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ABSTRACT

Structural optimization of elastic solid structures with mem-
brane and bending stresses is studied. A necessary and sufficient
optimality condition for maximum stiffness is derived using an energy
formulation (minimum potential energy). In the case of pure mem-
brane or pure bending stress states, maximum stiffness and maximum
strength are governed by the same optimality condition (uniform
strength design). For mixed stress states (membrane and bending),
this result is not true, and a general method of approach to find a
necessary condition for maximum strength is developed by means of
the calculus of variation. Two particular statically indeterminate
problems with one design variable to be optimized (clamped-clamped
beam, clamped-clamped arch) are treated by this method, and, in
both examples, maximum strength is achieved by a uniform strength

design.
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I. INTRODUCTION

When considering structural design for minimum weight the
problems may be categorized according to their satisfaction of certain
restrictive conditions. For example, these may include: (1)

1. Static compliance

2, Dynamic compliance

3. Buckling load limitations

4. Load factor at plastic collapse

5. Multipurpose ahd/or multiconstraint design

6. Optional layout

7. Reinforcement and/or prestressed conditions.

Excluding the domain of optimal layout, previous work on the
optimization of membrane and sandwich structures has usually been
restricted to these structures characterized by a linear relationship
between the specific structural stiffness and the specific structural
Weight'. Because of this restriction, a general method of design using
an energy approach and the calculus of variation can be established.
The tv&o fundarﬁental steps in this‘procedure are: first, find an
optimality condition fbr the displééement field that does not involve
design parameters, and then determine the optimal design from the
usual differential equations of the structure (2). Conditions of maxi-
mum stiffness, maximum fundamental freﬁuency, maximum buckling
load, ’plastic design for maximum safety, and maximum strength are
treated as examples in references (2), (3), and (4). More complex
problems including additional constraints such as specified minimum

cross sections can also be formulated.(5), (6). A slightly different
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method using the same basic principles (minimum potential energy)
is developed in reference (7).

If one is interested in the optimal design of structures, not of
the sandwich type, it is difficult to find previous work. Some speéific
problems such as that of the .strongest column (8),(9) and the optimum
design of a vibrating bar with minimum cross-section or a specified
natural frequency (4),(10), (11) can be found in the literature.

Among all types of problems solved in optimal structural
design, the case of maximum strength or maximum allowable stress
has received only limited attention. Taylor (3) has shown that for the
case of the pure membrane stress state (sandwich cross section) the
maximum elastic capacity deéign corresponds to the maximum stiff-
ness design simultaneously. Huang (7) has shown that for pure bending
the optimality condition for maximum stiffness leads to a uniform
strength design; however, he did not discuss the relationship between
the uniform strength design and the maximum strength design. In
both the pure membrane and the p‘ure bending stress state, the derived
optimality condition is found to be the Euler equation corresponding

to the variation of the functional

= P-AM (1.1)

o)

with respect to the design variable where

potential energy

P
M given mass of material
A

= constant Lagrange multiplier
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The purpose of this analysis is to extend the existing work done
concerning the pure membrane and the pure bending stress state. It
will be shown that maximum stiffness leads to maximum strength in
the case of pure bending, and that maximum stiffness does not lead
to maxifnum strength for the mixed stress state (membrane and
bending).A necessary condition for a stationary value of the mass of
material when a maximum allowable stress is specified will be de-
rived for the mixed stress state, and two examples will be treated to
illustrate the particular method. In what follows, pure bending is
considered to be a stress state in which energies other than bending
energies are sufficiently small to be negligible. For example, a
long beam under the usual loading systems will be considered to be a
pure bending case.

In all of the following, linearity of the elastic isotropic material
and small deflections will be assumed. In particular, displacements
are proportional to the load. ‘Only static loads independent of the
disPlécement field will be considered, and secondary problems, such
as stability considerations - will not be treated. To fully illustrate
the method, staticallyindeterminate problemsare chosen as examples
and for simplicity, the two examples are '"one independent variable"
problems. Because of the difficulty in finding closed form solutions,

the use of a high speed digital computer (IBM: 370-155) was required.
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II. MAXIMUM STIFFNESS AND MAXIMUM STRENGTH
IN A PURE BENDING STRESS STATE

1. Stiffness definition

The stiffness of a structure can be characterized by the work

done by external forces
W = m{gp(x) u(x) dx+? Qi u(xi)} (2.1)

where u(x) = displacement field

p(x) = load distribution

Qi = discrete generalized forces

m = intensity of the load

‘dx = line element of a one dimensional structure or the -

area element of a two dimensional structure.
It is assumed for simplicity that the loads act in principal directions
and do not depend upon the di_spla‘cément field. (e. g.: elastic founda-
tions do not fit this assumption).
We shall say that a structure T is stiffer than a structure T.if:

for the same intensity of the load m, and the same load distribution,

%
W(T ) < W(T) (2.2)
* %
or Sp(x) u (x)dx + };z Qi'u (xi)<Sp(x)u(x)dx +Zl>Qi u(xi) (2. 3)
where
*
u (x) = displacement field corresponding to the structure T#<

u(x) = displacement field corresponding to the structure T

2. Sufficient condition for maximum stiffness

. . b3
Let one imagine two structures of the same material, T and

%
T (T in the neighborhood of T) having the same stiffness under the



same loading condition.

w = W (2. 4)

if the two structures are at '"equilibrium conditions', we know that
W = 2U where U is the strain energy.

The potential energy P is given by

U-w (2. 5)

= -W/2 (2. 6)
sO
W¥ = W implies p¥ - p (2.7)

The strain energy can be represented by

U = (s elge)ax .Y
where

s(x) = structural stiffness

q(x) = generalized strains

e(q(k))= strain energy per unit length (or area) per unit
stiffness
dx = line element of a one dimensional structure or area

element of a two dimensional structure.

In the particular case of pure bending (beam bending without mem-
brane forces - assuming shear strain energies are negligible - long

beam case)



s(x) = ct3"=—l!-2- Et3
2 2
x'

where tis the design variable (thickness), c is a positive constant,

E is Young's Modulus and w is the normal displacement.

With this notation, the potential energy of a structure T can be

written
P = Sct?’e dx-m{g.(x) u(x)dx+EQ u(x )} (2.9)
B M )P Rt TR .
% o
The fact that T and T have the same stiffness is now expressed by:
%3 % % %
Sct 3eB dx—m{gp_(x)u (x)dx+? Qi u (xi)} = Sct3 eB dx-m {gp(x)u(x)dx

+'zi3 Q, u(xi)} (2.10)

: * :
where the '"¥*' terms correspond to the T structure.
From the principle of Minimum Potential Energy,
3 o | ‘
ct"e,dx - m (x)u(x)dx + 20 Q. u(x.)
B T T ! i
3 % y ‘ * %
SSCt' ede.-m{Sp(x)F (x)dx+2i3 Qiu (xi)} (2.11)
% - |
Using P =P from Eq. (2.7), we obtain
b3 % ’ ) * %
Sct 3 en dx - m {Sp(x)u (x)dx + 22 Q. u (x.)}
_ i i

< S ct3 e;;dx -m {p(x)u*(x)dx + Zl) Qi u*(xi)} (2.12)



which reduces to

Ve? ™) eg ax = o (2.13)
since c is a positive constant.
Because T* is in the neighborhood of T, we can write

4 Ve BBt whese Bt is aomll (2.14)
expanding t3 and keeping only the first order term, we obtain

S3t"‘2 en 6t dx = 0 (2.15)

What is desired is an optimality condition such that the design
corresponding to this optimality condition leads to the structure of
v : * '
minimum mass for a given stiffness W', From Eq. (2.14), the

*
masses of T and T are related by

M

MY+ M ~ (2.16)

% %k % %k
‘where M Qv_‘_St dx, M =QSt_ dx, &M :QSGt dx (2.17)

and (1is a positive multiplicative constant including the material
*
properties. A necessary and sufficient condition for T to be the

optimal structure in the previous sense is that

*®
M < M (2.18)
which leads to

s M = QSGt*dx = 0



or

SGt*dx = 0 (2.19)

In order to satisfy this condition, it is sufficient in Eq. (2.15) to set

%2

%*
t e 2

* -
B = d € (2.20)

%,
where d is a constant.

Statement 1: A sufficient condition for obtaining the minimum mass
% *
design of a structure T of prescribed stiffness W , and supporting

a given load system is:

%2

%*
t e 2 .

%*
B—d

¥ . ¥
Lemma: If two structures T and T (where T is in the neighborhood

of T) have the same loading and are of the same material but have

. ‘ * * *
different stiffnesses, satisfy the conditions that t 2 eg =d 2 and’

tz eg = dz, the structure having the greater stiffness will have the

greater mass.
Proof: Without loss of generality, assume T* stiffer than T.
*® * * | . .
W =m Sp’(x)u (x)dx + Z‘ Qiu (xi)<ngp(x)u(x)dx +}; Qiu(xi)= W (2.21)
i -

%
is T and T are at equilibrium

* - w*

P = - —2— and - P = - (2. 22)

So
S c 1:*3 e; dx-m { Sp (x)u*(x)dx ;i-Zl)Qi u*(xi)} > Sc t3ede-m{Sp (x)u(x)dx

+20Q; u(xi)} - (2.23)
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minimum potential energy gives:

Sc t*3 ep dx—m{gp(x)u(x)d.x +§ Qi‘u(xi )} 2 Sc t*3 e; dx-m { Sp (x)u*(x)dx

%
+ ’%) Qu (xi)} (2.24)
SO
*3 3
St ep dx > St ep dx (2. 25)
and
S(t*?’ —t3)eB dx > 0 (2. 26)

%* %*
T in the neighborhood of T leads tot = t + 6t where 6t is small.

Keeping the first order term, we obtain
2
831: eR Stdx >0 (2.27)
. 2 2
But, by assumption, t eg = d, so
Sét dx > 0 (2. 28)

which means

MY > M (2.29)

The proof is completed.
Using this result, we can deduce

: . *
Statement II: Considering two structures T and T of same mass

M = M and supporting the same load system, it is sufficient for the
: £ * * *
structure T to satisfy the optimality condition t 2 ep = d 2 to be

as stiff or stiffer than T.
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' * *
Proof: Let us consider two structures T and T of same mass M =M.
% % % %
The structure T* of stiffness W satisfies ¢ 2 eg ~ d 2. T is an

*
arbitrary structure of stiffness W, in the neighborhood of T . From
Statement I, we know that the stiffness W can be achieved by a struc-

: %* * % *
ture T’g satisfying the condition toz ep o = doz. Ty is such that

M, €M = M (2.30)

%
0
using the previous lemma, Eq. (2.30) requires

* .
W< W f (2.31)

The structure T* has the maximum stiffness. We notice that State-~

ment I and Statement II are equivalent.

. %2 3k %2 . . . ' .y .
Conclusion: ¢ eg = d is a sufficient condition for maximum

stiffness in a pure bending stress state.
% ,
Note: because of the assumption that 6t or 6t are small, this result

is only a local optimum.

3. Necessary condition for maximum stiffness

We want to find a ne’ces sary condition such that the stiffness
W* of a structure T* of given mass M*, under a given load system,
is stationary. If the design variable isv‘ continuous and differentiable,
this problem can be treated By thé ,c_aléulﬁs of variation.

As has been shown.in Section lA of Part II, the stiffness of a
structure T* can be characterized by the external work W*. Maximum
stiffness corresponds to minimum W*. Thus, an extremum of W*

will correspond to an extremum of the stiffness.
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Let us consider the functional
% % % % %*
W= W - {Qgt dx-M-} (2.33)

%
The constraint equation characterizing the specified mass M is

% %
nSt dx - M" = 0 (2. 34)

%
where A is a constant Lagrange multiplier. A necessary condition

for stationary stiffness or external work can be obtained by:
%k
6% (W) =0 (2.35)

which generatgs the Euler equation corresponding to the variation
of Vj* with respect to the desigh variable £*,

The structure is as suméd ‘to be in equilibrium, so, for con-
venience, one can interchaﬁge the e#ternal work W* and the strain

s % s :
energy U through the relation W =2U . Eq. (2.33) then becomes

w* = 20" -2 {a{"ax - M*} (2. 36)
or

—

* « s
W= ZCSt Pl dxuk*{ﬂgt*dx-M*} (2.37)

in the particular case of bending only. The Euler equation associated

x
with the variation with respect tot is

*2 % %2
t ey = d (2.38)
E
) *2 AN
Wlth d = zT

* *
ens {l, c are positive, so,' A will be positive.
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Eq. (2.38) is a necessary condition for a stationary value of the
% % %
stiffness W of the structure T of given mass M , in the case of

bending only.

Conclusion: A necessary and sufficient condition for maximum

stiffness of a structure in the case of pure bending is

% *
¢ 2 2

e;‘ = d (2.39)

4. Sufficient condition for maximum strength

We previously de.rived. an optimality condition for maximum
stiffness in the case of bending. - Let us assume that the positive
constant d’k2 involved in this optimality ‘condition can be identified
with a specific form of material capacity s*, Example: For bending

of a straight beam, the optimality condition is
2 .
£*2 (d—ZE;) = %2 (2. 40)
dx
In this particular case, d* is proportional to the maximum local
stress intensity at the location ''x'" of the beam. To give a constant
value to this quantity, means that we fix the value of the maximum
local stress intensity in the whole structure.

* %k
2eB =S 2undera. load

* *
Consider a structure T such thatt
* * '
m , where S 2 is a constant identified as a material capacity. Know-
* * *
ing S 2 and t , we are able to determine the value m of the load

intensity. Now consider an arbitrary design T in the neighborhood

%k
of T such that:
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%
» Tand T have the same mass
2 . .
» the maximum local stress intensity S (x) in T is less
¥

than or equal to the maximum local stress intensity S 2

. %

inT .

This is equivalent to

ctTe b+ st (2. 41)
with Sét dx = 0 (2.42)
c st = ST -t ) =P ey (2. 43)

where ® (x) is an unknown scalar function.

Knowing Sz(x) and t(x), we are able to determine the value m of the
load intensity. If . m*' = m, we will say that T* represents the maxi-
mum strength structure and if m* < m, we will say that T* does not
represent the maximu}mAstrength structure.

The strain energy for the structure T under the load m is
given by

W, v, m)eg St3 o it Ssz(x)t dg (2. 44)

m B

where u_ represents the displacement field of T under the load of

intensity m. Use of BEq. (2.41), (2.43) gives

vU(t, w o, m) = c Ss*z'v(f-é %) " -st)ax (2. 45)
After using Eé. (2.42), this reduces to

Ult,u_, m) = U, u* % m") - c 5% S@Z(x),t dsi (2. 46)

% * * % %
where Ut , u m m) = CSS 21: dx
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* . ¥ #
with u % being the displacement field of T under the load m .
m

The integral in the right hand side of Eq. (2.46) is positive, so

% % %
Ut , u m*,m } = Ult, u m) (2.47)

T* and T are in equilibrium so W = 2U. This implies that

m*{ (oot xax-T o «* x(x,)} 2 mf Sp(g)umdx~zi:- Qu_(x)} (2. )

*
Let m = (m
Since we have lineérity

o x = (u* )g (2. 49)

m m

% %
where u_ is the response of T to the load m.

Eq. (2.48) then becomes

2 m{gp(x)_u’:n dx-T Q. ut ()} 2 m{gp(x)umdx—? Qu_(x)} (2.50)
*ze; = S*2

can be compared to any arbitrary structure T of the same mass under

¥
But, we have seen before that a structure T satisfyingt

the same load and in its neighborhood, by

{Speou poax-T o u o)} sm{ (o ax-Sou o} (@51
m{ \p(x)u_ (x x-i i % % mi. xurn(x x-i ium(xi)' (2.51)
corresponding to maximum stiffness.

From Eq. (2.50) together with Eq. (2.51) we deduce

¢ = 1 (2.52)
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this implies

mT 2 m (2.53)

Therefore, a structure satisfying the condition 1:*2 e; = S*z is one
that, for a given mass, and for a k'g.iveri capacity constraint of the
material S*Z, the load intensity is maximum among all the other
structures; of the same material in its neighborhood, providing that
the load distribution p(x) is the same. This represents a maximum
strength design. |

Note:

We have seen that in the case of a beam, the optimality condi-
tion derived for maximum stiffness and maximum strength represents
the fact that the absolute value of the maximum stress at any location
x of the structure is equal to thg maximum allowable stress 9
(capacity of the material). If we use a linear, isotropic elastic
material and if we consider small displacements, the stress distri-
bution in a cross-section is linear and anti<symmetric (pure bending).
Therefore, at a location x, the maximum stress will occur in the
extreme fibers (extefna.i surface of.the structure). In the case of a
statically determinate problem; where the bending moment does not
depend up.on the displacement field, the optimality condition for maxi-
mum strength can be derived direcfly.

Assume a structure T of design t such fha._t |o(x) | < % (Omax(x)
is the bending stress occuring in an extreme fiber, 1ra][.ltaiche location x).

The mass of T is given by M = Q St dx. Without changing the loading

diagram (bending moment), it is possible at any location x to reduce
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, -k *
the thickness t.to a thickness t such that Iomax(x)l = OO. If we reduce

again the thickness, we will get |Oma)$x)| > 0, and the capacity of the

0
material will be exceeded. So, t* is the minimum possible thickness
at the location x. We can do this at any x 50, in the whole inter{ral,
t st .But, the mass of this new structure 'I‘* is given by

M* =0 St* dx. Therefore, M* < Mand T" has a greater strength
than T and the design t* represents the maximum strength design.

In the case of a statically indéter'minate problem, we cannot use the
same argument because the loading diagram definitively depends upon

the displacement field which is a function of the design and the optimal

condition derived in the general case must be used.
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I1II. MAXIMUM STIFFNESS IN COMBINED

MEMBRANE-BENDING STRESS STATE

1, Sufficient condition for maximum stiffness

The stiffness definition will remain the same as in the pure

bending case.

In the mixed stress state, the potential energy can be expressed by

. ? epldx-m{§ }
P = S(ateM+ Ct, eB)dx—m p(x)u(x)dx + ? Qi u(xi) (3.1)
with
S atey, dx : membrane strain energy
3 . .
ct’ep dx ; bending strain energy
emr B T functions of generalized strain, defined as strain energies

per unit length (or area) per unit stiffness.
at . = membrane structural stiffness

ct3 = bending.structural stiffness

We proceed as in the pure bending stress state case.
' *
Consider two structures T and T, having the same stiffness
*
W and W, under the same load (load intensity = m). If T* and T

are in equilibrium, W =2 U so,

* * 3
W = W implies PN B (3.2)

which can be written as
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g
"

S(a t*e;:/I + c1:*3 e;;)dx - m{gp(x)u’?x)dx + 213 Qi u*(xi)}

]

S(at ey + .ct3 eB)dx - m{ Sp(x)u(x)dx + 21—3 Qi u(xi)} =P (3.3)

But, the principle of Minimum‘Potenti'a;l energy gives us:
S(ateM+ct3 .e'B)dx - m{gp(x)u (x)dx + ?Qi u (xi)} (3. 4)
< S (atey, +ct’ef)dx-m { Sp(X)u*(x)dx +§ Q. u*(xi)}
Because P’i< = P from Eq. (3.2), we obtain
_ S(a t*e:/[ +c t*3é;)dx-m{ Sp(x)u*(x)dx + 2;: Qi u*(xi)}

¥ 3 % f % N %
s (at egptet’ ep) ax-m{ oo (x)dx +2 Q; u (x,)} (3. 5)
or

% %
3 %3

S{a(t-t*)e;{ te®-t™)ek Fax= o (3. 6)

* .
Assume now the design of T in the neighborhood of the design of T.
% % %
t = t + 6t where 6t 1is small ' (3.7)
. 3 * T
Expansion of t~ for small values of 6t , substitution in Eq. (3.6), and

retention of first order term only leads to

) % % % %
S(a eM+ 3 ct 2eB)St dx =0 _ (3.8_)

"~ We want to find an optimality condition such that the design
corresponding to this optimality condition leads to the minimum mass

%
structure for a given stiffness W .
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; *
A necessary and sufficient condition for T to be the optimal structure

in this sense is:

3
M < M (3.9)

which leads to

Sk
Sﬁt dx 2 0 (3. 10)
In order to satisfy this condition, it ig sufficient in Eq. (3. 8) to set

k%2 % w2 -
aeM+3ct eg =] (3.11)

K
where j is a constant.

Statement 1: A sufficient condition to obtain the minimum mass
* *
design of a structure T of prescribed stiffness W and supporting

a given load system is that

* *2 % X2
aeM+3ct eg = J

i k3
Lemma: If two structures of the same material, T and T (T* in the
' *
neighborhood of T) of different stiffness W and W, under the same
% BE 7R *
load, fulfill the conditions that a e t 3ct 2 eg = j 2
2

a ey +3ct ep = jz, ‘the one of greater stiffness will have the

and

greater mass.

Proof: Without loss of generality, assume T* stiffer than T. This

can be written

w¥ = m gp(x)u*(x)dx +2 Q. u*(x.) <m Sp(x)u(x)dx +2Qu(x.) =W
- i 1 1 . i 1 1

(3.12)
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T and T are in equilibrium, so

* W*

P = - > and P = - (3.13)

Therefore
* % o %3 k- SR T *
S(a t eMm +§t eB)dx‘-m {Sp(x)u (x)dx +§/ Qi u (xi)}
> S(a te +ctle )dx-m{g' x)u(x)dx + 2 Q. u(x )} (3. 14)
M B LYPH =y uixy) .
Again, minimum potential ehergy produces: -
* *3 o
-S(at eM +ct eB)d‘xfm{Sp(x)‘u(x)dx +§) Qi u (xi)}

> S(a t e;[ Fe t*3e§)dxsrh { .g.p_(x)‘u*(x)dk‘i-zl)Qiu*(xi)} (3. 15)

Using Eq. (3.14), we find:

({at™trepgt ™ tMey} x> 0 (3.16)
T* is assumed to be in the neighborhood of T, so

% - . _

t = t+ 6t with 6t small - (3.17)

Expansion for t 3, substitution in Eq. (3.16), and retention of first

order term only produces:

2 éB)St dx > 0 (3.18)

S(a eM +3ct
| . 22
But, by assumption, a ey t 3ct ey =Jj . This implies

SStdx > 0 (3.19)
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%
which means M > M  (3.20)

%
The structure T of greater stiffness has a greater mass than the

structure T.

*
Statement 2: Considering two structures T and T of the same mass

* :
M = M and supporting the same load system, it is sufficient for the

* ; . i % %2 %
structure T to satisfy the optimality condition aey, +3ct 2 ep = j’i=2
to be as stiff or stiffer than T.

. * ' *
Proof: Consider two structures T and T of the same mass M and

* * * * * *
M. T satisfies aey, +3ct 2 eR =j 2 and has stiffness W . T is

. . *
an arbitrary structure of stiffness W in the neighborhood of T .

From Statement 1, ‘we know tha_.t_thqf stiffness W can be achieved by a
* * K2 Kk

. _ o k2 k%2, .
structure T0 such that ‘)afel\d“0 + 3¢ to .QBO =Jo implying
* X
My s M= M - (3.21)
. S
Because of this, W < W (3.22)

- from previous lemma, and the proof is complete. Statement 1 and

Statement II are thus shown to be equivalent.

Conclusion: ' a ey t 3ct ZeB =7j 2 is a ‘sufficient condition for

maximum stiffness in a mixed stress state (membrane and bending).

Again, this is a local optimum.

2, Necessary condition for maximum stiffness

Providing the design variable is continuous, and differentiable,
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this can be treated by the calculus of variation. We are looking for a
necessary condition such that the stiffness W* of a structure T* of
given mass M* under a givén 1oéd (intensify factor = m), is stationary.
An extremum of the stiffness is characterized by an extremum of w¥.

Consider the functional
* ‘ C
wh o= oW -x*{ngt*dx-m*} (3.23)

. e * .
The constraint equation characterizing the specified mass M is the

%
bracketed term and A is a constant Lagrange multiplier,

A necessary condition for stationary stiffness or external work is .

obtained from
% _
6t* (W) = 0 (3.24)

The structure is assumed to be in equilibrium, so again, for conven-
ience, we interchange W and U . In the particular case of the mixed

stress state (membrane and‘bending) Eq (3. 23) can be written
* %3 k. k([ A%
wh -2 S(at exst c‘t*‘3’e‘]‘3)dx)'-‘}v\f{ﬂgt_ ax - M*} (3. 25)

- . ‘g * .
The Euler equation associated with the variation of W' with respect to

: %
the design variable t - 'is

*+3c1:’k2 * j*2

a ey eg .= J (3.26)

with

. %
{1is positive, so . X will be positive.
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Eq. (3.26) is a necessary condition for a stationary value of the
* , LK
stiffness W of the structure T of given mass M*, in the case of

a membrane-bending stress state.

Conclusion: A necessary and sufficient condition for maximum
stiffness of a structure in the case of mixed stress state
(membrane and bending) is:

%

2 % (%2
M e

*
ae,+3ct g = (3.27)

3. Remarks about maximum strength in mixed stress state

We have seén that in pure membrane or pure bending stress
state, the optimality condition derived leads to maximum stiffness
and maximum strength at the same time. One might be tempted
to extend this result to the case of the mixed stress state. The
following will show that this first guess is not true.

a) Maximum stiffness design does not lead to maximum

strength design,

It will be sufficient if we can find an example where this statement

is true to demonstrate this fact.
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Consider a cantilever beam subjected to bending moment and traction

forces as shown in the figure below where the load and coordinates

systems are des cribed.

NSOOSNNN

With these conventions, N, the net traction force acting on the beam,
will be positive and Py the constant load per unit length, will be
negative. v, w are the inplane and normal displacements. The idea
of this example is to compare the :maximumv stress occurring in two
structures ™ and T of ’c‘}ié éarhé'ih%tsé M and M, but of different
design, the load system‘bein:g tlllvet';.s"arﬁe 1n both cases.

‘The structure T* will dbé;')f'the design given by the optimality
condition for maximum stiffness. The structure T will be designed
for a uniform stress "6‘0. (.)'r"ié'lding_ gtress) in the extreme fiber -

(y = + %—) The design parameter is the thickness t of the beam. The

width b is constant, and E is the Young's modulus.
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: %
Structure T

The optimality condition and equilibrium equations are derived
from the calculus of variation by taking the variation with respect to

% * % ’
the design parameter t and displacement field v , w , of the functional

p* - p* - WMo St* ax - M*} (3. 28)

t

where P potential energy

>
It

a constant Lagrange multiplier

D
1]

positive constant equal to pb

density of the material

o
]

Because the structure is in equilibrium, the potential energy P’ is

: : o ¥ %
directly related to the external work W by P = - WZ— and the
functional P*, Eq. (3.28) is equivalent to the functional W, Eq. (3.23).

For this particular example,
L

*3 K
*® * n ¥
p* = S%_ El:iié (w )/2 +b}gt (w‘)'z} dx
O .
L L
% * % * *
- Spow_(x)dx-Nv(L) - A {QSt dx-M} (3.29)
0
’ d » d2 °
() =gz ) s ()Y = ()
dx
5P = 0 with respecttov, w ,t will give two equilibrium equa-

tions, their associated boundary conditions, and the optimality

condition for maximum stiffness

%3 .
6W,,;(g*) - 0 gives (E LA (w*)") - pgy =0 (3. 30)
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* *
E2t (") or 6(w™) = 0atx=0,L
%*3 . A
%k *
(Eb—;‘z—(w )") or 6w =0atx=0,L

4
5 4B =0 gives (bt EF) =0
* L S
.(bt_ E(v)) 4 -N=0
* ' %2 '
* . Q E * 22 . * 2
51;*(13. ) =0 gives. —1);— = 5 I:(v )' +t-4—(w_ )" ]

which is the optimality condition for maximum stiffness.
The boundary conditions are:

* .
t*3 (w )") =0, no moment at x = L
x=1,

?
t*3(w#)') =0 no shear force at x = L
x=I

(w*)' = w =0 at x=0 clamped

%k %
bt E(v) =N atx = L

The solution of these equations is given by

2 4 3 2 4
P b K
L2 402 "EDL

(3.31)
(3.32)
(3.33)
(3.34)

(3. 35)

(3.36)

(3.37)

(3.38)

(3.39)

(3. 40)

The product of the two roots t; - and t, "is negative. Using a physical

argument, we will ‘choose the positive root for t .

Structure T

We set the stress in the extreme fiber (y = + %) equal to 00.

This stress will be the maximum stress at any location x.



.Mt ., N _ . .st . N
ag = + i"‘ z‘ +b—t = -EW‘Z‘ + —bt (3'41)
t3
where M = 'bending moment = - E w” I3 » and
; 3
1 = bt

the moment of Inertia = S

*
With the same boundary condition as for T |, the solution for t is

' 2
N +,‘/N - 1;poopo (L-x)"

t = A : (3.42)

Comparison

The following elements of comparison are used:
M =M for T T
+ same load, ..same geometric parameters other than thickness
« we want to compare the absolute maximum generalized
stress occurring in 'f* and T
First we fix 0, py, N, L, b. Then calculate t(x) and find by iteration
the quantity Q )\* E such that

St* dx =. Moo= %‘:St dx (3.43)

ok S *
This means that T and T have the same mass. {0 A E is now known
and the equations are solved.
%
For the structure T ,

% _ K
max 2

% %
w)'t + l* (3. 44)
bt

g

Using the optimality condition Eq. (3.35) and the second equilibrium

equation, Eq. (3.33), we deduce
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¥ v
«  _ [oav'e  w N
Omax - 2 b - va t*Z + bt* (3.45)

For the structure T, 0 hax =~ %0 by definition

Numerical results

The following values were chosen: L 40 in.,

50, 000 1b/in®

Op =
py = -6.251b/in
N’ = 12,500 1bs.
% . , : 2T
X" E is found equal to 23,5450 x 10
el *
oF = 56,030 1b/in°  for T
max ;
o = 50, 000 b/in®  for T
max . .
so,
o < o* & (3. 46)

max max -

These results are shown in ng; 1 for y =+ %— For the same.
loading conditions, . _with,.,ﬂ#eq same. Vrry(_l;ba_s,q,z._,plfwr.na,terial, the structure T*,
satisfying the optimality condition for maximum stiffness requires a
greater yielding stress (56, 030 1b/in2) than T (50, 000 1b/in2) to

support the load.

Conclusion: The design using the optimality condition for maximum

stiffness does not realize the maximum strength design.

b) Maximum strength for statically determinate problems

1f the material is isotropic and linearly elastic, and if we

consider small deformations (linearity), the stress distribution in a
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cross section will be linear but non-antisymmetric with respect to the
center line. At a location x, the maximum stress |0max(x)|wi11 occur
in one of the surface extreme fibers if we have a mixed stress state.
Assume there exists a structure T of design t such that Iomax(x) | < %
everywhere (00_ = the capa‘citykbf the thaterial). Because the structure
is statically determinate',? the lo_ading diagram does not depend upon
the design (loading diagram independent of displacement field). Thus,
it is always possible .to,find‘ a thickness t_* such that t* <t and
Io:_;ax(x)l =04 A smaller thickness than t* will generate |0ma.x(x)| > %
which is not an acceptable condition. Therefore, t* is the smallest
possible thickness at location x. This is true for all x, so t* < t
everywhere and M”< < M. Since the structure T* and T carry the same
load, but the structure T’_k is lighter than the structure T, T* can be
considered as the maximum strength design. As was; stated in the
bending only analysis, this argument fails for a statically indeterminate

problem, and another approach must be used.
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IV. NECESSARY CONDITION FOR STATIONARY VALUE OF -
THE MASS OF A STRUCTURE SUBJECTED TO A GENERAL
STRESS STATE, INCLUDING THE MATERIAL CAPACITY

For the purpose of describing ’the_ state of stress at any point
in a material, it is convenient to represent each state of stress by a
point in a nine dimensional stress space. A basic assumption is made
that there exists a scalar function r(cij) which depends on the state of
stress and which characterizes the loading of the material, The
material capacity can be represented by"d'o', the maximum generalized
stress allowed at any point. Gene raliy,' % corresponds to the yielding
stress, but it can be any arbitrary value below this yielding stress.
The funct.ion L(cij) = r(oij) - Og can be used to compare the loading
function to Og. The equation J?,(Oij) = 0 represents a closed surface
in the stress spac.e. The function r(oij) is normalized such that as
long as “Gij) <0 ?,t any point of the structure, we will say that the
capacity of the material is not exceeded. L(Oii) > 0 will mean that the
capacity of the material is exceeded and this cannot be an acceptable
situation.

The limitation of the material capacity will be expressed by:

toy) S 0 (4.1)
or
z(oij) rax) = 0 (4.2)

where a(x) is a scalar function of space. This relation represents

(1)

one constraint equation.

(1) This description summarizes that given by Fung (Ref. 12).
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Another constraint equation comes from the fact that the
structure must be in equilibrium. In other words, the design and
the displacement field must be compatible so as to satisfy the equilib-
rium equations, These equilibrium equations can be derived by taking
the variation of the Potential Energy with respect to the generalized
dis-plé.cements. B

Let us consider the following functional

M = M+ g {213 A, () Gui(P)}dx ¥ SA(;S_){L(oij)+a2(§)}dx (4.3)
where .

M : mass of the structure given by f} St(x)dk

. : pb, apositive constant

p : density of the matéfial

b | constant width |

dx : line element for a one dimensional structure or area

element for a two dimensional structure

P : Potential energy
u, generalized displacement

6u ®) : ith equilibrium equation (variation of potential energy
i .

with fespect to the generalized displacement ui)
Xi(z) : Lagrange multiplier associated with the ith equilibrium

" equation. It is a scalar function of space x »

0., 1 stress
1)
: !(Oif +a2(>f_) :  material capacity constraint
A(x) : Lagrange fnultipliei' associated with this capacity

constraint. It is a scalar function of space x.
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This functional characterizes the mass M of material under the

following constraints

v 6u P) = 0 ‘structure is in equilibrium (4. 4)
. v

2 o
L(Gi.)+a (x) =0 no generalized stress can exceed (4.5)
J the maximum allowable stress o
at any point of the structure.
Providing the variables are continuous and differentiable, we can use
the calculus of variation. We take the variation Of:l\!“wi‘"th respect to

the variables:

t e design variable °
u, generalized displacements
o(x) .: unknown switching function
li(}i), AMx) Lagrange multipliers to restitute the constraint

equations (equilibriun equations, stress constraints)

The system of differential equations resulting from 6.(1\__4). =0 is:

g M) = 0O Calculus of variation (4. 6)
€. u., @~
6_ P} = 0 Equilibrium equations C(4.7)
&= :
L(o‘ij)-i-az(zc) = 0 Stress constraints (4. 8)

We must add to these equations the appropriate set of boundary condi-
tions to be able to obtain a solution to a particular problem.

The design variable t, coming out of the solution of this system,
will ?roﬁde a structure suéh that its. mass is a stationary value within

the considered constraints. Because we assume that the material is
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homogeneous, the stationary value of the mass of material is equiva-
lent to thé stationary value of the volume of the structure.

The solution to this system is a necessary condition for a
stationary value of the mass for a given limit of the material
capacity. In other words, it is a necessary condition for maximum
strength in the case of a general stress state. This general stress
state is characterized by the nine. components of the stress tensor.
and includes the mixed stress state (membrane + bending). .Physical
examples of such a state are given in the next sections. The first
example is the pfoblem of a clamped-clamped beam subjected to
traction and bending. . ‘The second example is the problem of a clamped-

clamped deep arch under a uniform load Py
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V. EXAMPLE l: CLAMPED-CLAMPED SOLID BEAM
SUBJECTED TO MIXED STRESS STATE

A beam of uniform width b and length 2L is clamped at its two
ends. The loading system consists of a constant load per unit length
Py and of an inplane traction force N. This problem is statically
indeterminate. A linear, elastic, isotropic material and small
deformations are assumed. The capacity of the material will be
defined by its yield stress O 'i‘he design variable to be optimized
will be the thicvknvess t of the beam. The load and coofdinates systems

can be described as shown in the following figure

v and w are the inplane and normal displacements. Because the dis-
tributed load p is constant, the _design will be symmetric with respect

to the middle of the beam.” (In the example, Py is considered negative).
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1. Formulation

The usual Bernouilli-Euler beam theory is used. The stress
distribution in a cross section is linear. At a location x, the absolute
value of the maximum stress will occur in one of the extreme fibers
(at y =+%— or y = —Zi).

The constraint equation coming from the finite yield strength
of the material will express the fact that, nowhere in the material or
on its boundary will exist a stress greater than the yield stress o _,
in absolute value. Due to the special stress distribution, this is
equivalent to | O+t/2| < % and Io-t/Zl < % everywhere (0+t/2’
O_y/2 aTe the stresses at y = if’/‘Z). The capacity constraint of the
material Eq. (4.2) of the general form L(oij) + az(;_c_) =0 can be repre-

sented in an equivalent form by the two equations:

©,,/2)° =05 +a’tx) = 0 (5.1)
and
2 2 2.
(©_,)5)" - 05 +BE) = 0 (5.2)

a(x), PB(x) are unknown sca.l_a,_r:fun'c'tions“ of x. - The membrane and

bending stresses are acting in the same’direction, so:

92 T Opi/2t oM (5. 3)

42 T 9B, -t/2t M (5. 4)

where OB, t/2° OB, -t/2 are the bending stresses aty = £ t/2 and OM

is the membrane stress (uniform in a cross-section).



/4 t » t _ N
B, +t/2 Ew 2’ B-t/Z"EW 7 M i
a° |
()" = =) (5. 5)
dx
The two constraint equations become:
2 2
(5.6)
2 2 t2 # N N2 2 ¢
E” w' —4—+Ew F+b2t2'° +B (x) 0 (lower surface, y = - =)

(5.7)

The equilibrium equations can be deduced from the Potential energy P.

2L,
P = S [1 Ebt | _’2.+ bE? '2:|dx . g py W dx - Nv (2L)-v(0)) (5. 8)
0
bt3 N\
GWP =0 gives (E-—l—z— w > ~Pg = 0 (lst Eq. E) (5.9)
‘ 14
5P =0 gives (btEv') = 0 (2nd Eq. E) (5. 10)

btE v’ represents the inplane force N, so the second equilibrium

equation can be integrated directly
btEv' = N (5.11)

Because of the symmetry of the“structure and of the loading system,
it is sufficient to analyze the structure in the interval [0,L]. A
stationary value .of the mass of materié,i in the interval [0, L] will

also be stationary mass in the interval [0, 2L].
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Let us consider the functional:
L
M = QS b

g)\ (x)[(E SV w) -pO:]dx+S)\ (x) (bEtv’ -N]dx

\ 2 =
3. 43:H N, N 2. 2

+ S )\3(}{) [E w’ e EW’ oy +b7:z - 0'0 + a (x)]dx

0

i
+ {2y [B° w"z"z vEw N N o2y ﬁz(x)]dx (5.12)

. AT / 4 b bztz 0 - ’
0

kl(x), Kz(x), KS(X), 7\4(2) are unknown Lagrange multipliers which are
functions of x, associated with the four constraint equations.

It has been seen before that
§M = O (5.13)

i. e. the variation of M with respect to all the variables of the problem
(Eq. (4.6), (4.7), 4.8)), will correspond to a stationary value of the
mass of material within the_b a:bo‘ve constraints, We take the vvaria-tior‘l
of M with respect to the variables t, w, v, @, B, A, M, Ay Ay carry
out appropriate integrations by parts, and set the variable coefficients
of &t, &w, 6v, 6a, 6B, &), & 7\‘2, 6)\3, 6>\4 and the terms coming from
integration by parts, equal to zero. We then obtain the corresponding
Euler's equations, constraint équatidns (‘.equilibrium and material
capacity), and set of boundary conditions governing the solution for:

t, w, v, 2, [3,' Xl: A’Z’ A-3.t)‘-4‘
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a+ZP I:A "(x) (w" 3t2):| + A, (x) b E v’

n2

2N2>=0

+ (y(x) + 2, 00)) (——Z———t AN

ED A€ + (g0 +2,0) B L

’

M) bEL) = 0
)\3(x) a(x) = 0
X4(X) B(x) = 0
Eb 3 _» _
(12 f- Py = 0
bEtv -N = 0
2 th /v'N’ N
N
E w = — - Ew 5 z—tz -
2 2
2 Ilzt /4 N
E w z 1 Ew E— —2:

b

t

ECw' i - (09246 BN] < 0

62+a (x)

-og +8%0)

1]
o

]
o

. Boundary conditions from calculus of variations:

IE TSI WO TETS), T’*-l’o -

{6 " étz) }o ¢’ |I;

(53 SCL )+a3(x)+x4(x>>(5~——‘§-—t—

" [—z" (60 £) 4 0y (x) 24 (x))

w2

2 ‘ lw~t2
___2.._.._._ -

= 0

03602, B Jow’ |

(5.
(5.
(5.
(5.
(5.
(5,

(5.

(5.

(5.

, -(xs(x) -)\4(x)) E——'bN]'GW ‘I(: =

(5

.14)

. 15)

16)
17)
18)
19)
20)
21)

22)

23)

24)

25)

=0

(5

26)
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{1 £ 2w t3'} 5w

= 0 (5.27)
0
3 n L |
e 16w | = 0 (5.28)
, 0 '
L
A, DEt}6v | = 0 (5.29)
0
+ Boundary conditions from equilibrium equations
wi(x=0) = 0 clamped at’ x = 0 (5.30)
w'(x = L) = 0 symmetry at x = L (5.31)
w (x = 0) = 0 clamped at x =0 (5.32)
3 7
(w" t7) L, = 0 symmetry implies shear force = 0 at
x= x = L (5. 33)
v (x=1L) = 0 symmetry (5. 34)

2. Necessary condition for a stationary value of M

It is assumed that there exists at least one solutioﬁ of this
system of equations, leading to a stationary value of M. This system
can be greatly simplified, and a physical signification will be given to
the condition characterizing this simplification. For convenience, we
will Specify two different loading systems: p, #0andp, = 0.

PO#O

Assume az(x) #0 and 'ﬁz(x) 74 0. Equatidn_s (5 17) and (5. 18) produce

Ay (x)

= )\4(,{).-—:—,‘ 0 (5.35)
80 ylé(X) = K; (x) =0 (5.36)
and -xg(x)' E’} A(x) =0 (5.37)
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Integration of Eq. (5.16) gives
.Xz(x) bEt = constant
but, from Eq. (5.29),

A,b B t)x=0 = 0 Dbecause 5 v(x=0)#0

We deduce
Apx)bEt =0 in [0, L]
or lz(x) = 0 because t # 0

Eq. (5.15) reduces to

I
(=}

(] ) £)”
aftgr integration,

(€)= Ky
but, from Eq. (5.25)

# 3.7 o . L
(M t7) ;= 0 because §Ww(x-_-L) #0

80, kI =0 and
(A t) = 0 in[o,L]
integration gives
W3

n . .
M =k,

We substitute this value into Eq. (5.14) 'and obtain

Q E who

2

(5. 38)

(5. 39)

(5. 40)

(5.41)
(5. 42)

(5.43)
(5. 44)

(5. 45)

(5. 46)

(5. 47)
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n
or ‘—NF- = constant (5.48)

This is a contradiction because, w'(x=0) =0, w'(x=L) = 0 and w'(x);‘O
for some x belonging to the open interval ]JO, L[. This means that
w'(x) has at least one extremum at x = X, . At this extremum,

w'(xe) = 0. So, w” (x) must change its sign at least one time in

”

[(0,L]. But, tbhas a constant positive sign, so, ‘—Z—

that w” (x) has a constant sign.. The only solution is w” (x) = 0. This

= constant shows

implies {1 = 0 from Eq. (5. 67)‘. This is a contradiction because 2 is
different from zero by definition (Eq. (2.17)). Therefore, az(x) £0
and |32 (x) # 0 are not solutions of this system. At this point, it
is convenient to study separately the two loading cases: N #0 and

N =0.

"N #0 (mixed stress case).

Subtracting Eq. (5.22) from Eq. (5, 21), we obtain:
c2Ew § o+ @) - i) =0 (5.49)

This equation is nothing else than 02 - 02 +'(az(x) - |32(x)) =0,
; t/2 " -t/2

By assumption, b #0, N # 0, w' # 0 because P, #0 (Eq. (5.19)).

(w" can be equal to zero only at some discrete point). From Egq.

(5. 49), we deduce

2, ., 2
e?x) - B2 £0 or a’(x) #plx) (5. 50)
Since ‘c,z(x) # 0 and Bz(x) # 0 is not a possible solution, the only solu-
tion is:

«C(x)=0 and BZ(x)40 (5. 51)
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2 : 2
or a“(x) # 0 and B"(x) = 0 (5.52)

because :

a®(x) # %)
The physical meaning to these equations is that the yielding stress %9
must be reached for all %, in the upper extreme fiber at y = +-§—, or,
in the lower extreme fiber af y = -%— . (At some discrete point where
w'=0, 0= 99 everyv)here in the cross section). This is the necessary

condition for a stationary value of the mass of material for Py #0

and N # 0.
N = 0 (pure bending stress state)

Equation (5.49) reduces to
a?x) - p%(x) = 0 which implies a”(x) = p2(x) (5.53)

Because az(x) # 0, -ﬁz-(x) # 0 cannot b‘e“‘,a solution of the system, the

only remaining possibility is:

az(x) = BZ'(x) =0 (5.54)

The physical meaning of this is that the yielding stress o, is reached
in the two extreme fibers of the structure, at any location x. This
is the necessary condition for.a stationary value for the mass of the

material forpy # 0 and N =0,

Pp=0 and NF#O

Assume az(x) #0 and [32(x')’k # 0. Equatioh.s (5.17) and (5. 18) produce
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Ayx) = Ayx) =0 (5.55)
so  Ajx) = A /(x) =0 (5.56)
and  Mj(x) = AJ(x) =0 (5.57)

Again, for exactly the same reasons as in the previous part (t £ 0),

)\Z(x) = 0 (using Eqgs. (5.16), (5.29)) (5.58)
if Pg = 0, we have nb bending moment, and as a consequency

w'(x) = 0 (5.59)
Substituting w” (x), Xz‘(x), X3.(x'), "X4 ('x)’ 1nto (5. 14) we obtain

Q = ‘0_ (5.60)

which is a contradiction because {1 = pb is different from zero.

So, az(x) #0 and p?(x) # 0 cannot be solutions.

Again, subtract (5.22) from (5.21) and obtain

«®x) = PB%(x) because w'(x)=0 (5.61)
The only solutions can be az(x) = ﬁz(x) = 0 ., The physical meaning
of this is that the yield stress % is equal to the membrane stress for
all x, The structure js cOmplet_‘e‘ly_yi'eldéd. This is a necessary
condition for a stationary vav.lue‘”‘for'-y;‘ the masé of material for

p0=0 and N # 0.

3, Solution

For normalization purpose, let § = §L~ .
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As a consequence, { )’ =dix( ) = 4

g ()

o e

The new interval for the dimensionless variabl.e € is [0,1]. The
loading system consists of an inplane_ traction force N> 0 and a
constant load per unit length Py < 0.

We have seen before thaf, because of the particular boundary
condition (clampedat E = 0 and symmetry), w”(@) must change its sign
at least one time in the interval (0, 1]. Multiple changes of sign are
not excluded at this- point, but, as will be seen in the following, this
does not correspond to the physics of the problem. -

1f w'(E) 5 0, Eq. (5.49) gives a>(E)> BZ(E). and the condition

defined by Egs. (5.51), (5.52) states that
az(g) ;4.0 .and ﬁz(g) =0 (5.62)

If w'(§) <0, Eq. (5. 49) gives a2(§)< B;‘(g) and the condition defined

by Eqs. (5.51), (5.52) is:
o%(2)=0. and P2(E) A0 (5.63)

The important location EO ‘where w”(go)' = 0 will be called a ''switching
poiﬁt". When we cross the switching point, the structure, previously
vielded in its upper surface (y & +‘-2£‘) will be yielded in its lower sur-
face (y = __21'; ) and vice versa.

Let us assume there exists only one switching point £, in the
interval [0, 1]. This comes from the physical argument that the
deflection of thé beam has only one inflection point in {0, 1]. Since

Pg is negative, the resultant displacement w must be negative. To
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characterize this type of deflection, it is reasonable to assume

w'(E) 0 for 0<EsEy (5. 64)
and

w'(E) =20  for By SE <1 (5. 65)

‘The location Eo, still unknown, must be determined such that the
boundary conditions and equations of the problem are satisfied. Using
the normalized variable, the two equilibrium equations are transformed

into:

. 3 ”
Ebt ¥
( w') -pn = 0 (5. 66)
bt W) apg =
and
bft v/ - N =0 (5. 67)

Double integration of the first one and utilization of boundary condi-

tion Eq. '.(5. 33) gives

4
) Py 12 1, 2

g .
W = — _—_— - E + Y (50 68)
N CT
By assumption, w”(go) = 0 (switching point). So,
2
F;0
Yo T "3 +§0 (5.69)

It is convenient to analyze the solutions separately in the two intervals

[0,€.]and [E,, 1]. We will use the subscript 1 for variables of the

first interval and subscript 2 for variables of the second interval.

0 <E < go
_ wl”(i) is < 0 by asé_umption. This leads to aZ(Q)E 0 and [32(/5')7-‘0.
' t
The extreme fiber of the upper surface of the beam (y = + —21—) is
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yielded in tension.
Eq. (5.21) can be rewritten in terms of the normalized variable:
E Wll t . B .
171 N
- + = .
N L2 bt 04 (5.70)

Direct substitution of wlﬂ'from Eq. (5.68) into Eq. (5.70) gives
, 2 oy .

Py L (52 ) _ A

=5 - g + ‘}’0 =0 : (5.71)

The product of two roots is negative, so the design t, will be given .

by ‘the positive root.

N / ' g gz -
t, = ZbGO(H 1-24 (35 - €+ ‘yo)) (5. 72)
Py 00 b Lz.
where w, = ———— |is called the Load parameter.
N
go =g =1

—_—

In this domain, wg is > 0 by assumption. So, az(g) # 0 and

pz(g) = 0, The extreme fiber of the lower surface of the beam
t 3

(y = - —- ) is vielded in tension. Eq. (5.22)in terms of normalized

variables is:

t
o 3 T

Again, substitution of Wg from Egq. (5. 68) into Eq. (5. 73) gives

2 i T |- .
R S 1A SR '(“Z"E’L”o) e S

For the same reason, we choose the positive root

tZ = ‘2-_'Nb_0_0_(1 ‘+_«/1 + 24 (,Qb(:%— -~ g+ 'yo) ) (5.75)
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Pg OObL2
with the load parameter Wy = _T__

Determination of f‘;o = EO (wb) from boundary conditions

Integration of Eq. (5; 68) gives

4
. 12 p 2 : .

’ “ro g

w (E) = s (3 -E+7y,)dE for § €[0,E ] (5. 76)
) 2 (5 -5 ) |
and
g .4 ,

, , 12 pOL ;.2 | . ’

w ()= w (%o)+g —3 —z—-§+yo}d§ forgetgo,lj (5.77)
By Ebty :
w'(0) = 8  is automatically satisfied.
w'(l) = 0  will give the following integral condition to find the
unknown constant 70 .
%0 4 1 L4
12 pOL §2 12 p-OL 52
S 3 (—f-iwo)d“S 3(‘2‘-";“’0)‘15:0
: : By

or

g g2

0,.2 1 ('— - §+70)d§
S (5 - 5*"0 3 S

[ ]1 24wb(-——-§+‘ym)] 0[ J1+24wb(e _§+'yo)]3

(5.78)
Closed form ihtegration é.ppea.red difficult, so numerical techniques

were. used to find. §0 50 (wb)

In the case of small or large values of the load parameter Wy,

it is possible to find a closed form solution for §0 or ‘yo.'



-48-

: Pg % b L2
Asymptotic value of €O for small values ofw.b S
N

Let wb = ¢, small but different from zero.

2 .
Because (_E_z_ -+ yo) is bounded, in [0, 1], it is possible to perform

the expansion of the equation (5.78). Keeping only the first order

terms, (5.78) is simplified in the following manner:

0. 2 2
N CITTTI I

1 FS-2 FS.2 2 2
+ (G - gvyg - G -2y 18¢} dg + 0(%) = 0 (5.79)
g0
Integration can be performed in closed form, and we obtain
52
1 >0 4 .5 13 .4,5,3 4.2,2,. 2 2.
(5. 80)
When ¢ tends to zero, 50(0)‘15 the:solution to the equation
2
-3 - 45,0 =10 (5.81)
giving
£,(0) = 1 - — = 0.42 265 - only root in [0,1]
.. 3 |

To know the behavior in the neighborhood of £o(0), let
§0 = EO(O) + 6 where 6 is small, §0, 502, 503, ,Eg, Eg can be approxi-
mated. We substitute these values in equation (5.80), use equation

(5. 81) and we obtain, aftef keeping only the first order terms
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§(1-8,(0)) + 18D + 0(c §) + 0(6%) + 0(c%) = 0 (5. 82)
where
D=1t E5(0) - T3 50(0) + 5 £2(0) -5 52(0)+ 2 0) - &

Substitution of the numerical value of EO(O) in this equation gives:

[+
]

- 0.159487 x ¢

- 6.270100 x &

or €

For small values ¢ of the load parameter Wy, the curve go(wb) can be

approximated by
o = 5o(0) - 0.159487 x ¢ (5. 83)
This corresponds to the straight line shown in Fig. 2.

Asymptotic value of £ for large values of wy

Wy becomes large when the bending effect is much larger than
the membrane effect. As a limit case, let's consider the case of pure

bending, when N = 0. The design variable t reduces to

V/— poLz- 52_‘ . _
t, = -6-‘-@—:(7'-54"‘)’0) in 0 £ € <€ (5. 84)
and .
/ Pl 2 L |
t, = /6 _6_6“5_7 (35 - &+ _ﬁj.1n,€0 <gf<1- (5.85)

The integral condition (5. 78) to find €0 is given by boundary conditions

w'(0) = 0 and w'(l) = 0. It reduces to
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dE L a8 =0 (5. 86)
S0 [%—2— - +70]% §So l:'(gz_z" 5 +70)]%

There is a singularity of the integrand at & = €0, but we know that a
singularity of order % is integrable. So, we will not run into trouble.

After integration, Eq. (5.96)_becomes

£y~ ‘
Log g p—— =

- (5.87)
)z (-2_0 +8p) -1

which can be written:

i |
T [ g .
go_1-eﬁ{j2<-%+go)-1} =0 (5. 88)

The solution of this equation in the interval [0, 1] is

B

§0 = 0.6015

This is the vertical asymptote of Figs. 3,4. The values of £o dis -
played in Figs. 2, 3, 4 were found_kby‘ numerically evaluating Eq. 5. 78.
As can be seen from the -figures the numerical results agree nicely
with the asymptotic value . previously found. It is interesting to note
that the switching point is ‘alWays‘lpc_a‘téd'in the rather narrow region

0.42 < go < 0. 60.

4. Comparison with the equivalent uniform thickness beam

The equivalent beam of uniform thickness (subscript u) will be
the uniform thickness beam of minimum mass able to support the load

system without exceeding the yield stress Co-
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Uniform thickness design

Triple integration of the first eqﬁilibrium equation (5.6 6),
use of boundary conditions wli(O) = 0, wli(l) = 0 (clamped at § = 0 and
13

symmetry) and wu(l) = 0 (no shear force at the center for symmetry

reasons) gives:

3 .

Ebt 3 2
' u 4 (€ B g

2w et (5 3) (5. 89)

The stress in a fiber is
E 4

oly,8) = - — g+ (5. 90)

Y, ) 2 y bt J

L » u.

wl';(g) can be found from Eq. (5.89). It can be checked that the maxi-

_ _ t .
mum stress in absolute value 0_  , occurs at £ = 0 and y = + =
max 2
Leto = 0,.; we obtain
max 0
2 po L2 N
Ymax -~ %0 = ¢ 0) = - 2 + bt (5. 91)
u bt u
+T u
which is equivalent to:
2
L
r N Pg _
t Oy -ty 5 t2—p— =0 (5.92)

The product of the two roots t_ , t
Y1 "2
reasons, we choose the positive root:

is negative, so, for physical

__N — )
ty “Zhoy (1+A/1' "B, o (5.93)
Po 9 bL

where wb = _1:]'—?:——

This is the thickness of the minimum mass uniform thickness beam

able to support the load system py and N.
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Normalization:

The design which corresponds to an extremum of M (uniform

strength), can be normalized.by the design of the uniform thickness

beam

SO
1+«/1-‘24wb(52--§+y0)

-~ 1+,\/1-8wb

1+/1+24w (Ig B+ y,)
t, = 5, S5 s 1 (5.95)
K 1 +/T-8w,

Figure 5 represents t = L(wb, €).. In order to quantify the gain in
mass realized by using the design of uniform strength, let us form

the quantity

o 1
Muniforrn strength '
Glw,) = 57 _ S t, §+St dE (5. 96)
. uniform thickness ~ £
0

It is seen in Fig. 6 that an appreciable gain is achieved for values of
Wy less than -4. The advantage of using the uniform strength design
instead of the uniform thickness design is evident as soon as the bending
due to the load sysltem is not negligible. Maximum gain occurs for

full bending (wb = =00 ).

For large va;lues of|wb|;

t “'~f-~/( -8+ %) ols =8 (5.97)
~«/’"[(-——§+7) féos%ﬂ (5. 98)
3 1 c
So, 0 o g
G(“’b)=g d§+gg tzﬁ:@ﬂ with v = - +§
0 —~ .
0

W ™ = | (5.99)
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For large values of Iwb| s i_%,o ~0.6015 (found in previous part),

so G(wb) =0,561327

wb =00

This asymptote is shown in Fig. 6

5. Concluding remarks

It should be remembered that the above analysis neglects the
shear stresses due to the normal shear force., This assumption be-
comes invalid when the thickness is small, and in particular for the
predominant bending case, neéar the switching point where the shear
stress goeé to infinity. Shear stresses can be considered if included
in the evaluation of the maximum local generalized stress which is
compared to Og° Another approach would be to give a minimum allow-
able thickness. This condition would generate a constraint of the

form t -t - ?2(:5) =0 where ~?(5), an unknown scalar

minimum
function of space x. The assumption of only one switching point in
the interval [0, 1] permits us ‘to find at least one solution. It is the
more realistic physical consideration. - Compared to the uniform
thickness beam, a saving of 40%‘61" more canvbe achieved for values
2 16 by using a proper design.. . This corresponds to a greater

of 'wbl

contribution of bending in the total stress: o = op + O
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Vi. EXAMPLE 2: CLAMPED-CLAMPED CIRCULAR ARCH

A solid circular arch of radius R, uniform width b and total
opening angle of 2 ®, has its two ends rigidly clamped. A uniform
load per unit length Pg constitutes the loading. Because of the arch -
effect, this load will generate bending and membrane stresses. One of
the main differences from the beam_problém is that the membrane
stress and bending stress are coupled. A linear elastic isotropic
~ material and small deformations are assumed, The yielding stress
% characterizes the capacity of the material. The width b is assumed
constant, éo, the design variable will be the thickness t.

This problem is statically indeterminate and an analysis simi-
lar to the beam analysis will be used to derive the necessary condition |
for maximum strength. The coordinates systems and the loading are

shown in the following figure.
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w and v are the normal and inplane displacements. The load per unit
length Py is acting along the y axis and will be negative, so that therg
will be a compfessive force generated in the arch. The design is sym-
metric with respect to 8 = ®, No consideration is given to stability,

which could be the design constraint for a physical problem.

1. Preliminary

The equilibrium equations can be deduced directly from the

diagram:
P
Q ’ A
8 1 I T Mg + 15 48
\ | dNg-
NE’{ i Ngt g 46
m / dQ
8 &}
Qe t 35 de
they are:
dN8 '
as - Y =0 (6.1).
dQe ' :
..—a-—e——_— Ne +p0R= (6‘2)
amg |
- qg - R =0 (6.3)
with Ne = inplane force
QG = normal shear force
P = bending moment

From geometrical considerations,

curvature = K = - —lz (w' +v’) {6.4)
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mid surface strain = €y = ;—{ (v + w) where ( ) = % (6.5)
The stress is given by 0O(y, 8) = E(E: +y K) (6.6)
o(y, 8) = E[R (v +w) - y "ty )] (6.7)
so +t/2
Ny = bS oly, 0)dy = btE £ (v/ + w) (6. 8)
")
t .3
m. = b o(y,e)ydyg-bE———z(w +v') (6.9)
0 -t/Z 12 R

After substitution of Ny, Wle, the equilibrium equations reduce to
[t/ +w) )’ - == [P +v)] = 0 | (6.10)

-—zt(v +w)--1 [t( ! ¥ )] ?0- = 0 (6.11)

2. Formulation of the Problem

The shear stresses are assumed negligible in this analysis. The
stress distribution in a cross section is linear but non-antisymmetric.
(It would be antisymmetri'c‘if' (v'+w) were identical to zero. But this
would lead to Pg = 0 which is not compatible with the original assump-
tion p # 0). For this reason, the maximum stress in absolute value
).

The constraint equation coming from the limited capacity of the mate -

oj e

'0 |will occur in one of the extreme fibers (y = +-§— or y = -
max _

rial can be formulated exactly the same way as for the beam, namely,

Loy esal = og

Ict/ZI < 00
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which is equivalent to the two equations:

: 2
EZ{EIZ(V@W)Z- (V+w)(w+V)+4 wv)2}-cZ+ado)=0 (6.12)

2 '2 A
{——2( “+w )+-—3(V+W)(w+v )+ int (w+v)} o +p(e)—o (6.13)

a(f) and B(0) are two switching functions unspecified at this point.

The load p, is symmetric with respect to 8 = ®. As a consequence,

the design will also be symmetric with respect to this point, and it is
sufficient to analyze the structure in the interval [0, @] only,

Let us consider the functional -

V
M = Sntde

+ S\;xl:(e)E(v% w) - W t (f””*"l)] a0

v rn R
+ Suxz(e)E(v’+w) + {t(v+w)} - S,E ]de

Vo . | 2
+ S“)\3(9) {EZIZRLZ .(v:'+w)2.-!§3- (vHw)w+v’) + 4—2{—4(W'+v,)2]

2 2
=~ 9 t+a (9)}d9

2 ' v
2 r.2
AL(B)E (v+w) + (v+ )( +v)+—( Tiv )
S 4 { [_2 "R3 w)(w 4 rE w
- o +}A[32(9):Ud'e. (6. 14)
A (8), )\2(9), )\3(9),’ )\4(9) are ﬁnknOWn Lagrange multipliers.

A

Sﬂ td 6 represents the massvto'be-optimized in the interval [y, v]
U

within the specified ¢onstraints.



-58-
The second and third integrals indicate that the two equilibrium
equations have to be satisfied, and act as constraint equations (the

| R2
quantity t(v'+ w) + {t(v+ w)}” - —FO_E_ is the second equilibrium
equation after substitution of [t3 (w'+v')]” by using the first equilib-
rium equation (6.10)). The fourth and fifth integrals represent the

constraints on the capacity of the material.

It has been seen before (Eq. (4.6), (4.7), (4. 8) that

5(M) = 0 (6.15)

(variation of M with respect to all the variables 1nvolved) will produce

the set of equations for M sta.t1ona.ry, or M = SQ td®o is stationary,

i

with the four constraints equatlons satisfied. Wé‘perform this varia-
tion, carry out the appropriate integrations by parts, set the variable
coefficients of 6t, 6w, 6v, 6a, 6B, 6)\1, 6"2’ 6)\3, 6)\4, and the terms
coming from integrafion by parts equal to zero. We thus obfain the

system of differential equations and the associated boundary conditions

governing the solution for t, w, v, a, B, )\I, AZ’ )‘3’ X4.

+ Equations

Q-2 (e) (v "+w) - it—z- (w”+v)]‘7+?x O) v+ w) + L.7(8) (v'+w)
12r% e 2 -
2.

2
+ (A (9)+>\4(9)) (W +v ) —()\ (9) )\ (9)) (v “+w)(w +v) 0 (6.16)
R

O
-\ (e)t+-(—jE;;;Z~ + 000 + A, (O)t
E25 22

+ (x3(e)+x4(9)) 2 (v ) + [ (044(0)) _—I 2(w” v )]

524
- (5(8)-14(8)) ;— (w+v") =[5 (0)- x4(e)) (v +w)] =0 (6.17)
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-1 (9) t-—— +x(e)t+x”(e)t
{ 1 ( 12R > 2
2 22
F0L0) + 0,00 ( By 2(v+w) + X 2(v 4+ w")
3 4 (;Z _4R4 )

2
-(x(e)-x W)) [Zv +(w+w ﬂ}
R

)\3(9)(1(9) = 0

)\4(9) B@) = 0

1 "

t(v '+ - — t (w'+v’)
l:(v w) 12R2 w tv :l X

’ ’ ” Po R
t(v’ +w) + [t(v +W)] - —T-E—- 0
Ez{lz(v'+w) - (v "+ w)(w” +v )+-——t—-— it 2} Ogta (6)

R

% W

E%{ 12(v+ )2 F g (v )+— )2} a2 +p?(e) =

Note: The four last equations are the constraint equations.

. Boundary conditions from calculus of variations.

2, o ‘ R T _‘,‘ \Y
-{"1(9) [(v’+w)- 13—5—2(w”+.v’)] +j‘x.‘.2‘(e) (v'+'w) ’-xz(g)(v’+w)} 5t ' =0

2R
7]
= 0
’ _
{x (8)t ()\ I(e)t3 A (G)t X, (Ot ,—(K (6)-x (9))
-l—=—) + - +
-1 12 R R>

-Bx_,,(e)n‘}(e)) ———4- ( Y ):I } 5w |

(6.
(6.
(6.

(6.

(6.

(6.

(v +w)]

(6.

.18)

19)

20)

21)

22)

.23)

. 24)

25)

26)

27)
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{"——z‘xl o 0) (8)-1 (er)) 5% )
+A ( t - ()\ —5 (V'+W
12R
; 2.2 LY
+(x3(ey+x4(e))3~ﬁl-2( +v')} sw' | =0 (6.28)
4r* :
7
) (e)t :
{ } & w’ | (6.29)
12 R® .
t3 " 2 ,
{-nv® ( Sy ) a0 00 - 050) - MO EL v rwew)
4+ (L (8)4X,(9)) Ezz<kV““”)+ t* (v'+w”5)}6v|V==0 (64 30)
3 4 RZ  ar% "
£ / ; v
{xl(eu -2 (0) =, + A (00 xz(e)t} §v’ | =0 (6.31)
12R M
" A"
{0t} - 0 (6. 32)
Boundary conditions from equilibrium equa.tions'
w’'(6=0) = 0 | clamped at 6 = 0 _ (6.33)
w'(6=0) = 0 symmetry | (6.34)
w (6=0) = 0 fixed at § = 0  (6.35)
(t3(w”+v') )é:®=0 symmetry - shear force =0 at § = @ (6.36)
v(6=0) = 0 _ fixed at 6 = 0 (6.37)
v(e=@) = 0 symmetry (6.38)

3. Necessary condition for stationary value of M

As for the beam, a discussion of this system of equations,
together with the boundary conditions, can bring some special proper-
ties to the switching functmns a(9) and [3(9)

Subtract Eq. (6 24) from Eq. (6. 23)
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-2t
R3

(v'+w)(w”+v’)+a2(e)-pz(e) =0 (6.39)

The quantit (v'+w)(w”+ v') is equivalent to the product N M ,. But, N
d y P 8”0 8

or 7710 are different from zero except at all but some possible discrete

points. So,
az(e) - [32(9) #0 implies az(e) # (32(6) (6.40)

Assuming az(e) # 0 and [32(6) # 0.

From Eq. (6.19) and Eq. (6.20) we deduce

X3(6) EK4(6) =0 (6.41)
Ay (8) = x;(e)': 0 (6.42)‘
N N # - 6.43
A5(0) =1y (8) = 0 (6. 43)
and Eq. (6.16), (6.17), (6.18) reduce to
’ | ’ 3 tz ” | Y ” ’
Q- Xl(e)l:(v +w) - 12—RZ (w +y)J +)\2(6) (v -’!-wk)+)\2(9)(v +w)=0 (6.44)
. )\.1(9)1:3 ” ,
- )\_i(e)t + (—12—;2 ) + )\2(9)1: + )\2 et =0 (6.45)
’ t3 4 N ’ ‘
(' MO (€ =T )+ A0 Ay ‘9')"> 0 (6. 46)

The initial arch defined in the interval [0, ®] can be decom-
posed in two elementaryarches néi éﬁd_ n??; by a cut at an arbitrary
location 8 = §_ and matching of’thé \bOunc;]‘a"ry’conditions. These two
arches are defined in the interval [0, eaI and [Oa, ®]. We assume

there exists a location ea‘ such that
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w', w', v, v/ #£0 at H = 6,
The purpose of the following is to find a necessary condition to make
the mass of these two elementéry_ arches stationary. This will corre-
spond to a stationary value of the mass of the complete arch becaﬁse
the location Ga is arbitrary, |
Arch No. 1: _ This concerns the interval [0, Oa], sopu=0, v= Ga.
From Eq. (6.29) X, (6 =6_) =0 because dw” (6= 8,) #0.
From Eq. (6.32)A,(8=0) =0 because 6v'(6=6_) # 0
Using these results, Eq. (6.28) reduces to ‘
A/ (B =8)=0 because sw'(8=0) # 0 .
In the same manner, Eq. (6.30) reduces to
| xz"(e. = ea) = 0 because §v (6 = Ga)_ # 0
Substitution of these values in Eq. (6.16) gives (8 = Ba) = 0. .But,

Q is assumed to be constant s0,.
Q = .0 in [o, eaj (6.47)
This is a contradiction.

Arch No. 2: This concerns the interval [Ba, ®], so, U= Ga, v = 0

Exactly the same method can be used to find the same contradiction

N = 0 in E‘B‘a, e7 (6.48)
This can be done for any arbitrary Ga meeting the conditions w’, w”,
v, v/ #0. Because of these contradictions, the assumption that

az(e) # 0 and [32(9) # 0, cannot be true.



-63-

The only possibility is

@?®) = o0 and B%(6) # 0 (6. 49)
or

«2©®) £ 0 and B2@) = o0 (6.50)

This set of equations constitutes the necessary condition for a station-
ary value of the mass of the arch. As for the beam, the physical
meaning of this condition is that the yielding stress 0y must be reached
for any x (except at some discrete point), in the upper or lower ex-

treme fiber at y = £ % K

4, Séluﬁon
According to our sign convénfion, the load per unit length Pg
will be < 0.
Eq. (6+22)canbe integrated dire'ctly to give
] :

P

t(v/+w) = —S— (Acosd + Bsind + 1) (6.51)

Tl|o

Assume 0 < % ; by use of Eq. (6.21) an‘d.‘boundary condition (6.36), this

can be written

rR®

0
b E

tv'+w) = [A(cos 8 +tg ®sin€)+ 1] = £(A, 8) =f  (6.52)

Up to this point; “A"is an'unknown constant, but its interval of definition
can be estimated. One can show that f(A, 0) is monotonic and that the

sign of df/d6 = - sign A, providing that Py < 0. But sign of df/d6 =sign
of dNe/dewhich is > 0 because dNG/dO = QG’ and Qg is > 0 at 6 =0. So,

A must be negative. On the other hand, the sign of f = sign of NG' But

the inplane force Ng can only be of negative sign (compression), f <0
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will require - cos ® £ A. So, A can be bounded by the interval
[-cos®, 0]
Because of the pa rtiqular boundary conditipns, (clamped at
8 = 0, symmetry at 6 = ®), the curvature K = - Elz (w”+v') must
change its sign in [0, 8] at least one time.

IfK>0, Eq. (6.39) tqgether with N9 < 0 requires

&2y > pco) ' (6.53)
and from Eq. (6.49), (6.50)

«?(0) # 0 and p2(8) = 0 (6. 54)
If K<0, Eq. (6.39) together with Ng < 0 requires

oC©) < B0 (6. 55)
and from Eq. (6.49), (6.50)

@®(®) = 0 and B2(8) # 0 (6. 56)

As for the beam, the location 6 = 80 where K = 0 is called the switching

point and characterizes the same properties.

Using the same argumentation as for the beam, it is reason-
-able to think that there is only one switching point in [0, ®] and that:

K = 0 for 0<6 < 90 (6.57)
and

K < 0 for 6,0 <0 ‘ (6.58)
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(6.57) and (6.58) means that the deflection w is negative.
Eq. (6.21) can be integrated to give
tv +w) - ——n t3(w'+v') = f. (constant) (6. 59)
12R :
At the switching point §,, the curvature K = 0.

fO is found to be

2
fo = t(v +w)ezeo ol - Acos 0+tg .S1n60)+11_.=£(A,9 )
(6.60)
and
12
K = -(f—fo) —3— (6.61)

t

0<9 < 90 (Subscript:1)

K 2 0 by assumption requires 02(8) # 0 and [32(9) = 0. The extreme
fiber in the lower surface (y = = 1—:2-) is yielded in compression(yielding

stress in compression is O negative). Therefore

0’

| (vy+wy)

N+

- We substitute for vll + Wl" K and solve for f. We identify this ex-
pression of f with the one of Eq. (6.52) and obtain:

2 Rog

ty, - tp f+6RME-E] = 0 - (6. 63)

The product of two real i'qéts i_s‘,negafive'.‘ . So, we will chose the

positive root by physicéi Cc}ﬂéiderations.
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It can be written:

{ / A(g(0) - g(8,)) _
= (Ag(e)+1) 1+ /1424 } (6. 64)
w, (Ag(6) + 1)

P : :
with @ = 0 being the load parameter
a Oob N

g(8) = cosB +tg®sin @

g(eo) = cos Byt tg ® sin.eo

9 <8 <® (subscript:2)

This time, K < 0 by assumptlon So, 02(8) = 0 and BZ(O) # 0 and the

extreme fiber in the upper surface (y.= + ——) is y1e1ded (0 negative)

(vz' + w2 _ 2-
Oygr2 = E [“—R—"‘ t2 K] = 9 - | (6. 65)
Again, we solve for f after substitution, using Eq. (6.52) and obtain:

(2 Ra,
2 F

-ty £-6R (fy-f) = O (6.66)

the physical root is:

" (. /  ARO=EE)
t, = @ >@Ag®+1) {1+ /124 ' (6.67)

» w, (Ag(®)+1)®
where W, g(G),’ g(eo) have the same significance as for tl. In the
interval [0, ®], the design t is defined by
t(8) = tl(e) ~ for 0 <0< eo (6.68)
t(9) = t2(9) for GO <6<® (6.69)
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t depends upon two constants A, 90 which have to be found from the

boundary conditions.

Determination of A and 90

From the first equilibrium equation after integration (Eq. (6.21)),

we can find

e vl E— 12 R (6. 70)

Let us integrate on [0, ®]

®
’ ’ (f-fO) 2
(W' +v)g_g- (W +v)e_0=-g —2 12 r% a8 (6.71)
e 0 t '
but, from boundary conditions,
w'(0) = 0 clamped
w'(® = 0 symmetry
v (0) = 0 fixed supporj:
v (® = 0 symmetry
® (f-f,)
So,S —- df = 0 (6.72)
0 t
which can be rewritten
]
%(-1) P (5-1,)
Yy ae v § 2 a8 = o0 (6.73)
0ot o, t2

0

- This integral condition gives a relation between A and 90. If we fix

8, Wwe can find A such that this equation is satisfied.
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Now, let us find the second relation between A and 90. v/’

can be substituted in Eq. (6.70), by its value from Eq. (6.52) giving

(£-£.)
w o-w = 30 12 R? -

t .

[

= ¥(a, 8, ©) (6. 74)

This differential equation is linear in w. Usingthe boundary conditions:

w(0) = w'(0) = 0, we find the solution:

e .
w(B) = S sinh(8-T) ¥(A, 8, T)dr (6. 75)
)
6
w'(8) = S cos h(8-T) ¥(A, B, T)dT (6. 76)
o
But, w'(®) = 0, so
® -
S cos h(®-T) ¥(A, 8, T)AT = 0 (6. 77)
0
with -
(5) 5 ¢
Y(A, 90-,1‘)': —5 12R o forOsGSBO (6.78)
) 1
and
(f"f‘o) 2 f
WA,SWT)= —TT;JZR -1 forp.sp<0® (6.79)
ty 2 0

This is a second integral relation which, together with Eq. (6.73), is
sufficient to find A and 8.

After substitution of ty, t, f, fo in Eq. (6. 73) and (6. 77) we obtain:

2 g(0) - glo,) |
S ; d8 = 0 (6. 80)
OﬂAg(9)+1)(1+H)} :

and
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S® o e){ 48 Alg(0)-g(0,)] 1 ] e 6
cos - - de =0 (6.81)
A (agernim 1’ 2 A
where 1
/ Alg(0) - 8(0g0]
H = 1424 — -
w, (Ag(8) + 1)

with + sign if 8 € [o,eo]

and - sign if 6 € [90, ®]

It should be noticed that, for a given opening angle, A and 60 are only
functions of the load parameter w,, because Eq. (6.80) and (6.81) are
only functions of ® and w, It was difficult to find a cloéed form

solution to Eq. (6.80) and (6.81) so a numerical procedure was used,

Remarks about numerical procedures

For a given opening angle and load parameter, the numerical

scheme is to set 90, and to deduce A; and A,, from Eq. (6. 80).and

(6.81). We know that A1 and A2 must belong to the interval
[- cos®, 0]. We will have a -solution when A, equals A,. The first
difficulty arising is that the solution of Eq (6. 80) or Eq. (6.81) is not

always single valued, (generally, two roots for each). Nevertheless,

p

AR w, less than 0.2, there is no major
o4 b a

difficulty and, numerically, we have found only one couple 60, A

if we consider values of

satisfying Eq. (6.80) and (6. 81) for given values of ® and w, . From

a physical point of view, values of w, greater than .2 are unreasonable.
For values of w; between 0. 08 and 0.2, double precision must be used

’ because the quantity A, -A,, which must be zero, tends to be insen-

sitive to 80. For greater values of wa (greater than 0.2), numerical
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difficulties for some values of the opening angle (10% @< 300) might be
encountered. The uniqueness of the solution(eo, A) is not well established
nufnerically in this case, and it is difficult to know if this is a problem
due to numerical techniques, or, if really the solution of the system
of Equations (6. 80) and (6. 81) is not unique.

An automatic numerical procedure was developed for small
values of w, (less thanflo-z), but for greater values, the lack of
characteristic properties of Eqs. (6.80) and (6. 81) made easier the
use of a more basic techniq_ue. (The quantity AI-A2 is oscillatory
if we vary 90). The two unknown constants GO = 9'0 (®, wa) and
A =A(O, wa) are represented on Figs. 7 and 8 for some values of
the %openihg angle ®; For small values of wa, one can predict the

lo cation 90 of the switching point.

» Asymptotic value of 8, for small values of the load parameter w,

Let w_ = ¢, small but different from zero.
The quantities mainly involved in Eqs. (6.80) and (6.81) are A and
Ag(8) +1. A priori, we do not know the behavior of these quantities

for small values of w, . | There exists only three possible combinations,

a) A= 0(1) and Ag+1=0(1)
b) A = 0(l) and CAg+1=0€™) m>0
c) A =0(") ~ and Ag+1=0(1) n> 0

because A belongs to [ - cos®, 07 and that g(8) is bounded in the
interval 8 € [0, ©T.
Using the physical argument that, for small values of w_, the

forces in the structure are small, the thickness will be small, and,
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the bending stress 0,=-E y -—12 (w” + v’) will be small everywhere.
B R S

After substitution of w" + v’ from Eq. (6. 70)

| 2 1 .
U8B max (9),\ = l 6 Py R A(g-go? :c—z——- (6.82)

b
Except at the switching point 8, the quantity g(0)- g(go) is finite and

different from zero. The thickness t is defined by Eqs. (6. 68), (6.69)

in case a), Oop = 0(1) (6.83)
in case _b),‘ om = 0(1) (6. 84)
in case c), on = 0(1) if 0<nc<l (6. 85)

op = O(enJ) = O(ep)_o)v" if 1<n (6. 86)

From this result, we can deduct that the only possible configuration is
A = 0€Y9, g>1, A gtl =0(1) (6. 87)

(this corresponds to case c)).

As a consequence, Eq. (6.80) reduces to:

®
(e - ge1a8 =0 (6. 88)
0 .
After integration; 90 is found to be the solution of
® cos 60 +0te® sinHOZ-:tg@ =0 (6.89)

This equation can be solved numerically to give the results shown in

Fig. 9.

5. Comparison with the equivalent uniform thickness arch

The equivalent arch of uniform thicknéss (subscript u) will be

the uniform thickness arch of minimum mass able to support the load
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without exceeding the yielding stress 0o The uniform thickness
design is found in the appendix, Eq. (A.17)

R 1 G tg O |
t = w5 [C+l] [1+[+ 24 — --&-J (6. 90)

where C is an unknown constant which can be determined from the
boundary conditions. We canuse tuto_no rmalize the design which gives an

extremum of M. The normalized thickness t is defined by

t
t =t = 1 for 00 <8 (6.91)
L A3 t 0
u
and
t2
t o= t,= o for 8,50 <0 (6. 92)

t is only a function of w_ and ©®.
Figures 10 through 17 represent t for opening angles from
10° to 80° and various values of w, -

It can be noticed from these figures that:

f

t at 8 = ® is decreasing when w, increases

t at 0= 8o is decreasing when wa increases

fl

t at B = 0 decreases and then increases when w, increases.

It is also convenient to quantify the gain in mass by looking at the

quantity

Muniform ‘strenthh _ (6.93) |

Glw,,0) = enE
uniform thickness

G(wa,®) is shown in F‘ig. 18. In engineering applications, (wa ~ J.O-2
to 10"1), a noticeable saving of material can be achieved by using the

uniform strength design.
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6. Shallow arch

If the assumption of a shallow arch is made, the opening angle

2 ® has to be small. The equations of equilibrium (6.10) and (6.11)

reduce to

tv' +w)]" = o (6. 94)

and

"\
)

p
- E v w) - £ e +.-bQ = 0 (6. 95)
R

12R*
because the projection of Qeon the centroidalaxis is assumed negligible
compared to Ne, and v/ is small compared to w” in the expression
for the curvature. Therefore, the _inpklane force Ne is constant.

But, for the general arch, the inplane force is given by

bE

Ng = 3 tlv'+w) :_po R[A g(6) + 1] (6. 96)
o Ny
So, Ag(0)+1 = IWR (constant)’ (6.96)

lh

but Ag(®)+1 A+1+ 0(®z)f"for,srna11‘ values of ®

N

So A+~ I#R | (6. 98)

Expanding g('e) - g(BO) for small @ gives,

2
. 2
g(®) - g(85) =- 0@ [%— -5+ 7, ] (6.99)

2

Y%="72 % 5

After using these results, the integral relation (6.80) which relates



74

the two unknown constants A and EO can be written

2 2
E~ [E . 1 g
0 |'3—-8+ vy, |dE = - &+ y,1dE
S [2 20] N [2 0] =0 (6.100)
0 [1+/‘ 24w(———-§+y0]3 g, E+ﬁ 2440( -§+'y0)]3
with
_ OOb.A®2
w = + —— ——— load parameter of the shallow arch
Po (A+1)

This equation is identical to the equation (5. 88) used in the problem

of the beam (wb is substitufed by w). The solution is represented by
Figs. 2, 3, 4 and this can gi‘éatly éimp_lify the numerical solution of
the shallow arch. Only the equation (6.81) has to be solved by trying
different couples A and 90' sa:tisfying (6. 80), the solution of which we

already know.

7. Concluding remarks

The restriction concernin_g the shear stresses mentioned in
the concludiﬁg remarks of the beam analysits is still present in the
analysis of the deep arch. It would be possible also to incorporate a
constraint equafionv on a minimum allowable thickness. With the
assumption of only one switching point, we are able to find a solution
in the interval considered for the load parameter. Uniqueness of the

solution in this interval seems established from a numerical point of

view, but, for greater values of the load parameter (wa >0.2), it

is difficult to draw such a conclusion. For some range of W, the
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saving in mass of material is appreciable when we use the "optimum
design'' (uniform strength). The efficiency of the uniform thickness
design increases when we increase the opening angle. This means
that, for large values of opening angle, the stress state tends to be

dominately membrane.
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VII. CONCLUSION

Maximum stiffness: Assuming a direct equivalence between stiffness

and external work, a necessary and sufficient condition for maximum
stiffness is derived for all types of structures which have membrane
and bending stresses only. This optimality condition which character-
izes an energy approach to the optimal structural design can be
summarized by:

oW 2

55 C d (7. 1)
with t, the design variable, W,,‘ external work, and d a constant. 1t
must be remembered that this is only a local optimality condition and
that the uniqueness of the solution of the resulting system of nonlinear

differential equations is not estz:iblishéd.

Maximum strength: Statically determinate problems can be treated

by a direct optimization of the design variable at each point of the
structure, as long as the capacity of the material is not exceeded.
Statically indeterminate problems cannot be treated in this way, and
otherr techniques must be used.

In case of pure membrane or ?ure bending stress states, the
optimality condition for maximum strength is shownto be identical to
the optimality condition for maximum stiffness. Eq. (7.1) which is,
from this fact, the 6ptirnality condition for maximum strength, is
identified as a maximum generalized stress criterion and is directly
related to the capacity of the material. In éase of a mixed stress case,
this is not true. In this ca:se one must choose a suitable stress cri-

terion such as maximum allowable stress or yielding criterion, to
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characterize the capacity of the material through an inequality con-
straint. With the help of the calculus of variation, a necessary condi-
tion is derived for a stationary value of the mass of a structure sup-
porting a given load.

For the two examples considered, the optimality condition
derived is a uniform strength design. This means that the two in-
equality constraints become equalities in the intervals defined by the
two switching functions., This method can be extended without major
difficulty, to fhe case of an axisymmetric shell of revolution of pre-
scribed geometry, thickness excepted. The material capacity con-
straint can be specified by any yielding criterion which must not be
violated anywhere in the structure. In the case of the pure bending
of a beam, a substantial saving in material of 44% can be achieved by
using the optimal design instead of the equivalent uniform thickness
design,

No proof, concerning absolute maximum strength and unique-
ness of the solution is given. Bu‘t,‘ it’ must be noticed that in the two
examples studied, the numerical results tend to indicate uniqueness
of the solution. However, if we assume that there exists a solution
to our problem, and if the neces sa;‘y condition derived leads to a
unique solution, this solution chéracterizes an absolute minimum or
maximum. The uniform thickness design has a smaller strength
than the uniform strehgth deéign. Therefore, from a numerical point
of view, the uniform strength design represents the absolute maxi-~

mum strength design.
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Multivariable optimization: This analysis, as the majority of the

references, is restricted to problems where only one design variable
has to be optimized. Nevertheless, multivariable optimization can be
set up by using the same techniques. In the case of the arch, for
example, two geometric design variables can be optimized: radius,
thickness. Additional equations will come from the variation of the
mass functional I\_@ with respect to the additional design variables.
The complexity of the resulting nonlinear system of differential
equations will be increased considerably, but, mathematical deriva-

tion of the equations is straightforward.



-79-
REFERENCES

Sheu, C. Y. and Prager, W.: "'Recent Developments in Optimal
Structural Design, "' Applied Mechaniés Reviews, Vol. 21, No.
10, October 1968, pp. 985-992.

Prager, W. and Taylor,J. E.: "Problems of Optimal Structural

Design,"

Transactions, Journal of Applied Mechanics, ASME,
Vol. 35, Series E, No..l, March 1968, pp. 102-106.

Taylor, J. E.: "Maximum Strength Elastic Structural Design, "
American Society of Civil Engineers, Engineering Mechanics
Division, Journal, Vol. 95, June 1969, pp. 653-663, 16 refs.
Taylor, J. E.: "Minimum Mass Bar for Axial Vibration at
Specified Natural Frequency, '' Journal of the American Institute
of Aeronautics and Astronautics, Vol. 5, No. 10, October 1967,
pp- 1911-1913,

Taylor, J. E. and Liu, C. Y.: "On the Optimal Design of
Columns, " Journal of the American Institute of Aeronautics and
Astronautics, Vol. 6, No. 8, August 1968, pp. 1497-1502,
Taylor, J. E.: "Optimal Design of Structural Systems: An
Energy Formulation, " Journal of the American Institute of
Aeronautics and Astronautics,. Vol. 7, No. 7, July 1969,

pp. 1404-1406.

Huang, N. o P "Optimal Design of Elastic Structures for Maxi-
mum Stiffness, "' International Journal of Solids and Structures,

1968, Vol. 4, pp. 689-700, Pergamon Press.



10.

L1.

12,

-80-

References (Cont'd)
Taylor, J. E.: '"The Strongest Column -- An Energy Approach,"
Journal of Applied Mecha‘nics, Transactions, ASME, Vol. 34,
Series E, No. 2, June 1967, pp. 486-487. '
Tadjbg,khsh, I. and Keller, J. B.: "“"The St;‘-pngest Column
and Isb_perimetric Inequalities for Eigenvalues, ' Journal of
Applieci Mechanics, Vol. 29, No. I, Transactions of the ASME,
Vol. 84, Series E, March 1962, PP- 159-164. .
Taylor, J. E.: ”Optiinuin Design of a Vibrating Bar with
Specified Minimum Cross Section, " Journal of the American
Institute of Aeronautics and .Astronautics, Vol. 6, No. 7, July
1968, pp. 1379-1381.
Turner, M. J.: 'Design of Minimum Mass Structures with
Specified Natural Frequencies, ' Journal of the American
Institute of Aerénautiés and Astronautics, " Vol. 5, No. 3,

March 1967, pp. 406-412.

Fung, Y. C.: '"Foundations of Solid Mechanics," Prentice-Hall

International, Series in Dynamics, 1965,



-81-

APPENDIX

Equivalent uniform thickness deep arch

| This appendix determines the constant thickness t, of the Q,rch
of minimum mass able to support the load Py The same notation as
for the uniform strength arch is used. The two equilibrium equations

are

’ 1 3, u 7 _
[tu(vu+wu) - > tu (wu+vu )_J = 0 | {A. 1)
12R , )
t (v'tw ) + [t (v'+w )] poR—0 A.2
uu uu Y T bE T (A.2)
Integration of Eq. (A.2) gives
2
, poR
tu(vu+wu) T E [C(cosb + tg@®sinB)+1] = £(C, 6) (A.3)
Integration of Eq. (A.1) gives
£(C, 6) - £(C, 8.)
(w1:+Vul) = : 3 1 12g? (A. 4)
ta
where 91' is the location where the bending moment M = 0 .
The stress in the lower extreme fiber is given by
o = E [l (v +w ) +—2'cu (w'+v ")\] A.5
..tu/' RYu u 2R Ya Yy (A.5)
2 ‘ S -
which reduces to
£(c,08) . 6 ‘ |
o, - 5 [He2) 1 8 [4(c, 0)- 5, 91)]] (A. 6)
~-ufp u tu )

It can be checked that the maximum stress occurs in compression at
t

the location 8 = 0 in the lower extreme fiber y = -—;’— . This will

determine the design through the relation
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0o = B[ ¥GY + 5 lic, 0 - £(c, 01| =0, (8= 0) (A.7)
u tu - Y

or

2 % £(C, 0) _

tl o - t, 422 .6 [5c,0) - 5c, 001 = 0 (A. 8)

Where o is the yielding stress in compression (negative).

The two roots t_ and tu of this equation are of different sign, so
1 2 '
using a physical argument, the positive one is chosen

»

2
R0 - |
t = __:___g(g OEzE[l + /1 +24 — 02 [£(C, 0)-£(C, 8))] ] (A. 9)
b 0 £(C, 0)°E
This is the thickness of the equivalent arch. The two unknown constants

C, Bi must still be calculated.

It is easy to calculate f(C, 91) by using the boundary conditions

wu'(O) = 0 clampedat 0 = 0
wu'(®) =0 symmetry

- (0) =0 rigid support
vu(®) = 0 syrnmetry

After integration of Eq. (A.4) and use of the above boundary conditions,
the following expression is obtained.

®
g [£(C, 8) - £(C, 8;)1d8 "= 0 (A.10)
0

which gives

e
£(C, 8,) = f%_g_[g%_@_ +1:| | (A.11)



-83.

vu' can be eliminated from Eq. (A.3) and Eq. (A.4) and produces the

linear differential equation

12 R? (A.12)

P f(C’ e) ‘ f(C, 9) = f(C: 91)
w = n -

u t3
u

using the boundary conditions Wu(O) =0, wu’(O) = 0, the solution is:

6 ‘
[f(C: T)‘f(cy 9 )]
w_(8) = S sinh(6-T) [ f‘f’” b 5 112 Rz] dr  (A.13)
. u t
0 u
[£(C, T)-£(C, 6,)]
w (8) = S cosh(-7) [- He. 1 . L lZRZ]dT (A. 14)
0 u 1:u

The last boundary condition to be used is W1;(®) = 0, This condition
will give the only remaining unknown constant C. Eq. (A.14) for

9 = ® can be rewritten in the form

. ‘ * -~ C 1 2
¢,.32(c+1)2 {1 +/1'+ 24 —-——2 |:1 -f%ﬁ]}
@ - w, (C+1)" =

Clttg0.25h8, ~tel®
4 2 sinh ® ®
- 48 =0 (A.15)
' 9_(1 + 4o @, COSHO ) + 1 '
2 g ¥ 3inh ©

This equation can be solved numerically without any difficulty to give

C. The uniform thickness t, is completely defined by the expression

t, = w, 5 [CH] [1 +/1+24 Bl’ —C—z|_1 -]](A.le)

a [C+1]" "+
As can be seen, the uniform thickness design depends only upon

and ©.
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