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ABSTRACT

Biologically active natural products often contain interesting and complex structural
features and functionalities that make them attractive targets for synthetic chemists. As
such, these natural products can serve as inspiration for the development of new reaction
methodology.

Cortistatin A contains a unique rearranged steroidal core and possesses potent anti-
angiogenic activity. These features have made cortistatin A the target of many synthetic
efforts, including ours. The progress toward the synthesis of the cortistatin A carbocyclic
core via an enyne-ene metathesis is discussed. Our studies towards the construction of
the cortistatin A carbocyclic core yielded an interesting result, wherein an attempted Sy2
inversion of a secondary mesylate afforded product with retention of stereochemistry.

Oxindole derived motifs are also prevalent in biologically active molecules. More
specifically, 3,3-disubstituted oxindoles can be used to access pyrrolidinylspirooxindole
and pyrrolidinoindoline cores. Herein, the development of a catalytic enantioselective
malonate alkylation of 3-halooxindoles to access enantiopure 3,3-disubstituted oxindoles
is detailed. We then demonstrate that the enantiopure 3,3-disubstituted oxindoles derived
from this novel transformation can be used towards the construction of

pyrrolidinylspirooxindole and pyrrolidinoindoline cores.
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CHAPTER 1

Inspiration from Natural Products

1.1 INTRODUCTION

Biologically active natural products often contain interesting and complex structural
features and functionalities that make them attractive targets for synthetic chemists.
Furthermore, these natural products can serve as inspiration for the development of new
synthetic methodologies.! Herein, we will discuss our efforts toward the synthesis of

several natural product scaffolds.

1.2 CORTISTATIN A

Cortistatin A (1) is a potent anti-angiogenic agent that features a unique rearranged
steroid core (Figure 1.1) and has become a target for numerous synthetic efforts since its
isolation in 2006.> These collective efforts utilized a variety of methods to construct the
cortistatin A carbocyclic core, resulting in one semi-synthesis, three total syntheses, two
formal syntheses, and numerous syntheses of the pentacyclic cortistatin core.” A select

number of these efforts will be discussed here and are only meant to illustrate some
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general approaches that have been directed towards the synthesis of cortistatin A. For

convenience, these strategies are organized by method for B ring formation.

Figure 1.1 Rearranged steroid core of cortistatin A

ocatadoascl

One approach that has been used by several groups is to rely on ring expansion

1)

strategies to access the 7-membered B ring by C(19) methyl group incorporation. Baran
utilized cyclopropane fragmentation to construct the 7-membered B ring en route to the
first synthesis of (+)-cortistatin A (Scheme 1.1).* This semi-synthesis began with the
commercially available steroid prednisone (2). To prepare the key ring-expansion step,
an alcohol-directed double C-H functionalization was triggered by treatment of
secondary alcohol 3 with PhI(OAc), and Br, and irradiation with a sunlamp. Because the
resulting dibromo alcohol is unstable, this intermediate was directly silylated with
TMSCI to yield the C(19)-dibromomethyl species 4, which upon subsequent exposure to
DBU and LiCl yielded bromocyclopropane S in 48% overall yield. Regioselective ring
fragmentation of bromocyclopropane S was achieved with Sml, followed by treatment
with 2 4.4 5-tetrabromo-2,5-cyclohexadienone (TBCHD) to trap the intermediate enolate,
yielding a-bromoketone 6. Dehydrobromination of 6 with Li,CO; followed by alane
reduction and acylation produced 7. With the 7-membered B-ring installed, this
intermediate was then elaborated to cortistatin A.

Shair’s approach to the total synthesis of (+4)-cortistatin A also featured a
cyclopropane fragmentation to construct the 7-membered B ring. The key step was a

highly diastereoselective aza-Prins cyclization to construct the cortistatin A core.” Corey®
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and Magnus’ have also pursued routes that contained ring expansion strategies to access

the 7-membered B ring in their respective model system studies.

Scheme 1.1 Baran’s semi-synthesis of (+)-cortistatin A

o)
e 2 ™SO H o
W Phi(OAC,), Br, s ; DBU, LiCI
n 3 —_—
ol # H
then TMSCI, i
OHCN 0o (48 % yield
OHCN imidazole \% 4 over 2 steps)
prednisone (2) H H
0
Br,
TMSO % Me
TMSO o .
7 Smlz /> 1) LiBr, Li,CO3
ThenTBCHD oHel ()o W O "2) AlH,; Ac,0
OHCN \% 6 (58 % yield

H H over 3 steps)

Oxidative dearomatization has also been employed for the construction of the
bridging ether moiety contained in the B ring by the Sarpong, Sorensen,” and
Danishefsky' groups. Sarpong’s second approach in the formal synthesis of ()-
cortistatin A featured an enyne cycloisomerization to form the 7-membered B ring
followed by an oxidative dearomatization to construct the ether bridge (Scheme 1.2).*
Sarpong’s synthesis commenced from indanone 8 and aldehyde 9, which were converted
to alkynyl indene 10 through a series of steps. Enyne cycloisomerization catalyzed by
PtCl, produced benzocycloheptadiene 11. After a series of steps to install an epoxide
moiety and to selectively reduce an olefin, 12 was then treated with n-BuLi to effect a
regioselective ring opening, affording an intermediate alcohol. This intermediate alcohol
subsequently underwent oxidative dearomatization with PhI(OAc), to furnish the ether
bridge of pentacycle 13. Pentacycle 13 was then elaborated to ketone 14, a known
intermediate that intercepts the synthesis of (+)-cortistatin A reported by Nicolaou."
Sorensen has also reported a synthesis of the pentacylic core of cortistatin A that featured

a tandem oxidative dearomatization/intramolecular dipolar cycloaddition.’
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Scheme 1.2 Sarpong’s formal synthesis of (+)-cortistatin A

OMe o oTBS

BRO N, 0TBS
. Mews PtCI2 (10 mol%) OQ 4 steps
) PnH, s0C — =,
— ﬁ

8 0 9 (82% vyield)

12 (57% yield over 2 steps)

The research groups of Hirama," Danishefsky,” and Gung' have independently
considered an alternate route that relied on pericyclic transformations to construct the
[3.2.1]oxabicylic ring B ring. Hirama’s synthesis commenced from aldehyde 15, which
was derived from enantioenriched Hajos-Parrish ketone (Scheme 1.3).” Bicycle 15 was
treated with cyclohexane-1,3-dione (16) in the presence of base to effect a Knoevenagel
condensation to form intermediate 17. This intermediate 17 underwent spontaneous 6st-
electrocyclization to form 2-H-pyran 18 in 87% yield. Conversion of the TBS ether to
the iodide yielded iodide 19, which was then treated with triethylborane and (TMS),SiH
to give ketone 14, the intermediate from the synthesis of (+)-cortistatin A reported by

Nicolaou."

Scheme 1.3 Hirama’s synthesis of the pentacyclic core of (+)-cortistatin A

o]
H piperidine
Me + L i . 6m-electrocyclization
OoTBS EtOAc, 25°C,6 h
o OTBS (87% yield)
TBSO
15 16

Me
1) HFepyr, THF Et;B, (TMS),;SiH 0 omes
—_—
2) I, PPh3, imidazole 700 e
L THF, -78 °C H

(78 % yield)
(87 % over 2 steps)

A cascade sequence in which the 7-membered B ring and the tetrahydrofuran ring are

simultaneously constructed has been pursued by the Nicolaou group (Scheme 1.4)."" The
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synthesis started from known enone 20, which was derived from enantiopure Hajos-
Parrish ketone. Enone 20 was converted to alkyne 21, which was then coupled to triflate
22 via a Sonogashira coupling to yield 23. Dithiane cleavage followed by alkyne
hydrogenation afforded 24. The key step was triggered by treatment of 24 with K,CO; in
refluxing dioxane to induce an oxy-Michael addition of the tertiary alcohol into the enone
moiety followed by an intramolecular aldol, furnishing dienone 14 in 52% yield. This
dieonone was then elaborated to (+)-cortistatin A.

Scheme 1.4 Nicolaou’s total synthesis of (+)-cortistatin A

1) IBX

—_— 3
¥ — 2) H,, Pd/BaSO,
Cul, EtzN (52 % over 2 steps)

(85% yield)

0 Me
otBS _ KiCO; O oTBS
— (+)-Cortistatin A
dloxane 125°C I-f —>
(52 % yield)

14

Given the promising biological activity and intriguing structure of cortistatin A, we

set out to develop our own novel approach towards the construction of the carbocylic

core.” It was envisioned that an enyne-ene metathesis would allow rapid access to the

carbocylic core (Scheme 1.5). Our synthetic efforts for the construction of the cortistatin
A are discussed in this thesis.

Scheme 1.5 Proposed approach to the cortistatin A carbocyclic core

Enyne-ene
Metathesis

Cortistatin A
Carbocyclic Core



Chapter 1 — Inspiration from Natural Products 6
1.3 OXINDOLE DERIVED STRUCTURAL MOTIFS

Pyrrolidinoindolines and pyrrolidinylspirooxindoles are structural motifs that are
prevalent in a large family of alkaloid natural products that have strong bioactivity

profiles and interesting structural properties (Figure 1.2)."

Figure 1.2 Natural products that contain pyrrolidinoindoline and pyrrolidinylspirooxindole cores

A\ MeH H
. Y0
©\/</\‘ \QquMe NMe
N H
R = Me, Esermethole H H Ne
Pyrrolidinoindoline R = CONMe, Physostigmine |
R = CONPh, Phenserine Chimonanthine

Flustramine B

NR / NMe
RO.

o]
N N

R H

Pyrrolidinyl- R =H, Coerulescine

spirooxindole R = OMe, Horsfiline ,
) 3 Strychnofoline
Spirotryprostatin B

There have been many approaches toward the pyrrolidinoindoline core; however
there are two general strategies that are most commonly used and are highlighted in
Scheme 1.6. The first approach (Indole Approach, Scheme 1.6) involves electrophilic
attack at the indole C(3) position of tryptamine or tryptophan (not shown) followed by
cyclization by the pendant amine to form the pyrrolidinoindoline core, a mechanism
postulated to occur in nature. Many synthetic groups have exploited this first approach to
access racemic and enantiopure pyrrolidinoindolines.' The second approach (Oxindole
Approach, Scheme 1.6) relies on the reduction of a 3,3-disubstituted oxindole to form the
pyrrolidinoindoline core. There have been many synthetic methods developed for the

17

construction of 3,3-disubstituted oxindoles, " Two of the more common strategies are
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shown in Scheme 1.6: alkylation of the 3-substituted oxindole and an intramolecular

Heck cyclization.

Scheme 1.6 General strategies for accessing pyrrolidinoindoline core

Indole Approach
NH,
E E
VR
E* o NH, NH
N ’ w_ el N H
Oxindole Approach

R

Sas
alkylatlon

QT

OTf R

There have also been many methods developed for the construction of
pyrrolidinylspirooxindole cores;' several common methods are featured in Scheme 1.7.
One of the earliest methods involves an intramolecular Mannich reaction, a strategy
inspired by the hypothesis that the isomerization of pyrrolidinylspirooxindoles in nature
is from a Mannich/retro-Mannich reaction.” The second method is an oxidative
rearrangement of a tetrahydro-f-carboline 25, where treatment with a suitable oxidant in
combination with a hydroxide source results in an oxidative rearrangement to the
pyrrolidinylspirooxindole core.® A Mgl, ring expansion strategy has also been utilized
to construct the spirocylic core from imines and spirocyclopropyl oxindoles 26, wherein
Mgl, is postulated to serve a dual role of Lewis acid activation as well as nucleophilic

counterion to promote ring expansion.”

The final strategy that is also widely employed
for this spirocyclic motif is a three component [3+2] cycloaddition reaction of

morpholine 27, oxindolylideneacetate 28, and aldehyde 29.”
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Scheme 1.7 General methods for accessing pyrrolidinylspirooxindole core
Intramolecular Mannich Reaction

NR _
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(CH20), N o-
o —_—
N
N AcOH g N
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25
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1 1 _ R
NR! N
R! 2
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o + J\ L omMgl —> o
N H R2 N N N
R R R \
26 R -
[3 + 2] Cycloaddititon
Ph
Ph, A
.K\o .
HN\/g
(o]
27

Because of the significance of pyrrolidinylspirooxindole and pyrrolidinoindoline
cores, we devised a method to access both cores by using 3,3-disubstituted oxindoles
(Scheme 1.8). Herein, we will discuss our efforts to pursue these motifs through the
development of a novel asymmetric copper-catalyzed malonate addition into oxindoles to
access these 3,3-disubstituted oxindoles.” Furthermore, another important application is
that these disubstituted oxindoles, such as 30, can also be used to access more complex

biologically active molecules, such as communesin B.***
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Scheme 1.8 Proposed strategy to access pyrrolidinylspirooxindole and pyrrolidinoindoline cores

and application to communesin B

R, °
L L > - NMe
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=\ n
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Meozc\/COZMe HN
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o - | AR i N TR >
Cri~ * o Coe
N N H N
H Me Me
30 Communesin B

We have briefly discussed the role of complex and structurally interesting natural
products as an inspiration for method development and total syntheses. We have also
briefly highlighted the current strategies available for accessing the key structural motifs
discussed in this thesis: cortistatin A and pyrrolidinylspirooxindole and
pyrrolidinoindoline cores. Our progress toward the synthesis of the cortistatin A
carbocyclic core via an enyne-ene metathesis is discussed in Chapter 2 of this thesis,
whereas the synthesis of the pyrrolidinylspirooxindole and pyrrolidinoindoline cores via
enantiopure 3,3-disubstituted oxindoles derived from a novel copper-catalyzed malonate

alkylation is discussed in Chapter 3.
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CHAPTER 2

Efforts toward the Rapid Construction of the

Cortistatin A Carbocylic Core'

2.1 INTRODUCTION

The discovery of novel anti-angiogenic agents has become an active area of drug
therapy research given their therapeutic applications in the treatment of cancer,
autoimmune diseases, macular degeneration, and other diseases.! A series of unique
abeo-9(10,19)-androstane-type steroidal alkaloids were isolated from the marine sponge
Corticium simplex in 2006 and 2007, some of which possessed significant anti-
angiogenic activity (Figure 2.1). The most potent member, cortistatin A (1),
demonstrated a highly selective growth inhibition of human umbilical vein endothelial
cells (IC5, = 1.88 nM, selectivity index > 3000) with relatively no general toxicity toward

other cell types. The biological activity, as well as the intriguing molecular structure of 1

! This work was performed in collaboration with Drs. Corinne Baumgartner and Qi (Charles) Liu.
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has led to several total syntheses’ and efforts toward the construction of the cortistatin

A core’

Figure 2.1 Cortistatin family of natural products

Cortistatin A (1, R=H) ICs, = 1.8 nM Cortistatin C (32, R=H) ICsy =19 nM
Cortistatin B (31, R = OH) IC5p= 1.1 uM Cortistatin D (33, R = OH) IC5, = 150 nM
&G e e

Me,N H MeN™ W

Cortistatin E (34) ICs, =450 nM Cortistatin F (35) ICsp=1.9 uM

OIass O
SCreAPCINSCHeAPS

Me,N"" H Me,N™ H

Cortistatin G (36) IC5, = 800 nM Cortistatin H (37) ICsy =350 nM

Cortistatin J (38) IC5y =8 nM Cortistatin K (39, R=H) ICsy =40 nM
Cortistatin L (40, R = OH) IC5, = 23 nM

2.2 SYNTHETIC APPROACH OF CORTISTATIN A CORE

2.2.1 Retrosynthetic Analysis

In our approach to the synthesis of cortistatin A (1), we envisioned that the [6,7,6,5]
core could arise via an intramolecular tandem enyne-ene metathesis (Scheme 2.1).> To
examine the feasibility of such a step, we focused on the synthesis of alkynyl diene 43 as
a model precursor for the key enyne-ene metathesis to give pentacyclic model diene 41.
Alkynyl diene 43 could arise from alkyl iodide 44 and nitrile 45. Nitrile 45, in turn,
could be derived from ketone 46, which has been synthesized in enantiopure form,’ thus

providing a direct route for an asymmetric synthesis of the cortistatin A carbocyclic core.
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Scheme 2.1 Retrosynthetic analysis of cortistatin A core

O =

41 Metathesis 42
OPMB X X
\\I:,,. 0/> \\'h.. o]
— + NCm 0 —» HOm,
I H H
44 45 46
2.2.2 Synthesis of A-ring Portion of Cortistatin A Core

Our synthesis of the A-ring portion of cortistatin A commenced from cyclohexanone
47, which was converted to the allylic alcohol 48 through treatment with PBr; and DMF
followed by a DIBAL reduction of the resulting aldehyde (Scheme 2.2).” PMB
protection of the allylic alcohol yielded ether 49, which was coupled to
vinyltributylstannane to afford diene 50. Hydroboration of diene 50 and subsequent
exposure of the resultant primary alcohol to triphenylphosphine and iodine produced
iodide 44.

Scheme 2.2 Synthesis of A-ring
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1. PBr,, DMF ci;,c” “oPMB

(:\l\ CHClj, 70 °C La(OTh),
—_— _ =

0 2. DIBAL, Et,0 Br PhMe, 50 °C Br
0->25°C .
47 (63% yield, 2 steps) 48 (98% yield) 49
OPMB 1, Cy,BH, THF, 0 — 25 °C OPMB

Pd(PPhs), then NaBOzeH,0
nBu3Sn(CH=CH,) (93% vyield)
—_—— -
PhMe, 80 °C Z  2.PPh, imidazole, I, i

CH,Cl,, 0— 25 °C
(98% yield) 50 (84% yield) 44
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2.2.3 Synthesis of D-ring Portion of Cortistatin A Core

With the A-ring precursor 44 in hand, we set out to make the D-ring portion in an
asymmetric manner (Scheme 2.3). Treatment of dione 51 with baker’s yeast provided a
9:1 mixture of chromatographically separable alcohols 46 and 52.° We envisioned that
subjecting the major product alcohol 46° to Sy2 displacement conditions would install the
final carbon of the D-ring moiety and set the desired absolute and relative
stereochemistry. However, mesylation of alcohol 46 followed by treatment with
potassium cyanide in DMSO surprisingly afforded nitrile 54, a product with net retention
of stereochemistry at C(14). This unexpected result was confirmed via NOESY
correlations of alcohol 46, alcohol 52, and nitrile 54 and by x-ray diffractometry of
crystalline compounds derived from alcohol 46 and nitrile 54.”'° A possible explanation
for this unexpected outcome is that the mechanism proceeds via oxetane 55, which is
postulated to arise from reversible cyanohydrin formation of mesylate 53.

Despite this unusual result, we wished to continue the synthesis of the model system
due to our interest in testing the enyne-ene metathesis. To advance ketone 54, we
protected the ketone as the acetal to give 56. Nitrile 56 was then reduced to the aldehyde
and after treatment with TIPS-acetylene and EtMgBr, afforded alcohol 57 as a mixture of
diastereomers. Alcohol 57 was oxidized with Dess-Martin periodinane (DMP) to give

ketone 58.
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Scheme 2.3 Asymmetric synthesis of D-ring piece

A
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D-glucose, H,0,
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THF/CH,Cl,, 0 — 25 °C

54 (98% yield) 56
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—
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TIPS 57 (32% yield, 3 steps) TIPS 58

With our A-ring (44) and epi-D-ring (58) precusors in hand, we then coupled the two

17

together by treating vinyl iodide 44 with #-BuLi and adding the resultant lithio species to

ketone 58 (Scheme 2.4). Subsequent TIPS cleavage with TBAF gave a 2.2:1 mixture of

the desired alcohol 59 (Felkin-Anh product) and the undesired alcohol 60. After

separation by column chromatography, PMB ether 59 was converted to allylic acetate 61.

Treatment of 61 with MgBr, gave the substituted tetrahydrofurans 62 and 63, which were

inseparable by column chromatography. Nonetheless, subjection of the mixture of 62

and 63 to Grubbs second-generation catalyst produced the desired enyne-ene metathesis

product 64, which contains the desired [6,7,6,5]-core, in 37% yield and the enyne

metathesis product 65 in 44% yield.
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Scheme 2.4 Enyne-ene metathesis
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We planned to establish the absolute and relative stereochemistry of our metathesis

products via derivatization to give compounds suitable for x-ray crystallography analysis.

Attempts to convert the enyne-ene product 64 or the enyne product 65 to crystalline

compounds were not successful. However, we were able to derivatize the undesired

alcohol 60 by proceeding through a similar route as outlined in Scheme 2.4 for 59 to

ultimately afford enyne product 66. Enyne product 66 was then transformed to oxime 67,

which was acylated with p-bromobenzoylchloride to furnish 68, a compound that was

amenable to x-ray diffraction (Scheme 2.5). As a result, we were able to assign the

relative and absolute stereochemistry of enyne product 66 and thereby, the relative and

absolute stereochemistry of enyne-ene product 64 as well."
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Scheme 2.5 Determination of relative and absolute stereochemistry

PMBO \\

\ ./° \ o
Qe == Ot
“ H o H

66

60
undesired

1. p-TsOH \
acetone/H,0, 25 °C No p-bromobenzoyichloride
(75% yield) ~ ~OH DMAP, Et;N
» o= -
5 >
2. NH,OH*HCI, NaOAc s H CH,Cl,, 0 - 25 °C

MeOH/H,0, 25 °C

(91% yield) 67 (95% yield)
\ o)
— { ]
PLE AR
A0 Br /'irj/ f“‘“‘{
0 S H { ¥
" \A 1)-"
68

2.3 CONCLUSION

19

Herein, we have established the enyne-ene metathesis as a rapid method for the

construction of the carbocylic core of cortistatin A. We have also reported an unusual

reaction in which an attempted S\2 displacement of a secondary mesylate on our five-

membered D-ring piece gave a product with retention of stereochemistry. Further studies

directed toward the synthesis of cortistatin A and related analogs are underway and will

be reported in due course.
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2.4 EXPERIMENTAL SECTION

2.4.1 Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under
an argon or nitrogen atmosphere using anhydrous solvents (either freshly distilled or
passed through activated alumina columns). All other commercially obtained reagents
were used as received. Reaction temperatures were controlled by an IKAmag
temperature modulator. Thin-layer chromatography (TLC) was performed using E.
Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized by UV fluorescence
quenching, p-anisaldehyde, or KMnO, staining. ICN Silica gel (particle size 0.032-0.063
mm) was used for flash column chromatography. Analytical chiral HPLC was performed
on a Chiralcel OD-H column (250 mm x 4.6 mm, 5 mm particle size, 0.8 mL/min flow
rate) obtained from Daicel Chemical Industries, Ltd. '"H NMR spectra were recorded on
a Varian Mercury 300 (at 300 MHz) or a Varian Inova 500 (at 500 MHz) and are
reported relative to Me,Si (8 0.0). Data for 'H NMR spectra are reported as follows:
chemical shift (8§ ppm) (multiplicity, coupling constant (Hz), integration). “C NMR
spectra were recorded on a Varian Mercury 300 (at 75 MHz) or a Varian Inova 500 (at
125 MHz) and are reported relative to Me,Si (8 0.0). Data for "C NMR spectra are
reported in terms of chemical shift. IR spectra were recorded on a Perkin Elmer Paragon
1000 Spectrometer and are reported in frequency of absorption (cm™). Optical rotations
were measured with a Jasco P-1010 polarimeter at 589 nm using either a 100 mm or 50
mm path-length cell. High resolution mass spectra were obtained from the California

Institute of Technology Mass Spectral Facility.
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2.4.2 Preparative Procedures and Spectroscopic Data

OH
1. PBr,, DMF
(:\I\ CHCly, 70 °C Oﬁ
O
o0 2. DIBAL, Et,0 Br
0—->25°C
47 (63% vyield, 2 steps) 48
(2-Bromocyclohex-1-enyl)methanol (48).

The allylic alcohol was synthesized according to a similar procedure.”” To a solution
of DMF (7.4 mL, 95.0 mmol, 3.0 equiv) in CHCI; (25 mL) was added PBr; (8.1 mL, 86.0
mmol, 2.7 equiv) dropwise at 0 °C. The mixture was stirred at 70 °C for 30 min, then
cyclohexanone (47) (3.3 mL, 32.0 mmol, 1.0 equiv) was added dropwise over 30 min.
After the resulting dark red solution was stirred at 70 °C for 1.5 h, it was poured into 4 M
aq NaOAc (40 mL). Solid NaOH was added to the mixture to adjust the pH to 7.0 and
the aqueous layer was extracted with hexanes. The combined organic phases were dried
(Na,SO,) and filtered. The filtrate was concentrated and the crude product was used in
the next step without further purification. R;=0.80 (4:1 hexanes/EtOAc); 'H NMR (300
MHz, CDCl,) 6 10.02 (s, 1H), 2.77-2.72 (m, 2H), 2.30-2.25 (m, 2H), 1.80-1.65 (m, 4H);
C NMR (75 MHz, CDCL,) 8 194.0, 143.9, 128.6,39.1,25.2,24.5, 21.3; IR (Neat Film
NaCl) 2937, 1681, 1619, 1449, 1340, 1208,972 cm™".

The crude product was dissolved in Et,0O (60 mL) and the solution was cooled to 0
°C. DIBAL (5.7 mL, 32.0 mmol, 1.0 equiv) was added slowly, and the mixture was
stirred at 25 °C for 12 h. The reaction was quenched with H,O (1.5 mL), 3 M aq NaOH
(1.5 mL) and H,O (3.0 mL), and stirred vigorously for 20 min. Na,SO, (ca. 20 g) was
added, and the mixture was stirred for an additional 1 h. The white solid was removed by

filtration and the filtrate was concentrated to afford a yellow oil, which was purified by

flash chromatography (4:1 hexanes/EtOAc) to give 48 as a clear oil (3.85 g, 63% yield
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over 2 steps). R;=0.30 (4:1 hexanes/EtOAc); 'H NMR (300 MHz, CDCl,) § 4.22 (s,
2H), 2.52-2.50 (m, 2H), 2.28-2.24 (m, 2H), 1.69 (quintet, J = 3.0 Hz, 4H); "C NMR (75

MHz, CDCL,) 8 135.5,121.0,66.1,36.9,29.0,24.9,225.

NH

OH OPMB
ClstI\OPMB
La(OTf),
L —
Br PhMe, 50 °C Br
48 (98% yield) 49

1-(((2-Bromocyclohex-1-enyl)methoxy)methyl)-4-methoxybenzene (49).

To a solution of 48 (1.01 g, 5.29 mmol, 1.0 equiv) in toluene (21 mL) was added 4-
methoxybenzyl 2,2 2-trichloroacetimidate” (2.24 g, 7.93 mmol, 1.5 equiv) and La(OTf),
(164 mg, 0.28 mmol, 0.053 equiv). The mixture was stirred at 50 °C for 12 h. The
reaction mixture was concentrated, and the crude residue was purified by flash
chromatography (hexanes — 99:1 — 98:2 hexanes/EtOAc) to give 49 as a colorless oil
(1.60 g, 98% yield). R;= 0.40 (99:1 hexanes/EtOAc); '"H NMR (300 MHz, CDCL,) &
7.30-7.25 (m, 2H), 6.90-6.84 (m, 2H), 4.41 (s, 2H), 4.15 (s, 2H), 3.80 (s, 3H), 2.52-2.49
(m, 2H), 2.24-2.20 (m, 2H), 1.71-1.64 (m, 4H); "C NMR (75 MHz, CDCL,) § 1594,
133.5,130.8, 129.6,122.3,114.0,73.2,72.0,55.5,37.1,29.2, 25.0, 22.5; IR (Neat Film
NaCl) 2934, 2858, 2836, 1613, 1586, 1513, 1464, 1332, 1302, 1246, 1173, 1112, 1077,
1037, 972, 820 cm™'; HRMS (EI+) m/z calc’d for C,sH,,BrO, [M]": 310.0568, found

310.0563.

OPMB OPMB

Pd(PPhy),
nBusSn(CH=CH,)

Br PhMe, 80 °C Z
49 (98% yield) 50

1-Methoxy-4-(((2-vinylcyclohex-1-enyl)methoxy)methyl)benzene (50).
A Schlenk flask was charged with Pd(PPh,), (281 mg, 0.24 mmol, 0.1 equiv),

evacuated and refilled with Ar. 49 (755 mg, 2.44 mmol, 1.0 equiv) in toluene (10 mL)
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and tributyl(vinyl)tin (1.0 mL, 3.41 mmol, 1.4 equiv) were added. The mixture was

stirred at 80 °C for 2 d. The reaction mixture was concentrated, and the crude residue
was purified by flash chromatography (hexanes — 99:1 — 98:2 hexanes/EtOAc) to give
50 as a colorless oil (618 mg, 98% yield). R; = 0.50 (99:1 hexanes/EtOAc); 'H NMR
(300 MHz, CDCl,) 6 7.30-7.27 (m, 2H), 6.90-6.88 (m, 2H), 6.83 (dd,J = 17.1, 10.8 Hz,
1H),5.20 (dd,J=17.1,1.2 Hz, 1H), 5.01 (d,J = 10.8 Hz, 1H), 4.42 (s, 2H), 4.09 (s, 2H),
3.81 (s, 3H), 2.23-2.21 (m, 4H), 1.68-1.62 (m, 4H); °C NMR (75 MHz, CDCl,) & 159 4,
134.4,133.9,133.1, 1309, 129.6, 114.0, 112.3,71.9, 69.1, 55.5, 29.3, 25.3, 22.8, 22.7;
IR (Neat Film NaCl) 3088, 2999, 2930, 2857, 2835, 1698, 1637, 1613, 1586, 1514, 1464,
1357, 1302, 1248, 1173, 1136, 1064, 1037, 986, 896, 820 cm™'; HRMS (FAB+) m/z

calc’d for C;,H,,0, [M]": 258.1620, found 258.1623.

OPMB 1, Cy,BH, THF, 0 — 25 °C OPMB
then NaBO3°H,0
(93% yield)

>
Z  2.PPhy, imidazole, I, |
CH,Cl,, 0 —25°C
50 (84% yield) 44

1-(((2-(2-Iodoethyl)cyclohex-1-enyl)methoxy)methyl)-4-methoxybenzene (44).

A round bottom flask was cooled to O °C and charged with BH;*THF (3.6 mL, 1 M in
THF, 3.54 mmol, 1.5 equiv). Cyclohexene (0.73 mL, 7.20 mmol, 3.05 equiv) was added
and the mixture was allowed to warm to 25 °C over 30 min. Then 50 (610 mg, 2.36
mmol, 1.0 equiv) in THF (5 mL) was added at 0 °C, and the mixture was allowed to
warm to 25 °C over 5 h. The reaction was quenched with NaBO,*H,0O (4.48 g, 44.9
mmol, 19 equiv) in H,O (20 mL), and the mixture was stirred at 25 °C for 12 h. The
aqueous layer was extracted with EtOAc, and the combined organic phases were dried

(Na,SO,) and filtered. The filtrate was concentrated, and the residue was purified by

flash chromatography (9:1 — 7:1 — 5:1 hexanes/EtOAc) to give 2-(2-((4-
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methoxybenzyloxy)methyl)cyclohex-1-enyl)ethanol as a colorless oil (608 mg, 93%
yield). R;=10.20 (9:1 hexanes/EtOAc); '"H NMR (500 MHz, CDCl,) 6 7.28-7.26 (m, 2H),
6.88-6.86 (m, 2H), 4.43 (s, 2H), 3.88 (s, 2H), 3.79 (s, 3H), 3.61 (t,J = 6.0 Hz, 2H), 2.66
(brs, 1H), 2.31 (t,J = 6.0 Hz, 2H), 2.10 (br s, 2H), 2.01 (br s, 2H), 1.61-1.58 (m, 4H); °C
NMR (125 MHz, CDCl,) & 159.5, 133.9, 130.9, 130.3, 129.9, 114.0, 72.6, 70.2, 60.5,
55.5,36.8,29.8, 295, 23.2,23.1; IR (Neat Film NaCl) 3401, 2998, 2929, 2858, 2835,
1664, 1613, 1586, 1514, 1464, 1442, 1365, 1352, 1302, 1249, 1174, 1138, 1110, 1038,
821 cm™'; HRMS (FAB+) m/z calc’d for C,,H,,O, [M+H]*: 277.1804, found 277.1811.
To a solution of PPh, (527 mg, 2.01 mmol, 1.5 equiv) and imidazole (273 mg, 4.02
mmol, 3.0 equiv) in CH,Cl, (8 mL) was added I, (544 mg, 2.14 mmol, 1.6 equiv) at 0 °C.
The mixture was stirred at 0 °C for 30 min. Then 2-(2-((4-
methoxybenzyloxy)methyl)cyclohex-1-enyl)ethanol (370 mg, 1.34 mmol, 1.0 equiv) in
CH,CI, (5 mL) was added, and the mixture was allowed to warm to 25 °C over 2 h and
stirred at 25 °C for 16 h. After addition of 5% aq Na,S,0;, the aqueous layer was
extracted with CH,Cl,. The combined organic phases were washed with brine, dried
(Na,SO,) and filtered. The filtrate was concentrated, and the crude residue was purified
by flash chromatography (99:1 — 95:5 — 9:1 hexanes/EtOAc) to give 44 as a pale
yellow oil (436 mg, 84% yield). R;=0.50 (99:1 hexanes/EtOAc); 'H NMR (500 MHz,
CDCl,) 6 7.28-7.26 (m, 2H), 6.89-6.87 (m, 2H), 4.41 (s, 2H), 3.89 (s, 2H), 3.80 (s, 3H),
3.12 (t,J = 8.5 Hz, 2H), 2.60 (t,J = 8.5 Hz, 2H), 2.07 (br s, 2H), 2.01 (br s, 2H), 1.60-
1.58 (m, 4H); "C NMR (125 MHz, CDCL,) & 159.4, 135.1, 131.0, 130.7, 129.6, 114.0,

72.2,69.8,55.5,38.2,29.5,28.5,23.0,22.9,4.6; IR (Neat Film NaCl) 2998, 2927, 2855,
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2833, 1612, 1586, 1513, 1463, 1354, 1302, 1248, 1172, 1134, 1068, 1037, 820 cm™;

HRMS (FAB+) m/z calc’d for C;H,;10, [M]*: 386.0743, found 386.0733.

o o baker's yeast Ho,,,}é;o HO:";&O
—_— +
D-glucose, H,0, 25 °C H H

o (6% yiea o e

(28, 35)-2-allyl-3-hydroxy-2-methylcyclopentanone (46).°

To a solution of D-glucose (30.0 g) in H,O (200 mL) was added dry active baker’s
yeast (20.0 g) at 35 °C. The suspension was stirred open to the air at 33 °C for 45 min.
Dione 51 (1.71 g, 11.2 mmol, 1.0 equiv) was added dropwise, and the mixture was
vigorously stirred at 25 °C for 5 d. The mixture was filtered over Celite, and the Celite
was washed with H,O and CH,Cl,. The filtrate was diluted with H,O and extracted with
CH,(C], in a continuous extractor for 48 h. The organic phase was concentrated and the
crude residue was purified by flash chromatography (9:1 — 7:1 — 3:1 hexanes/EtOAc)
to afford separated diastereoisomers 46 and 52 (1.16 g, 68% yield, 9 : 1 dr). 46 was
isolated as a colorless oil. R,=0.27 (7:1 hexanes/EtOAc); '"H NMR (500 MHz, CDCL,) §
5.87 (dddd, J=17.0,10.0,7.0,7.0 Hz, 1H), 5.17-5.10 (m, 2H), 4.13-4.10 (m, 1H), 2.51-
243 (m, 1H), 2.37-2.16 (m, 4H), 1.97 (dddd, J = 13.0,9.5,9.5,3.5 Hz, 1H), 1.90 (s, 1H),
0.99 (s, 3H); "C NMR (125 MHz, CDCl,) 8 220.9, 134.6, 118.4,77.7,53.4,35.7, 34.3,
28.0 20.0; HRMS (EI+) m/z calc’d for C,H,,0, [M]*: 154.0994, found 154.0993; [a]p**®
+98.4° (¢ 1.01, CHCl,, >99% ee). Analytical chiral HPLC assay with the benzoate of 46:
Chiralcel OD-H column, 1:9 2-propanol:hexanes, 0.8 mL/min, A = 254 nm, isocratic
method. 46-benzoate: t;,, = 13.93 min ((+)-46-benzoate), t, , = 15.51 min ((-)-46-
benzoate). Enantioenriched 46-benzoate: t., = 13.93 min ((+)-46-benzoate, >99%) (the

trace corresponding to (—)-46-benzoate was below the threshold of detection).
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@*W@Y&

DMAP, pyridine,

46

desired (99% yield)

(18, 25)-2-allyl-2-methyl-3-oxocyclopentyl 4-bromobenzoate (69).

To a suspension of alcohol 46 (150 