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ABSTRACT 

Loss of ellipticity of the equilibrium equations of finite elastostatics is closely 

related to the possible emergence of elastostatic shocks, i.e., deformations with 

discontinuous gradients. In certain situations where constitutive response func- 

tions are essentially one-dimentional, such as anti-plane shear or bar theories, 

strong ellipticity is closely related to conuen'ty of the elastic potential and in- 

uertibility of certain constitutive response functions. 

The present work addresses the analogous issues within the context of three- 

dimensional elastostatics of compressible but not necessarily isotropic hypere- 

lastic materials. A certain direction-dependent resolution of the deformation 

gradient is introduced and its existence and uniqueness for a given direction are 

established. The elastic potential is expressed as a function of kinematic vari- 

ables arising from this resolution. Strong ellipticity is shown to be equivalent 

to the positive definiteness of the Hessian matrix of this function, thus sufficing 

for its strict convexity. The underlying variables are interpretable physically as 

simple shears and extensions. Their work-conjugates define a traction response 

mapping. It is shown that discontinuous deformation gradients are sustainable if 

and only if this mapping fails to be invertible. This resrlt is explicit, in the sense 

that it characterizes the set of all possible piecewise homogeneous deformations 

given the elastic potential function. 
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0. Introduction. 

Solid materials exhibiting more than one phase have received increased at- 

tention in recent years. Continuum-mechanical theories have emerged which 

provide models for the type of behavior associated with austenite-martensite 

transformations in certain alloys, twinning in crystals, or other load-induced 

phase transformations, such as the ones that occur in shape memory alloys1. 

Macroscopic studies of such phenomena very often involve finite deformation 

fields with discontinuous deformation gradients. The theory of finite elastic- 

ity, generalized in order to encompass such singular fields, predicts that they 

are necessarily accompanied by a loss of ellipticity of the equilibrium equations. 

For isotropic hyperelastic materials, conditions on the elastic potential (stored 

energy function) which are necessary and sufficient for strong and ordinary el- 

lipticity have been obtained in various settings. Within the context of plane 

deformations, the appropriate criteria were furnished by Knowles and Sternberg 

[I] for compressible and by Abeyaratne [2] for incompressible bodies. The analo- 

gous three-dimensional results relevant to incompressible ist ropic materials were 

deduced by Zee and Sternberg [3], whereas the ones appropriate for compressible 

bodies were obtained by Simpson and Spector[4]. 

There are certain aspects of the interpretation and consequences of the 

aforementioned conditions that are well understood only in situations where the 

underlying constitutive response functions are essentially one-dimensional. One 

such situation is that investigated by Abeyaratne [2]. He shows that for plane 

deformations of incompressible bodies, the requirement of strong ellipticity is 

only slightly stronger than that of strict conuezity of the elastic potential con- 

For a sample of the literature on the subject the reader is refered to  [5,12-171 



sidered as a function of the amount of shear. Moreover, the former suffices for 

the invertibility of the shear stress response function. The implications of the 

latter property are taken up by Abeyaratne and Knowles in [ 5 ] .  They conclude 

that a loss of convexity of the elastic potential is synonymous with the exis- 

tence of equilibrium shocks, i.e., deformations exhibiting discontinuities in their 

gradient. 

On the other hand, the ellipticity conditions appropriate to the higher- 

dimensional constitutive setting in [I], [3] and [4] do not seemingly allow one 

to draw conclusions analogous to those in [2] and (51 alluded to above. In- 

deed, whether or not such an interpretation of ellipticity conditions is feasible 

within the general framework of three-dimensional elastostatics is a question 

that has motivated the present work. Our objective is twofold. First, we fur- 

nish a set of conditions for strong ellipticity which clarify its connection to a 

convexity condition on the elastic potential and to the invertibility of a suit- 

ably chosen constitutive response function. Additionally we deduce conditions 

on the constitutive law which are necessary and sufficient for the material to 

sustain equilibrium shocks. We accomplish the latter task in a way which is 

constructive, in the sense that it characterizes the set of all possible piecewise 

homogeneous deformations, given the elastic potential. Our results are perti- 

nent to three-dimensional deformations of compressible, hyp erelastic but not 

necessarily isotropic bodies. 

Section 1 recalls some preliminaries from the theory of nonlinear elastostat- 

ics as well as the relevant notions of strong and ordinary ellipticity. 

In Sect ion 2 we introduce a direction-dependent decomposition for nonsin- 

gular linear transformations on a Euclidean space of arbitary dimension. After 

establishing the existence and uniquenens of this decomposition, we investigate 

its kinematic significance in a three-dimensional context. 

Section 3 is devoted to a derivation of necessary and sufficient conditions 



for strong and ordinary ellipticity. The elastic potential is reduced to a function 

of kinematic variables which arise in connection with the directional resolution 

of the deformation gradient introduced in Section 2. Strong ellipticity is shown 

to be equivalent to the positive definiteness of the Hessian matrix of this reduced 

elastic potential, and thus it suffices for the strict convexity of this function. 

Moreover, strong ellipticity implies that the gradient mapping of the latter- 

expressing Piola tractions as functions of their conjugate resolved shears and 

extensions-is globally invertible. Ordinary ellipticity is analogously related to 

the local invertibility of this traction response mapping. These conclusions offer 

a mechanical interpretation of the ellipticity conditions. The results are sub- 

sequently specialized to the case of isotropy, where they assume a particularly 

simple form, and are applied to a specific choice of the constitutive law for 

purposes of illustration. 

In Section 4 we set up the problem of existence of equilibrium deformations 

with piecewise constant gradients. By utilizing the kinematic results of Sec- 

tion 1, we then deduce certain inequalities which restrict the principal stretches 

of such deformations as a consequence of compatibility. We proceed to derive 

restrictions on the elastic potential which are necessary and sufficient for such 

states to be sustainable by the material. These conditions turn out to be equiv- 

alent to a loss of invertibility of the traction response mapping introduced in 

the previous section. Furthermore they provide an explicit representation of all 

pairs of associated deformation gradients. Hence the question of existence of 

shocks is answered in a constructive manner. As an application we identify all 

shocks sustainable by a special class of materials. 

Finally, Section 5 establishes a connection between previous work and the 

present paper by adapting the approach of Sections 2 and 3 to plane deforma- 

tions. The resulting conditions for ellipticity reproduce the results of Knowles 

and Sternberg [3]. 



1. Preliminaries. Finite Elastostat ics, Ellipticity. 

The symbol E,, with n a positive integer, is used throughout to represent 

an n-dimentional real Euclidean space. Accordingly, L+ is the set of all tensors 
+ 

(linear transformations) on En with positive determinant, S is the set of all 
+ 

symmetric, positive-definite tensors, whereas So stands for the collect ion of all 

symmetric, positive-semidefinite, singular tensors on En. Moreover, O denotes 

the orthogonal group while 0+ and 0- are the subgroups of 0 consisting of 

the proper and improper orthogonal tensors, respectively, so that O+ = O n L+ 

, 0- = 0 - O+. The set of unit vectors in En is denoted by U. By a frame 

is meant a Cartesian coordinate frame X= ( 0 ;  $1, _ea,_es) with origin 0 and an 

orthonormal basis for En with vectors si , i = 1,. . . , n . Latin indices have the 

range {1,2, .  . . , n) ; Greek indices range over (1,. . . , n - 1). Summation over 

the appropriate range of repeated indices is implicit unless otherwise indicated. 

The matrix of components of a tensor 4 in the frame X is denoted by [4IX . 
Superscripts -1, T and -T indicate inversion, transposition and inversion of 

the transpose of a tensor; 1 is the idem tensor. The set of strictly positive real 

numbers is symbolized by R+. 

We consider a body which in some reference configuration occupies a region 

with interior R in real, Euclidean three-space ES.  A deformation is an invertible 

and suitably smooth mapping 

which maps R onto the interior R, of the region occupied by the body in the 

deformed configuration. Here g is the reference position vector of a particle, 

$(g) is its deformation image and y ( z )  the displacement. Until further notice, 
(1 



we assume that $ is twice continuously differentiable on R. The deformation 
.I 

gradient tensor field, 

_F= ~9 on R ,  (1-2) 
11 

is restricted so that the Jacobian determinant of the mapping (1.1) is positive: 

The right and left Cauchy-Green tensors, C and G, defined by 

share the same fundament a1 scalar invariants. These are known as the deforma- 

tion invariants associated with (1.1) and are given by 

I&') = t r C  = A: + A; + A:, I 

I@) = det C = J~ 

where Xi > 0 are the principal stretches of the deformation. 

The Cauchy stress tensor field r ,  defined on R,, associated with (1.1), is 

related to the Piola (nominal) stress tensor field o, defined on R,  via 

The deformation is equilibrated in the absence of body forces if 

We now specify that the body at hand is hyperelastic and that the reference 

configuration is homogeneous. Thus the elastic potential W is a scalar function 



-6- 

defined and twice continuously differentiable on L+. The Piola stress is then 

determined by the constitutive law 

Objectivity requires that 

Upon substitution from (1.9), (1.8) into (1.7) one finds that the second of (1.7), 

namely balance of moments, is implied by them, whereas the first becomes a 

system of second order, quasilinear, partial differential equations for the dis- 

placement field components: 

where 

are the components of the elasticity four-tensor C( - _F). The system (1.10) is 

known as the displacement equations of equilibrium. 

In the event that the body is composed of isotropic material,' the elastic 

potential depends on _F only through the deformation invariants: 

In the above w is a function defined on the Invariant Region 

Here the reference configuration is chosen to be natural for isotropy of the body. 



Alternatively, W can be expressed in terms of the principal stretches A;: 

where W, defined on R: and fully symmetric in its arguments, is obtained from 

w by means of the relations (1.5) connecting the I. and Xi. 

One defines 

aW 
(J; = - , 7; = X i  

0. on B: , 
d A; X l X 2 X 3  

as the principal Piola and Cauchy stresses, respectively. These are equal to 

the principal values of the respective stress tensors in case F is symmetric with 

principal values Xi > 0, as can be seen from (1.8), (1.6) and (1.14). 

Restrictions on mechanical behavior are often imposed by means of certain 

postulates in the form of constitutive inequalities. In particular, w obeys the 

Baker-Ericksen inequalities whenever 

(~i - r j ) (Xi-Xj)  > O (nosum) X i # X j ,  X i > O .  (1.16) 

On the other hand the Coleman-No11 condition holds whenever W is a strictly 

convex function on B:. A slightly stronger restriction requires that the matrix 

of second partial derivatives 

j] 
is positive-definite on R: . 

We now proceed to the notions of ordinary and strong ellipticity no longer 

restricting attention to isotropic materials. The acoustic tensor is the tensor 

with components 

As is seen from (1.11), Q is symmetric on its domain of definition. 



Definition 1.1. For a given choice of W , ordinary ellipticity holds at F E l+ 

if and only if 

det ?(F,n) # 0 V n  E U . (1.19) 

Moreover, strong ellipticity holds at  F if and only if 

In the above, ellipticity is regarded as a property of the constitutive func- 

t ion W , whereas the motivation stems from considerations pertaining to the 

smoothness of solutions of the system (1.10). Following the methodology of 

Knowles and Sternberg [6], we call a displacement field g : R + E3 a relaxed 

solution2 of (1.10) if it has continuous first and piecewise continuous second 

partial derivatives on R,  the latter suffering at most finite jumps across contin- 

uously differentiable surfaces in R,  and if moreover it satisfies (1.10) at points 

of continuity of its second derivatives. Accordingly, the system (1.10) is said to  

be elliptic at a relazed solution (I , and at a point z E R , if (1.19) holds with 

F = 1 + Vy (g). Knowles and Sternberg [6] show that this is suficient for 

all relaxed solutions whose gradient coincides with that of y at 3 to be twice 

continuously differentiable there. On the other hand, loss of ellipticity does not 

preclude the existence of twice continuously differentiable solutions of (1.10). 

This can be demonstrated by choosing a homogeneous deformation whose (con- 

stant) gradient is such that (1.19) is violated. 

The system (1.10) is said to be strongly elliptic at a solution y and at z E R 

if (1.20) holds with F = 1 + vy(z). Clearly, strong implies ordinary ellipticity. 

For an alternative definition, which stems from the elastodynamic motivation of 

strong ellipticity, we refer the reader to Truesdell and No11 171. 

The term "relaxed solutionn was introduced by Zee and Sternberg (31 in the 
context of a discussion parallel to the one in Knowles and Sternberg [I] but pertaining 
to  incompressible bodies. 



In general it is desirable to establish the connection between various consti- 

tut ive inequalities, including (1.19), (1.20). It is known that the Baker-Ericksen 

inequalities are necessary for strong ellipticity3. By means of a special example, 

Knowles and Sternberg (61 have demonstrated that the Coleman-No11 condition 

neither implies nor is implied by strong ellipticity. 

This result was obtained by Zee and Sternberg [3] for incompressible and Simpson 
and Spector [4] for compressible isotropic materials. 



2. On the Directional Resolution of a Tensor. 

In the present section we introduce the directional resolution of a tensor. To 

begin with, we establish a theorem which guarantees the existence and unique- 

ness of such a resolution, given a direction. We then proceed to elucidate the 

kinematic significance of this result in connection with the deformation gradient. 

At this point we introduce a direction-dependent decomposition appropri- 

ate for tensors with positive determinant. This depends upon establishing the 

following 

Theorem 2.1. Let F E L+. Then for each n E U , there exist unique R E 0+, 
+ 

unique a_ E En, unique V ... E S with yp = 9, such that 

where { $1 , . . . , E )  is an (orthonormal) principal basis for 

Our proof of the above rests upon a refinement of the Polar Decomposition 

Theorem, concerning the extent of nonuniqueness of the orthogonal factor in 

the right polar decomposition of certain singular tensors. The null space of a 

tensor Ais U(A) = {g 1 %  E En, 4% = (!I. 

Lemma 2.1. Let B be a tensor on En having a one-dimensional null space 

+ - + 
.N ( B ) .  Then there exist unique $ E 0+, R E 0- and a unique E So, such 

that 

Proof of Lemma 2.1. 

see for example Halmos [8]. 



(a) Ezistence. The Polar Decomposition Theorem for arbitrary tensors ensures 
+ 

that there are tensors PE 0 and YE So, such that 

from which it follows that 

we) = JJ'M (2.4) 

By hypothesis, there is a unit vector _e such that U(B) n U = {-_e , _e ). Define 

Then 

Moreover, (2.5) yields 

so that p , which is symmetric, has precisely one principal value equal to -1 , 
corresponding to the principal direction vector 5 ,  and n - 1 repeated principal 

values equal to 1. This, in view of (2.6), dictates that PE 0-. From (2.4), (2 .5) ,  

noting that _e E )I (a, one infers that 

Now, since (2.3) holds for some $ E 0 ,  then either $ E O+ or 8 E 0-. If 

i - - 
$ E 0+, we set _R = P, P = Pr. Then clearly P E 0-, whereas with the aid 

of (2.3) and (2.8) we conclude that 



- + - 
On the other hand, if R E  0-, setting R = P, P = H R - P E 0+, once again 

validates (2.9), thus demonstrating existence. 
+ 

(b )  Uniqueness. The uniqueness of So satisfying (2.3) is ascertained by the 

original version of the Polar Decomposition Theorem as stated by Halmos [8]. 

In particular, (2.3) necessitates that 

+ 
y2=gTgI€ So, 

so that _U is the unique positive semi-definite square root of B ~ B .  Turning now 
.I 

to the uniqueness of each of the orthogonal factors in (2.2), let R, Q E O satisfy - A. 

and define 

so that ME 0. Because of (2.11), one has 

Since _U is symmetric and possesses a one-dimensional null space U (P), it has 

an orthonormal principal basis {_e . . . , _en),  in which exactly one of the g i ,  say 

_en, belongs to U(_U): 

Ug, = 0 .  (2.14) 

Using (2.13), 

hence 



Orthogonality of M forces the Me; - - (i = 1,. . . , n) to be orthonormal. In view of 

(2.15), this leaves two possibilities for A$, , namely 

(i) M e ,  = _ e n ,  or (ii) @in = - en 

If the first of (2.16) is true, then together with (2.15), it dictates that 

In case (ii) of (2.16) holds, once again M is uniquely determined by (2.15), 

(2.16) : By (2.14), _en E {-_e , _e ) = U (y) n U , whereas P defined by (2.5) satisfies 

(2.15), (2.16). Hence (2.15), (2.16) ii imply 

In conclusion, if Rand Q - E 0 satisfy (2.11), then by virtue of (2.12), (2.17), 

(2.18), they are related by $= MQ .I with either M = 1 , in which case R= Q, or 

M = 1 - 2e @ I e, where e is the unit vector belonging to the null space of B and U 

and is unique apart from its sign, which does not affect M. Consequently there 

are at most two distinct orthogonal factors in the right polar decomposition of 

B, which cannot both belong to O+ or 0-, since M E 0-. This verifies the 

uniqueness of each of them, and completes the proof. 

Proof of Theorem 2.1. 

(a) Existence. Given F E L+ and n E U , define 

Then clearly, 

which has dimension 1, so that B conforms to the hypotheses of Lemma 2.1. 

+ 
Accordingly there exist (unique) E 0+ and _U E So satisfying 



Combining (2.19), (2.21) and rearranging, we obtain 

From the properties of rwe infer that there are _e, E U such that {_el, . . . ,_en- 1, p) 

is an orthonormal principal basis for r. The principal value of y corresponding 

to p is zero, the principal values corresponding to _ea are strictly positive. Now 

let 

v =  y+ p s p .  

It follows that V is positive-definite and 

Substitution of the last of (2.24) into (2.22) and an appeal to the first of (2.24) 

provide 

= $[(@"Fp) 8 p + _ea 8 $,] y. (2.25) 

Finally, choosing 

e = pr_n (2.26) 

in (2.25), leads to the desired result (2.1). 

(b )  Uniqueness. Granted the existence of - R, a - and Vsatisfying ( 2 4 ,  we now 

show them to be unique. Directly from ( 2 4 ,  we have 

Since yn = nand the _ea are orthogonal to _n, the above result simplifies to 

From the fact that {_el, . . . , _en- I,?) is a principal basis for Y, we infer that 



Upon substitution of (2.27), (2.28) into (2.1) and after some rearrangement, we 

obtain 

F -  - F n @ p = p ( y -  - p@_n). (2.29) 

The left hand side of (2.29), completely specified by _F and _n , has a one- 

dimensional null space (spanned by _n ) and thus conforms to the hypothesis 

+ 
of Lemma 2.1. Also P E O+ whereas V - - , . ,  - n 8 n E So, so that-by an appeal 

to Lemma 2.1 -they are the unique factors of the (proper orthogonal) polar 

decomposition of the left-hand side (2.29). Thus the uniqueness of R and Vis 

established. With this in mind we draw from (2.27) that 

which assures that 9 is also uniquely determined by _F and _n and completes the 

proof. 

As suggested by Theorem (2.1), it is in fact possible to express P,  9 , y i n  

(2.1) directly as functions of _F and p To that effect, define 

and let 

_ F E L + , ~ E U .  J 
Then one verifies that R, a ,  - given by (2.32) indeed satisfy (2.1) with _R E 

+ 
O+ , y E S, y_n = p,  9 E E3 and with g, as required by the theorem. We 



remark that a version of (2.1) that does not involve _ea is easily seen to be 

one merely notes that _ea@_ea+n@_n = 1 . In contrast to the Polar Decomposition 

of _F, the result of Theorem (2.1) is a direction-dependent decomposition of F ,  

the "direction" being identified with the unit vector n . This is clarified by 

the explicit dependence on n of the items in (2.32). Accordingly, for given 

F ... E L+ and n ... E U we call (2.1)- with R, - I . . .  a ,  Vsupplied by (2.32) - the Directional 

Resolution of F with respect to  n .  

At this point we specialize the foregoing results to three dimensions and 

proceed to investigate their kinematic interpretation in the context of three- 

dimensional deformations. Consider a homogeneous deformation 8 : E3 + E3 
CI 

+ 
Also fk _n E U arbitrarily. Let _R E O+, cf. E E3 and Y E S supply via (2.1) 

the directional resolution of the deformation gradient _F of (2.34) with respect 

to _n . In particular, because of the properties of y there are a frame X= 

(0;  gl ,  g2, g3), g3 = p and two numbers pa > 0 such that 

so that ci (_es = _n) are principal direction-vectors of ycorresponding to principal 

values pl, pz, 1, respectively. In view of (2.35), (2.1) becomes 

Note that det _F = PlP2a3 > 0, so that necessarily a3 > 0. Thus it is a corollary 

of Theorem 2.1 that for given _n , there are a frame X= (0; _el,:, _e3) with _e3 = _n, 



numbers Pa > 0 and ai with as > 0, and an $ E O+ such that the matrix of 

components of _F in X, [rIX, admits the representation 

In fact, one can resolve (2.37) further into 

This provides the desired geometrical interpretation of the resolution (2.1) in 

terms of particularly simple homogeneous deformations. Consider the arbitrary 

homogeneous deformation (2.34), and choose an arbitrary direction _n E U. Then 

one can find two orthogonal directions _el, $2 in the plane whose normal is n , 
such that the deformation (2.34) can be decomposed into the following: 

(i) An in-plane biaxial strech ( in the plane normal to _n ) in the directions 

el, e2, with principal streches P1 > 0, P2 > 0, respectively, followed by 
II II 

(ii) a simple shear parallel to el in the N el, - e3 plane, of amount a l ,  followed by 

(iii) a simple shear parallel to e2 in the N e2, - e3 plane, of amount a2, followed by 

(iv) a uniaxial stretch parallel to 53 = n ,  of amount a3 > 0, followed by 

(v) a rigid rotation about the origin with rotation tensor $E O+. 

A noteworthy property of Rin (2.1), (2.36)-(2.38) is that if II is a plane 

normal to _n, the unit normal 5 to its deformation image 6 (II) under (2.34) is - 
given by 

This can be seen from (2.31), (2.32), or directly from (2.1). 

For subsequent use we introduce the following notation. For Pa E R+, we 

write - p = (PI, P2) E Dl -- R+ x R+, whereas for aa E R, a3 E R+, we write 



g  = ( a l ,  a 2 , a 3 )  E D2 = R x B x R+. Also we let D = Dl x D2 and denote its 

elements by ( p ;  - g) E D where - ,6 E Dl, g  E D2. For each frame X= (0; 51, $2, $ 3 )  

we define a tensor valued function Ax ( ) : D + L+ by 

That Ax(D) c L+ follows directly from (2 .4 )  and the definition of D. According 

to (2 .40) ,  for any frame X and ( P ; g )  - :) D, A x ( P ; g )  - is the tensor whose matrix 

of components in the same frame X is 

The connection between Ax and the directional resolution is established in the 

following 

Lemma 2.2. Given n E U ,  let 3, be the set of all frames X = (0; e _ l , ~ ,  9) 

with e, = 9. Then 

Proof. Let A stand for the set of tensors in the set specified in the left-hand 

side of (2 .42) .  Using (2 .41) ,  

since ( P ; g )  - E D D pa > 0 ,  a3 > 0 and det _R = 1  for E O+. Hence 

_F E A + F E L + ,  so that A c L+. Now choose F E L+ and construct its 

+ 
directional resolution with respect to _n This yields P E O+ , Y E S , a E E3 

satisfying ( 2 . 1 ) .  Choose Pa and si as in (2 .35) ,  and let ai be the components 

of in X E Tn where X is a principal frame of Ywith unit vectors si (_e3  = p). 



Then - /? = ( P I ,  P2 )  and (r = ( a l ,  a2,  a s )  form ( p ;  - a) E D so that (2 .36) ,  (2.37) and 

(2 .40)  give 

,F = &$x(p; E) (2.44) 

where p E O+ , X E FD, ( P ;  - g) E D, so that F E L+ + F E A because of (2.44) 

(2 .42) .  Consequently A > L+ and the proof is complete. 

Assume now that F admits the representation (2.44) for suitable E 0+, 

frame X= (0; 51, $2, $3 ) and (p;(r) - D, so that (2.37) is in force with ( P I ,  p2) = 

P , ( a l ,  a2,  a s )  = a ,  ( P ; ( r )  E D .  Motivated by (2.38) and its interpretation, we - - 
then call P1,P2  the resolved in-plane components of the directional resolution 

of F with respect to e3. Moreover, we refer to a l ,  a2 and a3 as the resolved 

out-of-plane components of the directional resolution of F with respect to 9. 

In particular a l ,  a2 are the resolved out-of-plane shears and a3 is the resolved 

out-of-plane stretch of F with respect to e_s 

Consider now the right Cauchy-Green tensor C = Y FF II associated with the 

homogeneous deformat ion ( 2  3 4 ) .  Employing (2 .44) ,  we obtain 

An appeal to (2.41) in conjunction with (2.45) furnishes an expression for the 

matrix of components of C in X in terms of the resolved in- and out-of-plane 

components of F with respect to $3: 

In addition, (2.46) facilitates immediate calculation of the corresponding expres- 

sions for the deformation invariants (1.5) associated with (2 .34) .  Thus 

I l ( C )  = PaPa + aiai , I 



+ + 
We may now construct a mapping f ( ) : D + I, where I is the Invariant Region 

defined in (1.13), by letting 

+ 
so that & ( P ; ~ )  - are given by (2.47). Since D and I are subregions of and 

lR3, respectively, f cannot be one-to-one on D. On the other hand, Lemma 
+ + 

2.2 allows us to conclude that I ( D )  = I since for any C E S, one can choose 

+ 
F = c E S C L+ in (2.42) and then employ (2.44) through (2.47). It is of 

particular interest to determine the set of all (P;g) - E D corresponding through 
+ 

i(=) to a given L E I. This set coincides with the set of all possible values of the - 
resolved in- and out-of-plane components (P; - a) E D of a given _F E l+ satisfying 

I ( _ F ~ F )  = I. A demonstration of this fact, together with a characterization of 

the set in question, is provided by the following 

Lemma 2.3. Given F E L+, let A? be the principal values of (I F*F - = , 
ordered so that 0 < X1 5 X2 5 X3, and set 1 = 1((?J2 (i) Then (P;g) - E D 

satisfies Z(P; - g) = I if and only if there is an 8 E 0+ and a frame X, such that 

F = RAx - -  (P;g) .  - (ii) Furthermore, i ( ~ ; ~ )  - = If and only if - P = (P1,P2) and 

a = (al, a2, as) satisfy: - 

and in case pl f P2, 

h this case, I = (Il, 12, Is) is related to the principal stretches A; via (1.5). 



while if P1 = p2 , 
af + a; = ( x f  - x : ) ( x ;  - x ; ) / x ;  , 

where in (2.51) 

Proof. Assume that (P ;  - g) E D ,  R E 0+ and the frame X satisfy (2.44). Then 

(2.45) holds and thus I = 2 ( ~ ;  - g) because of (2.47),  (2.48). 

Conversely choose any ( P ; g )  - D such that i ( ~ ; g )  - = I. Let X' be an 

arbitrary frame and set B = Ax1 (c; g), so that E l+ and 

The above necessitates that for some Q,  - P E 0+, F = (1 Q e ?  Letting P = ?? 
so that _ R E  0+, 

= $(rTBP). (2.55) 

If now X' = {O;_el ,  $2, es), then X = (0;  el, r T e 2 ,  rTe3) is also a frame since 

P E O+. Moreover it easily follows from (2.40) that 

Thus (2.55) becomes _F = $/Ix (P ;  tz) and (i) is confirmed. - 
To prove (ii) we let 

so that (2.47) becomes 



In view of (2.57) we need to determine all possible values of c, > 0 ,  d, 2 0 and 

d3 > 0 such that (2.58) holds. For fixed c, (2.58) is a linear system for d ; ,  the 

determinant of the coefficient matrix of which vanishes if and only if e l  = ca . 
Assume first that cl # c2. Then the solution of (2.58) is 

PI - (ca) d, = a # 7  (no sum) , d3 = I ~ / ~ I c z  (2.59) 
ca (ca - c,) 

where PI - ( ) is the characteristic polynomial (2.53) of C = rTf' and has roots 

A:. Note first that c, > 0 =+ d3 > 0 ,  whereas d, 2 0 if and only if 

Requiring c, to be positive, (2.60) are equivalent to 

In view of (2.57), (2.59) and (2.61) confirm (2.49), (2.50), (2.51). 

Finally assume c l  = c2 = c > 0. Then the first and second of (2.58) reduce 

Substracting the first of (2.62) from the second yields 

whence c E {AT, A:, A;}. Expressing Ii in terms of Xi and choosing e = A: in 

(2.62) gives 

d l + d 2 = ( A ~ - A ~ ) ( X ~ - A ~ ) / A ~ ,  i #  j # k  (nosum). (2.63) 

Now d, 2 O necessitates that 

with the understanding that whenever two or more of Xi coincide they equal Xz. 

The sufficiency of (2.64) is confirmed directly by substitution into (2.62). This 

completes the proof. 



3. Ellipticity Conditions and their Interpretation for Hyperelastic 

Materials. 

This section aims at establishing conditions necessary and sufficient for 

strong and ordinary ellipticity based on the kinematic developments of the pre- 

vious section. 

Our discussion concerns elastic potential functions W : L+ -r R, restricted 

to be twice continuously differentiable on L+ and subject to the requirement of 

objectivity (1.9). We do not restrict our attention to isotropic materials until 

later on, where we eventually specialize our main results to the case of isotropy. 

Let i?( ) = WF( ) on L+ denote the nominal stress response function and - 
recall the definition (1.18) of the acoustic tensor - Q. It is a direct consequence 

of objectivity (1.9) that 

whereas the acoustic tensor obeys 

This identity is obtained by differentiating (1.9) twice with respect to _F and 

using (1.18). 

We now consider the class of homogeneous deformations ij : E3 -, E3 
# 

where X is a fixed frame, Ax is as in (2.40) and (P; - a) E D. Since Ax (P; - g) is 
fully determined by X and (P; - a) E D,  the elastic potential associated with (3.3) 



is expressible - for a given choice of frame X - as a function only of (P ;  g). Thus - 
for each frame X we define W X  : D 4 R by 

One recognizes from (3.4) that W X ( ~ ; c z )  - coincides with the stored energy per 

unit reference volume due to a homogeneous deformation (3.3) with (constant) 

gradient whose matrix of components in the frame X is given by (2.41). The 

next result assembles some properties of W X  important to our analysis. 

Lemma 3.1. For each frame X = { O ; e _ l , ~ ,  E ~ ) ,  wX : D -t R defined by (3.4) 

is twice continuously differentiable on D . Moreover, 

also 

Proof. For each frame X, and by definition, the function W  is the composition 

of W : L+ -t R and Ax : D + l+. The latter is seen from (2.40) to be a 

linear-hence infinitely smooth-function on D. Hence the regularity of W on 

D follows from that of W. Differentiating (2.40) once and twice with respect to 

a; furnishes 

a a2 
-hx(P;ii) da; = $; @ 53, aaidaj .Ilx(P;ii)=O v (&g)cD-  (3.7) 

In view of the smoothness of w X, the chain rule and the first of (3.7), we may 

extract from (3.4) 

d 
- w X ( p ; ~ ) = = ( ~ x ( 8 ; ~ ) )  * ( c i @ g 3 )  Q ( P ; g ) € D *  
da; - 



This leads directly to (3.5). (In the above the dot indicates the scalar product 
T 4-c = tr  (4 B) of two tensors A, B.) Differentiating (3.8) once more with respect 

to ai and observing the second of (3.7), we arrive at 

where the elasticity tensor C( ) is the second tensor gradient of W on L+; see 

(1.11). By virtue of (1.18), for every 4 E L+, 

which, combined with (3.9), validates (3.5) and completes the proof. 

We will refer to W in (3.4) as the reduced elastic potential associated with 

the frame X. 

The results of the foregoing Lemma suggest the following interpretation of 

the first and second partial derivatives of W X  with respect to the out-of-plane 

kinematic variables aie The nominal stress tensor ?associated with (3.3) is given 

by _a = e(Ax (&a)), - with components in X given by 05 = S i  ggj. Then, by 

(3.5), the first partial derivatives & w X(/3; - a) are equal to the components 05 
of the nominal traction _as3 acting on a reference plane with normal $3. Bearing 

in mind the kinematic interpret ation of ai following (2.38), we remark that the 

shear tractions are conjugate to the out-of-plane shears a ,  with respect 

to wX(p; ), whereas the normal traction component ag3 is conjugate to the 

out-of-plane stretch a3. At this point we define a function - gX : D + lR3 by 

letting 
d 

g?(~;a) )= --wX(g;~) d ai v (&a) D o  (3.10) 

In view of our previous obsenations, for each - /? = (PI, P2) E Dl, 8 (P; = ) : 

D2 + constitutes a traction response mapping of the triplet of out-of-plane 

components (al, a2, as) = g E D2 to the triplet of their conjugate nominal 



tractions (OF~,O$~,OF~). In this context, the in-plane components Pa play the 

role of parameters. The Jacobian matrix of - gX(P; - * )  coincides with the Hessian 

matrix of the reduced elastic potential WX(p; - * )  on the set D2 of triplets a of 

out-of-plane components. The result (3.6) of Lemma (3.1) thus establishes that 

the Jacobian matrix of the traction response mapping g X ( ~ ;  * )  associated with - - 
the frame X, evaluated at g E D2, coincides with the matrix of components in X 

of the acoustic tensor Q evaluated at Ax (P; - g) and direction $3. 

Now let F E L+ be the gradient tensor of an arbitrary homogeneous defor- 

mation, and choose any 5 E U. According to Lemma 2.3, there exist $ E 0+, 

a frame X = (0; $1, $2, $3 = p)  and (P; - a) E D,  such that F admits the repre- 

sentation _F = Hx ( P ;  - a). The objectivity requirement (1.9) together with (3.4) 

implies 

W ( F )  = w ( A x ( ~ ; ~ ) )  = wX(g;a) (3.11) 

Similarly, from (3.1), (3.2) and an appeal to (3.5), (3.6) of Lemma 3.1, we infer 

that the Piola traction fi(_F)_n and the acoustic tensor - Q(_F ,_n) are expressible as 

where 

Thus the stored energy density, the Piola traction and the acoustic tensor as- 

sociated with any direction n are expressible in terms of the rotation P ,  the 

frame X and the resolved in- and out-of-plane components of the directional 

resolution of F with respect to p .  This involves the reduced elastic potential 

W X  (associated with X) and its derivatives (with respect to the out-of-plane 

components) in the manner specified by (3.12). In particular, the components 



of the Piola traction and the acoustic tensor in a frame rotated with respect t o  

X by _R, i.e., with unit vectors Psi, again coincide with those of the traction 

response mapping and the Hessian matrix of W X, respectively. 

The relevance of the above observations to the notions of ordinary and 

strong ellipticity spelled out in Definition 1.1 is exhibited by the following the- 

orem, which constitutes the main result of this section. 

Theorem 3.1. Ordinary ellipticity fails at F E L+ if and only if there is 

(P; - g) E D and a frame X at which the Hessian matrix [a2 Wx(p; - g ) / a ~ i a ~ j ]  is 

singular, such that F admits the representation 

for some R E O+. Moreover, the above remains valid if "ordinaryn and "singular" 

are replaced by "strong" and "not positive-definite" respectively. 

Proof. Assume first that ordinary ellipticity fails to hold at P E L+. Then by 

Definition 1.1, there is p E U such that the acoustic tensor m Q(3 p) is singular. By 

constructing the directional resolution of _F with respect to 5, in view of Lemma 

2.3, we can find P E  0+, a frame X = {O;el,_ez,_e3 = 5) and (P;g) - € D such 

that F= PAx ( P ;  - a). Moreover LI Q( F, p) now satisfies the second of(3.12). Hence 

[a2 Wx(p; - g)/aa;daj] is singular , since it equals the matrix of components of 

Q(_F,  p) in a frame with unit vectors $_e; 

To show the converse, assume that a frame X = (0; _el,_e2, $3) and (p ;  - g) 

D exist, such that [a2 Wx(P; - g)/i3aid~i] is not positive-definite. Choose any 

p E O+ and set F = PAx(E;g) which belongs to L f +  because of Lemma 2.3. 

The acoustic tensor ?(_F, $3) now satisfies (3.12), the right hand side of which 

is singular by hypothesis. Hence, ordinary ellipticity fails at _F since w Q(_F , n) is 
singular for 3 = _e3. The analogous result for strong ellipticity is obtained by 

substituting "ordinaryn and "singular" by "strong" and "not positive-definite" 

respectively in the above. This completes the proof. 



A corollary of the above theorem is that strong ellipticity holds glob- 

ally (that is, for every _F E l+) if and only if the reduced elastic poten- 

tial function WX(& - .) : D2 + R has positive-definite Hessian matrix on 

D2 = {(al, a2, as) lai E R, as > 0) for every frame X and - ,O E Dl. Bernstein 

and Toupin (91 have obtained a characterization of strictly convex functions in 

terms of properties of their Hessian matrix. They show that a twice continu- 

ously differentiable scalar function defined on a convex region in Rn and having 

positive-definite Hessian matrix there has the following two properties. It is 

strictly convex on its domain of definition and the mapping defined by its gradi- 

ent is globally invertible there. These results, asserted respectively in Theorems 

1 and IV in [9], are readily applicable to the reduced elastic potential WX(P; - -), 
considered as a function of the out-of-plane component triplet 3 on D2, and yield 

the following 

Theorem 3.2. Assume that strong ellipticity holds globally on L+. Then for 

every frame X and - p = (/?I, P2) E Dl ,  

(i) W (P; ) is strictly convex on D2, i.e., - 

[ii) the traction response mapping - gX ( P ;  - ) : D2 -, IR3 satisfies 

so that it is globally invertible on D2. 

Proof. By hypothesis and Theorem 3.1, for each frame X and - ,O E Dl the Hessian 

matrix of W X(/?; - ) is positive-definite on D2 = {(al, a2, a3) lai E R, a3 > 0 ) 

which is a half-space and thus a convex subregion of Et3. Now c([; .) is the 

gradient of W X ( ~ ;  - .) on & by definition (3.10). Assertion (i) then follows from 

Theorem I1 of Bernstein and Toupin [9] applied to w (P;  ) , whereas (3.14) is 



deduced from an appeal to (i) and Theorem IV of (91. In particular, the global 

invertibility of - gX(p; - ) on Dz follows from the strict monotonicity inequality 

(3.14). This completes the proof. 

The invertibility property of the tract ion response mapping for a globally 

strongly elliptic potential admits the following constitutive interpretation. Con- 

sider two homogenous deformations of the same body, with gradients whose 

directional resolutions with respect to some direction _n possess common rota- 

tion, frame and in-plane components but distinct out-of-plane components. Then 

the respective nominal tractions acting on a reference plane with normal n are 

necessarily distinct. 

On the other hand, if ordinary ellipticity holds globally on L+ then Theorem 

3.1 demands that the Jacobian determinant of the traction response mapping 

never vanish, so that gX(P; * )  is merely locally invertible at every point in D2 - - 
Our next objective is a specialization of the foregoing results to the case of 

isotropy. Thus in the present circumstances we assume that the elastic potential 

is expressible by means of (1.12) as a function w of the deformation invariants. 

Certain properties of the reduced elastic potential which pertain to the class of 

isotropic hyperelastic solids are established below. 

Lemma 3.2. Assume W satisfies (1.12) and define W : D + B by 

where fi(p;tz) - are given by (2.471, (2.48). Then for any frame X ,  the reduced 

elastic potential W X  obeys 

Moreover, W determines W completely in the sense that given F E L+, there is 

(P;g) - 4) D (with f (P; - 14) = ~ ( r r )  , ) such that 



Proof. By the definition (3.4) of W (P; - , 

The deformation invariants corresponding to Ax (P; - g) are given by (2.47), (2.48). 

This, together with (1.12), demonstrates that the left-hand side of (3.4) is equal 

to the right-hand side of (3.15). Hence (3.16) holds. Now given _F E L+, 

we construct its directional resolution with respect to an arbitrary direction to 

obtain (2.44). Then _F= $Ax(P; tz) so that I(;"_F) = Z(P; - a) because of (2.45), 

(2.47), (2.48) and since $ E O+. Also, (3.11) is now in force, which together 

with (3.16) validates (3.17) and completes the proof. 

As asserted by (3.16), it is a special feature of isotropic materials that 

the reduced elastic potential is independent of the frame X in (3.4). Once 

w( I~ ,  12, Is) is specified, it is a simple matter to construct W (P;g) - in the way 

suggested by (3.15). One merely has to make the substitution 

using (2.47) (2.48). Furthermore, the second assertion of Lemma 3.2 gives rise 

to the conclusion that the single function W defined on D determines the elastic 

potential W completely on L +. Given W (P; g) one substitutes for the ai from - 
the corresponding expression (2.50), (2.51), so that the result only involves the 

invariants I; and the in-plane components pa. However, since substitution from 

(2.50), (2.51) into (2.47) satisfies the latter identically, and because of (3.15), 

the resulting expression for the potential is independent of the Pa; it involves 

merely the invariants and coincides with w (Il, 12, Is). 
The following version of Theorem 3.1 is relevant in the case of isotropy. 



Theorem 3.3. Assume W satisfies (1.121, and define 

Let D- = {(Big) - 1 (@;a) - E D, [Hii(P;a)] - not positive definite). Then strong 

ellipticity fails at F E L+ with I; = I ; ( F f l  i f  and only if 

(11~12 ,  13) I(D-) (3.20) 
+ 

where 1 : D + I is defined by (2.471, (2.48). The above remains valid i f  

"strongn and "not positive definite" are replaced by "ordinaryn and "singular," 

respectively. 

Proof. By virtue of Theorem 3.1 and Lemma 3.2, if strong ellipticity fails at F ,  
then _F admits the representation (2.44) with (P;tz) - E 9-. From (i) of Lemma 

2.3 we draw that I = (Il ,  Iz , Is) = f ( P ;  - g) so that (3 2 0 )  holds true. Conversely 

if (3.20) holds, then there exists (P; - a) E ED- with L = i ( ~ ; & ) .  - With the aid 

of Lemma 3.2 we infer that there is an P E 0+ and a frame X such that _F 

conforms to (2.44) with (P; - a) E D-. Then strong ellipticity is guaranteed to fail 

by Theorems 3.1 and 3.2. This completes the proof. 

With a view toward illustrating some of the above ideas, we turn to an 

example involving a class of elastic potential introduced by Hadamard (101 and 

discussed extensively by John [ll]. These have the form 

where c and d are material constants and cf, is a function twice continuously 

differentiable on (0,~). Upon using (3 .18)~  we immediately obtain 

This is the reduced elastic potential generated by w in (3.21). Our next task 

is to derive necessary and sufficient conditions for ellipticity appropriate to the 

Hadamard materials. 



Proposition 3.1. Strong ellipticity holds at F LI E L+ for the potential (3.21) if 

and only if 

where1 X i  > 0 are the principal stretches of F and Il = X j X i ,  I3 = ( x ~ x ~ x ~ ) ~ .  
Moreover, strong ellipticity holds globally on 13+ if and only if 

Proof. For the Hadamard potential we calculate the Hessian components (3.19) 

from (3.22) to obtain 

H11(P;g) = = + +dp; , ~ 2 2 ( & ~ )  = = + +Pt  , 
2 2@1t 

H33 (Pi 4 = c f ddpaPa + 81 ( P l h a 3 )  

H i ; )  0 ,  # (P;,) - E D  

In the notation of Theorem 3.3, (X1,I2,I3) D- if and only if 

We appeal to (ii) of Lemma 2.3 and observe that (3.25) only involves P I ,  P z ,  as. 

Taking note of (2.49), we make use of (2.50) in (3.25). In view of (3.26) and 

Theorem 3.3, strong ellipticity at _F is equivalent to 

2 3 11 
c+dP: > o ,  B(P19P2) -c+dPaPo + P I P S @  ( J )  > O  

v (P1 ,P2)  E A = [Ah Xz] x [ X ~ , X S ]  (3.27) 

where J = det _F = 6. The first of (3.27) is equivalent to the first of (3.23). 

In view of (1.5), the second of (3.23) becomes 

Primes indicate differentiation with respect to the argument. 



so that it is necessary for the second of (3.27). To show it is also sufficient, 

we first draw from (3.27) that B( , P2) is linear in pt so that the extrema of 

B ( , ) in A may only occur at the four vertices (PI, P2) = (Xi, X j )  for i < j or 

(i, j )  = ( 2 )  Thus we need only show that (3.28) suffices for B(X2, X2) > 0. 

From the definition of B (PI, P2), 

the inequality following because of the ordering of the Xi .  With the aid of (3.28) 

we then deduce from (3.29) that B(X2, X2) > 0, SO that B is positive on all four 

vertices and hence throughout A if the second of (3.23) holds. 

Turning now to the global inequalities (3.24), we first observe that strong 

ellipticity holds globally if and only if (3.23) hold for all Xi > 0. Clearly, (3.24) 

are sufficient for (3.23). To show their necessity, assume first that c + d 5 0. 

Then, choosing Xi = 1 contradicts the first of (3.23). If c < O or d < 0, again 

(3.23) 1 is violated for some Xi > 0. This proves that the first three of (3.23) 

are necessary for global strong ellipticity. It remains to consider the case where 

these hold but @"(Jo) < 0 for some Jo > 0. We may pick X1 = X2 = X > 0, 

X3 = J o / X 2  so that XlX2X3  = Jo for each X > 0. Then (3.23)2 with i = 3 

demands 

h(X2) c + 2dX2 + @"(Jo)X4 > 0 V X  > 0 (3.30) 

for global strong ellipticity. However since c 2 0, d 2 0, c + d > 0, @"( Jo) < 0, 

(3.30) is contradicted by choosing 

which is a real and positive root of h(X2) = 0 in (3.30). This completes the 

proof. 



It is worth remarking that the first three of (3.24) are equivalent to the 

Baker-Ericksen inequalities (1.16). Also, the last of (3.24) is the condition for 

convexity of the function a. 
The local strong ellipticity conditions (3.23) may alternatively be obtained 

by means of the criteria deduced by Simpson and Spector [4]. Although our 

approach and theirs should lead to identical conclusions for special materials, a 

direct proof of the equivalence of the two methods in general has so far elluded 

our efforts. On the other hand for another special potential, whose ellipticity 

was investigated by Knowles and Sternberg in [6], we have derived necessary 

and sufficient conditions for ellipticity which are in complete agreement with 

both the results reported in [6] and an application of the conditions presented 

by Simpson and Spector in [4]. 



4. Deformations with Discontinuous Gradients. 

In the event that strong ellipticity fails for some deformations, the possibil- 

ity arises that weak solutions of the equilibrium equations might exist that do 

not abide by the smoothness requirements imposed in Section 1. We presently 

envisage a situation where the deformation $ remains continuous on the refer- 
I 

ence region R ,  but there is a continuously differentiable surface C c R such that 

is twice continuously differentiable on R - E, whereas F = Vg suffers jump - - 
discontinuities across E.' It is a well known consequence of the continuity of 

the deformation under the present circumstances that there exists a vector field 

b :  C + E3, such that 

where [ 1 denotes the jump of a function across C and _n : C 4 U is a con- 

tinuous field of unit normals on X2 In view of the constitutive law (1.8), the 

smoothness properties of _F are shared by the associated nominal stress field _a. 

The deformation under consideration is equilibrated if the integral of the nomi- 

nal traction over the boundary of any bounded regular subregion of R vanishes. 

This global balance law reduces to the local equations (1.10) on R - C. Moreover 

it necessitates that the nominal traction acting on C be balanced in the sense 

that 

That is, if P C R is separated by C into two complementary subregions with * + - 
nonempty interiors P ,  then F - coincides on P (respectively P)  with a function contin- 

+ - 
uous on the closure of P (respectively P.) 

See for example Gurtin [12] and James [13]. 



The additional conditions ( 4 4 ,  (4 .2)  pose restrictions on the class of elastic 

potentials capable of sustaining equilibrated deformations with discontinuous 

gradients. Rather transparent conclusions on the existence of such deformations 

may be arrived at by studying a specialized class of them, namely the piecewise 

homogeneous ones. We let R be the whole space E 3 ,  agree that the deformation 
+ - 

gradient takes two distinct values F and F E L+ and that there is a single 

surface of discontinuity C .  It then follows from (4 .1)  that C is a plane. We 

choose a unit normal to C ,  n~ U ,  so that the deformation S is given by 
& 

Continuity of $ on Es implies through (4.1)  that there is a nonzero constant 
m 

vector b, such that 

In view of (4 .2)  the deformation (4 .3)  is equilibrated if and only if 

equilibrium being trivially satisfied on E3 - C. Whether or not a given piece- 

wise homogeneous deformation - one that satisfies (4 .3 ) ,  (4 .4 )  - is equilibrated 

depends on the elastic potential because of the appearance of the stress response 

function p = WF in (4 .5 ) .  
.I 

+ - 
Definition 4.1. A pair of tensors ( F ,  LI F )  ..r E L+ x L+ is a shock for the potential 

+ - 
W if F # F and (4.41, (4.5) hold for some _b E E3 and n E  U .  In the event that 

such a shock exists we say that W sustains shocks. 

Our intention is to deduce conditions on the elastic potential which are 

necessary and sufficient for it to sustain shocks. To begin with we concentrate 



on the kinematic jump condition (4.4). Two tensors are said to be rank-one 

apart if their difference is a tensor of rank one, i.e., a tensor product _e @$of two 

non-null vectors c and d E E3. The next result utilizes the directional resolution 

to characterize such pairs of tensors. 

+ - 
Lemma 4.1. Two tensors F rn , F L. E l+ are rank-one apart if and only if there 

+ 
is an $E O+ , a frame X = {O;e_l,~,eg), P = (Pl,P2) E Dl and distinct a ,  
- f f f f  

D 2 ,  a= (al,a2,a3), such that 

in which case 
+ - + 
F-F=_b@n, _b=$(~;-&)~~, n=e_s. (4e7) 

Proof. Assume first that (4.6) is true. Recalling (2.40) we have 

whence 

+ - 
Upon setting _b = $ (ai - , r, = 53 , we recover (4.7) and note that by 

+ - 
hypothesis CI b # 0 a m  , n E U. Hence F and F are rank-one apart. 

+ - 
To show the converse, assume that F - _F = _e@ _d # (! and set 5 = _d/kl E 

U , _b = I_dl_e, so that 

+ 
By constructing the directional resolution of _F with respect to _n , we obtain 

+ 
$E O+ , a f r m ~  X= (0; el,_ez, $3) with $3 = p and (P; - a) D , such that 
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Substituting (4.11) into (4.10) and recalling that H n= - e3 , we find that 

Letting 

we draw from (4.12) 

That defined in (4.13) also belongs to D2 follows from (4.14), since by hypoth- 
- 

esis det p > 0. Hence (4.14), (4.11) confirm (4.6), whereas (4.7) follows from 

(4.10), (4.13). This completes the proof. 

It becomes evident that by choosing an arbitrary rotation tensor P E O+ , 
f f f f  

frame X= {O;_e1,_ez,_e3), P = (P1,Pz) E Dl and a = (al ,az,as)  E 4 with 

+ - a # g, one may construct the most general piecewise homogeneous deformation. - + - 
This is done by assigning to F ,  rn - F the values (4.6) and defining 6 via (4.3) with 

m 

_n = $3 . The plane of discontinuity C is specified by its normal _n and (4.4) is 

satisfied provided P is chosen according to (4.7). In other words, the directional 

resolutions of the two values of the deformation gradient taken in the direction 

normal to the surface of discontinuity possess common rotation R ,  frame X 

and in-plane components p a ,  but at least one of the out-of-plane-components a; 

jumps across C. Thus there is a frame X with its third unit vector normal to 

the plane of discontinuity, in which 



where 11 is a proper orthogonal matrix. 

The next result shows that the principal stretches associated with piecewise 

homogeneous deformations are restricted to obey certain inequalities because of 

the kinematic jump condit ion(4.4). 

+ + + + 
Theorem 4.1. Let X i >  0 be the principal stretches of F E L+ , with X1 5 X 2  

+ - - - - - 
5 X 3 .  Then there exists F E l+ with principal stretches X i >  0 ( A 1  5 X 2  5 Xg) , 

+ - 
such that F andF are rank-one apart if and only if 

with the first or the last of the above inequalities or both being strict in case 
+ 
X i =  X  > 0 ,i = 1,2,3.  

+ - 
Proof. First we assume that _F and _F are rank-one apart. Then they satisfy 

(4.10) for some!€ E3 and p E U . Moreover, their directional resolutions with 

respect to _n possess the same in-plane component pair P = (PI, P2) E Dl , as - 
guaranteed by Lemma 4.1. We may assume p2 2 P1 . Invoking (ii) of Lemma 

+ - 
2.3 and applying it to _F and _F , we draw from (2.49) 

which immediately yields (4.16). To demonstrate the assertion following (4.16), 
+ + +  

suppose that Xl  = X 2  = As E X > 0 . We now assume that equality holds in 

the first and last of the inequalities in (4.16), and show that this leads to a - - - + - 
contradiction. It follows that X1 = X 2  = X 3  = X  . Then F and F are similarity 

+ + - - f 
transformations ; F = X  8,  _F = X  p , _R E O+ . Lemma 4.1 demands that (4.6) 

be in force. However, 



+ + + 
can be satisfied by setting P = $ , Pa =as= A ,  a,= 0 . By uniqueness of the 

+ + 
directional resolution asserted in Theorem 2.1, _R = _R , Ax@; a) = A 1  . The 

same argument applied to _F gives $ = _R. Then by (4.6), $ = P, hence _F = _F 

and they are not rank-one apart. - 
To show the converse, assume the A; conform to (4.16) and its subsequent 

f 
qualification. Because of the ordering of the X i ,  it follows from (4.16) that there 

are p, with p2 2 P1 > 0 ,  such that 

+ 
In particular, (2.49) now holds with Xi = X i  , so that (ii) of Lemma 2.3 with 

+ 
F = can be used to define E D2 by means of (2.49) through (2.52). Then 

+ 
( P ;  - 2) € D satisfies the hypotheses of Lemma 2.3 (i) with F = _F . Hence there 

is a frame X and an $E O+ , such that 

- 
with - p abiding by (4.17). For such - P , (2.49) is valid with Xi = Xi . Then, 

- - 
obtaining Ii =Ii by setting Xi =Xi in (1.5), we may construct such that (2.49) 

through (2.52) are satisfied by (P;z) - E D . We then choose 

- - 
with 8, X as in (4.18). By construction, F has principal stretches Xi , as is 

guaranteed by Lemma 2.3. In view of Lemma 4.1 it remains to be shown that 

p satisfying (4.17) can always be chosen so that 2 # in (4.19), (4.18). In case - 
(A1, i2, i3) # (A1 ,  X 2 ,  X3) we have # I ,  since the mapping ( A l ,  Xz , X3) 

(Il , 12, 13) is invertible for 0 < X1 5 X2 5 X3 . This suffices for 4 and a to 



+ - 
be distinct because of (2.47). If Xi = Xi = X i ,  then by hypothesis not all three of 

the Xi coincide, and (2.47) permits us to choose (PI, pz) # (A;, xi) , where i $ j .  
+ + + 

Examination of (2.50) then reveals that a7a7 > 0 . Hence choosing L7 = - a7 
- 

yields the requisite # a , so that (P;  - i) , ( P ;  - a) satisfy (2.49) through (2.52). 

In view of (4.18), (4.19), an appeal to Lemma 4.1 now completes the proof. 
+ 

In the special case when P = 1 the appropriate version of (4.16) is in 

agreement with a result of Ball and James [1413. Moreover, Theorem 4.1 dictates 

that given a (non-trivial) piecewise homogeneous deformation, its restrictions to 

either side of C cannot be related to each other by a similarity transformation. 

That is, if 

+ - 
for some w > 0 ,  PE O+ , _ b ~  Es and 9~ U , then necessarily!= and _F = ;F. 

To see this, we note that (4.20) dictates that 

+ + + 
where$= ( ~ - ~ ~ l _ b ,  m= _ ~ - ~ ~ / I _ ~ - ~ r z l .  Applying Theorem 4.1 to 1 and wP 

+ - 
we have Xi= 1 , Xi= w . Then (4.16) demands that w = 1 , which is prohibited 

by its subsequent qualification. Hence _e = ? in (4.21) so that _b = in (4.20) and 

+ - + - 
f = F . In particular, F and F cannot both be similarity transformations if 

they are rank-one apart. 

In our study of equilibrated piecewise homogeneous deformations, it remains 

to consider the traction continuity condition (4.5). This we propose to do by 

utilizing the properties of the traction response mapping introduced in Section 

See, in particular, the first assertion of Proposition 4 in [14], where the A; stand 

for the squares of the principal stretches. 



3, within the framework laid down by Lemma 4.1. In what follows, the traction 

response mapping generated by the elastic potential W in the frame X is the 

function - gX(p - ; ) : D2 4 Et3 defined by (3.10), (3.4). We now state the main 

result of this sect ion. 

Theorem 4.2. Necessary and sufficient for the potential W to sustain shocks 

is that there is a frame X and - p E Dl such that the traction response mapping 

g X ( ~ ,  - )  : D2 + l t3 generated by W in X is not invertible on D2 . Moreover - - + - 
every shock (lj' , lj' ) sustained by W admits the representation 

* * * *  
where FE 0+, whereas X ,  - P = (PI, Pz) E Dl and g = (al, az, as) E D2 are such 

that & # 4 and 
X + X - 

9; (Pi a) = gi (Pi a) (4.23) 

f 
Proof. We recall (3.12)~ and apply it to two tensors $Ax(P; - a) . By subtracting 

the resulting expressions, we obtain 

f 
for any PE O+ , frame X= {O;_el,_e2,_es} and arbitrary (P;g) - D . Assume 

+ - 
now that (_F , _F ) is a shock for W . Then by Definition 4.1, (4.4) is in force for 

suitable II b ,  n.  II We infer from Lemma 4.1 that - F , F II are expressible via (4.6). 

Since by hypothesis (4.5) also holds, we observe that the left hand side of (4.24) 
f 

vanishes for those choices of 9, X, - p , $ and a that correspond to _F through 

+ - 
(4.6) and (4.7). Moreover, g # g and, since $ is orthogonal, we recover (4.23), 

whereas (4.6) is equivalent to (4.24) in view of (2.41). We have shown that if W 



sustains shocks, then every shock admitted by W conforms to the representation 

(4.22), and a suitably chosen - gX(/3 - ; ) fails to be invertible because of (4.23). It 

remains to show that if there exist - p E Dl and a frame X for which - gX (p - ; ) is 

not one-to-one, then W sustains shocks. By this hypothesis, (4.23) must hold 
+ - 

for some X, - p and distinct a, a E Pz . In terms of these and an arbitrary RE O+ 
=t + - 

define _F through (4.22). Then in view of (2.41), _F , _F satisfy (4.6) of Lemma 

+ - 
4.1 and hence (4.4) with _b, _n given by (4.7). Thus _F # _F . Moreover, the right 

hand side of (4.24) vanishes due to (4.23). With the aid of (4.6) and the last of 
+ - + - 

(4.7), we confirm that _F , F also satisfy ( 4 4 ,  and so by definition, (_F , _F ) is a 

shock for W. This completes the proof. 

Theorem (4.2) provides a complete characterization of the class of hypere- 

lastic materials that sustain equilibrated piecewise homogeneous deformat ions. 

To obtain a mechanical interpretation of the theorem, we recall that the traction 

response mapping is a constitutive response function, expressing components of 

Piola traction in terms of their respective conjugate resolved out-of-plane compo- 

nents of the deformation gradient. Whenever this mapping fails to be invertible, 

one may find deformation gradients with common in-plane but distinct out-of- 

plane components associated with a given direction, but giving rise to identical 

tractions. Such deformation gradients are the successful candidates for a shock. 

In principle one may construct all the shocks sustainable by a given material. 

This is done as follows. For each frame X and in-plane component pair - P one 
f 

finds all pairs of out-of-plane component triplets g satisfying (4.23). The defor- * 
mat ion gradients f' of the associated piecewise homogeneous deformation (4.3) 

are then given by (4.22). The normal n to the reference surface C of discontinu- 

ity is related to the frame X through the last of (4.7). It is possible that for some 

anisotropic materials the traction response mapping might lose invertibility only 

for certain restricted choices of the frame X. If this is the case, then shocks are 



sustainable by such materials only for special orientations of the discontinuity 

surface. 

Combining the conclusions of Theorem 3.2(ii) and Theorem 4.1, one read- 

ily draws that a loss of strong ellipticity at some deformation is a necessary 

condition for an elastic potential to sustain shocks. Thus we arrive at a result 

established by Knowles and Sternberg [15]. 

In the event that the material at hand is isotropic, the preceeding discussion 

may be simplified by an appeal to Lemma 3.2. In these circumstances, the 

reduced elastic potential is obtained by means of (3.15), (3.16), so that the 

traction response mapping is independent of the frame X in (3.10). In particular, 

if we define 
d 

gi (Pi a) = - da, W (g; G) , ((P; g) € D , (4.25) 

with W supplied by (3.15), then for any choise of the frame X, 

Thus in attempting to find the shocks sustained by an isotropic material, we only 

need examine the invertibility of a single family of mappings - -  g ( P  ; * )  : D2 + Et3 , 
depending on the pair of scalar parameters - P . Once this is done, the frame X 

in the representation (4.22) is seen to be arbitrary. Evidently, if an isotropic 

material sustains shocks, it does so for every possible orientation of the plane of 

discontinuity. 

In order to illustrate the above results, we apply them to the special case 

of the elastic potential (3.21) for the Hadamard material, the strong ellipticity 

of which was investigated in Proposition 3.1. 

Proposition 4.1. The Hadamard potential (3.21) with c 2 0 ,  d 2 0, c +  d 2 0 ,  

sustains shocks if and only if 



+ - 
for some distinct J , J > 0 . Moreover, if F - E 0+ has principal sretches A; 

- - 
(0  < X I  5 X2 5 As), then there is a shock ( F ,  F )  with det F = J if and only if 

where Il = XiXi, J = X1X2XS.  

Proof. By means of (3.22), used in conjunction with (3.21), the components of 

the traction response mapping specialize for the material under consideration to 

where ( p ;  - g) :) D . In view of Theorem 4.2 and the preceeding remarks pertaining 

to isotropy, we now set out to show that (4.29) is necessary and sufficient for 

the function --  g ( P ;  .) to lose invertibility on D2. From (4.31) and the hypotheses 

on c, d,  we draw 

Hence the resolved out-of-plane shear components a l ,  a2 may not jump. Setting 
f * + - 
J =  Plp2  a3 we conclude from (4.32) that for a nontrivial shock a3#as,  which 

+ - 
is equivalent to J #  J . The last of (4.31) gives 

where 

J - J  
f 

If a shock exists, then A vanishes in (4.33) for some Pa > 0 and distinct J > 0 .  

Because of our assumptions on c and d the first term in the right-hand side 



in (4.33) is positive. This confirms the necessity of (4.29). Now suppose (4.29) 

holds true. Then, assigning any fixed positive value to Pl, we may confirm easily 

that p2 > 0 can always be chosen so that A vanishes. For such - P we may then 
f *  + - 

choose aa=J /PIP2 , choose arbitrary a, , set a,= a, and construct ( F ,  _F) 

by way of (4.22) with P and X also arbitrary. Then (4.33), (4.32) confirm that 

+ - 
(_F, _F) is a shock for the Hadamard potential. 

Turning now to a proof of (4.30), we recall the results of Lemma 2.3. If F 
- 

has principal stretches Xi then there is a shock (_F, F )  if and only if the first of 

(4.32) holds and A vanishes with (P; ; )  - satisfying (2.49) through (2.52). Clearly 
+ 

we only need confirm that (4.30) are equivalent to (4.33) with J = det _F , for 

some 

(PlYP2) E A = { (Pl,P2) 1 A 1  I P1 <- A 2  < P2 I A S )  
+ - 

and for some positive J # J . Now A in (4.33) depends continuously on (PI, P2) 
and is easily seen to achieve its maximum and minimum for (Pl,P2) = ( X I ,  X2) 

and (Az, As),  respectively. Moreover, A attains all intermediate values on A, 

which is connected. Hence it vanishes for some (Pl,P2) E A if and only if it 

is nonnegative at (A1, A2) and nonpositive at (A2, As). These conditions are 
+ 

equivalent to (4.30) if one sets Il = XiXi,  I3 = XlX2Xs  = J ~ ,  J =  J .  This 

completes the proof. 

The restrictions on the material constants c and d imposed in the foregoing 

proposit ion are equivalent to the Baker-Ericksen inequalities (1.16). In case 

these hold, one readily infers from (3.29) that the potential under consideration 

sustains shocks if and only if the last of the global strong ellipticity conditions 

(3.24) fails to hold, i.e., in case @ " ( J )  < 0 for some J > 0 .  Hence for the 

Hadamard materials that satisfy the Baker-Ericksen inequalities, existence of 

shocks is equivalent to loss of strong ellipticity at some deformation. 



5. Ellipticity for Plane Deformations of Isotropic Materials 

Conditions for strong and ordinary ellipticity of the equilibrium equations 

appropriate for pime deformations of compressible isotropic materials have been 

established by Knowles and Sternberg [I]. This section aims at arriving at these 

results via an alternative route: the kinematic results of Section 2 are specialized 

to two dimensions, and the developments of Section 3 are modified to make them 

relevant to plane deformations. Our intention is not only to test the methods 

developed in this work against previously known results, but also to provide 

an example of the applicability of our approach in a setting simpler than, but 

similar, to the three-dimensional one. 

We identify E2 with a plane in Es containing the origin 0 and spanned 

by two unit vectors _e, of a fixed frame (0; _el, _ez,  s ~ ) .  Consider a body that, 

in the reference configuration, occupies a cylindrical region with open middle 

cross-section R c E2 and generators along $3. A deformation of the cylindrical 

body is plane if it maps the particle at g = xici to y = yi g;, so that - 

where 9 : R -r Ez is a two-dimensional mapping defined on the cross-section R 
L. 

of the cylinder. Greek indices are understood to take the values 1,2 throughout 

this Section. If we refer to 9 in (5.1) as the (plane) deformation of R ,  we may 
.LI 

reinterpret the exposition in Section 1 in a two-dimensional setting. The sets 
+ 

U , Z+ , O+ and S now take on two-dimensional meaning. Let X stand for the 

two-dimensional frame (0; $1, $2) . We write 2: = x,:, for the position vector 

of a particle in R,  F(g )  E L+ for the two-dimensional gradient of the mapping 

fi, and C(2) = p(5)~(z), for the two-dimensional version of the right Cauchy- 
m 

Green tensor. From the three-dimensional nominal and Cauchy stress tensors 



associated with the deformation, we construct two-dimensional tensors _a and 2: 

by specifying that their components in X are given by a,@ and Tap, respectively. 

(Note that ai3 , 03; and ~ i g  = T3i need not vanish). We speak of _a and z as the 

in-plane nominal and Cauchy Stress tensors, respectively. 

For a more detailed account of the theory of plane deformations, we refer 

the reader to Knowles and Sternberg [I], (151. The three deformation invariants 

in (1.5) are fully determined for plane deformations by the two plane invariants 

J ( C )  = ddet C= det F = X1X2 , 

where A, > 0 are the principal stretches. 

The in-plane mechanical response of an isotropic body is characterized by 

its in-plane elastic potential 

where w ( - ,  - )  is defined and twice continuously differentiable on the two- 
+ 

dimensional invariant region I = {(I, J)II  2 2 5  > 0). In view of (5.2) we 

may define 

w(X1,Xz) = w ( ~ f  + x ; , x ~ x ~ ) ,  Xa > O ,  (5 -4) 

thus expressing the potential in terms of principal stretches. 

The equilibrium equations are now given by the two-dimensional counter- 

part of (1.10) which is to be satisfied by the two components of the displacement 

field (C : R + E2. Analogous remarks apply to the acoustic tensor (1.18), so 

that the ordinary and strong ellipticity conditions for plane deformations are 

supplied by the two-dimensional version of Definition 1.1. 

Theorem 2.1 can be directly applied to tensors in Ez,  for which it asserts 

the following. Let n E U and _F E l+ be given. Let _e E U be orthogonal to _n. 



Then _F admits the representation 

where $ E O+ , (E E E2 and Y E S+ are uniquely determined by _n and _F , 
and Y_n = n. Clearly X= (0; _e ,_n) is a principal frame for V; If P > 0 is the 

principal value of Y corresponding to _e and a1 = g _e , a2 = 5 _n , the matrix of 

components of in the frame X= (0; _e , _n) is given by 

From (5.6) we draw that a2 > 0, since det _F = pa2 > 0. Equation (5.6) is the 

two-dimensional analogue of (2.37). In the current circumstances there are only 

one in-plane component P > 0 and two out-of-plane components a1 and a2 > 0 

associated with the directional resolution of f' with respect to 5.  Using (5.6) 

and (5 .2) ,  we obtain 
I = trf'=f' = p2 + a: + a: , 

J = det f' = pa2 . 

Utilizing (5.5)-(5.7) and proceeding in a fashion parallel to the proof of Lemma 

2.3, we arrive at its two-dimensional counterpart. 

Lemma 5.1. A two-dimensional tensor F E L+ with principal stretches 

X 1, X 2  ( A 2  2 X I  > 0) admits the representation (5.6) for some R E O+, frame X 

and (p;  a l ,  a2) E D = R+ x R x R+ if and only if 

where I = X f  + A : ,  J +  X 1 X 2 .  

The proof is omitted, since it mimics that of Lemma 2.3. Instead, we remark 

that in view of the restrictions p > 0 , a2 > 0 , (5.8) is equivalent to (5.7). 



With the above at our disposal we may retrace the construction of the 

results of Section 3 to obtain their plane counterparts. Keeping in mind our 

present confinement to isotropic materials, we define the plane reduced elastic 

potential by means of 

This is justified by the observation that if (p; a l ,  a2) E D is related to _F E L+ 

through (5.6), then (5.7), (5.3) imply that 

With the aid of (3.2)-reinterpreted in the present context-and the chain rule, 

we recover an expression for the acoustic tensor analogous to the second of 

where X = (0; $1, $21, $2 = 5, PE 0+ and (p; a l ,  a2) are related to F through 

(5.6). 

The foregoing results allow us to obtain a result parallel to Theorem 3.3. 

Lemma 5.2. Ordinary Ellipticity holds at  F - E L+ with principal stretches 

X2 2 X1 (Aa  > 0) if an only if 

where HYa (P; al ,  a2) = a2 W ( p ;  al,  a2)/aa,aas and I = Xf + X g  , J = X1X2. 

Proof. In view of (5.11) and Definition 1.1, ordinary ellipticity holds at _F if 

and only if the Hessian matrix of W (P; a l ,  a2) is nonsingular for every choise 

of (p; a l ,  a2) E D that corresponds to some directional resolution of _F through 

(5.6). Lemma 5.1 asserts that such (P; a1 , a2) are precisely the ones satisfying 

(5.8). This completes the proof of (5.12). 



At this point, we obtain conditions for ordinary ellipticity at  F E L+ 
involving only the invariants I, J and the partial derivatives of w with respect 

to them. With this in mind, we introduce the following notation 

and so on. Employing the chain rule in (5.9) and invoking the smoothness of 

W, we derive the following expressions for the components HVa ( P ;  a l ,  a2)  = 

a2 W ( p ;  a l ,  a z )  /aa7aaa of the Hessian matrix of W , where we omit arguments 

for brevity 
H11= 2Wr + ~ W I I ~ :  , 
Hz2 = 2w1 + 4 ~ 1 1 a z  + ~ W I  ~ P a 2  + W J  j P 2 ,  (5.14) 

H12 = H21 = 4W11ala2 + 2 W 1 ~ p a l  . 
Observing that d e t g  = HllH22 - H ; ~  and assigning to a1 and a2 the values 

indicated in (5.81, we obtain from (5.14) that 

det l 3 ( p  ; ( I  - ~ ~ / p ~  - p2)'I2, J I B )  h ( P 2 )  = 

where we have set 

D =  W I I W j j -  w&. 

With (5.15) at our disposal, we may arrive at the requisite ellipticity conditions. 

Theorem 5.1. Given I = A1 + A:, J = A1A2 ( A 2  1 A1 > o), define 

= ~ W I ( ~ W I  + ~ W I I  J ~ / x ~  + 4WI j J + W J  j ~ : )  (no sum) 
(5.17) 

Then ordinary ellipticity holds at F E L+ with principal stretches A,  if and 

only if 



where = sgn Ell. 

Proof. Lemma 5.2 asserts that necessary and sufficient for ordinary ellipticity 

at F is that 

w2) # 0 ,  X I  5 P < A2 , (5.18) 

where ~ ( p ~ )  is defined by (5.15), with the partial derivatives (5.13) of w eval- 

uated at the invariants of Assume first that X1 < X2, and define E via 

One easily sees that for P > 0, (5.19) ensures 

Thus we may set ( = cos 28, 8 E [0, r / 2 ]  in (5.19) and substitute the result into 

(5.15) to express A(P2) a s  a quadratic in cos 28 , for 0 < 8 < r/2.  By means 

of standard trigonometric formulae and some manipulation of (5.15), one finds 

that 

where cl(8) = sin2 9 ,  h(8) = cos2 9 ,  8 E [0,lr/2], Ea8 are given by (5.17), and 

P2 obeys (5.19) with ( = cos 28. In view of (5.21), (5.18) becomes equivalent to 

EagzazB # O  for za 2 0 ,  z l+z2  > 0 .  (5.22) 

Knowles and Sternberg have shown in Section 2 of [I] that (5.22) is true if and 

only if (5.18) holds. It remains to consider the case where X1 = X2 = X > 0. In 

this instance (5.18) reduces to 

6(X2) # 0 . 

Moreover, since I = 2 J = 2X2, inspection of (5.17), (5.15) reveals that 

Ell = E22 = E12 = 6(X2) . 



Thus in the present circumstances ordinary ellipticity reduces to Ell # 0, which 

in view of (5.24), remains equivalent to (5.18). This completes the proof. 

The above is an alternative derivation of the ellipticity conditions estab- 

lished by Knowles and Sternberg [I]. Here we have arrived at a version of these 

conditions involving the derivatives of the function w (I, J), whereas their result 

is given in terms of the plane elastic potential W(X1, X2) expressed as a function 

of the principal stretches. 

The strong ellipticity conditions are easily obtained in a similar fash- 

ion. They are equivalent to the requirement that the matrix with components 

Hap ( P ; (I - J2/p2 - P2) JIB ) be positive-definite for P E [A1, X2]. Since 

the Hap are continuous in p, is positive-definite on [A1, X2] if and only if it is 

nonsingular there and positive-definite for P = XI. The latter condition becomes 

WI > 0, Ell > 0 ,  (5.25) 

as inspection of (5.14), (5.17) reveals. Hence the conditions for strong ellipticity 

are given b y  (5.25) together with (5.18), in which now r )  = +1 is appropriate 

because of the second of (5.25). The above is once again in complete agreement 

with the conclusions of [I]. 
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