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Abstract 

There has been much recent progress in the study of free boundary problems motivated by phase 

transformations in materials science. Much of this literature considers fronts propagating in homo­

geneous media. However, usual materials are heterogeneous due to the presence of defects, grains 

and precipitates. This thesis addresses the propagation of phase boundaries in heterogeneous media. 

A particular motivation is a material undergoing martensitic phase transformation. Given a 

martensitic material with many non-transforming inclusions, there are well established microscopic 

laws that give the complex evolution of a particular twin or phase boundary as it encounters the 

many inclusions. The issue of interest is the overall evolution of this interface and the effect of 

defects and impurities on this evolution. In particular, if the defects are small, it is desirable to 

find the effective macroscopic law that governs the overall motion, without having to follow all the 

microscopic details but implicitly taking them into account. Using a theory of phase transformations 

based on linear elasticity, we show that the normal velocity of the martensitic phase or twin boundary 

may be written as a sum of several terms: first a homogeneous (but non-local) term that one would 

obtain for the propagation of the boundary in a homogeneous medium, second a heterogeneous term 

describing the effects of the inclusions but completely independent of the phase or twin boundary 

and third an interfacial energy term proportional to the mean curvature of the boundary. 

As a guide to understanding this problem, we begin with two simplified settings which are also of 

independent interest. First, we consider the homogenization for the case when the normal velocity 

depends only on position (the heterogeneous term only). This is equivalent to the homogenization of 

a Hamilton-Jacobi equation. We establish several variational principles which give useful formulas to 

characterize the effective Hamiltonian. We illustrate the usefulness of these results through examples 

and we also provide a qualitative study of the effective normal velocity. 

Second, we address the case when the interfacial energy is not negligible, so we keep the hetero­

geneous and curvature terms. This leads to a problem of homogenization of a degenerate parabolic 

initial value problem. We prove a homogenization theorem and obtain a characterization for the 

effective normal velocity, which however proves not to be too useful a tool for actual calculations. 

We therefore study some interesting examples and limiting cases and provide explicit formula in 

these situations. We also provide some numerical examples. 



VI 

We finally address the problem in full generality in the setting of anti-plane shear. We explicitly 

evaluate the term induced by the presence of the inclusions and we propose a numerical method that 

allows us to trace the evolution of the phase boundary. We use this numerical method to evaluate 

the effect of the inclusions and show that their effect is quite localized. We use it to explain some 

experimental observations in NiTi. 
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Chapter 1 

Introduction 

Free boundary problems occur naturally in many areas of engineering: phase boundary propagation 

in materials science, multi phase flows, seismic waves, photolitography, etching and image processing. 

We study a series of problems motivated by solid to solid phase transitions; we note, however, that 

these results and ideas have implications for the other areas mentioned above. 

Materials undergoing solid to solid phase transitions spontaneously form microstructure (like 

fine twins in martensitic transformation). An issue of great current interest is the evolution of this 

microstructure and the effect of defects and impurities on this evolution. To be specific, consider 

a martensitic material with many non-transforming inclusions and a phase (twin) boundary propa­

gating in this material. There are well established microscopic laws that give the evolution of this 

boundary but its motion is very complex as it encounters the many inclusions. We are interested in 

finding the effective macroscopic law that governs the overall motion, without having to follow all 

the microscopic details but implicitly taking them into account. 

Consider a body n c ffi.3 and let it contain N inclusions Ai C n, i = 1, ... N, as in Figure 1.1. 

Assume that Ai are disjoint, and n, Ai open. Now suppose that this body with inclusions has a 

phase boundary r which separates it into the + and the - phases. Thus, 

Suppose the transformation strain or stress-free or eigenstrain of the +, - phase is E+, E_ 

respectively while that of the ith inclusion is Ei . Above, E+, E_, Ei are given symmetric 3 x 3 

matrices. Suppose further that all the inclusions and both the phases have the same elastic modulus 

<C. Then the energy density is 

1 
W = -(Vu - Er)· C(Vu - Er) 

2 
(1.1) 
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• • 
r • • • 
• • • • Figure 1.1: A twin boundary in a medium with precipitates 

and the stress tensor T is given by 

T = 1C(\7u - ET), 

where u denotes the displacement field, 

in n+, 
in n_, 
in Ai 

(1.2) 

and x+ is the characteristic function of n+, etc. If the phase boundary r is stationary, we can find 

the displacement u and stress t by solving the equilibrium equation (balance of linear momentum 

assuming no external body force) 

\7. T = 0, (1.3) 

subject to appropriate boundary conditions. 

Note that we can solve this problem by superposition. Let uO solve the problem 

\7. TO = 0, 

TO = IC (\7uo - X+E+ - X_E_) , 

subject to the given boundary conditions, and let u i solve the problem 

\7 . Ti = 0, 

Ti = IC (\7ui - XiEi) , 
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subject to homogeneous Dirichlet boundary conditions. Set u = 2::;::'0 u i and notice that it solves 

(1.3) . 

Now suppose that the phase boundary revolves quasistatically, i.e., its normal velocity is small 

compared to any of the sound speeds in the medium. We can then find the displacement u and 

stress T by solving (1.3) at each time t. It remains to describe the law that governs the evolution of 

r. To this end, Abeyaratne and Knowles [2] and Gurtin [15] have shown that the dissipation rate 

associated with the motion of the twin boundary is 

(1.4) 

where Vn is the normal velocity of the interface and f is given quasistatically by 

f = [[Wll - n . [[(\7u)TT]]n - c'" = [[W]] - (T) . [[\7ull - C"'. (1.5) 

Here C is the (positive constant) interfacial energy, '" isthe mean curvature of the interface, n is its 

normal and [[qll and (q) denote respectively the jump and the average in a quantity q across the 

phase boundary. Therefore, f is the thermodynamic force conjugate to the normal velocity and may 

be interpreted as the thermodynamic driving force that drives the phase boundary. It is natural 

therefore to assume that the normal velocity depends on the driving force and a simple model is 

obtained by making the following constitutive assumption: 

Vn = f· 

We note that this model automatically satisfies the requirement that the dissipation be non-negative. 

Plugging (1.1) and (1.2) into (1.5), we find that 

f 
1 2 [[(\7u - ET)· iC(\7u - ET)ll- (iC(\7u - ET»· [[\7u]]- c'" 
1 1 
2[[(\7u) . iC(\7u)]] + 2[[ET . teET ]]- [[(\7u) . teET]] 

-(iC(\7u) . [[\7ull + (teET)· [[\7u]l - C"'. 

Since [lab]] = (a)[[b]] + [[a]](b), and since te is constant and symmetric, we conclude that 

~[[(\7u) . iC(\7u)]] = (iC(\7u» . [[\7ull, 

[[(\7u) . teET]] = (teET) . [[\7ull + [[teET ]]. (\7u). 
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Therefore, the model gives 

1 
Vn = f = "2[[ET · CETll- [[CET]]· (\lu) - ct;,. (1.6) 

Substituting the solution of (1.3) into this expression, we find that the normal velocity of the phase 

boundary may be written as 

Above, we have used the fact that \lui is continuous across r for i = 1, ... , N. 

Thus, the normal velocity is written as a sum of four terms. The first term is constant, the second 

depends only on the inclusions and is independent of r (including its normal), the third depends 

only on r and is independent of the inclusions and the fourth is proportional to the mean curvature. 

In short, 

Vn = f(x) + v; - ct;,. 

If f oscillates on a length scale that is small compared to the size of 0, then the evolution of r is 

extremely complicated. We are interested in understanding if one can define an overall or average 

interface which captures the correct overall evolution without explicitly tracking all the details, and 

if so, in determining the laws that govern the overall interface. 

As a guide to understanding this problem, we study certain simplified examples that are also of 

independent interest. 

Chapter 2 deals with the case Vn = f (~, n), with f continuous and periodic in the first variable 

with period [0, l]N (where N is the spatial dimension of the problem and E is the typicallengthscale 

of the inclusions). We write the problem using the level set formulation: assume that the interface 

r can be described as the zero level set of some function hex). We find that its propagation may be 

written as a Hamilton Jacobi initial value problem and we seek to homogenize it. 

If f assumes strictly positive values (or strictly negative values), the results of Lions, Papanicolaou 

and Varadhan [20] establish the well posedness of this homogenization issue. However, their result 

is hardly a useful tool for calculating the effective normal velocity vn . An alternate approach is to 

follow E [12] and use r -convergence in the Lax representation formula of the solution of the initial 

Hamilton-Jacobi equation. Using both these approaches, we establish several variational principles 

which give formulas that allow us to effectively calculate vn . We illustrate the usefulness of these 

results through examples. A noticeable detail is that, in spite of the Lipschitz continuity of f required 

for the proof of the theorems, the obtained formulae seem to be extendable to all functions for which 

they make sense. We also discuss the situation when f takes both positive and negative values. 

Chapter 2 also addresses the qualitative study of the effective normal velocity Vn , like the mono-
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tonicity of vn with respect to I and its continuity with respect to variations of I in C (lRN
). The 

issue of bounds is also touched on and in the end of the third section of Chapter 2, some inequal­

ities are derived that are sharper than the ones provided in [20] and show some parallelism to the 

ones for linear conductivity (effective normal velocity is caught between some sort of harmonic and 

arithmetic means). 

We then move to the case when the interfacial energy c in (1. 7) is no longer negligible and arrive 

at the normal velocity law Vn = I( ~) + CCK" with I a continuous and periodic function with period 

[0, l]N (where N is the spatial dimension of the problem) and c a positive real constant. Representing 

again the interface as the zero level set of a function h, we conclude that we need to homogenize a 

degenerate parabolic initial value problem. In Chapter 3 we prove a homogenization theorem that is 

equivalent to the one proved in [20] for the Hamilton-Jacobi problem. Unfortunately, the obtained 

characterization for the effective normal velocity is not too useful a computational tool. Moreover, 

the nature of this problem is such that there are no known representation formulae for its solution, 

which would allow use of the r convergence theory. We, however, study some interesting limiting 

cases and examples. 

Of particular importance is the result for the case when c is very large. We show rigorously in 

Chapter 3 that, in the limit c -+ 00, 

D 
lim vn(p) = lim sup D ' 

c--+oo D--+oo f ds 
Jo <1>1-(s) 

where < I >1. is the average of I on a (N - I)-dimensional period of I that is orthogonal to p. 

This limit for vn is not at all surprising. When c is very large, curvature is highly penalized so any 

propagating interface is forced to be almost straight. As the speed of any straight line is obtained by 

averaging the normal velocity along the interface, this reduces the problem to the one-dimensional 

case, where the effective velocity is given by the harmonic mean of the velocities. 

Finally, in Chapter 4 we study the effect of precipitates, including the key elastic term that 

depends on the interface. Rather than focusing on the difficult issue of homogenization, we try 

to expose the effect of the precipitates through simulation of certain examples. We specialize the 

problem to the case of an anti-plane shear deformation and obtain an estimate of the effect of the 

inclusions. We present a numerical method that allows us to simulate the propagation of the phase 

boundary. The results of certain simulations ahow, in particular, that the precipitate inclusions 

indeed have only a short range effect on the motion of the twin boundary. 
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Chapter 2 

Homogenization of the geometric 
motion of an interface 

2.1 Introduction 

The present chapter deals with the propagation of fronts driven by a normal velocity that depends 

on the position only. Consider a phase boundary propagating with the normal velocity 

Vn = f(x) = a - a(x) 

inside some heterogeneous body occupying some region n c ]RN, where a is the constant applied 

load and a : n -+ ]R is a spatially rapidly oscillating function which expresses the resistance of the 

medium to changing phase. If the length scale of the oscillations in a are small compared to typical 

length scales in n, then the detailed evolution of the front is rather complicated. Therefore, this 

study seeks to find an effective law that governs the overall evolution of the front. It is assumed 

henceforth that n =]RN and that a is periodic. 

Similar problems arise in the calculation of first arrivals in seismic travel times (with a velocity 

that varies depending on the type of rock) and the development process in photolitography, where the 

resistive strength of the material is differentially altered through optical processes and the material 

is then exposed to an etching beam that removes the weaker material. 

An efficient tool for studying such problems is the level set formulation. If we assume that there 

exists a smooth function h : ]RN x [0, 00) -+ ]R such that our front coincides with its zero level set at 

all times, a simple calculation yields that 

Vh 
n = IVhl' 

ht 
Vn = -IV hi , 

where n denotes the normal to the front and ht is the derivative of h with respect to the time t. It 
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follows that h satisfies the following Hamilton-Jacobi initial value problem: 

with the Hamiltonian 

{ 
ht + H(x, 'Vh) = ° in 

h(x,O) = ho(x) in 

~N X [0,00) 

~N 

H(x,p) = f(x)lpl 

and the initial data ho E BUG(~N) (where BUG denotes the space of bounded and uniformly 

continuous functions) chosen such that its zero level set coincides with the initial position of the 

front. If So denotes the set of all points in the initial front, a common choice for ho is 

ho(x) = min(d(x, So), 1), 

where d(x, So) is the distance from x to So. 

One problem that might occur when using this formulation is that the zero level set of the 

function h may develop a nonempty interior. However, this is ruled out in the case when the normal 

velocity depends on the position only, by a result of Barles, Soner and Souganidis (Theorem 4.1 in 

[4]). 

Now, if the medium in which the front is propagating has a periodic structure, with unit cell 

[0, c]N, the corresponding Hamilton-Jacobi initial value problem is 

{

hi + f(~)I'VhEI = ° in ~N x [0,00) , 

hE(x,O) = ho(x) in ~N 
(2.1) 

with f continuous and periodic with period riv = [0, l]N. Our aim is to study the homogenization 

of this phenomenon, i.e., to capture its limit behavior when the structure of the medium becomes 

infinitely fine (c --+ 0). 

We say that a homogenized front exists and its level set formulation is given by the Hamilton­

Jacobi initial value problem 

{ 
ht + fI('Vh) = ° 
h(x,O) = ho(x) in 

in ~N X [0,00) 
(2.2) 

if the viscosity solution hE of problem (2.1) converges uniformly on ~N x [0, T) (for all T < 00) to the 

viscosity solution of problem (2.2). We call fI the effective or homogenized Hamiltonian. Further, 

since H(x,p) = f(x)lpl, we write 
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and call vn the effective normal velocity. 

The issue of the existence of the effective Hamiltonian fl has been addressed in previous studies 

by Lions, Papanicolaou and Varadhan [20] and by Evans [13]. While their results establish the well 

posedness of the homogenization problem and prove certain properties of the effective Hamiltonian, 

they do not provide means for calculating it. The present chapter addresses this issue and its main 

results (Theorems 2, 4, and 6) give variational characterizations for fl, the effectiveness of which is 

illustrated in a series of examples. 

In Section 2.2 we demonstrate that the homogenization of Equation (2.1) makes sense only when 

f assumes strictly positive values and we try to give an interpretation of this fact. In particular, we 

show how, for cases when f is not strictly positive, the front may assume an oscillatory shape with 

constant amplitude and frequency of order c- 1 as c decreases. This is made possible by the fact 

that the present model allows the front to develop infinite curvature. Section 2.3 contains a brief 

review of existening results and Section 2.4 contains our main theorems, which give formulas for the 

effective normal velocity. Starting with these formulas, we derive some qualitative properties and, 

in Section 2.5, bounds on the effective normal velocity. We also make comparisons with some other 

results in the theory of homogenization. Finally, Section 2.6 lists a few examples which demonstrate 

the usefulness of our results. We show that the homogenization of isotropic media may give birth 

to anisotropic ones. 

Even though the homogenization theory is valid only when f is strictly positive, we show through 

examples (specifically Example 3 in Section 2.2) that one can define an overall phase boundary when 

the regions where f is negative are isolated within the region where f is positive. We also show that 

the formulas we derive in Section 2.4 give the normal velocity of this overall phase boundary. 

2.2 Defining the effective normal velocity 

We start by addressing the issue of well posedness of the homogenization problem. Motivated by the 

fact that all the results in the previous literature assume coercivity of the Hamiltonian H (which in 

our case is equivalent to the strict positivity of f), we try to investigate, by examples, the evolution 

of fronts in a medium where f changes sign. 

Denote by :F"+ (respectively F-) as the set of all x for which f(x) > 0 (respectively f(x) < 0). 

We may then have one of the following three interesting situations: 

Example 1. We start by looking at the case when both F+ and F- percolate. In such a 

situation, existence of a moving homogenized front fails either due to the creation of very dense 

oscillations or due to trapping. 
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Figure 2.1: Propagation of a front with normal velocity law given by Equation (2.3) 

As a representative example, consider the normal velocity law 

where a > 0, and an initial shape parallel to the X2 = ° axis, say 

ho(x) = min(x2' 1). 

(2.3) 

The evolution of such a front is depicted in Figure 2.1. The lines where Vn vanishes are shown as 

continuous lines and the evolving front is pictured at three different instants of time (dotted line for 

the initial position followed, chronologically wise, by the dash-dot line and then the dashed line). 

The front is pinned at all the points x = (Xl, X2) satisfying Xl E C(Z \ 2Z) on the X2 = 0 axis. 

By a simple symmetry argument, the normal in the points X with Xl E 2EZ will always be e2, which 

allows us to conclude that the points of the front with their first coordinate Xl E 4EZ will move in 

the e2 direction, while the ones with Xl E E(2Z \ 4Z) will move in the -e2 direction, all with the same 

constant velocity a. It is now easy to see that, as E decreases, the front will assume an oscillatory 

shape with constant amplitude and frequency of order E- I . Obviously, it cannot converge uniformly 

to any homogenized shape. 

Now, for the same normal velocity law, use the initial shape given by 

ho(x) = min(xI' 1). 

The front is trapped inside the region {x E ]R3 fixil < C}, so the homogenized front does not move. 
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This trapping phenomenon is totally analogous to the one-dimensional one observed by Bhattacharya 

in [6]. 

Example 2. We now look at the case when neither F+ nor F- percolate. An example of a 

normal velocity law that falls within this case is 

In such a situation, we are able to argue that the homogenized front is still. Indeed, since F+ 

does not percolate, any of its connected subsets must be bounded. Moreover, by periodicity of f, 

all the diameters of the connected subsets of F+ must have a common upper bound. By repeating 

this argument for F-, we obtain a positive real do larger than the diameter of any connected subset 

in ~N on which f does not change sign. Any initial front S will then be confined to the region 

{x E ~N /d(x,S) < ISdo}. As IS decreases to 0, this region shrinks to S and traps the homogenized 

front. This is again the analogue of the one-dimensional trapping observed by Bhattacharya in [6]. 

Example 3. Finally, let us consider the case when F+ percolates while F- is non-void and does 

not. An illustrative example for this case is 

f(x) = { ~ - (~, ~)I, 
4 ' 

if x E B! ( ~, ~) 

if x E Y2 \ B! ( ~, ~) 
(2.4) 

extended by periodicity to all ~3. Presume we start with the initial front given by {X2 = o}: 

ho(x) = min(x2' 1). 

By an argument similar to the one in the first case, all points with Xl E ISZ will move in the e3 

direction with constant velocity :t. These points will eventually pull all the front with them, as it 

will avoid passing through the points of vanishing f by taking a roundabout way. However, traces of 

the front, in the form of closed surfaces surrounding the points where f vanishes, will be left behind. 

As IS decreases to 0, the number of such trace-surfaces increases proportionally with IS-I, impeding 

the existence of the homogenized front. 

As for the leading part of the front, we may use a symmetry argument similar to the one in the 

previous examples and show that the normal in all points with Xl E Z has to be e2, hence their 

normal velocity remains constant and equal to :t at all times. 

The evolution of such a front is depicted in Figure 2.2. The points where Vn vanishes are 

represented by 'x'-s, while the evolving front is pictured at three different moments (dotted line for 

the initial position followed, chronologically wise, by the dash-dot line and then the dashed line). 

Note how, in the third snapshot, the front is no longer connected but consists of its leading part and 
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---------------

Figure 2.2: Propagation of a front with normal velocity law given by Equation (2.4) 

traces around each of the points with Vn = 0 that were left behind. 

One may neglect the trace-surfaces left behind and define the homogenized front by the remaining 

part. It is then reasonable to attempt an estimation of its effective velocity and Proposition 1 only 

states that this is not possible with the help of the level set formulation. One intuitive way of doing 

all this is to imitate Soravia's Definition 4.2 in [25] and consider the limit, as e decreases to 0, of the 

evolutions with speed max(f, 0) + e. It is possible to use Lions' Theorem 1.12 in [19] and replace the 

negative parts of f with O. The addition of the small positive constant e deletes the trace-surfaces 

left behind without considerably altering the velocity of the leading front, as will be seen in Theorem 

7. 

Proposition 1 Assume that f and ho belong to wI,ex> (]RN). To have a homogenized level set 

function in motion, we need f to assume only strictly positive values or only strictly negative values. 

Proof: We prove this result by contradiction: assume that the function f is neither strictly positive 

nor strictly negative. By continuity and periodicity of f, in any unit cell we can find a point where 

it vanishes. 

Since the homogenized front does move, there exists some compact set D in ]RN, with non-void 

interior, in which the function h changes sign. Without loss of generality, we may assume that 

ho(x) > 0, hex, t) < 0 for all x in D and for some strictly positive t (note that we may need to 

change f to - f and ho to -ho for this to be true). By the uniform convergence of he to h, there 

has to exist a positive eD such that, for anye smaller than eD, hE(X, t) < 0 in D. 

On the other hand, since the interior of D is not void, there exists some positive ED and some 

XD in D such that XD + eYn C D, '<Ie :s: ED. 



13 

Now fix E to be the minimum of ED and ED. By our assumption on I, we get a point xED in 

which IE vanishes, where IE is defined by 

Due to the uniform continuity of hE, there exists a positive real m such that 

(2.5) 

Using the existence results developed by Lions in Chapter 9 of [19], we see that the viscosity 

solution of problem (2.1) belongs to W1,oo(lRN x (0, tl). Hence its spatial gradient is bounded: 

lV'hEI :S M a.e. in D x (0, tl, (2.6) 

for some positive real M. Finally, using the continuity of I and the fact that it vanishes in x, we 

obtain a ball Bp(x) contained in D for which 

2m 
I(Y) < tM' 'Vy E Bp(x). (2.7) 

Now, inequalities (2.5) give us that 

which implies 

Using (2.6) and (2.7), we reach 

t 2m 
io tM MdB > 2m, 'Vz E Bp(x), 

an obvious contradiction, since 

• 
Having this result, we may assume without loss of generality that I is strictly positive everywhere 

(if I is strictly negative everywhere, change I to - f). 
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2.3 Homogenization 

We seek the homogenized Hamiltonian fl. Let us begin with a formal asymptotic expansion (see [5] 

for a systematic presentation of such ansatz) 

Plugging this into (2.1) and collecting terms of order 0, we find 

where y = ~. This is a partial differential equation for the corrector hI and its solvability condition 

provides a constraint between the partial derivatives of the average hO: 

° - ° ht +H(\1h) = 0, 

with the effective Hamiltonian fl (uniquely) determined by the condition that a periodic solution v 

of 

H(y,p+ \1yv) = fl(p) (2.8) 

exists. 

This result has also been obtained rigorously by Lions, Papanicolaou and Varadhan in [20]: 

Theorem 1 Let HE C(]RN X ]RN) be periodic in x and satisfy 

H(x,p) -+ 00 as Ipl -+ 00 uniformly for x E ]RN. 

For each p E I1RN , there exists a unique A E IIR - that we denote by fl (p) - such that there exists 

v E C (]RN ), periodic, viscosity solution of 

H(y,p + Dyv) = A in]RN. 

And fl is continuous in p. 

For any uo E BUC(IIRN) (the space of bounded and uniformly continuous functions on ]RN), the 

solution u E of the Hamilton-Jacobi equation 

{ 

8?ftE+H(~,DuE)=0 
uE(x, 0) = uo(x) in 

zn ]RN X [0, (0) 
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converges uniformly on ]RN x [0, T] (V T < 00) to the viscosity solution of 

{ 

~~ +ii(Du) =0 in ]RN x [0,00) 

u(x,O) = uo(x) in]RN 

in BUC(]RN x [O,T]). 

Moreover, they state that ii is a continuous convex function and that ii (p) goes uniformly to 

infinity as Ipi -+ 00. They also derive some elementary bounds: 

inf f(x)lpl ~ ii(p) ~ supf(x)lpl· (2.9) 
x x 

A useful characterization of ii can be obtained by looking at its dual. Define the Lagrangian 

associated to H by its Legendre dual 

{ 

0, 
L(x, q) = sup (q. P - H(x, p)) = 

pERN 00, if 

if Iql ~ fey) 

Iql > fey) 
(2.10) 

In [12], E uses r -convergence techniques for the Lax representation formula 

and proves that the solution of problem (2.1) converges uniformly to 

where 

L(A) = liminf ~ inf rD 

L(At + ¢(t), A + ¢(t))dt, 
D-4OO D ¢EHJ(O,D) 10 

(2.11) 

and that L is the dual of ii. 

2.4 Characterization of the effective normal velocity 

We now use the results listed in the section above to obtain suitable characterization of the homog­

enized Hamiltonian in the problem motivated by phase boundary propagation where 

H(x,p) = f(x)lpl. 

We set 
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and call vn the effective normal velocity. 

Lemma 1 If f is Lipschitz continuous, Y -periodic and f > 0, the effective Hamiltonian is given by 

R(p) = sup (COS(A,P) lim sup . f D T( ))Ipl, 
,\ D---+oo III -YE1)~/, 'T 

(2.12) 

where D'Jl is the set of all Hi paths connecting x with x+ I~I D and T(-y) = J-y 7- (dl is the arclength). 

Moreover, vn is an even function and depends only on the direction &t. 

Proof: If v is a viscosity solution corresponding to p in (2.8), then for any A > ° notice that AV is 

a solution corresponding to AP and R(Ap) = AR(p): 

H(y, AP + X'V yv) = f(y)IAp + A'V yvl = V(y)lp + \7 yvl = AH(y,p + \7 yv) = AR(p). 

It follows that vn is a function of direction only: 

Moreover, Proposition 2 in [20] ensures that vn is even. 

Using this property of R, we get a first formula for its Legendre dual: 

L(A) = SUp(A· P - R(p)) = sup Ipl(IAI COS(A,p) - vn(p)) = 

where F is defined by 

p p 

{ 

0, 

00, if 

if IAI:::; F(A) 

IAI > F(A) 

. vn(p) 
F(A) = mf{ (A): COS(A,p) > o}. 

p cos ,p 

Further, since R is continuous and convex, it coincides with the dual of its dual, so 

from which we infer 

R(p) = SUp(A· P - L(A)) = sup IAI cos(A,p)lpl, 
,\ I'\I~F('\) 

Vn(p) = SUp(F(A) COS(A,p)). 
,\ 

An alternative formula for L may be obtained from E's relation (2.11). Using (2.10), 

L(A) = { 0, 
00, otherwise 

(2.13) 

(2.14) 

(2.15) 
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Now consider some .,\ with 1.,\1 > F("\). By (2.13), L("\) = 00, so (2.15) implies that, for any D 

large enough and for any ¢> in HJ(O, D), 

:3 (a,b) C (O,D) 3: 1"\+ 4>(t) I > f("\t+¢>(t)) a.e. in (a,b). 

Having D and an arbitrary ¢> fixed, we pose the following initial value problem: 

{ 

dt _ I(AtH(t)) 
ds - IA+tP(t)1 

t(O) = ° 

(2.16) 

on the largest interval on which 1.,\ + 4>(t)1 stays strictly positive and t :S D. Since f is periodic and 

continuous and ¢> is in HJ (0, D), the derivative of t is bounded from below by a strictly positive 

number. This ensures that t will eventually get to assume the value D. Set 5 to be the corresponding 

value of s. 

We now show that 5 > D. Assume by contradiction that 5 :S D. Then we can define a function 

in HJ (0, D) by 

which satisfies 

{ 

¢>(t(s)) + "\(t(s) - s), 
'lj!(s) = 

"\(minx f(x) - l)s, 

if s:S 5 

if 5 < s :S D 

1.,\ + ~~ I :S f()..s + 1jJ(t(s))) a.e. in [0, D]. 

Since (2.16) and (2.17) contradict each other, it must be that 5 > D, which yields 

5 D D . 
D < r ds = r ds dt = r 1.,\ + ¢>(t)1 dt. 

io io dt io f("\t + ¢>(t)) 

(2.17) 

What we have proved up to now is the following: for any .,\ with 1.,\1 > F("\) , any sufficiently large 

D and any ¢> in HJ(O, D), we have 

( rD 1.,\ + 4>(t)1 )-1 
1"\1> I"\ID io f("\t + ¢>(t)) dt . (2.18) 

Equivalently, 

(lD 1.,\ + 4>(t) I )-1 
F("\) 2: lim sup sup I"\ID ( ( )) dt . 

D-+oo tPEHJ (O,D) 0 f"\t + ¢> t 
(2.19) 

We now aim at the converse inequality. Attempting the same trail, consider some .,\ with 1.,\1 < 

F("\). By (2.13), L("\) = 0, so (2.15) implies that there exists a sequence Dn -t 00 and ¢>n E 

HJ(O,Dn) such that I).. + ¢n(t)1 :S f()..t + ¢>n(t)), a.e. in [0, Dn]. This yields 
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hence 

Thus 

(l D IA+1>(t)1 )-1 IAI ::; lim sup sup lAID 0 f(At + ¢(t)) dt ,\/A with IAI < F(A), 
D--+oo q,EHJ (O,D) 

which gives the converse inequality of (2.19). We conclude that 

l D IA+1>(t)1 )-1 
F(A) lim sup sup lAID ( dt = 

D--+oo q,EHJ(O,D) 0 f(At + ¢(t)) 

limsup(~ inf ! dfl)-l 
D--+oo D ')'Ev'i/ ')' 

(2.20) 

and using (2.14) we reach (2.12). • 
This formula for vn has an interesting interpretation. According to (2.20), F(A) is the fastest 

average velocity with which we can travel a long distance in the A direction. Equation (2.12) then 

picks the direction A such that the projected velocity in the direction p is the fastest. Therefore, vn 

is the fastest projected average velocity in the direction p. In particular, a front need not directly 

develop in the direction p. If a quicker neighboring direction exists, the front will rather choose to 

develop portions with the corresponding normal at microscopical level and perform a translate-and­

advance motion, thus obtaining a faster propagation. 

Lemma 2 The function 

G(x, y) = inf rl 
Iy - x + 1>(t)1 dt 

q,EHJ(O,l) io f(x + t(y - x) + ¢(t)) 

satisfies the Lipschitz continuity condition 

Proof: Given ¢l E HJ(O, 1), define ¢2 E HJ(O, 1) by 

{ 

X2 + 3t(Xl - X2) 

X2 + t(Y2 - X2) + ¢2(t) = Xl + (3t -l)(Yl - xt} + ¢1(3t -1) 

Yl + (3t - 2)(Y2 - yd 

We have that 

< 

if t E [O,~] 

if t E [~, t] 
if t E [~, 1] 
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< 

Since this inequality is satisfied for any 1>1 E HJ(O, 1), we have verified that 

By symmetry of x, y, we reach the conclusion of the lemma. • 
Lemma 3 (i) In formula (2.12), the starting point of the curves in the family D~).. is arbitrary: 

D . D 
F(A) = lim sup = hm sup , 

D--+oo inf'YEV~;>' T(')') D--+oo inf'YEV; T(')') 

where D1 is the set of all HI paths connecting x with x + I~I D for some x E jRN. 

(ii) The lim sup occurring in formula (2.12) is actually a limit. 

Proof: (i) By considering the [0,1] parametrizations of the paths in D~\ we get 

11 I~D+¢(t)1 A 
inf T(')') = inf I I dt = C(O, -D). 

"lEV';/, ¢EH~(O,I) 0 f(I~ID+1>(t)) IAI 

Then Lemma 2 yields 

..!-.. inf T(')') <..!-.. inf T(')') + ~Ixl ,"iD > 0, "ix E ]RN. 
D 'YEV'i:;" - D "lEV;;" Dmmy fey) 

By the definition of lim sup, there exists a sequence Dn -+ 00 such that 

1· D l' Dn 1m sup = 1m . 
D--+oo inf E""o,,, T(')') n--+oo inf E""o,,, T(')') 

"I '--'D "I '--'Dn 

Since Dm;~:Ij(y) -+ ° as D -+ 00, (2.21) implies 

D 
lim sup ----,.---,.......,.. 

D--+oo inf'YEV'i:;" T(')') 
< liminf Dn < 

n--+oo inf'YEV~': T(')') 

1
. D < 1m sup , 
D--+oo inf'YEV~'" T(')') 

(2.21 ) 
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The converse inequality follows in a similar manner, so we have proved 

D D 
lim sup = lim sup , \;Ix E ]RN. 

D-too inf'YED;'/' Tb) D-too inf'YED~"'>' Tb) 

from which we reach our assertion. 

(ii) Let ~ = m and 

1· . fl. f T() 1· . f G(O, D~) L = 1m In - m '"Y = 1m m . 
D-too D 'YED'i:;" D-too D 

Fix some E > 0. By the definition of lim inf, there exists some dE ~ e m~;:7j(x) for which 

I
L _ G(O, dE~) 1 < ~. 

de - 3 

Pick some integer k with k > . 3 f( ). Let De = kdE and choose some arbitrary D with D > DE· 
- Emln;r x 

Obviously, there has to exist some integer m, with m ~ k, for which D E (mde, (m + l)dE]. Then 

Lemma 2 implies 

D - mdE mdE 
G(O, D~) ~ G(O, mdE~) + . f() ~ G(O, mde~) + . f() . mmx x mInx x 

Since m ~ k and k ~ E min: f(x)' this yields 

G(O,D~) 

T 
< 

< 

_G-,---(O_, D_~",",-) < G(O, mdEO + 1 < 
mde - mdE mminx f(x) -

G(O, mde~) + 1 < G(O, mdE~) + ~. 
mde kminx f(x) - mdE 3 

On the other hand, we clearly have 

(2.22) 

(2.23) 

Since (m - l)dE E ]RN, there exists some y E ZN such that Iy - (m - l)dEI < Vf. Due to the 

periodicity of f, we have that 

G(y, y + dE~) = G(O, de~). 

By Lemma 2 and this last equality, (2.23) becomes 

Iy - (m - l)dE I 
< G(O, (m - l)dE~) + G(y, y + dE~) + 2 . f() ~ 

mmx x 

vN < G(O, (m - l)dE~) + G(O, dE~) + . f() 
mInx x 
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Iterating this inequality, we obtain 

..IN 
G(O, mdE~) :::; mG(O, dE~) + (m - 1) . f() . 

mInx x 

Recalling the two assumptions we made on dE, 

< 

< (2.24) 

Adding the inequalities (2.22) and (2.24), we get 

G(O, D~) < L + _ r . f G(O, D~) + 
D - E - W-1~ DE, 

which finally allows us to conclude that 

liminfG(O,D~) =L= lim G(O,D~). 
D-+oo D D-+oo D 

This equality is sufficient to establish our assertion. • 
We now present our main results. 

Theorem 2 If f is Lipschitz continuous, Y -periodic and f > 0, the effective Hamiltonian is given 

by 
- ( . D). p. dh) 

H(p) = sup Ipi COS(A,p) hm . f T() = hm sup T()' 
A D-+oo m 'YE'D~ 'Y D-+oo 'YE'DD 'Y 

(2.25) 

where dh) denotes the distance vector between the two endpoints of'Y and V D is the set of all Hl 

paths with Idh)1 = D. 

The effective Hamiltonian is an even function of p and varies linearly with its length Ipl. 

Proof: The first equality is a direct consequence of the lemmas above, while for the second one we 

need to prove that the limit can be interchanged with the supremum. 

Since the expression inside the supremum depends only on the direction of A, it is enough to 

consider only the unit length vectors (A E 8BdO)). Let us pass to the limit (as D -t 00) in the 

inequality 
Dp . A > Dp . A 

sup 
AE8B,(O) inf'YE'D~ Th) - inf'YE'D~ Th) 

Since the right-hand term has a limit, we get 

I· . f Dp . A > 11.m Dp . A lmm sup 
D-+oo AE8B,(O) inf'YE'D~ Th) - D-+oo inf'YE'D~ Th) 



22 

This stays true for any ..\, so it must be that 

Dp·..\ Dp·..\ 
lim inf sup > sup lim 
D-4oo '\EoB,(O) inLYEV~ Tb) - '\EoB,(O) D-4OO inf1'Ev~ Tb) 

(2.26) 

We now aim at the complementary inequality. By the definition of lim sup and the compactness of 

aBl (0) (note that the expression inside the supremum is continuous with respect to ..\, by Lemma 2, 

so the supremum becomes a maximum), we capture two sequences Dn ~ 00 and {..\n}nEN E aBl(O) 

such that 

1 
D..\· p l' Dn..\n . P 

imsup sup = 1m . 
D-4OO '\EoB,(O) inf1'EV1 Tb) n-4OO inf1'Ev;: Tb) 

Using again the compactness of aBl(O), we may assume that the sequence An converges to some 

A E aBl (0) (restrict to a subsequence if not). 

A direct application of Lemma 2 gives 

inf Tb) = G(O, DnAn) 2': 
l' EV;: 

> G(O D A) _ Dnl A - Ani 
, n minxf(x) 

Thus 
inf EvAn Tb) inf~EVA Tb) IA _ A I 

l' Dn >' Dn _ n 

Dn Dn minx f(x) 

and, since An . p ~ ..\ . p as n ~ 00, 

< 

< 

This inequality and (2.26) conclude the proof. • 
Theorem 3 The effective velocity behaves monotonically with respect to f. 

Proof: Using (2.25), we see that h :S 12 implies 

! dl ! dl 
1'h 2': 1'12' 

which yields 
p·db) p·db) 

sup f dl :S sup f dl ' V D, 
1'EVD l' h 1'EVD l' h 
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• 
Theorem 4 If f is Lipschitz continuous, Y -periodic and f > 0, the effective Hamiltonian is given 

by 
- . p. db) 

H(p) = hm sup T() , 
T-+oo "lETT 'Y 

where TT is the set of all HI paths with Tb) = T. 

Proof: Define 
p·db) 

S(T) = sup T() . 
"lETT 'Y 

Fix some positive small E. For any T, we may find some 'Yo E TT such that 

(2.27) 

(2.28) 

Consider the path i described by y(s)p for s E [0, TJ, where y is the solution of the initial value 

problem 

It is easy to see that i E TT and that 

{ 

Y(s) = f(I~I)P) . 

y(O) = 0 

Idb)1 = j dl = (T Iy(s)plds ~ Tmin f(x). 
"I io x 

We infer that S(T) is bounded from below for any T: 

S(T) ~ Ipl min f(x). 
x 

Plugging this into (2.28), we've found some 'Yo E TT such that 

I ( )1 T(lpl minx f(x) - ~) 
d 'YE > Ipi . 

Now, using (2.25), we find a positive Do such that 

p. db) - E 
sup T() < H(p) + -2' VD ~ Do· 

"IEDD 'Y 

Let TE = Iplmi~~~(x)-~. For any T ~ TE, it follows from (2.29) that 

I
d( )1 T(lpl minx f(x) - ~) To(lpl minx f(x) - ~) _ 

'YE > Ipi ~ Ipi - Do, 

(2.29) 

(2.30) 
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so (2.30) and (2.28) yield 

S(T) < H(p) + £, "iT ~ To. 

Thus 

limsupS(T) ~ H(p). (2.31) 
T-4OO 

We now aim at the converse inequality. Fix some small positive £ and use (2.25) to obtain Do 

for which 
- p·d(r) 

H(p) - c < sup T()' 
rEDDe 'Y 

Then there exists some path 'Yo E DDe such that 

T() Ire dl > Id(ro) I _ Dc , 
'Yo ~ maxx f(x) - maxx f(x) maxx f(x) 

so we've found some Tc larger than max~ef(x) for which 

H(p) - £ < S(To). 

This is enough to infer that 

lim sup S(T) ~ H(p). 
T-4OO 

All we have now left to show is that the lim sup above is a full limit and this can be done as in 

the proof of Lemma 3 (ii). • 
Corollary 1 An alternative representation for the effective Hamiltonian is 

H(p) = lim sup(P' (x(T) - x(o)) Ix E H1(0,T), Ixl = f(x)). 
T-4OO T 

(2.32) 

Proof: For any path in TT, we choose the parametrization x( s), s E [0, S], given by 

ds 1 

dl f(x(s))' 

Such parametrizations always lie on the interval [0, t] since 

i s ! dl S = ds = - = T(r) = T 
o r f 



25 

and they verify 

Ix(s)1 = :! = f(x(s)). 

Conversely, any x E HI(O,T) that satisfies Ixl = f(x) describes a path "( with 

1 dl (T Ix(s)1 
T(r) = , 7 = 10 f(x(s)) ds = T, 

so (2.32) follows from Theorem 4. • 
One other variational principle for the effective Hamiltonian has been obtained by Concordel in 

[10]. While its proof is presented for Hamiltonians with superlinear growth as Ipi -t 00 and the result 

is false for Hamiltonians with sublinear growth (a simple counterexample is given by H(x,p) = Ipl!), 
the corollary above allows us to extend it to our case. 

Theorem 5 If f is Lipschitz continuous, Y -periodic and f > 0, the effective Hamiltonian is given 

by 
T 

R(p) = lim sup ~ ( [p. x(t) - L(x(t), x(t))]dt, 
T-+oo xEH'(O,T) T 10 (2.33) 

where L is the Lagrangian described in (2.10). 

Proof: Denote by S(p, T) the supremum occurring in the right-hand term of (2.33). Using (2.10), 

1 (T 
S(p, T) = sup{ T 10 p. x(t)dtlx E HI (0, T), Ixl ~ f(x)}. 

Pick some x E HI(O,T) with Ixl ~ f(x) on [O,T] and pose the following initial value problem on 

[O,T]: 

{ 

d S _ J.:!:.illl 
dt - f(x(t» 

s(O) = ° 
Since Ixl ~ f(x) on [0, T] and s(O) = 0, 

and we have equality if and only if Ixl = f(x) on [0, T]. Moreover, due to the strict positiveness of 

f, the function set) is invertible, so we may define y E HI(O,T) by 

yes) = { x(t(s)), if s E [0, S] 

x(T) + (s - S) minz f(z)p, if s E is, T] 
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Then 

T 1 p·iJ(s)ds 1S 

p·iJ(s)ds+ 1sT 

p·iJ(s)ds 

{ p. x(t)dt + (T - S) min J(Z)p2 ~ p. x(t)dt T iT 
Jo Z 0 

and the inequality is strict unless T = S. All this leads to the conclusion that, for the evaluation of 

S(p,T), it is sufficient to consider those functions x E Hi(O,T) with Ixl = J(x) on [O,Tj. Then 

S(p,T) 

hence (2.32) implies (2.33). 

sup{.!. (T p. x(t)dtlx E Hi(O, T), Ixl = f(x)} 
T Jo 

sup{p·lx(T~ - x(O)llx E Hi(O,T), Ixl = f(x)}, 

• 
Theorem 6 If f is Lipschitz continuous, Y -periodic and f > 0, the effective Hamiltonian is given 

by 
- . p. db) 

H(p) = hm sup T() , 
P-too 'YEPp "Y 

where Pp is the set oj all Hi paths with p. db) = P. 

Proof: Define 
p·db) 

S(P) = sup T() . 
'YEPp "Y 

Fix some positive small c. Using (2.25), we find a positive Dc such that 

p. db) - c 
sup T() < H(p) + -2' VD ~ DE. 

'YE'DD "Y 

Let PE = IpIDE. For any P ~ PE' we may find some "YE E Pp such that 

But 

so (2.35) and (2.36) yield 

S(P) < fi(p) + c, VP ~ Pc, 

which implies 

limsupS(P) ::; fi(p). 
P-too 

(2.34) 

(2.35) 

(2.36) 

(2.37) 
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We now aim at the converse inequality. Fix some small positive c and use (2.25) to obtain DE 

for which 

H(p) - c < sup 
,EDv, 

p. d(r) 
T(r) . 

Then there exists some path 'YE E DD, such that 

where PE = p. d('YE). But 

maxx f(x)' 

so (2.38) gives 
- DE 

PE > (H(p) - c) f( )" maxx x 

Thus, we have found some PE larger than (H(p) - c)max~'f(x) for which 

H(p) - c < S(PE ). 

This is enough to infer that 

lim sup S(P) 2 H(p). 
p-+oo 

(2.38) 

All we have now left to show is that the lim sup above is a full limit and this can be done as in 

the proof of Lemma 3 (ii). • 

Theorem 7 The effective normal velocity is continuous with respect to variations of f in C (J[{N). 

Proof: Consider two Y-periodic continuous functions hand 12 and set 

mi = minfi(x),Mi = maxfi(x),m = min(ml,m2),M = max(M1 ,M2 ), 
x x 

. P 
Hi(P) = hm sup J dl· 

P-+oo ,EPp ,t: 

Assume that these two functions are close in the C (JE.N) topology: 

Ilh - 1211 = sup Ih(x) - h(x)1 < c 
xEY 

for some small positive c. 
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For fixed /p/ and P, we may get a bound for the supremum in (2.34) by considering the segment 

[O,Pjfr]: 

S(P) = sup T
P
( ) ~ /p/ minf(x). 

'YEPp '"Y x 

Thus, for the evaluation of HI and H2 above, we may restrict the classes Pp by imposing the 

suplimentary inequality 

! MP 
'Y dl :s: mlpl' 

Then, for any path '"Y E Pp, we have 

J dl J dl II 1 1 II J dl 
I 'Y h _ 'Y h I < r; - h 'Y < ME . 

P P - P - Iplm3 

This implies 

J dl J dl 

I . f 'Y h . f 'Y h I < ME III --- III -- ---. 
'YEPp P 'YEPp P - Iplm3 

Since the inequality above is uniform with respect to P, it gets transported to the limit, proving our 

continuity assertion. • 

Remark 1 Theorems 2, 3, 4, 5, 6 and 7 can easily be extended to the anisotropic case. More exactly, 

if we allow f to have some directional dependence (f(x,p) = f(x, &I)), the only modification in the 

formulae for the effective Hamiltonian (2.25), (2.27), (2.82) and (2.84) is that f should be replaced 

with 
- f(x p) 
f(x,q) = sup '. 

cos(p,q»O cos(p, q) 

2.5 Some bounds 

We now obtain some bounds that are sharper than the ones in (2.9). 

To obtain a lower bound on F (which is connected to vn through (2.14)), start with some A with 

IAI > F(A). Writing (2.18) for cjJ = 0, we get 

lD 1 lD 1 
D < /A/ --dt < jA/ sup dt. 

o feAt) - </>EHl,(O,D) 0 feAt + cjJ(t)) 

Since this is true for any A with IAI > F(A), we conclude that we must have 

lD 1 lD 1 F(A) > D( _-dt)-I > D inf ( dt)-I. 
- 0 feAt) - </>EHJ(O,D) 0 feAt + cjJ(t)) 
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This relation holds for any D sufficiently large, so it yields the following bound on F: 

F(A) > li~-!;;,p(D(lD f(~t) dt)-l) ~ 
> lim sup(D inf ({D 1 dt)-l). 

D-+oo c/>EH/i(O,D) 10 f(At + ¢(t)) 
(2.39) 

For an upper bound, start with some A with IAI < F(A). By (2.13), L(A) = 0, so (2.15) implies 

that there exists a sequence Dn -t 00 and ¢n E HJ(O,Dn) such that IA + ¢n(t)1 :S f(At + ¢n(t)), 

a.e. in [0, Dn]. This yields 

1 {Dn 1 {Dn 
IAI I Dn 10 (A + ¢n(t))dtl :S Dn lolA + ¢n(t)ldt :S 

< _1 {Dn f(At + ¢n(t))dt :S D1 sup {Dn f(At + ¢(t))dt. 
Dn 10 n c/>EH/i(O,Dn ) 10 

This relation stays true for a subsequence Dn -t 00, so we must have that 

1 lD IAI :S lim sup D sup f(At + ¢(t))dt. 
D-+oo c/>EHJ (O,D) 0 

Since this holds for any A with IAI < F(A), we conclude that 

1 lD F(A) :S lim sup D sup f(At + ¢(t))dt. 
D-+oo c/>EH/i (O,D) 0 

(2.40) 

Using (2.14), (2.39) and (2.40) yield upper and lower bounds on vn and fl. 

2.6 Examples 

In the previous sections, we needed to assume certain smoothness of f (Lipschitz continuity or even 

W1,oo regularity for Proposition 1 to hold). However, some classical examples of composite materials 

provide a discontinuous f, while the expressions for the effective Hamiltonian that we've reached 

make sense for a larger class of normal velocity laws and the monotonicity indicated in Theorem 3 

remains true. 

We also needed the strict positivity of f. We note again, that the variational principles can 

continue to make sense in some examples even when f changes sign. Specifically, when regions of 

negative f are isolated within regions of positive f as in Example 3, these formulas give the effective 

velocity of the leading front. 

Hence, to illustrate our results in some simple cases, we extend our formulas to all functions f 

for which they make sense. 
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Exalllple 1 (revisited). Recall that the normal velocity law we looked at in Example 1 was 

(see (2.3)) 

where a is a positive constant. We make use of (2.25) to calculate vn (e2). 

Note that the inequality 

I(x) :s a, 'Vx E OC2 

provides the bound 

(2.41) 

On the other hand, if we choose in (2.25) I to be the vertical segment of length D parallel with e2 

and originating in 0, we get 

(2.42) 

We may now use (2.41) and (2.42) to infer that 

However, as we have seen in Section 2.2, this effective normal velocity obtained only gives the 

velocity with which certain segments of the front are propagating. We conclude that the formulas 

we obtained in Section 2.4 cannot be extended to all normal velocity laws V n . 

We now use (6) to calculate vn(el). Note that, for any P > 2 any path I that belongs to Pp has 

to intersect one of the lines Xl E (2Z - 1), hence it will contain a point where I vanishes. Thus the 

sup occurring in (6) is 0 for any P > 2, which implies that 

As we have seen in Section 2.2, this is indeed the effective normal velocity in the el direction, so our 

results have provided the correct answer. 

Exalllple 2 (revisited). The normal velocity law we considered in Example 2 was 

where a is a positive constant. 

We use (6) to calculate vn (p) for some p E OC2 . Using the same line of reasoning as in the previous 

example, for any P > 2V2, any path I that belongs to Pp will contain a point where I vanishes, so 
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the sup occurring in (6) is 0 for any P > 2V2, which implies that 

This again agrees with the conclusion we arrived at in Section 2. 

Exalllple 3 (revisited). The normal velocity law we considered in Example 3 was (see (2.4» 

if x E B~(~,~) 

if x E Y2 \ B ~ ( ~, ~) 

The inequality 

provides the bound 

(2.43) 

Now choose in (2.25) I to be the vertical segment of length D parallel with e2 and originating in 0 

and get 

(2.44) 

From (2.43) and (2.44) we get 

Comparing with our observations in Section 2, we see that our formula was able to ignore the traces 

that the front leaves around the points where f vanishes and to pick up the velocity with which the 

leading part is propagating. 

Exalllple 4. Set N = 2 and consider a laminated composite with the normal velocity law 

f(x) = , 
{ 

V1, if x E [O,p] x [0,1] 

V2, if x E (p,l) x [0,1] 

extended by periodicity to all ~2, where V1 > V2 > 0, p E (0,1). 

The first step is to compute F()") for)" E oB1 (0). For this, we will use 

. D 
F()") = hm . 

D-+oo inf EDo,~ T(r) 
, D 

By symmetry, it is enough to consider those )..'s with )..1 > 0 and )..2 2: O. To evaluate the limit 

above, we choose to pick the sequence Dn = ;" (we will deal with the case)..l = 0 separately). In all 

the regions where f is constant, calculating the infimum occurring in the expression of F reduces to 

minimizing the distance between the two end points, hence the optimal path will be the connecting 



32 

segment. We thus see that all minimizers are piecewise linear. To understand what laws they have 

to obey in the points where f presents jumps, let us look at the case n = 1. Denote h to be the 

height at which the path crosses the vertical line Xl = /1. Then 

At the optimal h, the derivative of this expression should vanish, thus 

which is nothing else but the refraction law for the angles made by the optimal path with the 

horizontal line X2 = h at the crossing point. Denote them by 01 and O2 and let 0 be the argument 

of ..\ to conclude that 
1 1 

G(O, (1, cosO» = cosO( ~ + ~). 
v, cos 0, V2 cos 02 

For n > 1, the optimal path will have to obey the refraction law at every jump point of f. But the 

only path that satisfies this is the one constructed by n repetitions of the two-segments trajectory 

obtained for n = 1, hence 

F("\) = F(cosO, sin 8) = 1 1- , 
cosO(~ +~) v, cos 0, V2 cos 02 

where 01 and O2 are determined by 

{ 

/1 tan 01 + (1-/1)tan02 = tanO 

---.!!.L...-~ 
sin 0, - sin 02 

In particular, if 0 = 0, then 01 = O2 = 0, so 

It is easy to check that F(cosO,sinO) cosO ~ F(el) and thus 

(2.45) 

(2.46) 

(2.4 7) 

One way to verify this is the explicit construction of a shape preserving interface moving in the 

el direction. This is nothing else but a vertical line and indeed it will travel with average speed given 

by (2.47). By the comparison principle for Hamilton Jacobi equations, any front initially caught 

between two vertical lines will be trapped between them for good and forced to move in the el 
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direction with the same average velocity. 

If Al = a (A = e2), we may write 

. D 
F(A) = hm ( , 

D-too inf EDY'~ T ,) , D 

with y = (~,O), and easily get F(e2) = VI. Using (2.46) and the inequality VI > V2 we get 

tan () tan () tan () 
------,--- < VI < VI . ) = VI, 
~+~ - ~+...!.::1!... - gSlnO, + (1-1'02 
VI cos 81 V2 COS (}2 cos (h cos (}2 cos (it cos 82 

which is nothing else but F (cos (), sin ()) sin () :S F (e2), and thus 

This again can be verified by an explicit construction of a periodic shape preserving front 

with ¢ E (0, ~) determined by 
. ~ V2 

sIn 'I-' = -, 
VI 

which indeed moves in the e2 direction with speed VI. 

(2.48) 

Note that this last construction can be generalized to yield fronts moving in the direction 

(cos (), sin ()) with speed VI sin (), for angles () close to ~: 

{

a if Xl E [0, ILl 

X2(XI) = (IL - xr) cot ¢ if Xl E [IL,l -ll ' 
(XI+IL-l)cot¢-cot() if xIE[l-l,ll 

with ¢ still given by (2.48) and 
1 - IL -~ cot () 

1= V, -V2 

2 

This type of construction stays possible as long as I > 0, i.e., 

(2.49) 

All this suggests that the function F (cos (), sin ()) has such a steep decrease near the maximal 

value at () = ~ that vn(cos(),sin()) is given by VI sin() for angles () that satisfy (2.49). 
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Figure 2.3: Polar plot of the effective normal velocity for a laminate 

The system (2.46) can be solved numerically and then F and vn can be calculated from (2.45) 

and (2.14), respectively. If we fix the three parameters of the problem: J.1 = 0.5, VI = 1, V2 = 0.5, 

we arrive at the values plotted in Figure 2.3. The solid and the dashed lines are the calculated 

polar plots of Vn and F, respectively, the dash-dot line represents the polar plot of VI sin e, while 

the dotted line pictures the smallest angle in the first quadrant that satisfies (2.49). As predicted 

by the construction, we notice a perfect agreement of the solid and dash-dot lines, for e between the 

dotted line and the vertical axis. 

These types of constructions may be easily generalized to higher dimensions. 

One conclusion is that, for laminated composites, homogenization of isotropic media may give 

birth to anisotropic ones. This stays true for the chess-board case, as will be seen in the following 

example. 

Example 5. Fix N = 2 and consider a checkerboard composite with the normal velocity law 

if x E ([O,~] x [~, 1]) U ([~, 1] x [O,~]) 

otherwise 

extended by periodicity to all ]R2, where VI > V2 > O. Following an example worked out by Acerbi 

and Buttazzo in [3], we also impose VI ~ 2V2; this will allow us to deduce a closed formula for the 

effective normal velocity. 

We may leave aside the case '>'1 = 0 since it can be straightaway noticed that 

F() 1
· G(O, De2) 

e2 = D~oo D = VI· (2.50) 
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As in the laminate case, we choose the sequence Dn = ~ and write that 

F(.>..) = lim G(O, Dn'>") = lim Dn ,V.>.. E 8B I (0). 
n-+= Dn n-+oo inf EVo,>' Tb) 

"Y Dn 

(2.51) 

Denote by "In a minimizer for the infimum occurring above. In all the regions where f is constant, 

we are left to minimize the distance between the two end points, hence the optimal path will be the 

connecting segment. We thus see that "In is piecewise linear. 

Assume for the moment that "In contains segments on which the normal velocity equals w. We 

may construct another path in by avoiding the region where f = wand taking a roundabout way 

that lies on the boundary of the ~-edged square. Since it is possible to choose this roundabout way 

such that its length is at most twice the length of the straight segment and VI ~ 2V2, we are in this 

way constructing an at-Ieast-as-fast path. 

We conclude that "fn has to be a piecewise linear path contained in the region where f = VI· 

Moreover, any segment included in "In has to be vertical with length ~, horizontal with length ~ or 

diagonal with length 4 (with the possible exception of the last one, since 2~;2 does not necessarily 

have to be an integer). It is then easy to see that the length of "In has to satisfy the suplimentary 

inequality 

(2.52) 

and thus 

(2.53) 

On the other hand, if z is the point of Z2 closest to 2~;2, we may consider the path "I~ composed 

by the adjacent segments [0,~(min(zl,z2),min(zl,z2))], [~(min(zl,z2),min(zl,z2)),~1 and [~, ~;l· 

We get 

F('>") ~ lim TD( ~ ) 
n-+= "fn 

and, by (2.53), 

Using (2.14), 

Since F is not a constant, neither is Vn , thus again homogenization of an isotropic medium gave 

birth to an anisotropic one. This is easily noticed in Figure 2.4, which pictures the polar plots of F 

(dashed line) and vn (solid line) for the case VI = 1. 

If we drop the restriction VI ~ 2V2, we may still argue that the resulting F is not a constant. 
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Figure 2.4: Polar plot of the effective normal velocity for the checkerboard example 

Indeed, if it were a constant, then (2.50) imposes that F = VI. Since f ::; V2 and any I E V~).. 

satisfies Jl'dl 2: D, (2.51) yields 

F(A) < VI lim Dn ::; VI 
- n--+oo inf VO >. J dl 

I'E IOn l' 

and equality is possible only if there exists a sequence of paths In E V~~ contained in the region 

where f = VI for which f7u -+ 1. But (2.52) rules out this possibility unless Al = 0 or A2 = 0 or 

IAII = IA21· 

We may extend all this to the micro-geometry where the squares on which f is constant get 

replaced with rectangles congruent to [0, ad x [0, a2]; the corresponding restriction on the two normal 

velocities is VI 2: a) ;;,a2 V2. Then 

where we have reiterated the coordinates such that ~ > ~. 
al - a2 

One other possible extension is to higher dimensions. For the case when VI 2: 2V2 we get 

where {A;}~I have been reiterated such that IAil ::; IAjl for i > j. 

Example 6. In a similar manner we may treat a packed-square composite suggested by Con-
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Figure 2.5: Polar plot of the effective normal velocity for the packed squares example 

cordel in [11]. Consider a normal velocity law defined on JRN by 

if :11:S i :s N such that Xj E Z, Vj f. i 
otherwise 

with V1 ~ 2V2 > 0. Intuitively, this places a grid (obtained by periodically repeating the coordinate 

planes) with fast normal velocity V1 in a space with slow normal velocity V2. 

For A1 f. 0, any minimizer In E V~~ (where Dn = I"~ I) will again be piecewise linear, while the 

inequality satisfied by V1 and V2 prevents it from entering the slower speed regions, so that it will 

be composed only of unit length segments parallel with one of the unit vectors ei (with the possible 

exception of the last segment, which may have any length). Then In has to satisfy 

Constructions analogous to the in from the previous example hold and we get 

_ ( ) VI cos(A,p) 
Vn P = sup N . 

"EaB, (0) 2:i=1 IAi I 
(2.54) 

Figure 2.5 pictures the polar plots of F (dashed line) and vn (solid line) for the case V1 = l. 

If the unit cube gets replaced with the parallelepiped IT:: 1 [0, ad and V1 ~ a!b V2, where a and 

b (a :s b) are the smallest two edges of the parallelepiped, (2.54) still holds. Also, it can be proved 

that the resulting medium is anisotropic even if we drop the requirement VI ~ a!b V2 • 
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Figure 2.6: Polar plot of the effective normal velocity for the touching disks example 

This example may be easily generalized to the case when f(x) equals VI whenever k of the 

coordinates of x are integer (for some k between 1 and N - 1) and V2 otherwise. 

Example 7. Set N = 2 and consider a normal velocity law defined on [0,1)2 by 

if (Xl-~)2+(X2-~)2<t 

otherwise 

extended by periodicity to alllR2
, where VI ;::: ~V2 > O. 

The inequality satisfied by VI and V2 prevents minimizers from entering the slower speed regions. 

Then, for >'1 i= 0, any optimal path "Yn E V~: (where Dn = 1;',1) will be mainly made up by 

horizontal or vertical unit length segments and quarters of the ~-rayed circle. Thus "Yn has to satisfy 

Constructions analogous to the in from the second example hold and we get 

Figure 2.6 pictures the polar plots of F (dashed line) and vn (solid line) for the case VI = l. 

This example may easily be generalized to the micro-geometry where, instead of a slower speed 

circle inscribed in the unit square, we have a slower speed ellipse inscribed in the rectangle [0, a] x 

[0, b]. Also, it can be proved that the resulting homogenized medium is anisotropic even if we drop 

the requirement VI ;::: ~V2. 
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Chapter 3 

Effective motion of a curvature 
driven interface through a 
heterogeneous medium 

3.1 Introduction 

This chapter deals with the evolution of fronts propagating with a normal velocity that depends on 

the position and the mean curvature of the front. The motivation for such a study comes from the 

normal velocity law that we arrived at in Chapter 1 (see (1.7)). If we assume that the elastic term 

that depends on the interface is negligible, we are left with a normal velocity law of the form 

Vn = -f(x) - CK" (3.1) 

where f is a function that depends on the position only, c is a positive constant (representing the 

density of the interfacial energy) and K, is the mean curvature of the interface. In particular, if f 

is heterogeneous on a scale small compared to the domain, then the evolution of the front may be 

very complicated. It is of interest then to ask if one can define an average or overall front and its 

propagation; one that captures the essential macroscopic features and ignores the exact microscopic 

details. This is the issue studied in this chapter. 

As in the previous chapter, we write the problem in terms of the level set formulation. If we 

assume that there exists a smooth function h : JRN x [0, T) -+ JR such that our front coincides with 

its zero level set at all times, a simple calculation yields 

and 
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so our normal velocity law implies that h satisfies the following equation: 

ah . Vh 
at = f(x)IVhl + clVhldlV IVhl' (3.2) 

To this equation one has to attach the initial condition 

h(x,O) = ho(x) In ~N , 

where ho is a function chosen such that its zero level set coincides with the initial position of the 

front, and appropriate boundary or far field conditions. 

If the medium in which the front is propagating is periodic with unit cell [0, c]N, the corresponding 

problem is 

{ 
8/;t< = f(~)IVhEI + cclVhEldiv I~~:I 
hE(X,O) = ho(x) 

III ~N x [O,T) 

in ~N 
(3.3) 

with f continuous and periodic with period YN = [O,l]N. Our aim is to study the homogenization 

of this phenomenon, i.e., to capture its limit behavior when the structure of the medium becomes 

infinitely fine (c -7 0). 

There are, unfortunately, serious open mathematical issues concerning (3.3). In particular, exis­

tence, uniqueness and comparison principles remain open. We shall not address these issues in this 

study, but proceed with what we believe are reasonable assumptions in this regard. 

We show in Section 3.2, following the methods of Evans [13] that, as c -7 0, the solution of (3.3) 

converges uniformly to the solution of 

{ 
~7 = f( I~~I )IVhl 

h(x,O) = ho(x) 

in ~N x [O,T) 

in ~N 
(3.4) 

where f is determined by solving a suitable periodic problem on the unit cell (3.24). This implies 

that the average or overall interface propagates with normal velocity 

Vn = f(n), 

where n is the normal to the interface. So, the normal velocity depends on the orientation of the 

interface but not on the position or the mean curvature. In short, the average interface undergoes 

an anisotropic geometric motion. 

We also show that if f is strictly positive (or strictly negative), then the resulting f leads to (3.4) 

being a well posed mathematical problem. If f takes both signs, then f may be such that (3.4) is 

ill-posed. This corresponds to the interface being trapped. We explore this and other issues with 
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various examples in Section 3.3. 

We notice from our examples that the effective behavior is easily characterized when the curvature 

coefficient c is quite large. We study this limit in Section 3.4 and provide an explicit characterization 

for f in this case. 

3.2 A homogenization result 

Note that the partial differential equation in (3.3) can also be written as 

where 
p®p 

F(A,p,x) = - f(x)lpj- c(I -V' A). 

The operator F defined above is degenerate elliptic, in the sense that 

F(X,p,x) 2: F(Y,p,x) if Y 2: X (i.e. if Y - X is positive semidefinite). 

(3.5) 

Also, it can be easily checked that F is a geometric operator, in the sense that it has the following 

scaling invariance 

F(>"X + ap ® p, >"p, x) = >"F(X,p, x), for all >.. > 0, a E R 

We now study the homogenization of the problem 

{ 

Bu' + F(E"V2uE "VUE .'!:) = 0 in 
Bt " E 

uE(x,O) = uo(x) in 

IRN X [0, T) 

IRN 
(3.6) 

where F is a geometric and degenerate elliptic operator, Lipschitz continuous and periodic in the 

variable x with unit cell Y N = [0, l]N. This more general problem includes our front propagation 

problem (3.3) as a particular case. 

We start by gaining some insight with a formal asymptotic treatment. For this, it is natural to 

begin with the expansion (see [5] for a systematic presentation of such ansatz) 

Plugging this expansion into (3.6) and identifying the terms in front of powers of EO, we find 
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where y = ~. This can be looked at as a partial differential equation for the corrector u 1; its 

solvability condition provides a constraint between the partial derivatives of the average uo: 

with P determined by the condition that a periodic solution v of 

F(V'~v(y),p+ V'yv(y),y) = pep) 

exists. 

There are important difficulties when approaching this problem in a more rigorous manner: 

several key existence, uniqueness, regularity and comparison results have not yet been proved. To 

overcome this difficulty, we shall make the following assumptions: 

Assumption AI. There exists a unique continuous viscosity solution of the problem 

{ 
~~ + F(V' 2u, V'u,x) = ° 
u(x,O) = uo(x) 

in 

in 

jRN X [0, T) 

jRN 

Assumption A2. For any Po E jRN and for any 15 E (0,1) there exists a unique continuous 

viscosity solution of the problem 

Ju + F(V'2 u, V'u + Po, x) = 0. (3.7) 

Assumption A3. (uniform regularity) The solution of (:1.7) is Holder continuous in x and its 

Holder coefficient is bounded with respect to 15 for 15 E (0,1). 

Assumption A4. The comparison principle for periodic solutions of geometric degenerate el­

liptic equations holds: if u 1 and u2 are solutions of the same geometric degenerate elliptic equation 

with initial data U6 and respectively u6, then U6 2: u6 implies u 1 2: u2
• 

Assumption A5. The comparison principle for initial and boundary value problems for geo­

metric degenerate parabolic equations on bounded domains holds. 

All five assumptions listed above are very natural and some results that are very close to them 

have already been established (see [8], [9] and [14]). Using Al - A5 above, we now proceed to 

proving the homogenization theorem for (3.6), following the work of Evans in [13]. 

Theorem 8 If F is a degenerate elliptic and geometric operator, Lipschitz continuous and periodic 

in the variable x with unit cell Y N = [0, I]N, the viscosity solution of problem (:1.6) converges 

uniformly (as E -* 0) on jRN x [0, T) to the viscosity solution of the Hamilton-Jacobi initial value 
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{ 

~~+P(Vu)=O in ~N x [O,T) 

u"(x,O)=uo(x) in ~N 
(3.8) 

where the Hamiltonian Pep) is uniquely determined by the requirement that there exists a periodic 

viscosity solution v to the following degenerate elliptic equation: 

F(V2 v(y), Vv(y) + p,y) = Pcp). (3.9) 

Relation (3.9) is also called the cell problem. 

Proof: Consider the approximating problem 

(3.10) 

for some p E ~N and some lS E (0,1). By assumption A2, (3.10) also has a unique continuous 

viscosity solution wo. Moreover, the periodicity of F and the uniqueness of the solution Wo imply 

that Wo has to be periodic with the same unit cell Y N = [0, I]N. 

In any point where Wo attains its maximum, its Hessian V~wo is negative semidefinite, so the 

degenerate ellipticity of F implies that 

whenever y is a maximum of wo. In a similar manner it can be argued that 

whenever Wo reaches its minimum. Hence we proved that 

Using this and A3, we conclude that there exists a subsequence lSj -+ ° such that VO j -+ v uniformly in 

~N and lS j W O 
j -+ - A uniformly in ~N , where the function VO is defined by VO (y) = WO (y) - min Y N WO 

and A is some constant. Thus we can pass to the limit lS -+ ° in (3.10) to get 

F(V~v(y), Dyv(y) + p, y) = A. (3.11) 

We now want to prove the uniqueness of the constant A for which a function v that satisfies 

(3.11) exists. Assume by contradiction that there exists a second pair (il, j) that satisfies (3.11), 
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with V a periodic function and 5.. > A. By adding a constant if necessary, we may also assume that 

v > v. Then, for some e small enough, we have that 

eV + F((V';v(y), Dyv(y) + p, y) > () > cv + F(D;v(y), Dyv(y) + p, y) 

for some constant (). Thus v is a periodic super-solution of the equation 

F('V;v(y), Dyv(y) + p, y) + eV - () = ° 
and v is a periodic sub-solution of the same equation. Using A4 we arrive at v > v, in contradiction 

with our assumption that v > v. Thus the constant A for which a periodic solution v to (3.11) 

exists is unique and we may denote it by pep). All we have now left to prove is that the viscosity 

solution of problem (3.6) converges uniformly (as e -t 0) on ]E.N X [0, T) to the viscosity solution of 

the Hamilton Jacobi initial value problem (3.8). 

Since F is degenerate elliptic and parabolic, Al gives the existence of a unique continuous 

viscosity solution uf: on ]E.N x [0, T]. Let us define the function u* : ]E.N X [0, T) -t ]E. by 

u*(x,t) = lim sup uf:(z,s). 
€40,Z-+X ,s-tt 

We claim that 
8u* -
7it(x, t) + F(V'u*(x, t» :::; ° (3.12) 

in viscosity sense. Indeed, consider a function ¢ E COO (]E.N X [0, T» such that u* - ¢ has a strict 

local maximum at the point (xo, to), with 

u*(xo, to) = ¢(xo, to). (3.13) 

We shall assume by contradiction that 

8¢ -
8t + F('V¢) = () at (xo, to), (3.14) 

where () is some positive constant. By the definition of P, there exists a Y-periodic viscosity solution 

v to the problem 

F('V;v(y), 'Vv(y) + 'V x¢(xo, to), y) = P('V x¢(xo, to»). 

Define the function ¢c by 
X 

¢" (x, t) = ¢(x, t) + eV( -). 
e 

(3.15) 
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We claim that 

(3.16) 

in viscosity sense, in some ball B(xo, r) centered in Xo with small enough radius r. To prove this, 

fix some 'Ij.; E COO(JRN X [0, T)) such that ¢E - 'Ij.; has a minimum at (Xl, to) E B(xo, r) x to with 

Then the application y >----+ v(y) - 7](Y) has a minimum at Yl = ¥-' where 

1 
1J(Y) = -('Ij.;(cy, to) - ¢(cy, to)). 

c 

Since v is a viscosity solution of (3.15), this implies that 

thus, using also (3.14), 

Using the Lipschitz continuity of F and the fact that 

we infer that 
8'1j.; 2 Xl (j at + F(c\l 'Ij.;, \l'lj.;, E) ~"2 at (Xl, to). 

Since the choice of the function 'Ij.; E Coo (JRN X [0, T)) was arbitrary, the argument above establishes 

(3.16). 

Since ¢ E COO(JRN X [0, T)), inequality (3.16) implies that 

~~ (x, t) + F(c\l2¢E(X, t), \l¢E(X, t), ~) ~ ~ in B(xo, r) x [to - r', to + r/J 

for some r' small enough. But u E is a viscosity solution of (3.6), so the comparison principle A5 

yields 

max (u E 
_ ¢E) < max (u E 

_ ¢E). 
B(xo,r)xB(to,r') - 8(B(xo,r)xB(to,r')) 
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In the limit E: ~ 0 this inequality becomes 

(u* - ¢/:)(xo, to) ~ max (u* _ ¢YE), 
8(B(xo,r) xB(to,r')) 

which contradicts (3.13). This proof by contradiction establishes (3.12). 

Also, using the continuity of uE and the definition of u*, the initial condition in (3.6) implies 

u*(xo,O) = uo(x) in ]RN. (3.17) 

Then the comparison principle for (3.8), along with (3.12) and (3.17), gives 

u* ~ u. 

Similarly it can be proved that 

u ~ u* = liminf uE(s,z) 
E--+O,Z--+X ,s-+t 

and since we obviously have u* ~ u*, we conclude that u = u* = u*. 

Hence u E converges uniformly (as E: ~ 0) to u, the solution of (3.8). • 
We now proceed to show that certain properties of the operator F are inherited by the limit 

Hamiltonian F. 

Theorem 9 If the operator F in (3.6) satisfies 

lim F(O,p, y) = 00 uniformly in y, 
Ipl--+oo 

then the same holds for the homogenized Hamiltonian F; 

lim F(p) = 00. 
Ipl--+oo 

Proof: We refer to the approximating problem (3.10) in the proof of Theorem 8. Writing (3.10) in 

a point Yo where wJ attains its maximum we get 

(3.18) 

For any M > 0, if p is large enough, (3.18) implies that 
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But -r5wo -+ pep) uniformly as r5 -+ 0, so the inequality above proves the theorem. • 
Theorem 10 If the operator F in {3.6} is Lipschitz continuous in p in the ball B(O, L) and its 

Lipschitz constant is C L, then the same holds for the homogenized Hamiltonian P. 

Proof: Fix p and pin B(O, L) and let 'Ii; be a solution of the equation 

Then 

so 'Ii; is a super-solution of the equation 

(3.19) 

We now refer to the approximating problem (3.10) in the proof of Theorem 8. If Wo is a solution to 

(3.10), then Wo - tC Lip - pi is a solution to (3.19) and then the comparison principle A4 implies 

that 

As r5 -+ 0, this yields 

- pep) + pep) ~ -CLip - pI· (3.20) 

In a similar manner it can be proved that 

which, together with (3.20), establishes that P is Lipschitz continuous in p in B(O, L) and that its 

Lipschitz constant is CL . • 
Theorem 11 If the operator F in {3.6} is convex with respect to its first two variables, then the 

homogenized Hamiltonian P is convex in p. 

Proof: Fix p, q E ~N, x E ~N and let vP, vq and v(p+q)/2 be the YN-periodic viscosity solutions of 

the following cell problems: 

{ 

F(V2VP(y), VvP(y) + p, y) = pep) 

F(V2 vQ(y), \1vQ(y) + q, y) = P(q) 

F(V2v(p+q)/2(y), VV(p+q)/2(y) + ~,y) = P(~) 
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By subtracting a constant from v(p+q)/2 if necessary, we may also assume that 

(3.21) 

We shall assume by contradiction that 

-p+q 1- -
F(-2-) > 2(F(p) + F(q)). (3.22) 

We now make the claim that 

vP + vq vP + vq p + q 1 - _ 
F('V 2 2 (Y), 'V 2 (y) + -2-' y) :::; 2 (F(p) + F(q)) m ]RN. (3.23) 

To prove this, let W = ~ (vP + vq) and WE = T}E * w, where 7]E is the mollifier with support in the ball 

B(O,e), i.e., an infinitely many times differentiable function 7]E ~ 0 such that 

Then 

F('V 2WE(Y), 'VwE(y) + p; q, y) 

< r 7]E(Y - z)F('V2w(z), 'Vw(z) + p+ q,y)dz 
lB(y,E) 2 

r 7]E(y - z)F('V 2w(z), 'Vw(z) + P + q, z)dz + 0(1) 
lB(y,E) 2 

< ~ r 7]E(Y - z)F('V2vp (z), 'VvP(z) + p, z)dz 
lB(y,E) 

+~ r 7]E(Y - z)F('V2 vq(z), 'Vvq(z) + q, z)dz + 0(1) 
lB(y,E) 

1 - 1 -
= 2F(p) + 2F(q) + 0(1) 

as e -+ O. In the limit e = 0, we get (3.23). 

But (3.22) and (3.23) imply, by A4, that 

which contradicts (3.21). • 
We now specialize to F defined by the interface propagation problem (3.5). Theorem 8 tells us 

that its viscosity solution converges uniformly (as e -+ 0) on ]RN x [0, T) to the viscosity solution of 

the Hamilton Jacobi initial value problem (3.8), with pep) uniquely determined by the requirement 
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that there exists a periodic viscosity solution v to the following cell problem: 

(3.24) 

Proposition 2 For F defined by (3.5) we have that 

- - P 
F(p) = f(lPT)lpl. 

Proof: Let us define f(p) by 

f(p) = ~~) for pi o. 

If v is a periodic viscosity solution for (3.24) corresponding to a vector p: 

and a is some positive constant, it can easily be seen that 

(avXi + api)(avXj +apj) -
- f(x)IV(av) + apl- c(c5ij - IV() 12 )avx · x · = f(p)lapl, av + ap , J 

hence av is a periodic viscosity solution for the cell problem with the constant f(p)lapl in the 

right-hand side. By the uniqueness of P (which is equivalent to the uniqueness of 1), it follows that 

f(p) = f(ap), Va> 0, 

thus the homogenized Hamiltonian has the form 

• 
We conclude that the effective motion of a curvature driven interface through a heterogeneous 

medium is an anisotropic geometric one, similar to the effective motion studied in Chapter 2. 

3.3 Examples 
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Figure 3.1: Laminated material 

f, 

Assume that the function f(x) has only two possible values fl and h in alternating stripes with 

volume fractions f1 and 1 - f1 respectively, as shown in Figure 3.1. More exactly, let 

if Xl E [O,~]U[I- ~,1] 

if Xl E (~, 1 - ~) 

with f extended by periodicity outside the strip Xl E [0,1]. We assume that II > h without loss of 

generality. 

We study the propagation of an interface whose average normal is in the X2 direction. We claim 

that if we find a self-similar front F, [0, 1]-periodic in Xl, that propagates by uniform translation in 

the X2 direction, then the translation velocity will be the effective normal velocity in this upwards X2 

direction. Indeed, any other front that has effective velocity parallel to X2 can be initially trapped 

between two copies of F and then, by the comparison principle, it will stay trapped in between 

them; it follows that its effective velocity has to be the same as the effective velocity of F. 

We begin by trying to find a self similar front F that can also be written as the graph X2 = g(XI) 

of a [0, 1]-periodic function g. We make the choice that II > h (by translating the periodicity cell 

with ~ in the Xl direction if need be). If v denotes the constant upwards-translation velocity of F, 

then its normal velocity and curvature at any point are 

v 
vn=(O,v)·n= , Jl + g'(Xt}2 

g"(xd 
K,=- 3. 

Jl + g'(xt}2 
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Plugging this in our normal velocity formula Vn = f - eK" we get 

(3.25) 

where Z(XI) = g'(XI). This equation can also be written as 

in the new unknown function U(XI) = arctanz(xd. The variables in this ordinary differential 

equation can be separated 

in all the regions where f is constant. 

du cosu 
vcosu - f (3.26) 

Due to the periodicity of f and g and due to the symmetry of f with respect to the axis Xl = ~, 

the front F has critical points at Xl = 0 and Xl = ~. This means that 

(3.27) 

We now consider the case v i=- 0 (the case v = 0 is treated separately in Section 3.3.3). We can 

obtain two values for u(ii), by integrating (3.26) with starting points Xl = 0 (forward) and Xl = 1/2 

(backward), respectively: 

{ 

u("-) 

u(l!:.)+ 2ft arctanh(ft+v)tan~)-1!:.3!.. 
2 Jv2_J? JvLJ? - 2c 

~ u(l!:.) + 212 arctanh (h+v) tan 2 ) = (1"-2cl )v 
2 JvLJ? Jv2_J? 

(3.28) 

This is a system of two algebraic equations in two unknowns, v and u( 3)' While it cannot be 

solved exactly due to its transcendental nature, it is possible to use common numerical techniques 

for obtaining the values of the function v = v(h,h,p"e). 

Figure 3.2 shows the dependence v = v(e) for fixed values of h (= 1) and p, (= ~) and for various 

12 varying from -.05 to .95 (the uppermost graph is for the highest value of the parameter h). For 

each value of 12, v decreases monotonically with e, reaches the limit max(h, h) = 1 as e -+ 0 and 

the average ~(h + h) as e -+ 00. We note that the former limit is consistent with the case e = 0 

(Example 1 in Section 2.4) and we shall study the latter in greater detail later. 

Note that the plots in Figure 3.2 do not start from the value e = O. When we solve the system 

(3.28), we can only accept solutions that satisfy u E [-~,~], else the assumption of a graph breaks 

down. We find that this breaks down for e small enough. The minimal value em of e for which the 

construction above is possible can be obtained by solving the system (3.28) in the unknowns v and 
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Figure 3.2: The function v = v(c) for various values of h 

C with u(I) = -~ fixed. Table 3.1 contains a list of values of Cm calculated numerically for various 

h· 
For C < cm, it is no longer possible to construct self similar fronts with periodicity 1. It turns 

out, however, that we can do so with periodicity N, a large enough integer. Proceeding as before, 

the system corresponding to (3.28) is 

{ 

u(Nl!:.) + 2b arctanh (b+v)tan ~) = NT'c 
2 JvLJl Jv2-f? 

u(N~) 

(N l!:.) + 212 t h(h+v)tan 2 ) = N(/L-l)V 
u 2 Jv2_J:jarc an Jv2-fi 2c 

After we replace u(NI) with -~, we notice that we obtain the same system as before, except that 

C is now multiplied with -k. It follows that 

which means that we are able to construct self-similar interfaces for any values of h, hand c, 

provided that we choose a large enough number of cells. 

We now turn to the limit C -+ 00. Setting C = 00 in (3.28) gives u( I) = 0 and v is indeterminate. 

Therefore, we assume the asymptotic expansion 

1 
c= -

10 
J.l u("2) ,..., fUO + 0(10) 

v"'" vo + 0(1) 
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12 em for unit cell [0, I]:.! 

0.95 0.0328 
0.85 0.0381 
0.75 0.0576 
0.65 0.0751 
0.55 0.0791 
0.45 0.0772 
0.35 0.0814 
0.25 0.0866 
0.15 0.0903 
0.05 0.0981 
-0.05 0.1192 
-0.15 0.1361 
-0.25 0.1512 
-0.35 0.1653 
-0.45 0.1790 
-0.55 0.1924 
-0.65 0.2054 
-0.75 0.2183 
-0.85 0.2311 
-0.95 0.2437 

Table 3.1: List of values of em as h varies 

as E --t o. The algebraic system (3.28) then becomes 

{ 

u(~)+ 21t arctanh(lt+v)tanU(2~))=1!:.!l-
t ty'v2-if y'v2-if 2 

u(;o ) 

uri) + _;;".2t~2=arctanh(h+v)tanf) = (IL-l)v 
t ty'v2-t? y'v2_J? 2 

In the limit E --t 0 we can use L'Hopital's rule for the second term in the left-hand side of both 

equations to get 

{ 

u + tdlt+vo)u - I!:!!S!. 
o v5-tf 0 - 2 

U + h(h+vo)u _ (IL-l)vo 
o v5-t? 0 - 2 

Dividing the two equations we are left with an equation in Vo: 

1+~ 
vo-It f-l 

----:-''-----'--'- - --, 
~ f-l- 1 
vo-h 

which has as solution 

as suggested by Figure 3.2. We shall return to this limit in the general case in Section 3.4. 

The self-similar fronts not only allow us to calculate the values of the effective normal velocity but 

they also seem to act as attractors in the space of solutions for (3.2). This was observed by means 
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of a numerical simulation built on a 64 x 64 grid. We use a semi-implicit scheme when discretizing 

(3.2): 

where 

max(p:', 0)2 + min(p,+, 0)2 + max(p~, 0)2 + min(p~, 0)2 if f > 0 

min(p:.,O)2 +max(p,+,0)2 +min(p~,0)2 +max(p~,O)2 if f ~ ° 
1 1 

p=- = AxD-;¢>f,j + 2Ax minmod (D-;D~¢>f,j,D-;D~¢>7_1,j)' 
1 1 

p,+ = Ax D-; ¢>7+1,j + 2Ax minmod (D-; D~ ¢>7+1,j, D-; D~ ¢>f,j), 

1 1 
p~ = AxD;¢>f,j + 2Ax minmod (D;Dt¢>f,j,D;Dt¢>f,j-l)' 

1 1 
P~ = AxD;¢>f,j+l + 2Ax minmod (D;Dt¢>f,j+l,D;Dt¢>f,j), 

. { sign(u) min(lul,lvl) if uv > 0 
mmmod (u, v) = ° if uv ~ 0 

D-; ¢>i,j = ¢>i,j - ¢>i-l,j (backward), 

D~ ¢>i,j = ¢>i+l,j - ¢>i,j (forward). 

For the rest of the spatial derivatives, we simply use centered difference operators. We solve 

the resulting linear system by means of a conjugate gradient method. Since we wish to avoid large 

gradients in the level set function, we keep it close to the signed distance function to the interface by 

using, after each time step, a reinitialization procedure developed by Sussman, Smereka and Osher 

in [26]. 

Figure 3.3 shows several snapshots of the initially flat front moving in the laminate with the 

parameters 
1 

/1 = 2,'ft = l,h = O,e = 1, 

taken at every 50 time steps (we used the time step At = 0.0001). 

We see how this initially flat interface rapidly approaches the self-similar shape. It subsequently 

starts a uniform upward translation. This is elaborated in Figure 3.4, which shows snapshots of the 

same simulation taken every 500 time steps. 

Figures 3.5 and 3.6 depict the evolution of an initially flat interface for the laminate with the 

parameters 
1 

/1 = 2,ft = l,h = -0.6,e= 4 

and the snapshots are taken at every 100 and every 2000 time steps respectively (again, the used time 
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Figure 3.3: Motion of a curvature driven interface in a laminate. The figure shows snapshots of an initially 
flat interface at every 50 time steps. 
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Figure 3.4: Self-similar motion of a curvature driven interface in a laminate. The figure shows snapshots 
of an initially flat interface at every 500 time steps. 
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Figure 3.5: Motion of a curvature driven interface in a laminate with both positive and negative values for 
V n . The figure shows snapshots of an initially flat interface at every 100 time steps. 

step is t:.t = 0.0001). It can be noticed how the front initially moves downwards in the part where 

f is negative and then eventually assumes the self similar shape and starts translating upwards. 

In both these cases, the effective normal velocity (which can be calculated from the distance 

between the level sets) agrees with the one obtained from (3.28). 

3.3.2 Other geometries 

For mediums which do not have a laminate-type normal velocity law, self similar interfaces do not 

generally exist. However, Theorem 8 suggests the existence of interfaces which are self similar to the 

extent that they assume the same shape after being propagated over one periodicity cell of f. In 

certain situations, these self-similar interfaces seem to act as attractors, in the sense that interfaces 

that start with any initial data approach them as time evolves. 

As an example, consider the normal velocity law 

f = 10 + 5 sin (41rx) sin (41rY) = 10 + 5 sin (41r i ) sin (41r i ). 
n n 

Figure 3.7 depicts the evolution of an initially flat interface positioned at the height j = 10 with 

a 64 x 64 grid laid on the periodicity cell. The snapshots are taken at every 100 time steps (with 

t:.t = 0.0001). In the lower half of the unit square, the left part is faster than the right so the front 

assumes a shape similar to the one observed in the laminate examples. However, as the interface 

approaches the height j = 32, the interface starts to flatten. In the upper half of the unit square, 

the situation is reversed: the right part of the interface will be faster than the left and then it again 
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Figure 3.6: Self-similar motion of a curvature driven interface in a laminate with both positive and negative 
values for V n . The figure shows snapshots of an initially flat interface at every 2000 time steps. 

starts to flatten as it approaches the upper boundary of the periodicity cell. 

3.3.3 Trapping 

Of particular interest are the interfaces that are trapped, i.e., interfaces which evolve to a stationary 

position. We begin with a laminate and seek conditions when one has a stationary interface with 

average normal in the X2 direction. We assume, as before, that the interface is a graph. We then 

have to solve 

subject to (3.27). We obtain 

u(x,) = { 

ducosu = -Ldx, 
c 

arcsin -bXl 
c 

arcsin h (! -x,) 
c 

for 

for 

For this to make sense, we need to impose that 

Ihlfl c> 
2 

Xl E [0, ~l 

Xl E [~, ~l 
(3.29) 

these are the conditions for the existence of the self similar interface F with periodicity 1. If c is 

smaller, we can proceed with periodicity N as before. The continuity of u at Xl = ~ gives 

. - hfl . 12(1 - fl) 
arcsm -- = arCSin 2 ' 

2c c 
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Figure 3.7: Motion of a curvature driven interface in a medium with a sinusoidal normal velocity law. The 
figure shows snapshots of an initially flat interface at every 100 time steps. 

which implies 

Thus we can construct a stationary front when the average of f is zero. We note that the converse 

is also true: if the average of f is positive (negative), then the average velocity is positive (negative) 

for c = 00 and therefore positive (negative) for any c 2: 0 by the monotonicity ofthe effective velocity 

with c. 

Similar trapping conditions can also be deduced for other geometries. For example, consider the 

case of a two-dimensional medium with f > 0 constant and circular inclusions of radius r with f < 0 

constant. In particular, consider f : [0, IF -+ IR defined by 

if (Xl-!)2+(X2-!)2>r2 

if (Xl-!)2+(X2-!)2<r2 

with f extended by periodicity outside the square [0, IF, where r E [O,!), It > 0 and h < 0 are 

constants. 

Stationary fronts can be constructed using the same method as in the laminate if 

c 
It~-~-h- (3.30) 

r 

Again, using of the comparison principle, we conclude that no other front is be able to break through 

these stationary barriers, so the effective normal velocity in the e2 direction is null. 

The trapping conditions in (3.30) are sharp in the following sense: If the first inequality is not 
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Figure 3.8: Propagation of a front by looping around a slow-velocity inclusion. The dotted line shows 
the frontier of the obstacle, while the continuous lines capture the shape of the interface at three different 
moments. 

satisfied, then the curvature is not penalized enough and the front is able to propagate by looping 

around the slow-speed inclusions (see Figure 3.8); if the second inequality is not satisfied, then the 

resistance to phase change inside the inclusion is not large enough and the curvature that the front 

has when hitting the obstacle will allow it to continue propagating by cutting through the inclusions 

(see Figure 3.9). 

3.4 Large c asymptotics for the effective normal velocity 

We saw in our study of laminates that one can obtain a simple characterization of the effective 

normal velocity when the curvature coefficient c becomes very large. We now generalize this result 

to other microstructures. Heuristically, as c becomes large, the curvature is severely penalized so the 

interface evolves to become flat in the limit c -+ 00. We thus obtain a one-dimensional problem: a flat 

interface propagating normal to itself. Therefore, following Bhattacharya [6] (also see Abeyaratne, 

Chu and James [1]), the effective velocity is the harmonic mean of its instantaneous normal velocity. 

We shall see that this instantaneous normal velocity is given by the average of f over the interface. 

We thus obtain the characterization (3.43) below. 

We begin with the two-dimensional case. We first prove that, for c large enough, any sufficiently 

smooth interface in JR2 that is initially a graph remains so. Assume that the initial interface can be 

described as the graph y = g(x) of a [0,1] - periodic function g(., 0) : JR -+ JR. As we've seen in the 
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Figure 3.9: Propagation of a front by cutting through a slow-velocity inclusion. The dotted line shows 
the frontier of the obstacle, while the continuous lines capture the shape of the interface at three different 
moments. 

previous section (see (3.25», the equation of motion for the function g is 

as long as the interface can be written as a graph. By scaling time s = ct we can rewrite this as 

(3.31 ) 

where 

k( ) _f(x,g(x,s»_ ( ( »_f(x,g(x,s»+ gxx 
x,s - K,X,gx,s - 3' 

C c (1 + gi) 2" 
(3.32) 

Differentiating (3.31) with respect to x, we get the following expression for gxs: 

(3.33) 

But, from (3.32), 

(3.34) 

Plugging this into (3.33), we get that 

(3.35) 

Differentiating (3.35) with respect to x and replacing all second order spatial derivatives gxx with 
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the right-hand side of (3.34), we get the following expression for gxx.: 

gxx. kxxVl + gi + 2kxgx(k - £ )(1 + g;) + 
c 

+ k(kx - Ix + Iygx )gx(1 + g;) + k(k - £ )2(1 + 3g;)(1 + g;)~. 
c c 

(3.36) 

We now differentiate (3.32) with respect to 8 and obtain 

which, after replacing the gxs and gxx. with the expressions obtained in (3.35) and (3.36) and some 

algebraic manipulation, becomes 

(3.37) 

We may choose the initial data for the interface to be such that 

k(x,g(x,O)) ~ O. 

Then (3.37) enforces this inequality to stay valid at all times. Indeed, let 81 be the first point in 

time when the function k assumes the value 0 in some point Xl. If Xl is an isolated zero point of k, 

then we have 

and then (3.37) gives that k.(X1,8d > O. If Xl is not an isolated zero point of k, then 

and then (3.37) gives that k. (Xl, 81) = o. It follows that, indeed, k does not ever assume negative 

values. 

By (3.32), the positivity of k implies 

d gx I(x,g) - >---
dx VI + gi - c' 

thus 

(3.38) 

for all X < xo, where Xo is a point where 9 assumes its maximum value. Moreover, a similar inequality 
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will hold for x < Xo. Assuming that c is large enough such that 

(3.39) 

for any Xl and X2, (3.38) and its correspondent for values of x with x < Xo will provide finite bounds 

on gx. These bounds ensure, in particular, that the interface will be such that it can be written as 

the graph of the function 9 at all times. 

It also follows that we are able to use the governing equation for 9 

gt = f(x,g)J1 + gi + c
1 
~x 2 

gx 

at all times. Integrating with respect to x, this yields 

j
X2 jX2 

( g(x,t) dX)t = f(x,g(x,t)) dx+carctangxl~~· 
Xl Xl 

Choosing Xl and X2 ends of an interval of periodicity for g, the last term in the right-hand side 

vanishes and we are left with 

j
X2 jX2 

( g(x,t) dX)t = f(x,g(x,t)) dx, 
Xl Xl 

(3.40) 

which says that, at any time, the instantaneous effective speed of the interface equals the average of 

the values of f along the front. 

We now estimate the effective normal velocity for the case when the constant interfacial energy 

c is very large. If c is large enough such that (3.39) holds, (3.38) implies that 

maxlfl Igxl < m = m(c) = , 
- Jc2 - max If I 

and thus, for every Xo E [0,1]' 

Ig(xo, t) - g(t)1 ::; m(c) (3.41 ) 

holds, where 

g(t) = 11 g(x, t)dx. 

This expresses the fact that, as c -+ 00, curvature becomes more and more penalized so the front 

becomes flatter and flatter. Using (3.40), (3.41) and the Lipschitz property of f, 

Igt -11 f(x,g(x))dxl 111 f(x,g(x,t))dx -11 
f(x,g(x))dxl::; 

< l 1If(X,g(X,t)) - f(x,g(t))ldx::; 
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< 11 Llg(x, t) - g(t)ldx :s 11 Lm(c)dx :S Lm(c). 

Thus, at any instant of time, the velocity equals I; f(x, g(x))dx, up to an error of order o( ~). Then, 

as long as 101 f(x,y) dx never vanishes, the speed with which the average front g(t) travels over one 

periodicity interval [0, 1] will be 

({1 1 1 dy)(-l), 
io 10 f(x, y) dx 

(3.42) 

up to an error of order o(~). Since (3.41) ensures that the front :F stays close to its average (given 

by g(t)), (3.42) will also be the limit as c -+ 00 of the effective normal velocity of :F. 

If the function f is such that I; f(x, y) dx vanishes for some y, then the front will be trapped 

once it reaches that position and we have that V(e2) = O. 

To write this in a more compact manner, we shall make the following two notations in ]RN: let 

< . >p1. denote the average of a YN-periodic function g on the (N - I)-dimensional hyperplane 

that is orthogonal to p and let (-) denote the usual one-dimensional average. We have proved the 

following result: 

Proposition 3 For a periodic interface in]R2 with effective normal e2 and moving with the normal 

velocity law (3.1), where f is a [0, IF-periodic function, its effective normal velocity has the limit 

(3.43) 

as c -+ 00, as long as (I)e1. never vanishes. If (I)e1. assumes the value 0, then f(e2) = O. 
2 2 

We now extend this result to ]RN through an asymptotic analysis on the degenerate parabolic 

equation in problem (3.3): 

(3.44) 

as c -+ 00 fast enough so that we also have EC -+ 00. We make the following ansatz for hE: 

1 1 
hE(x,t) = uE(x,t) + -vE(x,t) +0(-). 

c c 

Plugging this in (3.44) and separating the terms multiplied by c, we get that the c1 order problem 

is 
Vue 

IVuEldiv IVuEI = o. 

Hence uE is either a constant (which we exclude, because we want the zero level set of hE to be 

N - I-dimensional and not void or the whole space) or a function the level sets of which have zero 

mean curvature everywhere. Adding the periodicity conditions that we have for hE (and thus for uE 
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also), this implies that UC needs to have all level sets flat, thus it has to be a function of one spatial 

variable only. With proper choice of initial conditions for hC
, we may assume that 

(3.45) 

Next, by separating the terms that are not multiplied by any power of c, we get that the cO order 

problem is 

auC 

at f('E. )1V'uCI- clV'ucldiv V'V
C 

_ c V'U
C 

. V'V
C 

c lV'ucl lV'ucl 
V'UC . V'VC 

+ clV'ucldiv( lV'ucl3 V'U
C
). 

Taking into account that 

the CO order problem becomes 

auC 

at 

Using (3.45), this reduces to 

V'UC 

div lV'ucl = 0, 

V'UC 

div lV'ucl + 

We can get rid of the last term by integrating over l('}y-l) = [0, c](N-l) in the first (N -1) variables 

and obtain 

(3.46) 

where 

We notice that the equation (3.46) is of the Hamilton Jacobi type. If j(XN) has constant sign, we 

can use the homogenization results proved in [6] and in Chapter 2 to argue that its solution UC 

converges uniformly (as c --+ 0) to the solution u of 
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where f can be calculated by means of the variational principle derived in Theorem 2: 

- D 
f = lim sup f d ' 

D-->oo IEID I ~ 
f(XN) 

where ID is the set of all intervals of length D. 

If j(XN) does not have constant sign, it was shown in [6] that the resulting effective velocity is 

null. 

Since C ---+ 00 fast enough so that we also have EC ---+ 00, U will also be the limit of he. Hence 

large C limit of the effective normal velocity in the eN direction is 

(3.47) 

If d = d(D) is the largest integer smaller than D, then any interval I E ID is the reunion of d 

periodicity cells [0,1] with an interval of length D - d(D), so we can rewrite (3.47) as 

which gives the generalization of (3.43). 
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Chapter 4 

The effect of precipitates on the 
motion of a twin boundary 

4.1 Introduction 

In the present chapter we study the effect of precipitates on the motion of an interface or phase 

boundary in a solid, such as shape memory alloys capable of martensitic phase transitions. Shape 

memory alloys are able to assume various different phases: a high-symmetry, high-temperature 

phase (called austenite) and several symmetry-related low-symmetry, low-temperature phases (called 

variants of martensites). The interfaces that separate two martensitic phases or variants are called 

twin boundaries and it is their presence and mobility that makes the shape memory effect possible. 

The motivation for our study is given by the commercially important shape memory alloy NiTi. 

This alloy is very ductile and therefore it is usually precipitate hardened: by annealing an alloy 

which is slightly rich in Ti, it is possible to obtain NiTi shape memory alloys with a small volume 

fraction of Ni3 Ti4 precipitates. It has been observed that this raises the yield strength of the alloy 

while, at the same time, it does not affect too much the shape memory effect or the mobility of the 

twin/phase boundaries. It also only slightly depresses the transformation temperature. Thus these 

precipitates have quite a significant effect on plasticity (or mobility of dislocations) but no significant 

effect on phase transformation (or motion of twin/phase boundaries). The increase of yield strength 

by precipitates is quite well understood (see for example [22]). The precipitates pin the underlying 

dislocation and make it more difficult for them to move. So why do they not pin the twin/phase 

boundary? This question motivates this chapter. 

A heuristic explanation for this phenomenon is that the precipitates have the symmetry of the 

austenite (cubic in this case). Therefore, they are equally (energetically) disliked by all variants of 

martensite, and hence they do not produce any systematic preference of one martensitic variant over 

the other. Further, their effect is very localized and their concentration very dilute. Therefore, they 

do not produce any systematic or long range effect on the motion of the phase boundary. 
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We have seen in Chapter 1 that, in the context of linear elasticity, the normal velocity of the 

phase boundary can be written as a sum of four terms: the first term is a constant, the second 

term contains the influence of the inclusions and independent of the interface, the third term is 

given by the position of the interface and independent of the inclusions, while the fourth term is the 

product of the interfacial energy with the mean curvature of the interface. The previous chapters 

have considered this problem in simplified setup and derived formulas for an effective normal velocity 

when the second term is heterogeneous on a scale small compared to the domain. In this chapter we 

study the effect of precipitates, including the key elastic term that depends on the interface. Rather 

than focusing on the issue of homogenization, we try to expose the effect of the precipitates through 

simulation of certain examples. Section 4.2 specializes the problem to the case of an anti-plane shear 

deformation and also contains an estimate of the effect of the inclusions in the two-dimensional 

case. Sections 4.3 and 4.4 present a numerical method that allows us to simulate of the propagation 

of the phase boundary. Section 4.5 contains the results of certain simulations, which in particular 

show that the precipitate inclusions indeed have only a short range effect on the motion of the twin 

boundary. Finally, Section 4.6 considers the effect of a dilute dispersion of precipitates on the overall 

kinetics of phase boundaries. 

4.2 Anti-plane shear deformation 

We now specialize the model proposed in Chapter 1 to a body which occupies the whole three­

dimensional space and undergoes anti-plane shear deformations, where the displacement is parallel 

to a fixed axis and independent of the axial coordinate. We calculate the driving force and normal 

velocity (1. 7) explicitly for an interface propagating through a region containing circular precipitates 

in an attempt to understand the effect of precipitates on kinetics. 

In anti-plane shear, we may regard the displacement as a scalar function u on a plane. The strain 

may be regarded as the vector Vu. We assume that all phases and precipitates are isotropic and 

(by scaling the applied stress if necessary) take the elastic modulus equal to 1. Thus the energy is 

where ~k are the transformation strains corresponding to the various phases of the solid, and the 

stress is given by 

( 4.1) 

The linear momentum balance (1.3) reduces to 

<Ja,a = 0 (4.2) 
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at all points where u is smooth. At points where u is not smooth, the linear momentum balance 

reduces to continuity of traction: 

[0-"nn" = o. (4.3) 

In the following we will denote by 6 and 6 the transformation strains of the phases separated 

by r and by ~o the transformation strain of the phase in each inclusion. We assume that r and the 

boundaries of all inclusions Ai consist of a finite number of regular arcs (in the sense of Kellogg -

see [18]) and that they do not have corners. The equilibrium equations (4.2) then imply that u is 

a harmonic function, while (4.3) dictates the jump conditions on r and on the boundary of each 

~o-phase inclusion Ai: 

u;t;. - u;-;, = (613 - 6i3)ni3n" on r, (4.4) 

u;t;. - u;-;, = (~oi3 - 6i3)ni3n" on BA i , for all Ai inside r, 

u;t;. - u;-;, = (~oi3 - 6i3)ni3n" on BAi, for all Ai outside r. 

To this set of equations we have to add the far field conditions which contain the applied stress if: 

(4.5) 

In two dimensions, this problem (4.4) & (4.5) is analytically solvable in terms of logarithmic 

potentials, following Rosakis [23). Some results that will prove useful are summarized by Rosakis' 

Lemma 4.1 in [23) and will be repeated here for the reader's convenience. If we define the logarithmic 

potential of a region D C ]R2 by 

we have that 

and 

Further, if we set 

qP(x) = ~ { log Ix - zldaz, 
27r iD 

D {Ion D 6.1> = 
o on]R2 \ D ' 

D () I! x" - Z" 1 1 1>,,, x = -2 I 12 dAz = --2 log Ix - zln,,(z)dsz 
7r D x - Z 7r aD 

1>r;(x) -+ 0 as Ixl -+ 00. 
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then 

and 

(4.6) 

where x+ ED, x- E Jffi.2 \D and x E aD. 

Using this result, we find the solution to our problem (4.4) and (4.5) to be 

6
2
- 6 . r log Ix - zln(z)dsz + L ~8(i) - ~o . r log Ix - zln(z)dsz + (y. x, (4.7) 
7r lr . 27r loA t • 

where s(i) = 1 if Ai is outside rand s(i) = 2 for the inclusions Ai inside r, ¢o is the logarithmic 

potential of the interior of rand ¢i is the logarithmic potential of the interior of Ai. 

Therefore, in anti-plane shear, the normal velocity (1.7) yields 

Note that the influence of the inclusions are described by the sum in parentheses. We henceforth 

concentrate only on this: 

In order to estimate this quantity explicitly, we assume that the inclusions Ai are all circles of 

radius R centered at the positions Zi. Then 

R 1211" R cos fJ - Yil . fJdfJ 
--- SIn 
27r 0 YTI + YT2 + R2 - 2R(Yil cos fJ + Yi2 sin fJ) 

R 1211" R cos fJ - Yil . fJdfJ 
--- SIn 
27r 0 YT + R2 - 2RIYil cos(fJ - ai) , 

where Yi = x - Zi and ai is the argument of Yi· 

Changing variables t = ~ + ai - fJ, we get 

R l Qi + 1J Rsin(t - ai) - Yil --- cos(a· - t)dt 
27r Qi_32~ YT+R2-2RIYil sint t 

R2 cos ai sin ai R2 sin2 ai [ R2 cos2 at [ R2 cos at sin at [82 _ 

27r [e2 - 27r e8 + 27r e8 + 27r 

RYtl cos at [ RYil sin ai [ 
27r el - 27r 81, 

(4.10) 
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where 

l
"'i+~ cost 

leI = 2 dt, 
"'i_32~ Yi+R2-2RIYilsint 

l "'i+'i sin t 
lsI = 2 I dt, 

"'i-~ Yi + R2 - 2R Yil sin t 

l
"'i+~ COS2 t 

Ie2 = 2 dt, 
"'i- 32~ Yi + R2 - 2RIYil sin t 

l
"'i+~ sin2 t 

Is2 = 2 2 . dt 
"'i-~ Yi +R -2RIYil smt 

and 

l
"'i+~ cos t sin t 

Ies = 2 2 I dt. 
"'i-~ Yi + R - 2RIYi sin t 

To calculate these integrals, we use the following identities: 

J cost 1 2 2 . 

YT + R2 - 2RIYil sin t dt = - 2RIYil log (Yi + R - 2RIYil sm t) 

and 

J dt 2 (YT + R2) tan ~ - 2RIYil 
-,,-------,------- = arctan ----'-----,:-----"-="--~ 
YT + R2 - 2RIYil sin t YT - R2 YT - R2 

for IYi I > R (which translates to the fact that r does not intersect any of the Ai's). We obtain 

and 
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1 l"i+~ y2 + R2 
--1-_1 cost dt + ;RII Ic1 = O. 2R y, "'i_32~ y, 

Plugging all these results in (4.10), we get 

Similarly, 

and 

RYi1 sin ai 7r 

27r RIYil 

!i (2tr R sin () - Yi2 sin ()d() 
27r 10 YT + R2 - 2RIYil cos(() - ai) 

R l"i+~ Rcos(ai - t) - Yi2 - cos(a- - t)dt 
27r "i- 3; YT + R2 - 2RIYil sin t ' 

R2 cos2 ai R2 cos a, sin a, I R2 cos a, sin a, I R2 sin2 ai I 
27r Ie2 + 27r es + 27r es + 27r s2 -

RYi2 cos a, I RYi2 sin ai I 
27r c1 - 27r sl 

R2 cos2 ai -rr(YT + R2) + R2 sin2 ai -rr(YT + R2) 
27r 2R2YT 2-rr 2R2YT 

1 R2 
--4 (2 cos 2ai + 1), 

Yi 

!i (27r R cos () - Yi1 cos ()d() 
27r 10 YT + R2 - 2RIYil cos(() - ai) 

Ryz! cos a, I RYil sin ai I 
2-rr sl - 2-rr c1 

R2 cos2 ai -rr(YT + R2) R2 sin2 ai -rr(YT + R2) 
2-rr 2R2YT 2-rr 2R2YT 

1 R2 
-4 (2 cos 2ai - 1) 

Yi 

!i (27r R sin () - Yi2 cos ()d() 
2-rr 10 YT + R2 - 2RIYil cos(() - ai) 

,,-+"-
R l' 2 Rcos(ai-t)-Yi2 . 
- sm(t - a)dt 
2-rr "i- 3; YT + R2 - 2RIYil sin t ' 

RYi2 sin ai -rr 

2-rr RIYil 

RYil cos ai -rr 

2-rr RIYil 

R2 cos2 ai R2 sin ai cos ai I R2 sin ai cos ai I R2 sin2 ai 
2-rr Ies - 2-rr e2 + 2-rr s2 - 2-rr les 

RYi2 cos a, I RYi2 sin ai 
2-rr sl + 2-rr Ic1 



73 

0.' 

0 .• 

0.3 

0.2 

0.1 

-0.1 

-0.2 

-0.3 

-0 .• 

-0.5 
250 

250 

Figure 4.1: Plot of the influence of the inclusions on the normal velocity 

7r 

R2 sin 2ai 

4y; 

RYi2 cos ai 7r 

27r RIYil 

Substituting these values for 'IjJ~/3 (x) in (4.9), we obtain 

Figure 4.1 shows V according to the formula above for the case when ~o = 0, 6 = (0,0.1), 

6 = (0 , -0.1) and the inclusions have radius 0.1 and form a periodic 15 x 15 lattice with period 

[0, IF, centered at the point (0.5,0.5). The calculation was performed with the help of a 256 x 256 

grid laid on the unit cell. The values for ~o, 6 , 6 are chosen to mimic a situation in NiTi , where 

one has martensitic variants which are symmetry related (6 and 6) and precipitates which posses 

the symmetry of the austenite. Notice that V has lobes close to the precipitates but dies off away 

from it. Therefore , we conclude that the precipitates would affect the phase boundaries only when 

they get close to it but have no long range or systemic effect. The shape of V that we observe in 

Figure 4.1 is in agreement with the shape of a phase boundary in the vicinity of an inclusion which 

we shall observe in Figure 4.3. 
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4.3 The level set formulation 

We now proceed towards studying the evolution of the phase boundary as it encounters obstacles. An 

efficient tool in problems that deal numerically with free boundaries is the level set method, described 

by Osher and Sethian in [21]. We assume that there exists a level set function ¢ : ]R2 x [0, T) --+ ]R 

such that our twin boundary coincides with its zero level set at all times and 

¢ > 0 in the regions of phase with deformation strain 6 (and appropriate inclusions), 

¢ < 0 in the regions of phase with deformation strain 6 (and appropriate inclusions). 

Since the obstacles are fixed, we use a level set function only for the twin boundary f. Then 

V¢ 
n = /V¢/' 

ili!. at 
Vn = -/V¢/' 

so our normal velocity law implies that ¢ satisfies the following equation: 

To this equation one has to attach the initial condition 

¢(x,O) = ¢o(x) in ]R2 , 

(4.11) 

( 4.12) 

where ¢o is a function chosen such that its zero level set coincides with the initial position of the 

front, and appropriate boundary or far field conditions. If fo denotes the set of all points in the 

initial front, a common choice for ¢o is 

¢o(x) = min(d(x, fo), 1), 

where d(x, fo) is the distance from x to fo. 

However, to use this level set formulation, we notice in (4.11) that we need a normal velocity 

field Vn defined everywhere and not only along the twin boundary. To overcome this difficulty, we 

shall use a relaxation proposed by Hou, Rosakis and LeFloch in [16]. 

First, we define a regularization of the energy function W. For 0 ~ h ~ 1, let W(Vu, h) be a 

function such that 

{ 

W(Vu, h) = ~/Vu - ~ol 

W(Vu,O) = ~IVu - 6/, 

in U; Ai 

~V(Vu, 1) = ~IVu - 61 outside Ui Ai 

(4.13) 
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One possible choice for such a regularization is 

W(V'u,h) = 
A { ~1V'u - ~ol 

~1V'u - 61- h(~IV'u - 61- ~1V'u - 61) 

If H : ~ -+ ~ is the Heaviside step function 

H(x) = 
{

I, 

0, 

if x> ° 
if x < ° 

then, due to (4.13), W(V'u,H(¢») describes the stored energy W. 

(4.14) 

outside Ui A; 

For each c > 0, let HE : ~ -+ ~ be a regularized Heaviside function, i.e., a smooth monotonically 

nondecreasing function with 

He:(x) = 
{

I, if x> E 

if x < -E 0, 

H;(x) > ° for Ixl < E. 

A possible choice for the regularized Heaviside function is 

{ 

0, if x < -E 

H (x) = X+E + l sin 7rX if Ixl < E 
E 2E 27r E -

1, if x> E 

The corresponding regularized Dirac delta is defined by 

In particular, if He: is defined by (4.15), then the regularized Dirac delta function is 

llE(x) = 
{ 

0, 

.l.. + .l.. cos 7rX 
20 2E E 

if Ixl > E 

if Ixl :s E 

We can then define the regularized stored energy function WE by 

( 4.15) 

(4.16) 

(4.17) 



76 

This will replace the interfacial discontinuity r with a transition layer 

re = {x: \¢(x,t)\ < c}, 

with width of order 2c. The regularized stress is defined in analogy with (4.1): 

(4.18) 

We now enforce global versions of the momentum balance (4.2) and dissipation inequality, but 

with Wand a replaced with their regularized versions We and a e' Since we are in the quasi-static 

case, the momentum balance reduces to 

(4.19) 

while the regularized dissipation rate is 

If we define the regularized driving traction by 

( 4.20) 

then we can use (4.11), (4.16) and (4.17) to rewrite ~e(t) as 

(4.21) 

Note that the regularized driving traction is a globally defined field, whereas 1 is only defined 

on the interface r. Its definition (4.20) is motivated by a comparison of (4.21) with (1.4). Indeed, 

if 1> vanishes on rand () is some smooth field, it was proved in [7] that 

r ()cS(¢)\V¢\dx = r ()dt. 
iR2 ir 

This shows that (4.21) is a regularized version of (1.4). 

We can now extend the assumption Vn = Ie to the whole space to obtain a globally defined 

function V n . Substituting it into (4.11) yields 

(4.22) 
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Equations (4.19) and (4.22) comprise a system of two coupled partial differential equations for u 

and 1>. Attached to the initial condition (4.12) and appropriate boundary (or far-field) conditions, 

they define the regularized problem. 

4.4 Finite difference discretization associated to the regular­

ized level set formulation for a periodic structure 

We now present a numerical method to obtain the evolution of the twin boundary in a periodic 

structure. We assume that the inclusions are periodically arranged with unit cell [0,1 F. We also 

assume that the initial data 1>0 is [0, IF-periodic and the initial twin boundary is chosen such that 

it does not intersect any of the inclusions. We seek periodic solutions to (4.19) and (4.22). 

We can write the solution to (4.19) with the help of the [0, IF-periodic Green function G for 

Laplace's equation. Recall that 

G(x, z) = G(x - z) = ~ _~e21Ti m·(x-z) = ~ -~ cos(27ri m· (x - z)), 
~ m 2 ~ m 2 

m m 

where the sums are taken over all m E 1£2 with m f:. 0. 

Plugging (4.17) and (4.18) into (4.19) we conclude 

The linearity of this equation allows us to write its solution as the sum of two terms, one being the 

solution Uo to 
v. o(IVu - 61- H E (1))(IVu - 61-IVu - 61)) = ° 

0"( 

and the other one being the sum Uincl of all potentials associated to the inclusions: 

Uincl(X) = L(~O - ~s(i)) . 2~ i VG(x - z) dz. 
t ' 

( 4.23) 

The sum above is taken over all inclusions in [0,1]2 and sCi) equals 1 or 2, depending on which of 

the phases the inclusion is surrounded by. Written in terms of the convolution product, 



78 

where Xi : [0, IF --7 lR is the characteristic function associated to the inclusion Ai: 

{
I, 

Xi(X) = 
0, otherwise 

A short calculation shows that (4.23) may be written as 

\7 . (\7u - 6) + Hc;(¢) . (\7 . (\7u - 6) - \7. (\7u - 6)) + H;(¢)\7¢. ((\7u - 6) - (\7u - 6)) = 0, 

so its solution Uo can also be expressed in terms of the periodic Green function G: 

Hence the solution to (4.19) is 

1 
u(x) = (6 - 6) . (bc;(¢)\7¢) * G + ~)~o - ~s(i)) . -Xi * \7G, 

. 27r 
( 4.24) 

where the sum is taken over all inclusions in [0, IF. 
We shall now describe the finite difference discretization for this two-dimensional periodic prob­

lem. An N x N grid is laid on the periodicity cell [0, IF with grid spacing h = *,. Denote by 

U~j the approximation of U(Xi' Yj, tn) and by ¢~j the approximation of ¢(Xi' Yj, tn), where Xi = ih 

(i = 1, ... , N), Yj = jh (j = 1, ... , N), tn = n6.t (n nonnegative integer) and 6.t is the time step. 

We also introduce the following notations for the difference operators 

D~fi,j = fi+l,j - !;-l,j (centered), 

D; fi,j = fi,j - fi-l,j (backward), 

D~ Aj = fi+l,j - Aj (forward). 

The operators D~, D; and Dt are defined similarly. 

At each time step, the solution un to (4.19) is calculated using (4.24). The convolution products 

appearing in the right-hand side of (4.24) are conveniently fast calculated with the help of the fast 

Fourier transform. 

Once we have un, we proceed to the calculation of the driving force f n, using centered-difference 

discretizations of (4.14) and (4.20). 

Next, we employ a fifth order WENO (weighted essentially non oscillatory) scheme, introduced 

by Jiang and Peng in Section 2.2 of [17], to discretize equation (4.22) describing the evolution of the 
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level set function <p. Define 

where 

<p-;(i,j) l~h (-D~¢i-2,j + 7D~¢i-i,j + 7D~¢i,j - D~¢i+i,j) 
A-.WENO(D-; D~¢i-2,j D-; D~¢i-i,j D-; D~¢i,j D; D~¢i+1,j) 
'I-' h' h ' h ' h ' 

¢t(i,j) l~h (-D~¢i-2,j + 7D~¢i-i,j + 7D~¢i,j - D~¢i+1,j) 
+ A-.WENO(D-; D~¢i+2,j D; D~¢i+i,j D-; D~¢i,j D-; D~¢i-i,j) 

'I-' h' h ' h ' h ' 

¢;(i,j) l~h (-D~¢i,j-2 + 7D~¢i,j-i + 7D~¢i,j - D~¢i,j+d 
WENO D; D~¢i,j-2 D; D~¢i,j-i D; D~¢i,j D; D~¢i,j+i 

¢ ( h ' h ' h ' h ), 

¢~(i,j) l~h (-D~¢i,j-2 + 7D~¢i,j-i + 7D~¢i,j - D~¢i,j+1) 
A-.WENO(D; D~¢i,j+2 D; D~¢i,j+1 D; D~¢i,j D; D~¢i,j-i) 

+'1-' h' h ' h' h ' 

WENO 1 1 1 
¢ (a,b,c,d) = 3wo(a-2b+c) + 6(w2 - 2)(b-2c+d) 

and the weights Wo, W2 are defined as 

1 6 3 
ao = (f + ISo)2' ( 4.25) 

ISo = 13(a - b)2 + 3(a - 3b)2, ISo = 13(b - C)2 + 3(b + c)2, ISo = 13(c - d)2 + 3(3c - d)2. 

To numerically compute the Hamiltonian in (4.22), we shall use the local Lax-Friedrichs flux. If 

H(¢x, ¢y) denotes the Hamiltonian to be discretized, then 

where 

Here H,i (respectively H,2) stands for the partial derivative of H with respect to ¢x (respectively 

¢y), [A, B] is the value range for ¢O; and I(a, b) = [min(a, b), max(a, b)]. 

In our case, the numerical local Lax-Friedrichs flux reduces to 
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where 

Having this discretization of the right-hand side of (4.22), we proceed to updating the values 

of the level set function ¢ by numerically integrating it with respect to time, using a fourth order 

non-TVD (total variation diminishing) Runge Kutta scheme, described by Shu in [24]. 

In general, if we prescribe the initial value of the level set function ¢ to equal signed distance from 

the interface, it will not remain a distance function at later times. For large time computations it is 

desirable to keep ¢ as a distance function. This will ensure that the interface has a finite thickness 

of order € at all times. In [26], an iterative procedure was proposed to reinitialize ¢ at each time 

step, so that it remains close to the signed distance function from the evolving interface. Specifically, 

given a level-set function ¢n = ¢(x, tn) at fixed time tn, one computes the solution of the initial 

value problem 

( 4.26) 

The solution converges rapidly in time to a function that has the same sign and the same zero level 

set as ¢n and also satisfies IV ¢I = 1, so that it equals the signed distance from the interface. After ¢ 

evolves at each time step according to (4.22), it is reinitialized by solving (4.26) for a few time steps. 

Note that, when running the reinitialization procedure, the computational cell has to be extended to 

include several periodicity intervals since values of the signed distance function near the boundary 

may be dictated by points of the front outside the interval [0, IF. 

4.5 Numerical results 

We now apply this numerical method to various examples. In each of these examples, the material 

is periodic with the unit square as the unit cell. We consider a medium with two phases labelled 1 

and 2, and precipitates labelled O. Since in practice the precipitate inclusions are small compared 

to the distances in between them, we choose them to be circles of small radius r = .005. The 

transformation strain of the phases 6 and 6 are chosen to be symmetry related with each other 

and (0 is chosen to be zero. In each example below, we will choose the initial condition to be three 

horizontal bands in the unit cell: phase 1 - phase 2 - phase 1. This corresponds to an infinite number 

of infinitely long alternating bands as in the observed fine twins of martensite. The parameters € 

(which gives the width of the numerical approximation to the front) and to (which occurs in (4.25)) 

are chosen to be € = 0.01 and to = 10-6 respectively. All the simulations were run on a 256 x 256 

grid laid on the unit cell [0, IF. 
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Figure 4.2: Evolution of phase boundaries in the case when there are no inclusions 

Example 1. Assume 

~o = (0,0), 6 = (0,0.1), 6 = (0, -0.1) 

and that there are four inclusions present in the unit cell, with centers at the coordinates (~, ~), 

(i, ~), (i, V and (i, ~). The two horizontal phase boundaries are initially placed symmetrically 

with respect to the line X2 = ~ and the phase with deformation strain 6 occupies the area in between 

them. For the example presented in Figures 4.2 and 4.3, the two interfaces are at the coordinates 

j = 120 and j = 136 respectively and the initial level set function is chosen to be the signed distance 

function. Note that the orientation of the interfaces is compatible with the transformation strain: 

n = e2 II (6 - 6)· 

However, the initial positions are not at equilibrium (which corresponds to equal volume fraction) 

and thus the driving traction (4.20) does not vanish. The kinetic relation Vn = f forces the interfaces 

to move and the level set function changes according to (4.22). The coupling of u and ¢> in (4.19) 

and (4.22) drives the subsequent dynamics of the problem. 

For the sake of comparison, Figure 4.2 shows the evolution of the phase boundaries in the case 

when there are no inclusions of phase O. It presents a sequence of evolving configurations of the 

interfaces at t = 0.0,0.0002,0.0004,0.0006,0.0008,0.001,0.0012. The interfaces translate uniformly 

apart from each other until they reach the positions X2 = .25 and X2 = .75 respectively, when the 

two phases share equal volume fractions and the problem attains a state of equilibrium. This has 
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Figure 4.3: Evolution of phase boundaries in the case when there are inclusions 

been also checked numerically by running a separate simulation with initial positions of the two 

horizontal phase boundaries placed at X2 = .25 and X2 = .75 respectively (the two interfaces remain 

fixed). 

We now place the four inclusions of phase 0 and start with the same initial data. It turns out 

that the influence of the inclusions on the normal velocity is much smaller than the influence of the 

fact that the two phases do not have equal volume fraction. Therefore, the two phase boundaries are 

forced to pass through the inclusions with centers at (~, ~) and (~, ~) and grow till phase 2 occupies 

half of the unit cell. This is observed in Figure 4.3, which shows a sequence of evolving configurations 

of the interfaces at the same instances t = 0.0,0.0002,0.0004,0.0006,0.0008,0.001,0.0012. The phase 

boundaries loop around the two inclusions and they develop a disconnected shape which contains 

a leading front and a trace left around the obstacles, pictured separately in Figure 4.4. After 

looping around the inclusions, the leading parts continue to translate uniformly in the upward (and 

downward) direction until they reach the equilibrium positions at X2 = .25 and X2 = .75 respectively 

(the positions of the inclusions have been chosen symmetrically to the lines X2 = .25 and X2 = .75 

so that the final equilibrium position does not change; this can again be checked numerically by 

running a simulation with initial positions of the two horizontal phase boundaries at X2 = .25 and 

X2 = .75). 

Note that the shape of the phase boundary in the vicinity of the inclusion that we observe in 

Figure 4.3 is in agreement with the shape of V that we observed in Figure 4.l. 

Figure 4.5 presents a comparison of the two cases, with and without inclusions. The interfaces 

are plotted at the same amount of elapsed time, by a dotted line for the case when there are no 

inclusions and by a continuous line for the case with obstacles. Note that the inclusions introduce a 



83 

250 

200 

150 

100 

50 

50 100 150 200 250 

Figure 4.4: Shape of the phase boundaries after it loops around the inclusions 
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Figure 4.5: Comparison of the two phase boundaries (with and without inclusions) 



84 

250 

200 

150 

100 

50 

50 150 200 

Figure 4.6: Evolution of phase boundaries with mismatched normal in the case when there are no inclusions 

small delay in the evolution of the front (the vertical axis has been blown up so that the delay can 

be easier observed) and also affect its shape locally. 

Exalllple 2. While the inclusions seem to have little effect on the evolution of the phase 

boundaries in the first example, we now show how they can have a crucial effect when acting as 

instabilities. For this, we consider the same setting only with the three phases modified such that 

they have the transformation strains 

~o = (0,0), 6 = (0.1,0), 6 = (-0.1,0). 

Again, the two interfaces are initially placed horizontally at the coordinates j = 120 and j = 
136 respectively and the initial level set function is chosen to be the signed distance function. 

Note now that the orientation of the interfaces is incompatible with the difference between the 

two transformation strains. If there are no precipitates and if the initial boundaries are perfectly 

straight, then the two phase boundaries seem to be in a state of unstable equilibrium and do not 

move. However, if their initial positions are perturbed, the system becomes unstable and evolves 

to the stable equilibrium, with equal volume fraction and phase boundaries with correct (matched) 

normal. 

Figure 4.6 shows a sequence of evolving configurations of the interfaces for the case when the 

shape of the two initial phase boundaries was sinusoidally perturbed. The instances when the 

snapshots are taken are t = 0.0,0.002,0.004,0.006,0.008,0.01,0.012,0.014, 0.016, 0.018. Once the 

simulation is started, the thinner side of phase 2 starts shrinking as its wider part starts growing. 

When t = 0.5 it has already transformed into a bubble which continues to grow in the e2 direction 
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Figure 4.7: Evolution of phase boundaries with mismatched normal (part I) 

until it touches the bubbles from the neighboring cells and the region occupied by phase 2 becomes 

a strip again. Ultimately, the boundaries of this strip flatten and tend to the lines Xl = 0 and 

Xl = 0.5, which define an equilibrium position - equal volume fraction with phase boundaries having 

matched normal n = el. 

Returning to the case when the initial interfaces are straight and not perturbed, an interesting 

simulation shows how the presence of the precipitate inclusions can lead to instability and force the 

phase boundary to evolve to an equilibrium position. Again, the two interfaces are initially placed 

at the coordinates j = 120 and j = 136 respectively and the initial level set function is chosen to 

be the signed distance function. We place four spherical inclusions with centers at the points (t, t ), 
(t, ~), (~, t) and (~,~) respectively. 

Figures 4.6, 4.7 and 4.8 picture a sequence of evolving configurations of the phase boundaries. The 

inclusions act as attractors to the interface and force the interfaces to leave their unstable equilibrium 

position. The portions of phase 2 strip aligned with the obstacles starts growing as its other part 

starts shrinking and it breaks into two bubbles, as can be noticed in Figure 4.6, which shows plots 

the interfaces at the instances t = 0.005,0.01,0.012,0.013,0.015,0.016,0.017,0.0175, 0.018. As the 

two bubbles grow, they loop around the inclusions and leave circular traces around them. 

As the bubbles grow, they eventually reach the boundary of the unit square and they touch the 

bubble from the neighboring cell, giving birth to a new topological change. The region of phase 2 be­

comes a collection of strips again, this time with the correct normal orientation. Figure 4.7 shows the 

interfaces at the instances t = 0.018,0.0185,0.019,0.0195,0.02,0.0205,0.021, 0.0215, 0.022, 0.0225. 

Finally, the two strips flatten as the region of phase 2 tends to a stable equilibrium (with volume 

fraction ~ and boundaries of normal el), see Figure 4.8, which pictures the interfaces at the instances 
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Figure 4.8: Evolution of phase boundaries with mismatched normal (part II) 
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Figure 4.9: Evolution of phase boundaries with mismatched normal (part III) 
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t = 0.0225,0.023,0.0235,0.024,0.0245,0.025,0.0255, 0.026, 0.0265, 0.027. 

4.6 Delay scaling 

We consider the evolution in ]R2 of a phase boundary r with no interfacial energy in an infinite 

medium with a single inclusion B(O, R). Assume that the inclusion is circular and we choose the 

coordinate axes such that the origin coincides with its center. If R denotes the radius of the inclusion, 

we set the initial phase boundary to be the horizontal line X2 = -2R. In the absence of applied 

stress, the strain field induced by this geometry is given by (4.7): 

(~ R) ( ) _ 6(3 - 6(31 Z(3 - X(3 ()d + ~s(O)(3 - ~0(31 Z(3 - X(3 ()d 
vU '" x - n", Z Sz n", Z Sz. 

21l' rR Ix - zI2 21l' 8B(O,R) Ix - zI2 

If we perform the change of variable Z = Ry inside the integrals, we get 

This, together with (1.7), implies that the normal velocity for such a geometry is subject to the 

scaling law 

By scaling both the x and t variables in (4.11) with R, we conclude that the geometric nature of the 

motion of the interface in such a geometry is independent of R (i.e., is determined up to the scaling 

factor). In particular, this implies that the delay introduced by the inclusion in the average velocity 

of the front is proportional to the radius R: 

fj,t=CR. 

The results of the simulation presented in the previous section indicate that the proportionality 

constant C is small. 



88 



89 

Chapter 5 

Conclusions 

We have investigated the propagation of interfaces in heterogeneous materials and, in particular, 

the effect of precipitates on the motion of a phase boundary in a solid capable of martensitic phase 

transitions. We are interested in finding the effective motion of the interface or phase boundary 

when the heterogeneities are small compared to the macroscopic length scales. This is motivated 

by the shape-memory alloy NiTi. Typical commercial specimens contain small non-transforming 

precipitates of Ni3 Ti4 . These precipitates pin dislocations, but do not seem to affect the evolution 

of martensitic microstructure significantly. 

We propose a simple model based on linear, homogeneous elasticity and linear kinetics to describe 

the evolution of phase boundary in a heterogeneous martensitic medium. We show that in this 

model the normal velocity of the phase boundary may be written as a sum of several terms: first 

a homogeneous (but non-local) term that one would obtain for the propagation of the boundary 

in a homogeneous medium, second a heterogeneous term describing the effects of the inclusions 

but completely independent of the phase or twin boundary and third an interfacial energy term 

proportional to the mean curvature of the boundary. 

We then study certain simplified examples that are also of independent interest. The simplest 

case is the geometric motion, when the normal velocity is predefined everywhere as a function of 

position only. We employ the level set formulation to describe the geometric motion of a phase 

boundary, and this gives rise to an Hamilton-Jacobi equation. A homogenization theorem was 

known in the literature under the assumption that the normal velocity is continuous and positive 

everywhere. Unfortunately, this theorem does not provide an efficient tool for calculating the ho­

mogenized Hamiltonian or effective velocity. This thesis provides four new variational formulas 

(Theorems 2, 4, 5, 6) that characterize the effective velocity. The usefulness of these formulas are 

demonstrated through examples. Though homogenization theory requires the positivity and con­

tinuity of the normal velocity, we show through examples that it is possible to define an effective 

front in many examples where this fails. We show that our formulas indeed describe the evolution 

of these effective fronts. 
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We then turn to the curvature flow, where the normal velocity is the sum of a position-dependent 

function with a term that is proportional to the mean curvature of the interface. We prove a 

homogenization theorem and also some qualitative features of the homogenized front. In particular, 

we show that the effective motion is described by a geometric law independent of curvature and may 

be anisotropic. We study in detail the laminated microstructures and we prove an explicit formula 

for the effective velocity for the case when the curvature penalization coefficient is large. Some of 

the quantitative results we obtain are verified numerically. 

Finally, we address the problem in full generality, for the case of an anti-plane shear deformation. 

We consider a medium that contains a periodic lattice of inclusions, all of which are circular and 

have a small radius. Motivated by Ni3 Ti4 precipitates in NiTi, we assume that inclusions have a 

self-strain that is symmetric with respect to both phases. We estimate algebraically the contribution 

to the normal velocity due to the presence of the inclusions and we show that their effect is localized. 

Next, we employ the level set formulation for a numerical study of the propagation of the interface. 

Our simulations show that these precipitates have a very local effect on the propagation of twin 

boundaries. Further, we show they can provide the perturbation to push twin boundaries out of 

metastable states, as for example when the interfaces are not correctly aligned. In particular, our 

results explain why Ni3Ti4 precipitates don't affect the shape memory effect in NiTi. 
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