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Abstract 

The objective of this work is to establish the applicability of cohesive theories of 

fracture in situations involving material interface, material heterogeneity (e.g., lay

ered composites), material anisotropy(e.g., fiber-reinforced composites), shear cracks, 

intersonic dynamic crack growth and dynamic crack branching. The widely used co

hesive model is extended to orthotropic range. The so-developed computational tool, 

completed by a self-adaptive fracture procedure and a frictional contact algorithm, is 

capable of following the evolution of three-dimensional damage processes, modeling 

the progressive decohesion of interfaces and anisotropic materials. The material pa

rameters required by cohesive laws are directly obtained from static experiments. The 

ability of the methodology to simulate diverse problems such as delamination between 

fibers of graphite/epoxy composites, as well as sandwich structures and branching 

within brittle bulk materials has been demonstrated. 
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Chapter 1 Introduction 

1.1 Dynamic fracture mechanics 

Cracks would cause no one any trouble if they never moved, so it is natural to in

vestigate their dynamics in some detail [76]. Dynamic fracture has been stimulating 

interest not only because of its fundamental importance in understanding fracture 

processes and because of practical applications such as engineering and earthquake 

prediction, but also because of the challenges to mathematical analyses and exper

imental techniques [52]. As Meyers [82] pointed out, dynamic fracture has its own 

unique features: there exists a limiting speed of propagating cracks; cracks tend to 

branch out or bifurcate in order to decrease the overall energy of the system at a 

certain critical velocity; the fracture toughness of materials is often dependent on the 

rate of crack propagation. Another essential feature that distinguishes dynamic frac

ture from quasi-static behavior is the presence of stress waves, either due to externally 

applied loads or the stresses released from the crack tip at fracture. 

There is a threshold time required to activate cracks. When the duration of 

the applied pulse is less than that amount, the crack does not grow. Furthermore, 

this threshold time decreases as the stress applied is raised, so the dynamic fracture 

toughness Kid depends on the time duration of the applied pulse, in contrast with 

the static stress intensity factor. These trends have been confirmed by Ravi-Chandar 

and Knauss [101]' who, for example, showed that the threshold time for Homalite-100 

is 50 J-ls. 

The considerable importance of dynamic fracture can be seen in numerous prac

tical applications: crack arrest in engineering structures; prevention of damage in 

car structures as consequences of impacts as well as in space structures from mete

orites; airplane fracture control in explosions; pressure impact failure of submarine 

ship shells; safety of nuclear-reactor vessels; mining military applications, as fragmen-
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tation of bombs and shells and fracture of projectiles and armor. In particular, the 

design of armor and armor-defeating projectiles requires a deep knowledge of dynamic 

fracture response of a material. 

One compelling need in the army is to understand the failure mechanism in or

der to minimize the damage to body armors. Recent advances in armor design, 

for the most part brought about under the leadership of scientists and engineers 

at the U. S. Army Research Laboratory, provide unprecedented levels of protection 

which render the currently field combat vehicles the most survivable in the world. 

For instance, ceramic composites have demonstrated excellent potential for defeating 

medium and heavy-class long-rod penetrators while minimizing armor weight. In ad

dition, interface defeat mechanisms, such as graphite interlayers, greatly enhance the 

resistance capabilities of ceramic composites. While recognizing these advances, it is 

not entirely clear that radically different armor designs do not exist which are capable 

of vastly superior performance than afforded by the present technology. The identi

fication of such radical armor designs is likely to involve the examination of myriad 

candidate designs-a process too expensive to be carried out entirely in the laboratory. 

Therefore advanced simulation, as the chief means of evaluating designs, coupled to 

optimization, as the vehicle for the systematic exploration of design space, immedi

ately suggest themselves as the only viable option. A conventional armor design relies 

on a three-layer system: ceramic tile to first blunt and erode the tip of the projectile, 

an intermediate soft layer to deflect the flow of the incoming threat material, and 

a metallic backing to finally stop the threat. This design aims to combine the best 

properties of these three classes of materials, ceramics, binders or lubricants and met

als, in a way which maximizes the penetration resistance of the plate. Evidently, the 

simple ceramic/interface/metal layering is not but the simplest possibility, and other 

more complex layerings, possibly involving many alternating ceramic and metallic 

layers, as well as various types of interfaces, may result in superior performance. This 

calls for detailed understanding for dynamic fracture for layered structures. 

Since the progression of fracture is driven by the stress field in the local neighbor

hood of the crack front, it is necessary to know the relationship between the crack 
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speed and the local stress field for any type of dynamic analysis [82]. 

The understanding of how solid materials break apart when external loads are 

applied is a crucial safety issue that has attracted the attention of engineers and 

material scientists for a long time [47]. Recently, it has also attracted the attention of 

physicists, as the complex spatial-temporal dynamics of crack propagation has strong 

resemblances to other pattern-forming systems such as diffusion limited aggregation, 

dielectric breakdown or percolation [122, 58, 100, 99]. 

1.2 Interfacial fracture mechanics 

Many modern materials and material systems (including protective coatings, multi

layer capacitors, thin film/substrate systems for electronic packages, reaction product 

layers and adhesive joints) are layered. Interfaces are intrinsic to such materials [64]. 

As fracture along or near an interface between phases plays a major role in limiting 

their toughness and ductility, this has motivated a substantial body of work on failure 

at interfaces [139]. Nevertheless, a fracture mechanics framework for interfacial crack 

initiation and growth has been developed only relatively recently, and the concept of 

steady-state cracking analysis provides a simplified solution relevant to design against 

fracture. 

A wide experimental evidence has proved that for fatigue crack growth, stress cor

rosion cracking and crack advance under monotonic loading, pure mode-I conditions 

could be maintained at crack tip in brittle isotropic, homogeneous materials. Never

theless, an unloaded crack subsequently subject to mixed mode loading will kink in 

a direction that is locally mode I. A crack in a material (for example, unidirectional 

composites) that has strongly orthotropic fracture properties, or a crack along an 

interface with a fracture toughness distinct from the materials joined across it, can 

kink or propagate straight ahead under mixed mode loading depending on a number 

of factors, including the relative toughness associated with the competing directions 

of propagation. 

The elasticity solutions typically involving oscillatory singularities have been car-
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ried out for a variety of interfacial cracks [40, 33, 34, 35, 134, 105,41,42,71,49,50,18]. 

Such oscillatory singularity is also encountered if a crack lies in one of the constituent, 

but its tip touches the interface [18]. The serious defect of the oscillatory singularity 

is that they lead to wrinkling of the faces of the crack and overlapping of the materials 

[40, 75]. Comninou pointed out that: the interface crack in a tension field has closed 

tips and the contact regions near the tips are extremely short in comparison to the 

size of the crack; the singular part of the stress field near the closed tips is quite dif

ferent from that of the oscillatory singularity; the normal traction is tensile but finite 

ahead of the crack tip; and only the shear traction is singular there. These observa

tions suggest that the growth of an interface crack is more intimately connected with 

failure in shear rather than tension. She also obtained a meaningful stress-intensity 

factor in shear which is connected with the change of free energy. But a singular in

tegral equation must be solved with high precision to find that stress-intensity factor, 

and an approximate value for the closed tip can be found only if the strength of the 

oscillatory singularity is known. That might have impeded its further use. 

Dundurs (1969) has observed that wide class of plane problems of elasticity for 

bimaterials depend on only two non-dimensional combinations of the elastic moduli. 

With the conventions set in Fig. 1.1, the Dundurs' elastic mismatch parameters are 

(3 

!-£1(K,2 + 1) - !-£2(K,1 + 1) E; - IE; 
!-£1(K,2 + 1) + !-£2(K,1 + 1) El + E2 
!-£1(K,2 - 1) - !-£2(K,1 - 1) 
!-£1(K,2 + 1) + !-£2(K,1 + 1) 

(1.1) 

(1.2) 

where Ei = Ei/(l-vl) , K,i = 3-4vi for plane strain and Ei = Ei, K,i = (3- vi)/(1+vi) 

for plane stress. Thus a measures the mismatch in the plane tensile modulus across 

the interface. It approaches 1 when material 1 is extremely stiff compared to material 

2, and approaches -1 when material 1 is extremely compliant. Both a and (3 vanish 

when there is no mismatch, and both change signs when the materials are switched. 

He and Hutchinson showed that in-plane stress can have a major influence on the 

behavior of interface cracks. In particular, tensile in-plane stress acts in conjunction 
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with flaws nears the interface to destabilize interface cracks and causes them to depart 

from the interface. On the contrary, a compressive in-plane stress stabilizes interface 

cracks and essentially deactivates flaws around the interface [55]. 

A crack lying in the interface between two brittle elastic solids can advance either 

by continued growth in the interface or by kinking out of the interface into one of the 

adjoining materials. This competition can be assessed by comparing the ratio of the 

energy release rate for interface cracking and for kinking out of the interface to the 

ratio of interface toughness to substrate toughness. The stress parallel to the interface 

influences the energy release rate of the kinked crack and, if sufficiently large, can 

significantly alter the conditions for interface cracking over substrate cracking [55]. 

The energy release rate for crack advance along an interface, which is assumed to 

have zero thickness, is [75] 

(1.3) 

where E* = 2E1E2/(E1 +E2)' A simple, one parameter family of mixed mode fracture 

criterion is 

(1.4) 

The parameter>' adjusts the influence of the mode II contribution in the criterion. 

The limit >. = 1 is the "ideally brittle" interface with initiation occurring when 

G = GJ for all mode combinations, which coincides with the classical surface energy 

criterion. When>. = 0, crack advance only depends on the mode I component. 

1.3 Interfacial fracture criterion 

Various hypotheses have been made concerning the crack kinking under combined 

loading in homogeneous material and bimaterials [53, 56, 119]. Noticeable are the 

maximum energy release rate [54] and the minimum strain energy density theories 

[119]. Several analytical works based on such criteria have been carried out [10, 11, 
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74, 54, 53, 57, 12, 64]. 

Banks-Sills et al. have examined different criteria for interface fracture and com

pared them to experimental results obtained from bimaterial Brazilian disk specimens 

composed of glass and epoxy [14, 13]. The first criterion considered (similar to em

pirical expressions), based on the energy release rate, is presented by Hutchinson and 

Suo [64] 

(1.5) 

where Gic is the critical energy release rate for the interface; G[ = k;;H, k = KLif 

is the complex intensity factor and L is an arbitrary length parameter; 7/J is the phase 

angle defined by 

Im(KLif) 0"12 
7/J = arctan[ R (K L' )] = arctan[-] IO=O,r=L e ~f 0"22 

(1.6) 

The second criterion refers to Charalambide et al. [28] and assumes that fracture 

is caused by a mode-I energy release rate Go which is composed of two parts: 

(1.7) 

The criterion could be written as 

(1.8) 

which is essentially the same as (1.5) except for the phase shift 7/Jo, and same as choos

ing another value for the length parameter L. This criterion has three free parameters: 

L, G [ and 7/Jo, among which L may be arbitrarily chosen and the other two may be 

obtained from two Gic tests at different phase angles. 

The third criterion considered is the critical hoop stress employed by Thurston 

and Zehnder [126] for the tests of a specimen containing a nickel interface between 

6 



Figure 1.1: Geometry and conventions for an interface crack. 

two alumina substrates. It is hypothesized that the crack will propagate when the 

hoop stress CY()() reaches a critical value at a distance from the crack tip r = ro along 

the interface, which is equivalent to (1.8). 

The fourth one is the critical shear stress criterion, which is self-invalidated because 

the critical shear stress at a distance ro ahead of the crack tip is a function of CY()()lcrit 

and the phase angle 'IjJ . 

For isotropic elastic solids, the parent straight-ahead quasi-static crack advance is 

Irwin's relation between the energy release rate and the stress intensity factors: 

(1.9) 

For the local kinked crack, it reads 

(1.10) 
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The criteria for kinking based on maximizing Gt and propagating in local mode-I 

are almost the same [64]. 

For homogeneous, orthotropic elastic solids, it is common to consider plane cracks 

aligned with the principal axes of orthotropy and crack advance that is either straight

ahead or kinked at 90°. For simply connected domains with traction boundary condi

tions, Suo [123] has shown that the stress depends on only two nondimensional elastic 

parameters: 

(1.11) 

where bij indices are the components of the compliance matrix of the orthotropic 

material. The energy release rate for straight ahead crack advance is 

and that of the kinked crack tip is 

If 

G ro 
->Gt r 90 

(1.12) 

(1.13) 

(1.14) 

the crack will advance straight ahead, since the condition G = r 0 will be reached 

before Gt = r go • The crack will advance kinking at 90° if inequality (1.14) is reversed. 

1.4 Numerical trends 

The first calculations carried out for fracture were by Neville Mott who took on the re

sponse to the Liberty ship disasters during World War II. His work led to an amazingly 

successful scaling theory, which stood up well into the increasingly improved math-
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ematics, except the agreement with experiments [76]. During the last few decades, 

many numerical methods such as finite-element methods with non-singular and sin

gular elements [16], boundary element method, the boundary collocation method [88], 

the body force method, the integration method as well as dislocation method [29], 

and recently meshless methods (in particular, the element-free Galerkin method [45]) 

have been proposed to model crack problems. The extended finite-element method 

(X-FEM) by Daux et al. [37] uses the notion of partition of unity to allow crack 

growth without remeshing. The approach enriches the standard approximation with 

additional functions and allows the modeling of arbitrary geometric features indepen

dently of the finite element mesh. 

Several avenues have been traditionally followed in order to model fracture. One 

avenue is to attempt to bury all dissipative mechanisms into the constitutive rela

tions. However, in practice the effective behavior of systems with complex micro 

structures can only be characterized analytically, by recourse to sweeping simplifying 

assumptions. One particularly vexing difficulty inherent to constitutive descriptions 

concerns their inability to endow brittle materials with a well-defined fracture energy, 

i. e., a material-characteristic measure of energy dissipation per unit area of crack 

surface. Thus, the conventional thermodynamic route to the formulation of general 

constitutive relations regards dissipation as an extensive quantity possessing a well

defined density per unit volume. Attempts to build fracture into such formulations 

by means of a softening stress-strain law leads to pathologies such as a spurious scal

ing of the effective fracture energy with the discretization size. The formulation of 

appropriate functional forms of the energy of a solid which allow for both bulk-like 

and fracture-like behavior is a challenging mathematical problem which is presently 

the subject of active research [22, 46]. 

Classical fracture mechanics specifically addresses the issue of whether a body un

der load will remain intact or new free surface will form. However, the classical theory 

of fracture mechanics is predicated around the assumption of a pre-existing dominant 

crack. Under these and other restrictive assumptions, fracture mechanics successfully 

predicts when a crack will grow, in what direction and how fast, and how the results 
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of laboratory experiments can be scaled up to structural dimensions. However, the 

reliance on a pre-existing dominant crack entirely foregoes the issue of nucleation, 

which is for the most part foreign to classical fracture mechanics. Situations, such as 

those that arise in fragmentation or crushing, involving many intersecting cracks also 

fall outside the purview of classical fracture mechanics. Additionally, the conditions 

for crack growth are typically expressed in terms of parameters characterizing the 

amplitude of autonomous near-tip fields. The applicability of these criteria is there

fore contingent upon the existence and establishment of such near-tip fields. This in 

turn severely restricts the scope of the theory, e. g., by requiring that the plastic or 

process zone be small relative to any limiting geometrical dimension of the solid such 

as the ligament size, conditions which are rarely realized in materials such as concrete. 

In addition, the structure of the autonomous near-tip fields depends sensitively on 

the constitutive behavior of the material, which inextricably ties the fracture crite

ria to the constitution of the material. In dynamic fracture, the fracture criterion 

is additionally responsible for accounting for the micro inertia which accompanies 

the motion of the crack tip. Another complicating factor is non-proportional and 

cyclic loading, such as arises in high-cycle fatigue, which renders important near-tip 

parameters, such as the J-integral, inapplicable. 

An alternative approach to fracture is based on the use of cohesive models (see, 

e. g., [39, 15, 104, 59, 109, 27, 83, 90, 133, 84, 85, 136, 137, 130, 93, 98, 138, 91, 26, 

132, 131, 139, 38, 92, 97, 96, 110, 111]) which regard fracture as a gradual process in 

which the separation of the incipient crack flanks is contrasted by cohesive tractions. 

A "cohesive law" governs the relation between the cohesive tractions and the opening 

displacements. Cohesive models furnish a complete theory of fracture which is not 

limited by any consideration of material behavior, finite kinematics, non-proportional 

loading, dynamics, or geometry of the specimen. In addition, cohesive theories fit nat

urally within the conventional framework of finite-element analysis, and have proved 

effective in the simulation of complex fracture processes. Noticeable examples include 

the fragmentation of brittle materials [26, 103]; dynamic fracture and fragmentation 

of ductile materials [96, 94]; and dynamic tests for concrete [110, 111]. As Camacho 

10 



and Ortiz [26] observed, the accurate description of fracture processes by means of 

cohesive elements requires the resolution of the characteristic cohesive length of the 

material. In some materials, such as ceramics and glass, this length may be exceed

ingly small. Thus calculations based on cohesive elements inevitably have a multiscale 

character, in as much as the numerical model must resolve two disparate length scales 

commensurate with the macroscopic dimensions of the solid and the cohesive length 

of the material. 
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Chapter 2 Finite-element methodology 

2.1 Introduction 

This chapter introduces the main mechanical components of the finite element method

ology. Within the context of the Lagrangian framework we begin by expressing in 

variational form the problem of an elastic-plastic solid undergoing dynamic large 

deformations. The field and constitutive equations, the time discretization and a 

minimum principle for the incremental problem are presented. Throughout the cal

culations, we will refer to 3D meshes triangulized by 10-node tetrahedra. 

2.2 Field and constitutive equations 

We take the initial configuration Bo C Rd of the body at time to as the reference 

configuration. 

The motion of the body is described by a time-dependent deformation mapping 

c.p : Bo x [to, (0) ---+ Rd. The local deformation of infinitesimal material neighborhoods 

is described by the deformation gradient 

F = V'oc.p, in Bo (2.1) 

where V' 0 denotes the material gradient over Bo. The motions of the body follow the 

equation of motion (cf [79]) 

V'o· P + PoB = Poip, in Bo (2.2) 

where Po is the mass density over Bo, B are the body forces per unit mass, P is 

the first Piola-Kirchhoff stress tensor, and ip is the material acceleration field. For 

purposes of formulating boundary conditions, we partition the boundary aBo of Bo 
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into a Dirichlet or displacement boundary 8BOl and a Neumann or traction boundary 

8Bo2 . The displacement boundary conditions then take the form: 

<p = cp, on 8BOl (2.3) 

where cp(X, t) is the prescribed deformation mapping on 8Bol . The traction bound

ary conditions then take the form: 

P·N=T, on 8Bo2 (2.4) 

where N is the unit outward normal to 8Bo2 and T(X, t) are the prescribed tractions 

applied to 8Bo2 . In addition, the formulation of the problem requires the initial de

formation mapping and material velocity field, <p and cp, respectively, to be supplied. 

Bulk material 

Within a nonlinear kinematics framework, we adopt a multiplicative elastic-plastic 

kinematics of the form [70], [125], [106): 

(2.5) 

where the deformation gradient F is decomposed into an elastic part Fe and into a 

plastic part FP. The free energy density A decomposes additively as 

(2.6) 

where T denotes the temperature and Q a suitable collection of internal variables. 

In the present application, with good approximation we need only account for the 

elastic contribution. Thus A can be written as 
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where c is the elastic tensor and Q is the thermal expansion tensor. The logarithmic 

strain ee is given by 

(2.8) 

where C e is the right Cauchy-Green deformation tensor, associated with the elastic 

part of the deformation. 

2.3 Finite element model 

We make recourse to the finite element method to discretize the continuum. Inserting 

the displacement interpolation into the virtual work expression leads to a system of 

semi-discrete equations of motion of the form: 

(2.9) 

where x is the array of nodal coordinates, M is the mass matrix, F ext is the external 

force array, and F int is the internal force array. In calculations we use the second

order accurate central difference algorithm to discretize (2.9) in time [17, 62, 63]. 

Despite the fact that the time step is bounded by stability [62], explicit integration is 

particularly attractive in three-dimensional calculations, where implicit schemes lead 

to system matrices which often exceed the available in-core storage capacity. Yet 

another advantage of explicit algorithms is that they are ideally suited for concurrent 

computing [81]. 

Time discretization 

Next we envision a process of incremental deformation and seek to determine the 

solution at discrete times to, ... , tn+! = tn + 6.t, .... We begin by discretizing the 

equations of motion (2.2) in time. Thus, we invert the usual sequence of spatial and 

temporal discretization and discretize the governing equations in time prior to the 
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introduction of a spatial discretization. For definiteness, we restrict our attention to 

the Newmark scheme [63, 17]: 

'Pn + 6.tvn + 6.t2[(1/2 - (3)an + f3an+1] 

Vn + 6.t[(l - 'Y)an + 'Yan+1] 

(2.10) 

(2.11) 

(2.12) 

where v and a denote the material velocity and acceleration fields, and f3 E [0,1/2] 

and 'Y E [0,1] are the Newmark's parameters. This defines a non linear system of 

equations that can be solved using a Newton-Raphson iteration procedure. For the 

dynamic simulations that are presented in the following chapters, the explicit version 

of the previous system of equations is used. The second order accurate explicit scheme 

we used is obtained by assuming f3 = 0 and 'Y = 1/2 (see, [63, 17]) 

1 
'Pn+1 'Pn + i:l.tvn + "2i:l.t2an 

!:lI+l _ M- 1(Rext _ R int ) --n n+l n+l 

1 
vn+1 Vn + "2i:l.t(an+1 + an) 

(2.13) 

(2.14) 

(2.15) 

The presented scheme is stable under the condition that the time step is below a 

critical time step. Typically, one would like to capture numerically dilatational waves 

propagation on any element of the mesh. The stable time step that is used in the 

calculations is 

hmin 
i:l.tstable = c-

Cd 
(2.16) 

where C is a security coefficient (of the order of 0.1), hmin is the minimum element 

size for the mesh, Cd is the dilatational wave speed of the bulk material. The stable 

time step is computed at regular intervals during the calculations and after every 

remeshing in case the bulk material mesh changes during computational time. 
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2.4 Cohesive formulation 

The stress field of linear elastic fracture mechanics diverge as 1/ y'r approaching the 

crack tip. In reality, the stress value must be bounded. The actual phenomena in 

the process zone that limit the stress are unquestionably complicated. Barenblatt 

and Dugdale proposed a simple cohesive zone model to cancel the apparent elastic 

singularity around the crack tip (15, 39]. So at distances from the crack tip very large 

compared to the cohesive zone size R, the energy release rate due to the singular 

stress field is 

G = 1 - lJ2 A ( ) 2 8R 
E [ V (Jc 7r (2.17) 

where E is the Young's modulus; lJ is the Possion's ratio; AJ(v) is a universal function 

of crack propagation function [47]; (Jc is the critical opening stress for a constant 

cohesive law. Inverting equation (2.17) and replacing G with the specific fracture 

energy Gc give the characteristic cohesive length: 

(2.18) 

Various cohesive models have been used to describe the process of formation of 

a new surface in fracture mechanics. Fracture parameters - such as fracture energy 

- have been incorporated into those models for the material description. Different 

cohesive laws could be applied to address the separation process, while the bulk 

material behavior is described through an independent set of constitutive relations. 

The feasibility of using cohesive theories of fracture for the direct simulation of 

fragmentation in brittle materials subjected to impact was established by Camacho 

and Ortiz, while the applications involving dynamic fracture of ductile materials has 

been investigated by Pandolfi et al. [94, 96]. Repetto et al. [103] have applied 

cohesive models to the simulation of failure waves in glass rods subjected to impact, 

and correctly captured the development of a sharp failure wave, its propagation speed 

and its bursting of the comminuted material following the passage of the failure wave. 
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In presence of a cohesive surface, the weak form of linear momentum balance, or 

virtual work expression, takes the following form 

r [Po(b - <P '11 - P . '\7011] dVo -1 t· [11]dSo + r t . 11dSo = 0 J Bo so J 8Bo,2 

(2.19) 

where Bo, So, dSo, 8Bo,2 are defined in Fig. 2.3. The consideration of the cohesive 

traction brings a new term in the virtual work expression. The definition of the 

cohesive law can be based on the assumption of the existence of a free energy density 

¢J= ¢J(~,(},q;n) (2.20) 

where 

(2.21) 

is the opening displacement over the cohesive surface, () is the local temperature, 

q is the set of internal variables describing the current state of de cohesion of the 

surface, n is the unit normal to the cohesive surface in deformed configuration. The 

dependence on n permits differentiation the cohesive behavior for opening and sliding. 

By recourse to Coleman and Noll's method, the cohesive law takes the form: 

(2.22) 

The cohesive behavior is completed by defining the evolution of internal variables 

which are governed by a set of kinetic relations of the general form 

q= f{~,(},q) (2.23) 

A simple expression of the cohesive law can be derived by defining {Camacho and 
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Ortiz, 1996) the effective opening displacement 

where 

~n 8·n 

are the normal and sliding displacement respectively. 

Assuming ¢ depend on ~ only through 8, then 

¢ = ¢(8, 0, q; n) 

we have 

where 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

where f3 defines the ratio between the shear and the normal resistance and roughly 

gives the ratio of K IIc to K[c of the material. 

Fig. 2.1 depicts the irreversible cohesive law used in our simulation for isotropic 

materials, where ac and 8c remain the same for all the cohesive elements of a fixed 

material; a cohesive law that can be applied to transversely cohesive materials is 

described in the following section. Irreversibility manifests itself upon unloading. 

Therefore, an appropriate choice of internal variable is the maximum attained effective 

opening displacement 8max . Loading is then characterized by the conditions: 8 = 8max 

and J ~ O. Conversely, we shall say that the cohesive surface undergoes unloading 
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Figure 2.1: Linear loading and unloading behavior. 

3+ 

Figure 2.2: Geometry of a 3D cohesive element. The surfaces S+ and S- coincide in 
the reference configuration of the solid [92]. 
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PobdVo 

Figure 2.3: Cohesive surface traversing a 3D body. 

when it does not undergo loading. We assume the existence of a loading envelop 

defining a relation between t and b under conditions ofloading. From equation (2.27), 

for small values of /3, the the initiation of a cohesive crack is ostensibly independent 

of the magnitude of normal tractions. 

Camacho and Ortiz first proved that the cohesive theories introduce a well-defined 

length scale, and in conjunction with inertia, a well-defined time scale, into the ma

terial description. The characteristic length of the material is 

l _ EGc 
c - (72 

e 

(2.28) 

where E is Young's modulus; Gc is the specific fracture energy (or the dynamic crack 

propagation energy, represents the resistance of the material to crack advance); (7 c 

the material spall strength. As a consequence of this intrinsic scale, cohesive model 

are sensitive to the size of mesh, and the characteristic time is 

(2.29) 

where p is the material density; c is the wave speed; be is the critical opening dis

placement. Owing to the time scale, the material behaves differently when subjected 

to fast and slow loading rates, which confers on the cohesive model the ability to 
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Figure 2.4: Assembly of l2-node triangular cohesive element and two lO-node tetra
hedral elements. 

reproduce subtle features of dynamic behavior of brittle solids, such as crack growth 

initiation time and propagation speed and the dependence of the pattern fracture 

and fragmentation on strain rates. This has been verified by Ruiz et al. [112] in the 

simulations of advanced ceramics. 

The class of cohesive elements considered consists of two surface elements which 

coincide in space in the reference configuration of the solid, Fig. 2.3. The partic

ular triangular geometry depicted is compatible with three-dimensional tetrahedral 

elements, Fig. 2.4. 

2.5 Transversely isotropic cohesive law 

The transversely isotropic behavior manifests itself especially in fracture events. A 

meso-modeling for composite materials was introduced and discussed in [7, 36, 8], 

where the authors proposed the dependence of a cohesive law on the direction of 

fibers of adjacent layers. A recent work by Ravichandran [89] enhanced the strong 

dependence of the fracture energy and fracture toughness on the relative orientation 

of the fracture surface and fibers. A very simple way to render such dependence 

is to assume that the tensile strength varies sinusoidally with the inclination of the 

fracture surface (see Fig. 2.5). If a is the angle between the fibers and the normal to 
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(a) (b) 

Figure 2.5: Transversely isotropic cohesive law: (a)a cohesive surface CS, the normal 
N is inclined to the fiber direction at angle a; (b )the cohesive strength for surface CS. 

the fracture surface, we can write 

(2.30) 

where acmax denotes the maximum tensile strength, in the direction parallel to the 

fibers, and acmin the minimum tensile resistance, normally to the fibers (Fig. 2.5). 

Assuming a cohesive model for the description of the progressive decohesion between 

two separating surfaces, the characteristic strength of the material will vary locally 

according to equation (2.30). 

2.6 Small strain friction/contact algorithm 

Upon closure, the cohesive surfaces are subject to the contact unilateral constraints, 

possibly including friction [92]. Contact must be regarded as an independent phe

nomenon to be modeled outside the cohesive law. A rigorous approach to frictional 

contact would require, though, a complex and expensive implementation (see e.g., 

[66, 95]). In our application, the contact process is mainly constrained near the 

middle surface of the specimen, so we choose as expedient to incorporate a simple 

small-strain contact law, as described in the following. 

We superimpose a very simple model of contact elements to the cohesive elements. 
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t· 1 

o t 1 

Figure 2.6: Frictional contact model: (a) decomposition of the jump 8 as sum of the 
elastic normal displacement 6e (negative) and irreversible tangential displacement 6P; 

(b) contact law for the direction i, in the penetration case. 

Contact and cohesive elements share the same global nodes and facets. When the 

normal component of the opening displacement 6n is negative, denoting interpene

tration between the two fracture surfaces, the relation between opening displacement 

and surface traction is governed by a frictional contact law. Specifically, the nor

mal component of the surface reaction follows a linear elastic response, whereas the 

tangential component obeys the classic Coulomb's friction law. 

Let 8 = [u] denote the displacement jump across the contact surface, t the 

tractions, n the unit normal, Fig. 2.6. Given any vector x, its normal component is 

Xn =x·n (2.31) 

whereas its tangential component is 

X' = x - Xnn (2.32) 

In particular, we write p = tn for the normal contact pressure. We assume an additive 
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decomposition: 

(2.33) 

into an elastic or recoverable displacement jump ~e and a frictional or irrecoverable 

displacement jump dP• We set 

~P =~, ·f 1: 0 U u, 1 un > , 

i. e., in the absence of contact. The tractions follow in the form 

t = { 0 if On ~ 0 

K de = K (~ - dP) otherwise 

where K is the elastic stiffness of the surface, computed as 

K ~ ,\ + 2J-t 
hmin 

(2.34) 

(2.35) 

(2.36) 

,\ and J-t are the Lame constants of the bulk material, hmin is the minimum mesh size. 

The rate of irreversible sliding obeys the rule 

(2.37) 

where 

T = It'l (2.38) 

is the shear stress magnitude acting on the surface, and 16P I is the magnitude of the 

irreversible sliding rate. Finally, we assume that frictional sliding requires that 

f = T - Tc(p) = 0 (2.39) 

where Tc(p) is the critical shear at pressure p. The loading unloading conditions are, 
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therefore, 

f ~ 0, and 8P ;:::: 0, and f 8P = 0 (2.40) 

In the case of Coulomb friction we have that 

Tc = -J-lP, P < 0 (2.41) 

The exact equations are solved by a fully implicit update, distinguishing the fol

lowing cases: 

Case 1. No contact. 

In the absence of contact, 6n > 0, we simply set 

o 

and exit. 

Case 2. Stick. 

(2.42) 

(2.43) 

In the presence of contact, 6n < 0, we start by evaluating the elastic or stick predictor: 

If 

pre < (..pre) 
Tn+l _ Tc l'n+l 
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(2.44) 

(2.45) 

(2.46) 



then we conclude that there is no frictional sliding during the step, set 

t t pre 
n+l - n+l 

Dtn+1 K I 

and exit. In (2.49), Dtn+l is the tangent stiffness matrix of the contact. 

Case 3. Slip. 

(2.47) 

(2.48) 

(2.49) 

If there is contact and the friction condition (2.46) is violated by the stick predictor, 

then slip must necessarily occur during the time step. In this case we write: 

d~+1 dP + 6.8P t~+1 (2.50) n 
Tn+l 

Pn+l 
p:,re 

n+l (2.51) 

t~+1 K (d~+1 - d~+1) (2.52) 

Tn+l - Tc(Pn+l) (2.53) 

A useful identity which follows from these equations is 

(2.54) 

which fixes the direction of slip. It also follows that 

(2.55) 

which solves the update equations explicitly. Finally, linearization of the update gives 

the tangent stiffness matrix: 

(2.56) 

which, as may be seen, is not symmetric. 
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2.7 Thermal effects 

In order to account thermal effects, we refer to the general heat equation: 

(2.57) 

where Cv is the thermal capacity, q the heat flux, g the heat source and T temperature. 

For a fast propagating crack, the frictional heat is limited near the crack surface. 

Assuming adiabatic heating, we adopt the following discretization at time tn +l: 

(2.58) 

where dW is the incremental frictional work, L a characteristic length for the adiabatic 

heating, defined so that it describes the thickness of the adiabatic layer. 

2.8 Fragmentation algorithm 

In order to follow the evolution of the geometry of a three-dimensional finite-element 

model as a consequence of fracture and fragmentation, a simple adaptive procedure 

according to Pandolfi and Ortiz [95] is here applied. 

Pandolfi and Ortiz's approach to fragmentation is based on the explicit modeling 

of the crack evolution. The basic idea is that in a 3D finite element discretization, 

all the potential cracks are represented by the interfaces between solid elements. In 

a tetrahedral 3D mesh, a fine discretization is able to guarantee a good set of crack 

paths in different directions. Special crack paths, as material interfaces, are included 

in the solid model by several interelement triangular surfaces. The adaptive procedure 

remodels the original mesh by the insertion of cohesive elements between two solid 

elements previously coherent. During the numerical analysis, the nucleation of the 

crack along an interface is related to the attainment of a critical condition. This is 

generally represented by a scalar inequality that must be chosen in agreement with 

the problem at the hand. In our dynamic analysis we applied the "effective traction 
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criterion," which is related to the decomposition of the traction t acting on the 

interface into normal tn and tangential ts components. Assigning different weights to 

sliding and normal components, the effective traction teff is computed as 

(2.59) 

The facet is fractured when 

(2.60) 

O"c is the cohesive strength. Once that criterion is met, the interface is remodeled 

by a cohesive element, whose insertion leads to changes into the connectivities of the 

adjacent elements and to insertion of new nodes. 
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Chapter 3 Intersonic Crack Growth in 

Asymmetrically Loaded Unidirectional 

Composite Plates 

3.1 Introduction 

In homogeneous materials and in the absence of a preferential crack growth path, 

mode-II crack propagation is somehow prevented by the natural kink of the crack 

tip, which propagates in a direction defined by a local mode-I stress state. This is 

not necessarily true in solids that may be homogeneous regarding their constitutive 

properties but may involve preferable crack paths in the form of weak planes of lower 

toughness. Indeed, dynamic crack growth along weak planes is the predominant mode 

of failure in composites and other layered materials. The presence of a weak straight 

line crack path, a characteristic that may accommodate growing cracks of both open

ing and shear modes, makes the unidirectional composite a natural candidate for 

studying the maximum allowable crack tip speeds of both modes in a macroscopi

cally homogeneous system. 

In the past years, tests on dynamic crack growth along weak planes of composite 

specimens showed that interfacial crack tip speeds rapidly approach and exceed the 

shear wave speed Cs of the more compliant material [67, 72, 121, 120, 107]. A crack 

speed exceeding the shear wave speed and lower than the longitudinal wave speed 

of a material is called intersonic. In isotropic or anisotropic homogeneous elastic 

solids, purely elastodynamic crack growth theory excludes intersonic growth of mode

I cracks. Though, in cases of self-similar cracks growing into their own planes, the 

possibility of intersonic mode-II crack growth is not excluded [23]. The issue of the 

evaluation of the critical speed Vc at which intersonic crack growth is possible has 
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been addressed by several researchers [25, 48, 23, 60, 61, 24]. These works were 

mainly concerned with isotropic materials, and fiber-reinforced composites received 

less attention. A description of the most relevant results in this field can be found in 

[31, 32]. 

Intersonic crack tip speeds are characterized by a ray emanating from the crack 

tip, related to ajump in the shear tractions (shear shock wave). This feature has been 

predicted theoretically and observed experimentally and numerically [72, 121,86,87]. 

In order to obtain intersonic crack tip speeds, the loading conditions and the bond 

strength are such that they promote the locally shear dominated deformations at the 

crack tip. Those deformations are further enhanced by the stress wave mismatch, due 

to the elastic properties discontinuity across the interface. 

A wealth of experimental results concerning dynamic crack growth tests on unidi

rectional composites has been recently presented by Coker and Rosakis [31, 108, 32]. 

They used unidirectional graphite/epoxy composite plates, with an edge pre-notch 

machined in the fiber direction, either symmetrically or asymmetrically loaded by 

impact in a one-point bend configuration. For asymmetric -mode-II- type of load

ing, the results revealed highly unstable and intersonic shear-dominated crack growth 

along the fibers. The interferograms obtained by the lateral shearing interferometric 

technique of coherent gradient sensing (CGS) featured a shock wave structure typical 

of disturbances traveling with speeds higher than the characteristic wave speeds in 

the solid. A further experimental outcome was the evidence of large-scale frictional 

contact. 

Coker and Rosakis experiments provide a challenging comparative collection of 

data for a new application of cohesive models. Cohesive theories are demonstrating 

themselves as one of the most appealing and reliable approaches to numerical simula

tion of complex fracture processes. As main feature, they do not suffer the well-known 

shortcomings of classical fracture mechanics. 

In this chapter we investigate the feasibility of cohesive theories of fracture, incor

porated with small strain contact and friction, to the simulation of intersonic crack 

growth in asymmetrically loaded unidirectional composite plates, in the particular 
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Figure 3.1: Single edge notch (SEN) specimen geometry and size for shear dominated 
dynamic fracture experiments. 

configuration tested by Coker and Rosakis [31, 32]. We aim to reproduce the most 

complex features arisen from the experiments, including the observed double shock 

wave structure, the large scale contact as well as the "hot spots" generated by fric

tional heating. 

3.2 Material properties and experimental set-up 

The plates, used in the asymmetric loading condition experiments, have an edge pre

notch machined in the fiber direction. They are loaded by impact in a one-point bend 

configuration. The impact speed of the projectile during the experiments was varying 

from 10 to 57 m/s. The loading apparatus is sketched in Fig. 3.1. 

The specimens used by Coker and Rosakis [31, 32] are unidirectional composite 

plates, 7 mm thick, formed by 48 layers of graphite fiber in epoxy matrix. The plates 

are 150 mm in width and 75 mm in height. The specimen dimensions are reported in 

Fig. 3.1. Crosssections of the composite, normal and parallel to the fiber respectively, 
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(a) 

(b) 

Figure 3.2: Crosssection of fiber-reinforced unidirectional graphite/epoxy composite. 

are shown in Fig. 3.2b. 

Material properties 

The orientation of an orthonormal coordinate set with respect to the composite plates 

is shown in Fig. 3.2a. The Xl axis is defined to lie along the fibers, the X3 axis is 

perpendicular to the plane of the composite surface (with an outward pointing unit 

vector), while the X2 axis is perpendicular to Xl - X3 plane. If we assume the fibers 

are randomly distributed in the epoxy matrix, then the Xl - X3 plane can be taken as 

a plane of isotropy, and the material may be considered transversely isotropic. The 
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constitutive relation is therefore [30]: 

0"1 = O"ll Cll C12 C12 0 0 0 c1 = cll 

0"2 = 0"22 C12 C22 C23 0 0 0 c2 = c22 

0"3 = 0"33 C12 C23 C22 0 0 0 c3 = c33 
(T = ce (3.1) 

0"4 = 0"23 0 0 0 C44 0 0 c4 = c23 

0"5 = 0"13 0 0 0 0 Ct>6 0 c5 = c13 

0"6 = 0"12 0 0 0 0 0 C66 c6 = C12 

where 

C22 - C23 
C44 = 

2 
(3.2) 

The stiffness matrix c for a transversely isotropic matrix is defined by five independent 

parameters: Cll, C22, C12, C23 and C66. The value of the stiffness coefficients for the 

unidirectional composite used here are collected in Table 3.1. 

Coefficient Cn C22 C12 C23 C66 C44 

GPa 82 11.1 4.0 4.9 3.6 3.1 

Table 3.1: 3-D stiffness coefficients for the graphite/epoxy unidirectional composite. 

The stiffness constants are related to the mechanical parameters E l , E2 , /-l23, 

/-l12 and V12 (easily measurable with standard laboratory tests) through the following 

relations: 

(3.3) 

(3.4) 
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C22 - C23 E2 

Jl23 = 2 - -2 (""-1-+-V-23-:-) 
(3.5) 

Specifically, the shear modulus Jl12 was determined by quasi-static Iosipescu shear 

test, while uniaxial compression tests were conducted on an MTS hydraulic testing 

machine to evaluate Young's moduli, El and E2 , and the Poisson ratio, 1112. 

The values of the coefficients Cll, C22 and C66, computed through eqs. (3.5), were 

also compared with the ones obtained from the plane strain longitudinal and shear 

wave speeds in the direction of the major axis, using the following relations: 

11_~11 c1 - -, 
P 

1. _ ~22 c1 - -, 
p 

(3.6) 

The longitudinal wave speeds parallel cll and perpendicular ct to the fibers and the 

shear wave speed Cs were obtained using ultrasonic pressure and shear transducers 

operating at 5 MHz frequency. The mass density of the composite plate was 1478 

kg/m3 . Table (3.2) reports the measured wave speeds values, for both plane stress 

and plane strain conditions. In the same table the Rayleigh speed c~ for waves 

propagating in the fibers direction is reported. 

Wave type Plane strain (m/s) Plane stress (m/s) 

cll 
I 7450 ±100 7380 

c1. 
I 2740 ±100 2740 

Cs 1560 ±50 1560 

cll 
R 1548 1548 

Table 3.2: Characteristic plane-strain and plane-stress wave speeds for the 

graphite/epoxy unidirectional composite. 

The fracture properties for the unidirectional graphite/epoxy composite are col

lected in Table 3.3. 

34 



Fracture toughness K]c 2.2 MPaym 

Fracture energy G]c 474.0 N/m 

Maximum cohesive stresses Uc 35.8 MPa 

Critical opening displacement 6c 0.0265 mm 

Weighting coefficient f3 0.726 

Table 3.3: Fracture parameters for graphite/epoxy composites. 

Optical technique 

The coherent gradient sensing (CGS) is a shearing interferometric technique that is 

sensitive to in-plane gradients of out of plane displacements in reflection mode and 

in-plane stress gradients in transmission mode. A detailed description of the tech

nique and of the equations governing optical mapping and fringe formation can be 

found in [127, 128]. A schematic of the experimental set-up along with the CGS 

optical technique is shown in Fig. (3.3). For opaque materials, CGS uses a coherent, 

monochromatic, collimated laser beam incident on the specimen and reflected from 

the initially optically flat and specularly reflective surface. Near the crack tip, the 

reflected beam acquires an optical path difference, due to the non-uniformly deformed 

surface of the specimen. The reflected beam crosses two high density line diffraction 

gratings of pitch p = 0.0254 mm (40 lines/mm), normal to X3 direction (see Fig. ( 3.3)) 

and separated by a distance ~. The gratings diffract the reflected beam and recom

bine it to form an interferogram. The reflected light is collected by a filtering lens, 

which blocks all but either of the ±1 diffraction orders. One of those two remaining 

diffraction spots is imaged to produce an interference pattern on the image plane of 

a high-speed camera. 

When used in reflective mode, CGS measures the in-plane gradients of out-of-plane 

displacement U3(Xl, X2) [127, 128]: 

aU3 mp 
U3,l = aXl = 2~' m = 0, ±1, ±2, ... (3.7) 
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Figure 3.3: Schematic of the experimental set-up and optical technique of coherent 
gradient sensing (eGS). 

where m is the fringe order for the Xl gradient. Eq. (3.7) holds when the lines of 

gratings are parallel to X2 direction. Each eGS fringe is a locus of points of constant 

U3,1 on the specimen surface. Under plane stress conditions, U3(XI, X2) is related to 

the average stresses across the thickness as follows [68, 73]: 

(3.8) 

where h is the specimen thickness and bij are components of the compliance matrix 

b, inverse to the stiffness matrix c in eq. (3.1). 

Meaningful experimental observations 

A sequence of six eGS interferograms, corresponding to shear dominated dynamic 

crack growth along the fibers, is shown in Fig. 3.4 [31, 32]. As the crack propagates, 

it accelerates and further dramatic changes can be observed in the shapes of the 

crack-tip fringe patterns. The fringes are pushed further back and elongated. The 

rear loop shape changes from rounded to a triangular wedge, bounded by a line of 

highly concentrated fringes emerging from the crack tip at a well-defined angle. This 
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Figure 3.4: A selected sequence of eGS interferograms for an intersonically propa
gating crack tip at time 2.8, 4.2, 5.6, 6.9, 8.3, 9.7 jJ,S. The field of view is a 50 mm 
diameter circle around the notch tip. 

line is caused by a steep change in the stress gradients in a localized area, which 

later (as the crack exceeds the shear wave speed) forms a discontinuity in the stress, 

i. e. , a shear shock wave [72, 107]. Finally this line broadens into two parallel lines 

(a double shock wave) which intercept the crack surfaces over a finite area of about 

4-5 mm behind the crack tip. One possible reason for the observed double shock 

wave structure may be the existence of a finite size contact region behind the crack 

tip. This contact region is indeed clearly shown by the "hot spots" captured by an 

infrared camera. Pictures recorded by the infrared camera are collected in Fig. 3.5. It 

bears emphasis that the crack-tip speed approaches 7000 mis, 3.3 times higher than 

the shear wave speed and clearly intersonic [31, 32]. 

The elastic asymptotic field analysis of Huang et al. [61] on unidirectional fiber

reinforced composites also verifies the existence of a limit or critical speed in intersonic 

range. Huang et al. showed that for Mode-II intersonically propagating crack tip, the 

power of the stress singularity is always between 0 and 1/2. For general orthotropic 
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Figure 3.5: High-speed infrared images of hot spot formation due to contact behind 
an intersonically moving shear crack. 

materials there is only one crack tip velocity Vc that gives a square-root singularity. 

Its expression is 

2 
CllC22 - C12 

C66(C12 + C22) 

For graphite/epoxy composite, this yields Vc = 6327m/ s. 

3.3 Numerical results 

(3.9) 

We illustrate the three-dimensional simulations of the crack growth in asymmetrically 

loaded unidirectional composite plates, which demonstrate the scope and versatility of 

the finite element formulation described in chapter 2. The contemplated configuration 

is shown as in Fig. 3.1. The effect ofthe bullet impact is approximated by prescribing 

a velocity profile, Fig. 3.6a, over the contact area. The impulse duration tp is 27.3 J-ls; 
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Figure 3.6: Computational model: (a) Impact velocity versus time; (b) 3-D mesh: 
hmin = 1 mm, 44,593 nodes and 24,685 elements. 

both the rise time tT and the step down time td are 2 p,s; impact velocity is 30 m/s. 

The 3-D computational mesh (see Fig. 3.6) comprises 44,593 nodes and 24,685 

ten-node quadratic tetrahedra elements. Cohesive elements are adaptively inserted 

at the interfaces between solid elements, according to the stress level reached during 

the computation. The mesh is very fine along the expected crack path. It is also 

designed such that it is finer in the bottom part, where the impact occurs, and 

coarser in the top part. The minimum mesh size hmin along the expected crack path 

is 1 mm, and it has been chosen in order to resolve the process zone of fracture. The 

size of the cohesive zone has been evaluated as follows. For a Dugdale-Barrenblatt 

mode-I crack - where the cohesive stress takes a constant value aave up to a critical 

opening displacement oe and vanishes henceforth [39], [15]- the size R of the cohesive 
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Figure 3.7: Alternative meshes: (a) mesh Cl: hmin = 3 mm, 3,356 nodes, 1,573 
elements; (b) mesh C2, hmin = 1.43 mm, 5,465 nodes, 2,666 elements. 

zone according to equation 2.18 in quasi-static conditions is given by [104]: 

(3.10) 

where E is the Young modulus, v the Poisson ratio and Gc the fracture energy. In 

order to apply the above expression to a linearly decreasing cohesive envelop, we 

assume aave = 0.5 a c. The corresponding cohesive zone size is R = 5.5 mm, which is 

larger than the minimum mesh size. 

In order to verify the mesh independency for the chosen hmin , we performed 

some additional analysis using two coarser meshes, i. e., C1 (hmin = 3 mm) and 

C2 (hmin = 1.43 mm), Fig. 3.7. The comparison is done through the crack tip history 

plots and crack tip speed versus crack tip position plots, see Fig. 3.8. Mesh C2 gives 

results very close to the ones obtained with the computational mesh. Both the meshes 

closely capture the crack propagation speed, which oscillates around the limit value 
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Vc = 6450 mls [31, 32]. It is though evident that the first mesh gives a more realistic 

stress wave structure, thus the simulation performed in order to display stress and 

thermal effects has been done with the finest mesh. Mesh C2 has been instead used 

for the parametric study, where the crack propagation speed was the main concern, 

in order to reduce the computational effort. 

Comparison with experiments 

Contour levels of the normal stress component in X2 direction, a22, at four different 

times in the calculation are shown in Fig. 3.9. The stress range is -3 to 3 MPa. At 

the early stage of the crack propagation, time 10.8 11,8 after the impact (Fig. 3.9a), a 

broad band of compressive stresses inclined at an angle about 30 degrees clearly forms 

at the top side of the crack. At the same time, a distinct unstressed zone, surrounded 

by compressive stresses, forms at the bottom part of the crack. The strong stress 

discontinuity testifies that the crack tip speed is bigger than the shear wave speed. 

In the next phases, at 14.4 and 18.6 JlS (Fig. 3.9b,c), a double shock wave structure 

becomes evident. In the last picture (Fig. 3.9d), after the stress wave reached the 

rear edge of the specimen, a more complex structure is observed. 

A comparison between the calculated wave structure around the crack tip and the 

corresponding experimental CGS fringes at time 18.6 JlS is given in Fig. 3.10. The 

agreement between the two images is noteworthy. 

The evolution of the crack is very well described by the damage contour levels 

along the crack tip, Fig. 3.11. Damage is defined as the ratio between the expended 

cohesive energy density and the fracture energy density, and its value ranges 0 to l. 

A null value denotes a closed fracture; the value 1 represents a fully damaged or open 

crack, where the cohesive tractions are zero. The cross sections of the specimen along 

the straight crack path depicted in Fig. 3.11 show a curved thin zone of transition 

between undamaged and full cracked material, which can be regarded as the extension 

of the process zone. The crack propagates from the left side to the right side of the 

specimen. At time 22.2 JlS after the impact, the crack is completely open. The curved 
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Figure 3.8: Crack position and speed history computed from mesh with different mesh 
sizes, comparison with experimental data. 
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shape of the transition zone is typical for a Mode-II crack propagation. 

A comparison between the temperature raise in a region near the crack surface 

and the experimentally observed "hot-spots" is presented in Fig. 3.12. At the initial 

stage of the crack propagation, the temperature quickly increases in a very small 

region around the formed crack surface. The temperature contour levels across the 

specimen section are drawn in Fig. 3.13. The region near the specimen boundary 

clearly shows a higher temperature increase, which can be related to a strong degree 

of contact. 

3.4 Parametric studies 

A sensitivity analysis of the crack-tip trajectory and velocity to the impulse time, the 

cohesive strength and the impact speed ac is shown in Fig. 3.14, 3.15 and 3.16. 

As may be seen from Fig. 3.14, where the impact speed and the cohesive strength 

have been kept constant (50 mls and 35.8 MPa respectively), the impulse duration 

affects both the crack tip trajectory and velocity. The numerical experiments explored 

the effect of impulse duration in the range 2.5-31 J-LS. For an impulse duration greater 

than 4 J-LS, the crack reaches the critical speed VC' For shorter impulse durations, the 

crack propagation clearly shows two distinct phases. In the earlier stage the crack 

reaches an intersonic speed (above the Rayleigh speed); then the speed drops quickly, 

because the energy supply is not enough to keep it constant. The crack arrests, 

before starting again its propagation, going through the specimen. For a very small 

duration of the impulse (e. g., 2.5 J-Ls), the crack tries to jump to intersonic speeds, 

but it drops immediately because of lack of energy. The duration of 2.75 J-LS shows a 

typical transitional situation, where the crack speed oscillates between CR and VC' 

For the cohesive strength sensitivity analyses, Fig. 3.15, we keep the characteristic 

length R in eq. (3.10) constant. Therefore, we modify with the same rate the critical 

opening displacement bc and the cohesive strength ac . The impulse duration is kept 

at 31 J-LS and the impact speed at 30 m/s. We explore the cohesive strength range 0.1 

to 7 times the experimental value (ac = 35.8 MPa). Correspondingly, the cohesive 
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energy density varies in the range 0.01 to 49 times the experimental value. The ratio 

between the current and the original cohesive strength is given by Rs. The crack speed 

history and the crack speed versus the crack position are plotted in Fig. 3.15. It may 

be noticed that the main effect of an increase (decrease) in ae is to retard (anticipate) 

the crack-growth initiation time, and to reduce (increase) the maximum propagation 

speed. For high values of ae the propagation speed does not reach the Rayleigh wave 

speed, and as a consequence, the crack arrests shortly after initiation. It is noteworthy 

that for a small value of ae the crack speed gets close to the longitudinal wave speed, 

in keeping with the observations previously done by Needleman [86]. For Rs ranging 

between 5 to 7, the crack propagation speed shows two phases. Initially it always 

tries to reach the critical speed Ve. If the energy supply is not enough, the crack 

tends to arrest, jumping again to high speeds once a sufficient amount of energy is 

accumulated. A clear example of this behavior is given by Rs = 7. 

The investigation regarding the effects of the impact speed, upon the same impulse 

duration (31 /ls) and the same cohesive strength (35.8 MPa), is illustrated in Fig. 3.16. 

When the impact speed exceeds 20 mis, the crack propagation speed quickly reaches 

the critical speed Ve and then keeps a constant value. A smaller impact speed delays 

the crack initiation time, which can barely reach the critical speed; afterwards the 

crack arrests without splitting the specimen. For very high impact speeds, the crack 

speed approaches the longitudinal wave speed (7450 m/s). 

In Fig. 3.17, the minimum impact speed for the crack to achieve the limit speed Ve 

at different impulse durations with respect to the same cohesive strength 35.8 MPa 

is plotted. It is obvious that in order to obtain the speed Ve , a minimum amount of 

energy is required; such amount is supplied through a combination of impulse duration 

and impact speed. It follows that, for the the crack to travel at Ve speed, at a fixed 

impact speed, the impulse duration must cover a minimum time; whereas, at a fixed 

impulse duration, the impact speed needs to reach a minimum value. Notice that in 

real experiments, the duration of the impulse is related to the length of the impact 

bullet; this simulation can offer an approximate guide for the projectile design. 
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3.5 Summary 

We have applied the cohesive theories of fracture, in conjunction with the direct simu

lations of fracture and fragmentation, to the numerical simulation of intersonic crack 

propagation in unidirectional graphite/epoxy composite plates. The experiments per

formed by Coker and Rosakis in a asymmetric configuration [31, 32] have been taken 

as a convenient basis for assessing the fidelity and predictive ability of cohesive mod

els of fracture in applications involving dynamic crack growth. Fracture has been 

modeled by recourse to an irreversible cohesive law embedded into three-dimensional 

cohesive elements. These cohesive elements govern all aspects of the separation of the 

incipient cracks, whereas a simple frictional contact element has been superimposed 

in order to account for the crack closure. The cohesive behavior of the material is 

assumed to be rate independent and, consequently, all rate effects predicted by the 

calculations are due to inertia. The numerical models were calibrated by means of 

experimentally obtained constitutive and cohesive law parameters. 

The numerical simulations have proven highly predictive of a number of observed 

features, including: the double shock wave structure, the large scale face contact 

behind the crack tip and the "hot spots" generated by frictional heating. These 

features follow naturally from a single description of the fracture properties of the 

material, supplied by the cohesive law, and are not built into the model. The fidelity 

of the model in reproducing very complex fracture events also gives a high reliability 

to the final sensitivity analysis, where the effects of several parameters have been 

investigated. 

The accurate description of fracture processes by means of cohesive elements re

quires the resolution of the characteristic cohesive length of the material [26]. In 

some materials this length may be exceedingly small. Thus calculations based on 

cohesive elements inevitably have a multiscale character, in as much as the numerical 

model must resolve two disparate length scales commensurate with the macroscopic 

dimensions of the solid and the cohesive length of the material. 
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Figure 3.9: Contour levels of 0'22 at times: (a) 10.8; (b) 14.4; (c) 18.6; (d) 22.2 J-ls. 
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(a) (b) 

Figure 3.10: Comparison between the experimental and the numerical shock wave 
structure. The color scale in the numerical contour plot refers to the legend in Fig. 3.9. 
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Figure 3.11: Contour levels of damage variable at time 9.6, 12, 13.2, 15.6, 18.6 and 
22.2 jjs. 
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Figure 3.12: Comparison of experimental and numerical temperature values at time 
40, 50, 60 and 70 11,s. See Fig. 3.13 for the temperature scale. 
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Figure 3.13: Temperature distribution across the crack surface at time 40, 50, 60 and 
70 J-lS. 
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Figure 3.15: Crack speed history as a function of (a) time and (b) location at dif
ferent relative cohesive strength Rs = eYe/eYeO) where Rs=l is corresponding to real 
experimental data eYeO = 35.8 MPa; impact speed v = 30 m/s; impulse duration = 31 
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Figure 3.16: Crack tip position (a) and crack speed history (b) at different impact 
speeds; cohesive strength: ac = 35.8 MPa; impulse time = 31 J-lS. 
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Chapter 4 Failure mode selection of 

sandwich structures 

4.1 Introduction 

A typical sandwich structure is characterized by the presence of two high strength 

facings or panels separated by a low density material core. The sandwich structures 

have relative advantages over other structural materials in terms of improved stabil

ity, weight savings, crash worthiness and corrosion resistance. Therefore, the use of 

composite sandwich construction is rapidly increasing in current and planned future 

airframe design, especially for general aviation aircrafts and rotorcrafts, helicopter 

blades, optical benches for space applications and nonferrous ship hulls [129]. One 

of the shortcomings of sandwich structures is the still incomplete understanding of 

damage, as it can develop as consequence of low-velocity impacts (such as tool drops) 

or high-energy events (such as ballistic penetration) or an unusual level of the de

sign loading. The damage characterization of sandwich structures is certainly more 

complicated than the one of conventional laminates. A first reason, related to their 

special structure, is that the damage often does not develop uniformly across the 

thickness. A second reason is that besides typical failure modes (such as penetration 

and delamination), also crushing and facetsheets debonding must be addressed. The 

shear load transfer through the core is often combined with unsymmetric damage, 

which requires a deep investigation in order to understand the damage progression 

and evaluate the residual strength. 

A precise understanding of the real behavior in failure of sandwich structures 

should aid in establishing certification guidelines and confidence involving their dam

age tolerance, and also will improve the structural efficiency of aircraft. Moreover, 

the accurate assessment of damaged structures will reduce the frequency and cost of 
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repair thus improving the serviceability of the aircraft [4, 5, 6]. 

Motivated by those concerns, Xu and Rosakis [135] conducted a series of system

atic experiments investigating the generation and subsequent evolution of dynamic 

failure modes in layered materials subjected to impact. High-speed photography and 

dynamic photo-elasticity were utilized to study the nature and sequence of failure 

modes. They found that in this loading condition, the dominant dynamic failure 

mode is the interlayer crack (delamination between panel and core), which is shear

driven and proceeds at intersonic speed. Very often, the intralayer cracks nucleate at 

the location of the local maximum shear stress. In order to pinpoint the shear-driven 

nature of the delamination avoiding free edges effects, longer specimens were also 

adopted. 

4.2 Experimental set up 

Material description 

The sandwich specimen used in the experiments of Xu and Rosakis [135] is a thin 

plate obtained by bonding along their thickness two 4340-steel (external) plates to an 

Homalite (internal) plate. The interface bonding was Weldon-10. The geometry for 

two types of specimens is shown in Fig. 4.1. Both steel and Homalite are characterized 

by elastic material properties, reported in Table 4.1. The fracture parameters for the 

three materials are reported in Table 4.2. 
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Figure 4.1: Geometry for: (a) Specimen A; (b) Specimen B. 

Experimental technique 

The photo-elasticity technique records the maximum in-plane shear stress, so shear 

shock waves can be observed. A schematic setup of the photo-elasticity technique is 

given in Fig. 4.2. Two sheets of a circular polarizer were placed on both sides of the 

specimen. An Innova Sabre argon-ion pulsed laser served as the light source. The 

coherent, monochromatic, plane-polarized light output was collimated to a beam of 
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Material Homalite 100 4340 Steel 
Strain rate 103 / 
Young Modulus E (CPa) 5.3 208 
Possion ratio 1/ 0.35 0.3 
Material density p{kg/m3 ) 1230 7830 
Longitudinal wave speed cd{m/ s) 2200 5500 
Shear wave speed cs{m/s) 1255 3320 
Rayleigh wave speed cR{m/s) 1185 2950 

Table 4.1: Elastic material properties for 4340 Steel and Homalite 100. 

Material 4340 Steel Homalite 100 Weldon-10 
Maximum cohesive stresses ac (MPa) 1490 35 7.74 
Maximum shear stresses Tc (MPa) 1053.6 40 14 
Critical opening displacement 6c (J-l m) 14.26 6.65 45.6 
Weighting coefficient f3 0.875 1.14 1.0 
Fracture energy Gc (N/m) 10620.0 88.1 176.6 
Characteristic length R (mm) 14.26 2.77 18.05 

Table 4.2: Fracture and cohesive parameters for 4340 Steel, Homalite 100 and Weldon-
10 interface. 

100 mm diameter. The laser beam was transmitted through the specimen, and the 

resulting fringe pattern was recorded by the high speed camera (Cordin model 330A 

rotating mirror type). During the impact test, the projectile was fired by a gas gun 

and hit the specimen on side the to trigger the recording system. Under dynamic 

deformation, the generation of isochromatic fringe patterns is governed by the stress 

optic law. For the case of monochromatic light, the condition for the formation of 

fringes can be expressed as: 

(4.1) 

where al -a2 is the principal stress difference of the stress tensor averaged through the 

thickness; fu the material fringe value (23.7 KN/m for Homalite-100) or isochromatic 

fringe order; h is the half-thickness of the specimen. The isochromatic fringe patterns 

observed are proportional to the contours levels of the maximum shear stress, i. e., 

Tmax = {al - (2)/2. 
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Rotating Mirror Type 
High Speed Camera 

(Cordin 330A) 

Figure 4.2: Schematic of the dynamic photo elasticity setup (Xu and Rosakis). 
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Figure 4.3: Computational mesh for specimen A, comprising 65365 nodes and 32482 

lO-node tetrahedra: (a) Upper view; (b) Side view. 
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(a) 

(b) 

Figure 4.4: Computational mesh for specimen B, comprising 113454 nodes and 56292 

10-node tetrahedra: (a) Upper view; (b) Orthographic view. 
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4.3 Numerical simulations 

4.3.1 Mesh description 

In order to reduce the computational effort, without losing correspondence with the 

experimental situation, we modeled a slice of the specimen, 1.6 mm thick (1/4 of the 

real specimen thickness). The out of plane displacements along one surface of the 

plate are constrained to avoid buckling. The computational mesh comprises 65365 

nodes and 32482 10-node quadratic tetrahedra, Fig. 4.3. The core is modeled using an 

uniform minimum mesh size of 0.79 mm; the mesh coarsens in the steel layer, in order 

to have one tetrahedal element in the thickness. The cohesive elements are adaptively 

inserted during the analysis, along previously coherent elements interfaces when the 

local stress attains a critical value. The effect of the bullet impact is approximated by 

prescribing a velocity profile to the nodes lying on the contact area. The load profile 

on the contact area and its time history are presented in Fig. 4.5. The velocity profile 

is parabolic, with a width of 16.4 mm centered at bottom edge of the specimen. The 

impulse duration tp is 18.4 J-tS; both the rise time tr and the step down time td are 1.8 

J-ts; the impact speed assumed in the calculation is 32.4 m/s. The analysis has been 

conducted up to 300 J-ts after impact. 

v v 
~---------------~---~ 

x 
t ~~------~------~~ 

X: 

Figure 4.5: Impact velocity profile with respect to time (a) and position (b) rising 

time and stepping down time tr and td are 1.8 J-ts; the impulse time tp is 18.3 J-ts. 
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Figure 4.6: Crack tip position (a) and crack speed (b) history of the lower interface. 

Comparison between experimental and numerical results. 
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4.3.2 Results and discussion 

After the impact, the stress wave propagates from the center of the specimen towards 

the edges. The wave reaches the corner 50 J.-lS after the impact. At this time the 

interfacial cracks start from both the ends of the bottom interface and propagate 

towards the center. The two traveling cracks meet at time 140 J.-lS after the impact. 

Afterwards, the Rayleigh wave starts from the center of the specimen and propagates 

towards the edges. Meanwhile, interfacial cracks start from the center of upper inter

face and interact with the Rayleigh wave later on. As a result the crack kinks into the 

core layer, clearly forming several branches. Fig. 4.6 shows the history of the crack 

tip position and of its velocity, comparing numerical and experimental results, which 

have a noteworthy match. It bears emphasis that the crack speed along the lower 

interface reaches the Rayleigh wave speed soon after initiation, and drops to a very 

low value around 90 J.-lS after impact; next, it increases again dramatically up to the 

shear wave speed of Homalite-100. This behavior is very consistent with what was 

observed during the experiments, see Fig. 4.6. 

The analysis of the stress distribution along the interfaces clearly shows that the 

delamination is shear-driven. Fig. 4.7a shows the profile of the stress components a12 

(green triangles) and a22 (red squares) along the interface at time 55 J.-lS after impact. 

Fig. 4.7b shows the damage distribution at the same time. The interface crack along 

the bottom interface has just started, and the stress state is still compressive, but the 

shear stress a12 attains the maximum absolute values at those two locations. 
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Figure 4_7: Specimen A, time 55 J-lS after the impact: (a) Damage pattern; (b) (712 

and (722 stress components distribution. 
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(a) 

- -------- ------- -

(b) 

Figure 4.8: Specimen B: branch pattern of the core material (Homalite-100) at (a) 60; 

and (b) 100 J-LS after impact. 

In a further simulation carried out with specimen B (see Fig. 4.8), the branch starts 

from the middle of the bottom interface instead of near the free edges; and propagates 

toward the center as well as two free edges, this confirmed that the fracture propagates 

indeed in shear-mode. It is also interesting to see the buckling of the compressed steel 

layer in the long specimen simulation. 

An important observation is that the branches sprout from the bottom interface 

are in the beginning parallel to each other, with a branching angle around 45-60 

degrees; later on, when those branches get close to the top interface, they start to 

kink and try to propagate parallel to the debonded top interface. This confirms that 

near an interface, the maximum hoop stress acts parallel to that interface. 

Fig. 4.9 shows the contour levels of the maximum shear stress Tmax at different 

times of the analysis, compared with the experimental fringes at the same time and 

from the same observing window, shown in Fig. 4.9a. Similar patterns between the 

experimental photo elastic fringes and the contour plots of the maximum shear stress 

are observed. The right part of Fig. 4.9a shows a surface wave entering the field of 

view at time 12.5 J-LS after impact, the arrow indicating the direction of the wave 

propagation. Fig. 4.9b,c show a comparison between numerical and experimental 
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contour plots of Tmax at 47.2 J.ls, when the wave has reached the free edge and initiated 

a shear interfacial crack there. Fig. 4.9d-e, shows the contour levels at time 79.2 J.lS, 

when the crack propagates toward the specimen center. Both the concentration of 

the photo elastic fringes and the maximum shear stress contour lines indicate that the 

crack propagates at an intersonic speed relative to the core material. 
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Figure 4.9: Specimen A: (a) the observing window and the experimental fringes at 

time 12.5 p,s after impact. (b) and (d) are contour levels of Tmax at times 41.7, 79.2 p,s; 

(c) and (e) are experimental fringes at time 41.7 and 79.2 p,s. 
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4.4 Parametric studies 

The effect of contact area (bullet diameter) 

In numerical simulation, the effects of a change in the impact area are obtained 

through changing the size of the zone where the velocity profile is imposed (along the 

external edge) 4.10. The comparison has been conducted by keeping a fixed speed, 

therefore the amount of energy supplied to the specimen increases with the increase 

of the impact area. As expected, the main effect of enlarging the contact area is 

to move the location of the crack patterns closer to the edges. The distribution of 

damage is highly affected by the size of the impactor. 

The effect of core material fracture energy 

A second investigation is concerning the effect of the fracture energy of the core 

material. Fig. 4.11 shows that the fracture energy Gc plays an important role for 

the damage of the sandwich structure. When Gc is high, the damage concentrates 

in the central area of the upper interface, near the impact point, and the so-formed 

structure still has some residual strength. In contrast, when Gc is lower, the damage 

is more severe, involving a more extended zone, and may reduce the residual damage 

tolerance to zero. An interesting observation is related to the fact that the main crack 

patterns remain similar, whenever the impact speed and impact area are kept fixed. 

The effect of interface weighting parameter f3 

The effect of the interface cohesive weighting coefficient parameter /3 is shown in 

Fig. 4.12. It can be noticed that for very small values of /3, the branching within the 

core layer can be completely avoided, and only interface delamination can be observed. 

This reflects the fact that for a large /3, the critical condition for the initiation of a 

cohesive crack is ostensively independent of the magnitude of the shear tractions, and 

the ensuing sliding displacements are constrained to remain close to zero at all times. 
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(a) 

-

(b) 

Figure 4.10: Crack patterns at 300 J-tS after impact, impact speed 32 mis, for different 

contact area: (a) 15 mm2 ; (b) 90 mm2 . 
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(a) 

(b) 

(c) 

Figure 4.11: Crack patterns for different Homalite fracture energy Gc : (a) 359 N/m; 

(b) 176 N/m; (c) 88 N/m (impact speed 32 m/s, contact area 57 mm2
, 300 f-tS after 

impact). 
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Figure 4.12: Crack patterns for different cohesive weight coefficients of the interface 

(a) ,8=10; (b) ,8=2.5; (c) ,8 =0.32. (impact speed 32 mis, contact area 57 mm2
, 300 

J-lS after impact, Gc = 88 N/m) 
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4.5 Summary 

Our simulation captures qualitatively the main experimental observations. The most 

relevant correspondence is in the development of the first crack at the interface be

tween the layers, the presence of shear stresses along the interface, which renders the 

crack shear driven and often intersonic, and the transition between interlayer crack 

growth and intralayer crack branching. The effects of the bullet diameter (impact 

area), the core material fracture energy, as well as the cohesive weighting coefficient 

f3 have been investigated. All the results confirm the feasibility of the cohesive theo

ries. 
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Chapter 5 Dynamic crack branching 

5 .1 Introduction 

During the last decade, Fineberg and Sharon have conducted a series of well controlled 

experiments of crack propagation in PMMA (polymethyl methacrylate) and in soda 

lime glass, and have raised considerable interest in the development of fracture in 

highly brittle materials [43, 44, 51, 118, 21, 20, 19]. Fineberg and Sharon pointed 

out several "universal" features of micro-branching instability in dynamic fracture, 

such as the existence of a critical velocity for the onset of micro-branching, the shape 

and the growth pattern of micro-branches and their relation to specimen surface 

roughness and the effects of the 3D-to-2D transition. Fineberg and Sharon showed 

experimental evidence that the crack dynamics change dramatically when the speed 

of the advancing crack exceeds a critical velocity Ve , which they demonstrated to 

be 0.36 VR (Rayleigh wave speed of the material). For speeds higher than Ve , the 

crack locally changes its topology and sprouts small, microscopic, short-lived side 

branches. Furthermore, at the onset of this instability, the mean acceleration of the 

crack suddenly drops and the crack velocity starts to oscillate, provoking a correlated 

oscillation on the fracture surface [43, 51]. 

The instability mechanism for a moving crack manifests itself as a local crack 

branching, where both the mean crack velocity and the average crack length are 

strictly determined by the amount of energy flowing into the crack tip. A larger 

energy supply results in a higher mean velocity and in a longer branch length. 

Branching instability is the main mechanism for energy dissipation by a moving 

crack in brittle, amorphous material. Beyond the onset of instability, any amount 

of energy supplied to the crack which exceeds the amount requested for the smooth 

crack propagation is not used to increase the crack tip speed, but in creating new 

surfaces. It has been observed that the fracture surfaces created by micro-branches are 
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nearly an order of magnitude larger than those of smooth cracks, therefore absorbing 

a larger amount of energy. This observation explains why the theoretical limiting 

velocity cannot be experimental realized, i. e., other than accelerating, a crack will 

prefer to dissipate energy by creating new surfaces via multiple parallel cracks [114]. 

As a further observation, the branch length and the distance between branches 

are well-modeled by a log-normal distribution. This may somehow explain that the 

observed log-normal distribution in the fragment size of a brittle object fractured at 

high energy is dynamical by its nature, and is not necessarily the result of a cascade 

of fractures at different scales. 

Taguchi [124] also studied the non-branching to branching morphological tran

sition for a tearing (hot) elastic plate and a quenching (cold) glass plate. In his 

experiments, he observed that when the temperature between the hot plate and the 

cool plate increases, the shape of the cracks changes from straight to branching pat

terns. 

There have been several approaches to investigate the crack branching or crack 

propagation instability. The main features of the instability have also been noticed in 

the modes of ideal crystals [78, 77], molecular dynamics [1, 2, 141] and finite-element 

simulations [65, 137] of dynamic fracture. 

Langer's phenomenological model equations [69, 113] yield in 1D oscillations of 

the crack tip velocity about a critical speed. Without distinguishing branching and 

dislocation emission, Marder and Liu [78, 77] modeled the elastic medium as a 2D 

lattice of coupled springs. Allowing a spring to be elastic until a critical displacement 

at which time they snap, and introducing a small viscous term, they could reproduce 

the Yoffe instability [140]. They found periodic occurrence of local branching events, 

where the main crack sprouts side branches that propagate for a short distance and 

die. The spacing between the frustrated branches is a function of the amount of 

dissipation [78]. 

Several attempts in Molecular Dynamics (MD) have also been performed by Gao, 

Abraham and Zhou [1, 3, 141, 52], to investigate the crack branching. The earli

est MD simulations of fracture were carried out by Ashurst and Hoover [9] in the 
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1980s. Gumbsch et al. [52] showed that crack branching is closely tied to disloca

tion nucleation and emission. They observed that: the driving force for dislocation 

nucleation in a crystal increases with increasing speed; dislocation nucleation and 

mobility determine the initial crack branching path and the branching angle; dislo

cation emission and crack propagation repeats until branching finally occurs; cracks 

release the surplus of mechanical energy by emitting strong acoustic waves at the 

breaking of every atomic bond, which are caused by the nonlinearity in the inter

atomic interaction; reaching the terminal crack velocity is not sufficient to cause 

crack branching; branching occurs not right at the maximum velocity but after has 

passed it and has propagated for a while. From all those observations, Gumbsch et 

al. therefore claimed that the energy associated with the dynamic crack rather than 

crack-tip velocity would provide a good criterion for describing the crack branching 

instability. Zhou et al. [141] also found that instead of the crack-tip velocity, the 

gradual accumulation of energy around the dynamic crack tip is an essential feature 

for the ultimate emission of dislocations and development of crack branching. 

Fineberg and Sharon ([118, 43, 44] and Zhou [141] concluded that changing the 

loading rate (or the Morse potential parameter in Zhou's case) dramatically changes 

the branching pattern; once the crack branches and grows a short distance, instability 

gradually alters their path so that the average paths have small angles with respect 

to the original straight crack path. 

This result is also in agreement with the numerical observations of Martin et al. 

[80]. They applied a finite difference scheme to a discrete lattice model from the 

continuum equations of elasticity that respects the properties of isotropy and linear 

elasticity at large length scales and simulated the crack propagation under Mode I 

loading. The simulations of Martin et al. showed that when the crack reaches a 

critical velocity, it branches into two macroscopic running cracks, and that the lattice 

has a strong symmetric influence on the stress field near the crack tip. The stress field 

near the tip of the crack "alternates" between two almost "mirror" configurations as 

the crack snaps bonds of different orientations as it proceeds. 

In this chapter, we apply the cohesive theories of fracture to the simulation of 
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crack branching in a PMMA thin plate, in the configuration tested by Sharon and 

Fineberg [118, 43, 44]. We are interested in reproducing the main features of their 

experiments, such as branch angles and branch patterns, which have a very good 

agreement with the MD simulations of Zhou [141]. 

Confirmation of continuum theory 

Sharon and Fineberg [117] experiments confirmed the continuum theory of dynamic 

brittle fracture for fast cracks by pointing out that when a spontaneously forming 

crack front reaches propagation speeds greater than the critical speed, Ve , it can no 

longer be considered as a single crack. The continuum theory derived by Eshelby, 

Kostrov and Freund [47] is based on the fact that, in an elastic material, the tip of a 

moving crack is the only energy sink for the elastic energy that is released from the 

surrounding material as fracture occurs. Linear elasticity theory predicts that the 

stress field is dominated by a square-root singularity in the close vicinity of the tip. 

The continuum theory makes use of the universal nature of the near-tip field by 

computing the energy flux through a loop surrounding the tip and entirely enclosed 

within the "singular zone" (the region dominated by the singular stress field). When 

the external stresses driving the crack are independent of the time and can be mapped 

to stresses directly applied to the crack surfaces, the equation for the energy balance 

at the crack tip is predicted to have the following form: 

v r = G(l)A(v) ~ G(l)(l - V
R

) (5.1) 

where 1 is the instantaneous crack length, A(v) is a universal function of v and G{l) is 

the amount of energy per unit area present at the tip of a static crack of length 1 and 

contains all the effects of applied stresses and specimen geometry. Inverting equation 

(5.1) we obtain the equation of motion for a moving crack: 

r 
v{l) = VR (1 - G{l)) 
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Since G(l) can be arbitrarily large, equation (5.2) predicts that VR is the limiting 

speed of a moving crack. However, it needs to be pointed out that equation (5.2) is 

of first order in time, and therefore describes a "massless crack" (no inertial terms); 

all of the dissipative processes dependence on the material, and possible dependence 

on velocity, should be included in f. Equation (5.2) can be considered valid as long 

as all the dissipative processes are enclosed within the singular zone. 

Below the limiting speed V e , the single-crack condition is met, and equation (5.2) 

describes the mean velocity of a multi-crack-state. In contrast, when the crack ve

locity exceeds Ve , the largest micro-branches gradually extend beyond the singular 

zone, and the conditions for the validity of equation (5.2) do not hold anymore. This 

explains the apparent discrepancies between experimental measurements and contin

uum predictions [114, 101, 102]. 

5.2 Model Description 

The original experiments of Sharon and Fineberg [43, 44, 118] were conducted on 

thin, quasi-2D sheets of brittle, cast PMMA with a thickness of either 0.8 mm or 3 

mm, 50-200 mm and 200-400 mm in the vertical (defined as y) and the horizontal 

(defined as x) direction respectively. We reproduce here the simulations in PMMA 

and apply the same analysis to Homalite-100 specimens. 

To reduce the numerical effort, we resize the computational model into a square 

plate of dimension 1 x 1 x t = 3 mm x 3 mm x 0.03 mm, with a pre-crack of 0.25 mm 

along the horizontal symmetry axis x (Fig. 5.1). The initial velocity is imposed in 

the y direction everywhere in the model is vyo(y) = ,y, where, is an initial strain 

rate. Along the two edges parallel to the x axis, a uniform and constant velocity 

vi = , 1/2 is imposed during the analysis, which lasts up to 5 J-ts. 
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Figure 5.1: Geometry of the plate and initial velocity field VyO in y direction. 

In order to resolve the cohesive zone and avoid spurious mesh size effects, along 

the expected crack path the element size has to be smaller than the characteristic 

size R. The size R, defined through equation (2.18)' is 19.5 J-lm for PMMA, 682 J-lm 

for Homalite-100. 

We carry out our analysis using the mesh labeled F (Fig. 5.2), which initially 

consists of 36769 nodes and 18162 10-nodes quadratic tetrahedra. The minimum 

mesh size is 20 J-lm and is designed so that it is finer along the main crack trajectory, 

and coarsen away to the edges. The cohesive elements are inserted later on with the 

already mentioned self-adaptive procedure. The elastic material properties for PMMA 

and Homalite-100 are collected in Table 5.1; the fracture properties are collected in 

Table 5.2. 
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Material PMMA Homalite-lOO 
Youngs Modulus (GPa) E 3.24 5.3 
Possions' ratio v 0.35 0.35 
Material density (kg/m3

) p 1190 1230 
Longitudinal wave speed (m/ s) Cd 2760 [44] 2200 
Shear wave speed (m/s) Cs 1255 
Rayleigh wave speed (m/ s) CR 926 1185 

Table 5.1: Mechanical parameters for PMMA and Homalite-100. 

(a) (b) 

Figure 5.2: Computational mesh F, comprising 36769 nodes and 18162 10-nodes 

tetrahedra, minimum mesh size 20 /-Lm: (a) Upper view; (b) lateral view. 
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Material PMMA Homalite-100 

Fracture energy (N/m) Gle 352.35 81 

Maximum cohesive stresses{MPa) ae 324 35 

Critical opening displacement{ J.Lm) 6e 2.175 6.65 

Weighting coefficient /32 5.4365 1.306 

Table 5.2: Fracture parameters for PMMA and Homalite-100. 

5.3 Results and Discussion 

An efficient way to visualize the crack propagation and the formation and distribution 

of branches is to plot the contour levels of the damage variable previously introduced, 

see section 3.3. For a low loading rate of 500 S-I, a single, smooth, straight crack is 

formed behind the wake (see Fig. 5.3). 

Figure 5.3: PMMA specimen at loading rate 500 8-1: single crack propagation. 

When the loading rate is increased up to 1000 S- I, the crack develops in a smooth, 

straight path only at the early stages of its propagation (see Fig. 5.4 a-d) . Later on, 

the main crack attempts to branch out (Fig. 5.4 e, f), but most of the side branches 

only live up to one element and die. Only one side branch propagates parallel to the 

main crack for about a short time interval (0.3 J.Ls) and furthermore it merges into 

the main crack. The main crack continues to grow as a single crack for about 0.5 J.LS, 

and permits the accumulation of energy. When a suitable amount of energy is stored, 

the cracks branches out again; this sequence is repeated until the specimen splits into 

two parts. 
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Figure 5.4: PMMA specimen at loading rate 1000 8-1 , Branching patterns at succes

sive times: (a) 3.2; (b) 3.4; (c) 3.6; (d) 3.8; (e) 4.0; (f) 4.6 J.lS. 
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The main crack velocity versus time is plotted in Fig. 5.5. The plot shows a drop 

of the crack velocity when side branches develop. Oscillations in the velocity also 

appear when the propagation is faster than a critical value, which is around 340-350 

m/s (Fig. 5.5). This results in a perfect agreement with the critical velocity Vc 340 

m/s reported by Fineberg and Sharon [44, 115, 43]. 

~ 
u o 
~ 0.5 

VR = 926 m/s 

~ Vo = 340 m/s (Sharon & Fineberg) 
e 
u 
.5 

CIS 
:E 

orn-----~~----_B------~ 

o 2 3 
Loading time (IS) 

5 

Figure 5.5: PMMA specimen at loading rate 1000 S-l; main crack velocity history, 

VR = 926 m/s is the Rayleigh wave velocity. The velocity is averaged over a distance 

of 0.2 mm along the horizontal direction. 

Increasing the loading rate up to 5000 S-l, the crack starts as a smooth single 

crack (Fig. 5.6a). A short time later, small short-lived side branches form and die, so 

that the crack surface appears to to be hackled periodically (Fig. 5.6 b, c). Finally 

the crack sprouts out into two long-lived branches, almost symmetric with respect to 

the main crack (Fig. 5.6 d). 
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(a) 

(b) 

(c) 

(d) 

Figure 5.6: PMMA specimen at loading rate 5000 S-1. Branching patterns at suc

cessive times: (a) 1.08 J-tS; (b) 1.28 J-tS; (c) 1.48 J-tS; (d) 1.68 J-tS. The arrow of length 

0.25 mm indicates the direction of main crack propagation and scales the branches 

extension. 

The final branch angle is around 14 degrees (Fig. 5.7), and nicely falls within the 
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range of 10 to 15 degrees reported in literature ([114]) for scales about 0.1-0.3 mm. 

Figure 5.7: PMMA specimen at loading rate 5000 s-1, time 1.72 /lS. The arrow shows 

a branching angle about 14 degrees. 

When the loading rate is higher, i. e., 10,000 S-I, similar phenomena are observed. 

The main differences are in the length of the hackled region (Fig. 5.9) which is shorter 

compared to the one obtained at a smaller loading rate (Fig. 5.4); and the first 

appearance of long-lived branches is earlier. Besides, other cracks develop in regions 

far from main trajectory of the crack, and a straight crack starts form the opposite 

side of the original notch. The two main cracks try to coalesce during the later stages 

of the process. 

The branching angle in this case appear to be bigger, about 19 to 24 degrees 

(Fig. 5.8b). 
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(a) 

(b) 

Figure 5.8: PMMA specimen: branching pattern and branching angle at 1.2 I-lS for 

the strain rate 10,000 S- I. The branching angle is between 19 to 24 degrees. 
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(a) 

(b) 

Figure 5.9: PMMA specimen: zoomed view of the hackled region at time 0.8 J-lS and 

1 J-lS, loading rate 10,000 S- l. 

A comparison between numerical and experimental branching patterns is shown 

in Fig. 5.10. Similar branch profiles are observed, i.e., the parallel branches start out 

with an angle inclined to the main crack, after propagating for a while they tend to 

go parallel to the main crack, following a parabolic shape. This explains why the 

branching angle appears to be larger in a microscopic scale than in a macroscopic 

scale [115] . 

86 



(a) 

(b) 

Figure 5.10: PMMA specimen: branching pattern compared with experiments for 

loading rate 10,000 S-l. 

We now examine the shape and structure of the micro branches. The experiments 

reported by Fineberg and Sharon [44, 43], about the mean profile of the distributed 

branches are shown in Fig. 5.11, where the branches follow a distinct trajectory of 

the form: 

y = 0.2xO.70 (5.3) 

y being normal and x being parallel to the propagation direction of the main crack. 

The experiments show that the branch trajectories are independent of the velocity 

near the main crack, but they diverge successively. Eq. (5.3) holds for velocities 
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within 10 percent of Ve , but the coefficient 0.2 requires a slight adjustment for higher 

velocities. During the numerical investigation, because of the oscillation of the main 

crack velocity, it is difficult to evaluate the exact velocity value for each branch, so 

we collected the branch profile data without distinguishing the difference from the 

main crack velocity. Two sets of data were obtained for the loading rates 5000 and 

1000 8-1, and are reported in Fig. 5.11 to compare with the experiments. The same 

exponent 0.7 is obtained, and the coefficients range about 0.17 and 0.2, showing that 

a very good agreement has been achieved. 
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Figure 5.11: The mean profile of micro branches obtained by Fineberg and Sharon 

[44,43] (hollow symbols) for different propagation velocities compared with numerical 

simulation (filled diamonds). 
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Interesting observations arise from the analysis of the energy consumption during 

the crack propagation and of the total fracture area produced. Fig. 5.12 shows the 

energy histories for the PMMA specimen, at the loading rate of 5000 S-I. The cohesive 

energy increases when new surfaces form, i.e., when fracture area increases. The strain 

energy show a drop at later time. The plot of the cohesive energy release rate shows a 

peak following the decreasing of the strain energy. An interesting observation is that 

the kinetic energy and the energy release rate show the same trend, the two peaks 

being shifted about 0.5 11,8. This reveals that the accumulated deformation energy 

is partially dissipated through branching into cohesive energy and partially provides 

kinetic energy for separation of the newly formed fracture surfaces. Afterwards, a 

large increase of the cohesive energy and a delayed increase of the kinetic energy are 

observed. Once the energy has been dissipated, the energy release rate decreases, the 

crack slows down, and some side branches die; it follows that the kinetic energy also 

decreases. This plot confirms that the formation of side branches does dissipate much 

more energy than the propagation of a single crack. 
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(a) 

(b) 

(c) 

(d) 

Figure 5.13: Homalite-100 specimen: branching pattern at loading rate 1000 S-l, at 

times: (a) 4.7; (b) 5.2; (c) 5.7; (d) 6.2 J-ts. 

The mesh size adopted for mesh F is 20 J-tm, very close to the characteristic size 

(19.5 J-tm). To rule out the possibility of a mesh size dependence, we repeated the 

same analysis for a different material, Homalite-lOO, which has a characteristic length 
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of 2.7 mm. We adopted the same mesh F. Similar results have been obtained; they 

are reported in Fig. 5.13 and Fig. 5.14. 

Adopting the same loading rate used in the PMMA simulation (Fig. 5.4), the 

difference in the material properties results mainly in a different branching angle, 

which is about 16 to 18 degrees. The long-lived branches appear earlier. 

Figure 5.14: Detailed view of branching pattern for Homalite-100 at 6.2 JlS, for loading 

rate 1000 S-l. Branching angle about 16.5 degrees. 

Summary 

We applied the cohesive model to investigate the dynamic fracture under pure tension 

(mode I loading) for PMMA, and have obtained the main features of the experiments 

by Fineberg and Sharon [43, 44, 118, 114, 116]. Below a critical velocity Ve , a sin

gle crack propagates and produces a smooth fracture surface in its wake; beyond V e , 

dynamic instability, in the form of micro branches, interrelates with the main crack, 

resulting in a non-trivial structure of the fracture surface. Once the instability oc

curs, the amount of energy dissipated by the system can increase up to an order of 

magnitude. This simulation not only further testifies to the fidelity of our cohesive 

model, its descriptive and predictive power, but also confirms the continuum theory 

of fracture, a physical process that naturally connects large and small scales [47]. 
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Chapter 6 Conclusions and future work 

During this dissertation, based on the previous work by Camacho and Ortiz [26], 

Pandolfi and Ortiz [92, 95], we have extended the cohesive theories of fracture to 

transversely isotropic materials, incorporated with small strain frictional contact 

and adiabatic thermal effect, by direct simulation of impact-induced damage on 

graphite/epoxy composites, sandwich structures and brittle polymers. The simula

tions have been conducted using a partially self-adapting procedure, able to explicitly 

reproduce the evolution of crack initiation and propagation. The coupling of cohe

sive theories with an adaptive procedure can be easily applied to any kind of brittle 

material, and has been also used to reproduce ductile fracture [94]. 

The extended cohesive theories of fracture are proved predictive in situations 

involving material interfaces, material heterogeneity, material anisotropy, dynamic 

shear cracks and dynamic crack branching. We have reproduced the double shock 

wave structure, verified that "hot spots" arise from the frictional contact between 

fracture surfaces in the graphite/epoxy composites simulation; we also cconfirmed 

the shear-driven nature of the debonding between layers, the main damage patterns 

for the failure mode selection of sandwich structure investigation; for the first time 

in available literature, using continuum cohesive model, we are able to reproduce the 

dynamic branching instability in brittle materials; the obtained power-law scaling 

relation of the branch profiles in PMMA reached an excellent agreement with the 

experimental results of Fineberg and Sharon [43, 44, 118]. 

The extension to include heat conduction in bulk material and full thermo-mechanical 

coupling can be easily added to the model; the incorporation of true (non-smooth) 

contact would enable a full 3D impact modeling of the projectile over a target; parallel 

implementation of the fragmentation and contact algorithms will bring even higher 

computational performance and fidelity; the combination with adaptive remeshing 

for bulk material and fragmentation would render more complicated problems solv-
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able. We also envision extensions to include optimization by defining a single target 

function for damage, and using genetic algorithms for optimal design of layered, com

posite, sandwich structures. 
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Appendix A Interpolation in 3D 

tetrahedra - field interpolation 

In order to extrapolate the field variables from the Gauss points of a tetrahedra to 

those of the cohesive surface, the right interpolation procedure is very important. 

We want to find the value of a field scalar variable v(x) on the Gauss points of 

facet of a tetrahedra, the values Vi of the same variable being known at the volume 

Gauss points of the element. We extrapolate the gauss points values Vi of the variable 

into the nodes Vi, then we will interpolate the node values Vi into the gauss point on 

the requested facet. 

2 
x Gauss point 

• Node 

3 

Figure A.1: Nodes and Gauss points location in a tetrahedra. 

Let's number the nodes 1, 2, 3 and 4 (see Fig. A.1), and VI, V2, V3, V4 the values of the 

variable field into the corresponding gauss points. The volume coordinates ni of the 

four corner nodes in the parent configuration are 

nT 
I [1 0 0 0] (A.1) 

n T 
2 [0 1 0 0] 

n T 
3 [0 0 1 0] 

n T 
4 [0 0 0 1] 
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In the same configuration, the volume coordinates gi of the four gauss point are 

gf [ga gb gb gb] (A.2) 

gf [gb ga gb gb] 

gf [gb gb ga gb] 

gI [gb gb gb ga] 

where 

ga = 0.5854102, gb = 0.1381966 (A.3) 

The gauss points values Vi of the variable v(x) are interpolated from the nodal values 

Vi as 

VI ga gb gb gb VI 

v=MV, 
V2 gb ga gb gb V2 

(A.4) 
V3 gb gb ga gb V3 

V4 gb gb gb ga V4 

whereas the inverse relation is 

VI na nb nb nb VI 

V = M-Iv 
V2 nb na nb nb V2 

(A.5) , 
V3 nb nb na nb V3 

V4 nb nb nb na V4 

where 

na = 1.927050, nb = -0.309017 (A.6) 

The evaluation of the function v(x) on the facet defined by the nodes 1, 2 and 3 is 

then done by a surface interpolation of the nodal values Vi, i = 1,2,3 (see Fig. A). 

97 



3 

• Node 

o Gauss point 

2 

Figure A.2: Nodes and gauss points location on a facet. 

The area coordinates i of the three gauss points of the facet in the parent config-

uration are as follows: 

Fi [fa fb fb] (A.7) 

FT 
2 [fb fa fb] 

FT 
3 [fb fb fa] 

where 

fa = 0.6666666, fb = 0.1666666 (A.8) 

The interpolated values sf of the function on the facet a are 

(A.9) 

where va denotes the subset of V containing the nodes of the facet a. For example, 

in the case of the facet a = 1, being VlT = [VI V2 113], we obtain the following: 

Sl 
1 fa fb fb VI 

8
1 = Sl 

2 =TVI = fb fa fb V2 (A.I0) 

8 1 
3 fb fb fa 113 

98 



We can now rewrite VI as follows: 

VI na nb nb nb 

VI - M-1v - 1 , V 2 - nb na nb nb 

V3 nb nb na nb 

Replacing eq. (A.ll) into eq. (A.lO), we obtain 

fa fb fb 

8
1 = TMliv = QIV, fb fa fb 

fb fb fa 

which gives for the matrix Ql: 

qa qb 

Ql= qb qa 

qb qb 

where 

For the three remaining facets, we will have 
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na 

nb 

nb 

qb 

qb 

qa 

nb nb nb 

na nb nb 

nb na nb 

qc 

qc 

qc 

0.0636608 

-0.309017 

VI 

V2 
(A.11) 

V3 

V4 

VI 

V2 
(A.12) 

V3 

V4 

(A.13) 

(A.14) 

(A.15) 



with 

qc qa qb qb qb qc qa qb qb qb qc qa 

Q2= qc qb qa qb , Q 3 = qb qc qb qa , Q4= qa qb qc qb 

qc qb qb qa qa qc qb qb qb qa qc qb 

(A.16) 

or, alternatively, 

sa = Qva , Q=QI (A.17) 

where 

v iT 
[VI V2 V3 V4] (A.18) 

V 2T 
[V2 V3 V4 VI] 

V 3T 
[V3 V4 VI V2] 

V 4T 
[V4 VI V2 V3 ] 
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