APPENDIX 2

X-Ray Crystallography Reports Relevant to Chapter 2

A2.1 CRYSTAL STRUCTURE OF BROMOBENZOATE 69

Figure A2.1 ORTEP drawing of bromobenzoate **69** (shown with 50% probability ellipsoids) <u>NOTE:</u> Crystallographic data have been deposited in the Cambridge Database (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 748731.

Table A2.1 Crystal data and structure refinement for bromobenzoate **69** (CCDC 748731)

Empirical formula	$C_{16}H_{17}O_3Br$	
Formula weight	337.21	and the second
Crystallization Solvent	Ethylacetate/hexanes	
Crystal Habit	Block	
Crystal size	0.20 x 0.19 x 0.12 mm ³	
Crystal color	Colorless	100
Dat	ta Collection	1 No. 194
Type of diffractometer	Bruker KAPPA APEX II	
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	100(2) K	
θ range for 9810 reflections used in lattice determination	2.57 to 32.19°	
Unit cell dimensions	a = 5.7803(2) Å b = 24.8200(11) Å c = 10.2688(4) Å	β=91.528(2)°
Volume	1472.71(10) Å ³	
Z	4	
Crystal system	Monoclinic	
Space group	P2 ₁	
Density (calculated)	1.521 Mg/m ³	
F(000)	688	
Data collection program	Bruker APEX2 v2009.7-0	
θ range for data collection	1.64 to 33.46°	
Completeness to $\theta = 33.46^{\circ}$	99.5 %	
Index ranges	$-8 \le h \le 8, -38 \le k \le 38, -1$	5≤1≤15
Data collection scan type	ω scans; 24 settings	
Data reduction program	Bruker SAINT-Plus v7.66	A
Reflections collected	50019	
Independent reflections	11399 [R _{int} = 0.0523]	
Absorption coefficient	2.795 mm ⁻¹	
Absorption correction	None	
Max. and min. transmission	0.7303 and 0.6048	

Table A2.1 (cont.)

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Difference Fourier map
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	11399 / 1 / 497
Treatment of hydrogen atoms	Unrestrained
Goodness-of-fit on F ²	1.549
Final R indices [I> $2\sigma(I)$, 10256 reflections]	R1 = 0.0342, wR2 = 0.0548
R indices (all data)	R1 = 0.0391, wR2 = 0.0551
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.002
Average shift/error	0.000
Absolute structure determination	Anomalous differences
Absolute structure parameter	-0.002(4)
Largest diff. peak and hole	1.491 and -0.868 e.Å ⁻³

Structure solution and Refinement

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K.

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table A2.2 Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2$ x 10³) for bromobenzoate **69** (CCDC 748731). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor

	Х	У	Z	U _{eq}
Br(1)	-5722(1)	10484(1)	7314(1)	20(1)
O(1A)	3014(3)	8952(1)	4870(1)	21(1)
O(2A)	1258(2)	9232(1)	3005(1)	13(1)
O(3A)	481(3)	8879(1)	-881(1)	21(1)
C(1A)	-3491(4)	10098(1)	6357(2)	16(1)
C(2A)	-1783(4)	9818(1)	7039(2)	18(1)
C(3A)	-181(4)	9531(1)	6351(2)	16(1)
C(4A)	-277(4)	9526(1)	4994(2)	13(1)
C(5A)	-1992(4)	9816(1)	4325(2)	16(1)
C(6A)	-3612(4)	10104(1)	5017(2)	19(1)
C(7A)	1506(4)	9206(1)	4312(2)	14(1)
C(8A)	3137(4)	8985(1)	2287(2)	14(1)
C(9A)	2776(4)	8379(1)	2168(2)	16(1)
C(10A)	1086(5)	8306(1)	1019(2)	20(1)
C(11A)	1370(4)	8804(1)	188(2)	14(1)
C(12A)	2987(3)	9200(1)	892(2)	12(1)
C(13A)	2137(4)	9788(1)	735(2)	15(1)
C(14A)	3483(4)	10178(1)	1570(2)	19(1)
C(15A)	5129(4)	10500(1)	1170(2)	25(1)
C(16A)	5370(4)	9131(1)	272(2)	18(1)
Br(2)	10449(1)	1109(1)	9526(1)	17(1)
O(1B)	1925(3)	2677(1)	6729(1)	19(1)
O(2B)	3746(2)	2396(1)	4938(1)	14(1)
O(3B)	4473(3)	2717(1)	1036(1)	20(1)
C(1B)	8350(4)	1522(1)	8492(2)	14(1)
C(2B)	6529(4)	1780(1)	9089(2)	14(1)
C(3B)	4972(4)	2074(1)	8329(2)	14(1)
C(4B)	5222(4)	2106(1)	6990(2)	13(1)
C(5B)	7069(4)	1847(1)	6407(2)	15(1)
C(6B)	8642(4)	1553(1)	7162(2)	16(1)
C(7B)	3462(4)	2427(1)	6236(2)	14(1)
C(8B)	1873(4)	2633(1)	4148(2)	14(1)
C(9B)	2249(4)	3239(1)	4008(2)	17(1)
C(10B)	3958(4)	3293(1)	2913(2)	19(1)
C(11B)	3642(4)	2799(1)	2092(2)	15(1)
C(12B)	2028(4)	2400(1)	2764(2)	14(1)
C(13B)	2906(4)	1823(1)	2681(2)	17(1)
C(14B)	1288(5)	1414(1)	3231(3)	28(1)
C(15B)	1665(5)	1147(1)	4312(2)	33(1)
C(16B)	-348(4)	2463(1)	2074(2)	21(1)

Br(1)-C(1A)	1.901(2)	C(6B)-H(6B)	0.96(2)
O(1A)-C(7A)	1.207(3)	C(8B)-C(9B)	1.527(3)
O(2A)-C(7A)	1.348(2)	C(8B)-C(12B)	1.539(3)
O(2A)-C(8A)	1.464(2)	C(8B)-H(8B)	1.05(2)
O(3A)-C(11A)	1.214(3)	C(9B)-C(10B)	1.523(3)
C(1A)-C(6A)	1.376(3)	C(9B)-H(9B1)	0.98(3)
C(1A)-C(2A)	1.383(3)	C(9B)-H(9B2)	0.97(3)
C(2A)-C(3A)	1.378(3)	C(10B)-C(11B)	1.498(3)
C(2A)-H(2A)	0.91(3)	C(10B)-H(10C)	0.91(3)
C(3A)-C(4A)	1.393(3)	C(10B)-H(10D)	0.92(3)
C(3A)-H(3A)	0.91(2)	C(11B)-C(12B)	1 536(3)
C(4A)- $C(5A)$	1 392(3)	C(12B) - C(13B)	1 523(3)
C(4A)- $C(7A)$	1 490(3)	C(12B) - C(16B)	1.525(3) 1.537(3)
C(5A)- $C(6A)$	1 389(3)	C(13B)-C(14B)	1 501(3)
C(5A)-H(5A)	0.97(2)	C(13B) - H(13C)	1.00(3)
C(6A)-H(6A)	0.97(2) 0.84(3)	C(13B)-H(13D)	0.99(2)
C(8A)- $C(9A)$	1 523(3)	C(14B)-C(15B)	1.306(4)
C(8A)- $C(12A)$	1.523(3) 1.528(3)	C(14B) - C(15B)	0.92(3)
C(8A)-H(8A)	1.020(3)	C(15B)-H(15C)	1.03(3)
C(0A) C(10A)	1.00(3) 1.523(3)	C(15B) + H(15C)	1.05(3) 1.15(4)
C(0A) = U(0A1)	1.525(5) 1.01(3)	C(16R) H(16D)	0.01(3)
C(9A) = H(9A1)	1.01(3) 0.02(3)	C(16B) + H(16E)	0.91(3)
$C(3A) - \Pi(3A2)$ C(10A) C(11A)	0.32(3) 1 512(2)	C(16D) - H(16E)	0.99(3)
C(10A) + C(11A)	1.312(3)	С(10В)-П(10F)	0.93(3)
C(10A) - H(10A) C(10A) + H(10B)	0.07(3)	C(7A) O(2A) C(8A)	114 80(16)
$C(10A) - \Pi(10B)$ C(11A) - C(12A)	0.90(3) 1.526(2)	C(A) - O(2A) - C(0A)	114.09(10) 121.0(2)
C(11A)-C(12A)	1.520(5) 1.542(2)	C(6A) - C(1A) - C(2A)	121.9(2)
C(12A) - C(10A) C(12A) - C(12A)	1.342(3) 1.545(3)	C(0A) - C(1A) - Df(1) C(2A) - C(1A) - Pr(1)	119.00(10) 119.42(15)
C(12A) - C(13A)	1.343(3) 1.400(2)	C(2A)- $C(1A)$ - $DI(1)$	110.43(13) 119.7(2)
C(13A) - C(14A)	1.499(3)	C(1A) - C(2A) - C(5A)	116.7(2) 116.0(16)
$C(13A) - \Pi(13A)$	0.92(2)	C(1A)-C(2A)-H(2A)	110.9(10) 124.4(16)
C(13A)- $H(13B)$	1.03(2) 1.217(2)	C(3A)- $C(2A)$ - $H(2A)$	124.4(10) 120.6(2)
C(14A) - C(15A)	1.31/(3)	C(2A) - C(3A) - C(4A)	120.0(2)
C(14A)-H(14A)	1.09(2) 1.02(2)	C(2A)-C(3A)-H(3A)	124.2(14)
C(15A)- $H(15A)$	1.03(3)	C(4A)- $C(5A)$ - $H(5A)$	115.1(14)
C(15A)- $H(15B)$	0.84(3)	C(5A)- $C(4A)$ - $C(5A)$	119.8(2)
C(10A)-H(10A)	0.96(2)	C(5A)-C(4A)-C(7A)	122.45(18)
C(10A) - H(10B)	0.90(3)	C(3A)-C(4A)-C(7A)	117.73(19)
C(10A)-H(16C)	0.98(3)	C(4A) - C(5A) - C(6A)	119.67(19)
Br(2)-C(1B)	1.893(2)	C(4A)-C(5A)-H(5A)	119.1(15)
O(1B)-C(7B)	1.205(2)	C(6A)-C(5A)-H(5A)	121.2(15)
O(2B)-O(7B)	1.349(2)	C(1A)-C(6A)-C(5A)	119.3(2)
O(2B)-C(8B)	1.460(2)	C(1A)-C(6A)-H(6A)	120.3(19)
O(3B)-C(11B)	1.214(2)	C(5A)-C(6A)-H(6A)	120.3(19)
C(1B)-C(6B)	1.382(3)	O(1A)-C(7A)-O(2A)	123.61(19)
C(1B)-C(2B)	1.389(3)	O(1A)-C(7A)-C(4A)	123.73(18)
C(2B)-C(3B)	1.384(3)	O(2A)-C(7A)-C(4A)	112.66(17)
C(2B)-H(2B)	0.97(2)	O(2A)-C(8A)-C(9A)	110.64(17)
C(3B)-C(4B)	1.389(3)	O(2A)-C(8A)-C(12A)	107.53(16)
C(3B)-H(3B)	1.02(3)	C(9A)-C(8A)-C(12A)	105.44(17)
C(4B)-C(5B)	1.394(3)	O(2A)-C(8A)-H(8A)	104.5(14)
C(4B)-C(7B)	1.493(3)	C(9A)- $C(8A)$ - $H(8A)$	112.6(14)
C(5B)-C(6B)	1.386(3)	C(12A)-C(8A)-H(8A)	116.1(14)
C(5B)-H(5B)	0.95(2)	C(8A)-C(9A)-C(10A)	105.23(17)

Table A2.3 Bond lengths [Å] and angles [°] for bromobenzoate 69 (CCDC 748731)

C(8A)-C(9A)-H(9A1)	110.4(15)	C(4B)-C(5B)-H(5B)	117.2(14)
C(10A)-C(9A)-H(9A1)	113.3(16)	C(1B)-C(6B)-C(5B)	119.09(19)
C(8A)-C(9A)-H(9A2)	104.6(17)	C(1B)-C(6B)-H(6B)	117.5(12)
C(10A)-C(9A)-H(9A2)	110.3(17)	C(5B)-C(6B)-H(6B)	123.4(12)
H(9A1)-C(9A)-H(9A2)	112(2)	O(1B)-C(7B)-O(2B)	123.66(18)
C(11A)-C(10A)-C(9A)	105.27(18)	O(1B)-C(7B)-C(4B)	123.84(17)
C(11A)-C(10A)-H(10A)	113.6(16)	O(2B)-C(7B)-C(4B)	112.48(16)
C(9A)-C(10A)-H(10A)	111.6(18)	O(2B)-C(8B)-C(9B)	110.13(17)
C(11A)-C(10A)-H(10B)	104.5(16)	O(2B)-C(8B)-C(12B)	107.51(15)
C(9A)-C(10A)-H(10B)	115.4(17)	C(9B)-C(8B)-C(12B)	105.75(17)
H(10A)-C(10A)-H(10B)	106(2)	O(2B)-C(8B)-H(8B)	110.9(13)
O(3A)-C(11A)-C(10A)	125.81(19)	C(9B)-C(8B)-H(8B)	111.3(13)
O(3A)-C(11A)-C(12A)	124.67(18)	C(12B)-C(8B)-H(8B)	111.2(13)
C(10A)-C(11A)-C(12A)	109.51(18)	C(8B)-C(9B)-C(10B)	104.67(17)
C(11A)-C(12A)-C(8A)	103.70(16)	C(8B)-C(9B)-H(9B1)	113.6(15)
C(11A)-C(12A)-C(16A)	105 93(16)	C(10B)-C(9B)-H(9B1)	111 3(15)
C(8A)-C(12A)-C(16A)	108 58(17)	C(8B)-C(9B)-H(9B2)	108 8(15)
C(11A)-C(12A)-C(13A)	11170(17)	C(10B)-C(9B)-H(9B2)	1145(15)
C(8A)-C(12A)-C(13A)	115 95(16)	H(9B1)-C(9B)-H(9B2)	104(2)
C(16A) - C(12A) - C(13A)	110 34(16)	C(11B)-C(10B)-C(9B)	10577(18)
C(14A)-C(13A)-C(12A)	113 09(18)	C(11B) - C(10B) - H(10C)	113 6(18)
C(14A)-C(13A)-H(13A)	106 0(15)	C(9B)-C(10B)-H(10C)	113.0(10) 111.0(17)
C(12A)-C(13A)-H(13A)	112 2(14)	C(11B)-C(10B)-H(10D)	1062(17)
C(12A)-C(13A)-H(13B)	110 8(13)	C(9B)-C(10B)-H(10D)	1143(17)
C(12A)-C(13A)-H(13B)	111 0(13)	H(10C)-C(10B)-H(10D)	106(2)
H(13A)-C(13A)-H(13B)	103(2)	O(3B)-C(11B)-C(10B)	12652(19)
C(15A)-C(14A)-C(13A)	1257(2)	O(3B)-C(11B)-C(12B)	123.52(19) 123.54(18)
C(15A)-C(14A)-H(14A)	119.8(13)	C(10B)-C(11B)-C(12B)	109.92(16)
C(13A)-C(14A)-H(14A)	114.6(13)	C(13B)-C(12B)-C(11B)	111.92(17)
C(14A)-C(15A)-H(15A)	123.3(16)	C(13B)-C(12B)-C(16B)	111.32(18)
C(14A)-C(15A)-H(15B)	126(2)	C(11B)-C(12B)-C(16B)	105.89(17)
H(15A)-C(15A)-H(15B)	111(3)	C(13B)-C(12B)-C(8B)	115.68(17)
C(12A)-C(16A)-H(16A)	107.9(13)	C(11B)-C(12B)-C(8B)	102.97(16)
C(12A)-C(16A)-H(16B)	103.1(17)	C(16B)-C(12B)-C(8B)	108.33(17)
H(16A)-C(16A)-H(16B)	121(2)	C(14B)-C(13B)-C(12B)	113.81(19)
C(12A)-C(16A)-H(16C)	109.8(15)	C(14B)-C(13B)-H(13C)	108.5(15)
H(16A)-C(16A)-H(16C)	114(2)	C(12B)-C(13B)-H(13C)	109.8(15)
H(16B)-C(16A)-H(16C)	100(2)	C(14B)-C(13B)-H(13D)	115.9(13)
C(7B)-O(2B)-C(8B)	114.71(15)	C(12B)-C(13B)-H(13D)	107.0(13)
C(6B)-C(1B)-C(2B)	121.61(19)	H(13C)-C(13B)-H(13D)	101(2)
C(6B)-C(1B)-Br(2)	119.43(15)	C(15B)-C(14B)-C(13B)	124.8(3)
C(2B)-C(1B)-Br(2)	118.95(15)	C(15B)-C(14B)-H(14B)	113.3(18)
C(3B)-C(2B)-C(1B)	118.93(19)	C(13B)-C(14B)-H(14B)	121.8(18)
C(3B)-C(2B)-H(2B)	121.1(14)	C(14B)-C(15B)-H(15C)	117.1(17)
C(1B)-C(2B)-H(2B)	120.0(14)	C(14B)-C(15B)-H(15D)	111.6(19)
C(2B)-C(3B)-C(4B)	120.32(19)	H(15C)-C(15B)-H(15D)	130(3)
C(2B)-C(3B)-H(3B)	125.2(14)	C(12B)-C(16B)-H(16D)	109(2)
C(4B)-C(3B)-H(3B)	114.5(14)	C(12B)-C(16B)-H(16E)	108.6(15)
C(3B)-C(4B)-C(5B)	120.00(19)	H(16D)-C(16B)-H(16E)	111(2)
C(3B)-C(4B)-C(7B)	117.12(17)	C(12B)-C(16B)-H(16F)	106.8(19)
C(5B)-C(4B)-C(7B)	122.87(18)	H(16D)-C(16B)-H(16F)	107(3)
C(6B)-C(5B)-C(4B)	120.04(19)	H(16E)-C(16B)-H(16F)	115(2)
C(6B)-C(5B)-H(5B)	122.7(14)		

Table A2.4 Anisotropic displacement parameters $(\mathring{A}^2 \times 10^4)$ for bromobenzoate **69** (CCDC 748731). The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
$\frac{1}{\operatorname{Br}(1)}$	180(1)	281(1)	141(1)	_48(1)	47(1)	_10(1)
O(1A)	232(8)	281(1)	1+1(1) 112(7)	-40(1)	$\frac{1}{21(6)}$	-17(1) 68(6)
O(1A)	137(7)	201(0) 205(7)	56(6)	9(5)	-21(0) 12(5)	28(6)
O(2A)	137(7) 222(8)	203(7) 282(8)	115(7)	9(5) 11(6)	30(6)	17(6)
C(1A)	158(11)	180(10)	113(7) 128(9)	31(7)	-30(0)	-17(0) 37(8)
C(1A)	226(12)	229(11)	72(9)	-31(7)	-49(8)	-37(8)
C(2A)	199(12)	182(10)	95(9)	-10(3) 11(7)	-29(8)	-37(9)
$C(3\Lambda)$	155(12) 156(11)	131(9)	116(9)	3(7)	-25(8)	-22(9)
$C(5\Delta)$	176(11)	222(10)	90(9)	-4(7)	7(8)	-5(8)
$C(5\Lambda)$	156(11)	222(10) 259(11)	146(10)	-4(7)	1(8)	40(9)
$C(0\Lambda)$	149(10)	206(10)	67(8)	12(7)	-1(7)	-23(8)
$C(8\Delta)$	149(10) 114(10)	200(10) 204(10)	110(9)	-4(7)	-1(7) 5(8)	-25(8)
C(0A)	174(10) 174(11)	185(10)	136(10)	20(7)	-17(8)	36(8)
C(10A)	274(13)	176(10)	162(10)	20(7)	-32(9)	-30(9)
C(11A)	124(10)	199(10)	102(10)	-7(7)	16(7)	28(8)
C(12A)	107(10)	178(9)	90(8)	11(7)	28(7)	20(0) 21(7)
C(12A)	157(10)	187(10)	107(9)	26(7)	18(8)	31(8)
C(13A)	260(12)	167(10)	142(10)	20(7) 6(7)	-7(8)	24(8)
C(15A)	312(13)	215(10)	215(11)	-28(10)	-61(9)	-34(11)
C(16A)	157(11)	213(10) 227(11)	171(11)	-15(8)	49(8)	-21(9)
C(1011)	157(11)	227(11)	1/1(11)	15(0)	19(0)	21(5)
Br(2)	155(1)	231(1)	120(1)	17(1)	-15(1)	31(1)
O(1B)	169(8)	282(8)	112(7)	-12(6)	13(6)	69(6)
O(2B)	138(7)	214(7)	73(6)	1(5)	-6(5)	37(5)
O(3B)	189(8)	308(8)	108(7)	-13(6)	39(6)	0(6)
C(1B)	132(10)	175(9)	109(9)	4(7)	-22(7)	-29(7)
C(2B)	151(11)	185(10)	96(9)	-4(7)	14(8)	-9(8)
C(3B)	147(10)	160(9)	104(9)	-11(7)	1(8)	9(8)
C(4B)	123(10)	162(9)	97(9)	7(7)	8(7)	3(8)
C(5B)	142(11)	230(11)	86(9)	6(7)	24(7)	-23(8)
C(6B)	147(10)	221(10)	107(9)	-2(7)	29(8)	24(8)
C(7B)	139(10)	168(9)	99(9)	1(7)	6(7)	-17(7)
C(8B)	111(10)	211(10)	100(9)	-6(7)	-18(7)	42(8)
C(9B)	210(13)	180(10)	119(10)	-16(7)	-7(8)	36(9)
C(10B)	237(13)	193(10)	143(10)	10(8)	16(9)	-23(9)
C(11B)	107(9)	229(10)	100(9)	10(7)	-26(7)	43(8)
C(12B)	121(10)	191(10)	98(9)	-2(7)	8(7)	-4(8)
C(13B)	205(12)	185(11)	123(10)	-34(8)	10(8)	11(9)
C(14B)	316(15)	247(12)	285(13)	-41(9)	57(11)	-20(10)
C(15B)	474(17)	272(12)	254(12)	-22(11)	68(11)	2(13)
C(16B)	127(11)	312(12)	172(11)	-17(9)	-38(8)	-28(9)

Table A2.5 Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($\mathring{A}^2 x \ 10^3$) for bromobenzoate **69** (CCDC 748731)

	X	у	Z	U _{iso}
H(2A)	-1800(40)	9837(10)	7920(30)	19(6)
H(3A)	940(40)	9322(8)	6720(20)	6(5)
H(5A)	-2050(40)	9806(10)	3380(20)	21(6)
H(6A)	-4590(50)	10297(11)	4620(30)	32(8)
H(8A)	4560(40)	9079(10)	2800(20)	16(6)
H(9A1)	2190(50)	8227(10)	3010(30)	26(7)
H(9A2)	4210(50)	8245(11)	1970(30)	28(7)
H(10A)	1340(40)	8007(11)	600(20)	22(6)
H(10B)	-530(50)	8305(11)	1230(30)	27(7)
H(13A)	2250(40)	9909(9)	-110(20)	16(6)
H(13B)	390(40)	9816(9)	900(20)	15(6)
H(14A)	3020(40)	10180(9)	2600(20)	16(6)
H(15A)	5660(50)	10512(12)	220(30)	34(7)
H(15B)	5910(50)	10717(13)	1640(30)	42(9)
H(16A)	5740(40)	8753(9)	280(20)	9(5)
H(16B)	6260(50)	9374(11)	700(30)	26(7)
H(16C)	5340(40)	9291(10)	-600(30)	26(7)
H(2B)	6370(40)	1755(9)	10030(20)	8(6)
H(3B)	3590(50)	2285(10)	8670(20)	24(7)
H(5B)	7220(40)	1895(9)	5490(20)	15(6)
H(6B)	9970(40)	1377(8)	6815(19)	0(5)
H(8B)	260(40)	2549(10)	4550(20)	14(6)
H(9B1)	2840(40)	3412(10)	4810(30)	24(7)
H(9B2)	770(50)	3410(10)	3840(30)	21(7)
H(10C)	3730(50)	3606(11)	2470(30)	29(7)
H(10D)	5480(50)	3295(11)	3190(30)	29(7)
H(13C)	3180(50)	1728(10)	1760(30)	29(7)
H(13D)	4500(40)	1820(9)	3050(20)	11(6)
H(14B)	-80(50)	1319(12)	2800(30)	36(8)
H(15C)	3230(50)	1209(13)	4790(30)	49(9)
H(15D)	280(60)	822(16)	4460(30)	74(11)
H(16D)	-280(50)	2319(12)	1260(30)	42(8)
H(16E)	-740(40)	2851(10)	2030(20)	20(6)
H(16F)	-1380(50)	2253(12)	2530(30)	35(8)

A2.2 CRYSTAL STRUCTURE OF SEMICARBAZONE 71

Figure A2.2 ORTEP drawing of semicarbazone **71** (shown with 50% probability ellipsoids) <u>NOTE:</u> Crystallographic data have been deposited in the Cambridge Database (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 749151.

Table A2.6 Crystal data and structure refinement for semicarbazone **71** (CCDC 749151)

Empirical formula	$C_{21}H_{32}N_4O$	
Formula weight	356.51	And I American
Crystallization Solvent	Methanol or CDCl ₃	
Crystal Habit	Blade	
Crystal size	0.23 x 0.19 x 0.07 mm ³	
Crystal color	Colorless	
Data Co	llection	
Type of diffractometer	Bruker KAPPA APEX II	
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	100(2) K	
θ range for 9942 reflections used in lattice determination	2.40 to 18.72°	
Unit cell dimensions	a = 17.5462(8) Å b = 11.0229(5) Å c = 32.8065(15) Å	β= 103.274(3)°
Volume	6175.6(5) Å ³	
Z	12	
Crystal system	Monoclinic	
Space group	P2 ₁	
Density (calculated)	1.150 Mg/m ³	
F(000)	2328	
Data collection program	Bruker APEX2 v2009.7-0	
θ range for data collection	1.19 to 26.40°	
Completeness to $\theta = 26.40^{\circ}$	99.7 %	
Index ranges	$-21 \le h \le 21, -13 \le k \le 13, -34$	≤1≤41
Data collection scan type	ω scans; 9 settings	
Data reduction program	Bruker SAINT-Plus v7.66A	
Reflections collected	80862	
Independent reflections	25063 [$R_{int} = 0.0604$]	
Absorption coefficient	0.072 mm ⁻¹	
Absorption correction	None	
Max. and min. transmission	0.9950 and 0.9836	

Table A2.6 (cont.)

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	25063 / 1 / 1429
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	1.387
Final R indices [I> 2σ (I), 16797 reflections]	R1 = 0.0574, wR2 = 0.0734
R indices (all data)	R1 = 0.0950, wR2 = 0.0768
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.001
Average shift/error	0.000
Absolute structure determination	Known stereo center
Absolute structure parameter	-1.1(8)
Largest diff. peak and hole	0.397 and -0.495 e.Å ⁻³

Structure solution and Refinement

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K.

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

97

Table A2.7 Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters ($Å^2$ x
10 ³) for semicarbazone 71 (CCDC 749151). U(eq) is defined as the trace of the orthogonalized U^{ij}
tensor

	X	у	Z	U _{eq}
$\overline{O(1A)}$	7744(1)	7491(2)	-623(1)	19(1)
N(1A)	7679(1)	7837(2)	55(1)	20(1)
N(2A)	8454(1)	9017(2)	-263(1)	18(1)
N(3A)	8711(1)	9598(2)	120(1)	20(1)
N(4A)	11284(2)	9439(3)	640(1)	44(1)
C(1A)	7344(2)	5620(3)	62(1)	25(1)
C(2A)	7064(2)	6947(3)	83(1)	21(1)
C(3A)	6290(2)	7237(3)	-227(1)	27(1)
C(4A)	5796(2)	6113(3)	-387(1)	35(1)
C(5A)	6318(2)	5254(3)	-586(1)	32(1)
C(6A)	6647(2)	4782(3)	-131(1)	29(1)
C(7A)	5843(2)	5153(3)	-32(1)	29(1)
C(8A)	5227(2)	4132(3)	-179(1)	$\frac{2}{46(1)}$
C(9A)	5784(2)	5562(3)	405(1)	46(1)
C(10A)	7790(2)	5197(3)	492(1)	45(1)
C(11A)	7937(2)	8061(3)	-291(1)	18(1)
C(12A)	9246(2)	10395(3)	136(1)	19(1)
C(12A)	9655(2)	10762(3)	-201(1)	25(1)
C(14A)	10291(2)	11677(3)	17(1)	24(1)
C(15A)	10413(2)	11377(3)	484(1)	20(1)
C(16A)	9574(2)	11094(3)	540(1)	20(1)
C(17A)	9547(2)	10385(3)	937(1)	25(1)
C(18A)	9913(2)	11036(3)	1330(1)	$\frac{29(1)}{30(1)}$
C(19A)	10563(2)	10716(3)	1592(1)	37(1)
C(20A)	9120(2)	12298(3)	524(1)	30(1)
C(21A)	10913(2)	10289(3)	584(1)	25(1)
O(1B)	5794(1)	9309(2)	2246(1)	20(1)
N(1B)	5529(1)	9319(2)	1529(1)	20(1)
N(2B)	4860(1)	8065(2)	1881(1)	16(1)
N(3B)	4447(1)	7649(2)	1491(1)	16(1)
N(4B)	4165(2)	3472(2)	1322(1)	40(1)
C(1B)	6910(2)	9856(3)	1548(1)	26(1)
C(2B)	6066(2)	10301(3)	1465(1)	23(1)
C(3B)	5923(2)	11493(2)	1678(1)	$\frac{28(1)}{28(1)}$
C(4B)	6680(2)	12191(3)	1841(1)	33(1)
C(5B)	7278(2)	11333(3)	2124(1)	37(1)
C(6B)	7490(2)	10886(3)	1713(1)	28(1)
C(7B)	7233(2)	12156(3)	1526(1)	25(1)
C(8B)	7898(2)	13081(3)	1644(1)	47(1)
C(9B)	6862(2)	12332(3)	1066(1)	42(1)
C(10B)	7086(2)	9230(3)	1166(1)	40(1)
C(11B)	5424(2)	8931(3)	1902(1)	19(1)
C(12B)	3915(2)	6866(3)	1496(1)	15(1)

C(13B)	3688(2)	6307(2)	1869(1)	18(1)
C(14B)	2986(2)	5494(3)	1678(1)	21(1)
C(15B)	3109(2)	5171(2)	1240(1)	18(1)
C(16B)	3415(2)	6365(2)	1087(1)	16(1)
C(17B)	3888(2)	6205(3)	756(1)	23(1)
C(18B)	3417(2)	5609(3)	364(1)	27(1)
C(19B)	3258(2)	6063(3)	-10(1)	43(1)
C(20B)	2728(2)	7252(3)	928(1)	26(1)
C(21B)	3695(2)	4206(3)	1283(1)	23(1) 24(1)
0(212)	2000(2)	1200(0)	1205(1)	21(1)
O(1C)	4461(1)	7744(2)	2683(1)	19(1)
N(1C)	4432(1)	8248(2)	3354(1)	21(1)
N(2C)	5096(1)	9446(2)	2973(1)	18(1)
N(3C)	5393(1)	10056(2)	3350(1)	18(1)
N(4C)	7874(2)	9740(3)	3700(1)	44(1)
C(1C)	3172(2)	7090(3)	3216(1)	39(1)
C(2C)	4034(2)	7139(3)	3450(1)	27(1)
C(3C)	4199(2)	7017(3)	3933(1)	44(1)
C(4C)	3461(2)	7017(3)	4099(1)	42(1)
C(5C)	2889(2)	7003(3)	3847(1)	59(1)
C(5C)	2609(2) 2629(2)	6966(3)	3514(1)	39(1)
C(0C)	2025(2) 2807(2)	6016(3)	3866(1)	20(1)
C(RC)	2097(2) 2236(2)	5760(3)	3800(1)	62(1)
C(8C)	2230(2) 3240(2)	1828(2)	4094(1) 2780(1)	54(1)
C(9C)	3240(2)	4020(3)	3769(1)	54(1)
C(10C)	2997(2)	0009(3)	2675(1)	00(1)
C(11C)	4047(2)	6417(3) 10884(2)	2991(1)	19(1)
C(12C)	5694(2)	10884(3) 11200(2)	3340(1)	1/(1)
C(13C)	6230(2)	11309(3)	2979(1)	22(1)
C(14C)	6915(2) 7107(2)	12159(3)	3180(1)	24(1)
C(15C)	/10/(2)	11/93(3)	3646(1)	20(1)
C(16C)	6294(2)	11538(3)	3744(1)	20(1)
C(1/C)	6330(2)	10771(3)	4133(1)	26(1)
C(18C)	6857(2)	11291(3)	4523(1)	36(1)
C(19C)	7499(2)	10755(3)	4735(1)	50(1)
C(20C)	5876(2)	12754(2)	3770(1)	30(1)
C(21C)	7562(2)	10660(3)	3691(1)	29(1)
O(1D)	2448(1)	9568(2)	5706(1)	22(1)
N(1D)	2316(1)	9676(2)	5000(1)	18(1)
N(2D)	1502(1)	8460(2)	5286(1)	17(1)
N(3D)	1058(1)	8271(2)	4883(1)	20(1)
N(4D)	652(2)	4479(3)	4404(1)	60(1)
C(1D)	2777(2)	11266(3)	4583(1)	20(1)
C(2D)	2861(2)	10713(3)	4505(1) 5029(1)	19(1)
C(2D)	3710(2)	10713(3) 10347(3)	5029(1) 5254(1)	22(1)
C(3D)	3710(2) 4331(2)	10377(3) 10852(3)	5234(1) 5040(1)	22(1) 22(1)
C(5D)	4082(2)	10468(3)	4566(1)	22(1) 28(1)
C(5D)	4002(2)	11620(2)	4505(1)	20(1) 21(1)
C(0D)	5501(2) A155(2)	12180(2)	4303(1)	21(1) 10(1)
C(D)	4133(2)	12100(3) 12740(2)	4090(1) 1756(1)	19(1)
C(0D)	4832(2)	12/40(3) 12070(2)	4/30(1) 5170(1)	29(1)
C(9D)	388U(2)	13079(2)	31/9(1)	2/(1)
C(10D)	2184(2)	12297(3)	4504(1)	34(1)
C(TID)	2111(2)	9260(3)	5346(1)	18(1)

C(12D)	474(2)	7556(3)	4856(1)	21(1)
C(13D)	242(2)	6823(3)	5192(1)	23(1)
C(14D)	-443(2)	6031(3)	4963(1)	30(1)
C(15D)	-393(2)	6062(3)	4497(1)	30(1)
C(16D)	-126(2)	7383(3)	4440(1)	33(1)
C(17D)	223(2)	7589(3)	4064(1)	43(1)
C(18D)	-391(2)	7406(3)	3647(1)	49(1)
C(10D)	-294(2)	6585(3)	3380(1)	45(1)
C(20D)	-821(2)	8254(3)	4432(1)	49(1)
C(20D)	182(2)	5186(3)	4432(1)	41(1)
C(21D)	102(2)	5100(5)	-+J2(1)	41(1)
O(1E)	8957(1)	2962(2)	3954(1)	23(1)
N(1E)	9111(1)	3343(2)	3298(1)	23(1)
N(2E)	8234(1)	4448(2)	3577(1)	18(1)
N(3E)	7975(1)	4992(2)	3189(1)	18(1)
N(4E)	5416(2)	4619(3)	2676(1)	55(1)
C(1E)	10250(2)	2757(3)	3021(1)	27(1)
C(2E)	9728(2)	2424(3)	3323(1)	24(1)
C(2E)	9720(2) 9377(2)	1128(3)	3264(1)	23(1)
C(3E)	9377(2) 9790(2)	320(3)	3204(1)	34(1)
C(5E)	9750(2) 9751(2)	979(3)	2585(1)	40(1)
C(5E)	$\frac{9751(2)}{10510(2)}$	1644(3)	2303(1) 2813(1)	40(1)
C(0E)	10510(2) 10602(2)	1044(3) 505(3)	2013(1) 2114(1)	20(1)
C(7E)	10092(2) 11000(2)	303(3)	3114(1) 2010(1)	23(1)
$C(\delta E)$	11099(2)	-491(3)	2910(1)	43(1)
C(9E)	11128(2)	605(3)	3568(1)	39(1)
C(10E)	10950(2)	3556(3)	3238(1)	39(1)
C(TTE)	8/86(2)	3545(3)	3621(1)	19(1)
C(12E)	7421(2)	5765(3)	3167(1)	18(1)
C(13E)	7004(2)	6137(3)	3498(1)	25(1)
C(14E)	6339(2)	6964(3)	3272(1)	29(1)
C(15E)	6223(2)	6629(3)	2803(1)	23(1)
C(16E)	7076(2)	6398(3)	2754(1)	18(1)
C(17E)	7123(2)	5644(3)	2367(1)	24(1)
C(18E)	6728(2)	6220(3)	1957(1)	38(1)
C(19E)	6120(2)	5790(3)	1699(1)	50(1)
C(20E)	7492(2)	7645(2)	2755(1)	27(1)
C(21E)	5757(2)	5505(3)	2722(1)	32(1)
O(1E)	942(1)	4092(2)	074(1)	10(1)
O(1F)	043(1)	4083(2)	9/4(1)	19(1)
N(1F)	990(1) 1900(1)	4226(2)	1001(1) 1209(1)	1/(1)
N(2F)	1800(1)	3005(2)	1398(1)	16(1)
N(3F)	2191(1)	2699(2)	1802(1)	16(1)
N(4F)	2312(2)	-1390(2)	2133(1)	43(1)
C(IF)	746(2)	6432(2)	1750(1)	19(1)
C(2F)	393(2)	5148(2)	1665(1)	17(1)
C(3F)	-154(2)	4784(3)	1953(1)	29(1)
C(4F)	-428(2)	5865(3)	2172(1)	30(1)
C(5F)	308(2)	6554(3)	2408(1)	31(1)
C(6F)	284(2)	7212(3)	1992(1)	27(1)
C(7F)	-618(2)	6985(3)	1875(1)	25(1)
C(8F)	-1046(2)	7979(3)	2062(1)	39(1)
C(9F)	-1067(2)	6794(3)	1428(1)	38(1)
C(10F)	832(2)	7029(3)	1338(1)	32(1)

C(11F)	1186(2)	3806(2)	1337(1)	17(1)
C(12F)	2708(2)	1885(3)	1827(1)	16(1)
C(13F)	2914(2)	1165(2)	1478(1)	21(1)
C(14F)	3567(2)	290(3)	1693(1)	25(1)
C(15F)	3440(2)	166(3)	2140(1)	21(1)
C(16F)	3206(2)	1474(3)	2251(1)	19(1)
C(17F)	2743(2)	1528(3)	2595(1)	26(1)
C(18F)	3191(2)	970(3)	3000(1)	31(1)
C(19F)	3482(2)	1543(3)	3349(1)	60(1)
C(20F)	3944(2)	2261(3)	2370(1)	27(1)
C(21F)	2813(2)	-706(3)	2140(1)	27(1)

 Table A2.8 Bond lengths [Å] and angles [°] for semicarbazone 71 (CCDC 749151)

O(1A)-C(11A)	1.235(3)	C(1B)-C(6B)	1.537(4)
N(1A)-C(11A)	1.337(3)	C(2B)-C(3B)	1.536(4)
N(1A)-C(2A)	1.477(3)	C(3B)-C(4B)	1.522(4)
N(2A)-C(11A)	1.379(3)	C(4B)-C(5B)	1.552(4)
N(2A)-N(3A)	1.389(3)	C(4B)-C(7B)	1.571(4)
N(3A)-C(12A)	1.278(3)	C(5B)-C(6B)	1.559(4)
N(4A)-C(21A)	1.132(4)	C(6B)-C(7B)	1.553(4)
C(1A)-C(10A)	1.521(4)	C(7B)-C(9B)	1.515(4)
C(1A)-C(6A)	1.548(4)	C(7B)-C(8B)	1.530(4)
C(1A)-C(2A)	1.550(4)	C(12B)-C(13B)	1.503(4)
C(2A)-C(3A)	1.532(4)	C(12B)-C(16B)	1.528(4)
C(3A)-C(4A)	1.535(4)	C(13B)-C(14B)	1.536(4)
C(4A)-C(5A)	1.561(4)	C(14B)-C(15B)	1.542(4)
C(4A)-C(7A)	1.563(4)	C(15B)-C(21B)	1.464(4)
C(5A)-C(6A)	1.559(4)	C(15B)-C(16B)	1.548(4)
C(6A)-C(7A)	1.573(4)	C(16B)-C(17B)	1.520(4)
C(7A)-C(9A)	1.529(4)	C(16B)-C(20B)	1.546(4)
C(7A)-C(8A)	1.558(4)	C(17B)-C(18B)	1.510(4)
C(12A)-C(13A)	1.506(4)	C(18B)-C(19B)	1.295(4)
C(12A)-C(16A)	1.527(4)	O(1C)-C(11C)	1.235(3)
C(13A)-C(14A)	1.552(4)	N(1C)-C(11C)	1.342(3)
C(14A)-C(15A)	1.531(4)	N(1C)-C(2C)	1.478(3)
C(15A)-C(21A)	1.477(4)	N(2C)-C(11C)	1.390(3)
C(15A)-C(16A)	1.557(4)	N(2C)-N(3C)	1.398(3)
C(16A)-C(17A)	1.530(4)	N(3C)-C(12C)	1.273(3)
C(16A)-C(20A)	1.543(4)	N(4C)-C(21C)	1.150(4)
C(17A)-C(18A)	1.486(4)	C(1C)-C(6C)	1.520(4)
C(18A)-C(19A)	1.308(4)	C(1C)-C(2C)	1.532(4)
O(1B)-C(11B)	1.238(3)	C(1C)-C(10C)	1.570(4)
N(1B)-C(11B)	1.348(3)	C(2C)-C(3C)	1.549(4)
N(1B)-C(2B)	1.482(3)	C(3C)-C(4C)	1.517(4)
N(2B)-C(11B)	1.365(3)	C(4C)-C(7C)	1.549(4)
N(2B)-N(3B)	1.395(3)	C(4C)-C(5C)	1.566(5)
N(3B)-C(12B)	1.274(3)	C(5C)-C(6C)	1.550(4)
N(4B)-C(21B)	1.141(4)	C(6C)-C(7C)	1.549(4)
C(1B)-C(10B)	1.522(4)	C(7C)-C(9C)	1.487(4)
C(1B)-C(2B)	1.524(4)	C(7C)-C(8C)	1.544(4)

C(12C)-C(13C)	1.513(4)	C(6E)-C(7E)	1.584(4)
C(12C)-C(16C)	1.531(4)	C(7E)-C(9E)	1.514(4)
C(13C)-C(14C)	1.547(4)	C(7E)-C(8E)	1.543(4)
C(14C)-C(15C)	1.543(3)	C(12E)-C(13E)	1.499(4)
C(15C)-C(21C)	1.472(4)	C(12E)-C(16E)	1.520(4)
C(15C)-C(16C)	1.556(4)	C(13E)-C(14E)	1.531(4)
C(16C)-C(17C)	1.521(4)	C(14E)-C(15E)	1.551(4)
C(16C)-C(20C)	1.539(4)	C(15E)-C(21E)	1.475(4)
C(17C)-C(18C)	1.509(4)	C(15E)-C(16E)	1.562(4)
C(18C)-C(19C)	1.321(4)	C(16E)-C(17E)	1.534(4)
O(1D)-C(11D)	1.240(3)	C(16E) - C(20E)	1.555(4)
N(1D)-C(11D)	1 347(3)	C(17E) - C(18E)	1 505(4)
N(1D)-C(2D)	1 479(3)	C(18E) - C(19E)	1 291(4)
N(2D) - C(11D)	1 366(3)	O(1F)-C(11F)	1.291(1) 1.243(3)
N(2D) - N(3D)	1 388(3)	N(1F)-C(11F)	1.213(3) 1.332(3)
N(3D) - C(12D)	1 279(3)	N(1F) - C(2F)	1.552(3) 1.458(3)
N(4D) C(21D)	1.275(3) 1.153(4)	N(11) - C(21) N(2E) C(11E)	1.430(3) 1.371(3)
C(1D) C(2D)	1.512(4)	N(2F) - C(11F) N(2F) N(3F)	1.371(3) 1.388(3)
C(1D) - C(0D)	1.512(4) 1.523(4)	N(2E) - N(3E)	1.366(3)
C(1D)-C(10D)	1.525(4)	N(3F)-C(12F) N(4E) C(21E)	1.200(3) 1.154(4)
C(1D)-C(2D)	1.557(4)	$N(4\Gamma)-C(2\Gamma\Gamma)$	1.134(4) 1.525(4)
C(2D)-C(3D)	1.557(4)	C(1F)-C(0F)	1.525(4)
C(3D)-C(4D)	1.530(4)	C(1F)-C(10F)	1.541(4)
C(4D)-C(7D)	1.552(4)	C(1F)-C(2F)	1.544(4)
C(4D)-C(5D)	1.572(4)	C(2F)- $C(3F)$	1.547(4)
C(5D)-C(6D)	1.559(4)	C(3F)-C(4F)	1.525(4)
C(0D)-C(7D)	1.502(4)	C(4F)-C(5F)	1.540(4)
$C(7D)-C(\delta D)$	1.525(4)	C(4F)-C(7F)	1.500(4)
C(7D)-C(9D)	1.525(4)	C(5F)-C(6F)	1.539(4)
C(12D)-C(13D)	1.497(4)	$C(\mathbf{0F})$ - $C(\mathbf{7F})$	1.560(4)
C(12D)-C(16D)	1.532(4)	C(7F)-C(9F)	1.512(4)
C(13D)-C(14D)	1.536(4)	C(7F)-C(8F)	1.534(4)
C(14D)-C(15D)	1.553(4)	C(12F)-C(13F)	1.502(4)
C(15D)-C(21D)	1.447(5)	C(12F)-C(16F)	1.532(4)
C(15D)-C(16D)	1.553(4)	C(13F)-C(14F)	1.539(4)
C(16D)-C(17D)	1.515(4)	C(14F)-C(15F)	1.538(4)
C(16D)-C(20D)	1.547(4)	C(15F)-C(21F)	1.461(4)
C(1/D)-C(18D)	1.548(4)	C(15F)-C(16F)	1.565(4)
C(18D)-C(19D)	1.298(4)	C(16F)-C(20F)	1.532(4)
O(1E)-C(11E)	1.243(3)	C(16F)-C(17F)	1.534(4)
N(1E)-C(11E)	1.333(4)	C(17F)-C(18F)	1.511(4)
N(1E)-C(2E)	1.470(3)	C(18F)-C(19F)	1.305(4)
N(2E)-C(11E)	1.372(3)		
N(2E)-N(3E)	1.386(3)	C(11A)-N(1A)-C(2A)	124.8(2)
N(3E)-C(12E)	1.282(3)	C(11A)-N(2A)-N(3A)	119.0(3)
N(4E)-C(21E)	1.136(4)	C(12A)-N(3A)-N(2A)	116.0(3)
C(1E)-C(6E)	1.524(4)	C(10A)-C(1A)-C(6A)	112.8(3)
C(1E)-C(2E)	1.542(4)	C(10A)-C(1A)-C(2A)	110.4(3)
C(1E)-C(10E)	1.546(4)	C(6A)-C(1A)-C(2A)	110.6(2)
C(2E)-C(3E)	1.550(4)	N(1A)-C(2A)-C(3A)	111.6(2)
C(3E)-C(4E)	1.523(4)	N(1A)-C(2A)-C(1A)	112.4(2)
C(4E)-C(5E)	1.549(4)	C(3A)-C(2A)-C(1A)	114.1(2)
C(4E)-C(7E)	1.554(4)	C(2A)-C(3A)-C(4A)	113.8(2)
C(5E)-C(6E)	1.553(4)	C(3A)-C(4A)-C(5A)	107.0(3)

C(3A)-C(4A)-C(7A)	111.3(3)	C(8B)-C(7B)-C(4B)	111.7(3)
C(5A)-C(4A)-C(7A)	88.0(2)	C(6B)-C(7B)-C(4B)	86.0(2)
C(4A)-C(5A)-C(6A)	85.8(2)	O(1B)-C(11B)-N(1B)	124.6(3)
C(1A)-C(6A)-C(5A)	106.1(2)	O(1B)-C(11B)-N(2B)	120.3(3)
C(1A)-C(6A)-C(7A)	115.0(3)	N(1B)-C(11B)-N(2B)	115.1(3)
C(5A)-C(6A)-C(7A)	87.7(2)	N(3B)-C(12B)-C(13B)	128.4(3)
C(9A)-C(7A)-C(8A)	108.2(3)	N(3B)-C(12B)-C(16B)	120.5(3)
C(9A)-C(7A)-C(4A)	119 7(3)	C(13B)-C(12B)-C(16B)	1112(2)
C(8A)-C(7A)-C(4A)	110.1(3)	C(12B) - C(12B) - C(14B)	104 1(2)
C(9A)-C(7A)-C(6A)	121 8(3)	C(13B) - C(14B) - C(15B)	104.1(2)
C(8A)-C(7A)-C(6A)	109 9(3)	C(21B)-C(15B)-C(14B)	104.1(2) 108.8(2)
C(4A) C(7A) C(6A)	85 3(2)	C(21B) - C(15B) - C(14B)	100.0(2) 111 1(2)
O(1A) C(11A) N(1A)	125 2(3)	C(14R) C(15R) C(16R)	103.0(2)
O(1A) - C(11A) - N(1A)	123.2(3) 110 $4(3)$	C(17P) C(15D) - C(10D)	103.9(2)
V(1A) - C(11A) - N(2A)	119.4(3) 115.5(2)	C(17B) - C(10B) - C(12B) C(17B) - C(16B) - C(15B)	111.9(2) 114.0(2)
N(1A)-C(11A)-N(2A) N(2A)-C(12A)-C(12A)	113.3(3) 129.5(2)	C(17B)-C(10B)-C(13B) C(12B)-C(16B)-C(15B)	114.9(2) 101.2(2)
N(3A)-C(12A)-C(13A)	120.3(3)	C(12B)-C(10B)-C(13B) C(17B)-C(14B)-C(20B)	101.2(2)
N(3A)-C(12A)-C(16A)	120.6(3)	C(1/B)-C(10B)-C(20B)	110.1(2)
C(13A)-C(12A)-C(16A)	110.8(3)	C(12B)-C(16B)-C(20B)	108.2(2)
C(12A)-C(13A)-C(14A)	104.3(2)	C(15B)-C(16B)-C(20B)	110.2(2)
C(15A)-C(14A)-C(13A)	104.1(2)	C(18B)-C(1/B)-C(16B)	112.2(2)
C(21A)-C(15A)-C(14A)	109.6(3)	C(19B)-C(18B)-C(17B)	126.5(3)
C(21A)-C(15A)-C(16A)	109.9(2)	N(4B)-C(21B)-C(15B)	178.4(4)
C(14A)-C(15A)-C(16A)	104.0(2)	C(11C)-N(1C)-C(2C)	123.1(3)
C(12A)-C(16A)-C(17A)	113.8(2)	C(11C)-N(2C)-N(3C)	117.2(2)
C(12A)-C(16A)-C(20A)	108.4(2)	C(12C)-N(3C)-N(2C)	116.3(2)
C(17A)-C(16A)-C(20A)	110.6(3)	C(6C)-C(1C)-C(2C)	111.9(3)
C(12A)-C(16A)-C(15A)	100.1(2)	C(6C)-C(1C)-C(10C)	110.4(3)
C(17A)-C(16A)-C(15A)	114.7(2)	C(2C)-C(1C)-C(10C)	113.1(3)
C(20A)-C(16A)-C(15A)	108.6(2)	N(1C)-C(2C)-C(1C)	112.6(3)
C(18A)-C(17A)-C(16A)	113.6(2)	N(1C)-C(2C)-C(3C)	107.7(2)
C(19A)-C(18A)-C(17A)	125.2(3)	C(1C)-C(2C)-C(3C)	116.1(3)
N(4A)-C(21A)-C(15A)	176.6(4)	C(4C)-C(3C)-C(2C)	113.2(3)
C(11B)-N(1B)-C(2B)	125.9(3)	C(3C)-C(4C)-C(7C)	109.3(3)
C(11B)-N(2B)-N(3B)	119.6(2)	C(3C)-C(4C)-C(5C)	107.4(3)
C(12B)-N(3B)-N(2B)	115.9(2)	C(7C)-C(4C)-C(5C)	87.7(2)
C(10B)-C(1B)-C(2B)	111.8(3)	C(6C)-C(5C)-C(4C)	86.1(3)
C(10B)-C(1B)-C(6B)	112.5(3)	C(1C)-C(6C)-C(7C)	114.4(3)
C(2B)-C(1B)-C(6B)	111.3(2)	C(1C)-C(6C)-C(5C)	105.3(3)
N(1B)-C(2B)-C(1B)	111.3(2)	C(7C)-C(6C)-C(5C)	88.3(2)
N(1B)-C(2B)-C(3B)	112.6(2)	C(9C)-C(7C)-C(8C)	107.4(3)
C(1B)-C(2B)-C(3B)	116.6(2)	C(9C)-C(7C)-C(6C)	122.3(3)
C(4B)-C(3B)-C(2B)	111.8(2)	C(8C)-C(7C)-C(6C)	110.6(3)
C(3B)-C(4B)-C(5B)	108.5(3)	C(9C)-C(7C)-C(4C)	117.7(3)
C(3B)-C(4B)-C(7B)	112.2(3)	C(8C)-C(7C)-C(4C)	110.8(3)
C(5B)-C(4B)-C(7B)	86.8(2)	C(6C)-C(7C)-C(4C)	86.7(2)
C(4B)-C(5B)-C(6B)	86.4(2)	O(1C)-C(11C)-N(1C)	124.6(3)
C(1B)-C(6B)-C(7B)	114.7(2)	O(1C)-C(11C)-N(2C)	120.2(3)
C(1B)-C(6B)-C(5B)	105.6(3)	N(1C)-C(11C)-N(2C)	115.2(3)
C(7B)-C(6B)-C(5B)	87.2(2)	N(3C)-C(12C)-C(13C)	129.6(3)
C(9B)-C(7B)-C(8B)	107.1(3)	N(3C)-C(12C)-C(16C)	119.8(3)
C(9B)-C(7B)-C(6B)	121.9(3)	C(13C) - C(12C) - C(16C)	110.8(3)
C(8B)-C(7B)-C(6B)	111 5(3)	C(12C) - C(13C) - C(14C)	104.9(2)
C(9B)-C(7B)-C(4B)	117.6(3)	C(15C) - C(14C) - C(13C)	1037(2)

C(21C)-C(15C)-C(14C)	108.0(3)	C(19D)-C(18D)-C(17D)	121.1(4)
C(21C)-C(15C)-C(16C)	109.2(2)	N(4D)-C(21D)-C(15D)	176.3(4)
C(14C)-C(15C)-C(16C)	104.4(2)	C(11E)-N(1E)-C(2E)	121.0(3)
C(17C)-C(16C)-C(12C)	112.8(2)	C(11E)-N(2E)-N(3E)	119.1(2)
C(17C)-C(16C)-C(20C)	111.5(3)	C(12E)-N(3E)-N(2E)	115.2(2)
C(12C)-C(16C)-C(20C)	109.2(2)	C(6E)-C(1E)-C(2E)	112.3(2)
C(17C)-C(16C)-C(15C)	114.2(3)	C(6E)-C(1E)-C(10E)	112.2(3)
C(12C)-C(16C)-C(15C)	99.6(2)	C(2E)-C(1E)-C(10E)	111 4(3)
C(20C)-C(16C)-C(15C)	108.9(2)	N(1E)-C(2E)-C(1E)	109 8(2)
C(18C)-C(17C)-C(16C)	1135(2)	N(1E) - C(2E) - C(3E)	1112(2)
C(19C)-C(18C)-C(17C)	1240(3)	C(1E) - C(2E) - C(3E)	114 6(3)
N(4C)-C(21C)-C(15C)	121.0(3) 1747(4)	C(4E) - C(3E) - C(2E)	112 6(3)
C(11D)-N(1D)-C(2D)	171.7(1) 1201(2)	C(3E) - C(4E) - C(5E)	107.0(3)
C(11D)-N(2D)-N(3D)	120.1(2) 118 9(2)	C(3E) - C(4E) - C(7E)	112 6(3)
C(12D) N(2D) N(2D)	110.9(2) 115.1(2)	C(5E) - C(4E) - C(7E)	88.6(2)
$C(12D)^{-1}(3D)^{-1}(2D)$ C(6D) C(1D) C(10D)	113.1(2) 112.7(2)	C(4E) - C(4E) - C(7E)	86.2(2)
C(0D)-C(1D)-C(10D) C(6D) C(1D) C(2D)	112.7(2) 111.6(2)	C(4E) - C(5E) - C(6E) C(1E) C(6E) C(5E)	1065(3)
C(0D)-C(1D)-C(2D)	111.0(2) 111.4(2)	C(1E) - C(0E) - C(3E)	100.3(3)
C(10D)-C(1D)-C(2D)	111.4(2) 111.4(2)	C(1E) - C(0E) - C(7E)	113.4(2) 97.4(2)
N(1D)-C(2D)-C(3D) N(1D)-C(2D)-C(1D)	111.4(2) 109.7(2)	C(3E) - C(0E) - C(7E)	67.4(2)
N(1D)-C(2D)-C(1D)	106.7(2)	C(9E) - C(7E) - C(8E)	107.4(3)
C(3D)-C(2D)-C(1D)	114.8(2) 112.1(2)	C(9E) - C(7E) - C(4E)	119.5(3)
C(4D)-C(3D)-C(2D)	113.1(2)	C(8E)-C(7E)-C(4E)	110.8(3)
C(3D)-C(4D)-C(7D)	112.2(2)	C(9E) - C(7E) - C(6E)	122.7(3)
C(3D)-C(4D)-C(5D)	106.9(2)	C(8E)-C(7E)-C(6E)	109.9(3)
C(/D)-C(4D)-C(5D)	87.2(2)	C(4E)-C(7E)-C(6E)	85.0(2)
C(6D)-C(5D)-C(4D)	85.8(2)	O(1E)-C(11E)-N(1E)	123.4(3)
C(1D)-C(6D)-C(5D)	106.8(2)	O(1E)-C(11E)-N(2E)	119.4(3)
C(1D)-C(6D)-C(7D)	115.5(2)	N(1E)-C(11E)-N(2E)	117.2(3)
C(5D)-C(6D)-C(7D)	87.3(2)	N(3E)-C(12E)-C(13E)	129.1(3)
C(8D)-C(7D)-C(9D)	107.8(2)	N(3E)-C(12E)-C(16E)	119.8(3)
C(8D)-C(7D)-C(4D)	111.1(2)	C(13E)-C(12E)-C(16E)	111.0(3)
C(9D)-C(7D)-C(4D)	118.9(2)	C(12E)-C(13E)-C(14E)	104.9(2)
C(8D)-C(7D)-C(6D)	110.8(2)	C(13E)-C(14E)-C(15E)	104.4(2)
C(9D)-C(7D)-C(6D)	120.5(2)	C(21E)-C(15E)-C(14E)	108.5(3)
C(4D)-C(7D)-C(6D)	86.4(2)	C(21E)-C(15E)-C(16E)	110.5(3)
O(1D)-C(11D)-N(1D)	123.2(3)	C(14E)-C(15E)-C(16E)	103.3(2)
O(1D)-C(11D)-N(2D)	120.0(3)	C(12E)-C(16E)-C(17E)	113.7(2)
N(1D)-C(11D)-N(2D)	116.8(3)	C(12E)-C(16E)-C(20E)	108.3(2)
N(3D)-C(12D)-C(13D)	129.0(3)	C(17E)-C(16E)-C(20E)	111.5(2)
N(3D)-C(12D)-C(16D)	121.0(3)	C(12E)-C(16E)-C(15E)	100.3(2)
C(13D)-C(12D)-C(16D)	110.0(3)	C(17E)-C(16E)-C(15E)	114.0(2)
C(12D)-C(13D)-C(14D)	105.1(2)	C(20E)-C(16E)-C(15E)	108.4(2)
C(13D)-C(14D)-C(15D)	104.8(2)	C(18E)-C(17E)-C(16E)	114.2(2)
C(21D)-C(15D)-C(16D)	111.7(3)	C(19E)-C(18E)-C(17E)	125.0(3)
C(21D)-C(15D)-C(14D)	109.1(3)	N(4E)-C(21E)-C(15E)	177.2(4)
C(16D)-C(15D)-C(14D)	103.0(2)	C(11F)-N(1F)-C(2F)	122.2(2)
C(17D)-C(16D)-C(12D)	112.5(3)	C(11F)-N(2F)-N(3F)	119.7(2)
C(17D)-C(16D)-C(20D)	110.9(3)	C(12F)-N(3F)-N(2F)	115.1(2)
C(12D)-C(16D)-C(20D)	108.4(3)	C(6F)-C(1F)-C(10F)	112.8(2)
C(17D)-C(16D)-C(15D)	115.2(3)	C(6F)-C(1F)-C(2F)	111.9(2)
C(12D)-C(16D)-C(15D)	100.1(3)	C(10F)-C(1F)-C(2F)	110.4(2)
C(20D)-C(16D)-C(15D)	109.0(3)	N(1F)-C(2F)-C(1F)	112.0(2)
C(16D)-C(17D)-C(18D)	111.8(3)	N(1F)-C(2F)-C(3F)	110.1(2)

Appendix 2 – X-Ray Crystallography Reports Relevant to Chapter 2

C(1F)-C(2F)-C(3F)	114.0(2)	N(3F)-C(12F)-C(13F)	128.3(3)
C(4F)-C(3F)-C(2F)	113.1(2)	N(3F)-C(12F)-C(16F)	121.2(3)
C(3F)-C(4F)-C(5F)	107.6(3)	C(13F)-C(12F)-C(16F)	110.5(2)
C(3F)-C(4F)-C(7F)	111.8(2)	C(12F)-C(13F)-C(14F)	105.4(2)
C(5F)-C(4F)-C(7F)	87.6(2)	C(15F)-C(14F)-C(13F)	103.7(2)
C(6F)-C(5F)-C(4F)	86.3(2)	C(21F)-C(15F)-C(14F)	109.4(3)
C(1F)-C(6F)-C(5F)	106.7(3)	C(21F)-C(15F)-C(16F)	111.6(3)
C(1F)-C(6F)-C(7F)	114.3(2)	C(14F)-C(15F)-C(16F)	104.1(2)
C(5F)-C(6F)-C(7F)	87.8(2)	C(20F)-C(16F)-C(12F)	109.6(2)
C(9F)-C(7F)-C(8F)	107.1(3)	C(20F)-C(16F)-C(17F)	110.5(2)
C(9F)-C(7F)-C(4F)	118.9(3)	C(12F)-C(16F)-C(17F)	111.6(2)
C(8F)-C(7F)-C(4F)	111.7(3)	C(20F)-C(16F)-C(15F)	109.2(2)
C(9F)-C(7F)-C(6F)	122.2(3)	C(12F)-C(16F)-C(15F)	100.7(2)
C(8F)-C(7F)-C(6F)	110.5(2)	C(17F)-C(16F)-C(15F)	114.7(2)
C(4F)-C(7F)-C(6F)	85.1(2)	C(18F)-C(17F)-C(16F)	112.0(3)
O(1F)-C(11F)-N(1F)	124.5(3)	C(19F)-C(18F)-C(17F)	126.5(3)
O(1F)-C(11F)-N(2F)	119.3(3)	N(4F)-C(21F)-C(15F)	178.8(4)
N(1F)-C(11F)-N(2F)	116.2(3)		

Table A2.9 Anisotropic displacement parameters ($\mathring{A}^2 \times 10^4$) for semicarbazone **71** (CCDC 749151). The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1A)	224(13)	220(12)	128(11)	-48(10)	16(10)	-60(10)
N(1A)	219(16)	216(15)	160(15)	-73(12)	51(13)	-73(12)
N(2A)	205(16)	190(14)	133(14)	-20(12)	-3(12)	-60(12)
N(3A)	190(16)	199(15)	191(15)	-54(12)	26(12)	18(12)
N(4A)	320(20)	480(20)	530(20)	58(17)	124(16)	33(16)
C(1A)	210(20)	243(19)	300(20)	0(16)	59(16)	-10(15)
C(2A)	240(20)	211(18)	200(18)	-27(15)	62(15)	-32(15)
C(3A)	200(20)	151(17)	480(20)	17(17)	107(17)	9(15)
C(4A)	220(20)	300(20)	500(20)	66(18)	23(18)	-43(16)
C(5A)	290(20)	410(20)	280(20)	-40(18)	88(17)	-76(17)
C(6A)	320(20)	155(18)	430(20)	-9(16)	141(18)	-27(15)
C(7A)	270(20)	192(18)	480(20)	44(17)	199(18)	-50(16)
C(8A)	330(20)	310(20)	770(30)	80(20)	220(20)	-67(18)
C(9A)	570(30)	410(20)	490(30)	20(20)	330(20)	70(20)
C(10A)	490(30)	400(20)	410(20)	130(20)	-30(20)	0(20)
C(11A)	100(18)	155(17)	250(20)	39(15)	-11(15)	8(14)
C(12A)	143(18)	183(18)	223(18)	-20(15)	11(15)	21(14)
C(13A)	230(20)	240(19)	260(20)	-13(16)	11(16)	-91(16)
C(14A)	230(20)	207(18)	263(19)	-21(16)	19(16)	-77(15)
C(15A)	230(20)	128(17)	228(19)	-64(15)	17(15)	-57(15)
C(16A)	136(18)	206(18)	255(19)	-65(15)	28(15)	-3(14)
C(17A)	230(20)	310(20)	205(19)	-70(16)	63(15)	-70(16)
C(18A)	390(20)	280(20)	260(20)	-107(17)	102(18)	-30(17)
C(19A)	430(30)	360(20)	320(20)	-45(18)	69(19)	-110(19)

C(20A)	270(20)	254(19)	370(20)	-97(17)	59(17)	-2(16)
C(21A)	190(20)	320(20)	220(20)	-19(17)	20(16)	-49(17)
-()		()	()	()	()	
O(1B)	197(13)	204(12)	164(12)	-30(10)	-11(10)	-54(10)
N(1B)	242(16)	184(15)	187(12)	-9(12)	55(13)	-79(12)
N(2B)	102(15)	186(14)	102(13) 118(14)	29(11)	43(12)	-73(12)
N(2B)	152(15) 156(15)	176(14)	1/10(14) 1/18(1/1)	27(11) 27(12)	-10(12)	-71(12) 13(12)
N(3D) N(4P)	530(20)	304(18)	370(20)	-27(12)	0(12) 03(17)	-13(12) 30(16)
$\Gamma(4D)$	330(20)	304(10)	370(20)	-30(13)	93(17)	30(10)
C(1D)	240(20) 177(10)	231(19)	330(20)	22(10)	$\frac{80(10)}{71(16)}$	6(13)
C(2D)	1/(19)	217(10) 172(10)	510(20)	-28(10)	/1(10)	-05(13)
C(3B)	180(20)	1/3(18)	480(20)	13(17)	83(17)	-39(15)
C(4B)	340(20)	250(20)	410(20)	-48(18)	126(18)	-21(17)
C(5B)	330(20)	450(20)	300(20)	-30(19)	18(18)	-57(18)
C(6B)	180(20)	370(20)	290(20)	6(17)	62(16)	-30(16)
C(7B)	181(19)	233(19)	330(20)	54(16)	57(16)	-84(15)
C(8B)	390(30)	410(20)	630(30)	-10(20)	140(20)	-70(19)
C(9B)	500(30)	410(20)	380(20)	62(19)	130(20)	80(20)
C(10B)	320(20)	420(20)	460(20)	-33(19)	117(19)	31(18)
C(11B)	190(20)	88(16)	290(20)	13(15)	35(17)	29(14)
C(12B)	114(17)	179(17)	151(17)	-15(14)	31(14)	48(14)
C(13B)	202(19)	192(17)	148(17)	2(14)	44(14)	-48(14)
C(14B)	218(19)	203(18)	212(18)	-13(15)	50(15)	-71(15)
C(15B)	142(18)	175(17)	202(18)	-4(15)	-6(14)	-75(14)
C(16B)	151(18)	197(17)	117(16)	-35(14)	21(14)	-3(14)
C(17B)	220(20)	267(19)	228(19)	-61(15)	73(15)	-90(15)
C(18B)	300(20)	320(20)	224(19)	-80(16)	96(17)	-86(16)
C(19B)	680(30)	300(20)	240(20)	-15(18)	0(20)	-110(20)
C(20B)	250(20)	240(18)	250(19)	-23(15)	2(15)	-31(15)
C(21B)	310(20)	191(19)	205(19)	-30(15)	15(17)	-52(16)
-()	()			()	()	()
O(1C)	196(13)	211(12)	147(12)	-57(10)	-5(10)	-75(10)
N(1C)	259(17)	196(15)	176(15)	-15(12)	54(13)	-97(12)
N(2C)	193(15)	222(15)	109(14)	40(12)	-5(12)	-72(12)
N(3C)	176(15)	186(15)	164(14)	-11(12)	6(12)	-11(12)
N(4C)	350(20)	470(20)	510(20)	121(12)	111(16)	46(16)
$\Gamma(1C)$	490(30)	330(20)	320(20)	98(18)	Q(10)	-132(10)
C(2C)	270(20)	410(20)	132(18)	16(16)	24(16)	-132(17) 170(17)
C(2C)	270(20) 330(20)	600(30)	360(20)	130(20)	15(10)	120(20)
C(3C)	530(20) 520(30)	510(20)	260(20)	40(19)	174(10)	-120(20)
C(4C)	520(30) 580(20)	310(20) 370(20)	200(20)	-40(19)	1/4(19)	-220(20)
C(SC)	380(30)	370(20)	700(30)	-190(20)	40(30)	-30(20)
C(0C)	260(20)	360(20)	460(20)	20(20)	/1(19)	14(10) 10(17)
C(IC)	270(20)	300(20) 810(20)	510(20)	89(17)	10/(17)	-19(17)
$C(\delta C)$	530(30)	810(30)	600(30)	-90(20)	250(20)	-250(20)
C(9C)	610(30)	360(20)	600(30)	80(20)	60(20)	-30(20)
C(10C)	810(40)	890(30)	330(20)	-170(20)	110(20)	-480(30)
C(TIC)	90(18)	206(19)	260(20)	143(16)	13(15)	49(14)
C(12C)	154(18)	183(17)	164(17)	-4(14)	23(14)	16(14)
C(13C)	220(19)	253(19)	201(18)	-17(15)	65(15)	-65(15)
C(14C)	230(20)	247(18)	240(19)	11(16)	28(15)	-64(15)
C(15C)	193(19)	197(18)	195(18)	-42(15)	27(15)	-78(15)
C(16C)	260(20)	194(18)	142(17)	18(14)	49(15)	-45(15)
C(17C)	270(20)	280(20)	245(19)	-57(16)	86(16)	-80(16)
C(18C)	460(30)	380(20)	230(20)	-7(18)	61(19)	-174(19)

C(19C)	600(30)	540(30)	300(20)	100(20)	-30(20)	-310(20)
C(20C)	310(20)	253(19)	340(20)	-82(17)	87(17)	-52(16)
C(21C)	200(20)	450(20)	240(20)	15(18)	54(16)	-93(18)
-()	()		()	()	()	()
O(1D)	224(13)	267(13)	153(12)	-22(10)	19(10)	-104(10)
N(1D)	208(16)	215(15)	130(14)	-47(12)	44(12)	-86(12)
N(2D)	203(16)	149(14)	146(15)	67(12)	16(12)	-39(12)
N(3D)	207(16)	180(15)	196(16)	10(12)	1(13)	-30(12)
N(4D)	570(30)	380(20)	900(30)	-210(20)	280(20)	-99(18)
C(1D)	214(19)	229(18)	156(17)	-7(15)	18(15)	-30(15)
C(2D)	179(19)	234(18)	130(17) 141(17)	22(14)	25(14)	-38(15)
C(3D)	200(19)	241(18)	215(18)	32(15)	34(15)	-6(15)
C(4D)	199(19)	242(19)	246(19)	23(15)	87(15)	6(15)
C(5D)	330(20)	236(19)	330(20)	-75(16)	208(17)	-65(16)
C(5D)	220(20)	230(19) 249(18)	180(18)	57(15)	98(15)	-27(15)
C(0D)	189(19)	144(17)	250(19)	-12(15)	97(15)	11(14)
C(8D)	250(20)	252(19)	370(20)	43(16)	81(17)	-43(16)
C(0D)	200(20)	232(19) 212(19)	300(20)	9(16)	44(17)	- -
C(3D)	290(20) 200(20)	400(20)	310(20)	-9(10)	33(17)	-9(10) 2(18)
C(10D)	130(18)	171(18)	237(10)	57(16)	33(17)	2(10) 1(14)
C(11D) C(12D)	220(20)	181(18)	106(18)	$J_{(10)}$	47(15)	1(14) 10(15)
C(12D) C(13D)	220(20) 200(20)	282(10)	206(18)	-4(15)	-11(13) 38(15)	-19(13)
C(13D) C(14D)	200(20)	202(19) 240(20)	200(18)	-10(10)	33(13)	-70(13)
C(14D) C(15D)	260(20)	340(20)	200(20)	-19(17) 130(18)	71(17)	-118(17) 140(18)
C(15D)	200(20)	400(20)	250(20)	-130(18)	71(17) 02(18)	-140(18)
C(10D) C(17D)	500(20)	380(20)	230(20)	-0(17)	92(10)	-109(10)
C(17D)	330(30)	490(20)	230(20)	-97(19)	1(19)	-300(20)
C(10D)	440(30) 540(20)	500(30)	430(30)	150(20)	20(20)	-140(20)
C(19D)	340(30)	500(50)	500(20)	-130(20)	190(20) 50(20)	-60(20)
C(20D)	330(30) 420(20)	510(30)	340(30)	50(20) 120(20)	-50(20)	10(20)
C(21D)	420(30)	410(50)	390(20)	-120(20)	100(20)	-230(20)
O(1E)	245(14)	259(13)	175(12)	20(11)	34(10)	95(10)
N(1E)	229(16)	265(16)	202(16)	47(13)	85(13)	106(13)
N(2E)	175(16)	206(15)	156(14)	5(12)	52(12)	70(12)
N(3E)	175(10) 175(15)	196(15)	160(15)	42(12)	-2(12)	11(12)
N(4E)	340(20)	480(20)	740(30)	162(12)	-68(18)	-70(17)
C(1E)	260(20)	290(20)	280(20)	50(17)	78(17)	7(16)
C(2E)	270(20)	235(20) 215(19)	270(19)	7(16)	150(16)	48(15)
C(3E)	290(20)	300(20)	450(20)	37(18)	228(19)	61(17)
C(4E)	400(20)	220(20)	440(20)	-56(18)	179(19)	-54(18)
C(5E)	440(30)	450(20)	340(20)	-130(20)	140(20)	-40(20)
C(5E)	260(20)	290(20)	280(20)	-33(16)	147(16)	18(16)
C(0E)	250(20)	185(18)	340(20)	-61(16)	128(17)	15(15)
C(8E)	510(30)	320(20)	610(30)	-80(20)	310(20)	21(19)
C(0E)	440(30)	320(20)	360(20)	-60(20) 60(10)	104(10)	87(10)
C(3E)	300(20)	270(20)	530(20)	61(18)	1/(19)	10(17)
C(10L)	124(10)	210(20) 212(18)	230(20)	-01(10) 28(16)	31(16)	-10(17) A3(14)
C(12E)	124(19) 156(18)	173(17)	208(18)	-20(10)	37(10)	-43(14)
C(12E)	300(20)	235(10)	200(10)	70(16)	67(16)	-23(14) 102(16)
C(1/E)	250(20)	233(17) 320(20)	213(17) 300(20)	85(17)	70(16)	102(10) 145(17)
C(14E) C(15E)	230(20) 240(20)	320(20) 160(19)	260(20)	0J(17) 59(15)	10(16)	14J(17) 35(15)
C(15E)	240(20) 156(19)	109(10)	209(19)	50(15) 6(14)	19(10)	33(13) 32(14)
C(10E) C(17E)	130(10) 310(20)	100(10) 211(10)	1/4(1/) 172(19)	0(14) 2(15)	-10(14)	23(14) 12(15)
U(1/E)	310(20)	211(10)	1/3(10)	2(13)	0(10)	12(13)

C(18E)	480(30)	350(20)	260(20)	-5(18)	-26(19)	101(19)
C(19E)	610(30)	410(20)	390(20)	-30(20)	-50(20)	190(20)
C(20E)	250(20)	290(20)	260(19)	62(16)	45(16)	-16(16)
C(21E)	170(20)	370(20)	360(20)	149(19)	-50(17)	35(17)
O(1F)	204(13)	197(12)	144(12)	22(10)	-13(10)	60(10)
N(1F)	194(16)	172(14)	142(14)	45(12)	51(12)	91(12)
N(2F)	175(15)	157(14)	151(15)	-29(11)	26(12)	74(12)
N(3F)	175(15)	138(14)	149(14)	16(12)	9(12)	-12(12)
N(4F)	530(20)	264(18)	450(20)	-10(15)	30(18)	35(16)
C(1F)	178(19)	179(18)	230(18)	-20(15)	58(15)	28(14)
C(2F)	213(19)	144(17)	172(17)	22(14)	86(14)	22(14)
C(3F)	310(20)	253(19)	340(20)	-34(17)	153(17)	-3(16)
C(4F)	270(20)	400(20)	280(20)	-77(18)	183(17)	37(17)
C(5F)	340(20)	360(20)	238(19)	-2(17)	79(17)	-21(18)
C(6F)	360(20)	270(20)	229(19)	-60(16)	140(17)	-14(17)
C(7F)	210(20)	218(19)	350(20)	-62(17)	136(17)	33(15)
C(8F)	370(20)	340(20)	510(20)	-85(19)	190(20)	43(18)
C(9F)	240(20)	510(20)	370(20)	-40(20)	35(18)	111(18)
C(10F)	380(20)	292(19)	320(20)	-33(17)	164(17)	-4(17)
C(11F)	160(19)	93(17)	270(20)	-49(15)	76(16)	-67(14)
C(12F)	172(18)	150(17)	138(17)	-26(14)	12(14)	-20(14)
C(13F)	270(20)	177(17)	179(18)	36(15)	50(15)	67(15)
C(14F)	250(20)	275(19)	202(19)	-27(16)	7(16)	109(16)
C(15F)	240(20)	174(18)	199(18)	-14(15)	10(15)	70(15)
C(16F)	198(19)	212(18)	135(17)	26(14)	14(14)	46(15)
C(17F)	290(20)	277(19)	224(19)	44(16)	75(16)	95(16)
C(18F)	350(20)	340(20)	280(20)	43(17)	137(18)	79(17)
C(19F)	950(40)	600(30)	190(20)	-60(20)	10(20)	290(30)
C(20F)	230(20)	320(20)	225(19)	5(16)	-29(15)	-11(16)
C(21F)	340(20)	210(20)	210(20)	4(16)	-9(17)	97(17)
. ,	. ,	· · ·	· ·	• •	· · ·	. /

 Table A2.10 Hydrogen bonds for semicarbazone 71 (CCDC 749151) [Å and °]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(2A)-H(2A)O(1F)#1	0.88	2.05	2.879(3)	156.2
N(2B)-H(2B)O(1C)	0.88	2.06	2.895(3)	159.2
N(2C)-H(2C)O(1B)	0.88	2.16	2.926(3)	144.7
N(2D)-H(2D)O(1E)#2	0.88	2.02	2.842(3)	154.0
N(2E)-H(2E)O(1D)#3	0.88	2.04	2.879(3)	159.6
N(2F)-H(2F)O(1A)#4	0.88	2.04	2.892(3)	162.4

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y+1/2,-z

#2 -x+1,y+1/2,-z+1

#3 -x+1,y-1/2,-z+1

#4 -x+1,y-1/2,-z

A2.3 CRYSTAL STRUCTURE OF COMPOUND 68

Figure A2.3 ORTEP drawing of **68** (shown with 50% probability ellipsoids)

<u>NOTE</u>: Crystallographic data have been deposited in the Cambridge Database (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 751261.

Table A2.11 Crystal data and structure refinement for **68** (CCDC 751261)

Empirical formula	$C_{28}H_{32}NO_3Br$
Formula weight	510.46
Crystallization Solvent	Ethyl acetate/heptane
Crystal Habit	Plate
Crystal size	0.43 x 0.29 x 0.06 mm ³
Crystal color	Colorless
Dat	ta Collection
Type of diffractometer	Bruker KAPPA APEX II
Wavelength	0.71073 Å MoKα
Data Collection Temperature	100(2) K
θ range for 9936 reflections used in lattice determination	2.45 to 29.34°
Unit cell dimensions	a = 11.4503(6) Å b = 6.5371(3) Å c = 33.2116(16) Å
Volume	2484.1(2) Å ³
Z	4

Crystal system Space group Density (calculated) F(000) Data collection program θ range for data collection Completeness to $\theta = 29.74^{\circ}$ Index ranges Data collection scan type Data reduction program Reflections collected Independent reflections Absorption coefficient Absorption correction Max. and min. transmission Monoclinic $P2_1$ 1.365 Mg/m³ 1064 Bruker APEX2 v2.1-0 1.78 to 29.74° 92.7 % $-15 \le h \le 15, -9 \le k \le 8, -45 \le l \le 45$ ω scans; 12 settings Bruker SAINT-Plus v7.34A 36895 12339 [$R_{int} = 0.0299$] 1.684 mm⁻¹ Semi-empirical from equivalents 0.7459 and 0.6043

 $\beta = 92.180(3)^{\circ}$

Table A2.11 (cont.)

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Difference Fourier map
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	12339 / 1 / 851
Treatment of hydrogen atoms	Unrestrained
Goodness-of-fit on F ²	1.004
Final R indices [I> 2σ (I), 10737 reflections]	R1 = 0.0294, wR2 = 0.0515
R indices (all data)	R1 = 0.0387, wR2 = 0.0534
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.004
Average shift/error	0.000
Absolute structure determination	Anomalous differences
Absolute structure parameter	0.010(3)
Largest diff. peak and hole	0.567 and -0.323 e.Å ⁻³

Structure solution and Refinement

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K.

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	Х	У	Z	U _{eq}
Br(1)	9880(1)	4696(1)	6209(1)	25(1)
O(1A)	5451(1)	6756(2)	7478(1)	23(1)
O(2A)	5684(1)	3349(2)	7575(1)	22(1)
O(3A)	2616(1)	1547(2)	9151(1)	16(1)
N(1A)	4587(1)	3471(3)	7783(1)	21(1)
C(1A)	8722(2)	4832(3)	6603(1)	19(1)
C(2A)	7995(2)	6497(3)	6600(1)	26(1)
C(3A)	7114(2)	6605(3)	6872(1)	24(1)
C(4A)	6956(2)	5006(3)	7142(1)	17(1)
C(5A)	7709(2)	3330(3)	7145(1)	18(1)
C(6A)	8614(2)	3241(3)	6876(1)	19(1)
C(7A)	5961(2)	5189(3)	7415(1)	18(1)
C(8A)	4548(2)	1987(3)	8028(1)	17(1)
C(9A)	5449(2)	392(3)	8140(1)	19(1)
C(10A)	4921(2)	-796(3)	8492(1)	18(1)
C(11A)	4020(2)	710(3)	8657(1)	16(1)
C(12A)	3463(2)	1686(3)	8273(1)	16(1)
C(13A)	2673(2)	121(3)	8050(1)	21(1)
C(14A)	1993(2)	-1189(3)	8328(1)	21(1)
C(15A)	2193(2)	-1397(3)	8723(1)	17(1)
C(16A)	3145(2)	-182(3)	8949(1)	16(1)
C(17A)	3741(2)	-1358(3)	9298(1)	19(1)
C(18A)	2950(2)	-1009(3)	9650(1)	18(1)
C(19A)	2504(2)	1203(3)	9579(1)	16(1)
C(20A)	1211(2)	1504(3)	9666(1)	20(1)
C(21A)	983(2)	1475(4)	10117(1)	26(1)
C(22A)	1717(2)	3101(4)	10336(1)	29(1)
C(23A)	3015(2)	2774(4)	10266(1)	$\frac{2}{26(1)}$
C(24A)	3269(2)	2688(3)	9822(1)	19(1)
C(25A)	2809(2)	3671(3)	8346(1)	20(1)
C(26A)	1497(2)	-2920(3)	8943(1)	21(1)
C(27A)	347(2)	-3031(4)	8921(1)	29(1)
C(28A)	4103(2)	3791(3)	9665(1)	22(1)
Br(2)	-2285(1)	2168(1)	8941(1)	36(1)
O(1B)	-950(1)	9378(2)	7531(1)	31(1)
O(2B)	443(1)	6988(2)	7431(1)	18(1)
O(3B)	3401(1)	8260(2)	5769(1)	16(1)
N(1B)	925(1)	8429(2)	7145(1)	18(1)
C(1B)	-1789(2)	3793(3)	8502(1)	23(1)
C(2B)	-2342(2)	5616(3)	8420(1)	26(1)
C(3B)	-1924(2)	6859(3)	8121(1)	23(1)
C(4B)	-967(2)	6258(3)	7904(1)	17(1)
C(5B)	-446(2)	4380(3)	7983(1)	21(1)
C(6B)	-857(2)	3129(3)	8284(1)	24(1)
C(7B)	-527(2)	7736(3)	7601(1)	18(1)

Table A2.12 Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters ($Å^2$ x 10^3) for **68** (CCDC 751261). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor

C(8B)	1817(2)	7590(3)	6996(1)	15(1)
C(9B)	2336(2)	5503(3)	7062(1)	19(1)
C(10B)	3311(2)	5349(3)	6756(1)	16(1)
C(11B)	3001(2)	6989(3)	6438(1)	13(1)
C(12B)	2511(2)	8767(3)	6690(1)	14(1)
C(13B)	3533(2)	9804(3)	6923(1)	16(1)
C(14B)	4496(2)	10366(3)	6650(1)	16(1)
C(15B)	4681(2)	9463(3)	6298(1)	16(1)
C(16B)	3964(2)	7645(3)	6148(1)	14(1)
C(17B)	4730(2)	5831(3)	6026(1)	16(1)
C(18B)	3948(2)	4750(3)	5711(1)	18(1)
C(19B)	3273(2)	6497(3)	5500(1)	17(1)
C(20B)	3800(2)	7176(4)	5098(1)	22(1)
C(21B)	3187(2)	9075(4)	4927(1)	27(1)
C(22B)	1869(2)	8762(4)	4873(1)	29(1)
C(23B)	1334(2)	7992(4)	5265(1)	26(1)
C(24B)	1987(2)	6118(3)	5411(1)	20(1)
C(25B)	1773(2)	10291(3)	6445(1)	19(1)
C(26B)	5595(2)	10177(3)	6028(1)	19(1)
C(27B)	6582(2)	11094(3)	6135(1)	25(1)
C(28B)	1499(2)	4268(4)	5414(1)	28(1)

 Table A2.13
 Bond lengths [Å] and angles [°] for 68 (CCDC 751261)

Br(1)-C(1A)	1.8994(16)	C(11A)-C(12A)	1.544(3)
O(1A)-C(7A)	1.202(2)	C(11A)-H(11A)	0.952(18)
O(2A)-C(7A)	1.358(2)	C(12A)-C(25A)	1.522(3)
O(2A)-N(1A)	1.459(2)	C(12A)-C(13A)	1.536(3)
O(3A)-C(19A)	1.450(2)	C(13A)-C(14A)	1.497(3)
O(3A)-C(16A)	1.458(2)	C(13A)-H(13A)	0.91(2)
N(1A)-C(8A)	1.269(2)	C(13A)-H(13B)	0.99(2)
C(1A)-C(2A)	1.370(3)	C(14A)-C(15A)	1.332(3)
C(1A)-C(6A)	1.390(3)	C(14A)-H(14A)	0.949(19)
C(2A)-C(3A)	1.381(3)	C(15A)-C(26A)	1.485(3)
C(2A)-H(2A)	0.91(2)	C(15A)-C(16A)	1.523(3)
C(3A)-C(4A)	1.394(3)	C(16A)-C(17A)	1.529(3)
C(3A)-H(3A)	0.93(2)	C(17A)-C(18A)	1.525(3)
C(4A)-C(5A)	1.394(3)	C(17A)-H(17A)	0.94(2)
C(4A)-C(7A)	1.487(2)	C(17A)-H(17B)	0.89(2)
C(5A)-C(6A)	1.394(3)	C(18A)-C(19A)	1.549(3)
C(5A)-H(5A)	0.86(2)	C(18A)-H(18A)	0.937(18)
C(6A)-H(6A)	0.86(2)	C(18A)-H(18B)	0.99(2)
C(8A)-C(9A)	1.504(3)	C(19A)-C(24A)	1.518(3)
C(8A)-C(12A)	1.522(2)	C(19A)-C(20A)	1.531(3)
C(9A)-C(10A)	1.544(3)	C(20A)-C(21A)	1.530(3)
C(9A)-H(9A1)	1.008(19)	C(20A)-H(20A)	0.95(2)
C(9A)-H(9A2)	0.92(2)	C(20A)-H(20B)	0.963(18)
C(10A)-C(11A)	1.542(3)	C(21A)-C(22A)	1.523(3)
C(10A)-H(10A)	0.98(2)	C(21A)-H(21A)	1.00(2)
C(10A)-H(10B)	1.00(2)	C(21A)-H(21B)	0.93(2)
C(11A)-C(16A)	1.535(2)	C(22A)-C(23A)	1.528(3)

C(22A)-H(22A)	0.956(19)	C(16B)-C(17B)	1.538(2)
C(22A)-H(22B)	0.96(2)	C(17B)-C(18B)	1.524(3)
C(23A)-C(24A)	1.517(3)	C(17B)-H(17C)	0.989(19)
C(23A)-H(23A)	0.93(2)	C(17B)-H(17D)	0.989(19)
C(23A)-H(23B)	1.01(2)	C(18B)-C(19B)	1.534(3)
C(24A)-C(28A)	1.319(3)	C(18B)-H(18C)	0.925(18)
C(25A)-H(25A)	0.93(2)	C(18B)-H(18D)	0.940(18)
C(25A)-H(25B)	0.947(18)	C(19B)-C(24B)	1.512(3)
C(25A)-H(25C)	0.978(19)	C(19B)-C(20B)	1.549(2)
C(26A)-C(27A)	1.318(3)	C(20B)-C(21B)	1.525(3)
C(26A)-H(26A)	0.962(18)	C(20B)-H(20C)	0.98(2)
C(27A)-H(27A)	0.96(2)	C(20B)-H(20D)	0.99(2)
C(27A)-H(27B)	0.96(2)	C(21B)-C(22B)	1.527(3)
C(28A)-H(28A)	0.96(2)	C(21B)-H(21C)	0.95(2)
C(28A)-H(28B)	0.960(18)	C(21B)-H(21D)	0.982(19)
Br(2)-C(1B)	1.9068(18)	C(22B)-C(23B)	1.544(3)
O(1B)-C(7B)	1.197(2)	C(22B)-H(22C)	1.03(2)
O(2B)-C(7B)	1.356(2)	C(22B)-H(22D)	0.99(2)
O(2B)-N(1B)	1.4602(18)	C(23B)-C(24B)	1.506(3)
O(3B)-C(16B)	1.448(2)	C(23B)-H(23C)	0.98(2)
O(3B)-C(19B)	1.462(2)	C(23B)-H(23D)	1.09(2)
N(1B)-C(8B)	1.276(2)	C(24B)-C(28B)	1.332(3)
C(1B)-C(2B)	1.371(3)	C(25B)-H(25D)	0.97(2)
C(1B)-C(6B)	1.382(3)	C(25B)-H(25E)	0.95(2)
C(2B)-C(3B)	1.384(3)	C(25B)-H(25F)	0.917(19)
C(2B)-H(2B)	0.96(2)	C(26B)-C(27B)	1.317(3)
C(3B)-C(4B)	1.390(3)	C(26B)-H(26B)	0.968(18)
C(3B)-H(3B)	0.93(2)	C(27B)-H(27C)	0.94(2)
C(4B)-C(5B)	1.386(3)	C(27B)-H(27D)	0.924(18)
C(4B)-C(7B)	1.497(3)	C(28B)-H(28C)	0.98(2)
C(5B)-C(6B)	1.389(3)	C(28B)-H(28D)	0.99(2)
C(5B)-H(5B)	0.954(17)		
C(6B)-H(6B)	0.93(2)	C(7A)-O(2A)-N(1A)	110.85(14)
C(8B)-C(9B)	1.500(3)	C(19A)-O(3A)-C(16A)	112.66(13)
C(8B)-C(12B)	1.523(2)	C(8A)-N(1A)-O(2A)	108.37(15)
C(9B)-C(10B)	1.542(3)	C(2A)-C(1A)-C(6A)	121.97(17)
C(9B)-H(9B1)	1.01(2)	C(2A)-C(1A)-Br(1)	118.22(14)
C(9B)-H(9B2)	0.91(2)	C(6A)-C(1A)-Br(1)	119.79(15)
C(10B)-C(11B)	1.536(2)	C(1A)-C(2A)-C(3A)	119.70(19)
C(10B)-H(10C)	0.97(2)	C(1A)-C(2A)-H(2A)	120.0(15)
C(10B)-H(10D)	1.05(2)	C(3A)-C(2A)-H(2A)	120.3(15)
C(11B)-C(12B)	1.550(2)	C(2A)-C(3A)-C(4A)	119.87(19)
C(11B)-C(16B)	1.553(2)	C(2A)-C(3A)-H(3A)	119.9(12)
C(11B)-H(11B)	0.982(19)	C(4A)-C(3A)-H(3A)	120.3(12)
C(12B)-C(25B)	1.522(3)	C(3A)-C(4A)-C(5A)	119.94(17)
C(12B)-C(13B)	1.537(3)	C(3A)-C(4A)-C(7A)	116.90(17)
C(13B)-C(14B)	1.501(2)	C(5A)-C(4A)-C(7A)	123.17(17)
C(13B)-H(13C)	0.94(2)	C(4A)-C(5A)-C(6A)	120.18(18)
C(13B)-H(13D)	1.013(17)	C(4A)-C(5A)-H(5A)	120.2(13)
C(14B)-C(15B)	1.333(2)	C(6A)-C(5A)-H(5A)	119.6(13)
C(14B)-H(14B)	0.919(19)	C(1A)-C(6A)-C(5A)	118.30(18)
C(15B)-C(26B)	1.479(2)	C(1A)-C(6A)-H(6A)	119.2(12)
C(15B)-C(16B)	1.518(3)	C(5A)-C(6A)-H(6A)	122.4(12)

O(1A)-C(7A)-O(2A)	124.34(16)	H(17A)-C(17A)-H(17B)	103.5(17)
O(1A)-C(7A)-C(4A)	124.33(17)	C(17A)-C(18A)-C(19A)	103.01(15)
O(2A)-C(7A)-C(4A)	111.30(16)	C(17A)-C(18A)-H(18A)	112.1(12)
N(1A)-C(8A)-C(9A)	130.38(16)	C(19A)-C(18A)-H(18A)	113.7(11)
N(1A)-C(8A)-C(12A)	119.39(16)	C(17A)-C(18A)-H(18B)	112.3(10)
C(9A)-C(8A)-C(12A)	110.20(15)	C(19A)-C(18A)-H(18B)	107.0(11)
C(8A)-C(9A)-C(10A)	104.49(15)	H(18A)-C(18A)-H(18B)	108.6(15)
C(8A)-C(9A)-H(9A1)	107.4(10)	O(3A)-C(19A)-C(24A)	110.49(15)
C(10A)-C(9A)-H(9A1)	112.5(9)	O(3A)-C(19A)-C(20A)	106.65(15)
C(8A)-C(9A)-H(9A2)	108.3(13)	C(24A)-C(19A)-C(20A)	111.14(16)
C(10A)-C(9A)-H(9A2)	114.4(14)	O(3A)-C(19A)-C(18A)	104.67(14)
H(9A1)-C(9A)-H(9A2)	109 3(16)	C(24A)-C(19A)-C(18A)	109 63(15)
C(11A)-C(10A)-C(9A)	103.62(15)	C(20A)-C(19A)-C(18A)	11402(17)
C(11A)-C(10A)-H(10A)	110.7(12)	C(21A)-C(20A)-C(19A)	117.60(17)
C(9A)-C(10A)-H(10A)	110.6(11)	C(21A) - C(20A) - H(20A)	112.00(17) 110.6(12)
C(11A)-C(10A)-H(10B)	109 5(11)	C(19A)-C(20A)-H(20A)	1045(12)
C(9A) - C(10A) - H(10B)	107.5(11) 112.4(12)	C(21A)-C(20A)-H(20B)	104.5(10) 111 5(10)
U(10A) C(10A) U(10B)	112.4(12) 100 8(16)	C(21A) - C(20A) - H(20B)	111.3(10) 110.4(11)
C(16A) C(11A) C(10A)	116 40(15)	U(20A) C(20A) U(20B)	106.4(11)
C(16A) - C(11A) - C(10A)	114.80(15)	$\Gamma(20A) - C(20A) - \Pi(20B)$	100.8(10) 110.22(18)
C(10A) - C(11A) - C(12A)	102 24(14)	C(22A) - C(21A) - C(20A)	110.32(18) 100.6(12)
C(10A) - C(11A) - C(12A)	105.24(14) 106.0(10)	C(22A)-C(21A)-H(21A)	109.0(12) 100.0(11)
C(10A) - C(11A) - H(11A)	100.9(10) 108.2(11)	C(20A)-C(21A)-H(21A)	109.0(11)
C(10A)-C(11A)-H(11A)	106.2(11) 106.9(10)	C(22A)-C(21A)-H(21B)	111.1(12) 100 8(11)
C(12A)-C(11A)-H(11A)	100.0(10) 112.01(16)	U(21A) - C(21A) - H(21B)	109.8(11) 106.0(17)
C(8A) - C(12A) - C(23A)	115.01(10) 107.04(14)	H(21A)-C(21A)-H(21D)	100.9(17)
C(0A)-C(12A)-C(13A)	107.94(14) 111.08(17)	C(21A)-C(22A)-C(23A)	110.03(16) 110.0(12)
C(23A) - C(12A) - C(13A)	111.06(17) 100.06(15)	$C(21A)-C(22A)-\Pi(22A)$	110.0(13) 108.0(13)
C(0A)-C(12A)-C(11A)	100.00(15) 114.26(15)	$C(23A)-C(22A)-\Pi(22A)$	108.0(13) 112.0(13)
C(12A) - C(12A) - C(11A)	114.20(13) 100.85(15)	$C(21A)-C(22A)-\Pi(22B)$	113.0(13) 100.4(12)
C(13A) - C(12A) - C(11A)	109.83(13) 112.24(16)	U(22A) - C(22A) - H(22B)	109.4(13)
C(14A) - C(12A) - C(12A)	115.54(10)	H(22A)-C(22A)-H(22B)	103.0(17)
C(14A)-C(13A)-H(13A)	111.0(13)	C(24A)- $C(23A)$ - $C(22A)$	112.07(18)
C(12A)-C(13A)-H(13A)	109.9(14)	C(24A)-C(23A)-H(23A)	109.1(14)
C(12A) - C(12A) - H(13B)	106.5(12)	C(22A)-C(23A)-H(23A)	111.1(15)
C(12A)-C(13A)-H(13B)	110.2(13)	C(24A)-C(23A)-H(23B)	107.9(11)
H(13A)-C(13A)-H(13B)	105.6(16)	C(22A)-C(23A)-H(23B)	107.6(12)
C(15A)-C(14A)-C(13A)	126.25(19)	H(23A)-C(23A)-H(23B)	108.9(17)
C(15A)-C(14A)-H(14A)	116.7(10)	C(28A)-C(24A)-C(23A)	122.11(19)
C(13A)-C(14A)-H(14A)	117.0(10)	C(28A)-C(24A)-C(19A)	123.53(17)
C(14A)-C(15A)-C(26A)	118.61(18)	C(23A)-C(24A)-C(19A)	114.34(16)
C(14A)-C(15A)-C(16A)	121.67(17)	C(12A)-C(25A)-H(25A)	109.8(14)
C(26A)-C(15A)-C(16A)	119.67(15)	C(12A)-C(25A)-H(25B)	111.2(11)
O(3A)-C(16A)-C(15A)	109.22(14)	H(25A)-C(25A)-H(25B)	109.0(15)
O(3A)-C(16A)-C(17A)	102.84(13)	C(12A)-C(25A)-H(25C)	110.8(11)
C(15A)-C(16A)-C(17A)	113.64(17)	H(25A)-C(25A)-H(25C)	109.6(18)
O(3A)-C(16A)-C(11A)	106.80(16)	H(25B)-C(25A)-H(25C)	106.4(15)
C(15A)-C(16A)-C(11A)	111.10(14)	C(27A)-C(26A)-C(15A)	124.3(2)
C(17A)-C(16A)-C(11A)	112.64(15)	C(27A)-C(26A)-H(26A)	117.8(12)
C(18A)-C(17A)-C(16A)	104.19(16)	C(15A)-C(26A)-H(26A)	117.9(11)
C(18A)-C(17A)-H(17A)	115.0(11)	C(26A)-C(27A)-H(27A)	123.0(13)
C(16A)-C(17A)-H(17A)	113.6(11)	C(26A)-C(27A)-H(27B)	121.6(14)
C(18A)-C(17A)-H(17B)	111.6(12)	H(27A)-C(27A)-H(27B)	115.3(19)
C(16A)-C(17A)-H(17B)	109.1(12)	C(24A)-C(28A)-H(28A)	121.0(11)

C(24A)-C(28A)-H(28B)	122.5(12)	C(14B)-C(13B)-C(12B)	111.46(14)
H(28A)-C(28A)-H(28B)	116.4(17)	C(14B)-C(13B)-H(13C)	108.0(12)
C(7B)-O(2B)-N(1B)	111.98(13)	C(12B)-C(13B)-H(13C)	108.1(13)
C(16B)-O(3B)-C(19B)	110.09(13)	C(14B)-C(13B)-H(13D)	113.7(10)
C(8B)-N(1B)-O(2B)	107.64(14)	C(12B)-C(13B)-H(13D)	108.9(10)
C(2B)-C(1B)-C(6B)	121.98(19)	H(13C)-C(13B)-H(13D)	106.5(15)
C(2B)-C(1B)-Br(2)	119.10(16)	C(15B)-C(14B)-C(13B)	124.51(17)
C(6B)-C(1B)-Br(2)	118 88(16)	C(15B)-C(14B)-H(14B)	116 6(11)
C(1B)-C(2B)-C(3B)	118 8(2)	C(13B)-C(14B)-H(14B)	118 8(11)
C(1B)-C(2B)-H(2B)	119 8(13)	C(14B)-C(15B)-C(26B)	122.04(17)
C(3B)-C(2B)-H(2B)	121 1(13)	C(14B)-C(15B)-C(16B)	122.0 ((17)
C(2B)-C(2B)-T(2B)	120 5(2)	C(26B)-C(15B)-C(16B)	115 76(15)
C(2B)-C(3B)-H(3B)	123.5(13)	O(3B)-C(16B)-C(15B)	106 58(13)
C(4B)-C(3B)-H(3B)	1160(13)	O(3B)-C(16B)-C(17B)	100.90(13) 102.99(13)
C(5B) C(4B) C(3B)	110.60(18)	C(15B) - C(16B) - C(17B)	102.55(15) 112.54(15)
C(5B) - C(4B) - C(5B)	123,00(17)	O(3R) C(16R) C(11R)	112.34(13) 108 18(14)
C(3D)-C(4D)-C(7D)	123.00(17) 117.20(18)	C(15P) - C(16P) - C(11P)	100.10(14) 112.62(14)
C(3D)-C(4D)-C(7D) C(4D)-C(5D)-C(4D)	117.29(10) 120.14(10)	C(13B)-C(10B)-C(11B) C(17B)-C(16B)-C(11B)	113.02(14) 112.12(15)
C(4D) - C(5D) - C(0D)	120.14(19)	C(1/B) - C(10B) - C(11B)	112.12(13) 102.24(15)
C(4B)-C(5B)-H(5B)	118.8(10)	C(18B) - C(17B) - C(10B)	102.24(13)
C(0B)-C(5B)-H(5B)	121.0(10)	C(18B)-C(17B)-H(17C)	109.4(10)
C(1B) - C(6B) - C(5B)	118.8(2)	C(16B)-C(17B)-H(17C)	109.8(11)
C(1B)-C(6B)-H(6B)	120.8(13)	C(18B)-C(17B)-H(17D)	111.1(11)
C(5B)-C(6B)-H(6B)	120.2(13)	C(16B)-C(17B)-H(17D)	112.2(11)
O(1B)-C(7B)-O(2B)	125.01(17)	H(17C)-C(17B)-H(17D)	111.6(15)
O(1B)-C(7B)-C(4B)	124.45(17)	C(17B)-C(18B)-C(19B)	103.96(16)
O(2B)-C(7B)-C(4B)	110.48(15)	C(17B)-C(18B)-H(18C)	113.2(10)
N(1B)-C(8B)-C(9B)	130.76(17)	C(19B)-C(18B)-H(18C)	107.3(11)
N(1B)-C(8B)-C(12B)	119.15(16)	C(17B)-C(18B)-H(18D)	115.6(12)
C(9B)-C(8B)-C(12B)	110.07(15)	C(19B)-C(18B)-H(18D)	111.2(11)
C(8B)-C(9B)-C(10B)	104.83(15)	H(18C)-C(18B)-H(18D)	105.3(15)
C(8B)-C(9B)-H(9B1)	107.5(12)	O(3B)-C(19B)-C(24B)	108.84(14)
C(10B)-C(9B)-H(9B1)	113.9(11)	O(3B)-C(19B)-C(18B)	105.67(14)
C(8B)-C(9B)-H(9B2)	110.3(13)	C(24B)-C(19B)-C(18B)	115.96(16)
C(10B)-C(9B)-H(9B2)	110.9(13)	O(3B)-C(19B)-C(20B)	105.53(15)
H(9B1)-C(9B)-H(9B2)	109.2(17)	C(24B)-C(19B)-C(20B)	106.69(15)
C(11B)-C(10B)-C(9B)	104.67(15)	C(18B)-C(19B)-C(20B)	113.60(15)
C(11B)-C(10B)-H(10C)	111.0(11)	C(21B)-C(20B)-C(19B)	111.40(16)
C(9B)-C(10B)-H(10C)	108.5(11)	C(21B)-C(20B)-H(20C)	109.6(12)
C(11B)-C(10B)-H(10D)	110.9(10)	C(19B)-C(20B)-H(20C)	109.6(10)
C(9B)-C(10B)-H(10D)	110.9(11)	C(21B)-C(20B)-H(20D)	110.3(12)
H(10C)-C(10B)-H(10D)	110.7(16)	C(19B)-C(20B)-H(20D)	108.5(12)
C(10B)-C(11B)-C(12B)	103.40(13)	H(20C)-C(20B)-H(20D)	107.3(16)
C(10B)-C(11B)-C(16B)	117.90(15)	C(20B)-C(21B)-C(22B)	111.96(19)
C(12B)-C(11B)-C(16B)	114.11(15)	C(20B)-C(21B)-H(21C)	111.9(14)
C(10B)-C(11B)-H(11B)	106.7(10)	C(22B)-C(21B)-H(21C)	109.3(14)
C(12B)-C(11B)-H(11B)	107.0(11)	C(20B)-C(21B)-H(21D)	114.8(13)
C(16B)-C(11B)-H(11B)	107.1(10)	C(22B)-C(21B)-H(21D)	108.8(11)
C(25B)-C(12B)-C(8B)	113.31(16)	H(21C)-C(21B)-H(21D)	99.4(18)
C(25B)-C(12B)-C(13B)	112.21(16)	C(21B)-C(22B)-C(23B)	111.45(17)
C(8B)-C(12B)-C(13B)	107.00(14)	C(21B)-C(22B)-H(22C)	107.1(11)
C(25B)-C(12B)-C(11B)	114.00(15)	C(23B)-C(22B)-H(22C)	109.7(11)
C(8B)-C(12B)-C(11B)	100.96(14)	C(21B)-C(22B)-H(22D)	111.1(12)
C(13B)-C(12B)-C(11B)	108.56(15)	C(23B)-C(22B)-H(22D)	110.5(11)

H(22C)-C(22B)-H(22D)	106.9(15)	C(12B)-C(25B)-H(25F)	111.4(12)
C(24B)-C(23B)-C(22B)	109.21(17)	H(25D)-C(25B)-H(25F)	106.3(16)
C(24B)-C(23B)-H(23C)	111.4(12)	H(25E)-C(25B)-H(25F)	107.2(17)
C(22B)-C(23B)-H(23C)	107.7(11)	C(27B)-C(26B)-C(15B)	126.88(18)
C(24B)-C(23B)-H(23D)	109.6(12)	C(27B)-C(26B)-H(26B)	118.9(12)
C(22B)-C(23B)-H(23D)	108.0(10)	C(15B)-C(26B)-H(26B)	114.2(12)
H(23C)-C(23B)-H(23D)	110.8(16)	C(26B)-C(27B)-H(27C)	118.3(13)
C(28B)-C(24B)-C(23B)	122.51(19)	C(26B)-C(27B)-H(27D)	121.7(12)
C(28B)-C(24B)-C(19B)	123.6(2)	H(27C)-C(27B)-H(27D)	119.9(18)
C(23B)-C(24B)-C(19B)	113.42(18)	C(24B)-C(28B)-H(28C)	122.3(12)
C(12B)-C(25B)-H(25D)	110.2(12)	C(24B)-C(28B)-H(28D)	125.2(14)
C(12B)-C(25B)-H(25E)	113.4(13)	H(28C)-C(28B)-H(28D)	112.5(18)
H(25D)-C(25B)-H(25E)	108.0(16)		

Table A2.14 Anisotropic displacement parameters ($Å^2x$ 10⁴) for **68** (CCDC 751261). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	171(1)	340(1)	240(1)	61(1)	49(1)	14(1)
O(1A)	226(8)	228(8)	242(7)	-29(6)	5(6)	38(6)
O(2A)	202(8)	223(8)	235(7)	39(6)	98(6)	43(6)
O(3A)	206(8)	175(7)	111(6)	-14(5)	19(5)	42(5)
N(1A)	169(9)	259(9)	214(8)	-4(7)	75(7)	38(7)
C(1A)	114(9)	277(10)	172(8)	9(9)	0(6)	-32(9)
C(2A)	219(12)	283(12)	289(11)	119(9)	19(9)	-18(9)
C(3A)	218(12)	241(12)	275(11)	37(8)	7(9)	52(9)
C(4A)	148(9)	209(11)	145(8)	-1(7)	-19(7)	-4(8)
C(5A)	213(11)	180(10)	148(9)	18(8)	-16(8)	-23(8)
C(6A)	127(11)	188(11)	251(10)	0(8)	-26(8)	22(8)
C(7A)	182(10)	228(12)	126(9)	9(7)	-55(7)	-12(8)
C(8A)	161(10)	177(10)	161(9)	-46(8)	17(7)	7(8)
C(9A)	161(11)	204(11)	211(10)	-21(8)	48(8)	20(8)
C(10A)	172(11)	160(11)	212(10)	17(7)	20(8)	40(8)
C(11A)	143(10)	145(9)	184(9)	-28(7)	-9(7)	-1(8)
C(12A)	162(10)	186(11)	143(9)	-14(7)	11(7)	14(8)
C(13A)	184(11)	294(13)	150(9)	-11(8)	-13(8)	0(9)
C(14A)	178(11)	219(10)	233(10)	-57(8)	10(8)	-18(8)
C(15A)	151(10)	177(10)	197(9)	-51(7)	37(7)	-6(8)
C(16A)	157(9)	177(9)	156(8)	-11(8)	19(6)	33(9)
C(17A)	176(12)	176(11)	225(10)	12(8)	13(8)	17(9)
C(18A)	197(11)	216(10)	133(9)	11(7)	-15(8)	-9(8)
C(19A)	174(11)	196(10)	119(9)	1(7)	-11(7)	4(8)
C(20A)	189(11)	256(12)	156(10)	-25(8)	-3(8)	-16(9)
C(21A)	200(12)	381(14)	201(11)	-49(9)	41(8)	-61(10)
C(22A)	288(13)	406(14)	190(11)	-95(10)	57(9)	-42(10)
C(23A)	252(12)	343(13)	184(10)	-61(9)	-18(8)	-66(10)
C(24A)	162(10)	222(11)	180(9)	-11(7)	-11(7)	30(8)
C(25A)	196(12)	237(11)	173(10)	36(9)	39(8)	81(9)
C(26A)	258(12)	207(10)	160(9)	-64(9)	22(8)	-27(9)

C(27A)	274(13)	387(14)	208(10)	-83(10)	64(9)	-106(11)
C(28A)	239(12)	214(10)	217(11)	-2(9)	-32(9)	-1(9)
Br(2)	413(2)	417(1)	249(1)	114(1)	22(1)	-142(1)
O(1B)	310(9)	274(9)	358(8)	122(7)	139(6)	123(7)
O(2B)	207(7)	163(7)	182(6)	31(5)	62(5)	17(6)
O(3B)	174(7)	197(7)	114(6)	-16(5)	-22(5)	15(5)
N(1B)	214(9)	180(8)	145(8)	27(6)	32(6)	-8(7)
C(1B)	234(12)	298(11)	168(9)	74(8)	-25(8)	-129(9)
C(2B)	172(12)	376(13)	243(11)	45(9)	36(9)	16(10)
C(3B)	175(11)	283(13)	235(10)	40(9)	13(8)	45(9)
C(4B)	143(10)	215(10)	159(9)	-7(8)	-17(7)	-14(8)
C(5B)	207(11)	225(12)	188(9)	-24(8)	8(8)	-4(9)
C(6B)	293(13)	187(11)	252(11)	39(9)	-3(9)	1(9)
C(7B)	186(11)	177(11)	175(9)	-27(7)	5(7)	-5(8)
C(8B)	182(10)	147(10)	126(8)	-20(7)	-11(7)	-10(7)
C(9B)	260(12)	171(10)	143(10)	24(8)	27(8)	7(9)
C(10B)	217(11)	118(10)	147(9)	10(7)	6(8)	30(8)
C(11B)	128(9)	119(9)	151(8)	-3(7)	-4(7)	4(8)
C(12B)	149(10)	128(9)	149(9)	15(7)	14(7)	28(7)
C(13B)	211(10)	113(9)	140(8)	-19(8)	8(7)	45(9)
C(14B)	150(10)	120(10)	206(9)	8(7)	-36(7)	-12(7)
C(15B)	136(9)	140(10)	192(9)	39(8)	-26(7)	17(8)
C(16B)	147(10)	150(10)	112(8)	2(7)	-16(7)	13(7)
C(17B)	157(11)	151(10)	178(10)	-19(8)	28(8)	25(8)
C(18B)	188(10)	185(9)	161(8)	-45(9)	28(7)	-15(10)
C(19B)	154(10)	223(10)	135(9)	-26(7)	22(7)	-19(8)
C(20B)	169(11)	345(12)	153(9)	-8(9)	33(7)	-16(10)
C(21B)	226(12)	403(14)	191(11)	69(9)	30(9)	-11(9)
C(22B)	208(13)	464(14)	200(11)	65(10)	-32(9)	19(11)
C(23B)	166(12)	413(13)	195(10)	20(9)	-3(8)	6(10)
C(24B)	156(11)	332(12)	121(9)	-12(8)	17(7)	-19(9)
C(25B)	190(11)	189(11)	194(10)	26(8)	39(8)	41(8)
C(26B)	216(11)	171(11)	178(9)	16(7)	7(8)	19(8)
C(27B)	217(12)	251(11)	280(12)	8(9)	43(9)	-45(9)
C(28B)	206(12)	388(16)	237(11)	-67(9)	-2(8)	-79(10)

Table A2.15 Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å² $x \ 10^3$) for **68** (CCDC 751261).

	X	у	Z	U _{iso}
H(2A)	8090(20)	7530(40)	6420(6)	46(7)
H(3A)	6631(17)	7750(30)	6875(5)	21(5)
H(5A)	7636(16)	2370(30)	7318(5)	19(5)
H(6A)	9130(16)	2280(30)	6884(5)	14(5)
H(9A1)	6192(16)	1130(30)	8224(5)	9(4)

H(9A2)	5578(17)	-390(40)	7916(6)	32(6)
H(10A)	4537(17)	-2050(30)	8393(5)	20(5)
H(10B)	5518(18)	-1140(30)	8708(6)	23(5)
H(11A)	4434(16)	1770(30)	8798(5)	11(5)
H(13A)	2186(19)	780(30)	7868(6)	26(6)
H(13B)	3150(19)	-820(30)	7890(6)	33(6)
H(14A)	1390(16)	-2010(30)	8208(5)	13(5)
H(17A)	3887(16)	-2730(40)	9238(5)	22(5)
H(17R)	4449(17)	-840(30)	9347(5)	16(5)
H(18A)	3347(16)	-1190(30)	9900(5)	15(5)
H(18R)	2253(18)	-1920(30)	9638(5)	15(5)
$H(20\Delta)$	1020(19)	2800(30)	9553(6)	26(6)
H(20R)	738(16)	510(30)	9521(5)	10(5)
H(20D) H(21A)	1180(17)	100(30)	3521(5)	10(3)
$\Pi(21R)$	1109(17) 102(10)	100(30)	10226(3) 10156(5)	23(0)
$\Pi(21D)$	192(19)	1070(30)	10130(3) 10610(6)	23(0)
H(22A)	1003(18)	3030(30)	10019(0)	29(6)
H(22B)	1500(18)	4480(40)	10258(6)	33(6)
H(23A)	3470(20)	3800(40)	10388(6)	42(7)
H(23B)	3246(18)	1420(30)	10390(6)	24(6)
H(25A)	3265(18)	4530(40)	8510(6)	29(6)
H(25B)	2092(17)	3420(30)	8469(5)	10(5)
H(25C)	2614(16)	4360(30)	8091(5)	19(5)
H(26A)	1914(16)	-3920(30)	9106(5)	11(5)
H(27A)	-133(18)	-2070(30)	8774(5)	20(6)
H(27B)	-66(19)	-4110(40)	9050(6)	32(6)
H(28A)	4585(17)	4680(30)	9830(5)	26(5)
H(28B)	4280(16)	3720(30)	9385(6)	15(5)
H(2B)	-2960(20)	6060(30)	8585(6)	35(6)
H(3B)	-2231(19)	8150(30)	8059(6)	30(6)
H(5B)	220(16)	4000(30)	7835(5)	9(5)
H(6B)	-471(19)	1910(40)	8351(6)	31(6)
H(9B1)	1685(18)	4470(30)	7017(5)	26(5)
H(9B2)	2633(18)	5380(30)	7318(6)	26(6)
H(10C)	4053(18)	5650(30)	6894(5)	16(5)
H(10D)	3326(17)	3890(30)	6625(5)	17(5)
H(11B)	2347(16)	6450(30)	6271(5)	13(5)
H(13C)	3253(18)	11010(30)	7038(6)	26(6)
H(13D)	3796(15)	8890(30)	7156(5)	9(4)
H(14B)	4966(17)	11460(30)	6717(5)	17(5)
H(17C)	5440(17)	6340(30)	5898(5)	16(5)
H(170)	4927(14)	4920(30)	6256(5)	12(4)
H(18C)	3404(16)	3890(30)	5822(5)	8(4)
H(18D)	4337(16)	3940(30)	5525(5)	14(5)
H(20C)	4639(18)	7460(30)	5143(5)	22(5)
H(20C)	3726(17)	6030(30)	4905(6)	22(5) 25(6)
H(21C)	3720(17)	10240(40)	5000(6)	29(0)
H(21C)	3/10(20)	0570(20)	A672(5)	30(7)
H(21D) H(22C)	3490(10) 1720(17)	7600(20)	4073(3)	20(3)
H(22C)	1/30(1/)	10040(20)	4049(J) 1770(G)	23(3)
H(22D)	14/0(18) 1202(17)	10040(30) 0100(20)	4//9(0) 5/62(6)	$2\delta(0)$
$\Pi(23C)$	1393(17)	9100(30) 7600(20)	J402(0)	22(0)
п(25D) Ц(25D)	420(20)	7000(30)	5197(0)	38(0) 20(5)
п(23D)	112/(17)	9000(30)	(5)/060	20(5)

H(25E)	2200(18)	11000(30)	6249(6)	26(6)
H(25F)	1449(17)	11260(30)	6607(5)	18(5)
H(26B)	5413(16)	9950(30)	5745(6)	26(5)
H(27C)	6745(19)	11330(30)	6410(6)	34(6)
H(27D)	7097(17)	11540(30)	5947(5)	21(5)
H(28C)	670(20)	4050(30)	5341(6)	27(6)
H(28D)	1920(20)	2970(40)	5478(6)	36(7)