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ABSTRACT 

We have investigated the feasibility of phonon-reflection techniques as non- 

destructive means to probe surface and/or near-surface damage in otherwise highly per- 

fect crystals. A UHV liquid-helium stage, suitable for phonon-reflection measurements, 

was installed on a beam line of a tandem van de Graaff accelerator which was used to 

implant MeV ions into the substrate in order to modify the subsurface region in situ. 

Here, we report our investigation on the effects of 1 MeV Ar' implantation in A1 2 0 3  sin- 

gle crystals by monitoring the reflection of terahertz (THz) phonons (50 A wavelength) 

from the implanted region. The results are supported by x-ray rocking measurements and 

Monte Carlo simulations. 

Using a 15 kV ion gun on the same beam line we have also bombarded A1203 

crystals coated with thin films of gold. The effects of a 7.5 keV Ar+ irradiation on this 

Au - A1 2 0 3  system are also discussed in this thesis. 

The relevance of this work is discussed in connection to the observations made by 

other groups and also to our previous work (reported in Appendix 3) on phonon-induced 

desorption of He atoms as well as the Kapitza anomaly. 
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1. INTRODUCTION 

For some years, we have investigated problems such as the anomalous low tempera- 

ture transmission of heat across various interfaces (Taborek and Goodstein 1980) (a 

problem called the Kapitza anomaly) and also the desorption mechanism of He thin films 

(Goodstein et al. 1985, Sinvani et al. 1984, Goodstein 1985), using ballistic phonons 

generated by heat pulses. A schematic diagram of the experiment relevant to this thesis is 

depicted in Fig. 1. la. A thin metallic heater (in our case 500 nichrome) is evaporated 

on one side of a sapphire (A1203) single crystal. By Joule-heating, thermal phonons are 

radiated into the substrate. If the crystal has very few impurities (i.e., low phonon-defect 

scattering) and is at a temperature sufficiently low with respect to the Debye temperature 

of the solid (i.e., negligible dispersion effects as well as low phonon-phonon interaction), 

the phonons travel macroscopic distances without being scattered. Sapphire easily 

satisfies these criteria due to its very high Debye temperature (- 1000K) (Braginsky 

et al. 1985), low isotopic impurity (0.204% due to 180), and advanced methods of 

single-crystalline growth (low impurity concentration). Because of the latter, it is possi- 

ble to get large crystals which enable us to neglect the wall effects. The ejected phonons 

traverse the crystal, are reflected from the surface (usually under vacuum), and, after 

traversing the crystal again, are detected by means of a superconducting Sn bolometer 

(2000 thick). Using very short (30 nsec duration) heat-pulses as well as small heaters 

and bolometers (0.1 mm2 area), we achieve time resolution of the order of a few tens of 

nsec. In this way one is able to resolve various phonon polarizations (1 longitudinal, 2 

transverse and up to 6 mode-converted) due to their different paths and group velocities, 

and thus their arrival times (Fig. l.lb) at the detector (Taborek and Goodstein 1979). 

Because of the non-ideality of the surface, some of the phonons are reflected specularly 

and some diffusely (normally showing up as a long tail superimposed on the specular 

peaks). Taking advantage of the crystalline anisotropy of sapphire, it has been shown 

that one can find relative positions for heater and bolometer for which diffusely scattered 



phonons are preferentially focussed in the direction of the bolometer and detected as a 

separate broad peak in a plot of signal versus time (Taborek and Goodstein 1980). A typ- 

ical signal in this orientation is shown in Fig. 1.2. If one introduces liquid helium (LHe) 

to the outside of the reflecting surface, the diffuse peak is dramatically reduced while the 

specular peaks remain the same. Briefly, this arises in the following way (A.C. Anderson 

1980). Considering the transmission probability (a) of phonons across any ideal solid- 

LHe interface using classical continuum mechanics, the considerably smaller speed of 

sound, as well as the smaller mass density of LHe compared to any other solid, would 

yield a - 0.01 due to a large acoustic impedance mismatch. However, experimentally 

one observes a's of about 0.5. Based on our experiments as well as other similar experi- 

ments, it was realized that there are two transmission components. One, as expected, 

obeys the acoustic mismatch model (the specular peaks in our experiment). The other is 

anomalous (the diffuse signal, which disappears when in contact with LHe). It has been 

demonstrated experimentally that the anomalous component is a consequence of surface 

defects which, once removed, leave only the expected acoustic-mismatch result and no 

anomaly (Weber et al. 1978, Basso et al. 1984). 

In addition, it was found that when only a few (- 3) monolayers of He were intro- 

duced onto the reflection surface, the effect was the same as that of bulk He (Long et al. 

1973, Guo and Maris 1974, Dietsche and Kinder 1975, Taborek and Goodstein 1980). In 

other words, the signal in Fig. 1.2 looked the same whether LHe or a very thin film of He 

was adsorbed onto the surface. For the thin film results, one source of this enhanced 

transmission was attributed to desorption of He atoms. We carried out some experiments 

to investigate this process (Sinvani et al. 1984, Goodstein et al. 1985). Some of the 

results are reported in Appendix 3. 

Also, originally it was thought that the Kapitza anomaly happened only for a solid- 

LHe interface, but later it was shown that a similar process occurs for other systems (e.g., 

sapphire/solid Ar) as well (Taborek and Goodstein 1981). Several models have been 



proposed (Shiren 198 1, Kinder 198 I), but the exact microscopic nature of this process 

remains unresolved, mainly due to the as yet poor understanding of the exact mechanism 

of the diffuse scattering at non-ideal surfaces. 

It has been shown that the low temperature thermal conductivity measurements in 

the boundary scattering regime are also sensitive to the nature of phonon reflection (dif- 

fuse vs. specular) at surfaces and interfaces (Pohl and Stritzker 1982, Klitsner and Pohl 

1984, 1986). Pohl and Stritzker (1982) have reported such measurements on sapphire 

samples with a variety of surface treatments including ion bombardment in an attempt to 

study the causes of diffuse phonon scattering at crystal surfaces. 

Due to the extreme sensitivity of our phonon-focussed diffuse peak technique, we 

decided to carry out a similar investigation. However, we wanted to have the capability 

to alter the surface region in a controlled way and under UHV conditions while simul- 

taneously studying the scattering of phonons from such modifications. Ion beams are 

particularly suitable for this purpose because one is able to vary the depth at which the 

damage is introduced by varying their energy and also change the extent of the damage 

by changing the dose. This way, we hoped not only to gain some insights into the 

cause(s) of the Kapitza anomaly but also to investigate the potential of the ballistic pho- 

non reflection technique as a surface probe. 

This thesis is organized as follows. In Chapter 2, we describe, from a theoretical 

point of view, propagation, reflection and transmission of phonons across various inter- 

faces of relevance. In Chapter 3, previous experimental investigations concerning the 

Kapitza anomaly are summarized, leading to the motivation for the present work. In 

Chapter 4, the design of the experimental apparatus is discussed. In Chapter 5, we present 

our data for various surface treatments. Then in Chapter 6, the accumulated data are 

analyzed and compared to those of the previous investigators. Finally in Chapter 7, we 

summarize our results and end with some concluding remarks and suggestions for further 

experiments. 



2. PHONON BACKGROUND - THEORETICAL 

In the experiments reported in this thesis, phonons injected into the sapphire single 

crystals have very long mean free paths (basically limited by the size of the crystal). The 

reasons are manifold (Herth and Weiss 1970). First, by cooling the substrate, the interac- 

tion between the thermal equilibrium phonons of the crystal and the injected phonons 

becomes negligible (i.e., low phonon-phonon scattering). Second, in a material like 

A120 with its very large Debye temperature (- 1000 K) (Braginsky et al. 1985), 

corresponding to the Debye frequency, fD , of 23 THz, dispersion effects can be ignored 

when a material like constantan, with a lower Debye temperature (390 K, corresponding 

to fD of about 8 THz) is used as a phonon generator. More specifically, it has been 

shown that dispersion effects in sapphire can practically be neglected for phonons with 

wave vectors not exceeding 112 of the corresponding Brillouin zone vector (Bialas and 

Stolz 1975). In such instances, phonons close to the zone boundary are not generated and 

thus one can assume that phonons of a certain polarization radiated in a certain direction 

have practically the same propagation velocity. Third, at the frequencies involved in 

these experiments, one can ignore deviations from harmonic approximation. Fourth, sap- 

phire has a very low concentration of isotopic impurities (0.204% 180 instead of 160) 

and other foreign impurities yielding low phonon-impurity scattering. As a result of all 

these, phonons in sapphire can travel macroscopic distances without undergoing much 

scattering and thus the propagation and reflection of phonons can be treated using the 

elastic continuum model. 

A. PHONON PROPAGATION IN SOLIDS 

The laws of propagation of elastic waves in a crystal (Federov 1968, Musgrave 

1970) can be derived from the equation of motion: 



where p is the mass density, ui is the i-th component of the displacement, xj is any con- 

venient orthogonal basis and oij is the stress tensor. Summation over repeated indices is 

understood in this equation and in the following ones. To obtain an equation containing 

only the displacement vectors, the stress tensor can be written in terms of the strain ten- 

sor, yim : 

where cijlm is the tensor of elastic constants and 

The elastic tensor has 34 = 8 1 elements, but crystalline symmetry reduces the number that 

are independent. For an isotropic crystal, there are two elastic constants, whereas for 

example, for sapphire there are six. Using Eq.(2.2), we can rewrite Eq.(2.1) as 

where we have taken advantage of the symmetry of the elastic tensor in the last two 

indices. Considering plane monochromatic elastic waves, the displacement may be writ- 

ten as: 

ui = uoeie i(Z?-cot) 

+ 
where uo is the amplitude of 7f and & is a unit polarization vector. k and o are the wave 

vector and the frequency respectively. Substituting this into Eq.(2.3) yields 



+ 
where hijh = cijlm /p and k = (wlv ) riz , ri; being a unit vector and v being the phase 

velocity of the wave. Equation (2.4b) is an eigenvalue equation with eigenvalues v 2  

Hence, v 2  is a root of the characteristic equation 

This is a cubic equation in v 2  yielding in general three solutions, v,, o= 1, 2, 3 

corresponding to one longitudinal (L) and two transverse modes (Tl,T2). Thus, given a 
+ 

direction in the k -space (ri ), by solving Eq.(2.4b) and (2.5), the polarization vectors and 

the phase velocities corresponding to the three modes can be determined. 

In addition to this, the directions along which energy is transmitted are given by the 
4 

energy flux-density vector, P : 

The time average of this vector may be written in terms of the elastic tensor as: 

Dividing this by the time-averaged energy density, E, one obtains the vector for the 

velocity of the propagation of the energy or the group velocity vector : 

where o denotes the wave polarization. 

For computing group velocities, the above equation is usually used, whereas for 

qualitative discussions, we use the following property : 



To obtain detailed information about the propagation properties of long-wavelength 

phonons, the most powerful and widely used technique is the construction of the phonon 
+ 

constant energy surface near the origin in k-space for the three acoustic polarizations 

( o  = L , T 1 , T 2 ). If we construct a surface which has along each wave-normal direction, 

d ,  a distance from the origin equal to llv,(d) where o denotes the polarization of the 

phonon, we obtain the reciprocal phase velociv surface or as more commonly called 

the slowness surface which has the same shape as the energy surface since: 

( k-) constant 121 = ,- = 
v,(k) v ,(n  ̂ ) 

However, in a phonon-pulse experiment, what one would like to know is the distri- 

bution of phonon intensity, i.e., the normalized phonon energy flux per solid angle 

(called the intensity surfaces) (Roesch and Weiss 1976). To derive an analytic expres- 

sion for these surfaces, consider the spectral flux in solid angle d R;o(h in the spectral 

range E ( 2 )  and E ( 2 )  + dE $1: 

+ 3+ + + 3+ where dN, ( k  , d k )  is the number of phonons with wave vectors between k and k + d k 

given by : 

+ + 
In this equation, D,(k)  is the density of states in k-space which is equal to ~ / ( 2 r r ) ~ ,  

+ 
where V is the real space volume, f ,(E ( k)) is the distribution function which in thermal 

equilibrium is given by the Bose-Einstein distribution. Equation (2.9) can be rewritten 



3+ The thickness, dk, of the volume element d k measured along the direction of the group 
+ 

velocity, s, (k)  can be expressed, using Eq.(2.7), as: 

+ 1 -+ 1 dE s,(k) = - V z E  (k )  = - - 
A a & %(z) 

Where ri,a(z) is a unit vector along the group velocity vector and thus: 

+ 
with s, ( k) defined as the magnitude of the group velocity vector. Also, according to the 

2- geometrical construction of Fig. 2.1, the area, d k , projected onto the plane perpendicu- 

lar to dk is given by: 

Substituting the last two equations in Eq.(2.10) yields: 

+ + 
where we have also used k = wlv, ( k). Then Eq.(2.8) can be written as: 

The ratio dQzldQ;a(z) is called the focussing factor. In a general case, a wave 

+ + 
packet with k vectors contained in d Rz solid angle in k-space can send energy into a 

solid angle d ;) in real space. If d R; > d Q;a( ;), the energy is focussed and if 



d a; < dR?a(;), the energy is spread over a larger area. It can be shown that the ten- 

dency of phonons to group in any direction depends upon the curvature of the 

slowness surface and is given by: 

where G, is the Gaussian curvature of the slowness suvace . We will return to this point 

later in this chapter. 

* 
Because of such considerations, phonons with quite different k vectors can contri- 

bute to the flux (see Eq.(2.11)) in a chosen ri g direction: 

+1 27r 
+ + 

with the definition I I 6(ri 2 - ri ?( 2)) d (cos 0( k )) d $( k )  = 1. Normalizing the above 

thermal phonon intensity to the mean intensity taken over the whole solid angle yields 

the expression for the intensity surface in real space: 

where 

+1 2n 

L J J  -2 so$) d n ;  d (COS 0 (Z ) )  d $(Z). 
v ,  -10 v : ( 6  dRza(z)  

corresponds to an isotropic sound velocity which gives the same mean phonon inten- 

sity of polarization o in thermal equilibrium. 



Some authors refer to group velocity surfaces instead of intensity surfaces; these 

surfaces are defined as the surfaces in real space whose polar vector gives the magnitude 

of the group velocity as a function of the solid angle. The difference between these and 

the intensity surfaces, however, is only quantitative, since the structure of the singulari- 

ties is determined in both cases by the Jacobian determinant d Rz l  d Rzdz), given by 

Eq. (2.12). 

I. Isotropic Medium 

An isotropic solid has only two elastic constants. In such a medium and along any 

wave normal direction, the three orthonomal waves are pure modes. In other words, the 

polarization of the longitudinal wave is parallel to the wave normal and the two degen- 

erate transverse modes can have any polarization perpendicular to the direction of propa- 

gation. This means that the slowness suF$aces, in this case, are all spherical and that the 

direction of energy flow coincides with the wave normal direction. In other words, the 

energy flux is also uniformly distributed, corresponding to d Q ~ / d R z o ( ~ )  = 1 in 

11. Anisotropic Solid 

In general, none of the features stated for an isotropic medium occurs in a crystal; 

none of the orthonormal waves is purely longitudinal or purely transverse and all three 

waves have different velocities, except along particular symmetry directions. The con- 

vention most commonly used to classify the three polarizations is according to their 

phase velocities: quasi longitudinal (L) with the highest phase velocity, slow transverse 

(ST)  with the lowest phase velocity and fast transverse (FT) with the velocity between 

the two. The crystal anisotropy leads to complicated propagation patterns, most easily 

visualizable in the slowness suvaces orland the intensiw surfaces. Unlike the case of an 

isotropic medium, these two surfaces do not coincide in this case, since the group velo- 

city is not necessarily along the direction of the wave vector. 



Let us consider phonon propagation in sapphire (Bialas and Stolz 1975). This solid 

crystallizes in the trigond system, containing two Al2O3 molecules, with %z (D 3d) point 

group and R 5~ (0 36,) space group. In other words, the independent symmetry elements 

of this crystal are the three fold c-axis, the two fold a-axis and the mirror plane perpen- 

dicular to the a-axis, containing the c-axis. By convention, the c-axis is taken along the 

Z-axis and the a-axis is along the X-axis; the Y-axis is defined to make a right handed 

Cartesian coordinate system and thus it lies in the mirror plane. Sapphire has six indepen- 

dent elastic constants, as given by Farnell (1961). 

Even though sapphire is considered the most isotropic of commonly used crystals 

(e.g., its two transverse speeds of sound differ only by a few percent), as we shall see 

below, some spectacular effects emerge from its slight anisotropy. 

The slowness surfaces for the three polarizations are shown in Fig. 2.2 taken from 

Every et al. (1984). The longitudinal sheet of the slowness surface is entirely convex 

and hence there is very little anisotropy associated with the propagation of this phonon 

polarization. In contrast, the slowness surfaces of the two transverse modes are notice- 

ably non-spherical. There are regions where these surfaces are convex (i.e., both of the 

principal curvatures are positive) and regions where they are concave (with the two prin- 

cipal curvatures being negative). Along the lines that separate these two regions, the 

Gaussian curvature, which is the product of the two principal curvatures, becomes zero, 

and in turn the phonon focussing factor, as defined earlier in this chapter, becomes 

infinite. These lines show up as phonon caustics in the group velocity surfaces, Fig. 2.3 

(Every et al., 1984). Of course, it should be kept in mind that in any real experiment, the 

intensities have to be integrated over a finite solid angle which then yields a finite energy 

flux. In any case, the group velociry surfaces clearly show that there is strong anisotropy 

in phonon propagation even in such an "isotropic" crystal as sapphire. 



B. REFLECTION OF PHONONS AT A BOUNDARY 

So far we have only considered the propagation of elastic waves in an infinite 

medium. Here, we shall consider the case when an elastic wave meets the boundary 

between a solid and vacuum (in part I) and between two solids and a solid and liquid He 

(in part 11). 

I. Phonon Reflection at a Solid-Vacuum Interface 

In this section we first consider the situation where the impinging phonons find an 

ideal (flat) surface and are thus specularly reflected (part (a)) and then in part (b), the case 

of diffuse scattering is considered. 

a. specular reflection 

The translational invariance along the surface requires that upon reflection, the corn- 
+ 

ponent of the wave vector parallel to the surface, kll, must be conserved (Taborek and 

Goodstein 1979). What this condition leads to is depicted in Fig. 2.4. Here, cross sections 

of the slowness surfaces are shown for the three polarizations for an arbitrary crystallo- 

graphic plane. The inner curve is the quasi-longitudinal mode (L) and the other two are 
+ 

the quasi-transverse ones ( FT, ST ). Given an incident wave vector, ki,, the intersec- 
4 + 

tions of these curves with the lines given by ki, ,,, = kr& II yield the permitted solutions for 

the outgoing waves. As can be seen from the figure, for a longitudinally polarized 

incident wave, one can always find three outgoing waves corresponding to the three 

polarizations. This is because the longitudinal mode has the largest phase velocity and 

thus can be phased-matched to any of the other polarizations. However, in general, this is 

not the case for the transverse modes. For example, considering the fast transverse mode, 

for 0 c Oc ,(FT +L ) = arctan (vm I vL ), there can be three reflected waves, whereas for 

~ > ~ c , ( F T + L )  the condition of parallel momentum conservation cannot be satisfied by 

any longitudinal waves. However, the condition klf + kf = kz = u2 1 v z  can be satisfied 

for imaginary values of kl corresponding to an evanescent wave with exponentially 



decreasing amplitude away from the surface (known as a Rayleigh wave ). 

Algebraically, to calculate the reflected modes for a given incident wave, we 
-+ 

adopted the following method : choose a wave vector, ki, with unit amplitude by con- 

vention (this means choosing angles 0 , $ in polar coordinates); using equations (4b), (5) 

and (6) ,  calculate the three phase velocities (G,,, ) as well as the polarization vectors 

(ei,, , ) and their group velocities (3, , , ). Take one of these modes, oi , and by impos- 
+ + 

ing the kimvIl = kref ,11 conservation condition, solve Eq.(2.4a) for the possible values of kl. 

In general, there will be six solutions; the three positive ones correspond to the refracted 

waves which are not allowed at a vacuum interface. The solutions with negative values 
+ + 

of kl represent possible reflection processes, krg = {kim ,I, , kref ). The reflected wave 

vectors, thus obtained, are renormalized to the unity magnitude and using Eq.(2.4b), once 

again the phase velocities (Y&, , ), the polarization vectors (6 ,  ) and the group veloci- 

ties (zef ,,.) are calculated. The same convention, as stated earlier, is used for labeling 

the various modes. Once the permitted solutions are found, the displacement amplitude 

of each mode (uzf ,,. ) is obtained using the stress-free boundary condition at the sur- 

face: 

where A is the surface normal and oij is the stress tensor defined in Eq.(2.2). By project- 

ing the reflected displacement vector (Gef ,,.) onto the incident displacement vector 
I 

(ei,,, ) the strength of coupling from one mode (oi, = 0) into another (oref, i = Oi ) can 

be determined. 

As related to the experiments reported here, we are interested in the processes that 

bring the injected phonons into the solid angle of the bolometer after reflection at the sur- 
+ 

face. Thus, the problem becomes finding a wave vector, ki,,, , that originates from the 
+ 

heater and after reflection from the surface (kref , ,. ) has a group velocity in the direction 

of the bolometer. Once such a process is found by trial and error, the strength of such 



coupling is calculated and if non-zero, the time of flight (TOF ) for it is obtained using: 

TOF = , d d 
+ , s s , # , ~ ~ . A  

+ where d is the crystal thickness, ri is the surface normal and 3, *,, s,# are the group 

velocities of the incident and reflected waves, respectively. We have written computer 

programs that, for a given orientation of heater and bolometer, can calculate the times of 

flight for all the possible reflection processes. In general, one expects up to 9 arrival 

times corresponding to the three incident phonon polarizations times the three possible 

mode conversions upon reflection at the surface. 

It should be kept in mind that phonon focussing will show itself up in the reflection 

process as well. Suppose phonons are injected into the crystal from a point source at its 

center. The total integrated intensity of the specularly reflected phonons of a given polar- 

ization arriving at the back of the crystal can reveal sharp features as a consequence of 

bulk focussing (Northrop and Wolfe 1984). Figure 2.5 shows the results of such measure- 

ments for an X-cut sapphire (i.e., X-axis perpendicular to the surface). However, for the 

work reported here, only Y-cut A1 203 crystals are used for which no appreciable focuss- 

ing of the specularly reflected phonons is expected. 

b. diffuse reflection 

The exact nature of diffuse scattering from uncharacterized crystal surfaces, such as 

ours, is not known, but to get an idea of how diffuse reflection will manifest itself in our 

experiment, let us qualitatively consider the two following situations: 

i) isotropic solid: Taborek and Goodstein (1980) have considered the case of an iso- 
+ + 

tropic medium (i.e., s (k ) 11 k ) with the following simplifying assumptions. A constant 

fraction, q ,  of the radiation incident on the surface is reradiated uniformly into all solid 

angles and the rest, (1-11). is reflected specularly. In addition to this, they assumed that 

the heater and bolometer are very small and very close together (coincident points). In 



this case, as shown in Fig. 2.6, the diffuse signal, which is the rate at which phonons are 

scattered back into the bolometer, is essentially the result of two competing geometrical 

effects. For long times, the area of the annulus on the reflecting surface that contributes 

to the signal becomes larger, but the intensity of the beam reaching the bolometer 

decreases as two powers of the inverse distance. Thus, they showed that for a delta- 

function heater pulse Q (t) = Q o  6(t), the diffuse signal rises abruptly to its maximum 

value of nqQ 0vlh3 (h  being the thickness of the crystal) at t = 2h /c , the arrival time of 

the specularly reflected pulse, and then decays as t". In other words, the diffuse scatter- 

ing contribution shows up as a long-decaying tail superimposed onto the sharp specular 

peak. 

ii) anisotropic solids: The above argument holds reasonably well in an anisotropic 

medium as well. However, due to crystalline anisotropy, one gets some additional struc- 

tures (Maris 1971). For example, Fig. 2.7 shows a reflection signal in a Y-cut sapphire 

crystal. The specular peaks (along with their diffusive tails) are labeled accordingly. 

However, there is an additional peak which does not coincide with any of the specular 

peaks. As it turned out, this signal is produced as a consequence of the phonon focussing 

in this crystal. To understand this, consider the projection of the group velocity surfaces 

for the two transverse modes (FT and ST) onto the [ IT0 11 crystallographic face of sap- 

phire (i.e., Y-axis normal to the surface). This is represented in Fig. 2.8a. What this 

shows is that if a heater, positioned at the center of the graph, is pulsed, the injected pho- 
+ 

nons, though randomly distributed in k -space, become focussed preferentially along the 

focussing caustics leading to high intensity regions on the reflection surface. Now, (as 

similarly done in the previous section) every point on this caustic can be considered as a 

point source in itself, with a fraction q of its energy radiating diffusely (randomly distri- 
+ 

buted k vectors) and (1-17) fraction reflected specularly. The fraction that is diffusely 

scattered, while traversing the crystal, is refocussed along the phonon caustics. If the 

bolometer happens to be along one of these high focussing directions, there is an 



additional channel for the injected phonons to reach the bolometer. To find out what the 

orientation of the heater and the bolometer should be in order for such a process to occur, 

we can take advantage of the inversion symmetry of sapphire and treat the problem in the 

following way: consider two sets of caustics, one corresponding to the heater and the 

other corresponding to the bolometer and displace them with respect to each other. One 

can see that if the bolometer and the heater are displaced along the X-axis by a few mil- 

limeters, a large part of the high focussing regions for the two devices will overlap giving 

rise to the additional peak observed in Fig. 2.8b. However, if they are displaced along the 

Z-axis, there is not as much overlap between the two caustics and thus not a very strong 

big bump. 

11. Phonon Propagation across Two Media 

Peter Kapitza, while studying the transport of heat in superfluid 4 ~ e ,  observed a 

large temperature drop, AT, across the interface between his copper heater and the liquid 

He (Kapitza 1941). Since then, a similar phenomenon has been observed between two 

solids as well. In this context, one defines a so-called thermal boundary resistance, Rk: 

where Q is the heat flux per unit area of the interface. The source of this interfacial resis- 

tance is attributed to the reflection and transmission of thermal phonons at the interface. 

The most widely-known theory to treat this situation is known as the Acoustic Mismatch 

Theory (AM). Below, in part (a), we briefly review this theory for the case of phonon 

transport across two solids and in part (b), across a solid and LHe. 

a. acoustic mismatch theory for solid-solid interface 

The following simplifying assumptions are built into the AM model (Little 1959). 

The two materials are non-metallic so that heat is carried only by phonons. The tempera- 

ture is sufficiently low such that only acoustic phonons are present and that there is no 



dispersion effect. Both solids are perfect so that phonons are scattered only by the inter- 

++ face. The two media are also isotropic in which case the phonon velocity (v (k)) is 

independent of the direction of propagation and is along the direction of the wave vector, 
+ 
k .  The interface is assumed ideal and thus the displacement and the stress are continuous 

across the interface. 

In such system, let us consider a phonon impinging on the interface from material 1, 

shown schematically in Fig. 2.9 (A.C. Anderson 1980). This gives rise to two reflected 

and two transmitted waves corresponding to the two possible polarizations. The conser- 

vation of parallel momentum leads to an acoustic Snell's law written as: 

where subscript 1 denotes the reflected wave, 2 the refracted wave, L the longitudinal 

mode and T the transverse polarization. 

As a consequence of this, total internal reflection is possible for a phonon impinging 

on the interface from the medium with the lower sound velocity. We shall return to this 

point latter on. 

By imposing the boundary condition (i.e., continuity of the normal and the tangen- 

tial components of stress and displacement), the amplitude, u ,  of each outgoing wave can 

be obtained in terms of the incident amplitude, uo. These in turn can be related to the 

probability coefficient, a@), for the transmission of the phonon energy across the inter- 

face: 

for each of the three incident modes, i. In the above equation, pl is the mass density of 

the medium 1 and p2 is that of medium 2. Then a summation is performed over the three 



phonon modes, all the incident directions and all the phonon frequencies to obtain the net 

heat flux, Q , carried across the interface. For AT 7-2-Tl T2+Tl [= I<.[= ] whereTl 

and T2 are the temperatures in media 1 and 2, respectively, one can show that Rk as 

defined in Eq. (2.14) is given by: 

where: 

and 

with i denoting the phonon polarization and <ali>e being the angle-averaged phonon 

transmission coefficient for the i-th mode. 

Let us look at a more specific situation. Consider the case of sapphire-gold inter- 

face. The transmission coefficient as defined by Eq.(2.16) is largely determined by the 

acoustic impedances plvl and p2v2 of the two materials. For near normal incidence, 

Eq.(2.16) reduces to: 

For A1203 , P - 3.986g/cc, vL - 11 km/s and vT - 6km/s, whereas for gold, p - 19.3 g/cc, 

v IL - 3.24 km/s and v IT - 1.2 km/s yielding transmission coefficients for near normal 

incidence of aL (0) - 0.97 and 9 (0) - 0.99. 

For phonons impinging on the interface from the gold side, there exist critical 



angles for transmission corresponding to various incident and transmitted polarizations. 

Using Eq. (2.15), they are: 

and: 

b. acoustic mismatch theory for solid-LHe interface 

Some of the assumptions made for the solid-solid interface are modified in this case 

due to the fact that the liquid cannot support shear waves and hence only longitudinal 

phonons can exist in the liquid side (Khalatnikov 1965). Also, the boundary condition 

becomes the continuity of the normal components of stress and displacement. With these, 

one can derive similar relationships as in equations (15), (16) and (17). Instead, let us 

make some back of the envelope calculations. (For a more extensive treatment of this 

problem, we refer the reader to a review article by Wyatt (1980)). The transmission 

coefficient for near normal incidence, as given by Eq.(2.18), for sapphire-LHe interface 

is roughly a(0) - 0.01 where the parameters for LHe are p - 0.14 g/cc and v ' - 0.24 W s .  

Thus, one would expect almost all the phonons impinging on this interface to be 

reflected. 

One can also write the acoustic Snell's law for this situation using Eq.(2.15). The 

critical angles for transmission of longitudinal and transverse waves are given by: 



and: 

Thus only phonons from the LHe side within eCL can generate longitudinal phonons in 

sapphire and those within €IcT can generate transverse phonons. Conversely, phonons 

from the solid are transmitted into the LHe within these critical angles. 

The AM theory, though it explains why there is a temperature drop across an inter- 

face, dramatic ally fails when its predictions are quantitatively compared to the experi- 

mental values. For example, instead of a - 0.01, the measured values are about 0.5! In 

other words, the question was no longer why there was a temperature drop across a 

solid-LHe interface, but why it was so small. Therefore, the question of the Kapitza 

Anomalous Resistance was changed to that of the Kapitza Anomalous Conductance. 



3. PHONON BACKGROUND - EXPERIMENTAL 

The motivation for this work came about from an investigation by several groups of 

the cause(s) of enhanced transmission of heat across a solid and liquid He, a problem 

known as the Kapitza Anomalous Conductance (Wyatt 1980). 

The measurements of heat conduction across a solid-liquid helium (LHe) interface 

were originally made by passing a heat current (Q) down a rod which was in vacuum 

except for the end face, which was in LHe (Challis 1974). A temperature discontinuity 

(AT) was found across the interface and a thermal boundary conductance (YK) was 

defined as: 

where A is the area of the interface. AT is kept small compared with the ambient tem- 

perature and thus the temperature dependence of YK can be measured. As discussed in 

Ch. 2, Sec. B, based on the acoustic mismatch (AM) theory, one expected YK to be pro- 

portional to T' (i.e., it should increase with the equilibrium density of phonons). How- 

ever, experimentally it was found to depend on higher powers of T. Also, the magnitude 

of YK was always much greater than the predicted value based on the AM theory and 

thus it was referred to as the anomalous Kapitza conductance. Later, more refined experi- 

ments showed that for low phonon frequencies (S 1 GHz) the acoustic mismatch theory 

is obeyed (Keen et al. 1965, Sabisky and Anderson 1975). In these experiments, the 

phonons were generated piezo-electrically where the maximum phonon frequency is lim- 

ited to a few GHz. 

A more powerful technique to probe this process is the direct measurement of the 

reflection of ballistic phonons from a solid-LHe interface by using the so-called heat 

pulse technique (Von Gutfeld 1968). The basic principle behind this technique is shown 

in Fig. 1.1. A pulse of thermal phonons propagates ballistically through a very pure 
























































































































































































































































