst mlIllmum 0 unctIOn 8 occurs at 8 1.91, as shown 1Il 

Fig. 4.17. This gives for the depth selectivity ~z 

1 

13 
N 

~ 
+ 

~ --~ --N 

U 
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S 

Figure 4.17: A function of Fresnel integrals, where the first minimum at 8 = 1.91. 

nAo 
1.82 NA2' ( 4.57) 
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Fig. 4.18 shows both integrals of depth selectivity in equation (4.52) and the 

Fresnel integral in equation (4.53). For numerical aperture NA = 0.5, n = 2.2 in 

the simulation, the Fresnel integral is a good approximation. Both integrals fit well 

with the numerical simulation results, even though the integral on the phase path 

considers the Bragg matching direction only while the numerical simulation includes 

all different diffracted components. Fig. 4.16 also shows that the phase integral is 

consistent with the experimental results. 

10°.-------~-----

-400 -200 o 200 400 

Z-shift (A/n) 

Figure 4.18: Numerical simulation and theoretical calculation of depth selectivity 
of 90-degree geometry. The simulation parameters are NA = 0.5, n = 2.2. (0): 
the numerical simulation; (solid line): theoretical phase integral of selectivity curve 
in equation (4.52); (dot line): the approximation as a Fresnel function in equation 
( 4.53). 

3. \Vavelength selectivity 

One advantage of the numerical simulation is that we can address all the perfor­

mance issues without the experimental limitations. Here, we study the wavelength 

selectivity without a suitable tunable laser for experiments. 

Fig. 4.19 shows the selectivity function as the wavelength of the probing beam is 

made to be different from the original recording beam. Also, to get an approximated 
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Figure 4.19: The numerical simulation and theoretical calculation of wavelength se­
lectivity of gO-degree geometry. The simulation parameters are: NA = 0.5, n = 2.2. 
(0): the numerical simulation; (solid line): theoretical phase integral of selectivity 
curve in equation (4.62); (dot line): the approximation as a sine function in equation 
( 4.60). 

analytic formula for the selectivity, we calculate the wavelength by phase integral as 

where the first null for wavelength selectivity is 

which also depends on the depth ,zoo 

AO 
2NAzo' 

(4.58) 

(4.59) 

(4.60) 

(4.61 ) 

Considering the thickness of the crystal along the depth of the signal beam, a 

more accurate wavelength selectivity is obtained as the average of the sine function 
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for various depths, 

1 l z2 I. (2NAZ~A) 12 dz SlllC 2 
Z2 - Zl Zj AO 

(4.G2) 

Fig. 4.19 shows both the single sine function with the depth at the middle of the 

crystal and the averaged sine fUllctions. The latter fits better with the numerical 

simulation results, while the wavelength selectivity in equation (4.61) still gives a 

reasonable estimation of the wavelength selectivity. 

The diffracted image pattern, imaging quality and background noise 

As the simulation and experiments shown in Fig. 4.12, the diffracted pattern is not 

just along the Bragg phase-matching direction as the phase integral approximation. 

Instead, the diffraction generates a 2-D intensity distribution pattern on the Fourier 

image plane. The patterns along the degenerate direction determine the imaging 

quality, while the patterns along the selectivity direction lead to the scattering back­

ground of the image. Numerical simulation on the image patterns helps us understand 

and design a system for better imaging quality and less background noise. 

Fig. 4.20 shows the Fourier plane image pattern as the probing beam is moving in 

the selectivity directions X, Z or wavelength tuning. The image patterns are visually 

enhanced while their intensity satisfies the selectivity curves in Fig. 4.14, 4.18, 4.19. 

The diffraction intensity decreases dramatically when the probe beam is away from the 

Bragg phase-matching condition. Being consistent with the experimental observation 

in Fig. 4.12, as the intensity of the Bragg mismatched image pattern decreases, the 

pattern intensity distribution changes and spreads out of the original reference focal 

point, which contributes to the background. 

Consider the selectivity along the x shifting direction, and assume there is a series 

of object point sources aligned along the x direction with a distance 3
r
:, n = 2.2 

between each other. This distance is slightly larger than the shift selectivity ~.1 .. = 

2;A' N A = 0.5, as shown in Fig. 4.21 (a). The central point source is Bragg-matched 

and projects a sharp image onto the y'-z' image plane in Fig. 4.21 (b), while all other 

point sources generate a small background around the central pixel in Fig. 4.21 (c). 
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(0) 

(b) 

(c ) 

Figure 4.20: Numerical simulation of the image pattern as the probe beam is shifted 
along the selective directions. The simulation parameters are: N A = 0.5, n = 22. 
(a) The probe beam is shifted along the x direction by ~; for each step, causing 
weaker and distorted image patterns. (b) The probe beam is shifted along the depth 
z direction by l~>' for each step. The intensity of the image decay is slower than 
x shifting, and the intensity deviates dramatically along the ii direction. (c) The 
simulated image pattern as the wavelength of the probing beam is shifting from the 
original recording wavelength by ~>. = 4 x 10- 5 for each pattern. 
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Figure 4.21: The numerical simulation of a series of point sources aligned on the x 
direction. Simulation parameters are: N A = 0.5, n = 2.2. (a) shift selectivity curves 
and the location of objective point sources; (b) image intensity pattern for the central 
Bragg-matched object point source; (c) background pattern from the mismatched 
object points along x direction. 
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Similarly, a series of object point sources sitting along the z direction generate a 

much higher background due to the wide depth selectivity curve, as shmvn in Fig. 4.22. 

Fig. 4.23 shows the image pattern from the wavelength selectivity when a chro­

matic objective source is located at the Bragg phase-matching position. The com­

ponent with the recording wavelength generates a central image on the image plane, 

while the other wavelength components generate a very weak distorted background. 

All previous imaging patterns demonstrate the optical sectioning ability along the 

spatial X, z direction and wavelength dimension with reasonable signal to noise ratio. 

Now we study the degenerate direction, which is expected to be a linear transforma­

tion from object space to image space. Fig. 4.24 shows the image pattern, as a probing 

point source is shifted along the degenerate y direction. Being consistent with the 

experimental measurement in Fig. 4.12 (b), the image pattern moves linearly as the 

objective point shifts linearly along the y. However, the intensity distribution pattern 

is severely distorted. Even though the experimental measurement and simulation in­

dicate a constant intensity diffraction efficiency along the degenerate direction, the 

actual image pattern gets weaker due to the large aberration of the image, as shown 

in Fig. 4.24 (b), where a linearly aligned point source in object space along the y 

direction only generates a decaying "butterfly" pattern on the image plane. This 

aberration indicates that a degenerate diffraction efficiency is not necessarily degen­

erate on the pattern distribution. For a successful imaging system, either a special 

holographic grating or geometry is required to limit the aberration, or a possible 

digital recovery algorithm to rebuild the information from the aberration is needed. 

4.3 Imaging properties of a transmission geometry 

volume hologram 

As discussed in section 4.2, to obtain a 2-D optical section using a single hologram, 

the linear transformation of diffracted image pattern from the object space along the 

degenerate directions is crucial. The spherical waves in gO-degree geometry contain 
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Figure 4.22: Numerical simulation of a series of point sources aligned on the z di­
rection and the image pattern and background. Simulation parameters are: N A = 
0.5, n = 2. 2. (a) dept h selectivity curves and the location of objective point sources; 
(b) image intensity pattern for the central Bragg-matched object point source; (c) 
background pattern from t he mismatched object points along t he z direction. 
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Figure 4.23: Numerical simulation of a chromatic point source located at the original 
Bragg phase-matching position. Simulation parameters are: N A = 0.5 , n = 2.2. 
(a) wavelength selectivity curves and the intensity spectrum of a chromatic objective 
point source; (b) image intensity pattern for the central Bragg-matched wavelength 
from the object point source; (c) background pattern from the mismatched wavelength 
components from the same object point. 
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Figure 4.24: Numerical simulation of a point source shifting along the degenerate y 
direction. Simulation parameters are: N A = 0.5, n = 2.2. (a) image patterns as 
a point source is shifted along the y direction by 2~>' between each step. (b) image 
plane responses for a set of point source linearly aligned on the y direction. The large 
aberration leads to decaying "butterfly" intensity distributed patterns. 
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2-D spatial components, which lead to a sophisticated degenerate diffraction pattern 

due to the different selectivity effects of various spatial components. This geometry 

acts better as a spatial filter for single spatial point diffraction in confocal microscope 

application [8]. On the other haneL plane waves in a holographic transmission geom­

etry have simple characteristics for degenerate diffraction out of the signal-reference 

plane. In this section, we study the imaging characteristics of a transmission geome­

try shown in Fig. 4.25 by the numerical simulation model, and demonstrate the 3-D 

imaging in experiments. 

probing 
point source 

(xp, Y P' zP' Ap) 

(Xp yp zp Ar) 
recording 
point source 

coherent 
reference 

transmission 
hologram 

imaging 
lens 

Figure 4.25: The transmission geometry hologram recording with point source (1;n 

Yn Zn Ar) and probing with another point source (xp, YP' zP' Ap). 

A collimated signal beam from the point source (.'Tn Yr, Zn A) and its coherent ref­

erence beam generate a simple holographic pattern in the transmission geometry in 

the photorefractiw material with thickness D. vVhen the probing beam collimated 

from a point source (Xpl YP' zP' Ap) illuminates the hologram, the difi'racted reference is 

detected at the Fourier plane sensor as a 2-D pattern. Considering the imaging prop­

erties of the collimating lens, which transforms a 3-D object space to an image space, 

the holographic imaging structure with a collimating lens is the same in principles 

as the one using spherical waves discussed in section 4.2. However, the collimating 

lemi decreases the spherical curvature of the signals from the object space near the 
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focus dramatically, which generates a uniform single spatial grating inside the holo­

gram. This simple holographic grating leads to a linear diffraction transformation 

along the degenerate directions, at the cost of using an additional collimating lens, 

which also determines tlH' imaging resolution and aberration. \Ve assume that both 

the collimating and imaging lenses have ideal aberration-free imagillg properties in 

our studies. 

4.3.1 Selectivities and imaging transformation 

Selectivity in the xp direction 

Assume the recording point source is located on the focal point of the collimating 

lens with focal length fe, the recording signal beam coming into the crystal is a 

plane wave along Z, where the collimating lens axis is at 1; = y = O. ''''hen the 

probing point shifts by :rp in the x direction, the collimated signal beam is tilted in 

the - ~~ direction, where xp «fl'. This leads to the angle selective properties in 

transmission geometry, which are well known, as shown in the wavevector k-space 

Fig. 4.26. Generally, in a transmission geometry with the assumption of infinite 

S' t.K 

Figure 4.26: The angle selectivity of a general transmission geometry hologram by two 
plane waves R, S, and readout with a tilted reference R'. The hologram is assumed 
with infinite transverse dimension along Tl and a thickness D along T2. 

dimensions in the crystal plane Til and thickness D along T J.., the incident angles for 
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the reference and signal inside the material are assumed eRn, eSn , and the grating K 

(4.63) 

Reading out with a reference beam at angle e~n' the diffracted beam is determined 

at e~n with Bragg mismatching vector .0..1{ r ...L, 

e~n - eRn « 1, 

.0..eSn 

( 4.64) 

(4.65) 

( 4.66) 

( 4.67) 

This leads to a linear transformation form the object plane point source t5(rp-rr­

.0..xpX, Ap = AT) to a corresponding point image on the image plane Tl6 (r~-r~ - ..3.z~ZI), 

by the geometry relations in Fig. 4.25: 

.0..:rp n cos eSn .0..e ' (4.68) ---
fe e ;';n, cos S 

..3. ~, n cos eRn .0..e "d ( 4.69) 
fi eRn, cos R 

.0..z' 
---tCOSeR, (4.70) 

. z 

. 2 ( .0..]( D) smc , 
27r 

(4.71) 

. 2 ( .0..xp ) 
smc fc..3.o: ' (4.72) 

A 1 
(4.73) 

D cos es(tan eSn + tan eRn)' 

where the collimating and imaging lens focal length is fc, fi respectively, and the 

incident angles of the signal, reference beams es , e R are determined by the holographic 

imaging system, and .0..:J:p, .0..z~ « fc, It. 
Fig. 4.27 shows the theoretical angle selectivity of the diffraction intensity curve 

in equation (4.72), which is consistent to the numerical simulation intensity. 
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Figure 4.27: The angular selectivity of a general transmission geometry hologram in 
Fig. 4.25. The simulation condition is: Ie = Ii = 104

\ D = 1400\ N A = 0.5, 
n = 2.2, ()R = ()s = 7r / 4. (0) the simulation results of the intensity integral over 
the 2-D image pattern on image plane. (solid line): the theoretical sinc2 function in 
equation (4.72). 

The numerical simulation can also give the 2-D intensity distribution as the prob­

ing beam shifts along the x direction, as shown in Fig. 4.28. The image patterns 

show a linear spatial transformation of the probing point source, and the intensity 

is modulated due to the angle selectivity. If a 1-D object with the same recording 

wavelength is located along the x direction across the recording point source, only a 

small portion of it is diffracted by the hologram and projected on the image plane, as 

shown in Fig. 4.29, where the object is assumed to be a series of point sources with 

2A spacing along the xp direction, and the image is a line of points along ZIp with an 

intensity profile. This profile determines the xp spatial resolution in the object space 

with the same recording wavelength at 12A under the simulation conditions. And the 

corresponding image resolution in ZIp is given by equation (4.70). 

Selectivity in wavelength 

With a similar process as previous angular selectivity in a transmission hologram 

as shown in Fig. 4.26, we get the response to a probing point source c5( Tp = TTl Ap = 
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Figure 4.28: The intensity distribution pattern on the image plane of a general trans­
mission geometry hologram in Fig. 4.25. The simulation conditions are the same as in 
Fig. 4.27. From top to bottom, the probing point source at the recording wavelength 
is moving from the recording position to the xp direction by 2A per step. The image 
pattern intensity and location change are as in equations (4.72), (4.70) . 
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Figure 4.29: The intensity distribution pattern on the image plane of a general trans­
mission geometry hologram in Fig. 4.25 for linear distributed point sources with spac­
ing 2,\ along the xp direction in objective space. The simulation conditions are the 
same as in Fig. 4.27. The fullwidth of half magnitude of the intensity profile gives 
the spatial resolution along xp at 12,\ in objective space. 

'\r + 6.,\) on the image plane as a point image 'liS (r~ - r~ - 6.z~Z', '\p): 

6.z' 6.'\ sin 0 Rn + sin 0 Sn d (4.74) 
Ii 

-71,-

cos OR ,\ 

6.'\ 
. 2 ( 6.'\ ) 'II ( ~) smc '\6.(3 , (4.75) 

6.(3 
,\ cos ORn 

(4.76) 
nD 1 - cos ((}Sn + (}Rn) , 

where equation (4.76) gives the well-known wavelength selectivity. 

Fig. 4.30 shows the intensity selectivity curve from equation 4.75 and is consistent 

with the simulation intensity integral over the 2-D distribution on the image plane. 

Fig. 4.31 shows the 2-D image pattern as the probing wavelength is changed. The 

image pattern keeps being a point image while shifting along the Z'd direction and 

decreases in intensity according to equations (4.74 - 4.75). If a chromatic point source 
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Figure 4.30: The diffraction intensity on the image plane of a general transmission 
geometry hologram in Fig. 4.25 as the wavelength of the probing point source changes 
at the original recording location. The simulation conditions are the same as in 
Fig. 4.27. 

with wavelength sampling at !::.)./). = 4 x 10-4 is used to probe the hologram, the 

image pattern generated on the image plane is shown in Fig. 4.32. The intensity profile 

along the image plane Z'd direction determines the image resolution of a chromatic 

point source in the objective space. Comparing with the image resolution due to 

the object spatial selectivity along the xp direction as shown in Fig. 4.29, the image 

resolution of chromatic effect is x 2 of the image resolution due to angle selectivity 

along xp , which can be given from equations (4.70 - 4.76): 

!::.Z~U¥ = !::.f3) 

!::.z~C3.j:P = !::.a) 

(sin eRn + sin esn ) (tan eRn + tan esn ) cos eRn 
1 - cos ((}Sn + eRn) 

which gives 2 under the simulation conditions in Fig. 4.32. 

Selectivity in the depth zp direction 

(4.77) 

As the probing point source shifts along the axis of the collimating lens in Fig. 4.25, 

the probing 'wave front for the hologram is not a plane ,vave anymore, instead it 

becomes a spherical wave with curvature determined by the collimating lens Ie and 

the shifting !::'zp. The diffraction characteristics are determined by different spatial 

components of the probing beam, which has no analytic solution as thf' cases in 
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Figure 4.31: The intensity distribution pattern on the image plane of a general trans­
mission geometry hologram in Fig. 4.25 as the probing point source changes wave­
length from the recording wavelength by tJ.)../).. = -4 X 10- 4 for each step. The 
simulation conditions are the same as in Fig. 4.27. 
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Figure 4.32: The intensity distribution pattern on the image plane of a general trans­
mission geometry hologram in Fig. 4.25 for a chromatic point source located at the 
original recording position with wavelength sampling rate ~A = 4 X 10-4 . The simu­
lation conditions are the same as in Fig. 4.27. The fullwidth of half magnitude of the 
intensity profile gives the spatial image resolution along Z'd at 120 normalized units 
(= 10-5 fi in our simulation) on the image plane. 

section 4.2. 

To get a simple analytic approximate formula for the intensity depth selectivity, 

we consider the diffracted intensity to be composed of the diffracted intensity from 

various spatial frequency components in the incident probing beam. Ignoring the 

diffracted intensity changes along the degenerate YP direction, and only considering 

the intensity diffraction efficiency for spatial frequency component 6kx governed by 

the equation (4.72), we have the approximation 

(4.78) 

where the range of the transverse spatial component u is determined by the defocusing 

effect, when the probing point source shifts in zp and the numerical aperture of the 
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collimating lens is N A = 2~c' 

k L.6.zp 
2f; , 

fe. 

Simplifying the integral in equation (4.78) by the sine integral function Si(z), 

TJ 

Si(s) 

± 1° sinc
2 (;0) dt 

.6.0
2

. 2 ( 0) .6.0 S ,(27f0) ---smc - +- z--
7f2 .6.0 7f 0 .6.0' 

i s sin t dt 
o t ' 

L.6.zp 
2f; . 

( 4.79) 

(4.80) 

(4.81 ) 

( 4.82) 

(4.83) 

( 4.84) 

The integral in equation (4.81) has a universal line shape as shown in Fig. 4.33, 

in which the function drops to half value at 0 = 0.90.6.0. If the half intensity shift is 

defined as the depth selectivity .6.zp~, then 

(4.85) 

which gives .6.zd = 26,\ under the simulation conditions. Fig. 4.33 shows the ap­

proximate intensity selectivity and the numerical simulation on the intensity integral 

over the image patterns, which are consistent to each other. 

The 2-D intensity distribution pattern on the image plane is shown in Fig. 4.34, 

where the point source at the original recording wavelength is shifted along the depth 

zp direction. The image pattern diffuses very fast in the Zf, if' directions while the 

intensity drops. Due to the area diffusion, the real image point is expected to achieve 

higher signal to noise ratio than the intensity selectivity, as shown in Fig. 4.35. 

Selectivity in the depth zp direction from a chromatic source 

For observations using a chromatic source, the image resolution along Zf is dom­

inated by the wavelength selectivity as mentioned in previous discussions. Similarly 
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Figure 4.33: The diffraction intensity on the image plane of a general transmission 
geometry hologram in Fig. 4.25 as the probing point source shifts along the depth 
zp direction. The simulation conditions are the same as in Fig. 4.27. (circle) the 
numerical simulation; (solid line) the approximate integral as in equation (4.82). 

for the depth selectivity which determines the depth resolution of optical sectioning, 

the coupling between the depth selectivity at different wavelengths from the recording 

wavelength need to be addressed. When the probing point source shifts along the zp 
direction at different wavelengths from the recording one, the intensity selectivity is 

simulated and compared with the depth selectivity at the recording wavelength in 

Fig. 4.36. 

The intensity shift functions in the zp direction at different wavelengths are all 

within the side lobe of the selectivity of the original recording wavelength. The depth 

resolution is dominated by the spatial selectivity given in equation (4.85). 

4.3.2 Degenerate directions and imaging quality 

Selectivity along the YP direction 

When the probing point source is shifted along yp as b(rp = rr + !:!.YP' Ap = Ar), 
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Figure 4.34: The diffraction intensity on the image plane of a general transmission 
geometry hologram in Fig. 4.25 as the probing point source shifts along the depth zp 
direction by 20/\ for each step, at the recording wavelength. The simulation conditions 
are the same as in Fig. 4.27. 

the response on the image plane is a point image 1] c5( r~ - r~ - !lr~ , Ap) as 

1] 
. 2 Yp 1 (2 ) 

smc f '1 !lCXy , 
(4.86) 

L':1r' 
fi ~ .6.Y~ ~ 

(4.87) d - f e L':1YPY' - 2f'1 liz'd, 

L':1cxy 2Jn2 - ~~ 
4D' 

( 4.88) 

under the simulation geometry. Fig. 4.37 shows the intensity selectivity curve, which 

is consistent with the numerical simulation results. And Fig. 4.38 shows the 2-D 

image pattern for the point source shifting along the Up direction. The image pattern 

not only linearly shifts along the Y'd direction , but also drifts in the - Z, d direction 

as determined by equation (4.87). 

D egenerate diffraction in shifting and wavelength 
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Figure 4.35: The diffraction intensity distribution on the image plane of a general 
transmission geometry hologram in Fig. 4.25 (a) by the probing point source located 
at the original recording location; (b) a series of point sources located on the zp axis 
with a distance of 20'\, except the Bragg phase-matching position in (a). 

In the simple transmission geometry with plane waves as signal and reference, 

there are two dimensions where exact Bragg phase-matching can be achieved. As the 

wave vector k-space shown in Fig. 4.39, for a single grating K recorded by beams 

Rb 8 1 , pairs of R 2 , 8 2 can also be Bragg phase-matched with uniform diffraction 

efficiency with the same wavelength ko as in recording. In addition, on a different 

k-sphere with a different wavelength kl in Fig. 4.39, there is a similar pair of R 3 , 8 3 

with different angles, which can be Bragg phase-matched by the same holographic 

grating. 

These two degeneracies lead to the linear response of the probing point source in 



118 

4 
(a) .. (b) 

-e- ( c) 

3 
-a- (d) 
-e- (e) 

~ 
(/) 

C 2 (l) 
+-c 

1 

o~--~~--~----~----------~ - 00 -80 -60 -40 -20 0 20 40 60 80 100 

~Z (A) 
Figure 4.36: The diffraction intensity on the image plane of a general transmission 
geometry hologram in Fig. 4.25 as the probing point source shifts along the depth zp 
at different wavelengths (a) the original wavelength ~A = 0; (b) ~A = -5 x 10-4 ; (c) 
~: = -10-:3; (d) ~A = 5 x 10-4

; (e) ~A = 10-3 . The simulation conditions are the 
same as in Fig. 4.27. 

Fig. 4.25 5(.6.rp, .6.>'p) onto the image plane 5(.6.r'd, .6.>'), \\'hen 

0, 

.6.z~ + .6.y~, 
.6.z' __ d« 1, 

fi 
- sin(} + Jcos(}"l. - (n"l. - sin (}"l.)t2 

sin () + Jcos (}2 - (n2 - sin (}2)t2 ' 

.6.y~ 
-/:' 

-y'2Jn2 - sin (}2 t 

(4.89) 

( 4.90) 

(4.91 ) 

( 4.92) 

( 4.93) 

( 4.94) 

(4.95 ) 
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Figure 4.37: The diffraction intensity on the image plane of a general transmission ge­
ometry hologram in Fig. 4.25 as the probing point source shifts along the YP direction 
at the original \vavelength. The simulation conditions are the same as in Fig. 4.27. 

or 

~x ~A p p 
( 4.96) 

Ie A 
~"J 

"'d (4.97) 
Ii 

, 

where the incident angle OR = Os = 0, and the parameter It I < 1. The linear 

transformation relation is shown in Fig. 4.40, 

Assuming a 2-D object on the objective plane with a single wavelength component, 

the optical sectioning by a single transmission hologram is a vertical curve given by 

equations (4.93 -- 4.95) on the objective plane, which is linearly transformed onto the 

image plane. For the same object \vith chromatic lights, an 2-D hyper slice is optically 

sectioned from the 3-D information hyperspace (2-D spatial on the xp - YP plane plus 

spectrum dimension) with the wavelength and xp coupling relation in equation (4.96). 

This optical section is projected onto the image plane, and gives us a 2-D image of 

the xp - YP plane with a z~ related color filtering effect. The image spatial resolution 

is determined by equations (4.70, 4.74, 4.77) along the xp or Z'd directioIl on the 
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Figure 4.38: The diffraction image pattern on the Fourier plane of a general transmis­
sion geometry hologram in Fig. 4.25 as the probing point source shifts along the YP 
direction by 50), for each step at the original wavelength. The simulation conditions 
are the same as in Fig. 4.27. 
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Figure 4.39: The wave vector k-sphere for a holographic grating K recorded by 
Rb 8 1 at wavelength ko. The hologram can be Bragg phase-matched by a pair of 
beams R 2 ,82 rotated around K direction at the same wavelength. At a different 
wavelength kl' there is another pair of beams R 3 , 8 3 with corresponding tilting angle, 
that can he Bragg phase-matched while rotated around the K direction. 



122 

Object plane Image plane 

Z' d 

Figure 4.40: The Bragg phase-matching transformation from the objective plane to 
the image plane in the transmission geometry imaging system in Fig. 4.25. For the 
same wavelength, the spatial degenerate shifting is determined by equations (4.91 -
4.95). For a different wavelength, the Bragg phase-matching position shifts horizon­
tally by equation (4.96). 

image plane. The optical sectioning resolution is given by equation (4.85) for depth 

selectivity and equation (4.76) for wavelength selectivity. 

4.3.3 Experimental measurements 

From the theoretical analysis and numerical simulation, the transmission geometry is 

expected to give a linear transformation from the objective space to the 2-D imaging 

plane along both YP direction and th(=' xp - ,\ degenerate coupling direction, which 

makes it possible to form a 2-D image in the optical sectioning plane. The experiments 

are done to measure the optical section resolution along the depth and wavelength 

dimensions, and to demonstrate the 2-D imaging ability of a single hologram. 

The experimental setup is shown in Fig.4.41, where two collimated plane waves 

are used to record a transmission hologram in either x-cut LiNb(h crystal or pho­

topolymer material in (a). During the pro bing process (b), the probing signal can 

be either the focused point source of the laser line, or a pinhole illuminated by a 

white light source, or a 2-D object (photomask) illuminated by laser or a white light 

source, or a 3-D object with spatial light distribution (fluorescent microspheres in 

liquid or gel samples). The probing source can be scanning in 3-D spatial direction 
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Figure 4.41: The experimental setup for holographic imaging with a transmission 
geometry. (a) A transmission geometry hologram is recorded using two collimated 
plane waves. (b) The probing light source is collimated and illuminates the hologram, 
which can be directly imaged by a microscope system composed of a collimating lens 
and a forward imaging lens. The diffracted beam from the hologram is collected by 
another imaging lens and detected by either a power meter or 2-D image sensor. 
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by translation stage. The diffracted signal can be measure by a power meter or a 2-D 

image sensor. 

The measurements of spatial selectivity 

Fig. 4.42 shows one experimental measurement of the transverse xp and depth 

zp intensity selectivity curves with a DuPont photo polymer 100 wn thickness. The 

theoretical calculation of the corresponding selectivity in equations (4.70, 4.S5), with 

the experimental parameters and refractive index n = 1.6 for polymer, matches the 

measurement very well. The higher side lobe of experimental data in the x selectivity 

is due to the saturation of the hologram (with TJ > 20%). The depth sectioning 

resolution (2~zp~) is over SOO lim for the thin DuPont polymer. Smaller optical 

section depth can be achieved by using thicker material and larger numerical aperture 

objective lens. 

Degenerate Bragg phase-matching diffraction by wavelength-shift cou­

pling 

In Fig. 4.43, the image pattern of a probing point source shifting along xp direction 

is recorded. The probing point source is a 5 wn pinhole illuminated with the same 

wavelength as recording wavelength. The image pattern is a point pixel at the original 

reference focal point only when the pinhole is located at the recording location, as 

shown in Fig. 4.43 (a). However, when the pinhole is illuminated by a white light 

source, the image pattern is a pixel point shifting along Zf d direction while the pinhole 

is shifting, as shown in Fig. 4.43 (b). This is caused by the wavelength-shift coupling 

Bragg phase-matching in equations (4.96 - 4.97), which determines the corresponding 

wavelength response on the image location. 

2-D imaging by a single hologram 

Fig. 4.44 demonstrates the ability of forming a 2-D image by a single transmission 

hologram with degeneracies in spatial and wavelength dimensions. A 2-D object mask 

is used as the probing source, and is illuminated by the recording wavelength. Due 

to the degenerate direction along YP' a vertical line image across the recording point 

is projected onto the image plane in Fig. 4.44 (a), as discussed in equations (4.91-

4.95). However, for a chromatic object (the mask illuminated by white light source), 
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Figure 4.42: Experimental measurements and theoretical intensity selective calcula­
tion of shift selectivity of DuPont polymer 100 pm thick in a transmission geometry 
in Fig. 4.41. The collimating objective lens is x 10, NA= 0.25, the DuPont polymer 
is assumed n = 1.5, and the wavelength 488 nm. (a) Shift selectivit;v in xp direction, 
where equation (4.70) gives tlJ;p = 104 11m at the first null. (b) Depth selectivity in 
zp direction, equation (4.85) gives tlzd = 400 pm at the half magnitude. 
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Figure 4.43: The experimental demonstration of Bragg phase-matching by wavelength 
shift coupling in a transmission geometry in Fig. 4.41. The experimental parameters 
are: L iNb03 crystal thickness 5 mm, collimating objective lens x 10, N A = 0.25 , and 
the recording wavelength 488 nm. (a) The image pattern while the probing pinhole is 
illuminated by 488 nm. (b) The image pattern as the white light illuminated pinhole 
is shifting in xp direction. The image point is shifted correspondingly in Zl d direction 
with different wavelength component determined by equations (4.96 - 4.97). 

the additional degeneracy by different wavelength components forms the 2-D color­

coded image in Fig. 4.44 (b), where the wavelength-z~ relation is shown in Fig. 4.43 

(b). 

4.4 Experimental 3-D imaging 

Holographic imaging makes use of the spatial and wavelength degenerate Bragg phase­

matching effects in a single hologram for optical sectioning a 2-D slice from a 4-D 

objective hyperspace (3-D spatial plus spectral dimensions) , and projecting it linearly 
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Figure 4.44: The experimental demonstration of 2-D imaging by the Bragg phase­
matching in spatial and wavelength-shift coupling dimension of a single transmission 
geometry hologram in Fig. 4.41. The experimental parameters are the same as in 
Fig. 4.43. (a) The image pattern of a 2-D mask across the original recording point 
source location and illuminated by 488 nm. A vertical line image is formed due to 
the spatial degeneracy along YP direction. (b) The image pattern as the white light 
illuminating the 2-D mask. At different Zf d position, different wavelength component 
Bragg phase matches and forms the 2-D color-coded image, determined by equations 
(4.96 - 4.97). 



128 

onto a 2-D detector, where each pixel corresponds to a texel volume in the object 

4-D hyperspace. Comparing to normal imaging system that sections a 2-D slice from 

3-D and projects a single voxel volume onto an individual pixel onto the detector, the 

holographic imaging extracts additional information on the spectra, with the expense 

of lower photon flow for each pixel corresponding to texel volume. 

The other major advantage of holographic imaging is that the volume hologram 

only selectively diffracts the Bragg phase-matching signal components and has lit­

tle effect on other components. With holographic multiplexing techniques, multiple 

holograms can be built into the system simultaneously and process different signal 

components at the same time. By sectioning different slices from the 4-D hyperspace, 

the number of texels detected at one time would be much larger than the number 

of voxels a normal 2-D imaging system can achieved. This increases the information 

collection rate, however with the requirement of larger photon flux for holographic 

imaging system to have the same signal noise ratio of each pixel on the 2-D image 

sensor. 

Here we demonstrate multiple-slice sectioning at once by multiplexing holograms, 

which achieves the ability to extract 3-D spatial information at a single shot. 

4.4.1 Experimental demonstration with multiplexed holo-

grams 

To achieve the highest diffraction efficiency and reasonable spatial resolution, we used 

PQ polymer with thickness 2 rnrn for our holographic recording in Fig. 4.41, which 

expects to give a depth selectivity Llzp~ = 2 I-lrn according to equation (4.85) for 

wavelength 488 nrn and objective lens x40, N A = 0.65. 

Fig. 4.45 shows the depth selectivity measurement. A single strong hologram 

in the transmission geometry with diffraction efficiency> 15% without baking the 

material after recording in Fig. 4.45 (a). The depth selectivity is consistent with the 

theoretical calculation in equation (4.82) under the experimental condition. However, 

the measured FWHM is 13 J-lTn, much larger than the prediction of 2Llzp = 4 J-lTn 
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in equation (4.85). This is cause by the focal depth of the collimating lens, which 

has a focal depth 4 11,m from equation (4.10), which is comparable to the depth 

selectivity of the hologram. A pair of objective lens is used for scanning the focal 

point along the depth for depth-selectivity measurement, which broadens the FWHM 

of the experiment measurement. However, due to the slow decreasing side lobes of 

the hologram depth selectivity, the theoretical calculation in equation (4.82) gives the 

correct selectivity curve in Fig. 4.45. 

Fig. 4.45 (b) shows the depth selectivity of three-multiplexed hologram in the 

same PQ polymer, with an average diffraction efficiency 7%. The three holograms 

are recorded with different recording depth Zr at 50 fJm distance. Also, the reference 

beams have different angle for three holograms, which optically section three slices 

at different depth from the 3-D objective spatial dimension and project them onto 

different area of the image sensor. 

Even though the three peaks in Fig. 4.45 (b) are well separated, the broad and 

slow-decreasing side lobe of the depth selectivity causes cross talks before them, which 

leads to background noise on the images, which is also demonstrated in Fig. 4.46. In 

Fig. 4.45, a focused point source is used to scan the depth for the three holograms. 

As the zp = Zrl, the recording position for the first hologram in Fig. 4.45 (a), a bright 

image point is generated on the detector corresponding to the recording position of the 

reference, while there are cross talks (or side lobe images) on the other two locations 

corresponding to the other two holograms, with the pattern predicted in Fig. 4.34. 

Fig. 4.46 (b) shows a similar case when the probing source Bragg phase-matches the 

second hologram. 

4.4.2 3-D imaging of fluorescent microspheres 

To demonstrate the ability of 3-D imaging of real 3-D objects, we use fluorescent 

micropsheres as our observation targets. Fluorescent microspheres are poly spheres 

doped with certain dyes, which can be excited by some wavelength and emit fluores­

cent lights. They are widely used in biomedical research in confocal microscopes and 
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fluorescent microscopes [82, 60, 56]. 

\i\1e use 15 Mm diameter microspheres, excited by 488 nm and emitting fluorescent 

light at central peak wavelength 515 nm [94] in our experiments. Fig. 4.47 shows 

the comparison of the imaging quality between holographic imaging and a normal 

microscope imaging in Fig. 4.41. Two layers of microspheres are sealed in solid 

polymer with a distance 100 Mm between. The visual image quality of single hologram 

imaging and a normal microscope system with the same collimating and imaging 

lenses is comparable, due to the high spatial selectivity achieved by the holographic 

imaging elements. However, due to the intrinsic color filtering effect in holographic 

imaging, the signal level for the detector pixels in holographic imaging is much lower 

than the normal microscope. 

To demonstrate the multiple optical sectioning and real-time imaging of 3-D space, 

a liquid sample of fluorescent microspheres is used. Fig. 4.48 (a) shows the optical 

sectioning and imaging by a single hologram in PQ polymer in Fig. 4.45 (a). With 

three holograms multiplexed in the PQ polymer as in Fig. 4.48 (b), three optical 

sectionings from different depths are projected onto the detector at the same time in 

Fig. 4.48 (b) in real time. 

4.4.3 Discussion 

Fig. 4.49 shows the experimental setup on an optical table in the lab and the potential 

system integration for a practical holographic imaging system. 

To design a practical holographic imaging module, several important issues are to 

be addressed. 

1. The resolution: Due to the existence of collimating and imaging lenses, the 

resolution of a holographic 3-D imaging system cannot achieve higher resolution than 

the normal microscope. Also, the aberrations and the finite space-bandwidth product 

of these lenses limit the objective space volume from where the signals can be collected 

and projected onto the holograms. 

New architectures and more sophisticated computer designed holographic patterns 
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could directly image the object without collimating lenses. Further investigation and 

theoretical, and experimental verification are required to explore the potentials of 

such approaches. 

2. Photon efficiency: As we mentioned earlier, the 4-D hyperspace sectioning 

makes the photon counts on each detector to decrease, which leads to a lower signal 

to noise ratio, or a higher photon flux requirement. This might be a problem for 

fluorescent samples due to the photobleaching effects on the fluorophores. This is 

especially a problem for the wavelength sectioning, where the volume holograms have 

typically a high wavelength selectivity and decrease the photo efficiency for spatial 

signal detection. For most of the applications in microscopes, the spectral information 

resolution required is far less than the holographic imaging achieved. 

3. Strong hologram multiplexing: To keep the photo efficiency as high as possible, 

we require the imaging holograms to have large diffraction efficiency, which is not an 

easy task for most of the volume holographic materials. Photopolymers are a good 

choice only if strong holograms in them can achieve high wave front reconstruction 

quality, or high spatial selectivity for spatial optical sectioning resolution. Local­

ized recording in doubly-doped photorefractive crystals [95, 2, 22, 96, 97] is another 

potential method to overcome this problem. 
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Figure 4.45: The depth selectivity measurement and comparison to the theoretical 
prediction in a PQ polymer of 2 mm thick. Experimental setup is as in Fig. 4.41 
with: collimating objective lens x40 NA=0.65, wavelength 488 nm. (a) A single 
strong hologram with diffraction efficiency> 15%. The depth selectivity is consistent 
with the theoretical calculation by equation (4.82). (b) Three holograms multiplexed 
with different recording depth Zr at 50 /-Lm apart. 
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(0) 

(b) 

Figure 4.46: The image pattern as a single-point source is scanned along the depth 
of the three multiplexed holograms. (a) The probing source is Bragg-matched to the 
first hologram, generates a bright point image for it, with two weak depth mismatched 
patterns for the other two depths. (b) The probe point source is Bragg-matched to 
the second hologram. 
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I Holographic image I 

Figure 4.47: The images of fluorescent microspheres (15 11m diameter) excited by 
488 nm and emitting at peak fluorescent wavelength 515 nm, by holographic and 
normal microscope imaging systems with the same collimating and imaging lenses in 
Fig. 4.41. 
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(b) 

Figure 4.48: The images of fluorescent microspheres (15 pm diameter) in a liquid 
sample, excited by 488 nm and emitting at peak fluorescent wavelength 515 nm. (a) 
Using a single hologram with the depth sectioning ability as in Fig. 4.45 (a). (b) 
Using three multiplexed holograms to image three different-depth optical sections. 
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Holographic Memory 

+ Circuit 

(b) 

Figure 4.49: (a) The experimental setup on the optical table III t he lab. (b) A 
potential holographic imaging module system design. 
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Chapter 5 M-number for Spectral Hole 

Burning Material 

For data storage application, the dynamic range of the storage medium is a major 

factor determining the storage density and capacity, besides the resolution and geom­

etry limits. AI # [93] is widely used as a system measure of the holographic diffraction 

efficiency of superimposing M holograms at a single location in photorefractive crys­

tals or photopolymers. Another interesting material widely explored for holographic 

recording is the spectral hole burning material. In this chapter, we study the system 

dynamic measure of the spectral hole burning medium of hologram multiplexing at a 

single location and a single wavelength. 

Theoretical studies show that there is a M # as a system measure for pure absorp­

tion gratings and pure index gratings induced by multiple absorption gratings through 

the Kramers-Kronig relations. !Ii # is calculated as the product of the number of su­

perimposed holograms M and the square root of their equalized diffraction efficiency. 

It is proven to be a function of the absorption bleaching range of the media only, and 

independent of the number of holograms superimposed AI. Pure index gratings give 

similar !vI # as pure absorption gratings with consideration of the residual absorption 

existed in practical spectral hole burning media. Experiments on multiple absorption 

holograms angle-multiplexed at one location with one wavelength give AI # results 

consistent with the theoretical calculation. 

5.1 Spectral hole burning material 

Holography in spectral hole burning materials has been receiving attention in the last 

decade as a potential technology for optical data storage due to their extremely fine 

wavelength selectivity [113]. In contrast to the conventional holograms mUltiplexing 
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in a single sample by the use of Bragg selectivity, spectral hole burning uses extreme 

frequency selectivity of molecule absorption under low temperature to multiplex holo­

grams at different frequencies. 

The fine frequency selectivity of the material comes from the zero-phonon lines 

(ZPL) investigation, which started in the first half of the 1950s with the theoretical 

studies of the optical spectra of impurity crystals [117]. ZPL is related to the electron 

transition between electronic energy levels of a guest atom or molecule. The ZPL 

of an absorption center is normally extremely narrow and has a typical Lorenzian 

lineshape [43, 29]. For an absorption center in amorphous materials, the absorption 

lines consist of the ZPL and a phonon wing, which depends on the temperature. The 

homogeneous linewidth, r h, is given by 

(5.1 ) 

where Tl is the lifetime of the excited state and T2 is the dephasing time caused by 

phonon scattering [32. 4]. At normal room temperature, the dephasing time T2 is 

much smaller than the lifetime T1, leading to a broad homogeneous absorption tran­

sition. However, when the material is cooled down to low temperature, the dephasing 

process becomes sufficiently long that the homogeneous linewidth is dominated by the 

ZPL. The relative integrated intensity of ZPL among the absorption lines (including 

the phonon wing) is proportional the the Debye-'Waller factor, and gets larger when 

the temperature is lower. 

Even though the ZPL lines are only depending on the electron energy level transi-

tion in the absorption center, they are never the same in a real material, because the 

optical ZPL is sensitive to the different local environmental conditions for different 

absorption centers. These differences cause a frequency shift of different absorption 

centers and lead to the inhomogeneous broadening in the material, which is much 

broader than the ZPL. Therefore, when a single wavelength laser illuminates the 

material, only a subset of the molecules from the inhomogeneous distribution are 

excited and leave a population hole in the absorption line centered at the incident 
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wavelength. Due to the large ratio of the inhomogeneous broadening and the homo­

geneous line\vidth, a large number (up to 104) of wavelength channels are available 

in the spectral hole burning materials [113, 81]. 

The research in spectral hole burning until now is concentrated on exploring the 

frequency domain to increase the number of holograms. No studies on the conven­

tional hologram multiplexing at a single location with a single wavelength have been 

done, limited by the intrinsic small diffraction efficiency of a single pure absorption 

grating inside the medium [67]. On the other hand, a new Frequency Phase Swept 

holographic recording technique (FPS) [14] can produce large diffraction efficiency 

by recording multiple exposures of the same hologram at different optical frequencies 

in frequency selective materials. 12,000 persistent holograms by FPS were demon­

strated in frequency domain by B. Plagemann and his colleagues [100] and a hologram 

diffraction efficiency of 5% was achieved. This effect can be understood by considering 

the superposition of multiple absorption and index gratings (the latter generated by 

the Kramers-Kronig relation). Many homogeneous absorption lines of the spectrally 

selective material are used to build up a single hologram with a large diffraction ef­

ficiency. This opens the possibility of multiplexing at the same location and at the 

same frequency and implies its potential application in data storage and complex 

multiple-pulse shaping. 

In this study, we investigate the conventional hologram multiplexing in spectral 

hole burning materials and study the dynamic range with combination of the conven­

tional Bragg selectivity and the FPS technology. A system measure of the diffraction 

efficiencies of multiple holograms superimposed in the same volume is called AI #, 

which is used extensively with photorefractive crystals and photopolymers [93]. It is 

defined by AI # = y'TiAI, where AI is the number of superimposed holograms and T/ 

is the equalized diffraction efficiency of each individual hologram. vVe apply the same 

idea onto the spectral hole burning material, and study AI # on both pure absorption 

grating recording and the pure index grating recording by FPS. The calculated 1'..J # 

is independent of the number of holograms superimposed, which gives a good system 

measure of spectrally selective material dynamic range for hologram multiplexing. 
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5.2 Absorption bleaching model 

To study the absorption hologram recording and its diffraction efficiency inside a 

spectral hole burning material, we construct a simple theoretical model based on the 

bleaching process and analytically calculate 111# for multiple holograms superimposed 

at the same location. 

During the spectral hole burning process, the material is frozen at a temperature 

of liquid helium 1.7 K. Under this condition, the inhomogeneous broadening of the 

material absorption line is only caused by the different environmental conditions for 

the absorption centers. Illuminated by light of a single wavelength, only a subset of 

the molecules being sensitive to that frequency are excited and undergo a photochem­

ical reaction. The absorption constant of the material at that frequency decreases 

due to the depletion of the molecules absorbing at that frequency[84]. Therefore, an 

absorption hole in the broad inhomogeneous absorption line will be generated with a 

linewidth determined by its homogeneous Lorentzian line shape. The bleaching kinet­

ics of the amplitude absorption constant o:(w, r, t) of the spectral selective material 

upon exposure can be modeled by assuming a first order photoprocess as 

o:(W, r, t) 
,2 , 

B + A 2 exp ( - K J (Wb, r, t) t) 
(Wb - w) + ,2 

A+B, 

(5.2) 

(5.3) 

where J(Wb, r, t) is the intensity pattern of exposure with hole burning frequency Wb, K 

is a kinetic parameter that depends on the material sensitivity. B is the nonburnable 

absorption constant caused by the broad phonon wing in the absorption spectrum, 

and represents all absorption background that persists after prolonged bleaching. A 

represents the bleachable absorption -- the dynamic range of the absorption hole 

burning in the material, which is caused by the zero phonon absorption line of those 

absorption centers and has a narrow Lorentzian lineshape centered at the hole burning 

frequency Wb. 0:0 is the overall absorption constant at time t = o. This model is a 

simplification of a more rigorous model [61, 44, 121], that takes into account quantum 
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efficiency distribution, polarization dependence, and random orientation of absorbing 

centers. However, this simple model fits quantitatively well to the first order with the 

experimental absorption bleaching kinetics . 

For non-slant holographic recording in transmission geometry, the sample is illu­

minated by two coherent light beams II, h, which generate an interference intensity 

pattern as 

I(r) = 10 [1 + F cos (kr)] , (5.4) 

with the modulation depth ~r = 2JI1h/Io, and the overall intensity 10 = h + h. 

The modulated intensity pattern creates an excited state grating by either photore­

fractive effects or photoreaction within the material, and leads to frequency and time 

dependent spatial modulation of the absorption coefficient 0: and refractive index n: 

o:(r,w,t) 

n(r, w, t) 

O:o(w, t) + O:1(W, t) cos(kr) 

no(w, t) + nl(w, t) cos(kr). 

(5.5) 

(5.6) 

For uniform grating in transmission geometry, the diffraction efficiency, T] = Id / IT) 

defined as the intensity ratio of the diffraction and reference beams, can be calculated 

by Kogelnik's couple wave theory [67] as 

( ( 
-2ao(w, t)d) [ . h'2 (0:1 (w, t)d) . 2 (f-31 (w, t)d)] 

T] w, t) = exp () sm () + sm ()' cos 2 cos 2 cos 
(5.7) 

where the propagation constant (31 = 27rnd)., d is the thickness of the recording 

medium and e is the incident angle of recording beams inside the material. 

Multiple holographic gratings can be recorded at the same volume by exposure of 

different intensity patterns Ii(r, t) on it 

(5.8) 

where we assume that the intensity grating is uniform throughout the medium. In 
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materials with small optical density, this approximation is valid because the light 

intensity is approximately uniform inside to the first order. For materials with large 

optical density, one has to consider the depletion of the beam intensity along the 

depth inside the medium. The latter case is treated numerically in 5.3. 

With the assumption of uniform intensity patterns through the material of small 

optical density during recording, the absorption constant after !'vI holograms recorded 

at the single burning frequency Wb is equal to 

"M R + A "XP ( -J( lo t (\ + ~'; cos (k,r)) ti) (5.9) 

B + A exp ( -J( lo t ti) exp ( -J(lo t Vi ti cos (k,r)), (5.10) 

where 'Ii is the modulation depth of the ith hologram. 

All hologram grating strengths are equalized when all modulation depths are equal 

to V (where we assume F = 1 for our calculation) and the exposure energy for 

each hologram is set equal as K loT. \Vhen recording a large number of holograms, 

each hologram strength only consumes a small portion of the whole dynamic range, 

K loT « 1. Eq. (5.10) can be expanded in a cosine series by using modified Bessel 

functions, In (K lOT). Considering only the first order grating terms which generate 

the correct signal reconstruction, Eq. (5.10) is simplified as 

B + .4 exp (-M J( loT) [lo( K loT) - 211 (J( loT) t cos (k,r) 1 
M 

B + a o - a1 L cos((kir) . 
i=l 

(5.11) 

(5.12) 

The remained average absorption a o of the bleachable dynamic range after the 

recording of AI holograms, is equal to 

(5.13) 
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and the equalized grating strength 0:1 of each hologram is equal to 

(5.14) 

Absorption holograms: transmission geometry 

For the pure absorption gratings, the recording and read-out are using the same single 

optical frequency. \Ve have studied different recording geometries, such as transmis­

sion, reflection, and gO-degree. Similar results are obtained for each case, with the 

transmission geometry being the easiest to explain. Also, the transmission geome­

try is the most practical architecture with consideration of the energy bleaching, as 

discussed in section 5.3 on numerical modeling. Experimental results in transmission 

geometry are obtained and compared with the theoretical studies in section 5.5. 

The diffraction efficiency of a pure absorption grating in the non-slant transmission 

geometry, is obtained by Eq. (5.7) 

'fl = exp (_ 2Bd
O

) exp (_ 20:0d) ( aId ) 2 

cos cos 0 2 cos 0 ' 
(5.15) 

where we assumed weak gratings (llde « 1. This is satisfied in cases when many cos ~ 

holograms are multiplexed in a material with small optical density. 

For multiple absorption gratings given in Eq. (5.13 - 5.14), the equalized diffraction 

efficiency for each hologram is 

( 
2Bd) [2Ad (. ) ( .)] exp --- exp ---010 JiJoT exp -l..JJiJoT 
cos 0 cos (

Ad )2 
cosO 

x exp( -2.Al K JoT)112(K JoT) (5.16) 

exp --- exp ---Io(-)e ( 
2Bd) [2Ad E -EJ 
cos 0 cos f) AI (

Ad )2 
cos f) 

xe-2EI 2(~) 
1 AI' 

(5.17) 

where E = 111 J{ JoT represents the total energy exposure for absorption bleaching. 

The diffraction efficiency 71 is a sophisticated function of AI, the number of holograms 

multiplexed inside the material. However, for the maximum diffraction efficiency 
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Tl over E with a given large number of multiplexed holograms !vI, it satisfies the 

approximation E / 1\1 « 1, which leads to the approximation for modified Bessel 

functions: 10 (E /!vI) ~ 1 and 11 (E rA1) ~ E / (21\1). This simplifies the diffraction 

efficiency Tl in Eq. (5.17) as 

( 
2Bd) exp ---
cos () [ 

2Ad -E] ( Ad )2 -2E (E)2 exp ---e e-
" cos () 2 cos (). 1\1 (5.18) 

(1\:1) 2 (5.19) 

l\1# exp (-~) ( Ad ) lnax [Ee-E exp (_~e-E)]. (5.20) 
cos () 2 cos () over E cos () 

The diffraction efficiency Tl is inversely proportional to the square of the num­

ber of holograms 1\1, the same dependency as the multiple holograms recording in 

photorefractive crystals and photopolymers. The dynamic measure 1\1# is computed 

using the relation 1\1# = y'ri1\I, where Tl is the maximum of equalized 1\1 hologram 

diffraction efficiencies obtainable for a given optical density. And 1\1# in Eq. (5.20) 

only depends on the normalized optical density of the material: the burnable part 

AdO and the nonburnable part BdO. Here, we define a normalized amplitude opti-
cos cos 

cal density of the material as OD = c~:o' which is different from the optical density 

( - log T) by a factor of 0.51n 10 ~ 1.15, where 0; is the amplitude absorption constant 

and T is the intensity transmission. 

Fig. 5.1 gives the diffraction efficiency in Eq. (5.17) as a function of the total expo­

sure energy E, which shows a maximum peak at a certain exposure energy. When the 

exposure energy is small, the diffraction efficiency increases as the grating strength 

is recorded and enhanced during exposure. When the diffraction energy is over the 

maximum peak, the material is running out of the bleachable dynamic range. Con­

tinuing exposure erases the previously recorded gratings and decreases the diffraction 

efficiency. For the maximum efficiency in the Fig. 5.1, the exposure energy verifies the 

approximation E / 1\1 « 1 for 1\1 = 10 or larger as we previously assumed. Fig. 5.2 

shows the calculated 1\1# versus normalized optical densitv OD = QOdo of the ma-" cos 

terial. The three curves are plotted for three values of the nonburnable absorption 
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Figure 5.1: Diffraction efficiency 77 versus the average exposure energy E / Al for Al = 

10 multiplexed absorption holograms. The normalized optical density OD = c~~d() and 
the nonburnable absorption constant B = O. 

B. When B = 50%0:0, 111# reaches its maximum value of 0.05 at normalized optical 

density OD = 1.52. 111# increases when B decreases, due to a more transparent 

medium after all holograms recorded. In the ideal case with B=O, the theoretical 

model predicts that Al # increases logarithmically with the normalized optical den­

sity OD. However, when the optical density is getting larger, the approximation of 

uniform grating strengths of each hologram through the thickness starts to fail. And 

the diffraction efficiency in Eq. (5.20) is not accurate any more for large optical density 

as shown in later numerical simulation. Considering the effects by the nonburnable 

absorption B in Eq. (5.20), it only adds a constant term exp (- c~sd(}) to 111#. The 

recording kinetics depends only on the bleachable range Ad of the optical density, as 

long as the uniform grating approximation is satisfied. However, this would not be 

true when the optical density is large, and the nonuniform grating recording process 

inside the material has to be considered. This is studied and proved by the following 

numerical simulation. 

Index holograms:transmission geometry 
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Multiplexed absorption holograms 
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Figure 5.2: !'vI # of absorption holograms (.Awrite = .Aread) as a function of the normal­
ized optical density 0 D = c~~~, where ao = A + B. 

Based on the Kramers-Kronig relations, when an absorption grating is generated 

inside the material, there is also an index grating existing. The FPS method makes 

use of the superposition of multiple index gratings generated by recording identi­

cal absorption grating at multiple frequencies. The advantages are a strong index 

grating recorded at the expenses of the frequency range and the possibility of max­

imal bleaching of the absorption without affecting the index grating at the readout 

frequency. 

For simplicity, we study the properties of multiplexing pure index gratings at 

the same location and frequency, where each pure index grating is generated by two 

holographic exposures at two optical frequencies with a 7r phase shift between the 

two holographic exposures (II-index hologram). We start by assuming Lorentzian 

lineshapes for the average absorption constant a o and grating strength a1 in Eq. (5.13 
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- 5.14) during the spectral hole burning at frequency Wb 

(5.21) 

(5.22) 

where r is the homogeneous linewidth, Wb is the recording (hole burning) optical 

frequency. An index grating 131 was induced by the absorption grating according to 

the Kramers-Kronig relation as 

(5.23) 

where W is the readout frequency. A IT-index hologram is recorded with a first expo­

sure at frequency Wb1 and a second exposure (same exposure energy and same grating) 

at frequency Wb2. Due to the very small difference between Wbl and Wb2, the difference 

between the two spatial intensity patterns inside the material is negligible. The in­

duced diffraction field Ed from an incident beam Er at the readout frequency W from 

the two hologram exposures is given as 

E (
ao(W)d) [(a1(w,Wb1)d of31(W,Wb1)d) JO

" = r exp - + J e '1"'1 

cos 0 2 cos 0 2 cos 0 

(
a1(w,Wb2)d of31(W,Wb2)d) JO

"] + + J e'l"'2 

2cosO 2cosO ' 
(5.24) 

where ¢l and ¢2 are the phases of the gratings in exposure 1 and 2 respectively. If 

we choose ¢2 - ¢l = 7r, Eq. (5.24) gives a diffraction efficiency as 

TJ(W) ( 
2aod) d

2 
[ 2 exp ---0 20 (al(W,Wb2) -al(W,WbJ) 

cos 4 cos 

+ (f31(W,Wb2) - f31(W,WbJ)2]. (5.25) 

Assuming that the two exposures have the same grating strengths and we readout 

the hologram at the central frequency W = Wb1 :Wb
2

, the absorption grating cancels 
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and only a pure index grating prevails due to the lineshapes in Eq. (5.22 - 5.23): 

(5.26) 

where ~w = IWb1 - Wb21. The diffraction efficiency has a maximum for ~w = 2,. 

\Vhen readout for a long time at frequenc:v W = Wbl ;Wb
2 , the index grating will be much 

less sensitive to the bleaching than the absorption constant at this frequency [14, 100]. 

If we assume the ideal case that the index grating is remained while we bleach the 

remaining absorption constant at readout frequency to the nonburnable absorption 

B, it yields the following upper bound for the diffraction efficiency of a IT-index 

hologram: 

77 = exp (_ 2 B d) (0:1 (Wb)d) 2 

cos 0 2 cosO 
(5.27) 

This expression is similar to a pure absorption hologram in Eq. (5.15), except 

the exponential absorption term. In the same way as AI # results for the absorption 

grating in Eq. (5.20), the diffraction efficiency for pure index grating generated with 

IT-index holograms is given as 

(5.28) 

!lI# 

(5.29) 

The calculated !II # r('sults are shown in Fig. 5.3 for different normalized optical 

densities OD = (A+B(})d. If the material is assumed to be transparent after exposure, 
cos 

i. e., B = 0, the !II # is proportional to the normalized optical density. Otherwise, 

it shows the same dependency on the optical density as the pure absorption grat­

ings in Fig. 5.2. \~:hen B = 50%0:0, AI# reaches a maximum 0.068 at OD = 2.02. 

Comparing AI # between multiplexing IT-index holograms and pure absorption holo­

grams, !II # of index holograms is higher than that of the pure absorption holograms, 
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Figure 5.3: 111# of IT-index holograms (Aread = (Abl + Ab2)/2) as a function of the 
normalized optical density OD = ~~~, where 0:0 = A + B. 

especially when the optical density is large, as shown in Fig. 5.4. From Eq. (5.20) 

and (5.29),111# ratio between the IT index holograms and the pure absorption holo­

grams increases as the bleachable optical density c::o increases, and is independent 

of the nonburnable absorption B. However, due to the theoretical approximation 

under small optical density, the advantage of multiplexing using IT holograms at large 

optical density have to be re-examined carefully by detailed numerical studies in next 

section. 

5.3 Dynamic modeling 

For a material with large optical density, the intensity pattern and its induced ab­

sorption/index grating is nonuniform due to the energy depletion inside the material. 

Considering a simple transmission geometry recording, the distribution of incident 

light intensity inside the material is limited to a layer at the front surface depending 

on the local absorption constant profile. Starting with a fresh material with a large 



150 

3r.===~=='=='~==~====~--~~--1 
- Theoretical Model 

2.8 

2.6 

2.4 

1.6 

1.4 

-e- Numerical Simulation, B=O -+- Numerical Simulation, B=50%uo 

234 
Bleachable optical density OD

b 

5 6 

Figure 5.4: Al# ratio between index holograms by IT-exposure (Aread = (Abl +Ab2)/2) 
and pure absorption holograms as a function of the normalized bleachable optical 
density 0 Db = c~sdB. For the theoretical approximation model, AI # ratio is indepen­
dent of the nonburnable absorption B. For dynamic numerical simulation results, 
AI # does depend on B. 

uniform absorption constant, a strong grating is first recorded at the front surface. 

Then the absorption constant at the front surface is bleached and the intensity pat­

tern gradually penetrates deeper into the material. By finite difference time domain 

method, we can numerically simulate the dynamics of the absorption constant changes 

and the light intensity pattern distribution during the bleaching process. Different 

holograms have different grating strength distribution through the volume medium 

due to the dynamic bleaching process. 

For a nonuniform grating in transmission geometry, the diffraction efficiency can 

be derived in the same way as Eq. (5.7) from Kogelnik's couple wave theory [67]. 

Assuming a nonuniform absorption constant ao(z), absorption and index gratings 
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0:1 (Z), (31 (z) along the depth z, the diffraction efficiency is derived in section 5.4 as 

17( t) (i·
d 

-2QO(T, t)d ) [ . 12 (l·d Gl(T, t)d ) ex}) II T sm 1 T 
o cos {7 • 0 2 cos () 

+ " 2 (l d 
(31(T,t)d )] SIn I) T . 

o 2 cos {7 

(5.30) 

By numerical optimization, we calculate the optimal recording schedule to get the 

diffraction efficiencies for all holograms equalized and maximized. Due to the limita­

tion of computing power and time, we studied numerically 10 holograms multiplexing 

inside the material. The calculated M# as a function of the normalized amplitude 

optical density aD = (~:~~)d is shown in Fig. 5.5, where the residual absorption B=O 

or 50% 0:0' 

M# by theoretical model and numerical simulation 
o .45r;==::::;====.===::=!==:=:::==:::=c;:=::::::c:.---,.--or----, 
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Normalized optical density OD 

8=0 

--------
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Figure 5.5: Comparison of AI # for absorption holograms between theoretical ap­
proximation model and the numerical simulation (Awrite = Aread) as functions of the 
normalized amplitude optical density aD = c~~~, Qo = A + B. 

Comparing with the results by previous theoretical approximation model, which 

are also shown in the Fig. 5.5, the simulated M# is consistent with the theoretical 

model when the normalized optical density aD ::; 1. \\Then the normalized optical 
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density IS getting larger, the simulated AI # no longer follows the approximation 

model. For B = 0, it reaches a saturation value 1\1# = 0.2 at the optical densit~· 

around 5. The saturation is due to the spatial limitation of grating strength within 

a thin layer inside the material of a large absorption constant. This is also proven 

hy the n:~cording schedule and the grating strength distribution within the medium 

in Fig. 5.6 and Fig. 5.7, 

Recording schedule of 10 holograms for 00=1, 5 
10',----,----.----,----.----,----,----,----.----, 

<') 

<') 

<') 

<') 

0 
<') 

<') 
0 

0 
<') <') 

0 0 0 0 0 

2 3 4 5 6 7 8 9 10 
the Nth hologram 

Figure 5.6: The recording schedule of 10 equalized holograms for OD=1 or 5. 

where 10 holograms are multiplexed with equal diffraction efficiencies inside the 

material of optical density OD = 1 or 5. 

\Vhen the optical density is small, the recording time for each hologram is simi­

lar and the grating strength is uniform inside the material, which also matches the 

assumption of the theoretical approximation model. As the optical density getting 

larger, the extra part of the dynamic range is peeled off during recording of first 

hologram with extra long exposure time, as shown in Fig. 5.6 for OD = 5. All the 

gratings are finally located near a limited space near the end surface of the material in 

Fig. 5.7, and the rest of the material was bleached uniformly without effective grating 

strength recorded. 



'c 
::J 

.0 
~ 
c 
0 :s 
.0 ·c 
(j) 
'6 

153 

Final equalized 10 holograms for 00=1 X 10-' 
10~~-.----,----'-----'----'----'----'-----'----'----' 

8 

1 

o 50 100 

holograms 1 st to 10th 

150 200 250 300 350 400 
depth (arb. unit) 

Final equalized 10 holograms for 00=5 

hologram 
1st to 10th 

450 500 

o~~~~~~~~ 
o 50 100 150 200 250 300 350 400 450 500 

depth (arb. unit) 

Figure 5.7: The grating strength distribution of 10 holograms with equal diffraction 
efficiency inside the material with OD =1 or 5, B = O. 
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In most practical materials used for spectral hole burning, there is always a non­

burnable part of the absorption B due to the broad phonon wing and a large Debye­

\Valler factor [84]. For B = 50% aD in Fig. 5.5, the numerically simulated !II # is 

consistent with the theoretical approximation model as OD ::; 1, and then getting 

smaller when 0 D getting larger. Simulation in Fig. 5.5 shows that !II # reaches 

a maximum 0.043 at optical density OD = 1.1, which is slightly smaller than the 

theoretical maximum prediction !lI# = 0.05 at OD = 1.52. 

The independence of 111# on the number of holograms !II is also confirmed in the 

simulation of the dynamic recording. Fig. 5.8 shows !II # for recording AI = 2,5, 10 or 

M/# vs. the number of holograms M 

0.08~ 
~------~~---------------4 

0.Q7 

0.06 

0.05 

~ ~~r-------~ ________________ ~ 
::;; 0.04 

0.03 

0.02 

0.01 

OL-__ ~ __ ~ ____ ~ __ ~ ____ ~ __ -L ____ L-__ ~ __ ~ 

2 4 6 8 10 12 14 16 18 20 
number of hologram M 

Figure 5.8: !II # for absorption holograms as a function of the number of holograms in 
materials of normalized optical densities OD = 0.5, B = 0 and OD = 1.0, B = 0.5 aD, 

(Awrite = Aread). 

20 holograms in the absorption material with normalized optical density OD = 0.5, 

B = 0 or 0 D = 1, B = 0.5 aD. \\Then the number of hologram 111 is getting larger than 

10, !II # becomes a constant, and consistent with the prediction from the theoretical 

model. 

For the II-index grating of nonuniform grating distribution, .U #s are numerically 

simulated and compared with the simulated absorption gratings in Fig. 5.9. \Vith the 
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Figure 5.9: Comparison of !II # for IT-index holograms and pure absorption holograms 
by dynamic numerical simulation. The normalized optical density OD = c~~~, and 
0:0 = A + B. 

same dependency on the normalized optical density 0 D as the absorption gratings, 

!ll# of index grating saturates at 0.5 for OD > 10 if B = O. For B = 50% 0:0, !ll# of 

IT-index gratings has a maximum of 0.053 at OD = 1.5. Under both conditions, the 

!II #s of index gratings is larger than those of pure absorption gratings. The simulated 

results of !I! # ratio between IT-index and absorption gratings are shown in Fig. 5.4. 

Compared with the results of theoretical approximation model, the theoretical model 

gives correct prediction when the optical density is small. When the optical density is 

larger, the simulation results indicate that AI # of IT-index hologram is larger than the 

pure absorption by only factor of two, which also depends on the residual absorption 

constant B. 
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5.4 Couple wave theory for nonuniform grating 

From the coupled wave theory by Kogelnik [67], the diffraction efficiency of a uniform 

non-slant transmission grating is given as TI, 

(
-2aod) [ 2 ( a1 d ) 2 ( (-J[d )] TI(t) = exp sinh . () + sin 2 () , cos () 2 cos cos 

(5.31 ) 

where the average absorption constant ao, the phase and absorption grating (31, a1 

are uniform constants throughout the thickness d of the medium. Now we are consid­

ering a nonuniform distribution along the depth direction z for transmission geometry: 

ao(z), (31 (z), and a1 (z). 

Following the derivation in coupled wave theory [67], the coupling constant r;;(z) = 

({J1(Z) - jal(z))/2, where (31(Z) = 27fn1(Z)/)., and assuming the propagating modes 

in the grating are the superposition of two waves, 

E = R(z)e-j{}' x + S(z)e- jd . x, (5.32) 

where the propagation vector of diffraction d is determined by the reference beam {} 

and the grating vector K by 

{} - K. (5.33) 

Substitute it into the wave equation inside the grating medium and neglecting the 

second order differentials: R" and 5", we will get the same coupled equations as 

Kogelnik's coupled wave theory [67], except the depth dependency of the couple 

constant, 

eRR' + ao(z)R 

csS' + (ao + j19)S 

-jr;;(z)S 

-jr;;(z)R, 

(5.34) 

( 5.35) 

where the dephasing factorrJ defined in Kogelnik's paper is zero for Bragg phase-
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matching condition, and the coefficients CR, Cs determine the incident angle of refer­

ence and signal beam. 

To solve these coupled wave equations, we have to assume a more general solution 

rather than the assumption in Kogelnik's paper as 

R(z) 

5(z) 

( 5.36) 

(5.37) 

where the Ti and Si are constants depending on the boundary conditions. Substitute 

the solution (5.37) into the coupled equations (5.35) and find the solutions for Ii (z): 

(5.38) 

This equation (5.38) and equation (5.37) with the consideration of boundary con­

ditions give the general solution for the coupled wave equations of nonuniform grating 

absorption and grating along the depth direction z. For the special cases of uniform 

gratings throughout the depth, equation (5.38) gives the same results shown in [67]. 

It can be simplified for the special case of non-slant (CR = (:s = cosOo) transmission 

geometry and Bragg incidence (1) = 0), which we are interested in, as 

(5.39) 

1]( t) 

(5.40) 
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5.5 Experimental measurement 

In all previous experimental works on spectral hole burning [14, 100, 84], only the 

frequency domain is explored for multiplexing holograms. Here, we demonstrate the 

conventional angle multiplexing of holograms in the spectral hole burning material and 

compare the experimental results with our theoretical investigation. Our experiment 

setup is shown in Fig 5.10. The material used in our experiments is a 400 pm 

To wavemeter 
and monitoring 

Spatial Filter 

PBS Isolator 

/<' I ~-+-+-"~---+-i-+---'---H-'---l i I Laser i 
Mirro~ t :±~ t I /~ 

\olarizer I )../2 waveplate /" ~ '\ 

\

"--.--L 4F system ,-------~/ Powe~ meter 
I ... .. t : ",l Q I "f 

Mirro~ 0 ---- i-cJ 
\ Iris filter 

\ . 

(~~\e~ 
'~/ 

Mirror mounted 
in a rotation stage 

Figure 5.10: Experimental setup for spectral hole burning. 

thick sample of H2 TBN with a concentration of 5 x 10-5 molll polyvinyl butyral 

(PVB) cooled down to 2.0 Kelvin by liquid helium in a cryostat. The absorption 

constant bleaching kinetics is measured in Fig. 5.11 by a bleaching intensity of 10 

f1HTlcm2
. The normalized amplitude nonburnable optical density c~~d() '::::::' 0.67 and the 

material dynamic range of the bleachable optical density c!d(} rv 0.35. The numerical 

simulation of ],,1# predicts ],,1# '::::::' 0.025, as shown in the inset of Fig 5.11. 

Single plane wave holograms are recorded at different wavelengths with both the 

reference and the signal intensity of 10 f1lVlcm 2
. Fig. 5.12 shows the reading curves 

of the single plane wave hologram with the unattenuated original reference beam. 

The hologram diffraction efficiency decreases fast during readout process because of 

the bleaching by reference beam. In addition, the oscillation of the bulky cryostat 

makes it difficult to get consistent grating growth curves. However, a diffraction 

efficiency of 1 x 10-4 can be consistently obtained. The optimal recording time lies 
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between 5 ~ 8 seconds. Fig. 5.13 shows the measured selectivity curve without using 

the iris filter (Fig. 5.10). The selectivity is about 0.6 degree and agrees with the 

theoretical result well. The data is very noisy due to the scattering from the sample. 

An additional iris filter in Fig. 5.10 is used at the back focal plane of the Fourier lens 

behind the sample to reduce the scattering and background noise. For thin material, 

if the reference beam angle is changed slightly, the reconstructed signal beam angle 

is changed accordingly and can get partially blocked by the iris filter. The filter gives 

us a combined effect of both angle and peristrophic selectivity. The selectivity curve 

with the iris filter is shown in Fig. 5.14 . A selectivity of about 0.2 degree is obtained, 

which is consistent with the iris diameter of about 1 mm and the Fourier lens focal 

length of about 24 cm. 

Three, five, seven and ten plane wave holograms are then multiplexed and the 

comb functions are shown in Fig. 5.15. \;VTe have used equal time (Is - 2s) exposure 

schedule, instead of the optimal exposure from simulation for maximal diffraction 

efficiency. Fig. 5.16 shows the measured 1II # of each case. As we mUltiplex 3,5,7 and 

10 holograms, AI# has a trend to increase, and is about 0.01, which is smaller than 

the simulated AI # = 0.025. There are two possible reasons for the factor of 2 - 3 

difference. First, the exposure time is not optimized for the number of holograms in 

the experiments. Second, the oscillation of the cryostat and erasure of the holograms 

during the measurement leads to a smaller measured AI #. 
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tral hole burning material. 
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