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Abstract 

In this thesis two distinct features of coherent structures are investigated. 

In Part I a model for the pinch-off process in vortex ring formation is developed. The 

predicted nondimensional stroke length LID (referred to as "formation number") satis­

factorily matches experimental observations. The model introduces two nondimensional 

parameters that govern the limiting value of the formation number: a nondimensional en­

ergy and circulation, End and r nd, respectively. The predicted value of End also matches 

well with the experimental data. The limiting value for the new nondimensional circulation 

is predicted to be in the range 1. 77 ~ r nd ~ 2.07. We perform detailed computations 

of vortex ring formation by nonconservative forcing. The validity of the assumptions in 

our model is verified in these computations. Some techniques for generating fat rings are 

successfully investigated, resulting in generation of vortex rings with Hill's like properties. 

We consider thermodynamics of the vorticity density field (wiT), and we develop a statis­

tical equilibrium theory for axisymmetric flows. It is shown that the statistical equilibrium 

of an axisymmetric flow is the state that maximizes an entropy functional constrained to 

the invariants of motion. Furthermore, it is shown that the final equilibrium state satisfies 

a variational principle similar to Kelvin's variational principle. 

In Part II Mach wave radiation mechanisms in a fully expanded supersonic jet is studied. 

We compare a direct numerical simulation (DNS) of a 1.92 Mach number jet with a linearized 

Navier-Stokes (LNS) simulation. The numerical integration technique, inflow boundary 

conditions, and grid distributions are the same in both simulations. We found that the 

generated noise in the DNS calculation is dominated by the first two azimuthal modes, 

and contributions from all other azimuthal modes were limited to less than 1.5 dB in the 

acoustic field. The total directivity of the sound field in the LNS matches reasonably well 

with the sound field of the DNS data. At the peak Strouhal frequency, particularly for the 

azimuthal mode n = 1, the amplification of flow variables in the LNS closely matches that 

of the DNS data. However, for frequencies away from the peak Strouhal number the DNS 

data shows amplification rates comparable to those of the peak Strouhal number, while in 

the LNS data any disturbances away from the peak Strouhal number are highly damped. 

These extra noise sources in the DNS data have the characteristics of a nonlinear interaction 
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among various modes. 

The noise generated by the first two modes in the linearized computation is substantially 

weaker than in the DNS. For example, in the near acoustic field, at a distance of 6 jet 

diameters from the jet centerline, the sound pressure level in the linearized computation is 

as much as 8 db smaller than the DNS results. We observed that the maximum amplification 

rate for the DNS data occurs at an axial location further downstream than for the LNS 

data, which corresponds to regions around and beyond the end of the potential core. Our 

results indicate that the missing sound generation mechanisms in the LNS computation at 

the frequencies considered in this study can be attributed to the non-linear sound generation 

mechanisms, that are not captured in linear theories. 



VI 

Contents 

I Universality in Vortex Formation 

1 Introduction 

1.1 Vortex Pinch-off Process 

2 A Model for Universal Time Scale of Vortex Ring Formation 

2.1 Slug Model With Time Varying Exit Diameter and Velocity 

2.2 Model ... 

2.3 Comments. 

3 Statistical Equilibrium Theory 

3.1 Governing Equations and Poisson Bracket 

3.2 Statistical Equilibrium Theory 

3.3 

3.4 

Kelvin's Variational Result 

Discussion . . . . 

4 Numerical Results 

4.1 Vorticity Generation by Nonconservative Force 

4.2 Numerical Method ...... . 

4.3 Vortex Ring Pinch-off Process 

4.4 Numerical Results ...... . 

4.5 Generation of Thick Vortex Rings 

4.6 Comparison with Norbury Vortices 

4.7 Conclusions.............. 

1 

2 

4 

6 

7 

9 

14 

16 

18 

24 

29 

31 

35 

38 

40 

42 

45 

52 

56 

57 



Vll 

5 Conclusions and Future Work 

II Evaluation of Mach Wave Radiation in a Supersonic Jet 

6 Introduction 

7 

8 

6.1 Motivation 

6.2 Mach Wave Radiation 

6.3 Computational Tools 

6.4 Approach . . . . . . 

Computational Techniques 

7.1 Governing Equations 

7.1.1 Compressible Navier-Stokes Equations 

7.1.2 Linearized NS Equations 

7.2 Numerical Simulation of Linearized NS Equations. 

7.2.1 Computational Grid 

7.2.2 Coordinate Singularity Treatment 

7.2.3 Boundary Conditions and Buffer Zones 

7.2.4 Mean Flow 

7.3 Linear Theory of Supersonic Jet Noise 

7.3.1 Stochastic Wave Model 

7.3.2 Numerical Issues 

7.3.3 Mean Flow Used in LST Calculations 

7.3.4 Other Instability Modes 

7.4 Signal Processing Techniques 

Results 

8.1 Sound Pressure Level 

8.2 Instantaneous Fields . 

8.3 Low Frequency Artifacts of Individual Frequency Components 

8.4 Amplification Rates ....................... . 

60 

63 

64 

64 

65 

69 

70 

73 

73 

73 

77 

78 

81 

84 

85 

89 

90 

98 

99 

100 

102 

103 

109 

109 

113 

115 

118 



viii 

9 Conclusions and Future Work 137 

A Numerical Treatment of Polar Coordinate Singularities 140 

A.0.1 Approach . . . . . . . . . . . . . . . . 141 

A.0.2 Compressible Navier-Stokes Equations 145 

A.0.3 Bessel's Equation. . . . . . . . . . . 148 

A.O.4 North and South Pole Singularities 151 

A.0.5 Accurate Calculation of Eigenvalues of Orr-Sommerfeld Equation 153 

B Axisymmetric Vortex Filament Method 155 

C Evaluation of Giles and Tam's Nonreflecting Boundary Conditions for 

The Euler Equation 157 

C.0.6 Introduction 157 

C.0.7 Numerical Method 

C.0.8 Results ..... . 

159 

160 



IX 

List of Figures 

1.1 A slug of fluid. . . . . . . . . . . . . . 

1.2 Vortex roll up at the exit of an orifice. 

2.1 Slug model fluid at the exit of a nozzle with time varying diameter and piston 

velocity. . .................... . 

2.2 Relation between the formation number (L/ D) and the parameter of Nor-

3 

3 

8 

bury's family of vortices (aN). -- equation (2.18); --- equation (2.19). 11 

2.3 Variation of formation number (L/ D) with nondimensional translation ve-

locity (UtT/Up ) . ........... . 

3.1 A vortex ring in axisymmetric flows. 

4.1 (a) Nondimensional vorticity contours (wR2/C) and axial velocity (uR/C) 

profiles, and (b) vorticity profiles at nondimensional times tC / R2 =46.8, 

122.7, and 217.6. (--) axial velocity and (---- ) azimuthal vorticity. 

Axial velocity and vorticity distributions at the axial center of the forcing 

region at the nondimensional time 46.S is also plotted. The scales for velocity 

13 

19 

and vorticity profiles are shown in the picture. . . . . . . . . . . . .. 44 

4.2 Vortex ring formation at different times; (a) tC / R2 = 26.S3, non dimensional 

vorticity (wR2 / C) contour levels (min=O.OS, max=O.78, increment=O.07) /3.16 

(b) tC / R2 = 44.72, contour levels (min=O.05, max=O.65, increment=O.06) /3.16 

and (c) tC/R2 = 53.66, contour levels (min=O.06, max=O.66, increment=O.06) /3.16. 46 



x 

4.3 Vortex ring formation with different forcing times, (a) TC I R2 = 4.05, contour 

levels (min=0.002, max=0.02, increment=0.002) (b) TCI R2 = 25.3, contour 

levels (min=0.0023, max=0.0333, increment=0.0031), and (c) TC I R2 = 77.5, 

contour levels (min=0.0023, max=0.0333, increment=0.0031). . . . . . . .. 47 

4.4 Vortex rings generated with axlR = 0.2,arIR = 0.2, and with different 

forcing duration TC I R2. Total circulation: (6) TC I R2 = 4.05; (_.- ) 

TCIR2 = 9.11; (---- ) TCIR2 = 14.2; ( ... ----- ) TCIR2 = 25.3; (- ) 

TC I R2 = 39.5. Ring circulation: (0) TC I R2 = 14.2; (+) TC I R2 = 25.3; 

(0 ) TC I R2 = 39.5. For cases with forcing time less than the pinch off time, 

namely TC I R2 = 4.05 and 9.11, the total circulation and the circulation of 

the leading vortex ring are the same. . . . . . . . . . . . . . . . . . . . . .. 49 

4.5 Vortex rings generated with axl R = 0.2, arl R = 0.2, and different forcing 

duration TCIR2. (---) TCIR2 = 9.11; (0) TCIR2 = 14.2; (+) TCIR2 = 

25.3; (0 ) TC I R2 = 39.5. ............................ 50 

4.6 Vortex rings generated with ax I R = 0.2, ar I R = 0.2, TC I R2 = 25.3, and dif­

ferent Reynolds number. (*) Rq.v.r. = 320; (0) Rel.v.r. = 800; (6) Rel.v.r. = 

1890; (+) Rel.v.r. = 3680; (0 ) Rel.v.r. = 7300. The total quantities with the 

forcing duration TC I R2 = 9.11 very close to the limiting case is also plotted 

as (---). For Rel.v.r_ = 320 and 800 the leading vortex ring is not detached 

from the trailing jet at a cut-off level of 2% of the maximum vorticity. . .. 51 

4.7 Vortex rings generated with ar I R = 0.2, TC I R2 = 25.3, and different axl R. 

Leading vortex ring: (0) axlR = 0.1; (+) axlR = 0.2; (0) axlR = 0.4. 

(- -- ) total properties provided by the shear layer for ax I R = 0.4. .... 52 

4.8 Vortex rings generated with axl R = 0.2, TC I R2 = 25.3, and different arl R: 

(a) Velocity profile at time tUtrl D = 9.11; (b) Circulation; (c) Energy. 

(--- ) TCIR2 = 9.11; (6) arlR = 0.6; (0 ) arlR = 0.4; (+) arlR = 

0.2; (0) arl R = 0.1. ......................... . 

4.9 Time history of the forcing amplitude for the results in figure 4.10. 

53 

54 



xi 

4.10 Vortex rings generated with varying forcing amplitude. (0) constant forcing 

amplitude in figure 4.9(a); (0 ) forcing amplitude depicted in figure 4.9(b); 

(,0,) forcing amplitude depicted in figure 4.9(c). . . . . . . . . . . . . . . .. 55 

4.11 Vortex rings generated with varying exit diameter. a x / Ro = a r / Ro = 0.2, 

and (_.- ) constant diameter with TC / R5 = 9.11; (,0,) constant diameter 

with TC / R6 = 25.3; (0 ) varying diameter with TC / R6 = 25.3. ...... 56 

4.12 Comparison of nondimensional circulation and energy of the computational 

cases (shown in numbers) with the Norbury family (--). . . . . . . . .. 58 

6.1 Schematics of a turbulent jet. . . . . . . . 67 

7.1 Computational domain and buffer zones .. 82 

7.2 (a) radial grid spacing versus radial location, (b) axial grid spacing versus 

axial location. . . . . . . . . . . . . . . . . . . 83 

7.3 The axial distribution of axial convective velocity (--) and damping terms 

( .) in the buffer zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 88 

7.4 The radial distribution of radial convective velocity (-- ) and damping 

term (.) in the buffer zone. .. . 88 

7.5 Mean flow axial velocity at r = O. 90 

7.6 (a) Mean flow density contours: 11 contours between 0.8poo and Poo, (b) 

mean flow axial velocity contours: 10 contours between 0.2aoo and 2.0aoo , 

(c) mean flow radial velocity contours: 9 contours between -0.035aoo and 

0.045aoo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 91 

7.7 (a) Mean flow density profiles, (b) mean flow axial velocity profiles, (c) mean 

flow radial velocity profiles. . . . . . . . . . . . . . . . . . . . . . . . . . .. 92 

7.8 Deformed integration contour in the complex r plane for supersonically damped 

instability waves. . . . . . . . . . . . . . . . . 

7.9 Time interval between consecutive DNS data. 

8.1 SPL of DNS at r = 12. (--) total; (---- ) azimuthal mode zero; (_.- ) 

azimuthal mode one; ( ........ ) modes zero and one; (_ .. - ) total minus modes 

101 

106 

zero and one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 110 



Xll 

8.2 SPL at r = 12. For DNS: (-- ) sum of modes n = 0 and 1; (---- ) n = 0; 

(_.- ) n = 1, and for LNS: (- ) sum of modes n = 0 and 1; (- ...... - ) 

n = 0; (-- ) n = 1. .............................. 111 

8.3 Instantaneous perturbation pressure field from DNS and LNS at time 222. 

No attempt was made to remove the drift in the DNS data. 10 contour levels 

between -0.00225 and 0.00225. ......................... 113 

8.4 Space-time diagram showing the convection of large structures for azimuthal 

modes zero and one. . . . . . . . . . 

8.5 Drift in the DNS data at time 222. (a) n = 0; 8 contour levels between 

-0.0125 and 0.0225, (b) real part of n = 1; 12 contour levels between -0.0015 

and 0.0095, (c) imaginary part of n = 1; 12 contour levels between -0.0015 

116 

and 0.0095. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 117 

8.6 Drift in the pressure disturbance of the DNS data at x = 15 and r = 1, 

(a) n = 0, (b) real part of n = 1, (c) imaginary part of n = 1. (--) 

disturbance; (---- ) drift. 118 

8.7 Instantaneous perturbation pressure field from DNS at time 222. Drift in 

the data was calculated by fitting a fifth order polynomial in x to the data 

and then subtracting it from the data. 10 contour levels between -0.009 and 

0.009. (a) azimuthal mode zero, (b) real part of azimuthal mode one, (c) 

imaginary part of azimuthal mode one. . . . . . . . . . . . . . . . . . . . .. 119 

8.8 Perturbation pressure spectra of DNS data at several axial locations in the 

jet shear layer at r = 1. ............................. 120 

8.9 Perturbation pressure field for n = 1 for (a) St = 0.048 (b) St = 0.095 (c) 

St = 0.143 (d) St = 0.191 (e) St = 0.238 (f) St = 0.286 (g) St = 0.333 (h) 

St = 0.381 (i) St = 0.429. (-), DNS at r = 1; (- ...... - ), LNS at r = 1; 

(--), DNS at r = 4; (---- ), LNS at r = 4. ................ 121 

8.10 Perturbation pressure field for n = 0 at r = 4 for (a) St = 0.048 (b) St = 

0.095 (c) St = 0.143 (d) St = 0.191 (e) St = 0.238 (f) St = 0.286 (g) 

St = 0.333 (h) St = 0.381 (i) St = 0.429. (--), DNS, and (---- ), LNS. 122 



xiii 

8.11 Axial velocity eigenfunctions ofLNS for (---- ) and DNS (--) calculations 

for n = 1 at various frequencies. . . . . . . . . . . . . . . . . . . . . . . . .. 127 

8.12 Pressure eigenfunctions of LNS for (---- ) and DNS (--) calculations for 

n = 1 at various frequencies. . . . . . . . . . . . . . . . . . . . . . . 130 

8.13 Contours of the amplitude of perturbation pressure field for n = 1. 132 

8.14 Contours of the amplitude of perturbation pressure field for n = O. 133 

8.15 Pressure amplification at r = 1 for n = 1. (--) DNS; (---- ) LNS; 

(_ .. _) LST .................. . 135 

8.16 Pressure (a,c,e) and velocity (b,d,f) eigenfunctions for n = 1 and for various 

frequencies. (--) DNS; (---- ) LNS; (---- ) LST. . . . . . . . . . . .. 136 

A.1 Computational and physical domains. . ....... . 141 

A.2 Numerical solution (density perturbation relative to initial amplitude) for 

method CL1 at (a) t = 2, (b) t = 4. . . . . . . . . . . . . . . . . . . . . . .. 147 

A.3 Absolute error in solution at t = 2 relative to the initial amplitude of the 

pulse for (a) CL1, (b) CL2. .......... . . . . . . . . . . . . . . . .. 147 

A.4 First eigenvalues of the Bessel equation for (a) n = 1, (b) n = 7, (c) n = 49. 

/'::, Huang & Sloan [57]; 'V second order FD; • present approach; <> Gottlieb 

and Orszag [50]; • Matsushima and Marcus [75]. .............. 150 

A.5 The first eigenvalue of the spherical Bessel's equation for n = 49 .• present 

approach; <> Chebyshev tau method; • Matsushima and Marcus [75]. 151 

A.6 Absolute error for solid convection over a sphere: (a) along the equator (b) 

over the pole. . . . . . . . . . . . . . . . . . . . . 

A.7 Eigenvalues of axisymmetric mode of pipe flow, wavenumber a = 1, ReR = 

5000. (0) Davey and Drazin; (x) Abbot and Moss, N = 46; ( 0 ) Abbot 

and Moss N = 80; and ( • ) present approach, N = 46. 

152 

154 

C.1 L2 norm of energy in the computational domain. . . . . . . . . . . . . . .. 160 

C.2 Computational domain. Location of points for calculating the short time 

errors are marked by (+). . . . . . . . . . . . . . . . . . . . . . . . . . . .. 162 



XlV 

C.3 Absolute error in density at point (0, 0). (--) Giles BC's, modified inflow 

and outflow; (---- ) Giles BC's, modified inflow; (_ .. - ) Tam's BC's. . .. 163 

C.4 Absolute error in density at point (80~, 0). (--) Giles BC's, modified 

inflow and outflow; (---- ) Giles BC's, modified inflow; (_ .. - ) Tam's BC's. 164 

C.5 Absolute error in density at point (80~, 80~). (--) Giles BC's, 

modified inflow and outflow; (---- ) Giles BC's, modified inflow; (_ .. - ) 

Tam's BC's .................. . 164 

C.6 Total energy in the computational domain. (--) Giles BC's, modified 

inflow and outflow; (---- ) Giles BC's, modified inflow; (_ .. - ) Tam's BC's. 165 



xv 

List of Tables 

4.1 

7.1 

Parameters for computational cases . 

Parameters for buffer zones . . . . . 

57 

87 



1 

Part I 

Universality in Vortex Formation 
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Chapter 1 

Introduction 

Vortex rings are among the simplest three-dimensional vortical structures. Their persistence 

and compactness have fascinated fluid dynamists for many years. Vortex rings are quite 

common in nature (e.g., see [70]), and perhaps the most familiar example is the smoke 

ring. Due to their simplicity and the variety of unanswered questions, they are still a fertile 

research area. In general, vortex rings are defined by a confined region of vorticity with 

closed vortex lines. This confined region is generally referred to as the core of the vortex 

ring. A vortex ring need not to be axisymmetric; however, to simplify our analysis we will 

concentrate on axisymmetric rings only. 

The generation, formation, evolution and interactions of vortex rings have been the 

subject of numerous studies. There are many ways to create a vortex ring. One way is to 

apply a unidirectional impulse to a circular region of a fluid medium. In this case the vortex 

ring is characterized by its azimuthal vorticity in a toroidal region around the direction of 

the impulse. A practical way to create a vortex ring in this way is when a disk is dragged 

in the direction normal to its surface. This wayan impulsive force will be imparted on 

the fluid, resulting in a vortex ring translating in the direction of the disk movement. In 

the laboratory, however, vortex rings can be generated by the motion of a piston pushing a 

column of fluid of length L (see figure 1.1) through an orifice or nozzle of diameter D. The 

boundary layer at the edge of the orifice or nozzle will separate and roll up into a vortex ring, 

as depicted in figure 1.2. The mathematical foundations of vortex rings are well provided 

in Saffman's book [118]. Much of our current understanding of vortex ring phenomena and 
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Figure 1.1 A slug of fluid. 

unresolved problems are gathered in the review papers by Shariff and Leonard [124] and 

Lim and Nickels [66]. 

L~ 
Up 
......;-----.~ - - - - - - - - - --

Figure 1.2 Vortex roll up at the exit of an orifice. 
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1.1 Vortex Pinch-off Process 

The present work deals with the so called "pinch-off" process, where a leading vortex ring 

separates from a trailing starting jet for long stoke lengths in a cylinder-piston mechanism. 

An important problem in vortex ring generation is to determine how much circulation and 

energy can be delivered to the vortex ring by the apparatus. This work was motivated by the 

recent experimental observations in vortex ring generation by cylinder-piston mechanism. 

The experiments of Gharib, Rambod and Shariff [46] (hereafter denoted as GRS) have shown 

that for large piston stroke vs. diameter ratios (LID), the generated flow field consists of a 

leading vortex ring followed by a trailing jet. They observed that for a set of flow parameters, 

there is a limiting stroke length that imposes an upper bound on the circulation that a vortex 

ring can acquire. The vorticity field of the formed leading vortex ring is disconnected from 

that of the trailing jet at a critical value of LID (dubbed the "formation number"), at which 

time the vortex ring attains a maximum circulation. Furthermore, they observed that the 

maximum circulation is achieved for a narrow range of the formation number F = LID 

between 3.6 and 4.5 for a variety of exit diameters and exit plane geometries. For the 

average discharged velocity Up, the stroke length L is given by L = UpTj, where Tj is the 

discharge time (formation time). Therefore, F = Tj. 

An explanation for this effect was given based on the Kelvin variational principle (see [46] 

and section 3.3), which states that steadily translating vortex rings have maximum energy 

with respect to isovortical perturbations that preserve impulse. In simple terms, the idea 

is as follows. The piston delivers circulation to the flow at a certain rate. At early times 

this circulation is delivered to the leading vortex ring. As the circulation of this vortex ring 

grows, the ring eventually obtains the maximum Kelvin energy. At this point the shear layer 

cannot deliver more circulation to the leading vortex ring, and therefore, the vortex ring 

separates from the trailing jet and translates downstream faster than the following shear 

layer. Thus, the ring pinches off at the point in time when it obtains its maximum Kelvin 

energy. Alternative explanations for the pinch-off process are presented in section 4.3. In 

chapter 2 (see Mohseni and Gharib [89] as well) a theoretical model to predict the formation 

number is considered. The fluid discharging from the cylinder is modeled as a slug-flow, 

and it is assumed that at the moment of pinch-off the invariants of the resulting vortex ring 
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can be approximated by the invariants of a vortex in the family of Norbury vortices. While 

the model is crude, it predicts the range of formation numbers observed in the experiments. 

This model is based on relaxation ideas rather than focusing on the the dynamics of the 

shear layer during the formation process. Therefore, we view the pinch-off process as a 

relaxation from an initial state of an axisymmetric flow to a final equilibrium state. The 

equilibrium state must be consistent with the known results for steadily translating vortex 

rings (e.g., Kelvin variational principle). Consequently, in chapter 3 a general theory of 

statistical equilibrium theory for axisymmetric flows are developed (following Miller [81] 

and Miller, Weichman, and Cross [82]). The Euler equations are convectively nonlinear 

(and therefore have the filamentation problem), making them unsuitable for long time cal­

culations toward an equilibrium state. However, the resulting equation from the statistical 

equilibrium theory is exact and valid over coarse grains. Therefore, it requires much less 

computational resources to obtain the equilibrium state. Computational verification of our 

model, as well as verification of new ideas on how to generate thicker vortex ring, and 

validation of the assumptions in our model of chapter 2 are explored in chapter 4. 

In this study we focus on vortex ring formation by axisymmetric mechanisms, in par­

ticular cylinder-piston mechanism and nonconservative forcing of axisymmetric Navier­

Stokes equations. While experimental evidence [46] indicates that the formation number 

for pinched off vortex rings are the same for both laminar and turbulent vortex rings, our 

computations are focused on laminar rings only. We refer to pinch-off Universality in vortex 

ring formation with these limitations in mind. 
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Chapter 2 

A Model for Universal Time Scale of Vortex Ring 

Formation 

There is strong evidence in support of the notion that the formation of vortex rings is mainly 

an inviscid process. This can be easily checked by comparing the relaxation time toward 

a steady vortex ring with the viscous diffusion time at high Reynolds numbers. Under 

the inviscid approximation, the long-time behavior of a vortical flow is characterized by an 

infinite number of invariants of the axisymmetric Euler equation [85J. Any accurate model 

for vortex ring formation must respect these invariants. 

The purpose of this chapter is to show that the formation number can be predicted 

analytically, based on simple assumptions on the formation process. To develop our model 

we make two assumptions. First that the discharge process of the fluid out of the cylinder 

can be predicted by a slug model. Second, that at the pinch-off moment the invariants 

of the resulting vortex ring can be approximated by those of a vortex in the family of 

Norbury vortices [101J. While physical vortex rings have peakier vorticity distributions 

(w) than those with uniform vorticity density (wlr), such as of the Norbury family of 

vortices, the quantitative behavior, and in particular the stream lines, are very similar [131 J. 
These considerations along with the fact that Norbury family of vortices are very well 

documented suggest that for the limiting process under consideration the Norbury vortices 

can be considered as a first approximation to more general vorticity distributions. Peakiness 

of the vorticity profiles in this context is considered in more detail in [46J. Furthermore, the 

experimental results provided by Gharib et al. [46J for different velocity profiles of the piston 
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and exit conditions suggest that the limiting formation number is not very sensitive to the 

vorticity distributions. This is physically manifested in constant values for nondimensional 

energy End and circulation r nd (both quantities are defined later) for the leading vortex of 

a pinched off jet. 

The Norbury family of vortices are steady solutions to the axisymmetric Euler equations. 

They are characterized by the parameter aN with 0 < aN :S -J2. Here aN is defined as 

the nondimensional mean core radius. The family ranges from vortex rings of small crosS­

section, where aN -+ 0, to Hill's spherical vortex, for which aN = -J2. It has already been 

shown by Wan [156] that the Norbury family of vortices are the solution of a maximization 

problem on the energy function subjected to fixed impulse and circulation. 

2.1 Slug Model With Time Varying Exit Diameter and Ve­

locity 

To be able to extend our results to the case of a time varying exit diameter or piston velocity, 

in this section we derive an extension of the well-known slug model, where the slug velocity 

and diameter at the nozzle exit are functions of time. The circulation, impulse and energy 

of an infinitesimal fluid element at the exit cross section of the nozzle are calculated as 

follows. Consider a fluid element with radius R(t) and thickness dx at the exit cross section 

of the nozzle (see figure 2.1). If we neglect the boundary layer thickness at the nozzle wall 

we can write 

dr =! wU dr = ! ~ (U) dr = ~ U2 

dt 8r 2 2' 
(2.1) 

where w is the azimuthal vorticity and U(t) is the velocity at the nozzle exit. Therefore, 

the circulation generated by such a fluid element may be calculated as 

(2.2) 
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R(t) 

x 

Figure 2.1 Slug model fluid at the exit of a nozzle with time varying 
diameter and piston velocity. 

Similarly, the impulse and energy of the fluid element can be approximated by 

Therefore, one can write 

dI = nR2U2dt, 

dE= nR2U3dt. 
2 

dI 
dr = 2nR2' 

dE = ~ dI. 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

An estimate for the total circulation, impulse, and energy of such a model is easily obtained 

by integrating equations (2.2-2.4) over time. In the case of a slug of fluid with constant 

diameter D = 2R, length L, and with uniform velocity Up we obtain the well-known expres­

sions for the kinetic energy per unit density, circulation, and impulse per unit density [124] 



9 

as 

E ~ D2LU2 = Up I 
8 7r p 2' 

(2.7) 

r 1 
2LUp , (2.8) 

I 1 2 1 2 47rD LUp = 27rD r. (2.9) 

2.2 Model 

Before developing the model we would like to make an interesting point. Using equations 

(2.7-2.9) we can write 

Ir 
E=­L' 

(2.10) 

Hence, for fixed impulse and circulation (and therefore from (2.9) for fixed D) the minimum 

stroke length L, which results in a Norbury vortex, maximizes the energy. 

The corresponding invariant quantities for the Norbury vortices are nondimensionalized 

as follows: 

E 

r 

I 

(OCY7vZ2)2Z3 EN, 

(OCY7vZ2) ZrN, 

(OCY7vZ2) Z3 IN, 

(2.11) 

(2.12) 

(2.13) 

where the subscript N refers to the corresponding nondimensional quantity for the Norbury 

vortices, 0 = wlr is the vorticity density, and Z is the vortex radius (see [101]). For future 

reference we note that the dimensional translation velocity Utr and the nondimensional 

translation velocity UN of the Norbury vortices are related by 

(2.14) 
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An estimate for Utr may be obtained from Robert's relation [116]: 

3E 
31 I fixed r& vol. = Utr , 

(2.15) 

which for the slug model (2.7-2.9) results in: 

(2.16) 

Note that similar results has been reported by other researchers using different approaches. 

Therefore, equation (2.14) can be transformed using (2.16) to 

(2.17) 

Our approach here is to calculate the corresponding parameter aN of the resulting 

Norbury vortex and solve for the corresponding nondimensional stroke length, L/ D. The 

final stage is governed by the main invariants of motion for axisymmetric flows. These are 

the kinetic energy, the total circulation, and the impulse. Equating these quantities for the 

slug model (2.7-2.9) with the corresponding quantities in the Norbury vortices (2.11-2.13) 

and using (2.17), we obtain 

L 
D 

L 
D 

EN 

(2.18) 

(2.19) 

(2.20) 

According to Norbury [101] the right-hand side of equations (2.18-2.20) are only a function 

of aN. The nondimensional stroke length L/ D from equations (2.18) and (2.19), as function 

of aN, are shown in figure 2.2. Their intersection yields the parameter aN of the resulting 

Norbury vortex. The corresponding stroke length L/ D for the resulting Norbury vortex is 

thus approximately equal to 3. Finally, note that aN can also be calculated from (2.20), 

which yields the same value as predicted from figure 2.2. This consistency is in fact a 

manifestation of the existing relation (equation 2.15) between the invariants of motion for 
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Figure 2.2 Relation between the formation number (Lj D) and the pa­
rameter of Norbury's family of vortices (aN). -- equation (2.18); 
--- equation (2.19). 

axisymmetric flows, which for the slug model is represented by equation (2.17). 

Equations (2.18) and (2.19) may also be derived using dimensional analysis. This will 

also show that these are the only independent relations involved in the prediction of pinch­

off process. We assume that the variables involved in the pinch-off process are L/ D, Up (or 

equivalently Utr , which is obviously related to Up by (2.15) and (2.16)), and the invariants 

of motion E, r, I. Therefore, we can write: 

L 
D = f(E, r, J, Up). (2.21 ) 

A straightforward dimensional analysis reveals that the limiting L/ D only depends on the 

nondimensional energy End and circulation r nd defined as follows: 

End 
E 

r 3/ 2 J1/2' 
(2.22) 

rnd 
r 

J1/3U2/3· 
P 

(2.23) 
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The nondimensional energy End has already been defined in [44] and used in [46] in the 

pinch-off process. r nd is another nondimensional number for pinch-off process with a uni­

versal value. In the next section we will estimate a narrow range for these nondimensional 

numbers based on our model. Equating the nondimensional energy and circulation between 

the slug model and the Norbury vortices and using (2.7-2.9), (2.11-2.13), (2.16) and (2.17) 

result in equation (2.18) and (2.19). Therefore, there are only two independent curves in 

figure 2.2, where their intersection gives the formation number associated with the pinch-off 

process. 

In the case of time varying exit diameter or piston velocity, the invariants of motion for 

any exit velocity history U(t) and radius R(t) can be calculated by integrating equations 

(2.3-2.2) in time. The nondimensional energy is given by 

and the nondimensional circulation is derived as 

The translational velocity can again be approximated by the Roberts formula [116] 

8E U 
81 lfixedr& vol. = 2· 

By removing circulation, r = J U2 dt, between these equations we obtain 

Now since dx = U dt, and dV = 1f J R 2 dx we obtain 

UE r 3/ 2 _ J U2
dV _ 2E 

nd nd - J U dV - 1 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

These relations clearly show that one can modify the values of End and r nd by a time 

varying piston velocity or time varying exit diameter. These ideas are numerically verified 
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Figure 2.3 Variation of formation number (L/ D) with non dimensional 
translation velocity (Utr/Up ). 

in chapter 4. 

Note that in practice the translation velocity of real vortex rings is greater than Up /2 

(which is what the slug model with constant diameter predicts). However, due to the 

development of boundary layer at the edge of the cylinder, the effective diameter of the 

nozzle exit gradually decreases (due to increase in the momentum thickness), thus the mass 

conservation for constant piston velocity results in an increase in the average exit velocity of 

the slug of fluid. Therefore, the translational velocity of resulting ring increases above Up /2. 

This situation can be modeled more effectively by a slug model with gradual decrease in the 

exit diameter (due to increase in momentum thickness at the edge of the cylinder) to obtain 

a vortex ring translational velocity more than Up /2. If we repeat the calculations leading 

to equation (2.19), with Utr varying between 0.5Up and 0.6Up , we obtain 3.0 ;S ~ ;S 4.5 

(see figure 2.3). This range of stroke length for the pinch-off process is consistent with the 

values observed in the experiments by Gharib et al. [46]. 
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2.3 Comments 

The fact that the value of aN corresponding to the pinch-off process is much smaller than 

V2 (Hill's vortex) is an indication of the limitations of the simple cylinder-piston mechanism 

in producing a very thick vortex ring. In fact, careful examination of figures 2.2 and 2.3 

suggests that to produce a Hill's like vortex ring one needs a vortex generator that can deliver 

more energy compared to the simple cylinder-piston mechanism with the same circulation 

and impulse. One design could be based on a cylinder with a time varying exit diameter 

or time varying piston velocity. These designs for generating very strong vortex rings are 

investigated in section 4.5. 

The fact that the pinch-off parameters are independent of the constant piston velocity 

reveals that the universal time scale of vortex formation does not depend strongly on the 

value of the piston's impulsive velocity, and was experimentally confirmed in [46]. On 

the other hand, it is expected that the velocity profile at the cylinder outlet may have a 

large effect on the final stage, and on the formation number (see chapter 4). This can be 

manifested as large variations of the invariants of motion to variations in the velocity profile 

at the cylinder outlet. This variation ofthe formation time scale with the exit velocity profile 

has also been observed in experiments by Gharib et al. [46]. 

As experimentally observed by Gharib et al. [46] there is a limiting value of End 

around 0.33. The value predicted for End in our model is 0.4 ,2:; End ,2:; 0.27 for Utr 

varying between 0.5Up and 0.6Up (see figure 2.2), which is in good agreement with the 

experimental result. Furthermore, Gharib et al. [46] showed that for each experimental 

setup there is a maximum achievable circulation for the leading vortex for various L / D. 

Here we suggest that if we nondimensionalize the circulation as suggested by equation 

(2.23), all of the circulation curves in [46] fall into a single curve that shows a maximum 

achievable circulation for the leading vortex. Using our analytical model we predict that 

this limiting nondimensional circulation r nd (calculated based on Utr ) falls in the range 

1.77 ;5 r nd ;5 2.07, which indicates that steady vortex rings with higher r nd cannot be 

generated by a simple cylinder-piston mechanism. We have calculated this quantity for the 

leading pinched off vortex in the set of experiment by Gharib et al. [46] and found that it 

is indeed a constant, namely r nd ;:::; 1. 75 ± 0.05. 



15 

Finally we would like to note that other mechanisms for vortex generation can be ana­

lyzed with our method if approximations for the invariants of motion E, r, I can be estab­

lished. An example of this is the numerical generation of a vortex ring by a nonconservative 

force, as considered in chapter 4. 
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Chapter 3 

Statistical Equilibrium Theory 

It is well known that the evolution of the two-dimensional plane turbulence is dominated by 

the formation of coherent vortices [11, 78]. The formation of coherent structures in freely 

decaying two-dimensional flows eventually results in a quasi-steady state. The velocity 

field becomes increasingly dominated by the larger spatial scales as time progresses, and 

the like-signed vortex regions merge into increasingly larger vortices [78]. Many numerical 

and experimental studies suggest that the formation of large scale structures is mainly an 

inviscid process, and that viscosity and dissipation only affect the fine scale motion. This 

leads to the idea of using statistical mechanics for two-dimensional incompressible inviscid 

flows to understand these long-lasting structures. 

Aside from the kinetic energy, the distinctive feature of both two-dimensional (2D) and 

axisymmetric turbulence in inviscid flows is the existence of an infinite number of invariants 

of motion: moments of vorticity. Kinetic energy and enstrophy (the only quadratic constants 

of motion) are conserved by the nonlinear interactions, whereas in the 3-D case only the 

former is conserved. Correspondingly, in the 3D case there is only one type of cascade, the 

energy cascade, which takes place locally from low to high wave numbers. By analogy with 

the direct energy cascade in three dimensions, Batchelor [8] and Kraichnan [60] conjectured 

the existence of an enstrophy cascade to the small scales in two-dimensional flows. This 

result implies that in the 2D case there are two cascade processes: energy cascade to 

larger scales and enstrophy cascade to smaller scales. The inverse energy cascade to large 

scales explains a physical mechanism behind the formation of coherent structures in 2D and 
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axisymmetric turbulence. 

The well known enstrophy decay during mixing [78J is in apparent contradiction with the 

conservation of enstrophy for 2D Euler equations. We will discuss this issue in section 3.3 

where we show that on a coarse grain only the linear functionals of vorticity are conserved 

during the equilibrium process. 

The first insight into these problems was provided by Onsager's statistical theory of point 

vortices [105], later extended by Joyce and Montgomery [58J. For high enough Reynolds 

numbers, the enstrophy can decay significantly while the energy is decaying by a negligible 

amount. Prediction of this selective decay process was one of the main successes of point 

vortex theories. However, the main criticisms of point vortex models are that the infinite 

conservation laws of vorticity integrals of the Euler equations are not respected, that the 

quantitative prediction depends on the representation of a continuous vorticity field in terms 

of point vortices, which is not unique, and that the maximum vorticity is not bounded by 

the initial maximum, as it should be for 2D flows. 

Miller et al. [81, 82J and Robert and Sommeria [115J independently developed a mean 

field theory that removes these limitations. The predicted statistical equilibrium appears 

to be a particular solution of the Euler equations with fine-scale vorticity fluctuations su­

perimposed. The resulting equilibrium state can be calculated by maximizing a mixing 

entropy constrained by the invariants of motion, which are the energy, impulse and the 

global probability distribution of the vorticity fluctuations. It is desirable that the resulting 

mean field theory will be applicable to high Reynolds number flows as well as inviscid flows. 

A main criteria for the validity of this approach in predicting the long term behavior of 

viscous flows is that the relaxation time for the system must be shorter than the viscous 

time scale. When this condition is satisfied the system relaxes to an almost equilibrium 

state, before the viscous effects alter the integral of higher moments of vorticity. 

In this chapter we are mainly concerned with axisymmetric inviscid flows. Although ax­

isymmetricity is a limitation, a wide range of challenging problems reside in this category, 

including jet flows, vortex rings, drops, and pipe flows. What makes axisymmetric flows 

interesting is the existence of a geometrical stretching term in the vorticity equation, which 

is missing in 2D flows. Our approach is set in the conceptual framework of Hamiltonian 
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structure of ideal flows (e.g., see [73]). In models for ideal fluids the Hamiltonian form is 

basic, and has received a great deal of attention in the last thirty years. Hamiltonian phe­

nomenology provides a unifying framework for ideal fluids, provides simplification on many 

problems, and its existence is essential for developing a complete statistical equilibrium 

model for fluids. 

Our objectives in this chapter are several. Following Szeri and Holmes [134], in §3.1 we 

derive an explicit expression for a canonical Poisson bracket of axisymmetric flows which is 

similar to the Poisson bracket of the 2-D plane case. This Poisson bracket satisfies the Jacobi 

identity (among other properties), and therefore, makes the space of functions of vorticity 

density fields on n (the volume occupied by the fluid) into a Lie algebra. In §3.2 our goal 

is to ask whether we can predict and explain the long-time evolution of flows, such as those 

mentioned above, without explicitly using dynamics. Costly dynamical simulations and 

significant errors at long times make such a theory very attractive for investigating problems 

where the transient dynamics are not of primary interest. In §3.3 we show that Kelvin's 

energy variational result can be deduced from the statistical equilibrium equations. The 

Hamiltonian structure of the vortex filament method for axisymmetric flows is considered 

in the appendix B. Finally some comments on other aspects of the theory are presented. 

3.1 Governing Equations and Poisson Bracket 

In this section we study the Hamiltonian structure of axisymmetric flows. It is not obvious 

how to develop a statistical mechanics theory without a Hamiltonian. Once the Hamiltonian 

is given, no choice in the development of the theory remains. 

Consider an axisymmetric, inviscid homogeneous and incompressible flow in a three­

dimensional axisymmetric region n (see figure 3.1). The velocity u(ur,O,ux ) of this flow is 

governed by the Euler equations 

Ut + (u· \7)u = -\7p, (3.1) 
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Figure 3.1 A vortex ring in axisymmetric flows. 

where p is pressure, with the continuity equation 

\7. u = 0, (3.2) 

and boundary condition: u tangent to a0.. Taking curl of the equation (3.1) results in the 

vorticity evolution equation: 

where the scalar 

aw aw aw UrW -a +ux -a +ur -a =-
t x r r 

(3.3) 

(3.4) 

is the azimuthal component of vorticity. The urw/r term on the right-hand side of the 

vorticity equation (3.3) is the geometrical vortex stretching. This term is absent in the 

two-dimensional vorticity equation in Cartesian coordinates. 

Now, the governing system consists of a transport equation (3.3) coupled with the elliptic 
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system (3.2, and 3.4). We would like to use a formulation in terms of the "vorticity density" 
w 

~ defined as ~ = -. Consequently, the vorticity equation (3.3) can be written as 
r 

o~ o~ o~ 
ot + U x ox + U r or = O. (3.5) 

At any instant, the velocity field can be described by the Stokes stream function 'lj; defined 

by 

Subsequently from (3.4) we obtain 

2 

U sing the transformation y = r
2 

' one may recast the final set of equations as 

and 

D~ '= o~ + o'lj; o~ _ o'lj; o~ = 0 
Dt' ot oy ox ox oy , 

(3.6) 

(3.7) 

A suitable phase space for this system is the space of Cs defined on the physical space 

occupied by the fluid. The natural choice for the Hamiltonian is the kinetic energy (with 

unity density) given by 

(3.8) 

where dV rdrdxdB represents the volume element. In the case of axisymmetric flows 
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without swirl, one can write 

(3.9) 

where nr is the half space r ~ 0, and ny is the half space y ~ O. By appropriate assumptions 

on the behavior of the flow field near the boundaries we can ignore the second term in (3.9). 

Therefore, we can write the kinetic energy (also called the excess kinetic energy, e.g., [119]) 

as 

(3.10) 

where x = xix + yiy, dp, = dx dy is the area element in ny, and the kernel M(xlx') is 

defined by [62] 

M(xlx') = VJiil 12K cos e de 

27r 0 V(x - x,)2 + 2y + 2y' - 4VJiilcose 
(3.11) 

Using standard transformations M(xlx') can be written as 

1 

M(xlx') = (4~~)2 { (t - k) K(k) - tE(k)} , (3.12) 

where k is given by 

k2 = 8VJiil 
(x - x')2 + (V2Y + v'217) 2 ' 

and K and E are the complete elliptic integrals of the first and the second types, respec-
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tively [2]. Clearly the kinetic energy is conserved by the flow. The functional derivative of 

the Hamiltonian (3.10) with respect to ~ is 

66~ = 27f I M(xlx') ~(x') dp,'. (3.13) 

Now, we define the Lie-Poisson bracket 

{F, G} = I ~(x) { ~;, ~~} xy dlL, (3.14) 

where {j, g}xy = ~: ~~ - ~~ ~~ is the canonical (x, y)-Poisson bracket. One may use (3.13) 

and (3.14) to show that 

~t = {~,H}, (3.15) 

which is another form of the vorticity density evolution equation. It is not known whether 

there exists a pair of canonical coordinates (functionals of ~) which diagonalize the bracket 

(3.14). However, what is required in statistical equilibrium theory is an invariant measure 

on the phase space, which will be provided by Liouvill's theorem. Therefore, neither the 

existence of the canonical coordinate nor the existence of the Lie-Poisson bracket (3.14) 

is required in the statistical equilibrium theory. The dynamics of the Euler equations 

preserves phase space volumes, i.e., the flow in the phase space is incompressible. The 

ergodic hypothesis ascribes weights in proportion to phase space volume. Therefore, the 

phase space flow preserves relative probabilities in the chosen variables. It also follows 

that the new radial variable y is necessary to compensate for the geometrical increase in 

the volume element of the x-r space; dx dy = r dx dr. Finally, we would like to note that 

similar results have been obtained by Szeri and Holmes [134] in considering the nonlinear 

stability of axisymmetric swirling flows. 

The Hamiltonian structure of axisymmetric vortex filaments has been known for more 

than a century, see [125] and references there in. The Hamiltonian formalism of vortex 

filaments can be considered as a special case of the field Hamiltonian formalism of this 

section. Derivation of vortex filament Hamiltonian from the field Hamiltonian is carried 
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out in the appendix B. 

Arnold [4] showed that the Euler equations are geodesic equations on a group of volume­

preserving diffeomorphisms with the metric defined by the kinetic energy. He then intro­

duced a powerful version of the Liapunov stability method based on the Casimirs of the 

Hamiltonian theory [6, 5]. Equation (3.6) implies that there are an infinite number of con­

served vorticity integrals, I1)(t) 1(0 d/-l, for any path ry(t) moving with the fluid where 1 is 

an arbitrary function. Therefore, 

(3.16) 

defines an infinite number of conserved quantities for the Euler equation (3.6) which can be 

characterized by 

(3.17) 

These conserved quantities are Casimirs, and by Noether's theorem they can be deduced 

through the invariance of the Euler equation (3.6) under the group of volume-preserving 

diffeomorphisms Diffv(Oy). Note that these conserved quantities are in involution with 

respect to the Poisson bracket (3.14), i.e., {If,!!'} = 0 for any two functional of the form 

(3.17). Furthermore, substitution of If and H into equation (3.14) and integration by parts 

yields 

{If,H} = 0, 

i. e., any vorticity density integral commutes with the Hamiltonian. Finally, one can verify 

that the linear momentum 

(3.18) 

is also an invariant of motion. 

The Poisson bracket (3.14) that we have derived for axisymmetric ideal flows is similar 

to the canonical Poisson bracket of the 2-D plane flows (e.g., [74]). It satisfies the Jacobi 
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identity (inherited from that for {, }xy, as is generally the case for Lie-Poisson brackets), 

among other properties. Therefore, Sly is a Lie algebra. One might expect to obtain the same 

results by a reduction process [74, 73] from the 3D Euler equations with axial symmetry. 

Now that the Hamiltonian formalism for axisymmetric flows is established, we can proceed 

with our development of statistical mechanics of vorticity fields. 

3.2 Statistical Equilibrium Theory 

The equilibrium description of two-dimensional plane inviscid flows was first suggested by 

Onsager [105] for point vortices. However, this covers only a limited subset of practical 

vorticity distributions, and approximating a continuous distribution of vorticity with point 

vortices is a subtle problem. While in practice one must be able to assign any value to the 

integral of any finite power of vorticity, in Onsager's theory one is limited to the integral 

of powers of the delta function. This limitation can be removed by the statistical theory 

presented here. 

The statistical mechanics of a continuous vorticity field for 2-D plane flows has been 

recently developed independently by two groups: Miller, Weichman, and Cross [81, 82] 

and Robert and Sommeria [115]. Miller et al. [81, 82] take a physical approach and 

offer many insights into the statistical nature of two-dimensional flows. They present two 

derivations of the mean-field equations. The first derivation [81] is combinatorial and relies 

on the weakness of the divergence in the Coulomb-type interaction between vortices at small 

distances. In the second derivation the Kac-Hubbard-Stratanovitch transformation is used 

to convert the long-range coulomb interaction into purely local square-gradient interaction. 

Robert and Sommeria's approach [115], on the other hand, is more mathematical. They 

work in an extended phase space, namely the space of Young measures, which is naturally 

constrained by the invariants of motion of the system. By using the modern large deviation 

theory, a thermodynamic limit in this framework is then calculated. Recently Weichman & 

Petrich [158] successfully extended the same method to predict the statistical equilibrium 

of shallow water equations. 

The theory put forward by these two groups successfully predicts the long time behavior 
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of two-dimensional incompressible ideal flows. When the vorticity concentrations on inter­

mediate scales are the dominant part of the total vorticity field, the traditional concept of 

transfer of enstrophy to smaller scales and transfer of energy to larger scales is suppressed 

(e.g., computations by [78]). The lifetimes of the resulting coherent vortices are much longer 

than the eddy turn-over time for the turbulent field. Many experimental and computational 

studies show that the final equilibrium state only decays on a viscous time scale. 

Our intention in this section is to derive the statistical equilibrium equations for axisym­

metric flows. In doing so we assume ergodicity, i. e., that the dynamics of the flow samples 

all of the phase space consistent with the conservation laws. The treatment we describe is to 

cast the problem as a variational problem with conservation constraints. The maximization 

of an entropy functional will then result in the equations for statistical equilibrium of the 

flow. 

The governing equations are given by (3.6) and (3.7), and the conserved quantities are 

H, P, and the infinite series In. The conservation of P results from the absence of global 

pressure forces in the x-direction. Note that H and In are conserved in the general case for 

any domain O. By contrast the conservation of the physical momentum P is specific to a 

given geometry. 

The scalar vorticity is not advected passively by the flow, but is coupled to its motion 

through the elliptic equation (3.7). The strong fluctuations of the stream function caused 

by this coupling will mix the vorticity at small scales and stimulate the appearance of 

coherent structures at larger scales. In the axisymmetric Euler equation (3.6), the vorticity 

density e is a material property. This implies that the total area fraction occupied by 

each vorticity density level 0" is conserved. We call this quantity the global probability 

distribution of vorticity density ')'(0"). The distribution function no (x, 0") is defined as the 

local (but coarse-grained) probability of finding the vorticity level 0" in an x-neighborhood. 

Therefore, no(x,O") may be considered as the local density of the vorticity density with 

strength 0". This distribution function satisfies the normalization condition 

J no(x, 0") dO" = 1. (3.19) 
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Subsequently (3.17) may be recast as the conservation of 

(3.20) 

Physically ')'(0-) measures the fractional area covered by the vorticity level 0-. 

What makes this theory more desirable than the point vortex models is the conservation 

of ')'(0-), i. e., conservation of all moments of vorticity density. Now the coarse-grained 

(macroscopic) eq uili bri urn vorticity densi ty ~ (x) is defined as 

(3.21 ) 

The coarse-grained equilibrium stream function "ij) is related to ~ through equation (3.7). 

Note that the macrostate has fluctuations in vorticity density, but as 'Ij; is obtained by an 

integration of vorticity density, there are no fluctuations in the stream function. For a 

system with very small viscosity, we expect that these fluctuations will be smoothed out, 

so that the resulting steady flow becomes the actual final state of the system. 

Finally the entropy is defined by 

(3.22) 

N ow the standard methods of statistical mechanics can be used. We started by a Hamil­

tonian system which gives the dynamics of a great number of particles and which is the 

microscopic level of description of the system. Then, at a macroscopic level, we consider 

some relevant means, which we call macroscopic observables. To these two levels of de­

scription we associate an entropy functional using Boltzmann's formula S = k log W, where 

W is the volume occupied in the phase space (endowed with the invariant Liouville mea­

sure) by the set of all the microstates giving the same macrostate. Maximizing the entropy 

functional then gives the equilibrium states. The entropy functional in equation (3.22) rep­

resents the logarithm of the number of possible vorticity configurations associated with a 

final macrostate. 

The equilibrium state is obtained by maximizing the mixing entropy (3.22) subjected to 
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the constraints of motion (3.17-3.18) and the normalization condition (3.19). We write these 

constraints in terms of the locally averaged vorticity density ~ and the associated stream 

function 7jj. The resulting constrained variational problem can be treated by introducing 

the Lagrange multipliers such that the first variations satisfy 

8S - (38H - (3 / a(a) 8,(a) da - / ((x) 8 (/ noda) dp, - (3U 8P = 0, (3.23) 

where (3 is the inverse of the temperature, a(a) is the chemical potential of species a, and 

U is the translation velocity. In general, energy or temperature may be considered as an 

indicator of how closely the vorticity is packed (we will come back to this point later). The 

final state can be considered either as a critical point of the entropy for any admissible 

perturbations (that satisfies the invariants of motion) or equivalently, as a critical point of 

the free energy F [14]: 

F=S-(3H-(3 / a(a),(a)da- II ((x)nodadp,-(3UP. (3.24) 

The resulting distribution function is a Gibbs state of the form 

(3.25) 

Using the normalization constraint (3.19) we can remove the Lagrange multiplier ( to obtain 

e -,B[ 21fu(~+yu) +a(u)] 
no (x, a) = ----;-------;c=-----,---=---J e-,B[21fu(1/J+yU)+a(u)]da 

(3.26) 

A differential equation for tjj may be obtained by multiplying both sides of (3.26) by a and 

integrating: 

(3.27) 
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This can be written as 

(3.28) 

where the partition function Z is given by 

(3.29) 

The partition function relates the properties of the microscopic system. It provides all 

the statistical parameters of a macroscopic system. The Lagrange multipliers (3, U, and 

functions a(a) are determined by the global conservation of vorticity density, 

(3.30) 

by fixing the energy E, 

(3.31) 

and by conservation of linear momentum P, 

P = -27r / y £(1j}) dJ-L. (3.32) 

Note that by an argument similar to the one in [115], one can easily show that the fine scale 

vorticity density fluctuations are of higher order and do not contribute to the energy. 

In analogy to statistical thermodynamics, a(a) is called the chemical potential of species 

a, and (3 is the inverse of temperature [105]. The energy or temperature is an indicator of 

how closely the vorticity is packed. Knowing the invariants of motion and the Lagrange 

multipliers, Z will be only a function of 1j), and therefore, equation (3.28) will be of the form 

£(1j}) = f(1j}). 

The equilibrium states are not steady in general but translate uniformly with velocity 

U. In the case of nonvanishing circulation, we can change the frame of reference to the one 

moving with the center of vorticity density, where P = O. The stream function in this case 
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is obviously '¢ + yU. 

3.3 Kelvin's Variational Result 

A general variational principle due to Arnold [4, 7] characterizes steady flows in an ideal 

fluid as constrained extremal for the kinetic energy functional defined on an appropriate 

class of competing vortices. For two dimensional flows the underlying variational principle 

was known to Kelvin [59]. Kelvin [59] pointed out that a variational principle exists for 

the steady motion of vortices and the steady states are given by stationary values of the 

kinetic energy for given linear and angular hydrodynamic impulse and circulation, with 

respect to kinematically allowable perturbations. Kelvin states the principle without proof 

as being obvious to him (see sections 4 and 18 of [59]). A proof of a similar variational 

principle was provided after almost a century by Benjamin [9]. While Arnold's principle is 

based upon the so-called isovortical variations, Benjamin prefers to prescribe the functional 

relation between vorticity and stream function instead. Conceptually, these variational 

results lead to a formulation of the general mathematical problem entirely in terms of 

the natural physical invariants associated with the equations governing vortex dynamics ~ 

namely energy, impulse and circulation. Note that Benjamin [9] used his variational method 

to show the existence of steady solutions to axisymmetric Euler equations. A one-parameter 

family of such solutions was presented by Norbury [101]. One might expect that a similar 

approach can be used to show the existence of a mean field in statistical equilibrium theory. 

In this section we show that the equilibrium solution predicted from the statistical equi­

librium theory (entropy maximization) satisfies an energy extremization similar to Kelvin's 

approach, i. e., the final mean field profiles satisfy a constrained energy maximization prob­

lem similar to the one in [59]. 

The input to the statistical theory is the initial vorticity density distribution e(x), or 

equivalently all the invariants of motion, H, P, and ')'(a). However, in most practical appli­

cations (e.g., the Red Spot of Jupiter and vortex ring pinch-off process [89]) our information 

on the initial condition is very limited. What is usually measurable is the finite resolution 

vorticity distribution ~ (x). Here we follow the approach of Miller et at. [82]. Therefore, 
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the only measurable distribution function is the dressed distribution function (as defined 

for the two dimensional case in [82]) 

')'d(a) = J J(a -~) dp,. (3.33) 

Here, ')'( a) is the initial distribution function and I'd ( a) is the distribution function observed 

on any finite length scale. Note that ~(x) is a smooth function except for (3 --+ ±oo and 

that in general the vorticity distribution function ')'d(a) derived from the mean field profile 

~ is not the same as ')'(a). In the process of statistical equilibrium, when going from the 

microscopic description to the macroscopic description, it is natural that a major part 

of the information about the details of the small scales be lost. Therefore, the vorticity 

density conservation laws (3.17), except for the total circulation h, are all violated on the 

macroscopic scale. No other moment of the vorticity is necessarily the same for both I' 

and I'd. In this process only the energy, circulation and impulse are conserved both on the 

fine scales and on the coarse scales. Although it is impossible to experimentally infer ,(a) 

from the equilibrium state alone, one can make partial predictions by knowing ')'d(a). In 

two-dimensional Euler or high Reynolds number Navier-Stokes equations, it is well-known 

that there is an inverse cascade of energy to large scales and a forward cascade of enstrophy 

(second integral of vorticity, 12 ) to smaller scales. Therefore, by measurement of finite 

resolution one might expect to recover almost all of the initial kinetic energy of the system, 

while the conservation of enstrophy will be violated. 

Following Miller et at. [82], a dressed vorticity density corollary is in order: ~(x), the 

averaged vorticity density field, is the maximum energy solution (corresponding to T --+ 0-

or (3 --+ -(0) of the statistical equilibrium equations with constraint function I'd (a) . For the 

maximum energy solution, 'd(a) = ')'(a). The proof is omitted here, since it is analogous to 

the proof for a similar corollary in two-dimensional turbulence in the plane [82]. Although 

I'd is in general different from ,)" a consequence of the above argument is that at a given 

energy, I'd results in the same equilibrium solution as ')'. Furthermore, the given energy 

turns out to be precisely the maximum energy compatible with I'd. 

The other implication of the dressed vorticity corollary is that for a fluid in statistical 
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equilibrium, coarse-grained quantities suffice to determine the equilibrium. This observation 

suggests that our equilibria might persist in the presence of a viscosity acting to smear the 

small scales. An equivalent way of stating this result is that the long-time dynamics of 

an inviscid fluid will evolve to a configuration which is a global extremum of the energy, 

subject to satisfying the long-time (dressed) vorticity distribution. 

Note that the total circulation h is preserved during the equilibrium process, i.e., 

(3.34) 

Therefore, one can say that for a system with fixed circulation and impulse the statisti­

cal equilibrium state is the one that maximizes the energy consistent with the rd(O"), i.e., 

isovortical perturbations. This is analogous to the Kelvin's variational principle which 

states that in an incompressible inviscid flow with fixed circulation and impulse the steady 

solution maximizes the energy for isovortical perturbations. The connection between sta­

tistical equilibrium and the equilibrium solutions of steady Euler equations are clear in this 

argument. Note that the higher moments of vorticity are not explicitly specified in Kelvin's 

variational principle (in contrast to Arnold's approach [7]). Since the energy, circulation 

and impulse of the system are preserved during the equilibrium process, the final solution of 

the statistical equilibrium theory satisfies the requirement of Kelvin's variational principle. 

This result is valid both in the Cartesian coordinates considered in [82, 115] and in the 

axisymmetric coordinates described in this chapter. 

3.4 Discussion 

In this chapter a statistical mechanical theory for describing the equilibrium state ofaxisym­

metric Euler equations was derived. The resulting solutions of the statistical equilibrium 

theory are in fact the equilibrium solutions to the axisymmetric Euler equations, stabilized 

by the infinite invariants of motion. All the invariants of motion are accounted for, and an 

exact set of nonlinear mean field equations are derived for the vorticity density profile. We 

observed that while the infinite number of Casimirs were crucial in developing the theory, 

integrals of the nonlinear powers of vorticity density measured on any physical scale will 
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not be the same as in the initial state. The only apparent conserved quantities are en­

ergy, impulse, and total circulations. This is similar to previous results in two dimensional 

plane flows. These are the quantities specified in Kelvin's variational result. Through a 

dressed vorticity density corollary the connection between the statistical equilibrium state 

and Kelvin's variational principle was considered. The only inputs to the statistical equilib­

rium theory are the values of the invariants of motion, which can be derived from the initial 

conditions. Other than the value of these invariants, the equilibrium state is independent 

of the initial condition or the details of its subsequent evolution. 

It is known that the Euler equations or the high Reynolds number Navier-Stokes equa­

tions have filamentation properties due to mixing effects. A deterministic description of 

such flows would require rapidly increasing amount of information as time goes on. The 

excessive spatial information requires very high resolution. This problem can be remedied 

by solving the mean field equations for macroscopic quantities (coarse-grained) where all 

the microscopic fluctuations (fine-grained) are smoothed out. Consequently, solving the 

nonlinear differential equation (3.28) requires much less resolution than solving the time 

evolving Euler equations, since the fine scale vorticity structures have already been filtered 

out by statistical averaging. In brief, to find the equilibrium state of a system it is cheaper 

to numerically integrate the mean field equation (3.28) than the Euler equations (3.1-3.2) 

or (3.7). 

In a real system there is always at least a small amount of damping due to viscosity [157J. 

If the physical system is very large, it might be possible for this damping to eliminate all 

the small scale fluctuations required for ergodicity. Therefore, the system might freeze in 

an intermediate state before having the chance to sample the entire phase space. In other 

words, the mixing only occurs in a confined region of space. For the statistical equilibrium 

theory to be valid, the effective relaxation time toward the final micro canonical distribution 

must be less than the viscous diffusion time, otherwise the physical viscosity can alter the 

invariants of motion and cause changes in the final state. It is to be expected that for 

some special configurations of large systems, global ergodicity will not be achieved, and 

that thermal equilibrium is therefore reached in a local region, where vorticity remains 

trapped and well stirred inside a bubble. Since the relaxation process is driven by fine-
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scale vorticity fluctuations, it may happen that these fluctuations vanish (e.g., by viscous 

effects) before the system reaches its global equilibrium. However, in such cases the idea of 

'vorticity localization' [16} or the 'maximum-entropy bubble' [14J could be used to explain 

stable multiple vortex states. This idea has already been proven to be effective for two­

dimensional plane turbulence [15, 14]. 

When the flow under consideration has more invariants of motion, all of them should 

be accounted for. Each invariant introduces a new Lagrange multiplier. A typical case for 

axisymmetric flows is the conservation of angular momentum for flows in a rotating frame 

of reference. 

Our motivation for the study of long time behavior of axisymmetric flows comes from 

our attempt to understand the universal formation number of vortex ring pinch-off process 

observed by Gharib et al. [46]. This formation number is the time that the vortex ring 

pinches off from its generating axisymmetric jet. Here we refer to the nondimensional 

stroke length L/ D as the formation number, where L is the piston's stroke length and D 

is the exit diameter. Inspired by the statistical equilibrium theory we have formulated an 

analytical model that predicts this universal time scale (see Mohseni & Gharib [89] and 

chapter 2). In this case our goal is to predict and explain the longtime behavior of such 

systems without resorting to dynamics. It was both experimentally and analytically [46, 89] 

observed that the limiting stroke L/D occurs when the generating apparatus is no longer 

able to deliver energy, circulation and impulse at a rate comparable with the requirement 

that a steadily translating vortex ring has maximum energy with respect to kinematically 

allowable perturbations. We expect that a similar result can be obtained through an entropy 

maximization problem. The physical explanation is that for short stroke length the system 

relaxes to a steadily translating vortex ring. Increasing the stroke length results into a 

larger vortex ring. Note that any vorticity generation mechanism has its own specific rate 

of energy, circulation and impulse generation. For a cylinder piston mechanism these rates 

are given in [89]. For high stroke lengths the traditional cylinder piston mechanism is not 

able to provide energy compatible with an equilibrium state at that circulation and impulse. 

Consequently, for very high stroke length the system relaxes to a periodic array of vortex 

rings. To generate vortex rings with higher nondimensional circulations, one needs to alter 
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the rate of delivery of invariants of motion. For a cylinder piston mechanism, Mohseni & 

Gharib (89] proposed a time varying exit diameter, that was later verified numerically [88]. 

Numerical experiments on this problem will be the topics of a future paper. 

The field statistical theory of two-dimensional Euler equations in Cartesian coordinates 

can be considered as the generalization of the statistical theory of point vortices to contin­

uous vorticity distributions. In this respect, the Lundgren and Pointin point vortex mean 

field theory [71], and the Kraichnan energy-enstrophy theory [61] were rederived as special 

limiting cases (see, e.g., [82, 157] for details). Therefore, we expect that a similar result 

will be valid between the field theory of axisymmetric flows of this chapter and the result­

ing statistical theory of axisymmetric vortex filaments. In this respect connections at the 

microscopic level of description are presented in the appendix B. 
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Chapter 4 

Numerical Results 

In this chapter a numerical study of vortex formation process is performed. We would 

like to acknowledge collaboration with Mr. H. Ran on performing some of the numerical 

computations presented in this chapter (see also Mohseni et af. [91]). 

According to the pinch-off process model presented in chapter 2, the formation number 

is only a function of the translational velocity of the vortex ring, Utr , vortex ring diameter, 

D, and several invariants (in the inviscid case) of the motion E, r and I. Where E is the 

kinetic energy, r the circulation, and I the impulse. We equate these invariants of motion 

for a model of the discharge process (slug-model) and a model for the leading vortex ring (a 

vortex in the Norbury family) to obtain an estimate for the formation number. Alternatively, 

one can use dimensional analysis to achieve the same result. An implicit relation between 

the involved quantities can be represented as 

tUtr ( ) D = f E,r,I,Utr . ( 4.1) 

An estimate for Utr may be obtained from [116] formula 

aE 
Utr = aI lfixed r& vol. , (4.2) 

which for a slug model results in (see [89]): 

(4.3) 
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L = 2tUtT. 
D D 

(4.4) 

This is a relation between the stroke ratio for a cylinder-piston mechanism and the formation 

number based on the properties of the resulting vortex ring. While L / D is specific to vortex 

generation by cylinder-piston mechanism, tUtTI D is a more general parameter in terms of 

measurable vortex quantities. 

It is believed that the pinch-off process is a generic vortex phenomenon, that can be 

observed in other vortex formation mechanisms, including vortex generation by nonconser­

vative forcing considered in this paper. For these other formation mechanisms character­

ization of the pinch-off process in terms of the stroke-length is not appropriate. Here we 

recast the formation number into a "pinch-off time," tpo, which is that time after the force 

is turned on when the leading vortex ring has achieved maximum circulation (and will later 

become disconnected from the trailing jet). A straightforward dimensional analysis on the 

functional relation (4.1) results in three nondimensional parameters, related by 

where 

E 
End = r 3/ 2 / 1/ 2 ' 

r 
r nd = / . 

/1/3U2 3 tT 

(4.5) 

(4.6) 

End is the same non dimensional energy defined in GRS, while r nd is a new normalized 

circulation introduced in Mohseni and Gharib [89]. Experiments by GRS and computations 

by Rosenfeld et al. [117] have shown that vortex ring generators with different stroke 

length, orifice diameters, piston velocities, and orifice geometries all lead to similar formation 

numbers, so long as the velocity profile leaving the orifice is nearly uniform. Gharib et al. 

[46] measured values of End around 0.33, and Mohseni and Gharib [89] predicted that End 

should fall in the range of 0.27 and 0.4, and that r nd should fall in the range of 1. 77 and 

2.07. 
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Numerically, there are several ways to simulate this process. A given vorticity distribu­

tion and its corresponding velocity field may be used as the initial condition (e.g., Stanaway, 

et al. [129]). This method is usually restricted to simple vorticity distributions (Gaussian 

or uniform core distribution), and a differential equation must be solved numerically to 

determine the corresponding pressure field. Another method is to prescribe an axial ve­

locity profile Uz (r) at an inlet, in an attempt to model the injection of fluid through the 

nozzle of the experimental apparatus (e.g., Verzicco, et al. [154]). This approach was also 

used in recent computations by Rosenfeld et al. [117J, who investigated formation for long 

discharge times with a number of different geometrical configurations and piston velocity 

programs. Their numerical results largely confirm the previous experiments of GRS, show­

ing that the formation time is insensitive to the details of the formation process, including 

the piston velocity and its variation in time, details of the geometry of the generator, and 

the Reynolds number. They also found that the velocity profile of the discharged fluid can 

be an important factor in determining the formation number. For example, if a very long 

cylinder is used, the velocity profile at the discharge will be parabolic (assuming laminar 

flow), and the formation number is smaller than the "universal" value by a factor of 4. 

A simpler method of numerically generating vortex rings is to apply a nonconserva­

tive force directly in the equations of motion. In laboratory, nonconservative force, i. e., 

rotational force can be generated by imposing currents in the fluid with a magnetic field. 

McCormack and Crane [76J discussed vortex ring generation by an impulsive force applied 

over a circular area. In numerical simulation of the interaction between a vortex ring and 

a solid wall, Swearingen et al. [133J used an impulsive body force applied over a circular 

region of fluid to generate a vortex ring with the desired properties. 

We have used a similar force distribution, but have studied forces with longer duration. 

Thus long duration forces are used to simulate the formation of vortex rings in the labo­

ratory. Our main objective is to verify the theoretical predictions [89], and establish the 

relation between laboratory methods of vortex ring generation and those generated with 

applied nonconservative forces. The results largely confirm the experimental results of GRS, 

and the computations of Rosenfeld et al. [117J. Rosenfeld et al. showed that in addition 

to the universality of the formation time, the circulation of the leading vortex ring, when 
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scaled with the average piston velocity and cylinder diameter, varied by only 40% as the 

formation conditions were varied. Here we show that under similar conditions this variation 

is, in fact, very much smaller, around 5%, if the vortex circulation is normalized with the 

impulse of the ring and its translation velocity, as defined in Mohseni and Gharib [89]. We 

also investigate the extent to which thicker rings (with relatively higher nondimensional 

circulations) can be formed. 

This chapter is organized as follows. In section 4.1 we analyze the form of the non­

conservative force and the invariants of the resulting vortex ring. In section 4.2 we briefly 

describe the numerical method which is used for the computations. We also discuss how 

properties of the leading vortex ring (such as impulse, energy and circulation) are com­

puted. In section 4.3 we present two approaches in describing the pinch-off process. The 

results of the numerical experiments are presented in section 4.4. Two ways of generating 

thick (strong) vortex rings are discussed in section 4.5, where we compare the results with 

vortices of the Norbury family. Concluding remarks are placed in section 4.7. 

4.1 Vorticity Generation by Nonconservative Force 

Vortex rings are generated by a nonconservative force added to the momentum equation. 

Cylindrical-polar axisymmetric coordinates (r,x) are used. The body force is aligned with 

x, and has the form: 

ix(r, x, t) = C F(t) G(x) H(r) (4.7) 

where C is an amplitude constant with units of circulation, and F, G are functions with 

units of inverse time and inverse length, respectively, and H is nondimensional function. 

For impulsive forces, F(t) is a regularized Dirac delta function (a Gaussian): 

_(t-tO)2 
e at 

F(t) = V1i' 
at 7r 

(4.8) 
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and for long duration forces, a regularized step-function: 

( ) 
__ tanh ( D:t (to - t)) + tanh ( D:t (t - to - T)) 

F t - 2T (4.9) 

where in both cases D:t is a time scale which controls the smoothing. For the nonimpulsive 

case, T is the duration of the applied force. 

The functions G and H control the vorticity distribution generated by the force. For 

the axial distribution, we again use a regularized delta function: 

(4.10) 

while for the radial distribution, we use: 

1 r - R 
H(r) = - erjc(fo --) 

2 D:r 
(4.11) 

where, as shown below, R is the nominal toroidal radius of an impulsively generated ring, 

and D:r and D:x are length scales which control the smoothing, and D: is a purely numerical 

nondimensional constant discussed below. For impulsive forces, the azimuthal vorticity field 

generated by the force is given, to leading order (e.g., [118]), by: 

( ) 
__ ojx(x,r) 

w() x,r - or' (4.12) 

Thus for impulsive forces, the vorticity field is approximately a two-dimensional Gaussian 

distribution (for small D:r ): 

CD: 
w()= ---

nD:xD:r 
(4.13) 

which is the rationale for the functional dependence chosen for Hand G. Weigand & 

Gharib [159J showed that vortex rings generated by a piston/cylinder arrangement possessed 

a Gaussian vorticity distribution in their core. Note that the constant factor D: = 1.25643· .. 

is used so that the maximum tangential velocity in the core is located at r = R ± D:r . Thus 

D:r is also the core radius. 



40 

The circulation for the impulsive case is then given by (integrating equation (4.13) over 

the area): 

impulsive force. (4.14) 

A variety of length and time scales are available for nondimensionalization of various quan­

tities associated with vortex ring generation. In what follows, we choose the (nominal) ring 

radius, R as the basic length scale, and use this with the amplitude of the force (with units 

of circulation), C, to form time and velocity scales. Thus we have the following 4 nondi­

mensional parameters associated with the forcing: Ctr/R, Ctx/R, TC/R2 , and Re = C/v. 

Note that C is only the circulation of the vortex ring when the forcing is impulsive. For 

nonimpulsive forces there is a maximum forcing time beyond which a leading vortex ring 

pinches off from a trailing jet. Thus for nonimpulsive forces the Reynolds number based on 

f is not the most appropriate Reynolds number to describe the leading vortex ring. For 

such cases we define an additional Reynolds number: 

Re _ fl. v .r . 
l.v.r. - nonimpulsive force. (4.15) 

V 

where fl. v .r . is the (measured) circulation of the leading vortex ring. In most of the cases, 

Reynolds number defined by fl. v .r . is greater than 1500. 

4.2 Numerical Method 

For practical reasons, an existing code for the axisymmetric compressible Navier-Stokes 

equations has been used to study vortex ring formation. The code was initially developed 

to investigate the acoustics of turbulent vortex rings and jets. While the numerical method 

is inefficient for computing low Mach number flows, the CPU requirements for the present 

problem are minimal and all the computations were performed on a small workstation. In 

the cases presented here, the maximum Mach number in the flow was 0.2, and it was verified 

that changes in Mach number below this value had no impact on the results presented. 

A sixth order compact finite difference scheme [64] is used in both the axial and radial 
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directions, and an explicit fourth-order Runge-Kutta method is used for time advancement. 

At the boundary we use the buffer zone proposed by Freund [41 J to absorb the waves. To 

avoid problems with the polar coordinate singularity, the centerline treatment proposed by 

Mohseni and colonius [88J is used in combination with symmetry relations for axisymmetric 

flows. From the location of the applied force, the computational domain extends to -3R 

and 21R in the axial directions and about 4R in the radial direction. The grid spacing is 

2
1
5 R, and the time step is 2

1
5 R/ a where a is the sound speed. Cases with higher time and 

spatial resolutions established the independence of the solution on the resolution. 

For the results presented in the next section, we need to calculate the kinetic energy, 

impulse, and circulation: 

E = 7r J w?jJdxdr, r = J wdxdr, (4.16) 

respectively, of the leading vortex ring. To compute the integrals, the velocity field from 

the computations is differentiated to obtain the vorticity. In order to distinguish between 

the leading vortex ring and the rest of the vorticity, we set the vorticity to zero outside of a 

closed iso-contour of vorticity around the leading vortex core, at which point the vorticity is 

2% of the maximum vorticity in the core. Then an integral equation [118J is used to obtain 

the stream function, ?jJ, from the vorticity distribution, and equations (4.16) are integrated 

numerically with a 4th-order accurate quadrature scheme. The translational velocity, Utr , 

is estimated by tracking the position of the maximum vorticity in the leading vortex core. 

To estimate the uncertainty in determining End and r nd from the computational data 

in this way, we set up a Hill's spherical vortex ring in the domain, computed the integrals 

in (4.16) and compared them with theoretical results. Obviously, the accuracy depends on 

how well the boundary of the vortex ring can be resolved by the grids. With grid spacing 

AR, where R is the radius of the Hill's Vortex, and the error in calculating r, E, I is 0.5%, 

4%, 6% respectively. 

Another uncertainty in determining End and r nd comes from the cutoff level. As men­

tioned above, for all cases, we use 2% of the maximum vorticity in the core. The optimal 

cutoff level should be the minimum contour level that distinguishes between the leading 
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vortex ring and the rest of the vorticity, which is varying with time and Reynolds number. 

We compared the values of End and r nd of the leading vortex ring, computed with 2% cutoff 

level, with values computed with the optimal cutoff level for several cases. The difference 

is less then 2% for End and 1 % for r nd. 

4.3 Vortex Ring Pinch-off Process 

Vortex rings are generally the final outcome of the evolution of cylindrical vortex layers 

(shear layers). In the laboratory, a common method of generating a vortex ring is by using 

the so called cylinder-piston mechanism. In this method a slug of fluid is pushed through an 

orifice or nozzle, which creates a sharp shear layer. This shear layer is intrinsically unstable 

and rolls up into a spiral structure. The resulting vortex ring is fed by the shear layer at 

a specific rate (velocity), which is the velocity of the shear layer. The rate with which the 

invariants of motion (in an inviscid case, E, r, I) are delivered is essential in determining 

the properties of the resulting leading vortex ring. This rate is in fact a main characteristic 

of the vortex generator and varies among different vortex generation tools. 

We offer two explanations for the pinch-off process. The first one describes the process 

as a dynamical problem, where we focus on the transitional dynamics of the leading vortex 

ring and its following shear layer. In the second approach we consider the phenomenon as 

the relaxation process of the leading ring to its final equilibrium state. 

Dynamical approach: Here we describe the evolution of the leading vortex ring and the 

trailing shear layer in the early stages of formation. The vorticity distribution is plotted 

in figure 4.1 at three different times for a typical pinch-off case. At the earliest time 46.8, 

which is nearing the end of the forcing time, the velocity profile at the axial center of the 

forcing region, x = 3 in the figure, resembles the velocity profile at the exit of a nozzle. At 

x = 5.8, the location of maximum vorticity at time 46.8, the axial velocity profile has two 

local peaks. The upper maximum corresponds to the maximum axial velocity of the leading 

vortex ring. The lower peak corresponds to the maximum velocity in the shear layer. Since 

the vortex has been enlarged significantly at this stage, it pushes the shear layer toward 

the axis of symmetry. This is evident by the shifting of the maximum axial velocity in the 
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shear layer toward the axis of symmetry. Since the leading vortex ring gains its strength 

from the shear layer, it ceases to grow if the local velocity of the shear layer is less than 

the velocity of the vortex at that location. We believe that this instant characterizes the 

pinch-off time. At time 122.7, the leading vortex is almost separated from the tail, and is 

in transition to absorb the remains of the tail-vorticity into its core. At a later time, 217.6, 

the leading vortex spreads more, leading to a decrease in its axial velocity. This trend is 

illustrated in the vorticity profiles as well. The thin shear layer rolls up into a highly peaked 

vorticity region that accelerates and moves the shear layer toward the axis of symmetry. At 

the pinch-off time, the vorticity strength in the shear layer trailing the leading vortex tends 

to zero at r = O. From this time on, the vortex spreads more toward its final configuration 

where the vorticity is not highly concentrated. 

Therefore, one might conclude that the dynamical criterion for the pinch-off is that the 

maximum axial velocity in the rings equals the maximum axial velocity of the following 

shear layer. Alternatively, the pinch-off time is when the shear layer is unable to enlarge 

the leading vortex ring, the strength of the shear layer tends to zero at r = O. 

This approach suggests means to modify the properties of the resulting vortex ring by 

manipulating the characteristics of the generating shear layer. One way is to gradually move 

the shear layer away from the symmetry axis, so that the leading vortex ring grows away 

from the symmetry axis. The other is to gradually increase the velocity of the generating 

shear layer in order to compensate for the increasing translational velocity of the ring. These 

are investigated in section 4.5. 

Relaxational approach: While the dynamical approach is insightful, it is cumbersome to 

model. It depends on the nonlinear dynamics of the leading vortex ring and its interaction 

with the trailing vorticity, and as such relies on obtaining an accurate estimate of the 

velocity profile in the leading ring and in the trailing shear layer. To overcome this difficulty 

Mohseni and Gharib [89J proposed a relaxational approach to the pinch-off process. They 

suggested that in the inviscid case the final state of the problem is governed by the first 

few invariants of the motion, namely the energy, impulse, and circulation. While there are 

an infinite number of conserved integrals of motion in an inviscid flow, on a macroscopic 

level, only the linear functionals of the vorticity density are conserved, which are the energy, 
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Figure 4.1 (a) Nondimensional vorticity contours (wR2 Ie) and axial 
velocity (uRI e) profiles, and (b) vorticity profiles at nondimensional 
times telR2 =46.8, 122.7, and 217.6. (--) axial velocity and 
(---- ) azimuthal vorticity. Axial velocity and vorticity distributions 
at the axial center of the forcing region at the nondimensional time 
46.8 is also plotted. The scales for velocity and vorticity profiles are 
shown in the picture. 

impulse, and circulation [85]. These few conserved quantities are the ones considered in the 

Kelvin variational principle. A straightforward dimensional analysis results in the governing 

three parameters, nondimensional energy End and nondimensional circulation r nd, and 

nondimensional time tnd. The equivalence of the nondimensional energy and circulation for 

the initial and final state of the fluid results in a prediction for the pinch-off time. The same 

approach is valid for other mechanisms of shear layer generation as long as an estimate of 

Utr and toroidal radius of the vortex ring in terms of the known quantities is known a priori. 

If an estimate for the rate of generation of nondimensional energy and circulation is known, 

an estimate of the pinch-off time is obtained by the equivalence of these quantities for the 
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generation mechanism and for the final state. In section 4.5 we investigate how to change 

the properties of the shear layer generator so that it can provide more energy at the later 

stages of the formation process compatible with the invariants of motion for thick vortex 

rings in the Norbury family of vortices. 

4.4 Numerical Results 

In this section, we present results for vortex ring generation by nonimpulsive forces. This 

corresponds to long stroke length in vortex generation by a cylinder-piston mechanism. In 

particular, we wish to establish under what conditions the normalized circulation, r nd, and 

energy, End, of the leading vortex rings are independent of the parameters associated with 

the nonimpulsive forcing. 

Vorticity contours at several different stages of the formation process are presented in 

figure 4.2 for a typical case with a r I R = 0.2, axl R = 0.2, TC I R2 = 25.29, and Re = 3600. 

The Reynolds number based on the circulation of the leading vortex ring is Rel.v.r. = 2800. 

In figure 4.2(a), a vortex ring with small core size is generated shortly after the onset of the 

forcing. As the vortex ring grows in size (figure 4.2(b)), it translates downstream due to its 

induction velocity. In figure 4.2(c) the spiral structure of the core is well-established, and 

at the lowest vorticity level depicted in the figure the tail is disconnected from the leading 

rmg. 

In figure 4.3, we plot the instantaneous vorticity field for three different values of the 

force duration at a time when the leading vortex ring has translated about 5~ times the 

ring diameter. For TC I R2 > 9.11, the leading vortex ring is pinched off from its trailing 

jet. In case (a), TCIR2 = 4.05, all of the shear layer generated by the nonconservative 

forcing is absorbed by the leading vortex ring and there is no visible vorticity tail behind 

the vortex ring. In figure 4.3(b), where TCIR2 = 25.3, the leading vortex ring reaches 

its final configuration, while a small part of the original shear layer is left behind and not 

absorbed by the leading vortex. For TCIR2 = 77.5 (figure 4.3(c)), there is a strong trailing 

jet behind the leading vortex ring. It is important to note that the size of the leading vortex 

rings are very similar in figures 4.3(b) and (c) and the contour levels are the same. These 
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Figure 4.2 Vortex ring formation at different times; (a) tG / R2 = 
26.83, non dimensional vorticity (wR2/G) contour levels (min=O.08, 
max=O.78, increment=O.07) /3.16 (b) tG / R2 = 44.72, contour lev­
els (min=O.05, max=O.65, increment=O.06) /3.16 and (c) tG / R2 = 
53.66, contour levels (min=O.06, max=O.66, increment=O.06) /3.16. 
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Figure 4.3 Vortex ring formation with different forcing times, (a) 
TC / R2 = 4.05, contour levels (min=0.002, max=0.02, incre­
ment=0.002) (b) TC / R2 = 25.3, contour levels (min=0.0023, 
max=0.0333, increment=0.0031), and (c) TC/R2 = 77.5, contour 
levels (min=0.0023, max=0.0333, increment=0.0031). 

figures should be compared qualitatively with figure 3 m [46], where a similar pinch-off 

process is observed in experiments. 

In the rest of this section we quantitatively compare the nondimensional circulation and 

energy of the leading vortex. The total circulation and the circulation of the leading vortex 
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ring only are presented in figure 4.4. By varying the force duration, it was found that 

TC I R2 = 9.11 was the critical "formation time" beyond which vorticity produced by the 

force at later time is not rolled into the leading ring. For TC I R2 > 9.11, the circulation of 

the leading vortex ring normalized by C, varies between 0.65 and 1.05, and the translational 

velocity UtrRIC varies between 0.13 and 0.1. In figure 4.5 the nondimensional circulation of 

the leading vortex rings, r nd, is plotted. The total circulation for the case with the critical 

value of TC I R2 = 9.11 is also presented in figure 4.5. The nondimensional circulation is 

very close to 2, and varies by only 5 % for all the different forcing times considered. As is 

evident from the error bars in the figure (see section 4.2), the uncertainty in the measured 

circulation and translation velocity in the leading vortex ring are greater than the variation 

between the different cases. The constancy of the final nondimensional circulation indicates 

that the pinch-off time for all cases is nearly the same, with a value tpoUtr I D, of 1.2. The 

nondimensional energy of the leading vortex rings is also very nearly invariant to the force 

duration, with values near 0.3. 

As discussed in section 4.1, there are four independent parameters for the forcing profiles 

chosen: a r I R, ax I R, TC I R2, and Re = C I v. First we consider the effect of the Reynolds 

number on the vortex formation process, letting Rel.v.r. take on the values of 320, 800, 

1890, 3680, and 7300, respectively. With small Reynolds numbers (320 and 800) the rapid 

decrease in r nd, depicted in figure 4.6, shows the effect of viscosity. Note that in these 

highly viscous cases the vortex ring is not separated from its tail at a cut-off level of 

2% of the maximum vorticity, resulting in large r nd and small End compared with the 

pinched off cases. As is evident in figure 4.6, for Reynolds numbers greater than 1500, the 

nondimensional circulation of the leading vortex ring is not much affected by the viscosity. 

It is interesting to note that f1.v.r./v is also the ratio of viscous diffusion time scale and the 

relaxation time scale. Therefore, for high Reynolds numbers the fluid system relaxes to its 

final leading vortex configuration before viscous forces have a significant effect on the final 

outcome. All of the numerical examples in the rest of this paper are performed at Reynolds 

numbers above 1500 to minimize the viscous effects on the vortex ring formation process. 

In the second set of computations, we change the axial extent of the forcing region, 

axl R. Changing axl R results in changes to the translational velocity. The more compact 
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Figure 4.4 Vortex rings generated with ax/ R = 0.2, a r / R = 0.2, 
and with different forcing duration TC/R2

• Total circulation: (t.) 
TC/R2 = 4.05; (_._) TC/R2 = 9.11; (----) TC/R2 = 14.2; 
( ........ ) TC / R2 = 25.3; (--) TC / R2 = 39.5. Ring circulation: 
(0) TC/R2 = 14.2; (+) TC/R2 = 25.3; (0) TC/R2 = 39.5. For 
cases with forcing time less than the pinch off time, namely TC / R2 = 
4.05 and 9.11, the total circulation and the circulation of the leading 
vortex ring are the same. 

the forcing region, the higher the translational velocity. For TC / R2 = 25.3 we obtain 

UtrR/C = 33.98,24.03,16.99 for a x/ R = 0.1,0.2,0.4 respectively. Although the leading 

vortex ring has higher translational velocity and circulation, if nondimensionalized as in 

(4.6), the normalized circulation r nd is still around 2.0, as plotted in figure 4.7. We can also 

see that the normalized energy End reaches it equilibrium value (::::::: 0.29) after time tUtr / D = 

4.0. This implies that the leading vortex ring has reached the steady state. Therefore, the 

first time that the vortex generator delivers this amount of normalized circulation and 

energy, 2.0 and 0.29 respectively, is marked as the pinch-off time. If we stop forcing the 

flow at this time the final outcome will be a single vortex ring without any trailing vortices. 

If the forcing continues after this time, a leading vortex ring followed by a trail of vortices 

will be generated. 

Next we change the radial extent of the forcing, a r / R, while the other forcing parameters 
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Figure 4.5 Vortex rings generated with a x / R = 0.2, a r / R = 0.2, and 
different forcing duration TC/R2 . (_._) TC/R2 = 9.11; (D) 
TC/R2 = 14.2; (+) TC/R2 = 25.3; (0) TC/R2 = 39.5. 

are held constant. In physical terms a r changes the thickness of the shear layer (boundary 

layer thickness in the cylinder-piston mechanism). For small a r / R the invariants of motion, 

i. e., circulation, impulse and energy, are not a strong function of a r / R. The velocity profile 

at the forcing location resembles a top hat function in r. For the cases where ar / R is less 

than 0.2, the final nondimensional circulation and energy are not affected by variations in 

a r / R. The shear layer thickness in most of the experimental cases in [46] is less than 0.2. 

On the other hand, for large ar / R the velocity profile at the forcing location spreads in r, 

which consequently changes the amount of impulse imparted on the fluid due to the action 

of force. The velocity profile at the forcing location is presented in figure 4.8 for values of 

ad R in the range 0.1 to 0.6. Note that increasing the value of a r / R will gradually change 

the velocity profile from being close to a top hat function to a smoother velocity profile. 

Therefore, by changing a r / R during the forcing period one can model the boundary layer 

growth in the shear layer. 

The nondimensional circulation and energy are presented in figures 4.8(b) and 4.8(c). 

Rosenfeld et al. [117] considered the effect of the discharge velocity profile on the total 

circulation in a cylinder-piston mechanism. They pointed out that for constant average 
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Figure 4.6 Vortex rings generated with ax/ R 0.2, a r / R 
0.2, TC / R2 = 25.3, and different Reynolds number. (*) Rel.v.r. 
320; (0) Rel.v.r. = 800; (6) Rel.v.r. = 1890; (+) Rel. v.r. = 3680; 
(0) Rel.v.r. = 7300. The total quantities with the forcing dura­
tion TC / R2 = 9.11 very close to the limiting case is also plotted as 
(_._). For Rel. v.r. = 320 and 800 the leading vortex ring is not 
detached from the trailing jet at a cut-off level of 2% of the maximum 
vorticity. 

C C a . " 

piston velocity the circulation generated by a parabolic velocity profile is 4 times larger 

than the circulation generated by a top hat profile, resulting in a much smaller formation 

number. One should note that changing the velocity profile has a severe effect on the 

impulse imparted on the fluid due to the forcing. Figure 4.8 shows that for the present 

results the average velocity and maximum velocity at the axis of symmetry are nearly the 

same as the thickness of the shear layer is increased. Therefore, while the rate of generation 

of circulation in all cases is almost the same, the rate of impulse and energy generation 

varies significantly. This results in variations in the nondimensional circulation and energy, 

as shown in figures 4.8(b) and 4.8(c). 
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Figure 4.7 Vortex rings generated with Ctr / R = 0.2, TC / R2 = 25.3, and 
different Ctx/R. Leading vortex ring: (0) Ctx/R = 0.1; (+) Ctx/R = 
0.2; (0) Ctx / R = 0.4. (_. - ) total properties provided by the shear 
layer for Ctx/R = 0.4. 

4.5 Generation of Thick Vortex Rings 

Generation of very strong (high circulation) vortex rings is of importance in many fluid ap­

plications. An example is synthetic jets (e.g., Glezer et al. [128]), where one tries to modify 

the main flow by imparting strong vortex rings from the boundary. In the experimental 

set-up described by Gharib et al. [46] (using a cylinder-piston mechanism), it was observed 

that for each L/ D there is a limiting circulation for which it is not possible to generate a 

stronger vortex ring. Mohseni and Gharib [89] suggested that the nondimensionalization 

based on equations (4.6) results in a universal circulation r nd ~ 2. Therefore, one can con­

clude that using the conventional cylinder-piston mechanism, it is not possible to generate 

a vortex ring with higher nondimensional circulation than 2. 

In section 4.3 we argued that at the pinch-off moment the maximum axial velocity in 

the vortex ring equals the velocity of the following shear layer and that the shear layer is 

forced toward the axis of symmetry where it loses its strength. Therefore, one expects that 

if we move the shear layer away from the axis of symmetry or gradually increase the speed 

of the shear layer, it can still feed the leading vortex ring. Hence, we would be able to 
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Figure 4.8 Vortex rings generated with ax I R = 0.2, TC I R2 = 25.3, 
and different arlR: (a) Velocity profile at time tUtrlD = 9.11; (b) 
Circulation; (c) Energy. (_._) TCIR2 = 9.11; (L'I) arlR = 0.6; 
(0) arlR = 0.4; (+) arlR = 0.2; (0) arlR = 0.1. 
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Figure 4.9 Time history of the forcing amplitude for the results in fig­
ure 4.10. 

generate very strong vortex rings. These ideas are implemented in this section. 

In the first set of experiments we gradually increase the amplitude of the forcing, anal­

ogous to gradually increasing the piston velocity in the cylinder-piston mechanism, to gen­

erate very strong rings. This way, we gradually increase the velocity of the shear layer, in 

order to compensate for the increasing translational velocity of the leading ring. Therefore 

more vorticity is fed into the leading ring, resulting in a stronger vortex ring. We consider a 

case where the amplitude of the forcing function changes linearly with time, see figure 4.9. 

The nondimensional energy and circulation of the leading vortex ring generated by two 

cases with variable forcing amplitude are presented in figure 4.10, where they are compared 

with the result for a constant forcing amplitude. The normalized circulation is r nd ~ 2.5, 

25% higher than the case with fixed diameter, and nondimensional energy is End ~ 0.2, 

40% smaller than the fixed diameter case, which suggests that the formed vortex ring has 

more vorticity than the case with fixed diameter. 

Similarly one can gradually increase the radial extent of the forced region during the 

forcing period. This is similar to having a cylinder-piston mechanism with time-varying 

exit diameter. This way at later times the shear layer will be released at greater distance 

from the axis of symmetry, forcing the center of the vortex ring to move away from the 

symmetry axis. Consequently, while the rate of circulation generation is fixed during this 
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Figure 4.10 Vortex rings generated with varying forcing amplitude. (0) 
constant forcing amplitude in figure 4.9(a); (0 ) forcing amplitude 
depicted in figure 4.9(b); (6) forcing amplitude depicted in figure 
4.9(c). 

6 7 

process, the rate of energy and impulse delivery to the vortex ring increases. Therefore, 

the vortex generator would be capable of providing energy compatible with a vortex in the 

Norbury's family for higher aN (aN, the parameter of the Norbury family of vortices, is 

the nondimensional mean core radius [101, 89]). The results presented in figure 4.11 are 

for a linear change of diameter with time as RI Ro = 0.0317(tCol R2) + 0.9399, where the 

force is applied for 1.9 :::; tCol R2 :::; 0.9399. It is observed that a very strong vortex ring 

with high nondimensional circulation and low energy, comparable with similar quantities 

for Hill's spherical vortex, can be generated. 

In both numerical experiments, while no attempt was made to optimize the change in 

the radial extent of the forcing area or forcing amplitude with time, we were able to generate 

vortex rings with nondimensional circulation near 2.7 and nondimensional energy of about 

0.2, which are very close indeed to the values of these quantities for Hill's spherical vortex, 

r~~ll = 2.7 and E~jll = 0.16. 
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Figure 4.11 Vortex rings generated with varying exit diameter. 
ax! Ro = aT! Ro = 0.2, and (_.- ) constant diameter with TC / R6 = 
9.11; (6) constant diameter with TC! R6 = 25.3; (0 ) varying diameter 
with TC! R6 = 25.3. 

4.6 Comparison with Norbury Vortices 

678 

In this section we compare the nondimensional circulation and energy of the leading vortex 

rings with vortices of the Norbury family. The Norbury vortices are characterized by a 

single parameter aN, the nondimensional mean core radius [101]. The parameter aN varies 

from zero for vortex rings with zero mean core radius to .J2 for Hill's spherical vortex. 

These vortices are steady solutions of the axisymmetric Euler equations, and satisfy the 

Kelvin variational principle. Although the vorticity distribution for an experimentally or 

computationally generated vortex ring is quite different from the Norbury vortices, the 

stream lines are very similar (see [132]). 

Mohseni and Gharib [89] suggested that the invariants of motion for the leading vortex 

ring can be approximated by a vortex in the Norbury family. In this section we examine this 

assumption. The parameters for all the cases considered are given in table 4.1. The mean 

core radius for the computationally generated rings is defined by the radius of an equivalent 

vorticity region relative to the toroidal radius. The primary area of the leading vortex ring 
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I case I TC/R61 CiX/r I Cir/r I Rel vr ... 

1 9.11 0.2 0.2 2770 
2 14.2 0.2 0.2 3200 
3 25.3 0.2 0.2 3800 
4 39.5 0.2 0.2 4100 
5 25.3 0.2 0.2 7300 
6 50.6 0.4 0.2 6300 
7 25.3 0.2 0.4 4000 
8 25.3 0.2 0.6 4000 
9 31.6 0.2 0.2 3000 time varying diameter 
10 25.3 0.2 0.2 3300 time varying amplitude 

Table 4.1 Parameters for computational cases 

depends on the cut-off level in defining the leading vortex ring. However, changing the 

cut-off level from 1% to 15% of the maximum vorticity, results in at most 6% variation in 

the mean core radius. Here, all the results are presented for the cut-off level of 2%. 

In figure 4.12, we compare the nondimensional energy and circulation of the leading 

vortex ring with the same quantities for the Norbury family of vortices. It is observed that 

for all the cases with thin shear layers, namely Cir/r ;S 0.3, the nondimensional circulation 

is around 2.1 ± 0.1 and the nondimensional energy is around 0.29 ± 0.04. These values 

are very close to the values predicted by a vortex in the Norbury family with the same 

nondimensional mean core radius. For cases like 7 and 8, which have a very thick shear 

layer that extends to regions close to the axis of symmetry, one obtains slightly thicker 

rings with higher circulation and lower energy. The strongest vortex rings are generated 

by the mechanisms proposed in the last section. It is interesting to note, however, that the 

non dimensional circulation and energy of the leading vortex ring follow closely the behavior 

of thick vortex rings in the Norbury family, as depicted in figure 4.12. 

4.7 Conclusions 

Vortex ring formation by long-duration nonconservative forces are considered. We investi­

gate the appropriate form of the impulsive forcing function to generate a vortex ring with 
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Figure 4.12 Comparison of nondimensional circulation and energy of 
the computational cases (shown in numbers) with the Norbury family 
(-). 

desired core structure, total circulation, and ring radius. 

An investigation of the vortex pinch-off process, as observed in the experiments by 

Gharib et al. [46], is carried out with long duration nonconservative forcing. The invariants 

of motion are directly computed for the leading vortex ring in order to determine the 

nondimensional energy and circulation. It is observed that if the rate of generation of 

the invariants of motion is constant during the forcing period, the leading vortex ring 

pinches off at around the nondimensional energy of 0.3 and nondimensional circulation of 

0.2, consistent with the experimental observation and theoretical prediction [46, 89]. It was 

suggested that to generate stronger vortex rings with higher nondimensional circulation and 

lower nondimensional energy, one needs to modify the rate of generation of the integrals of 

motion during the forcing period. This modification must be consistent with the Norbury 

family of vortices. The leading vortex ring will pinch-off when the generating mechanism 

is not capable of providing the energy and circulation at a rate compatible with the Kelvin 

variational principle for a steadily translating vortex ring. 

Two ideas for modifying the properties of the leading vortex ring were successfully 
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implemented, where we changed the radial extent of the forcing region or the amplitude 

of the forcing with time to generate very strong vortex rings. The nondimensional energy 

and circulation of the leading vortex rings were compared with an equivalent vortex in 

the Norbury family. This favorable agreement verified that the nondimensional energy and 

circulation of Norbury family of vortices are good approximations for the nondimensional 

energy and circulation of pinched off vortices. 



60 

Chapter 5 

Conclusions and Future Work 

Vortex rings are fluid structures efficient in transferring coherent packets of momentum, 

circulation, and impulse across relatively long distances. These properties make vortex rings 

useful for control strategies in industrial flows, for example, by using synthetic jets [128]. 

In this investigation we were concerned with finding the maximum circulation and energy 

that can be delivered to a vortex ring by an apparatus. Our study was motivated by 

experimental observations by by Gharib et al. [46]. In vortex ring generation by a cylinder­

piston mechanism, they observed that for a large piston stroke versus diameter ratio (L/ D), 

the generated flow field consists of a leading vortex ring followed by a trailing jet. They 

observed that for a large range of flow parameters there is a limiting stroke length that 

imposes an upper bound on the circulation that a vortex ring can acquire. Furthermore, 

they observed that the maximum circulation is achieved for a narrow range of formation 

numbers, between 3.6 and 4.5, for a variety of exit diameters and orifice geometries. Using 

experimental data, they obtained a nondimensional energy of 0.33 for the pinched off leading 

vortex ring. 

A model for the pinch-off process was developed that predicts the range of observed 

formation numbers. The model is based on two assumptions: that the circulation, impulse 

and energy delivered by the cylinder-piston mechanism can be approximated by a slug 

model (which we extended to the time varying diameter and exit velocity), and that the 

properties of the pinched off leading vortex ring can be approximated by a vortex ring in 

the Norbury family. A simple dimensional analysis showed that there are only two universal 

nondimensional numbers governing the pinch-off process, namely the nondimensional energy 
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End (previously defined by Gharib et al. [46]) and a new nondimensional circulation r nd· 

Our model predicts that 0.4 ;::: End;::: 0.27 and 1.77 ;s r nd ;S 2.07, which matches with 

experimental data. 

Our approach in modeling the pinch-off phenomena was of relaxational type. The un­

stable shear layer exiting the cylinder initiates a strong mixing that results in the creation 

of a vortex ring. The shear layer feeds more circulation, impulse and energy to the leading 

vortex ring as long as the shear layer velocity adjacent to the vortex ring exceeds the local 

velocity around the vortex ring. When the two velocities are equal, the shear layer cannot 

feed any more circulation to the leading vortex ring, causing it to pinch-off and move away 

from the cylinder. In other words, the leading vortex ring grows larger as long as the invari­

ants of motion provided by the shear layer generator are compatible with the invariants of 

motion for a steadily translating vortex ring. To this end, an important question is: what 

is the fate of an axisymmetric ideal fluid? In other words, if an axisymmetric flow starts 

from a given initial condition, what is the final equilibrium state? 

The thermodynamics of the vorticity density field (w / r) is considered, and the statistical 

equilibrium theory of Miller, Weichman, and Cross [81, 82] and Robert and Sommeria [115] 

for 2-D flows in Cartesian coordinates was extended to axisymmetric flows. An assump­

tion made in the theory is that viscous effects in the formation process may be neglected 

since the viscous timescale is much larger than the relaxation timescale. Apart from this 

assumption, the statistical equilibrium theory is exact. All the invariants of motion are 

accounted for, and the mean field equations derived from the statistical equilibrium theory 

provide equations for deriving the equilibrium state of an axisymmetric flow from its initial 

condition without resorting to dynamics. The mean field equations do not have the filamen­

tation problem of Euler equations in axisymmetric flows, and can be accurately solved on a 

coarse grain, meaning that they are computationally much cheaper than integrating Euler 

equations toward the equilibrium state. It is shown that the resulting mean field satisfies 

a maximization principle similar to Kelvin's variational principle. We need to develop a 

numerical scheme for solving the mean field equations in the statistical equilibrium theory, 

and to examine in detail what type of initial conditions (or rate of providing invariants of 

motion) correspond to the pinched off cases. 
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Vortex pinch-off process is a general phenomena, and is not limited to the piston cylinder­

mechanism. In order to asses the universality of the invariants of the leading vortex ring, 

vortex formation by another mechanism, a nonconservative forcing term in the momentum 

equation, was studied. For applied forces of long duration (simulating experimental vortex 

ring generation with large stroke ratios), a leading vortex ring is separated from the trailing 

jet. The results confirm that the formation process in this case is also governed by the same 

two nondimensional parameters, a normalized energy and normalized circulation, as was 

suggested in chapter 2. Limiting values of the normalized energy and circulation were found 

to be about 0.3 and 2.0, respectively, in agreement with experiments [46] and theory [89]. 

It was shown that by varying the spatial extent of the forcing and the forcing amplitude 

during the formation process, rings with larger nondimensional circulation can be generated. 

This corresponds to cylinder-piston mechanism with time varying diameter or accelerating 

piston velocity during the stroke. The nondimensional energy and circulation of the leading 

vortex rings were compared with the same properties for vortices in the Norbury family, 

confirming the assumptions in the model. 

It appears that a similar type of universality may exist in some other vortex phenomena. 

One example is vortex shedding behind bluff bodies, where it is shown by Mohseni [86] that 

the von Karman ratio for the relative distance between the vortex patches in a Karman 

street and the universality of the shedding Strouhal number (in the frame of reference of 

invariants of motion, f Utr/h, where h ::::::cylinder diameter) can be viewed as manifestations 

of Kelvin's variational principle. Furthermore, using the new scalings these two numbers 

were shown to be identical. A possible extension to this work would be estimating the 

nondimensionalized drag coefficient in this model. Shusser and Gharib [127] obtained the 

same pinch-off behavior in a starting plume. Another example is the vortex formation at 

the end of a shock tube, where a similar type of pinch-off process is observed. An important 

application of vortices is in flow control strategies, e.g., synthetic jets [128]. The limits on 

circulation and energy of the leading vortex ring may set the maximum gain available for 

modifying flow characteristics by synthetic jets. These applications require more detailed 

investigations. 
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Part II 

Evaluation of Mach Wave 

Radiation in a Supersonic Jet 
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Chapter 6 

Introd uction 

6.1 Motivation 

Ever since the beginning of jet aircraft technology, noise created by jet exhausts has been 

an important issue. The development of turbojet engines for aeronautical transport in 

the sixties dramatically increased noise pollution around the airports. The age of civil 

aviation jets started in the United States in 1958 with the beginning of transoceanic and 

transcontinental flight operations by DC-8 and Boeing-707 turbojet aircrafts. The takeoff 

noise of these airplanes was almost 20 dB more than that of the propeller aircrafts that 

they replaced. The strong public opposition to increase in aircraft noise is the major factor 

that has prevented most development of new airports. The subject of aerodynamically 

generated noise is also attracting more interest recently by the continuing efforts to develop 

a high-speed civil transport plane. Consequently, supersonic jet noise has received much 

attention in recent years mainly due to a more viable generation of supersonic transport 

aircrafts. The United States' national effort to reduce the noise around airports is led 

by FAA (Federal Aviation Administration). The new FAR 36 Stage 3 noise regulations, 

FAA [33], focused the attention of aircraft industries toward quiet propulsion systems. These 

rules provide the de facto design requirements for takeoff noise. The FAR Part 36 Stages 

1 and 2 have already made major improvements in noise radiation from civil aircrafts [35]. 

Consequently, the FAA has amended FAR Part 91 [34] to regulate an orderly phaseout of 

most of the stage 2 aircraft from the civil fleet by the year 2000. The success of the new 

technologies is contingent upon reducing their jet exhaust noise. To meet the low level 
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noise requirements in international standards around airports, more research is needed to 

understand the physics of sound generation in turbulent jets, which is vital for improvement 

of jet noise suppression methods, and needs to be advanced beyond current levels. 

The pioneering work of Sir M.J. Lighthill in the 1950's paved the road for theoretical 

investigation on jet noise problems. In Lighthill's analogy the problem of noise radiation 

in a turbulent flow is replaced by an acoustic radiation problem in a fluid at rest with 

equivalent acoustic sources. He manipulated the fundamental equations of fluid motion to 

isolate terms that represent the fluctuating stresses created in a localized region of space in 

a moving fluid. These unsteady stresses become the source terms in a wave equation for the 

sound that propagates into the surrounding medium at rest. Lighthill's acoustic analogy 

is exact, i.e., there is no special assumption or any linearization. The main aeroacoustic 

processes, such as sound generation by inhomogeneities in the flow, sound dissipation by 

viscosity or heat conduction, are all accounted for. The main victory of Lighthill's theory 

was the correct prediction of a scaling law for sound generation in a free jet. The theory 

predicted that the total power radiated by the jet would be proportional to the eight power 

of the jet velocity, UJ. The Lighthill approach applies to both subsonic and supersonic jets. 

When the convection velocity of the eddies becomes supersonic (around M j ~ 1.5), the 

total acoustic power changes its proportionality from ug to ug, and there is a continuous 

transition from the Ug-Iaw for subsonic jets to the Ug-Iaw for supersonic jets. While eddies 

need to be unsteady in a convected frame of reference in order to radiate noise at convective 

Mach number Me < 1, even "frozen" turbulence may contribute to the noise for Me > 1. 

6.2 Mach Wave Radiation 

Supersonic jet noise is usually broadband, and consists of three major elements: turbulent 

mixing noise (lower frequencies), screech tone, and shock noise (higher frequencies). For 

a perfectly expanded jet only turbulent mixing noise exists. If the jet is not perfectly 

expanded, quasiperiodic shock cells will form in the jet. In this case interaction of turbulent 

eddies with the shock waves is responsible for the shock noise generation, and acoustic 

feedback between the shocks and the nozzle lips results in discrete tones. In this study we 
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focus only on the noise generation in a perfectly expanded jet. For a review of shock noise 

and screech tone and related references, we refer to Tam [141] and Raman [114]. 

In the last three decades one of the important developments in turbulent research was the 

recognition of large scale turbulent structures in shear flows (see Brown and Roshko [11)). 

These structures have a central role in the spreading of shear layers, and the dynamics of 

such structures was observed to control the mixing process. There is theoretical and exper­

imental evidence [143, 152] that suggests the noise generated by large structures constitutes 

the principal part of the supersonic turbulent mixing noise. These sound sources originate 

from the convection of large scales at supersonic speed relative to ambient and thus gen­

erate intense Mach wave radiation. Crudely speaking, the eddies behave like a supersonic 

projectile that emits Mach waves in the direction 

(6.1) 

First Phillips [110], and later on Ffowcs Williams [161]' described this noise mechanism 

through the development of a convected wave equation, which is based on the Lighthill 

acoustic analogy approach. This approach was difficult to implement both experimentally 

and computationally. On the other hand, when the large scale structures are phase locked 

to external excitation, there is some experimental evidence to support models based on the 

linear stability analysis for predicting the local distribution of amplitude and phase of these 

structures (e.g., Gaster et al. [45] and Petersen and Samet [109]). 

This growing recognition of large scale structures in shear flows [11] and their interpre­

tation as instability waves [25] in the early seventies led to alternative theories for noise 

generation in supersonic jets. An early attempt by Liu [68] was made to represent sound 

sources as instability waves. He found that some of these instability waves travel supersoni­

cally with their peak amplitude inside the shear layer and decay in the radial direction away 

from the jet. Liu [67], then, used these remnants of the instability waves outside the jet 

to calculate the near field jet noise. Tam and Morris [147] and Tam and Burton [142, 143] 

used these ideas in the context of Mach wave radiation by linear stability waves, which was 

more tractable at the time. Their approach is considered in detailed in the next chapter. 
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Figure 6.1 Schematics of a turbulent jet. 

In Tam and Morris' analysis the large scale structures of the flow are modeled locally as 

linear stability waves, using the integral analysis proposed by Stuart [130]. In this wave 

envelope approach the local distribution of the finite amplitude fluctuations is described 

by linear theory. At low Reynolds numbers experimental measurements [98] supported the 

idea that the rapid growth and decay of instability waves near the end of the potential 

core (see figure 6.1) made a major contribution to the radiated sound from the jet. Initial 

growth rates of the instability waves and their phase velocities agreed with the linear the­

ory, and the peak Strouhal numbers agreed with the predictions of the instability theory. 

As Reynolds numbers increased (see experiments at moderate Reynolds numbers [152]) the 

spectra broadened but still showed reasonable agreement with the Strouhal numbers of the 

predicted most amplified waves. 

There is a large class of articles that are mainly concerned with the noise generation in 

fully expanded jets and shear layers by instability waves. We refer to the followings and 

the references therein: Tam [136, 137, 138, 139, 140], Tam and Burton [142, 143] Tam and 

Chen [144], Tam, Chen, and Seiner [145]' Tam and Morris [147], McLaughlin, Seiner, and 

Liu [77], Chan and Westley [13], Sedelnikov [122], Morris [93], Morris and Bhat [94, 95, 96], 

Dahl and Morris [26, 27, 28], Moore [92], Merkine and Liu [80]- Their observations provided 

evidence for linear mechanism of Mach wave radiation. However, as we mentioned before, 

one should realize that any supersonic structure that is moving by the mean flow will radiate 
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Mach waves with the appropriate radiation angle approximated by equation (6.1). Now, 

since the visually observed large-scales in a turbulent flow (e.g., [11]) are usually moving with 

a convective velocity Me, in the range of O.6Mj ,::S Me ,::S 0.7 M j (e.g., [108]) they will radiate 

Mach waves at an angle that is approximately predicted by equation (6.1). Therefore, any 

model that can represent some of the dynamics of large scale turbulent structures will be 

convecting downstream with the convective velocity that is dictated by the mean flow, and 

consequently radiate Mach waves. Thus, it is not surprising that representing the large 

scale turbulent structures with instability waves does a reasonable job in predicting Mach 

wave directivity. The main factor in setting the directivity of a jet is the mean velocity 

profile and the main convective velocity. To this end, the mean flow is clearly established 

in a nonlinear process. Given this mean flow, however, an important question is this: are 

the linear Mach wave generation mechanisms dominant sound sources or does the sound 

generation by nonlinear interaction of large scale structures contribute significantly to the 

far field noise? 

Another important assumption in Tam and Burton's theory [143] is that at each fre­

quency they consider only a single instability wave as the representative of the major energy 

carrying wave component. In this respect the stochastic model of the instability waves that 

was developed by Tam and Chen [144] makes use of the single instability solution to con­

struct a broadband jet noise theory. They have argued that the instability wave spectrum 

of the jet may be regarded as being generated by the stochastic white noise excitation at 

the nozzle lip region. Their justification for the white noise spectrum of the excitations is 

that near the nozzle lip region the flow in the jet mixing layer has no intrinsic time and 

length scales. 

Thus, our principal objective in this study is to evaluate the validity of the assumptions 

in Tam and Burton's theory by direct comparison of the results for LNS (Linearized Navier­

Stokes) calculations with the corresponding DNS (Direct Numerical Simulation) data. 



69 

6.3 Computational Tools 

Most fluid problems are governed by nonlinear partial differential equations for which closed 

form solutions are difficult to obtain. The development of high-speed computers opened new 

possibilities for applying the principles of science to engineering problems in fluid mechanics. 

Computational Fluid Dynamics (CFD) is considered as a new approach, complementing 

experimental and theoretical methods in improving our understanding of fluid problems. 

Computational Aeroacoustics (CAA) is concerned with sound generation by aerodynamic 

forces through computational means. It combines the traditional disciplines of aeroacoustics 

and CFD. While CAA is a part of CFD, its particular requirements make it different from 

many classical approaches in CFD. 

In recent years simultaneous direct simulations of flow field as well as its radiated sound 

offer the most detailed description of sound generation process in aeroacoustics [21, 23, 83, 

43, 40, 17]. Some of the computational issues relevant to jet noise are discussed below. 

Acoustical signals are often orders of magnitude smaller than the flow field generating the 

sound and can be easily contaminated by inaccuracy in the numerical schemes or boundary 

conditions. Sound is a small amplitude by-product of flows which needs special algorithms 

to be resolved accurately. Large disparity between the sound levels and the unsteady flow 

fluctuations presents a severe challenge to direct numerical simulation. Extreme care needs 

to be taken so that the acoustic pressure fluctuations do not get lost in the inherent nu­

merical errors of the calculations. Well-separated length scales between the thickness of the 

shear layer that controls the instability waves and the acoustic wavelength, which is many 

times the jet radius, demands extreme computational powers. 

Regardless of the application, all CFD codes are subject to numerical error. Any prop­

agating wave will always suffer from accumulating amplitude and phase errors; there is an 

intimate coupling of time and space in an acoustic wave. These undesirable effects can be 

limited by increasing the number resolution of the computation, but this leads to enormous 

memory and computational requirements. An acoustic wave has a frequency w = 27r I in 

time and a wavelength A in space that are related by AI = c, where c is the sound speed 

in the medium (assumed quiescent). Thus, to resolve an acoustic wave one needs to ac­

curately resolve the wave length as well as its frequency; special care must be taken in 
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choosing the spatial and temporal discretization of aeroacoustics problems. Highly accu­

rate time integrations are usually advised in aeroacoustic computations. When an open 

domain problem such as jet noise is solved computationally, one needs to prescribe numer­

ical boundary conditions at the computational boundary. These boundary conditions are 

usually dubbed as nonreflecting boundary conditions. An accurate nonreflecting boundary 

condition is essential to the overall performance of CAA (see appendix C). 

6.4 Approach 

To investigate the physics of Mach wave radiation and to answer the questions addressed 

in the previous sections, we have adapted a computational approach. Direct simulation of 

both hydrodynamic fluctuations and acoustic field provide a detailed data base of the jet 

flow, and put us in a unique position to examine Mach wave radiation mechanisms. 

When DNS data is available, in principal the questions at the end of section 6.2 can 

be addressed theoretically with linear stability theory (LST) and the method of matched 

asymptotic expansion. In particular, we tried to calculate the free scaling factor in LST 

by an adjoint analysis [24]. In this approach, we first obtain the adjoint equations of the 

linearized equations for the flow region. Subsequently, a biorthogonality relation provides 

the necessary mathematical tool for projecting any flow signals to the eigenfunctions of 

the linear stability equations. However, due to some technical difficulties in the matched 

asymptotic expansion analysis of the adjoint equations, we found it more appropriate to 

directly solve the linearized Navier-Stokes (LNS) equations. The LNS method does not have 

the simplifying assumptions of the LST, and an accurate evaluation of the linear stability 

predictions can be made. 

Direct numerical solution of the linearized Navier-Stokes equations for jet flows are not 

something new. Hixon et aZ. [54] used a solution to linearized Euler equations for noise 

prediction in an axisymmetric supersonic jet. He used an analytic mean flow profile in 

his calculations. Morris et aZ. [97] solved the Reynolds average Navier stokes equations, 

with a simple algebraic turbulence model, for the mean flow quantities along with a with a 

nonlinear disturbance equation for the perturbation part. 
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Accurate computations of the flow and acoustic fields of two-dimensional mixing prob­

lems by Colonius et al. [20] and Mitchell et al. [83] paved the road for a full three­

dimensional DNS of jet noise problem. Chyczewski and Long [17] performed a DNS solution 

of a rectangular jet that includes the jet plume and a small region of the acoustic near field. 

They have developed a set of unsteady conditions at the nozzle exit that can specify the 

disturbance spatial distribution, amplitude, temporal behavior and phase relation around 

the nozzle lip. These simulations rely on an ad hoc model of the unsteady flow at the exit 

of the nozzle. A more realistic inflow condition was developed by Freund et al. [42], where 

they provide the inflow boundary condition by feeding the result of a turbulence simula­

tion of a periodic jet. His accurate calculation of the hydrodynamic fluctuations as well 

as the near field acoustics affords us an opportunity to investigate the specific agreement 

of linear theory with DNS of a realistic supersonic jet. To this end, we have developed 

a linearized Navier-Stokes solver that uses the mean flow quantities, grid distribution and 

inflow boundary conditions, including an identical specification of incoming turbulent dis­

turbances, from Freund et al. [42] simulation. We then evaluate the Mach wave radiation 

mechanisms in a fully expanded supersonic turbulent jet by comparing the results of a 

Mach 1.92 direct numerical simulation (raw data for DNS calculations are provided by J. 

Freund [40]) with the numerical solution of the linearized Navier-Stokes equations, as well 

as LST (Linear Stability Theory) of Tam and Morris [147] and Tam and Burton [143]. This 

way a detailed analysis of the hydrodynamic flow and acoustic fields of a DNS data are 

contrasted with its exact linearized computation. This technique will answer some of the 

fundamental questions regarding the nature of noise generation in supersonic jets and, as we 

will demonstrate in chapter 8, sheds some light on the contributions of linear and nonlinear 

interactions of turbulent structures to the noise generation, and the role of instability waves 

in noise generation mechanisms. 

We will show that the noise generation in the supersonic jet, considered in this study, 

is dominated by the first two azimuthal modes. Their contributions are equally important 

in the DNS calculation. However, the LNS or LST predicts more contributions from the 

azimuthal mode n = 1. The sound generation directivity of the azimuthal mode n = 1, 

matches well with the predictions by linearized equations. The same agreement was not 
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observed for n = O. The noise generated by the first two modes in the linearized computation 

is substantially weaker than in the DNS. For example, in the near acoustic field, at a 

distance of 6 jet diameters from the jet center line, the sound pressure level in the linearized 

computation is as much as 8 db smaller than the DNS results, which is argued to be due to 

nonlinear interactions among turbulent scales. Therefore, nonlinear mechanisms in Mach 

wave radiation are strong noise sources that cannot be ignored in a complete theory of Mach 

wave radiation. A comprehensive noise generation theory will include Mach wave radiation 

by linear and nonlinear mechanisms, as well as small scales turbulence. 

On the numerical development side of our study we have developed an effective strategy 

for treating the geometrical singularity in finite difference, and pseudo-spectral methods 

in polar coordinates. This technique is quite effective in reducing the spurious reflections 

from the coordinate singularity in jet noise calculations. The treatment is based solely 

on the geometry of the coordinate system and manipulation of grid point locations, and 

is independent of the equations under consideration. The technique is shown to be very 

general and applicable to a wide range of problems in cylindrical coordinates. 
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Chapter 7 

Computational Techniques 

This chapter presents the simulation techniques adopted in this study for evaluation of noise 

generation in a fully expanded supersonic jet. In the first section the governing equations of 

full DNS and LNS calculations are presented. The computational issues in LNS calculations 

are discussed in section 7.2. The raw DNS data in our study, including mean flow and inflow 

data, were provided by Professor J. Freund [40, 42]. Discussions on the linearized theory of 

supersonic jet noise and its numerical issues are covered in section 7.3. Finally the signal 

processing techniques implemented in this study are presented in section 7.4. 

7.1 Governing Equations 

In this section we review the governing equations implemented in DNS and LNS computa­

tions. 

7.1.1 Compressible Navier-Stokes Equations 

The flow field of a supersonic jet is governed by the compressible Navier-Stokes (NS) equa­

tions. These equations of motion, which are the continuity, momentum and energy equations 

along with an equation of state, are considered in this section. The physical quantities are 

nondimensionalized based on the jet radius, Ro, and density and sound speed at infinity, 
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where x is a position vector; t, time; u, velocity vector; p mass density; p, pressure; T, 

temperature; and e, total energy per unit volume. In cylindrical coordinates (x, r, e) the 

governing equations are: 

ap a (pu) 1 a (rpvr) 1 a (pve) 
-at + -a-x- + ;: ar + ;: -a~e:--

a (pu) a (puu) 1 a (rpuvr) 1 a (puve) 
-a-t - + ax + ;: ar + ;: ae 

a (pvr ) a (pvru) 1 a (rpvrvr) 1 a (pvrve) pv~ 
at + ax + ;: ar + ;: ae - -r-

a (pve) a (pveu) 1 a (r pVevr ) 1 a (pveve) PVr Ve 
at + ax + ;: ar + ;: ae + -r-

ae a[u(e+p)] 1 a [rvr (e+p)] 1a[ve(e+p)] 
-at + ax + ;: ar + ;: ae 

0, 

aq 1 arq 1 aq 
ax + ;: ar +;: ae + +u Vx + Vr Vr + Ve Ve + <I> , 

(7.1 ) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

where u is the axial velocity; Vr, the radial velocity; and Ve, the azimuthal velocity. The 

total energy per unit volume e is the sum of the internal energy and the kinetic energy and 

is given by 

e = -p- + ~ (u 2 + v 2 + v 2
) ,),-1 2 r e· 
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The heat flux q in the energy equation (7.5) is modeled by Fourier's law. The viscous terms 

in cylindrical coordinates are given by 

Ve 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

To specify the viscous stress tensor, we assume a Newtonian fluid and so its components 

are linearly related to the fluid strain rates by the viscosity J-L = J-L(T). Consequently, the 

viscous terms can be written as 

(7.10) 

(7.11) 

ReVe (7.12) 

Reg:, (7.13) 

+- + --+- + --+--- +-8 +~ [(avr au)2 (1 au ave)2 (1 aVr ave Ve)2] ).* 2 

Re ax ar r ae ax r ae ar r Re' 
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where the acoustic Reynolds number and Prandtle numbers are defined as 

Pr= fLCP. 
/'\, 

e is the dilatation and is defined as the divergence of the velocity field, and in cylindrical 

coordinates can be represented by 

e = v.v = au + ~ a (rvr ) + ~ aV(;I = au + aVr + ~ (av(;I + V
r

) . 
ax r ar r ae ax ar r ae 

The state equation for a perfect gas is given by p = "( - 1 pT. 
"( 

The bulk viscosity fLB (nondimensionalized by viscosity at infinity, fLoo) is defined by 

fLB = ). + ~fL where). is a second coefficient of viscosity. For a low density monoatomic 

gas fLB = 0, and is probably not very important in dense gases and liquids. It is usually 

assumed that bulk viscosity is related to shear viscosity by a constant ratio fLB = C/lfL. The 

value given for air by Thompson [150] is Cf.1 = 0.6, which was used in the direct numerical 

simulations [42] and our linearized Navier-Stokes calculations. 

In most direct simulations a power relation of the form fL(T) "-' TQ is used to specify 

the functional dependence of viscosity upon temperature. The popularity of power law 

in DNS is due to it not requiring a reference temperature To or the constant S defined 

below. However, in this study we use Sutherland's law [160] which is more accurate and 

is consistent with what is used in the available DNS data [43J. Sutherland's law can be 

represented as 

3 

(:£) 2" To + S. 
To T+S 

(7.14) 

We set To = Too and S = O.4Too which corresponds to air at atmospheric conditions. 

Equations (7.1-7.5) are implemented in the DNS computations [42J. Numerical issues 

in solving these equations are discussed by Freund, Lele, and Moin [42, 43], and are not 

repeated here. 
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7.1.2 Linearized NS Equations 

We linearize the governing equations around the mean flow in conservative form to obtain 

(assuming constant viscosity) 

where 

aQ' aE' ap' 1 aG' 
at + ax + ar + -:;: ae + H' = I', 

p' 

p'u + u'p 

Q' = p'v-r + v~p 

p've + v~p 
e' 

p'Vr + v~p 
p' uVr + u' pVr + v~pu 

E'= 

p'U + u'p 

p'uu + u'pu + u'pu + p' 

p'VrU + v~pu + u'pvr 

p'veu + v~pu + u' pve 

u'(e + p) + u(e' + p'), 

p'Ve + v~p 

p' = p'vrvr + v~pvr + v~pvr + p' 

p'vevr + v~pvr + v~pve 
v~(e + p) + vr(e' + p'), 

G'= 

p' uve + u' pve + v~pu 
P'vrve + v~pve + v~pvr 

p'veve + v~pve + v~pve + p' 

v~(e + P) + ve( e' + p'), 

H'=~ 
r 

p'v~ + v~p 
p'uvr + u'pvr + v~pu 

P'vrv-r + 2v~pvr - (p've 2 + 2v~p(j) 

2(p'vevr + v~PVr + v~pve) 
v~(e + p) + vr(e' + p'), 

(7.15) 
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o 
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')' - 1 2 

')' = 1 (~ - ~ p') . 
Since Vx , Vr , Ve, and e are linear quantities, their mean or perturbation values are calcu­

lated by simply replacing the mean or perturbation variables in their definitions for total 

quantities in equations (7.10-7.12) and (7.1.1), respectively. <I> , on the other hand, is a 

nonlinear quantity. While its mean value is calculated by replacing the total quantities by 

their mean variables in equation (7.13), its perturbation value is given by 

Re<I>' 

Alternatively one can linearize the governing equations in the primitive variables. The 

difference between these two methods of linearization is of second order in perturbation 

quantities. 

7.2 Numerical Simulation of Linearized NS Equations 

One of the main characteristics of an efficient aeroacoustic algorithm is its ability to accu­

rately predict the phase velocity and the direction of propagation of a traveling wave. To 

ensure that the wave characteristics of the system of discretized equations are (nearly) iden-
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tical to those of the continuous equations, it is necessary that both systems have (nearly) 

identical dispersion relation. On the other hand, the numerical scheme for such unsteady 

problems must have minimal dissipation to resolve the amplitude of perturbations over 

many orders of magnitudes of spatial scales. To this end, we use a combination of sixth 

order compact Pade scheme in axial and radial direction, a Fourier spectral method in the 

azimuthal direction, and a fourth order Runge-Kutta time advancement is used to advance 

the solution to the next time step. This combination of spatial and temporal algorithms has 

very good dispersion properties and minimal dissipation required for accurate calculation 

of both far field noise and near field disturbances. This combination of high-order-accurate 

compact finite difference schemes and explicit Runge-Kutta time advancements has now 

been used in many codes developed for solving problems in compressible turbulence and 

aeroacoustics (e.g., [23, 40, 83, 84]). A detail description of the numerical method for solving 

the LNS equations is given in this section. 

The flow parameters in the LNS calculations are set to their corresponding values in the 

DNS calculation. These are: 

Pr = 0.7, 

Too T = 0.89, 
J 

ReJ
" __ pjUjDj 

---"----"----"- = 2000, 
/1j 

M = Uj = 1.92. 
aoo 

The isentropic convective Mach number [107] for these conditions is Me = 0.99. 

Numerical Discretization in Axial and Radial Directions 

Various compact Pade schemes considered in [64] revealed a significant reduction of disper­

sion error compared to their centered difference counterparts. In this study we implement 

a sixth order compact Pade scheme for calculation of spatial derivatives in axial and radial 
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directions. For a grid of N points with spacing ~s, the first derivative is approximated by 

1:-1 + 31: + 1:+1 = 12~S ((fi+2 -Ji-2) + 28(fi+1 - Ii-d) , (7.16) 

and the second derivative is given implicitly as 

2f:'-1 + llfI' + 2f:~1 = (~~)2 (3(fi+2 - 2Ji + /i-2) + 48(fi+1 - 2/i + /i-d), (7.17) 

for 2 < i < N - 1. At the two points nearest to the boundary, one needs to use special 

schemes to close the set of equations. At the second closest point to the boundary, i=2, it 

is recommended to use the 4th order Pade scheme 

, , , 3 ( ) 11 + 4fz + h = ~s 13 - h , 
/I /I /I 12 ( ) 11 + 1012 + 13 = (~s)2 h - 2Jz + 13 , 

and at the closet point to the boundary, i=1, a one-sided third order scheme is used 

, , 1 ( ) 211 + 412 = ~s -5h + 2Jz + 13 , 

If' + 111~' = (~~)2 (-13h - 27Jz + 1513 - 14). 

(7.18) 

(7.19) 

(7.20) 

(7.21) 

Similar relations are used for points i = N - 1, and N. These equations for the first 

and second derivatives represent systems of N tridiagonal equations that can be solved for 

the corresponding derivatives. Each system was LDU decomposed and was solved by the 

Thomas tridiagonal solver. The computational cost is of order O(N). 

Note that since the coordinate singularity is not treated as a computational boundary 

and there is no grid point at the singular point, there is no need for a special closure scheme 

for grid points near the coordinate singularity. Sixth order Pade is used at all grid points 

except the two points closest to the boundary. 
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Numerical Discretization in Azimuthal Direction 

Since the azimuthal grids are periodic, a Fourier spectral method is used in this direction. 

All the flow quantities are stored in the physical space. Flow quantities are transformed 

into the Fourier space, where azimuthal derivatives are easily calculated by a multiplication 

by ike, where ke is the azimuthal wave number. 

The computational code that we developed is capable of solving both linearized and fully 

nonlinear N avier-Stokes equations, and is designed for full three-dimensional calculations 

with many azimuthal grids. The maximum allowable time-step for convective problems is 

usually controlled by the Courant-Friedrichs-Lewy (CFL) number. A conservative estimate 

for the CFL number will depend on the minimum mesh spacing in any of the three coordinate 

directions. In cylindrical coordinates a severe time step restriction is imposed by a very fine 

grid distribution in the azimuthal direction around r = o. 
It is possible to alleviate this constraint by explicitly filtering the results in the 0 direc­

tion, as has been suggested by many investigators (e.g., [12] and references therein). Since 

the solution is periodic in the 0 direction, it is possible to employ a sharp spectral filter at 

a particular cutoff wavenumber. A detailed description of filtering using this approach was 

presented by Mohseni and Colonius [88] and reproduced in the appendix A. In summary, 

by appropriate filtering, one can make the CFL constraint depend on b.r alone and not 

b.rb.O. Another issue is the nonlinear multiplications in the governing equations for full 

Navier-Stokes equations lead to aliasing errors, and require a straightforward de-aliasing 

procedure. However, this will not be an issue for linearized equations. In any case, in our 

linearized calculations we focus only on the first two azimuthal modes. Consequently, only 

four points in the azimuthal direction are used. Therefore, the azimuthal concentration of 

grid points near r = 0 or aliasing errors will not be an issue. 

7.2.1 Computational Grid 

To optimize the computational resources, a grid stretching scheme is implemented in the 

axial and radial directions so that the grids are more concentrated in the regions where the 

spatial structures are smaller. 

Our computational grid is the same as the grids used in the DNS calculations by J. 
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Freund et al. [40], and are repeated here for completeness. The computational domain 

extends 13.3 jet radii in the radial direction and 36 jet radii in the axial direction; see 

figure 7.1. The DNS calculations were performed in a computational domain with 270 

grid points in the radial direction, 640 points in the axial direction and 128 points in the 

azimuthal direction. In LNS calculations we focus only on the first two azimuthal modes 

only. Therefore, if the inflow boundary conditions are filtered to retain only the first two 

azimuthal modes on the inflow conditions, we need only 4 points in the azimuthal directions 

for LNS calculations. The grid spacing in the radial and axial directions are not as severe 

as the DNS calculations. This is due to the fact that there is no nonlinear convective term 

in the LNS equations, or cascade of energy to smaller scales. Therefore, the dominant 

smallest scales in the LNS calculations are coming from the inflow boundary and not from 

energy cascade to smaller scales in the DNS calculations. The computational mesh for the 

DNS calculation had 640 x 270 x 128 points in the axial, radial, and azimuthal directions, 

respectively. We found that a full resolution calculation in the axial direction and a half 

resolution calculation in the radial direction provides accurate results without noticeable 
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reflection or saw-tooth wave errors. Calculations with half of the DNS resolutions in both 

axial and radial directions produce almost the same result. Therefore, in this study we 

report results in a computational domain with 640 points in the axial direction, 135 points 

in the radial direction, and 4 points in the azimuthal direction. 

Radial Grid Stretching 

The highest gradient in the flow quantities occur in the shear layer. Therefore, higher grid 

resolution is required in this region. The radial grid spacing distribution is shown in figure 

7.2(a). The point-to-point change in mesh spacing is less than 2%, and the highest grid 

concentration occurs at r = 1.15R. In this direction (radial) the resolution is half of the 

DNS resolution. Since no physical vortex stretching is present in the linear calculations, 

the minimum scale size is limited to what is convected from the inflow boundary condition. 

Therefore, the minimum required resolution for the LNS calculations is less severe than 

for the DNS calculations. Insensitivity of our results to the adopted grid distribution was 

verified computationally. 
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Axial Grid Stretching 

Since the mean flow gradients in the axial direction are not as high as is the radial direction, 

the axial grid spacing may be coarser than the radial grid spacing. In the axial buffer zones, 

particularly in the exit buffer zone, the axial grid spacing is rapidly increased. The axial 

grid spacing distribution is shown in figure 7.2(b). Similar to the radial direction the point­

to-point change in mesh spacing was kept under 2%. 

7.2.2 Coordinate Singularity Treatment 

The treatment of the geometrical singularity in cylindrical coordinates has been a difficulty 

for many years in the development of accurate finite difference and pseudospectral schemes. 

A variety of numerical procedures for dealing with the singularity have been suggested. For 

comparative purposes, some of these are discussed in the appendix A, but the reader is 

referred to several books and review papers [12, 38, 50] for more detailed references. 

Generally, methods discussed in the literature use pole equations, which are akin to 

boundary conditions to be applied at the singular point. The treatment of the pole as a 

computational boundary can lead to numerical difficulties. These include the necessity of 

special boundary closures for FD schemes (e.g., [51]), undesirable clustering of grid points 

in PS schemes (e.g., [57]), and, in FD schemes, the generation of spurious waves which 

oscillate from grid point to grid point (so-called two-delta or sawtooth waves, see [18, 155]). 

In this study a method is used for numerical treatment of coordinate singularity, whereby 

singular coordinates are redefined so that data is differentiated smoothly through the pole, 

and we avoid placing a grid point directly at the pole. This eliminates the need for any 

pole equation. This technique is independent of the equations under consideration and 

was tested for several representative model problems. Despite the simplicity of the present 

technique, it appears to be an effective and systematic way to treat many scalar and vector 

equations in cylindrical and spherical coordinates. 

A general description of this technique is given by Mohseni and Colonius [88] and in 

the appendix A at the end of this thesis, where solutions to compressible Navier-Stokes 

equations are compared with the techniques used in [83, 84, 43] (superposing a Cartesian 

coordinate system at the singularity). While we observed no detectable reflection in our 
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method from the coordinate singularity, the error in the Cartesian coordinate superposition 

method was dominated by reflections from the coordinate singularity. In all of the LNS 

calculations in this study we use this coordinate singularity treatment. 

Transformation between the DNS and LNS Radial Grids 

In the LNS calculations the coordinate singularity treatment of Mohseni and Colonius [88] 

was implemented. Therefore, the locations of radial grids in LNS calculations are different 

than in the DNS calculations. For this reason, one needs to transform all the flow data, 

inflow boundary conditions and mean flow distributions in the DNS calculations to the 

radial grids of the LNS calculations. This was done by using a fourth order compact Pade 

mid-point interpolation formula given by (see [64]) 

(7.22) 

7.2.3 Boundary Conditions and Buffer Zones 

The physical domain in a jet noise problem extends all the way to infinity. Therefore, 

an ideal computational domain should extend to infinity in all directions. Since an infinite 

computational domain is not possible, one needs to devise a different strategy. One approach 

is to employ a transformation that maps the infinite domain to a finite domain. However, 

this approach is not appropriate in traveling wave problems due to the lack of resolution 

for waves approaching infinity. A more practical technique is to truncate the computational 

domain at some distance away from the jet, which requires a boundary condition to close 

the numerical scheme at the boundary. The boundary condition at this artificial boundary 

is usually referred to as "nonreflecting" boundary conditions, as if there is no boundary. 

Nonreflecting boundary conditions for acoustic waves and linearized Euler and Navier­

Stokes equations have been considered by many authors, see for instance Giles [47], Thomp­

son [149], Enquist and Majda [31, 32]' Givoli [49], Tam and Webb [148], and Colonius et 

al. [22, 18]. A study of the performance of some of these nonreflecting boundary condi­

tions are presented in the appendix C. For two-dimensional problems exact non-reflecting 

boundary conditions may be derived in Fourier space. This is done by modifying the dis-
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persion relation so that any traveling wave with an incoming group velocity is prohibited. 

Since this modified dispersion relation is nonlinear, the nonreflecting boundary conditions 

in the physical domain are usually non-local in time and space. To obtain a local boundary 

condition, another level of approximation is required. If the original differential equation is 

nonlinear, a new set of approximations are introduced. 

The performance of these boundary conditions is usually poor for the outflow boundary 

conditions of shear flows where the large vortical structures (as well as acoustic perturba­

tions) are exiting the computational domain. Therefore, direct applications of the above 

mentioned boundary conditions would not work satisfactorily. 

In order to reduce the acoustic reflections due to the passage of large vortical structures, 

Rai and Moin [113] and later on Colonius et al. [22] used an exit zone, where the grid spacing 

becomes coarse in the downstream direction, and filtering of the high frequency components 

or artificial viscosity is used to damp all the disturbances. However, excessive stretching 

produces spurious waves that might travel downstream into the main computational domain 

and contaminate the results. 

A slightly different approach is to modify the governing equations in a non-physical buffer 

zone so that the outgoing disturbances are damped (cf [22,56,41]). With this technique one 

can add a convective term [135, 41] to equations in the buffer zone to accelerate the flow and 

make it supersonic. The advantage of a supersonic inflow/outflow boundary condition is 

that all the characteristics are incoming/ outgoing and there would be no need to decompose 

any disturbance into incoming and outgoing parts. Freund [41] proposes a combination of 

basic techniques developed by Taasan and Nark [135] (adding a convective term) and Hu [56] 

(adding a damping term) that applies to both inflow and outflow boundary conditions. This 

technique is used in both DNS and LNS calculations. 

The equations for the entire domain is written as 

where Ux and Ur are the artificial convective velocities in the axial and radial directions, 

and (Jx and (Jr are the artificial axial and radial damping coefficients. Note that the target 
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Uxa 1.15 Ura 1.15 
al 0.05 ar 2 at 0.7 
Wl 2.5 Wr 2.5 Wt 1.3 
W lTt 2 W lTr 2.5 WlTt 1.3 

(3lT l 3 (3lTr 3 (3lTt 3 
(3l 0.01 (3r 0.01 (3t 0.01 

Table 7.1 Parameters for buffer zones 

state for the LNS solver is the state of zero perturbation. A form with compact support in 

the buffer zone is chosen for Ux, Ur , ax and ar. We choose 

Ux = Uxa (2 + tanh( - !Lx) + tanh(fr(x - Xmax))) , 

Ur = Ura (2 + tanh( - ft(r + Rmax) + tanh(ft(r - Rmax))) , 

a _ {ar ( x - (X;: - WlTr
)) f3<7r if x > Xmax - W lTr , 

X - a, (W;:;,:, x )P', if x < WOP 

a
r 

= (r - (Rmax - WlT t )) f3<7t , 

W lTt 

where 

tan-1 (..& - 1) 
f 

u",o 
l= 

-Wl 

tan-1 (~- 1) 
f 

- Uxo 
r-

-Wr 

tan- 1 (A - 1) 
f 

- U",O 
t-

-Wt 

(7.24) 

(7.25) 

(7.26) 

(7.27) 

(7.28) 

The corresponding coefficients used in our computations are given in table 7.1. Spatial 

distribution of convective velocities and damping terms in the buffer zones are depicted in 

figures 7.3 and 7.4. 

Inflow Boundary Condition 

It is currently not computationally feasible to simultaneously simulate the nozzle flow as 

well as the small scale turbulence and the far-field acoustic waves by DNS of Navier-Stokes 

equations. Therefore, inflow conditions are used to mimic the essence of the shear layer 
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Figure 7.3 The axial distribution of axial convective velocity (-- ) 
and damping terms (.) in the buffer zones. 
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Figure 7.4 The radial distribution of radial convective velocity (--) 
and damping term (.) in the buffer zone. 
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right after it detaches from the nozzle. These conditions are the unsteady flow perturbation 

conditions prescribed at the nozzle exit and are implemented at every computational time 

step. In the simulations the inflow data is fed from a streamwise periodic jet simulation 

in [43J. This simulation had a streamwise period of 21R. In order to decorrelate the 

turbulence of the incoming flow, the amplitude of the two-dimensional spectral components 

of the incoming waves were randomly jittered by up to 5% of their amplitude. The small 

scale turbulence statistics of DNS data are completely decorelated in our computational 

domain. While at high frequencies the flow statistics rapidly decorelates from the inflow 

forcing, we could still track the trace of 21R periodicity in our LNS calculations as well 

as DNS data at low frequencies (large scales). This is expected in free shear layers that 

are known to be sensitive to initial conditions, and will take them a long distance for large 

scales to decorelates in flow direction. The momentum thickness of the incoming flow is 

8m = O.lR. 

To minimize the transitional calculations and reflections due to abrupt imposition of 

inflow boundary conditions at the beginning of the LNS calculation, the inflow condition was 

applied gradually through the application of a ramping function. In most of our calculations 

the applied inflow condition was at 99% of its original value after one acoustic time unit. 

Therefore, the inflow boundary conditions are turned on gradually by multiplying them by 

the factor er f (2~) where Tr is the time that 99.5% of the total inflow boundary conditions 
Tr 

are on. In our calculations we choose Tr = 1. 

To obtain the inflow boundary conditions at the calculational times of the LNS solver, 

the time sequence of the inflow data was interpolated in time by a cubic spline. 

7.2.4 Mean Flow 

The mean flow quantities are calculated from the DNS data. The mean axial velocity at 

r = 0 is shown in figure 7.5. It is clear that the potential core closes at around x = 14. 

Figures 7.6(a)-7.6(c) show the contour plots of the mean density, and the axial and radial 

velocities, respectively. The contour plots show the slow spreading of the jet. There are 

evidence of weak compression and rarefraction structures inside the jet before the potential 

core closes. 
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Profiles of the mean density, and the axial and radial velocity at different streamwise 

positions, are presented in figures 7.7(a)-7.7(c). The radial mean velocity is much smaller 

than the axial velocity. It is usually positive near the jet axis and it becomes negative at 

the upper edge of the shear layer where the entrainment process is active and for larger r it 

decays like 1/r. The axial mean velocity in figure 7.7(b) shows the spreading of the jet from 

an almost top-hat profile to an almost Gaussian profile after the closing of the potential 

core. 
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Figure 7.5 Mean flow axial velocity at r = O. 

7.3 Linear Theory of Supersonic Jet Noise 

Following Liu [67], jet flow can be decomposed into three parts: mean flow, instability 

waves, and fine scale turbulence. The relative interaction between these modes are fully 

captured by the N avier-Stokes equations. Most of the linear theories attempt to capture 

the interaction between the instability waves and the mean flow. As the instability waves 

grow, they extract energy from the mean flow. But this energy transfer could happen in 

both directions. The growth of linear modes modifies the mean flow, and as the shear layer 

thickens, the instability wave growth rate decreases. Eventually, the shear layer is too thick 

to support unstable modes and the wave amplitude decreases until it dissipates. 
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Figure 7.7 (a) Mean flow density profiles, (b) mean flow axial velocity 
profiles, (c) mean flow radial velocity profiles. 
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The linearized theory of high speed flows indicates that there are three distinct fluctu­

ation modes with different characteristics: acoustic modes that are solutions of wave type 

equations, and vorticity and entropy modes which are simply convected by the flow. En­

tropy and vorticity modes are of parabolic type, while the acoustic modes are of hyperbolic 

type. The entropy and vorticity waves are convected downstream as a frozen pattern at 

the mean flow speed. Acoustic waves, on the other hand, propagate in all directions with 

sound relative to the mean flow velocity. If the disturbance level is very small and the base 

flow is at rest or in uniform motion, these modes may exist independently (see examples 

in appendix C). If the base flow is inhomogeneous or the disturbance levels are high, these 

modes are coupled and it is very difficult to separate them. Many approximate methods 

have been developed by neglecting some of these higher interactions. Their physical merits 

is a question that can be answered by comparison with direct numerical simulations or 

detailed experimental results. For larger fluctuation amplitudes, or in the presence of solid 

boundaries, one needs to account for the fluctuations produced by the interaction of the 

basic modes. 

The classical stability theory of fluid problems is usually formulated as a set of eigenvalue 

problems. By assuming that the wave solutions decay exponentially to zero away from 

the jet, one ensures that the homogeneous boundary conditions are satisfied. However, 

this requirement of classical stability theory prevented the prediction of acoustic radiation. 

Tam and Morris [147] recognized that the classical solution based on the locally parallel 

flow approximation is only the first term in a multiple-scale expansion of the solution of a 

more rigorously formulated instability wave theory. Their method is similar to the method 

developed by Nayfeh and EI-Hady [100] for non-parallel compressible boundary layers. 

The multiple expansion of Tam and Morris [147] is the appropriate asymptotic expansion 

inside the jet. However, it is not uniformly valid in a region outside the jet. Subsequently, 

the method of matched asymptotic expansions was used to develop a uniformly valid in­

stability solution for supersonic jets (see Tam and Burton [143]). Tam and Burton divided 

the physical domain into two regions: the jet flow and the near field around it, and the 

acoustic field outside the jet. While the slow variation of mean flow inside the jet in the 

axial direction (as compared to the radial direction) provides a natural small parameter for 
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a multiple-scale expansion, outside the jet there is no preferred direction and the multiple­

scale solution would not be appropriate. Therefore, to obtain a uniformly valid instability 

solution to the supersonic jet noise problem, they constructed two independent asymptotic 

expansions of the linearized equations of motion. The slow spreading rate of the jet is con­

sidered as the small parameter in the expansion. Inside the jet and in the adjacent region 

outside it (inner solution), a multiple-scale asymptotic expansion is valid. In the region 

outside the jet all the way to the acoustic far field (outer solution), an outer expansion is 

constructed by the method of Fourier transform. In the outer solution the acoustic wave 

equations are used. Since these two expansions are the asymptotic expansions of the same 

solution but valid over different regions of the physical domain, there must be an overlap­

ping region where both expansions are valid. Consequently, matching the expansions to the 

lowest order and the first order terms give the eigenvalue of the classical stability theory 

and the non-parallel flow corrections, respectively. This way the inner solution determines 

the pressure and velocity fluctuations associated with the instability waves inside the jet, 

while the acoustic near field outside the jet and the radiated noise in the far field are calcu­

lated from the outer solution. Subsequently, Tam et al. [145] argued that if the large-scale 

instability waves are the dominant sound sources of high speed jets, the frequency of the 

peak of the sound spectrum must be nearly equal to the frequency of the most amplified 

instability wave of the jet. Furthermore, the direction of the peak noise radiation must also 

be nearly equal to the direction of the Mach wave radiation of the most amplified instability 

wave. 

In this section a review of the inviscid linear stability theory of compressible jets, as 

described by Tam and Burton [142, 143], is presented. The compressible Rayleigh equation 

is written as 

82p 8p [ 2a 8u 1 1815 ] [_ 2 _ 2 n
2 2] ~ - + - _ - + - - -:::- + pM. (w - au) - - - a p = 0, 

8r2 8r w - au 8r r p 8r J r2 
(7.29) 

where 15 and u are the mean density and velocity, respectively, M j is the jet Mach number, a 

is the axial wave number, w is the circular frequency, and n is the azimuthal mode number. 

The other perturbation eigenfunctions can be easily related to the pressure eigenfunction p 
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1 dfj dU 
(au - w)2 dr dr 

i dfj 

au - wdr' 
nfj 

r(au - w)' 

afj 
- , 

au-w 

1 1 dfj dp + pfj 
(au - w)2 pdr dr ,",(po· 

(7.30) 

(7.31) 

(7.32) 

(7.33) 

Equation (7.29) and its boundary conditions constitute an eigenvalue problem whose 

solution is the inviscid dispersion relation Q(w, a) = O. It is evident from this equation that 

the analytic nature of the solution depends on w - au. a = ~ defines a critical layer. For 
u 

decaying modes there may not exist any continuous solution to the inviscid equations of 

parallel flow (see Betchov and Criminale [10], p. 80), and this is true for slowly diverging 

flows as well. Special treatment is required to continue the computations in this case, which 

will be discussed later. 

Since the mean flow of the jet is assumed to be axisymmetric, the instability waves can 

be decomposed into the azimuthal modes. We assume that the flow is locally parallel and 

that the fluctuating pressure takes the form 

p(r, ¢, x, t) = Re (A(x)p(r)exp [i(ax + n¢ - wt)]) , (7.34) 

where A(x) is the amplitude function. In the instability wave theory the assumption is that 

the noise characteristics of supersonic jets in the peak radiation direction are related to 

those of the most amplified instability waves. The growth rate of any wave is functionally 

dependent on the imaginary part ai of the axial wave number a. The total amplification 

of an instability wave of azimuthal mode n and frequency w is given by 

(7.35) 

where XN is the axial location at which ai = 0, i.e., the wave becomes neutral. Therefore, by 
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calculating the growth rates for various frequencies and azimuthal modes, one can determine 

the most amplified wave. 

The large scale velocity gradient across the shear layer causes the amplitude of the 

instability wave to grow. As the instability waves propagate downstream, the shear layer 

thickness increases, which leads to a reduction in mean velocity gradient and hence the 

growth rate. Eventually, at some point downstream the growth rate of the wave becomes 

zero. On propagating further downstream the wave becomes damped. 

In comparing the predictions from the linear stability theory with the DNS data, ex­

perimental data or LNS data, it is important to recognize that the real flow data contain 

contributions from all scales of turbulence, including those from the small-scale structures, 

convective disturbances, and nonlinear interactions. The numerical predictions based on 

the linearized stability theory only calculates the noise associated with the linear inter­

action of large-scale coherent structures. It should be noted that at each frequency and 

azimuthal mode it is assumed that all the flow energy is captured by the most unstable 

instability wave. Therefore, the initial amplitude of the various modes is not known. These 

assumptions will be examined in later sections of this study. 

The mean flow of a real jet is slowly diverging and is non-parallel. In the non-parallel 

case the inner solution to the stability equation can be represented as 

Pin(r, ¢, x, t) = A(x)p(r)exp [i(ex + n¢ - wt)] , (7.36) 

where the slowly varying phase function is given by 

e(x, w, n) = foX a(x, w, n)dx, (7.37) 

and a, the local wave number, is the eigenvalue of the instability wave problem. Now if 

Ao(a,w) = Ja2 - PooMJw2 , then the pressure eigenfunction is normalized such that 

as r -+ 00. (7.38) 

In this boundary condition the branch cut corresponding to -1T /2 ::; arg Ao ::; 1T /2 should 
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be taken in the square root in the definition of .\0 to insure decaying solutions or outgoing 

waves as r -t 00. The boundary condition around the axis of the jet is 

as r -t 0, (7.39) 

where .\j (a, w) = J PooMJw2 - a 2 . I n is the Bessel function of the first kind and order n. 

In Tam and Burton's analysis [143] the non-parallel correction factor f3 is defined as 

£Xh 
f3(x, w, n) = -dx, 

.0 h 

where hand 12 are defined in [143]. Subsequently, the amplitude of the instability wave A 

is related to f3 by 

A(x, w, n) = A(w, n)e- f3 (x,w,n). (7.40) 

We note that the amplitude of the wave at each frequency and azimuthal mode at the nozzle 

exit is still arbitrary. 

U sing the inverse Fourier transform the outer solution to the lowest order can be repre­

sented as 

pout(r, x, ¢, t, w, n) = [: ei (17x+nq,-wt) A(w, n)[;(7], w, n)H~l) (i.\(7], w)r) d7], (7.41) 

where 

[;(7], w, n) = - ez(B(x,w,n)-17x )-f3(x,w,n) dx. 1 100 

. 

21f -00 

(7.42) 

Note that 

[;(-7], -w, -n) = [;*(7],w,n). 

Since the inner and outer solutions are solutions to the same physical problem, although 

valid in different parts of the physical domain, we can properly match them to get a uni-
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formly valid solution everywhere. 

7.3.1 Stochastic Wave Model 

An important assumption in Tam and Burton's theory [143] is that at each frequency they 

consider only a single instability wave as the representative of the major energy carrying 

wave component. However, in supersonic turbulent jets, particularly in high Reynolds 

numbers, there is a wide spectrum of instability waves. The interactions between instability 

waves generates harmonics. In Tam and Burton's theory these harmonics are neglected. In 

their theory where the growth and decay of a single frequency wave is followed, at maximum 

growth its harmonics are assumed to be small and have little impact on the noise generation. 

In the stochastic wave model theory, the large scale turbulent structures are represented 

by a linear combination of instability waves of all frequencies and azimuthal modes. These 

large scale turbulent structures are assumed to be random. Therefore, the initial wave 

amplitude was taken as an appropriately normalized stochastic random function. This 

assumption was motivated by the argument that for high Reynolds number supersonic jets 

the turbulent flow near the nozzle exit has no intrinsic length or time scales. Consequently, 

the mean velocity profiles and turbulence statistics have self-similar characteristics. This 

lack of intrinsic scales may suggest that the spectrum of instability waves of the jet is 

generated by random excitation having no characteristic length or time scales. Therefore, 

the statistical properties of the random amplitude functions are determined by the no 

intrinsic length or time scale constraint on the instability wave spectrum at the nozzle 

exit. Then, the acoustic solution can be calculated for regions away from the jet using the 

Fourier transform. Application of the method of matched asymptotic expansions connect 

this acoustic solution to the instability wave solution. It was hoped that the dominant part 

of the turbulent mixing noise due to large scale structures would be determined by this 

method. 

In summary, Tam and Chen [144] extended the single instability wave matched asymp­

totic expansions solution of Tam and Burton [143] to include a broad frequency spectrum 

in a stochastic model of supersonic jet noise from the large scale turbulent structures. Their 

calculated noise directivities for Mach 2 jets at different temperatures were in good agree-
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ment with the measurements of Seiner et al. [123]. In their theory the large scale structures 

are represented by a superposition of its normal modes. It was assumed that the most im­

portant normal modes of jet flows were the instability wave modes. However, the small 

scale turbulence and nonlinear interaction of instability waves are usually not represented 

by these modes. Thus, there is still no inclusion of the small scale turbulence or nonlinear 

noise sources in the theory and its predicted sound field. Consequently, if en is the n-th 

order eigenfunction of the instability waves, the pressure fluctuations associated with the 

large scale turbulent structures may be represented as 

p(r, e, x, t) = f J an(w)enei(n</J-wt)dw, 
n=-CXJ 

(7.43) 

where n is the azimuthal mode number, w is the angular frequency of the wave, and an(w) 

is the relative amplitude of the instability wave. It was argued that since the large scale 

structures are not fully deterministic, an (w) is taken to be a stochastic random function. 

Even though the relative order of different modes or frequencies are calculated in this theory, 

there was still an arbitrary scaling factor for the absolute amplitude of the disturbances. 

7.3.2 Numerical Issues 

We solve the Rayleigh equation (7.29) for the operating conditions of the DNS jet and for 

each azimuthal mode number and frequency. A fourth order Runge-Kutta scheme is used to 

integrate equation (7.29) from the outer edge of the jet shear layer inward and from the jet 

axis outward. The numerical solutions are matched somewhere in the shear layer (usually 

very close to r = 1) to find the unknown scaling coefficients. We set the determinant of the 

matrix equation for the coefficients equal to zero to get a nontrivial solution. This process 

is repeated iteratively for the wave number 0: until this condition is met. For damped 

supersonic waves (with O:i > 0) we need to deform the integration contour in the complex r 

plane to avoid the critical point of the Rayleigh equation and its branch cuts. To continue 

the computations we need to evaluate the mean flow quantities away from the real axis 

into the complex r plane. In doing so we use the analytic continuation of the mean flow 

quantities into the complex plane. This might raise some difficulties when the mean flow 
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from the experimental data or the DNS data is used. It is not clear, in this case, how to 

accurately extend the mean flow away from the real axis. We have tried some different 

approaches (e.g., cubic spline curve fit) to remedy this problem. However, we found that 

the mean flow quantities fitted to a simple equation is most reliable. In either case, one 

must correctly account for the branch cuts of the curve fitted equations. 

7.3.3 Mean Flow Used in LST Calculations 

It is well known that if the inviscid linear theory is implemented for calculating the instability 

waves in a developed region of a jet where the instability waves are damped, the calculation 

cannot be carried out completely in the physical plane along the real r-axis. Therefore, for 

disturbances that are neutrally stable or are decaying, when ai 2:: 0, the numerical procedure 

described in the previous section must be modified due to the critical layer where the term 

l/(au - w) becomes singular. This happens when the disturbances become neutrally stable 

and the location of the critical layer in the complex r plane crosses from the lower-half 

plane into the upper-half plane (see figure 7.8). For an inviscid damped wave the value 

of the eigenfunction on the two sides of the branch cut along the real axis will not be the 

same, i.e., the eigenfunction is not continuous at the branch cut. This branch cut for the 

inviscid flows represents a critical layer of infinitesimal thickness that can be smoothed out 

by introducing viscosity or any other diffusion mechanism. In order to avoid the critical 

point, the integration contour must be deformed into the complex r plane to pass over 

the critical point [147]. The indentation of the integration contour in the complex r plane 

lies on three straight lines joining the points (Re(rc) - rs, 0), (Re(rc) - rs, Im(rc) + rs), 

(Re(rc) + rs, Im(rc) + rs), and (Re(rc) + rs, 0). 

Note that the mean flow is given only on the real axis. Consequently, we need to evaluate 

the mean flow for complex values of r to continue the integration along the deformed 

integration contour in the complex r plane. When the mean flow is given analytically, one 

can use the analytic continuation to obtain the mean flow away from the real axis. This 

is feasible for weakly damped waves. However, Tam and Chen [144] pointed out that for 

mean flows that are known only for tabulated points (experimentally or computationally), 

it is not clear how to reliably continue the mean flow to the complex r plane. Therefore, 
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Figure 7.8 Deformed integration contour in the complex r plane for 
supersonically damped instability waves. 

they recommended adding a turbulent eddy viscosity term to the instability wave equation. 

With turbulent viscosity terms added, the integration can be carried out completely along 

the real r-axis. However, we found that a reliable method is to fit an appropriately regular 

function to the computational mean flow. Branch cuts (for log function in our case) may 

then be evaluated in a straightforward way by using the appropriate Riemann sheet. To 

this end, we use 

(7.44) 
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where 

(
cosh (~ - s)) 

r + 0.2 log 0.2 
cosh(s) 

f = 26 

s = 5 (1-~) 
1.1 ' 

and 

Ucl = 2.12757 - 0.02257x - 0.09559log(cosh(7.1 - 0.5x)) + 0.05046 log (cosh(ll - 0.5x)), 

6 = 0.274284 + 0.08095x - 0.006102x2 + 0.0003769x 3 - 5.64384 X 1O-6x 4. 

The mean density and the mean sound field are usually connected through the Crocco­

Busemann relation 

_ [ Too ( Too) U - U oo 'Y - 1 2 _ _ ] -1 
P = To + 1 - To 1 _ U

oo 
+ -2-Mo (u - uoo ) (1 - u) , (7.45) 

where 

Mo = Uo = M j Too , 
( )

1/2 

Co To 

and U oo is the nondimensionalized free stream velocity, i.e., U oo = Uoo/Uo, and density is 

only a function of the axial velocity. 

7.3.4 Other Instability Modes 

In the early eighties Oertel [103, 102, 104] studied the instability waves of hot supersonic 

jets. He found three families of instability waves, each having a distinct propagation char­

acteristics and distinct wave pattern. Tam and Hu [146] considered the dispersion relation 

for compressible Rayleigh equation that indicates the existence of the same family of waves 

for high-temperature jets. They named them the Kelvin-Helmholtz (KH) instability waves, 

supersonic instability waves (SIW) and subsonic instability waves. The familiar KH insta-
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bilities have a strong near field acoustic. The SIW observed by Oertel has a near acoustic 

field with an almost normal wavefront to the jet boundary. While the propagation speed 

(phase speed) of these waves is less than the KH instability waves, they still remain su­

personic with respect to the ambient gas (hence, the near acoustic field). The subsonic 

instability waves are mainly confined inside the jet and they appear to have no near field 

acoustics. These waves are characterized by their cross-hatched pattern inside the jet and 

their subsonic propagation speed. Therefore, only the KH and the SIW are capable of gen­

erating noise. Tam and Hu's numerical studies [146] showed that for jet Mach numbers up 

to 2 and for jet-to-ambient temperature ratios up to 2.5, the Kelvin-Helmholtz instability 

waves are the dominant sources of jet mixing noise. 

When the condition Uj > aj + a oo is not satisfied, there is no supersonic instability wave 

mode. While the KH instability waves have a single wave mode for each azimuthal wave 

number, the SIWs consist of a family of wave modes for the same azimuthal wavenumber. 

An important difference between the KH and SIW is that the KH instabilities are of the 

inflexional type while the SIWs are not. Therefore, the KH instability waves are analytically 

continued into a corresponding family of damped waves, whereas the supersonic instability 

waves are continued into a family of neutral waves. That is, without adding the viscous 

effects (e.g., adding eddy viscosity) the SIWs would not become damped as they propagate 

downstream. Therefore, to identify the most amplified wave it is essential to include eddy 

viscosity in the analytical model. 

7.4 Signal Processing Techniques 

It is useful in studies of acoustic far field to view the waves in frequency space. It is also 

interesting to view the growth and decay of individual instability waves in the near field. 

The signal processing issues of the DNS and LNS are considered in this section. 

The inflow boundary conditions in Freund, Lele, and Moin's DNS calculations [42], 

used in this study, are generated by feeding data from a turbulent streamwise periodic 

jet simulation [43], with 21R periodicity. The amplitude of the two-dimensional spectral 

components of the incoming waves were randomly jittered by up to 5% of their amplitude 
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to suppress this periodicity. In our LNS simulation the same inflow boundary conditions 

are implemented. 

Since the inflow boundary conditions are almost periodic we expect that the flow field 

of the LNS calculations will approach an asymptotically periodic state. The expectation is 

that this scenario would not occur for the DNS calculation, and the nonlinearity eliminates 

(decorrelates) any periodicity in the inflow conditions. For high frequencies and small 

scales statistics of the DNS data is decorrelated from the inflow periodicity. However, 

our calculations show that a periodic computational domain with 21R periodicity is not 

long enough to completely decorrelate low frequencies and large scale correlations. This is 

expected because shear layers are very sensitive to initial conditions and large scales and 

low frequency components need large computational domains to be completely decorrelated. 

In this section methods for extracting frequency spectra from the LNS and DNS data are 

considered. Due to the different nature of data in each case, different methods are used, 

and are discussed in the following sections. 

Discrete Fourier Transform 

Since the quasi-periodicity is quite evident in the LNS calculations, the Fourier spectra was 

calculated from the definition of Fourier integrals. Apart from the aperiodicity imposed on 

the inflow boundary condition (see section 7.2.3), nonperiodic behavior of the data can be 

caused by many other factors, including existence of signals with frequencies lower than that 

can be resolved over a specific duration of signal and also signals with frequencies higher 

than the Nyquist frequency of the sampled data. 

The Fourier transform of a function h(t) is calculated by 

and the inverse transform is computed by 

h(t) = 2:= H(wj)e- iWjt 

j 

(7.46) 

(7.4 7) 

where Wj 2n:j IT, N is the number of samples in each period, and computations were 
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continued for n more periods after the numerical solution reaches a periodic state at t = ts· 

We approximated the integral in equation (7.46) by a trapezoidal rule. 

In signal processing of nearly periodic signals, extreme care must be taken to avoid the 

three main issues arising during the transformation. These are sufficient sampling intervals 

to represent the lowest existing frequency in the data, high sampling rate to represent the 

highest frequencies, and finally windowing techniques (or averaging techniques with same 

effects) required to compensate for the non-periodicity at the end of each period. 

The spatial periodicity of the inflow data can be translated into temporal periodicity 

with a period T = 21. The total duration of the LNS data was limited to 3T. The LNS 

calculations are at an almost periodic state after the first flow through the entire compu­

tational domain. Our numerical experiments show that even one period of the LNS data 

is enough to accurately calculate the spectra at the smallest frequency 1/21 and increasing 

the period T does not affect the results significantly. 

The LNS data is sampled with the time step of the LNS calculation. The sampling 

rate must be chosen higher than the maximum frequency in the data to compensate for the 

aliasing effect, that is the energetic part of the spectrum should be well below the sampling 

frequency to suppress aliasing effects. The sufficiency of the sampling rate can be checked a 

posteriori. The sampling rate of the LNS computations are 100 ~o ,which is well above 
t aoo 

the maximum frequency considered in this study. 

Lomb-Scargle Periodogram 

While the direct Fourier transform was quite accurate for calculating the frequency spectra 

of the evenly sampled data from the LNS computations, it was not reliable in the case 

of DNS data. This was due to several computational issues. Firstly, the DNS data is 

only quasi-periodic very near the inflow. Thus, truncation of the data at the end of the 

computational time interval leads to contamination of frequency spectra. Secondly, the 

DNS data were computed with a variable timestep, and there were a few patches of missing 

DNS data. The time interval between consecutive DNS data are plotted in figure 7.9. There 

are 2496 sampled data between computational times 156 and 352. Therefore, more than 9 

periods of the inflow forcing is available for signal processing. This information is enough 
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Figure 7.9 Time interval between consecutive DNS data. 

to put limits on the minimum and maximum frequencies that can be extracted from the 

available data. 

Many of the methods for evenly sampled data can still be employed in missing data 

problem after placing the data on an even-spaced grid, and interpolating or simply clamping 

the missing values at the last points. However, since the interpolation of an unevenly 

sampled data is equivalent to low-pass filtering, interpolation leads to an underestimation of 

high frequency components in a spectrum independent of the employed interpolation scheme 

(see, e.g., Schulz and Stattegger [121]). Thus, an algorithm that restricts all calculations to 

actually measured values while at least yielding a similar resolution and efficiency of period 

detection would clearly be preferable. 

An efficient technique that can be applied to unequally sampled data, which also includes 

regular time-series with missing values is the Lomb-Scargle periodogram (Lomb [69] and 

Scargle [120]). While in a Fourier decomposition of a data one can decompose the time-
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series into a fundamental periodicity and a number of harmonics, a periodogram shows 

the power of each of these periodicities. The Lomb-Scargle periodogram was developed to 

detect weak periodic signals in noisy data obtained from astrodynamical observations. In 

fact, this algorithm was originally developed to overcome the problems caused by missing 

data and uneven sampling, resulting from restricted times for astronomical observations, 

planetary movements, and weather conditions. The Lomb-Scargle method also has the 

benefit of providing an easy way to calculate the levels of statistical significance of peaks in 

the periodogram (Scargle [120] and Horne and Baliunas [55]). 

The rational underlying the Lomb-Scargle periodogram is very straightforward: the 

maximum in the Lomb-Scargle periodogram occurs at the same period of a sinusoidal wave 

that minimizes the sum of squares in a fit of the data. The Lomb-Scargle periodogram is 

based on the general transform theory which shows that the projection of a signal y(t) onto 

an element of an orthogonal base bi(t) is the coefficient c that minimizes the mean squared 

error energy, defined as the integral over the definition interval of the squared differences 

between y(t) and c· bi(t). The Lomb-Scargle method implements this minimization over 

unevenly distributed sampled data of y(t) considering the basis functions are the Fourier 

kernel. 

For a time series of n data points Yj = t( tj) at times tj; j = 1,2, ... n, with mean fj the 

Lomb-Scargle periodogram was computed from: 

(7.48) 

where T, introduced to adjust for phase-shifts caused by unequally spaced data [69] and to 

ensure time invariance of the periodogram, is defined by 

1 -1 {2: j sin2wtj } 
T = -tan . . 

2w 2:j sm2wtj 
(7.49) 

For all periods T, P gives the normalized power as a function of angular frequency w = 

27f IT. Note that this power is normalized with respect to the total variance of the data, 

a2 = 2: j yJ I (n - 1), which allows determination of the statistical significance of peaks in the 
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periodogram. The dimensionless power P is proportional to the total power of a sinusoid at 

angular frequency w that best fits the time series in the least-squares sense. A fast algorithm 

for calculations of the Lomb-Scargle spectrum was presented by [111, 112] and was used in 

our calculations. 

To increase the resolution in computations of the height and position of peaks, the 

program allows oversampling of periods at intervals smaller than the average sampling 

interval of the input data. In all of our calculations an oversampling factor in the range 

from 4 to 5 was used. 

Another problem might arise from the spreading of power from strong periodic compo­

nents to other frequencies (leakage of power). A way to check for this problem is to remove 

the dominant peak from the data and repeat the Lomb-Scargle periodogram. If peaks in the 

original periodogram are highly affected by side-lobes, they should vanish if only residuals 

are used as new data points. 

Since the sampling theorem applies only to evenly sampled data, the Nyquist frequency 

cannot be given for unevenly sampled data. In this situation, an average Nyquist frequency 

can be defined as 

- 1 
iN = 21::::.t' (7.50) 

where!::::.t is the average sampling interval. Usually choosing the maximum studied frequency 

to be this average Nyquist frequency results in a conservative choice of frequency range. 

The average Nyquist frequency for the available DNS data is almost 13, and is well above 

the frequencies considered in this study. 
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Chapter 8 

Results 

In this chapter we analyze Mach wave radiation mechanisms in a fully expanded super­

sonic jet. Our primary goal is to quantify the relation between linear stability modes and 

Mach wave radiation, thereby elucidating the importance of nonlinear mechanisms in noise 

generation. A detailed comparison of the fully nonlinear (Navier-Stokes) along with the 

corresponding linear equations (LNS) is presented in this chapter. The sound pressure level 

(SPL) of the DNS and LNS data are reported in the next section. Instantaneous Fields 

are considered in section 8.2. In section 8.3 the possible contamination of the data by low 

frequency drift in DNS calculation is investigated. Amplification rates and mode shapes for 

particular frequencies from the DNS data is contrasted with the LNS and LST results in 

section 8.4. 

LST calculations suggest that for cold jets the first two azimuthal instability waves 

dominate the acoustic field. This is verified for the DNS data in the following section, 

where the sound contributions of all other azimuthal modes was observed to be a small 

fraction of the sound fields of modes zero (n = 0) and one (n = 1). For this reason, in what 

follows we focus our calculations on these two azimuthal modes. 

8.1 Sound Pressure Level 

We begin by computing the sound pressure level (SPL) of the DNS and LNS data in the near 

acoustic field (r = 12) which is the maximum radius from the jet centerline for which the 

DNS results are available. The result of this computations are presented in figures 8.1 and 
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Figure 8.1 SPL of DNS at r = 12, (--) total; (---- ) azimuthal 
mode zero; (-'- ) azimuthal mode one; (--- ..... ) modes zero and 
one; (-,. - ) total minus modes zero and one, 

8.2 for both DNS and LNS. As discussed in section 8.3, low frequency "drift" in the DNS 

data can potentially contaminate the calculation of SPL and frequency spectra. For the 

DNS data presented in this section, any drift for each individual mode was approximated 

by a fifth order polynomial in time at each spatial location and then subtracted from the 

data prior to SPL calculations. However, this procedure had negligible effect on the DNS 

results at r = 12. 

There are several features to note in these figures. First, the acoustic field of the DNS 

data is dominated by modes zero and one, with contributions from the other azimuthal 

modes limited to at most 1.5 dB. This confirms the predictions from LST that the acoustic 

field of a cold jet (and relatively cold jets) is dominated by the first two modes [145]. 

Because of this, we limit our attention in what follows to only the first two modes. Second, 
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Figure 8.2 SPL at r = 12. For DNS: (-- ) sum of modes n = 0 and 
1; (---- ) n = 0; (_.- ) n = 1, and for LNS: E----- ) sum of modes 
n = 0 and 1; C--.- ) n = 0; r- ) n = 1. 

in agreement with predictions from LST, reported in the literature (e.g., Tam et at. [145]), 

the azimuthal mode n = 1 in the LNS calculation contributes the most to the total SPL and 

is clearly the dominant part of the generated noise. However, the same trend is not observed 

in the DNS data. The maximum SPL of the DNS data for n = 0 is slightly higher than that 

of mode one, that is, mode zero is quite significant in the DNS calculation and cannot be 

ignored, while in the LNS calculations considering only n = 1 provides a good estimate for 

the maximum SPL by linear mechanisms. Third, one can observe that contrary to the LNS 

and LST calculations, the SPL of the DNS data for n = 0 peaks farther downstream than 

that for n = 1. This can be interpreted to mean that the location of the sound sources of 

mode zero of the DNS calculation is concentrated further away from the nozzle. Since the 

inflow data for both LNS and DNS are exactly the same, this effect cannot be attributed 
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to any artificiality of the inflow forcing. 

In both LNS and DNS, the acoustic field is highly directional. For n = 1 the general 

directivity profile is well captured, while its SPL is underestimated by 4 dB. The agreement 

deteriorates significantly for n = 0, where LNS data represents a poor model for the max­

imum SPL as well as the directivity profile. Nevertheless, since the azimuthal mode one 

contributes the most to the SPL of the LNS calculations, the total directivity of the LNS 

data follows the trend of the total SPL of the DNS calculation. Thus, while the directivity 

of the sound field is captured well, the maximum SPL of the sum of modes n = 0 and 1 is 

underestimated by as much as 8 dB in the LNS calculation. This indicates that there are 

strong sound sources that are not captured in by linear equations. Sound sources due to 

nonlinear effects must apparently be included for a complete model of Mach wave radiation. 

Note that the comparison of SPLs of the DNS and LNS data is performed outside the 

jet, i. e., in the near acoustic field at r = 12, where the role of nonlinear effects is limited to 

steepening of the Mach waves. Such steepening produces an enhanced dissipation that acts 

to attenuate the sound. The Mach wave radiation in the present flow was, in fact, observed 

to involve significant wave steepening [42]. Therefore, one might expect a somewhat better 

agreement between DNS and LNS ate larger distance from the jet. Nevertheless, an 8 db 

difference at r = 12 indicates strong differences in the sources of sound between the DNS 

and LNS, and these will persist into the far acoustic field. 

The jet considered in this study is at a low Reynolds number, where the inertial range 

of scales is limited to a small band of wavenumbers. Evidence from frequency spectrum will 

be provided later that shows that the difference for n = 0 cannot be attributed to the lack 

of small scale turbulence in the LNS, and we conclude that the 8 dB difference between LNS 

and DNS calculations can be attributed to nonlinear noise generation mechanisms acting 

on the large scales. 

Now that we found the total SPL to be underestimated to some extent by the LNS com­

putations, in the next three sections we compare the instantaneous pressure fields and the 

individual eigenfunctions and amplification rates at various locations in the LNS calculations 

with the DNS data to analyze in more detail the extent of validity of linear approximation. 
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(a) DNS, n = 0 (b) LNS, n = 0 

(c) DNS, real part of n = 1 (d) LNS, real part of n = 1 

10 X 20 

(e) DNS, imaginary part of n = 0 (f) LNS, imaginary part of n = 1 

Figure 8.3 Instantaneous perturbation pressure field from DNS and 
LNS at time 222. No attempt was made to remove the drift in the 
DNS data. 10 contour levels between -0.00225 and 0.00225. 

8.2 Instantaneous Fields 

Instantaneous pressure fields of the DNS and LNS data for n = 0 and 1 are shown in figure 

8.3. There is a clear region of agreement between DNS and LNS perturbation fields for both 

modes very close to the inflow boundary. A reasonable correlation over the entire acoustic 

region is observed for n = 1, which matches the results of the SPL given in the previous 

section. The correlation between the near field of LNS and DNS data is more persistent for 
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n = 1 than it is for n = 0, and in both cases gradually deteriorates as we move downstream 

in the jet. In the near field, especially, this is to be expected, since we are instantaneously 

observing all frequencies all together, and clearly DNS data has a much richer spectrum. 

This is evident in the DNS data of figures 8.3(a,c,e) as more moderate and smaller scales 

are observed that are absent in the LNS calculations of figure 8.3(b,d,f). Consequently, 

around the end of the potential core the LNS calculation is not a good representative of 

the rapid hydrodynamic fluctuations in the DNS data, which are not simulated by the LNS 

equations. However, it seems that the LNS computations capture some of the Mach wave 

radiations that mainly originate from the early stages of the shear layer (away from the end 

of the potential core). 

It seems that the highest amplitude Mach wave radiation for n = 0 of the LNS data 

in figure 8.3 originates from an area close to the inflow boundary (close to the nozzle exit) 

while for n = 1 it radiates from a region around x :::::; 7 and extends beyond the end of the 

potential core. This clearly affects the directivity of the near acoustic field for n = 0 and l. 

While a far-field observer will not distinguish this small shift in the location of the apparent 

source, an observer at r = 12 would clearly sense it, as is evident in figure 8.2, where the 

SPL of the zero azimuthal mode of the LNS data at r = 12 saturates earlier that that of 

mode one. 

LNS computations give the expected picture from the linear stability theory. The radi­

ated Mach waves appear to be more localized for LNS. On the other hand, the DNS appears 

to have contributions from several regions, for both modes. We suspect that if we compared 

SPL for n = 1 further downstream (beyond the presently available computational region) 

it would start to disagree substantially from the DNS, and shows similar behavior as mode 

n = o. 
In figure 8.4 spacetime plots of the perturbations pressure fields at the radial coordinate 

r = 1 are shown for azimuthal modes zero and one. For both azimuthal modes, there are 

many structures traveling with a preferred convective velocity that can be predicted from 

the figure to be around one. This is consistent with the isentropic convective Mach number 

calculated from [107] for the flow conditions of this study. 

The supersonic nature of the convective velocity of these structures is responsible for 
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Mach wave radiation. It is interesting to note that the breakdown of these organized 

structures in the shear layer around the end of the potential core in DNS data corresponds 

to the strongest regions of acoustic sources (see figures 8.13 and 8.14). This is in agreement 

with the theoretical predictions that the strongest noise sources are from this region where 

convective structures break down. The level of noise sources drops rapidly after the end of 

the potential core. However, the convective Mach number appears to be constant. 

So far we have only compared the LNS and DNS data for quantities that have the 

accumulative effects over all frequencies. It is quite possible that for both modes, the linear 

stability modes do exist in the DNS data and correctly predict the sound radiation from 

the instability waves near the shear layer region. But in both cases, it appears that there 

are additional sources downstream (these may occur fairly far downstream) and thus it is 

hard to make any conclusions, since all the data is truncated around x = 33. To pursue this 

idea one really needs to look at individual frequencies. The reason for this is that it could 

be that the frequencies that are most amplified in DNS are well predicted by LNS, but that 

other frequencies (primarily higher frequencies) are contaminating the picture because we 

have only looked at root mean square values and instantaneous views so far. In section 8.4 

we decompose the data in the frequency domain to characterize the agreement between the 

DNS and LNS data at each frequency component. 

8.3 Low Frequency Artifacts of Individual Frequency Com­

ponents 

A drift (or trend) is defined as an amplitude variation in the time series which has a peri­

odicity much longer than the time interval of the available data, normally with a frequency 

below 1/2(imax - is). If there is a drift in the time-series the mean level of data changes over 

time, and the time-series would be non-stationary. In order to compute accurate frequency 

spectra, any drift in the data must be removed before using the discrete Fourier transform 

or the Lomb-Scargle periodogram techniques discussed in section 7.4. 

While the DNS calculations were performed in the same computational domain as the 

LNS calculations, the results were not saved as frequently for the whole domain and only the 
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(a) DNS, n = 0 (b) LNS, n = 0 
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(c) DNS, n = 1 (d)LNS,n=l 

Figure 8.4 Space-time diagram showing the convection of large struc­
tures for azimuthal modes zero and one. 
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(a) 

(b) 

( c) 

Figure 8.5 Drift in the DNS data at time 222. (a) n = 0; 8 contour 
levels between -0.0125 and 0.0225, (b) real part of n = 1; 12 contour 
levels between -0.0015 and 0.0095, (c) imaginary part of n = 1; 12 
contour levels between -0.0015 and 0.0095. 

part of the computational domain with r :s 4.4 and r = 12 was saved regularly. To calculate 

the mean flow or possible drift in the data we need a time history of the flow quantities at 

each point. Therefore, we could only calculate the drift in the flow quantities for the part of 

the computational domain where the data was saved regularly, i.e., for r :s 4.4, and r = 12. 

In order to eliminate drift, a fifth order polynomial in time is fitted to each azimuthal mode 

at all spatial locations for the pressure field. Then this drift is subtracted from the original 

data, and the result is used in SPL and frequency spectra calculations. The drift calculated 

for the DNS data for n = 0 and 1 are presented in figure 8.5 at time 222. While the level of 

the drift in the data is small for both modes, n = 0 has considerably larger drift. It appears 

that the drift has its maximum effect around the end of the potential core. It is clear from 

figure 8.5 that the drift does not have a strong effect on the near acoustic field, consistent 
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with our results in section 8.1 for r = 12. The time history of the drift at a typical point 

at the end of the potential core and inside the shear layer (x = 15 and r = 1) is shown in 

figure 8.6. 

To remove the contaminating effect of the drift, particularly for n = 0, we subtract 

the calculated drift at time t = 222 from the DNS results in figure 8.3 to obtain the new 

near field in figure 8.7. Note that the level of the existing drift at time 222 in the DNS 

data is much smaller than the maximum acoustic level depicted in figure 8.7. In the rest 

of this chapter all the calculated results from the DNS data are reported after subtracting 

the appropriate drift from the original data. 

8.4 Amplification Rates 

So far we have only compared the LNS and DNS data for quantities that have the accumu­

lative effects over all frequencies. In this section we decompose the data in the frequency 

domain to characterize the agreement between the DNS and LNS data at each frequency 

component. 

Frequency spectra of pressure perturbations of the DNS data inside the shear layer at 

350 
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(a) 

(b) 

( c) 

Figure 8.7 Instantaneous perturbation pressure field from DNS at time 
222. Drift in the data was calculated by fitting a fifth order polynomial 
in x to the data and then subtracting it from the data. 10 contour 
levels between -0.009 and 0.009. (a) azimuthal mode zero, (b) real 
part of azimuthal mode one, (c) imaginary part of azimuthal mode 
one. 

r = 1 and axial locations x = 2,10, and 20 are shown in figure 8.8. The frequency spectra 

at x = 2 is dominated by intermediate frequencies around St :::::: 0.25. These spectra show 

that while the overall amplitude of the spectra increases in the downstream direction, there 

is a clear energy transfer to lower frequencies. The same continuous shift of perturbation 

fluctuations toward lower frequencies with downstream location was reported in experiments 

by Troutt and McLaughlin [152]. 

The spatial development of the pressure disturbances at various Strouhal numbers 

(f D jUj) in the DNS calculation is compared with the instability waves of the LNS cal­

culation in figure 8.9 and 8.10 for r = 1 and r = 4. A study of these figures reveals that 
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at all frequencies, the amplitudes of the modes are in agreement near the inflow boundary, 

which is really a check that identical inflow forcing was used in both calculations. In most 

cases, the modes from LNS saturate earlier, and with lower amplitude than the correspond­

ing modes from DNS. In all cases, the agreement between DNS and LNS is better for n = 1 

than it is for n = 0, which is consistent with our previous observation in section 8.l. 

Another general trend in figure 8.9 is that the higher frequencies of the LNS calculation 

saturate earlier than the lower frequencies, an effect which is not evident in the DNS. The 

best agreement is observed for mode n = 1 around the peak Strouhal numbers (for 0.0952 .:s 
St .:s 0.1905). For lower or higher frequencies the LNS calculations vastly underestimate 

the amplification of disturbances. This explains why the SPL of the LNS calculations is 

lower than the DNS calculations. For frequencies much higher than the peak frequency of 

the LNS equations, the linear instability waves do not grow and the amplification observed 

in the DNS data must be attributed to nonlinear sound sources. 

The observation that turbulent flow, near and beyond the merging of the potential 

core, is responsible for a portion of the Mach wave radiation is not new, and was in fact 

observed by Troutt and McLaughlin [152]. In fact, it is interesting to observe that in their 

experiments, there is clear evidence in the near acoustic field that there are two distinct 

sources of waves at a given frequency, one originating from the shear layer region, the other 

further downstream. In the present low Reynolds number simulation, the shear layers are 

initially relatively thick and therefore higher frequencies, beyond St = 0.4 are damped 

immediately downstream of the inflow. We believe that this tends to somewhat obscure 

this effect, and at the frequencies that are amplified in the present shear layers, the source 

region from the shear layer and from further downstream cannot be clearly distinguished. 

Unlike previous comparisons, however, the present comparison shows that Mach wave 

radiation due to nonlinear effects is not only present, but it can dominate the far acoustic 

field. While the present analysis is restricted to low Reynolds number, it can only be 

surmised that nonlinear effects, and the discrepancy between the far field Sound pressure 

level and linear stability predictions, would be of even greater importance at high Reynolds 

number. 

In figures 8.11 and 8.12 the radial variation of the axial velocity and pressure distur-
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bances for n = 1 are compared with the corresponding eigenfunctions of the LNS calcula­

tions for various frequencies, and at various axial locations. The agreement is again very 

good for regions close to the inflow boundary and gradually deteriorates as the turbulence 

develops along the jet. As is apparent from the figures, for higher frequencies the eigen­

functions of the LNS equations do not have a significant amplitude. For frequencies around 

the peak Strouhal number the amplitude of the eigenfunctions reduce significantly after the 

end of the potential core. 
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The amplification contours of various frequencies are shown in figures 8.13 and 8.14. 

The contour levels of the DNS data are intentionally set to be the same as in the LNS data. 

The saturated regions in the DNS data represent the regions that have louder sound sources 

that are not captured by the LNS calculations. Clearly, most of these saturated regions 

are around the end of the potential core, where the LNS calculations perform poorly. As 

is clear in the picture the LNS equations do not appropriately model the hydrodynamic 

fluctuations around the end of the potential core, where the nonlinearity and turbulence 

development dominates a large portion of the flow perturbations. 

Another familiar scenario in turbulent mixing layers is the cascade of energy to smaller 

scales that feed energy to small scale eddies where they get dissipated by the action of 

viscosity. In linear theories the role of the small scale fluctuations is not described in detail. 

Instead it is argued that their role is primarily to dissipate the energy transferred to them 

from large scales and that the details of this process are unimportant to the flow development 

at the large scales, except through their contributions to the mean flow. Production of 

small scale turbulence depends on the Reynolds number, and noise generation by small 

scale turbulence is assumed to be more important in high Reynolds number flows where 

more energetic small scales are present. Therefore, for the relatively low Reynolds flow 

considered in this study and for the frequencies considered in this section we suspect that 

the differences between the acoustic field of the LNS and DNS data are mainly due to 

nonlinear effects, and sound field generated by the small scale turbulence, while exist, do 

not contribute significantly to the overall acoustic field at these frequencies. 

We note in passing that there are some oscillations evident in the magnitude of the 

axial velocity and pressure disturbances in the LNS calculations for n = 1. Oscillations 

with similar characteristics were observed by Mitchell et aZ. [83] in computations of a 

supersonic axisymmetric jet. We investigated two possible causes for this effect. The first 

is a weak system of compression and expansion waves that exists in the mean core flow, 

as can be seen in figure 7.6(a). In order to gauge the effect of these waves on the modes, 

we calculated the spatial development of the instability waves for progressively smoothed 

mean flows (where the wave patterns are smoothed in the core) and found that these wave 

patterns were not responsible for the oscillations. The second possibility is the existence of 



132 

(a) DNS, St = 0.1429, 11 contour levels between 0.0005 and 0.0055 

12 

10 

x 

(b) LNS, St = 0.1429, 11 contour levels between 0.0005 and 0.0055 

(c) DNS, St = 0.1905, 10 contour levels between 0.0004 and 0.004 

12 

10 

8 

~ 6 

4 

o 
x 

(d) LNS, St = 0.1905, 10 contour levels between 0.0004 and 0.004 

Figure 8.13 Contours of the amplitude of perturbation pressure field 
for n = 1. 



133 

(a) DNS, St = 0.1429, 11 contour levels between 0.0004 and 0.0044 

12 

10 

8 

:..... 6 

4 

30 

(b) LNS, St = 0.1429, 11 contour levels between 0.0004 and 0.0044 

(c) DNS, St = 0.1905,10 contour levels between 0.0004 and 0.004 

12 

10 

8 

:..... 6 

4 

30 

(d) LNS, St = 0.1905, 10 contour levels between 0.0004 and 0.004 

Figure 8.14 Contours of the amplitude of perturbation pressure field 
for n = O. 



134 

additional instability modes. The existence of multiple instability modes in supersonic jets is 

discussed by Oertel [103, 102, 104] and Tam and Hu [146]. Oertel's [104] experiments clearly 

show that both the supersonic instability waves and the Kelvin-Helmholtz instability waves 

are capable of sound generation. Subsonic waves radiate sound when their amplitude grows 

or decays. That is, the growth and decay of the wave causes its wavenumber spectrum to 

be broadband, leading to components with supersonic phase speed and therefore radiation. 

However, this Mach wave radiation mechanism would deteriorate for lower speed jets, as 

the instability waves with lower phase speed are less efficient in noise generation. 

Our calculations based on the LST shows that at this Mach number (1.92) and tem­

perature ratio (0.89) the Kelvin-Helmholtz instability waves are the dominant instability 

modes of the LNS equations, and the other type of instability waves, while present, do not 

amplify significantly. 

The amplification rates of the LST are contrasted with LNS and DNS computations in 

figure 8.15. To find the free scaling factor in the LST calculations, the amplification rate 

of the LST calculations is matched with the LNS at x = 2.5, where the LST calculations 

starts. 

The LNS and DNS calculations are both viscous, and have the same Reynolds number. 

On the other hand the LST of Tam and Burton [143] is an inviscid theory. Consequently, 

the eigenfunctions of the inviscid LST are discontinuous (at the critical layer) when the 

supersonic instability waves get damped. This discontinuity manifests itself in extreme 

peakiness of the axial velocity eigenfunction right before the waves damp. This is clear in 

figures 8.16 where the eigenfunctions of the LST calculations are compared with the LNS 

and DNS data for n = 1. Results for the azimuthal mode zero are not reported here, 

because the linear stability modes saturates and develops discontinuity very early in the 

development of the shear layer, usually before x = 6. For n = 1, the discontinuity develops 

at about x = 11. The amplitude of the pressure eigenfunction of the LST calculations 

is scaled appropriately to match the maximum amplitude of the corresponding pressure 

eigenfunction of the LNS calculations at the same axial location. Then, the same scaling 

factor is used to scale the velocity eigenfunction of the LST calculations. The agreement 

for the pressure eigenfunction is quite favorable, but the amplitude of the axial velocity 
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(a) St = 0.1429, n = 1 (b) St = 0.1905, n = 1 (c) St = 0.2381, n = 1 

Figure 8.15 Pressure amplification at r = 1 for n = 1. (--) DNS; 
(---- ) LNS; (_ .. - ) LST. 

eigenfunction is very sharp around the critical layer and develops a singularity further 

downstream. The peakiness in the amplitude of the axial velocity in the LST calculations 

is smoothed out by the viscous effects in the LNS computations. 

Note that the pressure eigenfunctions of the LST do not behave according to the LNS 

data for large r. This is because for larger r the compressible Rayleigh equation must be 

asymptotically matched with the acoustic equations in the far field and the simple boundary 

condition in (7.38) will not capture the correct behavior for large r. 
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Chapter 9 

Conclusions and Future Work 

In this study we have critically evaluated the linear stability theory of Mach wave radiation 

in fully expanded supersonic jets. Until present, evidence supporting the theory has been 

restricted to a general agreement of the directivity of the Mach wave radiation, and its peak 

Strouhal number. In particular, the study of 'froutt and MacLaughlin [152] showed that the 

initial growth rates of the jet instabilities and the wavelengths of the coherent disturbances 

are in good agreement with linear stability theory predictions. It is interesting to observe 

that in their experiments, there is clear evidence in the near acoustic field that there are two 

distinct sources of waves at a given frequency, one originating from the shear layer region, 

the other further downstream. 

It is important to note here that the directivity of the acoustic field near the peak 

Strouhal number is not very sensitive to the details of the source process. Indeed, the 

growth and decay of any constant frequency convecting disturbance will produce such radi­

ation, albeit at an amplitude which depends sharply on the growth and decay rates of the 

disturbance with streamwise distance. Nevertheless, the linear theory has been extensively 

used as a model of the sound generation process, and has formed the basis of a large number 

of attempts to control the sound either by direct forcing of the flow, geometrical changes 

to the nozzle, or modification of any co-flow. While some of the schemes lead to measur­

able changes in the sound radiation, they have not provided any conclusive data that such 

changes are related to alteration of instability waves. 

Linear theory cannot predict the amplitude of the radiated sound without scaling the 
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data near the nozzle lip. As the turbulent fluctuations near the nozzle are very difficult to 

accurately measure, such scaling has never been rigorously performed. This would involve 

measuring the turbulent fluctuations (either from an experiment or a DNS), and decom­

posing that signal and projecting it onto a linear combination of the linear modes [24]. In 

fact, for compressible flow there remain technical details involving divergence of the inner 

products of the adjoint eigenvectors with the data that have not yet been resolved. 

However, having access to DNS data from a 1.92 Mach jet [42], allows us to perform 

a direct comparison of sound generation by linear stability modes and noise generation 

by other mechanisms (e. g., nonlinear sources or small-scale turbulence). Flow and acoustic 

informations from the available raw DNS data were extracted and compared with the results 

from a linearized Navier-Stokes computation. The numerical integration technique, inflow 

boundary conditions, and grid distributions were the same in both simulations. By keeping 

these and all other attributes the same, we were certain that we had captured all noise 

generated by linear stability waves in this flow. 

The generated noise in the DNS calculation was dominated by the first two azimuthal 

modes, and contributions from all other azimuthal modes were limited to less than 1.5 dB 

in the acoustic field. This was consistent with predictions from linear theories. Therefore, 

we focused our linearized calculations on only the first two modes. 

The total directivity of the sound field in the LNS matched reasonably well with the 

sound field of the DNS data. At the peak Strouhal frequency, particularly for n=l, the am­

plification of flow variables in the LNS closely matched that of the DNS data. However, for 

frequencies away from the peak Strouhal number the DNS data showed amplification rates 

comparable to those of the peak Strouhal number, while in the LNS data any disturbances 

away from the peak Strouhal number were highly damped. These extra noise sources in the 

DNS data were reminiscent of nonlinear interaction among various modes. 

The noise generated by the first two modes in the linearized computation was substan­

tially weaker than in the DNS. For example, in the near acoustic field, at a distance of 6 jet 

diameters from the jet centerline, the sound pressure level in the linearized computation was 

as much as 8 db smaller than the DNS results. This was in sharp contrast with the assump­

tions made in the linear stability theory that the Mach wave radiation in fully expanded 
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supersonic jets is dominated by the linear sound generation mechanisms. Therefore, one 

can conclude that while the linear sound generation by the large scale turbulent structures 

(or instability waves) constitute a large part of the turbulent mixing noise, an accurate 

account of sound generation in turbulent jets must include the other noise sources as well. 

We consider this as an evidence for the existence of relatively important noise sources apart 

from those directly related to the growth and decay of linear modes. 

The maximum amplification for the DNS data occurred at an axial location further 

downstream than for the LNS data, which corresponds to regions around and beyond the 

end of the potential core. Our results indicated that the missing sound sources in the LNS 

computation at the frequencies considered in this study could be attributed to the non­

linear sound generation. These non-linear sources were very effective sound sources, and a 

full theory of Mach wave radiation in fully expanded jets should take them into account. To 

gain insight into these interactions a more complex non-linear analysis technique is required. 

It is unclear from the present work whether a better prediction for the evolution of 

the instability waves (say by accounting for nonlinear interactions amongst waves) would 

produce a more satisfactory prediction for their radiation sound. The Parabolized Stability 

Equation approach [53] offers a possible framework for such computations. Another pos­

sibility is that a genuinely nonlinear mechanism, such as Lighthill's quadrupole source, is 

needed to accurately predict the sound. It is interesting to note that Colonius and Fre­

und [19] have found that the acoustic field from the present jet simulation was very well 

predicted by solving Lighthill's acoustic analogy equation with source terms computed from 

the DNS data. However, both linear and nonlinear interactions are present in Lighthill's 

source term and further work is necessary to distinguish them. 

In order to complete the theory of Mach wave radiation from supersonic jets, and thereby 

produce a realistic model on which future noise control efforts could be based, future studies 

should concentrate on elucidating the precise mechanism by which nonlinear effects generate 

sound in the region near the end of the potential core. 



140 

Appendix A 

Numerical Treatment of Polar Coordinate 

Singularities 

The treatment of the geometrical singularity in cylindrical and spherical coordinates has 

for many years been a difficulty in the development of accurate finite difference (FD) and 

pseudospectral (PS) schemes. A variety of numerical procedures for dealing with the sin­

gularity have been suggested. For comparative purposes, some of these are discussed in the 

next sections, but the reader is referred to several books and review papers [12, 38, 50] for 

more detailed references. 

Generally, methods discussed in the literature use pole equations, which are akin to 

boundary conditions to be applied at the singular point. The treatment of the pole as a 

computational boundary can lead to numerical difficulties. These include the necessity of 

special boundary closures for FD schemes (e.g., [51]), undesirable clustering of grid points 

in PS schemes (e.g., [57]), and, in FD schemes, the generation of spurious waves which 

oscillate from grid point to grid point (so-called two-delta or sawtooth waves, see [18, 155]). 

In this section we investigate a method for treating the coordinate singularity whereby 

singular coordinates are redefined so that data is differentiated smoothly through the pole, 

and we avoid placing a grid point directly at the pole. This eliminates the need for any pole 

equation (see Mohseni and Colonius [87]). Despite the simplicity of the present technique, 

it appears to be an effective and systematic way to treat many scalar and vector equations 

in cylindrical and spherical coordinates. A similar technique was used by Merilees [79] for 

the south and north pole singularities of spherical coordinates, but appears not to have 
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been applied more generally. Here we show that the technique leads to excellent results 

for a number of model problems. The main application we consider is the compressible 

unsteady Euler and Navier-Stokes equations in cylindrical coordinates (section A.O.2) and 

Orr-Sommerfeld equation in cylindrical coordinates (section A.O.5). For comparison with 

other methods, we also treat the solution of Bessel's equation and scalar convection of a 

sphere in sections A.O.3 and A.O.4, respectively. 

A.D.l Approach 

The present treatment of the I/rn singularities in the radial direction can be summarized 

as follows: 

1. A new radial coordinate is defined over both positive and negative radius 

r(r,¢) = { r 
-r 

if 0 :S: ¢ < 7r 

if 7r :S: ¢ < 27r 
(A.I) 

as depicted in figure A.I. This transformation has been already used in [38] to solve 

the Bessel's equation, but with a grid point at the pole and using the exact pole 

equation. 
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H. Differentiation is performed with respect to the new coordinate, r, but on a set of nodes 

which avoids the singularity. For FD schemes (on a uniform mesh), for example, we 

have: 

(2n + l)6.r 
2 

n = 0,1,2,··· (A.2) 

For PS schemes Chebyshev nodes (CN) with even number of points over -1 :S r :S 1: 

rk = - cos(7fk/2Nr + 1), k = 0,1,··· ,2Nr + 1 (A.3) 

will be suitable. These should be compared with, for example, the Chebyshev-Lobatto 

nodes (CLN) which are defined on ° :S r :S 1 as 

k=O,l,··· ,Nr (A.4) 

which give clustering around both r = ° and 1 and have been recommended for PS 

solutions of problems with pole singularities by Huang and Sloan [57]. 

HI. Scalar and vector quantities must be transformed appropriately between the r to the 

r coordinates. The following simple transformation rule holds: when ° :S ¢ < 7f all 

quantities are the same in both coordinate systems. For 7f :S ¢ < 27f we multiply 

any polar components of a vector quantity, radial derivative, and any r by -1. For 

example, the convective term 8(vr vrp)/8r has exactly the same form and sign in both 

coordinates for ° :S ¢ < 7f while it has opposite sign (because of multiplication by 

three negative signs ) for 7f :S ¢ < 27f. 

Note that this transformation is only used to calculate the radial derivatives. For the az­

imuthal derivatives the traditional definition of cylindrical coordinate is used. Thus the new 

singularity which is generated in the azimuthal direction by redefining the radial coordinate 

is avoided. Furthermore, in the axisymmetric case one need not carry the computations 

over [-R, R], but instead symmetry conditions can be used to close FD schemes at the 

point adjacent to the pole and parity properties may be used in PS schemes to reduce the 

number of equations by half. However, we would like to emphasize that the general ap-
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proach does not depend on any parity property of the equations and can be used to find 

non-axisymmetric solutions. An example is provided in section A.O.2. 

Here we show that the rule of transformation (iii), applied to an arbitrary regular func­

tion f, is consistent with the constraints on the behavior of its Fourier series coefficients 

near the pole. Therefore, the transformation (iii) has no effect on the regularity of the 

function in the new coordinate. We take the Fourier series representation of an arbitrary 

function f (r, ¢): 

00 

f(r, ¢) = 2..::: am(r) eim
</> (A.5) 

m=-oo 

Now, if f is a regular scalar quantity, we must require that am(r) = r 1m1 bm(r2) as r -+ 0, 

where bm(r2) is a regular function of r2 [65]. In the (f, ¢) coordinates the same represen­

tation is valid for 0 :s; ¢ < 7r. If 7r :s; ¢ < 27r we substitute ¢ = ¢ + 7r and r = -f. 

Hence 

00 00 

(A.6) 
m=-oo m=-oo 

But as r -+ 0, we have am(-r) (_1)m = am(f) (see [65]), and thus the regularity of the 

function f is preserved in the new coordinate (f, ¢). The rule of transformation (iii) can 

be justified by applying the preceding analysis to functions of the form rn f(r, ¢), radial 

derivatives of f, and vector quantities. 

In spherical coordinates (r, ¢, 8) the pole singularities are caused by two factors: r -+ 0 

and sin( ¢) -+ O. The singularity of radial derivatives at r = 0 can be treated as described 

above for cylindrical coordinates, i. e., by extending r to negative values and shifting the 

grid points in the radial direction by b.r /2 so that there is no grid point at r = O. The 

singularities at ¢ = 0 and 7r can be handled using a similar strategy (see Merilees [79]). 

The maximum allowable timestep for convective problems is usually controlled by the 

Courant-Friedrichs-Lewy (CFL) number. The effect of grid distributions on the CFL num­

ber has been the subject of previous research [12, 3]. Here we compare the CFL requirements 

for the present and conventional grid distributions. 
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A conservative estimate for the CFL number will depend on the minimum mesh spacing 

in any of the three coordinate directions. To simplify the argument, in the rest of this 

section we assume that the CFL criteria are the same in all directions. 

For axisymmetric problems, the conventional grid defined by: rn = nb..r; n = 0,1,2,· .. , 

gives a CFL constraint which is dependent on b..r. Despite the grid point at b..r/2 in the 

modified grid (equation A.2) numerical experiments confirm that the CFL number continues 

to scale with b..r. For non-axisymmetric problems, the situation is different. For N¢ Fourier 

or FD modes in the azimuthal direction, the minimum length of the mesh in the c/>-direction 

is now 7fb..r/N¢, half of the value for a conventional grid with the first node at b..r. Thus 

with no further modification, the maximum time step in the present approach is a factor 

of two smaller than other approaches. In either case, the CFL constraint is very restrictive 

in non-axisymmetric cylindrical coordinates, the minimum time step being proportional to 

the product of the grid spacing in rand c/>. 

In both cases it is possible to alleviate this constraint by explicitly filtering the results 

in the c/> direction, as has been suggested by many investigators (e.g., [12] and references 

therein). Since the solution is periodic in the c/> direction, it is possible to employ a sharp 

spectral filter at a particular cutoff wavenumber. For grids defined by rn = nb..r; n = 

0,1,2,·· . , the effective mesh spacing in the c/> direction becomes b..x¢ = 27fb..r /NJ¢ along 

the circle at r = b..r, where NJ¢ is the number of nodes retained. Thus if 7 or fewer nodes 

are retained, the CFL constraint will be dictated by b..r. The maximal number of nodes of 

NJ¢ :::::: 27fn that should be retained at different radial locations rn follows in an analogous 

way. For the present grid, the first node is placed at llr /2, then we need merely retain 

fewer Fourier modes (at most NJ¢ :::::: 7fn) at each rn , so that the CFL constraint depends 

on b..r alone. 

In PS methods, the clustering of node points near the boundaries also has an impact on 

the maximum CFL number. Since the pole is traditionally considered as a boundary point, 

the same clustering occurs at the poles (e.g., [57]). Fornberg [38] noticed that it is possible to 

alleviate the quadratic clustering of nodes near the origin, by defining the radial coordinate 

as in equation (A.1). We observe the same property in our grid distribution, except that 

our grid points are shifted so that no grid point is located at the pole. Therefore, one 
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can choose the grid distribution in the r coordinate to dramatically increase the maximum 

timestep required for stability around the centerline for PS methods compared to other grid 

distributions. In fact, using the distributions given above, it can easily be shown that the 

distance from the centerline to the first node away from the centerline is N r /7r times greater 

for the CN distribution than for the CLN distribution, in the limit of large N r . Thus the 

maximum time step increases also by this factor. 

Finally, we would like to point out that the present approach should not be confused 

with the idea of staggered grids (e.g., [36]). Here, we use the co-located discretization where 

the nodes are chosen to avoid singularities. 

A.O.2 Compressible Navier-Stokes Equations 

We consider solution of the Navier-Stokes and Euler equations in cylindrical coordinates. 

One approach which has been used in the past is to superpose a Cartesian coordinate 

system at the singularity as was done, for example, in recent compressible jet calculations 

by Mitchell et al. [83, 84] and Freund et al. [40]. A different approach was used by Griffin 

et al. [51], where l'Hopital's rule was used to the singular terms in the NS equations to 

derive a new set of equations valid at the centerline. These equations are then solved by 

one-sided difference schemes at the centerline. They observed a significant loss of accuracy 

when the biased difference scheme used at the centerline was less accurate than the interior 

scheme. Various other schemes for the Navier-Stokes equations in cylindrical coordinates 

have been given in the literature [3, 72, 97, 126, 153]. 

Aside from the centerline treatment, the details of the numerical scheme used in this 

work are similar to the approach of Freund et al. [40]. At the outer radial boundary 

non-reflecting boundary conditions are implemented [47]. In the radial direction we use a 

sixth order accurate compact Pade scheme [64] and in the azimuthal direction a Fourier 

spectral method is used. For the purposes of this paper, only flows which are uniform in 

the axial direction are considered. Fourth order Runge-Kutta time advancement is used 

to advance the solution to the next time step. This combination of high-order-accurate 

compact finite difference schemes and explicit Runge-Kutta time advancements has now 

been used in many codes developed for solving problems in compressible turbulence and 
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aeroacoustics (e.g., [23,40,83,84]). 

For the centerline treatment, we implement two approaches: the first (CL1) uses the 

coordinate transformation and grid distribution discussed in the last section; the other 

(CL2) solves the equations in Cartesian coordinates at the centerline [40, 84, 83]. 

As an example, consider the propagation of a Gaussian acoustic pulse with unit variance 

located, initially, off-centered at (r = 1, ¢ = 0) in a cylindrical coordinates. The specific 

head ratio is 1.4. The outer radial non-reflecting boundary is placed at r = 8. The grid is 81 

by 64 nodes in the radial and azimuthal directions, respectively. The acoustic pulse initially 

has the form of a small amplitude pressure and density disturbance superposed on their 

(constant) ambient values. In the present example, we take the magnitude of the acoustic 

pulse to be very small (10-6 ) such that nonlinear effects are minimal and an exact solution 

to the linearized version of this problem can be found [148] and compared to the numerical 

solution. In what follows, we give the density of the acoustic wave (less the ambient density) 

relative to the ambient density. Lengths are normalized by the variance (width) of the initial 

Gaussian pulse, and time is normalized using this length and the ambient sound speed. The 

time step for these calculations is llt = 0.003125. 

In addition to a greater ease of implementation, we find that in viscous computations, 

method CL1 is stable with a much smaller viscosity (higher Re) than CL2. Long time 

instability of the inviscid method is characteristic of non-dissipative (centered) finite dif­

ference schemes in general, and is not directly a consequence of the coordinate singularity. 

The instability is believed to result from aliasing of energy onto the highest wavenumbers 

supported by the grid (sawtooth waves), and repeated reflections (and, indeed, amplifica­

tion) of these waves by the non-periodic boundaries. In figure A.2 the numerical solution of 

inviscid equations for method CL1 is shown for times 2 and 4. The absolute error is plotted 

for both CL1 and CL2 at time t = 2 in figure A.3. For CL2, poorly resolved sawtooth 

waves can be seen. It is clear that they are produced by the centerline treatment since 

the pulse is initially located off-center at r = 1. These short wavelength disturbances are, 

continuously, produced at the centerline. They are similar to the sawtooth waves studied 

by Trefethen [151]' Vichnevetsky [155], and Colonius et al. [18], where it has been shown 

that they can propagate at physically inappropriate (large and with incorrect sign) group 
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Figure A.2 Numerical solution (density perturbation relative to initial 
amplitude) for method CLI at (a) t = 2, (b) t = 4. 
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velocities and that they are converted to smooth (well-resolved) waves upon interaction with 

boundary conditions (in this case at both r = 0 and r = R). By contrast, such spurious 

waves are not evident for treatment CL1, and the error (figure A.3a) is centered at the 

center of the acoustic pulse and is almost 2 orders of magnitude smaller than CL2. This 

error is apparently controlled only by the finite resolution. 

A.O.3 Bessel's Equation 

To compare the method described above to previous treatments, we consider PS and FD 

solutions of Bessel's equation in cylindrical and spherical coordinates: 

o :s: r :s: 1, (A.7) 

where n ~ 0, and a = 1,2 for Bessel's and spherical Bessel's equations, respectively. The 

boundary condition for both equations is given by y(l) = o. The eigenvalues for the Bessel's 

equation are given analytically by Anp = r;;,p, where rnp are the zeroes of the Bessel's 

functions J: In(rnp) = 0, p = 1,2,···. The solution to the equation is the spherical 

Bessel's equation jn(r~p), where r~p are the zeroes of jn(r~p) = 0, p = 1,2,··· and the 

. 1 \ '2 elgenva ues are /\np = r np. 

For Bessel's equation, Gottlieb and Orszag [50] improved the convergence of their Cheby­

shev tau method by using the pole condition y' (0) = O. Huang and Sloan [57] showed that 

this pole condition does not give spectral accuracy for n = 1. They derived an improved 

pole condition for n = 1 to preserve the spectral accuracy. Fornberg [38] used these pole 

equations but he changed definition of the cylindrical coordinate (eq. A.1) to allow the radial 

grid to run through the pole. In addition to more accuracy, he notes the possible advantage 

of not having a clustering of the nodes near r = O. Note that unlike the present approach, a 

node, and therefore a pole equation, is used at the singularity, r = o. Recently, Matsushima 

and Marcus [75] found a new set of basis functions defined by a singular Sturm-Lioville 

equation so that the pole condition is maintained. They applied their method successfully 

to Bessel's equation and the vorticity transport equation on a unit disk. 

Here the present method is employed to solve Bessel's equation with a PS method based 
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on the Lagrange's interpolation formula [57], but without any pole conditions. We use the 

parity property of the Bessel's equation to reduce the calculation to only the positive half 

of the Chebyshev node distribution considered in section A.O.1: 

k=0,1,··· ,Nr . (A.8) 

In figure A.4 the convergence of the numerical solution to the exact eigenvalue is shown. 

The relative errors for the first eigenvalue, AnI, for n = 7 and 49 are plotted for various PS 

schemes and a second order FD method with the present treatment of the singularity. 

All of the solutions are very accurate, and for large N it becomes difficult to compare 

the relative accuracy of the schemes, since the error becomes dominated by roundoff even 

with double precision arithmetic. To overcome this problem and make reliable comparisons 

between methods, we recomputed the results with sufficient precision arithmetic using the 

Mathematica [162] program when necessary. 

Apparently the new pole treatment gives spectral convergence and is more accurate 

for all N than that of ref. [57, 75]. Matsushima and Marcus [75] pointed out that the 

spectral convergence of the Chebyshev expansion of Gottlieb and Orszag [50] deteriorates 

significantly as n becomes large. This effect was attributed to the shifting of the oscillatory 

part of the Bessel function moving toward the outer boundary as n increases. It is clear 

from the figure that our PS approach is not suffering from the oscillatory behavior of the 

solution near the boundary and gives better convergence. Finally, similar results for n = 1 

presented by Fornberg [38] overlaps with our results for n = 1. However, his results were 

obtained using an exact pole equation which is not available for more complex equations, 

such as those considered in the previous section. 

Similarly the smallest eigenvalue of the spherical Bessel's equation is calculated numer­

ically and the relative errors for n = 49 is shown in figure A.5. This result is compared 

with a Chebyshev tau method similar to [50] and the recent results by Matsushima and 

Marcus [75]. 
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North and South Pole Singularities 

In spherical coordinates (r, ¢, ()) the pole singularities are caused by two factors: r --t 0 

and sin( ¢) --t O. The singularity of radial derivatives at r = 0 can be treated as described 

before, i. e., by extending r to accept negative values and removing the grid point at r = O. 

Extending the same methodology to the treatment of the SNPS's of spherical coordinates 

gives, essentially, the method that Merilees [79] implemented for the PS solution of the 

shallow water equations over a sphere. We summarize his results here and generalize them 

to any type of scalar and vector equations with SNPS's in spherical coordinates. 

The singularities at ¢ = 0 and 7r can be handled as follows. We eliminate the grid points 

at the south and north poles and extend () from 0 to 27r. Therefore, a periodicity in the () 

will be achieved which could be used to easily calculate the derivatives in the O-direction. 

Similar rule of transformation as in the cylindrical coordinate is applied for transforming 

from one coordinate system to the other coordinate system: for 0 ::; ¢ < 7r all quantities 

are the same in both coordinate systems; for 7r ::; ¢ < 27r we multiply any polar component 

of a vector quantity or any derivative with respect to () by -1. The most appropriate grid 
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Figure A.6 Absolute error for solid convection over a sphere: (a) along 
the equator (b) over the pole. 

distribution in this case is shifted equidistance grid in latitude direction. Computations by 

Fornberg (private communications) and our own results for solid convection over a sphere 

reconfirmed the robustness of this approach. 

As an example consider the convection of a passive scalar on a sphere. Consider the 

solid convection of a Gaussian with variance 0.2 on the surface of a sphere. We use a Fourier 

pseudospectral method to solve: 

au _ au bau 
at - a ae + a¢ (A.9) 

for two cases: rotation around the equator (a = 0, b = -1) and rotation across the pole (a = 

- cos ¢, b = sin ¢ cot e). This problem was also studied by Fornberg and Sloan [39, 37, 38J 

with the same approach, except that grid points where located at the poles and the following 

I d · . d aU
I 

aU
I po e con ltIon was use : at all </> = - a¢ </>= o· 

Figure A.6 shows the results after 10 revolutions for 32 and 64 grid points along the e 
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and ¢ directions, respectively. We used very small time steps so that all the visible errors 

are due to the spatial discretization. The errors are of the same magnitude for both rotation 

around the equator and the pole, indicating good performance of the present method. Note 

that the small amplitude noise present in the rotation across the pole is dispersive error 

caused by convection through the non-uniform mesh near the poles. 

A.O.5 Accurate Calculation of Eigenvalues of Orr-Sommerfeld Equation 

In a recent study with professor J. Marsden on transition to turbulence in a pipe flow [90], 

we applied the polar coordinate singularity treatment described previously in section A.O.1 

to calculate the eigenvalues of Orr-Sommerfeld equations in cylindrical coordinates. Here 

we present some of these results (further detail is provided in Mohseni and Marsden [90)). 

There are three distinct modes for axisymmetric disturbances [29], namely the wall, 

center, and mean modes. The pioneering work of Orszag [106] on accurate calculations 

of all three branches of eigen spectrums for the plane Orr-Sommerfeld equation inspired 

many other publications to extend his results to other applications and different methods. 

Although Orszag's results were accurate for the mean modes, the calculated eigenvalues 

for the wall modes suffered from oscillations, and their eigenfunctions were somewhat scat­

tered. The same behavior is observed for the wall modes in pipe flows [1, 29] (which is not 

surprising, since when the disturbance is confined to a thin layer near the wall of the pipe 

the problem becomes identical to a thin layer near the wall in plane Couette flow, see J. 

Pretsch, ZAMM, 21, 204 (1941)). Here we use a different approach. We treat the coordi­

nate singularity by the method presented in section A and [88]. The differential equation 

is discretized by a pseudospectral method based on Lagrange's interpolation formula. 

The usual parabolic profile is assumed for the mean velocity distribution in the pipe. 

For simplicity, we present results only for the axisymmetric mode of pipe flow. Figure A.7 

presents the eigenvalues for the axisymmetric mode of Orr-Sommerfeld equations. 46 nodes 

are used in this calculation. Note that the lower two branches in figure 4.18 of Drazin [29] are 

due to numerical artifacts and are not physical modes. Our numerical techniques capture 

the correct behavior of the wall modes, as predicted by Gill [48], while the results based on 

the Chebyshev expansion [1, 29] are scattered around the correct wall modes. The spectral 
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convergence of the Chebyshev expansion based on Gottlieb and Orszag [50] deteriorates 

significantly (see [75, 88]), if the solution has oscillatory behavior close to the boundary. 

We suspect the same effect is responsible for the oscillations observed in calculations by [29] 

and [1] for the eigenvalues of wall modes. 

We suspect that some of the oscillations in wall mode eigenvalues in Poiseulle and 

Couette flows as well as nonaxisymmetric modes of pipe flows presented in the literatures 

are only numerical artifact (spurious modes) that can be removed by a technique similar to 

the one presented here. 
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Appendix B 

Axisymmetric Vortex Filament Method 

In this section we study the Hamiltonian structure of axisymmetric vortex filaments. To 

derive the Hamilton equations for discrete vortex filaments we use the field Poisson bracket 

(3.14) and the field Hamilton equation (3.15). A similar approach has been pursued by 

Morrison [99J for deriving the point vortex equations in a plane, and is closely followed here. 

We assume that the vorticity density distribution can be approximated by a combination 

of discrete axisymmetric vortex filaments as 

N 

~(x) = L Ci J(x - Xi). (B.1) 
i=l 

Substituting equation (B.1) into the Hamiltonian (3.10) we obtain 

N N 

H = 7f L L cicjM(Xilxj) (B.2) 
i=l j=l 

where M(Xilxj) is given by (3.12). One can use the symmetry of the kernel function 

M(Xilxj) to simplify the double sum in (B.2). It can be easily shown that 

(B.3) 

(B.4) 
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Consequently, the Poisson bracket (3,14) can be represented as 

N 
{F G} = "" ~ (OF oG _ of OG) , 

, L.t c· ox oy· oy ox' i=l t t t t t 

(B,5) 

Hence using (B,3), (B,4), and (B.1), the Poisson bracket of ~ and H can be represented by 

{~ H} = N ~ (.!!..f oH _ !!i. OH) , , L C ox oy· oy· ox' i=l 1 1 1 1 1 

(B,6) 

Since ~ obtains its t dependence through Xi we can substitute (B,l) and (8.6) in equation 

(3,15) to yield 

dXi oH 
CiYt OYi' 

(8.7) 

Note that these equations are similar to Hamilton equations for point vortices in plane, 
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Appendix C 

Evaluation of Giles and Tam's Nonrefiecting 

Boundary Conditions for The Euler Equation 

Jet noise problem is categorized among the so called exterior problems. To simulate these 

types of problems it is necessary to impose nonrefiecting boundary conditions at the bound­

aries of the computational domain. As discussed in section 7.3, linearized Euler equations 

can support three types of waves. Therefore, a general disturbance interacting with the 

boundary would contain in general a combination of these waves. An effective boundary 

condition is the one that produces minimum reflection in interaction with a general distur­

bance. Our objective in this section is to compare the short-time and long-time behavior of 

Giles and Tam's nonrefiecting boundary conditions (BC's), for the Euler equations. Both 

sets of BC's are evaluated using the same discretization, order of approximation and time 

advancement. Results are shown for two different test cases. One test had zero mean flow 

while the other had a uniform subsonic mean flow. 

C.O.6 Introduction 

The physical domain of an aeroacoustic problem is often infinite. There are various numer­

ical methods which can be used for problems defined on an infinite space. One approach 

is to map the infinite physical space to a finite computational space. This approach is not 

recommended because poor resolution near infinity can produce large errors and therefore 

degrade the accuracy of the computed solution. An alternative approach is to truncate 

the physical domain at some finite, artificial surface. This creates a finite computational 
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domain at the expense of imposing additional Be's at the artificial boundary. 

If there is a propagating solution in the vicinity of the artificial boundary, the Be's must 

correctly specify the energy leaving the computational domain. Any inaccuracy in the spec­

ification of these Be's can produce spurious waves which propagate into the computational 

domain. In this case there will be a spurious energy propagation into the computational 

domain from "infinity." There are various possibilities to reduce these undesired reflections. 

One possibility is to use progressively coarser grid spacing as the waves move out toward 

the far-field boundary. If the mesh is coarse enough that the wavelength of the wave is 

comparable to a few mesh cells, then artificial viscosity can be used to damp out the oscil­

lations such that the waves will not reach the boundary. However, it should be pointed out 

that nonuniform grids themselves produce spurious reflections [151, 30]. Furthermore, this 

approach is not effective at inflow boundaries. 

Apart from artificial viscosity one can use the filtering process to remove the poorly re­

solved waves near the boundary [22]. All of the above methods still produce some spurious 

reflections. To minimize these reflections one can enlarge the computational domain. How­

ever, this increases both the running time and the memory requirements for the program. 

Therefore, it is preferable to construct a better nonreflecting Be (see [49] for the goals of 

an effective nonreflective Be). 

We base our Be analysis on the inviscid equations (Euler equations), even though one 

may solve viscous equations (N avier-Stokes equations) for the interior points. At high Re, 

viscous effects are generally not important in the far-field. 

Two different nonreflecting Be's are considered in this study. The first uses a decom­

position of the solutions into Fourier components. The second is of an asymptotic far-field 

nature. The idea is to evaluate these two boundary conditions for short and long times. 

For short times we compare the numerical results obtained with a known analytical solu­

tion. For long times we expect that the numerical scheme and the nonreflecting Be's be 

stable and remain stable for large number of time steps. These two nonreflecting boundary 

conditions are as follows. 

A. Giles Be: Giles Be is derived based on Fourier analysis of the 2-D linearized Euler 

equation [47]. It is known that in Fourier space an exact nonreflecting Be for Euler equation 
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can be obtained. The idea is to prevent propagation of waves with inward group velocities. 

The resulting modified dispersion relation in Fourier space does not correspond to a local 

boundary condition in physical space. However, it can be expanded in a Taylor series to 

find a hierarchy of approximate local non-reflecting BC's. For details of the derivations of 

BC's we refer to Giles [47]. Two classes of Giles BC's are implemented: 

• Giles BC I is Giles BC's with "modified" outflow and "modified" inflow . 

• Giles Be II is Giles BC's with "modified" inflow but the outflow is not modified. 

Note that both Giles BC's are modified to handle the incoming entropy wave in the manner 

suggested by Colonius et at. [22]. 

B. Tam's BC: Tam and Webb [148] considered the linearized Euler equations. They used 

Fourier and Laplace transforms to derive the first term of the asymptotic expansion for 

the convective wave equation for large distance from a source located in the center of the 

computational domain. They then derived a set of nonreflecting BC's based on the far-field 

asymptotic solutions. Note that the final form of these BC's are represented in cylindrical 

coordinates. 

C.O.7 Numerical Method 

As noted in references [22] and [148], it is essential to use a numerical scheme which repro­

duces the dispersion relation of the governing partial differential equation very accurately. 

Therefore, in this study we use the fourth order Pade scheme [63]. For the points near the 

boundaries one requires additional relations. To determine the derivatives which occur in 

the BC's Gustafsson [52] has pointed out that the accuracy of the numerical procedure for a 

linear equation can usually be one order lower than the order of the interior scheme without 

adversely influencing the global accuracy of the solution. Therefore, by using a third order 

accurate Pade next to the boundary, we preserve the fourth order global accuracy. For the 

time advancement a fourth order Rung-Kutta method is used. 
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C.O.8 Results 

We nondimensionalize the equations using the speed of sound at infinity, aoo , the density and 

pressure at infinity, Poo and pooa~ respectively. All geometrical length scales are normalized 

relative to the variance of the initial Gaussian pressure disturbance (J. 

To evaluate the nonreflecting BC's introduced above, we construct two test cases: 

Test Case I: First, to demonstrate the nonreflectivity of these BC's, we consider a sta­

tionary case M = O. Consider an initial Gaussian pressure and density disturbances in 

the center of a square domain which extends to ±~ in both x and y (nondimensionalized). 

The mesh size is 60 x 60. Figure C.l shows many decades of drop in the total energy of 

ur' 

\(r" 

Figure C.l L2 norm of energy in the computational domain. 

fluid within the computational domain. A good nonreflecting BC should be stable; e.g., the 

energy does not grow in time (particularly exponentially). Note that the slope of the energy 

drop is also important. The theoretical answer drops exponentially after the acoustic wave 

leaves the domain. Therefore, steeper slope in energy means better nonreflective behavior. 

We observed that Giles Be's I and II are both stable whether the boundaries are con-

sidered as either outflow or inflow. Note that when M=O, it is ambiguous in the case of the 
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vorticity and entropy waves whether the boundary should be considered inflow or outflow. 

Tam's outflow conditions are also stable; however, Tam's inflow BC is unstable after the 

first interaction of the outgoing waves with the boundary. The energy profile is almost 

the same in all stable cases. It is important to note that Giles BC's are quite sensitive to 

the treatment at corners. In all of our computations Giles BC's are applied at 45° at the 

corners, as recommended by [22]. 

Since in this case the first waves and therefore the corresponding characteristics cross 

the boundary at the radial direction, it might seem reasonable to apply the Giles BC's at the 

radial directions for any point on the boundary. The solution in this case was unstable (at 

least for long times) even when only a few points near the corners are modified. Studying 

the wave patterns in the computational domain after a few reflections reveals that the radial 

directivity of characteristics at the boundary points is no longer valid and this could be the 

main source of instability. Further results related to the long-time behavior are given below. 

Test Case II: The performance of the nonreflecting BC's for short times are investigated 

in test case II. Consider a uniform mean flow of M = 0.5 in the x direction. We know 

that the linearized Euler equations support three types of waves, namely the acoustic, the 

entropy, and the vorticity waves. Test case II consists of an initial acoustic wave and a 

combination of vorticity and density disturbances. The acoustic wave propagates with the 

speed of sound superimposed on the mean flow. The entropy and vorticity waves propagate 

in the direction of mean flow with the same speed as the flow. 

The acoustic pulse is generated by an initial Gaussian pressure distribution in the cen­

ter of computational domain. A schematic diagram of the computational domain is shown 

in figure C.2. Lengths are made nondimensional with the variance of the Gaussian pulse. 

Downstream of the pressure pulse at ~ = 200~, a vorticity and entropy pulse (also with 

Gaussian distributions) are also preset. All the three pulses reach the outflow boundary 

simultaneously. In the simulation the computational domain extends to ± 100~ (nondi­

mensional) is divided into 200 x 200 mesh. The parameters for the initial conditions are 

pressure pulse amplitude = 0.01, variance = 1, 

entropy pulse amplitude = O.OOl,variance = i, 
vorticity pulse amplitude = 0.0004,variance =i. 
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Figure C.2 Computational domain. Location of points for calculating 
the short time errors are marked by (+). 

The analytical solution was provided by Tam and Webb [148]. 

The accuracy of the BC's was evaluated at three points in the computational domain. 

These points are located at (:E. J1) = (0 0) (8ov2IIi2 8ov2IIi2) and( 8ov2IIi2 0) respectively 
IJ'IJ " 3 ' 3' 3" 

(see figure C.2). The first is mainly affected by the initial acoustic waves and not by the 

entropy or the vorticity waves. Obviously, the point (80~, 80~) will be most affected 

by the corner points. The second point gives a good measure of the error when the acoustic, 

entropy and vorticity waves simultaneously interact with the boundary. A comparison of 

the computational results with the analytical solution is given in figures (C.3- C.5). These 

figures show the absolute error in the density fluctuations as a function of time. In figure 

C.3 there is a high peak in the absolute error for the Tam's BC's around J!!.... = 300. This 
aoo 

shows the sensitivity of the Tam's BC's to the acoustic reflections from the top and bottom 

boundaries of the computational domain. In figure C.4 all the different BC's have a high 

error when the initial acoustic front reaches the point (80~, 80~) around :: = 90. 

This could be due to inaccuracy in the magnitude or direction of the group velocities of the 

resolved waves. While Tam's and Giles Be's I represent a reasonable accuracy at a later 

time, Giles BC's II produce much larger error when the reflected acoustic waves from the 



~ 

xlO~ 

5 

~ I 

~ () l----:l 
'0 
~ -I 

-2 

-3 

-4 

163 

-5 L-____ -L ______ L-____ -L ____ ~ 

o 100 200 
t 

300 4(X) 

Figure C.3 Absolute error in density at point (0, 0). (--) Giles Be's, 
modified inflow and outflow; (---- ) Giles Be's, modified inflow; 
(_ .. - ) Tam's Be's. 

outflow BC reaches the point (80~, 80~). At the third point (80~), (80~,O), 

near the outflow BC, all of the three BC's behave almost the same. 

A long time comparison of the different nonreflecting BC's is presented in figure C.6. 

The best long time behavior is obtained with Giles BC II. Giles BC I is also stable but it 

saturates at higher energy levels. Tam's BC's is unstable after multiple reflections. One 

reason for this behavior could be the restriction of Tam's BC to be nonreflecting only to 

waves radiating from the center of the computational domain. 
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Figure C.4 Absolute error in density at point (80~,O). (--) 
Giles Be's, modified inflow and outflow; (---- ) Giles Be's, modified 
inflow; (---- ) Tam's Be's. 
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Figure C.5 Absolute error in density at point (80~, 80~). 
(--) Giles Be's, modified inflow and outflow; (---- ) Giles Be's, 
modified inflow; (-_.- ) Tam's Be's. 
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