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ABSTRACT 

Directing Cellular Traffic Using Geometric and Biomolecular Cues 

September 2010 

 

Directed cell migration plays a principal role in various aspects of important 

cellular phenomena such as wound healing, development and cancer metastasis.  Although 

the mechanism of gradient stimulus leading to directed cell migration is well understood 

and exploited, the geometrical and topographical cues that cause directed migration has 

been largely unexplored.  With the advent of accessible microfabrication techniques to 

precisely control the topography of the extracellular matrix (ECM) on substrates, 

researchers are just starting to study the complex mechanical signals that can alter directed 

cell motility.  A key challenge now is to parse out the precise factors that affect directional 

movement of cells on certain micropatterns, use that understanding to design strategies to 

enhance the motility and bias of directed cell migration, and further apply these concepts to 

multiple cell types and higher-order cell systems. 

Here, we investigate the tunability of directional bias through various geometrical 

manipulations using quantitative analysis of cell movement on micropatterns.  We observe 

that MCF-10A epithelial cells in general jump with an unnaturally high bias between 

teardrop-based islands with specific gap distance, asymmetry and positional placement.  

Throughout the studies, we observe that lamellipodial protrusions and unilamellar 



 
 

 

vi 

morphology play a crucial role in dictating not only the directional bias of epithelial cells, 

but also their speed and persistence, and find that moderate alteration of Rac1 signal leads 

to an unexpected flip of bias.  We further extend the concept of directional bias to design 

patterns to successfully control cell flux and effectively partition cell population, as well as 

induce unilamellar morphology in different cell types to promote directed cell motility.  We 

also investigate the combinatorial effect of hybrid micropatterns in enhancing motility and 

unravel the unique properties and possible mechanisms behind directed cell motility on 

teardrop-based micropatterns.   

Our results demonstrate a new type of directed cell motility using a micropattern 

that involves the use of physical constraints to stabilize the unilamellar morphology and 

guidance of the unilamella in the correct direction through purely geometrical cues.  These 

studies offer multiple design strategies to modulate the cell motility and directional bias on 

micropatterns for various applications, such as tissue engineering. 
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