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Abstract

The mobile wireless environment has been a challenge to reliable communications because
of the time-varying nature of the channel. Detrimental effects such as path loss, shadow-
ing, and multipath fading can greatly attenuate the transmitted signal. Therefore, adaptive
channel estimation and data detecting algorithms must be designed for such channels. More-
over, in a multi-user system, dynamic resource allocation is an important means to transmit
information efficiently through the varying channel.

In this ‘hesis we first propose two adaptive feedback maximum-likelihood detection
techniques, a decision-feedback decoder and an output-feedback decoder, for coded signals
transmitted over channels with correlated fading. Both analysis and simulation results
demonstrate that they have far better performance than the conventional decoder. We
also propose a simple improvement to conventional decoders by using a weighted metric.
The BER performance of all these decoders is analyzed through a sliding window decoding
method.

Next we derive the ergodic (Shannon) capacity region and optimal dynamic resource
allocation for an M-user fading broadcast channel under code-division with and without
successive decoding, time-division, aud frequency-division. For this channel we also derive
the outage and zero-outage capacity regions and the corresponding optimal resource alloca-
tion strategies under different spectrum-sharing techniques. We obtain the outage capacity
region implicitly by deriving the minimum common outage probability or the outage prob-
ability region for a given rate vector. The corresponding optimal power allocation scheme
is a multi-user generalization of the single-user threshold-decision rule.

Finally, we obtain the outage capacity region and optimal power allocation for fading
multiple access channels. Successive decoding is proved to be optimal and iterative algo-
rithms are proposed to obtain the optimal decoding order and power allocation in each
fading state under the average power and outage probability constraints of each user. We
also obtain the average power regions that can support a rate vector with the given average

outage probability of each user satisfied.
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Chapter 1 Introduction

1.1 Background

The mobile wireless environment has been a challenge to reliable communications because
of the time-varying nature of the channel. The received radio signal fluctuates with the
changing channel due to path loss, shadowing, multipath fading, and mobility of the users
and surrounding objects. Since we have to transmit information in the face of a constantly
changing channel, adaptive channel estimation and data detecting algorithms must be de-
signed for the receiver. Moreover, in a multi-user system, dynamic allocation of resources
such as the transmit power, bandwidth, and rate is an important means to deal with the
time-varying nature of the channel. Indeed, adaptability in a wireless system’s architecture
and algorithms is critical for effective communications. The terminal devices, the base sta-
tion, and even the network topology are all expected to be adaptive in order to transmit
information efficiently and reliably through the wireless network [1]. In existing wireless
systems, common uses of adaptability include adaptive power control enabling a terminal
close to the base station to transmit at lower power, and adaptive channel allocation where
the selection of a channel by the terminal and the base station is based on local interference

and channel conditions.

1.2 Thesis Summary

This thesis focuses on two subjects. First, based on a finite-state Markov chain model of the
slowly time-varying channel, we develop adaptive maximum-likelihood decoding algorithms
for coded signals transmitted over slowly flat fading channels and ¢xamine their bit-error-
rate performance. These decoding algorithms outperform the conventional decoder without
decreasing the transmit information rate or increasing the signal bandwidth. In addition,
the complexity of these algorithms is relatively low compared to the existing algorithms.
Secondly, in a multi-user system, assuming that both the transmitter(s) and receiver(s)

have perfect channel side information (CSI) and dynamic resource allocation is allowed, we
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obtain three types of capacity regions for fading broadcast channels, one type of capacity
region for fading multiple-access channels, and their corresponding optimal resource alloca-
tion strategies. The three types of capacities are: ergodic (Shannon) capacity, zero-outage
capacity, and outage capacity. The capacity type investigated for fading multiple-access
channels is the last one, since the ergodic capacity region and the zero-outage capacity
region for fading multiple-access channels are obtained in [2] and [3], respectively!. For fad-
ing broadcast channels, the capacity regions are derived for four different spectrum-sharing
techniques: code-division (CD) with and without successive decoding, time-division (TD),

and frequency-division (FD).

1.3 Thesis Outline

The rest of the thesis is organized as follows. We start in Chapter 2 with a brief introduction
to the main characteristics and modeling of single-user fading channels. The concepts such
as fast and slow fading, frequency-flat and frequency-selective fading, and several statistical
models for amplitude fading, are reviewed, which will be used in the subsequent chapters.
A short description of fading broadcast channels and fading multiple-access channels is also
provided.

In Chapter 3, we first give a rather thorough review of various existing techniques on
channel estimation and data detection, including several pilot symbol-aided techniques,
numerous statistics-dependent techniques, and some statistics-independent techniques. We
then introduce our feedback maximun-likelihood decoding techniques for coded signals
transmitted over channels with correlated slow fading. These techniques are based on a
finite-state Markov model for the fading channel. The system model and the structures
of five decoders, i.e., our proposed decision-feedback decoder and output-feedback decoder,
the conventional decoder with and without weighting, and the decoder with perfect channel
state information, are described. The bit-error-rate performances of the five decoders are
then investigated through both analysis and simulation.

In Chapters 4-5, we study three types of capacity regions for fading broadcast channels
and obtain their corresponding optimal resource allocation strategies: the ergodic capacity

region, the zero-outage capacity region, and the outage capacity region with nonzero outage.

!The ergodic (Shannon) capacity of a fading channel is called “throughput capacity” in [2], and the
zero-outage capacity is called “delay-limited capacity” in [3].
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In Chapter 4, we first give a discrete-time M-user fading broadcast channel model. We
then derive the ergodic capacity region of fading broadcast channels for CD, TD, and FD,
assuming that both the transmitter and the receivers have perfect CSI. Optimal resource
allocation policies that achieve the capacity region boundaries are obtained for CD with
successive decoding and for TD using the Lagrangian method. A simple sub-optimal policy
is also proposed for TD. It is shown that CD without successive decoding has the same
ergodic capacity region as TD and FD. Numerical results for a two-user system are provided
for these different spectrum-sharing techniques under different amplitude-fading models.

In Chapter 5, we derive zero-outage capacity regions and outage capacity regions of
fading broadcast channels for CD, TD, and FD, assuming that both the transmitter and
the receivers have perfect CSI. The zero-outage capacity is a special case of the outage
capacity, with the allowed outage probability equal to zero. For convenience we derive the
zero-outage capacity regions for different spectrum-sharing techniques first. We then show
that in an M-user broadcast system, the outage capacity region is implicitly obtained by
deriving the minimum common outage probability or the outage probability region for a
given rate vector. Therefore, given the required rate of each user, we derive the minimum
common outage probability and the corresponding optimal power allocation strategy under
the assumption that the broadcast channel is either not used at all when fading is severe or
is used simultaneously for all users. When each user can declare an outage independently,
we derive the outage probability region boundary and the corresponding optimal power
allocation scheme for a given rate vector. Numerical results for the different outage capacity
regions are obtained for the Nakagami-m fading model.

We derive the outage capacity region of fading multiple-access channels in Chapter 6,
assuming that both the receiver and all the transmitters have perfect CSI. In this chapter
we first describe a discrete-time M-user fading multiple-access channel model. Then under
similar assumptions about whether the outage declaration from each user is simultaneous
or independent, we argue that the outage capacity region can be implicitly obtained by
deriving the minimum common outage probability or the outage probability region for
a given rate vector. Given a required rate and average power constraint for each user,
we find a successive decoding strategy and a power allocation policy that minimize the
common outage probability or bound the outage probability region. Iterative algorithms

are proposed for obtaining the optimal decoding order and power allocation in each fading
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state under a given power constraint for each user. Given the outage probability constraint
of each user, we also obtain the average power region that can support a given rate vector
with all outage probability constraints satisfied. At the end of this chapter we address the
outage capacity region problem when additional peak-power constraints are imposed on the
M-users.

Finally, in Chapter 7, we conclude the thesis with a summary of contributions.



Chapter 2 Fading Channel Characterization

2.1 Introduction

In this chapter we first describe the main characteristics and models of a single-user fading
channel. We then briefly introduce the fading channels of a multi-user system, including

the broadcast channel and the multiple-access channel.

2.2 Single-User Fading Channels

In a single-user system, there is only one transmitter and one receiver. The received radio
signal from the transmitter typically consists of a line-of-sight (LOS) component as well
as multipath components that arrive at the receiver delayed in time and shifted in phase
relative to the LOS path. These signal components may be obstructed by buildings, foliage,
or other objects. This radio channel is time-varying due to mobility of either the transmit-
ter or the receiver, or even the surrounding objects. Mobile channel characterization and
modeling are dealt with in depth in many textbooks [4]-[8]. Here we give a brief review for

some concepts that will be used in the subsequent chapters.

2.2.1 Path Loss and Shadowing

Path loss is the decrease of the signal strength (average power) with the distance d between
the transmitter and receiver due to multipath and shadowing. Path loss is often modeled
as being proportional to d” and the radio wave frequency f, where -y is some value between
two to six, depending on the specific environment [8]. For example, assuming a single
unobstructed LOS transmission path, v = 2. In a two-ray model where both the direct
path and a ground reflected propagation path are considered, v = 4 for d sufficiently large.
In most environments, given the same transmitter-receiver separation distance, the actual
received average signal power in different surroundings will deviate from the predicted one
due to obstructions from buildings and other objects. The variations due to the obstructions,

as measured in decibels (dBs), can be modeled as Gaussian or normal distributed. This



6

log-normal distribution of the path loss describes the random shadowing effects which occur

over a large number of measurement locations [7].

2.2.2 Small-Scale Fading

Small-scale fading, or simply fading, refers to the rapid fluctuation of the received signal
over a short distance (a few wavelengths) due to constructive and destructive combining
of the multipath components. If the transmitter or receiver is moving, then this results in
rapid fluctuation of the received signal over time. The small-scale fading characteristics are
determined by the multipath environment (from reflection, diffraction, and scattering) as

well as the speed of the mobile and surrounding objects and the signal bandwidth.

Fast and Slow fading

It is well-known that whenever there is relative motion between a transmitter and a receiver,
the received carrier frequency is shifted relative to the transmitted carrier frequency. This
shift of frequency is called the Doppler frequency shift. Assuming that the relative speed
between the transmitter and a receiver is v, and a pure sinusoid with frequency f. is

transmitted, then the Doppler frequency shift f; is:
v

f d = —mf )
c

where ¢ is the speed of light. In reality the received signal arrives from multiple paths,
and the velocity of movement in the direction of each path is usually different from that of
another path. Therefore, the received signal of a transmitted sinusoid will have a spectrum
composed of frequencies in the range f. — fi to f. + f4, and this spectrum is referred to as
the Doppler spectrum.

Doppler spectrum is a measurement of the spectral broadening caused by the rate of
changé in the mobile radio channel. The coherence time T; ~ i of the channel is a statis-
tical measure of the time duration over which the channel impulse response is essentially
invariant. Depending on how rapidly the transmitted baseband signal changes as compared
to the changing rate of the channel, a channel may be identified as either fast fading or
slow fading. 1f the coherence time of the channel is smaller than the symbol duration of

the transmitted signal, then the channel impulse response will change rapidly within each
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symbol period and we call such channel a fast fading channel. Otherwise, if the channel
coherence time is much larger than the symbol duration, then the channel impulse response
will change much slower than the symbol rate, and we call such channel a slow fading

channel.

Frequency-Flat Fading and Frequency-Selective Fading

Since the same transmitted signal may arrive at the receiver through different paths with
different delays, we characterize the time-dispersive nature of the multipath channel using
its multipath delay spread, defined as the overall span of path delays (i.e., earliest arrival to
latest arrival). However, different channels with the same multipath delay spread can exhibit
very different signal intensity profiles over the delay span. Therefore, the root-mean-square

(rms) delay spread 7,m,s is often considered,

Trms — ﬁ - (7_')2,
where, given L propagation paths,
L 2
e Zm WA
- I — 4
S L 182

and |3;| represents the amplitude of the ith path arriving with delay ;.

In the frequency domain, the coherence bandwidth refers to the range of frequencies
over which all spectrum components have roughly the same gain and linear phase. If the
coherence bandwidth B, is defined as the bandwidth over which the frequency correlation

function is above 0.9, then

1
B, ~ .
¢ 50Trms

Therefore, a channel exhibits “flat fading” if the signal bandwidth is much smaller than the
coherence bandwidth B, of the channel, and is “frequency-selective” if the signal bandwidth
is larger than B.. In flat fading, the spectral characteristics of the transmitted signal are
preserved at the receiver. However, the strength of the received signal changes with time due
to fluctuation in the channel gain caused by multipath. In frequency-selective fading, the
received signa; includes multiple versions of the transmitted waveform which are attenuated

and delayed in time. Thus the channel induces intersymbol interference. In the frequency
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domain, some spectral components of the received signal have greater gains than others,

i.e., the fading in the channel becomes frequency selective.

2.2.3 Statistical Modeling for Amplitude Fading

In mobile radio channels, several distributions are used to describe the received envelope
of the flat fading signal, or the envelope of an individual multipath component. We now
provide a brief introduction for the Rayleigh, Rician, and Nakagami-m distributions that
will be used in subsequent chapters. These distributions are applicable to different multipath
environments, as described in more detail below. More distributions and their corresponding

applications can be found in [9, 10].

Rayleigh

The Rayleigh distribution typically models signal fading when there is no direct LOS mul-
tipath component. This distribution is commonly used to model terrestrial mobile com-
munication channels since it represents the worst-case scenario and is also relatively easy
to manipulate mathematically. The Rayleigh probability density function (p.d.f.) for the

amplitude « is given by

« (12
Pa(@) = G exp <_2_ﬁ) ; a>0, (2.1)

which is described by a single parameter (2. The mean and variance of the Rayleigh dis-
tributed random variable are given by /Q7/2 and (2 — 7/2)Q, respectively.

The square of the magnitude of a Rayleigh distributed random variable represents the
signal power and has an exponential distribution. That is, if we let v = a2, the p.d.f. of v
is:

1
pr(v) = —exp (—l) ;i vY>0,
7 7

where 7 is the average received power. We will use this distribution in several places in

Chapters 3-4.



Rician

The Rician distribution is commonly used to model the amplitude variation in the presence
of a strong stationary (nonfading) LOS path, such as in satellite communication systems.

Its p.d.f. is given by

o a2—+—1/2 av
o= oo (-£52) 0(3). o0

where €2 represents the variance of the random component of the received signal, v is the
amplitude of the LOS component, and Iy(-) is the zero-order modified Bessel function of
the first kind. The parameter K 2.2 /€Y is the ratio between the deterministic LOS signal
power and the variance of the multipath. Usually K is used in terms of dB as the parameter

identifying the Rician distribution function,

l/2
K (dB)=10log = dB.

As v? - 0, K — —oo, and as the LOS dominant path decreases in amplitude, the Rician
distribution degenerates to a Rayleigh distribution. We will use the Rician distribution in

Chapter 4.

Nakagami-m

The Nakagami-m distribution often gives the best description of the amplitude fading in
land-mobile (11, 12, 13] and indoor-mobile [14] communication systems. Its p.d.f. is given
by [15]

()_Qmman——leX ma? a>0
Pl = "gm T(m) P\ @ ) *=Y

where ) is the mean-square value of the random variable a, T'(-) is the gamma function,
and m is the Nakagami-m fading parameter which ranges from 1/2 to oo. The square of
the random variable a represents the signal power and has a gamma distribution. That is,

if we let v = o2, the p.d.f. of 7 is:

mm ,.Ym—l ( m )
T = < — T _ b Z 07
Pr(7) 7 T(m) exp o
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where 7 is the average received power. Note that for m = 1, the Nakagami-m distribution
reduces to Rayleigh, and for m = 1/2, it is a one-sided Gaussian distribution. With proper
adjustment of the parameters it can also fit Rician and lognormal distributions very tightly.
In the limit as m — +o00, the Nakagami-m fading channel converges to an additive white
Gaussian noise (AWGN) channel. We will use the Nakagami-m fading distribution in several

instances in Chapter 5.

2.3 Multi-User Fading Channels

2.3.1 Fading Broadcast Channels

Ia a multi-user communication system, as shown in Figure 2.1, the broadcast channel refers
to the channel through which a centralized transmitter (or base station) sends information

to multiple receivers (users). It is also known as the downlink channel. systems are typical

-

Figure 2.1: A broadcast channel.

broadcast systems. In a mobile broadcast system, the subchannel between the transmitter
and each individual receiver is time-varying due to user mobility and the changing environ-
ment. 'Since the receivers may be located in various places, the same transmitted signal may
pass through different fading subchannels before reaching those receivers. A mathematical

model of the fading broadcast channel will be given in Chapters 4-5.



11
2.3.2 Fading Multiple-Access Channels

As shown in Figure 2.2, the multiple-access channel refers to the channel through which
all the users in the system send information to a centralized receiver or base station. It is

also known as the uplink channel, which is the reverse of the downlink channel. Since each

- g

Figure 2.2: A multiple-access channel.

user has a transmitter, the multiple access channel consists of many transmitters sending
information to one receiver. The transmitted signal from each user is distinct and the
received signal at the base station is a sum of all the transmitted signals. In a mobile
multiple-access system, the subchannels are time-varying and the transmitted signals from
different users typically reach the base station through quite different paths. Therefore, the
subchannels are usually different from user to user. A mathematical model of the fading

multiple-access channel will be given in Chapter 6.
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Chapter 3 Feedback Maximum-Likelihood
Detection of Coded Signals over Flat-Fading

Channels

3.1 Introduction

It is well known that the transmission link of many mobile communication systems can
be characterized as a frequency-flat fading channel. Such channel exhibits memory due
to correlation of the multiplicative fading distortion [4]. The channel memory should be
considered in optimal detection of both coded and uncoded signals transmitted over fading
channels and much work has been done in this area. In order to implement coherent
detection, the multiplicative fading channel distortion (fading gains) must be estimated
explicitly. In the following subsections we discuss various methods for obtaining these

estimates.

3.1.1 Pilot Symbol-Aided Technique

Pilot symbol-aided channel estimation is proposed in [16] for the Rician fading channel,
where one known symbol is sent for each data block and linear interpolation is used to
estimate the complex fading gains for the unknown data symbols, based on the fact that the
fading gains are correlated. This scheme is later extended to the Rayleigh fading channel
with uncoded M-ary quadrature amplitude modulation (QAM, MQAM) in [17, 18], and
with coded 16QAM in [19]. Theoretical analyses are given in [20] for uncoded systems. The
idea that fading gains can be estimated based on both pilot symbols and data symbols is
proposed in [21] by using tentative decisions and a noise smoothing fiiter for coded phase
shift keying (PSK) signal. This method is improved in [22] with an adaptive linear predictor.
A similar scheme that uses tentative decisions and a smoothing filter is proposed in [23] for
uncoded MQAM systems. In [24], the fading gains are estimated from both pilot and data

symbols based on the principle of per-survivor processing [25].
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Although pilot symbol-aided detection is considered superior to the pilot-tone assisted
method [26] and it compares favorably with differential detection in bit-error-rate (BER)
performance, it requires an increase in the power or bandwidth of the transmitted signal,
or a decrease in information rate, and thus reduces the transmission efficiency. Therefore,
in some applications transmission without pilot symbols may be desirable. The following

subsections describe techniques belonging to this category.

3.1.2 Statistics-Dependent Techniques

Assuming that the channel fading correlation function is known, the minimum symbol
error probability receiver and the minimum sequence error probability receiver are derived
for uncoded PSK modulation in [27] and [28], respectively. However, both receivers are
unrealizable, since their complexity grows exponentially with the length of the received
symbol sequence. These papers therefore propose suboptimal implementations, and these
implementations have similar structures, i.e., they both consist of a finite-memory decision-
directed estimator of the fading distortion and a detector that uses these estimates. For
coded transmission, the fading distortion is similarly estimated by the estimator before
deinterleaving and decoding based on tentative decisions [28, 29]. Note that because of
the large deinterleaving and/or decoding delay, the more reliable symbol decisions from the
error-correcting decoder are not available in these receivers.

By assuming a finite memory length of the fading channel, a practical linear predictive
receiver structure based on optimal maximum-likelihood (ML) sequence estimation (MLSE)
is derived in [30] for uncoded continuous phase modulation (CPM) with Rayleigh fading.
This receiver is shown to be a special case of a general innovations-based MLSE receiver
that uses the Viterbi algorithm and is applicable to any modulation type [31]. An extended
Kalman filter is applied as a near-optimal solution to the estimation of the fading distortion
in [32] when additional channel parameters such as the received signal power, frequency
offset énd Doppler spread are to be estimated at the same time.

In [33], an optimal ML receiver structure is developed for uncoded M-ary differential
PSK (M-DPSK) reception. An approximate ML decoder employing the Viterbi algorithm
based on the principle of per-survivor processing has been designed for coded and uncoded
M-ary PSK (MPSK) [34] as well as coded and uncoded M-DPSK [35]. This method is
extended in [36) to uncoded QAM signaling using adaptive predictive filters. For interleaved
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coded MPSK systems, a two-stage estimator-detector is also proposed in [34]. A different
two-stage receiver based on joint maximum a posteriori (MAP) estimation of the fading
distortion and the coded data sequence is proposed in [37]. For uninterleaved coded PSK
or QAM systems, an ML sequence estimator is derived in [38] for fast Rayleigh or Rician

fading channels.

3.1.3 Statistics-Independent Technique

All of the above techniques assume exact knowledge of the fading channel correlation func-
tion. Estimating second-order statistics requires an additional training sequence [33]. More-
over, since fading channel statistics may vary with time, incorrect estimation of the statis-
tics will lead to suboptimal performance. A robust receiver structure that does not use
any knowledge of the fading correlation function is proposed in [39]. Double-filtering re-
ceivers based on linearly time-varying fading models are proposed in [40] and [41] for PSK
and DPSK modulation, respectively, and they use blind algorithms that do not require

information on the fading statistics.

3.1.4 Our FSMC Model-Based Technique

Since many error-correcting codes are designed for additive white Gaussian noise (AWGN)
channels where errors tend to occur randomly, when these codes are used for the fading
channels, interleaving/deinterleaving is usually employed to break up long deep fades due
to slow fading. We propose a decision-feedback detection algorithm and an output-feedback
detection algorithm for interleaved coded signals transmitted over channels with slow, flat
fading. The two-stage decision-feedback decoder structure was originally proposed in [42]
for the finite-state Markov chain (FSMC) channel model to achieve the finite-state Markov
channel capacity. We now give a brief description of our techniques, which will be described
in more detail in the rest of this chapter.

Based on an FSMC model of the slowly fading channel, both feedback decoders consist
of a recursive channel state estimator and an ML sequence detector, assuming that con-
volutional codes or trellis codes are used. In the decision-feedback decoder, the channel
state estimator makes a soft decision about the current fade level (channel state) based on
past channel output observations and feedback decisions from the ML sequence detector.

In the output-feedback detector, the channel state estimate is based only on past output
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observations. Since the decision-feedback decoder uses feedback decisions for its state esti-
mate, it suffers from error propagation when bits are decoded in error, similar to the error
propagation exhibited by decision-feedback equalizers. The output-feedback decoder does
not suffer from error propagation, so it has slightly better performance than the decision-
feedback decoder on channels with a low signal-to-noise ratio (SNR).

Since both feedback decoders are based on an FSMC model of the slowly fading chan-
nel, which is obtained from the channel correlation function, they are statistics-dependent.
However, due to the fact that the channel state estimate is computed recursively, the com-
plexity of these feedback detectors is independent of channel memory, and is only slightly
higher than that of conventional decoding techniques developed for the AWGN channels
[43]. This is different from those statistics-dependent techniques discussed in Section 3.1.2,
most of which are developed for fast fading channels, since their complexity usually grows
exponentially with the channel memory length.

The FSMC model of the fading channel is a generalization of the Gilbert-Elliott channel
model [44]. By partitioning the range of the received SNR into a finite number of intervals,
the first-order FSMC model is constructed for the slowly Rayleigh fading channel in [45]. It
is then extended to the more general Nakagame-m fading channel in [46], where the state
transition probabilities are obtained from the second-order fading statistics. For slowly
time-varying channels, the first-order FSMC model is shown to be enough [47]. Higher-
order Markov modeling for fast-fading channels is proposed in [48, 49].

Note that since phase distortion caused by fading is not included in the FSMC channel
model, perfect phase compensation is assumed in our two feedback decoders, which is
equivalent to perfect carrier recovery at the receiver [50, 51]. However, in reality it is not
easy to implement idea carrier recovery, and an effective amplitude-phase FSMC model of
the fading channel will be too complex for practical implementation. In our simulations
we compensate for the effect of phase distortion by differential decoding and encoding the
phase of the transmit signal over slowly fading channels and compare the results to that of
perfect phase compensation.

Differential encoding/decoding of PSK signals is often used in practice for its simplicity,
since it does not require carrier phase acquisition and tracking at the receiver. By using a
nonlinear transformation named multilag high-order instantaneous moment (ml-HIM), the

idea of differential encoding/decoding has been generalized to higher orders and extended to
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nonconstant-envelope modulation such as QAM [52]. The ml-HIM method is shown to be
capable of removing the effects of phase ambiguity, Doppler frequency shift, and even higher
order phase distortions. Differential encoding of the QAM signals discussed in [38, 53] is a
special case of the ml-HIM encoding method. In [53], the differentially phase-encoded QAM
signals and its differentially coherent detection are proposed to provide a practical solution
to the effect of phase discontinuities in a frequency-hopping system. For the Rayleigh
fading channel and nonconstant-envelope modulation, we differentially encode and decode
the phase of the transmit signals to compensate for the effect of phase distortion due to
slow fading. The amplitude distortion will then be estimated in the two feedback decoders
prior to sequence detection of the coded signals.

For comparison, we also obtain the performance of two other decoders: an ML decoder
with perfect channel state information (CSI) and a conventional Viterbi decoder (VD) with
interleaving, which ignores the channel memory. The conventional decoder has extremely
poor performance; we therefore propose a simple improvement for its design which weights
the decision metric by the fading distribution. This technique is less complex than the
feedback decoders, since the recursive calculation of the state estimate is eliminated.

It is difficult to analyze the performance of our proposed decoders directly, due to the
complexity of their path metrics in the ML sequence detection. Therefore, we approximate
their performance with that of a sliding window decoder (SWD) which uses the same path
metrics. The SWD was originally proposed to calculate the BER of convolutional codes
on very noisy AWGN channels [54]. For our analyses, we generalize the SWD to channels
with fading and either convolutional or trellis codes. We analyze two simple cases using
the SWD approximation and the analytical results are compared to the simulated BER
performance of the decoders with very good agreement of the two. Our analysis is appli-
cable to more complex code structures as well, but the computational complexity becomes
prohibitive. Therefore, we investigate the performance of all decoders for more complex
codes By simulations alone.

The remainder of this chapter is organized as follows. In Section 3.2, we briefly introduce
the FSMC Model of slowly fading channels. In Section 3.3 we present the system model.
The decision-feedback decoder, output-feedback decoder, and conventional decoder with and
without weighting are described in Section 3.4. In Section 3.5 we present our performance

analysis of these decoders. The numerical results from analysis and simulation along with
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the coding, modulation, and channel models are shown in Section 3.6. Our conclusions are

given in Section 3.7.

3.2 FSMC Model of Slowly Fading Channels

In our two feedback decoders, an FSMC model of the fading amplitude is used. We now
give a brief review on how to obtain this FSMC model for the channel fade level (fading
amplitude) a with a given first-order distribution p,(a) and known second-order statistics
of the fading process. Detailed discussions can be found in [45, 46].

Let S denote the dynamic range of the fade level a. For example, S = (0,00) if a is
Rayleigh distributed. Divide S into a finite number of disjoint sets (Si,---, Sk ) with the
thresholds aj,---,ax-1 as shown in Figure 3.1, where each set corresponds to a channel

state. That is, by denoting ag = 0 and ag = oo, the fade level a € S; if a;_1 < @ < aj,

P,(a)

7

5115,(53

0 aiy as as a1 a

Figure 3.1: FSMC modeling of the fading channel.

1 < ¢+ < K. The K channel states Sy,---,Sk will form a Markov chain as shown in
Figure 3.2, where the transition probability from state S; to state S; is denoted as P,
i,7 =1,---, K. Given the two-dimensional joint probability density function p(+1,~:2) of

the fading process, P;; can be calculated as [46]:

P; = Py € Sjlv € 8:) (3.1)



P
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Figure 3.2: The FSMC model.

a;
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where P(S;) is the stationary probability of the channel state S;, i.e.,

P(S;) :/ " pal@)de, i=1,---,K.
;-1

In situations where p(<:1,v:2) is unknown, Monte Carlo simulation can be used to construct
the FSMC model from experimental data.

For the Rayleigh fading channel, p,(a) given in (2.1) is parameterized by 2 and p(~:1, ¥2)
is [4]:

Ye1Ye2 Qv + %) }
p(ye1,12) = ex {~————— (3.2)
|B| 2,/|B]|

'IO <’Yt1|’.‘gT R(t2 - tl)) ) Y1, Vt2 Z 0’
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where \/|B] = Q2 — [R(t2 — t1)]?, Ip(-) is the zero-order modified Bessel function of the first

kind, and R(:) is the autocorrelation function of the underlying complex Gaussian process.
That is,
R(T) = Jg[27’l’fd7’],

where Jy|-] is the zero-order Bessel function of the first kind, and f; is the Doppler frequency
shift due to user mobility.

For slow Rayleigh fading, it is shown in [45] that the transition probabilities between
channel states can be well approximated based on level-crossing rates. Specifically, since the
channel changes slowly, transitions are assumed to occur only between neighboring states,
ie.,

Pj=0, ¥li—j|>L

Let Ag---,Ag be the thresholds of the received SNR corresponding to the thresholds
ag,---,ax. Then the expected rate that the received SNR passes downward across the

threshold A4; is [4]:

TA; A; .
N; H o fa exp{ 29}, <i<K-1

Therefore, assuming that the transmission symbol rate is R, the transition probabilities

are [45]:
N; )
P~ ————, 1<i<K-1,
17 RP(S) ‘
N1 .
P' ] — ~ 3 2 < < K,
1,1 RSP(S,) 1=
and
Py =1- Py,

Pxx =1~ Pk k-1,
Pi=1-PF;1—PF,; 1, 2<:t<K-1

In our analyses and simulations we will use this simple method to obtain the FSMC model
of the slowly Rayleigh fading channel and, as in {45], the thresholds are chosen such that

the stationary probability of each state is the same.
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3.3 System Model

3.3.1 Perfect Phase Compensation

Our baseband system model under the assumption of idea carrier recovery (perfect phase
compensation) is shown in Figure 3.3. At the transmitter, the input binary data is first
passed through a convolutional encoder. The encoded code words are then interleaved by a
J x L block interleaver and mapped to a PSK or QAM signal constellation. The resulting
sequence {z,} is fed to a square-root Nyquist filter, the output of which is the baseband

transmit signal s(t).

. Square-Root
. b Convolutional T . (
nput_"n_ Interleaver Signal Mapper r Nyquist
bits Encoder Filter % c(t)
s T it w(t)
]
Ou'tput et Maximum- y;l Yn | Sampler Square-Root
bits | %, | Likelihood |= Deinterleaver [~ 1 Nyquist <———J
Detector ( T ) Filter r(t)

Channel State
Estimator

|

Figure 3.3: Baseband system model.

The transmit signal s(t) passes through a fading channel with zero-mean additive Gaus-
sian noise w(t), where the complex multiplicative distortion process of the channel is denoted
by c(t). With Rayleigh fading ¢(t) can be modeled as a zero-mean Gaussian low-pass pro-
cess, the bandwidth of which equals the Doppler spread due to user mobility. We assume
that the power of ¢(t) is normalized to unity.

The received baseband signal r(t) is first passed through a matched filter and then
sampled at the symbol rate 1/T;. Generally, assuming that c(t) varies slowly with respect
to the symbol duration T, and perfect timing is available (no intersymbol interference), the

received sample sequence {y,} without phase compensation will be:

Yn = CnTp +wWp, n=01,2,---, (3.3)
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where ¢, is the n-th sample of ¢(t), with amplitude o, and phase 8,, i.e., ¢, = ane’®", and

{wn} is a set of statistically independent complex Gaussian variables with zero-mean and

2 2.

variance o“ in each dimension. The variance o* is:

2 1

7 T B, /Ny’

where E, is the average signal energy per symbol and Ny/2 is the power spectral density of
the noise.

If we assume perfect carrier recovery at the receiver, then the phase distortion caused
by the fading process c(t) will be completely compensated for. In this case, (3.3) can be
simplified to:

Yn = QpTp +wW,, n=01,2-.-,

and only the fade lever a,, is to be estimated for each received symbol. After deinterleaving,
the symbol sequence is denoted as {y},}. Since the fading channel has finite memory, the
symbols within any row of the deinterleaver become independent as the interleaving depth
J becomes large. However, the symbols within any column of the deinterleaver are received
from consecutive channel uses, and are thus dependent due to channel correlation. This
dependence will be used in the decision-feedback decoder and the output-feedback decoder
for channel state estimation.

In each of the two feedback decoders, the channel state estimator computes an estimate
of the fade level distribution conditioned on past channel outputs. For the decision-feedback
decoder, this conditional fade distribution at time n is computed from past received symbols
(Y1, --,Yn—1) and the feedback decisions (Z1,...,#,-1) which are obtained by re-encoding
the bit decisions (51, .. ,lA)n_l) from the ML sequence detector. For the output-feedback
decoder, only the past received symbols (y1,...,yn—1) are used to compute the conditional
distribution. In the case of perfect CSI, the state estimator output at time n is assumed to

be the exact fade level a,. More details on the state estimators and the corresponding ML

sequence detectors wil! be given in Section 3.4.
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3.3.2 Differential Encoding/Decoding of the Signal Phase

Our baseband system model for transmitting and receiving differentially phase-encoded
nonconstant-envelope signals is similar to that of Figure 3.3, except that at the transmitter,
a differential phase-encoder is added after the signal mapper, and at the receiver, a differ-
ential phase-decoder is added after the sampler. That is, at the transmitter, if we still let
T, denote the signal input to the square-root Nyquist filter at time n while denoting the
output of the signal mapper as

Up = Ape??n,

with A,, and ¢, representing the amplitude and phase of a signal point on the signal
constellation, respectively, then

T, = Ape?¥n,

where ¥, = ¥,_1 + ¢n.
Similarly, at the receiver, if we still denote the input to the deinterleaver as y, while

denoting the output of the sampler as
zn = Bpel®n,

with B, and ®,, representing the amplitude and phase of the received symbol at time n,

respectively, then

j
Yn = BneJ ",

where ¥,, = &, — P,,_1.

3.4 Decoder Structures

In this section we describe the two feedback decoder structures for ML sequence detection
of coded signals over fading channels. We also describe the conventional decoding technique
for fading channels, and propose an improvement to this method which weights the decoding

metric by the stationary channel distribution.
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3.4.1 Decision-Feedback Decoder

A detailed block diagram of the decision-feedback decoder is shown in Figure 3.4. To

make use of the channel memory, this decoder approximates the channel variation with a

stationary FSMC model. That is, as shown in Section 3.2, the range S of the channel fade

level a, is divided into a finite number of disjoint sets (Si,...,Sk), corresponding to a

finite number of channel states. The channel varies over these states according to a Markov

process. Based on this channel model, the decoder is composed of a channel state estimator

and a soft-decision ML sequence detector. The state estimator computes the conditional

distribution m,(l) of the channel state S; based on past channel output observations and

feedback decisions.

Channel State Estimator

Deinterleaver
(J x L)

Tja ‘

Yj-1,1 ™51 TnL ="ij—1»l
flz,y,m)
Encoder

-1,
Delay Delay at—]
(L) (L)

— ]
Soft-Decision bn-1
FMe"iF Viterbi Decoder
. unction (Delay L)
Yn=Yiji

Mazimum-likelihood Detector

Figure 3.4: Decision-feedback decoder.

As shown in Figure 3.3, {yn} denotes the received symbol sequence after sampling at

1

rate T

The corresponding transmitted symbol sequence is {z,}. Let y™ = (y1,...,yn) and

z" = (z1,...,Z,). Then the conditional state distribution based on past channel outputs

and perfect feedback decisions (&, = x,, Vn) is

mn(l) = plan € Sllx"'l,yn'l). (3.4)
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For an FSMC channel model, 7,(l) can be computed recursively according to [42]

1 P(UnlTn, @n € S;)p(an € Sjlz™ 1, 4™~ 1) Py
St 1 P(Yn|Tn, on € Sk)p(an € Sy lzn—1,yn-1)

7Tn+1(l) =

where P is the matrix of transition probabilities for the channel states with P =plans1 €

Si|an € S;). This recursion can be written in vector form

7rnD(-73n, yn)P AN
————l =

T D(Zn, yn) f(@ns s ), (3:5)

Tn+l =

where

T = (ma(1),. .., m(K)), (3.6)

D(zn,yn) is a diagonal K x K matrix with the kth diagonal term p(yy,|zn, o € Si), and 1 =
(1,...,1)T is a K-dimensional vector. The value of f (n, Yn, ™) is calculated recursively
in the state estimator, as shown in Figure 3.4. Note that although yi,...,y, are received
subsequently over the channel, the deinterleaver delays subsequent channel outputs by L
(the number of interleaver columns). Therefore, the calculation of f(zn,yn,7,) in our state
estimator requires a delay of L in the deinterleaver output y/,, and a corresponding delay in
the state estimator output 7, and feedback decision Z, = z,. These delays are indicated
in Figure 3.4, where y;; 2 yr, explicitly denotes that v}, is in the jth row and Ith column of
the deinterleaver, and m; = 7, and zj 2 zn denote, respectively, the state estimate and
feedback decision corresponding to y;. With this notation the recursive calculation (3.5)

becomes

e :Jazllllg((zja_—llll,,zjgilz))i (3.7)

It is shown in [42] that, assuming perfect feedback decisions and with asymptotically
deep interleaving, the conditional distribution 7, is a sufficient statistic for the channel
state given all past channel outputs and corresponding feedback decisions. The metric used

in the ML sequence detector, m(z", y") = 3>7_; m(z;,y;), is updated at each n, where

m(z;,y;) = —log [ p(yslz;, o5 € Si)m;(k)) (3.8)
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and
_ S5, p(ilzi,7)paly)dy

p(yjlzj,a; € Sk) = L : (3.9)

In (3.9), pa(-) is the stationary distribution of the channel fading. The Viterbi decoder,
after a decoding delay § = L, outputs the bit decisions b, corresponding to the path with

the smallest metric, which are then re-encoded to obtain the feedback decisions Z,,.

3.4.2 Output-Feedback Decoder

The structure of the output-feedback decoder, shown in Figure 3.5, is similar to that of
the decision-feedback decoder, except that the state estimator computes the conditional
distribution of the channel state based only on past channel output observations: p,(l) =
pla, € Sjly"™1). Since no feedback decisions are used by the state estimator, the estimator

can operate on received symbols prior to deinterleaving.

Channel State Estimator

Yn—1 Pr Deinterieaver
9(y, p) (J x L)
Delay Pn-1 T_ Defay Pt
(1 (1)
T
Sampler Y| [pei Yt } iterbi but

ampler Deinterleaver Metric [ye“;:gler >~
(TLS) (J x L) Function (Delay L)

Mazimum-Likelihood Detector

Figure 3.5: Output-feedback decoder.

If we denote the channel input alphabet by x and the distribution of z, by p(z,), p,

can also be calculated recursively as [42]

PnB(yn)P &
n = = 9\Yn,Prn), 3.10
P “+1 pnB(yn)l ( ) ( )

where B(yn) is a diagonal K x K matrix with kth diagonal term

Laney J5, PUnlTn; VPa(v)P(n)dy.

Js, pa(7)dy (3.11)

p(yn|om € Sk) =
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The metric function in this decoder is similar to the one used for the decision-feedback

decoder, with the sufficient statistic ; in (3.8) replaced by p;:

m(zj,y;) = —log [Cx p(yjlog € Si)p;(k)]. (3.12)

3.4.3 Conventional Decoding with Weighting

The conventional decoder does not use the fading statistics of the channel in its ML sequence

detector. That is, the decoder processes the deinterleaved symbols using a metric

m(y;, ;) = — log p(y;lz;), (3.13)

where p(y;|z;) is based on a memoryless AWGN channel with the same SNR as the fading
channel.

We can improve the performance of this decoder by using the stationary fading dis-
tribution in the metric calculation. This will not be as accurate as using the conditional
distribution computed by either the decision-feedback or the output-feedback decoder, but
will use at least some information about the channel statistics in the decoding process. This

weighted metric is given by

myse5) = ~og [ plysles 1pa(r)dr (314)

Note that the conventional decoder with weighting is equivalent to the feedback decoders
designed for a single channel state S, where S is the range of fading values. Also, it is proved
in Appendix A that when hard decision is used, the conventional decoder with weighting
and the output-feedback decoder are equivalent for any type of modulation with a decision

rule independent of the fade level, such as MPSK modulation.

3.4.4 Maximum-Likelihood Decoding with Perfect CSI

When the channel fade level ¢; is known at the receiver [55], the decoder processes the

deinterleaved symbols using a metric

m(y;, ;) = —log p(y;|zj, aj). (3.15)
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The performance of this idea decoder yields a lower bound on the BER performance of

the feedback decoders, which only know the conditional distribution of the channel state

instead of its actual value.

3.5 Performance Analysis

There is much previous work estimating the BER of convolutional codes and trellis codes
on fading channels ([56]-[62] and the references therein). All of these papers evaluate the
decoder performance directly, typically using Chernoff upper bounds or exact expressions for
the pairwise error probabilities of the trellis codes and then using the well-known transfer
function method [56] to bound the total BER of a decoder with or without CSIL It is
difficult to obtain similar bounds or expressions for our feedback decoders and for the
conventional decoder with channel weighting, since these decoders have relatively complex
decision metrics. The sliding window decoding technique is a method of approximating the
BER performance of a VD. The SWD approaches an optimal ML symbol decoder as its
window size increases. An optimal ML symbol decoder and an optimal ML sequence decoder
have similar performance at high SNRs. Thus, we can well-approximate the performance of
our feedback decoders from that of a SWD with a large window size and large SNR. Since
the BER of the SWD is easily obtained using a Markov model for the decoding process,
this approximation is an effective method to calculate the BER of an ML sequence decoder
with a complex metric.

Let (n,k,m) denote a convolutional code which encodes m + 1 blocks of k-tuple input
bits into n coded bits. In the following we briefly illustrate the operation of a SWD with
a (2,1,1) convolutional code [54], the encoder structure of which is given in Figure 3.6.

The encoded bits are mapped to the QPSK signal constellation through Gray encoding.

Input Output
by l 3
- an
LT & cw

Figure 3.6: The encoder structure of the (2,1,1) convolutional code.
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Figure 3.7 shows the tree structure of this code, with the output symbol indicated on each
branch. This figure is similar to Fig. 1 in [54]. Since there are only two states in this code,
starting from a given state, the decoder will either remain in that state or transfer to the
other state as the decoding process proceeds. The state transition depends on L,, symbols

of the received sequence, where L,, is the sliding window size.

Information bit

— o ———

Figure 3.7: Sliding window decoding for the (2,1, 1) convolutional code.

Consider an example with sliding window size L,, = 2. Starting from an initial state of 0
(labeled as node I in Figure 3.7), there are four possible output symbol sequences of length
L,: vi = (0,0), v2 = (0,3), vg = (3,1), va = (3,2). Let A = {vy,v2} and B = {v3,v4},
as indicated in Figure 3.7. Denote the received symbol sequence as y = (yo,¥1) and denote

the distance of y to sets A and B as d(y, A) and d(y,B), respectively. That is,
d(y? A) = ‘I,Illelg{d(Y7 Vi)}a

d(y,B) = geig{d(y,w)},

where d(-, ) is the distance between two sequences according to a specific decision metric.

Specifically, for sequences y and v,

Ly—1

d(y,v) = Y m(v,y), (3.16)
1=0
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where m(-,-) is the metric of the specific decoder under consideration (e.g., (3.8), (3.12),
(3.13), (3.14) or (3.15)). If y is closer to set A than to set B, i.e., d(y, A) < d(y,B), then
the decoder starting from state 0 will remain in state 0 and the input information bit will
be determined as 0. Otherwise, the decoder will go to state 1 and the input bit will be
decoded as 1. Assuming that state 1 is chosen as the next starting node (labeled as node
II), then the four possible output symbol sequences of length L,, (L, = 2) are: v§ = (1,0),
vy = (1,3), v = (2,1), vj = (2,2). Note that A’ = {v},vs} and B’ = {vj,v,}. Now
y = (y1,32). If y is closer to set A’ than to set B’, then the decoder starting from state 1
will go to state 0 (labeled as node III) and the input bit will be decoded as 0. Otherwise,
the decoder will remain in state 1 and the input will be determined as 1. It is obvious that
the BER of this SWD decreases as Ly, becomes large, since a longer symbol sequence is used
to decode each bit. Moreover, as L,, approaches infinity, this SWD becomes the optimal
ML symbol decoder since the entire sequence is used to decode each bit.

The decoding process of a SWD for N-state convolutional codes or trellis codes can
be modeled as an N-state Markov chain. Let g;; be the probability that the decoder will
go from state i to state j, and ¢; be the stationary probability of being in state ¢, for
1,7 =0,1,2,---, N — 1. Assume that the all-zero codeword sequence is transmitted and let
x;; be the k-tuple input bits associated with the transition from state i to state j in the

decoding of an (n, k, m) convolutional code. The decoded BER will then be [54]

Nl N—

Z qi Z qi; W xz] (3.17)

where w{x;;] denotes the Hamming weight of x;;. Note that V0 <7 < N —1, Z] o @ = 1,
fv 01 g¢; = 1, and the stationary probabilities can be derived in terms of the transition

probabilities.

For the (2,1,1) code, since wixgg] = 0, w{xg1] = 1, w[x10] = 0, w[x11] = 1, we have
Py = qogqo1 + q1qn1 (3.18)

and

qo = Z 1y : d(y, A) > d(y,B)] p(y|x = 0), (3.19)
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quu =) lfy:d(y,A") > d(y,B')] p(y|x = 0), (3.20)

where 1[] is the indicator function.
For an FSMC channel with channel states Sy, ..., Sk, the derivation of g, and q11 will

be modified as:

go1 =) > lly:d(y,A) >d(y,B)| S] p(y|x = 0,S) p(S), (3.21)
S ¥
an =7 > ly:d(y,A’) > d(y,B")| S] p(y|x = 0,S) p(S), (3.22)
S vy
where S = (S(O), .. .,S(Lw'l)) is a length-L,, state vector, with each of its elements be-
ing one of the K channel states S;,...,Sk. There are KLv such vectors. In addition,

since we assume ideal interleaving, the adjacent channel states and received symbols after

deinterleaving are independent. Therefore, in (3.21) and (3.22),

Ly~1
p(S) = [[ n(8Y), (3.23)
=0
Ly,~—1
p(ylx=0,8)= [] p(ulz =0,5U), (3.24)
=0

where p(S (l)) is the stationary probability of the channel being in state SO,

For conventional decoders with and without channel weighting, their metrics (3.14) and
(3.13) do not depend on channel states. For the ideal decoder with perfect CSI, its metric
(3.15) is determined once the channel state is given. Thus, conditioned on channel states S =
(5O, ..., SEw=1)y the distances d(y, A),d(y, B),d(y, A’) and d(y, B’) in (3.21) and (3.22)
are straightforward to calculate for these three decoders using their corresponding metrics.
Consequently, the transition probabilities (3.21) and (3.22) of their SWDs are calculated
and the BER (3.18) is easily obtained. However, for the decision-feedback decoder, its
metric (3.8) is a function of the channel state distribution, which is calculated recursively
from all past channel observations and which is therefore changing from symbol to symbol
with time. The same is true for the metric (3.12) of the output-feedback decoder. Therefore,
the indicator functions in (3.21) and (3.22) require further analysis.

In particular, we derive the expressions of go1 and ¢;; in (3.21) and (3.22) for the feedback
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decoders using the limiting probabilities of the channel state distributions, which will be

discussed further shortly. For the decision-feedback decoder,

lly : d(y, A) > d(y,B)| S] =) 1[y:d(y,A) > d(y, B)| z] p(z|S), (3.25)

lly :d(y,A") > d(y,B')| 8] =) 1[y:d(y,A’) > d(y,B')| =] p(x|S), (3.26)

where T = (w(o),...,w(Lw‘l)), with #®, 1 = 0,..., Ly — 1, denoting the channel state

distributions, and
Ly—1

p(x|S) = [] p(x®|SY). (3.27)
=0

In (3.27), p(w®¥)|S®) is the limiting conditional probability that the distribution for the
channel state will be vector w(!) given the current channel being in state SO. In [42]
it is proved that for independent identically distributed (i.i.d) inputs, the channel state
distribution 7, defined in (3.6) is a Markov chain. Moreover, it converges very fast in
distribution to a limit which is independent of the initial channel state. That is, as n
approaches infinity, the limit of p(7,|sq = S;) exists and it is equal forall¢,7 = 1,..., K. In
addition, we find that there is also a limit for p(w,|s, = S;), i = 1,..., K, which is different
for different ¢, and we use this limit to calculate the indicator functions in (3.25) and (3.26).
This limiting conditional probability can be derived iteratively with the following recursive

relation between p(mw,+1|sp+1) and p(m,|s,):

p(7rn+1|5n+l) = ZZP(Wn+177Vn,3n|$n+l)
Sn Tp

= Z Z {p(mns1lmn, $a)P(7n|5n)D(Snt1]5n)P(sn)} /P(sn41)

Sn Mn

= S SN S 1(@n tn) 1 f(@nsYny Tn) = Tnt1] PUnlTn, $n)p(zn)

Sn Mn Tn Yn

- p(Tnlsn)p(Sn+1l8n)p(5n) /P(8n+1)- (3.28)

Similarly, for the output-feedback decoder, the limiting conditional probability of the chan-

nel state distribution can be obtained from the recursion between p(p,, . |sn+1) and p(p,|s,):

p(pn+1|sn+1) = Zzp(pn+lapnasnlsn+l)
Sn pn
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= 3> {p(Pr+11Prr 50)P(Pn)5n)D(Sn41]50)P(5n) } /P(Snt1)

sn P,
= ZZZ l[y" : g(yn’pn) = pn—+—1] p(ynlsn)

Sn pn Yn

- P(Pnl8n)p(sn+1]50)p(50)/P(sn11)- (3.29)

Now by substituting (3.25) into (3.21) and (3.26) into (3.22), we get the expressions of

go1 and g3 for the decision-feedback decoder:

g =YY > 1y :d(y,A) > d(y,B)| «r] p(x|S) p(y|x = 0,S) p(S), (3.30)
S ¥y &«

q1=>_> > ly:d(y,A") > d(y,B') z] p(x|S) p(y|x = 0,S) p(S). (3.31)
S y #

Using a similar derivation, we find that for the output-feedback decoder, its gp; and ¢;1 in
(3.18) can be calculated simply by substituting vector & in (3.30) and (3.31) with vector
p= PO, ..., p(L"J‘l)). Note that in (3.28), perfect feedback decisions are assumed, since
it is too complicated to consider error propagations in the BER analysis for the decision-

feedback decoder.

3.6 Numerical Results

In this section we describe our analytical and simulation results for the five decoders:
decision-feedback, output-feedback, conventional, conventional with weighting, and ML
with perfect CSI. A simulation for each of the decoders was built using COSSAP [63].
Due to computational complexity in the analysis of codes with complicated structures,
our analytical results are given for two simple codes. In order to compare the analytical
results with the corresponding simulated results, we assume perfect feedback decisions in
both the analysis and simulation for the decision-feedback decoder. When actual decisions
from the VD are used, some performance degradation of the decision-feedback decoder is
expected. This degradation will be most pronounced for simple codes with relatively high
BERs; for powerful codes which sharply reduce the BER, we expect the effect of error
propagation to be small. In our simulations for complex codes, we investigate the perfor-
mance of the decision-feedback decoder using the actual decisions from the VD. Therefore,

in these simulations, the true performance of the decision-feedback decoder is obtained and



33
compared to that of other decoders.

We first determine the performance of all the decoders for the (2,1, 1) convolutional code
with quadrature PSK (QPSK) modulation on a two-state fading channel. This channel,
shown in Figure 3.8, consists of two states, a “good” state G and a “bad” state B, where
each state is a memoryless AWGN channel with spectral noise density Ny/2 and fade level
og for the good state and ap for the bad state. The channel state varies between the good
and bad states according to a stationary Markov process, with transition probabilities as

shown in Figure 3.8. The stationary distribution of this channel is p(G) = g/(g + b) and
p(B) = b/(g +1)

Figure 3.8: Two-state fading channel.

In our analysis and simulation we assume that the channel SNR is 10dB for the good
state and —5dB for the bad state. and that perfect decisions are made in the decision-
feedback decoder. The BER performance of the various decoders, shown in Figure 3.9, is
analyzed and simulated for b = 0.001 fixed and a range of g values. As g increases, the
channel spends more time in the good channel state, and the BER decreases accordingly.
The dashed curves in Figure 3.9 correspond to analytical results and the solid lines are
simulated ones. They agree with each other quite well for all the decoders. In our analysis,
the sliding window size is L,, = 3 and we quantize the received signals into four levels
in each dimension. The simulations are run under the same quantizing strategy for all
decoders, except that two-level hard decision is used for the conventional decoder without
weighting, since for this decoder, soft decision results in much worse performance than hard
decision. Obviously the BER will decrease with an increase in the number of quantization
levels. But we see that even with a two-bit quantizer, the decision-feedback decoder with

perfect feedback decisions performs almost as well as the ideal decoder with exact CSI.
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Figure 3.9: Analytical and simulated BER for QPSK and two-state convolutional coding
(two-state fading channel).

The output-feedback decoder and the decoder with a weighted metric both have better
performance than the best conventional decoder which uses hard decision and no metric
weighting.

Figure 3.10 shows the analytical and simulation results for the four-state TC-4AM code
[64] on a Rayleigh fading channel with normalized fading rate f4T" = 0.001, where f; is the
Doppler frequency shift and T is the symbol duration. In these calculations we again assume
perfect decisions in the decision-feedback decoder. As in the previous figure, the dashed
curves represent analytical results and the solid ones are simulations. Based on (3.17), the
BER of this code can be derived from the state transition diagram of its corresponding

SWD, and the simplified expression is

_ 1+ p13/p32
2 + p13/p32 + P20/P01

Py

A simple two-state Markov chain model of the Rayleigh fading channel is adopted in both
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Figure 3.10: Analytical and simulated BER for TC-4AM (Rayleigh fading).

analysis and simulation of the two feedback decoders to keep the computation complexity
reasonable. For each state, its probability is obtained by averaging the corresponding fading
range over the Rayleigh distribution as shown in Section 3.2. The received signals are
quantized to ten levels and the sliding window size remains to be L,, = 3. In this case
the output-feedback decoder and the perfect decision-feedback decoder have very similar
performance, due to the fact that the two-state Markov chain is a very rough approximation
for the Rayleigh fading variation. Nevertheless, the feedback decoders still exhibit great
performance advantages compared to the conventional decoder, which uses a quantized
Euclidean distance metric and has a BER of around 0.08 for a large range of E;/Ny. Note
that in both Figure 3.9 and Figure 3.10, the decision-feedback decoder always outperforms
the output-feedback decoder since feedback decisions are assumed perfect.

We investigate the performance of the five decoders for more complicated codes using
simulation alone, due to the computational complexity of the analysis. As mentioned before,

in these simulations we use the actual feedback decisions of the decoder, so the decoder will
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exhibit error propagation. Figure 3.11 shows the BER of these decoders for a 64-state
maximum free distance (2, 1,6) code [43] with QPSK modulation on the two-state fading

channel of Figure 3.8. The solid lines in this figure now correspond to hard decision of the
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Figure 3.11: Simulated BER for QPSK aud 64-state convolutional coding (two-state fading
channel).

received symbols, so the in-phase and quadrature components are quantized to +1 before
decoding. The dashed curves correspond to soft decision, so the unquantized received
symbols are used in decoding. For hard decision, the solid line showing the performance
of the conventional decoder with weighting also represents the performance of the output-
feedback decoder, since the two decoders are equivalent when hard decision is used, as
mentioned in Section 3.4.3.

We see that for soft decision, the two feedback decoders have similar performance: the
output-feedback decoder does slightly better than the decision-feedback decoder on poor
channels (g small), since it does not suffer from error propagation, and slightly worse on

good channels. The effects of hard decision are quite dramatic. Hard decision increases the
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BER by almost an order of magnitude in some cases, except for the conventional decoder
without weighting, where hard decision actually decreases BER. Note that adding channel
weighting to the conventional decoder decreases its BER significantly for both hard and
soft decisions.
Figure 3.12 shows the simulated BER for eight-state TC-8PSK modulation, as described

in [65], applied to the two-state fading channel of Figure 3.8. Soft decisions are used in each
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Figure 3.12: Simulated BER for TC-8PSK (two-state fading channel).

of the simulations in Figure 3.12. The solid line shows the BER for uncoded QPSK, which is
lower than the BER of a conventional decoder applied to the TC-8PSK. As in the previous
figure, the decision-feedback and output-feedback decoders have similar performance, and
the output-feedback decoder performs slightly better than the decision-feedback decoder
on poor channels and slightly worse on good channels. Using channel weighting in the
conventional decoder decreases its BER by almost an order of magnitude.

The simulated BER for eight-state TC-16QAM applied to the Rayleigh fading channel

with perfect phase compensation is shown in Figure 3.13. In these simulations, the normal-
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Figure 3.13: Simulated BER for TC-16QAM (Rayleigh fading).

ized fading rate is f3T" = 0.001 and soft-decisions are used in each decoder. The trellis-code,
described in more detail in [66], is designed specifically for fading channels. The decision-
feedback and output-feedback decoders assume an FSMC model of the Rayleigh channel
and our BER results are reported for two different FSMC approximations. The solid lines
correspond to a four-state Markov model and the dashed lines correspond to an eight-state
model, with fading regions and transition probabilities computed as shown in Section 3.2.
The conventional decoders with and without weighting and the ML decoder with perfect
CSI do not use this channel approximation, so their BER performance is independent of
the FSMC model.

We see that the BER of the conventional decoder in Rayleigh fading is approximately 0.1
over a large range of E,/Ny values: these results match those of [67], as do our simulation
results for the ML decoder with perfect CSI. The two feedback decoders have similar per-

formance for this channel as well, and their performance is not that sensitive to the channel
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approximation: a four-state channel model yields almost the same BER as the eight-state
model. We found that increasing the number of channel states above eight has a negligible
impact on the BER. Note that the feedback decoders outperform the conventional decoder
without weighting by three orders of magnitude at high E;/Ny values. In this SNR range,
the ML decoder with perfect CSI outperforms the feedback decoders by roughly an order of
magnitude, with a smaller performance gap at lower SNRs. Weighting improves the BER
performance of the conventional decoder by two orders of magnitude, so the performance
improvement on the Rayleigh fading channel is significantly higher than on the two-state
fading channel.

Figure 3.14 shows the simulated BER for differentially phase-encoded eight-state TC-
16QAM signals applied to the same Rayleigh fading channel as discussed in Figure 3.13.

Since in this case, phase distortion caused by the fading channel is not totally compensated
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Figure 3.14: Simulated BER for differentially phase-encoded TC-16QAM (Rayleigh fading).

for by differential decoding of the signal phase, the BERs of all decoders except the conven-
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tional decoder have increased by around one order of magnitude compared to the case of
perfect phase compensation. However, the relative behaviors of the five decoders are similar
to that of the perfect phase compensation case in Figure 3.13. Although the two feedback
decoders have similar performance in both cases, it is found in our simulations that the
channel state estimator in the decision-feedback decoder may occasionally diverge (i.e., lose
track of the fading channel) due to a burst of decision errors and whenever this happens,
the simulated BER will be around 0.5. To prevent this divergence, we use a header of 3000
data bits at the beginning of each simulation. In practice, a known header may be required
for each interleaving block of data in order to guarantee reliable communications. Since no
feedback decisions are used in the output-feedback decoder, it does not have this divergent

behavior and therefore does not need any header.

3.7 Conclusions

We propose two feedback decoders, a decision-feedback decoder and an output-feedback
decoder, for coded signals transmitted over channels with correlated slow fading. These
decoder structures recursively compute the channel fade distribution conditioned on past
received symbols and, for the decision-feedback decoder, on past feedback decisions as well.
We also propose a simple improvement to conventional decoders by using a weighted metric.
The performance of each decoder is investigated by both analysis and simulation.

In our simulations, hard-decision as well as soft-decision on received symbols are con-
sidered and it is shown that all decoders exhibit a significant performance penalty when
hard-decision is used, except for the conventional decoder, where hard-decision actually
improves performance. The BER performance of all these decoders is analyzed through a
sliding window decoding method. Both analysis and simulation demonstrate that the two
feedback decoders have far better performance than the conventional decoder. Assuming
ideal phase compensation for the Rayleigh fading channel, our results indicate that the
BER of both feedback decoders comes within an order of magnitude of the performance
of the ML sequence detector with perfect CSI, though the decision-feedback decoder does
slightly worse on channels with low SNR due to error propagation, and slightly better on
channels with high SNR. Moreover, these decoders reduce the BER relative to conventional

techniques by several orders of magnitude. The weighting technique improves the BER per-
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formance of the conventional decoder by up to two orders of magnitude, with only a minor
increase in complexity. With simple practical phase compensation method such as differen-
tial decoding, the two feedback decoders and the conventional decoder with weighting also
yield significant performance improvement over the conventional decoder. The two feed-
back decoders have very similar performance. However, the decision-feedback decoder may
not be reliable without a header during severe fading, while the output-feedback decoder is

robust.
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Chapter 4 Ergodic Capacity and Optimal
Resource Allocation for Fading Broadcast

Channels

4.1 Introduction

As discussed in Chapter 2, the wireless communication channel for both point-to-point
and broadcast communications varies with time due to user mobility, which induces time-
varying path loss, shadowing and multipath-fading in the received signal power. For these
time-varying channels, dynamic allocation of resources such as power, rate, and bandwidth
can result in better performance than fixed resource allocation strategies [68]-[71]. Indeed,
adaptive techniques are currently used in both wireless and wireline systems and are being
proposed as standards for next-generation cellular systems.

By using an optimal dynamic power and rate allocation strategy, the ergodic (Shannon)
capacity of a single-user fading channel with channel side information (CSI) at both the
transmitter and the receiver is obtained in [72]. The corresponding optimal power allocation
strategy is a water-filling over time or, equivalently, over the fading states. This capacity
corresponds to the maximum long-term achievable rate averaged over all states of the time-
varying channel. In [2], assuming perfect CSI at the receiver and at all transmitters, the
ergodic capacity! region of a fading multiple access channel (MAC) with Gaussian noise and
the corresponding optimal power and rate allocation are obtained using the polymatroidal
structure of the region. The optimal power allocation for the MAC is a generalization
of water-filling for the single-user channel, and both the optimal rate and optimal power
allocation in each joint fading state are derived via a greedy algorithm. The boundary of
the ergodic capacity region can be achieved by successive decoding, as for the MAC with
additive white Gaussian noise (AWGN).

In this chapter, we derive the ergodic capacity of an M-user fading broadcast channel

with transmitter and receiver CSI and obtain the corresponding optimal resource allocation

!The Shannon capacity of a fading channel is called “throughput capacity” in [2}.
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strategy for code-division (CD) with and without successive decoding, time-division (TD),
and frequency-division (FD). The optimal power allocation that achieves the boundary of
the ergodic capacity region is derived by solving an optimization problem over a set of time-
invariant AWGN broadcast channels with a total average transmit power constraint. For CD
with successive decoding, the optimization problem is similar to that of the parallel Gaussian
broadcast channels discussed in [73, 74], and is solved directly by applying the results
therein. We solve the optimization problem for TD and show that one of the non-unique
optimal power allocation strategies is also optimal for CD without successive decoding,
and the ergodic capacity regions for these two techniques are the same. TD and FD are
equivalent in the sense that they have the same ergodic capacity region and the optimal
power allocation for one of them can be directly obtained from that of the other [75]. Thus,
we obtain the optimal resource allocation for FD as well. For TD and CD without successive
decoding we also propose a simple sub-optimal power allocation strategy that results in an
ergodic rate region close to their capacity region.

The remainder of this chapter is organized as follows: the discrete-time fading broadcast
channel model is presented in Section 4.2. The ergodic capacity regions and the optimal
resource allocation for CD with and without successive decoding, TD, and FD, as well as
the sub-optimal power and time allocations for TD are obtained in Section 4.3. Section 4.4

shows various numerical results, followed by our conclusions in the last section.

Notation. The prime (') is used to denote the derivative of a function throughout this
chapter and Appendix B except in the proofs about the convexity of a capacity region in
Appendix B.1 and B.3, where the prime or double prime of a symbol just denotes another

symbol.

4.2 The Fading Broadcast Channel

We consider a discrete-time M-user broadcast channel with fading as shown in Figure 4.1.
In this model, the signal source X|[¢] is composed of M independent information sources and

the broadcast channel consists of M independent fading sub-channels. The time-varying

sub-channel gains are denoted as v/g1[¢], v/92[¢],---, v/gmli], and the Gaussian noises of

these sub-channels are denoted as 21[i], 23], . . ., za[i]. Let P be the total average transmit
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power, B the received signal bandwidth, and v; the noise density of z;[i], j = 1,2,..., M.
Since the time-varying received SNR v;[i] = Pg;[i]/(v;B), j = 1,2,..., M, if we define?
n;li] = vj/g;[i] we have v;[i] = P/(n;[i] B).

[ Vomlil | znald]
Bih

Figure 4.1: An M-user fading broadcast channel model.

Yarl]

Therefore, for slowly time-varying broadcast channel, we obtain an equivalent channel

model, which is shown in Figure 4.2. In this model, the noise density of z;[i]/{/g;[¢] is

210i)//91[d]
% Yalil

2(i)/v/g21i]
N> Yali]

X[2)

KLZMM/V gnmli]

P Yrld]

Figure 4.2: An equivalent M-user fading broadcast channel model.

n;li], j=1,2,..., M. We assume that {n; [z]}JI"i1 are known to the transmitter and all the
M recéivers at time i. Thus, the transmitter can vary the transmit power P;[i] for each
user relative to the noise density vector n[i] = (n1[i], n2[é], ..., nam[i]), subject only to the
average power constraint P. For TD or FD, it can also vary the fraction of transmission
time or bandwidth 7;[i] assigned to each user, subject to the constraint ZjA’il 7;[¢] = 1 for all

i. For CD, the superposition code can be varied at each transmission. Since every receiver

2Note that when g;[i] = 0 for some j, n;[i] = oo and no information can be transmitted through the jth
sub-channel.
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knows the noise density vector n[z], they can decode their individual signals by successive
decoding based on the known resource allocation strategy given the M noise densities. In
practice, it is necessary to send the transmitter strategy to each receiver through either a
header on the transmitted data or a pilot tone. We call n[i] the joint fading process and
denote N as the set of all possible joint fading states. F(n) denotes a given cumulative

distribution function (c.d.f.) on N.

4.3 Ergodic Capacity Regions

Under the assumption that both the transmitters and the receiver have perfect CSI, the
ergodic capacity region of a fading MAC is derived in [2] by exploiting its special poly-
matroidal structure. In that work the optimal resource allocation scheme is obtained by
solving a family of optimization problems over a set of parallel Gaussian MACs, one for each
fading state. In this section we derive the ergodic capacity region for the fading broadcast
channel under the assumption that the transmitter and all receivers have perfect CSI. The
corresponding optimal resource allocation strategy is obtained by optimizing over a set of
parallel Gaussian broadcast channels for CD with and without successive decoding and for
TD. For FD it is shown that the ergodic capacity region is the same as for TD and the
corresponding optimal power and bandwidth allocation policy can be derived directly from

that of TD [75].

43.1 CD

We first consider superposition coding and successive decoding where, in each joint fad-
ing state, the M-user broadcast channel can be viewed as a degraded Gaussian broadcast
channel with noise densities n;[¢],n2[él, ..., 7] and the multiresolution signal constella-
tion is optimized relative to these instantaneous noise densities. Given a power allocation
policy P, let Pj(n) be the transmit power allocated to User j for the joint fading state
n = (ny,n92,...,nn) and denote F as the set of all possible power policies satisfying the
average power constraint Ej, [Z?’il P; (n)] < P, where E|-] denotes the expectation func-
tion. For simplicity, assume that the stationary distributions of the fading processes have

continuous densities?, i.e., Pr{n; = n,;} =0, Vi # j.

31f Pr{n; = n;} # 0 for some i, j then, in state n, User 7 and User j can be viewed as a single user and
superposition coding and successive decoding are applied to M — 1 users. The information for User 7 and
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Theorem 4.1 The ergodic capacity region for the fading broadcast channel when the trans-

mitter and all the receivers know the current channel state is given by:

C(P)= | Ccn(P), (4.1)
PEF

where

_{a ) Py(n) |
CenlP) = {R’ = o [Bl ’ (1 B S, i, > ni]ﬂ 1sds M}  142)

and 1[-] denotes the indicator function (1[z] = 1 if z is true and zero otherwise). Moreover,

the capacity region C(P) is conver.

Proof: See Appendix B.1. O
Since this capacity region is convex, Yy = (u1, po, ..., up) € §Rf with Zf‘il wi =1, if
a rate vector R = (Ry, Ry, ..., Ry) is a solution to the following maximization problem, it

will be on the boundary surface of C(P) in (4.1):

max pR. (4.3)
ReC(P)

The maximization problem in (4.3) is equivalent to

rg(?l))(En [Jo(P(n))]

(4.4)
subject to: Ej [Z]Nil Pj(n)] = P,
where P(n) = [Pi(n), P2(n),..., Py(n)] and the objective function
M | P;(n) ) B M |
Jo(P(n)) :;u] In <1+ m BT P(o)n; > ] /\j_z—:lpj(n). (4.5)

In (4.5), A is the Lagrangian multiplier and p; can be viewed as a weighting parameter
proportional to the priurity of User ¢ (¢ = 1,2,..., M). The problem in (4.4) is quite similar
to that of the parallel AWGN broadcast channels discussed in [73, 74] and its solution is
obtained by applying the results therein. For each fading state n = (ni,ng,---,na), let

the permutation (i) be defined such that n.(;y < nr(2) <+ < ngar)- The optimal power

User j are then transmitted by time-sharing the channel.
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allocation procedure for state n as derived in [73] is essentially water-filling, which will be
discussed later in this section in the context of a greedy algorithm. We now describe the

optimal power allocation procedure from [73]:

Initialization: Do not assign power to any user m(i) for which 37, ¢ < j < M with %"E—" <

7

%’—'% Remove these users from further consideration.
%)

Step 1: Denote the number of remaining users as K and define the permutation p(-) such
that

Mp(1) < Mp(2) <7 < Mp(K)-

Then, due to the removal criterion, we have

Ho)  Fe@) o 5 HolK) (4.6)
Tp(1)  Tp(2) Tp(K)
i.e.,
1) _ M) _ . TelK)
Ho(1)  Hp(2) Ho(K)

Step 2: Define

. o) } o)) B = Boiyne() B
P = - Bl , min , 4.7
o () mm{[ YRt i IR e Bo(i) = Bo(1) D

where [z]+ émax(:c,O) and assign power Py ;)(n) to User p(1). If

, Ho(1)
Ppu)(n):[’:\ —n,,(l)BL,

the total power for state n has been allocated. If not, only the power for User p(1)
has been allocated. In this case, increase the noises n,;)B (1 < i < K) by P;(l)(n)
and do not assign power to any user p(i) for which 3j such that : < j < K with
Z:—:; < %:E——;;- Remove these users from further consideration. Also remove User p(1)

and return to Step 1. O

In the above procedure, s* = % is the water-filling power level that satisfies the total

power constraint in (4.4). In each iteration, this water-filling procedure consists of selecting

the best receiver according to a modified noise criterion using the weighting parameter py;
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for each user i, and adding power to the corresponding subchannel until a predetermined
power is achieved. Note that in each iteration, some subchannels will be identified to hold no
power. This optimal power allocation procedure can be found using a greedy algorithm [74].

In order to show this, we first require the following theorem, which is similar to Theorem

3.14 in [2]:

Theorem 4.2 V€ e RY, y € RM, X > 0, consider the mazimization problem
M M
max _ &25(y) = A vi» (4.8)
1=1 Jj=1

where, for a set of non-decreasing concave functions {g]()}J]"i1 with {g;()}f\’il either con-

cave or convezr,

z1(y) = 91(y1) — 91(0),

. . (4.9)
zi(y) = g;(Xiwi) — 9Tt ), 2<i< M.

Define the utility functions

uj(2) =¢&g5(2) = A, 1<j< M.

u(2) = [lgnj%uﬂz)L-

Then the solution to (4.8) is given by [5° u*(z)dz. Moreover, let zo = 0 and let z (1 <k <

K — 1) denote the point where u;, (z) intersects u;,,,(z) for some iy and ixq1 so that!

“(2) uy (2) f 21 <2< 2, VIS k<K, (4.10)
u*(z) = .
0 if 2 > z2x.

Then the optimizing point y* is

. Zk — Zk—1, U J =1k for some k,1 <k< K
= (4.11)
0, otherwise.

“From (4.10) we see that zx is defined as the smallest z for which u*(z) = 0; if no such point exists, then
2K = 00.
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Proof: Let yg 20 and by substituting (4.9) into (4.8), we have:
M M
max }_&z;(y) = AD_ys
j=1 i=1
M J i—1 M
= m)'leij [gj(z Yr) — gj(kz yk)} -2y
— =0 i=1

k oyk

= maxZ/ uj(z)dz
/Ooo u*(z)dz. (4.12)

IA

Note that since the functions {g]()}]ﬂfl are concave, V1 < j < M, g;(-) is monotonically

M

decreasing and hence so are {u;(-)};Z;

and u*(-). Moreover, since {g(- )} ~, are either
concave or convex, for any %, j, two curves u;(-) and u;(-) can cross each other at most once.
Thus, the set of cross points {2 }5_; for the curves {u]()}JA’il satisfying the condition that
if and only if z € [zx_1, 2x), u*(2) = u;, (2) for some i (1 < k < K) is unique and it is easy
to verify that point y* given in (4.11) achieves the upper bound in (4.12). O

We now apply Theorem 4.2 to the maximization problem (4.4). Recall that in a given

state n, we have deﬁned the permutation m(-) such that nyq) < nye) < - - < ng . Now

for 1 < ] < ]\l, let yj 7,(])( ) éj Hr(j) and
A
9;(2) = In(nyjyB + 2). (4.13)
With these definitions, z;(y) (1 < j < M) in Theorem 4.2 becomes

z1(y) = g1(y1) — 91(0)

Pﬂ'(l)(n)]

1+
n,,(l)B

= In

j i1
zi(y) = gj(zyi)_gj(zyi)
i=1 i

— I [1+ B+’;)(n) (n)}, 2<j<M, (4.14)
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and the utility function u;j(z) (1 < j < M) becomes

uj(z) = §&gi(z) — A

— kid %)) .
G) B >J7= (4 15)

Thus the maximization problem (4.8) is equivalent to the maximization problem (4.4).
Consequently, by Theorem 4.2, the solution y; to (4.8) is the power allocation for User ()

that maximizes (4.4) for state n. That is,

2k — zx—1, if j =ik for some k,1 < k< K

0, otherwise,

where z; (0 < k < K) is as defined in Theorem 4.2. This optimal solution to (4.4) can be
interpreted as follows.
Assuming that in fading state n, the interference to each user 7 (j) (1 < j < M) from

other users is z (z > 0), i.e.,

j—1
z= Y Pr(n),
=

then the objective function Jo(P(n)) in (4.4) becomes

Jo(P(n)) f: ] <1+ Prip(®) ) Afjp (n) (4.16)
o(P(m) =D pr(iyIn — | — () (1) :
j:1 (], n”(J)B‘{’Z ]‘:1 (J)

Therefore, when a marginal power dp is allocated to User 7 (j) at interference level z, the

marginal weighted rate increase in the objective function Jo(P(n)) is

8Jo(P(n))

- 6p
9P, (j)(n)

P,r(]) (ﬂ)ZO

_ Ha ()
na()B + z + Pr(j)(n)

= Uj(Z) ' 5pa

_ A} &
Pr(j)(n)=0

where the utility function u;(z) is given in (4.15). Thus, Theorem /.2 indicates that the

optimal solution to (4.4) can be obtained greedily by allocating power dp to the User i*

with the largest positive marginal weighted rate increase u*(z) - ép = (mug = - /\) - p
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at each interference level z (z > 0). This power allocation process continues until no
user obtains a positive marginal weighted rate increase with the addition of power dp (i.e.,

u*(z) = [lglz?](uuj( )} = 0), in which case we allocate no more power to state n.
+

. ay
For example, in a two-user system, let u;(z) = W A, 7 = 1,2. In order that

nﬁxx}{uj(z } > 0, 2z must be no larger than rr%zlix {§ —n;B}. Assuming that p; < pa, we
€ Jj€

have:

1. if B2 < £2,then Vz > 0, u1(2) < u2(2), which means that no power should be assigned

to User 1. Therefore, the optimal power P*(n) is:

Pi(n) =0,
P2 (n) [ - TLQB]

. : JaY B- B .
= 1n2 2n1
2. if &2 > £2,uy(z) and ua(z) will cross each other once at 2z, = "——E————m_m . In this

case,
(a) if ur(zc) = ua(ze) > 0, ie,, A < 7E=E2p, then as shown in Figure 4.3,

‘

ui(z) = s — A

EN 21 T 2
(2c)

. Figure 4.3: The functions u1(z) and ug(z) when &1 > £2 and A < _B=tep.

uy(z) > uz(z), for zp < z < 21,

ui(z) < ua(z), for z; < z < 2o,
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where 29 = 0, 21 = z, 22 = §2 — nyB. Thus,

ui(z), for z9 < 2 < 2,
u*(z) = uz(z), for z; < z < 29,

0, for z > 25.

Therefore, according to Theorem 4.2,

P}(n) = z; — zp = faneB-pomB

H2—p1 ?
* — . — |42 _ _ ﬁlngB—gznlB]
P2 (n) z2 zZ1 [ pY ngB 72—y . .

(b) if ui(ze) = ua(ze) <0, ie., A > ;HB—/;—B, then as shown in Figure 4.4,

Ui(Z)Z ;l—,—BHl_-i-z_/\

Figure 4.4: The functions u1(2) and uz(z) when £2 > £2 and \ > -B=fi,.

ui(z) > ua(z), for zg < z < 2y,
where zp = 0 and z; = § — n; B. Thus,

u1(2), for zp < z < 21,

0, for z > 2.

and
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When p; > po, the power policy for User 1 and User 2 is similarly obtained using
appropriate substitutions for all subscripts. When p; = p9, the power policy is simplified
to the following: if n1 < ny, then Pf(n) = [ —n1B], P;(n) = 0; otherwise Py(n) = 0,
Pi(n) = [ —n2B],.

Therefore, from the discussion for the two-user system, one can easily see that the
two-step water-filling procedure described earlier in this section is a concise summarization
of the M-user optimal power allocation for CD derived from Theorem 4.2. That is, in
each iteration, according to (4.6), User p(1) has the largest positive marginal weighted rate
increase and the procedure starts to assign power to User p(1) by water-filling until the

total power allocated to him satisfies (4.7), in which case if
o)) B — 1)) B

P* n) = min ’
p(l)( ) Ho() > Ho(1) Hp(i) = Hp(1)

then some user other than User p(1) will begin to have the largest positive marginal weighted
rate increase and the available power will be allocated to him in the next iteration; if
P;(l)(n) = [“—")f—ll - nP(l)B]+’ then no user will have a positive marginal weighted rate in-
crease with any additional power and no more power will be allocated to state n. A detailed

interpretation about this is given in Appendix B.2.

4.3.2 TD

Now we consider the time-division case where, in each fading state n, the information for
the M users will be divided and sent in time-slots which are functions of n. For a given
power and time allocation policy P, let Pj(n) and 7j(n) (0 < 7;(n) < 1) be the transmit
power and fraction of transmission time allocated to User j (j = 1,2,..., M), respectively,
for fading state n, and let F be the set of all such possible power and time allocation policies

satisfying
En [Zj]‘il Tj(n)Pj(n)] <P, and

(4.17)
YH,7i(n)=1, VneN.

Theorem 4.3 The achievable rate region for the variable power and variable transmission

time scheme 1s:

c(P)= | Cro(P), (4.18)
PeF
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where

Crp(P) = {R < E, [T](n)Blog (1 + 5 (g))] ,j = 1,2,--~,M}. (4.19)

Moreover, the rate region C(P) is convez.

Proof: See Appendix B.3. O

Note that in this chapter we will refer to this achievable rate region as the capacity region
for TD, though we do not have a converse proof due to the fact that the converse only holds
for the optimal transmission strategy for this channel, which, according to Theorem 4.1, is
CD with successive decoding.

Due to the convexity of this capacity region, Vu € §Ri” with Z]-A’il uj =1, if a rate vector
R is a solution to

R, 4.20
225 (420

it will be on the boundary surface of C(P). Based on the expression for R in (4.19) and
the average total power constraint in (4.17), we can decompose the maximization problem

(4.20) into the following two problems:
(1) Assuming that Vn € N, P(n) is the total power assigned to the M users, i.e., P(n) =
Z]-Ail 7;(n)P;j(n), we must determine how to distribute P(n) among the M users so
that the total weighted rate in state n is maximized. That is, we must find

é max
JP@)E max I 70 f(F(n) o

subject to: Zinl 7;(n)Pj(n) = P(n),

where 7(n) = [r1(n), 72(n),- - -, T (n)] with Z?’il 7;(n) = 1, P(n) = [Pi(n), P(n),
N PM(n)], and
fi(®) £ wiln [1 + TLJ—B} (4.22)

(2) After we obtain the expression for J(:) by solving (4.21), the remaining problem is
how to assign the total power P(n) of the M users for each state n so that the total
weighted rate averaged over all fading states as expressed in (4.20) is maximized. That
is,

max{E [J(P(n))] = AEa[P(n)]} (4.23)

subject to: En[P(n)] = P,
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where A is the Lagrangian multiplier.

We solve the maximization problems (4.21) and (4.23) for the two-user case first and

then generalize the result to the M-user case.

Two-User Case

Lemma 4.1 When M = 2, assuming that py < po, the solution to (4.21) is:

1. if 82 < £2, then J(P(n)) = f2(P(n)), which is achieved when T1(n) =0, m2(n) = 1,
Pi(n) =0, P;(n) = P(n);

2. if B2 > L2 let

h(x,n)é(ng —n;)Bz + (Mz In a;:jB — p1ln ;:TIE) — (p2 — p1)- (4.24)
Then
fi(P(n)) if 0 < P(n) < P,(n),
J(P(n)) =3 fi(Pa(n)) + Ao(n)[P(n) — Pa(n)] if Pa(n) < P(n) < Py(n), (4.25)
f2(P(n)) if P(n) > Py(n),

where Py(n) = X(ﬁll‘T) - mB, Py(n)= Xél(lT) —naB, and A\y(n) satisfies
h(Ao(n),n) = 0. (4.26)

J(P(n)) in (4.25) is achieved by letting

Tl(n) =1 )

@ =010« P < Pu(n), (4.27)
Pi(n) = P(n)

Pg(n) =0 )
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n)— )

72(n) = %Fn))——_%(z% if P,(n) < P(n) < Py(n), (4.28)
Pi(n) = P,(n)
Py(n) = Py(n) )

'rl(n)=0
To(n) =1
if P(n) > Py(n). .
Pu(m) =0 f P(n) > Py(n) (4.29)
Py(n) = P(n) |

Proof. See Appendix B.4. O

From (4.21) we see that when M = 2, J(P(n)) is a linear combination of f;(-), j =
1,2. The proof of Lemma 4.1 in Appendix B.4 shows that if ﬁ;—i < %, then VP(n) > 0,
fi(P(n)) < f2(P(n)) and J(P(n)) is simply fo(P(n)). If B2 > £2 it is proved that for
P(n) > 0, fi(P(n)) and f2(P(n)) will cross each other once at some positive value Py(n),

as shown in Figure 4.5°. In this figure, the slope of the tangent line between the curves

fi(P(n)) and fa(P(n)) is Ao(n) and it satisfies

fi(Pa(n)) = f3(Py(n)) = Xo(n), (4.30)

ie.,

h(/\o(n), n) = 0.

Thus, in this case, J(P(n)) is the continuous contour in Figure 4.5 which consists of part of
the curve fi(P(n)), the tangent line, and part of the curve f>(P(n)), as indicated with the
dash-dotted line which is offset slightly for clarity. The expression of J(P(n)) is therefore
as given in (4.25). Note that the slope of the tangent of the curve J(P(n)) is continuous
and it decreases with the increase of P(n).

For a given fading state n, from (4.23) we know that the optimal power P*(n) satisfies

J'(P*(n)) — X = 0. (4.31)

5In this figure, P, P., P, and P, are all functions of n, which is not shown for simplicity.
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J(P) ===
fI(P) - "/‘
27 fa(P) = paIn(1+ 75)
= !
oz !
‘/"I 1 fl(P)=ﬂ11n(1+nlLB)
7 : :
1 ] 1
0" Pp B P, P

Figure 4.5: The functions fi(P), fo(P) and J(P) when £ 2,

Therefore, for any given A > 0, P*(n) is determined by the point(s) on the curve J(P(n))
whose tangent has a slope A. In the case where £1 > £2 and A = Ao(n), since all the points
on the tangent line between fi(P(n)) and fo(P(n)) in Figure 4.5 have the same tangent
slope A, P*(n) can be any value between P,(n) and Py(n): if P,(n) < P*(n) < Py(n), from
Lemma 4.1 we know that P*(n) will be time-shared by the two users; if P*(n) is simply
chosen as P,(n) or Py(n), then it is only assigned to User 1 or to User 2, respectively.
In all other cases, the point that has a tangent with slope A is unique and hence so is
P*(n). The unique choice of P*(n) is then allocated to a single user based on its relative
value compared to P,(n) and Py(n) as discussed in Lemma 4.1. Consequently, we have the

following theorem:

Theorem 4.4 When M = 2, assuming that 1 < po, the optimal power and time allocation
policy that achieves the TD capacity region boundary for each fading state n = (ny,ns) is:

1. if B2 < B2 then

2
ny — n2

7 (n) =0, Pf(n) =0,
and
75(n) =1, P3(n) = [ —n2B]_;

2. ifnﬁ‘—i' > £2, then
(a) if A > E228 orif A < 2=y and h(A,n) <0,

naB—n1B ngB-m1 B

qm=1 | R@=[g-mB],,

73(n) =0, P3(n) = 0;
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(b) if A < =K% and h(\,n) >0,

1 (n) =0, Pf(n) =0,
and
m3(n) =1, P3(n) = [B —n2B] _;
(c) if A< ;l—zfg—:ﬁ%g and h(A,n) =0,
* — * — (B __
71 (n) 70 and Pl (n) = [ )\1 nlB]+a
5(n) =1- 17§, Pj(n) = [£ — n2B] .

>

In the above expressions, h(z,n) is given in (4.24) and s* = % is the water-filling power

level. X and 75 satisfy the total average power constraint:

2
E, I:Z Ti*(n)P,-*(n)} =P, (4.32)
i=1

and they may not be unique.

Proof. See Appendix B.5. O

When p; > po, the optimal power policy for User 1 and User 2 is similarly derived
using appropriate substitutions for all subscripts. When p; = us the optimal power policy
is simplified as follows: if ny < ny then Pf(n) = [ —nlB]+, P3(n) = 0; otherwise
Pf(n) = 0, Py(n) = [52 —n2B]_. In fact this is the same power allocation as for CD
discussed in Section 4.3.1.

Note that when the c.d.f. F(n) is continuous, YA > 0, the probability measure of the

set

L2 {n:h()\n)=0} (4.33)

is zero. Since according to Theorem 4.4, 75 is defined on a subset of L and the probability
measure of any subset of L must also be zero, the value of 75 will uot affect the power
constraint (4.32) and A is therefore uniquely determined by (4.32). Moreover, in this case,
with probability 1, at most a single user transmits in each fading state n. If F(n) is not
continuous, the set L may have positive probability measure and for any fading state in this
set, the broadcast channel can be either time-shared by the two users, occupied by a single

user, or not used by any user if the fading is too severe.
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M-User Case

The optimal power and time allocation policy that achieves the capacity region boundary
for the two-user case can be generalized to the M-user case (M > 2). In the M-user
case, the optimal power allocation is again obtained based on the values of functions (),
J = 1,2,---,M. Specifically, for a given f;(-) in (4.22), if 3i # j such that Vz > 0,
fi(z) < fi(x), then we can show that f;(-) will not appear in the expression of J(P(n)),
VP(n) > 0. Thus, no resources should be assigned to User j in the state n. That is, the
optimal 77'(n) and P}(n) are 77(n) = 0, Pf(n) = 0. For any 4,j = 1,2,..., M, assuming
pj < pi, we know that, as shown in the proof of Lemma 4.1, if %’; < ‘Z—: then Vx > 0,
fi(x) < fi(z); if %Jl > £t then fi(z) and f;(x) will cross each other once at some positive z.
In both cases, since pj < u;, for z large enough (z > 0), fi(z) < fi(z).

Thus, assuming without loss of generality (WLOG) that u; < ps < --- < ppr, we first
remove any user j (i.e., let 77(n) = 0, Pf(n) = 0) for which 34, j <i < M with ﬁ—j < I:T: or
which satisfies p;_1 = p; and —Z—; < % For the remaining users, there are still some users
J whose corresponding f;(-) may not appear in the expression of J(P(n)). For example,
assume WLOG that the remaining users are User 1-User 4. Due to the removal criterion,

we know that
Iy (4.34)
ni no ns ng

and

p < p2 < p3 < pi, (4.35)

which means that their corresponding f;(P(n)) (1 < j < 4) will cross one another once at

some positive P(n), and

H(P(n)) < f2(P(n)) < f3(P(n)) < fa(P(n))

for P(n) large enough. Thus, if { fj(P(n))};%:1 are as shown in Figure 4.6%, it is clear that
fo(+) will not appear in the expression of J(P(n)) since, VP(n) > 0, the curve fo(P(n)) is
always under the dash-dotted contour of J(P(n)) formed by part of the curves f;(P(n)),
f3(P(n)), f4(P(n)) and the straight tangent lines between them. Note that the dash-dotted

curve in this figure is offset slightly for clarity. In the following, we use an iterative procedure

%1n this figure, P, Py; and Py; (j = 1,2) are all functions of n, which is not shown for simplicity.
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to find all the users j among the remaining users whose corresponding f;(-) will not appear
in the expression of J(P(n)) and identify all other users to whom the resources will be

allocated later. An interpretation of this procedure based on Figure 4.6 will then be given.

0 P, Py, P,, P, P

Figure 4.6: The functions J(P) and f;(P) = p;ln {1 + T—lf—B] (1 < j < 4) which satisfy
(4.34) and (4.35).

Initialization: Let m = 1.

Step I: Denote the number of remaining users as K and define the permutation 9 (-) such
that

Hyr) < Hy2) <00 < Hy(K)-

Then, due to the removal criterion, we have

Hoy o Fe@) o o Hy(k) (4.36)
(1) w(2) Ty(K)

Step 2: Let mo(m) = (1). If K < 2, all the users j whose corresponding f3(+) will not
appear in the expression of J(P(n)) have been removed and stop; if K > 2, go to

Step 3.

Step 3: For 1 <i < K — 1, define

e

Hy(1)

MGty _Hv@)
a:nw(l)B

hi(x7n) $n¢(i+1)B

Hyp(i+1) In 1 ln
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+ (Pyir1) — nyp)) BT — (ygia1) — By))s

and let ¢; satisfy h;(t;,n) = 0. Let A\o(m) = maz;{t;}, i* = arg maz;{t;}. If i* > 2,
remove those users ¥(j) for which 2 < j < i* (i.e., let Toi)(m) =0, P} (@) =0, and
remove them from further consideration). Also remove User ¥(1). Increase m by 1

and return to Step 1.

In this procedure we observe that in the first iteration, fp)(P(n)) of User ¥(1) must
be the first part of the curve J(P(n)) where P(n) is close to 0, since V1 < j < K,

dyi)(@)| By

dz =0 T (5) ’

and according to (4.36), for z close to 0 (z > 0), it must be true that

fo)(@) > fy@y(@) > - > fuw)(z).

For 1 < ¢ < K — 1, t; satisfying h;(t;,n) = 0 corresponds to the slope of the common
tangent between the two curves fy1)(P(n)) and fyi;1)(P(n)). Since t;» = maz;{t;}, if
i* > 1, all the curves { f¢(j)(P(n))};;2 will always be under the contour formed by part of
the curve fy(1)(P(n)), part of the curve fy(;-41)(P(n)), and the common tangent between
them. Thus, no power should be assigned to users (j), 2 < j < ¢*. In this case, we
know that part of the curve fy-y1)(P(n)) of User ¢(i* + 1) as well as the common tangent
between the curves fy1)(P(n)) and fy(;-51)(P(n)) must be part of J(P(n)). For example,
in Figure 4.6, since the number of remaining users is K =4 and ¢(j) = j, 7 = 1,2, 3, 4, if we
draw the common tangents between curves f1(P(n)) and fo(P(n)), f1(P(n)) and f3(P(n)),
and also f1(P(n)) and f4(P(n)), the slopes of which are ¢;, t3, and t3, respectively, then it
is clear that t; = max{ty,t2,t3} and i* = 2, i.e., the slope of the tangent between f;(P(n))
and f3(P(n)) is the largest among the slopes of the three tangents. Thus, f2(P(n)) will not
be part of J(P(n)) but f3(P(n)) and the common tangent between fi(P(n)) and f3(P(n))
will.

After removing those users 1(j), 2 < j < 7* and User 9(1), the number of remaining
users is reduced from K to K — i* and User ¥(¢* + 1) in the first iteration becomes User

(1) in the second iteration. Similarly, in the second iteration, by comparing the slopes



62

of the common tangents between curves fy)(P(n)) and fyi1(P(n)), 1 <i < K -1,
we may remove more users and find a new User ¥(¢* + 1) in this iteration whose corre-
sponding fyi-+1)(P(n)) as well as the common tangent between curves fy;)(P(n)) and
fy(i=+1)(P(n)) must be part of J(P(n)). This User ¢(i* + 1) becomes User ¥(1) in the
third iteration and the iterative procedure goes on and on until all the users j whose cor-
responding f;(z) will be part of J(P(n)) have been identified and all other users have been
removed.

Note that in each iteration, the value of m is different. Assume that by the time the
iteration stops, m = Mpy. If My = 1, then J(P(n)) is simply fr,1); if Mo > 1, then J(P(n))
is composed of { fﬂo(m)(-)}i\:il as well as the common tangents between curves fr(,)(+) and
Fro(ms+1)(+), 1 £ m < Mg — 1, the slopes of which are {/\O(m)}f\nlozzl. That is, by denoting
Pay(n) = Pyy(n) = 0, Py (n) = Py, (n) = 00, Ao(Mp) = 0, and letting F,,, (n) and P, (n)
(1 < m < My — 1) be the points satisfying

From)(Pam (1)) = frons1)(Pon (1)) = Ao(m), (4.37)
ie.,
Pam( ) £ l;gz;:)) - nm(m)Ba
P (m) 2 “j\(;((mﬂj)l) Mro(m+1) B
we can express J(P(n)) as
if P, (n) <P P, (n),
Sy < { (P Py () < P@) < Pao()
Fro(m)(Pam (1)) + Ao(m)[P(n) = Pa,,(n)] if Ps,,(n) < P(n) < B, (n),

(4.38)
where 1 < m < M. For example, in the case shown in Figure 4.6, since only User 2 will

be removed from further consideration, by the time the iterative procedure stops, we have

My = 3 and
mo(l) = 1,
mo(2) = 3,
mo(3) = 4.

The P,,, (n) and P, (n) (m = 1,2) satisfying (4.37) are as shown in Figure 4.6 and Ao(1)
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and Ag(2) denote the slopes of the tangent lines for which P(n) ranges from P,,(n) to
Py, (n), and from P,,(n) to Py, (n), respectively. Thus, J(P(n)) can be expressed as

[ frony(P(0)) if 0 < P(n) < Py, (n),
fro(y(P(m)) + Ao(1)[P(n) = Py, (n)] if Py, (n) < P(n) < Py, (n),
J(Pm) =1 £, (P(m) if Py, (n) < P(n) < Py, (n),
Fro@(P(1)) + Ao(2)[P(0) ~ Pay(n)] if Pry(n) < P(n) < Pyy(n),
| Froe)(P()) if P(n) > Py, (n).

Once we obtain the curve J(P(n)), similar to the two-user case, VA > 0 fixed, since the
optimal power P*(n) satisfies the condition (4.31), i.e., J'(P*(n)) = ), P*(n) is determined
by the point(s) on the curve J(P(n)) whose tangent has a slope A. If A equals any \o(j)
(1 € j < My — 1), since all the points on the common tangent between curves Fro(j) and
fro(j+1) share the same tangent, P*(n) can be any value between P, (n) and Py, (n): if
Py;(n) < P*(n) < By;(n), P*(n) will be time-shared by the two users mp(j) and mo(j + 1);
if P*(n) is simply chosen as P, (n) or Py, (n), then it is only assigned to User mg(j) or
User mo(j + 1), respectively. If A # Ao(j) for all 1 < j < Afy — 1, then P*(n) is uniquely
determined by the single point on J(P(n)) that has a tangent with slope A. Therefore,
based on the expression of J(P(n)) in (4.38) and the condition (4.31), for A > 0 fixed, the

optimal power and time allocation policy for the remaining My users {'lro(m)}f\nlo:1 is:

(a) if My =1, then

* Ko, .
Pm(l)(n) = [. )\()(1) — nWO(l)B:I+’

(b) if My > 1, by denoting A(0) 2 oo, we know that for the given A, there exists a
j€{1,2,..., My} such that Ao(j — 1) > A > Ao(j) or A = Ag(j), since

oo = Ao(O) > /\0(1) > /\0(2) > > )\O(MO — 1) > /\0(]\40) =0,

which results from the iterative procedure generating {Ag(m) %_0__1 and from the fact
that J(P(n)) is an increasing, concave function. If 35 such that Ao(j) < A < Ao(j—1),
from (4.38) we have J(P(n)) = fr,;)(P(n)), since only when Py, ,(n) < P(n) <
P,;(n) does the tangent slope of J(P(n)) decrease from Ag(j — 1) to Ag(j). In this



case, we set

which corresponds to transmitting the information of User mo(j) only. If 35 such
that A = A(j), then J(P(n)) = fr.(;)(P(n)) + A(§)[P(n) - Py;(n)], since only when
Py;(n) < P(n) < Py, (n) does the tangent slope of J(P(n)) equal A(7). Therefore, as

in the two-user case, we can set

T; ] (n) = T L]
0@ 0 (4.39)

T;o(j.n)(n) =1-13,

and
* __ | Bmo()
Pro(]’)(n) = [ A] - n"O(j)B]+ ’

* Hrg (5
Py en(®) = [P0 — 8]

which indicates that the channel is time-shared by User mo(j) and User mo(j + 1) if
choosing 0 < 7§ < 1, and is occupied by User mp(j) or User 7o(j + 1) along if choosing

75 = 1 or 75 = 0, respectively.

In the above policy, A and 7§ satisfy the average power constraint

M
En [Z Ti*(n)Pi*(n)} =P, (4.40)
i=1

and they may not be unique, since 7§ can be any value between 0 and 1. Notice that as in
the two-user case, if the c.d.f. F(n) is continuous, YA > 0, the probability measure of the

set”

L2 {n: 3j suchthat 1<j< M, and X = X(§)} (4.41)

is zero and A is uniquely determined by (4.40). Moreover, in this case, the above optimal
power and time allocation policy for the M-user broadcast channel implies that with proba-
bility 1, the information of at most a single user is transmitted in each fading state. If F(n)
is not continuous, then the set L may have non-zero probability measure and for n € L,

as discussed before, the channel capacity region is achieved by time-sharing between two

"Note that in (4.41), My is a function of n, which results from the iterative procedure described earlier
in this section.
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users or dedicated transmission to just one user; for any other channel state n (n ¢ L),
the information of at most one user is transmitted. Thus, in all cases, the capacity region
boundary of TD can be achieved by sending information to just one user in every fading

state. This motivates the sub-optimal TD policy we propose in the next section.

4.3.3 Sub-Optimal TD Policy

The optimal power and time allocation policy in Section 4.3.2 indicates that the capacity
region C(P) in (4.18) is achieved by transmitting the information of at most a single user
in each fading state n, although it can also be achieved by a strategy that transmits the
information of two users in some states by time-sharing and assigns the channel to a single
user or no user in the other states. Based on this observation, we now propose a sub-optimal
method for resource allocation. This method selects a single user in each channel state and
allocates appropriate power to him according to the fading state. We now describe our
method to choose the single user and his corresponding power.

In each state n, Vi = 1,2,..., M, define

and let
G(n) = max fi(Pi(n)),

S ={i: fi(P(n)) = G(n)},
i 2 arg Iiréiélpi(n),

where f;(z) is given in (4.22). Then, in the state n, only the information for User i* is sent
with transmit power P;-(n), where ) satisfies the M-user average power constraint (4.40).

For example, in the two-uscr case, by denoting

A Hi .
; = u; =1,2 4.42
gi (-T, Il) Hi In CL‘TL,'B, 1 3 &y ( )

we can express the sub-optimal power and time allocation policy as follows:

(2) if g0 n) > g2(Am), or if gi(A,m) = gs(A,n) and A > 2THL (ie, 8 —nB <
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EL — nyB), then

1, and Pf‘(n):[E)‘l~nlB]+,
73(n) =0, Pj(n) =0,

(b) if g1(A\,n) < g2(A,m), or if g1(A,n) = go(\,n) and X < —£2=EL_ (je, &2 _ B >

m2B-m B )
£ — nyB), then

qw=o [ Prm=o,
=1,

73(n)
where A satisfies the two-user average pu:ver constraint (4.32).

Compared to the optimal power and time allocation policy, the advantage of this sub-
optimal scheme is that it is much easier to compute the water-filling power level s* 2 %
using (4.40). As will be shown in Section 4.4, the resulting rate region comes very close to
that of the optimal TD policy. This is due to the fact that the two policies are identical
except over a small set of fading states. Specifically, in the case where the c.d.f. F(n) is
continuous, the detailed comparison of the optimal and sub-optimal decision regions for the
two-user fading broadcast channel in Appendix B.6 shows that for a given A > 0, the two

policies transmit the information of different users only in the rare occasions when n € Lp,

where

Lp & {n: LN % and Ao < A < AS¥® with h(\o,n) =0, ga(A*®,n) — g1(\§**,n) = 0}.
n 2
(4.43)

4.3.4 CD without Successive Decoding

For CD without successive decoding each receiver treats the signals for other users as
interference noise. For a given power allocation policy P, by denoting F;(n) as the transmit
power allocated to User j and F as the set of all possible power policies satisfying the average

power constraint En [Z]-Nil P](n)] < P, we have the following theorem:
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Theorem 4.5 The achievable rate region for CD without successive decoding is given by:

C(P) = |J Ccpwo(P), (4.44)
PeF
where
Pj(n)
CCDWO(P)={R‘SEn[BIOg(1+ 2 )J,J’=1,2,"',M}-
? njB + ZiAil,i¢j Pi(n)

The proof of the achievability follows along the same lines as that for the capacity region
of CD given in Appendix B.1 and is therefore omitted. Note that in this chapter, as in the
case of TD, we refer to this achievable rate region as the capacity region for CD without
successive decoding, though we do not have a converse proof since the converse only applies
to the optimal transmission strategy, which is CD with successive decoding.

In order to show that C(P) in (4.44) cannot be larger than the capacity region of TD in

(4.18), we give the following lemma:

Lemma 4.2 VP, >0, 4; >0, ;B >0,:=1,2,..., M,

3 B %1 p;
ilog { 1+ < Jdog (14 =22172 ). 4.45
Z Hi 708 ( niB + Zﬁl,]#z P]> 26{1 2, 7M} ['u 8 < niB )} ( )

i=1

Proof: See Appendix B.7. O

Theorem 4.6

U Ceowo(P) S | Crp(P (4.46)
PEF PEF

where equality is achieved using the optimal TD policy with power allocated to at most one

user in each fading state.

Proof. Recall that the optimal power and time allocation policy discussed in Section 4.3.2
indicates that if F(n) is continuous, then with probability 1, no more than one user is using
the broadcast channel in each fading state n; if F(n) is discontinuous, in some fading states
with non-zero probability, we can either choose two users and transmit their information
by time-sharing the channel, or just select one of them and transmit his information alone.
Therefore, in any case, the boundary of the capacity region C(P) in (4.18) can be achieved

by an optimal TD policy which transmits the information of at most one user through the
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fading broadcast channel in each channel state n. Obviously this optimal policy can be used
as a power allocation policy for CD without successive decoding to eliminate interference
from all other users and therefore to achieve the same capacity region boundary as TD.
Thus, we need only to show that the capacity region of CD without successive decoding in
(4.44) cannot be larger than the capacity region of TD in (4.18). We use Lemma 4.2 to

prove this as follows.
M

For CD without successive decoding, Vn € N, denote P(n) = ZP](n) For1<i< M,
i=1

let

Ci(n) = Blog [1 + @] ,

n,-B

1+

Ri(n) = Blog

Pi(n) ]
n;B + ZinLj;éi Pj(n)]’

and let y; = %. Then according to Lemma 4.2, we have:

f: Biln) ). (4.47)

Now consider the equal power TD strategy which assigns the power P(n) to each user

i for a fraction 7;(n) of the total transmission time in the state n. By denoting

ey P(n)
R;(n) = 1;(n)Blog [1 + oy ] ,
we have .
3 !
E@) _ 1, (4.48)
= Gi(n)

since M, 7(n) = 1. Therefore, from (4.47) and (4.48), it is clear that given a fading
state n, YP(n) > 0, the capacity region of the equivalent AWGN broadcast channel for CD
without successive decoding is within that for equal power TD and is therefore within that
for optimal TD. Consequently, the capacity region of CD without successive decoding in
(4.44) cannot be larger than the capacity region of TD in (4.18). O

Note that since the sub-optimal TD scheme proposed at the end of Section 4.3.2 indicates
that the broadcast channel is used by no more than one user, this suboptimal policy can

also be applied to CD without successive decoding.
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4.4 Numerical Results

In this section we present numerical results for the two-user ergodic capacity regions of
the Rician and Rayleigh fading channels under different spectrum-sharing techniques. In
the figures, as in [75], the equal power TD scheme refers to the strategy that assigns the
constant transmission power P and total bandwidth B to User 1 for a fraction T of the total
transmission time, and then to User 2 for the remainder of the transmission. The optimal
TD scheme for both the AWGN channel and the fading channels is obtained by allocating
different power to the two users. We refer to CD without successive decoding as CDWO.
Since TD and FD are equivalent in the sense that they have the same capacity region, all
results for TD in the figures also apply for FD.

In Figure 4.7, the ergodic capacity regions of the Rician and Rayleigh fading broadcast
channels are compared to that of the Gaussian broadcast channel using the CD, TD, equal
power TD, and CDWO techniques. The SNR difference between the two users is 3 dB
(71 and 72 denote the average noise densities of User 1’s channel and User 2’s channel,
respectively). The total transmission power is P = 10 dB and the signal bandwidth B = 100
KHz. The ratio of the direct-path power to the scattered-path power in the Rician fading
sub-channels is k = 6 dB.

In this figure we see that while the single-user ergodic rate (the Rj-axis or Rp-axis
intercept) in fading is smaller than the rate in AWGN, the two-user capacity regions of
both the Rician fading and the Rayleigh fading broadcast channels using either optimal CD
or sub-optimal TD techniques in some places dominate that of the AWGN broadcast channel
using optimal CD. That is, for the fading broadcast channel, ergodic rate pairs beyond the
capacity region of the non-fading broadcast channel can be achieved by applying optimal
resource allocation over the joint fading channel states. For simplicity, we calculate the
rate region of the fading broadcast channel for TD by applying the simple sub-optimal
TD power allocation policy. The resulting rate region turns out to be very close to the
capacity region for optimal CD. Therefore, the capacity region using the optimal TD power
policy will also come very close to that of optimal CD. This observation implies that, due
to the small SNR difference between the two users, superposition encoding with successive
decoding is not necessary, since time-sharing is near-optimal. For the AWGN broadcast

channel, the capacity region boundary of the optimal TD scheme is indistinguishable from
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Figure 4.7: Two-user ergodic capacity region comparison: 3 dB SNR difference.

the equal power TD straight line, which means that when the two users have a similar
channel noise power, constant power allocation is good enough for TD. The CDWO capacity
region boundary (omitted from Figure 4.7 but shown in figures in [75]) includes the two
end points of the equal power TD line but is below this straight line due to its convexity.
However, for the fading channels. optimal or sub-optimal TD has a much larger capacity
region than equal power TD and the capacity region for CDWO is the same as that for
optimal TD.

We show in Figure 4.8 thut when the SNR difference between the two users is 20 dB
and the total average power is 25 dB, the ergodic capacity region for CD in Rayleigh fading
is now completely within the region for CD in AWGN. However, optimal TD in fading can
achieve some rate pairs far beyond the capacity region of the AWGN broadcast channel
using optimal TD, and the sub-optimal TD power policy for Rayleigh fading results in a

rate region almost as large as the capacity region with the optimal TD power policy. For
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both AWGN and fading channels, due to the large SNR difference between the two users,
the capacity region for optimal CD is noticeably larger than that for optimal TD, and the

capacity region for optimal TD is noticeably larger than that for equal power TD.

200 T T T T T T T
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Figure 4.8: Two-user throughput capacity region comparison: 20 dB SNR difference with
strong signal power.

Figure 4.9 shows the case where the SNR difference between the two users is 20 dB and
the total average power is only 10 dB. Unlike the previous cases, we see here that the ergodic
single-user capacity of User 2 for the Rayleigh fading channel is larger than that for the
AWGN channel due to its very low average SNR. Thus, the optimal CD or sub-optimal TD
scheme for fading yields a large rate region that is not achievable for the AWGN channel.
However, as in Figure 4.8, due to the great SNR difference between the two users, optimal
CD results in a capacity region much larger than that for sub-optimal TD and the capacity
region for optimal TD is significantly larger than that for equal power TD. This observation

holds for both fading and AWGN channels.
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Figure 4.9: Two-user throughput capacity region comparison: 20 dB SNR difference with
weak signal power.

4.5 Conclusions

We have obtained the ergodic capacity region and the optimal dynamic resource allocation
strategy for fading broadcast channels with perfect CSI at both the transmitter and the
receiver. These results are obtained for CD with and without successive decoding, TD and
FD. Comparisons of the capacity regions show that CD with successive decoding has the
largest capacity region, while TD and FD are equivalent and they have the same capacity
region as CD without successive decoding. For CD without successive decoding, the optimal
power policy is to transmit the information of at most one user in each joint fading state.
This policy is also optimal for TD, though other strategies which allow at most two users
to time-share the channel may also be optimal. When the average channel fading condition
for each user is similar, the capacity regions for optimal CD and TD are quite close to each

other. However, when each user has an average channel condition quite different from that
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of the others, optimal CD can achieve a much larger ergodic capacity region than the other
techniques. In the next chapter, we will derive the zero-outage capacity region and the
capacity region with non-zero outage for fading broadcast channels. Since each rate vector
in the outage capacity region must be achievable in every fading state n unless an outage
is declared, we cannot average over different fading conditions. However, the outage and

ergodic capacity regions exhibit similar relative performance between the various channel-

sharing techniques.
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Chapter 5 Outage Capacities and Optimal
Resource Allocation for Fading Broadcast

Channels

5.1 Introduction

In the previous chapter, by applying optimal dynamic power and rate allocation strategies,
we have obtained the ergodic (Shannon) capacities of fading broadcast channels under
different spectrum-sharing techniques. This kind of capacity is a measure of the long-term
achievable rate averaged over the time-varying channel. For real-time applications that
cannot tolerate the variable delays exhibited by the coding strategy that achieves the ergodic
capacity, we have to consider the information rate that can be maintained in all fading
conditions through optimal power control. In order to maintain a constant rate during severe
fading, much power is needed. Therefore, given an average power constraint, the channel
fading may be so severe that no constant rate greater than zero is possible. For example,
the maximum instantaneous mutual information rate that can be supported continuously
on the single-user Rayleigh fading chaunel with a finite average transmit power constraint
is zero [3]. However, if we allow some transmission outage under severe fading conditions,
the maximum instantaneous mutual information rate that can be maintained during non-
outage will increase. Finding the optimal resource allocation strategy that achieves the
outage capacity with a given outage probability is tantamount to deriving the strategy
that minimizes the outage probability for a given rate vector. In [76], the minimum outage
probability problem is solved for the single-user fading channel. In addition, it is shown that
under a long-term average power constraint, the optimal power allocation depends on the
fading statistics through a threshold-decision rule: no transmission is aliowed in a fading
state where the required power is above a threshold value.

For an M -user broadcast fading channel and a given rate vector R, we consider a similar

minimum common outage probability problem under the assumption that the broadcast
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channel is either not used at all when fading is severe or is used simultaneously for all
users when fading is tolerable. Under the more complex assumption that an outage can
be declared for each user individually, we obtain an optimal power allocation policy that
achieves boundaries of outage probability regions for time-division (TD), frequency-division
(FD) and code-division (CD) with and without successive decoding. This optimal power
allocation strategy is a multi-user generalization of the single-user threshold-decision rule.

As a special case, if no outage is allowed during the transmission, the outage capacity
with a given outage probability becomes the zero-outage capacity. In [3], with an average
power constraint for each user, under the assumption that CSI is available at both the trans-
mitters and the receiver, the zero-outage capacity region! and the optimal power allocation
schenu¢ are derived for the fading MAC by exploiting the special polymatroidal structure of
the region. It is shown that the boundary of this capacity region can be achieved through
successive decoding and applying a greedy optimal power allocation scheme. The successive
decoding order depends on both the current fading state and the power price for each user.

In this chapter, for convenience we first obtain directly zero-outage capacity regions
and the associate optimal resource allocation strategies of an M-user broadcast fading
channel for TD, FD, and CD with and without successive decoding. For CD with successive
decoding, we will show that the superposition coding and successive decoding order depends
only on the current fading state. For the Nakagami-m fading model [77] we prove that the
limiting zero-outage capacity region converges to that of the Gaussian broadcast channel
for CD with and without successive decoding when m — oo.

The remainder of this chapter is organized as follows: the broadcast fading channel
model is briefly described in Section 5.2. In Section 5.3, the zero-outage capacity regions
are derived for each of the different spectrum-sharing techniques. We derive strategies to
minimize the common outage probability and achieve the boundary of the outage probability
region for TD, FD, and CD with or without successive decoding in Section 5.4. Section 5.5

shows numerical results, followed by our conclusions in the last section.

!The zero-outage capacity is called “delay-limited capacity” in [3], since the coding strategy that achieves
the zero-outage capacity has a delay that is independent of the channel variation.
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5.2 The Fading Broadcast Channel

We consider the same discrete-time M-user broadcast fading channel model as in Chapter 4,
where the signal source X[¢] is composed of M independent information sources and the
broadcast channel consists of M independent fading sub-channels. The time-varying sub-
channel gains are denoted as v/g1[i], \/g2[], - . -, V/gui] and the Gaussian noises of these
sub-channels are denoted as z[i], 22[i],...,2m[i]. Let P be the total average transmit
power, B the received signal bandwidth, and v; the noise density of zilt), 3 =1,2,..., M.
Since the time-varying received SNR «;[i] = Pg;[i]/ (v;B), 3 = 1,2,..., M, by denoting?
n;{i] = v;/g;1i], we have (il = P/(n;[1]B).

For a slowly time-varying broadcast channel, we assume that the n;[i], j = 1,2,..., M,
are known to the transmitter and all M receivers at time i. Thus, the transmitter can
vary the transmit power P;[i] for each user relative to the noise density vector n[i] =
(n1[é], n2[d], . .., np[7]), subject only to the average power constraint P. For TD or FD, it
can also vary the fraction of transmission time or bandwidth 7;[i] assigned to each user,
subject to the constraint Zfil 7;[i] = 1 for all i. For CD, the superposition code can be
varied at each transmission. We call n[i] the joint fading process and denote N as the set
of all possible joint fading states. F(n) denotes a given cumulative distribution function

(c.d.f.) on M.

5.3 Zero-Outage Capacity Region

For an M-user fading broadcast channel with stationary distribution Q and a total average
power constraint P, we give the following definition for the zero-outage capacity region

C.ero( P), which is similar to that of the delay-limited capacity region for the MAC in [3]:

Definition 5.1 For a given rate vector R = (Ry, Ra,---,Rpn), if Ve > 0, there exists a
coding delay T such that for every fading process with stationary distribution Q, there exist
codebooks and a decoding scheme with probability of error Pe(T) < €, then R € C,ero(P).

Moreover, the codewords can be chosen as a function of the realization of the fading pro-

CESSES.

2See Section 4.2 for a discussion of the case g;[i] = 0.
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In this section, the zero-outage capacity region of ar M-user broadcast fading channel
is obtained for CD with and without successive decoding and for TD. For FD, using the
same argument as in [75], it can be easily shown that the zero-outage capacity region is
the same as for TD and the optimal power and bandwidth allocation policy for FD can be

derived directly from that of TD.

5.3.1 CD

For an M-user broadcast system, we first consider superposition coding and successive
decoding where, in each joint fading state, the channel can be viewed as a degraded Gaussian
broadcast channel with noise densities ny[¢], na[i], ..., na(i] and the multiresolution signal
constellation is optimized relative to these instantaneous noises. In this case, the users
with smaller noise densities will subtract the interference from the users with larger noise
densities. Given a power allocation policy P, let Pj(n) be the transmit power allocated to
User j for the joint fading state n = (nj, ng,...,na) and denote F as the set of all possible
power policies satisfying the average power constraint Ey [Z]]Vil Pj(n)] < P, where E[]
denotes the expectation function. For simplicity, assume that the stationary distributions

of the fading processes have continuous densities3, i.e., Pr{n; = n;} =0, Vi # j.

Theorem 5.1 The zero-outage capacity region for the fading broadcast channel when the

transmitter and all the receivers know the current channel state is given by:

Czero(P) = U n Ccp(n,P), (5.1)

PeF neN

where Cop(n,P) is the capacity region of the time-invariant Gaussian broadcast channel.

That is,

P;(n) )
=< R; < Bl 1 J , =1,2,---,M3, (52
Cen(n,P) { T Og( ’ n; B+ M, Pi(n)lin; > m]) ’ } (52

where 1[-] denotes the indicator function (1{z] =1 if = is true and zero otherwise).

Proof: See Appendix C.1. O

31f Pr{n; = n;} # 0 for some i, j then, in state n, User 7 and User j can be viewed as a single user and
superposition coding and successive decoding are applied to M — 1 users. The information for User ¢ and
User j are then transmitted by time-sharing the channel.
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For a given rate vector R and a fading state n, from (5.2) we can calculate the minimum
required power PJ-"’""(n) (3 =1,2,..., M) that can support the rate vector R. Specifically,
let 7(-) be the permutation such that

Nr(1) < Tigg) < -+ < N ().
Then according to (5.2), we have

R,y < Blog (1 + ;Q;)(g))

3 1)(“) .
R”(i) s Blog (1 + w(l)B+Z( 1r(.7) ) T 2’ 3’ o M.

Thus, to support rate vector R, we require

The minimum power required to support R for each user is

Pfrrr(lin(n) =n.1)B (2Rm)/3 _ 1)

Prin(n) = (nqqB + $i2) Prit(n)) (2R=0/F — 1), i=2,3,-, M.

Consequently, the minimum required total power P™"(R,n) that can support R in fading
state n is:

M

P™™R,n) = ) Pri(n)
i=1
M-1
— Z [22?1;‘4’1 Re(;)/B (2R7r(i)/B _ 1) nn(i)B]
=1
+ (2Ran/B — 1) n 1) B. (5.3)

For a given R, if R € C,ero(P), then by (5.1), the minimum required average power

En[P™"(R, n)] satisfies the total average power constraint

En[P™"(R,n)] < P, (5.4)
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where P™"(R, n) is given by (5.3). If R is on the boundary surface of C,ero( P), then the
equality in (5.4) is achieved. Note that for the single user case (M = 1), if Ry is on the
boundary of C.ero(P), from (5.3) and (5.4) we have

En, [(2™/2 - 1) mB| = P.

Thus,

P
R, = Bl 14—
1 Og( + Enl[nlB]> ,

which is the same as derived in [2].

5.3.2 CD without Successive Decoding

In CD without successive decoding, each receiver treats the signals for other users as inter-
fering noise. For a given power allocation policy P, let P;j(n) denote the transmit power
allocated to User j in the state n and let F denote the set of all possible power policies satis-
fying the average power constraint Fy, [Z]Nil P; (n)] < P. Then the achievable zero-outage

rate region for CD without successive decoding is given by:

Czero(ﬁ) = U m CCDWO(D,P), (55)
PEF neN

where Copwo(n,P) is the rate region of the time-invariant Gaussian broadcast channel

using CD without successive decoding:

Pj(n)
n;B + Zij\il,i¢j Pi(n)

Ccpwo(n,P)={Rj§Blog <1+ ), j:l,2,-~-,]\f}. (5.6)

The proof of the achievability follows along the same lines as that for the capacity région
of CD given in Appendix C.1 and is therefore omitted. Note that in this chapter, we refer
to this achievable rate region as the zero-outage capacity region for CD without successive
decoding, though we do not have a converse proof since the converse only applies to the
optimal transmission strategy, which is CD with successive decoding.

For a given rate vector R and a fading state n, we know from (5.6) that

Pi(n) > (B + TM 1 P(m)) (27/8 - 1), i=1,2,---, M. (5.7)
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Denoting P™"(n) (i =1,2,---, M ) as the minimum power required for User i in order to

support rate vector R, by (5.7) we have
. M .
PMm) > \mB+ > PPT(m)) (2R/F-1), i=1,2,---,M.
J=Lyi

Therefore, P™"(n) must satisfy

Pimin(n) — (TL,B + Z] Lisi Pmm( )) (2Ri/B - 1) , 1=1,2,--- M. (58)
By defining matrix A = (a;5), 4,7 = 1,2,---, M, where

aij = g 0= (5.9)
-1, if 7 # 7,
we prove in Appendix C.2 that the M linear equations in (5.8) have positive solutions for
all P™"(n) (1 < i < M) in every fading state n if and only if det A > 0. Assuming
that det A > 0, it is clear that the explicit solution to P™"(n) = (P/®"*(n), P{**(n), -,
P (n)) is

P™"(n) = A~!. Bn”, (5.10)

where A~! denotes the inverse of matrix A and n” denotes the transpose of vector n. Thus,

the minimum required total power P™"(R,n) is
P™"(R, n) ZP"“"(n) (5.11)

For example, in the two-user case (M = 2), ifdet A > 0, i.e., if 2R1/B L 9R2/B » 9(Ra+R2)/B

the solution for P™"(n) and Py*"(n) will be

min (2R1/B—1)n1B+(281/B-1)(2R2/B-1)n, B
P1 (n) = oR1/B 9R;/B_9(R1+R2)/B ’

mingoy _ (272/B-1)nyB+(2R2/B_1)(2F1/B l)nlB
Pg"™(n) = oR1/B {33/ B _o(R|+7;)/B
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Thus,

P™(R,n) = P[""(n)+ PJ*"(n)
(2(R1+R2)/B _ 2R2/B) nlB + (2(R1+R2)/B . 2R1/B> Tl2B

= 2R1/B 4 9R2/B _ 9(R1+R2)/B . (5.12)

Therefore, a given R € C,¢,,(P) if the average power constraint in (5.4) is satisfied with
P™"(R,n) given by (5.11). If R is on the boundary surface of C:ero(P), then the equality

in (5.4) is achieved.

5.3.3 TD

Now we consider the time-division case where, in each fading state n, the information ior
the M users will be divided and sent in time-slots which are functions of n. For a given
power and time allocation policy P, let Pj(n) and 7;(n) (0 < 7;(n) < 1) be the transmit
power and fraction of transmission time allocated to User j (j = 1,2,..., M), respectively,
for fading state n, and let F be the set of all such possible power and time allocation policies
satisfying

E, [Zy__l Tj(n)Pj(n)] <P, and

Zfil ri(n)=1, VnewnN.

Then the achievable zero-outage capacity region for the variable power and transmission

time scheme is:

C:em(p) = U ﬂ Crp(n,P), (5.13)
PeF neN

where Crp(n, P) is the rate region of the time-invariant Gaussian broadcast channel using
the TD technique:

Crp(n,P) = {Rj < 1j(n)Blog (1 + 5@) , j=12-. -,]\I}. (5.14)
n;B

The proof of the achievability follows along the same lines as that for the capacity region of
CD given in Appendix C.1 and is therefore omitted. Note that as in the case of CD without
successive, we refer to this achievable rate region as the zero-outage capacity region for TD,
though we do not have a converse proof due to the fact that the converse only holds for

the optimal transmission strategy for this channel, which, according to Theorem 5.1, is CD
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with successive decoding.

For a given rate vector R and a fading state n, from (5.14) we have
B
P;(n) > n;B <2B’i(“) - 1) , 1=1,2,..., M.

Therefore, the required total power P(R,n) of the M users satisfies

M
P(R,n) = ZTz n)P;(n
i=1

v
nMg

R,
T,(n)nl (2 Bri(n) _ 1) .

Let 7(n) 2 [r1(n), 72(n), - -, 7ar(n)] and let P™"(R,n) be the minimum required total

power of the M users for fading state n, then

P (Rym) = min { £, (w8 (27409 — 1) }
(5.15)

subject to: M 7;(n) =1, VneN.

By applying the Lagrangian technique, we can find the optimal 7(n) which achieves

P™"(R,n) in (5.15). For example, in a two-user system (M = 2), let
R R
P(ri(n)) £ 1 (n)n. B (23—%7 - 1) + (1= (n))nsB (2rzﬁ - 1)

and let 77 (n) be the solution to the non-linear equation

dP(Tl(n)) -0
dri(n) '
Since it is easy to verify that for 71(n) > 0, ﬁ%%%‘ﬁ > 0, we have
1

P™™"(R,n) = min P(1i(n))
Tl(n)

= P(r}(n)).

Therefore, R € C.ero(P) if P™"(R,n) in (5.15) satisfies (5.4). If R is on the boundary
surface of C.ero(P) then the equality in (5.4) is achieved.
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5.3.4 The Limiting Zero-Outage Capacity Region for Nakagami Fading

It is well known that the Nakagami-m fading model (15] can be used to describe different
fading conditions ranging from Rayleigh (m = 1) to Rician channels with strong line-of-
sight components. As the fading parameter m (m > 1/2) goes to infinity, the Nakagami-m
fading channel converges to an AWGN channel. Therefore, it is expected that the limiting
zero-outage capacity region of the Nakagami-m fading broadcast channel converges to the
capacity region of an AWGN broadcast channel as m — 0o. In this subsection, we prove
this to be true for CD with and without successive decoding in a two-user system. These

results can be easily extended to more users.

CD with Successive Decoding

For a two-user broadcast channel with fading, given rate vector R = (Ry, Ry), we know by

(5.3) that the minimum required total power to support R in fading state n = (n, ny) is:

2B2/B(oR/B _ 1\ B + (2R2/B — 1)nyB, if ni < na,

(5.16)
2R1/B(232/B — DnaB + (QRI/B — 1y B, ifn; > no.

Pmin (R, Il) —
If R is on the boundary surface of C,ero(P) in (5.1), by substituting (5.16) into (5.4) with

equality, we obtain

P = E,[P™"(R,n)]
2R/B(2R1/B _ 1)E,, cn, [mB] + (2% — 1) By, <, [n2B]

+2R/BR/B _ g, . [n2B]+ (2B — 1)E, on, [1B).  (5.17)

Let 1B and 7i,B be the average noise variances of the channels for User 1 and User 2,
respectively. Assuming that the signal power is normalized to 1, the signal-to-noise ratio

(SNR) v; of User ¢ (i = 1,2) for a given channel state n is:

1

: 5.18
nB (5.18)

Yi =

We use the following lemma to show that for Nakagami-m fading, as m — oo, (5.17)

converges to the boundary equation for the capacity region of an AWGN broadcast channel
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with sub-channel noise variances ;B and n2B.

Lemma 5.1 Given 0 < p < 1/2 and a fized integer r,

lim Z

k—o0 i=o )

k+r /-
( . )p(l—p)’“=1-

Proof: See Appendix C.3. O
For Nakagami-m fading, the probability density function (p.d.f.) of v; in (5.18) is:

n; B)™ 5 Brys )
pi(”/i) - (mn ) Vm—le—mn;B’Y: i= 1’2. (519)

Thus, from (5.17) and (5.18) we know that

P = 2f/BR/E _1)D,(m) + (272/8 — 1)Dy(m)

+2R/B(@Re/B 1) D(m) + (274/E — 1) Dy(m), (5.20)

where

1
Do(m) = Eny<n, [ B] = / —p1{71)p2(72)d, (5.21)
mn>vy2 11 )
1
Dy(m) = En,<n, [n2B] = / —p1(71)p2(72)d7, (5.22)
N>z 12
1
D(m) = En,>n, [n2B] = / —p1(71)p2(12)d7, (5.23)
1n<y2 V2
1
Da(m) = EnsnamB) = [ —pi(n)pa()dy. (5.24)
n<y2 N

By applying Lemma 5.1, we obtain the following lemma:

Lemma 5.2 For Nakagami-m fading, assuming that 71 B < n2B,

lim D,(m) =71 B,

m—00
lim Db(m) = 7o B,
m—o0
lim D.(m) =0,
m—r0o0

lim Dg(m) = 0.
m—ooo
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Proof: Sce Appendix C.4. O

Theorem 5.2 Asm — oo, assuming that 71 B < 7y B, the boundary of the capacity region

for Nakagami-m fading broadcast channel (5.20) becomes
P =2R/BoR/B _ \p B 4 (2R2/B _ 1)7,B, (5.25)

which is the same as the boundary of the capacity region for the AWGN broadcast channel

using CD with successive decoding.

Proof: Applying Lemma 5.2 to (5.20) directly yields (5.25). For the two-user degraded
AWGN broadcast channel with noise variances 713 B and 7B (B < fpB), the capacity

region for CD with successive decoding is 78, 79]:

P P > —}
= < Bl 14— ), Ry < Bl 1+ ——1}:VP P, <P, 5.26
Ccp {Rl_ 0g(+ﬁ13), 9 < 03( '1‘7_12}_:),%_1)1 VP + Py < (5.26)

Therefore, if R is on the boundary of the capacity region (5.26), i.e., all the equalities in

(5.26) are achieved, then

P = P+P
(2R1/B _ l)ﬁlB + (2R2/B _ 1)[7_123 + (2R1/B . l)T_llB]

2R2/B(oR/B _ 1) B + (27/B — 1)7eB,
which means that R also satisfies (5.25). O

CD without Successive Decoding

For a two-user broadcast channel with fading, given rate vector R = (R;. R2), we know by

(5.12) that the minimum required total power to support R in a fading state n = (n1, ng)
is
(2(R1+R2)/B - 232/3) n1B + (2(R1+R2)/B — 231/3) noB

Pmm(Rv n) = - 9R1/B 4 9R:/B __ 2(R1+Rz)/B (5.27)
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If R is on the boundary surface of C.ero(P) in (5.5), substituting (5.27) into (5.4) with

equality we obtain

(2(R1+R2)/B _ 2122/3) En, [n1B] + (2(R1+R2)/B - 2R1/B) E,,[nyB]
2R1/B 4 2R:/B _ 9(R1+R2)/B
(2(Ra+R2)/B — 2R2/B) D, (m) + Dyg(m)]
2R1/B 4 9R2/B _ 9(R1+R2)/B
(Q(Rx+Rz)/B - 2R1/B) [Dy(m) 4 De(m))]
2R1/B 4 9R2/B _ 9(Ri1+R2)/B ’ (5.28)

P =

-+

where D, (m), Dy(m), D.(m) and Dg(m) are as defined in (5.21)-(5.24) for the Nakagami-m

fading channel. From Lemma 5.2 we know that

lim [Dq(m) + Da(m)] = 71 B,

m—00
n}gnoo[Db(m) + D.(m)] = faB.
Thus, as m — oo, (5.28) becomes

(Q(lez)/B _ 2R2/3> 7 B + (2(RI+R2)/B _ 231/3) 7o B

pP= 9R1/B | oR2/B _ o(Ri+H2)/B ’

(5.29)

which is the same as the boundary of the capacity region for the AWGN broadcast channel
using CD without successive decoding, since for the two-user degraded AWGN broadcast
channel with noise variances 71, B and 7io B (71 B < fi2 B), the capacity region for CD without
successive decoding is [75]:

P,

m);wﬁpﬁp}'

P,
= < —_ <
Ccowo {Rl ‘BIOg<l+ﬁ1B+P2)’R2—Blog<1+

5.4 Outage Capacities and Minimum Outage Probabil‘ity

In the previous section we obtained the zero-outage capacity region of an M-user broadcast
channel, where the transmitter was required to maintain a constant rate for each user
no matter how severe its fading. We now consider the outage capacity region, where the
transmitter may suspend transmission over a subset of fading states with a given probability.

Specifically, for a given average power constraint P, the outage capacity regions Coy:(P, Pr)
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and C,y:(P, Pr) are defined as follows:

Definition 5.2 Assuming that the transmission to all users is turned on or off simultane-
ously so that the outage probability for each user is the same (common outage probability),
for a given 0 < Pr < 1, the outage capacity region Coy:(P, Pr) consists of all rate vectors
R = (Ry, Ry, -- -, Ryy) which can be maintained with a common outage probability no larger

than Pr under the the power constraint P.

Definition 5.3 Assuming that the transmission to each user is turned on or off indepen-
dently so that the outage probability for each user may be different, for a given probability
vector Pr = (Pry, Pra,- -+, Pryy), the outage capacity region Cout(P, Pr) consists of all rate
vectors R = (Py, Ry, - -+, Rpr) which can be maintained with the outage probability for User

J no larger than Prj (V1 < j < M) under the the given power constraint P.

With these definitions, we wish to find: a) the optimal resource allocation strategy that
achieves the boundary of the outage capacity region C,y:(P, Pr); b) the optimal resource
allocation strategy that achieves the boundary of C,y:(P, Pr). The first optimization prob-
lem is equivalent to deriving the resource allocation policy that minimizes the common
outage probability for a given rate vector R and we have the following definition for the

corresponding minimum common outage probability Pry:,(P, R):

Definition 5.4 Assuming that the transmission to all users is turned on or off simultane-
ously, the minimum common outage probability Prpin(P, R) is the smallest common outage
probability with which the rate vector R can be maintained under the given power constraint
P.

The second optimization problem is equivalent to obtaining the resource allocation policy

that achieves the boundary of the outage probability region O(P, R) or the usage probability
region O(P,R) defined as follows:

Definition 5.5 Assuming that the transmission to each user is turned on or off indepen-
dently, for u given rate vector R, the outage probability region O(P,R) consists of all outage
probability vectors Pr for which R can be maintained for the M users under the given power

constraint P.
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Definition 5.6 The usage probability region O(P, R) is the complementary region of the
outage probability region O(P,R), i.e., if a probability vector Pr = (Pry,Pro,---,Pry) €
O(P,R), then the probability vector Pr°™ = (Pr™, Prg®, .-, Prs7) € O(P,R), where

Pr®=1-Pr;, V1<j<M.

With the above definitions, it is easily seen that given 0 < Pr < 1, the outage capacity
region Coyt(P, Pr) is implicitly obtained once the minimum common outage probability
Prmin(P,R) for a given rate vector is calculated under the optimal resource allocation, since
VR, we can determine that R € Coyut(P, Pr) if Prmi(P,R) < Pr, and R ¢ C,u(P, Pr)
otherwise. Similarly, given a probability vector Pr, the outage capacity region C,y (P, Pr)
is implicitly obtained once the boundary of the outage probability region O(P,R) (and
so the whole region O(P,R)) for a given rate vector R is derived through the optimal
resource allocation, since VR, we can determine that R € C,y(P,Pr) if Pr € O(P,R),
and R ¢ C,u (P, Pr) otherwise. We now derive the minimum common outage probability
Proin(P,R) and the corresponding optimal resource allocation strategy in Section 5.4.1.
We obtain the outage probability region boundary of O(P, R) as well as the optimal resource

allocation strategy in Section 5.4.2 for the case of independent outage problerms.

5.4.1 Minimum Common Outage Probability

Under the assumption that an outage is declared for all users simultaneously, the minimum
common outage probability problem for the M-user broadcast channel is similar to that
of the single user case [76]. For each joint fading state n and a given rate vector R,
the minimum required total power P™"*(R,n) for the M users using CD with or without
successive decoding or using TD can be calculated as in (5.3), (5.11) or (5.15), respectively.
Thus, Vs > 0, we define the sets of fading states R(s) and R(s) as:

R(s) = {n: P™*"(R,n) < s}, (5.30)

R(s) = {n: P™"(R,n) < s}. (5.31)
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The corresponding average power over the two sets are:

P(S) = EnER(s)Pmin(Ra n), (532)
P(s) = Eneﬁ(s)Pmi"(R, n). (5.33)
For a given total power P > 0, let

s* £ sup {s: P(s) < P},

P~ P(s*)
P(s*) — P(s*)’

e

(5.34)

By using Lemma 3 in [76], for each fading state n, the optimal power policy that minimizes
the common outage probability is: if n ¢ 72(3*), no power is assigned to any user; if
n € R(s*), a total power of P™"(R,n) is assigned to the M users and the power to
each user is allocated as described in Section 5.3; if n ¢ R(s*) but n € R(s*), then with
probability w*, P™"(R, n) is assigned to the M users and with probability 1 —w*, no power

is assigned to any user. The minimum common outage probability Pry:,(P,R) is:
Prmin(P,R) =1— Pr{n € R(s*)} — w*Pr {n € R(s*) and n ¢ R(s*)} , (5.35)
where Pr{-} denotes the probability function.

5.4.2 Outage Probability Region

We now consider the case where an outage can be declared independently for each user.
From Definition 5.5 and Definition 5.6, it is clear that for a given rate vector R and an
average power constraint P, deriving the boundary of the outage probability region O(P, R)
is equivalent to deriving the boundary of the usage probability region O(P,R). We will
require the following definition and lemma to derive the boundary of O(P,R) and the

corresponding optimal power allocation that achieves this boundary:

Definition 5.7 For a given rate vector R = (R1, Ra, - - -, Rpr), assume that rate R; is main-

tained with probability Pr¢™(R), 1 < i < M. Denoting Pr*(R) = [Pr{"(R), Pr*(R), - - -,
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Pr{t(R)], the total usage reward W(R) is

M
W(R) = uPr(R) = 3 uPré"(R),
i=1

where p € S%_i_M with Z]Ail uj =1, and y; is the relative reward if the information for User

i is transmitted®.

Lemma 5.3 The usage probability region O(P,R) of the fading broadcast channel is con-

Ver.

Proof: See Appendix C.5. O
Since O(P,R) is convex, Yu € §R§,’I with Zj”il #; = 1, a usage probability vector
Pr°*(R) will be on the boundary surface of O(P, R) if it is a solution to

max _ W(R), (5.36)
Pro"(R)eO(P,R)

where the total usage reward W(R) is defined in Definition 5.7.

For any given fading state n, >, (*) = 2™ _ 1 different combinations of the M users
may be transmitting over the channel. We will represent each of these 2 — 1 possible com-
binations of users as a vector [¢(k, 1), ¥(k, 2),- - -, ¥ (k, M)] equal to the binary expansion of
k, 1 <k <2M —1. For each vector [¢(k,1),9(k,2),---,¥(k, M)], if (k,4) = 1, then User ¢
is transmitting; otherwise User 7 is not. For 0 < k < oM _ 1, we define the set of active users
Uy, relative to k as Uy, = {j : Y(k,j) = 1,1 < j < M}. Uy denotes the empty set (no active
users). For any fading state n suppose that the broadcast channel only transmits informa-
tion to users in the non-empty set U;. Then, as discussed in Section 5.3, we can calculate
the minimum total power P,g"i"(R, n) (1 < k < 2M — 1) required to support a sub-vector of
R composed of the required rates of the users in ), under those different spectrum-sharing
techniques. For the fading state n let wix(R,n) denote the probability that the broadcast
channel transmits information to the subset of users in Uj,. Then obviously

2M 1

> wi(R,n) =1-wp(R,n) < 1.
k=1

44; can also be viewed as the relative penalty if an outage is declared for User 1.
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For a given rate vector R and a fading state n, let Pr¢{®(R,n) be the probability that

information is sent to User i:
2M 1
Pri®(R,n) = Y wp(R,n)1[i € Uy, (5.37)
k=1

where 1[] denotes the indicator function. Then the average outage probability Pr; (R) of

Useri (1<i< M) is:

Pr;(R) = 1-Pr*(R)

= 1-E,[Pr"(R,n)].
For a given fading state n, according to (5.37), the total usage reward W(R,n) is

M
W(R,n) = ZuiPr;-’"(R,n)

i=1
M 2M 1
= Z,ui ( }: wr(R,n)1[¢ EL{k])
i=1 k=1
2M—1 M
= Z wr(R, n) (Zuil[i € Uk]>
k=1 i=1
2M 1
= > w(Rn)m, (5.38)
k=1

where the reward for transmitting information to the users in set U}, is

M
A .
e = _;- ,u,il[l € L{k] (539)
=1

Thus, the total usage reward averaged over the time-varying channel is
W(R) = E, [W(R,n)]. (5.40)
Since in fading state n, the total required minimum power to support R with usage prob-
ability Pr¢™(R,n) for each user ¢ (V1 <i < M) is
2M 1

P™™(R,n) = Z P (R, n)wi (R, n), (5.41)
k=1
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the total required minimum average power to achieve W(R) will be E, [P™"(R, n)].
For a given rate vector R, we wish to solve the maximization problem (5.36), which
is equivalent to finding the optimal wi(R,n) (1 < k < 2M — 1, vn € A) that maximizes
W(R) in (5.40) under the total power constraint. That is, we can re-write the maximization

problem (5.36) as:

maXy(R,n) En [W(R,n)] subject to:
(5.42)
Ey [P™R,n)] <P, Y2 lu(R,n)<1 and 0<wp(R,n)<1,

where w(R,n) = [wi(R,n),wz(R,n),---,wy(R,n)] with N £ oM _ 1, W(R,n) and
P™in(R, n) are as given in (5.38) and (5.41), respectively and P is the total average trans-
mit power. The maximization problem (5.42) can be decomposed into the following two

problems:

1. Assuming that Yn € N, P(n) is the total average power assigned to the N sets of
users in state n, i.e., P(n) = 8, wi(R, n) P (R, n), we must choose w(R,n) so
that the total usage reward in state n is maximized. That is, we must find

J(P(n)) 2 max iy wi(R,n)me  subject to:

w(R,n

YAl wk(R,n) P (R,n) < P(n), ©31; we(R,n) <1, and 0 < wi(R,n) <1,
(5.43)

where 7, is given in (5.39).

2. After we obtain the expression J(-) by solving (5.43), the remaining problem is how
to assign the total power P(n) of the N sets of users for each state n so that the
total usage reward averaged over all fading states as expressed in (5.40) is maximized.

That is,

waxEn[J(P(n))] - 5 Ea[P(n)] | (5.44)
subject to Ey[P(n)] < P

where % is the Lagrangian multiplier.
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We solve the maximization problem (5.43) by first defining the permutation = (-) such

that

0 <n201) S r(2) £ -+ < (-

For simplicity we denote the reward and power needed for transmitting information to the

users in set Ur(;) as A; and v;, respectively, where

A 2 Nrli
P V1 <i<N. (5.45)
v £ PIin(R, ),

Note that the power v;’s are all functions of rate vector R and fading state n. For a given

state n, V1 < k < N, if 35 that satisfies

A Aj
Zk <X k< j<N, (5.46)
(U ’Uj
or satisfies
A= A
AJ . j=k—1, (5.47)
2>

j k

then we will get a larger reward by assigning the same average power P(n) to set Uy
instead of set Uy ), VP(n) > 0. Specifically, if (5.46) is true, since Ay < A; when k < j,
if vy > vj, then obviously by transmitting information to users in set Uy (), we need more
power and get less reward than transmitting information to users in set U,(;). If (5.46) is
true and vy < v; then, assuming that w:_(k)(R, n)#0(0< w;(k)(R, n) < 1), the reward
we get from assigning power vy to set Uy ) with a fraction w;(k)(R, n) of the transmission
time in state n is /\kw;(k)(R, n) and the average power needed is P(n) = vkw;(k)(R, n),
while the reward we get from the same average power P(n) by assigning power v; to set
Usr

which is larger than )\kw;(kw(R, n) by (5.46). Moreover, the fraction of transmission time

Vi w;(k) (an)

) . oy (Rom .. . )
) with a fraction PISQ = XY (l'jj) ) of the transmission time will be }; -
7

(J vj ’

needed for set Uy ;) is less than that for set Uy ), since when v < vj,

vkw;(k) (R,n) .
_— R,n).
v; < wﬂ'(k)( ; n)
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If (5.47) is true, it is obvious that v; < vg. Thus, to obtain the same reward Aj = Ap,
set Ur(;) requires less power than set Urr)- Therefore, in order to get the largest average
reward under the given average power constraint, we do not consider assigning any power
to those sets Uy (x) for which 3j satisfying either (5.46) or (5.47). That is, we remove them
from further consideration and set w; (R, n) = 0.

For example, when N = 3 and the relative values of v, vo, v3 and Af, A, A3 are as
shown in Figure 5.1, where A; and v; correspond to the reward and power needed for set
Uriy (1 = 1,2,3), respectively, it is obvious that %} < %22 Thus, if the available power
P(n) < v; and we assign it to set Ur(), the reward we can get is the straight line OA; if
v1 < P(n) < v9 and we assign it to sets Ur1) and Uz (o) by time-sharing, the reward we
can get is the straight line AB. However, in both cases, if we assign the power P(n) to set
U, (2), we get a larger reward which is indicated by the straight line OB. Thus, no power
should be assigned to set U,(1) and J(P(n)) defined in (5.43) is as shown by the solid curve

in Figure 5.1.

Reward J(P(n))
)\3 """""""""""""" ;C
O ey 1 1
M opeeeA A |
/. ’ Power P(n)
0/
0 (353 V2 Vs

Figure 5.1: Power P(n) vs. Reward J(P(n)) for N = 3.

Generally, for the remaining scts of users, it is possible that there are still some sets
U (k) to which no power should be assigned in order to get the largest average reward. For
example, suppose that the remaining sets are Upy(1), Ur(2) and Uy (3, and the relative values
of vy, v2, v3 and A1, A2, A3 are as shown in Figure 5.2. From this figure we see that neither
(5.46) nor (5.47) is satisfied for any k = 1,2, 3, since \; < A2 < A3 and

A A A
AL A A
v U2 v3
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However, it is obvious that no power should be assigned to set Uy (5), because a larger reward
can be obtained when the same average power is time-shared by sets U, ) and Uy (3) instead

of by sets L{,,(l) and Z,{,,(z), or by sets u,r(Q) and L{,,(3).

Reward J(P(n))
As
Az
AL
Power P(n)
0 (3 V2 U3

Figure 5.2: Power P(n) vs. Reward J(P(n)) for three remaining sets of users.

In the following, we use an iterative procedure to find all the sets Uy () in the remaining
sets that should be assigned no power and remove them from further consideration (i.e.,
let w;( k)(R, n) = 0). An interpretation of this procedure based on Figure 5.2 will be given

shortly.
Initialization: Let m = 1.

Step 1: Denote the number of remaining sets as G, and let the permutation p(-) be defined

such that for the remaining G, sets,
/\p(l) < )‘p(2) <0 <K AP(Gu)' (5.48)

Due to the removal criterion, it must be true that

M) o M@ o MGy (5.49)
Up(1)  Yp(2) Up(Gu)
Step 2: Let po(m) = p(1) and z,(m) = 2:((11)) If G, < 2, all the sets that should be assigned

no power have been removed and the procedure terminates; if Gy, > 2, go to Step 3.
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Step 3: For 2 < k < G, decrease Ap(k) and Yp(k) by Ap1) and Up(1), respectively. Do not

assign any power to those sets of users Urip(ky for which 3j that satisfies

k<j<Gy,

and remove them from further consideration (i.e., let Wro(k)) (R,n) = 0). Also remove

set Uz |,1))- Increase m by 1 and return to Step 1.

In this procedure we observe that in the first iteration, from (5.48) and (5.49) it is clear

that

Up(1) < Yp(2) < < Up(Gu)-

. A Ao .
Since %((:; > U:((i)) for all 1 < j < Gy, when the total average power P(n) < Up(1), We get
A P .
the largest reward ~22 . P(n) by assigning it to set Urjp(1y)- That is, in (5.43), as shown in

Up(1)

the example in Figure 5.2°,

A
J(P() = ZA2 . P(n), if P(n) < vq),
p(1)

A1)
Up(1)

spectively. Next we wish to identify those sets Uy[,x)) (1 < £ < G,) for which 3j that

and we store the index p(1) of set Uy [,(1)) and the tangent in po(1) and z,,(y), re-

satisfies

Ay — A Aoy — A
o(k) p(1) < o(5) p(1) k< j< Gy, (5.50)

bl

Yp(k) — Up(1)  Yp(3) — Yp(1)
and we do not assign any power to them since, for k < j, v,y < Vp(j), Apk) < Ap(j), and
if (5.50) is true, on the Power-Reward plane as shown in Figure 5.2, point (v k), Apk)) will
be under the straight line formed by connecting point (v,(1), Ay(1)) and point (v,;y, )\p(j))ﬁ.

Therefore, in (5.43),

Ariey — A .
J(P(n)) = 2“2 ipm)y — 4 0] if v,y < P(n) < v,

Yp(i=y — Up(1)

5Note that in this example, G, = 3 and p(i) = i,i=1,2,3.
5In Figure 5.2, point (vs, A2} is under the straight line formed by connecting point (v, A;) and point

(’Us,/\3).
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where the index i* is given by:

it = arg max {;\]—25—2%22(:—))} . (5.51)

After removing those sets Ur oy (ie., let w;[p(k)] (R,n) = 0) for which (5.50) holds
and also removing set Uy [,(1)}, the index p(i*) in the first iteration becomes p(1) of a new
permutation p(-} in the second iteration (otherwise (5.51) cannot be true) and is stored in
po(2), and the corresponding tangent H)l is stored in z,)(2). In the second iteration,
similarly, the new index p(i*) that satisfies (5.51) will be identified, and new set(s) Ux|,(x)) for
which (5.50) holds will be removed, since the point(s) (v,(k), Ap(k)) Will be under the straight
line formed by connecting point (v,(1), Ap(1)) @and (vp(5y), Ap(j)), Where j satisfies (5.50). The

new index p(i*) will become p(1) in the third iteration and be stored in pg(3), and the
Aoit) = Ae(1)
Up(:*) TUp(1)

until all the sets that should be assigned no power have been removed and the curve of

corresponding tangent will be stored in z,,(3). The iterative procedure continues
J(P(n)) in (5.43) is obtained by connecting the origin (0,0) and points (v,,(1), Apo(1))-

(Vpo(mo)» Apo(mo))s Where mg is the value of m when the iteration stops (1 < mg < N). That

is,
.
Zpo(1) * P(n)v 0< P(n) < Upo (1)
J(P(m)) =9 2zp0) - [P(M) = vpoi-1)]s Vpo(g—1) < P(n) < v,y forsome j,1 <j < mo,
L Apo(mo)> P(n) > vpy(mo)-
(5.52)
Note that from the iterative procedure, it is clear that
/\DO(” < Apo(?) <o < )‘po(mo)’ (553)
Upo(1) < Vpo(2) < *** < Vpg(mo)> (5.54)

Zpo(1) > Zpo(2) = " > Zpo(mo) (5.55)
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where
’\pQ(l) =1
Ypp(1)’ J=454

Zpo(3) = (5.56)

Apa () —Aon(i— i
pQ(3) " Megi-1) 1<,7 < mp.

Ypg(5) "Vpq(i-1) ]
For example, in Figure 5.2, if we execute the above three-step procedure, we will have

mo = 2, po(1) = 1, po(2) = 3, Zpo(1) = %\AIL, and 2z,,(9) = 2= Therefore, from (5.52) we

v3—v
obtain
%11 - P(n), 0 < P(n) < vy,
J(P(m)) = § 2=0.[P(n) - v;], v1 < P(n) < v,
A3, P(n) > v3,

which is exactly as shown by the solid curve in Figure 5.2.

Once the curve J(P(n)) is obtained, from (5.44) we know that V1 > 0 fixed, the optimal
power P*(n) satisfies J'(P*(n)) = 1 if the tangent of J(P(n)) is continuous. However, in our
case, the tangent of J(P(n)) is discrete and P*(n) cannot be determined directly. Therefore,

we will use the following theorem to find the optimal w;{po(j)](R,n) (1 <5 < my) for the

mo
remaining my sets {uvr[po(j)]}

j=1
Before stating the theorem, we first define some additional notations and parameters.
In (5.53)-(5.56), the indices {po(i)};*% are all functions of n. Therefore, we will refer to

them as {po(i,n)}"% and for simplicity, V1 < i < my, we denote’

A
Ai(n) = ’\Po(i)’
v, (n) 2 Vpo (i) (5.57)
A
zi(n) = zpo(i).
Thus, equations (5.53)-(5.56) become
Ai(n) < Ae(n) < -+ < Ay (n), (5.58)
v1(n) < v2(n) < -+ < Vmy(n), (5.59)
z1(n) > 22(n) > - -+ > 2y, (0), (5.60)

"Note that {po(z)} 2 are also functions of the given rate vector R; however, we only write out n explicity
for its related variables for simplicity.
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and

zj(n) = (5.61)
A

;’Jg—:}:—*ﬁg 1< j < mo.

Moreover, we define §2,,,, as the set of all fading states n for which the final value of the loop
parameter m is mg (1 < mg < N) when the three-step iteration procedure terminates. By
denoting zm,+1(n) 2 0,Vs >0, for j =1,2,---,myg, we define sets Lj(myg, s) and Ej(mo, s)

as

1
Li(myg, s) = {n :n € Qnpy, zj(n) > 5> zj+1(n)} ,

1
Lj(mg,s) = {n 'n € Qp, 3= zj(n)}.

Thus, Vs > 0,

N = U

1<mo<N

= U U (Lj(mo,s) U.Ej(mo,S)) s
1<mp<N 1<j<my
where N is the set of all possible fading states. For a given total average power constraint

P > 0, define s* as
st 2 sup{s: P(s) < P},

where
mg

A N
- Z: Zl~/nEL (mo,s) (n)dF(n)

Therefore, ¥n € Qny, 1 < mg < N, finding the optimal w7, . (R,n) (1 < j < my) in

wlpo(5)]
(5.42) for the remaining mg sets {Z/{,r[po(j)]} ) after the iterative procedure is equivalent to
]:

solving the maximization problem

r

maXy(n) L=t Bnctn, [Z50 A (n)u;(n)) subject o
Z,]onl Eneq,n, [X;’f_ﬁ’l vj(n)u;(n ] <P, 0< ZUJ I, and 0<u;(n)<1
(5.62)

where u(n) = [uj(n),uz(n), -, umy(n)].
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Theorem 5.3 Vn € Qn, 1 < mg < N, by denoting uj(n) (1 <j <mg) as the solution to

the mazimization problem (5.62), we have
(a) if ;1— > z1(n), then ui(n) =0, V1 < j < my;

(b) if 35 € {1,2,---,mp}, zj(n) > L > 2;11(n), then ui(n) =1,uf(n) =0, Vi # j1<

1 < my;

(c) if 35 € {1,2,---,mp}, si = z;(n), then ui(n) = 7%, ui_y(n) = 1-17*% uf(n) =0,
Vi#j,j— 1,1 <i<mg, where 7* satisfies

N mg

P(s*) + Z Z[v]-(n)‘r* +vj-1(n)(1 — 7%)]Pr {Ej(mo, s*)} - P.
mg=14=1

Proof: See Appendix C.6. O
Note that this theorem is a generalization of Lemmma 3 in [76], which corresponds to
N = 1. Therefore, Vn € Q,,, (1 < mg < N), given the remaining mq sets {L{ﬁ[po(j)]}r_no
Jj=1
after the iterative procedure, Theorem 5.3 determines which set(s) of users should be chosen
for transmission by solving (5.62), since after removing those users to which no power should

be assigned, the maximization problems (5.42) and (5.62) are equivalent and
Walpo())(Bom) = uj(m),  1<j < mo.

In particular, the theorem indicates that, based on the total power constraint, there is a
threshold power lever s* which is important in determining the optimal set(s) of users.
Moreover, in each fading state in set Ej(mo, s) (V1 <mg < N, V1 < j<mp), at most two
sets of users are chosen and the information for the selected two sets are sent by time-sharing
the channel. In each of the other fading states, at most one set of users is chosen. Therefore,
if the c.d.f. F(m) is continuous. with probability 1, at most one set of users is chosen in
each state, since V1 < mg < N, V1 < j < my, Pr[Ej(mo,s)] = 0. If F(n) is discontinuous,
Pr[Ej (myg, s)] may be larger than zero for some j and myg, and the probability that two sets

of users are chosen in some fading states may be larger than zero.
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5.4.3 Multimedia Outage Probability Region

In an M-user broadcast system, some users may require constant-rate transmission without
any outage (e.g., voice users), while other users allow certain outages in the transmission of
their information (e.g., data users). Let My be the number of those users allowing no outage.
Then the M-user outage probability region contracts to an (M — Mp)-user outage probability
region. Since in each fading state, the channel can be used for 7o (M Moy — gM-Mo_ g
different sets of users, by applying the same optimal strategy discussed in Section 5.4.2, we
can obtain the boundary of the outage probability region for the M — My users.

For example, in a two-user system where one user (say, User 1) allows some outage and
the other user (say, User 2) requires no outage (M = 2, N = 1), the minimum outage
probability problem for User 1 is a modified threshold-decision rule similar to that of the
single-user case:

For each joint fading state n = (n1,n2) and a given rate vector R = (Rj, Ry), if the
information for User 1 is not transmitted, we denote the minimum required total power as
P,sr(R,n) and it is just the power needed to support rate Ry for User 2; if the information
for User 1 is transmitted, we denote the minimum required total power as P,,(R,n) and it
is P™™(R,n) given in (5.3), (5.11) and (5.15) for CD with or without successive decoding
and for TD, respectively. Let P be the total average power and assume that in fading state

n, the channel transmits the information for User 1 with probability w(n,R) and for User

2 with probability 1 (no outage). The maximization problem

max E, [w(R,n)] subject to:

i (5.63)
En {Pon(R, n)w(R,n) + Poss (R, n)[1 — w(R,n)]} = P

is equivalent to

max E, [w(R,n); subject to:
Eq{[Pon(R.1n) = Pos(R,m)Jw(R,n)} = P — En {Poss(R,m)}.

Therefore, by substituting P with P — Ep [Poss(R,n)] and P™"(R,n) with P,,(R, n)—
Poss(R, n) into the definitions of R(s), R(s), P(s), P(s), s* and w* in (5.30)-(5.34), we
obtain the solution to (5.63): if n & R(s*), w(R,n) = 0, i.e., only the information of User

2 is transmitted; if n € R(s*), w(R,n) = 1, i.e., the information of User 1 is transmitted
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together with that of User 2; if n € R(s*) but n € R(s*), then w(R,n) = w*, i.e., with
probability w*, the information of User 1 is transmitted with that of User 2. The minimum

outage probability Prmi(P,R) for User 1 is as given in (5.35).

5.5 Numerical Results

In this section, we present numerical results for zero-outage capacity regions, outage capacity
regions and outage probability regions under different spectrum-sharing techniques. In all
figures, the Nakagami-m fading model is used, the total average transmit power is denoted
as P, and the average noise density of the ith sub-channel is denoted as #;, i = 1,2. We
refer to the CD without successive decoding technique as CDWOQ. Since TD and FD are
equivalent in the sense that they have the same capacity region of any kind, all results for
TD in the figures also apply for FD.

In Figure 5.3, the two-user zero-outage capacity region for the Nakagami-m fading broad-

cast channel is shown for m = 2, 3,4 and oo. The SNR difference between the two users is
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Figure 5.3: Two-user zero-outage capacity region in Nakagami fading: 20 dB SNR difference.

20 dB and the total average power P = 25 dB. Similar to the ergodic (Shannon) capacity
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region comparison in Chapter 4, optimal CD results in a much larger zero-outage capacity
region than optimal TD. But the zero-outage capacity region of optimal TD is now much
larger than that of the optimal CDWOS?, the boundary of which is convex. Note that the
zero-outage capacity region increases as m increases for all of the three types of spectrum-
sharing techniques, since smaller m corresponds to more severe fading. However, unlike
using optimal CD or TD, the capacity region using CDWO does not increase much with
the increase of m. Also note that for the Rayleigh fading channel (m = 1), the zero-outage
capacity region is zero, which is why it is not shown. When m — oo, the Nakagami-m fad-
ing channel approaches the Gaussian channel and as proved in Section 5.3.4, the limiting
zero-outage capacity region of the Nakagami-m fading channel is the same as that of the
AWGN channel for CD or CDWO.

Figure 5.4 shows the case where the SNR difference between the two users is 3 dB and

the total average power is 10 dB. Since the SNR difference between the users is relatively
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Figure 5.4: Two-user zero-outage capacity region in Nakagami fading: 3 dB SNR difference.

small, the differences of the zero-outage capacity region between using CD, TD, or CDWO

is not so dramatic as in the previous case. When m increases, the capacity region of CDWO

8 As shown in Chapter 4, TD and CDWO have the same ergodic capacity region.
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now increases faster than it does in Figure 5.3.

In Figures 5.5-5.11, as discussed in Section 5.4.1, for any fading state the broadcast
fading channel is either used for all users or not used for any user. The resulting common
outage probability is denoted as Pr. Given a common outage probability of Pr = 0.1, the
two-user capacity region for the Nakagami-m fading channel (m = 2,3,4) using optimal
CD is shown for 3 dB and 20 dB SNR differences between the users in Figure 5.5 and

Figure 5.6, respectively. In both cases, notice that the increase in capacity obtained by

250

~ ——  Zero—Outage
<N ~ — - OQutage: Pr=0.1

200k . N 4

From top to bottom:

R2 (kbps)

P=10dbW
sob P=10dbW |
B=100KHz
iy B=1dbW
fip B=4dbW NENN
Y A
N AN
0 L L S L ) ;
o} 50 100 150 200 250 300

R1 (kbps)

Figure 5.5: Two-user capacity region for a given common outage probability in Nakagami
fading using CD: 3 dB SNR difference.

allowing a non-zero outage probability is larger for smaller m. This is because a smaller m
corresponds to more severe fading. which is difficult to compensate for in the zero-outage
case. In Figure 5.5, since the SNR difference between the users is small, the increase of R;
obtained by allowing outage is pretty much independent of Re. However, when the SNR
difference is large, we notice in Figure 5.6 that in the region where R, is large, we obtain a
large increase in User 1’s rate R; by allowing some outage. This increase is much smaller
in the region where R is small. Since User 2 has much more noise on the average, for R

large and no outage, most of the total transmit power is used to send the information to
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Figure 5.6: Two-user capacity region for a given common outage probability in Nakagami
fading using CD: 20 dB SNR difference.

User 2 and allowing some common outage probability will then save relatively more power
for User 1 than in the case where R5 is small.

In Figure 5.7, the capacity regions using CD in Nakagami fading (m = 2) with common
outage probability Pr = 0.02, Pr = 0.05 and Pr = 0.1 are compared when the SNR
difference between the two users is 3 dB and the total average power is 10 dB. We see that
by allowing even a small outage probability, we obtain a significant capacity increase relative
to the zero-outage case. Figure 5.8 shows the minimum common outage probability Pr as a
function of the total average power P at a given rate pair (R, R2) = (100, 130) kbps using
CD under the same channel conditions as in Figure 5.7. According to (5.3) and (5.4), this
rate vector is on the boundary of the zero-outage capacity region for a total average power

S ~ 10.9 dB, as is shown in the figure.
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Figure 5.9 and Figure 5.10 show the two-user capacity region of CDWO in Nakagami-m
fading for a common outage probability of Pr = 0.1. The SNR differences between the
two users in these figures are 3 dB and 20 dB, respectively. Similar to the zero-capacity
region, when the SNR difference between the users is small, the capacity regions with a
given common outage probability increase faster with the increase of the Nakagami channel
parameter m than when the SNR difference is large. However, in both cases, the increase
of the capacity region from zero-outage to an outage of 0.1 for each m is not that much and
the differences between the outage capacity regions with different m are even smaller than
that of the zero-outage capacity regions. This means that the optimal power policy that
allows a certain common outage probability does not help much in increasing the capacity
region of CDWO, especially when there is a great difference between the average channel

conditions of the two users.
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Figure 5.9: Two-user capacity region for a given common outage probability in Nakagami
fading using CDWO: 3 dB SNR difference.
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In Figure 5.11, the capacity region with a common outage probability Pr = 0.1 using
optimal TD for the Nakagami fading channel (m = 2) is shown and compared to that of
the CD and CDWO techniques. The SNR difference between the two users is 3 dB and the
total power S = 10 dB. As in the case where there is no outage, the capacity region with a
common outage probability using TD is smaller than that of CD but is much larger than
that of CDWO. Note that by allowing some common outage probability, there is a large

increase of the capacity region for both CD and TD, but the increase is relatively small for

CDWO.
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In Figures 5.12-5.16, we assume that a different outage probability can be declared for
each user. The corresponding optimal power policy is obtained by applying the three-step
procedure described in Section 5.4.2 and Theorem 5.3, which is then used to calculate either
the capacity region for a given outage probability vector or the outage probability region for
a given rate vector. We obtain the capacity regions with outage or the outage probability
regions for CD only, since the relative l,ehavior of TD or CDWO is similar to that of CD.

In a two-user system, let Pr; and Pry denote the outage probabilities for User 1 and
User 2, respectively. Given (Pry, Pra) = (0.02,0.03), the two-user capacity regions with
this outage for the Nakagami fading channels (m = 2,3,4) are shown in Figure 5.12 and
Figure 5.13 for SNR difference between the users of 3 dB and 20 dB, respectively. In both
cases, as was true for the capacity region with a common outage probability, allowing some
outage probability for each user results in a capacity increase that is larger for smaller m.
Thus, the optimal power policy is more effective in increasing the capacity region when the
overall broadcast channel fading is more severe. For different m, the differeﬁces between

the capacity regions with outage are smaller than those between the capacity regions with

no outage.
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Figure 5.14 shows the two-user outage probability regions with different total transmit

power P for a given rate vector (R1, R2) = (100, 130) kbps. Note that the region below
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Figure 5.14: Two-user outage probability region comparison for different average transmit

power in Nakagami fading using CD: 3 dB SNR difference.

each curve is the outage probability region not achievable with the corresponding transmit
power P. This non-achievable region shrinks quickly with the increase of transmit power P
and disappears when P > 10.9 dB since, when P =~ 10.9 dB, according to (5.3) and (5.4),
the rate vector (R;, Rp) = (100, 130) kbps is on the boundary of the zero-outage capacity
region. For a given transmit power P, when the outage probability Pry of User 2 decreases,
there is a fast increase in the outage probability Pr; of User 1, since the average channel
condition of User 2 is worse than that of User 1 and thus the total power required to support
R, increases fast with the decrease of its outage probability. The intersections of the curves
with the two axes in this figure denote the minimum outage probabilities for one user when
there is no outage in the transmission for the other user.

Figure 5.15 shows the two-user capacity regions with several different outage probability
vectors and a total transmit power P = 10 dB. In this figure, the points Ag, A; and A

are the single-user capacities of User 1 when the allowed outage probabilities are Pr; = 0,
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Figure 5.15: Two-user capacity region comparison for different outage probability vectors
in Nakagami fading using CD: 3 dB SNR difference.

Pr; = 0.02 and Pr; = 0.09, respectively; the points By, B; and Bs are the single-user
capacities of User 2 when the allowed outage probabilities are Pry = 0, Prs = 0.03 and
Pry = 0.1, respectively. Let Pag = 0, Pa; = 0.02, Pas = 0.09, Pby = 0, Pb; = 0.03 and
Pby = 0.1. The curves between points A; and B; are the boundaries of the capacity regions
when the allowed outage probability vectors are (Pry, Prg) = (Pa;, Pby), i,5 = 0,1,2.
Note that when one of the outage probabilities Pr; and Pry is zero, regardless of the
time-varying channel state, the information of the corresponding user is always transmitted
and the optimal power policy discussed in Section 5.4.3 will be used for the other user to
achieve the demonstrated capacity region in this figure under the constraint of its given
outage probability.

Finally, in Figure 5.16 and Figure 5.17 where the SNR differences between the two users
are 3 dB and 20 dB, respectively, the capacity regions using the optimal CD power policy
with a common outage probability Pr = 0.1 as discussed in Section 5.4.1 and the optimal
CD power policy with an outage probability vector (Pry, Pry) = (0.1,0.1) as discussed in

Section 5.4.2 are compared in Nakagami fading (m = 2). Since the outage probability for
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each user is 0.1 using either of the two power policies, from the figures it is clear that by
allowing a separate outage declaration for each user and using the corresponding optimal
CD power policy, a larger capacity region can be achieved than by simply turning on or off
the transmission for both users simultaneously based on the optimal power policy discussed
in Section 5.4.1. However, the system applying the optimal power policy with a common

outage probability is less complex.

5.6 Conclusions

We have obtained both the zero-outage capacity region and the minimum-outage capacity
region of the broadcast fading channels for TD, FD and CD with and without successive
decoding, assuming that perfect CSI is available both at the transmitter and at the receiver.
It is shown that optimal CD has the largest zero-outage capacity region, as expected.
Moreover, we show that the capacity region can be greatly expanded by allowing some
outage probability for each user. For a given rate vector, we have derived the optimal
power policy that minimizes the common outage probability when transmission to all users
is turned off simultaneously. When an outage can be declared for each user individually, we
have also derived a general power allocation strategy to achieve boundaries of the outage
probability regions under different spectrum-sharing techniques. We observe that these
regions can increase dramatically with an increase in the total transmit power. Therefore, by
applying the optimal dynamic power allocation strategies derived herein, tradeoffs between
the maximum transmission rate, the outage probability for each user, and the total transmit
power may be evaluated for the design of a broadcast communication system in a fading

environment.
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Chapter 6 Outage Capacities and Optimal Power
Allocation for Fading Multiple-Access Channels

6.1 Introduction

Wireless communication channels vary over time due to user mobility. As discussed in
Chapter 5, the outage capacity of a fading channel is defined as the maximum instantaneous
information rate that can be maintained under any fading condition during non-outage
such that the allowed average transmission outage probability is satisfied. Finding the
optimal power allocation that achieves the outage capacity with a given outage probability is
tantamount to deriving the optimal power allocation that minimizes the outage probability
of a given rate. In [76], the minimum outage probability problem is solved for the single-
user fading channel. For an M-user fading broadcast channel, under different assumptions
about whether the transmission to all users is turned off simultaneously or independently,
we have derived in Chapter 5 the optimal power allocation strategy that minimizes the
common outage probability or bounds the outage probability region of the M users under
a total average power constraint of all users.

In this chapter we derive the outage capacity region and the optimal power allocation
policy for an M-user fading MAC under similar assumptions about whether the outage
declaration from each user is simultaneous or independent. This problem is solved in [3] for
the case of zero-outage. Specifically, it is shown in [3] that the zero-outage capacity region
is implicitly obtained by determining, for each given rate vector R = (Ry, Ra,- -, Rum),
whether there exists an optimal power allocation such that the average transmit power
required of each user to support rate R; under any fading condition satisfies his given
average power constraint. For the general case where the allowed outage probability of
each user is larger than zero, we will show that the outage capacity region is implicitly
obtained by determining, for each given rate vector R, whether there existé an optimal
power allocation such that the average outage probability of each user is no larger than his

allowed outage probability and the average transmit power required of each user to support
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R; under any non-outage fading condition satisfies his given average power constraint. In
particular, given the average power constraint of each user and rate vector R, assuming
that the outage declaration from each user is simultaneous, we derive the optimal power
allocation that minimizes the common outage probability of the M users and obtain the
minimum common outage probability. Under the alternative assumption that each user
can declare an outage during transmission independently, we derive the outage probability
region of the M users and the optimal power allocation that achieves the outage probability
region boundary. Under both assumptions, given the allowed outage probability of each user
and a rate vector R, we solve the dual problem of finding the average power region of the M
users required to support R for the given outage probability vector. Note that the optimal
power allocation is conceptually simpler and easier to analyze when the outage declaration
is simultaneous for all users. Common outage may be desirable in scenarios when users are
trying to avoid detection.

For a given rate vector R, in order to solve the optimization problem of minimizing the
common outage probability or bounding the outage probability region for a given average
power constraint on each of the M users, we use the Lagrangian method with multiple
constraints. Since there is an independent average power constraint for each of the M
users, M Lagrangian multipliers are needed. For each given Lagrangian multiplier vec-
tor A = (A1, A2, - -+, Apr), the optimization problem under a single constraint of the total
weighted average power of the M users (weighted by their corresponding Lagrangian mul-
tipliers) is readily solved by applying the techniques developed in [3] and Chapter 5 of
this thesis. Iterative algorithms are then proposed to provide the appropriate Lagrangian
multiplier vector for the M users such that the M average power constraints are satisfied
simultaneously.

The remainder of this chapter is organized as follows. In Section 6.2 we present the
fading MAC model. In Section 6.3 we give the definitions and notations that will be used
in the rest of the paper. In Section 6.4, the minimum common outage probability for a
given rate vector R and the corresponding optimal power allocation strategy are derived
and the average power region for supporting R with a given common outage probability
is obtained for the case of simultaneous outage declaration. As for independent outage
declaration, we derive the outage probability region boundary for a given rate vector R, the

corresponding optimal power allocation strategy, and the required average power region for
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supporting R with the given outage probability of each user in Section 6.5. The iteratjve
algorithms that provide the appropriate Lagrangian multiplier vector for the M users are
presented in Section 6.6. In Section 6.7 we present the main difference in the solutions to

the above problems when additional peak power constraints are imposed on the M users.

Our conclusions are given in Section 6.8.

6.2 The Fading Multiple-Access Channel

We consider a discrete-time M-user fading MAC model as discussed in [3]:

M
Y(n) = 3 \/Hi(n)Xi(n) + Z(n), (6.1)
=1

where X;(n) and H;(n) are the transmitted waveform and the fading process of the ith
user, respectively, and Z(n) is Gaussian noise with variance o2. Let H(n) = [H (n), Ha(n),
-+, Hpz(n)] denote the joint fading process, and let P; be the average power constraint of
User i. We assume that the joint fading process of the M users is stationary and ergodic,
and the stationary distribution has continuous density and is bounded!. For a slowly time-
varying MAC, let h = (hy, ho,- -+, has) be the joint fading state at a particular time n, i.e.,
H(n) = h, and let H,;; denote the set of all possible joint fading states. We assume that all
the M transmitters and the receiver know the current joint fading state h. Therefore, each
transmitter can vary its transmit power and codewords relative to the joint fading condition
of the M sub-channels, and the receiver can vary its decoding order of the M users. We
will show that successive decoding is optimal in order to achieve the outage capacity region
boundary. By using successive decoding at the receiver, the signals from users that are
decoded earlier can be subtracted from the total received signal Y (n), and the users that
are decoded later will have less interference and thus require less transmit power to support

their given data rates.

! As in the single-user case {76] and the broadcast system discussed in Chapter 5, our analysis can be
easily extended to discrete distributions.
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6.3 Definitions and Notations

In this section we define the outage capacity region of an M-user MAC, where each trans-
mitter may suspend transmission over a subset of fading states under a given average power
constraint and an average outage probability constraint. Specifically, for a given average
power constraint vector P = (P}, Py, - - -, Pyr) of the M users, the outage capacity regions

Cout(P, Pr) and Cuyy (P, Pr) are defined as follows:

Definition 6.1 Assume that the transmission from all users is turned on (non-outage)
or off (outage) simultaneously, and thus the average outage probability for all users is
the same (common outage probability). Then for a given outage probability Pr, VR =
(R1,Ra,---,Ru), of user i can transmit at rate R; with arbitrarily small error probabil-
ity under any fading condition during non-outage such that the average common outage
probability is no larger than Pr and the average power constraint P; is satisfied for all

(1<i< M) then R € Cou(P, Pr).

Definition 6.2 Assume that the transmission from each user is turned on (non-outage) or
off (outage) independently, and thus the average outage probability for each user may be
different. Then for a given probability vector Pr = (Pry, Pry,---,Pryr), VR = (R1, Ra,
-+, Rpr), if user ¢ can transmit at rate R; with arbitrarily small error probability under any
fading condition during non-outage such that his average outage probability is no larger than

Pr; and the power constraint P; is satisfied for alli (1 <i < M), then R € Coui(P, Pr).

Definition 6.3 The boundary surface of Cout(P, Pr) (or Couwt(P,Pr)) is the set of those
rate vectors for which we cannot increase one component and remain in C’out(l_),Pr) (or

Cout (P, Pr)) without decreasing another component.

With these definitions, we wish to find: a) the optimal power allocation strategy that
achieves the boundary of the outage capacity region Coyu(P, Pr); b} the optimal power al-
location strategy that achieves the boundary of Coyu(P, Pr). The regions Coys(P, Pr) and
Cout(P,Pr) are easily determined given these optimal power allocation strategies. We will
show that the first optimization problem is equivalent to deriving the power allocation pol-
icy that minimizes the common outage probability for a given rate vector R and we have the

following definitions for the common outage probability set Oc(P,R), the common trans-



119

mission (usage) probability set O¢(P,R), and the minimum common outage probability

Prmin(P,R):

Definition 6.4 Assuming that the transmission from all users is turned on or off simul-
taneously, the common outage probability set Oc(P,R) is defined as the set of all average
common outage probabilities for which under any non-outage fading condition, each user
¢ can transmit at rate R; with arbitrarily small error probability under the given power

constraint P, (1<i< M).

Definition 6.5 The common usage probability set Oc(P,R) is the complementary prob-
ability set of Oc(P,R), i.e., if a probability Pr € Oc(P,R), then the probability Pro®
Oc(P,R), where Pro® =1 — Pr.

Definition 6.6 The minimum common outage probability Pru:,(P,R) is the smallest prob-

ability in set Oc(P,R).

We will also show that the second optimization problem is equivalent to obtaining
the power allocation policy that achieves the boundary of the outage probability region

O;(P,R) or the usage probability region O;(P,R), defined as follows:

Definition 6.7 Assuming that the transmission to each user is turned on or off indepen-
dently, for a given rate vector R, VPr = (Pry, Pro,..., Pryy), if user i can transmit at rate
R; with arbitrarily small error probability under any non-outage fading condition such that
his average outage probability is no larger than Pr; and the power constraint P; (1 <i < M)

is satisfied, then Pr € O[(P,R).

Definition 6.8 The usage probability region O;(P,R) is the complementary region of the
outage probability region Or(P,R), i.e., if a probability vector Pr = (Pry, Pra,---,Pry) €
O;(P,R), then the probability vector Pr® = (Pr¢™, Pr§", .- -, Pr$}) € O(P,R), where

Pre"=1-Pr;, V1<i<M.

With the above definitions?, it is easily seen that given 0 < Pr < 1, the outage capacity

region Coys(P, Pr) is implicitly obtained once the minimum common outage probability

2Note that the definitions of Cout (P, Pr), Cout (P, Pr), Prnmn(P,R), (’)1(1_)_, R), and O;(P,R) are similar
to those in Chapter 5, where the power constraint is a total average power P instead of a vector P for the
M users.
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Prpin(P,R) for a given rate vector R is calculated under the optimal power allocation.
That is, for any rate vector R, R € Cout(P, Pr) if Prppin(P,R) < Pr,and R ¢ Cout(P, Pr)
otherwise. Similarly, given a probability vector Pr, the outage capacity region Coy (P, Pr)
is implicitly obtained once the boundary of the outage probability region O;(P,R) (and
so the whole region Or(P,R)) for a given rate vector R is derived through the optimal
power allocation since, for any rate vector R, R € Cow(P,Pr) if Pr € O;(P,R) and
R ¢ Cuu:(P, Pr) otherwise.

We treat common outage in the next section. Specifically, we derive the minimum
common outage probability Pry,:,(P,R) and the corresponding optimal power allocation
strategy in Sections 6.4.1-6.4.3. We solve the dual problem of finding the average power
regicn of the M users required to support R with a given common outage probability Pr

in Section 6.4.4.

6.4 Simultaneous Outage Declaration

Under the assumption that an outage is declared from all users simultaneously, for any

given fading state h, the channel is either used by all users or not used by any user.

6.4.1 Power Allocation Policy

For a given rate vector R, a “power allocation policy P” is defined by the following two

items:

(1) A probability w(R,h) (Vh € Hgy) that the channel is used by the M users simulta-

neously 3 in state h with each user 7 transmitting at rate R;, 1 <¢ < M.

(2) A power P;(R,h) (Vh € Hgy) denoting the transmit power of user 7, 1 <7 < M, when
the M users transmit information simultaneously in state h. Let P(R, h) 2 [P (R, h),
P(R,h), ---, Py (R, h)].

Under the power allocation policy P, the average common transmission (usage) probability
Prot(R) is:
Pro"(R) = By, [w(R, h)], (6.2)

3As will be shown later in our derivation of the optimal power allocation policy, w(R,h) is either 1
or 0 under the assumption that the stationary distribution of the joint fading process of the M users has
continuous density, since the probability measure of each fading state h is zero. However, as in the single-user
case [76], this is not true if the c.d.f. (cumulative density function) of the joint fading process is discontinuous.
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where E[-] denotes the expectation function, and the average common outage probability

Pr(R) is:

Pr(R) = 1-Pro(R)

= 1- Ey[w(R,h)].
The average transmit power P;(R) of each user i, 1 <4 < M, for rate vector R is:
P,(R) = En [w(R,h)P;(R, h)]. (6.3)

6.4.2 Minimum Common Outage Probability

For a given average power constraint vector P* and rate vector R, from Definition 6.4-6.6
we know that deriving the minimum common outage probability Prom»(P*, R) is equivalent
to deriving the maximum common usage probability in the set O¢(P*,R). That is, we need

to solve the maximization problem
max Pr°*(R) subject to: Pro*(R) € O¢(P*,R), (6.4)

where, for a given power allocation policy P, Pr°*(R) can be calculated from (6.2). Thus,

(6.4) is equivalent to

max Enlw(R,h)] (6.5)
subject to:
R e Cg(ha P(R7 h))’ Vh e ’Htrana
(6.6)
En[w(R,h)P(R,h)] < Pr, V1<i< M,
where

Hiran = {h : ’U)(R, h) > 0}’ (67)
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Cy¢(h,P(R, h)) is the capacity region of the M-user time-invariant Gaussian MAC and is
given by

icF hiPi(R’ h)
2

C,(h,P(R, b)) = {R:ZRig élog<1+Z ) VF§{1,2,---,M}}.

i€F o
(6.8)
For a given rate vector R, define
Qc = {(Pr°",P) : Pr°* € O¢(P,R)}. (6.9)

We will require the following lemma to find the solution to (6.4), or equivalently, to (6.5)

under the constraints in (6.6).
Lemma 6.1 The set Q¢ is conver.

Proof: See Appendix D.1. a
Due to the convexity of the set Qc, Pr°™ solves (6.4) for a given rate vector R if
and only if there exists a Lagrangian multiplier vector A € RY such that (Pro™ P*) is a

solution to the problem

max Pro*(R) — X -P(R)], 6.10
(PT""(R)P(R))EQC[ ®) ®) ( )

where P(R) = [P;(R), P2(R),---, Py;(R)] and, for a given power allocation policy P, B;(R)
(1 < ¢ € M) can be calculated from (6.3). Note that we transform the maximization
problem (6.5) under the constraint (6.6) into the problem (6.10) because the scalar to
be maximized in (6.10) includes the power constraints in (6.6) and is therefore an easier

maximization problem to solve. In (6.10),

XPi(R)

M=

A-PR) =

-
il
it

AiEn [w(R,h)P;(R, h]

ﬁ
il
-

Il
.ME

= E, [w(R, h) (ﬁ AiP;(R, h))}
i=1

= Eu[w(R,h)(A-P(R,h))]. (6.11)
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From (6.10) we see that Pr°** will be the maximum common usage probability in set
Oc(P*,R) if and only if P* is a solution to

x_Izin) A-P(R) subject to Pro™ € Oc(P(R),R),
P(R

i.e., if and only if there exists a power allocation policy P* such that for all h € Hgyy,
P*(R,h) and w*(R,h) solve the problem
R € Cg(h, P(R, h)), Vh € Htran,

min Ey, [w(R,h)X - P(R,h)] subject to (6.12)
P Eh [’LU(R, h)] 2 P,,_o‘n*’

and

Ey [w*(R,h)P*(R,h)] = P*. (6.13)
Assuming that the Lagrangian multiplier vector A is known, to achieve the minimum in
(6.12), the optimal transmit power vector P*(R,h) of the M users must be a solution to

PI(Illzirllx) A-P(R,h) subject to: R € Cy(h,P(R,h)), Vh € Hiran. (6.14)

Since Vh € Hipran, the set of recetved powers that can support the given rate vector R of

the M users is
G(R,h) £ {Q:Q: =hP(R,h),V1<i< M, ReCyh PR, h))}, (6.15)
which is shown to be a contra-polymatroid with rank function [3]

f(F)=o° l:exp (2 > Ri> - 1] , VYFC{1,2,---,M}, (6.16)

ieF

for any given A € RY, Vh € Hran, the solution Py (R,h) = [P, y(R,h), P, y(R,h), ---,

P

.\ (R, h)] to the optimization problem (6.14) is readily obtained by applying Lemma 3.4

in [3], i.e.,

o2

AR B) ={ =

[exp (2R,,(1)) — 1] , ifi=1,

exp (2 ks Ruqry) — exp (22424 Repy) ] V2 S0 S,
(6.17)

P

(i o2

R (s

—
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where the permutation m(-) satisfies:

>
S

(1) 5 An@) S S Ar(M)

hz(1y ~ Pa(2) Ro(r)

The solution in (6.17) indicates that n(-) determines the optimal decoding order at the
receiver. That is, the signals from User (M) are decoded first, with the signals from all
other users being treated as interference. Then the signals from User 7(M — 1) are decoded,
with the signals from User n(M) being subtracted and those from the other M - 2 users
being treated as interference. The signals from User 7(1) are decoded last, with the signals
from all other users being known and thus being subtracted from the total received signal.
Since 7(-) is determined by vector A in each fading state, the optimal decoding order in
each state is actually determined by vector A. Therefore, A can be viewed as the power
price vector for the M users, which we will use to refer to A hereafter.

Now denote the minimum in (6.14) as PS\’”"(R, h), i.e.,
P{*"(R,h) = AP (R,h), (6.18)

where the M components of vector Py (R,h) are given in (6.17). Then Ps‘"i"(R, h) can
be viewed as the required minimum total weighted power of the M users for transmitting
their information at rate vector R in state h. Since the M average power constraints in
(6.6) imply that there is a total average weighted power constraint A - P* for a given power
price vector A, we solve the optimization problem (6.5) subject to (6.6) by first finding the
solution wy (R, h) to the following single-constraint maximization problem for the given
power price vector A:

max Ey [w(R,h)]

w(R,

subject to: B [w(R, h) Py (R, h)] < X-P*,

which is equivalent to

max {Eh w(R, h)] - %Eh [w(R, b) P{n(R, h)] } (6.19)
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subject to:

Ey [w(R, h) PP™™(R, h)| = x- P, (6.20)

where sl, is the Lagrangian multiplier to be chosen such that (6.20) is satisfied. In Section 6.6
an iterative algorithm is proposed to find the optimal power price vector A* such that the
solutions P y-(R,h) and wy- (R, h) satisfy the M average power constraints in (6.13), i.e.,

En [wy-(R,h)P, (R, h)| =B}, V1<i<M. (6.21)

)

Note that the maximization problem (6.19) subject to (6.20) is similar to the minimum
outage probability problem of the single-user fading channel [76] and so is the solution given
below.

Vs > 0, define the set of fading states R(s, ) as:
R(s,A) = {h: P{""(R,h) < s}. (6.22)
The corresponding total average weighted power over this set is:
P(5,A) = Eperon) [P (R, b))

Obviously P(s,A) is a monotonically increasing function of s. Given the total average

weighted power constraint (6.20), we choose s* to be the point that satisfies
P(s*,2)=A-P~. (6.23)

Since we assume that the joint fading process has a continuous stationary distribution,
YA € RM with probability one the decoding order as defined by n(-) in each state h is
unique and so is the power allocation Py (R,h) in (6.17). Therefore, by using Lemma 3
in [76], the solution to the maximization problem (6.19) subject to (6.20) is the Common

Outage Transmission Policy given in Section 6.4.3 below.

6.4.3 Common Outage Transmission Policy

For each fading state h € Hgy, the optimal transmission policy that solves (6.19) subject
to (6.20) is:
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L if h € R(s*,A), then wy(R,h) = 0, i.e., an outage is declared for all users and no

power is assigned to any user;

2. if h € R(s",A), then wy(R,h) = 1, ie., a total weighted power of P:\”i"(R, h) is
assigned to the M users and each user 7 will transmit at rate R; with power P, 3 (R, h)

given in (6.17).

In the above transmission policy, we see that s* can be viewed as a threshold power, since
simultaneous transmission for the M users is allowed if and only if the required minimum
total weighted power P"\”i"(R, h) for the M users to transmit their information at rate
vector R in state h is less than s*.

Under this transmission policy, the resulting average common outage probability Pry (R)

1s:

PT‘A(R) = I—Eh[wA(th)]

= 1- Prob{h € R(s*,A)}, (6.24)

where Prob{-} denotes the probability function. If the power price vector A is the optimal
A" satisfying (6.21), then the minimum average common outage probability Pr.,;,(P*, R)
is:

PTmin(p*, R) = PTA' (R)

6.4.4 Average Power Region

In Sections 6.4.2-6.4.3, given the power constraint vector P* and rate vector R of the M
users, we derived the minimum common outage probability Prmin(f’*, R) and the corre-
sponding optimal power allocation policy. In this subsection we find for a given rate vector
R and common outage probability Pr*, the required average power region APV, (Pr*, R),
defined as the set of all possible average power vectors that can support rate vector R with

a common outage probability no larger than Pr*. That is,
APV, (Pr*,R) £ {P(R) : Pr* € Oc(P(R),R)}. (6.25)

By convexity of the set Q¢ defined in (6.9), it is clear from (6.10) that an average

power vector will be on the boundary surface of APV, (Pr*,R) if it is a solution to the
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minimization problem

l[)l’(lgl)A -P(R) subject to: Pr*e Oc¢(P(R),R) (6.26)

for some power price vector \ € ?Rﬂ‘r’f . Therefore, for each given power price vector A € §R§‘f1 ,
an average power vector 135“” (R) solves (6.26) if and only if there exists a Lagrangian

multiplier s* such that (1 — Pr*, 131‘)"1 (R)) is a solution to the problem

ol X-P(R) - s"- Pr'(R)}. 6.27
(Pr""(R),P(R))eQC{ (R) (R)} (6.27)

Substituting (6.2) and (6.11) into (6.27) and by definition of the set Qc¢, it is clear that
P A(R) solves (6.26) if and only if there exist a Lagrange multiplier s* and a power allocation

policy P* such that for any h € H,y, P*(R, h) and w*(R, h) solve the optimization problem
min {Ey [w(R, h)A-P(R, h)] - s* - Ep [w(R, h)]} (6.28)

subject to:
R € Cg(h, P(R, h)), Vh E Htran,
(6.29)

En[w(R,h)] =1— Pr*.
It is easily shown, as in Section 6.4.2, that Vh € H;,4,, the optimal transmit power vector
P*(R, h) of the M users is Py (R, h), the components of which are given in (6.17). There-
fore, the optimization problem (6.28) subject to (6.29) is equivalent to the one in (6.19)

subject to:

En[w(R,h)] =1- Pr*. (6.30)

Note that as described in Section 6.4.3, Yh € Hy, the solution wy (R, h) to (6.19)
given by the Common Outage Transmission Policy is readily obtained once the threshold
power s* is known. In Secction 6.4.3 s* is determined by the total average weighted power
constraint in (6.20). Now we choose s* such that the average common outage probability

constraint (6.30) is satisfied. That is, s* satisfies

Prob{h € R(s*,A)} =1—- Pr~. (6.31)
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We then obtain the solution wy (R, h) to (6.19) (Vh € Hay;) by applying the Common
Outage Transmission Policy in Section 6.4.3. Given the derived P A(R,h) and wy (R, h) for
every state h € H,y, the complete power allocation policy is known and the corresponding

average power vector P 2 (R) can be easily obtained as shown in Section 6.4.1, i.e.,

Py(R) = En[wy(R,h)Py(R,h)]

= Bper(er N [PAR, )] (6.32)

Therefore, by varying the power price vector A € §Ri” , we can obtain different average power
vectors Py (R) that lie on the boundary surface of APV, (Pr*,R).

However, as discussed in (3] for the zero-outage capacity case, there are other average
power vectors on the boundary surface of APV, (Pr*, R) that cannot be parameterized
by any A € §R§r/[ since, as will be shown shortly, they correspond to decoding rules that
cannot be represented simply by any A € %i‘(’ . Therefore, it is necessary to use a more
general method {3] for describing all possible decoding orders. Specifically, let £ denote a
set of subsets of G 2 {1,2,---, M} with all subsets in £ nested. That is, if G; and G; are
two subsets of G in L, then G; C G; or G; C G;. Consider successive decoding with the
ordering determined by A as before, except that now the users in a set G; € £ have priority
over the users in set GY for every fading state h, i.e., they are always decoded later. The
decoding order of the users within set Gj is still determined by their power prices (Ax)keg;-
For example, if G; C G2 C --- C G, then all the users in G; are decoded after users in G¢
and therefore provide interference to each user in G¢, ¢ = 1,2,--.. Therefore, (Ag)reg, is
used to determine the decoding order of users in G, and all these users provide interference
to users in G2\G1, the decoding order of which is determined by (Ax)reg,\¢, completely.
Inductively, (Ax)reg;\c;_, 1S used to determine the decoding order of users in G;\G;_1, and
these users provide interference to each user in G;11\G;. If £ = {G}, then all the M users
are of the same priority and their decoding order is then determined by the power price
vector A completely. Therefore, a decoding order determined by (A, £) with £ # {G} is
different from any of the orders determined by (A, £) with (£ = {G}), and (A, £) can be
viewed as the power allocation parameter pair that describes all possible decoding orders.

For each given power allocation parameter pair (X, £), the decoding order in every fading

state h is determined and we have shown for £ = {G} that the boundary average power
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vector P(A,{G})(R) 2 P (R) of region APV,,;(Pr*,R) can be obtained from (6.32). For
each power price vector A € §Rf(1 , the average power vector f’( A, c)(R) with £ = {G} is
called a regular point on the boundary surface of APV,,:(Pr*,R), and the average power
vector 13( A, C)(R) with £ # {G} is called a nonregular point. We now show how to calculate
the nonregular point I_)( AL (R) on the boundary surface of APV, (Pr*,R).

For a given set L of nested subsets of G, let the subsets be denoted as Gy, G, ---, Gy,
where G1 C G2 C --- € Gy = G, I > 2. Then (M)kes, determines the decoding order of
the users in G; and they are decoded after the signals from the users in G§ are decoded and
subtracted out for every fading state h. Therefore, there is no interference from any user in
GY to the users in G, and the required average power for each user in G, is independent
of the power prices and channel conditions of the users in G§. Since the users in G; have
absolute priority over all other users, we determine the fading states where no power should
be assigned to any user by considering users in G; only. That is, Vh € Hy, first define the

total weighted power P(’f\i’z) (R, h) of all the users in G as:

min (R, h) = AG). Pgil")c)(R, h), (6.33)

(G1)
(AL)

tors of A and P( A E)(R,h), consisting of components corresponding to the users in set
Gi. Here Py (R, h) = [Pl,()\,ﬁ)(R’ h)’P2,()\,.C)(R’ h),-- '7PM,(A,£)(R7 h)] denotes the re-

quired transmit power vector of the M users when the decoding order is determined by the

where the subscript G; in vectors AG) and P (R, h) implies that they are subvec-

power allocation parameter pair (A, L). That is, Vh € Hy, the required transmit power of

each user in set G is:

(72 . .
Rrg, () [exp(2RwG1(1)) - 1] , ifi=1,
- : i—1
PT{'Gl (l),(A,ﬁ)(R, h) = h"Gl ) [exp (2 Zk___l Rﬂ-Gl (k)) - exp (2 Ekzl Rﬂ.cl (k))] ’ (634)

V2 <i< |Gy,

where |G;| denotes the number of users in set G and the permutation g, () of the |G1]

users satisfies:

Argy(1) o Arey@) o o A6y (Ga)
hrg, (1)~ P, (2) " P, (64D)

v

The required transmit power of each user in set G;\Gj-1 (2 < j < I) for every state
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h € Hgyy is:
[ .
hw;(l) - exp (2 Z Rk) . [exp(2R,,GJ_(1)) - 1], ifi=1,
keGj
— 02 :
P,,Gj(,-),(A,c)(Rv h) = P, O - exp (2 ke%: Rk) . [exp <2kz:1R,,Gj (k)>
- -
i
— exp (2 > R,,Gj(k)ﬂ, V2 < i < |Gj\Gj-1),
\ k=1

(6.35)
where |G;\G;_1| denotes the number of users in set G;\G;-1 and the permutation 7g;(+)

of the |G;\G;_1| users satisfies:

Are, (1) Ara, ) A, (665D

heg,1) ~ Pr,2) — 7 Pae, (167Gl

Now Vs > 0, define the set of fading states R(s, A, £) as:
R(s,A\, L) ={h: (TKiZ')(R’ h) < s}, (6.36)

where P(’”)\"’Z)(R, h) is given in (6.33), and let the threshold power s* be the point that

satisfies:

Prob{h € R(s*,\, L)} =1— Pr*. (6.37)

Given s*, the set R(s*, A, L) is then determined, which corresponds to the set of all fading
states where the M users transmit information at rate vector R. For any fading state
h ¢ R(s*, A, L), an outage will be declared for all the M users. Therefore, since in every
state h € R(s*, A, L), the decoding order of the M users is determined by (A, £) and so is
the required transmit power of the M users given in (6.34) and (6.35), the required average
power vector P L) (R) for supporting rate vector R with common outage probability Pr*
is given by:

PinoR) = Buerie AP o (R D)), (6.38)

which will lie on the boundary surface of APV, (Pr*,R).
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6.5 Independent Outage Declaration

We now consider the case where each user can declare an outage independently. We derive
the boundary of the outage probability region O;(P,R) as well as the optimal power allo-
cation strategy in Section 6.5.1- 6.5.3, and obtain the average power region of the A users
required to support R with a given outage probability vector Pr in Section 6.5.4.

For any given fading state h, since some users may declare an outage, the chan-
nel may be only used by a subset of the M users. Obviously there are 3M, (Al"’) =
2M different combinations (subsets) of the M users, including the empty set. We will
represent each of these 2 possible combinations of users as an M-dimensional vector
[(k,1),%(k,2),---,%(k, M)] equal to the binary expansion of k, 0 < k < 2M — 1. For each
vector [¢(k,1),¢(k,2), --,¥(k,M)], if ¥(k,i) = 1 then User i is transmitting; otherwise
User i is not. For each k, 0 < k < 2™ — 1, we define the set of active users Sy, relative to k

as Sy = {i:¢(k,i) = 1,1 <i < M}. Sy denotes the empty set (no active users).

6.5.1 Power Allocation Policy

For a given rate vector R, in each fading state h, by “power allocation policy P,” we mean

the following:

(1) Let w(R,h, Sy) denote the probability that Sy defines the set of active users (i.e., in

state h only users in set Sy are active and each user ¢ € S; transmits at rate Ri)4.

(2) Let P;(R,h,S;) denote the transinit power of each user 1 € S, when S}, defines the
set of active users in state h. Let P(R,h,S) 2 [P(R,h, S;), P.(R,h,S), -,
Pu(R,h,Sp)], VO < k <2M —1.

Then obviously,

P;(R,h,S;) =0, Vi¢g Sk, (6.39)
and
oM _1
Y w(R,h,S)=1-wR,h,S) <1
k=1

4Ag will be shown later in the optimal power allocation policy, w(R,h, S) is either 1 or 0 under the
assumption that the stationary distribution of the joint fading process of the M users has continuous density,
since the probability measure of each fading state h is zero. However, as in the broadcast communication
case discussed in Chapter 5, this is not true if the c.d.f. (cumulative density function) of the joint fading
process is discontinuous.
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Moreover, in each fading state h, by denoting Pro"(R, h) and P;(R, h) as, respectively, the
probability and transmit power with which each user i transmits information to the base

station at rate R;, we have

oM _q
Pri"(R,h) = > w(R,h,Sk)1[i € Si), (6.40)
k=1
2M_q
P(R,h)= > w(R,h,S;)P(R,h,S;),
k=1

where 1[-] denotes the indicator function (1[z] = 1 if z is true and zero otherwise). Therefore,
the average usage probability Pr{"(R) and average transmit power P;(R) of each user i
(1 <4< M) for rate vector R are:

Pr"(R) = En|Pri"(R,h))

1

oM _1
FEn [ > w(®,h,SK)1fi € Sk]J , (6.41)
k=1

P(R) = Ey[P(R,h)]

oM _
= Ep [ le(R,h, Su)Pi(R,h, sk)} ) (6.42)
k=1

The average outage probability Pr;(R) of each user ¢ (1 <i < M) is
Pr;(R)=1- Pr{*(R), (6.43)
where Pri"(R) is given in (6.41).

6.5.2 Outage Probability Region

M_
In this subsection, for any given vector X = (X, X2,---,Xp) and any set S € {Sk}izl t

let | S| denote the number of users in set S, and let X(5) denote the subvector of X consisting
of components corresponding to the |S| users in set S.

From Definition 6.7 and Definition 6.8 it is clear that for a given average power con-
straint vector P* and rate vector R, deriving the boundary of the outage probability region

O;(P*,R) is equivalent to deriving the boundary of the usage probability region O;(P*, R).
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Define
Qr = {(Pr,P) : Pr™" € O;(P,R)}. (6.44)

We will require the following lemma and definition to derive the boundary of @;(P*,R)

and the corresponding optimal power allocation that achieves this boundary:
Lemma 6.2 Both the usage probability region O;(P*,R) and the set Q; are convexr.

Proof: See Appendix D.2. O

Definition 6.9 Assume that the M users transmit at a given rate vector R and the average
outage probability for User i is Pr;(R), 1 < i < M. The average usage probability for User
i is denoted as Pr{"(R) =1 — Pr;(R). Let Pr"*(R) 2 [Pr{"(R), Prg"(R),-- -, Pr$3(R)].
Then for any given nonnegative vector g = (u1, 12, ..., pun) € RM, the total average usage

reward W(R) is defined as: ¢

W(R) = u-Pr(R)

M
= Z wiPri®(R). (6.45)
i=1

In (6.45), ui can be viewed as the channel usage reward if the information from User i is

transmitted®.

Due to the convexity of O;(P*,R), an average usage probability vector will be on the

boundary surface of O;(P*,R) if it is a solution to

max  W(R) (6.46)
Pron(R)€0O;(P*,R)

for some nonnegative vector u € RM, where W(R) is defined in (6.45). In this subsection
we focus on the strictly positive vector p for a parameterization of the boundary surface of
O;(P*,R), and we call the corresponding outage probability vector a regular point of the
boundary surface. The nonregular points correspond to the case where some components of
vector p equal zero. Since we can get arbitrarily close to a nonregular point by letting some
components of vector p go to zero, it suffices to focus on deriving the regular points of the
boundary surface. Moreover, we will show how to obtain the nonregular points explicitly

based on the the method for deriving a regular point at the end of Section 6.5.3.

54; can also be viewed as the channel outage penalty if an outage is declared from User i.
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Since the set Q; is convex, for a given channel usage reward vector p € §R , vector
Prii(R) = [Prin,(R), Prgiy(R), -, Pré},(R)] solves (6.46) if and only if there exists
a Lagrangian multiplier vector A € §Ri‘(’ such that (Pr"ﬂ (R), 13*) is a solution to the problem

max W(R) - X-P(R)], 6.47
(Pr°"(R),15(R))eQI[ ®) ®)] ( )

where P(R) = [P1(R), P2(R), -+, Pos(R)] and, for a given power allocation policy P, P;(R)
(1 € i £ M) can be calculated from (6.42). Note that we transform the maximization
problem (6.46) into the problem (6.47) because the scalar to be maximized in (6.47) includes
the average power constraints, and is therefore an easier maximization problem to solve. In

(6.47),
A-PR) =

M
D N
i=1
M 2M 1

= Z,\ Eh[z (R,h,Sk)Pi(Ryh’Sk)}

k=1

- Ehrk%; (R,h, Si) (i Rhsk)}

2M 1
= By [ > w(R,h,Si) (A PEI(R, b, Sk))} : (6.48)
k=1
where the last equation results from (6.39).
For a given rate vector R and fading state h, let W (R, h) denote the total usage reward

of the M users in state h, i.e.,

W(R,h) = p-Pr*(R,h)
M
= Z w: Pr™ (R, h). (6.49)

i=1

Substituting (6.40) into (6.49), we have

M 2M 1
W(R, h) = Z:U'i ( Z w(R7h7 Sk)l[z € Sk])

oM _1

= Zw(RhSk (Zu, ZGSk>

k=1
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2M _1

= > w(R,h,Sp)m, (6.50)
k=1

where the total reward for all users in set Sj to transmit information is
A M
=Y mlieS), 1<k<2M_1, (6.51)
i=1
Thus, the total usage reward averaged over the time-varying channel is

W(R) = En[W(R,h)]

2M_1
= Ep [ > w(R,h, Sk)nk} : (6.52)
k=1
For a given p € R%, we know that vector Pryy (R) solves (6.46) (i.e., Prj/(R) is the
boundary average usage probability vector of O;(P*,R) for the given u) if and only if
there exists a Lagrangian multiplier vector A € R such that (Prﬂl (R),p*) is a solution
to (6.47). Substituting (6.48) and (6.52) into (6.47), it is clear that Pr{j(R) is the boundary
vector of O;(P*,R) for the given u if and only if there exist a Lagrangian multiplier vector
Ae ?Rﬂ‘f and a power allocation policy P* such that for all h € Hyy, {P*(R,h, Si) ii{l—l

and {w*(R,h, Sk)}izl’ ! solve the maximization problem:

oM _1 aM_q
mex {Eh { > w(R,h, Sk)nk} —~ En { 3 w(®,h, S )AEH) . PEY(R, b, sk)” (6.53)

k=1 k=1
subject to:
R®) e C, (b, PO(R,h,S)), VheHs, VSe{SH
(6.54)
En [ M1 w(R,h,Sk)Pi(R,h,Sk)} =P, V1<i<M,
where
Hs = {h: w(R,h,S) > 0}, _ (6.55)

Cy <h, PO)(R,h, S)) is the capacity region of the |S|-user time-invariant Gaussian MAC
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and is given by

C, (h,P(S)(R,h,S)) = {R(S) Y R < L og (1 4 e h"i"z(R’h’ S)> , VFC S},

icF 2
(6.56)
and the average usage probability Prffh(R) of each user 1 is:
2M 1
Prij(R) = By kz w*(R,h, Sk)1[i € Si]|, V1<i< M. (6.57)
=1

Therefore, for a given rate vector R and channel usage reward vector p, in order to
derive the average usage probability boundary vector Pr‘l’;’(R) of O;(P*,R), we wish to
find the appropriate Lag.angian multiplier vector A, the optimal transmit power vector
P*(R,h,S;), and the optimal transmission probability w*(R,h, Si) for each set Sp (1 <
k <2M _1 Vh € Hyy) that achieve the maximum in (6.53) under the constraints in (6.54).
Assuming that the Lagrangian multiplier vector A is known, to achieve the maximum in
(6.53), VS € {Sk}izl"l, the optimal transmit power vector P*()(R, h, S) of the |S| users

in set S must be a solution to

min A8 . PO)(R,h,S) subject to: R(S)ng(h,P(S)(R,h,S)), Vh € Hs.
P(S)(R,h,S)
(6.58)

Note that according to (6.39), Vi ¢ S, P*(R,h,S) = 0.
Since VS € {Sk}ZZf 1 vh € Hg, the set of received powers that can support the given

rate vector R(5) of the users in set S is
GR® ) 2{Q®: Qi =hP(R,h,5),vieS, RY eC, (h,PF)(R,}h,9))},

which is shown to be a contra-polymatroid with rank function (3]

f(F) =02 [exp (2 > Ri) - 1] , VFCS,

ieF

for any given A € §R§L’I , Yh € Hg, applying Lemma 3.4 in [3], the solution P&g)(R, h, S) to

the optimization problem (6.58) is readily obtained. That is, the required transmit power
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for each user in set S is:

2
C— lexp(2R,, (1)) — 1|, ifi=1,
Pﬂs(i) A(Ry h, S) = hzs (1) [ ( (1)) ]

o2 ; i .
Py (i) [exp(? Z;czl Rﬂ'.g(k)) - exp(2 Zk:ll Rrrs(k))} , V2<:i< |S|’
(6.59)

where the permutation m4(-) of the |S| users satisfies:

Ara(1) o Are(2) S

Ax
2 .. > S(IS')
Rz, 1)

heo@ — 7 hmqs)’

As for the common outage case, the solution in (6.59) indicates that A determines the
decoding order of the users in set S in each fading state h € Hg, VS € {S k}ib_—lf !, Therefore,
A can be viewed as the power price vector of the M users, which will be used to refer to the
vector A hereafter.

Now VS € {Sk}igl_l, denote the minimum in (6.58) as PK”'"(R, h, S), ie.,

PR, h,8) = A . PYY(R, b, 5), (6.60)

where the components of vector P(;)(R, h, S) are given in (6.59). Then V1 < k < 2M — 1,

Ps‘"i”(R, h, Si) can be viewed as the minimum total weighted power of the |Si| users required
to transmit their information at rate R(%¢) and achieve the usage reward 7y in state h. Since
the M average power constraints in (6.54) imply that there is a total weighted average power
constraint X - P* for a given power price vector A, in order to solve (6.53) for the given
channel usage reward vector p € %y (nx in (6.53) is a function of p as shown in (6.51)), we

first find the solution {w“’/\(R, h, Sk)}

2
- to the following single-constraint maximization

problem:

M_
max Eh[ l2c=1 1w(R,h, Sk)nk]
{w(R,h,Sp) )20

subject to: En [S22," w(R, h, S)PFi"(R, b, Sk)] < A- P,
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which is equivalent to

2M_1
1
max {Eh [ > w(R,h, Sk)nk] - s—*Eh

oM _q '
> w(R,h, Si) Py (R, h, Sk)} }

{w(R,h,S)}2M k=1 k=1
(6.61)
subject to:
2M 1 _ _
En | > w(R,h,S)PY"(R,h,S)| = X- P, (6.62)
k=1

where 31— is the Lagrangian multiplier to be chosen such that the average total weighted

power constraint X - P* is satisfied. We propose an iterative algorithm in Section 6.6 to

2M 1
find the optimal power price vector A* such that the solutions {P 3 (R, h, Sk)}k—l and

oM _1
{w”’X(R, h, Sk)}k—l satisfy the M average power constraints in (6.54), i.e.,
oM _ ~
En| > wyas (Rh, S0P y-(R,h, 5p) | =P~ (6.63)
k=1

Therefore, given the power price vector A*, the power allocation policy defined by the

2M_ 2M

solutions {PX(R, h, S;c)}k:1 and {wu,X‘ (R,h, Sk)}kzl solves (6.53) subject to (6.54).
Note that the maximization problem (6.61) subject to (6.62) for A and u fixed is the

same as (5.44) in Chapter 5 and so is the solution. In the following subsection we rewrite

this solution for completeness.

6.5.3 Independent Outage Transmission Policy

Before describing the optimal Independent Outage Transmission Policy for the M users in
each fading state h, we define the permutation 7(-) such that 0 < 7z(1) < Mz2) < -+ <
nN#(n), Wwhere N 2 9M _ 1 and mi, 1 <i<2M 1, is given in (6.51). For simplicity denote
& 2 N#() and v; = P/”\”"(R, h, Si(;)), where P:\"i" (R, h,S) is given in (6.60). In order to get
the largest usage reward in a given state h, first we use the following iterative procedure to

remove those sets of users Sz(;) to which no power should be assigned:

Initialization: Do not assign any power to those sets Sz if 37 that satisfles k < j < oM _
and & /ux < &/v;. Remove them from further consideration and set Wy A (R, h, Szx))
=0. Let m=1.
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Step 1: Denote the number of remaining sets as G, and let the permutation p(-) be defined

such that for the remaining Gy, sets, §,(1) < §p2) < -+ < {p(cu)-

Step 2: Let po(m)=p(1) and 2z, (m) = Bﬂ% If G, <2, all the sets that should be assigned

no power have been removed and the procedure terminates; otherwise go to Step 3.

Step 3: For 2 < k < Gy, decrease £,y and Vp(k) bY &p1) and v, (1), respectively. Do not
assign any power to those sets of users Si(,1y for which 35 that satisfies £ < j < G,
and &o(k)/Vpk) < €p(j)/Vp(j)» and remove them from further consideration (i.e., let
w“’)\(R, h, Sipk)) = 0). Also remove set S;,)- Increase m by 1 and return to
Step 1.

Assume that when the above procedure terminates, the value of the loop parameter m is

mo

mg (1 < my < 2M —1). By denoting Zpg(mo+1) = 0, the optimal { uA(R h, S [po(])])} _

mg
for the remaining mg sets {Sf‘r[po(j)]}. | are given by:
]:
(a) if si > 2po(1), then w )\(R h, Sz (o)) = 0, V1 < j < mg;

(b) if 35 € {1,2, mo}, Zpa() = 3% = Zpo(j+1) then wu A(R h, Sn'[po(j)]) =1, and
wuiA(Rahv Sﬁ’[po(i)]) =0, Vi # j,1 <t < my. a

This optimal transmission policy is a multi-user generalization of the single-user threshold-
decision rule in [76], where s* can be viewed as the threshold power determined by the total
average weighted power X-P*. For the given channel usage reward vector u and power price
vector X, we see that once s* is determined, {wu’)‘(R, h, Sk)}i:_l will be determined for
all h € H,yu, and the corresponding average outage probability Pri’ QM A(R) and average

transmit power P, u A (R) of each user i (1 < i < M) can be easily calculated. That is,

2M 7
PriyaR)=1-Ey [ ; wyu ARSI € Sil|, 1<i< M, (6.64)
B 2M_1 ]
P R) = En Z wy AR B, SK)P, (R, h, Sp) [, 1<i< M, (6.65)

where, VS € {Sk}izl_l, P, (R, h, S) is given by (6.59) if ¢ € S and equals zero otherwise.
For the given channel usage reward vector u € §Ri’[ , if the power price vector A is the

optimal A* such that PZ “/\*(R) = P*, V1 <i< M, ie., (6.63) holds, then the resulting
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average outage probability vector Pr LA (R) with the M components given in (6.64) will
be on the boundary surface of the outage probability region O;(P*,R) and Prii(R) =
1-Pr,, aA (R) will be on the boundary surface of the usage probability region O;(P* R).
Therefore, by varying the channel usage reward vector u € ®Y, we can obtain all regular
points on the boundary surface of the outage probability region Or(P*,R). However, it is
not easy to obtain the optimal power price vector A* and the corresponding boundary outage
probability vector directly for a given channel usage reward vector u € %i” . An iterative
algorithm is proposed in Section 6.6 for obtaining all regular points on the boundary surface
of region O;(P*,R) and the optimal power price vector for each regular point.

A regular point on the boundary surface of region O;(P*,R) corresponds to the case
where all the M users are of the same priority and in each fading state h, tie optimal
decoding order is determined by their power price vector A and their sub-channel fading
gains. Now consider the case where some users are given absolute priority over some other
users in any fading condition, i.e., the absolute decoding rules can be represented by a set £
of nested subsets G1,Go,---,Gr (I > 2) of G = {1,2,---, M} as described in Section 6.4.4,
where G1 C G2 € +-- C Gy =G. Let Uy = Gy and U; = Gj\Gj-1, V2 < j < I. Since users
in U; are given absolute priority over users in U; for i < j and users in U;j are given the
highest priority, for each given vector u € Rﬂ‘f , first we can derive the outage probability
subvector Prﬁh)(R) for users in set U; as if users in other sets were nonexistent. For
J > 2, once the optimal power allocation for users in Uj<;<;—1U; is determined, the outage
probability subvector PrNUj )(R) for users in set U; can be derived as if users in Uj11<;<sU;
were nonexistent and the signals from users in Uj<;<;—1U; were background noise. Note
that subvector Pr;i]j )(R) (1 < j < 1I)is a regular point on the boundary surface of the
outage probability region Oy (P*(UJ’ ), RW; )) for the users in set U;. Since we have already
shown how to obtain a regular point on the boundary surface of region O;(P*,R) for an
M-user system, the regular point Pr;[{j)(R) of region Oj (P*(L.J),R(UJ')) for a |Uj|-user
system can be similarly derived.

Therefore for each given pair (u, £) with £ # {G}, we can obtain the corresponding
boundary outage probability vector of region O;(P*,R). Such boundary vectors are the
nonregular points on the boundary surface of region O;(P*,R) and we can obtain all
nonregular points explicitly by varying (u, £) with p € RY and £ # {G}. When £ = {G},

the corresponding boundary outage probability vectors are the regular points discussed



141

before.

6.5.4 Average Power Region

In Section 6.5.2-6.5.3, given the power constraint vector P* and rate vector R of the M
users, we derived the outage probability region O;(P*,R) and the corresponding optimal
power allocation policy. Now for a given rate vector R and average outage probability
vector Pr*, we consider the average power region APV, (Pr*,R), defined as the set of
all possible average power vectors that can support rate vector R with the average outage

probability of each user ¢ no larger than Pr}, V1 < i < M. That is,
APV,(Pr*,R) 2 {P : Pr* € O;(P,R)). (6.66)

By convexity of the set Q; defined in (6.44), it is clear from (6.47) that an average
power vector will be on the boundary surface of APV,,;(Pr*,R) if it is a solution to the

minimization problem

gzin) A-P(R) subject to: 1-Pr* e O;(P(R),R) (6.67)
PR

for some vector A € §Ri’. Therefore, for each given power price vector A € %f , an average
power vector Py (R) solves (6.67) if and only if there exists a Lagrangian multiplier vector
p such that (1 — Pr*, Py (R)) is a solution to the problem

min A-P(R)— p-Prot(R)}. 6.68
(Pr°”(R)P(R))eQ{ (R) =g (®)) (6.68)

This minimization problem is similar to the maximization problem of (6.47). However, in
(6.47), the average transmit power vector P* and the channel usage reward vector p are
given, but the appropriate power price vector A must be found such that the average power
constraint P of each user i (1 < i < M) is satisfied. Then the resulting average outage
probability vector will lie on the boundary surface of O(P*,R) for the given u. In (6.68)
the power price vector A and the average outage probability vector Pr* are given, but the
usage reward vector pu must be found such that the average outage probability constraint

Pr? of each user i (1 < i < M) is satisfied. Then the resulting average power vector will

lie on the boundary surface of APV,,:(Pr*,R) for the given A.
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From (6.68) we see that for a given power price vector \ € §Rﬂ‘f , power vector P A(R)
will be the corresponding boundary vector of APV,,;(Pr*,R) if and only if there exist a
Lagrangian multiplier vector p and a power allocation policy P* such that for any h € #_,
{P*(R,h, Sk)}f:l—l and {w*(R,h, Sk)}i:fl solve the maximization problem (6.53) subject
to:

R € Cy(h, PO (R,h,S)), VheHs, VS e (S}t

(6.69)
Ey [S357 w(R, b, Si)1li € S| =1-Pr;, VI<i< M.

The boundary average power vector P A(R) is then given by:

2M_)
Py(R)=Eyp | > w*(R,h,S)P*(R,h,S)]| .
k=1
It is easily shown, as in Section 6.5.2, that for the given power price vector A, VS ¢
{Sk}iffl, the optimal transmit power vector P*5)(R,h,S) of the |S| users in set S is
PE\S)(R, h, S), the components of which are given in (6.59), and Vi ¢ S, P*(R,h,S) =
0. Therefore, for the given power price vector A, finding the appropriate usage reward

vector g and solving the corresponding maximization problem (6.53) subject to (6.69) is

now equivalent to determining the appropriate usage reward vector p and the Lagrangian

2M 1
multiplier % in (6.61) and finding the solution {w“ A(R,h, Sk)}k_l to (6.61) subject to:
2M 1
En| > w@®h,S)lfi€ ]| =1-Prf. V1 <i< M. (6.70)
k=1

Note that, as described in Section 6.5.3, given the channel usage reward vector p € §R]f
fixed and a power price vector A € RY fixed, Vh € Hgy, the solution {wu,)‘(R, h, Sk)}Z:—l
to (6.61) is readily obtained using the Independent Outage Transmission Policy once the
threshold power s* in (6.61) is known. In Section 6.5.3, given the M average power con-
straints in (6.54), s* is determined by the total average weighted power constraint A - P*
in (6.62) for each XA € %y , and changing the power price vector A will then result in dif-
ferent average transmit power vectors. Now for each power price vector A fixed, given the
M average outage probability constraints in (6.70), the appropriate s* and channel usage

reward vector u are to be chosen such that all constraints in (6.70) are satisfied. However,
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it is obvious that in (6.61), adjusting both g and si such that (6.70) holds is equivalent to
fixing s* (e.g., setting s* = 1) and changing u alone. Since by setting s* = 1, given A fixed,

M
the solution {wu’)‘ (R, h, Sk)}

2
(Vh € Hapu) to (6.61) for each different usage reward
k=1

vector u is then obtained using the Independent Outage Transmission Policy, we will obtain
different average outage probability vectors Pr L, A(R) by varying p. In the following we
propose a simple iterative algorithm to find the optimal channel usage reward vector u*

that satisfies Pr,. A(R) = Pr*. This algorithm is similar to those in [2] and [74]°.

Algorithm 6.1 For a given power price vector A, let s* in the Independent Qutage Trans-
mission Policy be fixed, e.g., s* = 1, and denote the value of p in the nth iteration as p(n).
Let 1(0) = 0. Given u(n), u(n + 1) is obtained as follows: V1 < i < M, adjust the usage
reward p;(n + 1) for User ¢ while the usage rewards for all other users remain fixed at their
values in the nth iteration such that the resulting average outage probability for User i is
Prr. Specifically, given p(n), V1 <i < M, let 1¢ denote the usage reward vector of the M
users with the kth (1 < k < M) component being px(n) if k£ # ¢ and p;(n + 1) if k = 1,
then u;(n + 1) is chosen such that

P'f‘i’“i’A(R) - PT';,
where
2M 1
Pri,ui)A(R) =1- Eh ; wui’A(R, h, Sk)].[?/ € Sk] ’
21\/1_
with {ww A (R, b, S’k)}k_1 obtained from the Independent Outage Transmission Policy
by setting s* = 1 in it. O

In order to prove that the iterative procedure converges, i.e., the sequence {u(n)} con-

verges to u* that satisfies Pr 1 A(R) = Pr*, we need the following monotonicity lemma:

Lemma 6.3 For a given power price vector XA € Ref, let s* = 1 be fized in the Independent
Outage Transmission Policy. Then V1 < i < M, if the usage reward p; for User i increases

while the usage rewards for all other users remain fized, the resulting average usage prob-

61t is easily seen that this algorithm can also be applied to the fading broadcast channel to obtain the
minimum required total average power of the M users for supporting rate vector R with a given outage
probability vector.
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ability Pr;";t /\(R) =1-Pr, . A(R) of User i increases or remains unchanged, and the

resulting average usage probabilities for all other users decrease or remain unchanged.

Proof: See Appendix D.3. a

In each iteration of Algorithm 6.1, if the usage reward for all other users remain fixed
while the usage reward p; for User ¢ increases from 0 to oo, it is obvious that the average
usage probability Prz‘.”;t )‘(R) will increase monotonically from 0 to 1. Therefore, in each
iteration there exists a y; such that Pri7 L, A(R) = Pr?. Since each iteration in Algorithm

6.1 can be represented as a map

T:%y - %y

pn) = pn+1),

any fixed point of 7" will be the solution p* satisfying Pr ueA (R) = Pr*. Applying Lemma

6.3 we see that T is order preserving. That is,
p@ < p® = 7)< T(E®),

where the notation x < y means that z; < y;, V1 < ¢ < M. Therefore, starting with
©(0) = 0, u(1l) = T(u(0)) > p(0), and by induction, p(n + 1) = T(p(n)) > pu(n). If p* is
a fixed point of T, then since n(0) < p*. p(n) = T™(u(0)) < T™(p*) = p*. Thus, {u(n)}
is a monotonically increasing sequence bounded from above and must converge to a limit.
The limit has to be a fixed point of T' and hence a solution that satisfies Pr weA (R) = Pr*.

For the given power price vector A € Y once we find the optimal channel usage reward

vector p* satisfying Prw A(R) = Pr?, the corresponding average transmit power vector

PM‘»/\(R) will be the boundary vector PA(R) of region APV,,;(Pr*,R). That is,
— A —
PAR) 2 P, \(R)
oM _
= En| Y wy. A(RB,SHPA(R,B,Sp)| . (6.71)
k=1

However, as in the case with a given common outage probability or with zero-outage,
there are other points on the boundary surface of APV,,(Pr*,R) that cannot be param-

eterized by any A € %ﬁfl , since they correspond to decoding rules that cannot be repre-
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sented simply by any A € %i’[ . Instead, those decoding rules can be represented by a
set £ of nested subsets of G = {1,2,---, M} as described in Section 6.4.4. Therefore,
we use the power allocation parameter pair (A, L) to describe all possible decoding or-
ders. When £ = {G}, the boundary average power vector 1_)( Aep®) 2p A(R) of region
APV, (Pr*,R) can be obtained from (6.71), and it is called the regular point of the bound-
ary surface of APV,,;(Pr*, R). When L # {G}, the corresponding boundary average power
vector P A, E)(R) is called the nonregular point of the boundary surface of APV,,:(Pr*,R).
We now show how to calculate the nonregular point P A, £)(R) for a given power allocation
parameter pair (A, £) with an average outage probability vector Pr*.

For a given set L of nested subsets of G, suppose G; C G, C ---C Gy =G, I > 2.
Let Uy = Gy and U; = G;\Gj_1, V2 < j < I. Then users in U; are given absolute priority
over users in U; for ¢ < j and users in U; are given the highest priority. That is, for j = 1,
(Ak)kev, determines the decoding order of the users in U; and they are decoded after the
signals from the users in U U--- U Uy are decoded and subtracted out in every fading state
h. Since there will be no interference from any user in set Uf = U U --- U Uy to users in
U; in any fading state h, by applying the Independent Outage Transmission Policy to the
|U;| users instead of to the M users, we can determine the users in U; who will transmit

information in each state h and calculate the required average power vector PEKIL)(R) for

“(U1) a5 if users

supporting rate vector R with given average outage probability vector Pr
in Uf did not exist. Similarly, for j > 2, (At)rey, determines the decoding order of the
users in U; and they are decoded after the signals from the users in U1 U --- U Ur are
decoded and subtracted out in every fading state h. Therefore, there will be no interference
from any user in Uj41 U--- U Uy to users in U;. Since the users in Uy U --- U U;_; who
will transmit information in each state h and therefore cause interference to each user in
U; are already determined, the total received power of the users in Uy U--- U U;_ can be
viewed as background noise to users in U;. Thus, for j > 2, by applying the Independent
Outage Transmission Policy to the |Uj| users instead of to the M users, we can determine
the users in U; who will transmit information in each state h and calculate the required
average power vector I_’g\j,)ﬁ)(R) for supporting rate vector R(Us) with given average outage
probability vector PrUs).

‘We now show how to calculate the average power vector PEK{L)(R), 1< j < 1I. For the
|U;| users in set Uj;, given the power price vector AWi) and the allowed average outage prob-
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5(Uj)
P()\J,C)
to a regular point on the boundary surface of region APV, (Pr*(UJ'), R(UJ’)), the set of all

ability vector Pr*(Ui), the length-|U;| required average power vector (R) corresponds
possible average power vectors of the |U;| users for which rate vector R i) can be supported
with the given average outage probability vector Pr*Us). Since we have already shown how
to calculate a regular point of the average power region APV,,;(Pr*,R) for an M-user sys-
tem, the regular point ng’)c)(R) of the average power region APV,,; (Pr*(Uj), R(Uj)) for
an |Uj|-user system can be similarly obtained. Specifically, for the given power price vector
AW ¢ %fjl, first we use Algorithm 6.1 for the |U;| users instead of for the M users to find

the optimal channel usage reward vector p*(Us) for which the average outage probability

of each user ¢ equals Pr], Vi € U;. Then the required average power vector p¥) (R)

(AL)
(1 <5 <) is given by:
2lVil_y
— U U
Py, (R) = B ; Wy z@p (BB, S1) - PYL (R, S|, (6.72)
25l
where {wﬂ*(uj) 2(5) (R,h, Sk)} (Vh € H,y) is obtained by applying the Independent
’ k=1

Outage Transmission Policy to the |U;| users with s* =1 in it, and VS € {Sk}igl_l, the
|U;| components of vector PEK]L) (R,h, S) are: Pi’(/\,L)(R, h,S) =0if i € S and, for each

user in set S,

U2 . . -
v - exp (2 ke; Rk) . [eXp (2Rﬁs(1)) — 1], ifi=1,
-1
02 :
B0 BBS) = 0 g exp (2 2 Rk) | [exp <2 ZRﬁs(k))
keS;-1 k=1
1—1
— exp (22Rﬁs(k)>]’ v2<i<|S),
k=1

(6.73)
where S;_; denotes the empty set (7 = 1) or the subset of users in U; U--- U Uj_; who
are transmitting information in state h (5 > 2), and the permutation j,(-) of the |S| users
satisfies:

Aps() o o) o 5 AealS)

ho,y ~ has@) T T ha(s)

Therefore, all the nonregular points P A C)(R) on the boundary surface of the average

power region APV,,;(Pr*,R) can be obtained by varying the power allocation parameter
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pair (A, £) with £ # {G}, and all the regular points f’( A {G})(R) on the boundary surface
of region APV,,:(Pr*,R) can be obtained by varying the power price vector A € §Ry of the

M users.

6.6 Iterative Algorithms for Power Allocation

In Section 6.4.1-6.4.4, by assuming that all users turn on and off transmission simultane-
ously, we derived the power allocation strategy that minimizes the common outage probabil-
ity. In Section 6.5.1-6.5.4, by assuming that each user declares an outage independently, we
derived the power allocation strategy that achieves the boundary of the outage probability
region. The outage capacity regions Cou(P, Pr) and C,y (P, Pr) are then characterized
implicitly. These strategies assumed the existence of an optimal power price vector A* or,
more generally, an optimal power allocation parameter pair (A*, £*) to determine user de-
coding priorities such that the average power constraints for all users are satisfied and the
minimum common outage probability or the boundary outage probability vector is achieved.
It is shown in Section 6.4 and Section 6.5 that once (A*, £*) is given, the optimal successive
decoding order of the M users in cach fading state is determined and so are the optimal
power allocation and the average power required from each user. Therefore, for a given
power constraint vector P* and rate vector R, an important question is how to obtain the
optimal power allocation parameter pair (A*, £*). It is this question that we address in this
section.

In the zero-outage capacity case, for a given power allocation parameter pair (X, £), let
PR, L) = [PL(R, A, L) Py(R, A, L), - -+, Py(R, X, £)] denote the corresponding bound-
ary average power vector of region APV,..,(R), defined as the set of all possible average
power vectors that can support rate vector R in all fading conditions without any outage,

ie.,

Ew [PA(R,h)], if £={G},

P(R, A L) =

(6.74)

where components of P 3 (R, h) are given in (6.17) and components of P (R, h) are given
in (6.34) and (6.35). Given the average power constraint vector P*, an iterative algorithm
(we will refer to it as the Hanly-Tse (HT) Algorithm) is proposed in [3] for obtaining the

optimal power allocation parameter pair (A*, £*) that achieves the infimum in the following
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optimization problem:

. PR, )\ L)
inf max ————-.
VAR

(6.75)
Therefore, rate vector R lies in the zero-outage capacity region if and only if the infimum
in (6.75) is no greater than 1. Thus, the solution to (6.75) implicitly defines the zero-
outage capacity region. Moreover, if the corresponding average power vector P(R, \*, £*)
is a regular point on the boundary surface of APV,¢o(R), then the optimal £* must be
{G} and the HT Algorithm will converge to the optimal A* € RY. If P(R,A*,£*) is a
nonregular point on the boundary surface of APV,..(R), the HT Algorithm will provide
the optimal power allocation parameter pair (A*, £*). The basic idea of the HT Algorithm
is that at each iteration the required normalized average powers of the M users (normalized
by their given average power constraints) are balanced as much as possible by increasing
the power prices of the users with larger normalized average powers in the last iteration. A
brief description of the HT Algorithm is given in Appendix D.4 for convenience.

Now if the infimum in (6.75) is larger than 1, the given rate vector R can only be
maintained with certain outage probability for each of the M wusers. In this case, un-
der the assumption that the transmission from all users is turned on or off simultane-
ously, we wish to obtain the minimum common outage probability Pr* 2 Prom(P*,R).
Under the alternative assumption that the transmission from each user is turned on or
off independently, we wish to obtain the outage probability region O;(P*,R). In this
section, for notational convenience, given a power allocation parameter pair (A, L), let
B(Pr,R, A, L) 2 [P(Pr,R, A, L), Pa(Pr,R, A, L), -+, Pa(Pr, R, A, £)] denote the bound-
ary average power vector of region APV, (Pr,R) for a given common outage proba-
bility Pr > 0 under the first assumption, and let P(Pr,R,\, L) 2 [P (Pr,R, A\, L),
Py(Pr,R,\, L), ---, Py(Pr, R, A, L)] denote the boundary average power vector of
region APV,,(Pr,R) for a given outage probability vector Pr > 07 under the second
assumption. Note that we have already shown how to obtain these boundary vectors of
region APV, (Pr,R) and APV, (Pr,R) in Sections 6.4.4 and 6.5.4, respectively (for sim-
plicity, in Section 6.4.4 we used Py(R) (£ = {G}) or P(A,L)(R) (L # {G}) to denote
P(Pr,R,\, L) and in Section 6.5.4 we used Py (R) (£ = {G}) or P(A,L‘)(R) (L #{G}) to
denote P(Pr,R, A, £)).

"In this chapter, a > b < a; > b;, Vi.
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Under the first assumption, for each given common outage probability Pr > 0, if we

can find the power allocation parameter pair (A, £) that solves

. P,(Pr,R ), L)
inf max ——=—"—-2
(A,L) 1<isM P

1

(6.76)

then by denoting the infimum in (6.76) as Inf(Pr), the following lemma holds.

Lemma 6.4 Inf(Pr) is a strictly decreasing function of the common outage probability

Pr.

Proof: See Appendix D.5. O

Therefore, it is clear that

Inf(Pr)>1, if Pr < Pr*,
Inf(Pr) <1, if Pr> Pr*,
Inf(Pr)=1, if Pr= Pr*.

That is, if the infimum Inf(Pr) in (6.76) equals 1, then the corresponding common outage
probability Pr of the M users is the target minimum common outage probability Pr* and
the pair (A, £) that achieves this infimum is the target optimal power allocation parameter
pair (A", L£*).

Similarly, under the second assumption, for each given outage probability vector Pr > 0,
if we can find the power allocation parameter pair (A, £) that solves

Pi P 3R7 s

inf max LIL——*—)‘F—), (6.77)
(A,L) 1SisM b

then by denoting the infimum in (6.77) as Inf(Pr), the following lemma holds.

Lemma 6.5 For two given average outage probability vectors Pr(t) and Pr(2), if Pr() <

Pr® and Pr) £ Pr?, then Inf(Pr)) > Inf(Pr?).

Proof: See Appendix D.6. m|

Therefore, it is obvious that

Inf(Pr) > 1, if Pr¢ O;(P*,R),
Inf(Pr) <1, if Pr e O;(P*R),
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and Inf(Pr) = 1 if Pr is on the boundary surface of the outage probability region
O;(P*,R). This is because if Pr ¢ O;(P*,R) then there must exist a boundary aver-
age outage probability vector Pr® of O;(P*,R) satisfying Pr® > Pr, and Pr(® # Pr,
which means Inf(Pr) > Inf(Pr{?) = 1 by Lemma 6.5. Moreover, if Pr is a regular point
on the boundary surface, then the power allocation parameter pair (A*, £*) that achieves
the infimum in (6.77) must satisfy £* = {G} and

P,(Pr,R, 2% {G)})
}Si*

=Inf(Pr)=1, VY1<i<M. (6.78)

In the following we will propose an iterative algorithm (Algorithm 6.2 below) that finds,
for the given rate vector R, the target minimum common outage probability Pr* and
the corresponding power allocation parameter pair (A*, £*) that achieves the infimum in
(6.76). Another iterative algorithm (Algorithm 6.3 below) is proposed to obtain all regular
points on the boundary surface of the target outage probability region O;(P*,R) and
the corresponding power allocation parameter pair (A*, {G}) that satisfies (6.78) for each
regular point Pr. The nonregular points on the boundary surface of Or(P*, R) are obtained
as described at the end of Section 6.5.3.

Before stating our algorithms we need to extend the HT Algorithm to the case of non-zero
outage. That is, when only simultaneous outage declaration from the M users is allowed,
given a common outage probability Pr, we use a similar algorithm (we will refer to it as the
HT* Algorithm) as for the zero-outage case (Pr = 0) to find the solution to (6.76). Note
that rate vector R lies in the outage capacity region Cout(P*, Pr) if and only if the infimum
Inf(Pr) in (6.76) satisfies Inf(Pr) < 1. Therefore, the solution to (6.76) implicitly defines
the outage capacity region Cou(P*, Pr). When independent outage declaration from each
user is allowed, given an outage probability vector Pr, we also use a similar algorithm (we
will refer to it as the HT** Algorithm) as for the zero-outage case (Pr = 0) to solve (6.77).
Consequently, rate vector R lies in the outage capacity region Co..(P*,Pr) if and only if
the infimum Inf(Pr) in (6.77) satisfies Inf(Pr) < 1. Therefore, the solution to (6.77)
implicitly defines the outage capacity region Coyu:(P*,Pr). Details of the HT* Algorithm
and the HT** Algorithm are given in Appendix D.7 and Appendix D.8, respectively, and
these algorithms will be used, respectively, in Algorithm 6.2 and Algorithm 6.3 given below.

Algorithm 6.2 For a given rate vector R and average power constraint vector P*, denote
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the common outage probability at the nth iteration as Pr(n).
Initialization: Let Pr(0) = 0. Use the HT Algorithm for the zero-outage case to solve (6.75)
and denote the solution (A, £) as (A(0), £(0)). If the infimum in (6.75) is no greater than
1, then the minimum common outage probability Pr* = 0 and we terminate the algorithm.
Otherwise, set n = 1 and go to Step n.

Step n:

(1) Given power allocation parameter pair (A(n — 1), L(n — 1)), calculate the minimum
common outage probability Pr(n) for which the average power vector P (Pr(n),R,

A(n — 1), L(n — 1)) of the M users satisfies

ax P;(Pr(n),R,A(n—1),L(n - 1))

max o = 1. (6.79)

Specifically, if £L(n~1) = {G}, Pr(n) is obtained from (6.24) with X in (6.24) replaced
by A(n —1). The threshold power s* in (6.24) is now implicitly determined by (6.79),
since all components of P (Pr(n), R, A(n — 1), {G}) in (6.79) are implicit functions of
s* as shown in (6.32) with A replaced by A(n — 1).

In the case where L(n — 1) # {G}, Pr(n) is given by
Pr(n) =1- Probfh € R(s*,A(n —1),L(n — 1))}, (6.80)

where the function R(s, A, £) is defined in (6.36) and s* is implicitly determined by
(6.79), since all components of P(Pr(n), R, A(n — 1), L(n — 1)) are implicit functions
of s* as shown in (6.38) with (X, £) replaced by (A(n — 1), L(n — 1)).

(2) Given the common outage probability Pr(n), use the HT™* Algorithm to solve (6.76).
Denote the infimum in (6.76) as Inf(Pr(n)) and the solution (A, L) as (A(n), L(n)).
Go to Step n + 1. O

The iterative procedure of this algorithm is shown in Figure 6.1. For the given average
power constraint vector P* and rate vector R, suppose that the infimum in (6.75) is larger

than 1, i.e., _
PA
max BRA0,L0)
1<i<M Pr

(6.81)

then the target minimum common ocutage probability Pr* > 0, and there exists a power
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allocation parameter pair (A*, £*) that achieves the infimum in (6.76) with the common
outage probability Pr equal to Pr* and satisfies Inf(Pr*) = 1. We now show that Algo-
rithm 6.2 converges to this target Pr* and the corresponding power allocation parameter

pair (A%, L*).

Initialization Step 1 Step 2
Comrg(r)gbggitﬁg; Pr(0) =0 Pr(1) Pr(2) Pr*
J m (Z)l m (Z)l / l
Optimal Power
bl e (M0,£(0) (A1, L) (A@LLR) (ALY
4 " Y \’
Inf(Pr(n)): Inf(Pr(0)) Inf(Pr(1)) Inf(Pr(2)) oo Inf(Pr*) =1

Figure 6.1: The iterative procedure of Algorithm 6.2.

Theorem 6.1 In Algorithm 6.2, {Pr(n)} (n > 1) is a monotonically decreasing sequence
and converges to the target minimum common outage probability Pr*. {Inf(Pr(n))} (n >
1) is a monotonically increasing sequence and converges to Inf(Pr*) that satisfies Inf(Pr*)
= 1. The sequence {(A(n), L(n))} converges to the power allocation parameter pair (A*, L*)

that solves (6.76) with Pr = Pr* in it.

Proof: Vn > 1, we know from Step n (1) that (6.79) holds when the common outage
probability is Pr(n). Given common outage probability Pr(n), it is clear from Step n (2)
that (A(n), L(n)) satisfies

P; (Pr(n), EE, A(n), L(n))

max, = = Inf(Pr(n))
= inf max F (Pr(nz,R, A L)
(A,£) 1<isM P
P;(Pr(n),R,A(n—1),L(n—1))
< P
= 1, (6.82)

where the last equality is due to (6.79). Note that in Stepn (2), P(Pr(n),R,A(n), L(n))is a
function of the threshold power s* as given in (6.32) (L(n) = {G}) or (6.38) (L(n) # {G}).

Here the threshold power s* is chosen such that the common outage probability equals
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Pr(n), and we denote it as s*(n). Now in Step n + 1 (1), a common outage probability

Pr(n + 1) is to be chosen such that (6.79) holds with n replaced by n + 1, i.e.,

iy PLPr(n+1), R, A(n), L(n)
1<i<M Pi*

=1. (6.83)

Therefore, for the given rate vector R and the same power allocation parameter pair
(A(n), L(n)), we have to re-determine the threshold power s* (we will refer to it as s*(n+1))
such that (6.83) is satisfied. Comparison of (6.82) and (6.83) shows that the threshold power
s*(n + 1) must be no less than s*(n) in order to satisfy (6.83), i.e., s*(n+1) > s*(n). since
the Common QOutage Transmission Policy implies that a larger threshold s* means that the
M users will transmit simultaneously in more fading states and thus require larger average
transmit power. Thus, the corresponding common outage probability Pr(n+1) must satisfy
Pr(n+1) < Pr(n). Consequently, {Pr(n)} (n > 1) is a monotonically decreasing sequence
and, by Lemma 6.4, {Inf(Pr(n)} (n > 1) is a monotonically increasing sequence.

Since each iteration in Algorithm 6.2 can be represented as a map

TI§R+ — §R+
Inf(Pr(n)) — Inf(Pr(n+1)),

any fixed point of T will be the solution Inf(Pr*) satisfying Inf(Pr*) = 1. From (6.82)
it is clear that Vn > 1, Inf(Pr(n)) < 1, i.e., it is bounded from above. Therefore, since
{Inf(Pr(n)} (n > 1) is a monotonically increasing sequence bounded from above, it must
converge to a limit, which is a fixed point of T and hence the solution Inf(Pr*) that
satisfies Inf(Pr*) = 1. This implies that sequence {Pr(n)} (n > 1) converges to the target
minimum common outage probability Pr*, and the sequence {(A(n),L£(n))} converges to

(A*, £*) that solves (6.76) with the common outage probability Pr equal to Pr*. i

Algorithm 6.3 For a given rate vector R and average power constraint vector P*, denote
the average outage probability vector at the nth iteration as Pr(n) = [FPri(n), Pra(n), - --,
Pras(n)).

Initialization: Let Pr(0) = 0. Use the HT Algorithm for the zero-outage case to solve (6.75)
and denote the optimal (X, £) as (A(0), £(0)). If the infimum in (6.75) is no greater than 1,

then rate vector R can be supported with the given average power vector P* without any
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outage and we terminate the algorithm. Otherwise, assuming that none of the M users can
support his given rate without any outage under his average power constraint®, for a given
channel usage reward vector p(0) € R, set n = 1 and go to Step n.

Step n:

(1) Given the power allocation parameter pair (A(n—1), £L(n—1)) and usage reward vector
p(n—1), calculate the average outage probability vector Pr(n) for which the required
average power vector P (Pr(n), R, A(n — 1), £(n — 1)) of the M users satisfies

max P,-(Pr(n),R,)\(fL —1),L(n - 1))
1<i<M Pl.*

=1. (6.84)

The lengthy details about how to obtain Pr(n) are given in Appendix D.10.

(2) Given the average outage probability vector Pr(n), use the HT** Algorithm to solve
(6.77). Denote the infimum in (6.77) as Inf(Pr(n)) and the solution (X, L) as
(A(n), L(n)). For the given power allocation parameter pair (A(n),L(n)), let p(n)
denote the corresponding channel usage reward vector that results in the average

outage probability vector Pr(n) and go to Step n + 1. a

The iterative procedure of this algorithm is shown in Figure 6.2. For the given average
power constraint vector P* and rate vector R, suppose that the infimum in (6.75) is larger
than 1 and none of the M users can support his given rate without any outage under
his average power constraint. Then by varying the initial channel usage reward vector
p(0) € RY with =M, 4;(0) = 1 in Algorithm 6.3, we will obtain all regular points® on
the boundary surface of the outage probability region O;(P*,R) based on the following

theorem.

Theorem 6.2 In Algorithm 6.3, for each given channel usage reward vector u(0) € Sﬂ/[
with M, 1:(0) = 1, the sequence {Pr(n)} (n > 1) converges to a boundary outage proba-
bility vector Pr* of the target outage probability region Or(P*,R). {Inf(Pr(n))} (n > 1)

is a monotonically increasing sequence and converges to Inf(Pr*) = 1. The sequence

8This assumption is not always true even if the infimum in (6.75) is larger than 1. If there are users who
can support their given rates with zero-outage, we will apply our algorithm to the remaining users. Details
about how to find those users who do not have to declare any outage are given in Appendix D.9.

9In Algorithm 6.8, it is easily seen that each different vector 12(0) € RY with Zf\il £:(0) = 1 will result
in a distinct sequence {Pr(n)}.
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Initialization Step 1 Step 2
Outag\c;eiiglr):ability Pr(0) =0 Pr(1) Pr(2) ... Pr*
Optimal Power J M (Z)l (]) (Z)j /
Allocation

Parameter Pair: (A(0),£(0))  (A(1),£(1)) (A(2),£L(2)) s (AN, L)
GmEE w0 w0 w W

¢ ¢ ) ¢
Inf(Pr(n)): Inf(Pr(0)) Inf(Pr(1)) Inf(Pr(2)) - Inf(Pr*) =1

Figure 6.2: The iterative procedure of Algorithm 6.3.

{{A(n), L(n))} converges to (X\*,L*) that satisfies L* = {G} and

P(Pr*,R, A", {G})
}—)i*

=Inf(Pr*)=1. VI<:< M. (6.85)

The proof of this theorem follows similar steps as that of Theorem 6.1 and is given in

Appendix D.11.

6.7 Auxiliary Constraints on Transmit Power

In Section 6.4 and Section 6.6 the power constraints we considered are average transmit
power constraints of the M users. In practice, sometimes we have to consider the peak
transmit power constraint of each user as well. That is, in addition to the average transmit
power constraint vector P* of the Af users, for each fading state h, the transmit power
vector of the M users must be no larger than P= (151, Py, IsM). Under these auxiliary
constraints, given a rate vector R, the problem of deriving the minimum average common
outage probability of all users or deriving the average outage probability region of the M
users can be similarly solved as shown in Section 6.4, except that now we have to solve the
minimization problems (6.14) and (6.58) subject to the additional peak power constraint

vector P, i.e., the additional constraint for problem (6.14) is:

P(R, h) S f'), Yh € Htrany
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and the additional constraint for problem (6.58) is:
POYR,h,S) <P, VheHs,

where Hg is given in (6.55).

The solution to problems (6.14) and (6.58) under the additional peak power constraint
vector P is given in [3]. That is, for a given power price vector A, assuming that A; > Ao >
<-+ Ay, Vh € Hypgn or Yh € Hg, the transmit power Pi’/\(R, h)(1<i< M)or Pl.,)‘(R, h,S)
(¢ € S) of each user 7 is now obtained through a greedy algorithm. Specifically, Yh € Hran,
by denoting a:z(-k) as the value of Pl A (R,h) in the kth step of the following algorithm, the
solution P, 5 (R, h) for each user ¢ (1 < < M) is obtained after M steps:

o Initialization: Set z.°) = P, for all i (1<i<M). Ifh-x9 ¢ G(R,h) then stop,

i

where G(R, h) is defined in (6.15). Otherwise set k = 1.

e Step k: Let 7*)(.) be a permutation on {1,--+,k—1,k+1,---, M} (note that 7(*¥)(k)

does not exist) such that

Trwmheti) 0 e E-nhaek-1)
Ry N - Rt (k1)
TPy e heto )
- R0 (k41 T R0 (ar)
Then set
) = mz(k_l)’ ifi # k,

h - maxjzp[f(S; U {k}) — Ties, 2], ifi =k,

where f(-) is defined in (6.16) and S; = {z*)(1),---,7%¥)(4)} with 7(*)(k) nonexistent.
Go to Step k + 1.

e Stop after M steps. a

Similarly, Vh € Hs, P, \(R,h,5) (i € S) can be obtained by applying the above algorithm
to the |S| users in set S instead of to the M users. Note that the solution P, y (R,h)
(1 <4< M) in (6.17) and the solution P, 3 (R, h, S) (¢ € S) in (6.59) that can be achieved
by successive decoding are obtained through an algorithm that is actually a special case of

the above greedy algorithm [3]. However, when peak power constraints are imposed on the
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M users, the solution P, y (R,h) or P, x(R,h, S) obtained through this greedy algorithm

cannot be achieved by successive decoding in general.

6.8 Conclusions

In this paper, under the assumption that perfect CSI is available both at the transmitters
and at the receiver, we have obtained the outage capacity regions of fading MACs implicitly
by deriving the minimum common outage probability or the outage probability region for
a given rate vector. Given the average power constraint of each user, we have derived the
power allocation policy that minimizes the common outage probability for a given rate
vector when transmission to all users is turned off simultaneously. When an outage can be
declared for each user individually, we have derived a power allocation strategy to achieve the
outage probability region boundary for the given rate vector. In both cases, similar to the
non-outage scenario, successive decoding is optimal and in each fading state, the decoding
order is determined by the power prices of the users and their fading gains. Iterative
algorithms are proposed for obtaining the appropriate power allocation parameters, which
determine the optimal decoding order and power allocation for each user. By applying
these optimal power allocation strategies, the average power regions that can support a
rate vector with a given common outage probability or an outage probability vector for the
M users are also obtained. When there are additional peak power constraints, the optimal
power allocation for the M users in each fading state can be obtained through a greedy

algorithm, but in general cannot be achieved by successive decoding.
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Chapter 7 Summary of Contributions

The contributions of this thesis are as follows. In Chapter 3 we have proposed two feedback
decoders, a decision-feedback decoder and an output-feedback decoder, for coded signals
transmitted over channels with slow, flat fading. While the decision-feedback decoder was
originally proposed in [42] for finite-state Markov channels, its bit-error-rate (BER) per-
formance for coded signals on fading channels was not investigated. The output-feedback
decoder has a novel channel state estimator and has similar complexity and BER perfor-
mance as the decision-feedback decoder. However, unlike the decision-feedback decoder, it
does not suffer from error propagation and therefore is robust. Based on the extremely poor
performance of the conventional decoder, we have also proposed a simple improvement to
conventional decoding which uses a weighted metric. In order to analyze and compare the
performance of the various decoding algorithms, we extend the sliding window decoding
method, originally proposed in [54] for very noisy AWGN channels, to channels with fading,
which provides a good approximation to the BER performance of decoders with complex
metrics. Note that it is very difficult to analyze the performance of decoders with complex
metrics in fading directly. Simulation results for our decoding techniques are also presented
for several different fading models and modulation types.

In Chapter 4, we have obtained the ergodic capacity region and the optimal dynamic
resource allocation strategy for an M-user fading broadcast channel with perfect CSI at
both the transmitter and the receiver. These results are obtained for code-division (CD)
with and without successive decoding, time-division (TD), and frequency-division (FD).
We have shown that CD with successive decoding has the largest capacity region, while
TD and FD are equivalent and they have the same capacity region as CD without succes-
sive decoding. For CD with successive decoding, it is demonstrated that the water-filling
optimal power allocation procedure can be obtained through a greedy aigorithm. For CD
without successive decoding, we have found that the optimal power policy is to transmit
the information of at most one user in each joint fading state. This policy is also optimal
for TD, though other strategies which allow at most two users to time-share the channel

may also be optimal. A simple sub-optimal power policy is also proposed for TD and CD
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without successive decoding that results in a rate region quite close to the ergodic capacity
region.

In Chapter 5, we have obtained both the zero-outage capacity region and the outage
capacity region of an M-user fading broadcast channel for CD with and without successive
decoding, TD, and FD, assuming that perfect CSI is available at both the transmitter and
all the receivers. The zero-outage capacity region is obtained implicitly by determining
whether the total average required minimum power of the M users for supporting a given
rate vector in all fading conditions satisfies the total average power constraint. For CD with
and without successive decoding, we have proved that the zero-outage capacity region of a
broadcast channel with Nakagami-m fading converges to the capacity region of an AWGN
broadcast channel when m goes to infinity. The outage capacicy region of a fading broadcast
channel is implicitly obtained by deriving the minimum common outage probability or the
outage probability region for a given rate vector. Given the required rate of each user, we
have derived the optimal power policy that minimizes the common outage probability when
transmission to all users is turned on or off simultaneously. When an outage can be declared
for each user individually, we have also derived a general power allocation strategy to achieve
boundaries of the outage probability regions under different spectrum-sharing techniques.
The corresponding optimal power allocation scheme is a multi-user generalization of the
single-user threshold-decision rule.

For an M-user fading multiple-access channel, under the assumption that perfect CSI
is available both at the transmitters and at the receiver, we have obtained in Chapter 6
its outage capacity region implicitly using similar methods as for the fading broadcast
channels. Given the average power constraint of each user, we have derived the minimum
common outage probability and the corresponding optimal power allocation policy for a
given rate vector when transmission to all users is turned on or off simultaneously. When
an outage can be declared for each user individually, we have derived the outage probability
region and the corresponding power allocation strategy that achieves tlie outage probability
region boundary for the given rate vector. In both cases, iterative algorithms are proposed
for obtaining the appropriate power allocation parameters, which determine the optimal
decoding order and power allocation for each user such that the minimum common outage
probability or the outage probability region boundary is achieved. For a given common

outage probability or an outage probability vector of the M users, by applying the derived



160

optimal power allocation strategies, we have also obtained the average power regions that

can support a rate vector with the outage probability constraint for each user satisfied.
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Appendix A Equivalence of the Conventional
Detector with Weighting and the Output-Feedback

Detector with Hard-Decision in Chapter 3

We prove here the equivalence under hard-decision decoding of the conventional decoder
with weighting and the output-feedback decoder for modulation types that have a decision
rule independent of the fade level of the channel.

With hard decision, the received symbol is demodulated to be one of the symbols in the
channel input alphabet x. Denote the size of x as |x| and assume that the symbols in x are
equiprobable. Suppose the demodulation criterion is such that Vn =1,2,--., for any fade
level o, the demodulated symbol y,, can be any of the |x| symbols with equal probability!.
Then in (3.11), since p(z,) = |—>1?I and Vv, >-, e, P(Yn|Tn,v) = 1, the following holds for all
k,k=1,2,--- K:

Y enex J5, P(UnlTn, V)Pa(7)p(z0)dy

P(ynlon € Si) =

Js, Pa(7)dy
— ﬁfsk[ZanXP(yn]$n’7)]Pa(’7)d7
- fskpa(’Y)d’Y
N ﬁ (A1)

which means that all the diagonal terms of B(y,) in (3.10) are equal to ’—>1<—| Therefore, we

can simplify (3.10) as
Pn+l = pnP. (A2)

Since P is the matrix of transition probabilities for the K channei states, which form an
irreducible, ergodic Markov chain, if the initial probability vector p; is chosen to be the
stationary distribution of the states, then p, will be the stationary distribution for all n. If
p1 is chosen arbitrarily, then p, will converge to the stationary distribution of the channel

states as n increases ([80], pp. 393-394). Thus, the metric (3.12) degenerates to the metric

1For example, the demodulation criterion for MPSK symbols satisfies this condition but that for MQAM
does not.
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(3.14) and the equavalence of the output-feedback decoder and the conventional decoder

with weighting is proved.
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Appendix B Proofs in Chapter 4

B.1 Proof of Theorem 4.1

The achievability and converse of the capacity region C(P) in (4.1) is proved in Section B.1.1
and Section B.1.2, respectively, while the convexity of this capacity region is shown in
Section B.1.3. Since in the converse proof, the capacity of a probabilistic broadcast channel

is used, we prove the capacity formula of a probabilistic broadcast channel in Section B.1.4.

B.1.1 Achievability of the Capacity Region

We prove the achievability of the capacity region C(P) in (4.1) by proving the achievability
of Ccp(P) in (4.2) for each given power allocation policy P € F.
VP € F, for j =1,2,---, M, since Pj(n) is the transmit power allocated to User j for

the joint fading state n, by denoting

A Pj(n)
Ci = Fa [B e (1 " n;B+ YL, Pi(n)i[n; > m])} ’ (51

we need to prove that for any given R = (R1, Rs,...,Rym) satisfying R; < Cj, j =
1,2,---, M, there exists a sequence of ((2"&’", onfzn .. onRun) n) codes with rate R; , —
R; (j =1,2,---, M) and the probability of error ¢, — 0 as n — oo. The proof is similar to
that of the achievability of the single-user fading channel capacity [72].

Fix any € > 0, and let Rj = C; — 3¢, 1 < j < M. Define

vi=—, §=0,1,2,---,ml. (B.2)
m

Since the time-varying noise density n; = gf of each user ranges from 0 to oo, we say that
a sub-channel is in state S;,42 = 0,1,2,---,ml if v; < n; < vi41, where vy,711 = 00. The set

{vi}?;lo discretizes the fading range of each sub-channel into mI + 1 states. Thus there are

(mI+1)M =N (B.3)
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discrete joint channel states. We denote the kth (0 < k < N — 1) of these N states as
Sk = [Satk1)> Satk2), - Se(kan))> where [6(k, 1), $(k,2), - -, (k, M) is the base-(mI +1)
expansion of k, with ¢(k, 1) being the least important component. That is, 0 < ¢(k, j) < m[
forall 1 <7< M and

k=) ¢(k,j)- (mI+1)77

M=

Il
—

J
Note that a channel state n € S, if and only if n; € Ssk,j) V1< j < M.

Over a given time interval [0, n], let £, be the number of transmissions during which the
channel is in the state Sy, and let the transmit power allocated to User j (j = 1,2,---, M)
be

Pj(sk):x?éislipj(n)’ k=0,1,2,---,N — 1. (B.4)

By the stationarity and ergodicity of the channel variation,

i—k —p(Sg) asn— oo (B.5)

Consider a time-invariant AWGN broadcast channel with sub-channel noise variances vy 1),
Vg(k,2)s s Ug(k,pr) and transmit power Py(Sk), Po(Sk), - -+, Prm(Sk) of the M users. Note
that according to (B.2), vgk;) = ¢—(:€nﬁ), V1 < j < M. For a given n, let & = |[np(Sk)| =
np(Sy) for n sufficiently large. From {78], we know that for

P;(Sy)
ok ) B + Ty Pi(Sk) 1 vg(k ) > Vo(k,)]

Rjyfk:Blog<1+ ), Jj=12,---,M,
there exists a sequence of ((25’°R1*5k,25’°R2'Ek,---,QEkRM’Ek),ﬁk) codes {xwk[i]}fil, wp =
(W1 ks Wk -y WME), Wik = 1,2, 2%+Fiex with error probability €, ; — 0 as & — oco.
The message index w € {1,2,---,2"Rlv"} X {1,2,---,2"R2,"} X o+ X {1,2,---,2"RMv"}
is transmitted over the N channel states as follows. We first map w to the indices {wk}i\;_o1
by dividing the nR;, bits into sets of & Rj¢, bits for j = 1,2,.... M. We then use the
multiplexing strategy 72] to transmit the codeword zw,[-] whenever the channel is in state
Sk. On the interval [0, n], the kth channel state Sy is used & times. We can thus achieve

the transmission rates

N-1

Rjn = ZRj,skg—k

k=0 n
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N-1
= ZBlog (1+ o Pj(Sk) )5_’“,
k=0 Vg (k) B + 2551 Pi(Sk)1[vg(k,5) > Ve(ki)] )

The average total transmit power for the multiplexed code is

N-1 M &
Po=3 3 Pi(S0)Z-
k=0 j=1

From (B.5) and (B.6), it is easily seen that for j =1,2,---, M,

lim = S Blog <1+ Fi(Se) : )p(S )
jm = k)
noeo =0 Vo(k) B + 1 Pi(Sk)1[vg(kj) > Va(k)]

So for € fixed, we can find n sufficiently large such that

Rjn > NiBlog (1 + Fi(Se) );p(s )
jn k) — €.
’ o Vo) B + ity Pi(Sk)1vg(r ) > Yok

Moreover, from (B.4), it is clear that the power control policy satisfies the average total

power constraint for asymptotically large n:

N-1 M & N-1 M
DI ILICESEED IO DL TCRY IR
M N-1

IN
g
N

S

e
5
=
g
2

IA
zﬁl

The error probability of the multiplexed coding scheme is bounded above by

N-1
e < Zen,k—)O as n — 0o,
k=0
since n — oo implies & — oo, Vk = 1,2,---, N — 1. Thus, it remains to show that for fixed

¢ there exist m and I (note N = (mI + 1)) such that

P;(Sk)
Va(hg) B + L1 Pi(Sk) L vg(k,g) > vkl

)p(Sk) >Cj - 2e.

N-1
Z Blog (1 +
k=0
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From the definition of C; in (B.1), it is easily shown that for j =1,2,---, M,

o Pj(n)
G = b [B o8 (1 i n;B+ ¥, ;’i(n)l[nj > ni]>]
< En [Blog (1 + %):’
J
% Blog |1+ Ey (%2)}
J
b
< o0,

where a follows from Jensen’s inequality and b follows from the fact that the average SNR

for each user is finite. So for fixed e there exists an I, such that

Pi(n)
EnEA(Ie) I:B log (1 + 'n,jB T Ef\il F’i(n)l[nj N nl]>:| < €, (B7)

where A(I) £ {n:n; > I,Vj = 1,2,---, M}. Moreover, by defining Ny = (mI)™, for I

fixed, the monotone convergence theorem [81] implies that

lim NilBlog (1 + - F;(S1) )p(Sk)
Vo(k,) B + 2iz1 Pi(Sk)vgkj) > Vo(h,i)]

m—0o0

mI—1 mI-1 ml—1

S
= hm Z Z . Z Blog<1+ vor B+ F;(Sk) )x

¢>(k 1)=0¢(k,2)=0  ¢(k,M)=0 P(Sk) [%(k’j) > %(k’i)}
p(n D Ug(k,g) <n; < v¢(k,j)+1,V1 <j< M)

ml—-1 mi-1 mi—1

Vo(k,1)+1  [Vp(k,2)+1 Vo (k,M)+1
= 1m > ¥ - Z / /
Vg (k,M)

T ok 1)=06(k2)=0  $(k,M)=0"Vek1)  Vo(k2)
Pj(n)
n;B+ oM, Pi(n)1n; > ni]

_ Pj(n)
- ED¢A(I) [B og (1 i "jB + Ziﬂil Pi(n)l["j > nz]ﬂ . (B.S)

Blog (1 + ) dF(n)

Thus, using the I, in (B.7) and combining (B.7) and (B.8) we see that for the given € there
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exists an m sufficiently large such that

(mI)M -1
P;(Sy) )
Z Blog <1 + ! p(Sk)
=0 Va(k) B + Sy Pi(Sk)1[vg(k,5) > va(k,)]

Py(n) )] >
n;B + Zf\il Pi(n)1[n; > n) ’

> En [Blog (1 +

which completes the proof. O

B.1.2 Converse

Suppose that rate R is achievable, then we need to prove that any sequence of ( (2nfu gnRz
..., 2nRay n) codes with average total power P and probability of error €, — 0 as n — oo
must have R; < Cj, j = 1,2,---, M, where C; is given in (B.1). We assume that the codes
are designed with a priori knowledge of the joint channel state n. Since the transmitter and
receivers know state n up to the current time, this assumption can only results in a higher
achievable rate.

As in the proof of the achievability in Section B.1.1, we say that the jth sub-channel
is in state S;, ¢ = 0,1,2,---,mlI if the time-varying noise density n; of User j satisfies
v; < nj < vjt1, where v; is defined in (B.2) and vy, 741 = 0o. Thus, the set {vi}:'go discretizes
the fading range of each sub-channel into 121 +1 states and there are N = (mI+1) discrete
joint channel states. We denote the kth (0 < k < N —1) of these N states as Sy = [Sd,(k‘l),
Sok,2)r * s S¢,(k’M)], where [¢(k, 1), ¢(k,2),- -, d(k, M)] is the base-(mI + 1) expansion of
k, and Sy jy is the jth sub-channel state. That is, 0 < d(k,j) <mlforalll<j<Mand

M

k=Y o¢(k,j)- (mI+1y"1
i=1
Note that a channel state n € Sy, if and only if n; € Sy 5, V1 <7 < M.
Over a given time interval [0, n], let £ be the number of transmissions during which the
channel is in the state Si, let Q(Sx) be the random subset of [1,2,---,n] at which times

the channel is in the state S, and let Q be uniformly distributed on [1,2,---,n]. By the
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stationarity and ergodicity of the channel variation,

Fori=1,2,.---,n,let Pj(")(z') be the transmit power allocated to User j at time ¢ and define
P;(Sk,n) = Eq [P (Q)IQ € 2(S))] .

Since for any message from the base station to the M users, there is a power constraint on

the corresponding codeword, it follows that for each n,

N-1 M

> > Pi(Skmp(Si) < P.
k=0 j=1
Therefore, for all Sy such that p(Sg) # 0, P;(Sg,n) are bounded sequences in n. Thus,

there exist a converging subsequence and a limiting P;(S;) such that
P;(Sg,n) = Pj(Sk) as n — oo.

Moreover,
N-1

M
> > Pi(Su)p(Sk) < P. (B.9)
k=0 j=1

For a given power allocation policy P, assume that P;(S) is the transmit power assigned
to User j when the time-varying broadcast channel is in channel state Si. Let Fy be the set
of all the power allocation policies which are piecewise constant in each channel state and
which satisfy the average total power constraint (B.9). Assuming that the noise densities
of the M users in each channel state Sy (0 < k < N — 1) are constants and are denoted
as ny(k),na2(k),---,nam(k), the N channel states Sp,S1,S2,---,Sny_1 can be viewed as N
AWGN broadcast channels where at any given time only one of these N channels is in op-
eration and the probability that the jth broadcast channel is in operation is given by p(S;),
V1 < 7 < N. We call this the probablistic broadcast channel. We will show in Section B.1.4
that if R(®Y) is achievable on the probablistic broadcast channel consisting of the N broad-
cast channels Sy, S1,Sa, -+, Sy_1 with probabilities p(So), p(S1), p(S2),- -+, p(Sn-1) under

the assumption of perfect transmitter and receiver CSI (i.e., at time ¢ it is known at both
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the transmitter and receivers which broadcast channel is in operation), then

RWe |J cp), (B.10)
PeEFN

where

N-1

P;(Sy) )
C(’P)={R~_<_ p(Sk)Blog<1+ . ),15351\[}.
’ é n;(k)B + 12, Pi(Sk)1[n; (k) > ni(k)]

Define

N-1
5 P;(Sk) .
CP)Z{R'S p(Sk)Blog<1+ 1 ),1S]SM}.

( ’ gj Vo(k,) B + L1 Pi(Sk) L vg (k) > Ve(hsi)]

Sincefor 0 < k< N-land1<j< M,

V() < (k) < Vg(k,j)+1s

it is clear that

C(P) CC(P). (B.11)

VP € Fn, let
N-1
Pi(n)= Y Pi(Sy)lne S, 1<j<M.
k=0

According to the power constraint (B.9), it is obvious that {Pj(n)}jl"i1 satisfies

M
En [Z Pj(n)} <P.
j=1

Thus, P € F and

U €CepP) < U Cen(P), (B.12)
PeFy PeF

where Ccp(P) is given in (4.2). Taking the limit of the left-hand side of (B.12), we obtain

lim |J Cep(P) S | Con(P). (B.13)
N=oo pern PeF
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For the time-varying broadcast channel, if R is achievable, then

Re lim {R(N) rRMe |J C(P)}_ lim U cm). (B.14)
PeFN P€.7:N
From (B.11) and (B.14) we have
R e hm U ¢m).
'PE}-N
That is,
C(P) C Nim U ¢, (B.15)
'PE.’FN

where C(P) denotes the capacity region of the time-varying broadcast channel. Combining

(B.13) and (B.15) with the achievability result which indicates that

U Cen(P) C c(P),

PEF
we obtain
lim U Cop(P U Cop(P ) C lim U é('P)
N=oo p ey PeF N=o0 pern

Since the upper bound equals the lower bound by the monotone convergence theorem [81],

it is clear that

C(P) = U Cop(P). O
PeF

B.1.3 Convexity of the Capacity Region

We use the idea of time-sharing to prove that if R € C(P) and R’ € C(P), then AR + (1 —
MR’ € C(P) for 0 < X < 1. We know from the proof about the achievability of C(P) that
for a given rate R € C(P), there exists a set of codebooks for different channel states and
R can be achieved by using the multiplexing strategy. For R’ € C(P), there exists another
set of codebooks for different channel states. We can construct a third set of codebooks

to achieve the rate AR + (1 — A\)R’ by using the codebook from the first set of codebooks
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for the first A, symbols and using the codebook from the second set of codebooks for
the last (1 — A\)&; symbols in each channel state Sy, where £, and S are as discussed in
Section B.1.1.

Since the new codebook in each state Sy is constructed with a rate AR;¢, +(1 - AR,
by using the new set of codebooks, the rate of the new code is AR + (1 — A\)R'. Because
the overall probability of error is less than the sum of the probabilities of error for each of
the segments, the probability of error for the new code goes to 0 for n large enough. It is
obvious that the new code satisfies the total power constraint, since each of the component

codes satisfies this constraint. Therefore, the rate AR + (1 — A)R’ is achievable. O

B.1.4 Capacity of a Probabilistic Broadcast Channel with CSI

In Section B.1.2, while proving the converse of the capacity region in Theorem 4.1, we
have used the capacity of a probabilistic broadcast channel consisting of N discrete AWGN
broadcast channels with given probabilities under the assumption that perfect CSI is avail-
able at both the transmitter and the receivers. Now we prove the capacity formula of
a probabilistic broadcast channel composed of two AWGN broadcast channels with given
probabilities. The result can be easily generalized to N (N > 2) channels.

Assume that two discrete degraded memoryless AWGN broadcast channels

(X1, p(ylz)p(21ly), V1 X 21)

and

(X2, p(22]x2)p(ya2l22), V2 % Z2)

are as shown in Figure B.1. In the first channel (Channel 1), the Gaussian noises are
denoted as 1 and vq9, the noise densities of which are Nj; and Njs, respectively. In the
second channel (Channel 2), the Gaussian noises are 121 and 22, the noise densities of which
are No; and Ngg, respectively. Let N3 = Ny; + Nip and Ny = Nj; + Nay. We define the
probabilistic broadcast channel consisting of two AWGN broadcast channels as a channel

(X,p(y, 2|z),Y x Z) with two outputs, where ¥ = X1U X2, Y = Y1 UM, Z = Z1U 25, and

p(y1|z1)p(21]y1), with probability p.,
p(y, z|z) = , A
p(z2]x2)p(y2l22), with probability p. =1 — p..
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1431 NN(O,NH) V12 NN(O,NH)

L n z

Channel 1: X @ (D N1 = Ny + Ni2
22 Y,

Channel 2: X, ‘/\D C) Nz = Naj + Nap

vo1 ~N(0,Na1) w2 ~ N(0, Na2)

Figure B.1: Probabilistic broadcast channel: Channel 1 in operation with probability p.,
and Channel 2 in operation with probability p..

Denote C(P/N) as the capacity of an AWGN channel with signal-to-nuise ratio P/N,
i.e., C(P/N) = }In(1 + P/N). Let R; and R; be the transmission rates of the particular

information to Y and Z respectively, and let Ry be the transmission rate of the common

information. V0 < aj, a9, 8 <1, let @y =1—aj,as=1—as, =1—- 0.

Theorem B.1 The capacity region of the probabilistic broadcast channel in Figure B.1 is

defined by:

Ce = {(Ro,Ri,Rs): Ro < pcC(a18P/(N11 + @18P)) + p.C(c2BP/(Ny + a2P)),
Ro < pcC(a1fP/(Ny + @16P)) + p.Ca2BP/(Nay + &28P)),
Ro + Ry < p.C(BP/Nu1) + pcC(e2BP/(N2 + a28P)),
Ro + Ry < pcC(cnBP/(N1 + @18P)) + p.C(BP/Na1),
Ro + Ry + Ry < p.C(BP/N11) + pc[C(c2BP/(N2 + @2BP)) + C(@28P/Na1),
Ro + Ry + Rz < pc[C(a1BP/(N1 + &18P)) + C(&18P/Nu)] + pc.C(BP/Na),

Voﬁal,amﬁﬁ 1}7 (B16)
assuming that the total average power is P and perfect CSI is available at both the transmitter
and the receivers.

Note that this capacity region is similar to that of a parallel broadcast channel composed

of two broadcast channels [82, 83], except that in the parallel case, both p. and p. equal 1.
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In the case of independent rates (i.e., Ry = 0), (B.16) becomes

Cc = {(R1,R2): R1 < p.C(BP/Nn)+ p.C(a2BP/(N2 + a2BP)),
Ry < p.C(a1P/(N1 + @1 8P)) + pc.C(BP[Na1),
Ry + Ry < pc.C(BP/Nn1) + pc[C(a2BP/(N2 + @2fP)) + C(a28P /N2y )],
R+ Ry < p[C(a1BP/(N1 + @1 8P)) + C(a18P/N11)] + p.C(BP/Nay),
Y0 < a1, 02,8 < 1}, (B.17)

which is equivalent to

Cc = {(Ri,Ra): Ry < p.C(a1BP/N11)+ p.C(c2BP /(N2 + a2P)),
Ry < p.C(c18P/(N1 + @18P)) + p.C(a28P/Nay),
VOSal,az,ﬁS 1}. (B.IS)

The equivalence of (B.17) and (B.18) can be similarly shown as in [82, 83].
Proof of Theorem B.1:

Achievability: For fixed a;, a2,  we can achieve any triple (Ry, R1, R2) € Cg by first
dividing the total power P into the part 3P used in the first broadcast channel and 5P
used in the second. Then BP is divided into the power a; 3P used to transmit the common
information to Y and &3P used to transmit the particular information to Y; AP is divided
into the power as3P used to transmit the common information to Z and asBP used to
transmit the particular information to Z. The details of the proof of achievability are
standard and therefore omitted.

Converse: We know that a ((27f0 2nf1 97F2) 1) code for a broadcast channel with

perfect CSI at both the transmitter and the receivers consists of three sets of integers
MO = {1’27 T '72nR0}3M1 = {1’2, cc 'aanl},MZ = {152a o ‘a2nR2}7

a coding mapping

X : Mo x My x My = X7,
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and two decoding mappings
g1: V" = Mo x My, g1(Y|V) = (Wo, W),

g2: 2" = Mg x Ma, g2(Z[V) = (W, Wa),

where V = (1, V3, - -+, V;,) represents the CSI, i.e., for 1 < i < n, if V; = 0, the first AWGN
broadcast channel in Figure B.1 is the current channel state; if V; = 1, the second one in

. . A
Figure B.1 is the current channel state. Therefore, by denoting n* = 3", V;, we have

A
The set of codewords is {X(w|V) : w = (wo, w1, w2) € Mg x M1 x Ms}. Integer Wy
represents the common part of the message and W; (i = 1,2) represents the independent
part of the message. Assuming that the distribution on (Wy, Wy, W3) is uniform, we define

the mean error probabilities for decoders g; and g2 as follows:

1
e Z p{g1(Y|V) # (wo, w1)|(wo, w1, w2) transmitted},

&l ™ on(Ro+Ri+Ra)
wo, w1, w2 EMgx M X Ma

P}y = m z p{92(Z|V) # (wo, w2)|(wo, w1, w2) transmitted}.
wo,w1,w2 EMox M1 xMa

Therefore, we say that a rate triple (R, R, R2) is achievable for the broadcast channel if
there exists a sequence of ((2*%, 271 2782) ) codes with max{ P, Py} — 0 asn — oo.

Assume that we are given an arbitrary sequence of codes that leads to the triple of
rates (Rp, R1, R2). We will show that there exist a;, ap, and B3 such that (Ro, R1, R2) €
Cg in (B.16). The proof follows similar steps as that of the spectral Gaussian broadcast
channel [82, 83]'. First define random vectors X;, X2, Y1, and Y2 as follows: X; =
(X1,1,X1,2,- ", X1,n—n+) is arandom vector consisting of the (n—n*) components of X(w|V)
corresponding to the casc where the first AWGN broadcast channel in Figure B.1 is the

current channel state; Xo = (Xg1,X22, -, X2n+) is a random vector consisting of the

other n* components of X(w|V). The random vectors Y1, Y2, Z1, and Zy are similarly

In particular, the derivation of equations (B.19), (B.26), (B.27), and (B.33) are identical to those in
[82, 83]. We include them for completeness since [82] and [83] are not readily available.
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defined. From Fano’s inequality we have

H(Wy, Wh]Y,V) < P, 1n(R0+R1) +1 —nen 1

H(Wg, WQIY V) <P 2n(R0 + Rz) + 1 = N€n 2.

Thus,
nRy = H(Wo|V)
= I(WO;YI»Y2|V)+H(WO|Y17Y2aV)
< I(Wo; Y1, Y2|V) +neqn
= I(Wp;Y2|V)+I(Wo;Y1|Y2,V) + neya
< I(Wo, Wi Y 2| V) + I(Wo, W2, Y2; Y1|V) +neq
< I(WO,Wl,Zl;Y2|V)+I(W0,W2,Y2;Y1|V)+nen,1
= H(Y2lv) - H(Y2|W07W17Z17V)
+ H(Y1IV) — H(Y1|W0,W2,Y2,V) + nen 1. (B.lg)
Let
- A1 n'
ﬂngz w{|X2z }
Then since
P > -ZEW{IX(WIV)I}
=1
1 n—n* 0 1 n* )
= - Eo{|X1:(W)P} + = Y Ew{|X2:(w)*}
n o nia
1 n-n* ) .
= = Z Ew{|X1:(w)|*} + 8P,
we obtain
1" n* _ L
m Z w{lxlzw)l} < P-pBP

e
'
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Therefore,

H(Y3|V) <n*- —;—ln[Qwe(BP + o), (B.20)

and

H(Y1|V) < (n—n") % In[27e(BP + Niy)]. (B.21)

It is easy to see that there exists aj, a2 € [0, 1] for which

2 _ -
exp [;H (Z2|Wo, W1, 24, V)] = 2ne(@9BP + Nyy), (B.22)
2 _
exp [n —— H(Y1|Wo, W2,Y2,V)] = 2me(@ 8P + Nyy). (B.23)

Combining (B.22) and (B.23) with the conditional entropy inequalities [78]

* 2
H(YalWo, Wi, 21, V) 2 - In {exp | = H(ZalWo, W1, 22, V)| + 2mens |

*

- 2
H(Z1|Wo, Wa, Y2, V) > 2" ln{exp[ H(Y1|WO,W2,Y2,V)] +27reN12},

*

2 n—n
we have
H(Y3|Wo, Wy, Z1,V) > % In[27e(@BP + Na)], (B.24)
H(Z1|Wo, Wa, Y2, V) > “—" In[2re(@a 8P + Ny)]. (B.25)

Substituting (B.20), (B.21), (B.23), and (B.24) into (B.19), dividing both sides by n and

then taking the limit as n — oo we obtain

Ry < pcC(a1BP/(N11 + &18P)) + pcC(a2BP /(N2 + G25P)).
Similarly, we can show that

Ry < pc.C(a18P/(N1 + @18P)) + p.C(asBP/(Na1 + a2 3P)).
Furthermore,

n(Ro+ R1) = H(Wy, W1|V)
= I(Wo,W1;Y1,Y2|V)+ H(Wy, W1|Y1,Y2, V)
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< I(Wo, W13 Y1, Y2|V) +nen
= I(Wo, W1;Y2|V) + I(Wo,W1;Y1|Y2, V) + nen s

< I(Wo, W1, 21; Y2|V) + I(X1; Y1 |V) + nen,t, (B.26)

where the last inequality follows from the fact that

I(Wo, W1, Y2|V) < I(Wo, Wi,Zy;Y2|V)

and

I(Wo, W1;Y1|Y2, V)

IA

I(Wo,W1;Y1|Y2, V) + I(Wy; Y1 |Wo, W1, Y2, V)
= H(Y1|Y2,V)— H(Y1|Wy, W1,Y2,V)
+ H(Y1|Wo,W1,Y2, V) — H(Y1|Wo, Wi, Ws, Y2, V)
= H(Y1|Ys2, V) — H(Y1|Wo, Wi, Wa, Ya,V)
< H(Y1]V) - H(Y1]X41, V)

Since

IX1;Y1|V) = H(Y1|V) - H(Y1|X,,V)
n—n’ n—n"
2 2
= (n—n")C(BP/Nn), (B.28)

In[2re(BP + N11)] — In[2meNyi]

substituting (B.20), (B.24), and (B.28) into (B.26), we obtain
n(Ro + Ry) < (n —n")C(BP/N11) + n*C(a28P/(N2 + &B8P)) + nep 1. (B.29)
Thus, dividing both sides of (B.29) by n and taking the limit as n — oo, we have

Ry+ R < ch(ﬂp/Nu) +ﬁcC(OZQBP/(N2 + O-zQBP))
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Similarly, we can show that

n(Ro + Rz) < I(WO, Wa,Yo; leV) + I(X2; ZzIV) + neno

< (n—n*)C(a1BP/(N1 + &18P)) + n*C(BP/N21) + nena, (B.30)
and consequently,
Ry + Ry < p.C(e1BP/(Ny + a18P)) + p.C(BP/Nay).

Finally, let us bound the sum of rates from above. Assume that for some § > 0, we have

either
Ro + Ry + Ra2 > p.C(BP/N11) + p.[C(aaBBP/(Na + @3BP)) + C(azBP/Na1)] + 6, (B.31)
or
Ro + Ry + R2 > p[C(a1BP/(N1 + &18P)) + C(818P/N11)] + p.C(BP/N2y) + 6. (B.32)
we have

n(Ro + Ry + R»)
= H(Wy, W1|V) + H(W2|V)

I(Wo, W13, Y1, Y| V) + H(IWo, W1|Y1,Y2,V)
+ I(WQ; Z,, Zz]V) + H(ngzl, Zs, V)

I(W(), Wi; Yy, Y2|V) + I(WQ; Z,, Z2|V) + Tl(En,l + en’g)

IAe AR

IWo, W1;Y1, Y2 V) + I(Wa; Zy, Z2|Wo, W1, V) + n(en,1 + €0,2)
I(Wo, W1; Y2|V) + I(Wo, W1;Y1|Y2, V) + I(Wy; Z1|[Wo, W1, V)

I

+ I(Wo; Z2|Wy, W1,21, V) + n(en,1 + €n,2)
= [I(WO, Wl7 Z17Y2|V) - I(zl;Y2lW07 W],V)] + I(WOa Wl;Y1|Y2,V)
+ I(Wo; Z1|Wo, W1, V) + I(Wa; Z2|Wo, W1,Z1, V) + n(en1 + €n2)

IA®

IWo,Wh,Z1;Y2|V) — I(Zy; Y2 [Wo, W1, V) + I(Wo, W1;Y1]|Y2, V)
+ I(Wa, Y2;Z1|Wo, W1, V) + I(Wy; Z2|Wo, W1,Z1, V) + n(en1 + €n2)
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= I(Wo, W1, Z1;Y2|V) + I(Wy; Z2|Wo, W1, 21, V) + I(Wo, W1; Y1[|Y2, V)
+ [I(Wa, Y2;Z1|Wo, W1, V) — I(Z1; Y2 |Wo, W1, V)] + n(en1 + €n2)
= I(Wo,W1,Z1;Y2|V) + I(Wy; Za|Wy, W1,Z1, V) + I(Wo, W1;Y1|Y2, V)
+ I(Wo; Z1{Wo, W1, Y2, V) + n(en 1 + €n2)

A

I(Wo, W1,2Z1;Y2|V) + I(Wa; Z2|Wo, W1, Z,1,V)

+ [I(Wo, W1; Y1 |Y2, V) + I(Wa; Y1 |Wo, W1, Y2, V)] + n(en1 + €n2)

IA®

I(Wo, W1, Z1;Y2|V) + I(Wa; Z2|Wo, W1, Z4, V)
+1(Xa5 Ya[V) + nleny + en2), (B.33)
where ¢ follows from Fano’s inequality; b is due to the independence of Wy, Wy, and W5 so

that
I(Wa;21,Z2|V) < I(Wo;Zy,Z2|Wy, W1, V);

¢ is because

I(Wo; Z1|Wo, W, V) < I(Wo, Y23 Z1|Wo, W1, V);

d is a result of the degraded nature of the channel so that
I(Wa; Zy|Wo, W1, Y2, V) < I(Wa; Y1 |[Wo, W1, Y2, V);
and e follows from (B.27). Similarly, we can show that

n(Ro + R1 + Rz)
S I(WO’WQaYZ;lev)+I(W1;Y1[WO’W23Y23V)

+ I(Xz; ZzIV) + n(en,l + Gn,2). (B.34)
Combining (B.26), (B.29), and (B.33) we obtain

n(Ro + R1 + R2)
< (n — n*)C(BI—’/Nu) + TL*C(QQBP/(N2 + &QBP))
+ I(Wo; Z2|Wo, W1,Z1, V) + n(en1 + €n,2)

= (n - n*)C(BP/Nu) -+ n*C(agﬁ_P/(Ng + 5&25}3))
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+ H(Z2\Wo, W1,2,, V) — H(Z2|Wo, W1,W2,Z1,V) + n(en,1 + €n2)
= (n—n*)C(BP/N11) + n*C(a2BP /(N2 + a23P))

n*
+ H(Zleo, Wi, Z,, V) - —2— ln[27reN21] + n(en,l + En,g).
Now if we assume that inequality (B.31) is satisfied, we obtain
.1 p, R
Jlim ~H(Za|Wo, W1, 21, V) > % In[2me(Noy + a23P)] + 6.

However, this contradicts (B.22) as n — oo. Similarly, assuming that inequality (B.32) is

satisfied, we obtain from (B.30) and (B.34) that
1 _
Jlim ~H(Y1|Wo, W2, Y2,V) > £ Inf2me(N1 + &@8P)] +6,

and this contradicts (B.23) as n — oo. Thus the triple (Rp, R1, R2) could satisfy the six

inequalities in Theorem B.I for some a1, ag, and 3, i.e., (Ro, R1, Rp) € Cg. a

B.2 Interpretation of the “Water-Filling” Procedure for CD
with Theorem 4.2

In the two-step water-filling power allocation procedure described in Section 4.3.1, we as-
sume that

Na(1) < Ngr2) < - < Ap(M)-

For any user 7(i) for which 3j such that i < j < M and 272 < #70) " we know that

Rr(i)y = Tx(5)’

Hax(i) < Bx(j)- Thus, Vz > 0, uﬂ(i)(z) < u,,(j)(z) and according to Theorem 4.2, no power

should be assigned to these users (i) and we will remove them from further consideration.
After this initialization step. for the remaining K users, since V1 <1 < K, n,1) < ng;)

23 Ho(i . . . .
and #ﬁ: > #ﬁi;, for the users p(i) with p,;) < (), it is clear that Vz > 0, u,;y(2) <

u,(1)(2) and we do not assign power to these users. For other users p(¢) with u,u) > p,01),

up(1)(2) and u,(;) will cross each other once at

_ Moy B = o)) B
Fp(i) — Ho(1)

Ze;

1
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Therefore, u*(2) = uy1)(2) if and only if z € [0, 2], where

A .
ze= min {z;}.
Bo(i)>Ho(1)

Note that u,(;)(2) equals zero at z = ""/\(1) — ny(1)B and, as shown in the proof of Theorem

4.2, u*(-) and up(;(-) (V1 <@ < K) are all decreasing functions. Thus, according to Theorem
4.2, if

P* . (n) Ze, if up1)(2e) >0, ie., 2. < [”"/\“) — np(l)B]+,
pin) =
P [@ — np(l)B]+ , otherwise.

That is, P;(l)(n) is as given in (4.7). Moreover, if
. Hp(1) : Ho(1)
P = - B £, 2o > | ALY — B| ,
o) (1) [ e L’ 1€, Ze =2 [ > T T(1) L
then

Hp(1)
52—y B]

u*(z) <0 forall z > [

which means that no more power should be allocated to any user in the state n. Otherwise
if P;(l)(n) = 2., then at least for z, < z < [% - np(l)B]+, u*(z) > 0 and more power
should be allocated to state n. However, in this case, since for all z > 2, u*(z) > up(1)(2),
the power for User p(1) in state n has been allocated and P;‘(l)(n) becomes the interfering
power for each of the remaining K ~ 1 users {p(i)}X,. Now our maximization problem
is reduced to decide which one of the K — 1 users should be chosen to transmit to at an
interference level z = P;(l)(n). This new problem is equivalent to assigning power for the

K —1 users with their corresponding noise levels n

o(i)B all increased by P;(l)(n). Therefore,

the iterative water-filling power allocation procedure follows.

B.3 Proof of Theorem 4.3

Achievability of the Rate Region: The proof of the achievability follows along the same

lines as that for the capacity region of CD given in Appendix B.1 and is therefore omitted.

Convexity of the Rate Region: V7 >0, a > 0,n > 0, let
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R(7,a) 2 (1+ i).
Tn

Since
O’R o?/T
32" " (rntap <% (B-35)
0%R T
W = — (—T“m <0, (B36)
0°R 0’R o
= (B.37)

dr0a  dadr  (rn+ a)?’

from (B.35)-(B.37), we obtain the Hessian matrix

9°R  9°R
or? T8
= 0.
8°R  8°R
dadr 8a’

Therefore, R(7,a) is a concave function of (r,a). That is, VO < A < 1, V1, > 0, o5 > 0,
i=1,2,
R(To,ao) > /\R(Tl,al) + (1 — /\)R(Tg,az), (B.38)

where 70 = A1y + (1 — A)72, ag = Aap + (1 — A)ag. This result will be used in the following
to prove the convexity of the capacity region.

VR,R' € C(P), 0 < XA < 1, we need to show that AR 4+ (1 — A)R' € C(P). Let P
and P’ be the two power policies corresponding to the rates R and R/, respectively. In
a given channel state n, according to the two policies, the transmit power and fractions
of transmission time allocated to User j (j = 1,2,..., M) are P;(n) and Pj(n), 7;(n) and
7;(n), respectively. Therefore, for the two power policies, the achievable rates for User j in

the state n are

R;(n)[7j(n), Pj(n)] = 7;(n)Blog (1 + I:LJ—](EJ> , (B.39)
and
Pl(n
Rl P = oo 1+ 25, (B.40)

respectively. (B.39) and (B.40) can also be expressed as [84]:

() (1), A ()] = 7 (m) B lo 4;(n)
R0l Ay = ) o (14 2 )
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Rj(n) [T{(n) A’-(n)] = T'-(n)Blog (1 + —A9~(n)__>
7 J [ | J T]'(n)nJB )

where Aj(n) = IDj(n)Tj(n) and A;(n) = }3]{(11)7-]’.(11), ji=12,---, M.
If we define a third power policy P” such that in each channel state n, the transmit

power P;'(n) and fraction of transmission time 7}'(n) allocated to User j (j = 1,2,..., M)

A7j(n)Pj(n) + (1 — A)7(n) Pj(n)
Aj(m) + (1 = A)7j(n) ’

P]{'(n) =

and

7j/(n) = A7j(n) + (1 - A)7j(n),

respectively, then

e

A%(n) P/ (n)7](n)
= A7j(n)P;(n) + (1 - A)7j(n)Pj(n)

= ;) + (1 - N)A(n).

Since

M M
E. [Z PJ('(n)T;'(n)} = E, Iiz AT;(n)Pj(n) + (1 — )\)Tj'(n)PJ'(n)]
i=1

j=1
< P,

we know that P” € C(P). Moreover, it is proved in (B.38) that for j = 1,2,..., M,

(n)|T, = TBI ( @ )
Ry(mlr,a] 2 7log (14—
is a concave function of (7,a), i.e., VYn € N,
R;(n)[r] (n), Aj(n)] > AR;(n)[7;(n), A;(n)] + (1 — M) R;(n)[7}(n), A}(n)].

Therefore, AR + (1 — M)R’ € C(P). O
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B.4 Proof of Lemma 4.1

In the following, P, P;, 75 (j = 1,2), Pa, Py, Py, Ao and 7 are all functions of n, which is
not shown for simplicity.

Let 7y = 7 and 72 = 1 — 7. Define

fo(P) = f2(P) — f1(P),

where fj(z) (7 = 1,2) is given in (4.22), then

, _ Ua _ U1
fo(P) = P+nyB P+mB
_ (p2—m)P+ (e B — punyB) (B.41)
(P+mB)(P+mB) |

1. If % < ’;—2, then poniB > pinaB. Since py < uo by assumption, the numerator of
(B.41) is non-negative for any P > 0. Thus, VP > 0, fy(P) > 0. Therefore, if P > 0,
fo(P) > fo(0) =0, i.e., fa(P) > f1(P). For L >0, P, >0and 7P, + (1 — 7)P, = P, we

have

A

TH(P) + (L =7)fo(P2) < 7fo(P1) + (1= 7)fa(P2)
< foP). (B.42)

The last inequality in (B.42) is due to the concavity of fa(P) and the equality is achieved
when 7 = 0, P; = 0 and P, = P. Thus, in this case, the solution to (4.21) is J(P) = fa(P).

2. If &2 > E2 from (B.41) we know that
1 n2

fi(P) <0 if0< P < tameBopomB
B (B.43)
F(P) >0 if P> tanzBoiomB

Since p1 < p2, for P large enough, (1 + nlLB)“1 <1+ fg)“’. Thus, for large P, fi(P) <
f2(P), i.e., fo(P) > 0. However, fo(0) = 0. Using this and (B.43), it is clear that f;(P)

and fo(P) will cross each other once at some positive value Py, as shown in Figure 4.5. In
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this figure, P, and P, are the points that satisfy (4.30), i.e.,

f1(Pa) = f2(Po) = Xo,

where Ag is the slope of the common tangent line in the figure. Since

IP :——————'l“—z
fl( a) Pa+n1.B AO)
npy=—HM 3

and Ag can also be expressed as

_ fo(B) — fi(Pa)

A
0 Pb -p, ’
we have
P=5_nB, (B.44)
Ao
P=%_ B, (B.45)
Ao

and Ag satisfies
#2 In( )\0‘;23 )=t In( /\Ol:le)
(52 —n2B)—(51-n1B)

/\0 = y i.e., h()\o,n) = 0, (B.46)

where h(z, n) is given in (4.24). Therefore, if P, < P < P, by time-sharing, J(P) in (4.21)
can achieve the values between fi(P,) and f2(P;) on the straight line; if 0 < P < P, or
P > P, J(P) is simply f1(P) or fo(P), respectively. That is, in this case, the solution to
(4.21) is (4.25). O

B.5 Proof of Theorem 4.4

For a given fading state n, from (4.23) we know that the optimal power P*(n) satisfies (4.31).
Let P;(n) and 7/ (n) be the optimal power and fraction of transmission time allocated to
User j (7 = 1,2) at state n, respectively. From Lemma 4.1, we know that

1. if £ < £2, then J(P*(n)) = f2(P*(n)). Thus,

J(P () = o (B.47)

*(n) + noB
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and 7*(n) = 0, P{(n) = 0, Py(n) = P*(n). Substituting (B.47) into (4.31), we have

P}(n) = P*(n) = % — nyB.

Since P (n) must be non-negative,

Pi(n) = [Hf - n2B]+;

2. if 2 > £2, as shown in Figure 4.5, it is clear that

0<P*n) <P, if J(P*(n)) > Xo,
P, < P*(n) < P, if J'(P*(n)) = Xo , (B.48)
P*(n) > P, if J'(P*(n)) < Ao ,

where P,, P, and \g are all functions of n and they are given in (B.44), (B.45) and (B.46),
respectively. Since we know from (4.31) that J'(P*(n)) = A, from (4.25), (4.27), (4.28),
(4.29) and (B.48) we have:

a)if A > Ag then J(P*(n)) = f1(P*(n)) and f{(P*(n)) = A. Thus, P*(n) = [& — n, B] .

Consequently,
m1(n) =1, and Pf(n) = [t —mB]_,
73 (n) =0, P3(n) = 0;
b) if X < Ag then J(P*(n)) = f2(P*(n)) and f3(P*(n)) = X. Thus, P*(n) = [ —nB]_ .
Consequently,
Tf(n) =Y, Pl*(n) =0,
and
m3(n) =1, P3(n) = [ —n2B] ;

c) if A = Ao, then J(P*(n)) = fi(Pa) + Ao[P*(n) — P} and P*(n) can be any value
between P, and P,. Thus,

7 (n) = 13, P{(n) = [ —n1B] ,
and
5(n) =1-13, Py(n) = [B —n2B] ,

where 73 can be any value between 0 and 1. X and 7§ satisfy the total average power

constraint (4.32).
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Because P, < P, from (B.44) and (B.45), we have

Mo — [
A _ .
0<n23—n13 (B.49)

Furthermore, since h{\g,n) = 0 and

K(z,n) >0 ifz> ;E=0y,

h'(z,n) <0 if0 <z < A3y,

where h'(z,n) = (naB — n1B) — (u2 — p1)/z, we have:
Ayif A > n—%, orif X < % and h(A,n) < 0, then A > \g;

B)if A < ;21%:—711“—3 and h(A,n) > 0, then A < Ag;

C)if A < 2= and h(\,n) = 0, then A = Ao

Therefore, the second part of Theorem 4.4 is proved by combining a), b) and ¢) with A),
B) and C). D

B.6 Decision Region Comparison for Optimal

and Sub-Optimal TD Schemes

For the sub-optimal TD policy, define
A
g(I’ I]) = 92(:17» n) - g1(93, Il),

where g;(z,n) (i = 1,2) is given in (4.42). Let A$*® satisfy

g(/\sub’ n) — O,
then
"
P L SRV L N L S B.50
0 nlB) n2B nlB) o ( )
= ( H2 y Bz, 1 )“2”*“1. (B.51)

n2B 'n2B nlB
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Assuming that g < po, from (B.50) and (B.51) we know that:
1. if 5{ < ﬁ—z, then

sub 1 sub g2 .
AS > 1 and AR >

if H1 b2
2. if o> e then

sub B sub p2
)\0 < B and AO < Py R

Since for z > 0, ¢'(z,n) = F1=£2 < 0, where g'(z, n) denotes the derivative of g(z,n) with
respect to z, g(z, n) is a decreasing function. Thus, when the c.d.f. F(n) is continuous, the
sub-optimal policy is equivalent to:

. . b
a) if £2 < £2 and A < 2% orif £2 > £2 and A < AJ*’, then

Tf(n) =0, Pl*(n) =0,
and
73(n) =1, Pj(n) = [8 —n2B] _;

: b
b) if £2 > £2 and A§** < A < ;L5 then

and

From Theorem 4.4, it is clear that the optimal policy is equivalent to:

a) if &8 < £2 and A < £ orif £1 > £2 and A < Ao, then

1 (n) =0, Pi(n) =0,
and
75 (n) = 1, Py(n) = [§ - ngB]+;
b) if £ > £2 and Ag < A < ;L then
qm=1 [ P =4 -mBl,
73(n) =0, P3(n) = 0;

Since if £2 < £, h(Ag,n) = 0. From the definition of A(z,n) in (4.24), we have

h(Xo,n) = g(Ao,n) + (n2B — ny1B)Ag — (2 — p1) = 0. (B.52)
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According to (B.49) and (B.52), it is clear that g(Xo,n) > 0. Consequently, Ag < A§¥®.
Therefore, for a given A > 0, the only difference between the optimal and sub-optimal
policy is that when n € Lp, where Lp is given in (4.43), the sub-optimal scheme transmits
the information of User 2, while the optimal scheme transmits the information of User 1.
This sub-optimal allocation of resources occurs only rarely. Note that the values of X in the
two schemes satisfying the two-user power constraint (4.32) are not the same, though they

may be very close to each other. O

B.7 Proof of Lemma 4.2

For simplicity, we denote

When M =2, let P2 P, + Py, then Po=P — P;, 0 < P, < P. Let

A P ) ( P—P1>
PY=2yln{14+—"1 In(1+-—"L}),
q(Pr) mn(+N1+P_P1 + p21n +N2+P1

then

11 H2
IP — .
¢ (P) N +P-P  No+ P
(1 + p2)Pr + [p1Ng — pa (N1 + P)]
(N, + P - P)(Ns + PY)

If 411 No > po(Ny + P), then for 0 < Py < P, we have ¢'(P1) > 0 and
q(P1) < q(P) = p1In(1 + P/Ny); (B.53)

if u1 N2 < p2(Ny + P) and &%"—‘& < P, then

N1+P)—pu N:
Q'(P1)<0 fOrO§P1<ﬂ(__%%_3,

(N1+P)—pm N
q(P) >0 for 2 1#1+#2#1 <« P <P,

thus,

g(P1) < max[g(P),q(0)]
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P P
= max In (1+—) , M2 In (1+—)] ; B.54
[#1 N M2 N . ( )
if p1N2 < po(Ny + P) and EQ—U%?”—NZ > P, then for 0 < P; < P, we have ¢(P;) < 0
and
p
q(P1) < q(0) = p21n (1 + Fz) : (B.55)

From (B.53), (B.54) and (B.55), we conclude that

P P
P) < ! = e
g(P1) < max [m n<1+ N1>,uzln <1+ N2>]

That is,

1 (1 B ) + p21 (1 + 22 )
n n —_—
H1 Ni+B) TH N+ P
P+ P P+ P
s i (14 25 ) (10 25
Now assume that (4.45) is true for M = K:

K

> milog {1+ & < max_|pilog 1+——§{=1Pj
=1 l N ZJ 1]#1 _le{l 2,.. aK} ‘ N1 ’

then for M = K + 1,

K+1 P K P
i log <1+ - ) = i log <1+ - )
; ' N; + ZJK:?J'# P; ; l (N; + P 41) + Z]K:Lj;ﬁi P;

Pk 11
+ px+1log (1 +
Ngi1+ ZJK L P;

max _ |u;log J =15
ie{1,2,...,K} N + Pr i1

IA

Pk 11
Nk +X5,P

K+1
ze{l,l.l,la,}ﬁ{ﬂ} [’u’ log ( ):‘

Therefore, by induction, we know that (4.45) is true. O

+ pk 41 log (1

IA
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Appendix C Proofs in Chapter 5

C.1 Proof of Theorem 5.1

Achievability of the Capacity Region: We prove the achievability of the capacity re-

gion C.ero(P) in (5.1) by proving the achievability of R € Npep Cop(n, P) in (5.2) for each
given power allocation policy P € F.

VP € F, for j = 1,2,---, M, since P;(n) denotes the transmit power for User j in
fading sta‘e n, VR € MNpearCop(n, P), R = (Ry, Ry, -+, Rar), we need to prove that for
every € > 0, there exists a sequence of ((2RlT, ofteT ... 9RmT) T) codes and a coding and
decoding scheme with probability of error Pe(T) < € for every fading process with stationary
distribution @, i.e., a coding delay T" which is independent of the correlation structure of
the fading. We prove in the following that this is true for the two-user case. The result
can be easily generalized to the M-user case (M > 2). Note that with the availability of
CSI at both the transmitter and the receivers, the codewords can be chosen based on the
realization of the fading process.

Let

b, = {n:n; <ng2,neN},

Qgé{n:n1>n2,ne/\/}.

Recall that we assume Pr{n; =n;} =0, Vi # j. Thus
N =&, U ds.

When the channel fading states are in ®;, let N(T) = (N(1),N(2),---,N(T)) denote
the realization of the slowly time-varying fading process. Let M; = 271 and M, = 272,
Generate M, independent codewords uj,us,---,up, of length T according to the nor-
mal distribution N (0, 1), scaled by /P2(N(n)), n = 1,2,---,T. For each codeword u; =
(wi1,ui2, -+ u;,r) (Ui is called a cluster center, 1 < 4 < Mp), generate M independent

codewords Xj ;,X2;, -, Xa,; of length T according to the conditional normal distribution
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N(u;n,1), scaled by P (N(n)), n=1,2,---,T.

Assuming that the source for User 1 produces integer m (1 < m < M;) and the source
for User 2 produces integer ¢ (1 < 1 < M3), the encoder maps the pair (m, ) into a codeword
Xm,i = (Zmil, Tmi2s ' Tm;T), Which is then transmitted. Let y and z be the received
sequences for User 1 and User 2, respectively. We use the decoding rule in [85]. That is, the
decoder of User 2 decodes that ¢ for which p(z|u;) is maximized (a decoding failure occurs
when there is a tie for the maximum). Let Ptg) be the probability of decoding error for
User 2. The decoder for User 1 first decodes the cluster center u; in the same way as the
decoder of User 2 does, and then uses its estimate of ¢ to choose the m for which p(y|xm ;)

(T)

is maximized. For User 1, let F,75 be the probability of decoding error for index 7 and
)

let P( 1% be the probzbility of decoding error for index m. Thus, by denoting P(1 as the
probability of decoding error for User 1, we have
T T
Py < P} + PO (C.1)

Based on the above encoding and decoding rules, the probability of decoding error for

User 2 is bounded by][85]!

P < exp(pTR:/(2B)) ¥ f(n)
ned;

1+p
> (Z Q1(ujn)[p(zlu, n)]fi“p) : (C.2)

z

for any p > 0, where f(n) denotes the probability density function of n, Q1(u|n) is the con-
ditional probability density function of u, conditional on the fading being n, and p(z|u, n)
is the conditional probability density function of the received sequence z, conditional on the

codeword being u and the fading being n. Since

Q1(uln) = H Q1(uy|n), (C.3)

!Note that the unit for Ry and R; in this paper is “bits per second,” while the unit in [85] is “bits per
sample.” This is why Rz in (C.2) is divided by 2B, the number of samples per second for the band-limited
channel.
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T

p(zlu,n) =[] p(zn|un,n)
n=1
T

= I |3_ Qx(zlun,n)p(zn]z,m)| (C.4)

n=1

where V1 <n < T, Q1(us|n) ~ N(0, P2(n)), Q2(z|un,n) ~ N(un, Pi(n)), and p(z,|z,n) ~
N(z,n2B). Therefore, in (C.4), p(2n|tin,n) ~ N(un,neB + Pi(n)). Substituting (C.3) and
(C.4) into (C.2), it is easy to verify that

P < 3 fm)

ned,;

N P R Py(n)
eXp{ p[ T2B+2n§1 g(1+(1+P)(nzB+P1(n)))]}'

By assumption, 4, > 0 such that

PQ(n)
< 1+ ———) — . .
Rg_Blog( +ngB+P1(n)> Béy, Yne d; (C.5)
Thus,
T
PP < exp { -0 16~ og(1+ )1}, ()

since )¢, f(n) < 1.

Similarly, we can show that

P%) < exp(pTR2/(2B)) 3 f(n)-
ned,

1 T+e
> (Z Ql(urn)[p(ylu,nnm) : (C.7)

for any p > 0, where Q;(u|n) is given by (C.3) and p(y|u, n) is the conditional probability
density function of the received sequence y, conditional on the codeword being u and the

fading being n. Since

T
p(Ylu’n) = prnlum

n=1

T
= H ZQz(mluna n)p(ynlz,n)| , (C.8)



194
where V1 < n < T, Q2(z|un,n) ~ N(u,, Pi(n)) as given above, and p(y,|z,n) ~ N(z,n;B).
Therefore, in (C.8), p(yn|tn,n) ~ N(up,n1B + Pi(n)). Substituting (C.3) and (C.8) into
(C.7), it is easily shown that

PE < 3 fm)-

ned,
olrR 1y Py(n)
exP{ ”[ T2B+2Z-/—:‘110g(1+(1+p)(nlB+P1(n)))]}'

Since Vn € ®;, n1 < ng, from (C.5) we obtain

PQ(II) )
Ry < Blog |1+ ——Fr—] — .
2 < og( +nlB+P1(n) Béy, Vn e &,
Thus,
T
P} < exp { -0 162~ log(1 + )} (C.9)

Further moreover, for User 1, the probability of decoding error Pe(ﬁ is bounded by[85]

PY) < exp(pTRi/(2B)) ¥ f(n)-
nedy

5 @i(uln) (Qalxju, m){p(ylx, )] 77) (C.10)
y u

for any p > 0, where Q;(u|n) is given in (C.3),

T
Q2(x|u7n) = H QQ(-’EnIUm n)’ (C.ll)
n=1
T
p(y[x,n) = H p(ynlxm n), (C.12)
n=1

and V1 < n < T, Qo(zn|un,n) ~ N(un, Pi(n)), p(yn|zn,n) ~ N(z,,n1B). Therefore, by
substituting (C.3), (C.11), and (C.12) into (C.10), it is easy to verify that

PO < 3 fm)-

ned;

R 1 Pi(n
exp{—p[—T§§+§;log(l+(T_fp()—21§)}¥.

=1 J
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By assumption, 38; > 0 such that

Pl(n)

Ry < Bl 1
1= Og(+nlB

) — Béy, Vne ®;.

Thus,
T
P} < exp {-—% [61 — log(1 + p)]} . (C.13)

Denoting § = min{é;, 62}, then by (C.6) we obtain
P <exp {—%7: [6 —log(1 + p)]} ;
and by (C.1), (C.9) and (C.13) we obtain
P <2 exp{~£1 16~ log(1 + o))}

Therefore, when the channel fading states are in ®;, the overall probability of decoding

error Pe(T)(<I>1) for the two users is

PM @) < PY+PY

3-exp{—§ [0 — log(1 +p)]}.

IA

By taking p sufficiently small, we have § —log(1+ p) > 0 and it follows that the probability
of error Pe(T)(@l) decreases exponentially with T', i.e., Ve > 0, 3T4(®1) > 0, VT > T4(®9,),
(d,) < e.

It can be similarly shown that when the channel fading states are in @5, there ex-
ists a sequence of ((2R1T,2R2T, e, 2RM T),T) codes and a coding and decoding scheme
for which the probability of error Pe(T)(‘Dz) decays exponentially with 7', i.e., Ye > 0,
AT,(®2) > 0, VT > Ty(Py), PE(T)(@Q) < €. Thus, Vn € N, there exists a sequence of
((2R1T, ofeT ... oRmT), T) codes and a coding and decoding scheme for which the proba-
bility of error Pe(T) — 0 as T — oo. Moreover, Pe(T) decreases in T' at a rate independent of
the correlation character of the fading, i.e., by denoting Ty = max{7T4(®;), Ty(P2)}, Ve > 0,

VT > Ty, we have Pe(T) < € for every fading process with stationary distribution Q. O

Converse: Suppose that rate R is achievable, i.e., R € Czem(P). We need to prove that
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R cannot be outside of the region defined in (5.1). The proof is similar to that of the MAC
capacity region [3].

Define v; = %, ¢t =0,1,2,---,ml. Since the time-varying noise density n; of each
user ranges from 0 to oo, we say that a subchannel is in state S;,i = 0,1,2,--.,mI if
v; < nj < g1, where Upmry1 = co. Therefore, there are (mI + 1) = N discrete joint
channel states. We denote the kth (0 < k < N — 1) of these N states as Sy = [S¢(k,1)a
Sak,2), S¢(k,M)}, where [¢(k, 1), ¢(k,2),-- -, ¢(k, M)] is the base-(mI + 1) expansion of
k, with ¢(k,1) being the least important component. That is, 0 < ¢(k,5) < mI for all
1<j< Mand

M
k=Y o¢(k,j)- (mI+1)1
=1
Note that a channel state n € Sy if and only if nj € Sy 5y, V1 < j < M.

Consider a sequence of Markov processes defined on N by using a Markov chain which is

composed of the above mentioned N channel states with transition probabilities ¢(S;, S).

.. . . A .
The process remains in a state S; for an exponential time 7(S;) = Exponential(A(S;)) and
then selects a new state according to t(S;, S¢). By choosing the appropriate {T(Sj)}év: _01

and transition probabilities, we assume that the Markov process has the required stationary
distribution @ of the fading channel.

For each T' = 1,2, - - -, let N(T) be a fading process starting with N(T)(0) = N(0), where
N(0) is a random variable with the stationary distribution Q. The initial sojourn time
in state N(0) of fading N() is given by 7r0(N(0)), where 77(S;) < Exponential(rrA(S;)),
j=0,1,---,N — 1. The scaling constant rr determines the fading speed for process N(D),
V86 > 0 fixed, by selecting an appropriate decreasing sequence {rr}3_; where rp — 0 as

T — oo, we can have
Pr(vT,77(S;) >T)>1-46, 0<ji<N-1 (C.14)

Since R € Czem(P), we can choose for each T a code of size 2TR1 . 2TFz2 ... 9TRum for which

the probability of error p(T') under fading process N@) goes to zero as T — oo. Let
{X (T)(n)}T_l denote a random selection of codewords from the codebook for the M users

T

and let Pj(T)(n) be the transmit power for User j (1 < j < M). Note that {X(T)(n)}n:1

can be chosen according to the fading process N, For 0 < k < N —1, let Q(S;) be the



197
subset of the sample space on which N(0) € Sy and VT, 7p(S;) > T. Let Q be a random
variable uniformly distributed on [0,7]. For 1 < j < M, define

Vi(Sk. T) = Eq [P (Q)lesk)]

W;(Sk.T) = Eq [PV(Q)IIN(0) € 5] - 2(Sy)]

Zj(Sk,T) = Vj(Sk,T)PT{VT, TT(Sk) > TIN(O) € Sk}
+ W;(Sk, T)Pr{3T : 77(Sk) < TIN(0) € S}

Then the power constraint is that VT,

N-1 M )
> p(Sk) Y Z;(Sk,T) < P.
k=0 j=1

According to (C.14), we have

av]

N-1 M
Z p(Sk) Z Vi(Sk, T) < -5
k=0 =1 -

J

By the bounded convergence theorem, it is clear that there exists a a convergent subsequence

along which if taking the limit we obtainfor 1 < j< M and 0<k <N -1

Vi(Sk, T) — V;(Sg) asT — oo.

Therefore,
N-1 M P
> p(Sk) D Vi(Sk) € —. (C.15)
k=0 j=t 1-4

Now we define a new fading process N by
N-1

N(n) = " 1[N(0) € Si]n'(Sk),
k=0

where n!(Sg) = [n4(Sk), nh(Sk), - -, nhy(Sk)] and nk(Sk) = vy, 1 < j < M. Note that

conditioned on N(0), the fading process is deterministic. Let ¢(T|€2(S)) be the conditional
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probability of error for code X(T) in the new fading channel. Then, obviously,

p(T) = p(Sk)q(T|(Sk)).

By assumption, p(T) — 0 as T — oo. Thus, ¢(T|2(Sx)) — 0 as T — oco. But conditional on
Q(Sk), we have a constant channel, and a sequence of codes satisfying the power constraint
(C.15). It follows that VO < k < N — 1, R € Ccp(n'(Si), V), where V denotes the power
allocation policy that assigns power V;(Sy) to User j (1 < j < M) in channel state S, and
Ccp(+,-) is as given in (5.2).

VP € F, define

¢ (n,P) = Cep(n!(Sk),P), ifneSk0<k<N-1

Denote Fj s as the set of all power control policies that satisfy the power constraint 1—1;95
and are piecewise constant on each fading state S, 0 < k < N — 1. Denote Py as the
power allocation policy that assigns power PJ-N"S(n) to User j (1 < j < M) in each fadng

state n, where

2

PN‘s Z Sk)l nec Sk]

Thus, Py s € Fn,s. We have shown that for any § > 0,
5(N)

It follows that

Re U ﬂC (n'P

PcFn neN

where Fy = Fn,o. Thus,

CroP) S | [ CSP (0, P). (C.16)
PEFN neN

Now combining (C.16) with the achievability result which indicates that

U ﬂ CCD(D,P) C U m CCD(H,P) - Czero(-ls)-

PEFN neN PeF neN
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we obtain

U ﬂ CCD(II,P) - Czero(p) - U n 5@3(“, P)
PeFn neN PeFn neN

Since the lower and upper bounds converge as N — oo, it is clear that

Czero(p) = U n CCD(H,P). o
PEF neN

C.2 Necessary and Sufficient Condition for Equations in (5.8)
to Have Positive Solutions
We show that det A > 0 is the necessary and sufficient condition for the M linear equations

in (5.8) to have positive solutions for all P™"(n) (1 < i < M) in every fading state n.

Necessary Condition: Since the equations in (5.8) is equivalent to

A-P™"(n) = Bn,

if (5.8) has a solution for each state n, then det A # 0 so that the inverse of A exists and the
solution to P™"(n) is as given in (5.10). Furthermore, if P™"(n) > 0 (i.e., V1 < i < M,
P™in(n) > 0) for any given n > 0, then every component of A~! must be non-negative.

Define the cofactor matrix
cofd = [(-1) det A;;], 4,5 =1,2,---, M,

where A;; is the (M — 1) x (M — 1) matrix formed by deleting the ith row and the jth

column of A. Then

A7l = ﬁ - (cofA)T. (C.17)

Given ¢ < j fixed, since each component of the (j — 1)th row of A;; is —1, by subtracting
the (j — 1)th row from all other rows of A;j, it is easily seen that the cxpansion by the ith

column of 4;; is

det Aij = (‘—1)i+j H (ark + 1).
k#i,j



200
Thus

(-1 det Ay = [] (ax +1) >0, (C.18)
oy

since V1 < k < M, ag > 0. It can be similarly shown that (C.18) holds for ¢ > j as well.
Therefore, if every component of A~! must be non-negative, from (C.17) we know that
det A > 0.

Sufficient Condition: Denote the cofactor matrix of A as cofA = C = (¢;j), 4,7 =

1,2,---, M, then as shown above,
cij = (~1)" det 4;; > 0, Vi#j. (C.19)

Since V1 < k < M, air > 0, and the expansion by the kth column of A is

M
det A = apy - Crk — Z Ciks
i=1i#k
if det A > 0, then
1 M
ek =—-|detA+ Y cix]| >0, VISELM. (C.20)
Qkk i=1,i#k

Therefore, combining (C.19) and (C.20) we get
¢ >0, V1<ij<M

By (C.17) it is clear that every component of A~! must be positive. Consequently, from
the expression for P™"(n) in (5.10) we conclude that P™"(n) > 0 in every fading state n

(n>0). O

C.3 Proof of Lemma 5.1

Since for k > 0, 1 > 0, 5L (FHE1) = 9i+k-1 e have

(i + k- 1) < gi+tk-1
; <
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For 0 < p<1/2,

Z <i+lz—1>pi(1_p)k < i 9itk=lpi(] _ p)k

i=k+r+1 i=k+r+1
(2p)k+r+1 ko1 X
= SPL_ ok-1(q
-2 (1-p)
(2p)*
M[‘ip(l - )~
Because 4p(1 —p) < [p+ (1 - p)]® =1,
lim [4p(1 — p)]* = 0.
k—o00
Therefore, for fixed integer r,
= i+ k—1\
lim > C+f )ﬁu—pﬁ=o. (C.21)
k—oo . 1
i=k+r+1
For a given positive integer k, we know that [80]
= [i+k—1) ;
Z( z. )ml—p)k: 1. (C.22)
i=0

Thus, from (C.21) and (C.22) we obtain

k+r /. 00 .
) t+k—1Y\ ; . ) i+k—-1)\ ,
lim Z( ; )p (1-p* = 1- lim Z ( ; )p (1——p)]c

C.4 Proof of Lemma 5.2

Since forn=1,2,---,

oo eT(n— 1IN E ifz >0,
/ " leTtdt = ( U (C.23)
x

(n — 1)}, ifx =0,

we have

o0 . .
[P = g, =12
0o Y m-—1
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where p;(v;) is given in (5.19). Thus,

D,(m)+ D4(m) = — lﬁlB, (C.24)
Dy(m) + De(m) = —— iz B. (C.25)
In (5.19), let v; = m#A; B~;, then,
Ao 1 m—1_—uv; .
pz(vz) = m’ui € s 1= 1,2 (026)

Substituting (C.26) into (5.21) and (5.22) and using (C.23), we have

o foo mi B
Dy(m) = /0 /%gvz - p1(v1)p2(v2)dvidus

)

00 m mB, m—2 (—lﬁ 2)

= n B T hyB v2 _L__
/0 7 Be > . p2(v2)dvz

—_ !
m i=0 7.

(i +m—1)! ( m B : fio B m
= B
Tl1 Z (m — 1)‘ il \m B+ ’FLQB) (’fllB + 'ﬁgB) ’ (C27)

°© 0 masB
Dy(m) = /0 /ixﬁv2 v; p1(v1)p2(v2)dvidua
72 B

i
_ 1 (B _
/00 —Mvzﬂi <"2BU2) miig B
0

= e n2B 2 i s p2(’U2)d’U2
- Z C (i 4+ m—2)! ( B )i ( n2B )(mdl) (C.28)
(m—=2)td! \nB+n,B n1B + 7B R

When 71 B < fisB, applying Lemma 5.1 to (C.27) and (C.28), we have
lim Da(m) = mB,

lim Dy(m) = fixB.

m—roo

Combining these limiting expressions with (C.24) and (C.25) we obtain

lim D.(m) =0,

m—ro0
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n}i_ﬁnoo Dg4(m) = 0.

C.5 Proof of Lemma 5.3

To prove the convexity of the region O(P, R), we need to show that if two usage probability
vectors Pr°® and Pr°" are achievable, then VO < A < 1, APr°" + (1- )\)Pr""' is also
achievable.

Let P be the total average transmit power. For each fading state n, let w;(n) and P;(n)
be the probability and transmit power that the broadcast channel transmits the information
of User ¢ (1 < ¢4 < M) which results in the usage probability vector Pr°", and let wj(n)
and P/(n) be the probability and transmit power for User ¢ (1 < ¢ < M) corresponding to
the usage probability vector Pr°. That is, in each fading state n, Zf\il w;(n) = 1 and

M, wi(n) = 1. Moreover,

M =
Eyq {Z wi(n)Pi(n)] <P,

i=1
l' M _
En ‘z;ur;(n)Pi'(n)} <P
We construct a third transmission strategy in each fading state n by transmitting the
information of User i (1 <4 < M) with probability w;(n) and transmit power P;(n) in the
first A\ fraction of time and with probability w!(n) and transmit power P;(n) in the last
1 — A fraction of time. Therefore, in each fading state n, Y2 [Mw;(n) + (1 — M)wi(n)] = L.

Under the new strategy, the average usage probability Prf"” for User ¢ (1 <i < M) is:

1"

Pr{™ = Eq[Awi(n)+ (1 - Nwj(n)]

1

1

— AP 4 (1- A)Prev,
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and the total average transmit power satisfies
{Z [wi(n) Pi(n) + (1 A)wé(n)P{(n)]}
i=1

M
= ME, [Zw,(n ] (1-MNE, [Zwl(n )}
i=1

< P

Thus, V0 < A < 1, APr°® + (1 — A)Pr®" is achievable. O

C.6 Proof of Theorem 5.3

In the following, V1 < mg < N, V1 < j < my, for simplicity we denote A;(n), vj(n), z;(n),
and u;(n) as Aj, v;, zj, and u;j, respectively.
AN

For mg =1,2,---,N,Vn € Qp,, let u* = [u‘{,ug,---,u;‘no], us [u1,u2, -+, Umg)- Since

u* satisfies

N mg
Z Enea., {Zvl :l = P(s")+ Z Z[T*vj-f—(l—'r vj_1] Pr(L;(mq,s*))
mo=1 mo=11i=1

= P,

A
Yu # u*, by denoting A(mp) = {n:n € Quy, = > 21}, we have

Z Ene,, [Z 'UzuZ:| ~P

mo=1
= Z Enean, [Z 'Uzuz:I Z Enca,,, [sz ]

mo=1 mo=1

(J)V N mg
— ;u;dF(n vu; — v | dF(n

m; /neA(mo ;Uu 1]2:1 neL;(mo,s*) <Z J) (n)

N mo [mo ~
+ Z Z [Z viug — v T —vj_1(1 = T*):I Pr(L;(mg,s")). (C.29)
mo=1j=1 Li=1

We now show from (5.58)-(5.61) that Vn € Q,,,,

N ML 95 m. (C.30)
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Since z; > 2, i.e,, %11 > %ﬁ:—:}, for i = 2, (C.30) is true. Assuming that when ¢ = k, (C.30)

. . Ak~ Ak_
is true, or equivalently, Z:T:-ll < %f, then because 2.1 < 2z, we have

Akl — Ak Ak — A A
+1 < k-1 < __k
Vi+1 — Uk Vg — V-1 (2

That is,
A A
Bl Ak
Vk+1 Vk

Thus, when i = k + 1, (C.30) is also true. So (C.30) is true for all ¢ = 2,3,---,myg.
Continuing the derivation in (C.29), we have:
a) Vn € A(mg), since L > z; = %f, from (C.30) we know that Vi = 1,2,---,mg, & > %i_’,

i.e., v; > \;s*. Therefore, the first term in (C.29) will be:

N mg N mo
viu;dF(n) > / Ais*u;dF(n)
m%';l /neA(mO) ; Uy ( m%;l ne A(mo) ; ) i
N mo
e / 3 AwidF(n). (C.31)
mo=1 nEA(mo) i=1
b) Vn € L;(mg,s*),j =1,2,---,m, since z; > % > z;;1, we have

Vj+1 > V5 + ()\j+1 — /\j)s*,
*

Vj-1 >V + ()\j-l - )\j)s .

For i # j,1 < i < myg, denoting

it is easy to verify that x; > ;11 by using (C.30). Since z;_1 = zj, Tj+1 = 2zj41, Vi =

1,2,---,5—1,Vk=j+1,5+2,---,mg, we have
1
T; > — > Tk
s

Therefore, Vi # j,1 < i < my,

v; > v+ (A — Aj)s™.
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In (C.29), the second term will be:

N

T3 / (Z v — u]> dF(n)

mo=1j=1 neL;(mg,s*)
N mo
> >Ny vju; + Z [vj + (A = Aj)s*]u; — v | dF(n)
—1j=1 neL;j(mg,s*) =1
N