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ABSTRACT

Since the initial isolation of the cyathane molecules in 1970, considerable

synthetic interest has been invested into the preparation of these diterpenoid natural

products.  Owing to the biological activity and intriguing molecular architecture of these

compounds, the members of the cyathane family of natural products have emerged as

appealing targets for total synthesis.  After a brief summary of the isolation and

bioactivity properties of these diterpene compounds, previous synthetic efforts toward

these molecules are reviewed.

A concise and versatile approach toward the preparation of the cyanthiwigin

family of cyathane natural products is described.  By leveraging a unique double

asymmetric catalytic alkylation procedure it is possible to quickly establish two of the

most critical stereocenters of the cyanthiwigin framework with high levels of selectivity

and expediency.  The synthesis additionally employs a tandem ring-opening and cross-

metathesis reaction, and an aldehyde-olefin radical cyclization process, to rapidly arrive

at the tricyclic cyathane core of the cyanthiwigin molecules.  From this unifying

intermediate, the preparation of cyanthiwigins B, F, and G are attained swiftly and

without the need for protecting groups.

The nature of double asymmetric transformations is investigated from a historical,

mathematical, and experimental perspective.  The initial findings of Langenbeck and

Horeau concerning the enantioenriching effects of scalemic duplication are described,

with a specific focus on the impact of this phenomenon on total synthesis.  A thorough

mathematical examination, based on the work of Kagan, is then presented for situations

involving double asymmetric transformations of prochiral starting materials.  Expressions

relating the final quantities of the stereoisomeric products to the intermediary selectivity

of each stereoselective process are presented based on these formulae.

Finally, experiments designed to probe the selectivity of each stage of

stereoselective bond construction in a double asymmetric process are presented.  The

compiled results are scrutinized in keeping with the previously derived equations, and

these findings are analyzed to understand the nature of the double asymmetric processes

in question.
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