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Abstract 

Vision is a primary sense that allows human beings to interact with their environment 

and motion is one of the most important cues that vision can explore and utilize. 

In this thesis, we present computational approaches to the problems of inferring 

three-dimensional motion information and perceiving two-dimensional human mo­

tions from a sequence of images captured by a camera. 

The three-dimensional structure of world can be represented by distinguishable 

features, such as points. Assume all the features move under the same rigid motion 

in space, this motion can be recovered from the projections of the features in three 

views by solving a set of trilinear constraints. The trilinear constraints have been con­

sidered only as algebraic equations so that their satisfactory performance in motion 

estimation is not easy to understand. This thesis solves this puzzle by discovering a 

geometrical interpretation of trilinear constraints. It is showed that those algebraic 

equations correspond to depth errors appropriately weighted by a function of the rel­

ative reliability of the corresponding measurements. When the assumption is relaxed 

to allowing features to move under different rigid motions, this thesis proposes a 

three-dimensional motion based expectation-maximization algorithm combined with 

the modified separation matrix scheme to cluster the features undergoing the same 

motion into a group and estimate the motion for every group at the same time. 

The problem of detecting and recognizing human motions arises from many ap­

plications in computer vision. This thesis describes an algorithm to detect human 

body from their motion patterns in a pair of frames which is based on learning an 

approximate probabilistic model of the positions and velocities of body joints. It then 

presents a scheme to recognize human actions in a sequence of frames assuming the 

human body is detected. This scheme enables us to simultaneously recognize both 

the action and the body poses in the observed sequence. 

All our theoretical work is supported by experimental results. 
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Chapter 1 Introduction 

1.1 Motion Analysis in Computer Vision 

Computer vision is the engineering to understand images by using computers. It 

has ties to many other disciplines, such as artificial intelligence, graphics, signal and 

image processing, robotics, and physiology. It has a multitude of applications: im­

age analysis and processing, medical diagnostics, industrial quality control, security 

surveillance, robotics, and human-machine visual interactions. 

Vision is the most complex and informative of the human senses, characterized by 

high resolution and efficient recognition. It is so advanced that it has been functioning 

so well without being noticed or credited sometimes. Take a moment to think about 

what our eyes can do for us. We recognize objects by looking at them, we estimate 

how far away an object is from us, we have an idea of the relative motion between 

us and an object or the environment. More fascinating is that we do not need to 

see things clearly to get what we want, sometimes part of the object can even be 

occluded. Occasionally our eyes can be confused by illusions, too. Nonetheless, the 

amazing capability of human vision sets a very high bar for computer vision. 

For most of the so-called computer vision, the goal is to replicate the human 

visionary functions by a computer and camera system. Though we have probably 

taken them for granted, it has been an elusive problem in general for decades to 

make a computer see as we do. Computers have become masters in things that are 

so difficult for ordinary people, such as playing chess and deducing formulas, which 

is worth celebrating. Unfortunately computer vision is not a lucky one of them, all 

have been achieved in this field is not even close to what human vision can do. While 

enjoying what our eyes bring to us so easily everyday, we sometimes cannot deny the 

tiny bitter frustration of working in this field. 

The conceptual approach taken in computer vision is first to extract information 
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from images, then to recognize the subject behind the information, and finally use 

the realized information to achieve our goal. But in reality every step is much more 

complicated and most of the attention has been focused on the first two, in which 

the fundamental question is object and pattern recognition and scene reconstruction. 

Many cues have been worked on to explore this territory. Among them are motions, 

textures, shadings, contours, and colors, to name a few. While they accommodate 

many efforts and progress has been made in these directions, my research has been 

mainly focused on using the motion cues. 

The problems of motion analysis in computer vision can be contemplated from 

different angles. But in general the questions can be put in three different categories: 

What do we measure? 

Due to the complex nature of objects, they usually cannot be considered in their 

full details because of various limitations such as our knowledge, methodology and 

computational efficiency. In the study of motion, objects are usually characterized 

by their representative features and these are the things we need to measure directly 

from images. Specifically we need to search for the special points, lines, and patches 

on objects which are least demanding but still carry the most relevant and revealing 

information. Due to the relative motion between camera and objects, it is also nec­

essary to construct the correspondence between features in different image frames. 

Feature correspondence tells where a feature locates in the next image. There are 

two typical approaches to this problem: feature matching and feature tracking. The 

feature matching method selects features in two different images and matches them 

between the two. The feature tracking method selects features in one image and 

tracks them to the next one. It is more commonly used in recent years. Feature 

tracking has been extensively studied in the past decade [49, 88, 3, 10, 46, 43]. Most 

of the time a careful decision has to be made on what features we are going to use 

to model the object and study the underlying motion. Sometimes using simple point 

features can simplify the solution, while some other times we have to deal with more 

complicated patch features. Both will be demonstrated in my actual projects pre­

sented in this thesis, together with the consideration of the representative capabilities 
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of the candidate features and the goals that need to be achieved by the experiments. 

How do we separate multiple moving objects? 

It is not often that the object we want to study is alone in the scene. Most likely 

there are more than one objects including the background structure and they may 

move differently in the scene. The question is how to separate these moving objects 

from each other. Again many cues can be employed, but motion is the primary one 

here. As the input to motion segmentation, most of the time distinguished features 

are selected with established correspondence to represent the objects in image frames, 

and occasionally all pixels in images are considered as features which are called "dense 

flow." Image features are clustered into groups according to their different motions, 

thus features from two different objects could end up with being in the same group as 

long as they take on the same motion relative to the camera. The grouping can follow 

through sequential image frames and judgment can be refined while more information 

is absorbed. On the other hand, the challenge could be pushed to the limit where 

only two consecutive image frames are available. Along the spatial dimension, motion 

segmentation can be considered in either two-dimensional (2D) image plane or three­

dimensional (3D) space. 2D studies usually rely on parametric or nonparametric 

optical flow models for the projected motion in images, while 3D segmentation exploits 

the characters of the more complicated 3D motion (rotation and translation) itself. 

\iVhen the objects are separated according to their motions, the undertaken motions 

can be estimated and some structural information of the objects can be recovered as 

well. 

What do we estimate? 

First of all, we want to estimate the 3D motion itself. The absolute camera 

motion in space is called "ego motion" as opposed to the "object motion". However, 

the motion captured by a camera is a relative motion. No matter the actual motion 

is "ego" or "object" or a combination, all we can recover from an image sequence is 

the relative motion between the object and the camera. In addition, we can estimate 

3D object structure, i.e., the positions in space of the points belonging to objects 

and background. The depth information is lost after the projection from 3D space to 
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2D image plane. A single image can only tell us from which directions image points 

are projected, but not how far away their true locations are along those directions. 

This is similar to the situation that we capture a snapshot of the world with only 

one eye in still. However using our two eyes, which locate at different positions, the 

depths of the objects can be recovered from the two different views and we are able 

to perceive their structures. It is certain that more views contain more information. 

This structure reconstruction from multiple views depends on the relative location 

of our eyes, or in the language of computer vision, the relative motion of camera 

between two or more views. Therefore, one classical problem in computer vision is 

how to recover the 3D motion and structure from a sequence of image frames. 

If we are interested in a particular class of objects, possibly more interesting tasks 

can be carried out, for example, lip reading, gesture recognition, facial expression 

recognition, human motion detection, human action recognition, etc. Among them, 

human motion analysis has become an active research area in the last decade. From 

a sequence of image frames, the task for human motion detection is to answer if 

a subject is present in the scene by looking at the motions that might be taken 

by the subject, while for human action recognition the question is what action the 

subject is taking assuming the presence of the subject is already known. Solutions 

to both questions are knowledge based. To gain the knowledge of motions that it 

can recognize later, a computer system has to be trained first with some small but 

necessary amount of well-defined data related to the motions under concern, which 

is therefore referred to as "supervised learning". Afterwards, the perceived motions 

can be compared with the pre-acquired knowledge in database and decisions to the 

tasks can be made. Success in human motion detection and recognition will certainly 

discover many interesting and practical applications, but on the other hand, the 

answer to the challenge is complicated by the very nature of a human such as high 

degrees of freedom, rich textural characters and self-occlusion. 

One common theme in the study of computer vision is the uncertainty of what is 

seen and measured. Distortion happens within the imaging apparatus. Measurement 

errors are generated in selecting and tracking image features. Large variances exist 
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in the appearance and action performance of different individual subjects of the same 

kind. These uncertainties mandate that our approach be flavored by probabilistic 

analysis. The acceptance or rejection of an outcome is thus tied to a preset threshold 

or confidence level. 

1.2 Outline of the Thesis 

My research is on four different topics and has spanned the three general questions 

posed above. But they are all tied to each other, sharing the common thread of 

motion analysis by computer visual methods. 

First, some basic introduction is given in Chapter 2 about the mathematics of 

projective geometry, camera calibration, and feature detection and tracking. The 

introduction facilitates the presentation of the following chapters. 

Chapter 3 is about my work on a geometrical interpretation of trilinear constraints, 

which are commonly used in the study of motion and structure recovery. It is com­

mon knowledge in the computer vision community that these constraints are algebraic 

equations whose advantage is finding solutions in closed form. Surprisingly they are 

almost as accurate as implicit methods, such as the nonlinear reprojection error min­

imization method. An answer to this mystery is given in this chapter, accompanied 

by a related and robust scale propagation scheme and verification experiments. 

Chapter 4 presents an approach to 3D motion segmentation. The task is chal­

lenged by the assumption that there are only two consecutive images available. A 

combination algorithm of expectation maximization and modified separation matrix 

is proposed. Some supporting experiment evidence is also presented. 

The next two chapters describe my work on human motion analysis. The first 

is human motion detection in Chapter 5. The task is especially difficult because we 

want to detect a moving person from only two consecutive images. This is further 

complicated by the subject's self-occlusion and clutters around. Detection is achieved 

by setting a threshold to the summation of likelihoods from all possible labelings and 

localization of the human body is done by finding the labeling with the maximum 



6 

likelihood. The two computations are performed efficiently by algorithms of dynamic 

programming or one similar. Satisfactory detection results are also shown by experi­

ments. 

In Chapter 6, an algorithm toward human action recognition is introduced. Both 

periodic and nonperiodic actions are studied. The special aspects of this work are 

patch features, the specially designed color-coded clothes for training, a special rep­

resentation of human body poses we call it "movelet", a simplified description of 

the huge movelet space by vector quantization, and a special utilization of HMMs 

as models for actions. Like the other three pieces of work, the experimental results 

are satisfactory. Influences of different descriptions of the movelet space and differ­

ent lengths of image sequences to the performance of our recognition system are also 

studied. 

Some final thoughts are given in Chapter 7 to conclude this thesis on visual meth­

ods for motion analysis. Now let us move on to see what motion can reveal to us. 
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Background: Geometry and 

This chapter introduces the background material to the thesis. 

2.1 Projective Space and Euclidean Space 

A point in n-dimensional projective space, pn, is represented by an n + 1 vector 

of coordinates x = [Xl X2 Xn+IV, where at least one of the Xi is nonzero. 

The numbers Xi are called homogeneous coordinates of the point. Two vectors x = 

[Xl X2 ... Xn+l]T and y = [YI Y2 ... Yn+lV represent the same point if and only 

if there exists a nonzero scalar A such that Xi = AYi for 1 ::::; i ::::; n + 1. We denote 

this up to a nonzero scalar equality as x c:=: y. 

Let E be the three-dimensional (3D) Euclidean space. For a given position of 

a camera in the space, we define the standard camera reference frame as :F = 

(Oc, Xc, }~, Zc), where Oc is the center of camera projection and the three axes 

(Oc,Xc), (Oc,l'~) and (Oc,Zc) are mutually orthogonal and right-handed. The axes 

(Oc, Xc) and (Oc, }~) are chosen parallel to the image plane and (OC) Zc) is along the 

camera optical axis. 

The Euclidean space E can be viewed as embedded in the projective space p3. If 

we refer to a point in the reference frame :F by its Euclidean coordinate vector X = 

[X Y Z]T, this point is alternatively represented by the homogeneous coordinate 

vector X = [X Y Z 1]T in the space p3. 

In p3, a plane is represented by a homogeneous vector 'IT = ['irl 'ir2 'ir3 'ir4]T. A 

point P lies on the plane if and only if its homogeneous coordinate vector X satisfies 

'ITT X = o. 



8 

2.2 Perspective Projection and Image Plane 

Consider the perspective projection of points in 3D space onto the 2D image plane. 

The center of the projection is denoted as Oc in the camera reference frame F. The 

image plane, also called focal plane, is the plane at Z = f, where f is the focal length 

of the camera. The image reference frame is defined as (c, Xc, Yc), where c is the 

intersection point between optical axis and image plane and (c, xc) and (c, Yc) are the 

two axes parallel to the axes (Oc, Xc) and (Oc, Yc). 

Under the perspective projection, a point P in space with coordinates X 

[X Y zV is mapped to the point x = [x yV on the image plane, where a line joining 

the point P to the projection center Oc meets the image plane (see Figure 2.1). By 

similar triangles, it can be shown easily that 

(2.1) 

This perspective projection model is also referred to as a " pinhole" camera model. 

Similar to Euclidean space, the image plane can be viewed as a two-dimensional 

projective space p2. In this representation, a point p on the image plane has homo­

geneous coordinate vector x = [x Y IV. Using projective geometry, the projection 

operator defined in equation 2.1 becomes 

Zx=KGX with 

f 0 0 

K= 0 f 0 

o 0 1 

(2.2) 

where 13 is the 3 x 3 identity matrix and 03xl is the 3 x 1 zero vector. Since Zx 

represents the same point as x in p2 , the operator in equation 2.2 is a linear projection 

operator from p3 to p2. 

A line on the image plane p2 is represented by a homogeneous vector I = [h l2 l3V. 

An image point p lies on the line if and only if its homogeneous coordinate vector X 
-T 

satisfies 1 x = O. 
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p Image Plane 

Yc 

Camera Reference 

Frame F 

p 

Figure 2.1: Pinhole Call1era Geollletry. 

Reference frame :F' 
Reference frame :F 

Y' c 

0' c 
X' c 

3D rigid motion {R, T} 

Figure 2.2: Rigid Body Motion Transforlllation between camera frames F = (G C ) XC) }~) Zc) 
- -I 

and F' = (G~) X~) y;) Z~). The two coordinate vectors X and X of point P in F and F' are related 
-I --

to each other through the rigid body motion transformation X = R X + T. 
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2.3 Rigid Body Motion Transformation 

Consider a point P in space, and let X = [X y zV be its coordinate vector in the 

camera reference frame:F. Suppose the camera moves to a new location in space, 

and let X' = [X' Y' z'F be the coordinate vector of the same point P in the new 
- -, 

camera reference frame :F' (see Figure 2.2). Then X and X are related to each other 

through a rigid body motion transformation 

X'=RX+T (2.3) 

where R E SO(3)1 and T are respectively a 3 x 3 rotation matrix and a 3 x 1 vector 

that uniquely define the rigid motion between the two camera positions. The matrix 

R is defined by a rotation vector D = [Dx Dy DzV such that 

(2.4) 

where (D/\) is the following skew-symmetric matrix 

(D/\) = (2.5) 

Equation 2.4 may also be written in a compact form using the Rodrigues' for-

mula [60] 

R = I sin e (n) 1 - cos e (D )2 
3 + e H/\ + e2 /\ (2.6) 

where e = IIDII. 
The fundamental rigid body motion equation 2.3 may also be written in projective 

space p3. In p3, the point P has homogeneous coordinate vectors X = [X Y Z IV 
and X' = [X' Y' Z' IV in the first (:F) and second (:F') reference frames, 

lSpecial orthogonal 3 x 3 matrices. 
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respectively. Then, equation 2.3 may be rewritten as 

X'=DX with (2.7) 

where Olx3 is the 1 x 3 zero row vector. Observe that the inverse relation may also 

be written as follows 

x = D-1X' with (2.8) 

Let p' be the projection of point P on the image plane of the second camera, and 

x' = [x' y' IV be the homogeneous coordinate vector. Then, following equation 2.2, 

we have 

Z'x' = KGX' (2.9) 

By plugging equation 2.7 in, the above projection becomes 

Z'x' = KGDX = KG'X (2.10) 

where 

(2.11) 

The same model can also be applied to the situation where the camera is fixed and 

the 3D rigid scene is moving in the space. In this case, equation 2.3 represents how the 

coordinates of a point P in the 3D rigid scene change to those of the next position with 

respect to the same camera reference frame. Keeping the relative motion between the 

camera and the scene unchanged, this case can also be viewed equivalently as the 

camera moves and the scene is still. 
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2.4 Pixel Coordinates and Camera Matrices 

2.4.1 Pixel Coordinates 

The image reference frame defined in section 2.2 has the same metric as the Euclidean 

camera reference frame F. Therefore, the point coordinates [x yV are metric co­

ordinates (usually in meters). However, the position of a point p in a real image is 

originally expressed in pixel units. We can only observe that a point is located at the 

intersection of column U x and row uy on the given digitized image, which gives the 

pixel coordinates of the point as [ux uy]. The process of establishing a correspondence 

between such pixel coordinates and metric ones is called camera calibration. 

Since the origin of the image reference frame is at the principal point c, it is 

necessary to know the location of that point in the image: c = [cx cyV (in pixels). 

Let dx and dy be the metric measurements of the Xc and Yc dimensions of one pixel 

in the imaging sensor, namely, the size of a pixel is dx meter along Xc axis and dy 

meter along Yc axis. Then the pixel coordinates u = lux uyV of a point on the image 

plane may be computed from its metric coordinates x = [x yJT through the following 

expressIOn 

{ 

Ux = x / dx + Cx 

uy = y / dy + cy 
(2.12) 

This model assumes that the two axes of the imaging sensor are orthogonal. If 

both coordinates are represented by homogeneous vectors x = [x Y l]T and u = 

lux Uy l]T in p2 respectively, the coordinate transformation equation 2.12 can also 

be written as 

U= 

l/dx 

o 
o 

o 
l/dy c y x 

o 1 

(2.13) 
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2.4.2 Camera Matrices 

Putting equation 2.13 together with equation 2.2 leads to 

ZTI=KGX with K= o 
o 

l/dy c y K = 

o 1 

f /dx 

o 
o o 

(2.14) 

1 

which represents the global perspective projection from point P of metric coordinates 

in p3 to point p of pixel coordinates on the image plane. Let fx = f / dx and fy = f / dy 

which measure the focal length f in pixels. Notice that for most imaging sensors 

currently available, pixels may be assumed perfectly square, which implies that dx = 

dy or fx = fy· But in the general, fx and fy can be different. With this denotation, 

the complete representation for the global perspective projection is 

fx 0 CX 

ZTI=KGX=PX with K= 0 fy cy G = [13 03Xl] 
0 0 1 

(2.15) 

The matrix P = K G is called camera projection matrix and the matrix K is called 

camera calibration matrix. 

Similarly, if the camera undergoes a rigid motion transformation Rand T in 

space, the projection associated with the camera's new location is obtained from 

equations 2.10, 2.11 and 2.13 as 

fx 0 CX 

Z'TI' = KG'X = P'X with K= 0 fy cy G' = [R T] 
0 0 1 

(2.16) 

The matrix P' = KG' is the projection matrix associated with the second camera 

location. 
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2.4.3 Normalized Coordinates 

Consider a camera projection matrix decomposed as P = KG and let Z u = P X be 

the camera projection of a point with coordinates X in p3 to a point in the image 

with pixel coordinates u in p2. If the calibration matrix K is known, its inverse 

can be applied to the point u to obtain the point x = K-1u. Then Z x = G X, 

where x is the image point expressed in normalized coordinates. It may be thought 

of as the image of the point X with respect to a camera transformation G having the 

identity matrix 13 as calibration matrix. The projection matrix K- 1 P = G is called 

normalized camera projection matrix in which the effect of known calibration matrix 

is removed. If the world coordinate frame to represent X = [X Y Z l]T is the 

same as the camera reference frame, which implies G = [13 03Xl], the normalized 

coordinates are simply x = [X/Z Y/Z l]T. 

2.5 Camera Calibration 

The assumption throughout this chapter has been that the camera is an ideal pinhole 

camera. Thus the projected point p in the image is on the line that joins point P 

in space and camera center Oc. However, real cameras do not have pinholes, but 

lens. This assumption will not hold for real cameras because lens will introduce 

certain amount of distortion in the image. The distortion makes the projected point 

to appear at a slightly different position on the image. The following expression is a 

simple first-order model that captures the distortion introduced by lens: 

pinhole projection 

b= l::] = a(1 + k,llaIl 2
) radial distortion (2.17) 

U= l ::] pixel coordinates 
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where kc is called radial distortion iactor. This model is also called first-order symmet­

ric radial distortion model [11, 92, 91] ("symmetric" because the amount of distortion 

is directly related to the distance of the point to the principle point c). Observe that 

the systems ( 2.17) and ( 2.15) are equivalent when kc = 0 (no distortion). The 

parameters Cx, Cy, ix, i y, kc are called camera intrinsic parameters. 

Therefore, if the position of the point P is known in camera reference frame, one 

can calculate its projection onto the image plane given the intrinsic camera parameters 

Cx, Cy, ix, i y and kc· That is known as the direct projection operation and denoted 

by u = II(X). However, most 3D vision applications require to solve the "inverse 

problem". That is to map pixel coordinates u to 3D world coordinates [X Y Z]T. 

The only nontrivial aspect of this inverse map computation is in computing the vector 

a from b. This step corrects the image measurements to those that would have been 

obtained under a perfect "pinhole" camera model and is named distortion compen­

sation. For relatively small distortion, the distortion compensation can be very well 

approximated by the following equation 

b 
a~ ------------~ 

1 + kc II l+k:llbl12 112 

(2.18) 

Therefore, once the intrinsic camera parameters cx, Cy, ix, iy,kc are given, the pro­

jective ray joining camera center Oc and point P in space can be inversely computed 

from the pixel coordinates of projected point p on the image plane. 

The procedure to recover the intrinsic camera parameters is called camera cali­

bration. A standard method is to acquire an image of a known 3D object and search 

for the set of parameters that best matches the computed projection of the object 

with the observed projection on the image. The reference object is also called cali­

bration rig. Since the camera parameters are inferred from image measurements, this 

approach is also called visual calibration. This technique was originally presented by 

Tsai [92, 91] and Brown [11]. An algorithm for estimation was proposed by Abdel­

Aziz and Karara [1]. 

Figure 2.3 shows an example of calibration image when using a planar rig (checker 
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Figure 2.3: Example of Camera Calibration Image with a planar calibration rig (checker 
board pattern). 

board pattern). 

Notice that although the geometry of the calibration rig is known (i.e., the mutual 

positions of the grid corners in space), its absolute location with respect to the camera 

is unknown. Therefore, before applying the set of equations ( 2.17) to compute the 

image projection of every corner in the structure, it is necessary to find their 3D 

coordinates in the camera reference frame F. For this purpose, a reference frame 

is first attached to the rig (called the object frame), in which all the corners Pi 

(i = 1, ... , N) are represented with the known coordinates:X:. This set of vectors 

is known since the intrinsic rig structure is known. Then, the coordinate vector x: 
of Pi in the camera frame F is related to ~ through a rigid motion transformation: 

Vi = 1, ... ,N (2.19) 

where Rc and Tc define the pose of the calibration rig with respect to the camera. 

See Figure 2.4. 

More unknown parameters Rc and T c have been added to the calibration problem. 

Those parameters are called extrinsic camera parameters since they depend on the 

pose of the calibration pattern relative to the camera. 
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3D Rigid transformation 
-:::-=:i -:::-=:i-
Xc = RcXo +Tc 

Camera reference frame 

Figure 2.4: Camera Calibration System. This figure illustrates the case where a planar rig is 
used for calibration. 

Let Dc be the rotation vector associated to the rotation matrix Rc (see equa­

tion 2.4). Then, the complete set of unknowns to solve, or degree of freedom (DOF), 

for camera calibration is 

• Focal length: ix, i y (2 DOF) 

• Principal point coordinates: cx, cy (2 DOF) 

• Radial distortion factor: kc (1 DOF) 

• Calibration rig pose: Dc, Tc (6 DOF) 

Let Pi (i = 1, ... ,N) be the observed image projections of the rig points Pi and 

Ui = [UiX uiy]T be their respective pixel coordinates. Experimentally, the points Pi 

are detected on the image using the standard Harris corner finders [29]. 
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Then the estimation process consists of finding the set of calibration unknowns 

(extrinsic and intrinsic) that minimizes the reprojection error. Therefore, the solution 

to this problem may be written as 

N . 2 

{ix, i y , cx, Cy , kc, Dc, Tc} = argmin L Ilui - IT(RcX: + Tc) II (2.20) 
i=l 

where Rc = e(~L'\), ITU· is the image projection operator defined in equation 2.17 

(function of the intrinsic parameters ix, i y , Cx, cy and kc ) and II . II is the standard 

distance norm in pixel unit. This nonlinear optimization problem may be solved using 

standard gradient descent technique. 

2.6 Feature Detection and Tracking 

Given two images captured by the camera at different locations, it is essential to 

find out the correspondent points p and p' projected from the same point P in space 

onto the two images, respectively. In the other words, it is necessary to recognize the 

point p (observed in the first image) on the second image as p', which is the so-called 

correspondence problem. However the correspondence problem is not always easy 

to solve for any kind of points. A point-feature is defined as a point that can be 

easily recognized from one frame to the other. In this section, we describe a method 

to automatically detect and track point-features in a sequence of images. The basic 

technique to solve the correspondence problem is brightness constancy, which assumes 

that the brightness surrounding a feature point keeps constant across the image frames 

in the sequence. 

Many algorithms have been proposed to perform this task. 'vVe will concentrate on 

a well-known algorithm proposed by Lucas and Kanade and then refined by Tomasi 

and Kanade. It relies upon a differential technique, which is therefore effective only 

when the displacement across frames is small. When this assumption is not satisfied, 

however, it is possible to apply the same technique to the coarse-to-fine pyramid of 

lmages. 
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2.6.1 Feature Detection 

First of all, it is not easy to identify single pixels, so a small neighborhood or a window 

W(x, y) is associated to each point with coordinate vector [x yjT on an image. If a 

feature window has constant brightness, then it looks like a homogeneous patch and 

cannot be localized in a different image. If the window has a brightness gradient, then 

it is possible to localize its correspondence in a different image only in the direction 

of this gradient, since the image motion normal to the gradient does not modify the 

brightness pattern of the window patch. This is the well-known aperture problem. 

Therefore, in order to be able to solve the correspondence problem, a feature window 

should have significant gradients along two independent directions. Such a window is 

called reliable window. Let J(x, y, t) be the brightness of the image at the point [x y]T 

at time t, and \l J(x, y, t) = [8I(~~y,t) 8I(~~y,t)jT be the spatial gradient calculated at 

that point, then the feature window is reliable if and only if 

O"min ( J \l J(x, y, t) \l J(x, y, tf dx dY) > T 

W(x,y) 

(2.21) 

where O"min denotes the smallest singular value of a matrix. The point p with coor­

dinate vector [x yjT is defined as a feature point if W(x, y) is a reliable window. 

With a preset threshold T, the point features are those satisfying equation 2.21 and 

detected by searching through all the pixels in the image. 

2.6.2 Feature Tracking 

The feature points are tracked to the next frame under the brightness constancy 

constraint. Let v = [vx Vy]T be the feature displacement from time t to t + 1. The 

brightness constancy is simply expressed as 

J(x, y, t) = J(x + vx , y + vy, t + 1) (2.22) 

Take the first-order Taylor expansion of the right-hand side and the above con-
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straint becomes 

aJ(x, y, t) aJ(x, y, t) aJ(x, y, t) _ 0 
o:l Vx + o:l Vy + o:l -uX uy ut 

(2.23) 

In matrix format, it is 

J( )
T- __ aJ(x, y, t) 

V x, y, t v - at (2.24) 

Since this is a scalar function of two unknown variables, it does not define a unique 

displacement. Right multiply the above equation by V J and integrate it over a small 

window W(x, y) 

J VJ(x,y,t)VJ(x,y,t?vdxdy=- J VJ(x,y,t)aJ(~ty,t)dXdY (2.25) 

W(x,y) W(x,y) 

the constraint equation is augmented to a rank-two vector equation. Assume the 

displacement vector is constant at every point in the window W(x, y), the above 

integration can be simplified as 

where 

D 

e 

Dv=e 

J V J(x, y, t) V J(x, y, t? dx dy 

W(x,y) 

- J J( ) aJ(x, y, t) d d 
V x,y,t at x y 

W(x,y) 

(2.26) 

(2.27) 

(2.28) 

The displacement can be estimated if D is invertible. This invertibility condition 

is exactly the same as that defined in equation 2.21, which all the detected feature 

points satisfy. 

In order to further achieve sub-pixel accuracy, an iteration can be performed as 

(2.29) 
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D-1 e 

J vI (I(x, y, t) - I(x + vrl, y + vtkl , t + 1)) dxdy 

W(x,y) 

(2.30) 

(2.31 ) 

where [k] means the kth iteration step. In general, the brightness values should be 

interpolated to get the intensity at location (x + v1kl , y + v1kl ) since it is not usually 

on the pixel grid. 

2.6.3 Coarse-to-Fine Strategy for Tracking 

All differential techniques fail when the displacement across frames is bigger than a 

few pixels. One possible solution to this problem is to apply coarse-to-fine strategy: 

1. build a pyramid of images by smoothing and downsampling the original images 

2. select features at the finest level of definition and propagate the selection to all 

the other ones 

3. track the features at the coarser level to get the displacement 

4. propagate that displacement to the finer level and use this new one as an initial 

step for the sub-pixel iteration 

5. start from the coarsest level and repeat the last two steps till reaching the finest 

level 

We have implemented the whole procedure from feature detection to tracking in 

real time on a Pentium PC. 
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Chapter 3 ANew Geometrical 

Interpretation of Trilinear Constraints 

3.1 Introduction 

3.1.1 Motion and Structure Recovery 

The recovery of three-dimensional motion and structure from a sequence of image 

frames is one of the classical problems in computer vision. The problem is gener­

ally posed as: given a camera undergoing unknown rigid motion and observing a 

scene represented by points and/or lines, how can one recover the 3D camera motion 

and the scene structure from the correspondent projected positions of points and/or 

lines in multiple images? These projected points and/or lines in images are called 

features. Section 2.6 described an algorithm to detect point features and find their 

correspondents between images by tracking. A method to detect line features can 

be found in [12] and their correspondence between images are usually established by 

matching [56]. 

The primary work towards 3D motion recovery can be traced back to Longuet­

Higgins's paper [48] in 1981. The concept of essential matrix and epipolar constraint 

was first introduced in that paper and a quasi linear algorithm was proposed to recover 

3D motion from correspondent point features between a pair of frames (2-views). It 

was followed by extensive research in the 1980's in motion and structure estimation 

from 2-views, and numerous new algorithms were developed [93, 105, 108, 99]. Sen­

sitivity to noise was reported in [15, 93] and error analysis was studied in [101]. The 

properties of the essential matrix were mainly elucidated in the turning of 1980's 

to 1990's [42, 55, 40]. At this point, all the work is based on the assumption that 

the camera is calibrated, i.e., the intrinsic parameters of the camera are known and 
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the features can be represented by their normalized homogeneous coordinates. The 

generalization to the uncalibrated situation was developed in the early 1990's inde­

pendently by Faugeras et al. [16, 18] and Hartley et al. [30, 34]' where the epipolar 

constraint is represented by the so-called fundamental matrix. Detailed analysis of 

linear and nonlinear techniques with respect to different object functions for estima­

tion of the fundamental matrix can be found in [50]. All of these approaches can 

be categorized as batch methods for motion and structure estimation from 2-views in 

the sense that each pair of views is not related to the other pairs in the long im­

age sequence. Therefore the estimation from any newly formed pairs of views can 

only be performed independently. In contrast to batch methods, recursive methods 

were proposed by Soatto et al. [77, 78] and McLauchlan et al. [58], where the motion 

parameters change temporally from frame to frame under a dynamical model. 

Motion and structure estimation from multiple views (more than 2) was initially 

studied on line features in 1990 by Spetsakis and Aloimonos [84], who first introduced 

trilinear constraints and the concept of trifocal tensor arose from 3-view observations. 

Weng et al. [102] proposed some linear and nonlinear algorithms for the reconstruction 

from line features for calibrated cameras. It was later shown to be equally applicable 

to the uncalibrated case by Hartley [36]. Meanwhile Shashua in his independent 

work [70] introduced a set of trilinearity conditions concerning the image coordinates 

of correspondent point features in three views for uncalibrated cameras. At that time, 

the set of coefficients of trilinear constraints, which is later referred to as "trifocal 

tensor", was not considered as a tensor, but rather a set of three 3 x 3 matrices. 

The notation of tensor was first adopted by Vieville and Luong [95], while the name 

"trifocal tensor" was first introduced by Hartley [31, 32]' who also showed in the same 

papers that the scene reconstructions from point features and from lines features arise 

from a common trilinearity framework and share the same trifocal tensor. 

In subsequent work, properties of the tensor have been investigated. In particular, 

Faugeras et al. [19] studied the algebraic and geometric dependency between bilin­

ear and trilinear constraints, Triggs [90] described the mixed covariant-contravariant 

behavior of the indices and Shashua et al. [72] described the geometry of the homo-
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graphies encoded by the tensor. Further geometric properties of the tensor were given 

by Papadopoulo et al. in [62]. 

To compute the trifocal tensor and further estimate structure and motion, a linear 

method was first given by Hartley [32] where experimental results of estimation from 

both point and line features are reported. An iterative algebraic method based on 

the linear method for estimating the tensor was also proposed by Hartley [33]. Torr 

et al. [89] developed a nonlinear algorithm for computing the maximum likelihood 

estimate of the trifocal tensor which is parameterized using six point correspondences. 

Another parameterization of the tensor was proposed by Faugeras et al. [20] which 

also led to a nonlinear method for tensor estimation. 

Following the study of 3-view geometry, quadrifocal tensor and qualinear con­

straints were discovered by Triggs [90] for the 4-view motion and structure estima­

tion, and their properties were described in several papers [90, 19, 73, 38]. Then, it 

was shown by Faugeras and Mourrain [19] that, for a 3D point with its correspondent 

projections in an arbitrary number of images, there are only three types of algebraic 

relations between the coordinates of image points: bilinear, trilinear and quadrilin­

ear. It was further proved that quadriliear constraints are redundant since they are 

algebraically dependent on the trilinear ones [19, 39], and trilinear constraints are 

algebraically dependent on bilinear ones when the centers of the cameras do not lie 

on a straight line [39, 53]. Much simpler proofs for these algebraic dependency were 

shown by Ma et al. [51], who also found the existence of nonlinear constraints for 

mixed points and lines in the same paper. Both these algebraic relations and the fact 

that trilinear constraints are necessary for the reconstruction from line features lead 

us to focus on the study of bilinear and trilinear constraints. 

Although numerous linear and nonlinear methods have been proposed for recon­

struction from 2-views or 3-views, in presence of image measurement noises of fea­

tures, what is the optimum strategy? This problem was originally addressed by 

Weng et al. [102, 100], who proposed the maximum likelihood estimation of motion 

and structure from 2-views and compared linear algorithms against their proposal. 

The constraint generated by the maximum likelihood estimator is called reprojection 
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error. Szeliski et al. [87] also addressed the optimal estimation issue by minimizing 

the reprojection error based on a linearized model. Kanatani [47] addressed the opti­

mization problem in general, and gave some vision examples of 2-views as particular 

cases. However, the solutions provided by these algorithms depend on the initial 

conditions [100] and only guarantee convergence to local minima [100, 87]. Soatto et 

al. [76] presented a provably convergent algorithm which can lead to global solution 

under certain conditions without imposing restrictions on initial conditions. Ma et 

al. [52] then analyzed the sensitivity and robustness of different linear and nonlinear 

techniques and showed that the optimal estimation using reprojection error function 

can be practically approximated by two other commonly used methods: minimizing 

the statistically normalized epipolar constraints, and minimizing the geometrically 

normalized ones. The optimal strategy, i.e., minimizing the reprojection error, was 

also applied to the 3-view reconstruction [35]. 

3.1.2 Motivation to Our Work 

Our attention focuses on developing a geometrical understanding of trilinear con­

straints. Trilinear constraints are linear with respect to both image coordinates 

and elements of the trifocal tensor. Therefore directly estimating the trifocal tensor 

from the trilinear constraints produces an efficient linear algorithm for reconstruction. 

However, as algebraic equations, the trilinear constraints do not have obvious geomet­

rical interpretations. In a noiseless case, the algebraic equations are exactly satisfied 

by all the points. In the presence of noise, however, the residual errors generated 

by minimizing the constraint equations may vary dramatically from point to point. 

Thus, each point carries its own reliability that should be appropriately accounted for 

when building the cost function to minimize. The philosophy is similar to applying 

appropriate weights to different observation points. If the weights are not chosen 

properly, it is very likely that the best estimation will not be achieved. In that sense, 

one may think that pure algebraic constraints, taken in a least squares fashion, are 

not reliable to use from a statistical point of view. Other geometrically meaningful 
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algorithms [20, 89, 35] were proposed, but they are more complicated with much 

higher computational cost, and usually still need the linear method as the first step 

to converge to the correct solution. Hartley then showed in [33] that directly min­

imizing the algebraic trilinear constraints without additional weighting coefficients 

does in practice give satisfying estimation results. To explain and understand this 

fact is the primary goal of this chapter by providing a geometrical interpretation to 

the trilinear constraints. 

We revisit the trilinear constraints from the point of view of 3D structure depth 

and show that they are naturally weighted constraints enforcing depth equivalence of 

the point in space. A clear geometrical interpretation of the weight function is pre­

sented. We show theoretically, as well as experimentally, that the standard trilinear 

algebraic cost is almost equivalent to the optimally weighted depth matching cost. 

An extension to the uncalibrated case is also given. It provides a criterion to select 

a set of independent trilinear constraints. In addition, we propose a reliable scale 

propagation scheme that is insensitive to the measurement noise in the image point 

coordinates. 

This chapter is organized as follows. Section 3.2 gives the background and brings 

up the main problem that this chapter tries to solve. The geometrical interpretation 

follows in the next section. In section 3.4 the scale propagation scheme is proposed. 

Experiments are reported in section 3.5. We briefly extend the work to the uncali­

brated case in section 3.6 which is followed by the conclusion. 

The majority work presented in this chapter was published in [22]. 

3.2 Background: Trilinear Constraints 

In this chapter we adopt the standard tensorial notations for trilinearities. The coor­

dinates of a point are specified with superscript and named contravariant vector, i.e., 

x = [Xl x2 ... xn]T. An element in its dual space is called a covariant vector and 

represented by subscripts, i.e., I = [h l2 ... In]T. In a similar manner, the ij-th 

element of a matrix is denoted by a~, where i and j represent the indices of its row 
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and column respectively, and the triply indexed quantity T;jk is named trifocal tensor. 

We also use the usual covariant-contravariant summation convention in this chapter: 

any index repeated in covariant and contravariant forms implies a summation over 

the range of index values, i.e., xili = xlh + x2l2 + ... + xnln = xTL 

In this chapter we consider point features only. Suppose a point P with homoge­

neous coordinates X = [X Y Z 1 V in p3 is imaged in three views as point p, p' and 

p", respectively (see Figure 3.1). The corresponding projected points p B p' B p" 

are denoted by the homogeneous coordinate vectors as x B x' B x", and the camera 

projections for the three views are described as 

zx 

Z'X' 

Z" x" 

PX 

p'X 

p"X 

(3.1) 

(3.2) 

(3.3) 

It is well known that the camera projection matrices can be reconstructed from 

multiple views only up to a 3D projective transformation [32]. Therefore without 

loss of generality it can be assumed that p = [13 03Xl]. To save readers the trouble 

of counting primes, we denote the camera matrix pI by pI = [a~] = [A a4], where 

aj are the elements of pI, A is a 3 x 3 matrix denoting the left three columns of 

pI and the vectors aj are the j-th columns of P'. The ranges for the indices i and 

j are i = 1, ... ,3 and j = 1, ... ,4. Similarly the camera matrix P" is denoted by 

To recover the camera matrices, it is necessary to find out what constraints there 

are on the corresponding image points. The three back-projected rays from the camera 

optical centers to image points in each view must all meet in a single point in space, 

the 3D point P that projects to the corresponding points in the three images. Since 

in general three arbitrary lines in space do not intersect at one point, this incidence 

condition provides a genuine constraint on sets of corresponding points. However, in 

p3 lines do not have a convenient representation. Therefore, to explore the constraint, 

it is easier to represent the back-projected rays via the intersection of planes in p3. 
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Figure 3.1: Geometry of 3-View Projection. A point P is projected in three views as point 
p, pi and p", respectively. 

Let us first consider one view. Given a point on the image plane p2 with homo­

geneous coordinates x = [Xl X2 x 3V, there are infinite lines passing through this 

point on the image plane. Among these lines, three canonical ones that have only 

one variable in each of their coordinates are 

X3 0 X2 

h= 0 12 = X3 13 = _Xl (3.4) 

_Xl _X2 0 

All other lines passing through x are linear combinations of any two lines from 

these three. 

A line I in p2 can be back-projected to p3 as a plane containing the camera 
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center and the line. If the camera has projection matrix P, the back-projected plane 

is 7r = pT 1. Therefore, the planes from the three lines 11 , 12 and 13 are 7r1 = pT 11 , 

7r2 = pT 12 and 7r3 = pT 13 , respectively. Figure 3.2 illustrates the geometrical 

relationship of these three lines and planes. 

For the first view with the projection matrix P 

constructed from image point x = [Xl X2 x 3V are 

X3 0 

0 X3 

7r1= 7r2 = 
_Xl _X2 

0 0 

[13 03X1], the three planes 

X2 

_Xl 

7r3 = (3.5) 
0 

0 

The planes constructed from the point x' = [XIl X'2 X'3V on the second image 

plane with projection matrix pI = [a~] are 

X'3 a 1 - XIl a 3 
1 1 

X'3 a 2 _ x '2 a 3 
1 1 

x '2 a 1 - XIl a 2 
1 1 

X'3 a 1 - XIl a 3 X'3 a 2 _ x '2 a 3 X'2 a~ - XIl a§ 
-I 2 2 -I 2 2 -I (3.6) 7r 1 = 

x'3 a§ - XIl a~ 
7r2 = 

X'3 a§ - X'2 a~ 
7r3= 

x '2 a 1 - XIl a 2 
3 3 

x'3 a ! - xllal X'3 a 2 - x '2 a 3 
4 4 x '2 a 1 - x ll a 2 

4 4 

Similarly, the planes constructed from the point x" = [X"1 X"2 X"3]T in the third 

image with projection matrix pll = [b~] are 

X"3 b1 - X"1 b3 
1 1 

-II 
X"3 b~ - X"1 b~ 

-II 
7r 1 = 

X"3 b1 - X"1 b3 
7r2 = 

3 3 

X"3 b! - X"1 bl 

X"3 b2 _ X"2 b3 
1 1 

X"3 b§ - X"2 b~ 

x"3 b2 - X"2 b3 
3 3 

X"3 b~ - X"2 bl 

-II 
7r3 = 

X"2 b1 - XIIl b2 
1 1 

X"2 b1 - XIIl b2 
2 2 

X"2 b1 - X"1 b2 
3 3 

(3.7) 

x"2b1 - XIIl b2 
4 4 

All these nine planes should contain the 3D point P. In general, any three planes 

meet at a single point, but this point do not usually locate in another arbitrary 

plane. Therefore, the condition to let all nine planes meet at point P is equivalent to 

enforcing that any four planes of the nine intersect at this point. These four planes 
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Reference frame :F 
(view 1) 

Reference frame :F 
(view 1) 

Reference frame :F 
(view 1) 

p 

p 

Figure 3.2: Lines and Planes. Three lines h, h, h which pass through point p in the first image 
and their corresponding planes 7i\, 7r2, 7r3 are shown in three plots, respectively. 
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should be chosen in such a way that two are generated from one same view and the 

other two from the rest two views, respectively. All other combinations are either 

trivial or not using three views. Without loss of generality, it can be assumed that 

two planes are from the first view. Any two planes from 7rl,7r2 and 7r3 intersect at 

the same line, the projection ray joining camera center and image point x. Therefore, 

the set of four planes can be chosen as 7rl, 7r2, 7r~, 7r~, where r = 1,2 or 3 and s = 1,2 

or 3. Geometrically, the plane 7r~ meets the plane 7r~ at a line 7r~ 1\ 7r~ in p3 and 

7rl meets 7r2 at the projection ray of the first view as 7rl 1\ 7r2. The constraint of 

four planes intersecting at one point is equivalent to that the projection ray 7rl 1\ 7r2 

meets the line 7r~ 1\7r~ at one point (see Figure 3.3). This constraint can be expressed 

algebraically as 

det( [- - -/ -II]) = 0 7rl 7r2 7r r 7r s (3.8) 

where det() is the determinant of a square matrix. 

Choosing different set of 7r~ and 7r~ ( r E (1,2,3) and s E (1,2,3) ), and expanding 

the constraint 3.8 results in a set of nine algebraic equations, which are called trilinear 

constraints or trilinearities [32] 

where the trifocal tensor is defined as 

(3.10) 

The trilinear cost functions £1 ijlm are conveniently defined here for future reference. 

Different derivations of trilinear constraints can be found in [32, 72, 19]. Notice that 

these constraints are not independent. Although there are three back-projected planes 

7r~ for the second view, only two of them are independent, and the same is true for 

the planes 7r~ in the third view. Hence, there are 4 linearly independent trilinearities 

in equation set 3.9. 
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Figure 3.3: Trilinear Constraint. The projection ray in the first view 7r1 !\ 7r2 should meet the 
intersection line 7r~ !\ 7r~ at point P in space. 
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Every term in the trilinear constraints involves a coordinate from each of the three 

image points. The camera projection matrices are embedded in the trifocal tensor, 

and the trilinear constraints are linear in each entry of the tensor. The state-of-the-art 

technique to recover the projection matrices is to estimate the trifocal tensor first [32] 

and then retrieve the projection matrices from the tensor. Details of retrieving the 

projection matrices are described in [35]. 

In real image sequences, due to measurement noises on the image coordinates, 

equations 3.9 will not be exactly satisfied by all the points. A linear technique is 

to minimize the residue errors of the constraints over the trifocal tensor T/k. The 

27 entries of the trifocal tensor are not arbitrary but satisfy certain constraints. A 

trifocal tensor is said to be "consistent" or "satisfying all internal constraints" if there 

exist three camera matrices P = [13 03Xl], pI and pI! such that ~jk corresponds to 

the three camera matrices according to equation 3.10. The internal constraints can 

be enforced by parameterizing the tensor with minimal 18 parameters [20, 62, 89] or 

solving a constrained linear algorithm [33]. The internal constraints and properties of 

the trifocal tensor are not the main concern of this chapter, for more details, please 

check the related references. Here we generally describe the internal constraints for 
jk Ti as Sr. The linear method to identify the unknowns [32, 33] is 

(3.11) 

The term L':Pi means summation over all the points Pi and the term L':ijlm is 

the summation over 4 independent trilinearities with proper choices of i, j, l, m as 

in equation 3.9. The trilinear constraints are pure algebraic equations satisfied by 

the noiseless corresponding points in three views. No geometrical interpretation has 

been established for them in literature. In the presence of measurement noises, the 

residue errors generated by such algebraic constraints are not predictable and may 

vary dramatically from point to point. 

The best estimate of trifocal tensor may be obtained from the maximum likelihood 

solution which minimizes reprojection error. Given a set of point correspondences 
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Xi B X~ B x~' in three views, the reprojection error is defined as 

~ d(- ~)2 d(-' ~')2 d(-" "'::''')2 ~ ~,~ + ~,~ + ~,~ 
Pi 

(3.12) 

where the points ~i B x~ B x~' exactly satisfy the trilinear constraints 3.9 for the 

estimated trifocal tensor and are the true projected positions of 3D point Pi in three 

VIews, d(x, y) is the Euclidean distance between two points x and y on the image 

plane. To minimize the reprojection error, one needs to introduce further variables 

Xi = [Xi Yi Zi]T corresponding to each 3D point Pi. The minimization is performed 

over both the unknown structure and the unknown tensor: 

{ "jk X X}* - . ~ d(- ~)2 d(-' ~')2 d(-" ~")2 (3 13) 'i , 1, ... , N - arg jk mEl --; ~ Xi, Xi + Xi' Xi + Xi' Xi . 
Ti EST,Xl, ... ,XN Pi 

The reprojection error has clear statistical (maximum likelihood) and geometrical 

(error measured in image) interpretations. However, on the other hand, it is nonlinear 

and the minimization needs to be done iteratively in a much larger parameter space, 

which leads to much higher computational cost compared with the linear method from 

equation 3.11. In addition, the nonlinear minimization of reprojection error should 

be initialized with the estimate from linear method since otherwise it may converge 

to anyone of many local minima. In [33], Hartley showed that surprisingly the quasi 

linear method actually gives results very close to those from the nonlinear method. 

The performance of the algebraic trilinear constraints is obviously beyond the scope 

that pure algebraic equations can reach. Here arises an interesting question: do the 

trilinear constraints have any geometrical meaning? Except for their algebra, no work 

along this line has been shown in any literature yet. This is what we are going to 

explore in this chapter. 

In the following sections, we assume that the camera is calibrated. The camera 

matrices are normalized projection matrices as P' = [a;] = [A a4] = G' and P" = 

[b;] = [B b 4] = G" and X B x' B x" are normalized image coordinates. Under this 

assumption, the matrix A and the vector a4 represent the rotation and translation 
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respectively from the first camera reference frame to the second one. Similarly, Band 

b 4 are the rotation and translation from the first camera to the third. The extension 

to the uncalibrated camera will be briefly discussed in section 3.6. 

3.3 Geometrical Interpretation of Trilinear Con-

straints 

We investigate the problem by rederiving the trilinear constraints from three-dimensional 

structure point of view. 

Claim 1: The trilinear constraints in equations 3.9 are equivalent to depth matching 

constraints multiplied by geometrically meaningful weight. 

Let us decompose the triple views into two pairs of views, (view 1 and 2) and 

(view 1 and 3). The depth Z of the 3D point P in the first camera reference frame 

can be estimated from both pairs of views. Denote the depth Z reconstructed from 

the first pair by Za, and from the second pair by Zb. In the absence of measurement 

noises, both pairs of views should give same estimates of depth, Za = Zb. To obtain 

Za and Zb, consider the pair (view 1 and 2) first. The camera projection of the first 

view is Za x = p X with P = [13 03Xl], from which we can write the coordinate 

vector of 3D point P as X = [ZaxT l]T. Substituting this expression in the second 

camera projection equation gives 

" - [ ] [Za
x
] Z X = p' X = A a4 1 (3.14) 

From this relation, the depth of the point P in these first two views, Za and Z', 
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can be estimated by solving the following so-called triangulation equations 

alxk -xtl 

[~1 
a l 

4 

ak xk _X'2 a2 
4 

a%xk _X'3 a3 
4 

(3.15) 

From the other pair of views, (view 1 and 3), a similar triangulation equations 

can be written as 
bIxk _X"I 

[::1 =-

bl 
k 4 

b2 k _X"2 b2 
kX 4 

b3 k _X"3 b3 
kX 4 

(3.16) 

Considering all three views together, we may enforce the depth of the point from 

either pair of views to be identical: 

(3.17) 

Equation 3.17 is called depth matching constraint. We are very aware that such 

depth matching constraint in 3D space is not statistically optimal for motion estima­

tion compared with the reprojection error function 3.12, neither is the linear method 

shown in equation 3.15 and 3.16 for triangulation [37]. However, we can modify the 

constraint to a reasonable and reliable one by applying the probabilistic ally optimal 

weight as shown later in equation 3.25. The interpretation of the trilinear constraints 

will be based on that optimally weighted depth matching constraints. 

Each triangulation set has 3 equations, one of them is redundant. Therefore, 

taking any two (i,j) from equations 3.15 and any two (l,m) from equations 3.16 to 
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compute Za and Zb, the depth matching constraint becomes 

0= E2 ij1m = NZa _ NZb 

DZa DZb 
(3.18) 

[ x'j _X'i] r:~] [ x"m -x",] r:;] 
[ -x'j X'i] r abxk] [ _x"m r b' Xk ] XIII] k 

aJ Xk bmxk 
k k 

For convenience NZa and DZa denote the numerator and denominator in the ex­

pression of Za and similarly for Zb. For simplicity we do not specify superscript ij and 

lm for them. Different choices of (i,j) and (l, m) result in nine different matching con­

straints. By multiplying the product of the two denominators DZaDzb on both sides 

of equation 3.18, we get again the same trilinear constraints shown in equation 3.9. 

That is 

(3.19) 

Therefore, the trilinear cost function E1 ijlm can be viewed as generated from the 

depth matching constraint E2 ij1m but weighted by the factor 

ijlm - D D 
Wtri - Za Zb (3.20) 

The importance of the weight Wtri (subscript "tri" represents "trilinear") only 

depends on its absolute value. Therefore, we can always enforce the same sign on 

DZa and DZb so that Wtri is positive. To understand the geometrical meaning of Wtri, let 

us start from its factor DZa. The normalized coordinate vector x = [X/Z Y/Z 1] in 

p2 can be viewed as a vector in 3D Euclidean space from camera center to projected 

image point. The vector Ax transforms x from view 1 into view 2 so that it is 

represented in the same second camera reference frame as vector x'. Taking their 

(i, j) components is equivalent to projecting the vectors onto the i - j plane (for 

example, 1 - 3 plane is the X - Z plane) in the second camera reference frame. 

Without considering the order of the three axes, we can describe these projected 



38 

vectors in view 2 as 

atxk X,i 

Xproj = aixk k 
-I Xproj = xli (3.21) 

0 0 

Consequently, taking the (i, j) equations from equations 3.15 for triangulation is to 

estimate the depth from a 2D triangle by projecting the 3D triangle onto this i - j 

plane to get rid of one redundant equation. 

The value of DZa is exactly the norm of the cross product of these two projected 

vectors: 

(3.22) 

IIX~roj X Xproj II = Ilx~roj 1IIIXproj II sin e 

where e is the angle between vectors x~roj and Xproj. 

Since we project the triangle onto the i - j plane, equation 3.22 contains both 

the information of 3D structured triangle and the goodness of the choice of i - j 

as the projection plane. If the projection is ill conditioned, e.g., the i - j plane is 

perpendicular to the 3D triangle plane, the 3D triangle will be projected only as a 

line and DZa will be zero. If the projected triangle keeps the shape of the 3D triangle, 

which implies Ilx~roj II and Ilxproj II have relatively constant values, then the angle e will 

represent the confidence or reliability of the triangulation. The term sin e changes 

from 0 to 1 while the directions of two vectors X~roj and Xproj change from collinear to 

perpendicular. The more collinear the two vectors are, the more ill conditioned the 

depth triangulation is. This is because small noises on image point coordinates that 

change the orientations of the vectors may cause large errors on the depth estimates. 

Mathematically when the two vectors approach collinear, e -+ 0, we have DZa -+ 0 

from equation 3.22 which consequently leads to Wtri -+ o. Thus a very small weight 

Wtri will be applied to this feature point. Same interpretation can be applied to the 

effect of DZb to Wtri. In the study of motion reconstruction from 2-views, Spetsakis and 

Aloimonos [85] had same intuitive observation that the algebraic epipolar constraint is 
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equivalent to a weighted function of another geometrical constraint, but unfortunately 

there is no further study on the relationship and the weights. 

Claim 2: The weight Wtri is close to the statistically optimal weight for the depth 

matching constraint. 

Let us model the feature localization noise on the image plane as independent 

identically distributed Gaussian N(O, 0";). For each point, the variances of the trian­

gulations from two pairs of views with projected planes (i - j) and (l- m) respectively 

can be derived and denoted as O"~a (ij) and O"~b (lm). According to equation 3.18, the 

depth matching cost function £2ij1m has the variance1 

(3.23) 

This variance encodes the reliability of both depth estimates through triangulation 

and depth matching. It can vary dramatically from point to point, which means 

the residue errors generated from their 3D depth matching constraint may be very 

different from point to point. Very small noises on the unreliable points may generate 

large residue errors, therefore, directly minimizing such residue errors over all points 

is not a feasible scheme for motion estimation. From statistic point of view, to recover 

the motion parameters, the constraint should be weighted by 1/0" £2tj1m so that the 

weighted constraint implies the same variance for all points. The scheme to minimize 

this optimally weighted depth matching constraint may be written as 

(3.24) 

(3.25) 

Wopt is called optimal weight for depth matching. 

To obtain the relationship between the trilinear weight Wtri and the optimal weight 

lThe correlation between Za and Zb is ignored 



40 

Wopt, one needs to investigate first how Dz reflects the term -L in one triangulation. 
(JZ 

Figure 3.4 illustrates a 2D projected triangulation viewed on its projection plane. 

Here X~roj' Xproj and T represent the projected vector of x', Ax and 3:4 on the plane. 

The depth triangulation equation is Z' x~roj = ZXproj + T. Without loss of generality, 

X~roj and Xproj are assumed to have unit length for all features. If (i = (1, 2),j = 3) 

is chosen to be the projection plane for the triangle, this assumption introduces an 

approximation of at most 15% error for a field of view of 60°. 
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Figure 3.4: 2D Triangulation Illustration. 

Since the vectors are on the 2D projection plane, they can be denoted by two­

dimensional vectors as 

-, . = [cosal x proJ 
sina 

T (3.26) 

where (a, (3) E (0, n) represent all possible camera orientations. The depth Z can be 
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easily obtained from this parameterization as 

z = t sina 
sin(f3 - a) 

and our goal is to check the relationship between its denominator 

D z = sin(f3 - a) 

(3.27) 

(3.28) 

and its reliability. Let us assume that Gaussian noise N(O, ( 2
) is added to both 

a and f3 independently. This assumption transfers the noise model N(O, a;) of the 

measurements on the image plane to the rotation angle, which is reasonable since 

readers can verify, for the camera with 60° view angle, a varies only in the range 

[0.75ax ax]. From the first order Taylor expansion, the variance of depth Z is related 

to the variances of independent variables a and f3 by 

(3.29) 

(3.30) 

Equation 3.30 comes from our previous assumption that a~ = affi = a 2
. The two 

derivative terms can be computed from equation 3.27 as 

az t sin f3 
(3.31) aa sin2 (f3 - a) 

az t sin a cos(f3 - a) 
(3.32) -

sin2 (f3 - a) af3 

Substituting equations 3.31 and 3.32 in equation 3.30, one can obtain the reliability 

of Z as 
1 

az 
(3.33) 

Equation 3.33 intuitively hints that 1/az is strongly related to D~. The objective 

of this reliability weight is to "reject" unreliable points by assigning to them smaller 
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Figure 3.5: Mesh Surface I. General view of (3 and D~ vs. their corresponding reliability 
quantity l/(Jz. More details are shown in Figures 3.6 and 3.7. 

weight. Observe that the maximum of its denominator is only V2to". Therefore, for 

unreliable points, the cause of their reliability quantity I/O"z -+ 0 must be D~ -+ o. 
Since Dz is a function of e = (3 - Q, we pick 2 independent angles (3 and e 

to represent the triangle. Figure 3.5 shows in a form of 3D mesh plot the relation 

between D~ = sin2 e, (3 and 1/0" z for all possible such triangles in 2D image plane. 

The values of the constants t and 0" only effect the scale, but not the shape of the 

plot. Therefore, in this and the following mesh plots, they are arbitrarily set at t = 10 

and 0" = 0.01. 

Observe that the majority of the mesh in Figure 3.5 is a planar structure, except 

for a small part of a long tail. This tail corresponds to the very unrealistic situation 

that the feature point is extremely close to the camera and has very small depth. 

Let us define baseline as the distance between projection centers of the two views, 

namely, t in our 2D triangulation model. Now if we add a very reasonable constraint: 

the depth must be larger than 10% of the baseline, and we draw the graph again, 

the relationship is shown in the left plot in Figure 3.6. Let us take a side view along 

the (3 axis: what we see from the right plot in Figure 3.6 is that for all possible 

values of angle (3 which corresponds to all possible qualified triangulations, there is 

an approximately linear relationship between D~ and 1/0" z except for the top part. 
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Figure 3.6: Mesh Surfaces II: under the constraint that depth is larger than 10% of the baseline. 
( Left): General view of (3 and D~ vs. their corresponding reliability quantity l/CJz. (Right): Side 
view along (3 axis. D~ vs. l/CJz over all (3. Approximate linearity is observed between D~ and 
l/CJz. 
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Figure 3.7: Mesh Surface III: under the constraint that depth is larger than 70% of the baseline. 
(Left): General view of (3 and D~ vs. their corresponding reliability quantity l/CJz. (Right): Side 
view along (3 axis. D~ vs. l/CJz over all (3. Strong linearity is observed between D~ and l/CJz. 
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Now we require further that the depth must be at least 70% of the baseline. The 

new relationship is shown in Figure 3.7. A linear relationship between D~ and l/O"z 

is clearly observed from the right plot. The baseline in the motion estimation is 

actually very small, so this constraint on depth is practically trivial and satisfied by 

most realistic triangulation cases. 

The narrower band and sharper end around 0 in the side view plot in Figure 3.7 

indicate that the more unreliable is the triangulation, the better does D~ represent 

l/O"z up to an overall scale factor. As a weight function, it satisfies the criteria to be 

able to "reject" correctly the unreliable points. Therefore, D~ is a good approxima­

tion of the reliability quantity 1/0" Z up to an overall scale for the triangulation. By 

computing the first-order derivative of 1/0" Z as a function of D~ at D~ = 0, we derive 

a closed form expression for the proportionality factor between the two quantities: 

D~ ~ V2tO"I sin,81 (Tlz. In the case t = 10,0" = 0.01, the maximum slope shown in 

Figure 3.7(right) is about 0.14. 

In general, we can assume that the motions are smooth so that O"Za ~ O"Zb' DZa ~ 

D Zb. Then we have Wopt ~ 1/ ( V20" Za) and Wtri ~ D~a· Therefore, Wtri is approxi­

mately linear to Wopt. Consequently, Wtri is a good substitute to the optimal weight for 

depth matching constraint and trilinear constraints are quasi equivalent to the opti­

mal weighted depth matching constraints. The clear geometrical meaning of trilinear 

constraints enables us to understand their excellent performance in 3-view motion 

estimation. 

3.4 Scale Propagation Scheme 

In order to explore the performance of the depth matching constraint under different 

weighting conditions in the following experiment section, we only leave the relative 

scale s = ::~::: as the unknown motion parameter which makes it easier for comparison 

and also demonstrates the problem well. The other motion parameters, i.e., motions 

between each pair of two views with unit length translation are given by the standard 

2-view motion estimation scheme. Denote the point depth Z by Zau and Zbu which are 
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triangulated respectively from the first pair (view 1 and 2) and the second pair (view 

1 and 3) whose motions are recovered independently assuming unit length translation. 

The variances of Zau and Zbu are denoted by (J~au and (J~bU. Consequently the depth 

matching constraint 3.17 can be modified as 

(3.34) 

As the only unknown parameter, the relative scale s is invariant to all the points 

Pi while the depth Zau, Zbu are functions of points ~. The least squares solution for 

s which minimizes L:p; (Zau - SZbu)2 is 

(3.35) 

However, this is an asymmetric solution because we can also write equation 3.34 

as a function of 1 I s 
1 
- Zau - Zbu = 0 
S 

(3.36) 

Then we obtain the least squares solution for II s which minimizes L:p/Zaul s -

Zbu)2 as 
1 L:p; Zau Zbu. 

L:p; Z;'u 
(3.37) 

s* 

Both equations 3.35 and 3.37 give reasonable estimates for s* though they min­

imize different cost functions. A practical solution is obtained by taking the square 

root of the product of these two estimates as 

s* = 
L:Pi Z;'u 
L:p; Z;u 

Trilinear constraints are also linear functions of the scale s 

Cl ij1m - N D N D - 0 G - Zau Zbu - S Zbu Zau-

(3.38) 

(3.39) 
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The symmetric solution for s using trilinear constraints is 

'EPi 'Eijlm(Nzau DZbu )2 

'EPi 'Eijlm(Nzbu DZau)2 
(3.40) 

The solution for s using the optimally weighted cost function according to equa­

tions 3.24 and 3.25 is 

(3.41) 

During the derivation, the scale s appearing in the weight function is approximated 

by the individual scale Za'u/ Zbu, which gives the exact individual weight function and 

generates a linear estimator. The same solution can also be reached by another 

method: weight the individual scale by the inverse of its variance, i.e., 

'EPi 'Eijlm ( s(Pi , ijlm) / (J;(p;,ijlm) ) 

'Ep; 'Eijlm ( 1 / (J;(p;,ijlm) ) 

This can be verified easily. 

(3.42) 

The solution for 1/ s using the optimally weighted constraint can be similarly 

derived. Unlike equation 3.35 and 3.37, to find the symmetric solution for S~Pt' there 

are no common terms between s* and 1/ s* that can cancel each other out, because 
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two weights Wopt,s, Wopt,l/s are different: 

Wopt,s Z2 2 + Z2 2 bu O"z au O"z au bu 

(3.43) 

Wopt,l/s Z 2 2 + Z2 2 bu 0" Zau. au 0" Zbu. 

(3.44) 

The optimal solution S~Pt is much more complicated than s* in equation 3.38 and 

s;ri in equation 3.40. 

(2.:P; 2.:ijlm W~Pt,s Zbu Zau)(2.:Pi 2.:ijlm W~Pt,l/S Zau Zau) 

(2.:Pi 2.:ijlm W~Pt,s Zbu Zbu) (2.:Pi 2.:ijlm W~Pt,l/S Zbu Zau) 

3.5 Experiments 

3.5.1 Simulated Translation 

(3.45) 

This experiment is designed to demonstrate the basic results in section 3.3. A total 

of 500 features are uniformly distributed inside a 60 x 60 x 60 em3 cube, which is 

put in front of the first view 70 em away from the camera center. Therefore, the 

3D point coordinates in the camera reference frame of view 1 are in the range of 

X E [-30,30], Y E [-30,30]' Z E [40, 100] which corresponds to 73.7° view angle. 

The normalized homogeneous coordinate vector for point features on the image plane 

is x = [X/Z Y/Z IV. The camera translates in the X - Z plane to its second 

(view 2) and third (view 3) positions respectively with T' = [1.5 0 1.5]T em and 

Til = [-3 0 - 3V em. The projection matrices are P = [13 03Xl], P' = [13 T'] and 

p II = [13 Til]. We make IIT"II twice larger than IIT'II here so that the triangulation 

from (view 1 and 3) is more reliable than that from (view 1 and 2). Points are 

projected onto the three image planes and Gaussian noise N(O, 0.002) is added to the 

normalized feature coordinates independently. 

Figure 3.8(a) and (b) show the relationship D~ vs. l/O"z of all the points Pi when 

the X - Z planes (i = l = 1,j = m = 3) are chosen as the projection planes for 
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Figure 3.8: Characteristic of weight functions in simulated translation experiment. 
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both triangulations. Each plot is approximately linear which confirms that D~ does 

represent well the triangulation reliability. Notice from the axes of the plots, the two 

triangulations have different levels of reliability and also different approximated slopes 

due to their very different baselines. This case is more complicated than the smooth 

motion which we assumed in the last part of section 3.3 to infer the relationship of Wtri 

and Wopt. However, Figure 3.S(c) shows that Wtri still varies linearly as a function of 

the optimal weight Wopt. In this experiment, the X - Z plane is the best for projection 

(Figure 3.S(a)(b)). If we project the 3D triangles of points onto the Y - Z plane, the 

triangles will be deformed, especially for the points whose Y components are close 

to zero. Therefore the reliability of the depth estimation from such triangles will 

decrease dramatically. Figure 3.S( d) illustrates this effect, where the triangles in the 

pair (view 1 and 3) are projected onto the Y - Z plane (l = 2, m = 3). Reliability 

1/ a>"b shown in Figure 3.S( d) is four times smaller than that in Figure 3.S(b) where 

the same 3D triangles are projected on the X - Z plane. The dominant plane varies 

from case to case between the X - Z and Y - Z planes, but in general will not be 

the X - Y plane. 

3.5.2 Corridor Navigation 

When a camera is moving forward in an environment, the so-called epipoles, the point 

of intersection of the baseline between two camera positions with the image planes, 

of any two frames are close to the image centers. Therefore, the triangulation is ill 

conditioned for the feature points that appear close to the image center. In this case, 

it is crucial to appropriately reject those points by assigning to them a scalar weight 

close to zero. VVe test our strategy on a real image sequence taken with a calibrated 

CCD video camera mounted on a cart moving forward along a building corridor. 

The data are captured by Bouguet [S]. Features are detected and tracked using the 

algorithm described in section 2.6. A sample image with detected features is shown in 

Figure 3.9. The sequence contains 400 frames. For this experiment, we choose every 

fourth frame which generates a sequence of 100 frames with baseline four times longer 
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Figure 3.9: Sample Image in the Real Corridor Sequence. Black dots indicate the features 
detected on the image. 

than that of the original sequence. The sequence is difficult for motion estimation 

because the features in the far end of the corridor appear almost around the image 

center and their depth triangulations are not reliable at all. 

The motion parameters with unit length of translation between every two con­

secutive frames are estimated using the recursive Newton-Raphson method. Given 

those parameters, the relative scale between camera translations from time t - 1 to 

time t (T(t - 1, t)) and from time t to time t + 1 (T(t, t + 1)) for all t E (1,100) is 

recovered by three different schemes proposed in section 3.4: direct depth matching 

(equation 3.38), optimally weighted depth matching (equation 3.45), and trilinear 

constraints (equation 3.40). Here are some implementation details: the depth Z and 

its variance (T~ appearing in equation 3.38 and equation 3.45 are calculated by least 

square method using all 3 triangulation equations. Therefore summation ~ijlm is not 

necessary in equation 3.45. For the trilinear constraints, only 4 independent equations 

with combinations of i = (1,2), I = (1,2), j = m = 3 are used. Figure 3.10 shows the 

recovered scale s over time. Although we do not have ground truth for s, it should 

be around 1 since the cart was moving at approximately constant velocity. The first 

method (Figure 3.10(left)) does not give acceptable result because the estimated s 

oscillates dramatically between 0.5 and 3. However the scale estimation becomes 
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much more stable in its final phase, the reason is that the camera is approaching 

to the end of the hallway and the features located there are now projected far away 

from the image center. A big improvement is achieved by the second method (Fig­

ure 3.10(middle)) which uses Wopt as the weight of the depth matching. The result 

shown in Figure 3.10(right) demonstrates that the trilinear scheme is comparable to 

the optimal solution. 

3 3 3 
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Figure 3.10: Relative Scale s over Frames for Navigation Sequence. (left): s recovered by 

direct depth matching. (middle): s recovered by depth matching with optimal weight. (right): s 

recovered from trilinear constraints. 

Let us pick three frames within the whole sequence (frames 16, 17 and 18 in this 

example) and draw some relationship in detail. With X - Z as projection plane for 

both triangulations (i = l = 1, j = m = 3), Figure 3.11 (a) shows that D~ is almost 

proportional to the optimal reliability measurement 1/ (]" z. Figure 3.11 (b) shows that 

the trilinear weight Wtri is also approximately linear to the optimal weight Wopt,s. The 

property that both of them assign very small weights to the unreliable triangulations 

is a crucial factor that makes the trilinearly and optimally weighted scale recovery 

schemes successful. The other two projection planes are less informative since they 

are less important and less reliable than the X - Z projection plane in this example. 

Figure 3.11 (c) and (d) show how the weight relates to the depth and individual scale. 

The depth Za, Zb here are calculated using all 3 triangulation equations, therefore 

summation over (ijlm) is not necessary. According to Figure 3.11(c), as Za increases, 

D~a decreases. This provides a supporting argument to our analysis since a larger 

Za means that the point is closer to the image center, and therefore unreliable for 
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Figure 3.11: Characteristic of the trilinear weight functions of 3 views in navigation 
sequence. 

triangulation. It justifies the small value for D~a' Figure 3.11(d) indicates that larger 

weights are assigned to features with individual scales Za/ Zb close to the believed 

true scale 1, which makes the estimation of scale s using weighted schemes reliable. 

3.5.3 Rotating Rock Experiment 

Another experiment is done on a rotating rock sequence acquired by Bouguet [7]. A 

textured rock is placed on a turn table. Between two consecutive images, the rotating 

stage is turned by 2 degrees. A total of 225 frames are acquired. A sample image 

with detected features is shown in Figure 3.12. 
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Figure 3.12: Sample Image in the Rotating Rock Sequence. Black dots indicate the features 
detected on the image. 

For this sequence, the relative scale s is recovered reliably with or without weight­

ing factors. The three plots in Figure 3.13 are almost identical. The scale s varies in 

the range 1 ± 0.04, which is quite acceptable. 
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Figure 3.13: Relative Scale s over Frames for the Rotating Rock Sequence. (left): s 

recovered by direct depth matching. (middle): s recovered by depth matching with optimal weight. 

(right): s recovered from trilinear constraints. Three plots are similar because all points are weighted 

almost equally. 

The reason for the similar performance of scale recovery usmg either direct or 

weighted methods can be explained by Figure 3.14(a) and (b). As we expected, lin­

ear relationship is observed between D~a and 1/ aZa for single 2D triangulation, and 

between Wtri and Wopt,s for depth matching. Different from the previous navigation 
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experiment that has many features weighted close to 0, the ranges of the weight func­

tions in this experiment shown in Figure 3.14(b) are very small, Wtri E [1.4,2.1] x 10-3 

and Wopt,s E [0.35,0.5]. This indicates that all the features are almost equally reli­

able. Therefore, there is not much difference among the three different scale recovery 

schemes and they generate almost identical results. Figure 3.14(c) shows the relia­

bility of the triangulation if the Y - Z plane is chosen as the projection plane. The 

order of D2 goes down to 10-7 , which is trivial compared with that in Figure 3.14(a) 

(order of 10-3 ). If we pick one triangulation in the X - Z plane and another one in 

the Y - Z (i=l, 1=2, j=m=3) to form the depth matching (which is one of the 

9 trilinear constraints), the corresponding weight functions Wopt,s and Wtri shown in 

Figure 3.14(d) are 100 times smaller than that in Figure 3.14(b). Therefore, among 

the 9 trilinear constraints, only a few dominate the estimation. 

3.6 Extension to Uncalibrated Case 

For an uncalibrated sequence, let us simply assume Ix = Iy = I and the unknown 

calibration matrices be 

I 0 CX 

K' = Kif = I o cy 

o 0 1 

(3.46) 

The homogeneous pixel coordinate vector for point in the second image is denoted 

by ti', which relates to the normalized homogeneous coordinates as ti' = K' x'. Unlike 

the case of a calibrated camera, in the uncalibrated case the normalized vector x' can 

no longer be computed from pixel coordinate vector ti' since the camera matrix K' 

is unknown. The same is true for other views. Denote the new projection matrix 

for view 2 by P~ew = K' [A a4]. The camera projection for view 1 is kept the same 

as Zti = [13 03Xl] X and the camera projection for view 2 is Z' ti' = P~ew X. The 

same triangulation equation as equation 3.15 can be obtained except that x, x', A 

and a4 are substituted by ti, ti', K' A and K' a4, respectively. By choosing different 

(i, j) combination of 2 equations to estimate the depth, the denominator associated 
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to the uncalibrated case DZa,new is related to that of the calibrated case DZa as 

DZa,new = j DZa i = (1,2),j = 3 (3.47) 

(i=1,j=2) 

(3.48) 

The derivations are straightforward and omitted here. Equations 3.47 and 3.48 

illustrate how to choose the 4 independent trilinear constraints among the nine for the 

uncalibrated camera. If we assume Cx = cy = 0, the principal point is assured to be 

at the center ofthe image, then DZa,new = j2Dza for (i = 1,j = 2), which is weighted 

j times larger than the other two triangulation combinations (i = 1, j = 3) and 

(i = 2, j = 3). The focal length j is usually around 500-2000 pixels. When we form 

the trilinear constraint, the depth matching weight is Wtri = DZaDzb. The weight Wtri 

of the constraint with (i = I = 1, j = m = 2) will be r times larger than that of the 

calibrated case, while the weight of the constraint with (i = I = 1, j = m = 3) will only 

be j2 times larger than that of its corresponding calibrated case. Such unbalanced 

weight may affect the whole estimation using trilinear constraints. The influence 

of cx, cy is not as significant as j, however, the closer they are to zero, the better 

the results will be. Therefore, the proper choice for the set of independent trilinear 

constraints should be the 4 trilinearities with i = (1,2), I = (1,2), j = m = 3 out of 

the total 9 constraints for 3 views motion estimation with uncalibrated camera [71]. 

3.7 Conclusion 

In this chapter we find a new geometrical interpretation of the algebraic trilinear con­

straints. It is shown that minimizing the trilinear algebraic equations in a least square 

sense is a good approximation of minimizing a geometric error in Euclidean space with 

appropriate weight applied on every point. This fundamental result provides an ex­

planation as to why, in practice, there is no need of adding extra weighting coefficient 

to each trilinear constraint in order to achieve satisfactory motion estimates. In other 
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words, the sum of the squares of every algebraic equation is a valid cost function to 

minimize for estimating motion parameters. All the theoretical statements are fur­

ther supported by experimental results. One additional contribution in this chapter 

is a robust scheme to propagate scale information which is significantly insensitive to 

noise in the measurement data. Although most of the derivations are done assuming 

a calibrated camera, natural extensions of the results to the uncalibrated case are also 

provided. It is shown theoretically how to choose 4 independent trilinear constraints 

for reconstruction of motion and structure. 
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Chapter 4 

Motion 

Scene Segmentation from 3D 

4.1 Motivation 

An intrinsic assumption for the problem of three-dimensional motion and structure re­

covery discussed in the previous chapter is that the relative motion between a camera 

and its observed three-dimensional scene is rigid. However, in practice this assumption 

is easy to be violated and more often the camera observes mUltiple moving objects in 

the scene. In this situation, the reconstruction has to be decomposed into two stages: 

segment each object from the cluster, then recover the motion and structure for each 

separate object which undergoes a rigid motion. Scene segmentation remains a diffi­

cult topic in computer vision in all these years, but it is very important in studying 

the problem of structure from motion assuming multiple moving objects observed. 

Despite that there may exist many cues to be exploited for segmentation, such as 

texture, color, structure models, etc., motion is the most common factor contained in 

this kind of sequences and the cue we are going to explore in this chapter. 

Motion based segmentation can be classified into 2 major categories: 2D optical 

flow segmentation [44, 96, 97] and 3D motion based segmentation [106, 75, 79, 54]. 

Recent development in 2D segmentation applies the expectation-maximization (EM) 

algorithm [14] to segment and estimate the region-based optical flow. Either para­

metric [44, 96, 98] or non-parametric [97] 2D flow model is assumed. For the research 

of 3D structure and motion recovery, as shown in previous chapter, two and three 

views are the common framework to explore. However, it is too hard to consider the 

difficult segmentation task together with the complicated 3-view analysis at the same 

time. The common approach is to perform motion segmentation based on two views, 

which is also the framework that we take in this chapter. Therefore the input to our 
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motion segmentation system is the correspondent positions of point features on two 

image frames. 

Given the detected features and their correspondents in the next frame, we ob­

serve that in most cases the objects or their feature flow are separated very well 

from each other in space. For these cases, we propose a modified separation matrix 

method [79] by applying the normalized cuts [74] on the separation matrix to obtain 

global grouping indicator, and expected segmentation results are achieved. However, 

when the objects are overlapped spatially but undergo independent motions, such as 

Ullman's co-axial transparent cylinder demonstration, there will be no proper affinity 

to perform segmentation by that way. Pure underlying 3D motion becomes the only 

cue to segment the scene. We explore the EM algorithm to deal with such difficult 

cases and achieve excellent results. However, EM deals with highly nonlinear expres­

sion in 3D motion parameters, which only leads to convergence after many iterations. 

In addition, convergence to the global minimum is usually not guaranteed. To ef­

ficiently perform segmentation, it is reasonable to propose a combination method: 

the modified separation matrix scheme is first applied, then for the cases in which 

this approach fails to segment the scene correctly, the EM algorithm is applied in 

addition. The scheme is tested on vast number of synthetic image sequences. Results 

with real image sequence are also given in this chapter. The most closely related 

work for 3D EM based motion segmentation in literature is the paper by MacLean 

et al. [54], who use EM algorithm to cluster image patches based on their subspace 

motion constraints. 

A calibrated camera is assumed in our study. The chapter is organized as fol­

lows. In section 4.2 we describe the first step of our approach: separation matrix 

and normalized cuts grouping scheme. Section 4.3 presents the EM based 3D mo­

tion segmentation. The experiments are reported in section 4.4 and followed by the 

conclusion. 

The majority work presented in this chapter was published in [23]. 
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4.2 Separation Matrix and Normalized Cuts 

We first consider the case that rigid objects move independently in the image sequence 

and their spatial positions and motions are quite different. An example of the feature 

locations and velocities is shown in Figure 4.1 (a). To properly and quickly segment 

this kind of scene, we combine the separation matrix scheme [79] with the normalized 

cuts [74]. 

4.2.1 Essential Matrix for Two View Motion Estimation 

Denote the rigid relative motion between a camera and an object by the rotation about 

the axis D and translation T. Let (T /\) and (D/\) be the skew-symmetric matrices of T 

and D, respectively (see equation 2.5), and R = eCIT!\) be the rotation matrix of D. Let 

the Euclidean coordinate vector of a point Pi in the two camera reference frames be Xi 

and X~, respectively. The motion transformation between the two is then expressed 

as X~ = RXi + T. This point is imaged in 2-views with normalized homogeneous 
- -I 

coordinate vectors as Xi and x~, respectively. Since Xi = ZXi and Xi = Z'X~, the 

two image coordinate vectors relate to each other as ZI x~ = Z R Xi + T. The three 

vectors RXi, x~ and T are all represented in the second camera reference frame, and 

lie in the same plane. Algebraically, this coplanarity constraint of these three vectors 

can be expressed as 

( 4.1) 

where Q = (T /\)R is called essential matrix and equation 4.1 is called epipolar con­

straint. Epiploar constraint was first introduced by Longuet-Higgins [48] in 1981. 

Both T and D can be recovered from the essential matrix Q. Notice that equa­

tion 4.1 is linear with respect to the components of Q. If we interpret Q as a 9 x 1 

vector q obtained by stacking the 3 columns of the matrix Q on top of each other, 

we can rewrite the epipolar constraint as 

-T- 0 Xi q= ( 4.2) 
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Figure 4.1: Separation Matrix Scheme. (a) Feature positions and velocities. Different line 
widths of the flow represent different motions. (b) Separation matrix. The values of W, which are 
in the region (0,1), are represented uniformly by the 256 gray values between black and white. (c) 
Indicating vector y of normalized cuts. 

where Xi' a 9 x 1 vector, is a function of the components of Xi and x~. 

4.2.2 Separation Matrix 

Soatto [79] proposed a scheme to capture the grouping information in the so-called 

residual space. Due to the measurement noises of feature positions in an image and 

the error of motion estimation, epipolar constraint 4.2 is not exactly satisfied but some 

residual error Ei = xT q exists for each point Pi. For objects undergoing different rigid 

motions, the intuition in [79] is, if we pick up an arbitrary motion q, the residuals Ei 

corresponding to points which belong to the same group tend to cluster, especially 

when q is close to the true motion. Therefore, picking a motion family < qk > k={l:K} 

which produces a residual family Ci = [Eil Ei2 ... EiK] for each feature point Pi, one 

can construct a separation matrix W with the elements 

II"i - " '11 / K 
Wij = e- (T~ (4.3) 

The matrix W can also be viewed as affinity matrix between feature points. Its 

element Wij close to 1 implies features Pi and P j have high probability to belong to 

same group and Wij close to 0 means not. To choose the motion family < qk >k={l:K}, 

10 random motions in the motion space JR5 are picked. Notice that here we drop 

one dimension, the length of T, from the original JR6 motion space (n, T). This 
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corresponds to the well-known scale ambiguity which says that objects with the same 

shape, which are twice as big, twice as far and translate twice as fast, look identical. 

Therefore, the structure and motion can only be recovered up to a scale factor of the 

translation velocity and the depth of points. Usually we set IITII = 1 and model the 

motion parameters in jRs. The separation matrix generated from data in Figure 4.1 (a) 

is shown in Figure 4.1(b), where the value of TVij from a to 1 is represented by the 

gray scale from black to white in the graph. The vertical axis is the feature index i of 

Wij and the horizontal axis is the feature index j. Each row represents how a feature 

point Pi relates to the others. To allow one visually see this relationship from the 

separation matrix, the features are reordered in such a way that the first 100 points 

belong to one group, and the rest 100 features belong to another group. After the 

reordering, what we observe from Figure 4.1 (b) is two white blocks along the diagonal 

and two black blocks along the cross-diagonal of the separation matrix. Such matrix 

clearly shows the structure of groups. 

In [79], the proposed separation matrix is only used to initialize some filters for 

motion estimation and segmentation in the following way. Assume there are N fea­

ture points in the scene. For each point Pi at the initial time point t = 0, a cluster 

is generated by finding all points Pj whose association with point Pi, Wij , is higher 

than a preset threshold. Given these N clusters, N essential filters are then initial­

ized accordingly from them to estimate motion in a long sequence while outliers are 

consistently discarded and filters with similar motions are dynamically merged. For 

details, please refer to [79]. Unlike that work which performs the segmentation using 

a long sequence of image frames, we are interested in the more challenging question: 

how well can the segmentation be done with only two frames? In [79], only local 

grouping information at each point is extracted from the separation matrix. For 

global clustering based on this separation matrix W, we propose a modified method 

by applying normalized cuts method [74] to complete the separation matrix approach 

for segmentation. 
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4.2.3 Normalized Cuts 

Shi and Malik [74] proposed normalized cuts approach as an optimal graphical group­

ing algorithm. Normalized cuts treats W as an affinity matrix of a graph 11 which 

has two disjoint clusters A and B. The solution to the defined optimal cut criterion 

is obtained by solving for the second smallest eigenvector y of the generalized eigen­

value system: (D - W) Y = AD y, where D is a diagonal matrix with Dii = 2.:j W ij . 

The eigenvector y can then be the indicator of the partition and ideally will take 

two distinct values. One can continue with the same strategy to partition in each 

subgroup until y fails to have distinct values. Applying the normalized cuts to the 

separation matrix shown in Figure 4.1(b), we obtain the indicator vector y as shown 

in Figure 4.1 (c). The horizontal axis is the index of feature points, the vertical axis 

is the value of y. The two distinct values of y allows one to tell apart two groups of 

features right away. It should be pointed out that the ordering of feature points is 

only for the convenience of showing the separation matrix and results from normal­

ized cuts. In practice, two distinct values of yare obtained for the separation matrix 

generated from the randomly ordered feature points. 

4.3 Mixture Models for 3D Motion 

One of the problems of the modified separation matrix method proposed in the pre­

vious section is that it is based on some hypothetic spurious motions. We do not 

use the true motions that can be possibly estimated to segment the scene. The neat 

separation matrix we obtained so far is mainly because of the spatially well-separated 

feature positions and velocities in the 2D image plane. When the 3D motions in 

the scene are such that no partition information can be obtained from 2D feature 

motions, we have to investigate the case from pure 3D motion classification. 

Figure 4.2 is a demonstration of the 3D motion segmentation problem proposed 

in [94]. Two transparent cylinders are rotating about the same axis, but with opposite 

directions. Assume that If trackable features are placed uniformly on each cylinder. 
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Figure 4.2: Cylinder Demonstration. (a) is the structure of two cylinders in space. (b) shows 
their feature flows in the image sequence when they rotate about the same axis with opposite 
direction. Different line widths of the flows represent different motions. (c) Separation matrix. 

All of them are perspectively projected and can be viewed in the image because of 

the transparency. The positions and velocities of these N features are shown in Fig­

ure 4.2(b). It is very hard to tell the groups from these flows because they are totally 

mixed up, and that even for one cylinder, the 2D flows of features close to each other 

in the image may move along opposite directions. The straight separation matrix 

(see Figure 4.2(c)) fails to provide global grouping information in this demonstration. 

However, we propose an expectation-maximization algorithm based on 3D motions 

to solve this kind of difficult segmentation problems. 

4.3.1 Motion Segmentation Using Expectation Maximization 

We model the segmentation and estimation of multiple motion processes as a maxi­

mum likelihood estimation problem. Assume there are G independent motions in the 

scene. Each motion g E (1, ... , G) is modeled by its motion parameters Bg = (Tg, Dg). 

The feature points can be viewed as arising from a mixture of these G motion models 

in some proportions 1fg such that 2:~=1 1fg = 1. Let Zgi, a binary variable, indicate the 

membership of the point Pi belonging to motion model g. If Pi is moving under the 

motion model g, then Zgi = 1, otherwise, Zgi = O. Denote all the indicator variables 

for a point Pi as a vector Zi = [Zli Z2i ... ZCi]T. Let us adopt a few notations for 

simplicity: the set of motion parameters for mixture models is (} = (Bl' B2 , ... , Bc ), 
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the set of model proportions is 7r = (7r1' 7r2, ... , 7rG), and finally the homogeneous 

coordinate vectors for the imaged positions of point Pi on 2-views, Xi and x~, are 

denoted by Xi = (~, xD· 
The standard maximum likelihood estimation for the motion model parameters is 

to maximize the log-likelihood of the observed image data Xi (i = 1, ... , N), which is 

given by 

L(O,7r) log P(X1' ... , XN I 0, 7r) 
N 

L log P(Xi I 0, 7r) 
i=l 
N G 

( 4.4) 

(4.5) 

L log L P(Zgi = 1) P(Xi I Zgi = 1, Bg, 7rg) (4.6) 
i=l g=l 
N G 

L log L trg P(Xi I Zgi = 1, Bg) (4.7) 
i=l g=l 

It is difficult to tackle this optimization problem directly since it involves logarithm 

of sum. The expectation-maximization (EM) algorithm proposed in [14] provides an 

indirect solution. Let us treat the unknown membership Zi as hidden data which 

together with observed data Xi consists of the complete data. Thus the log-likelihood 

of the complete data is [57] 

log P(X1' ... , XN, Zl, ... , ZN I 0, 7r) 
N 

L log P(Xi' Zli, ... ZGi 10, 7r) 
i=l 
N G 

L log II (P(Xi, Zgi = 110, 7r))Z9i 
i=l g=l 
N G 

L log II (7rg P(Xi I Zgi = 1, Bg)Y9i 
i=l g=l 
N G 

L L Zgi(lOg trg + log P(Xi I Zgi = 1, Bg)) 
i=l g=l 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

The derivation from equation 4.9 to equation 4.10 comes from the fact that there is 
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one and only one element Zgi in the vector Zi = [Zli Z2i ... zCiJT such that Zgi = 1, 

and all other elements in this vector are equal to zero. 

The EM algorithm proceeds iteratively in two steps, E-step (for expectation) and 

M -step (for maximization), to maximize a sequence of following functions 

( 4.13) 

N C 

= L L E[Zgi I elk], 7r[k], Xi] (log 7rg + log P(Xi I Zgi = 1, eg )) ( 4.14) 
'i=l g=l 

where E[.] refers to the expectation value. The parameters e,7r in Q are the ones 

we are optimizing for, and e[k], 7r[k] are the optimized values from the previous kth 

iteration. In the E-step, the function Q( e, 7r, e[k], 7r[k]) is computed, which indeed is 

to compute the expectation value E[Zgi I elk], 7r[k], Xi]' In the M-step, the parameters 

e, 7r are updated by maximizing Q. In detail, 

E-Step: 

M-Step: 

E[z -I elk] 7r[kJ X-] gl , ,I 

P(Z - = 11 e[kJ 7r[k] x-) 
gl " 1 

P(x- Z - - 11 elk] 7r[kJ) I, gl - , 

",C P(x- z .. = 11 e[kJ 7r[k]) L....J=l I, JI , 

[k] ( I - e[kJ) 7r 9 P Xi Zgi - 1, 9 

",C [k] ( I _ [kJ) 
L....j=l 7rj P Xi Zji - 1, ej 

i=l 

N 
~ [k] _ 

arg ~ax L-t 19i log P(Xi I Zgi - 1, eg ) 

9 i=l 

( 4.15) 

(4.16) 

( 4.17) 

(4.18) 

( 4.19) 

( 4.20) 

EM algorithm starts from random initialization and iteratively maximizes the 
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function Q over the model parameters. It has been proven [14] that 

if 

then 

Q(O[k+1l , 1T[k+1l, O[kl , 1T[kl ) 2: Q(O[kl , 1T[kl , O[kl, 1T[kl) 

L(O[k+1l, 1T[k+ll ) 2: L(O[kl , 1T[kl ) 

( 4.21) 

( 4.22) 

Therefore EM algorithm guarantees that the log-likelihood of observed data can 

never decrease after an EM iteration step. This means that EM theory guarantees 

the series of model parameters 0, 1T obtained by maximizing the function Q converges 

to those corresponding to a local maximum of L( 0, 1T). Therefore, this EM approach 

is a maximum likelihood estimation. The computed 19i' which is the conditional 

expectation of Zgi from equation 4.15, takes on continuous values between 0 and 1 

and can be viewed as a soft membership assignment. It tells at each iteration step how 

likely a point Pi belongs to a motion process g. The segmentation result is finally given 

after convergence by setting Zg*i = 1 and Zji = 0, V j i=- g*, where g* = arg maxg 19i. 

4.3.2 3D Motion Constraint 

The tricky part left is to build the posterior probabilistic model, P(Xi I Zgi = I, Bg), to 

judge how well each motion model fits each feature point. To our knowledge, Gaussian 

distribution is most preferable for EM algorithm with simple solution. If we define a 

constraint Cgi(Bg , Xi) = 0 which is satisfied by the true motion and noiseless feature 

measurements, then we would further assume that the error space of this constraint 

caused by non-accurate motion estimation or image measurement noises is a Gaussian 

distribution 

( 4.23) 

Equation 4.2 as a constraint is widely used in estimating the rigid motion between 

two views. One approach is to find the least square estimate of q in the linear space of 

its elements, and then project it back to the motion space. Alternatively, one can also 

directly estimate motion parameters instead of q which is a nonlinear minimization 
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Figure 4.3: Line Fitting. 

problem: (T*, 0,*) = argmin7',IT 2:i CxTq(T, 0,))2. Intuitively one may want to use 

this constraint as Cgi directly in the segmentation problem since it is a criterion to 

judge if an estimated motion fits observed data. However, things are not the same in 

multiple motions as in a single motion case. 

Let us demonstrate the difference of fittings between single and multiple groups in 

a lower dimensional case -line fitting. In Figure 4.3(a), '*'s are noisy data generated 

from a planar line function. To fit a line to these data, we have two schemes. A 

line can be described as Ax + By + C = O. Similar to the motion estimation from 

equation 4.2, one method is to find nonzero coefficients A, B, C which minimize the 

residual of the line function constraint, i.e., 

( 4.24) 

The minimization is performed under the scale constraint A2 + B2 + C2 = 1 because 

the line function is unique only up to a scale. Construct a matrix E by row-wise 

stacking the vector [Xi Yi 1] for all points. It is easy to prove [17] that the solution 

for 4.24 is the unit norm eigenvector corresponding to the smallest eigenvalue of ET E. 

The fitted line is shown in Figure 4.3(a) by marker '0' which corresponds to points 

(Xi, yn, where y; are computed values from the estimated line function. 
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Another approach is to find the line which minimizes the sum of squares of the 

distances between points and the line 

(A* B* C*) . L (AXi + BYi + C)2 , , = ar mIn 
g A,B,C:A2+B2+C2=1. .J A2 + B2 

~ 

( 4.25) 

This is a nonlinear minimization problem and the fitted line is represented by 

marker 1+1 in Figure 4.3(a). It is clear from this figure that the two methods generate 

two almost identical fitted lines and both are reasonable solutions to fitting this one 

line data. 

Unfortunately this does not always happen in multi-line fittings. Figure 4.3(b) 

shows such an example. Another noisy line data Lb is added to the original one La, 

but we try to fit both of them together by only one line. What we expect is the 

fitting line is either at the middle of two line data La and Lb or close to one of them. 

The results from the two different methods 4.24 and 4.25 are shown as Lc and Ld, 

respectively, in Figure 4.3(b). One can see that Lc is quite far away from the original 

data set and Ld is very close to one of the two lines. Line Lc is then not acceptable 

in this case because it is too far from both lines. Also shown in Figure 4.3(b) is a 

line Le which minimizes the error along the Y axis and has a little larger error on 

the point-line distance than Ld. To treat x and y equally, Ld is obviously the best 

solution. This demonstration is equivalent to the initial step of EM algorithm when 

all points are assigned with almost the same weight 19i for the motion model g. As 

we all know, initialization is crucial in the convergence to the true motion. 

Motion segmentation can be thought as an extension of the line demonstration 

from ]R2 to ]R5 in motion space or ~8 in q space with the scale dimension dropped. In 

the M-step of EM, the only modification needed to be done is to estimate motion pa­

rameters for each model by putting different weights on different features. Therefore, 

in multiple motion fittings we have to avoid the unnormalized approach which only 

minimizes the residuals of the linear function. Instead we need to use some normal-

ized criterion similar to the one which minimizes the point-line distance. Therefore, 

the distance measured on the image plane from an image point to the epipolar line 
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Figure 4.4: Epipolar Geometry. 

becomes our choice. 

Figure 4.4 illustrates the epipolar geometry. Given the measurements Xi and x~ of 

feature positions in two views and the estimated 3D motion, we construct an epipolar 

line l~ which is the projection of the line joining Oc and Xi onto the second image 

plane. The distance between the corresponding feature point measurement x~ and 
-, 

this epipolar line Ii in the second image is 

d' 
2 

( 4.26) 

where the notation (Q xih with subscript k means taking the kth component of that 

vector. This distance is called epipolar distance. If there are no measurement noises 
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on the feature positions and Q = (T /\)R is the true motion, the epipolar distance will 

be zero and image point x~ will be on the line ( Otherwise, the epipolar distance tells 

how far the measured point x~ is from its most likely true position with the current 

motion estimate if we assume the measurements Xi in the first image is accurate. 

This nonzero distance d~ is caused by error in either motion or image measurements, 

and is measured directly on the image plane. Therefore it is a normalized criterion 

to be minimized. However, notice that one can also construct another epipolar line 

Ii by projecting the ray joining the second camera center O~ and image point x~ back 

onto the first image plane. Another distance di is generated between image point Xi 

and this epipolar line Ii in the first image, where the measurements x~ in the second 

image is assumed to be accurate. Ideally Xi will be on the epipolar line Ii, and di is 

equal to zero if there is no any measurement noise and motion estimate is accurate. 

Though both are normalized criteria, neither of the two epipolar distances is good 

enough by itself since when one is minimized the other is usually not minimized at 

the same time. Therefore, di
2 + d~2 is used as the constraint to be minimized for 

motion estimation. This will be our criterion to judge how well the current motion 

parameters fit the feature measurements Xi and x~. By dropping the constant focal 

length, the constraint Cgi can be written as 

( 4.27) 

Gradient decent method is applied to minimize this nonlinear constraint over its 

motion parameters in N5. 

In summary, the 3D motion segmentation scheme we propose is as follows: 

1. Construct the separation matrix and use normalized cuts to group the features. 

2. Check the correctness of the grouping by estimating the motion of each group 

and examine the generated residues. If all segmented features do belong to this 

group, the residues should be very small. 
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3. Otherwise, apply 3D motion based EM algorithm with random initialization to 

segment the scene. With the proposed probabilistic model for the constraint, 

the EM algorithm becomes 

E-Step: 

( 4.28) 

M-Step: 

( 4.29) 
i=l 

(4.30) 

where Cgi is given by equation 4.27. 

4.4 Experiments 

In this section we demonstrate some experiments that we have done to validate our 

method. Sections 4.4.1 and 4.4.3 present only the experiments for which the 3rd step of 

our method (EM based motion segmentation) is needed to perform the segmentation. 

The other cases are trivial, whenever the separation matrix can clearly separate the 

motions, the normalized cuts will give the correct solution. 

4.4.1 Cylinder Demonstration 

The transparent cylinder demonstration mentioned in section 4.3 is a difficult problem 

in segmentation since there are no 2D cues that can be retrieved. However, it turns out 

that our 3D motion based EM algorithm works very well on this problem. To make 

it more challenging, the two cylinders are set to have the same size. This is difficult 

even for human observers to distinguish the different motions. These two cylinders 

are generated in 3D space with the same dimensions as 0.5 m radius, 1 m height 

and 1.5 m far away from the camera, but are rotated to opposite directions about 
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their common axis by 10 degrees between two consecutive frames. Each cylinder is 

represented by 100 features randomly generated by simulation. The two projected 

images are generated before and after the rotation assuming the focal length is l. 

Figure 4.5( a) shows the feature positions and velocities. The corresponding sep­

aration matrix shown in Figure 4.5(b) does not provide any useful information for 

segmentation. Figure 4.5(c) shows the grouping result by our EM based motion seg­

mentation assuming no measurement noises to feature positions. The two parts of 

Figure 4.5 ( c) indicate two motion models 9 = (1, 2) for the two opposite rotations 

and each vertical line represents the value 19i of each feature point at convergence. 

Similar to Figure 4.2, to visually show the results, the features are reordered such that 

the first 100 belong to one cylinder and the rest to the other one. Notice that hi = 1 

when i :::; 100 and l2i = 1 when i > 100. Therefore, the EM algorithm gives perfect 

segmentation results for this noiseless example. If independent Gaussian noises with 

0.002 standard deviation are added to the image measurements of all features accord­

ing to the feature tracking scheme [3], the resulted 19i shown in Figure 4.5(e) is not 

as perfect as that in Figure 4.5 (c) due to the noises but the group segmentation is 

still quite clear. 

Another interesting experiment [94] is to abruptly rotate the common axis by an 

angle e (0° :::; e :::; 90°) in X - Y plane while the two cylinders are still oppositely 

rotated about the axis by 10 degrees between two frames as before. Figure 4.5(d) 

shows the flow when e = 90°. It looks messy, but in fact there are only two different 

3D motions which are possible to be separated in the motion space. Our 3D EM 

segmentation scheme also works fairly well in this case. The results are similar to those 

shown in Figure 4.5(c) and (e) without or with measurement noises. As discussed 

in [98], the number of models can be estimated at the same time while grouping is 

done. Figure 4.5( c) and (e) are actually obtained from initialization with a higher 

number (g :::: 3) of models which finally merged into the correct number of groups. 

This experiment has been repeated several times with different random features and 

noises, occasionally some spurious models may remain without being merged into the 

correct groups. However in these cases, there are very few feature points assigned 
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Figure 4.5: EM Based Motion Segmentation of Two Co-axial Cylinders Rotating to 
Opposite Directions. (a) Feature flows for two same-sized cylinders rotating about the same 
axis to opposite directions. (b) Separation matrix does not collect grouping information. (c) (e) 
Membership results 19i of the 3D motion segmentation using EM algorithm without or with Gaussian 
noises (0.002 standard deviation) added to the feature position measurements. (d) Feature flows 
for abruptly rotating the common axis 90° in X-Y plane between two frames while also rotating 
cylinders as before. (f) Starting from higher number of models, usually the models will converge to 
correct number of models as shown in (c) and (e), but occasionally we may get this result too. 

to the spurious groups. Figure 4.5(f) shows an example with one spurious group 

remained. The vast majority of the features are segmented properly. 

4.4.2 Rotation, Translation and Full Transformation 

The purpose of designing and conducting this experiment is to show how the two 

different segmentation schemes perform under different situations of data distribu­

tion and 3D motions. The schemes are tested on a vast number of synthetic image 

sequences. 

According to the motion transformation equation X: RXi + T in 3D space, 

two series of simulated experiments are generated for two point clusters undergoing 

different rigid motions. Each experiment is repeated 200 times. In the first series 
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Figure 4.6: Typical Feature Flow from Two Point Clusters. (a) with pure rotation. (b) 
with pure translation. (c) with full transformation. 

called 'Sl', the structures of both clusters are random points in a 1 x 1 x 1m3 box 

whose center is 1.5 m far away from the optical center. The focal length is assumed to 

be 1 m. The separation matrix approach and EM based motion segmentation scheme 

are tested under the following different motion conditions: 

Pure Rotation. Two clusters of points undergo pure rotations about different 

axes passing through the optical center, Rl =1= R2 =1= 13 and Tl = T2 = 03xl· 

In practice, since this is a singular condition with q = 09Xl, we add very small 

translation to T 1 and T 2 to make sure the motion can be estimated once group­

ing is done. See Figure 4.6(a). 

Pure Translation. Two clusters of features undergo the pure translations with-

out any rotation, Rl = R2 = 13 and Tl =1= T2 =1= 03xl· See Figure 4.6(b). 

Full Transformation. 

See Figure 4.6(c). 

All the motion parameters in each scenario are chosen as uniformly distributed 

random variables in the range (-0.25 0.25) which can generate motions both small 

and large. 

There are two methods to determine the variances 0'9' g E (1, G) in the constraint 

probabilistic model. One is to estimate each 0'9 at every iteration in order to keep it 
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continuously updated. Another way is to fix it according to some prior knowledge. 

Each experiment set is run twice, with the variances updated or fixed at every step. 

The second series 'S2' is the same as the first one except that the original two 

point clusters are already well separated from each other in space. One is shifted to 

be centered at [0.5 0.5 1.5], and the other one at [-0.8 0.3 1.5]. 

A statistical summary of all the experiments is shown in table 4.1. 

PureR PureT Full R+ T 

Sl, SM 67% 60% 41% 

Sl, EM, Upa 95% 5% 77% 

Sl, EM, Fxa 97% 5% 88% 

S2, SM, 90% 99% 52% 

S2, EM, Upa 42% 38% 45% 

S2, EM, Fxa 50% 51% 66% 

Table 4.1: Percentage of Successful Segmentation under different conditions. 'EM': EM 

based scheme. 'SM': Separation matrix scheme. 'UPO"': Update variance. 'FxO"': Fix variance. 

The table shows that the 3D motion based EM segmentation scheme works better 

for 'Sl' series than 'S2' under the conditions of pure rotation and full transformation 

while the modified separation matrix method shows opposite results. Under pure 

translation, the modified separation matrix outperforms the EM algorithm. The EM 

algorithm works better for pure rotation than translation. To some extent, the two 

methods are compensative to each other. Therefore, their combination, as outlined in 

section 4.3, will enhance the overall segmentation performance under most situations. 

Table 4.1 also illustrates that the EM approach with properly fixed variance has higher 

success rate than that with updated variance. 

4.4.3 Experiments with a Real Image Sequence 

A real image sequence with two moving objects is acquired and used for this experi­

ment. In order to obtain enough good features, objects are chosen with checkerboard 
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patterns. The object in the background moves both forward and backward. The 

foreground object is a box which is hung by a string and can rotate about the vertical 

axis. The sequence is shown to several people to test their ability in segmentation. It 

turns out that people have no trouble to separate the two moving objects. The key 

cues they can rely on are 3D motion, texture, shape, etc. 

Figures 4.7(a) and (b) are two image frames extracted from the sequence. They 

are 3 frames apart so that there is large enough motion in between. Assume the 

feature positions and their correspondents are known (here for convenience, the data 

are obtained manually), the feature flows are observed as shown in Figure 4.7(c). The 

background flow is divergent. The magnitudes of the flows of both the background 

and foreground objects are not uniform and spreading in a large range. Therefore, it 

is very difficult to perform the segmentation by 2D flow. So the separation matrix 

scheme, as the first step in our algorithm, does not give well-segmented groups. To 

illustrate the result, we reorder the features of the two groups without mixing them. 

The background features are in the first group. In Figure 4.7 (d) the separation matrix 

seems to show obvious lines between the four blocks, but inside each of at least three, 

it is not even close to uniformly dark or white as the expected. Consequently, the 

normalized cuts vector (Figure 4. 7( e)) does not separate the two groups as two distinct 

values. 

Fig 4.7(f) shows the membership results of the two groups using the 3D motion 

based EM segmentation scheme. The two clusters corresponding to the feature posi­

tions in Figure 4.7(b), marked by '0' and '*', respectively, are shown in Figure 4.7(g). 

Though a few features are classified incorrectly, they do not have a membership value 

as high as the others. Collecting the most likely members for each group and estimat­

ing the undergoing motion, the depth of each feature can also be recovered. Since the 

relative scale factor between the two objects is known as ground truth, the structures 

of two objects with correct relative position can be reconstructed. The top view of the 

reconstructed structures is shown in Figure 4.7(h). The background plane is appar­

ently not parallel to the X-Y plane, so its feature points have variant depths. There 

are a few features on the background plane whose depth reconstructions are somehow 
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Figure 4.7: Plane-box Motion Segmentation. (a)-(b) Two frames in the image sequence. 
( c) Feature flows between frame (a) and (b). (d) Separation Matrix. (e) The indicating vector of 
normalized cuts cannot be separated as two distinct values. (f) Membership result of the motion 
segmentation scheme based on EM. (g) Same grouping result is shown for the features in frame (b). 
(h) Reconstructed scene structure. 
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ill conditioned in this case. The estimated structure for the foreground object looks 

excellent as two perpendicular planes. 

In this experiment, using matlab on Ultra 2/200 sun station, the EM approach 

takes 33 seconds to converge after 31 iterations, while the separation matrix method 

only takes about 3 seconds but failed in yielding any good result. 

4.5 Conclusion 

Motion segmentation is an essential step in the success of motion analysis. In this 

chapter, we described a combination method of improved separation matrix scheme 

and 3D motion based EM algorithm for scene segmentation concerning multiple mov­

ing objects. It is showed that the improved separation matrix by applying normalized 

cuts afterwards is an efficient approach in dealing with some motion segmentation 

problems. However, there are still lots of other very difficult cases where separa­

tion matrix scheme cannot provide correct grouping information any more. For these 

cases, we have developed a 3D motion based EM algorithm for scene segmentation. 

Experiments illustrate that to some extent these two methods are compensative to 

each other. Therefore, the combination approach we proposed herein is a more pow­

erful tool for scene segmentation. 
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Chapter 5 Human Motion Detection 

In Chapters 3 and 4, we discussed the general 3D motion segmentation and estimation 

problem. It is said to be "general" because there is no more assumption about the 

objects other than that each cluster of their representative feature points undergoes 

rigid motion. Here an individual object is not of the concern, but each individual 

3D motion process. As long as objects undergo the same rigid motion, for example, 

several different objects consisting of a still environment through which a camera 

is navigating, they are clustered as one single group and the unique undergone 3D 

motion is recovered. However, other factors of objects are not considered, such as 

object type, object shape, mutual relationship between feature points, etc. 

More often in practice we may be interested in a particular type of objects and 

carryon more interesting tasks on their motion analysis such as detection, tracking 

and recognition, etc. Human motion is one of the most common things we observe 

everyday and therefore attracts our attention to study. We are going to address the 

problem of human motion detection in this chapter, and devote the next one to human 

action recognition. 

The detection and recognition of human motion throughout these two chapters 

will only be based on 2D image sequences and the behind 3D model is not going be 

considered. 

5.1 Introduction and Motivation 

Perceiving the motion of a human body is not an easy job. First of all, the human 

body is richly articulated - even a simple stick model describing the poses of arms, 

legs, torso and head requires more than 20 degrees of freedom. The body moves in 3D 

and this makes the estimation of these degrees of freedom a challenge in a monocular 

setting [26, 41]. Image processing is also a challenge. People wear clothes which may 
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be loose and textured, and part of the body is usually self-occluded. All these make 

it difficult to identify limb boundaries, and even more so to segment the major parts 

of the body. However, it is surprising how the human visual system has evolved to be 

so good at perceiving Johansson's stimuli [45, 61] - a fairly poor information where 

each joint of the body is shown as a moving dot. 

Human motion perception may be divided into two phases: first, detection and, 

possibly, segmentation; and then tracking. Of the two, tracking has recently been the 

subject of much attention, and considerable progress has been made on it [67, 66, 26, 

28, 10]. On the contrary, detection (given two frames: is there a human body, and 

where?) remains an open problem. Current trackers have to be initialized either by 

hand, or by ad hoc heuristics. Song et al. [81] have focused on detection in the con­

text of Johannson stimuli. A method was proposed based on probabilistic modeling 

of human motion and on modeling the dependency of the motion of body parts with a 

triangulated representation, which makes it possible to solve the combinatorial prob­

lem of labeling body parts in polynomial time. Excellent and efficient performance 

of the method has been demonstrated on a number of motion sequences. 

However, the application of that work is limited to Johansson stimuli where all 

moving dots belong to the human body and there is no clutter and very limited oc­

clusion. In a realistic situation there is no guarantee that the body joints constitute 

good features that can be tracked easily by the early vision front-end. Moreover, 

significant occlusion and possibly large amount of moving clutters may be present. 

To solve these complicated problems, here we propose a scheme that extends Song's 

work to real images. The task we carryon is to detect human bodies by their mo­

tion patterns in monocular real image sequences in which extraneous motions and 

occlusions may be present. Our method does not rely on segmentation, or grouping, 

and it is assumed that the vision front-end is limited to observing the motion of key 

feature points between pairs of frames. Features are not assumed to be tracked for 

more than two frames. Our algorithm is based on learning an approximate joint prob­

abilistic model of the positions and velocities of different body features. Detection is 

performed by comparing the sum of observation likelihoods from all possible labelings 
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with a preset threshold. The localization results from the algorithm may be used to 

compute 3D pose as in [26, 41]. The experiments on a dozen of walking sequences 

indicate that the algorithm is accurate and efficient. 

The majority work presented in this chapter was published in [80] and I primarily 

worked in the experimental design and execution for this project. 

5.2 System Overview 

Given two consecutive image frames, the goal is to detect whether a moving human 

body is present. A human body is represented by its joints. As shown in Figure 5.1, 

our system requires a training phase. For this we first manually construct a training 

set containing positions and velocities of labeled joints on the human body in a number 

of motion sequences. A probabilistic model of human motion is then learned from the 

training set. This model contains the probability density function of positions and 

velocities of joint triplets. 

The system has a feature-tracking front-end to measure at run time the positions 

and velocities of all the observable features between two frames. From these features, 

we first detect if there is a person in the scene by summing over the observation 

probabilities from all possible labelings. Localization is further done by finding the 

labeling of all features which maximizes the likelihood of the probabilistic model. 

5.3 Approach 

The set of feature points and associated velocities can be obtained by applying the 

feature detection and tracking scheme (see section 2.6) to the entire image. An 

example is shown in Figure 5.2. In the following, we will address two problems: 

detection if there is a person in the scene; and localization - finding the most 

human-like configuration, i.e, the best labeling, given a set of features. 
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Figure 5.1: System Overview. 

5.3.1 Notation 

Suppose that we observe N points (as in Figure 5.2), and X = [Xl X 2 ... X N ] 

is the vector of measurements. Each feature measurements Xi (1 ::; i ::; N) include 

the two-dimensional positions and two-dimensional velocities of that feature on the 

image plane. Let 0 1 denote that a person is present in the image, and 0 0 denote the 

opposite case. The detection task is to determine whether the ratio 

P(OlIX) 

P(Oo I X) 

P(X I Od P(Ol) / P(X) 

P(X I 0 0) P(Oo) / P(X) 

P(X I 0 1) . P( 0 1 ) 

P(X 100) P( 0 0 ) 
(5.1) 

is greater than 1 or not. If we assume the priors are equal, the second term of the 

above equation is 1. Let Sbody = {LTiV, LE, LS, H, ... RT} be the set of 1\1/ body 

parts, for example, LW is the left wrist, RT is the right toe, etc., and BG be the 

background label. In addition, let L = [L1 L2 ... LN ] denote a possible labeling, 

where Li E Sbody U {BG} is the label of Xi (1 ::; i ::; N). Assume L is all the possible 
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Figure 5.2: Illustration of the Approach. For a given image (a), features are first selected 
and then tracked to the next frame. Dots in (a) are the features, and (b) shows the features with 
velocities. From all the candidate feature points (with positions and velocities), we first want to 
detect if there is a person in the scene and then find the best labeling - the most human-like 
configuration (dark dots in (a) and (b)) according to a learned probabilistic model. 
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labelings when a person is present (01), then 

L P(X I L, 0 1) P(L I Od 
La 

When there is no person in the scene, Lo = [BG BG 

possible labeling. Then, 

P(X I 00) P(X, Lo 100 ) 

P(X I L o, 00) P(Lo 100) 

P(X I Lo, 00) 

(5.2) 

BG] is the only 

(5.3) 

If there is not any prior information about the labeling, then it can be assumed 

that P(L I 0 1) = 1/1£1 for any labeling L , where 1£1 is the number of possible 

labelings. To compute equation 5.1, the rest is to estimate 2:La P(X I L, 0 1 ) and 

P(X I L o, 00). 

Given a labeling L, each point feature i has a corresponding label L i . Therefore 

given this label, each feature measurement Xi can also be written as XLi' which is 

the measurement corresponding to a specific body part with label L i . For example if 

Li = LW, i.e., the ith label is associated with the left wrist, then Xi = X LW is the 

position and velocity of the left wrist. 

Let us define 

£body {Li; i E 1, ... , N} n Sbody 

set of body parts appearing in L 

X body 

X bg [Xjl X h ... X jN _K ] 

such that Ljl = Lj2 = ... = LjN_l{ = BG 
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where K is the number of body parts appearing in L. If we assume that the positions 

and velocities of the visible body parts are independent of those of clutter points, 

then 

P(X I L, 0 1) 

P(X I Lo, 0 0 ) 

PZbOdy (X body) Pbg(X bg) 

Pbg(X) 

(5.4) 

(5.5) 

where Pz (X body) is the marginal probability density of the whole body according to 
body 

L.body. If independent uniform background noise is assumed, Pbg(Xbg ) = (ljS)N-K, 

where N - K is the number of background points, and S is the volume of the possible 

domain of Xi. We will use this assumption about background features throughout 

this chapter. Under this assumption, part of the background terms in P(X I L, 0 1 ) 

and P(X I L o, 0 0 ) can be cancelled out so that detection can be performed by setting 

a threshold to the summation of the "modified" foreground likelihoods without ac­

curately estimating the background probabilities. More details of the procedure are 

explained below. 

5.3.2 Summation of Likelihoods 

We first consider the problem that there are no missing body parts. Under this 

situation, if a person is present, then all the body parts can be seen, i.e., L.body = Sbody. 

From the above discussion, it follows that if the background (clutter) features are 

assumed to be independent and uniform, then the detection without occlusion is 

reduced to calculating 

1 """' -1£1 ~ P Sbody (X body) 

LEL 

(5.6) 

If the summation is done simply as all the terms appear, the computational cost 

is exponential with regard to the number of body parts (NI). Thus the brute-force 

summation is computationally prohibitive. The method proposed in [81] provides 

a way to approximate the foreground probability density PSbOdy (X body) so that the 

summation can be calculated efficiently. By using the kinematic chain structure of a 
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human body, the whole body can be decomposed into parts as shown in Figure 5.3. 

If the appropriate conditional independence (Markov property) is valid, then 

(5.7) 

where T is the number of triangles in the decomposition shown in Figure 5.3, t is the 

triangle index, and At is the first label associated to triangle t. The structure of the 

decomposable graph ( [2, 81]) allows the summation to be rewritten as follows: 

L PSbOdy(X body) 

La 

L (IT Pt(XAt I XEt) XCt)) PT(XAT , X ET , X CT ) 
LEf: t=l 

L PT(XAT , X ET , X CT ) L ... 

Finally the summation in equation 5.8 can be done by an algorithm similar to 

dynamic programming [81, 2]. Let 

for 1~t~T-1 (5.9) 

for t=T (5.10) 

be the cost function associated with each triangle, then the summation algorithm can 

be described as follows: 
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Figure 5.3: Decomposition of the Human Body into Triangles. '1' and 'R' in label 
names indicate left and right. H:head, N:neck, S:shoulder, E:elbow, W:wrist, H:hip, KI:inside knee, 
KO:outside knee, A:ankle, HE:heel and T:toe. The numbers inside triangles show the order in which 
the algorithm proceeds. 

Stage 1: for every pair (XBll XcJ, 

Compute WI(XAll X Bll XCI) for all possible X AI 

Define Tl (XAll X Bll XcJ the total value so far 

Let TI (XAll X Bll XCI) = WI (XAll X Bll XcJ 

Store fI(XBllXCI) = L TI (XAll X Bll XCI) 
XAI 
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Stage t, 2 ::; t ::; T: for every pair (XBtl XCt) 

Compute the total value so far (till stage t): 

- Define Tt(XAtl X Btl XCt) the total value so far. 

- Initialize Tt(XAt , X Btl XCt) = Wt(XAtl X Btl XCt) 

- If edge (At, Et) is contained in previous stages and 

T is the last one of such stages, multiply Tt(XAtl X Btl XCt) by 

f T(XAtl X Bt ) or f T(XBn X At ) if the edge is reversed 

- Likewise, multiply Tt(XAn XBn XCt) by the values of 

the last stage of previous ones containing 

edge (At, Ct) and edge (Et, Ct) respectively 

Store ft(XBn XCt) = LTt(XAtl XBn XCt) 
XAt 

\iVhen stage T calculation is complete, the overall sum can be obtained by 

LPSbOdy(XbOdy) = L fT(XBT , X CT ) (5.11) 

The computational complexity of the above procedure is of the order of M * N 3
. 

5.3.3 Detection and Localization with Occlusion 

In the case of no occlusion, detection can be done easily by setting a threshold to 

(1/1£1)· '2.:LE'cPSbOdy(Xbody) obtained from the previous section. Assuming equal 

priors and independent and uniform background features, localization and labeling 
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can be obtained by finding the labeling L * 

L* arg lllax P(L I X, 0 1 ) 
LE£ 

arg lllax P(X I L, Od P(L I 0 1) / P(X) 
LE£ 

arg lllax P(X I L, 0 1 ) 
LE£ 

arg lllax P Sbody (X body) 
LE£ 

This optimization can be done by dynamic programming as in [81, 82]. 

(5.12) 

When some body parts are occluded, the foreground probability Pz (X body) is body 

the marginalized version of PSbOdy (X body) - marginalization over the missing body 

parts. If we assume that the background features are independent and uniformly 

distributed, detection can be done by thresholding 

I 
~ I '"""' Pz (X body) (1/ s) M - K y; 

L L....t body 
La 

(5.13) 

where M is the total number of body parts, K y; is the number of body parts present 

in labeling L, and 1/ S is the volume of the space Xi lies in. If the local cost function 

Wt(XAp X Bp XCt) associated with triangle t, (1 :::; t :::; T - 1), is defined as 

- PAt I Bt ,Ct (X At I X Bt , X Ct) if all the three body parts are observed 

- 1/ S if At is missing or two or three of At, Bt, Ct are missing 

PAt I Ct (XAt I X Ct ) or PAt I Bt (XAt I X Bt ) if Bt or Ct is missing and the other 

two body parts are observed 

With such definition similarly applied to the last triangle T, the summation algorithm 

described in section 5.3.2 can also be used to calculate expression 5.13. 

Similar to equation 5.12, the localization and labeling can be found by 

arg lllax P(L I X, 0 1 ) 
LE£ 

arg lllax Pz (Xbody ) (l/S)M-Ky; 
LE£ body 

(5.14) 

Given the above described local cost function, dynamic programming can be used to 
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get the optimal labeling. 

The detailed analysis of and explanation to equation 5.13 and 5.14 can be found 

in [82]. One intuitive explanation is that for each triangle, the dimensions of the local 

cost functions are the same for different numbers of missing body parts, which makes 

it reasonable to sum (or get the maximum of) them locally. Also, the dimension of 

the domain of PZbOd) X body) (1/ S) M - K r is fixed regardless of the number of candi­

date features and the number of missing body parts in the labeling L, so that we 

can directly compare the likelihood of different hypotheses, even these from different 

Images. 

Another way to perform detection [82] is to first get the most likely labeling (the 

labeling with highest PZbOdY (X body) (1/ S)M-Kr), then compare the likelihood of such 

labeling to a threshold. If the likelihood is higher than the threshold, then a person is 

believed to be present. Both methods are tested. Their performances are compared 

and presented in the experiment section. 

5.3.4 Using Information from Multiple Frames 

So far, we have assumed that we can only use information from two consecutive 

frames to obtain positions and velocities of a number of features. In this section 

we would like to extend our previous results to the case where multiple frames are 

available. However, in order to maintain generality, we assume that it is impossible to 

track features across more than 2 frames. This is a simplified model for the situation 

where, due to extreme body motion and/or loose and textured clothing, tracking is 

extremely unreliable and each individual feature's lifetime is very limited. Neri et 

al. [61] use a similar assumption when conducting their psychophysical investigation 

in biological motion perception in the human visual system. 

Let P( 0 1 X) denote the probability when a person is present given X observed. 

As before, we use the approximation that P( 01 X) is proportional to <I>(X) which 

is defined as <I>(X) ~ (1/1£1) L.:LaPZbOd)XbOdy) (I/S)M-Kr. Now if we have n 
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observations Xl, X 2, ... , X n, then the decision depends on 

P(X1' X 2, ... , Xn I 0) P(O) 

P(X1' X 2, ... , Xn) 

P(X1 10) P(X21 0) ... P(Xn 10) P( 0) 
P(X1' X 2, ... , Xn) 

(5.15) 

The last line of equation 5.15 holds if observations Xl, X 2, ... , Xn are assumed to 

be independent. Assume the priors are equal, P ( 0 I Xl, X 2, ... , X n) can then be rep-

resented by P(X1 10) P(X21 0) ... P(Xn 10), which is proportional to rr~l <I>(Xi). 

If a threshold is set to rr~=l <I> (Xi) , then detection can be performed given multiple 

observations X 1,X2, ... ,Xn. With more information to exploit, it is expected that 

better detection will be resulted. 

5.4 Experiments 

The image sequences used in the experiments are captured by a CCD camera at 30 

Hz. There are three different types of motions: (1) A subject walks from the rear 

left corner to the front right corner, facing about 60 degrees away from the front 

view (middle column of Figure 5.4). For this motion, we have about 1000 frames 

(8 sequences, each has around 120 frames) as the training set, and another 1500 

frames (12 sequences) as testing set. (2) A chair moves from left to right, about 1000 

frames (8 sequences) (right column of Figure 5.4). (3) While a subject walks as in 

the motion type (1), a chair also moves as a background moving object (left column 

of Figure 5.4). 2000 frames (16 sequences) have been collected. The goal is to detect 

if there is a person walking in the scene and further localize and label the person if 

there is one. 

5.4.1 Training of Probabilistic Models 

We chose 20 features to represent the human body configuration. Most of these 

features are close to the major body joints. The dark dots in Figure 5.2 show 17 of 
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Figure 5.4: Sample Frames. (left column): with both walking person and moving chair. (middle 
column): with walking person only. (right column): with moving chair only. The black and white 
dots are the features selected by Tomasi-Kanade feature detection algorithm, while the white ones 
are the most human-like configuration found by our algorithm. 
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them (being correctly labeled in that frame), the other 3 are missing: two at the left 

knee and one at the right heel. 

On the 8 training sequences with about 1000 frames in total, we manually con­

struct the ground truth of feature positions and velocities in the following way: on 

the first frame of each sequence, we manually select the positions of all the visible 

body model features. Then the features are tracked automatically to the next frame 

using the Lucas-Tomasi-Kanade tracking algorithm (section 2.6) and their velocities 

between the two frames are computed. At each frame after tracking, we monitor 

the results and discard the features which have obvious tracking errors. The correct 

positions of these mistracked features and those newly appeared after being occluded 

are located manually, so that we have again the positions of all the features appearing 

in this frame and they can be tracked to the next frame and their velocities can be 

calculated. The features are also labeled manually at the same time. Occlusion is 

common in our training set: each feature is present in approximately 85% of frames 

(see Figure 5.5 (a)). 

The training is done by estimating the joint (or conditional) probabilistic density 

functions (pdf) for all the triplets as described in section 5.3. As in [81, 82], all the 

pdfs are assumed to be Gaussian, and the distribution parameters are estimated from 

the training set. 

5.4.2 Testing Set 

For the testing sequences, the system automatically selects features for each frame, 

and tracks them to the next one. The feature selection and tracking algorithm is the 

standard Tomasi-Kanade version. We do not track features over more than 2 frames, 

but select all the features again on the next frame after tracking. Thus, there is no 

feature correspondence between sequential frames and each frame has a unique set 

of features. This is arguably the most difficult situation under which labeling and 

detection have to be performed, as mentioned in section 5.3.4. The dots in Figures 5.2 

and 5.4 are the features generated from the automatic selection and tracking. 
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5.4.3 Test of Probabilistic Model 

To validate the triangulated probabilistic model (Figure 5.3), we first do experiments 

on the manually tracked features (with ground truth, as in section 5.4.1). We have a 

total of 8 such sequences (with 120 frames each). To test a sequence, frames from all 

the other seven sequences are used as the training set. A label error happens when 

a body part appears but is labeled as either a different part, or background. The 

error also happens when a body part is missing but its label is assigned to another 

point. Figure 5.5(a) shows the statistics of the number of body parts present in 

all the sequences used in this experiment. Since the points are tracked manually, 

most of the un-occluded body parts are detected correctly. Figure 5.5(b) shows the 

correct labeling rate as a function of the number of body parts present, with the 

overall (considering all the frames) correct labeling rate being 85.89%. If the average 

number of features detected is N, (N ~ 17 in this experiment), the probability of 

a body part being assigned with a correct candidate feature by random selection is 

only 1/ (N + 1) (with one more background point). The correct labeling rate from 

our probabilistic model is much higher than that random selection probability. From 

Figure 5.5(b), it can be seen that the correct labeling rate goes up as the number 

of detected body parts increases. This is consistent with the fact that with more 

body parts present, the probability decomposition as shown in equation 5.7 is a more 

accurate approximation. 

5.4.4 Detection 

For a given image pair, the detection task is to determine whether or not there is a 

moving person in the scene. We perform detection experiments using three different 

types of sequences: one with a walking person only (middle column in Figure 5.4), 

one with both the walking person and a moving chair (left column in Figure 5.4), 

and the last one with the moving chair only (right column in Figure 5.4). Figure 5.4 

shows sample images from the three types of sequences. The black and white dots 

are features detected by the Tomasi-Kanade tracker. There are a total of 1500 frames 
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Figure 5.5: Validation of Probabilistic Model. (a) percentage of frames corresponding to the 
number of body parts present in the manually constructed (as in section 5.4.1) data set; (b) correct 
labeling rate vs. the number of body parts present. The chance level of a body part being assigned 
a correct candidate feature is around 0.06. The correct rates here are much higher than that. 

and with an average of 64 feature points detected per frame in the sequences with 

only the person walking, 2000 frames in total and on average 58 points selected per 

frame in the sequences of both the person and the chair moving, and 1000 frames 

and average 46 feature points selected per frame in the sequences of only the chair 

moving. 

Figure 5.6 shows two curves of receiver operating characteristics (ROC) con­

structed from the summation of likelihoods expressed in equation 5.13. The solid 

curve is the ROC when the sequences with both the person and chair and the ones 

with the chair only are combined together to compute the false alarm and detection 

rates. VVith Pdetect = 1 - Plalse-alarm, the detection rate is 87.54%. The dashed curve 

is the ROC when the results of the sequences with the person only and the ones with 

the chair only are combined. In this case the detection rate as Pdetect = 1- Plalse-alarm 

is 89.61 %. The two curves are very similar, showing that adding a distracter (moving 

chair) to the scene has little negative impact to the performance of the person detec­

tor. In fact, the small difference between the two ROCs is more likely attributable to 

some different experiment settings that are not completely under control: the back­

grounds are slightly different in the sequences, especially there is a bookshelf with 
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Figure 5.6: ROC Curves of the detection experiment in section 5.4.4. Solid line: images 
with body and chair vs. images with chair only, the detection rate is 87.54% when Pdetect = 
1- Pialse-alarm; Dashed line: images with body only vs. images with chair only, the detection rate 
is 89.61% when Pdetect = 1 - Pialse-alarm. 

some features selected in the sequence with the moving person only, and the motions 

and paths of both the person and the chair are not identical. 

The localization results are shown in Figure 5.4 as well. For each image, the 

white dots correspond to the best labeling L * as in equation 5.14. For most frames, 

the person is localized correctly. Notice that the white dots consisting of the best 

configuration can be erroneously far away from each other in an image. For example, 

for the frame in the middle of the left column in Figure 5.4, though most white dots 

are correctly on the body, two are on the wall, and four more on the chair. A detailed 

study shows that the algorithm takes the two white dots on the wall as 'left elbow 

and left wrist', and the four on the chair as 'left outside knee, left ankle, left toe and 

left heel.' The reason for this is that for a triangulated body decomposition such as 

the one we use as shown in Figure 5.3, one invisible body part may cause trouble to 

its connected ones. For this example, 'left shoulder and left hip' are missing, then 

both 'left elbow and left wrist' and 'left outside knee, left ankle, left toe and left heel' 

are disconnected with other body parts. Therefore, the optimal labeling is composed 

of several independent components, possibly far away from each other. It is clear 
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Figure 5.7: ROC Curves. (a) Results of images with body and chair vs. images with chair 
only. (b) Results of images with body only vs. images with chair only. Solid line: using method in 
section 5.3.3; dashed line: using method in [82]. 

that in this case the conditional independency required by equation 5.7 is not a good 

approximation any more. 

Experiments are also conducted to compare the performance of thresholding the 

summation of likelihood of all possible labelings (as in section 5.3.3) and thresholding 

the likelihood of the most human like configuration (as in [82]). The solid curves 

in Figure 5.7 show the results by using the method described in section 5.3.3, and 

the dashed lines are from the method proposed in [82]. Figure 5.7 (a) and (b) are 

respectively results from images with body and chair vs. images with chair only and 

from images with body only vs. images with chair only. Both plots show that our 

method described in section 5.3.3 works better than the one in comparison. 

5.4.5 Using Information from Multiple Frames 

In this experiment, we test how the detection rate improves by integrating more infor­

mation over time, using the approach described in section 5.3.4. The sequences with 

body and chair and the ones with chair only are studied. Figure 5.8(a) shows ROC 

curves of using 1 to 4 pairs of frames, respectively. Figure 5.8(b) plots the detection 

rates (with Pdetect = 1- Pjalse-alarm) vs. the number of frame pairs integrated. With 
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more frames used, the detection rate gets higher. The detection rate is more than 

98% when more than 7 frames (around 200 ms) are used. 
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Figure 5.8: Results from Integrating Multiple Frames. (a) Four curves are ROCs of inte­
grating 1 to 4 frame pairs, respectively. The more frames integrated, the better the ROC curve is. 
(b) Detection rate (when Pdetect = 1 - Pjalse-alarm) vs. number of frame pairs used. 

5.4.6 Experiments on Different Subjects 

In previous experiments, the sequences for training and testing are from the same 

subject. In this section we test the performance on another subject, who also walks 

with a chair moving in the scene. Four sequences are used with about 120 frames in 

each. Figure 5.9(a) shows the comparison result. The solid line is the ROC curve from 

detecting the new subject, with 75.19% detection rate (when Pdetect = 1-Pialse-alarm) , 

and the dashed line is that from the same subject as in training. Figure 5.9(b) shows 

the detection rates (with Pdetect = 1 - Pialse-alarm) vs. the number of frame pairs 

integrated for the new subject. The detection performance improves with more frames 

integrated: it is almost certain when more than 10 pairs of frames used. 
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Figure 5.9: Results from Detecting a Different Subject. (a) ROC curves. Solid line: another 
subject (different from training set); Dashed line: Subject of the training set (the same as the solid 
line of Figure 5.6). (b) Detection rate (when Pdetect = 1 - Pialse-alarm) vs. number of frame pairs 
used to detect the new subject. 

5.5 Conclusion 

In this chapter we have presented a method to detect and label human motions 

in monocular image sequences. The method takes as its input the positions and 

velocities of the most salient features in the image, as generated from the Lucas­

Kanade feature tracker. No prior image segmentation is required. The method models 

human motion with an approximated joint probability density of the positions and 

velocities of features associated with a human body. Given a (possibly cluttered) 

motion sequence, detection is performed by setting a threshold to the summation of 

the likelihoods of all possible labelings. When a person is detected, localization is 

done by finding the subset of detected features that is most likely to be associated 

with a human body. The model is trained with a manually labeled training set. 

We have tested our method on a number of image sequences containing either a 

walking person, or some nonhuman motion, or both. The results are encouraging. 

The detection rate is around 90% from 2 frames, or 60 ms, and in excess of 98% from 

7 frames, or 200 ms. It also shows that the method can be fairly generalized to detect 

a person different from the one used from training. Neither labeling nor detection 
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take more than 1 second per frame by an implementation in Matlab running on a 

450MHz Pentium PC. It is promising to have a real-time implementation in C. 

Our ideas may be extended and improved along a few directions. For instance, 

human motion is currently modeled by Gaussian distribution. This choice is arbitrary 

and needs to be re-examined in the light of our training data. We do not experiment 

with different structures for the triangulated model, either. Many other reasonable 

choices may exist and can be tested. Furthermore, some form of hierarchical modeling 

will be needed to account for long-range dependency of body parts. This is critical 

in the case of occlusion as discussed in the experimental section. Song et al. [81] 

have demonstrated that their system can be generalized well to changes in viewpoint 

and to different types of motions when using un-occluded Johansson stimuli. This 

gives good reason for us to believe that our system could be equally robust. However, 

systematic testing needs to be done on a variety of body motions and under a number 

of different viewing conditions in order to assess the full capacity of our system. 
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Chapter 6 Human Action Recognition 

6.1 Introduction 

The system discussed previously focuses on human motion detection in the shortest 

period possible - only a pair of frames. The multiple frame integration is a factorial 

of detections from frame pairs which are assumed to be independent from each other. 

However, frame pairs are not independent: human motion is a complex pattern which 

develops over time. When human motion is detected and observed long enough in an 

image sequence, it is possible to tell what kind of action the subject is performing, 

and this is called human action recognition. 

The concept of movemes is introduced in [25] and defined as a set of elementary 

human motions which would roughly correspond to the "elementary units of motion" 

used by the brain. A typical moveme lasts on the order of 1 second. Some examples 

of movemes are: taking a step forward, stepping over an object, reaching an object, 

and turning head to look in a new direction, etc. A human action is a simple con­

catenation of movemes and can be regarded as a temporal repeat of a moveme. Its 

time scale can be from the order of 1 second (the same as moveme) to the order of 10 

minute. For instance, walking is an action since it is a repeat of the stepping forward 

moveme, reaching an object can be viewed as both a moveme and an action. The 

complicate serial or parallel combination of different actions creates human activities. 

For examples, an activity to pick an object far away is consisted of two actions in 

serial: walking to the location and reaching the object, an activity to go to an as­

signed room is decomposed as walking forward and turning your head to look for the 

room number at the same time. On the time scale, a human activity typically lasts a 

few minutes to hours. The recognition of human action is what we will study in this 

chapter. 

There are many challenges to the problem of human action recognition. 
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• Actions develop over longer time periods, at least 0.5 to 2 seconds, and therefore 

one needs to integrate information over at least 15 to 60 image frames (sequences 

are usually captured at 30 frames per second). 

• Different actions may be associated to similar patterns, therefore, recognition 

has to be based on the discrimination between actions. 

• Different individuals perform the same actions in slightly different ways. Re­

peated performances of the same action by the same person may vary. Recog­

nition should be invariant with respect to these factors. 

• The onset and ending of the actions are not predictable and can be very different 

from sequence to sequence. 

• Recognition should be invariant to the viewpoints. 

• Self-occlusions of body parts occur frequently during actions. 

The projections of body part motions onto image planes depend on the observa­

tion viewpoint. Therefore, to make the learning-based recognition from 2D images 

invariant to the viewpoints, actions should be learned from different view angles. 

As we switch our attention to the problem of human action recognition, we change 

the features that we use to model a human body from points to patches. The can­

didate point features are usually not difficult to select from images, and excellent 

detection can be achieved based on the triangulated model of human body joints 

(Chapter 5). However, there are some disadvantages in using them in recognition. 

The human body is composed mainly of body parts, which cannot be represented 

fully by the point features corresponding to body joints. Information could be lost 

from the original body image by this relatively simple joint representation. On the 

other hand, recognition is more subtle than detection because it is aimed to telling 

apart similar motions. Consequently patch features that contain richer information 

are more desirable than joint features. In addition, due to frequent self-occlusion 

of the human body during motion and the fact that people often wear nontextured 
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clothes, the joint features can barely be observed in many cases. Such instability 

in feature observation tends to fail the body joint model in correctly detecting and 

recognizing a person from images. To avoid the problem, the subject can be pur­

posely dressed as in the experiment section in Chapter 5 where clothes are altered on 

purpose to make sure that the neck, wrists, knees as well as ankles can be detected 

easily as point features, or these joints can be selected manually as the input to the 

recognition system as done in [5]. Obviously these assumptions are too restrictive to 

be natural. Due to the undesirable requirements by the model of joint features, we 

explore the territory of action recognition with patch features, instead. The general­

ization of detection based on joint features to more natural scenes is explored further 

by Song in [83]. 

Typical approaches to human action recognition include top-down [27, 13] and 

bottom-up methods [104, 9]. The top-down methods have action models which can 

predict human body poses and velocities in the images. The original test images are 

processed. Then the action is recognized as the one whose predictions best match 

the processed images. The bottom-up methods start from the original images and 

extract the low level image features, such as points and specified patches. The low 

level features are then grouped according to some constraints. The human action 

and body poses are recognized as the one that best represents the human among all 

possible grouping results. It is well known that the advantage of bottom-up methods 

is speed and its disadvantage is poor signal-to-noise ratio. On the contrary, top-down 

approaches have far better detection and recognition properties but at the cost of 

both algorithmic and computational complexity. In the case of human body pose 

recognition, typical features for bottom-up methods are boundaries and "patches," 

which are regions roughly corresponding to body parts. Sometimes the key assump­

tion of these methods is that the color and/or texture of each body part is known in 

advance [21,43]. We do not want to make any assumption on the clothing style (or 

absence thereof) and/or the presence of good boundaries between limbs and torso. 

Therefore a good segmentation to obtain low-level patch features becomes extremely 

difficult with the current technology and we choose to take the top-down approach. 
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We briefly describe here the main characteristics of our approach. Each topic is 

discussed in detail in the following sections. Our basic assumption, similar to those 

in [13, 27], is that a sequence of regions of interest (ROI) containing a foreground 

moving object is obtained by background subtraction. The space of poses is then 

discretized into a number of codewords which are fitted to the ROI for recognition. 

In order to further improve the signal-to-noise ratio, we consider poses in space-time 

which are called movelets. A movelet is a collection of the shape, motion and occlusion 

of image patches corresponding to the main parts of the body. We model each action 

as a stochastic concatenation of an arbitrary number of movelet codewords, each 

one of which may generate images (also stochastically). Hidden Markov models are 

used to represent actions and the images they generate. The Viterbi algorithm is 

used to find the most likely sequence of codewords and action that correspond to a 

given observed sequence. The movelet codewords are learned in advance from training 

examples and are shared amongst all actions (similarly to an alphabet of letters which 

are shared by all words). 

Results are presented later on the model training, in addition to the recognition 

of 3 periodic actions imaged from multiple viewpoints and 8 nonperiodic actions. 

We explore experimentally what is the necessary number of movelet codewords to 

represent the movelet space. Our experiments also show how the performance of 

action recognition varies as a function of the number of frames that are used. 

6.1.1 Relation to Previous Work 

There has been a lot of work in the past several years in the literature about the prob­

lem of human action recognition. They can be classified by several different criteria, 

such as the type of model used (e.g., stick figure-based, volumetric and statistical), di­

mensionality of representation (2D vs. 3D), sensor multiplicity (monocular vs stereo), 

sensor mobility (stationary or moving), etc. Our approach to human action recogni­

tion is based on 2D appearance from monocular image sequences. In particular, it is 

most closely related to two categories of recognition: 1) recognizing body poses by 
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fitting pose models to images, which is sometimes referred to as "labeling problem"; 

2) recognizing actions as sequences of poses. 

As mentioned earlier, a human body pose can be represented by either a combina­

tion of body parts with certain mutual relationship constraints (bottom-up methods) 

or a whole pose with identified body parts (top-down methods). Bottom-up methods 

for pose recognition [80, 21, 43] generate correct pose representations (or labels of 

parts) from the detected candidates of low level features. Joint feature is used in [80] 

(or Chapter 5) and patch features are explored in [21, 43] along this line. The low 

level patch features are actually very special. It is assumed that the human body 

is in nude [43] or the patch texture is known in advance [21]. Due to the lack of 

robust segmentation techniques to obtain general patch candidates for body parts, it 

is difficult to apply the bottom-up methods proposed in [21, 43] to general situations. 

Top-down methods for pose recognition and parts identification match the learned 

whole pose models with the extracted body silhouettes [27, 107] or the extracted spe­

cial features [69]. In this chapter, we reconstruct body poses by fitting the models 

(movelet codewords) to the extracted silhouettes. Our method is therefore top-down. 

Unlike [27, 107], our primary goal is to recognize actions, hence we do not intend to 

label body parts on images after pose being identified. 

To recognize a human action, one general bottom-up approach is to bypass the 

step of pose recognition and describe the action as a sequence of ROI represented by 

low level features [63, 104, 13]. Polana and Nelson referred this method as "how to get 

your man without finding his body parts" [64]. Their work uses a periodicity measure 

to detect activities and a low level feature vector based on the motion information in a 

periodic cycle to recognize the action. A similar low level feature vector based on ROI 

appearance is used for action recognition in [104]' but the periodicity requirement is 

relaxed and hidden Markov model (HMM) is applied. HMM is widely used in model­

ing temporal related actions, such as gesture recognition [86, 59]. Action recognition 

based on the cumulative binary motion image (MEl) and motion history image (MHI) 

is described in [13] as a top-down approach. This method compresses all information 

in the image sequence into MEl and MHI so that recognition becomes a simple task. 
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The same technique is also applied in [68]. However, we believe such simplification 

does not catch the true mechanism of how human vision perceives actions. 

Some other approaches to action recognition require that human poses are given 

in advance by manual initialization. In [103], the body parts are initially segmented 

by hand and then tracked through the sequence. Recognition is carried out by com­

paring the trajectories of body parts of the observed action with those of the training 

action "examplars " via their principal components. This approach requires tem­

poral alignment of actions. A dynamical model of geometric feature trajectories is 

taken into account in [5], where the features (body joints) are labeled manually in 

each image frame. A drawback of this dynamical approach is that the problem of 

self-occlusion is not addressed. 

A systematic framework has been proposed to segment, track and classify com­

plex human dynamics based on probabilistic analysis in [9]. It involves the propa­

gation from low level areas of coherent motions, through mid level simple dynamical 

movements, to high level HMM represented actions. The framework is excellently 

constructed in theory. Nevertheless, the segmentation of motion patches is such a 

difficult task that in practice the system can only be applied to a single body part, 

one lower leg in this paper. 

Our approach to human action recognition in this chapter is also based on HMM. 

However, unlike typical HMM approaches, we predefine the hidden states of HMM as 

the learned pose models which are called movelet codewords. A binomial distribution 

is applied to model the probability that an observed configuration is generated by a 

codeword and an action is modeled by HMM as stochastic concatenation of codewords. 

By modeling the problem in such a framework, the final estimation of maximum 

likelihood by HMM can generate the recognition results of both human action and 

body poses at the same time. In addition, in our experiments we test the influence of 

the number of codewords and sequential frames on the performance of our algorithm. 

To the best of our knowledge, these issues have not yet been addressed in literature. 

The majority work presented in this chapter was published in [24]. 
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6.2 Movelet and Codeword: Modeling Human Body 

Human body is an articulated structure with many degrees of freedom. Although 

complicated, the relative motion between body parts is constrained by the kinematic 

structure and motor control plans in the brain to perform a coordinated action. An 

action is a sequence of human body configurations. The set of all possible config­

urations for human actions is very large and nonlinear. Our approach here is to 

discretize this set into a small collection of codewords, and then represent actions as 

concatenation of these codewords. 

If we do not look at details, a human body configuration can be characterized by 

the shapes, mutual positions and motions of 10 major parts: the head, torso, 4 parts 

of upper limbs and 4 lower ones. We name such configuration representation movelet. 

The shape of each corresponding body part on the image plane is modeled by a 

rectangle Sj with 5 degree of freedom (DOF): 2 for the center position, 2 for the long 

and short axes, and 1 for the orientation of long axis. Assume this shape transforms 

to Sj (also 5 DOF) in the next frame. Since the change of the part appearance can 

be caused by 3D motion of body part, variation of loose clothes, as well as partial 

occlusion, etc., this shape alteration is no longer a 3D OF rigid motion on the image 

plane, but a nonrigid motion in its full parametric space as S~ - Sj. Therefore, a 

human body movelet may be represented as M = (S, S') = (U}~l Sj, U}~l Sj), which 

is mathematically denoted as a 100 x 1 vector. The advantage of this parameterization 

over the direct representation of the shape and motion is that its parameters are in 

the same metric space. 

Consider a set of human actions we are interested in. Each action may be repre­

sented as a sequence of movelets and different actions may contain similar movelets. 

We collect the set of the movelets of all actions that have been observed over a learn-

ing time period, and cluster them into N codewords using an unsupervised vector 

quantization method. For this purpose, the K-means algorithm [4] is used in our ap­

proach. Let Mm (m = 1, ... ,M) represent the movelets, and Zim, a binary variable, 

be the membership of movelet Mm being clustered to the codeword C i (i = 1, ... , N). 
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The K-means algorithm for the codewords learning consists of iterations between the 

following two steps till convergence (k is the iteration step): 

Step 1: 

1 if 

o otherwise (6.1 ) 

Step 2: 

i = 1, .. . ,N (6.2) 
m m 

The vector quantization procedure coarsely divides the whole movelet space into 

N regions represented by codewords. 

There are two practical issues that merit further discussion. 

Origin Selection: A movelet is defined relative to the origin which is the center of 

the rectangle representing the head. The positions of all the other parts are relative 

to this origin. The DOF of a movelet is therefore reduced by 2. Because of this 

special treatment, the center position of the head, (0,0), has to be removed from the 

mathematical representation of all movelets to perform the vector quantization. 

Self-Occlusion: We observe in our experiments that over half of all movelets 

have some of the body parts occluded. Therefore the dimensions of those movelets 

are reduced to lower DOF. We divide the movelets into subgroups according to their 

occlusion patterns. The learning scheme should be modified accordingly: 

1. For each movelet, identify the parts present in both Sand S'. Mark the other 

parts as occluded. 

2. Classify each movelet into one of the 210 (10 is the number of parts we model 

the body) possible occlusion patterns. 

3. Select the occlusion patterns with significant number no of associated movelets. 

Discard all the other patterns. Let r 0 = ",no be the relative frequency of 
LJo no 
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occlusion pattern o. 

4. Distribute the total number N of codewords to these selected occlusion patterns 

proportionally according to their membership ratio roo Let No be the number 

of codewords the occlusion pattern 0 is assigned to, we have No ~ roN and 

2:0 No = N. 

5. For each occlusion pattern 0, apply the vector quantization algorithm to learn 

No codewords from all the movelets classified to this occlusion pattern. These 

movelets have same DOF and the occluded parts are removed from their repre­

sentation. 

6. The union of the learned codewords for all the selected occlusion patterns is the 

final set of codewords. 

6.3 Configuration Recognition 

To recognize an observed action, we assume that the image of a moving body can be 

segmented automatically as the foreground in the image sequence, which sometimes 

can be done by applying background subtraction. Our approach will proceed in two 

steps: recognize each single configuration in the action first, and then recognize the 

action as a concatenation of configurations, which are represented by the codewords. 

In this section, we try to solve the first problem, the second will be addressed in the 

following section. 

For each pair of frames, an observed configuration is defined as the foreground 

pixels X = {X, X'}, where X and X' are the 2D positions of the foreground pixels in 

the first and second image frame, respectively. Although we model the human body 

by its parts in the previous section, due to the lack of techniques to reliably segment 

human body parts directly from the image, we consider the observed configuration of 

foreground pixels in their entirety. For our recognition purpose, a top-down approach 

is applied to fit the codewords as whole poses to the observations. Examples are shown 

in figure 6.2 where we only plot the fittings in the first frame. Given a codeword with 
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shape S and transformed shape S' with fixed origin location, we want to calculate the 

likelihood of observing X and X'. The issue of how to search for this origin location 

will be addressed in the experiment section 6.5. We assume, given the shape S, a 

priori probability to detect a pixel Xi in the image as a foreground(fg) or background 

(bg) point is a binomial distribution conditioned on whether the pixel is in the shape 

S or not. Table 6.1 shows this probability distribution. 

Foreground pixel Background pixel 

Xi E fg Xi E bg 

Pixel is inside the shape: Xi E S 0; 1-0; 

Pixel is outside the shape: Xi ~ S {3 1-{3 

Table 6.1: Binomial Distribution for P(XiIS) 

where 0; » {3. An illustration of how the probability P(Xi IS) changes with the pixel 

position is shown in Figure 6.1. 

Figure 6.1: Likelihood P(Xi IS) as a Function of Location Xi- The union of all gray rectangles 
is the shape S of a codeword. This figure corresponds to the distribution in Table 6.1. For the 
illustration purpose, here the codeword is not placed at its best location for fitting. 

Assume the independence of pixels, the likelihood of observing X as a collection 
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Figure 6.2: Examples of fitting codewords to an observed configuration. Set a = 0.9 and 
j3 = 0.1, the log-likelihood log P(XICi ) for fitting these four different sample codewords from left 
to right are: -2.66 x 104 , -3.38 X 104 , -3.14 X 104 and -3.33 x 104 , respectively. The codeword 
shown in the most left plot is the best among these four to represent this observed configuration. 

of all foreground pixels given the codeword shape 5 is 

P(XI5) = II P(XiI5) (6.3) 
Xi Eimage 

A codeword C includes both the human body shape 5 and its transformed shape 

5' in the next frame. When the location of the initial shape is fixed, the transformed 

shape is also known in the next frame since both of them are relative to the same 

origin. The likelihood of observing the configuration X given a codeword C = (5,5') 

can then be computed as 

P(X I C) = P(X, X' I 5, 5') = P(X I 5) P(X' I 5') (6.4) 

The likelihood P(X'15') is estimated in the same way as in equation 6.3. 

Usually the estimation of the observation probability P(XIC) is too small to be 

calculated directly, therefore only its log-likelihood log P(XIC) is computed, instead. 

The log-likelihood that the observed configuration X is generated by every codeword 

C i in the codeword database, namely logP(XIC i ) (i = 1, ... , N), is computed and 

preserved for action recognition addressed in the next section. A few examples of fit­

ting codewords to an observed configuration as well as their computed log-likelihoods 
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are shown in Figure 6.2. 

The best codeword representing the observation X is simply obtained from the 

codeword database as the one with the maximum likelihood: 

C* = arg max P(X I Ci ) 
Ci 

(6.5) 

Setting a threshold to the resulted maximum observation likelihood P(XIC*) en­

ables us to determine if a single foreground observation X from a pair of frames is 

caused by human action. 

6.4 HMM for Action Recognition 

Assume the observation contains a sequence of the foreground configurations as 

(Xl, X2 , ... , X T ), where X t (t = 1, ... ,T) are defined as same as X in section 6.3. 

To recognize the observed sequence as one of the learned actions, a slightly modi­

fied hidden Markov model (HMM) is applied. HMM is a stochastic state transition 

model [65] which can deal with time-sequential data. In essence, it models the system 

space by a set of discrete hidden states, which are connected to the observations by the 

probabilistic function. The sequential observation is viewed as an output generated 

from a state sequence with certain probability. 

For the problem of human action recognition, we predefine the states of HMM as 

the trained codewords. The probability of an observed configuration to be generated 

from a particular state is obtained as P(X I C i ) in section 6.3. This probability is not 

obtained through the learning scheme of usual HMM because here we know exactly 

by construction what the states are. 

Assume there are K human actions to recognize: Hk (k = 1, ... , K). The ac­

tions share the same set of states (codewords), but are distinguished by the different 

transition matrices of their HMMs. Different actions take different spatial and tem­

poral paths which are modeled by transition matrices in the state space. In detail, 

a transition matrix A = {Aij} of a HMM represents the probability of the transi-
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tion from one state at time t to another state at time t + 1, namely, its element 

Aij = P(qt+l = C j I qt = C i ), where qt denotes the actual state at time t. In our 

case, each movelet Mm from training actions has been assigned to one codeword C i 

and the membership of Mm belonging to C i is equal to 1, Zim = 1 (see section 6.2). 

Therefore, for each training action k, a corresponding codeword sequence is generated 

from its original movelet sequence. Its HMM state (codeword) transition matrix Ak 

can be learned easily from this codeword sequence. The ij element of Ak is computed 

by counting the number of transitions from state C i to state C j and normalizing it 

by the total number of transitions from state C i in the codeword sequence of action 

H k · 

Notice that the sequence of the best representative codewords, which are ob­

tained from equation 6.5 for each individual configuration in the observed sequence, 

may not form a valid action. To recognize which action the observed sequence 

(Xl, X 2 , ... ,XT ) represents and what its best representative codeword sequence is, 

the following HMM solutions are applied. First, for each action hypothesis Hk 

(k = 1, ... , K), find the single best representative sequence of states (codewords) 

that maximizes the log-likelihood of the state sequence as 

* * * qkl' qk2' ... , qkT 

where qkt E (C I , C 2 , ... , CN)' 

By Bayesian rule, the maximum log-likelihood estimation in equation 6.6 is equiv­

alent to the following maximization problem: 

* * * qkll qk2' ... , qkT 

Denote the elements of transition matrix A k by {A~j}' The optimization of equa­

tion 6.7 is performed by applying the following Viterbi algorithm: 



115 

1. Initialization 

(h (i) 

2. Recursion 

for 2 < t:S T 

3. Termination at t = T 

max (6t - l (i) + log At) + log P(Xt I Cj ) 
l<i<N 

arg max (6t-1 (i) + log A~j ) 
l~i~N 

\1,* 
k max 6T(i) 

l~i~N 

arg max 6T ( i) 
l~i~N 

4. State sequence backtracking 

for t T - 1, T - 2, ... , 1 

(6.8) 

Then the human action H k * that best represents the observed sequence is deter­

mined by 

k* arg max log P(qZI, qZ2' ... , qZT' Xl, X2 , ... , X T I Ak) 
k 

arg max vt 
k 

where Vt is computed in Viterbi algorithm as shown in equation 6.8. 

(6.9) 

Consequently the sequence q'k*l' q'k*2' ... ,q'k*T is the recognized most likely code­

word sequence to represent the observed sequence (Xl, X2 , ... ,XT ). 
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Theoretically the recognized action H k * should be the one which maximizes the 

probability P(Xl' X 2 , ... , XTIAk). However, the classical forward algorithm [65] to 

estimate this likelihood accurately is prohibited because it involves the summation 

of probabilities P(XtICi ) which is too small to be computed directly and thus can 

only be represented by log P(XtICi ). Therefore we maximize the likelihood of the 

observation with the best state sequence as in equation 6.9, which is proposed in the 

score evaluation section in [65]. 

6.5 Experiments 

6.5.1 Experimental Design for Codewords Training 

The objective- o~_ codewords training is to obtain the set of codewords from all the 

movelets of training actions. A human body movelet is represented by the union 

of body parts and their motions. Therefore, we need to identify each body part in 

the images of training actions. For this purpose, we made special clothes which have 

distinguishable colors for each body part. So it is made sure that any two neighboring 

parts have different colors and any two parts with the same color are located far away 

from each other. For this reason, every body part can be segmented by its special 

color and different location from the others. 

To estimate the rectangular shape of a body part from its segmented pixels, we 

exploit some useful properties of a rectangle here. If we take all the pixels Xi = 

[Xi YiV (i = 1, ... , N) inside a rectangle, the first and second moment of this 

rectangle can be estimated as 

LXd N 

L(Xi -71)(Xi -71f/(N-1) 

(6.10) 

(6.11) 

Let the parameters to define this rectangle be: cx, cY ' a, b, e which are the center, 

half width, half height, orientation, respectively. The following relationships between 
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Figure 6.3: Examples of Training Images and Movelet. Top: two consecutive images in the 
training sequence. Bottom: estimated rectangular shapes for both frames to form a movelet. 

the rectangle shape parameters and its first two moments can be proved: 

[::] = M [

COS e - sin e] [a; 
sin e cos 0 0 

o ] [cos 0 - sin 0] T = I; 
b; sin 0 cos () 

(6 .12) 

The center [cx cyJT is equal to the first moment Ji and the other parameters 

a, b, 0 can be obtained from the singular value decomposition (SVD) of the second 

moment I;. Therefore, while the specially designed color clothes for the training 

actions provide us an easy way to segment the associated pixels of each body part 

from the rest, the parameters cx > cy, a, b, 0 ofthis rectangular shape can be estimated 

directly by equation 6.12 from the pixels resulted from segmentation. A movelet 

is formed by stacking together the rectangular shapes of all body parts visible in 

both of the consecutive frames. For a movelet, the shapes of all rectangles in both 
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frames are relative to the same origin which is the center of the head in the first 

frame. An example of a pair of training frames and the extracted movelet is shown 

in Figure 6.3. Given the movelets of all training actions, codewords are learned by 

the scheme proposed in section 6.2. 

6.5.2 Matching Codewords with Foreground Configurations 

To estimate the likelihood P(X I C) that a foreground configuration is observed given 

a codeword, we need to efficiently search for the position to put the codeword in 

the image so that the codeword fits the foreground configuration best. Although the 

codewords are represented relative to the center of the head, the centroid is the most 

reliable point to detect a foreground object. Therefore, instead of searching for the 

head to locate the codeword, we match the codeword to the foreground configuration 

according to its centroid. For each codeword, we estimate the centroid of its shape. 

Given a pair of test frames with 320 x 240 image resolution, the centroid of the 

foreground pixels in the first frame is computed. We then lock in the square of 

49 x 49 pixels centered at this point and search this region for the location of codeword 

shape centroid where we have the best fit. In Figure 6.4, the left plot shows an 

example of the computed foreground centroid as well as the search region. The right 

one shows how the log-likelihood log P(X I C*) varies with respect to the assumed 

location of the codeword centroid in this search region with C* chosen to be the 

best fitting codeword in this case. For every codeword, we search in this region for 

the location where the log-likelihood of the observed configuration in the first frame 

given this codeword shape is maximized. The transformed shape of the codeword is 

correspondingly placed on the second frame. After locating the codeword, the log­

likelihood of P(X I C) can be determined by equations 6.3 and 6.4. The parameters 

of the binomial distribution are chosen as 0: = 0.9 and f3 = 0.1 arbitrarily. 
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10 20 30 40 

Figure 6.4: Log-likelihood Varies With Centroid Position. (left): the 49 x 49 search region 

for the codeword centroid. (right): Log-likelihood log P(XIC) varies with respect to the assumed 

centroid position in the search region. It is gray-scaled. Brighter indicates higher log-likelihood. 

In our experiment we actually search for the location of a codeword centroid on 

every third pixel in the search region, which ends up with 16 x 16 possible position to 

search. It takes about 0.012 seconds to search for one codeword with a Pentium 750 

MHz machine. If there are 200 codewords in the database, the total time required to 

recognize a single configuration is therefore about 2.4 seconds. 

6.5.3 Recognition of Periodic Actions 

In this section we illustrate the recognition experiment of a set of 15 view-based 

periodic actions: 3 different gaits (stepping, walking and running) captured from 5 

different view angles (0°,45°,90°,135°,180° between the camera and subject orienta­

tions). To make the action and view angle controllable, a treadmill is used on which 

all these periodic actions are performed. The image sequences used for training and 

testing in our experiments are captured by a digital camcorder at 30 frames/sec. 

Figure 6.5 shows one key frame for each action. 

Training Actions 

The training actions are performed by only 1 subject wearing the specially de­

signed color-coded clothes. For each training action, 1800 frames are collected and 

processed by the codewords training algorithm. Several frames for some training ac-
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Figure 6.5: Key Frames of Periodic Actions. (left column): stepping. (middle column): 
walking. (right column): running. Each column contains 5 images captured respectively at 0°, 45°, 
90° ,135°, 180° angles of view 
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Figure 6.6: Key Frames of 3 Periodic Training Actions. (left): 45° stepping. (middle): 90° 
walking. (right): 135° running. 

tions are shown in Figure 6.6. Movelets are obtained from each pair of frames using 

the method described in section 6.5 .l. 

From this set of movelets, we first train N = 450 codewords. This number is 

chosen because on average an action cycle is about 30-40 frames long and we have 15 

different periodic actions. The recognition performance with different number N of 

trained codewords is reported at the end of this section. As described in section 6.2, 

the movelets are grouped according to their occlusion patterns. There are 16 common 

occlusion patterns in this training set. A proportional number of codewords are 

trained from the group of movelets associated with each occlusion pattern. 

Given the trained codewords and their associated movelets, we learn the transition 

matrix of HMM for each action as discussed in section 6.4. The transition matrix 

represents the possible spatial and temporal paths of codewords that an action can 

pass through. In Figure 6.7, we show a few examples of codewords that are passed 

by actions of stepping, walking and running all recorded at 90° angle of view. 

Recognition of the Actions 

6 subjects participate in the test experiments. A sequence of 1050 frames (35 

seconds video) is captured for each of the 15 actions performed by every subject. 

Foreground data are obtained by background subtraction. We answer three questions 

by this experiment: 1) how well can the actions be recognized? 2) how many frames 

are needed to recognize the action with certain accuracy? 3) how does the number 

of trained codewords influence the recognition performance? 

Human vision does not need to observe the whole sequence (1050 frames) to 
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o 

Figure 6.7: Samples of Trained Codewords (transformed shape S' is in gray, superimposed 
by the shape S in black). These are samples of codewords that actions 90° stepping (row 1 and row 
2),90° walking (row 3 and row 4), and 90° running (row 5 and row 6) can pass, obtained from their 
HMM transition matrices. 
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recognize the action. To test how many frames are necessary for a good recognition, 

each sequence is split into smaller segments of T frames long. The tail frames are 

ignored. Therefore, for a segment length T, there are l1050/TJ x 15 x 6 segments 

in total generated from splitting up the long sequences and these smaller segments 

are used for testing (15 is the number of actions and 6 that of subjects). We classify 

each segment into a learned action. Table 6.2 shows the confusion matrix for T = 20. 

The row and column labels are the action names. Each number in the matrix is the 

percentage of an action with the column label being recognized as that with the row 

label. Thus all the numbers in a column sum up to 100%. 

Act 0°5 180° 5 oow 1800 W OaR 180 0 Ri 45°5 90° 5 135° 5 45°W 900 W 135° "-1 45° R 900 R 135° Ri 
0°5 25% 

180°5 34% 40% 4% 36% 

OoW 10% 14% 52% 24% 

180 0 W 10% 9% 

OaR 31% 28% 36% 22% 80% 50% 

1800 R 8% 8% 9% 20% 50% 

45°5 95% 70% 

90°5 100% 

135°5 5% 30% 

45°W 65% 3% 29% 

90 0 W 93% 

135°W 35% 4% 71% 

45°R 83% 71% 

90 0 R 86% 

135°R 17% 14% 29% 

Table 6.2: Confusion Matrix for Recognition of Periodic Action (T = 20). In the labels, 

'8', 'VV' and 'R' are the abbreviations of stepping, walking and running actions, respectively. 

We make the following three observations from Table 6.2. 

First, the gaits from front (0°) and back (180°) views are difficult to recognize. 

This is because the silhouettes of different gaits from these two views are not very 

distinguishable. Therefore, we will not discuss them any more in this chapter. 

Secondly, consider the other three views 45°, 90°, and 135°, the gaits of the action 

is easier to recognize than the directions. The three la-wer 3 x 3 blocks along the 

diagonal line in the table for three different gaits indicate that there is no problem in 

telling if the action is stepping, walking, or running. 
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Thirdly, we claim that an action viewed from the 45° view angle is basically not 

separable from that from the 135° view angle. This observation might be surprising. 

The direction of an action captured at either 45° or 135° view angle can be easily 

recognized from the original sequence by human vision because there is more infor­

mation to be used, such as face, hair, texture, etc. However, if all these clues are 

removed by background subtraction and only the shape and motion are remained 

as the black-white foreground image sequence, human vision is very confused to tell 

these two directions either. Figures 6.S, 6.9, 6.10, and 6.11 show some samples of the 

original images, the extracted foreground data and the best fitting codewords from 

HMM of 4 test actions (45° walking, 135° walking, 90° running, and 90° stepping, re­

spectively). Compare Figures 6.S and 6.9: although the two actions, 45° walking and 

135° walking, are performed by two different subjects (one female and the other male), 

their individual foreground data are so similar to each other (the middle columns in 

two figures) that they are represented by the same codewords (the right columns in 

two figures). Therefore 45° and 135° walking can be regarded as one action, so are 

45° and 135° stepping, as well as 45° and 135° running. 

Now let us discard the actions captured from front and back views, and focus 

on those taken at 45°, 90°, and 135° view angles. Once again we train N = 270 

codewords from the 9 training actions of these three views and test the recognition 

algorithm with various segment length T. The recognition rate is the percentage 

of an action in all the containing segments being recognized correctly. Figure 6.12 

demonstrates how the recognition rate varies when the segment length T goes from 

2 to 40 for six actions (here we regard the 45° and 135° actions as one already). For 

visual clarity, we show the relationship in two plots, each for 3 actions. From the two 

plots, it is shown that better performance is gained with longer segment length T. 

The action can be reliably recognized after about 20 frames, which is 0.66 seconds 

of action. The chance level for recognizing the actions at 90° view angles shown in 

the left plot of Figure 6.12 is 1/9, and that for recognizing the actions in the right 

plot is 2/9 since the actions of the same gait captured at 45° and 135° view angles 

are regarded as one action. Our recognition rates are much higher than these chance 
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levels. 

What is the appropriate number of codewords we should train to represent the 

whole space of movelets? This question can be answered by experiments. We train 

different number N = (5,9,18,27,36,45,90,135,180,225,270) of codewords from the 

training set of movelets for actions taken at 45°, 90°, and 135° view angles, and repeat 

the recognition experiments with each group of trained codewords. Figure 6.13 shows 

how the recognition rate at segment length T = 20 varies with respect to different 

number of trained codewords. For all the actions, above 80% recognition rates are 

achieved with N 2:: 135. 
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Figure 6.8: 45° Walking. (left): sample images. (middle): foreground data after background 
subtraction. (right): best fitting codewords. 
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Figure 6.9: 1350 Walking. (left): sample images. (middle): foreground data after background 
subtraction. (right): best fitting codewords. 
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Figure 6.10: 90° Running. (left): sample images. (middle): foregTound data after background 
subtraction. (right): best fitting codewords. 
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Figure 6.11: 90 0 Stepping. (left): sample images. (middle): foreground data after background 
subtraction. (right): best fitting codewords. 
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Figure 6.12: Recognition Rate vs. Segment Length T. The recognition is to recognize the 
actions in the observed segments of T frames long as one of the 9 learned periodic actions (stepping, 
walking and running viewed from 45°, 90°, and 135° angles). The recognition rate is the percentage 
of an action in all the containing segments being recognized correctly. A total of 270 codewords are 
trained and used for this recognition experiment. The chance level for recognizing the actions at 
90° view angles shown in the left plot is 1/9, and that for recognizing the actions in the right plot 
is 2/9 since the actions of the same gait captured at 45° and 135° view angles are regarded as one 
action. Our recognition rates are much higher than the chance levels. 
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Figure 6.13: Recognition Rate VS. Number of Trained Codewords for Periodic Actions. 
The recognition of the observed actions as one of the 9 learned periodic actions (stepping, walking 
and running viewed from 45°, 90°, and 135° angles) is repeated with different numbers of trained 
codewords. The testing segment length is set at T = 20 for the reported recognition rate. The 
chance levels for recognizing these actions are the same as those in Figure 6.12. 
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6.5.4 Recognition of N onperiodic Actions 

In this section we describe the experiments in modeling and recognizing nonperiodic 

actions. The actions to reach 8 different directions using the right arm are captured 

from front view. Starting from the one reaching upward, we name the actions as 

RhO°, Rh45°, Rh90°, Rh135°, Rh180°, Rh225°, Rh270°, and Rh315°, respectively, 

while the reaching angle increases counter clockwise. 

Training Actions 

The training actions are performed by 1 subject with the specially designed color­

coded clothes. The training subject repeats each reaching action 20 times in 40 

seconds. 240 codewords are learned from this set of actions first. The representative 

frames of the actions are shown in Figure 6.14. 

Figure 6.14: Key Frames of the 8 Training Reaching Actions. 

Recognition of the Actions 

A set of 400 sequences of different reaching actions done by 5 subjects are captured 

for testing. Each sequence is about 60 frames long (2 seconds of video) . For a 

nonperiodic action, the recognition is done using all the frames that the sequence 

contains. The confusion matrix is shown in Table 6.3. Most of the actions are 

recognized with 100% success rate . The examples of images, foreground data and 

best fitting codewords for different testing actions are shown in Figures 6.16 and 6.17. 

Different numbers N = (4,8, 16, 24, 32, 40, 80, 120, 160,200,240) of codewords are 

also trained for this set of actions, and the recognition experiments are repeated with 
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Reach I RhO° I Rh45° I Rh90° I Rh135° I Rh180° I Rh225° I Rh270° I Rh315° I 
RhO° 90% 

Rh45° 100% 
Rh90° 100% 

Rh135° 100% 
Rh180° 100% 
Rh225° 100% 
Rh270° 100% 
Rh315° 10% 100% 

Table 6.3: Confusion Matrix for Recognition of Nonperiodic Actions with 240 trained 
codewords. 

each group of trained codewords. Figure 6.15 shows how the recognition rate varies 

with respect to different number of trained codewords. For all the actions, above 80% 

recognition rates are achieved with N 2': 120 and 100% recognition rate are achieved 

for 6 out of 8 actions. The chance level for recognizing these actions is only 1/8. Our 

recognition rates are much higher than the chance level. 
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Figure 6.15: Recognition Rate vs. Number of Trained Codewords for Nonperiodic 

Actions. The recognition of the observed actions as one of the 8 learned non periodic reaching actions 

is repeated with different numbers of trained codewords. The recognition rate is the percentage of 

an action in all the containing sequences being recognized correctly. The chance level for recognizing 

these actions is 1/8. Our recognition rates are much higher than the chance level when the number 

of trained codewords is larger than 120. 
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Figure 6.16: Nonperiodic Actions Recognition I. (left): sample images ofreaching actions for 
testing (RhO°, Rh45°, Rh90°, Rh135°). (middle): foreground data after background subtraction. 
(right): best fitting codewords. 
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Figure 6.17: Nonperiodic Actions Recognition n. (left): sample images of reaching actions 
for testing (Rh180°, Rh225°, Rh270°, Rh315°). (middle): foreground data after background sub­
traction. (right): best fitting codewords. 
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6.5.5 Extension: Recognition of More Natural Periodic Ac-

tions 

In section 6.5.3 we have demonstrated the system performance in recognizing periodic 

actions. The three actions of walking, stepping and running are performed on a 

treadmill. Such an experimental setting allows us to record an action as long as we 

want and thus simplifies the tasks of training and testing. Using the same set of 

trained codewords, we demonstrate how well some more natural periodic actions can 

be recognized in this section. 

A set of 12 sequences of periodic actions of 3 different subjects are captured. They 

either walk or run from left to right in front of a fixed camera. Each action is re­

peated twice by all subjects and captured as two sequences, respectively. Foreground 

data are obtained by background subtraction as before. Some sample images and ex­

tracted foreground data are shown in the left and middle columns of Figures 6.19, 6.20 

and 6.21. Notice that the foreground data after background subtraction are not as 

clean as data shown in previous experiment in section 6.5.3. In Figure 6.20, the 

background color is so close to that of the subject's arm skin that the arms are not 

detected as foreground at all. The translational speed of the subjects and the fuzzy 

foreground increase the difficulties in recognizing these actions. 

We use the same training results obtained from training actions of 45°, 90° and 

135° walking, stepping and running with codeword number N = 270 as shown in 

section 6.5.3 to recognize these more natural actions. The best fitting codewords for 

the sequences are recognized and some samples are shown in the right columns of Fig­

ures 6.19, 6.20 and 6.21. Since the test sequences in this experiment are very short 

(~ 50 frames for walking and ~ 30 for running), to demonstrate how the number 

of sequence frames influence the recognition rate, all possible smaller segments of T 

consecutive frames long in a sequence are generated for recognition. For the walking 

action, the maximum T is chosen as the shortest frame length of the 6 walking se­

quences captured. Same is done for the running action. Table 6.4 shows the confusion 

matrix of these two actions at T = 20. One can observe that the gaits (walking or 
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Act I walking from left to right running from left to right I 
45 S 
90 S 

135 S 
45 w 2% 
90u W 98% 

135 W 
45 R 10% 
90 R 90% 

135u R 

Table 6.4: Confusion Matrix for Recognition of More Natural Periodic Actions (T = 20) 
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Figure 6.18: Recognition Rate vs. Segment Length T for Natural Walking (left) and 
Running (right) from Left to Right. The recognition is to recognize the actions in the observed 
segments with T frames long as one of the 9 learned periodic actions (stepping, walking and running 
viewed from 45°, 90°, and 135° angles). The recognition rate for natural walking or running is 
the percentage of the action in all the containing segments being recognized as 90° walking or 90° 
running, respectively. The chance level for recognizing the actions is 1/9. Our recognition rates are 
much higher than the chance leveL 

running) are correctly recognized, and that 98% of walking segments are recognized as 

90° walking and 90% of running segments are recognized as 90° running. If we regard 

the walking and running from left to right as 90° actions respectively, Figure 6.18 

shows how the correct recognition rate varies with respect to various segment length 

T for walking (left plot) and running (right plot). Above 98% correct recognition rates 

are achieved for both actions at T 2: 20 and T 2: 25, respectively. The chance level 

for recognizing these actions is only 1/8. It demonstrates that our recognition scheme 

can recognize very well the periodic actions of subjects with normal translational 

speed although the actions are trained by those without translational speed. 
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Figure 6.19: A Female Subject Runs from Left to Right. (left): sample images. (middle): 
foreground data after background subtraction. (right): best fitting codewords. 
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Figure 6.20: A Male Subject Walks from Left to Right. (left): sample images. (middle): 
foreground data after background subtraction. (right): best fitting codewords. 
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i1 

Figure 6.21: A Female Subject Walks from Left to Right. (left): sample images. (middle): 
foreground data after background subtraction. (right): best fitting codewords. 
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6.6 Conclusion 

In this chapter we propose and test an algorithm for the recognition of both human 

poses and actions simultaneously from an image sequence. The experiments show 

that above 80% recognition rates are achieved for all the test actions while over half 

of the actions can be recognized with an accuracy rate higher than 98%. It also 

demonstrates that our recognition scheme can recognize very well the periodic ac­

tions of subjects with normal translational speed although the actions are trained by 

those without translational speed. Our fundamental idea can be extended to recog­

nizing other types of actions, for example, gesture action, as long as the experimental 

setup for training is properly designed. A possible future work that we may pursue 

is to find a better probabilistic model other than the simple binomial one to fit a 

codeword to an observation. In addition, the background subtraction is assumed to 

be successful in our system in order to obtain the clear foreground region. We also 

ran some experiments on the sequences captured by a moving camera. The dominant 

background (camera) motion is estimated using the scheme proposed in [6] and the 

foreground region is obtained as the outliers to the background motion. However the 

resulted foreground region is very poor because only body edges can be reliably seg­

mented as foreground and most internal regions are missed. Consequently our system 

is not able to reliably recognize the actions from such poor foreground data. How to 

recognize actions from image sequences without background subtraction remains an 

open and challenging problem. 
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Conclusion and Future 

Motion analysis is one of the most important and active areas in computer vision. In 

this thesis we have presented our studies toward the problems of 3D general motion 

estimation and segmentation and 2D human motion detection and recognition. 

It has been extensively studied to recover 3D motion from either 2-views or 3-

views. In particular, there is a whole body of literature in the last decade addressing 

the 3-view motion analysis where the trilinear constraints and trifocal tensor arise. 

Trilinear constraints as simple linear functions of trifocal tensor give satisfactory 

estimates of 3D motion parameters that are close to the optimal maximum likelihood 

solutions. However, it is difficult to explain such good performance because so far 

before our work trilinear constraints have been treated only as algebraic equations 

without explicit physical meaning. In the beginning of this thesis, we presented our 

discovery that trilinear constraints are actually equivalent to the optimally weighted 

3D depth matching constraints (Chapter 3). Therefore they have clear geometrical 

meaning. Minimizing the trilinear algebraic equations in a least square sense over 

all points is 'equivalent to minimizing a geometric depth matching error in 3D space 

with appropriate weight applied to every point. A geometrical interpretation to the 

weight functions of trilinear constraints is also given. These theoretical work fills in 

a gap in 3D motion estimation for thorough understanding of trilinear constraints. 

One additional contribution in this part is a robust scheme proposed to propagate 

scale information between different pairs of views which is significantly insensitive to 

noise in the measurement data. 

Segmentation of multiple rigid motions is a prerequisite to motion estimation al­

gorithms because the latter can only deal with one rigid motion. A method which 

combines modified separation matrix scheme and 3D motion based EM algorithm is 
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proposed in Chapter 4 to address the segmentation problem from only two views. 

The main advantages of the modified separation matrix scheme are that it has ex­

cellent performance with spatially well separated motion groups and demands very 

low computational cost. The drawback is that the method is based on some hypo­

thetic spurious motions and does not really characterize different true 3D motions 

between groups, thus it fails in segmenting complicated scenes with spatially over­

lapped groups. To overcome this shortcoming, we developed a 3D motion based 

EM algorithm which iteratively segments the groups and estimates the 3D motion 

parameters for each group starting from a random initialization. Its excellent per­

formances are demonstrated in segmenting two complicated scenes: one contains two 

transparent cylinders rotating about the same axis but to opposite direction, and the 

other contains a forward-backward moving plane and a rotating cubic box hung in 

front. However, this EM algorithm is not perfect. It is time-consuming and some­

times global maximum is not guaranteed. vVe showed by a vast number of simulated 

experiments that to some extent the two algorithms are compensative to each other. 

Therefore, we propose to combine these two methods. Apply the efficient modified 

separation matrix scheme first to the scene. If it fails, apply the 3D motion based 

EM algorithm again. Such a combination algorithm can deal with the majority of 

segmentation problems of different difficult levels. 

Compared with the well-done research in 3D motion estimation, 3D motion seg­

mentation remains a difficult problem. Collaborating with Jin and Soatto in UCLA 

vision group, we have developed and implemented a real-time 3D motion estimation 

system which can reconstruct the camera trajectory and the observed scene structure 

in real time. We believe that this system is the best demonstration of the success 

of theoretical work so far in the vision field toward motion estimation. However, the 

current techniques for 3D motion segmentation can only be applied off line. It is 

still a long way to a unified and efficient framework to segment all possible scenes 

with guaranteed performance so that the ultimate segmentation algorithm can be 

embedded in a real-time motion recovery system. 

It is very often that we are also interested in motions of some particular objects. 
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Human motion detection and recognition is very important to many applications, such 

as surveillance system, pedestrian detection for automatic vehicles, human-computer 

interface, etc. We have presented a human motion detection scheme which is able 

to detect human bodies by their motion patterns from a pair of frames in the pres­

ence of extraneous motions and self-occlusions between body parts (Chapter 5). By 

decomposing the human body into a triangulated graph, our method models human 

motion by an approximate joint density function of the positions and velocities of 

body joint features. If we know in advance the correspondence between the selected 

features in the image and the body joints (called feature labeling problem), then we 

can directly compute the likelihood that labeled configuration represents a human 

body by inserting the configuration into our model. However, we do not have this 

labeling information beforehand. Therefore, the detection is performed by setting a 

threshold to the summation of all the likelihoods each of which is the probability a 

labeling on the observed image features representing a human body. The likelihood 

summation is estimated efficiently by an algorithm similar to dynamic programming. 

Once the person is detected, its location is determined to be the best labels with 

the maximum labeling likelihood by applying dynamic programming. Our detection 

system reaches 90% detection rate from a pair of frames. 

The main drawback of our approach is that, apart from self-occlusion, the body 

joints in our model may not be reliably observed as candidate features in the more 

natural image sequences. Depending on the different clothes people wear and the 

different lighting conditions, the candidate features selected on the human body in 

the images may be far away from the correct positions of body joints. It has been 

demonstrated that if a human body is not modeled by joints, but the middle positions 

of body parts and/or limbs, it is not easy to perceive its motions any more. Therefore, 

a question for future study is: can we infer the human body joints from the observed 

features which may locate anywhere on the human body as well as the background? 

This is crucial to the generalization of our detection system. Otherwise, the subject 

has to be dressed specially as in our experiment to make sure that most body joints 

are observable. Another issue arising from our system is the choice of the triangulated 
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decomposition. Our current triangulation structure is only one among many possible 

choices. What is the best decomposition structure for detection? My colleague Song 

has further exploration in [83] to answer this question. 

Detection is followed by recognition of human actions when a human body is ob­

served long enough in an image sequence. In this thesis, we also proposed an algorithm 

for the recognition of human actions (Chapter 6). The algorithm consists of three 

stages: background subtraction, body pose classification, and action recognition. A 

new concept movelet is introduced to represent a human pose in space-time by the 

shapes and motions of image patches which correspond to the main body parts. The 

set of all possible movelets is very large. We discretize this set into a smaller collec­

tion of movelet codewords by vector quantization. Then human actions are modeled 

by HMM. However, unlike the usual HMM whose states do not exactly correspond 

to some physical terms, we predefine the HMM states of the actions as the movelet 

codewords. The different HMM transition matrices of different actions represent the 

different spatial-temporal paths in the codeword space that the actions can possibly 

take. Such an HMM framework enables us to simultaneously find the best action 

as recognition and the best codeword sequence as representation of the observed se­

quence. The algorithm is tested on both periodic and nonperiodic actions. Specially 

designed color-coded clothes are used for training the movelet codewords. Above 80% 

recognition rates are achieved for all actions. The influences of the sequence length 

and the number of codewords on algorithm performance are studied experimentally 

in this thesis. As an extension, it also demonstrates that our recognition scheme can 

recognize very well the periodic actions of subjects with normal translational speed 

although the actions are trained by those without translational speed. 

Our recognition algorithm is limited by the requirement of background subtrac­

tion which is not always possible. When the background information is not available 

or the camera is not still, a practical substitute for background subtraction is to ex­

tract the foreground region by applying the independent motion segmentation [6]. 

However, compared with the background subtraction, the disadvantage of this seg­

mentation technique is that it can not extract the non-textured foreground regions 
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from the background. We have done some experiments on the sequences taken by 

a moving camera. The scheme proposed in [6] is applied to estimate the dominant 

camera motion and segment the foreground regions as the outliers to the camera 

motion. What we observe is that the body edges are clearly detected as foreground 

and most of internal regions of body are missed. Our recognition scheme cannot reli­

ably recognize the actions from such poor foreground data. Therefore, an interesting 

and challenging future work is to reliably obtain the foreground regions from general 

image sequences. Another open issue is whether there is a better model than the 

simple binomial distribution that fits codewords to foreground configurations. If we 

consider the problem from the computational cost point of view, our current centroid 

searching scheme is not very efficient. There is a searching algorithm called "brent's 

searching", which might be applied to this problem. It is worthy exploring how effi­

cient the brent's searching can be and how much the recognition performance using 

this searching algorithm might be lower than that using the current pixel to pixel 

exhaustive searching. 

In addition, although we have presented both a human motion detection system 

and a human action recognition algorithm, they are kind of independent to each other. 

It will be an interesting future research to unify both into one framework so that the 

human body can be detected in the shortest time (2 frames or 60 ms), and then its 

action can be recognized after 15 to 20 frames. 

We hope our work on motion analysis presented in this thesis will enlighten more 

interesting work in the future. 
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