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Abstract 

The mobile wireless environment has been a challenge to reliable communications because 

of the time-varying nature of the channel. Detrimental effects such as path loss, shadow­

ing, and multipath fading can greatly attenuate the transmitted signal. Therefore, adaptive 

channel estimation and data detecting algorithms must be designed for such channels. More­

over, in a multi-user system, dynamic resource allocation is an important means to transmit 

information efficiently through the varying channel. 

In this ;;hesis we first propose two adaptive feedback maximum-likelihood detection 

techniques, a decision-feedback decoder and an output-feedback decoder, for coded signals 

transmitted over channels with correlated fading. Both analysis and simulation results 

demonstrate that they have far better performance than the conventional decoder. We 

also propose a simple improvement to conventional decoders by using a weighted metric. 

The BER performance of all these decoders is analyzed through a sliding window decoding 

method. 

Next we derive the ergodic (Shannon) capacity region and optimal dynamic resource 

allocation for an M-user fading broadcast channel under code-division with and without 

successive decoding, time-division, and frequency-division. For this channel we also derive 

the outage and zero-outage capacity regions and the corresponding optimal resource alloca­

tion strategies under different spectrum-sharing techniques. We obtain the outage capacity 

region implicitly by deriving the minimum common outage probability or the outage prob­

ability region for a given rate vector. The corresponding optimal power allocation scheme 

is a multi-user generalization of the single-user threshold-decision rule. 

Finally, we obtain the outage capacity region and optimal power allocation for fading 

multiple access channels. Successive decoding is proved to be optimal and iterative algo­

rithms are proposed to obtain the optimal decoding order and power allocation in each 

fading state under the average power and outage probability constraints of each user. We 

also obtain the average power regions that can support a rate vector with the given average 

outage probability of each user satisfied. 
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Chapter 1 Introduction 

1.1 Background 

The mobile wireless environment has been a challenge to reliable communications because 

of the time-varying nature of the channel. The received radio signal fluctuates with the 

changing channel due to path loss, shadowing, multipath fading, and mobility of the users 

and surrounding objects. Since we have to transmit information in the face of a constantly 

changing channel, adaptive channel estimation and data detecting algorithms must be de­

signed for the receiver. Moreover, in a multi-user system, dynamic allocation of resources 

such as the transmit power, bandwidth, and rate is an important means to deal with the 

time-varying nature of the channel. Indeed, adaptability in a wireless system's architecture 

and algorithms is critical for effective communications. The terminal devices, the base sta­

tion, and even the network topology are all expected to be adaptive in order to transmit 

information efficiently and reliably through the wireless network [1]. In existing wireless 

systems, common uses of adaptability include adaptive power control enabling a terminal 

close to the base station to transmit at lower power, and adaptive channel allocation where 

the selection of a channel by the terminal and the base station is based on local interference 

and channel conditions. 

1.2 Thesis Summary 

This thesis focuses on two subjects. First, based on a finite-state Markov chain model of the 

slowly time-varying channel, we develop adaptive maximum-likelihood decoding algorithms 

for coded signals transmitted over slowly flat fading channels and examine their bit-error­

rate performance. The~e decoding algorithms outperform the conventional decoder without 

decreasing the transmit information rate or increasing the signal bandwidth. In addition, 

the complexity of these algorithms is relatively low compared to the existing algorithms. 

Secondly, in a multi-user system, assuming that both the transmitter(s) and receiver(s) 

have perfect channel side information (CSI) and dynamic resource allocation is allowed, we 
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obtain three types of capacity regions for fading broadcast channels, one type of capacity 

region for fading multiple-access channels, and their corresponding optimal resource alloca­

tion strategies. The three types of capacities are: ergodic (Shannon) capacity, zero-outage 

capacity, and outage capacity. The capacity type investigated for fading multiple-access 

channels is the last one, since the ergodic capacity region and the zero-outage capacity 

region for fading multiple-access channels are obtained in [2J and [3], respectivelyl. For fad­

ing broadcast channels, the capacity regions are derived for four different spectrum-sharing 

techniques: code-division (CD) with and without successive decoding, time-division (TD), 

and frequency-division (FD). 

1.3 Thesis Outline 

The rest of the thesis is organized as follows. We start in Chapter 2 with a brief introduction 

to the main characteristics and modeling of single-user fading channels. The concepts such 

as fast and slow fading, frequency-flat and frequency-selective fading, and several statistical 

models for amplitude fading, are reviewed, which will be used in the subsequent chapters. 

A short description of fading broadcast channels and fading multiple-access channels is also 

provided. 

In Chapter 3, we first give a rather thorough review of various existing techniques on 

channel estimation and data detection, including several pilot symbol-aided techniques, 

numerous statistics-dependent techniques, and some statistics-independent techniques. We 

then introduce our feedback maximum-likelihood decoding techniques for coded signals 

transmitted over channels with correlated slow fading. These techniques are based on a 

finite-state Markov model for the fading channel. The system model and the structures 

of five decoders, i.e., our proposed decision-feedback decoder and output-feedback decoder, 

the conventional decoder with and without weighting, and the decoder with perfect channel 

state iilformation, are described. The bit-error-rate performances of the five decoders are 

then investigated through both analysis and simulation. 

In Chapters 4-5, we study three types of capacity regions for fading broadcast channels 

and obtain their corresponding optimal resource allocation strategies: the ergodic capacity 

region, the zero-outage capacity region, and the outage capacity region with nonzero outage. 

IThe ergodic (Shannon) capacity of a fading channel is called "throughput capacity" in [2], and the 
zero-outage capacity is called "delay-limited capacity" in [3]. 
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In Chapter 4, we first give a discrete-time M-user fading broadcast channel model. We 

then derive the ergodic capacity region of fading broadcast channels for CD, TD, and FD, 

assuming that both the transmitter and the receivers have perfect CSI. Optimal resource 

allocation policies that achieve the capacity region boundaries are obtained for CD with 

successive decoding and for TD using the Lagrangian method. A simple sub-optimal policy 

is also proposed for TD. It is shown that CD without successive decoding has the same 

ergodic capacity region as TD and FD. Numerical results for a two-user system are provided 

for these different spectrum-sharing techniques under different amplitude-fading models. 

In Chapter 5, we derive zero-outage capacity regions and outage capacity regions of 

fading broadcast channels for CD, TD, and FD, assuming that both the transmitter and 

the receivers have perfect CSI. The zero-outage capacity is a special case of the outage 

capacity, with the allowed outage probability equal to zero. For convenience we derive the 

zero-outage capacity regions for different spectrum-sharing techniques first. We then show 

that in an M -user broadcast system, the outage capacity region is implicitly obtained by 

deriving the minimum common outage probability or the outage probability region for a 

given rate vector. Therefore, given the required rate of each user, we derive the minimum 

common outage probability and the corresponding optimal power allocation strategy under 

the assumption that the broadcast channel is either not used at all when fading is severe or 

is used simultaneously for all users. When each user can declare an outage independently, 

we derive the outage probability region boundary and the corresponding optimal power 

allocation scheme for a given rate vector. Numerical results for the different outage capacity 

regions are obtained for the Nakagami-m fading model. 

We derive the outage capacity region of fading multiple-access channels in Chapter 6, 

assuming that both the receiver and all the transmitters have perfect CSI. In this chapter 

we first describe a discrete-time M-user fading multiple-access channel model. Then under 

similar assumptions about whether the outage declaration from each user is simultaneous 

or independent, we argue that the outage capacity region can be implicitly obtained by 

deriving the minimum common outage probability or the outage probability region for 

a given rate vector. Given a required rate and average power constraint for each user, 

we find a successive decoding strategy and a power allocation policy that minimize the 

common outage probability or bound the outage probability region. Iterative algorithms 

are proposed for obtaining the optimal decoding order and power allocation in each fading 
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state under a given power constraint for each user. Given the outage probability constraint 

of each user, we also obtain the average power region that can support a given rate vector 

with all outage probability constraints satisfied. At the end of this chapter we address the 

outage capacity region problem when additional peak-power constraints are imposed on the 

M-users. 

Finally, in Chapter 7, we conclude the thesis with a summary of contributions. 
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Chapter 2 Fading Channel Characterization 

2.1 Introduction 

In this chapter we first describe the main characteristics and models of a single-user fading 

channel. We then briefly introduce the fading channels of a multi-user system, including 

the broadcast channel and the multiple-access channel. 

2.2 Single-User Fading Channels 

In a single-user system, there is only one transmitter and one receiver. The received radio 

signal from the transmitter typically consists of a line-of-sight (LOS) component as well 

as multipath components that arrive at the receiver delayed in time and shifted in phase 

relative to the LOS path. These signal components may be obstructed by buildings, foliage, 

or other objects. This radio channel is time-varying due to mobility of either the transmit­

ter or the receiver, or even the surrounding objects. Mobile channel characterization and 

modeling are dealt with in depth in many textbooks [4]-[8]. Here we give a brief review for 

some concepts that will be used in the subsequent chapters. 

2.2.1 Path Loss and Shadowing 

Path loss is the decrease of the signal strength (average power) with the distance d between 

the transmitter and receiver due to multi path and shadowing. Path loss is often modeled 

as being proportional to d'Y and the radio wave frequency f, where 'Y is some value between 

two to six, depending on the specific environment [8]. For example, assuming a single 

unobstructed LOS transmis~ion path, 'Y = 2. In a two-ray model where both the direct 

path and a ground reflected propagation path are considered, 'Y = 4 for d sufficiently large. 

In most environments, given the same transmitter-receiver separation distance, the actual 

received average signal power in different surroundings will deviate from the predicted one 

due to obstructions from buildings and other objects. The variations due to the obstructions, 

as measured in decibels (dBs), can be modeled as Gaussian or normal distributed. This 
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log-normal distribution of the path loss describes the random shadowing effects which occur 

over a large number of measurement locations [7]. 

2.2.2 Small-Scale Fading 

Small-scale fading, or simply fading, refers to the rapid fluctuation of the received signal 

over a short distance (a few wavelengths) due to constructive and destructive combining 

of the multipath components. If the transmitter or receiver is moving, then this results in 

rapid fluctuation of the received signal over time. The small-scale fading characteristics are 

determined by the multipath environment (from reflection, diffraction, and scattering) as 

well as the speed of the mobile and surrounding objects and the signal bandwidth. 

Fast and Slow fading 

It is well-known that whenever there is relative motion between a transmitter and a receiver, 

the received carrier frequency is shifted relative to the transmitted carrier frequency. This 

shift of frequency is called the Doppler frequency shift. Assuming that the relative speed 

between the transmitter and a receiver is Vm and a pure sinusoid with frequency fe is 

transmitted, then the Doppler frequency shift fd is: 

where c is the speed of light. In reality the received signal arrives from multiple paths, 

and the velocity of movement in the direction of each path is usually different from that of 

another path. Therefore, the received signal of a transmitted sinusoid will have a spectrum 

composed of frequencies in the range fe - fd to fe + fd, and this spectrum is referred to as 

the Doppler spectrum. 

Doppler spectrum is a measurement of the spectral broadening caused by the rate of 

change in the mobile radio channel. The coherence time Te ::::: Jd of t he channel is a statis­

tical measure of the time duration over which the channel impulse response is essentially 

invariant. Depending on how rapidly the transmitted baseband signal changes as compared 

to the changing rate of the channel, a channel may be identified as either fast fading or 

slow fading. If the coherence time of the chaanel is smaller than the symbol duration of 

the transmitted signal, then the channel impulse response will change rapidly within each 
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symbol period and we call such channel a fast fading channel. Otherwise, if the channel 

coherence time is much larger than the symbol duration, then the channel impulse response 

will change much slower than the symbol rate, and we call such channel a slow fading 

channel. 

Frequency-Flat Fading and Frequency-Selective Fading 

Since the same transmitted signal may arrive at the receiver through different paths with 

different delays, we characterize the time-dispersive nature of the multi path channel using 

its multipath delay spread, defined as the overall span of path delays (i.e., earliest arrival to 

latest arrival). However, different channels with the same multipath delay spread can exhibit 

very different signal intensity profiles over the delay span. Therefore, the root-mean-square 

(rms) delay spread Trms is often considered, 

where, given L propagation paths, 

and l,6i I represents the amplitude of the ith path arriving with delay Ti. 

In the frequency domain, the coherence bandwidth refers to the range of frequencies 

over which all spectrum components haye roughly the same gain and linear phase. If the 

coherence bandwidth Be is defined as the bandwidth over which the frequency correlation 

function is above 0.9, then 
1 

Be~ ---
50Trms 

Therefore, a channel exhibits "flat fading" if the signal bandwidth is much smaller than the 

coherence bandwidth Be of the channel, and is "frequency-selective" if the signal bandwidth 

is larger than Be. In flat fading, the spectral characteristics of the transmitted signal are 

preserved at the receiver. However, the strength of the received signal changes with time due 

to fluctuation in the channel gain caused by multi path. In frequency-selective fading, the 

received signa~ includes multiple versions of the transmitted waveform which are attenuated 

and delayed in time. Thus the channel induces intersymbol interference. In the frequency 
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domain, some spectral components of the received signal have greater gains than others, 

i.e., the fading in the channel becomes frequency selective. 

2.2.3 Statistical Modeling for Amplitude Fading 

In mobile radio channels, several distributions are used to describe the received envelope 

of the flat fading signal, or the envelope of an individual multipath component. We now 

provide a brief introduction for the Rayleigh, Rician, and Nakagami-m distributions that 

will be used in subsequent chapters. These distributions are applicable to different multipath 

environments, as described in more detail below. More distributions and their corresponding 

applications can be found in [9, 10]. 

Rayleigh 

The Rayleigh distribution typically models signal fading when there is no direct LOS mul­

tipath component. This distribution is commonly used to model terrestrial mobile com­

munication channels since it represents the worst-case scenario and is also relatively easy 

to manipulate mathematically. The Rayleigh probability density function (p.d.f.) for the 

amplitude 0: is given by 

0: 2: 0, (2.1) 

which is described by a single parameter O. The mean and variance of the Rayleigh dis­

tributed random variable are given by J07r /2 and (2 - 7r /2)0, respectively. 

The square of the magnitude of a Rayleigh distributed random variable represents the 

signal power and has an exponential distribution. That is, if we let I = 0:
2 , the p.d.f. of I 

is: 

where 'Y is the average received power. We will use this distribution in several places in 

Chapters 3-4. 
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Rician 

The Rician distribution is commonly used to model the amplitude variation in the presence 

of a strong stationary (nonfading) LOS path, such as in satellite communication systems. 

Its p.d.f. is given by 

a ~ 0, 

where n represents the variance of the random component of the received signal, 1/ is the 

amplitude of the LOS component, and 100 is the zero-order modified Bessel function of 

the first kind. The parameter K g 1/
2 /n is the ratio between the deterministic LOS signal 

power and the variance of the multipath. Usually K is used in terms of dB as the parameter 

identifying the Rician distribution function, 

1/
2 

K (dB) = 10log n dB. 

As 1/
2 -t 0, K -t -00, and as the LOS dominant path decreases in amplitude, the Rician 

distribution degenerates to a Rayleigh distribution. We will use the Rician distribution in 

Chapter 4. 

Nakagami-m 

The Nakagami-m distribution often gives the best description of the amplitude fading in 

land-mobile [11, 12, 13] and indoor-mobile [14] communication systems. Its p.d.f. is given 

by [15J 

a ~ 0, 

where n is the mean-square value of the random variable a, r(.) is the gamma function, 

and m is the Nakagami-m fading parameter which ranges from 1/2 to 00. The square of 

the random variable a represents the signal power and has a gamma distribution. That is, 

if we let , = a 2 , the p.d.f. of, is: 

mm ,m-l (m ') 
Prh) = yn r(m) exp - "7 ' , ~ 0, 
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where'Y is the average received power. Note that for m = 1, the Nakagami-m distribution 

reduces to Rayleigh, and for m = 1/2, it is a one-sided Gaussian distribution. With proper 

adjustment of the parameters it can also fit Rician and lognormal distributions very tightly. 

In the limit as m ---+ +00, the Nakagami-m fading channel converges to an additive white 

Gaussian noise (AWGN) channel. We will use the Nakagami-m fading distribution in several 

instances in Chapter 5. 

2.3 Multi-User Fading Channels 

2.3.1 Fading Broadcast Channels 

b a multi-user communication system, as shown in Figure 2.1, the broadcast channel refers 

to the channel through which a centralized transmitter (or base station) sends information 

to multiple receivers (users). It is also known as the downlink channel. systems are typical 

Figure 2.1: A broadcast channel. 

broadcast systems. In a mobile broadcast system, the sub channel between the transmitter 

and each individual receiver is time-varying due to user mobility and the changing environ­

ment. Since the receivers may be located in various places, the same transmitted signal may 

pass through different fading sub channels before reaching those receivers. A mathematical 

model of the fading broadcast channel will be given in Chapters 4-5. 
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2.3.2 Fading Multiple-Access Channels 

As shown in Figure 2.2, the multiple-access channel refers to the channel through which 

all the users in the system send information to a centralized receiver or base station. It is 

also known as the uplink channel, which is the reverse of the downlink channel. Since each 

Figure 2.2: A multiple-access channel. 

user has a transmitter, the multiple access channel consists of many transmitters sending 

information to one receiver. The transmitted signal from each user is distinct and the 

received signal at the base station is a sum of all the transmitted signals. In a mobile 

multiple-access system, the sub channels are time-varying and the transmitted signals from 

different users typically reach the base station through quite different paths. Therefore, the 

sub channels are usually different from user to user. A mathematical model of the fading 

multiple-access channel will be given in Chapter 6. 
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Chapter 3 Feedback Maximum-Likelihood 

Detection of Coded Signals over Flat-Fading 

Channels 

3.1 Introduction 

It is well known that the transmission link of many mobile communication systems can 

be characterized as a frequency-fiat fading channel. Such channel exhibits memory due 

to correlation of the multiplicative fading distortion [4]. The channel memory should be 

considered in optimal detection of both coded and uncoded signals transmitted over fading 

channels and much work has been done in this area. In order to implement coherent 

detection, the multiplicative fading channel distortion (fading gains) must be estimated 

explicitly. In the following subsections we discuss various methods for obtaining these 

estimates. 

3.1.1 Pilot Symbol-Aided Technique 

Pilot symbol-aided channel estimation is proposed in [16] for the Rician fading channel, 

where one known symbol is sent for each data block and linear interpolation is used to 

estimate the complex fading gains for the unknown data symbols, based on the fact that the 

fading gains are correlated. This scheme is later extended to the Rayleigh fading channel 

with uncoded l\1-ary quadrature amplitude modulation (QAM, MQAM) in [17, 18], and 

with coded 16QAM in [19]. Theoretical analyses are given in [20] for uncoded systems. The 

idea that fading gains can be estimated based on both pilot symbols and data symbols is 

proposed in [21] by using tentative decisions and a noise smoothing filter for coded phase 

shift keying (PSK) signal. This method is improved in [22] with an adaptive linear predictor. 

A similar scheme that uses tentative decisions and a smoothing filter is proposed in [23] for 

uncoded MQAM systems. In [24], the fading gains are estimated from both pilot and data 

symbols based on the principle of per-survivor processing [25]. 
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Although pilot symbol-aided detection is considered superior to the pilot-tone assisted 

method [26] and it compares favorably with differential detection in bit-error-rate (BER) 

performance, it requires an increase in the power or bandwidth of the transmitted signal, 

or a decrease in information rate, and thus reduces the transmission efficiency. Therefore, 

in some applications transmission without pilot symbols may be desirable. The following 

subsections describe techniques belonging to this category. 

3.1.2 Statistics-Dependent Techniques 

Assuming that the channel fading correlation function is known, the minimum symbol 

error probability receiver and the minimum sequence error probability receiver are derived 

for uncoded PSK modulation in [27] and [28], respectively. However, both receivers are 

unrealizable, since their complexity grows exponentially with the length of the received 

symbol sequence. These papers therefore propose suboptimal implementations, and these 

implementations have similar structures, i.e., they both consist of a finite-memory decision­

directed estimator of the fading distortion and a detector that uses these estimates. For 

coded transmission, the fading distortion is similarly estimated by the estimator before 

deinterleaving and decoding based on tentative decisions [28, 29]. Note that because of 

the large deinterleaving and/or decoding delay, the more reliable symbol decisions from the 

error-correcting decoder are not available in these receivers. 

By assuming a finite memory length of the fading channel, a practical linear predictive 

receiver structure based on optimal maximum-likelihood (ML) sequence estimation (MLSE) 

is derived in [30] for uncoded continuous phase modulation (CPM) with Rayleigh fading. 

This receiver is shown to be a special case of a general innovations-based MLSE receiver 

that uses the Viterbi algorithm and is applicable to any modulation type [31]. An extended 

Kalman filter is applied as a near-optimal solution to the estimation of the fading distortion 

in [32] when additional channel parameters such as the received signal power, frequency 

offset and Doppler spread are to be estimated at the same time. 

In [33], an optimal ~IL receiver structure is developed for uncoded M-ary differential 

PSK (M-DPSK) reception. An approximate ML decoder employing the Viterbi algorithm 

based on the principle of per-survivor processing has been designed for coded and uncoded 

M-ary PSK (MPSK) [34] as well as coded and uncoded M-DPSK [35]. This method is 

extended in [36] to uncoded QAM signaling using adaptive predictive filters. For interleaved 
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coded MPSK systems, a two-stage estimator-detector is also proposed in [34]. A different 

two-stage receiver based on joint maximum a posteriori (MAP) estimation of the fading 

distortion and the coded data sequence is proposed in [37]. For uninterleaved coded PSK 

or QAM systems, an ML sequence estimator is derived in [38] for fast Rayleigh or Rician 

fading channels. 

3.1.3 Statistics-Independent Technique 

All of the above techniques assume exact knowledge of the fading channel correlation func­

tion. Estimating second-order statistics requires an additional training sequence [33]. More­

over, since fading channel statistics may vary with time, incorrect estimation of the statis­

tics will lead to suboptimal performance. A robust receiver structure that does not use 

any knowledge of the fading correlation function is proposed in [39]. Double-filtering re­

ceivers based on linearly time-varying fading models are proposed in [40] and [41] for PSK 

and DPSK modulation, respectively, and they use blind algorithms that do not require 

information on the fading statistics. 

3.1.4 Our FSMC Model-Based Technique 

Since many error-correcting codes are designed for additive white Gaussian noise (AWGN) 

channels where errors tend to occur randomly, when these codes are used for the fading 

channels, interleavingjdeinterleaving is usually employed to break up long deep fades due 

to slow fading. We propose a decision-feedback detection algorithm and an output-feedback 

detection algorithm for interleaved coded signals transmitted over channels with slow, flat 

fading. The two-stage decision-feedback decoder structure was originally proposed in [42] 

for the finite-state Markov chain (FSMC) channel model to achieve the finite-state Markov 

channel capacity. We now give a brief description of our techniques, which will be described 

in more detail in the rest of thi<; chapter. 

Based on an FSMC model of the slowly fading channel, both feedback decoders consist 

of a recursive channel state estimator and an ML sequence detector, assuming that con­

volutional codes or trellis codes are used. In the decision-feedback decoder, the channel 

state estimator makes a soft decision about the current fade level (channel state) based on 

past channel output observations and feedback decisions from the ML sequence detector. 

In the output-feedback detector, the channel state estimate is based only on past output 
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observations. Since the decision-feedback decoder uses feedback decisions for its state esti­

mate, it suffers from error propagation when bits are decoded in error, similar to the error 

propagation exhibited by decision-feedback equalizers. The output-feedback decoder does 

not suffer from error propagation, so it has slightly better performance than the decision­

feedback decoder on channels with a low signal-to-noise ratio (SNR). 

Since both feedback decoders are based on an FSMC model of the slowly fading chan­

nel, which is obtained from the channel correlation function, they are statistics-dependent. 

However, due to the fact that the channel state estimate is computed recursively, the com­

plexity of these feedback detectors is independent of channel memory, and is only slightly 

higher than that of conventional decoding techniques developed for the AWGN channels 

[43]. This is ~ifferent from those statistics-dependent techniques discussed in Section 3.1.2, 

most of which are developed for fast fading channels, since their complexity usually grows 

exponentially with the channel memory length. 

The FSMC model of the fading channel is a generalization of the Gilbert-Elliott channel 

model [44]. By partitioning the range of the received SNR into a finite number of intervals, 

the first-order FSMC model is constructed for the slowly Rayleigh fading channel in [45]. It 

is then extended to the more general Nakagame-m fading channel in [46], where the state 

transition probabilities are obtained from the second-order fading statistics. For slowly 

time-varying channels, the first-order FSMC model is shown to be enough [47J. Higher­

order Markov modeling for fast-fading channels is proposed in [48, 49J. 

Note that since phase distortion caused by fading is not included in the FSMC channel 

model, perfect phase compensation is assumed in our two feedback decoders, which is 

equivalent to perfect carrier recovery at the receiver [50, 51 J. However, in reality it is not 

easy to implement idea carrier recovery, and an effective amplitude-phase FSMC model of 

the fading channel will be too complex for practical implementation. In our simulations 

we compensate for the effect of phase distortion by differential decoding and encoding the 

phase of the transmit signal over slowly fading channels and compare the results to that of 

perfect phase compensation. 

Differential encoding/decoding of PSK signals is often used in practice for its simplicity, 

since it does not require carrier phase acquisition and tracking at the receiver. By using a 

nonlinear transformation named multila,g high-order instantaneous moment (ml-HIM), the 

idea of differential encoding/decoding has been generalized to higher orders and extended to 
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nonconstant-envelope modulation such as QAM [52]. The ml-HIM method is shown to be 

capable of removing the effects of phase ambiguity, Doppler frequency shift, and even higher 

order phase distortions. Differential encoding of the QAM signals discussed in [38, 53] is a 

special case of the ml-HIM encoding method. In [53], the differentially phase-encoded QAM 

signals and its differentially coherent detection are proposed to provide a practical solution 

to the effect of phase discontinuities in a frequency-hopping system. For the Rayleigh 

fading channel and nonconstant-envelope modulation, we differentially encode and decode 

the phase of the transmit signals to compensate for the effect of phase distortion due to 

slow fading. The amplitude distortion will then be estimated in the two feedback decoders 

prior to sequence detection of the coded signals. 

For comparison, we also obtain the performance of two other decoders: an ML decoder 

with perfect channel state information (CSI) and a conventional Viterbi decoder (VD) with 

interleaving, which ignores the channel memory. The conventional decoder has extremely 

poor performance; we therefore propose a simple improvement for its design which weights 

the decision metric by the fading distribution. This technique is less complex than the 

feedback decoders, since the recursive calculation of the state estimate is eliminated. 

It is difficult to analyze the performance of our proposed decoders directly, due to the 

complexity of their path metrics in the ML sequence detection. Therefore, we approximate 

their performance with that of a sliding window decoder (SWD) which uses the same path 

metrics. The SWD was originally proposed to calculate the BER of convolutional codes 

on very noisy AWGN channels [54]. For our analyses, we generalize the SWD to channels 

with fading and either convolutional or trellis codes. We analyze two simple cases using 

the SWD approximation and the analytical results are compared to the simulated BER 

performance of the decoders with very good agreement of the two. Our analysis is appli­

cable to more complex code structures as well, but the computational complexity becomes 

prohibitive. Therefore, we investigate the performance of all decoders for more complex 

codes by simulations alone. 

The remainder of this chapter is organized as follows. In Section 3.2, we briefly introduce 

the FSMC Model of slowly fading channels. In Section 3.3 we present the system model. 

The decision-feedback decoder, output-feedback decoder, and conventional decoder with and 

without weighting are described in Section 3.4. In Section 3.5 we present our performance 

analysis of these decoders. The numerical results from analysis and simulation along with 
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the coding, modulation, and channel models are shown in Section 3.6. Our conclusions are 

given in Section 3.7. 

3.2 FSMC Model of Slowly Fading Channels 

In our two feedback decoders, an FSMC model of the fading amplitude is used. We now 

give a brief review on how to obtain this FSMC model for the channel fade level (fading 

amplitude) CY with a given first-order distribution Pa(a) and known second-order statistics 

of the fading process. Detailed discussions can be found in [45, 46]. 

Let 8 denote the dynamic range of the fade level CY. For example, 8 = (0,00) if CY is 

Rayleigh distributed. Divide 8 into a finite number of disjoint sets (81, ... , 8K ) with the 

thresholds a1,· .. , a K -1 as shown in Figure 3.1, where each set corresponds to a channel 

state. That is, by denoting ao = 0 and aK = 00, the fade level CY E 8 i if ai-l :S CY < ai, 

o a 

Figure 3.1: FSMC modeling of the fading channel. 

1 :S i :S K. The K channel states 8 1 , ... , 8K will form a Markov chain as shown in 

Figure 3.2, where the transition probability from state Si to state Sj is denoted as Pij, 

i,j = 1,···, K. Given the two-dimensional joint probability density function P(')'tl, 1't2) of 

the fading process, Pij can be calculated as [46]: 

(3.1) 
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Figure 3.2: The FS1IC model. 

where P(Sd is the stationary probability of the channel state Si, i.e., 

In situations where phtl, 1't2) is unknown, Monte Carlo simulation can be used to construct 

the FSMC model from experimental data. 

For the Rayleigh fading channel, Pa(a) given in (2.1) is parameterized by nand p(1'tl, 1't2) 

is [4]: 

(3.2) 
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where v1BT = 0 2 - [R( t2 - t 1)]2, 10 (.) is the zero-order modified Bessel function of the first 

kind, and R(·) is the autocorrelation function of the underlying complex Gaussian process. 

That is, 

where Jo[·] is the zero-order Bessel function of the first kind, and fd is the Doppler frequency 

shift due to user mobility. 

For slow Rayleigh fading, it is shown in [45] that the transition probabilities between 

channel states can be well approximated based on level-crossing rates. Specifically, since the 

channel changes slowly, transitions are assumed to occur only between neighboring states, 

i.e., 

Pij = 0, Vii - jl > 1. 

Let Ao···, AK be the thresholds of the received SNR corresponding to the thresholds 

ao,···, aK. Then the expected rate that the received SNR passes downward across the 

threshold Ai is [4]: 

1:Si:SK-1. 

Therefore, assuming that the transmission symbol rate is R s , the transition probabilities 

are [45]: 

and 

In our analyses and simulations we will use this simple method to obtain the FSMC model 

of the slowly Rayleigh fading channel and, as in [45], the thresholds are chosen such that 

the stationary probability of each state is the same. 
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3.3 System Model 

3.3.1 Perfect Phase Compensation 

Our baseband system model under the assumption of idea carrier recovery (perfect phase 

compensation) is shown in Figure 3.3. At the transmitter, the input binary data is first 

passed through a convolutional encoder. The encoded code words are then interleaved by a 

J x L block interleaver and mapped to a PSK or QAM signal constellation. The resulting 

sequence {xn} is fed to a square-root Nyquist filter, the output of which is the baseband 

transmit signal s(t). 

input bn 
bits-

Convolutional 
Encoder f----

r---------------
I 

I 

I I 

Yn I 

Decoder Structure : 

Interleaver i---- Signal Mapper 
Xn 
~ 

Yn Sampler 
Deinterleaver (is) 

Figure 3.3: Baseband system model. 

Square-Root 
Nyquist 
Filter 

Square-Root 
Nyquist 
Filter 

s(t) 

1 c(t) 
'1..-

rI\ w(t) 
d,;-

~ 
r(t) 

The transmit signal s(t) passes through a fading channel with zero-mean additive Gaus­

sian noise w( t), where the complex multiplicative distortion process of the channel is denoted 

by c(t). With Rayleigh fading c(t) can be modeled as a zero-mean Gaussian low-pass pro­

cess, the bandwidth of which equals the Doppler spread due to user mobility. We assume 

that the power of c( t) is normalized to unity. 

The received baseband signal r(t) is first passed through a matched filter and then 

sampled at the symbol rate 11Ts. Generally, assuming that c(t) varies slowly with respect 

to the symbol duration Ts and perfect timing is available (no intersymbol interference), the 

received sample sequence {Yn} without phase compensation will be: 

Yn = CnXn + wn , n = 0,1,2, ... , (3.3) 
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where Cn is the n-th sample of c(t), with amplitude an and phase On, i.e., Cn = anejBn , and 

{wn } is a set of statistically independent complex Gaussian variables with zero-mean and 

variance (J2 in each dimension. The variance (J2 is: 

2 1 
(J = ---

2Es /No' 

where Es is the average signal energy per symbol and No/2 is the power spectral density of 

the noise. 

If we assume perfect carrier recovery at the receiver, then the phase distortion caused 

by the fading process c(t) will be completely compensated for. In this case, (3.3) can be 

simplified to: 

Yn = anxn + W n, n = 0,1,2, ... , 

and only the fade lever an is to be estimated for each received symbol. After deinterleaving, 

the symbol sequence is denoted as {Y~}. Since the fading channel has finite memory, the 

symbols within any row of the deinterleaver become independent as the interleaving depth 

J becomes large. However, the symbols within any column of the deinterleaver are received 

from consecutive channel uses, and are thus dependent due to channel correlation. This 

dependence will be used in the decision-feedback decoder and the output-feedback decoder 

for channel state estimation. 

In each of the two feedback decoders, the channel state estimator computes an estimate 

of the fade level distribution conditioned on past channel outputs. For the decision-feedback 

decoder, this conditional fade distribution at time n is computed from past received symbols 

(YI, ... ,Yn-d and the feedback decisions (Xl. ... ,Xn-I) which are obtained by re-encoding 

the bit decisions (b l , ... , bn - I ) from the ML sequence detector. For the output-feedback 

decoder, only the past received symbols (YI, ... , Yn-d are used to compute the conditional 

distribution. In the case of perf Act CSI, the state estimator output at time n is assumed to 

be the exact fade level an. !-.lore details on the state estimators and the corresponding ML 

sequence detectors wi!] be given in Section 3.4. 
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3.3.2 Differential Encoding/Decoding of the Signal Phase 

Our baseband system model for transmitting and receiving differentially phase-encoded 

nonconstant-envelope signals is similar to that of Figure 3.3, except that at the transmitter, 

a differential phase-encoder is added after the signal mapper, and at the receiver, a differ­

ential phase-decoder is added after the sampler. That is, at the transmitter, if we still let 

Xn denote the signal input to the square-root Nyquist filter at time n while denoting the 

output of the signal mapper as 

V -A ej¢n n - n , 

with An and <Pn representing the amplitude and phase of a signal point on the signal 

constellation, respectively, then 

X -A ej'l/Jn n - n , 

where 'l/Jn = 'l/Jn-l + <Pn. 

Similarly, at the receiver, if we still denote the input to the deinterleaver as Yn while 

denoting the output of the sampler as 

Z - B ej<I>n n - n , 

with Bn and q,n representing the amplitude and phase of the received symbol at time n, 

respectively, then 

where 'lin = q,n - q,n-l. 

3.4 Decoder Structures 

In this section we describe the two feedback decoder structures for ML sequence detection 

of coded signals over fading channels. We also describe the conventional decoding technique 

for fading channels, and propose an improvement to this method which weights the decoding 

metric by the stationary channel distribution. 
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3.4.1 Decision-Feedback Decoder 

A detailed block diagram of the decision-feedback decoder is shown in Figure 3.4. To 

make use of the channel memory, this decoder approximates the channel variation with a 

stationary FSMC model. That is, as shown in Section 3.2, the range S of the channel fade 

level an is divided into a finite number of disjoint sets (81, ... , 8K), corresponding to a 

finite number of channel states. The channel varies over these states according to a Markov 

process. Based on this channel model, the decoder is composed of a channel state estimator 

and a soft-decision ML sequence detector. The state estimator computes the conditional 

distribution 7rn (l) of the channel state 8 1 based on past channel output observations and 

feedback decisions. 

Channel State Estimator 

Maximum-likelihood Detector 

Figure 3.4: Decision-feedback decoder. 

As shown in Figure 3.3, {Yn} denotes the received symbol sequence after sampling at 

rate A. The corresponding transmitted symbol sequence is {xn}. Let yn = (Y1, ... , Yn) and 

xn = (Xl, ... , xn). Then the conditional state distribution based on past channel outputs 

and perfect feedback decisions (xn = X n , \In) is 

(3.4) 
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For an FSMC channel model, 7Tn (l) can be computed recursively according to [42J 

7T (l) = 2:.f=1 P(Ynlxn, an E Sj)p(an E Sjlxn- 1, yn- 1 )Pjl 

n+1 2:f=l P(Yn IXn, an E Sk)p( an E Sk Ixn- 1, yn- 1) , 

where P is the matrix of transition probabilities for the channel states with Pjl = p(an+l E 

Stlan E Sj). This recursion can be written in vector form 

(3.5) 

where 

(3.6) 

D(xn, Yn) is a diagonal K x K matrix with the kth diagonal term P(Ynlxn, an E Sk), and 1. = 

(1, ... , If is a K-dimensional vector. The value of f(xn, Yn, 7rn ) is calculated recursively 

in the state estimator, as shown in Figure 3.4. Note that although Y1, ... , Yn are received 

subsequently over the channel, the deinterleaver delays subsequent channel outputs by L 

(the number of interleaver columns). Therefore, the calculation of f(xn, Yn, 7rn ) in our state 

estimator requires a delay of L in the deinterleaver output y~, and a corresponding delay in 

the state estimator output 7r n and feedback decision xn = Xn. These delays are indicated 

in Figure 3.4, where Yjl ~ y~ explicitly denotes that y~ is in the jth row and lth column of 

the deinterleaver, and 7rjl ~ 7rn and Xjl ~ Xn denote, respectively, the state estimat.e and 

feedback decision corresponding to Yjl. With this notation the recursive calculation (3.5) 

becomes 

(3.7) 

It is shown in [42J that, assuming perfect feedback decisions and with asymptotically 

deep interleaving, the conditional distribution 7r n is a sufficient statistic for the channel 

state given all past channel outputs and corresponding feedback decisions. The metric used 

in the ML sequence detector, m(xn, yn) = 2:'1=1 m(Xj, Yj), is updated at each n, where 

(3.8) 
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and 

( .1. . S) _ iSk p(Yjlxj, ,)Po(,)d-y 
PyJxJ,aJE k - f ()d . 

Sk PO, , 
(3.9) 

In (3.9), Po(-) is the stationary distribution of the channel fading. The Viterbi decoder, 

after a decoding delay 6 = L, outputs the bit decisions bn corresponding to the path with 

the smallest metric, which are then re-encoded to obtain the feedback decisions xn. 

3.4.2 Output-Feedback Decoder 

The structure of the output-feedback decoder, shown in Figure 3.5, is similar to that of 

the decision-feedback decoder, except that the state estimator computes the conditional 

distribution of the channel state based only on past channel output observations: Pn(l) = 

p(an E SI!yn-l). Since no feedback decisions are used by the state estimator, the estimator 

can operate on received symbols prior to deinterleaving. 

Channel State Estimator 
................................................................... 

Pn 

: .................................................................. ; 
Maximum-Likelihood Detector 

Figure 3.5: Output-feedback decoder. 

If we denote the channel input alphabet by X and the distribution of Xn by p(xn), Pn 

can also be calculated recursively as [42] 

PnB(Yn)P 6 ( ) 
Pn+l = B()1 = 9 Yn,Pn , Pn Yn_ 

where B(Yn) is a diagonal K x K matrix with kth diagonal term 

(3.10) 

(3.11) 
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The metric function in this decoder is similar to the one used for the decision-feedback 

decoder, with the sufficient statistic 'lrj in (3.8) replaced by P{ 

(3.12) 

3.4.3 Conventional Decoding with Weighting 

The conventional decoder does not use the fading statistics of the channel in its ML sequence 

detector. That is, the decoder processes the deinterleaved symbols using a metric 

(3.13) 

where p{Yjlxj) is based on a memory less AWGN channel with the same SNR as the fading 

channel. 

We can improve the performance of this decoder by using the stationary fading dis­

tribution in the metric calculation. This will not be as accurate as using the conditional 

distribution computed by either the decision-feedback or the output-feedback decoder, but 

will use at least some information about the channel statistics in the decoding process. This 

weighted metric is given by 

(3.14) 

Note that the conventional decoder with weighting is equivalent to the feedback decoders 

designed for a single channel state S, where S is the range offading values. Also, it is proved 

in Appendix A that when hard decision is used, the conventional decoder with weighting 

and the output-feedback decoder are equivalent for any type of modulation with a decision 

rule independent of the fade level, such as MPSK modulation. 

3.4.4 Maximum-Likelihood Decoding with Perfect CSI 

When the channel fade level aj is known at the receiver [55], the decoder processes the 

deinterleaved symbols using a metric 

(3.15) 



27 

The performance of this idea decoder yields a lower bound on the BER performance of 

the feedback decoders, which only know the conditional distribution of the channel state 

instead of its actual value. 

3.5 Performance Analysis 

There is much previous work estimating the BER of convolutional codes and trellis codes 

on fading channels ([56]-[62] and the references therein). All of these papers evaluate the 

decoder performance directly, typically using Chernoff upper bounds or exact expressions for 

the pairwise error probabilities of the trellis codes and then using the well-known transfer 

function method [56] to bound the total BER of a decoder with or without CSI. It is 

difficult to obtain similar bounds or expressions for our feedback decoders and for the 

conventional decoder with channel weighting, since these decoders have relatively complex 

decision metrics. The sliding window decoding technique is a method of approximating the 

BER performance of a YD. The SWD approaches an optimal ML symbol decoder as its 

window size increases. An optimal ML symbol decoder and an optimal ML sequence decoder 

have similar performance at high SNRs. Thus, we can well-approximate the performance of 

our feedback decoders from that of a SWD with a large window size and large SNR. Since 

the BER of the SWD is easily obtained using a l\Iarkov model for the decoding process, 

this approximation is an effective method to calculate the BER of an ML sequence decoder 

with a complex metric. 

Let (n, k, m) denote a convolutional code which encodes m + 1 blocks of k-tuple input 

bits into n coded bits. In the following we briefly illustrate the operation of a SWD with 

a (2,1,1) convolutional code [54~, the encoder structure of which is given in Figure 3.6. 

The encoded bits are mapped to the QPSK signal constellation through Gray encoding. 

Input 

Figure 3.6: The encoder structure of the (2,1,1) convolutional code. 
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Figure 3.7 shows the tree structure of this code, with the output symbol indicated on each 

branch. This figure is similar to Fig. 1 in [54J. Since there are only two states in this code, 

starting from a given state, the decoder will either remain in that state or transfer to the 

other state as the decoding process proceeds. The state transition depends on Lw symbols 

of the received sequence, where Lw is the sliding window size. 

Information bit 

( I 

I -0-----------
I 
I 
I 

A~ 
I 
I 
I 
I 
I 1 ____________ _ 

Figure 3.7: Sliding window decoding for the (2,1,1) convolutional code. 

Consider an example with sliding window size Lw = 2. Starting from an initial state of ° 
(labeled as node I in Figure 3.7), there are four possible output symbol sequences of length 

Lw: VI = (0,0), V2 = (0,3), V3 = (3,1), V4 = (3,2). Let A = {VI, V2} and B = {V3, V4}, 

as indicated in Figure 3.7. Denote the received symbol sequence as y = (Yo, yI) and denote 

the distance ofy to sets A and Bas d(y,A) and d(y,B), respectively. That is, 

d(y,A) = min{d(y,vi)}, 
viEA 

d(y, B) = min {d(y, Vi)}, 
viEB 

where d(·,·) is the distancE' between two sequences according to a specific decision metric. 

Specifically, for sequences y and v, 

Lw-l 

d(y, v) = L m(v[, y[), (3.16) 
[=0 
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where m(·,.) is the metric of the specific decoder under consideration (e.g., (3.8), (3.12), 

(3.13), (3.14) or (3.15)). If y is closer to set A than to set B, i.e., d(y, A) < d(y, B), then 

the decoder starting from state 0 will remain in state 0 and the input information bit will 

be determined as O. Otherwise, the decoder will go to state 1 and the input bit will be 

decoded as 1. Assuming that state 1 is chosen as the next starting node (labeled as node 

II), then the four possible output symbol sequences of length Lw (Lw = 2) are: v~ = (1,0), 

v~ = (1,3), v~ = (2,1), v~ = (2,2). Note that A' = {v~,v~} and B' = {v~,v~}. Now 

y = (Yl, Y2). If y is closer to set A' than to set B', then the decoder starting from state 1 

will go to state 0 (labeled as node III) and the input bit will be decoded as O. Otherwise, 

the decoder will remain in state 1 and the input will be determined as 1. It is obvious that 

the BER of this SWD decreases as Lw becomes large, since a longer symbol sequence is used 

to decode each bit. Moreover, as Lw approaches infinity, this SWD becomes the optimal 

ML symbol decoder since the entire sequence is used to decode each bit. 

The decoding process of a SWD for N-state convolutional codes or trellis codes can 

be modeled as an N-state Markov chain. Let % be the probability that the decoder will 

go from state i to state j, and qi be the stationary probability of being in state i, for 

i,j = 0,1,2,···, N - 1. Assume that the all-zero codeword sequence is transmitted and let 

Xij be the k-tuple input bits associated with the transition from state i to state j in the 

decoding of an (n, k, m) convolutional code. The decoded BER will then be [54] 

1 N-l N-l 

Pb = k 2: qi 2: %W[Xij], 
,=0 )=0 

(3.17) 

where W[Xij] denotes the Hamming weight of Xij. Note that VO :::; i :::; N -1,2:,7=(/ % = 1, 

2:~ol qi = 1, and the stationary probabilities can be derived in terms of the transition 

probabilities. 

For the (2,1,1) code, since w[xoo] = 0, w[xod = 1, w[xlOl = 0, w[xul = 1, we have 

(3.18) 

and 

qOl = 2: l[y : d(y, A) > d(y, B)] p(Ylx = 0), (3.19) 
y 
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q11 = L l[y: d(y, A') > d(y, B')] p(ylx = 0), (3.20) 
y 

where 1 [.] is the indicator function. 

For an FSMC channel with channel states Sl, ... , SK, the derivation of q01 and q11 will 

be modified as: 

qOl = L L l[y : d(y, A) > d(y, B)I S] p(ylx = 0, S) p(S), (3.21) 
s y 

q11 = L L l[y : d(y, A') > d(y, B')I S] p(ylx = 0, S) p(S), (3.22) 
s y 

where S = (S(O), ... , S(Lw-1)) is a length-Lw state vector, with each of its elements be­

ing one of the K channel states Sl, ... , SK. There are KLw such vectors. In addition, 

since we assume ideal interleaving, the adjacent channel states and received symbols after 

deinterleaving are independent. Therefore, in (3.21) and (3.22), 

Lw- 1 

p(S) = II p(S(I)), (3.23) 
1=0 

Lw- 1 

p(ylx = 0, S) = II p(YdxI = 0, S(I)), (3.24) 
1=0 

where p(S(l)) is the stationary probability of the channel being in state S(l). 

For conventional decoders with and without channel weighting, their metrics (3.14) and 

(3.13) do not depend on channel states. For the ideal decoder with perfect CSI, its metric 

(3.15) is determined once the channel state is given. Thus, conditioned on channel states S = 

(S(O), ... , S(Lw-1)), the distances d(y, A), d(y, B), d(y, A') and d(y, B') in (3.21) and (3.22) 

are straightforward to calculate for these three decoders using their corresponding metrics. 

Consequently, the transition probabilities (3.21) and (3.22) of their SWDs are calculated 

and the BER (3.18) is easily obtained. However, for the decision-feedback decoder, its 

metric (3.8) is a function of the channel state distribution, which is calculated recursively 

from all past channel observations and which is therefore changing from symbol to symbol 

with time. The same is true for the metric (3.12) of the output-feedback decoder. Therefore, 

the indicator functions in (3.21) and (3.22) require further analysis. 

In particular, we derive the expressions of qOl and q11 in (3.21) and (3.22) for the feedback 
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decoders using the limiting prubabilities of the channel state distributions, which will be 

discussed further shortly. For the decision-feedback decoder, 

l[y : d(y, A) > d(y, B)I S] = L l[y : d(y, A) > d(y, B)I1I] p(1rIS), (3.25) 
7r 

l[y : d(y, A') > d(y, B')I S] = L l[y : d(y, A') > d(y, B')I1I] p(1IIS), (3.26) 
7r 

where 1r = (7r(O), ... ,7r(Lw -l)), with 7r(l), I = O, ... ,Lw -1, denoting the channel state 

distributions, and 
Lw- 1 

p(1IIS) = IT p(7r(I)IS(I)). (3.27) 
1=0 

In (3.27), p(7r(l)IS(l)) is the limiting conditional probability that the distribution for the 

channel state will be vector 7r(l) given the current channel being in state S(I). In [42] 

it is proved that for independent identically distributed (Li.d) inputs, the channel state 

distribution 7r n defined in (3.6) is a Markov chain. Moreover, it converges very fast in 

distribution to a limit which is independent of the initial channel state. That is, as n 

approaches infinity, the limit of p( 7r n I So = Si) exists and it is equal for all i, i = 1, ... , K. In 

addition, we find that there is also a limit for P(7rnISn = Sd, i = 1, ... , K, which is different 

for different i, and we use this limit to calculate the indicator functions in (3.25) and (3.26). 

This limiting conditional probability can be derived iteratively with the following recursive 

relation between p(7rn+llsn+l) and P(7rnlsn): 

Sn Tr n 

Sn '1rn 

Sn 1'rn Xn Yn 

(3.28) 

Similarly, for the output-feedback decoder, the limiting conditional probability of the chan­

nel state distribution can be obtained from the recursion between P(Pn+l1 Sn+l) and P(Pn I sn): 

P(Pn+lISn+d = L LP(Pn+l' Pn' snlsn+d 
Sn Pn 
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L L {P(Pn+llpr., Sn)P(Pnlsn)p(sn+llsn)p(sn)} jp(sn+d 
Sn Pn 

Sn Pn Yn 

(3.29) 

Now by substituting (3.25) into (3.21) and (3.26) into (3.22), we get the expressions of 

qOl and qll for the decision-feedback decoder: 

qOl = L L L l[y : d(y, A) > d(y, B)I 2r] p(7rIS) p(ylx = 0, S) p(S), 
s y 2r 

qll = L L L l[y : d(y, A') > d(y, B')I 2r] p(2rIS) p(ylx = 0, S) p(S). 
s y 7f 

(3.30) 

(3.31 ) 

Using a similar derivation, we find that for the output-feedback decoder, its qQl and qll in 

(3.18) can be calculated simply by substituting vector 7r in (3.30) and (3.31) with vector 

f!. = (p(O), ... , p(Lw-l)). Note that in (3.28), perfect feedback decisions are assumed, since 

it is too complicated to consider error propagations in the BER analysis for the decision­

feedback decoder. 

3.6 Numerical Results 

In this section we describe our analytical and simulation results for the five decoders: 

decision-feedback, output-feedback, conventional, conventional with weighting, and ML 

with perfect CSI. A simulation for each of the decoders was built using COS SAP [63]. 

Due to computational complexity in the analysis of codes with complicated structures, 

our analytical results are given for two simple codes. In order to compare the analytical 

results with the corresponding simulated results, we assume perfect feedback decisions in 

both the analysis and simulation for the decision-feedback decoder. When actual decisions 

from the VD are used, somf' performance degradation of the decision-feedback decoder is 

expected. This degradation will be most pronounced for simple codes with relatively high 

BERs; for powerful codes which sharply reduce the BER, we expect the effect of error 

propagation to be small. In our simulations for complex codes, we investigate the perfor­

mance of the decision-feedback decoder using the actual decisions from the YD. Therefore, 

in these simulations, the true performance of the decision-feedback decoder is obtained and 
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compared to that of other decoders. 

We first determine the performance of all the decoders for the (2, 1, 1) convolutional code 

with quadrature PSK (QPSK) modulation on a two-state fading channel. This channel, 

shown in Figure 3.8, consists of two states, a "good" state G and a "bad" state B, where 

each state is a memoryless AWGN channel with spectral noise density No/2 and fade level 

aa for the good state and aB for the bad state. The channel state varies between the good 

and bad states according to a stationary Markov process, with transition probabilities as 

shown in Figure 3.8. The stationary distribution of this channel is p( G) = 9 / (g + b) and 

p(B) = b/(g + b). 

aa 'L!J( t) aB w(t) 

s(t) 1 1 r't) 
~ 

s(f 1 1 r(t) 
~ 

s(t) ~~ 
------~1-b~~1-9 

r( t) 

9 

Figure 3.8: Two-state fading channel. 

In our analysis and simulation we assume that the channel SNR is 10dB for the good 

state and -5dB for the bad state, and that perfect decisions are made in the decision­

feedback decoder. The BER performance of the various decoders, shown in Figure 3.9, is 

analyzed and simulated for b = 0.001 fixed and a range of 9 values. As 9 increases, the 

channel spends more time in the good channel state, and the BER decreases accordingly. 

The dashed curves in Figure 3.9 correspond to analytical results and the solid lines are 

simulated ones. They agree with each other quite well for all the decoders. In our analysis, 

the sliding window size is Lv' = 3 and we quantize the received signals into four levels 

in each dimension. The simulations are run under the same quanti.:ing strategy for all 

decoders, except that two-level hard decision is used for the conventional decoder without 

weighting, since for this decoder, soft decision results in much worse performance than hard 

decision. Obviously the BER will decrease with an increase in the number of quantization 

levels. But we see that even with a two-bit quantizer, the decision-feedback decoder with 

perfect feedback decisions performs almost as well as the ideal decoder with exact CSI. 
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Figure 3.9: Analytical and simulated BER for QPSK and two-state convolutional coding 
(two-state fading channel). 

The output-feedback decoder and the decoder with a weighted metric both have better 

performance than the best conventional decoder which uses hard decision and no metric 

weighting. 

Figure 3.10 shows the analytical and simulation results for the four-state TC-4AM code 

[64] on a Rayleigh fading channel with normalized fading rate JdT = 0.001, where Jd is the 

Doppler frequency shift and T is the symbol duration. In these calculations we again assume 

perfect decisions in the decision-feedback decoder. As in the previous figure, the dashed 

curves represent analytical results and the solid ones are simulations. Based on (3.17), the 

BER of this code can be dprived from the state transition diagram of its corresponding 

SWD, and the simplified expression is 

Pb = 1 + P13/P32 
2 + P13/P32 + P20/POl 

A simple two-state Markov chain model of the Rayleigh fading channel is adopted in both 



35 

* a: 

10-- * * Conventional 
+ + Conventional (Weighted) 
x x Output-Feedback --- Simulation 

0 0 Decision-Feedback - - Analysis 
Perfect CSI 

25 26 27 28 29 30 31 32 33 34 35 
Eb/No (dB) 

Figure 3.10: Analytical and simulated BER for TC-4AM (Rayleigh fading). 

analysis and simulation of the two feedback decoders to keep the computation complexity 

reasonable. For each state, its probability is obtained by averaging the corresponding fading 

range over the Rayleigh distribution as shown in Section 3.2. The received signals are 

quantized to ten levels and the sliding window size remains to be Lw = 3. In this case 

the output-feedback decoder and the perfect decision-feedback decoder have very similar 

performance, due to the fact that the two-state Markov chain is a very rough approximation 

for the Rayleigh fading variation. Nevertheless, the feedback decoders still exhibit great 

performance advantages compared to the conventional decoder, which uses a quantized 

Euclidean distance metric and has a BER of around 0.08 for a large range of Eb/NO. Note 

that in both Figure 3.9 and Figure 3.10, the decision-feedback decoder always outperforms 

the output-feedback decoder since feedback decisions are assumed perfect. 

We investigate the performance of the five decoders for more complicated codes using 

simulation alone, due to the computational complexity of the analysis. As mentioned before, 

in these simulations we use the actual feedback decisions of the decoder, so the decoder will 
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exhibit error propagation. Figure 3.11 shows the BER of these decoders for a 64-state 

maximum free distance (2,1,6) code [43] with QPSK modulation on the two-state fading 

channel of Figure 3.8. The solid lines in this figure now correspond to hard decision of the 

* * Conventional (Unweighted) 

+ + Conventional (Weighted) 
x x Output-Feedback 

o 0 Decision-Feedback 

Perfect CSI 

--- Hard Decision 

- - Soft Decision 

• 

b:O.OOl 

Good state: SNR:10dS 

Bad state: SNR:-5dB 

10-7L-______ -L ________ L-______ -L ________ L-______ ~ 

0.01 0.D15 0.02 0.025 0.03 0.035 
g 

Figure 3.11: Simulated BER for QPSK alld 64-state convolutional coding (two-state fading 
channel). 

received symbols, so the in-phase and quadrature components are quantized to ±1 before 

decoding. The dashed curves correspond to soft decision, so the unquantized received 

symbols are used in decoding. For hard decision, the solid line showing the performance 

of the conventional decoder with weighting also represents the performance of the output­

feedback decoder, since the two decoders are equivalent when hard decision is used, as 

mentioned in Section 3.4.3. 

We see that for soft decision, the two feedback decoders have similar performance: the 

output-feedback decoder does slightly better than the decision-feedback decoder on poor 

channels (9 small), since it does not suffer from error propagation, and slightly worse on 

good channels. The effects of hard decision are quite dramatic. Hard decision increases the 



37 

BER by almost an order of magnitude in some cases, except for the conventional decoder 

without weighting, where hard decision actually decreases BER. Note that adding channel 

weighting to the conventional decoder decreases its BER significantly for both hard and 

soft decisions. 

Figure 3.12 shows the simulated BER for eight-state TC-8PSK modulation, as described 

in [65], applied to the two-state fading channel of Figure 3.8. Soft decisions are used in each 

OJ 
iii 
a: 
e 
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ii5 

10-4 

Uncoded QPSK 

* * Conventional (Unweighted) b=0.OO1 
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Bad state: SNR=-5dB 

10-6 L-_---'-__ -'-__ -'--_--'-__ --'--__ -'--_--' __ --' 

0.02 0.03 0.04 (I 05 0.06 0.07 0.08 0.09 0.1 
g 

Figure 3.12: Simulated BER for TC-8PSK (two-state fading channel). 

of the simulations in Figure 3.12. The solid line shows the BER for uncoded QPSK, which is 

lower than the BER of a conventional decoder applied to the TC-8PSK. As in the previous 

figure, the decision-feedback and output-feedback decoders have similar performance, and 

the output-feedback decoder performs slightly better than the decision-feedback decoder 

on poor channels and slightly worse on good channels. Using channel weighting in the 

conventional decoder decreases its BER by almost an order of magnitude. 

The simulated BER for eight-state TC-16QAM applied to the Rayleigh fading channel 

with perfect phase compensation is shown in Figure 3.13. In these simulations, the normal-
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Figure 3.13: Simulated BER for TC-16QAM (Rayleigh fading). 

ized fading rate is JdT = 0.001 and soft-decisions are used in each decoder. The trellis-code, 

described in more detail in [66], is designE:'d specifically for fading channels. The decision­

feedback and output-feedback decoders assume an FSMC model of the Rayleigh channel 

and our BER results are reported for two different FSMC approximations. The solid lines 

correspond to a four-state Markov model and the dashed lines correspond to an eight-state 

model, with fading regions and transition probabilities computed as shown in Section 3.2. 

The conventional decoders with and without weighting and the ML decoder with perfect 

CSI do not use this channel approximation, so their BER performance is independent of 

the FSMC model. 

We see that the BER of the conventional decoder in Rayleigh fading is approximately 0.1 

over a large range of Eb / No values: these results match those of [67], as do our simulation 

results for the ML decoder with perfect CSL The two feedback decoders have similar per­

formance for this channel as well, and their performance is not that sensitive to the channel 
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approximation: a four-state channel model yields almost the same BER as the eight-state 

model. We found that increasing the number of channel states above eight has a negligible 

impact on the BER. Note that the feedback decoders outperform the conventional decoder 

without weighting by three orders of magnitude at high Eb/NO values. In this SNR range, 

the ML decoder with perfect CSI outperforms the feedback decoders by roughly an order of 

magnitude, with a smaller performance gap at lower SNRs. Weighting improves the BER 

performance of the conventional decoder by two orders of magnitude, so the performance 

improvement on the Rayleigh fading channel is significantly higher than on the two-state 

fading channel. 

Figure 3.14 shows the simulated BER for differentially phase-encoded eight-state TC-

16QAM signals applied to the same Rayleigh fading channel as discussed in Figure 3.13. 

Since in this case, phase distortion caused by the fading channel is not totally compensated 
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Figure 3.14: Simulated BER for differentially phase-encoded TC-16QAM (Rayleigh fading). 

for by differential decoding of the signal phase, the BERs of all decoders except the conven-
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tional decoder have increased by around one order of magnitude compared to the case of 

perfect phase compensation. However, the relative behaviors of the five decoders are similar 

to that of the perfect phase compensation case in Figure 3.13. Although the two feedback 

decoders have similar performance in both cases, it is found in our simulations that the 

channel state estimator in the decision-feedback decoder may occasionally diverge (i.e., lose 

track of the fading channel) due to a burst of decision errors and whenever this happens, 

the simulated BER will be around 0.5. To prevent this divergence, we use a header of 3000 

data bits at the beginning of each simulation. In practice, a known header may be required 

for each interleaving block of data in order to guarantee reliable communications. Since no 

feedback decisions are used in the output-feedback decoder, it does not have this divergent 

behavior and therefore does not need any header. 

3.7 Conclusions 

We propose two feedback decoders, a decision-feedback decoder and an output-feedback 

decoder, for coded signals transmitted over channels with correlated slow fading. These 

decoder structures recursively compute the channel fade distribution conditioned on past 

received symbols and, for the decision-feedback decoder, on past feedback decisions as well. 

\Ve also propose a simple improvement to conventional decoders by using a weighted metric. 

The performance of each decoder is investigated by both analysis and simulation. 

In our simulations, hard-decision as well as soft-decision on received symbols are con­

sidered and it is shown that all decoders exhibit a significant performance penalty when 

hard-decision is used, except for the conventional decoder, where hard-decision actually 

improves performance. The BER performance of all these decoders is analyzed through a 

sliding window decoding method. Both analysis and simulation demonstrate that the two 

feedback decoders have far better performance than the conventional decoder. Assuming 

ideal phase compensation for the Rayleigh fading channel, our results indicate that the 

BER of both feedback decoders comes within an order of magnitude of the performance 

of the ML sequence detector with perfect CSI, though the decision-feedback decoder does 

slightly worse on channels with low SNR due to error propagation, and slightly better on 

channels with high SNR. Moreover, these decoders reduce the BER relative to conventional 

techniques by several orders of magnitude. The weighting technique improves the BER per-
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formance of the conventional decoder by up to two orders of magnitude, with only a minor 

increase in complexity. With simple practical phase compensation method such as differen­

tial decoding, the two feedback decoders and the conventional decoder with weighting also 

yield significant performance improvement over the conventional decoder. The two feed­

back decoders have very similar performance. However, the decision-feedback decoder may 

not be reliable without a header during severe fading, while the output-feedback decoder is 

robust. 
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Chapter 4 Ergodic Capacity and Optimal 

Resource Allocation for Fading Broadcast 

Channels 

4.1 Introduction 

As discussed in Chapter 2, the wireless communication channel for both point-to-point 

and broadcast communications varies with time due to user mobility, which induces time­

varying path loss, shadowing and multipath-fading in the received signal power. For these 

time-varying channels, dynamic allocation of resources such as power, rate, and bandwidth 

can result in better performance than fixed resource allocation strategies [68]- [71]. Indeed, 

adaptive techniques are currently used in both wireless and wireline systems and are being 

proposed as standards for next-generation cellular systems. 

By using an optimal dynamic power and rate allocation strategy, the ergodic (Shannon) 

capacity of a single-user fading channel with channel side information (CSI) at both the 

transmitter and the receiver is obtained in [72]. The corresponding optimal power allocation 

strategy is a water-filling over time or, equivalently, over the fading states. This capacity 

corresponds to the maximum long-term achievable rate averaged over all states of the time­

varying channel. In [2], assuming perfect CSI at the receiver and at all transmitters, the 

ergodic capacity 1 region of a fading multiple access channel (MAC) with Gaussian noise and 

the corresponding optimal power and rate allocation are obtained using the polymatroidal 

structure of the region. The optimal power allocation for the MAC is a generalization 

of water-filling for the single-u::icr channel, and both the optimal rate and optimal power 

allocation in each joint farling state are derived via a greedy algorithm. The boundary of 

the ergodic capacity region can be achieved by successive decoding, as for the MAC with 

additive white Gaussian noise (AWGN). 

In this chapter, we derive the ergodic capacity of an M-user fading broadcast channel 

with transmitter and receiver CSI and obtain the corresponding optimal resource allocation 

lThe Shannon capacity of a fading channel is called "throughput capacity" in [2]. 
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strategy for code-division (CD) with and without successive decoding, time-division (TD), 

and frequency-division (FD). The optimal power allocation that achieves the boundary of 

the ergodic capacity region is derived by solving an optimization problem over a set of time­

invariant AWGN broadcast channels with a total average transmit power constraint. For CD 

with successive decoding, the optimization problem is similar to that of the parallel Gaussian 

broadcast channels discussed in [73, 74], and is solved directly by applying the results 

therein. We solve the optimization problem for TD and show that one of the non-unique 

optimal power allocation strategies is also optimal for CD without successive decoding, 

and the ergodic capacity regions for these two techniques are the same. TD and FD are 

equivalent in the sense that they have the same ergodic capacity region and the optimal 

power allGcation for one of them can be directly obtained from that of the other [75]. Thus, 

we obtain the optimal resource allocation for FD as well. For TD and CD without successive 

decoding we also propose a simple sub-optimal power allocation strategy that results in an 

ergodic rate region close to their capacity region. 

The remainder of this chapter is organized as follows: the discrete-time fading broadcast 

channel model is presented in Section 4.2. The ergodic capacity regions and the optimal 

resource allocation for CD with and without successive decoding, TD, and FD, as well as 

the sub-optimal power and time allocations for TD are obtained in Section 4.3. Section 4.4 

shows various numerical results, followed by our conclusions in the last section. 

Notation. The prime (') is used to denote the derivative of a function throughout this 

chapter and Appendix B except in the proofs about the convexity of a capacity region in 

Appendix B.1 and B.3, where the prime or double prime of a symbol just denotes another 

symbol. 

4.2 . The Fading Broadcast Channel 

\Ve consider a discrete-time M-user broadcast channel with fading as shown in Figure 4.1. 

In this model, the signal source Xli] is composed of M independent information sources and 

the broadcast channel consists of M independent fading sub-channels. The time-varying 

sub-channel gains are denoted as Jgdi], Jg2[i], ... , JgMN, and the Gaussian noises of 

these sub-channels are denoted as zdi], z2[i], ... , zM[ij. Let P be the total average transmit 
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power, B the received signal bandwidth, and Vj the noise density of zj[i], j = 1,2, ... , Jo.1. 

Since the time-varying received SNR /,j[i] = P9j[i]j(vj B), j = 1,2, ... , M, if we define2 

nj[i] = Vj/9j[i] we have /,j[i] = P /(nj[i]B). 

Xli] 

Figure 4.1: An M-user fading broadcast channel model. 

Therefore, for slowly time-varying broadcast channel, we obtain an equivalent channel 

model, which is shown in Figure 4.2. In this model, the noise density of zj[i]/ J9j[i] is 

Xli] 

zdi ]/J9Jil 

r----o~+----- Ydi] 

Z2WV92[i] 

_____ ---f-H---- Y2 [i] 

zM(i]/V9M[i] 

'------3~+---___ Y M [i] 

Figure 4.2: An equivalent M-user fading broadcast channel model. 

nj[i], j = 1,2, ... , M. We assume that {nj[i]}~l are known to the transmitter and all the 

M receivers at time i. Thus, the transmitter can vary the transmit power Pj [i] for each 

user relative to the noise density vector n[i] = (ndi], n2[i], ... , nM[iJ), subject only to the 

average power constraint P. For TD or FD, it can also vary the fraction of transmission 

time or bandwidth Tj[i] assigned to each user, subject to the constraint L~l Tj[i] = 1 for all 

i. For CD, the superposition code can be varied at each transmission. Since every receiver 

2Note that when 9j[i] = 0 for some j, nj[i] = 00 and no information can be transmitted through the jth 
sub-channel. 
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knows the noise density vector n[i], they can decode their individual signals by successive 

decoding based on the known resource allocation strategy given the M noise densities. In 

practice, it is necessary to send the transmitter strategy to each receiver through either a 

header on the transmitted data or a pilot tone. We call n[i] the joint fading process and 

denote N as the set of all possible joint fading states. F(n) denotes a given cumulative 

distribution function (c.d.f.) on N. 

4.3 Ergodic Capacity Regions 

Under the assumption that both the transmitters and the receiver have perfect CSI, the 

ergodic capacity region of a fading MAC is derived in [2] by exploiting its special poly­

matroidal structure. In that work the optimal resource allocation scheme is obtained by 

solving a family of optimization problems over a set of parallel Gaussian MACs, one for each 

fading state. In this section we derive the ergodic capacity region for the fading broadcast 

channel under the assumption that the transmitter and all receivers have perfect CSI. The 

corresponding optimal resource allocation strategy is obtained by optimizing over a set of 

parallel Gaussian broadcast channels for CD with and without successive decoding and for 

TD. For FD it is shown that the ergodic capacity region is the same as for TD and the 

corresponding optimal power and bandwidth allocation policy can be derived directly from 

that of TD [75]. 

4.3.1 CD 

We first consider superposition coding and successive decoding where, in each joint fad­

ing state, the M-user broadcast channel can be viewed as a degraded Gaussian broadcast 

channel with noise densities ndi], n2[i], ... , nM[i] and the multiresolution signal constella­

tion is optimized relative to these instantaneous noise densities. Given a power allocation 

policy P, let Pj(n) be the transmit power allocated to User j for the joint fading state 

n = (nl,n2, ... ,nM) and denote F as the set of all possible power poliries satisfying the 

average power constraint En [L~l Pj(n)] :::; P, where E[·] denotes the expectation func­

tion. For simplicity, assume that the stationary distributions of the fading processes have 

continuous densities3 , i.e., Pr{ ni = nj} = 0, Vi i- j. 

3If Pr{ni = nj} i= 0 for some i,j then, in state n, User i and User j can be viewed as a single user and 
superposition coding and successive decoding are applied to M - 1 users. The information for User i and 
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Theorem 4.1 The ergodic capacity region for the fading broadcast channel when the trans­

mitter and all the receivers know the current channel state is given by: 

C(P) = U CCD(P), ( 4.1) 
PEF 

where 

and 1[·] denotes the indicator function {1[x] = 1 if X is true and zero otherwise}. Moreover, 

the capacity region C(P) is convex. 

Proof: See Appendix B.l. 0 

Since this capacity region is convex, 'tip, = (J-lI,J-l2, ... ,J-lM) E R~ with Et!lJ-li = 1, if 

a rate vector R = (R1 , R2, ... , RM) is a solution to the following maximization problem, it 

will be on the boundary surface of C(P) in (4.1): 

m~ p,R. 
REC(P) 

(4.3) 

The maximization problem in (4.3) is equivalent to 

( 4.4) 

where P(n) = [PI (n), P2(n), ... , PM(n)] and the objective function 

M ( P.(n) ) M 
Jo(P(n)) = L J-lj In 1 + .B + EM ~.( )1[. .] - A L Pj(n). 

j=l nJ t=l t n nJ > n t j=l 
(4.5) 

In (4.5), A is the Lagrangian multiplier and J-li can be viewed as a weighting parameter 

proportional to the priurity of User i (i = 1,2, ... , M). The problem in (4.4) is quite similar 

to that of the parallel AWGN broadcast channels discussed in [73, 74] and its solution is 

obtained by applying the results therein. For each fading state n = (nl' n2,"', nM), let 

the permutation 71"( i) be defined such that n 7r (I) < n7r(2) < ... < n7r(M)' The ')ptimal power 

User j are then transmitted by time-sharing the channel. 
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allocation procedure for state n as derived in [73] is essentially water-filling, which will be 

discussed later in this section in the context of a greedy algorithm. We now describe the 

optimal power allocation procedure from [73]: 

Initialization: Do not assign power to any user 7r(i) for which :lJ' i < J' < M with /1-,,(i) < 
, - n,,(i) -

~,,(j). Remove these users from further consideration. 
,,(j) 

Step 1: Denote the number of remaining users as K and define the permutation p(.) such 

that 

np(l) < np(2) < ... < np(K)' 

Then, due to the removal criterion, we have 

(4.6) 

i.e., 
np(l) np(2) np(K) -- < -- < ... < --. 
J-lp(l) J-lp(2) J-lp(K) 

Step 2: Define 

P * () . {[J-lP(I) B] ml'n J-lp(l)np(i)B - J-lP(i)np(I)B} , 
pel) n =mm -\- - np(l) +' 

/\ /1-p(i»/1-p(l) J-lp(i) - J-lp(l) 
(4.7) 

where [xl+gmax(x,O) and assign power P;(l)(n) to User p(l). If 

* () [J-lP(I) ] Pp(l) n = ->.- - np(I)B +' 

the total power for state n has been allocated. If not, only the power for User p(l) 

has been allocated. In this case, increase the noises np(i)B (1 < i ::; K) by P;(l)(n) 

and do not assign power to any user p( i) for which 3j such that i < j ::; K with 

/1-p(i) < /1-p(j). Remove these users from further consideration. Also remove User p(l) 
np(i) - np(j) 

and return to Step 1. 0 

In the above procedure, s* = ± is the water-filling power level that satisfies the total 

power constraint in (4.4). In each iteration, this water-filling procedure consists of selecting 

the best receiver according to a modified noise criterion using the weighting parameter J-li 
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for each user i, and adding power to the corresponding sub channel until a predetermined 

power is achieved. Note that in each iteration, some subchannels will be identified to hold no 

power. This optimal power allocation procedure can be found using a greedy algorithm [74]. 

In order to show this, we first require the following theorem, which is similar to Theorem 

3.14 in [2]: 

Theorem 4.2 VE,. E ~~, y E ~~, A > 0, consider the maximization problem 

M M 

max L ~jXj(Y) - A LYj, 
Y . . 

J=l J=l 

(4.8) 

where, for a set of non-decreasing concave functions {gj(·)}~l with {gj(·)}~l either con-

cave or convex, 

Define the utility functions 

Uj(Z) = ~jgj(z) - A, 1::; j ::; M. 

u*(z) = [ max Uj(Z)] . 
l~J~M + 

(4.9) 

Then the solution to (4.8) is given by Jooo u*(z)dz. Moreover, let Zo = 0 and let Zk (1 ::; k ::; 

K -1) denote the point where Uik(Z) intersects Uik+l(Z) for some ik and ik+1 so that4 

,,' (z) ~ { ~i' (z) 

Then the optimizing point y* is 

* _ { Zk - Zk-1, 
Y --

J 0 , 

if Zk-1 ::; Z ::; Zk, VI ::; k ::; K, 

if Z 2 ZK· 

if j = ik for some k, 1 ::; k ::; K 

otherwise. 

(4.10) 

(4.11) 

4From (4.10) we see that ZK is defined as the smallest Z for which u' (z) = 0; if no such point exists, then 

ZK = 00. 
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Proof: Let Yo ~ 0 and by substituting (4.9) into (4.8), we have: 

(4.12) 

Note that since the functions {gj(-)}~1 are concave, VI ~ j ~ M, gj(.) is monotonically 

decreasing and hence so are {Uj(·)}~1 and u*(·). Moreover, since {gj(·)}~1 are either 

concave or convex, for any i, j, two curves Ui (.) and Uj (.) can cross each other at most once. 

Thus, the set of cross points {zdf=1 for the curves {Uj (. )}~1 satisfying the condition that 

if and only if Z E [Zk-l, Zk], u*(z) = Uik(Z) for some ik (1 ~ k ~ K) is unique and it is easy 

to verify that point y* given in (4.11) achieves the upper bound in (4.12). 0 

We now apply Theorem 4.2 to the maximization problem (4.4). Recall that in a given 

state n, we have defined the permutation 7r(.) such that n7r(I) < n7r(2) < ... < n7r(M). Now 
. l::. l::. 

for 1 ~ J ~ M, let Yj = P7r(j) (n), ~j = J.L7r(j) , and 

l::. 
gj(z) = In(n7r(j)B + z). (4.13) 

With these definitions, Xj(Y) (1 ~ j ~ M) in Theorem 4.2 becomes 

j j-l 

Xj(Y) gj('2:( yd - gj(LYi) 
i=1 i=1 

2 ~j ~ M, (4.14) 
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and the utility function Uj(z) (1 :::; j :::; M) becomes 

(4.15) 

Thus the maximization problem (4.8) is equivalent to the maximization problem (4.4). 

Consequently, by Theorem 4.2, the solution y; to (4.8) is the power allocation for User 7r(j) 

that maximizes (4.4) for state n. That is, 

* { Zk - Zk-1, if j = ik for some k, 1 :::; k :::; K 
P7r(j) (n) = 

0, otherwise, 

where Zk (0:::; k :::; K) is as defined in Theorem 4.2. This optimal solution to (4.4) can be 

interpreted as follows. 

Assuming that in fading state n, the interference to each user 7r(j) (1 :::; j :::; M) from 

other users is Z (z 2: 0), i.e., 
j-1 

Z = L P 7r (i) (n), 
i=l 

then the objective function Jo(P(n)) in (4.4) becomes 

( 4.16) 

Therefore, when a marginal power Jp is allocated to User 7r(j) at interference level z, the 

marginal weighted rate increase in the objective function Jo(P(n)) is 

8Jo(P(n)) I . Jp 

8P7r(j) (n) p,,(j) (n)=O 

= {n,(jIB :;~ P,(j)(n) Ip,(j)(n)=o - >. } ·op 

Uj(z) . Jp, 

where the utility function Uj(z) is given in (4.15). Thus, Theorem 4.2 indicates that the 

optimal solution to (4.4) can be obtained greedily by allocating power Jp to the User i* 

with the largest positive marginal weighted rate increase u*(z) . Jp = (ni~£+z - ).) . Jp 
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at each interference level Z (z ~ 0). This power allocation process continues until no 

user obtains a positive marginal weighted rate increase with the addition of power 8p (i.e., 

u"(z) = [ max Uj(Z)] = 0), in which case we allocate no more power to state n. 
l~J~M + 

For example, in a two-user system, let Uj(z) ~ n/ll+z - >., j = 1,2. In order that 

max {Uj(z)} > 0, Z must be no larger than max {¥ - njB}. Assuming that J-ll < J-l2, we 
jE{1,2} jE{1,2} 

have: 

1. if l!:l < I!J., then Vz > 0, Ul(Z) < U2(Z), which means that no power should be assigned 
nl - n2 

to User 1. Therefore, the optimal power P*(n) is: 

case, 

I . 
, u·(z) = ~ - >. 

2 ni B+z 

z 

for Zo < Z < Zl, 

for Zl < Z < Z2, 
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where Zo = 0, ZI = zc, Z2 = ¥ - n2B. Thus, 

1 
Ul(Z), for Zo < Z < ZI, 

u*(z) = U2(Z), for ZI < Z < Z2, 

0, for Z 2: Z2. 

Therefore, according to Theorem 4.2, 

u·(z) = ~-A 
Z niB+z 

z 

for Zo < Z < ZI, 

where Zo = ° and ZI = ¥ - nIB. Thus, 

and 

u*(Z) = { 
0, 

Ul(Z), for Zo < Z < ZI, 

for Z 2: ZI· 

{ 
Pi(n) = ZI - Zo = [¥ - n1B]+, 

P2'(n) = 0. 
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When /-L1 > /-L2, the power policy for User 1 and User 2 is similarly obtained using 

appropriate substitutions for all subscripts. When /-L1 = /-L2, the power policy is simplified 

to the following: if n1 ~ n2, then Pt(n) = [¥- - n1B]+, P';(n) = 0; otherwise Pi(n) = 0, 

P';(n) = [¥ - n2B]+. 

Therefore, from the discussion for the two-user system, one can easily see that the 

two-step water-filling procedure described earlier in this section is a concise summarization 

of the M-user optimal power allocation for CD derived from Theorem 4.2. That is, in 

each iteration, according to (4.6), User p(l) has the largest positive marginal weighted rate 

increase and the procedure starts to assign power to User p(l) by water-filling until the 

total power allocated to him satisfies (4.7), in which case if 

then some user other than User p(l) will begin to have the largest positive marginal weighted 

rate increase and the available power will be allocated to him in the next iteration; if 

P;(1/n) = [Ilp~l) - np(l)BL, then no user will have a positive marginal weighted rate in­

crease with any additional power and no more power will be allocated to state n. A detailed 

interpretation about this is given in Appendix B.2. 

4.3.2 TD 

Now we consider the time-division case where, in each fading state n, the information for 

the A;f users will be divided and sent in time-slots which are functions of n. For a given 

power and time allocation policy P, let Pj(n) and Tj(n) (0 ~ Tj(n) ~ 1) be the transmit 

power and fraction of transmission time allocated to User j (j = 1,2, ... , M), respectively, 

for fading state n, and let F be the set of all such possible power and time allocation policies 

satisfying 

{ EnJL~l Tj(n)Pj(n)] ~ P, 

Lj=l Tj(n) = 1, 'v'n EN. 

and 
(4.17) 

Theorem 4.3 The achievable rate region for the variable power and variable transmission 

time scheme is: 

C(P) = U CTD(P), (4.18) 
PEF 
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where 

(4.19) 

Moreover, the rate region C(P) is convex. 

Proof: See Appendix B.3. 0 

Note that in this chapter we will refer to this achievable rate region as the capacity region 

for TD, though we do not have a converse proof due to the fact that the converse only holds 

for the optimal transmission strategy for this channel, which, according to Theorem 4.1, is 

CD with successive decoding. 

Due to the convexity of this capacity region, 'iJ.L E R4?" with L~l flj = 1, if a rate vector 

R is a solution to 

m~ J.LR, 
REC(P) 

(4.20) 

it will be on the boundary surface of C(P). Based on the expression for R in (4.19) and 

the average total power constraint in (4.17), we can decompose the maximization problem 

(4.20) into the following two problems: 

(1) Assuming that 'in EN, pen) is the total power assigned to the M users, i.e., pen) = 

L~l Tj(n)Pj(n), we must determine how to distribute pen) among the M users so 

that the total weighted rate in state n is maximized. That is, we must find 

{ 

J(P(n)) ~ max Lf~l Tj(n)fi(Pj(n)) 
T(n),P(n) 

subject to: L~l Tj(n)Pj(n) = pen), 
(4.21) 

where T(n) = [Tl(n), T2(n), ... , TM(n)] with L~l Tj(n) = 1, pen) = [P1(n), P2(n), 

... , PM(n)], and 

( 4.22) 

(2) After we obtain the expression for J(.) by solving (4.21), the remaining problem is 

how to assign the total power pen) of the M users for each state n so that the total 

weighted rate averaged over all fading states as expressed in (4.20) is maximized. That 

is, 

{

max {En[J(P(n))]- AEn[P(n)]} 
P(n) 

subject to: En[P(n)] = P, 
( 4.23) 
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where A is the Lagrangian multiplier. 

We solve the maximization problems (4.21) and (4.23) for the two-user case first and 

then generalize the result to the M-user case. 

Two-User Case 

Lemma 4.1 When M = 2, assuming that J.Ll < J.L2, the solution to (4.21) is: 

1. if ~ :S ~, then J(P(n)) = f2(P(n)), which is achieved when Tl(n) = 0, T2(n) = 1, 

P1(n) = 0, P2(n) = P(n); 

[:, (J.L2 J.Ll ) h(x, n) = (n2 - ndBx + J.L21n -B - J.Llln -B - (J.L2 - J.Ld· 
xn2 xnl 

Then 

1 
fI(P(n)) if 0 < P(n):S Pa(n), 

J(P(n)) = fI(Pa(n)) + AO(n)[P(n) - Pa(n)] if Pa(n) < P(n) < Pb(n), 

f2(P(n)) if P(n) 2: Pb(n), 

h(Ao(n), n) = O. 

J(P(n)) in (4.25) is achieved by letting 

Tl(n) = 1 

T2(n) = 0 

P1(n) = P(n) 

P2 (n) = 0 

if 0 < P(n) :S Pa(n), 

(4.24) 

( 4.25) 

( 4.26) 

(4.27) 
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P1(n) = Pa(n) 

P2(n) = Pb(n) 

Tl(n) = 0 

T2(n) = 1 

P1(n) = 0 

P2(n) = P(n) 

Proof. See Appendix B.4. 0 

if Pa(n) < P(n) < Pb(n), ( 4.28) 

( 4.29) 

From (4.21) we see that when M = 2, J(P(n)) is a linear combination of fj(·), j = 

1,2. The proof of Lemma 4.1 in Appendix B.4 shows that if I!:l < I!:.'l., then VP(n) > 0 
nl - n2 ' 

h(P(n)) < f2(P(n)) and J(P(n)) is simply f2(P(n)). If ~ > ~, it is proved that for 

P(n) > 0, h (P(n)) and f2(P(n)) will cross each other once at some positive value Po(n), 

as shown in Figure 4.55 . In this figure, the slope of the tangent line between the curves 

h(P(n)) and f2(P(n)) is >'o(n) and it satisfies 

(4.30) 

i.e., 

h (>'o(n), n) = o. 

Thus, in this case, J(P(n)) is the continuous contour in Figure 4.5 which consists of part of 

the curve h(P(n)), the tangent line, and part of the curve f2(P(n)), as indicated with the 

dash-dotted line which is offset slightly for clarity. The expression of J(P(n)) is therefore 

as given in (4.25). Note that the slope of the tangent of the curve J(P(n)) is continuous 

and it decreases with the increase of P(n). 

For a given fading state n, from (4.23) we know that the optimal power P*(n) satisfies 

J'(P*(n)) - >. = O. (4.31) 

5In this figure, P, Pa , Po and Pb are all functions of n, which is not shown for simplicity. 
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~ 

..., . ...,·...,·f2(P) = J.l2ln(1 + n:B) 
"", 

h(P) = J.llln(l + n~B) 

P 

Figure 4.5: The functions fI(P), f2(P) and J(P) when l!:.l > l!:2. 
nl n2 

Therefore, for any given A > 0, P*(n) is determined by the point(s) on the curve J(P(n)) 

whose tangent has a slope A. In the case where 1!:1.. > 5 and A = Ao(n), since all the points nl n2 

on the tangent line between fI(P(n)) and f2(P(n)) in Figure 4.5 have the same tangent 

slope A, P*(n) can be any value between Pa(n) and Pb(n): if Pa(n) < P*(n) < Pb(n), from 

Lemma 4.1 we know that P*(n) will be time-shared by the two users; if P*(n) is simply 

chosen as Pa(n) or Pb(n), then it is only assigned to User 1 or to User 2, respectively. 

In all other cases, the point that has a tangent with slope A is unique and hence so is 

P*(n). The unique choice of P*(n) is then allocated to a single user based on its relative 

value compared to Pa(n) and Pb(n) as discussed in Lemma 4.1. Consequently, we have the 

following theorem: 

Theorem 4.4 When Af = 2, assuming that J.LI < J.L2, the optimal power and time allocation 

policy that achieves the TD capacity region boundary for each fading state n = (nl' n2) is: 

1. if 1!:1.. < 5 then nl - n2' 

{ 

Ti(n) = 0, 

T2'(n) = 1, 

{ 
T~(n) = 1, 

T2 (n) = 0, 

Pi(n) = 0, 

P2'(n) = [¥ - n2 B ]+; 

and h(A, n) < 0, 
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(b) if'\ < n}lr=~~B and h('\, n) > 0, 

{ 

T~(n) = 0, 

T2 (n) = 1, 

Pi(n) = 0, 

P2'(n) = [¥ - n2B]+; 

Pi(n) = [If- - n1B]+, 

P2'(n) = [¥ - n2B]+. 

In the above expressions, h(x, n) is given in (4.24) and s* 6. t is the water-filling power 

level. ,\ and TO' satisfy the total average power constraint: 

( 4.32) 

and they may not be unique. 

Proof. See Appendix B.5. 0 

When J.ll > J.l2, the optimal power policy for User 1 and User 2 is similarly derived 

using appropriate substitutions for all subscripts. When J.ll = J.l2 the optimal power policy 

is simplified as follows: if nl :S n2 then Pi(n) = [If- - n1B]+, P2'(n) = 0; otherwise 

Pi(n) = 0, P2'(n) = [¥ - n2Bj+. In fact this is the same power allocation as for CD 

discussed in Section 4.3.1. 

Note that when the c.d.f. F(n) is continuous, V'\ > 0, the probability measure of the 

set 
6. 

L = {n: h('\,n) = O} ( 4.33) 

is zero. Since according to Thf:,Jrem 4.4, TO' is defined on a subset of L and the probability 

measure of any subset of L must also be zero, the value of TO' will Hot affect the power 

constraint (4.32) and A is therefore uniquely determined by (4.32). Moreover, in this case, 

with probability 1, at most a single user transmits in each fading state n. IfF(n) is not 

continuous, the set L may have positive probability measure and for any fading state in this 

set, the broadcast channel can be either time-shared by the two users, occupied by a single 

user, or not used by any user if the fading is too severe. 
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M-User Case 

The optimal power and time allocation policy that achieves the capacity region boundary 

for the two-user case can be generalized to the M-user case (M > 2). In the AI-user 

case, the optimal power allocation is again obtained based on the values of functions fj('), 

j = I,2,···,M. Specifically, for a given Ji(-) in (4.22), if:3i =I j such that Vx > 0, 

Ji(x) ::s fi(X), then we can show that fj(-) will not appear in the expression of J(P(n)), 

VP(n) > 0. Thus, no resources should be assigned to User j in the state n. That is, the 

optimal Tj*(n) and P/(n) are T/(n) = 0, Pj*(n) = 0. For any i,j = 1,2, ... , M, assuming 

/Lj < /Li, we know that, as shown in the proof of Lemma 4.1, if ~ ::s ~ then Vx > 0, 

fj(x) < fi(X); if ~ > ~ then fi(X) and fj(x) will cross each other once at some positive x. 

In both cases, since /Lj < /Li, for x large enough (x> 0), fj(x) < fi(X). 

Thus, assuming without loss of generality (WLOG) that /Ll ::s /L2 ::s ... ::s /LM, we first 

remove any user j (i.e., let Tj*(n) = 0, P/(n) = 0) for which :li, j < i ::s M with ~~ ::s ~ or 

which satisfies /Lj-l = /Lj and Il) < 1l)-1. For the remaining users, there are still some users 
n) n)-l 

j whose corresponding Ji(-) may not appear in the expression of J(P(n)). For example, 

assume WLOG that the remaining users are User I-User 4. Due to the removal criterion, 

we know that 

and 

/L 1 > /L2 > /L3 > /L4, 
nl n2 n3 n4 

/Ll < /L2 < /L3 < /L4, 

(4.34) 

( 4.35) 

which means that their corresponding Ji(P(n)) (1 ::s j ::s 4) will cross one another once at 

some positive P(n), and 

fI(P(n)) < h(P(n)) < h(P(n)) < f4(P(n)) 

for P(n) large enough. Thus, if {fj(P(n))};=l are as shown in Figure 4.66 , it is clear that 

12(,) will not appear in the expression of J(P(n)) since, VP(n) > 0, the curve h(P(n)) is 

always under the dash-dotted contour of J(P(n)) formed by part of the curves fI(P(n)), 

h(P(n)), f4(P(n)) and the straight tangent lines between them. Note that the dash-dotted 

curve in this figure is offset slightly for clarity. In the following, we use an iterative procedure 

6In this figure, P, Paj and Pb j (j = 1,2) are all functions of n, which is not shown for simplicity. 
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to find all the users j among the remaining users whose corresponding 1i (.) will not appear 

in the expression of J(P(n)) and identify all other users to whom the resources will be 

allocated later. An interpretation of this procedure based on Figure 4.6 will then be given. 

J(P) ----

h(P) 

h(P) 

P 

Figure 4.6: The functions J(P) and fj(P) = J.ljln [1 + n~B] (1 ::; j ::; 4) which satisfy 

(4.34) and (4.35). 

Initialization: Let m = 1. 

Step 1: Denote the number of remaining users as K and define the permutation 'ljJ(-) such 

that 

J.l'lj;(l) < J.l'lj;(2) < ... < J.l'lj;(K)· 

Then, due to the removal criterion, we have 

J.l'¢(l) > J.l'lj;(2) > ... > J.l'lj;(K). ( 4.36) 
n'lj;(l) n'lj;(2) n'lj;(K) 

Step 2: Let 7ro(m) = 'ljJ(1). If K < 2, all the users j whose corresponding fj(-) will not 

appear in the expression of J(P(n)) have been removed and stop; if K 2: 2, go to 

Step 3. 

Step 3: For 1 ::; i ::; K - 1, define 

[ 

J.l'lj;(i+l) J.l'lj;(l) 1 
J.l'lj;(i+l) In B - J.l'lj;(l) In B 

xn'lj;(i+l) xn'lj;(l) 
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and let ti satisfy hi(ti, n) = 0. Let Ao(m) = maxi{td, i* = arg maxi{td. If i* ~ 2, 

remove those users 'ljJ(j) for which 2 ::; j ::; i* (i.e., let T;(j) (n) = 0, P;(j) (n) = 0, and 

remove them from further consideration). Also remove User 'ljJ(I). Increase m by 1 

and return to Step 1. 

In this procedure we observe that in the first iteration, f,p(I)(P(n)) of User 'ljJ(I) must 

be the first part of the curve J(P(n)) where P(n) is close to 0, since VI ::; j ::; K, 

df,p(j) (x) I - JL,p(j) 
dx n x=o ,p(j) 

and according to (4.36), for x close to ° (x> 0), it must be true that 

For 1 ::; i ::; K - 1, ti satisfying hi (ti' n) = ° corresponds to the slope of the common 

tangent between the two curves f,p(I)(P(n)) and !,p(i+l) (P(n)). Since ti* = maxi{td, if 

i* > 1, all the curves {f,p(j) (P(n)) }:~2 will always be under the contour formed by part of 

the curve f,p(I)(P(n)), part of the curve !,p(i*+I)(P(n)), and the common tangent between 

them. Thus, no power should be assigned to users 'ljJ(j), 2 ::; j ::; i*. In this case, we 

know that part of the curve !,p(i*+I)(P(n)) of User 'ljJ(i* + 1) as well as the common tangent 

between the curves f,p(I)(P(n)) and f';'(;'+l) (P(n)) must be part of J(P(n)). For example, 

in Figure 4.6, since the number ofremaining users is K = 4 and 'ljJ(j) = j, j = 1,2,3,4, if we 

draw the common tangents between curves fI(P(n)) and h(P(n)), fI(P(n)) and fs(P(n)), 

and also fI(P(n)) and f4(P(n)), the slopes of which are tl, t2, and t3, respectively, then it 

is clear that t2 = max{tl, t2, t3} and i* = 2, i.e., the slope of the tangent between fI(P(n)) 

and fs(P(n)) is the largest among the slopes of the three tangents. Thus, h(P(n)) will not 

be part of J(P(n)) but !J(P(n)) and the common tangent between fI(P(n)) and fs(P(n)) 

will. 

After removing those users 'ljJ(j), 2 ::; j ::; i* and User 'ljJ(I), the number of remaining 

users is reduced froni K to K - i* and User 'ljJ(i* + 1) in the first iteration becomes User 

'ljJ(I) in the second iteration. Similarly, in the second iteration, by comparing the slopes 
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of the common tangents between curves f.p(1)(P(n)) and f.p(i+1)(P(n)), 1 :s: i :s: K - 1, 

we may remove more users and find a new User 'IjJ(i* + 1) in this iteration whose corre­

sponding f.p(i*+1)(P(n)) as well as the common tangent between curves f.p(1)(P(n)) and 

f.p(i*+l)(P(n)) must be part of J(P(n)). This User 'IjJ(i* + 1) becomes User 'IjJ(1) in the 

third iteration and the iterative procedure goes on and on until all the users j whose cor­

responding Ji(x) will be part of J(P(n)) have been identified and all other users have been 

removed. 

Note that in each iteration, the value of m is different. Assume that by the time the 

iteration stops, m = Mo. If Mo = 1, then J(P(n)) is simply f 7ro(1); if Mo > 1, then J(P(n)) 

is composed of {f7ro(m)(·) } ::1 as well as the common tangents between curves f 7ro(m)(·) and 

f 7ro(m+1) (.), 1 :s: m :s: Mo - 1, the slopes of which are {Ao(m)}~~11. That is, by denoting 

Pao(n) = Pbo(n) = 0, PaMo (n) = PbMO (n) = 00, .Ao(Mo) = 0, and letting Pa", (n) and Pbm (n) 

(1 :s: m :s: Mo - 1) be the points satisfying 

i.e., 

we can express J(P(n)) as 

J(P(n)) = { f 7ro(m)(P(n)) 
f 7ro(m) (Pam (n)) + .Ao(m) [P(n) - Pam (n)] 

( 4.37) 

if Pbm- 1 (n) :s: P(n) < Pam (n), 

if Pam (n) :s: P(n) < Pbm (n), 

( 4.38) 

where 1 :s: m :s: A10. For example, in the case shown in Figure 4.6, since only User 2 will 

be removed from further consideration, by the time the iterative procedure stops, we have 

Mo = 3 and 

1
71"0(1) = 1, 

71"0(2) = 3, 

71"0(3) = 4. 

The Pam(n) and Pbm(n) (m = 1,2) satisfying (4.37) are as shown in Figure 4.6 and .Ao(l) 
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and Ao(2) denote the slopes of the tangent lines for which P(n) ranges from Pal (n) to 

Pbl(n), and from Pa2(n) to Pb2(n), respectively. Thus, J(P(n)) can be expressed as 

f 7rO(l) (P(n)) if 0 :S P(n) < Pal (n), 

f 7rO(l) (P(n)) + Ao(l)[P(n) - Pal (n)J if Pal (n) :S P(n) < Pbl (n), 

J(P(n)) = f 7ro(2) (P(n)) if PbI (n) :S P(n) < Pa2 (n), 

f 7rO(2) (P(n)) + Ao(2)[P(n) - Pa2 (n)J if Pa2 (n) :S P(n) < Pb2 (n), 

f 7ro(3) (P(n)) if P(n) 2: Pb2 (n). 

Once we obtain the curve J(P(n)), similar to the two-user case, VA > 0 fixed, since the 

optimal power P*(n) satisfies the condition (4.31), i.e., J'(P*(n)) = A, P*(n) is determined 

by the point(s) on the curve J(P(n)) whose tangent has a slope A. If A equals any Ao(j) 

(1 :S j :S ],,10 - 1), since all the points on the common tangent between curves f 7ro(j) and 

f 7ro(j+l) share the same tangent, P*(n) can be any value between Paj (n) and Pbj (n): if 

Paj(n) < P*(n) < Pbj(n), P*(n) will be time-shared by the two users 7ro(j) and 7ro(j + 1); 

if P*(n) is simply chosen as Paj (n) or Pbj (n), then it is only assigned to User 7ro(j) or 

User 7ro(j + 1), respectively. If A i- AO(j) for all 1 :S j :S 1110 - 1, then P*(n) is uniquely 

determined by the single point on J(P(n)) that has a tangent with slope A. Therefore, 

based on the expression of J(P(n)) in (4.38) and the condition (4.31), for A > 0 fixed, the 

optimal power and time allocation policy for the remaining Mo users {7rO (m)} ~~l is: 

(a) if Mo = 1, then 

(b) if 1110 > 1, by denoting AO(O) ~ 00, we know that for the given A, there exists a 

j E {I, 2, ... , Mo} such that AO(j - 1) > A > AO(j) or A = AO(j), since 

00 = AO(O) > Ao(l) > Ao(2) > ... > Ao(Mo - 1) > AO(1I10) = 0, 

which results from the iterative procedure generating {,\o(m)}~~l and from the fact 

that J(P(n)) is an increasing, concave function. If 3j such that AO(j) < A < AO(j -1), 

from (4.38) we have J(P(n)) = f 7ro(j) (P(n)), since only when Pbj-I (n) :S P(n) < 

Paj(n) does the tangent slope of J(P(n)) decrease from AO(j - 1) to AO(j). In this 
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case, we set 

{ 

T;O(j)(n) = 1, 

P* () - [ 1l1r
O(i) BJ rro(j) n - >. - nrro(j) + ' 

which corresponds to transmitting the information of User 7ro(j) only. If 3j such 

that), = ),(j), then J(P(n)) = frro(j)(P(n)) + ),(j)[P(n) - Paj(n)], since only when 

Paj (n) :::; P(n) < Pbj (n) does the tangent slope of J(P(n)) equal ),(j). Therefore, as 

in the two-user case, we can set 

( 4.39) 

and 

{ 

P* () - [~ B] rro(j) n - >. - nrro(j) + ' 

P* () - [1l1rO(j+l) B] 
rro(j+l) n - >. - nrro(j+l) + ' 

which indicates that the channel is time-shared by User 7ro(j) and User 7ro(j + 1) if 

choosing 0 < TO' < 1, and is occupied by User 7ro(j) or User 7ro(j + 1) along if choosing 

TO' = 1 or TO' = 0, respectively. 

In the above policy, ), and TO' satisfy the average power constraint 

( 4.40) 

and they may not be unique, since TO' can be any value between 0 and 1. Notice that as in 

the two-user case, if the c.dJ. F(n) is continuous, V)' > 0, the probability measure of the 

set7 

L ~ {n: 3j such that 1 :::; j :::; Mo and), = ),o(j)} (4.41 ) 

is zero and), is uniquely determined by (4.40). Moreover, in this case, the above optimal 

power and time allocation policy for the M-user broadcast channel implies that with proba­

bility 1, the information of at most a single user is transmitted in each fading state. If F(n) 

is not continuous, then the set L may have non-zero probability measure and for n E L, 

as discussed before, the channel capacity region is achieved by time-sharing between two 

7Note that in (4.41), Mo is a function of n, which results from the iterative procedure described earlier 
in this section. 



65 

users or dedicated transmission to just one user; for any other channel state n (n ~ L), 

the information of at most one user is transmitted. Thus, in all cases, the capacity region 

boundary of TD can be achieved by sending information to just one user in every fading 

state. This motivates the sub-optimal TD policy we propose in the next section. 

4.3.3 Sub-Optimal TD Policy 

The optimal power and time allocation policy in Section 4.3.2 indicates that the capacity 

region C(P) in (4.18) is achieved by transmitting the information of at most a single user 

in each fading state n, although it can also be achieved by a strategy that transmits the 

information of two users in some states by time-sharing and assigns the channel to a single 

user or no user in the other states. Based on this observation, we now propose a sub-optimal 

method for resource allocation. This method selects a single user in each channel state and 

allocates appropriate power to him according to the fading state. We now describe our 

method to choose the single user and his corresponding power. 

In each state n, Vi = 1,2, ... , lvI, define 

and let 

s = {i : J;(Pi(n)) = G(n)}, 

i* g arg minPi(n), 
iES 

where fi(X) is given in (4.22). Then, in the state n, only the information for User i* is sent 

with transmit power Pi*(n), where). satisfies the M-user average power constraint (4.40). 

For example, in the two-user case, by denoting 

;:,. /-li 
gi(X, n) = /-li In -B' i = 1,2, 

Xni 

we can express the sub-optimal power and time allocation policy as follows: 

( 4.42) 



{ 

7i(n) = 1, 

72'(n) = 0, 
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(b) if 91(A,n) < 92(A,n), or if 91(A,n) = 92(A,n) and A < 

¥ - n2B), then 

{ 
7~(n) = 0, 

72 (n) = 1, 

where A satisfies the two-user average pU'ler constraint (4.32). 

( . I!:l B I.e., >. - n1 > 

Compared to the optimal power and time allocation policy, the advantage of this sub­

optimal scheme is that it is much easier to compute the water-filling power level s* ~ ± 
using (4.40). As will be shown in Section 4.4, the resulting rate region comes very close to 

that of the optimal TD policy. This is due to the fact that the two policies are identical 

except over a small set of fading states. Specifically, in the case where the c.d.f. F(n) is 

continuous, the detailed comparison of the optimal and sub-optimal decision regions for the 

two-user fading broadcast channel in Appendix B.6 shows that for a given A > 0, the two 

policies transmit the information of different users only in the rare occasions when n E LD, 

where 

LD ~ {n: J.L1 > J.L2 and AO < A < Aoub with h(Ao,n) = 0, 92(Aoub ,n) - 91(Aoub ,n) = o}. 
n1 n2 

( 4.43) 

4.3.4 CD without Successive Decoding 

For CD without successive decoding each receiver treats the signals for other users as 

interference noise. For a given power allocation policy P, by denoting Pj(n) as the transmit 

power allocated to User j and F as the set of all possible power policies satisfying the average 

power constraint En [L:~1 Pj(n)] ::; P, we have the following theorem: 
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Theorem 4.5 The achievable rate region for CD without successive decoding is given by: 

where 

C(P) = U CCDWO(P), 
PEF 

( 4.44) 

CCDWO(P) = {Rj :S En [BIOg (1 +. Pjn) . )] , j = 1,2,··., M}. 
nJB + 2:i=1,i,tj Pz(n) 

The proof of the achievability follows along the same lines as that for the capacity region 

of CD given in Appendix B.1 and is therefore omitted. Note that in this chapter, as in the 

case of TD, we refer to this achievable rate region as the capacity region for CD without 

successive decoding, though we do not have a converse proof since the converse only applies 

to the optimal transmission strategy, which is CD with successive decoding. 

In order to show that C(P) in (4.44) cannot be larger than the capacity region of TD in 

(4.18), we give the following lemma: 

Lemma 4.2 VPi 2: 0, J.li 2: 0, niB> 0, i = 1,2, ... , M, 

:S max J.li log 1 + J- . 
[ ( 

2:A~lPj)] 
iE{1,2, ... ,M} niB 

(4.45) 

Proof: See Appendix B.7. D 

Theorem 4.6 

U Ccmvo(P) ~ U CTD(P), ( 4.46) 
PEF PEF 

where equality is achieved using the optimal TD policy with power allocated to at most one 

user in each fading state. 

Proof. Recall that the optimal power and time allocation policy discussed in Section 4.3.2 

indicates that if F(n) is continuous, then with probability 1, no more than one user is using 

the broadcast channel in each fading state n; if F(n) is discontinuous, in some fading states 

with non-zero probability, we can either choose two users and transmit their information 

by time-sharing the channel, or just select one of them and transmit his information alone. 

Therefore, in any case, the boundary of the capacity region C (I') in (4.18) can be achieved 

by an optimal TD policy which transmits the information of at most one user through the 
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fading broadcast channel in each channel state n. Obviously this optimal policy can be used 

as a power allocation policy for CD without successive decoding to eliminate interference 

from all other users and therefore to achieve the same capacity region boundary as TD. 

Thus, we need only to show that the capacity region of CD without successive decoding in 

(4.44) cannot be larger than the capacity region of TD in (4.18). We use Lemma 4.2 to 

prove this as follows. 
M 

For CD without successive decoding, Vn E N, denote P(n) = L:Pj(n). For 1 ~ i ~ M, 

let 

Gi(n) = Blog [1 + p(n)] , 
niB 

i=1 

Ri{n) = B log [1 + Pjn) 1 ' 
niB + Ej=1,Hi Pj{n) 

and let JLi = Ci~n). Then according to Lemma 4.2, we have: 

(4.47) 

Now consider the equal power TD strategy which assigns the power P{n) to each user 

i for a fraction Ti{n) of the total transmission time in the state n. By denoting 

we have 

R;(n) = Ti{n)Blog [1 + :~i] , 

t R;(n) = 1, 
i=1 Gi(n) 

( 4.48) 

since Ef'!1 Ti(n) = 1. Therefore, from (4.47) and (4.48), it is clear that given a fading 

state n, VP(n) > 0, the capacity region of the equivalent AWGN broadcast channel for CD 

without successive decoding is within that for equal power TD and is therefore within that 

for optimal TD. Consequently, the capacity region of CD without successive decoding in 

(4.44) cannot be larger than the capacity region of TD in (4.18). 0 

Note that since the sub-optimal TD scheme proposed at the end of Section 4.3.2 indicates 

that the broadcast channel is used by no more than one user, this suboptimal policy can 

also be applied to CD without successive decoding. 
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4.4 Numerical Results 

In this section we present numerical results for the two-user ergodic capacity regions of 

the Rician and Rayleigh fading channels under different spectrum-sharing techniques. In 

the figures, as in [75], the equal power TD scheme refers to the strategy that assigns the 

constant transmission power P and total bandwidth B to User 1 for a fraction T of the total 

transmission time, and then to User 2 for the remainder of the transmission. The optimal 

TD scheme for both the AWGN channel and the fading channels is obtained by allocating 

different power to the two users. We refer to CD without successive decoding as CDWO. 

Since TD and FD are equivalent in the sense that they have the same capacity region, all 

results for TD in the figures also apply for FD. 

In Figure 4.7, the ergodic capacity regions of the Rician and Rayleigh fading broadcast 

channels are compared to that of the Gaussian broadcast channel using the CD, TD, equal 

power TD, and CDWO techniques. The SNR difference between the two users is 3 dB 

(nl and n2 denote the average noise densities of User l's channel and User 2's channel, 

respectively). The total transmission power is P = 10 dB and the signal bandwidth B = 100 

KHz. The ratio of the direct-path power to the scattered-path power in the Rician fading 

sub-channels is k = 6 dB. 

In this figure we see that while the single-user ergodic rate (the Rl-axis or R 2-axis 

intercept) in fading is smaller than the rate in AWGN, the two-user capacity regions of 

both the Rician fading and the Rayleigh fading broadcast channels using either optimal CD 

or sub-optimal TD techniques in some places dominate that of the AWGN broadcast channel 

using optimal CD. That is, for the fading broadcast channel, ergodic rate pairs beyond the 

capacity region of the non-fading broadcast channel can be achieved by applying optimal 

resource allocation over the joint fading channel states. For simplicity, we calculate the 

rate region of the fading broadcast channel for TD by applying the simple sub-optimal 

TD power allocation policy. The resulting rate region turns out to be very close to the 

capacity region for optimal CD. Therefore, the capacity region using the optimal TD power 

policy will also come very close to that of optimal CD. This observation implies that, due 

to the small SNR difference between the two users, superposition encoding with successive 

decoding is not necessary, since time-sharing is near-optimal. For the AWGN broadcast 

channel, the capacity region boundary of the optimal TD scheme is indistinguishable from 
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Figure 4.7: Two-user ergodic capacity region comparison: 3 dB SNR difference. 

the equal power TD straight line, which means that when the two users have a similar 

channel noise power, constant power allocation is good enough for TD. The CDWO capacity 

region boundary (omitted from Figure 4.7 but shown in figures in [75]) includes the two 

end points of the equal power TD line but is below this straight line due to its convexity. 

However, for the fading channels. optimal or sub-optimal TD has a much larger capacity 

region than equal power TD and the capacity region for CDWO is the same as that for 

optimal TD. 

We show in Figure 4.8 that when the SNR difference between the two users is 20 dB 

and the total average power is 25 dB, the ergodic capacity region for CD in Rayleigh fading 

is now completely within the region for CD in AWGN. However, optimal TD in fading can 

achieve some rate pairs far beyond the capacity region of the AWGN broadcast channel 

using optimal TD, and the sub-optimal TD power policy for Rayleigh fading results in a 

rate region almost as large as the capacity region with the optimal TD power policy. For 
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both AWGN and fading channels, due to the large SNR difference between the two users , 
the capacity region for optimal CD is noticeably larger than that for optimal TD, and the 

capacity region for optimal TD is noticeably larger than that for equal power TD. 
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Figure 4.8: Two-user throughput capacity region comparison: 20 dB SNR difference with 
strong signal power. 

Figure 4.9 shows the case where the SNR difference between the two users is 20 dB and 

the total average power is only 10 dB. Unlike the previous cases, we see here that the ergodic 

single-user capacity of User 2 for the Rayleigh fading channel is larger than that for the 

AWGN channel due to its very low average SNR. Thus, the optimal CD or sub-optimal TD 

scheme for fading yields a large rate region that is not achievable for the AWGN channel. 

However, as in Figure 4.8, due to the great SNR difference between the two users, optimal 

CD results in a capacity region much larger than that for sub-optimal TD and the capacity 

region for optimal TD is significantly larger than that for equal power TD. This observation 

holds for both fading and AWGN channels. 
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Figure 4.9: Two-user throughput capacity region comparison: 20 dB SNR difference with 
weak signal power. 

4.5 Conclusions 

\Ve have obtained the ergodic capacity region and the optimal dynamic resource allocation 

strategy for fading broadcast channels with perfect CSI at both the transmitter and the 

receiver. These results are obtained for CD with and without successive decoding, TD and 

FD. Comparisons of the capacity regions show that CD with successive decoding has the 

largest capacity region, while TD and FD are equivalent and they have the same capacity 

region as CD without successive decoding. For CD without successiw decoding, the optimal 

power policy is to transmit the information of at most one user in each joint fading state. 

This policy is also optimal for TD, though other strategies which allow at most two users 

to time-share the channel may also be optimal. When the average channel fading condition 

for each user is similar, the capacity regions for optimal CD and TD are quite close to each 

other. However, when each user has an average channel condition quite different from that 
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of the others, optimal CD can achieve a much larger ergodic capacity region than the other 

techniques. In the next chapter, we will derive the zero-outage capacity region and the 

capacity region with non-zero outage for fading broadcast channels. Since each rate vector 

in the outage capacity region must be achievable in every fading state n unless an outage 

is declared, we cannot average over different fading conditions. However, the outage and 

ergodic capacity regions exhibit similar relative performance between the various channel­

sharing techniques. 
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Chapter 5 Outage Capacities and Optimal 

Resource Allocation for Fading Broadcast 

Channels 

5.1 Introduction 

In the previous chapter, by applying optimal dynamic power and rate allocation strategies, 

we have obtained the ergodic (Shannon) capacities of fading broadcast channels under 

different spectrum-sharing techniques. This kind of capacity is a measure of the long-term 

achievable rate averaged over the time-varying channel. For real-time applications that 

cannot tolerate the variable delays exhibited by the coding strategy that achieves the ergodic 

capacity, we have to consider the information rate that can be maintained in all fading 

conditions through optimal power control. In order to maintain a constant rate during severe 

fading, much power is needed. Therefore, given an average power constraint, the channel 

fading may be so severe that no constant rate greater than zero is possible. For example, 

the maximum instantaneous mutual information rate that can be supported continuously 

on the single-user Rayleigh fading Charlllf'1 with a finite average transmit power constraint 

is zero [3]. However, if we allow some transmission outage under severe fading conditions, 

the maximum instantaneous mutual information rate that can be maintained during non­

outage will increase. Finding the optimal resource allocation strategy that achieves the 

outage capacity with a given outage probability is tantamount to deriving the strategy 

that minimizes the outage probability for a given rate vector. In [76], the minimum outage 

probability problem is solved for the single-user fading channel. In addition, it is shown that 

under a long-term average power constraint, the optimal power allocation depends on the 

fading statistics through a threshold-decision rule: no transmission is allowed in a fading 

state where the required power is above a threshold value. 

For an M -user broadcast fading channel and a given rate vector R, we consider a similar 

minimum common outage probability problem under the assumption that the broadcast 
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channel is either not used at all when fading is severe or is used simultaneously for all 

users when fading is tolerable. Under the more complex assumption that an outage can 

be declared for each user individually, we obtain an optimal power allocation policy that 

achieves boundaries of outage probability regions for time-division (TD), frequency-division 

(FD) and code-division (CD) with and without successive decoding. This optimal power 

allocation strategy is a multi-user generalization of the single-user threshold-decision rule. 

As a special case, if no outage is allowed during the transmission, the outage capacity 

with a given outage probability becomes the zero-outage capacity. In [3], with an average 

power constraint for each user, under the assumption that CSI is available at both the trans­

mitters and the receiver, the zero-outage capacity region i and the optimal power allocation 

schenlt are derived for the fading l\1AC by exploiting the special polymatroidal structure of 

the region. It is shown that the boundary of this capacity region can be achieved through 

successive decoding and applying a greedy optimal power allocation scheme. The successive 

decoding order depends on both the current fading state and the power price for each user. 

In this chapter, for convenience we first obtain directly zero-outage capacity regions 

and the associate optimal resource allocation strategies of an AI-user broadcast fading 

channel for TD, FD, and CD with and without successive decoding. For CD with successive 

decoding, we will show that the superposition coding and successive decoding order depends 

only on the current fading state. For the Nakagami-m fading model [77] we prove that the 

limiting zero-outage capacity region converges to that of the Gaussian broadcast channel 

for CD with and without successive decoding when m -+ 00. 

The remainder of this chapter is organized as follows: the broadcast fading channel 

model is briefly described in Section 5.2. In Section 5.3, the zero-outage capacity regions 

are derived for each of the different spectrum-sharing techniques. We derive strategies to 

minimize the common outage probability and achieve the boundary of the outage probability 

region for TD, FD, and CD with or without successive decoding in Section 5.4. Section 5.5 

shows numerical results, followed by our conclusions in the last section. 

IThe zero-outage capa.ity is called "delay-limited capacity" in [3], since the coding ::,trategy that achieves 
the zero-outage capacity has a delay that is independent of the channel variation. 
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5.2 The Fading Broadcast Channel 

We consider the same discrete-time M-user broadcast fading channel model as in Chapter 4, 

where the signal source X[iJ is composed of M independent information sources and the 

broadcast channel consists of M independent fading sub-channels. The time-varying sub­

channel gains are denoted as Jgdi], Jg2[iJ, ... , JgM[iJ and the Gaussian noises of these 

sub-channels are denoted as zdi], z2[i], ... , zM[iJ. Let P be the total average transmit 

power, B the received signal bandwidth, and Vj the noise density of zj[i], j = 1,2, ... , M. 

Since the time-varying received SNR 'Yj[iJ = ?gj[iJ/(vjB), j = 1,2, ... ,M, by denoting2 

nj[iJ = vj/gj[i]' we have 'Yj[iJ = ?/(nj[iJB). 

For a slowly time-varying broadcast channel, we assume that the nj[i], j = 1,2, ... , M, 

are known to the transmitter and all AI receivers at time i. Thus, the transmitter can 

vary the transmit power Pj[iJ for each user relative to the noise density vector n[iJ = 

(ndi], n2[i], ... , nM[iJ), subject only to the average power constraint ? For TD or FD, it 

can also vary the fraction of transmission time or bandwidth Tj[iJ assigned to each user, 

subject to the constraint L~~l Tj[iJ = 1 for all i. For CD, the superposition code can be 

varied at each transmission. \Ve call n[i] the joint fading process and denote N as the set 

of all possible joint fading states. F(n) denotes a given cumulative distribution function 

(c.d.f.) on N. 

5.3 Zero-Outage Capacity Region 

For an lVI-user fading broadcast channel with stationary distribution Q and a total average 

power constraint P, we give the following definition for the zero-outage capacity region 

Czero(?), which is similar to that of the delay-limited capacity region for the MAC in [3J: 

Definition 5.1 For a given rate vector R = (Rl,R2,···,RM), ifVE > 0, there exists a 

coding delay T such that for pvery fading process with stationary di.stribution Q, there exist 

code books and a decoding scheme with probability of error p~T) < E, then R E Czero(?). 

Moreover, the codewords can be chosen as a function of the realization of the fading pro-

cesses. 

2See Section 4.2 for a discussion of the case gj[i] = O. 
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In this section, the zero-outage capacity region of ar. M-user broadcast fading channel 

is obtained for CD with and without successive decoding and for TD. For FD, using the 

same argument as in [75], it can be easily shown that the zero-outage capacity region is 

the same as for TD and the optimal power and bandwidth allocation policy for FD can be 

derived directly from that of TD. 

5.3.1 CD 

For an Ai-user broadcast system, we first consider superposition coding and successive 

decoding where, in each joint fading state, the channel can be viewed as a degraded Gaussian 

broadcast channel with noise densities ndi], n2[i], ... , nM[i] and the multiresolution signal 

constellation is optimized relativE: to these instantaneous noises. In this case, the users 

with smaller noise densities will subtract the interference from the users with larger noise 

densities. Given a power allocation policy P, let Pj(n) be the transmit power allocated to 

User j for the joint fading state n = (nI, n2, ... , nM) and denote :F as the set of all possible 

power policies satisfying the average power constraint En [L:~I Pj(n)] :::; P, where E[.] 

denotes the expectation function. For simplicity, assume that the stationary distributions 

of the fading processes have continuous densities3 , i.e., Pr{ ni = nj} = 0, Vi i= j. 

Theorem 5.1 The zero-outage capacity region for the fading broadcast channel when the 

transmitter and all the receivers know the current channel state is given by: 

Czero(p) = U n CCD(n, P), (5.1) 
PEFnEJV 

where CCD(n, P) is the capacity region of the time-invariant Gaussian broadcast channel. 

That is, 

j = 1,2, ... , M}, (5.2) 

where 1[·] denotes thf indicator function (l[x] = 1 if x is true and zero otherwise). 

Proof: See Appendix C.l. 0 

3If Pr{ ni = nj} i- 0 for some i, j then, in state n, User i and User j can be viewed as a single user and 
superposition coding and successive decoding are applied to M - 1 m:ers. The information for User i and 
User j are then transmitted by time-sharing the channel. 
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For a given rate vector R and a fading state n, from (5.2) we can ccJculate the minimum 

required power prin(n) (j = 1,2, ... , M) that can support the rate vector R. Specifically, 

let 71'(.) be the permutation such that 

Then according to (5.2), we have 

i = 2,3,···,M. 

Thus, to support rate vector R, we require 

{ 

P7r(l)(n) 2:: n7r(l)B (2 R"(1)/B - 1) , 
P7r(i)(n) 2:: (n7r(i)B + L;~l P7r(j)(n)) (2 R

"(i)/ B_1), i = 2,3,,,,, M. 

The minimum power required to support R for each user is 

{ 

P;;'(l,)(n) = n7r(l)B (2 R
"(1)/B - 1) , 

P;;'(:)(n) = (n7r(i)B + L;~l P;;,(;,)(n)) (2 R
"(i)/B - 1), i = 2,3"", M. 

Consequently, the minimum required total power pmin(R, n) that can support R in fading 

state n is: 

!If 

pmin(R,n) L P;;'(f)(n) 
i=l 

(5.3) 

For a given R, if R E Czero(P) , then by (5.1), the minimum required average power 

En [pmin(R, n)] satisfies the total average power constraint 

(5.4) 
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where pmin(R, n) is given by (5.3). If R is on the boundary surface of Czero(P), then the 

equality in (5.4) is achieved. Note that for the single user case (M = 1), if Rl is on the 

boundary of Czero(P) , from (5.3) and (5.4) we have 

Thus, 

Rl = B log ( 1 + Enl fnlBJ) , 
which is the same as derived in [2]. 

5.3.2 CD without Successive Decoding 

In CD without successive decoding, each receiver treats the signals for other users as inter­

fering noise. For a given power allocation policy P, let Pj(n) denote the transmit power 

allocated to User j in the state n and let F denote the set of all possible power policies satis­

fying the average power constraint En [L~l Pj(n)] ~ P. Then the achievable zero-outage 

rate region for CD without successive decoding is given by: 

Czero(P) = U n CCDwo(n, P), (5.5) 
PEFnEN 

where CCDwo(n, P) is the rate region of the time-invariant Gaussian broadcast channel 

using CD without successive decoding: 

{ ( 
Pj(n) ) 

CCDwo(n, P) = Rj ~ Blog 1 + .B ~M .. p.() , 
n J + L..l=l,lfJ l n 

j = 1,2, ... , 1\f} . (5.6) 

The proof of the achievability follows along the same lines as that for the capacity region 

of CD given in Appendix C.l and is therefore omitted. Note that in this chapter, we refer 

to this achievable rate region as the zero-outage capacity region for CD without successive 

decoding, though we do not have a converse proof since the converse only applies to the 

optimal transmission strategy, which is CD with successive decoding. 

For a given rate vector R and a fading state n, we know from (5.6) that 
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Denoting prin(n) (i = 1,2,···, AI) as the minimum power required for User i in order to 

support rate vector R, by (5.7) we have 

Therefore, prin(n) must satisfy 

p.min(n) = (noB + "M 0 0 pmin(n)) (2 R;/B - 1) 
1 1 ~)=1,)#1) , i=1,2,···,A1. (5.8) 

By defining matrix A = (aij), i,j = 1,2,···, M, where 

{ 

1 ·f . . 
a o 

0 _ 2R;/B_1' 1 t =), 
1) -

- 1 , if i =1= j, 
(5.9) 

we prove in Appendix C.2 that the M linear equations in (5.8) have positive solutions for 

all prin(n) (1 ::; i ::; M) in every fading state n if and only if det A > o. Assuming 

that det A > 0, it is clear that the explicit solution to pmin(n) = (Plin(n), P2in (n), ... , 

p;:;in(n)) is 

(5.10) 

where A -1 denotes the inverse of matrix A and n T denotes the transpose of vector n. Thus, 

the minimum required total power pmin(R, n) is 

M 

pmin(R, n) = L prin(n). (5.11) 
i=1 

For example, in the two-user case (M = 2), ifdetA > 0, i.e., if2Rl/B +2R2/B > 2(Rl+R2)/B, 

the solution for Piin(n) and p2in(n) will be 

1 
0 2Rd B-1)nlB+(2Rl/B_1 2R2/B-1)n2B 

p1m(n) = 2Rl/B+2R2/B_2(Rl+R2 B , 

min _ (2R2/B-1)n2B+(2R2/B_1)(2Rl/B-1)nlB 
P2 (n) - 2RdB+2R2/B_2(Rl+R2)/B . 
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pmin(R,n) 

= 
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Plin(n) + prin(n) 

(2(Rl+R2)/B _ 2R2/B) nIB + (2(Rl+R2)/B _ 2Rl/B) n2 B 

2Rl/B + 2R2/B _ 2(Rl+R2)/B (5.12) 

Therefore, a given R E Czero(P) if the average power constraint in (5.4) is satisfied with 

pmin(R, n) given by (5.11). If R is on the boundary surface of Czero(.P) , then the equality 

in (5.4) is achieved. 

5.3.3 TD 

Now we consider the time-division case where, in each fading state n, the information i.;)r 

the M users will be divided and sent in time-slots which are functions of n. For a given 

power and time allocation policy P, let Pj (n) and Tj (n) (0 :S Tj (n) :S 1) be the transmit 

power and fraction of transmission time allocated to User j (j = 1,2, ... ,A1), respectively, 

for fading state n, and let F be the set of all such possible power and time allocation policies 

satisfying 

{ 
EnJLf=1 Tj(n)Pj(n)] :S P, 

Lj=1 Tj(n) = 1, Vn EN. 

and 

Then the achievable zero-outage capacity region for the variable power and transmission 

time scheme is: 

Czero(P) = U n CTD(n, P), (5.13) 
PEFnEN 

where CTD(n, P) is the rate region of the time-invariant Gaussian broadcast channel using 

the TD technique: 

j = 1. 2, ... , M } . (5.14) 

The proof of the achievability follows along the same lines as that for the capacity region of 

CD given in Appendix C.1 and is therefore omitted. Note that as in the case of CD without 

successive, we refer to this achievable rate region as the zero-outage capacity region for TD, 

though we do not have a converse proof due to the fact that the converse only holds for 

the optimal transmission strategy for this channel, which, according to Theorem 5.1, is CD 
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with successive decoding. 

For a given rate vector R and a fading state n, from (5.14) we have 

Therefore, the required total power peR, n) of the M users satisfies 

P(R,n) 
i=l 

[:, 
Let T(n) = hen), T2(n),··., TM(n)] and let pmin(R, n) be the minimum required total 

power of the M users for fading state n, then 

(5.15) 

subject to: L~l Ti(n) = 1, \in EN. 

By applying the Lagrangian technique, we can find the optimal T(n) which achieves 

pmin(R, n) in (5.15). For example, in a two-user system (M = 2), let 

and let Ti (n) be the solution to the non-linear equation 

dP(Tl(n)) = ° 
dTl(n) . 

Since it is easy to verify that for '1 (n) > 0, d
2 
:;r(~»)) > 0, we have 

pmin(R, n) = min P(Tl(n)) 
Ti(n) 

= P(T;(n)). 

Therefore, R E Czero(F) if pmin(R, n) in (5.15) satisfies (5.4). If R is on the boundary 

surface of Czero(F) then the equality in (5.4) is achieved. 
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5.3.4 The Limiting Zero-Outage Capacity Region for Nakagami Fading 

It is well known that the Nakagami-m fading model [15J can be used to describe different 

fading conditions ranging from Rayleigh (m = 1) to Rician channels with strong line-of­

sight components. As the fading parameter m (m ~ 1/2) goes to infinity, the Nakagami-m 

fading channel converges to an AWGN channel. Therefore, it is expected that the limiting 

zero-outage capacity region of the Nakagami-m fading broadcast channel converges to the 

capacity region of an AWGN broadcast channel as m -+ 00. In this subsection, we prove 

this to be true for CD with and without successive decoding in a two-user system. These 

results can be easily extended to more users. 

CD with Successive Decoding 

For a two-user broadcast channel with fading, given rate vector R = (RI' R2), we know by 

(5.3) that the minimum required total power to support R in fading state n = (nl' n2) is: 

(5.16) 

If R is on the boundary surface of Czero(P) in (5.1), by substituting (5.16) into (5.4) with 

equality, we obtain 

P En[pmin(R, n)] 

2R2/B(2 Rl/B -1)ETIJ <n2 [nIBJ + (2R2/B -1)En1 <n2 [n2BJ 

+ 2Rl/B(2R2/B - 1)En1 >n2 [n2BJ + (2 Rl/B - 1)Enl>n2 [nIBJ. (5.17) 

Let ThB and fi2B be the average noise variances of the channels for User 1 and User 2, 

respectively. Assuming that the signal power is normalized to 1, the signal-to-noise ratio 

(SNR) Ii of User i (i = 1,2) for a given channel state n is: 

(5.18) 

We use the following lemma to show that for Nakagami-m fading, as m -+ 00, (5.17) 

converges to the boundary equation for the capacity region of an AWGN broadcast channel 
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with sub-channel noise variances nIB and n2B. 

Lemma 5.1 Given 0 < p < 1/2 and a fixed integer r, 

k+r (i + k - 1) " 
lim L . pt(l - p)k = l. 

k--+oo i=O '/, 

Proof: See Appendix C.3. 0 

For Nakagami-m fading, the probability density function (p.d.f.) of 'Yi in (5.18) is: 

"( ") _ (mniB)m m-I -mniB,i 
Pt 'Yt -- (m _ I)! 'Yi e , i = 1,2. 

Thus, from (5.17) and (5.18) we know that 

where 

P 2R2/B(2Rt/B _ l)Da(m) + (2R2/ B - l)Db(m) 

+ 2Rt/B(2R2/B _ l)Dc(m) + (2 Rt/B - l)Dd(m), 

Da(m) = E n1 <n2 [nIB] = 1 ~PIht)p2h2)d"Y' 
II >,2 'YI 

Db(m) = EnI <n2 [n2B] = 1 ~PI('YI)P2('Y2)d'Y' 
II >,2 'Y2 

Dc(m) = E n1 >n2 [n2B] = 1 ~PI('YI)P2('Y2)d'Y' 
"'11 <,2 'Y2 

Dd(m) = EnI >n2 [nIB] = 1 ~PI('YI)P2('Y2)d'Y' 
II <,2 'YI 

By applying Lemma 5.1, we obtain the following lemma: 

Lemma 5.2 For Nakagami-m jading, assuming that nIB < n2 B , 

lim Da(m) = nIB, 
m--+oo 

lim Dc(m) = 0, 
m--+oo 

lim Dd(m) = O. 
m--+oo 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 
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Proof: See Appendix CA. 0 

Theorem 5.2 As m -t 00, assuming that nIB < n2B, the boundary of the capacity region 

for Nakagami-m fading broadcast channel (5.20) becomes 

(5.25) 

which is the same as the boundary of the capacity region for the AWGN broadcast channel 

using CD with successive decoding. 

Proof: Applying Lemma 5.2 to (5.20) directly yields (5.25). For the two-user degraded 

AWGN broadcast channel with noise variances nIB and n2B (nIB < n2B), the capacity 

region for CD with successive decoding is [78, 79]: 

Therefore, if R is on the boundary of the capacity region (5.26), i.e., all the equalities in 

(5.26) are achieved, then 

P PI +P2 

(2Rl/B _ l)nlB + (2R2/B - 1)[n2B + (2Rl/B - l)nIB] 

2R2/B(2 Rl/B _ l)nlB + (2R2/B - 1)n2B, 

which means that R also satisfies (5.25). 0 

CD without Successive Decoding 

For a two-user broadcast channel with fading, given rate vector R = (RIo R2), we know by 

(5.12) that the minimum required total power to support R in a fading state n = (nl' n2) 

is 

(5.27) 
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If R is on the boundary surface of Czero(P) in (5.5), substituting (5.27) into (5.4) with 

equality we obtain 

P 
(2(Rl+R2)/B - 2R2/B) Enl[nIB] + (2(Rl+R2)/B - 2Rl/B) E n2 [n2 B ] 

2Rl/B + 2R2/B _ 2(Rl+R2)/B 

(2(Rl+R2)/B - 2R2/B) [Da(m) + Dd(m)] 

2Rl/ B + 2R2/ B _ 2(R1 +R2)/ B 

(2(Rl+R2)/B - 2Rl/B) [Db(m) + De(m)J 
+~--~-=~~~~~=-~~~---

2Rl/B + 2R2/B _ 2(Rl+R2)/B ' (5.28) 

where Da(m), Db(m), De(m) and Dd(m) are as defined in (5.21)-(5.24) for the Nakagami-m 

fading channel. From Lemma 5.2 we know that 

Thus, as m -+ 00, (5.28) becomes 

P = (2(Rl+R2)/B _ 2R2/B) filB + (2(Rl+R2)/B - 2RdB) fi2B 

2Rd B + 2R2/B _ 2(Rl+R2)/B (5.29) 

which is the same as the boundary of the capacity region for the AWGN broadcast channel 

using CD without successive decoding, since for the two-user degraded AWGN broadcast 

channel with noise variances filB and fi2B (filB < fi2B), the capacity region for CD without 

successive decoding is [75J: 

5.4 Outage Capacities and Minimum Outage Probability 

In the previous section we obtained the zero-outage capacity region of an M-user broadcast 

channel, where the transmitter was required to maintain a constant rate for each user 

no matter how severe its fading. We now consider the outage capacity region, where the 

transmitter may suspend transmission over a subset of fading states with a given probability. 

Specifically, for a given average power constraint P, the outage capacity regions Cout(P, Pr) 
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and GoutCP, Pr) are defined as follows: 

Definition 5.2 Assuming that the transmission to all users is turned on or off simultane­

ously so that the outage probability for each user is the same (common outage probability), 

for a given 0 $ Pr $ 1, the outage capacity region Gout(P, Pr) consists of all rate vectors 

R = (RI' R2,·· ., RM) which can be maintained with a common outage probability no larger 

than Pr under the the power constraint P. 

Definition 5.3 Assuming that the transmission to each user is turned on or off indepen­

dently so that the outage probability for each user may be different, for a given probability 

vector Pr = (PrI, Pr2,···, PrM), the outage capacity region Gout(P, Pr) consists of all rate 

vectors R = (PI, R2,· .. , RM) which can be maintained with the outage probability for User 

j no larger than Prj (VI $ j $ M) under the the given power constraint ? 

With these definitions, we wish to find: a) the optimal resource allocation strategy that 

achieves the boundary of the outage capacity region Gout (?, Pr); b) the optimal resource 

allocation strategy that achieves the boundary of Gout(P, Pr). The first optimization prob­

lem is equivalent to deriving the resource allocation policy that minimizes the common 

outage probability for a given rate vector R and we have the following definition for the 

corresponding minimum common outage probability Prmin(P, R): 

Definition 5.4 Assuming that the transmission to all users is turned on or off simultane­

ously, the minimum common outage probability Prmin(P, R) is the smallest common outage 

probability with which the rate vector R can be maintained under the given power constraint 

P. 

The second optimization problem is equivalent to obtaining the resource allocation policy 

that achieves the boundary ofthe outage probability region O(P, R) or the usage probability 

region O(P, R) defined as follows: 

Definition 5.5 Assum ing that the transmission to each user is turned on or off indepen­

dently, for a given rate vector R, the outage probability region O(P, R) consists of all outage 

probability vectors Pr for which R can be maintained for the M users under the given power 

constraint P. 
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Definition 5.6 The usage probability region O(P, R) is the complementary region of the 

outage probability region D(?, R), i.e., if a probability vector Pr = (Prl, Pr2,···, PrM) E 

D(?, R), then the probability vector Pron = (Pri, Pr2n, ... , PrJ:}) E O(?, R), where 

Prj = 1 - Prj, VI ::; j ::; M. 

With the above definitions, it is easily seen that given 0 ::; Pr ::; 1, the outage capacity 

region C out (?, Pr) is implicitly obtained once the minimum common outage probability 

Prmin(?, R) for a given rate vector is calculated under the optimal resource allocation, since 

VR, we can determine that R E C out (?, Pr) if Prmin(?, R) ::; Pr, and R rt. Cout (?, Pr) 

otherwise. Similarly, given a probability vector Pr, the outage capacity region C out (?, Pr) 

is implicitly obtained once the boundary of the outage probability region D(?, R) (and 

so the whole region D(?, R)) for a given rate vector R is derived through the optimal 

resource allocation, since VR, we can determine that R E Cout (?, Pr) if Pr E D(?, R), 

and R rt. Cout (?, Pr) otherwise. We now derive the minimum common outage probability 

Prmin(?, R) and the corresponding optimal resource allocation strategy in Section 5.4.l. 

We obtain the outage probability region boundary of D(?, R) as well as the optimal resource 

allocation strategy in Section 5.4.2 for the case of independent outage problems. 

5.4.1 Minimum Common Outage Probability 

Under the assumption that an outage is declared for all users simultaneously, the minimum 

common outage probability problem for the M-user broadcast channel is similar to that 

of the single user case [76J. For each joint fading state n and a given rate vector R, 

the minimum required total power pmin(R, n) for the M users using CD with or without 

successive decoding or using TD can be calculated as in (5.3), (5.11) or (5.15), respectively. 

Thus, Vs > 0, we define the sets of fading states R(s) and R(s) as: 

R(s) = {n: pmin(R,n) < s}, (5.30) 

R(s) = {n : pmin(R, n) ::; s}. (5.31) 



89 

The corresponding average power over the two sets are: 

P(s) = EnER(s)pmin(R, n), (5.32) 

(5.33) 

For a given total power P > 0, let 

s* ~ sup {s: P(s) < P}, 

* to. P-P(s*) w = ~----~~-
[>(s*) - P(s*) 

(5.34) 

By using Lemma 3 in [76], for each fading state n, the optimal power policy that minimizes 

the common outage probability is: if n tf. R(s*), no power is assigned to any user; if 

n E R(s*), a total power of pmin(R, n) is assigned to the M users and the power to 

each user is allocated as described in Section 5.3; if n tf. R(s*) but n E R(s*), then with 

probability w*, pmin (R, n) is assigned to the M users and with probability 1-w*, no power 

is assigned to any user. The minimum common outage probability Prmin(P, R) is: 

Prmin(P, R) = 1 - Pr {n E R(s*)} - w* Pr {n E R(s*) and n tf. R(s*)} , (5.35) 

where Pr{·} denotes the probability function. 

5.4.2 Outage Probability Region 

We now consider the case where an outage can be declared independently for each user. 

From Definition 5.5 and Definition 5.6, it is clear that for a given rate vector R and an 

average power constraint P, deriving the boundary of the outage probability region O(P, R) 

is equivalent to deriving the boundary of the usage probability region 6(P, R). We will 

require the following definition and lemma to derive the boundary of 6(P, R) and the 

corresponding optimal power allocation that achieves this boundary: 

Definition 5.7 For a given rate vector R = (Rl' R 2 ,"', RM), assume that rate Ri is main­

tained with probability Prin(R), 1 ~ i ~ M. Denoting Pron(R) = [Prlm(R), Pr2n(R), "', 
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PrM(R)], the total usage reward W(R) is 

M 

W(R) = ILPron(R) = L JLiPri(R), 
i=1 

where IL E ~~ with 'LJ'!:1 JLj = 1, and JLi is the relative reward if the information for User 

i is transmitteat. 

Lemma 5.3 The usage probability region O(P, R) of the fading broadcast channel is con-

vex. 

Proof: See Appendix C.5. 0 

Since O(p, R) is convex, "IlL E ~~ with 'LJ'!:1 JL] = 1, a usage probability vector 

Pron(R) will be on the boundary surface of O(P, R) if it is a solution to 

ma~ _ W(R), 
Pron (R)EO(P,R) 

where the total usage reward W(R) is defined in Definition 5.7. 

(5.36) 

For any given fading state n, 'Lt!1 (Af) = 2M - 1 different combinations of the AI users 

may be transmitting over the channel. We will represent each of these 2M - 1 possible com­

binations of users as a vector [1P(k, 1), 1P(k, 2), ... , 1P(k, AI)] equal to the binary expansion of 

k, 1 ~ k ~ 2M -1. For each vector [1P(k, 1), 1P(k, 2),···, 1P(k, AI)], if 1P(k, i) = 1, then User i 

is transmitting; otherwise User i is not. For 0 ::; k ~ 2M -1, we define the set of active users 

Uk relative to k as Uk = {j : 1P(k,j) = 1, 1 ~ j ~ M}. Uo denotes the empty set (no active 

users). For any fading state n suppose that the broadcast channel only transmits informa­

tion to users in the non-empty set Uk. Then, as discussed in Section 5.3, we can calculate 

the minimum total power pJ:in(R, n) (1 ~ k ~ 2M -1) required to support a sub-vector of 

R composed of the required rates of the users in Uk under those different spectrum-sharing 

techniques. For the fading state n let wk(R, n) denote the probability that the broadcast 

channel transmits information to the subset of users in Uk. Then obviously 

2M_l 

2..= wk(R, n) = 1 - wo(R, n) ::; l. 
k=1 

4/-Li can also be viewed as the relative penalty if an outage is declared for User i. 
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For a given rate vector R and a fading state n, let Prr(R, n) be the probability that 

information is sent to User i: 

2M_1 

PrieR, n) = L wkCR, n)l[i E Uk], (5.37) 
k==l 

where 1[.] denotes the indicator function. Then the average outage probability PrieR) of 

User i (1 :S i :S M) is: 

= 1 - En [PrieR, n)] . 

For a given fading state n, according to (5.37), the total usage reward W(R, n) is 

W(R,n) 
i==l 

= t,l'i C~1 wk{R,n)l[i E Ukl) 

2~1 wk{R,n) (t,l'i 1[i E Ukl) 

2M_1 

L wk(R, n)17k' (5.38) 
k=l 

where the reward for transmitting information to the users in set Uk is 

M 

17k ~ L /Li 1 [i E Uk]' (5.39) 
i==l 

Thus, the total usage reward averaged over the time-varying channel is 

W(R) = En [W(R, n)] . (5.40) 

Since in fading state 11, the total required minimum power to support R with usage prob­

ability Prr (R, n) for each user i (VI :S i :S M) is 

2M_1 

pmin(R, n) = L Pkin(R, n)wk(R, n), (5.41) 
k=l 
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the total required minimum average power to achieve W (R) will be En [pmin (R, n)]. 

For a given rate vector R, we wish to solve the maximization problem (5.36), which 

is equivalent to finding the optimal wk(R, n) (1 :S k :S 2M - 1, 'in E N) that maximizes 

W(R) in (5.40) under the total power constraint. That is, we can re-write the maximization 

problem (5.36) as: 

1 
max.,(R,n) En [W(R:n)] 

En [pmm(R,n)] :S P, L%:ll wk(R, n) :S 1 and O:S wdR,n):S 1, 

(5.42) 

subject to: 

where w(R,n) = [wl(R,n),w2(R,n),···,wN(R,n)] with N ~ 2M - 1, W(R,n) and 

pmin(R, n) are as given in (5.38) and (5.41), respectively and P is the total average trans­

mit power. The maximization problem (5.42) can be decomposed into the following two 

problems: 

1. Assuming that 'in E N, pen) is the total average power assigned to the N sets of 

users in state n, i.e., pen) = L);=l wk(R, n)Pkin(R, n), we must choose w(R, n) so 

that the total usage reward in state n is maximized. That is, we must find 

[:, N ) J(P(n)) = max Lk=l wk(R, n TJk 
w(R,n) 

subject to: 

L);=l wk(R, n)Pkin(R, n) :S pen), L);=l wk(R, n) :S 1, and 0 :S wdR, n) :S 1, 

(5.43) 

where TJk is given in (5.39). 

2. After we obtain the expression J(.) by solving (5.43), the remaining problem is how 

to assign the total power pen) of the N sets of users for each state n so that the 

total usage reward averaged over all fading states as expressed in (5.40) is maximized. 

That is, 

{ 

maxEn[J(P(n))]- lEn[P(n)] 
P(n) S , 
subject to En[P(n)] :S P 

(5.44) 

where 1 is the Lagrangian multiplier. 
s 
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We solve the maximization problem (5.43) by first defining the permutation nO such 

that 

For simplicity we denote the reward and power needed for transmitting information to the 

users in set U7r (i) as Ai and Vi, respectively, where 

VI ::; i ::; N. (5.45) 

Note that the power Vi'S are all functions of rate vector R and fading state n. For a given 

state n, VI ::; k ::; N, if 3j that satisfies 

(5.46) 

or satisfies 

(5.47) 

then we will get a larger reward by assigning the same average power pen) to set U7r(j) 

instead of set U7r (k), VP(n) > O. Specifically, if (5.46) is true, since Ak ::; Aj when k < j, 

if Vk 2: Vj, then obviously by transmitting information to users in set U 7r (k), we need more 

power and get less reward than transmitting information to users in set U7r(j)' If (5.46) is 

true and Vk < Vj then, assuming that 1L';'(k)(R,n) =1= 0 (0 < w;'(k)(R,n) ::; 1), the reward 

we get from assigning power Vk to set U7r(k) with a fraction w;'(k) (R, n) of the transmission 

time in state n is AkW;'(k)(R,n) and the average power needed is pen) = VkW;'(k)(R,n), 

while the reward we get from the same average power pen) by assigning power Vj to set 
P(n) Vk W ' (k) (R,n) VkW' (k)(R,n) 

U7r (J') with a fraction . = ". of the transmission time will be AJ' • ". , 
v) v) v) 

which is larger than AkW;'(k)(R,n) by (5.46). Moreover, the fraction of transmission time 

needed for set U7r(j) is lef;s than that for set U 7r(k), since when Vk < Vj, 
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If (5.47) is true, it is obvious that Vj < Vk. Thus, to obtain the same reward )..j = )..k, 

set U7f(j) requires less power than set U7f(k)' Therefore, in order to get the largest average 

reward under the given average power constraint, we do not consider assigning any power 

to those sets U7f (k) for which =:,j satisfying either (5.46) or (5.47). That is, we remove them 

from further consideration and set w:(k) (R, n) = O. 

For example, when N = 3 and the relative values of VI, V2, V3 and >'1, )..2, )..3 are as 

shown in Figure 5.1, where )..i and Vi correspond to the reward and power needed for set 

U7f (i) (i = 1,2,3), respectively, it is obvious that ~ < ~. Thus, if the available power 
VI V2 

P(n) :S VI and we assign it to set U7f(l), the reward we can get is the straight line OA; if 

VI < P(n) < V2 and we assign it to sets U7f(l) and U7f (2) by time-sharing, the reward we 

can get is the straight line AB. However, in both cases, if we assign the power P(n) to set 

U7f (2) , we get a larger reward which is indicated by the straight line 0 B. Thus, no power 

should be assigned to set U7f (l) and J(P(n)) defined in (5.43) is as shown by the solid curve 

in Figure 5.1. 

Reward J(P(n)) 

-------------------------/-~-----

" B 
" 

:C 

Figure 5.1: Power P(n) vs. Reward J(P(n)) for N = 3. 

Generally, for the remaining sets of users, it is possible that there are still some sets 

U
7f

(k) to which no power should be assigned in order to get the largest average reward. For 

example, suppose that the remaining sets are U7f (l), U7f (2) and U7f (3), and the relative values 

of VI, V2, V3 and )..1, )..2, )..3 are as shown in Figure 5.2. From this figure we see that neither 

(5.46) nor (5.47) is satisfied for any k = 1,2,3, since )..1 < )..2 < )..3 and 
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However, it is obvious that no power should be assigned to set U,r(2), because a larger reward 

can be obtained when the same average power is time-shared by sets U7r(l) and U7r(3) instead 

of by sets U7r (l) and U 7r(2), or by sets U 7r (2) and U 7r(3). 

Reward J(P(n)) 
A3 - - - - - - - - - - - - - - - - - - - - - - - - --;--------

Power P(n) 

o 

Figure 5.2: Power P(n) vs. Reward J(P(n)) for three remaining sets of users. 

In the following, we use an iterative procedure to find all the sets U7r(k) in the remaining 

sets that should be assigned no power and remove them from further consideration (i.e., 

let w;(k)(R, n) = 0). An interpretation of this procedure based on Figure 5.2 will be given 

shortly. 

Initialization: Let m = 1. 

Step 1: Denote the number ofremaining sets as Gu and let the permutation pC) be defined 

such that for the remaining G" sets, 

(5.48) 

Due to the removal criterion, it must be true that 

Ap(l) > Ap(2) > ... > Ap(Gu). 

vp(l) vp(2) vp(Gu) 
(5.49) 

Step 2: Let po(m) = p(l) and zpo(m) = Ap(l). If Gu < 2, all the sets that should be assigned 
Vp(l) 

no power have been removed and the procedure terminates; if Gu :2: 2, go to Step 3. 
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Step 3: For 2 :S k :S C u , decrease Ap(k) and vp(k) by Ap(l) and Vp(l)' respectively. Do not 

assign any power to those sets of users U7r [p(k)] for which -::Jj that satisfies 

Ap(k) < Ap(j) 

(k) ( ) ' k < j ~ Cu , 
vp - vp j 

and remove them from further consideration (i.e., let w;[p(k)] (R, n) = 0). Also remove 

set U7r [p(l)]' Increase m by 1 and return to Step 1. 

In this procedure we observe that in the first iteration, from (5.48) and (5.49) it is clear 

that 

Since Ap(l) > Ap(.) for alII < j ~ Cu , when the total average power P(n) ::; vp(l), we get 
Vp(l) V p (.) 

the largest reward ~;~~; . P(n) by assigning it to set U7r [P(l)]' That is, in (5.43), as shown in 

the example in Figure 5.25 , 

J(P(n)) = Ap(l) . P(n), if P(n) ::; Vp(l)' 
vp(l) 

and we store the index p(l) of set U7r [p(l)] and the tangent ~;:~; in po(l) and zpo(l), re­

spectively. Next we wish to identify those sets U7r [p(k)] (1 < k ::; Gu ) for which -::Jj that 

satisfies 
Ap(k) - Ap(l) Ap(j) - Ap(l) C -'-'-'----'--'--'- < , k < j ~ u, 
Vp(k) - Vp(l) vp(j) - Vp(l) 

(5.50) 

and we do not assign any power to them since, for k < j, vp(k) < Vp(j), Ap(k) < Ap(j), and 

if (5.50) is true, on the Power-Reward plane as shown in Figure 5.2, point (Vp(k)' Ap(k») will 

be under the straight line formed by connecting point (Vp(l)' Ap(l») and point (Vp(j) , A p(j»)6. 

Therefore, in (5.43), 

Ap(i*) - Ap(l) 
J(P(n)) = ------ . [P(n) - Vp(l)J, if Vp(l) < P(n) ~ Vp(i*)' 

v p(;' I - vp(l) 

5Note that in this example, G u = 3 and p(i) = i, i = 1,2,3. 
6In Figure 5.2, point (V2' A2) is under the straight line formed by connecting point (VI, AI) and point 

(V3, A3). 
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where the index i* is given by: 

i* = arg max p , p . 
{

A (.) - A (I)} 
l<i::;Cu Vp(i) - Vp(l) 

(5.51) 

After removing those sets Un[p(k)] (i.e., let w;[p(k)] (R, n) = 0) for which (5.50) holds 

and also removing set Un[p(l)], the index p(i*) in the first iteration becomes p(l) of a new 

permutation pC) in the second iteration (otherwise (5.51) cannot be true) and is stored in 

po(2), and the corresponding tangent Ap(i.)=Ap(J) is stored in Zpo(2)' In the second iteration, 
Vp(,') Vp(J) 

similarly, the new index p(i*) that satisfies (5.51) will be identified, and new set(s) Un[p(k)] for 

which (5.50) holds will be removed, since the point(s) (Vp(k) , Ap(k)) will be under the straight 

line formed by connecting point (Vp(l), Ap(l)) and (Vp(j)) , Ap(j)), where j satisfies (5.50). The 

new index p(i*) will become p(l) in the third iteration and be stored in po(3), and the 

corresponding tangent Ap(i*)-Ap(J) will be stored in Zpo(3)' The iterative procedure continues 
Vp(,') -Vp(J) 

until all the sets that should be assigned no power have been removed and the curve of 

J(P(n)) in (5.43) is obtained by connecting the origin (0,0) and points (Vpo(l),Apo(l))­

(vpo(mo), Apo(mo)), where mo is the value of m when the iteration stops (1 :S mo :S N). That 

is, 

Zpo(l) . Pen), 

J(P(n)) = Zpo(j) . [Pen) - Vpo(j-1J], Vpo(j-1) < Pen) :S vpo(j) for some j, 1 < j :S mo, 

Pen) > Vpo(mo)' 

(5.52) 

Note that from the iterative procedure, it is clear that 

(5.53) 

(5.54) 

(5.55) 
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Zpo(j) = 
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Vpo(l) , 

1
~ 

APO (j) - APO (j -I) 

VPO(j) -VpO(j-I) , 

j = 1, 

(5.56) 

1 < j ::; mo. 

For example, in Figure 5.2, if we execute the above three-step procedure, we will have 

mo = 2, po(I) = 1, po(2) = 3, zpo(l) = ~, and zpo(2) = ~;=~;. Therefore, from (5.52) we 

obtain 

1 
~. P(n) 
VI ' 

J(P(n)) = ~;=~;. [P(n) - VI], 

A3, 

0< P(n) ::; VI, 

VI < P(n) ::; V3, 

P(n) > V3, 

'.vlJ.ich is exactly as shown by the solid curve in Figure 5.2. 

Once the curve J(P(n)) is obtained, from (5.44) we know that V~ > 0 fixed, the optimal 

power P*(n) satisfies J'(P*(n)) = ~ if the tangent of J(P(n)) is continuous. However, in our 

case, the tangent of J(P(n)) is discrete and P*(n) cannot be determined directly. Therefore, 

we will use the following theorem to find the optimal w;[po(j)] (R, n) (1 ::; j ::; mo) for the 

remaining mo sets {U1T [po(j)]} ;~l. 
Before stating the theorem, we first define some additional notations and parameters. 

In (5.53)-(5.56), the indices {PO(i)};:ol are all functions of n. Therefore, we will refer to 

them as {po(i, n)};:ol and for simplicity, VI ::; i ::; mo, we denote7 

(5.57) 

Thus, equations (5.53)-(5.56) become 

(5.58) 

(5.59) 

(5.60) 

7Note that {po(i)};:ol are also functions of the given rate vector Rj however, we only write out n explicity 
for its related variables for simplicity. 
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Zj(n) = 
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vln) , 

l
~ 

Aj(n)-Aj_l(n) 
Vj(n)-Vj_l(n) , 

j = 1, 

(5.61) 

1 < j ~ mo. 

Moreover, we define Omo as the set of all fading states n for which the final value of the loop 

parameter m is mo (1 ~ mo ~ N) when the three-step iteration procedure terminates. By 

denoting Zmo+1(n) ~ 0, \/s > 0, for j = 1,2,···, mo, we define sets Lj(mo, s) and Lj(mo, s) 

as 

Thus, Vs > 0, 

Lj(mo, s) = {n : n E Omo' zj(n) > } > Zj+1(n)} , 

Lj(mo, s) = {n : n E Omo' } = zj(n) } . 

u u (Lj(mo, s) U Lj(mo, s)) , 
l:Smo:SN l:Sj:Smo 

where N is the set of all possible fading states. For a given total average power constraint 

P > 0, define s* as 
l:::. -

s* = sup{s: P(s) < P}, 

where 
N mo 

P(s) ~ L L 1. vj(n)dF(n). 
mo=l j=l nELJ(mo,s) 

Therefore, Vn E Omo' 1 ~ mo ~ N, finding the optimal w;[pO(j)](R,n) (1 ~ j ~ mo) in 

(5.42) for the remaining mo sets {U1T [PO(j)]}:l after the iterative procedure is equivalent to 

solving the maximization problem 

mo 

{ 

maxu(n) L~o=l EnEom (. [L~l Aj(n)Uj(n)] subject to: 

L~o=l EnEomo [Lj~l vj(n)uj(n)] ~ P, ° ~ LUj(n) ~ 1, and ° ~ uj(n) ~ 1, 
j=l 

(5.62) 
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Theorem 5.3 Vn E Omo' 1 ~ mo ~ N, by denoting u;(n) (1 ~ j ~ mo) as the solution to 

the maximization problem (5.62), we have 

(a) if 8
1
• > zl(n), then u;(n) = 0, VI ~ j ~ mo; 

(b) if 3j E {I, 2"", mo}, zj(n) > 8
1
• > zj+l(n), then uj(n) = 1, uiCn) = 0, Vi #- j, 1 ~ 

i ~ mo; 

(c) if3j E {1,2,···,mo}, 8
1
• = zj(n), then uj(n) = r*, uj_1(n) 

Vi #- j, j - 1, 1 ~ i ~ mo, where r* satisfies 

N mo 

1 - r*, ui(n) = 0, 

P(s*) + 2: 2:[vj(n)r* + Vj-1 (n)(1 - r*)]Pr {Lj(mo, s*)} = P. 
mo=l7=1 

Proof: See Appendix C.6. 0 

Note that this theorem is a generalization of Lemma 3 in [76], which corresponds to 

N = 1. Therefore, Vn E Omo (1 ~ mo ~ N), given the remaining mo sets {U7r [po(j)]} ;~l 

after the iterative procedure, Theorem 5.3 determines which set(s) of users should be chosen 

for transmission by solving (5.62), since after removing those users to which no power should 

be assigned, the maximization problems (5.42) and (5.62) are equivalent and 

W;[po(j)](R,n) = uj(n), 1 ~ j ~ mo. 

In particular, the theorem indicates that, based on the total power constraint, there is a 

threshold power lever s* which is important in determining the optimal set(s) of users. 

Moreover, in each fading state in set Lj(mo, s) (VI ~ mo ~ N, VI ~ j ~ mo), at most two 

sets of users are chosen and the information for the selected two sets are sent by time-sharing 

the channel. In each of the other fading states, at most one set of users is chosen. Therefore, 

if the c.d.f. F{n) is continuous. with probability 1, at most one set of users is chosen in 

each state, since VI ~ mo ~ N, VI ~ j ~ mo, Pr[Lj(mo, s)] = 0. If F(n) is discontinuous, 

Pr[Lj(mo, s)] may be larger than zero for some j and mo, and the probauility that two sets 

of users are chosen in some fading states may be larger than zero. 
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5.4.3 Multimedia Outage Probability Region 

In an M-user broadcast system, some users may require constant-rate transmission without 

any outage (e.g., voice users), while other users allow certain outages in the transmission of 

their information (e.g., data users). Let Mo be the number of those users allowing no outage. 

Then the M-user outage probability region contracts to an (M -Mo)-user outage probability 

region. Since in each fading state, the channel can be used for Lt!lMo (MiMO) = 2M- Mo_1 

different sets of users, by applying the same optimal strategy discussed in Section 5.4.2, we 

can obtain the boundary of the outage probability region for the M - Mo users. 

For example, in a two-user system where one user (say, User 1) allows some outage and 

the other user (say, User 2) requires no outage (11,1 = 2, N = 1), the minimum outage 

probability problem for User 1 is a modified threshold-decision rule similar to that of the 

single-user case: 

For each joint fading state n = (nl' n2) and a given rate vector R = (RI' R2), if the 

information for User 1 is not transmitted, we denote the minimum required total power as 

Poj j(R, n) and it is just the power needed to support rate R2 for User 2; if the information 

for User 1 is transmitted, we denote the minimum required total power as Pon(R, n) and it 

is pmin(R, n) given in (5.3), (5.11) and (5.15) for CD with or without successive decoding 

and for TD, respectively. Let P be the total average power and assume that in fading state 

n the channel transmits the information for User 1 with probability w(n, R) and for User , 

2 with probability 1 (no outage). The maximization problem 

{ 

max En [w(R, n)] subject to: 

En {Pon(R, n)w(R, n) + Pojj(R, n)[l - w(R, n)]} = P 
(5.63) 

is equivalent to 

{ 

max En [w(R,n)j subject to: 

En {[Pon(R. n) - Pojj(R, n)]w(R, nn = P - En {Pojj(R, nn. 

Therefore, by substituting P with P - En [Pojj(R, n)] and pmin(R, n) with Pon(R, n)­

Pojj(R, n) into the definitions of R(s), R(s), P(s), ?(s), s* and w* in (5.30)-(5.34), we 

obtain the solution to (5.63): if n rf- R(s*), w(R, n) = 0, i.e., only the information of User 

2 is transmitted; if n E R(s*), w(R, n) = 1, i.e., the information of User 1 is transmitted 
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together with that of User 2; if n rf- R(s*) but n E R(s*), then w(R, n) = 1!J*, i.e., with 

probability w*, the information of User 1 is transmitted with that of User 2. The minimum 

outage probability Prmin(P, R) for User 1 is as given in (5.35). 

5.5 Numerical Results 

In this section, we present numerical results for zero-outage capacity regions, outage capacity 

regions and outage probability regions under different spectrum-sharing techniques. In all 

figures, the N akagami-m fading model is used, the total average transmit power is denoted 

as P, and the average noise density of the ith sub-channel is denoted as ni, i = 1,2. We 

refer to the CD without successive decoding technique as CDWO. Since TD and FD are 

equivalent in the sense that they have the same capacity region of any kind, all results for 

TD in the figures also apply for FD. 

In Figure 5.3, the two-user zero-outage capacity region for the Nakagami-m fading broad­

cast channel is shown for m = 2,3,4 and 00. The SNR difference between the two users is 
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Figure 5.3: Two-user zero-outage capacity region in Nakagami fading: 20 dB SNR difference. 

20 dB and the total average power P = 25 dB. Similar to the ergodic (Shannon) capacity 
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region comparison in Chapter 4, optimal CD results in a much larger zero-outage capacity 

region than optimal TD. But the zero-outage capacity region of optimal TD is now much 

larger than that of the optimal CDW08 , the boundary of which is convex. Note that the 

zero-outage capacity region increases as m increases for all of the three types of spectrum­

sharing techniques, since smaller m corresponds to more severe fading. However, unlike 

using optimal CD or TD, the capacity region using CDWO does not increase much with 

the increase of m. Also note that for the Rayleigh fading channel (m = 1), the zero-outage 

capacity region is zero, which is why it is not shown. When m -+ 00, the Nakagami-m fad­

ing channel approaches the Gaussian channel and as proved in Section 5.3.4, the limiting 

zero-outage capacity region of the Nakagami-m fading channel is the same as that of the 

AWGN channel for CD or CDWO. 

Figure 5.4 shows the case where the SNR difference between the two users is 3 dB and 

the total average power is 10 dB. Since the SNR difference between the users is relatively 
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Figure 5.4: Two-user 7no-outage capacity region in Nakagami fading: 3 dB SNR difference. 

small, the differences of the zero-outage capacity region between using CD, TD, or CDWO 

is not so dramatic as in the previous case. When m increases, the capacity region of CD\VO 

8 As shown in Chapter 4, TD and CD\VO have the same ergodic capacity region. 
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now increases faster than it does in Figure 5.3. 

In Figures 5.5-5.11, as discussed in Section 5.4.1, for any fading state the broadcast 

fading channel is either used for all users or not used for any user. The resulting common 

outage probability is denoted as Pro Given a common outage probability of Pr = 0.1, the 

two-user capacity region for the Nakagami-m fading channel (m = 2,3,4) using optimal 

CD is shown for 3 dB and 20 dB SNR differences between the users in Figure 5.5 and 

Figure 5.6, respectively. In both cases, notice that the increase in capacity obtained by 
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Figure 5.5: Two-user capacity region for a given common outage probability in Nakagami 
fading using CD: 3 dB SNR difference. 

allowing a non-zero outage probability is larger for smaller m. This is because a smaller m 

corresponds to more severe fading, which is difficult to compensate for in the zero-outage 

case. In Figure 5.5, since the SNR difference between the users is small, the increase of Rl 

obtained by allowing outage is pretty much independent of R2. However, when the SNR 

difference is large, we notice in Figure 5.6 that in the region where R2 is large, we obtain a 

large increase in User 1 's rate Rl by allowing some outage. This increase is much smaller 

in the region where R2 is small. Since User 2 has much more noise on the average, for R2 

large and no outage, most of the total transmit power is used to send the information to 
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User 2 and allowing some common outage probability will then save relatively more power 

for User 1 than in the case where R2 is small. 

In Figure 5.7, the capacity regions using CD in Nakagami fading (m = 2) with common 

outage probability Pr = 0.02, Pr = 0.()5 and Pr = 0.1 are compared when the SNR 

difference between the two users is 3 dB and the total average power is 10 dB. We see that 

by allowing even a small outage probability, we obtain a significant capacity increase relative 

to the zero-outage case. Figure 5.8 shows the minimum common outage probability Pr as a 

function of the total average power P at a given rate pair (Rl' R2 ) = (100,130) kbps using 

CD under the same channel conditions as in Figure 5.7. According to (5.3) and (5.4), this 

rate vector is on the boundary of the zero-outage capacity region for a total average power 

S>=::; 10.9 dB, as is shown in the figure. 
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Figure fl.9 and Figure 5.10 show the two-user capacity region of CDWO in Nakagami-m 

fading for a common outage probability of Pr = 0.1. The SNR differences between the 

two users in these figures are 3 dB and 20 dB, respectively. Similar to the zero-capacity 

region, when the SNR difference between the users is small, the capacity regions with a 

given common outage probability increase faster with the increase of the N akagami channel 

parameter m than when the SNR difference is large. However, in both cases, the increase 

of the capacity region from zero-outage to an outage of 0.1 for each m is not that much and 

the differences between the outage capacity regions with different m are even smaller than 

that of the zero-outage capacity regions. This means that the optimal power policy that 

allows a certain common outage probability does not help much in increasing the capacity 

region of CDWO, especially when there is a great difference between the average channel 

conditions of the two users. 
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Figure 5.10: Two-user capacity region for a given common outage probability in Nakagami 
fading using CDWO: 20 dB SNR difference. 

In Figure 5.11, the capacity region with a common outage probability Pr = 0.1 using 

optimal TD for the Nakagami fading channel (m = 2) is shown and compared to that of 

the CD and CDWO techniques. The SNR difference between the two users is 3 dB and the 

total power S = 10 dB. As in the case where there is no outage, the capacity region with a 

common outage probability using TD is smaller than that of CD but is much larger than 

that of CDWO. Note that by allowing some common outage probability, there is a large 

increase of the capacity region for both CD and TD, but the increase is relatively small for 

CDWO. 
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In Figures 5.12-5.16, we assume that a different outage probability can be declared for 

each user. The corresponding optimal power policy is obtained by applying the three-step 

procedure described in Section 5.4.2 and Theorem 5.3, which is then used to calculate either 

the capacity region for a given outage probability vector or the outage probability region for 

a given rate vector. \Ve obtain the capacity regions with outage or the outage probability 

regions for CD only, since the relative Lchavior of TD or CDWO is similar to that of CD. 

In a two-user system, let Prl and Pr2 denote the outage probabilities for User 1 and 

User 2, respectively. Given (Prl, Pr2) = (0.02,0.03), the two-user capacity regions with 

this outage for the Nakagami fading channels (m = 2,3,4) are shown in Figure 5.12 and 

Figure 5.13 for SNR difference between the users of 3 dB and 20 dB, respectively. In both 

cases, as was true for the capacity region with a common outage probability, allowing some 

outage probability for pacll user results in a capacity increase that is larger for smaller m. 

Thus, the optimal power policy is more effective in increasing the capacity region when the 

overall broadcast channel fading is more severe. For different m, the differences between 

the capacity regions with outage are smaller than those between the capacity regions with 

no outage. 
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Figure 5.14 shows the two-user outage probability regions with different total transmit 

power P for a given rate vector (RI, R2) = (100,130) kbps. Note that the region below 
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Figure 5.14: Two-user outage probability region comparison for different average transmit 
power in Nakagami fading using CD: 3 dB SNR difference. 

each curve is the outage probability region not achievable with the corresponding transmit 

power P. This non-achievable region shrinks quickly with the increase of transmit power P 

and disappears when P > 10.9 dB since, when P ~ 10.9 dB, according to (5.3) and (5.4), 

the rate vector (RI' R2) = (100,130) kbps is on the boundary of the zero-outage capacity 

region. For a given transmit power P, when the outage probability Pr2 of User 2 decreases, 

there is a fast increase in the outage probability Prl of User 1, since the average channel 

condition of User 2 is worse than that of User 1 and thus the total power required to support 

R2 increases fast with the decrease of its outage probability. The intersections of the curves 

with the two axes in this figure denote the minimum outage probabilities for one user when 

there is no outage in the transmission for the other user. 

Figure 5.15 shows the two-user capacity regions with several different outage probability 

vectors and a total transmit power P = 10 dB. In this figure, the points AQ, Al and A2 

are the single-user capacities of User 1 when the allowed outage probabilities are Prl = 0, 
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Prl = 0.02 and Prl = 0.09, respectively; the points Bo, BI and B2 are the single-user 

capacities of User 2 when the allowed outage probabilities are Pr2 = 0, Pr2 = 0.03 and 

Pr2 = 0.1, respectively. Let PaD = 0, Pal = 0.02, Pa2 = 0.09, Pbo = 0, Pbl = 0.03 and 

Pb2 = 0.1. The curves between points Ai and B j are the boundaries of the capacity regions 

when the allowed outage probability vectors are (Prl, Pr2) = (Pai, Pbj ), i, j = 0,1,2. 

Note that when one of the outage probabilities Prl and Pr2 is zero, regardless of the 

time-varying channel state, the information of the corresponding user is always transmitted 

and the optimal power policy discussed in Section 5.4.3 will be used for the other user to 

achieve the demonstrated capacity region in this figure under the constraint of its given 

outage probability. 

Finally, in Figure 5.16 and Figure 5.17 where the SNR differences between the two users 

are 3 dB and 20 dB, respectively, the capacity regions using the optimal CD power policy 

with a common outage probability Pr = 0.1 as discussed in Section 5.4.1 and the optimal 

CD power policy with an outage probability vector (Prl, Pr2) = (0.1,0.1) as discussed in 

Section 5.4.2 are compared in Nakagami fading (m = 2). Since the outage probability for 
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each user is 0.1 using either of the two power policies, from the figures it is clear that by 

allowing a separate outage declaration for each user and using the corresponding optimal 

CD power policy, a larger capacity region can be achieved than by simply turning on or off 

the transmission for both users simultaneously based on the optimal power policy discussed 

in Section 5.4.1. However, the system applying the optimal power policy with a common 

outage probability is less complex. 

5.6 Conclusions 

We have obtained both the zero-outage capacity region and the minimum-outage capacity 

region of the broadcast fading channels for TD, FD and CD with and without surcessive 

decoding, assuming that perfect CSI is available both at the transmitter and at the receiver. 

It is shown that optimal CD has the largest zero-outage capacity region, as expected. 

Moreover, we show that the capacity region can be greatly expanded by allowing some 

outage probability for each user. For a given rate vector, we have derived the optimal 

power policy that minimizes the common outage probability when transmission to all users 

is turned off simultaneously. When an outage can be declared for each user individually, we 

have also derived a general power allocation strategy to achieve boundaries of the outage 

probability regions under different spectrum-sharing techniques. We observe that these 

regions can increase dramatically with an increase in the total transmit power. Therefore, by 

applying the optimal dynamic power allocation strategies derived herein, tradeoffs between 

the maximum transmission rate, the outage probability for each user, and the total transmit 

power may be evaluated for the design of a broadcast communication system in a fading 

environment. 
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Chapter 6 Outage Capacities and Optimal Power 

Allocation for Fading Multiple-Access Channels 

6.1 Introduction 

Wireless communication channels vary over time due to user mobility. As discussed in 

Chapter 5, the outage capacity of a fading channel is defined as the maximum instantaneous 

information rate that can be maintained under any fading condition during non-outage 

such that the allowed average transmission outage probability is satisfied. Finding the 

optimal power allocation that achieves the outage capacity with a given outage probability is 

tantamount to deriving the optimal power allocation that minimizes the outage probability 

of a given rate. In [76], the minimum outage probability problem is solved for the single­

user fading channel. For an M-user fading broadcast channel, under different assumptions 

about whether the transmission to all users is turned off simultaneously or independently, 

we have derived in Chapter 5 the optimal power allocation strategy that minimizes the 

common outage probability or bounds the outage probability region of the M users under 

a total average power constraint of all users. 

In this chapter we derive the outage capacity region and the optimal power allocation 

policy for an .M-user fading MAC under similar assumptions about whether the outage 

declaration from each user is simultaneous or independent. This problem is solved in [3] for 

the case of zero-outage. Specifically, it is shown in [3] that the zero-outage capacity region 

is implicitly obtained by determining, for each given rate vector R = (Rl, R2,···, RM), 

whether there exists an optimal power allocation such that the average transmit power 

required of each user to support rate Ri under any fading condition satisfies his given 

average power constraint. For the general case where the allowed outage probability of 

each user is larger than zero, we will show that the outage capacity region is implicitly 

obtained by determining, for each given rate vector R, whether there exists an optimal 

power allocation such that the average outage probability of each user is no larger than his 

allowed outage probability and the average transmit power required of each user to support 
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R;. under any non-outage fading condition satisfies his given average power constraint. In 

particular, given the average power constraint of each user and rate vector R, assuming 

that the outage declaration from each user is simultaneous, we derive the optimal power 

allocation that minimizes the common outage probability of the M users and obtain the 

minimum common outage probability. Under the alternative assumption that each user 

can declare an outage during transmission independently, we derive the outage probability 

region of the M users and the optimal power allocation that achieves the outage probability 

region boundary. Under both assumptions, given the allowed outage probability of each user 

and a rate vector R, we solve the dual problem of finding the average power region of the M 

users required to support R for the given outage probability vector. Note that the optimal 

power allocation is conceptually simpler and easier to analyze when the outage declaration 

is simultaneous for all users. Common outage may be desirable in scenarios when users are 

trying to avoid detection. 

For a given rate vector R, in order to solve the optimization problem of minimizing the 

common outage probability or bounding the outage probability region for a given average 

power constraint on each of the M users, we use the Lagrangian method with multiple 

constraints. Since there is an independent average power constraint for each of the M 

users, M Lagrangian multipliers are needed. For each given Lagrangian multiplier vec­

tor>' = (AI, A2, ... , AM), the optimization problem under a single constraint of the total 

weighted average power of the M users (weighted by their corresponding Lagrangian mul­

tipliers) is readily solved by applying the techniques developed in [3] and Chapter 5 of 

this thesis. Iterative algorithms are then proposed to provide the appropriate Lagrangian 

multiplier vector for the M users such that the M average power constraints are satisfied 

simultaneously. 

The remainder of this chapter is organized as follows. In Section 6.2 we present the 

fading MAC model. In Section 6.3 we give the definitions and notations that will be used 

in the rest of the paper. In Section 6.4, the minimum common outage probability for a 

given rate vector R and the corresponding optimal power allocation strategy are derived 

and the average power region for supporting R with a given common outage probability 

is obtained for the case of simultaneous outage declaration. As for independent outage 

declaration, we derive the outage probability region boundary for a given rate vector R, the 

corresponding optimal power allocation strategy, and the required average power region for 
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supporting R with the given outage probability of each user in Section 6.5. The iterative 

algorithms that provide the appropriate Lagrangian multiplier vector for the M users are 

presented in Section 6.6. In Section 6.7 we present the main difference in the solutions to 

the above problems when additional peak power constraints are imposed on the M users. 

Our conclusions are given in Section 6.8. 

6.2 The Fading Multiple-Access Channel 

We consider a discrete-time M-user fading MAC model as discussed in [3]: 

M 

Y(n) = L V Hi(n)Xi(n) + Z(n), (6.1) 
i=1 

where Xi(n) and Hi(n) are the transmitted waveform and the fading process of the ith 

user, respectively, and Z(n) is Gaussian noise with variance (>2. Let H(n) = [H1(n) , H 2 (n), 

"', HM(n)] denote the joint fading process, and let Pi be the average power constraint of 

User i. We assume that the joint fading process of the M users is stationary and ergodic, 

and the stationary distribution has continuous density and is bounded i . For a slowly time­

varying MAC, let h = (hI, h2 ,' ", hM ) be the joint fading state at a particular time n, i.e., 

H( n) = h, and let Hall denote the set of all possible joint fading states. We assume that all 

the ],,1 transmitters and the receiver know the current joint fading state h. Therefore, each 

transmitter can vary its transmit power and codewords relative to the joint fading condition 

of the ],,1 sub-channels, and the receiver can vary its decoding order of the ],,1 users. We 

will show that successive decoding is optimal in order to achieve the outage capacity region 

boundary. By using successive decoding at the receiver, the signals from users that are 

decoded earlier can be subtracted from the total received signal Y(n), and the users that 

are decoded later will have less interference and thus require less transmit power to support 

their given data rates. 

1 As in the single-user case ;76) and the broadcast system discussed in Chapter 5, our analysis can be 
easily extended to discret," distributions. 
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6.3 Definitions and Notations 

In this section we define the outage capacity region of an M-user MAC, where each trans­

mitter may suspend transmission over a subset of fading states under a given average power 

constraint and an average outage probability constraint. Specifically, for a given average 

power constraint vector P = (PI, P2 ,· .. ,PM) of the M users, the outage capacity regions 

Cout(P, Pr) and Cout(P, Pr) are defined as follows: 

Definition 6.1 Assume that the transmission from all users is turned on {non-outage} 

or off {outage} simultaneously, and thus the average outage probability for all users is 

the same {common outage probability}. Then for a given outage probability Pr, VR = 

(RI' R 2,···, RM), if user i can transmit at rate Ri with arbitrarily small error probabil­

ity under any fading condition during non-outage such that the average common outage 

probability is no larger than Pr and the average power constraint Pi is satisfied for all i 

{I ~ i ~ M} then R E Cout(P, Pr). 

Definition 6.2 Assume that the transmission from each user is turned on {non-outage} or 

off {outage} independently, and thus the average outage probability for each user may be 

different. Then for a given probability vector Pr = (PrI, Pr2,···, PrM), VR = (Rl, R2, 

... , RM), if user i can transmit at rate Ri with arbitrarily small error probability under any 

fading condition during non-outage such that his average outage probability is no larger than 

Pri and the power constraint Pi is satisfied for all i {I ~ i ~ M}, then R E Cout(P, Pr). 

Definition 6.3 The boundary surface of Cout(P, Pr) (or Cout(P, Pr)} is the set of those 

rate vectors for which we cannot increase one component and remain in Cout (P, Pr) (or 

Cout(P, Pr)} without decreasing another component. 

With these definitions, we wish to find: a) the optimal power allocation strategy that 

achieves the boundary of the outage capacity region Cout(P,Pr); b) the optimal power al­

location strategy that achieves the boundary of Cout (P, Pr). The regions Cout (P, Pr) and 

Cout (P, Pr) are easily determined given these optimal power allocation strategies. We will 

show that the first optimization problem is equivalent to deriving the power allocation pol­

icy that minimizes the common outage probability for a given rate vector R and we have the 

following definitions for the common outage probability set Oc(P, R), the common trans-
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mission (usage) probability set Oc(P, R), and the minimum common outage probability 

Prmin(P, R): 

Definition 6.4 Assuming that the transmission from all users is turned on or off simul­

taneously, the common outage probability set Oc(P, R) is defined as the set of all average 

common outage probabilities for which under any non-outage fading condition, each user 

i can transmit at rate ~ with arbitrarily small error probability under the given power 

constraint Pi (1 ::; i ::; M). 

Definition 6.5 The common usage probability set Oc(P, R) is the complementary prob­

ability set of Oc(P, R), i.e., if a probability Pr E Oc(P, R), then the probability Pron E 

Oc(P,R), where Pron = 1- Pro 

Definition 6.6 The minimum common outage probability Prmin (P, R) is the smallest prob­

ability in set Oc(P, R). 

We will also show that the second optimization problem is equivalent to obtaining 

the power allocation policy that achieves the boundary of the outage probability region 

OI(P,R) or the usage probability region OI(P,R), defined as follows: 

Definition 6.7 Assuming that the transmission to each user is turned on or off indepen­

dently, for a given rate vector R, VPr = (Prl, Pr2, ... , Pr M ), if user i can transmit at rate 

Ri with arbitrarily small error probability under any non-outage fading condition such that 

his average outage probability is no larger than Pri and the power constraint Pi (1 ::; i ::; 11'1) 

is satisfied, then Pr E OI(P, R). 

Definition 6.8 The usage probability region 0 I(P, R) is the complementary region of the 

outage probability region 01 (P , R), i. e., if a probability vector Pr = (Prl, Pr2, ... , Pr M) E 

OI(P, R), then the probability vector Pran = (Pryn, Pr2n, ... , PrAY) E OI(P, R), where 

Pri = 1 - Pri, VI::; i ::; M. 

With the above definitions2 , it is easily seen that given 0::; Pr ::; 1, the outage capacity 

region Cout(P, Pr) is implicitly obtained once the minimum common outage probability 

2Note that the definitions of Cout(P, Pr), Cout(:P, Pr), PrTTlin('£>, R), O[(£>, R), and O[(£>, R) are similar 
to those in Chapter 5, where the power constraint is a total average power P instead of a vector :f> for the 
M users. 



120 

PrminCP, R) for a given rate vector R is calculated under the optimal power allocation. 

That is, for any rate vector R, R E Cout(l?, Pr) if PrminCP, R) ::; Pr, and R tf. Cout(l?, Pr) 

otherwise. Similarly, given a probability vector Pr, the outage capacity region Cout(i?, Pr) 

is implicitly obtained once the boundary of the outage probability region Ch(P, R) (and 

so the whole region OI(P, R)) for a given rate vector R is derived through the optimal 

power allocation since, for any rate vector R, R E Cout(P, Pr) if Pr E OI(P, R) and 

Rtf. Cout(P, Pr) otherwise. 

We treat common outage in the next section. Specifically, we derive the mInImUm 

common outage probability Prmin(P, R) and the corresponding optimal power allocation 

strategy in Sections 6.4.1-6.4.3. We solve the dual problem of finding the average power 

regkn of the M users required to support R with a given common outage probability Pr 

in Section 6.4.4. 

6.4 Simultaneous Outage Declaration 

Under the assumption that an outage is declared from all users simultaneously, for any 

given fading state h, the channel is either used by all users or not used by any user. 

6.4.1 Power Allocation Policy 

For a given rate vector R, a "power allocation policy P" is defined by the following two 

items: 

(1) A probability w(R, h) (\ih E Hall) that the channel is used by the M users simulta­

neously 3 in state h with each user i transmitting at rate Ri, 1 ::; i ::; M. 

(2) A power Pi(R, h) (\ih E Hall) denoting the transmit power of user i, 1 ::; i ::; M, when 

the M users transmit information simultaneously in state h. Let P(R, h) ~ [P1(R, h), 

Under the power allocation policy P, the average common transmission (usage) probability 

Pron(R) is: 

Pron(R) = Eh [w(R, h)] , (6.2) 

3 As will be shown later in our derivation of the optimal power allocation policy, w(R, h) is either 1 
or 0 under the assumption that the stationary distribution of the joint fading process of the M users has 
continuous density, since the probability measure of each fading state h is zero. However, as in the single-user 
case [76]' this is not true if the c.d.f. (cumulative density function) of the joint fading process is discontinuous. 
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where E[·] denotes the expectation function, and the average common outage probability 

Pr(R) is: 

Pr(R) = 1 - Pron{R) 

1 - Eh [w(R, h)]. 

The average transmit power Pi(R) of each user i, 1 ::; i ::; M, for rate vector R is: 

(6.3) 

6.4.2 Minimum Common Outage Probability 

For a given average power constraint vector P* and rate vector R, from Definition 6.4-6.6 

we know that deriving the minimum common outage probability Pr min (p* , R) is equivalent 

to deriving the maximum common usage probability in the set Oc(P*, R). That is, we need 

to solve the maximization problem 

maxPrOn(R) subject to: Pron(R) E Oc(P*,R), 
p 

(6.4) 

where, for a given power allocation policy P, Pron{R) can be calculated from (6.2). Thus, 

(6.4) is equivalent to 

subject to: 

where 

max Eh[W(R, h)] 
p 

I
RE Cg(h, P(R, h)), \ih E 'Htran , 

Eh [w(R, h)Pi{R, h)] ::; Pt, VI::; i ::; M, 

'Htran = {h : w{R, h) > a}, 

(6.5) 

(6.6) 

(6.7) 
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Cg(h, P(R, h)) is the capacity region of the M-user time-invariant Gaussian MAC and is 

given by 

Cg(h,P(R,hJJ = {R' ~ R; ,; ~ log (1+ LEP ~i(R, bJ), 'iF';; {I, 2,···, M} }. 

(6.8) 

For a given rate vector R, define 

Qc = ((Pron,P): Pron E Oc(P,R)}. (6.9) 

We will require the following lemma to find the solution to (6.4), or equivalently, to (6.5) 

under the constraints in (6.6). 

Lemma 6.1 The set Qc is convex. 

Proof: See Appendix D.l. 0 

Due to the convexity of the set Qc, PrOM solves (6.4) for a given rate vector R if 

and only if there exists a Lagrangian multiplier vector A. E R~ such that (Pron*, P*) is a 

solution to the problem 

m~x [Pron(R) - A.. P(R)] , 
(Pron(R),p(R))EQc 

(6.10) 

where P(R) = [.P1(R), .P2(R),···, .PM (R)] and, for a given power allocation policy P, .Pi(R) 

(1 ::; i ::; M) can be calculated from (6.3). Note that we transform the maximization 

problem (6.5) under the constraint (6.6) into the problem (6.10) because the scalar to 

be maximized in (6.10) includes the power constraints in (6.6) and is therefore an easier 

maximization problem to solve. In (6.10), 

,\. P(R) 
i=l 

M 

L )..iEh [w(R, h)Pi(R, h] 
i=l 

Eh [W(R, h) (~)..iPi(R, h)) 1 
Eh [w(R, h) (A.. P(R, h))]. (6.11) 
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From (6.10) we see that Pron* will be the maximum common usage probability in set 

Oc(P*, R) if and only if P* is a solution to 

~in).· P(R) subject to Pron* E Oc(P(R), R), 
P(R) 

i.e., if and only if there exists a power allocation policy P* such that for all h E Hall, 

P*(R, h) and w*(R, h) solve the problem 

{ 

R E Cg(h, P(R, h)), Vh E H tran , 
min Eb [w(R, h), . P(R, h)] subject to 

P Eb [w(R, h)] ~ Pron*, 

and 

Eb [w*(R, h)P*(R, h)] = P*. 

(6.12) 

(6.13) 

Assuming that the Lagrangian multiplier vector). is known, to achieve the minimum in 

(6.12), the optimal transmit power vector P*(R, h) of the M users must be a solution to 

min ).. P(R, h) subject to: R E Cg(h, P(R, h)), Vh E H tran • 
P(R,h) 

(6.14) 

Since Vh E H tran , the set of received powers that can support the given rate vector R of 

the M users is 

(6.15) 

which is shown to be a contra-polymatroid with rank function [3] 

(6.16) 

for any given). E ~~, Vh E H tran , the solution P). (R, h) = [PI). (R, h), P2 ). (R, h), ... , , , 

PM). (R, h)] to the optimization problem (6.14) is readily obtained by applying Lemma 3.4 , 

in [3], i.e., 

h:;l) [exp (2R7r(I)) - 1] , 
h:~i) [exp (2 L~=I R7r(k)) - exp (2 L~~\ R7r(k))] , 

if i = 1, 

V2 ::; i ::; M, 

(6.17) 
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where the permutation 71"(.) satisfies: 

The solution in (6.17) indicates that 71"(-) determines the optimal decoding order at the 

receiver. That is, the signals from User 7I"(M) are decoded first, with the signals from all 

other users being treated as interference. Then the signals from User 7I"(M - 1) are decoded, 

with the signals from User 7I"(M) being subtracted and those from the other M - 2 users 

being treated as interference. The signals from User 71"(1) are decoded last, with the signals 

from all other users being known and thus being subtracted from the total received signal. 

Since 71"(.) is determined by vector A in each fading state, the optimal decoding order in 

each state is actually determined by vector A. Therefore, A can be viewed as the power 

price vector for the M users, which we will use to refer to A hereafter. 

Now denote the minimum in (6.14) as prin(R, h), i.e., 

(6.18) 

where the M components of vector P A (R, h) are given in (6.17). Then prin(R, h) can 

be viewed as the required minimum total weighted power of the M users for transmitting 

their information at rate vector R in state h. Since the M average power constraints in 

(6.6) imply that there is a total average weighted power constraint A· P* for a given power 

price vector A, we solve the optimization problem (6.5) subject to (6.6) by first finding the 

solution w A (R, h) to the following single-constraint maximization problem for the given 

power price vector A: 

which is equivalent to 

max Eh [w(R, h)] 
w(R,h) 

max {Eh [w(R, h)]- ~Eh [w(R, h)prin(R, h)]} 
w(R,h) S 

(6.19) 
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subject to: 

(6.20) 

where sl, is the Lagrangian multiplier to be chosen such that (6.20) is satisfied. In Section 6.6 

an iterative algorithm is proposed to find the optimal power price vector ..x * such that the 

solutions P>.,(R,h) and w>.,(R,h) satisfy the M average power constraints in (6.13), i.e., 

(6.21) 

Note that the maximization problem (6.19) subject to (6.20) is similar to the minimum 

outage probability problem of the single-user fading channel [76] and so is the solution given 

below. 

V s > 0, define the set of fading states R( s, >.) as: 

R(s, oX) = {h : p,rin(R, h) :S s}. (6.22) 

The corresponding total average weighted power over this set is: 

Obviously P(s,..x) is a monotonically increasing function of s. Given the total average 

weighted power constraint (6.20), we choose s* to be the point that satisfies 

P(s*, >.) = oX· P*. (6.23) 

Since we assume that the joint fading process has a continuous stationary distribution, 

V>' E R:;!, with probability one the decoding order as defined by 7r(.) in each state h is 

unique and so is the power allocation PoX (R, h) in (6.17). Therefore, by using Lemma 3 

in [76], the solution to the maximization problem (6.19) subject to (6.20) is the Common 

Outage Transmission Policy given in Section 6.4.3 below. 

6.4.3 Common Outage Transmission Policy 

For each fading state h E Hall, the optimal transmission policy that solves (6.19) subject 

to (6.20) is: 
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1. if h ¢ R(s*, A), then wA(R,h) = 0, i.e., an outage is declared for all users and no 

power is assigned to any user; 

2. if h E R(s*, A), then wA (R, h) = 1, i.e., a total weighted power of p,rin(R, h) is 

assigned to the M users and each user i will transmit at rate Rt, with power Pi,A (R, h) 

given in (6.17). 

In the above transmission policy, we see that s* can be viewed as a threshold power, since 

simultaneous transmission for the M users is allowed if and only if the required minimum 

total weighted power p,rin(R, h) for the M users to transmit their information at rate 

vector R in state h is less than s*. 

Under this transmission policy, the resulting average common outage probability Pr).. (R) 

is: 

1- Eh[wA(R,h)] 

1 - Prob{h E R(s*, An, (6.24) 

where Prob{·} denotes the probability function. If the power price vector A is the optimal 

A* satisfying (6.21), then the minimum average common outage probability PrminCP*,R) 

IS: 

Prmin (:P* , R) = PrA* (R). 

6.4.4 A verage Power Region 

In Sections 6.4.2-6.4.3, given the power constraint vector P* and rate vector R of the AI 

users, we derived the minimum common outage probability Prmin(P*, R) and the corre­

sponding optimal power allocation policy. In this subsection we find for a given rate vector 

R and common outage probability Pr*, the required average power region APVout (Pr* , R), 

defined as the set of all possible average power vectors that can support rate vector R with 

a common outage probability no larger than Pr*. That is, 

/::,. - -
APVout(Pr*, R) = {peR) : Pr* E Oc(P(R), Rn. (6.25) 

By convexity of the set Qc defined in (6.9), it is clear from (6.10) that an average 

power vector will be on the boundary surface of APVout(Pr*, R) if it is a solution to the 
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minimization problem 

min..x· P(R) subject to: Pr* E Oc(P(R), R) 
P(R) 

(6.26) 

for some power price vector ..x E ~~. Therefore, for each given power price vector ..x E ~~, 

an average power vector P~ (R) solves (6.26) if and only if there exists a Lagrangian 

multiplier s* such that (1 - Pr*, P~ (R)) is a solution to the problem 

min {..x. P(R) - s* . Pron(R)}. 
(PrOn(R),P(R))EQc 

(6.27) 

Substituting (6.2) and (6.11) into (6.27) and by definition of the set Qc, it is clear that 

P..x (R) solves (6.26) if and only ifthere exist a Lagrange multiplier s* and a power allocation 

policy P* such that for any hE Hall, P*(R, h) and w*(R, h) solve the optimization problem 

subject to: 

min {Eh [w(R, h)..x· P(R, h)]- s* . Eh [w(R, h)]} 
p 

I
RE Cg(h, P(R, h)), Vh E Htran , 

Eh [w(R, h)] = 1 - Pr*. 

(6.28) 

(6.29) 

It is easily shown, as in Section 6.4.2, that Vh E Htran, the optimal transmit power vector 

P*(R,h) of the M users is P..x(R, h), the components of which are given in (6.17). There­

fore, the optimization problem (6.28) subject to (6.29) is equivalent to the one in (6.19) 

subject to: 

Eh [w(R, h)] = 1 - Pr*. (6.30) 

Note that as described in Section 6.4.3, Vh E Hau, the solution w..x (R, h) to (6.19) 

given by the Common Outage Transmission Policy is readily obtained once the threshold 

power s* is known. In Section 6.4.3 s* is determined by the total average weighted power 

constraint in (6.20). Now we choose s* such that the average common outage probability 

constraint (6.30) is satisfied. That is, s* satisfies 

Prob{h E R(s*,..x)} = 1- Pr*. (6.31) 
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We then obtain the solution w.x(R, h) to (6.19) (V'h E Hall) by applying the Common 

Outage Transmission Policy in Section 6.4.3. Given the derived P.x (R, h) and w.x (R, h) for 

every state h E Hall, the complete power allocation policy is known and the corresponding 

average power vector P.x (R) can be easily obtained as shown in Section 6.4.1, i.e., 

P.x(R) Eh[W.x (R, h)P.x (R, h)] 

EhER(s".x) [P.x (R, h)]. (6.32) 

Therefore, by varying the power price vector .x E ~:;r, we can obtain different average power 

vectors P.x (R) that lie on the boundary surface of APVout (Pr* , R). 

However, as discussed in [3] for the zero-outage capacity case, there are other average 

power vectors on the boundary surface of APVout(Pr*, R) that cannot be parameterized 

by any .x E ~:;r since, as will be shown shortly, they correspond to decoding rules that 

cannot be represented simply by any .x E ~~. Therefore, it is necessary to use a more 

general method [3] for describing all possible decoding orders. Specifically, let C denote a 

set of subsets of G ~ {I, 2, ... ,M} with all subsets in C nested. That is, if Gi and Gj are 

two subsets of G in C, then Gi ~ G j or Gj ~ Gi . Consider successive decoding with the 

ordering determined by .x as before, except that now the users in a set Gi E C have priority 

over the users in set Gi for every fading state h, i.e., they are always decoded later. The 

decoding order of the users within set G i is still determined by their power prices (>'k)kEGi. 

For example, if G I ~ G2 ~ ... ~ G, then all the users in Gi are decoded after users in Gi 
and therefore provide interference to each user in Gi, i = 1,2,···. Therefore, (>'k)kEGl is 

used to determine the decoding order of users in G 1, and all these users provide interference 

to users in G2 \GI , the decoding order of which is determined by (>'khEG2\G1 completely. 

Inductively, (>'k)kEGi\Gi-l is used to determine the decoding order of users in G i \Gi - 1 , and 

these users provide interference to each user in GHI \Gi. If C = {G}, then all the M users 

are of the same priority and their decoding order is then determined by the power price 

vector .x completely. Therefore, a decoding order determined by (.x, C) with C =1= {G} is 

different from any of the orders determined by (.x, C) with (C = {G}), and (.x, C) can be 

viewed as the power allocation parameter pair that describes all possible decoding orders. 

For each given power allocation parameter pair (.x, C), the decoding order in every fading 

state h is determined and we have shown for C = {G} that the boundary average power 
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vector p(A,{G})(R) = PA(R) of region APVout(Pr*,R) can be obtained from (6.32). For 

each power price vector A E ~~, the average power vector p(A,C)(R) with .c = {G} is 

called a regular point on the boundary surface of APVout (Pr* , R), and the average power 

vector p(A,C)(R) with.c -::f {G} is called a nonregular point. We now show how to calculate 

the nonregular point p(A,C)(R) on the boundary surface of APVout(Pr*,R). 

For a given set .c of nested subsets of G, let the subsets be denoted as GI , G2,"', GI, 

where G I ~ G2 ~ ••. ~ GI == G, I ~ 2. Then ().k)kEGI determines the decoding order of 

the users in Gland they are decoded after the signals from the users in G1 are decoded and 

subtracted out for every fading state h. Therefore, there is no interference from any user in 

G1 to the users in G I , and the required average power for each user in GI is independent 

of the power prices and channel conditions of the users in G1. Since the users in GI have 

absolute priority over all other users, we determine the fading states where no power should 

be assigned to any user by considering users in G I only. That is, Vh E Hall, first define the 

total weighted power Pt>:,~/R, h) of all the users in GI as: 

pmin (R h) = A(Gd . p(Gd (R h) (A,C) , (A,C) , , (6.33) 

where the subscript GI in vectors A(Gd and p(~d (R, h) implies that they are subvec-
(A,C) 

tors of A and p(A,C)(R,h), consisting of components corresponding to the users in set 

Gl' Here P (A,C)(R, h) = [Pl,(A,C)(R, h), P2,(A,C)(R, h)"", PM,(A,C)(R, h)] denotes the re­

quired transmit power vector of the ]I,;{ users when the decoding order is determined by the 

power allocation parameter pair (A, .c). That is, Vh E Hall, the required transmit power of 

each user in set Gl is: 

~ [exP(2R7rG (1») - 1] , if i = 1, 
"GI (1) 1 

h,,:: (i) [exp (2 L~=l R7rGI (k») - exp (2 L~~ll R7rGI (k»)] , (6.34) 

V2::; i ::; IGII, 

where IGII denotes the number of users in set G 1 and the permutation 7rGI (.) of the IGll 

users satisfies: 
).7rGI (1) > ).7rGI (2) ).7rGI (IGII) 

-~-> ... > -~-~ 
h7rGI (1) - h7rGI (2) - h7rGI (IGII) 

The required transmit power of each user in set Gj\Gj-I (2 ::; j < 1) for every state 
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hE Hall is: 

h1r;2(1) • exp (2 L Rk). [exp (2R7rGj (1)) - 1], if i = 1, 
J kEGj_1 

P7rGj (i),(A,.C)(R,h) = h1r:2(i) ·exp (2 L Rk). [exp (2tR7rGj(k») 
J kEGj_l k=l 

- exp (2 E R7rGj (k)) l' "12 ~ i ~ IGj\Gj-11, 

(6.35) 

where IGj\Gj-ll denotes the number of users in set Gj\Gj- 1 and the permutation 7rGj(·) 

of the IGj\Gj-11 users satisfies: 

Now "1s > 0, define the set offading states R(s, A, £) as: 

(6.36) 

where Ptt~/R, h) is given in (6.33), and let the threshold power s* be the point that 

satisfies: 

Prob{h E R(S*,A,£)} = 1- Pr*. (6.37) 

Given s*, the set R( s*, A, £) is then determined, which corresponds to the set of all fading 

states where the A1 users transmit information at rate vector R. For any fading state 

h if. R(s*, A, C), an outage will be declared for all the M users. Therefore, since in every 

state h E R(s*, A, C), the decoding order of the M users is determined by (A, £) and so is 

the required transmit power of the M users given in (6.34) and (6.35), the required average 

power vector P (A,C) (R) for supporting rate vector R with common outage probability Pr* 

is given by: 

(6.38) 

which will lie on the boundary surface of APVout (Pr* , R). 
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6.5 Independent Outage Declaration 

We now consider the case where each user can declare an outage independently. We derive 

the boundary of the outage probability region OI(:P, R) as well as the optimal power allo­

cation strategy in Section 6.5.1- 6.5.3, and obtain the average power region of the A1 users 

required to support R with a given outage probability vector Pr in Section 6.5.4. 

For any given fading state h, since some users may declare an outage, the chan­

nel may be only used by a subset of the M users. Obviously there are L~o (11[) = 

2M different combinations (subsets) of the M users, including the empty set. We will 

represent each of these 2M possible combinations of users as an M-dimensional vector 

['ljJ(k, 1), 'ljJ(k, 2),···, 'ljJ(k, M)] equal to the binary expansion of k, 0 :::; k :::; 2M -1. For each 

vector ['ljJ(k,I),'ljJ(k,2),···,'ljJ(k,M)J, if 'ljJ(k,i) = 1 then User i is transmitting; otherwise 

User i is not. For each k, 0 :::; k :::; 2M - 1, we define the set of active users Sk relative to k 

as Sk = {i: 'ljJ(k,i) = 1,1:::; i:::; M}. So denotes the empty set (no active users). 

6.5.1 Power Allocation Policy 

For a given rate vector R, in each fading state h, by "power allocation policy P," we mean 

the following: 

(1) Let w(R, h, Sk) denote the probability that Sk defines the set of active users (i.e., in 

state h only users in set Sk are active and each user i E Sk transmits at rate Ri)4. 

(2) Let PieR, h, Sk) denote the transmit power of each user i E Sk when Sk defines the 
6 

set of active users in state h. Let P(R, h, Sk) = [PI (R, h, Sk), P2(R, h, Sk), 

PM(R, h, Sk)], VO :::; k :::; 2M - 1. 

Then obviously, 

(6.39) 

and 
2M_I 

L w(R, h, Sk) = 1 - w(R, h, So) :::; 1. 
k=1 

4 As will be shown later in the optimal power allocation policy, w(R, h, Sk) is either 1 or 0 under the 
assumption that the stationary distribution of the joint fading process of the M users has continuous density, 
since the probability measure of each fading state h is zero. However, as in the broadcast communication 
case discussed in Chapter 5, this is not true if the c.d.f. (cumulative density function) of the joint fading 
process is discontinuous. 
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Moreover, in each fading state h, by denoting PrieR, h) and PieR, h) as, respectively, the 

probability and transmit power with which each user i transmits information to the base 

station at rate Ri, we have 

2M_I 

PrieR, h) = L w(R, h, Sk)l[i E Sk], (6.40) 
k=l 

2M_I 

PieR, h) = L w(R, h, Sk)Pi(R, h, Sk), 
k=l 

where 1[·J denotes the indicator function (l[xJ = 1 if x is true and zero otherwise). Therefore, 

the average usage probability PrimeR) and average transmit power PieR) of each user i 

(1 ::; i ::; M) for rate vector Rare: 

Prfn(R) Eh [PrieR, h)J 

Eh [2~1 w(R, h, Sk)l[i E Ski] , (6.41) 

PieR) Eh [PieR, h)J 

Eh [2~ 1 
w(R, h, Sk)P, (R, h, Sk)] . (6.42) 

The average outage probability Pri (R) of each user i (1 ::; i :S M) is 

(6.43) 

where Prfn(R) is given in (6.41). 

6.5.2 Outage Probability Region 

In this subsection, for any given vector X = (Xl, X2,···, XM) and any set S E {Sd%:ll, 
let lSI denote the numuer of users in set S, and let XeS) denote the subvector of X consisting 

of components corresponding to the lSI users in set S. 

From Definition 6.7 and Definition 6.8 it is clear that for a given average power con­

straint vector P* and rate vector R, deriving the boundary of the outage probability region 

OI(P*, R) is equivalent to deriving the boundary of the usage probability region OI(P*, R). 
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Define 

(6.44) 

We will require the following lemma and definition to derive the boundary of 0 1 (p* , R) 

and the corresponding optimal power allocation that achieves this boundary: 

Lemma 6.2 Both the usage probability region OI(P*,R) and the set QI are convex. 

Proof: See Appendix D.2. 0 

Definition 6.9 Assume that the M users transmit at a given rate vector R and the average 

outage probability for User i is PrieR), 1 :S i :S M. The average usage probability for User 

i is denoted as PrieR) = 1 - PrieR). Let Pron(R) ~ [Pryn(R), Pr~(R),···, PrM'(R)]. 

Then for any given nonnegative vector JL = (/-ll, /-l2,"" /-lM) E )RM, the total average usage 

reward W(R) is defined as: 

W(R) = JL' PrOn(R) 
M 

L /-liPri(R). 
i=l 

(6.45) 

In (6.45), /-li can be viewed as the channel usage reward if the information from User i is 

transmittecF . 

Due to the convexity of OI(P*, R), an average usage probability vector will be on the 

boundary surface of 01 (p* , R) if it is a solution to 

m~ _ W(R) (6.46) 
Pron(R)EOI(P* ,R) 

for some nonnegative vector JL E )RM, where W (R) is defined in (6.45). In this subsection 

we focus on the strictly positive vector JL for a parameterization of the boundary surface of 

01 (p* , R), and we call the corresponding outage probability vector a regular point of the 

boundary surface. The nonregular points correspond to the case where some components of 

vector JL equal zero. Since we can get arbitrarily close to a nonregular point by letting some 

components of vector JL go to zero, it suffices to focus on deriving the regular points of the 

boundary surface. Moreover, we will show how to obtain the nonregular points explicitly 

based on the the method for deriving a regular point at the end of Section 6.5.3. 

5 JLi can also be viewed as the channel outage penalty if an outage is declared from User i. 
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Since the set QJ is convex, for a given channel usage reward vector J.L E R~, vector 

PrJ7(R) = [PrrJ.L(R), PrrJ.L(R), ... , PrAI,J.L(R)] solves (6.46) if and only if there exists 

a Lagrangian multiplier vector oX E R~ such that (PrJ7(R), p*) is a solution to the problem 

max [W(R) - oX . P(R)] 
(Pron(R),P(R))EQ[ , 

(6.47) 

where P(R) = [i\ (R), .P2 (R),···, .PM (R)] and, for a given power allocation policy P, .Pi(R) 

(1 ~ i ~ M) can be calculated from (6.42). Note that we transform the maximization 

problem (6.46) into the problem (6.47) because the scalar to be maximized in (6.47) includes 

the average power constraints, and is therefore an easier maximization problem to solve. In 

(6.47), 

oX· P(R) 
i=l 

(6.48) 

where the last equation results from (6.39). 

For a given rate vector R and fading state h, let W (R, h) denote the total usage reward 

of the Af users in state h, i.e., 

W(R,h) 

Substituting (6.40) into (6.-19), we have 

W(R,h) 

J.L . Pron(R, h) 
M 

2: I-LiPrfn(R, h). 
i=l 

(6.49) 
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2M_l 

= :L w(R, h, Sk)'f/k, (6.50) 
k==l 

where the total reward for all users in set Sk to transmit information is 

M 

'f/k ~ :LJLi1[i E Sk], 1 ~ k ~ 2M - l. (6.51) 
i==l 

Thus, the total usage reward averaged over the time-varying channel is 

W(R) = Eh [W(R, h)] 

Eh ['f, 1 

w(R, h, S,)ry, ]. (6.52) 

For a given J-L E R!1, we know that vector PrJT(R) solves (6.46) (i.e., PrJT(R) is the 

boundary average usage probability vector of OI(P*, R) for the given J-L) if and only if 

there exists a Lagrangian multiplier vector A E R~ such that (PrJT(R),P*) is a solution 

to (6.47). SUbstituting (6.48) and (6.52) into (6.47), it is clear that PrJT(R) is the boundary 

vector of 0 I(P*, R) for the given J-L if and only if there exist a Lagrangian multiplier vector 

A E ?R~ and a power allocation policy P* such that for all h E Hau, {P*(R, h, Sk)}%:;-l 

and {w*(R, h, Sk)}%:;-l solve the maximization problem: 

subject to: 

where 

1 
R(S) E C9 (h,P(S)(R,h,S)) , Vh E Hs, VS E {Sd%:;-l, 

Eh [L~:ll w(R. h, Sk)Pi(R, h, Sk)] = Pt*' VI::; i ::; M, 

Hs = {h: w(R,h,S) > O}, 

(6.53) 

(6.54) 

(6.55) 

C9 (h, P(S)(R, h, S)) is the capacity region of the lSI-user time-invariant Gaussian MAC 
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and is given by 

Cg (h, P(S){R, h, S)) = {R(S) : ~ Ri ::; ~ log (1 + LiEF hi;2{R, h, S)), VF ~ S} , 

(6.56) 

and the average usage probability Pr?:;.t{R) of each user i is: 

(6.57) 

Therefore, for a given rate vector R and channel usage reward vector 1-£, in order to 

derive the average usage probability boundary vector PrJ7{R) of 0 I{P*, R), we wish to 

find the appropriate Lag.angian multiplier vector .x, the optimal transmit power vector 

P*{R, h, Sk), and the optimal transmission probability w*{R, h, Sk) for each set Sk (I ::; 

k ::; 2M -1, Vh E Hall) that achieve the maximum in (6.53) under the constraints in (6.54). 

Assuming that the Lagrangian multiplier vector .x is known, to achieve the maximum in 

(6.53), VS E {Sdk:l l
, the optimal transmit power vector P*(S){R,h,S) of the lSI users 

in set S must be a solution to 

min .x(S). P(S)(R,h,S) subject to: R(S) E C (h,P(S)(R,h,S)) , Vh E Hs. 
P(S)(R,h,S) 9 

(6.58) 

Note that according to (6.39), Vi rf- S, P;*(R, h, S) = o. 

Since VS E {Sdk:l l
, Vh E Hs, the set of received powers that can support the given 

rate vector R(S) of the users in set S is 

which is shown to be a contra-polymatroid with rank function [3] 

for any given .x E R~, Vh E Hs, applying Lemma 3.4 in [3], the solution P~)(R, h, S) to 

the optimization problem (6.58) is readily obtained. That is, the required transmit power 
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for each user in set Sis: 

where the permutation 7rsO of the lSI users satisfies: 

if i = 1, 

V2 ::; i ::; lSI, 

(6.59) 

As for the common outage case, the solution in (6.59) indicates that A(S) determines the 

decoding order of the users in set S in each fading state hE 1£s, VS E {Sd%:ll. Therefore, 

A can be viewed as the power price vector of the M users, which will be used to refer to the 

vector A hereafter. 

Now VS E {Sd%:ll, denote the minimum in (6.58) as p,rin(R, h, S), i.e., 

pmin(R h S) = A(S) . P(S)(R h S) 
A " A' , , (6.60) 

where the components of vector p~) (R, h, S) are given in (6.59). Then VI ::; k ::; 2M - 1, 

p,rin(R, h, Sk) can be viewed as the minimum total weighted power of the ISkl users required 

to transmit their information at rate R(Sk) and achieve the usage reward TJk in state h. Since 

the At average power constraints in (6.54) imply that there is a total weighted average power 

constraint A· P* for a given power price vector A, in order to solve (6.53) for the given 

channel usage reward vector J.L E 3?~ (17k in (6.53) is a function of J.L as shown in (6.51)), we 
2M_l 

first find the solution { W J.L,A (R, h, Sk) } k=l to the following single-constraint maximization 

problem: 
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which is equivalent to 

subject to: 

= ,x.P*, (6.62) 

where 8
1
, is the Lagrangian multiplier to be chosen such that the average total weighted 

power constraint ,x . P* is satisfied. We propose an iterative algorithm in Section 6.6 to 
2M_1 

find the optimal power price vector ,x * such that the solutions {P,x' (R, h, Sk) L=1 and 
2M_1 

{ W J.L,,x' (R, h, Sk) } k=1 satisfy the AI average power constraints in (6.54), i.e., 

(6.63) 

Therefore, given the power price vector ,x *, the power allocation policy defined by the 
2M -1 2M_1 

solutions {P,x,(R,h,Sk)}k=1 and {wJ.L,,x,(R,h,Sk)L=1 solves (6.53) subject to (6.54). 

Note that the maximization problem (6.61) subject to (6.62) for ,x and J.L fixed is the 

same as (5.44) in Chapter 5 and so is the solution. In the following subsection we rewrite 

this solution for completeness. 

6.5.3 Independent Outage Transmission Policy 

Before describing the optimal Independent Outage Transmission Policy for the M users in 

each fading state h, we define the permutation -fi-(.) such that 0 < 17jf(1) < 17jf(2) < ... < 

17jf(N), where N ~ 2M - 1 and 17i, 1 :S i :S 2M - 1, is given in (6.51). For simplicity denote 

~i ~ 17jf(i) and Vi ~ P..rin(R, h, Sir(i)), where p..rin(R, h, S) is given in (6.60). In order to get 

the largest usage reward in a given state h, first we use the following iterative procedure to 

remove those sets of Uf'crs Sjf(k) to which no power should be assigned: 

Initialization: Do not assign any power to those sets Sjf(k) if 3j that satisfies k < j :S 2M -1 

and ~k/Vk :S ~j/Vj. Remove them from further consideration and set wJ.L,,x (R, h, Sjf(k)) 

= O. Let m = 1. 
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Step 1: Denote the number of remaining sets as Gu and let the permutation p(.) be defined 

such that for the remaining Gu sets, ~p(l) < ~p(2) < ... < ~p(Gu). 

Step 2: Let poem) = p(l) and zpo(m) = ~p(l). If Gu < 2, all the sets that should be assigned 
Vp(l) 

no power have been removed and the procedure terminates; otherwise go to Step 3. 

Step 3: For 2 ::; k ::; Gu , decrease ~p(k) and Vp(k) by ~p(l) and Vp(l)' respectively. Do not 

assign any power to those sets of users S,r[p(k)] for which 3j that satisfies k < j ::; Gu 

and ~p(k)/Vp(k) ::; ~pU)/vpu), and remove them from further consideration (i.e., let 

wlL,,x(R,h,S,r[p(k)]) = 0). Also remove set S,r[p(l)]. Increase m by 1 and return to 

Step 1. 

Assume that when the above procedure terminates, the value of the loop parameter m is 

mo (1 ::; mo ::; 2M - 1). By denoting zpo(mo+1) ~ 0, the optimal {wlL,,x (R, h, S,r[po(j)]) } ;~1 
for the remaining mo sets { S,r[po(j)]}:l are given by: 

(a) if sl. > Zpo(l), then wlL,,x(R,h,S,r[poU)]) = 0, VI::; j::; mo; 

(b) if3j E {1,2,.··,mo}, zpoU) > sl. > zpoU+1), then wlL,,x(R,h,S,r[poU)]) = 1, and 

w 1L,,x (R, h, S,r[po(i)]) = 0, Vi =I- j, 1 ::; i ::; mo. 0 

This optimal transmission policy is a multi-user generalization of the single-user threshold­

decision rule in [76], where s* can be viewed as the threshold power determined by the total 

average weighted power ,x. P*. For the given channel usage reward vector IL and power price 
2M_1 

vector ,x, we see that once s* is determined, {w 1L,,x (R, h, Sk) } k=l will be determined for 

all h E Hau, and the corresponding average outage probability Pri,IL,M,x (R) and average 

transmit power Pi,IL,,x (R) of each user i (1 ::; i ::; M) can be easily calculated. That is, 

(6.64) 

(6.65) 

where, VS E {Sd~:l\ Pi,x(R,h,S) is given by (6.59) ifi E S and equals zero otherwise. , 

For the given channel usage reward vector IL E R~, if the power price vector ,x is the 

optimal ,x * such that ~,IL',x' (R) = Pt, VI ::; i ::; M, i.e., (6.63) holds, then the resulting 
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average outage probability vector Pr JL,)..' (R) with the M components given in (6.64) will 

be on the boundary surface of the outage probability region Ch(P*, R) and Prl7(R) = 

1-PrM JL,)..' (R) will be on the boundary surface of the usage probability region Ch(P*, R). 

Therefore, by varying the channel usage reward vector JL E R~, we can obtain all regular 

points on the boundary surface of the outage probability region 01 (p* , R). However, it is 

not easy to obtain the optimal power price vector).. * and the corresponding boundary outage 

probability vector directly for a given channel usage reward vector JL E R~. An iterative 

algorithm is proposed in Section 6.6 for obtaining all regular points on the boundary surface 

of region OI(P*, R) and the optimal power price vector for each regular point. 

A regular point on the boundary surface of region OI(P*, R) corresponds to the case 

where all the !l1 users are of the same priority and in each fading state h, be optimal 

decoding order is determined by their power price vector ).. and their sub-channel fading 

gains. Now consider the case where some users are given absolute priority over some other 

users in any fading condition, i.e., the absolute decoding rules can be represented by a set £ 

of nested subsets G I , G2 ,···, GI (I 2:: 2) of G = {I, 2,···, M} as described in Section 6.4.4, 

where G I ~ G2 ~ ... ~ GI == G. Let UI = G I and Uj = Gj\Gj - l , "12 ~ j ~ I. Since users 

in Ui are given absolute priority over users in Uj for i < j and users in UI are given the 

highest priority, for each given vector JL E R~, first we can derive the outage probability 

subvector Pr~Il (R) for users in set UI as if users in other sets were nonexistent. For 

j 2:: 2, once the optimal power allocation for users in UI::;i::;j-1 Ui is determined, the outage 

probability subvector Prj/,i) (R) for users in set Uj can be derived as if users in Uj+l::;i::;IUi 

were nonexistent and the signals from users in UI::;i::;j-IUi were background noise. Note 

that subvector Prj/,i\R) (1 ~ j ~ 1) is a regular point on the boundary surface of the 

outage probability region 01 (p*(Ui),R(Ui)) for the users in set Uj. Since we have already 

shown how to obtain a regular point on the boundary surface of region 01 (P * , R) for an 

M-user system, the regular point Pr~j)(R) of region 01 (:i>*(L;J),R(Uj )) for a IUjl-user 

system can be similarly derived. 

Therefore for each given pair (JL, £) with £ =I- {G}, we can obtain the corresponding 

boundary outage probability vector of region Ch(P*, R). Such boundary vectors are the 

nonregular points on the boundary surface of region OI(P*, R) and we can obtain all 

nonregular points explicitly by varying (JL, £) with JL E R~ and £ =I- {G}. When £ = {G}, 

the corresponding boundary outage probability vectors are the regular points discussed 
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before. 

6.5.4 Average Power Region 

In Section 6.5.2-6.5.3, given the power constraint vector P* and rate vector R of the M 

users, we derived the outage probability region 0 I(P*, R) and the corresponding optimal 

power allocation policy. Now for a given rate vector R and average outage probability 

vector Pr*, we consider the average power region APVout (Pr* , R), defined as the set of 

all possible average power vectors that can support rate vector R with the average outage 

probability of each user i no larger than Pri, VI ~ i ~ M. That is, 

* /'::,. - * -APVout(Pr ,R) = {P : Pr E Ch(P, RH. (6.66) 

By convexity of the set QI defined in (6.44), it is clear from (6.47) that an average 

power vector will be on the boundary surface of APVout (Pr* , R) if it is a solution to the 

minimization problem 

!llin A . P(R) subject to: 1 - Pr* E 01 (P(R), R) 
P(R) 

(6.67) 

for some vector A E R~. Therefore, for each given power price vector A E R:;!, an average 

power vector P A (R) solves (6.67) if and only if there exists a Lagrangian multiplier vector 

J-L such that (1- Pr*,PA(R)) is a solution to the problem 

(6.68) 

This minimization problem is similar to the maximization problem of (6.47). However, in 

(6.4 7), the average transmit power vector P* and the channel usage reward vector J-L are 

given, but the appropriate power price vector A must be found such that the average power 

constraint Pt of each user i (1 ~ i ~ M) is satisfied. Then the resulting average outage 

probability vector will lie on the boundary surface of O(P*, R) for the given J-L. In (6.68) 

the power price vector A and the average outage probability vector Pr* are given, but the 

usage reward vector J-L must be found such that the average outage probability constraint 

Pri of each user i (1 ~ i ~ M) is satisfied. Then the resulting average power vector will 

lie on the boundary surface of APVout(Pr*, R) for the given A. 
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From (6.68) we see that for a given power price vector .x E ~~, power vector P.x(R) 

will be the corresponding boundary vector of APVout (Pr* , R) if and only if there exist a 

Lagrangian multiplier vector J.L and a power allocation policy P* such that for any h E Jiall' 

{P*(R, h, Sk)}~:11 and {w*(R, h, Sk)}~:11 solve the maximization problem (6.53) subject 

to: 

1 

R(S) E eg(h, P(S)(R, h, S)), Vh E Jis, VS E {Sd%:11, 

Eh [2:%:11 w(R,h, Sk)l[i E Skl] = 1- Pri, Vl:S i:S M. 

The boundary average power vector P.x (R) is then given by: 

(6.69) 

It is easily shown, as in Section 6.5.2, that for the given power price vector .x, VS E 

{Sd%:1 1
, the optimal transmit power vector P*(S)(R,h,S) of the lSI users in set S is 

P~)(R,h,S), the components of which are given in (6.59), and Vi (j. s, Pt(R,h,S) = 

O. Therefore, for the given power price vector .x, finding the appropriate usage reward 

vector J.L and solving the corresponding maximization problem (6.53) subject to (6.69) is 

now equivalent to determining the appropriate usage reward vector J.L and the Lagrangian 
2M -1 

multiplier 1. in (6.61) and finding the solution {WII ,(R,h,Sk)} to (6.61) subject to: 
s ,....,/\ k=l 

(6.70) 

Note that, as described in Section 6.5.3, given the channel usage reward vector J.L E ~~I 

{ 

2M_1 

fixed and a power price vector.x E ~~ fixed, Vh E Jiall' the solution w J.L,.x (R, h, Sk) } k=l 

to (6.61) is readily obtained using the Independent Outage Transmission Policy once the 

threshold power s* in (6.61) is known. In Section 6.5.3, given the M average power con­

straints in (6.54), s* is determined by the total average weighted power constraint .x. P* 

in (6.62) for each .x E ~~, and changing the power price vector .x will then result in dif­

ferent average transmit power vectors. Now for each power price vector .x fixed, given the 

M average outage probability constraints in (6.70), the appropriate s* and channel usage 

reward vector J.L are to be chosen such that all constraints in (6.70) are satisfied. However, 
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it is obvious that in (6.61), adjusting both J-L and s~ such that (6.70) holds is equivalent to 

fixing s* (e.g., setting s* = 1) and changing J-L alone. Since by setting s* = 1, given A fixed, 
2M_l 

the solution {w J-L,A (R, h, Sk) t=l (Vh E llald to (6.61) for each different usage reward 

vector J-L is then obtained using the Independent Outage Transmission Policy, we will obtain 

different average outage probability vectors Pr J-L,A (R) by varying J-L. In the following we 

propose a simple iterative algorithm to find the optimal channel usage reward vector J-L* 

that satisfies PrW,A(R) = Pr*. This algorithm is similar to those in [2] and [74]6. 

Algorithm 6.1 For a given power price vector A, let s* in the Independent Outage Trans­

mission Policy be fixed, e.g., s* = 1, and denote the value of J-L in the nth iteration as J-L(n). 

Let J-L(O) = O. Given J-L(n), J-L(n + 1) is obtained as follows: VI ~ i ~ M, adjust the usage 

reward J.Li(n + 1) for User i while the usage rewards for all other users remain fixed at their 

values in the nth iteration such that the resulting average outage probability for User i is 

Pri. Specifically, given J-L(n), VI ~ i ~ M, let J-Li denote the usage reward vector of the !v! 

users with the kth (1 ~ k ~ M) component being J.Lk(n) if k i= i and J.Li(n + 1) if k = i, 

then J.Li (n + 1) is chosen such that 

Pro Hi ,(R) = Pri, 1,,..- ,.1\ 

where 

2M-l 
with {w J-Li,A (R, h, Sk) } k=l obtained from the Independent Outage Transmission Policy 

by setting s* = 1 in it. 0 

In order to prove that the iterative procedure converges, i.e., the sequence {J-L(n)} con­

verges to J-L* that satisfies Pr J-Lo.A (R) = Pr*, we need the following monotonicity lemma: 

Lemma 6.3 For a given power price vector A E Re'j, let s* = 1 be fixed in the Independent 

Outage Transmission Policy. Then VI ~ i ~ M, if the usage reward J.Li for User i increases 

while the usage rewards for all other users remain fixed, the resulting average usage prob-

6It is easily seen that this algorithm can also be applied to the fading broadcast channel to obtain the 
minimum required total average power of the M users for supporting rate vector R with a given outage 
probability vector. 
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ability Prc:n ,(R) = 1 - Pri " ,(R) of User i increases or remains unchanged, and the 
t,jl,A ,,.-,A. 

resulting average usage probabilities for all other users decrease or remain unchanged. 

Proof: See Appendix D.3. 0 

In each iteration of Algorithm 6.1, if the usage reward for all other users remain fixed 

while the usage reward /-Li for User i increases from 0 to 00, it is obvious that the average 

usage probability Pror:, ,(R) will increase monotonically from 0 to 1. Therefore, in each 
t,,.-,A 

iteration there exists a /-Li such that Pri,JL,'\ (R) = PrJ. Since each iteration in Algorithm 

6.1 can be represented as a map 

JL(n) f-7 JL(n + 1), 

any fixed point of T will be the solution JL* satisfying Pr W ,'\ (R) = Pr*. Applying Lemma 

6.3 we see that T is order preserving. That is, 

where the notation x :S y means that Xi :S Yi, VI :S i :S M. Therefore, starting with 

JL(O) = 0, JL(1) = T(JL(O)) 2: JL(O), and by induction, JL(n + 1) = T(JL(n)) 2: JL(n). If JL* is 

a fixed point of T, then since JL(O) :S JL*. JL(n) = Tn(JL(O)) :S Tn(JL*) = JL*. Thus, {JL(n)} 

is a monotonically increasing sequence bounded from above and must converge to a limit. 

The limit has to be a fixed point of T and hence a solution that satisfies Pr W ,'\ (R) = Pr*. 

For the given power price vector ,\ E R~, once we find the optimal channel usage reward 

vector JL* satisfying Pr W,'\ (R) = Pr*, the corresponding average transmit power vector 

P W ,'\ (R) will be the boundary vector P,\ (R) ofregion APVout (Pr* , R). That is, 

P,\(R) 6 PW,,\(R) 

Eh [2~1 wW,>.(R,h, SklP>.(R, h, Skl] . (6.71) 

However, as in the case with a given common outage probability or with zero-outage, 

there are other points on the boundary surface of APVout(Pr*, R) that cannot be param­

eterized by any ,\ E R~, since they correspond to decoding rules that cannot be repre-
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sented him ply by any A E R~. Instead, those decoding rules can be represented by a 

set C of nested subsets of G = {1, 2"", M} as described in Section 6.4.4. Therefore, 

we use the power allocation parameter pair (A, C) to describe all possible decoding or­

ders. When C = {G}, the boundary average power vector p(A,{G})(R) ~ PA(R) of region 

APVout (Pr* , R) can be obtained from (6.71), and it is called the regular point of the bound­

ary surface of APVout (Pr* , R). When C "# {G}, the corresponding boundary average power 

vector P (A,.c)(R) is called the nonregular point of the boundary surface of APVout(Pr*, R). 

We now show how to calculate the nonregular point P (A,L:) (R) for a given power allocation 

parameter pair (A, £) with an average outage probability vector Pr*. 

For a given set C of nested subsets of G, suppose G I ~ G2 ~ ... ~ G/ == G, I 2 2. 

Let UI = G I and Uj = Gj\Gj - l , 'i2 ~ j ~ I. Then users in Ui are given absolute priority 

over users in Uj for i < j and users in UI are given the highest priority. That is, for j = 1, 

()..k)kEUl determines the decoding order of the users in UI and they are decoded after the 

signals from the users in U2 u·· . U U/ are decoded and subtracted out in every fading state 

h. Since there will be no interference from any user in set Uf = U2 U ... U U/ to users in 

UI in any fading state h, by applying the Independent Outage Transmission Policy to the 

lUll users instead of to the M users, we can determine the users in UI who will transmit 

information in each state h and calculate the required average power vector pi~~~) (R) for 

supporting rate vector R(Ud with given average outage probability vector Pr*(U1 ) as if users 

in Uf did not exist. Similarly, for j 2 2, ()..k)kEUj determines the decoding order of the 

users in Uj and they are decoded after the signals from the users in Uj+l U ... U U/ are 

decoded and subtracted out in every fading state h. Therefore, there will be no interference 

from any user in Uj+l U ... U U/ to users in Uj. Since the users in UI U ... U Uj - 1 who 

will transmit information in each state h and therefore cause interference to each user in 

Uj are already determined, the total received power of the users in U1 U ... U Uj-l can be 

viewed as background noise to users in Uj. Thus, for j ~ 2, by applying the Independent 

Outage Transmission Policy to the IUjl users instead of to the M users, we can determine 

the users in Uj who will transmit information in each state h and calculate the required 

average power vector pi~,~/R) for supporting rate vector R(Uj) with given average outage 

probability vector Pr*(Uj). 

We now show how to calculate the average power vector pi~,~/R), 1 ~ j ~ I. For the 

IUj I users in set Uj, given the power price vector A (Uj) and the allowed average outage prob-
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ability vector Pr*(Uj), the length-lUi I required average power vector p~~,~) (R) corresponds 

to a regular point on the boundary surface of region APVout (Pr*(Uj), R (Uj) ), the set of all 

possible average power vectors of the I Ui I users for which rate vector R (Uj) can be supported 

with the given average outage probability vector Pr*(Uj). Since we have already shown how 

to calculate a regular point of the average power region APVout(Pr*,R) for an M-user sys­

tem, the regular point P~~~)(R) of the average power region APVout (Pr*(Uj),R(Uj») for 

an IUjl-user system can be similarly obtained. Specifically, for the given power price vector 

A (Uj ) E R~j I, first we use Algorithm 6.1 for the I Ui I users instead of for the M users to find 

the optimal channel usage reward vector J.L*(Uj) for which the average outage probability 

of each user i equals Pri, Vi E Ui . Then the required average power vector P~~,~/R) 
(1 :::; j :::; 1) is given by: 

(6.72) 

2lUjl_l 

where {w *(Uj) A(Uj) (R, h, Sk)} (Vh E Hall) is obtained by applying the Independent 
J.L , k=1 

21u1 
Outage Transmission Policy to the lUi I users with s* = 1 in it, and "IS E {Sdk=~ -1, the 

lUi I components of vector pi~~/R, h, S) are: Pi,(A,.C) (R, h, S) = 0 if i tf- S and, for each 

user in set S, 

P. (0) (A£)(R,h,S) = ps z, , 

h;':" . exp (2 I: Rk)' [exp (2Rp.(I)) - 1]. iii ~ 1, 

h:'~i) . exp (2 k~_' Rk) . [exp (2 t Rps(k») 
kESj_l k=1 

- exp (2 E Rps(k») l' "12:::; i :::; lSI, 

(6.73) 

where Sj-l denotes the empty set (j = 1) or the subset of users in Ul U ... U Uj-l who 

are transmitting information in state h (j 2: 2), and the permutation PsO of the lSI users 

satisfies: 
Aps(l) > Aps(2) > ... > Aps(lsl) . 
hPs(l) - hps (2) - - hps(lsl) 

Therefore, all the nonregular points P (A,£) (R) on the boundary surface of the average 

power region APVout(Pr*, R) can be obtained by varying the power allocation parameter 
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pair (oX, C) with C =1= {G}, and all the regular points p{oX,{G})(R) on the boundary surface 

of region APVout(Pr*, R) can be obtained by varying the power price vector oX E ~~ of the 

M users. 

6.6 Iterative Algorithms for Power Allocation 

In Section 6.4.1-6.4.4, by assuming that all users turn on and off transmission simultane­

ously, we derived the power allocation strategy that minimizes the common outage probabil­

ity. In Section 6.5.1-6.5.4, by assuming that each user declares an outage independently, we 

derived the power allocation strategy that achieves the boundary of the outage probability 

region. The outage capacity regions Gout (P, Pr) and Gout (P, Pr) are then characterized 

implicitly. These strategies assumed the existence of an optimal power price vector oX * or, 

more generally, an optimal power allocation parameter pair (oX *, C*) to determine user de­

coding priorities such that the average power constraints for all users are satisfied and the 

minimum common outage probability or the boundary outage probability vector is achieved. 

It is shown in Section 6.4 and Section 6.5 that once (oX *, C*) is given, the optimal successive 

decoding order of the M users in each fading state is determined and so are the optimal 

power allocation and the average power required from each user. Therefore, for a given 

power constraint vector P* and rate vector R, an important question is how to obtain the 

optimal power allocation parameter pair (oX * , C*). It is this question that we address in this 

section. 

In the zero-outage capacity case, for a given power allocation parameter pair (oX, C), let 
- 6. - - -
P(R, oX, C) = [PI (R, oX, C) P2(R, oX, C), ... , PM(R, oX, C)J denote the corresponding bound-

ary average power vector of region APVzero(R), defined as the set of all possible average 

power vectors that can support rate vector R in all fading conditions without any outage, 

i.e., 

_ { Eh [P oX (R, h)], if C = {G}, 
P(R,oX,C) = 

Eh [p{oX,£)(R, h)], if C =1= {G}, 
(6.74) 

where components ofP oX (R, h) are given in (6.17) and components ofP(oX,£)(R,h) are given 

in (6.34) and (6.35). Given the average power constraint vector P*, an iterative algorithm 

(we will refer to it as the Hanly-Tse (HT) Algorithm) is proposed in [3J for obtaining the 

optimal power allocation parameter pair (oX *, C*) that achieves the infimum in the following 



148 

optimization problem: 

(6.75) 

Therefore, rate vector R lies in the zero-outage capacity region if and only if the infimum 

in (6.75) is no greater than 1. Thus, the solution to (6.75) implicitly defines the zero­

outage capacity region. Moreover, if the corresponding average power vector peR, A *, £*) 

is a regular point on the boundary surface of APVzero(R) , then the optimal £* must be 

{G} and the HT Algorithm will converge to the optimal A * E R~. If peR, A *, C) is a 

nonregular point on the boundary surface of APVzero(R), the HT Algorithm will provide 

the optimal power allocation parameter pair (A *, C). The basic idea of the HT Algorithm 

is that at each iteration the required normalized average powers of the M users (normalized 

by their given average power constraints) are balanced as much as possible by increasing 

the power prices of the users with larger normalized average powers in the last iteration. A 

brief description of the HT Algorithm is given in Appendix D.4 for convenience. 

Now if the infimum in (6.75) is larger than 1, the given rate vector R can only be 

maintained with certain outage probability for each of the AI users. In this case, un­

der the assumption that the transmission from all users is turned on or off simultane­

ously, we wish to obtain the minimum common outage probability Pr* ~ Prmin(P*, R). 

Under the alternative assumption that the transmission from each user is turned on or 

off independently, we wish to obtain the outage probability region OI(P*, R). In this 

section, for notational convenience, given a power allocation parameter pair (A, £), let 
- f::, - - -
P(Pr, R, A, £) = [PI (Pr, R, A, C), P2(Pr, R, A, £), "', PM (Pr, R, A, £)] denote the bound-

ary average power vector of region APVout(Pr, R) for a given common outage proba-
- f::, -

bility Pr > 0 under the first assumption, and let P(Pr,R,A,£) = [PI(Pr,R,A,£), 

F2(Pr, R, A, £), "', FM(Pr, R, A, £)] denote the boundary average power vector of 

region APVout(Pr, R) for a given outage probability vector Pr 2: 0 7 under the second 

assumption. Note that we have already shown how to obtain these boundary vectors of 

region APVout(Pr, R) and APVout(Pr, R) in Sections 6.4.4 and 6.5.4, respectively (for sim­

plicity, in Section 6.4.4 we used PoX (R) (£ = {G}) or P (A,.e) (R) (£ -=f. {G}) to denote 

P(Pr,R,A,£) and in Section 6.5.4 we used PA(R) (£ = {G}) or p(A,.e)(R) (£ -=f. {G}) to 

denote P(Pr, R, A, C)). 

7In this chapter, a 2: b {:} ai 2: bi , Vi. 
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Under the first assumption, for each given common outage probability Pr > 0, if we 

can find the power allocation parameter pair (A,.c) that solves 

. f Fi(Pr, R, A,.c) 
In max , 

(A,C) l::;i::;M Pt 
(6.76) 

then by denoting the infimum in (6.76) as Inf(Pr), the following lemma holds. 

Lemma 6.4 Inf(Pr) is a strictly decreasing function of the common outage probability 

Pro 

Proof: See Appendix D.5. D 

Therefore, it is clear that 

1 
Inf(Pr) > 1, if Pr < Pr*, 

Inf(Pr) < 1, if Pr > Pr*, 

Inf(Pr) = 1, if Pr = Pr*. 

That is, if the infimum Inf(Pr) in (6.76) equals 1, then the corresponding common outage 

probability Pr of the M users is the target minimum common outage probability Pr* and 

the pair (A,.c) that achieves this infimum is the target optimal power allocation parameter 

pair (A * , C*). 

Similarly, under the second assumption, for each given outage probability vector Pr > 0, 

if we can find the power allocation parameter pair (A,.c) that solves 

(6.77) 

then by denoting the infimum in (6.77) as Inf(Pr), the following lemma holds. 

Lemma 6.5 For two given average outage probability vectors Pr(l) and Pr(2), if Pr(1) :::; 

Pr(2) and Pr(1) =1= Pr(2), then Inf(Pr(1») > Inf(Pr(2»). 

Proof: See Appendix D.6. D 

Therefore, it is obvious that 

{ 

Inf(Pr) > 1, 

Inf(Pr) :::; 1, 

if Pr rJ Ch(P*, R), 

if Pr E OICP*, R), 
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and Inf(Pr) = 1 if Pr is on the boundary surface of the outage probability region 

Ch(P*, R). This is because if Pr rf. Ch(P*, R) then there must exist a boundary aver­

age outage probability vector Pr(O) of OI(P*, R) satisfying Pr(O) ~ Pr, and Pr(O) =F Pr, 

which means Inf(Pr) > Inf(Pr(O») = 1 by Lemma 6.5. Moreover, if Pr is a regular point 

on the boundary surface, then the power allocation parameter pair (,X * , £*) that achieves 

the infimum in (6.77) must satisfy £* = {G} and 

P;(Pr'~,~*,{G}) = Inf(Pr) = 1, Vl:::;i:::;M. 
t 

(6.78) 

In the following we will propose an iterative algorithm (Algorithm 6.2 below) that finds, 

for the given rate vector R, the target minimum common outage probability Pr* and 

the corresponding power allocation parameter pair ('x*, £*) that achieves the infimum in 

(6.76). Another iterative algorithm (Algorithm 6.3 below) is proposed to obtain all regular 

points on the boundary surface of the target outage probability region OI(P*, R) and 

the corresponding power allocation parameter pair (,X * , { G}) that satisfies (6.78) for each 

regular point Pro The nonregular points on the boundary surface of OI(P*, R) are obtained 

as described at the end of Section 6.5.3. 

Before stating our algorithms we need to extend the HT Algorithm to the case of non-zero 

outage. That is, when only simultaneous outage declaration from the M users is allowed, 

given a common outage probability Pr, we use a similar algorithm (we will refer to it as the 

HT* Algorithm) as for the zero-outage case (Pr = 0) to find the solution to (6.76). Note 

that rate vector R lies in the outage capacity region Cout(P*, Pr) if and only if the infimum 

Inf(Pr) in (6.76) satisfies Inf(Pr) :::; 1. Therefore, the solution to (6.76) implicitly defines 

the outage capacity region Cout (P*, Pr). When independent outage declaration from each 

user is allowed, given an outage probability vector Pr, we also use a similar algorithm (we 

will refer to it as the HT** Algorithm) as for the zero-outage case (Pr = 0) to solve (6.77). 

Consequently, rate vector R lies in the outage capacity region COtl t (p* , Pr) if and only if 

the infimum Inf(Pr) in (6.77) satisfies Inf(Pr) :::; 1. Therefore, the solution to (6.77) 

implicitly defines the outage capacity region Cout(P*,Pr). Details of the HT* Algorithm 

and the HT** Algorithm are given in Appendix D.7 and Appendix D.8, respectively, and 

these algorithms will be used, respectively, in Algorithm 6.2 and Algorithm 6.3 given below. 

Algorithm 6.2 For a given rate vector R and average power constraint vector P*, denote 
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the common outage probability at the nth iteration as Pr(n). 

Initialization: Let Pr(O) = o. Use the HT Algorithm for the zero-outage case to solve (6.75) 

and denote the solution (A, C) as (A(O), C(O)). If the infimum in (6.75) is no greater than 

1, then the minimum common outage probability Pr* = 0 and we terminate the algorithm. 

Otherwise, set n = 1 and go to Step n. 

Step n: 

(1) Given power allocation parameter pair (A(n - 1), C(n - 1)), calculate the minimum 

common outage probability Pr(n) for which the average power vector P (Pr(n), R, 

A(n - 1), C(n - 1)) of the M users satisfies 

Pi (Pr(n), R, A(n - 1), C(n - 1)) 
max =." 1. 

l:Si:SM Pt (6.79) 

Specifically, if C(n-l) = {G}, Pr(n) is obtained from (6.24) with A in (6.24) replaced 

by A(n -1). The threshold power s* in (6.24) is now implicitly determined by (6.79), 

since all components of P (Pr(n), R, A(n - 1), {G}) in (6.79) are implicit functions of 

s* as shown in (6.32) with A replaced by A(n - 1). 

In the case where C(n - 1) i- {G}, Pr(n) is given by 

Pr(n) = 1 - Prob{h E R(s*, A(n - 1), C(n - I))}, (6.80) 

where the function R(s, A, C) is defined in (6.36) and s* is implicitly determined by 

(6.79), since all components of P(Pr(n), R, A(n - 1), C(n - 1)) are implicit functions 

of s* as shown in (6.38) with (A, C) replaced by (A(n - 1), C(n - 1)). 

(2) Given the common outage probability Pr(n), use the HT* Algorithm to solve (6.76). 

Denote the infimum in (6.76) as Inf(Pr(n)) and the solution (A, C) as (A(n), C(n)). 

Go to Step n + 1. 0 

The iterative proceoure of this algorithm is shown in Figure 6.1. For the given average 

power constraint vector P* and rate vector R, suppose that the infimum in (6.75) is larger 

than 1, i.e., 
Pi(R, A(O), C(O)) 1 

max > , 
l:Si:SM Pt 

(6.81) 

then the target minimum common outage probability Pr* > 0, and there exists a power 
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allocation parameter pair (-\ *, C*) that achieves the infimum in (6.76) with the common 

outage probability Pr equal to Pr* and satisfies Inf(Pr*) = 1. We now show that Algo­

rithm 6.2 converges to this target Pr* and the corresponding power allocation parameter 

pair (-\ * , C*). 

Initialization Step 1 Step 2 
Common Outage 

Probability: Pr(O) = 0 Pr(l) Pr(2) 

Optimal Power 
Allocation 

Parameter Pair: 

j~)~/O)~/ 
(-\(0), £(0)) 

JJ 

Inf(Pr(n)): Inf(Pr(O)) 

(-\(1), £(1)) 

JJ 

(-\(2), £(2)) 

JJ 
Inf(Pr(l)) Inf(Pr(2)) 

Figure 6.1: The iterative procedure of Algorithm 6.2. 

Pr* 

~ 
(-\*,C*) 

JJ 
Inf(Pr*) = 1 

Theorem 6.1 In Algorithm 6.2, {Pr(n)} (n ~ 1) is a monotonically decreasing sequence 

and converges to the target minimum common outage probability Pr*. {Inf(Pr(n))} (n ~ 

1) is a monotonically increasing sequence and converges to Inf(Pr*) that satisfies Inf(Pr*) 

= 1. The sequence {(-\(n), £(n))} converges to the power allocation parameter pair (-\ *, C*) 

that solves (6.76) with Pr = Pr* in it. 

Proof: Vn ~ 1, we know from Step n (J) that (6.79) holds when the common outage 

probability is Pr(n). Given common outage probability Pr(n), it is clear from Step n (2) 

that (-\(n), £(n)) satisfies 

Pi (Pr(n), R, -\(n), £(n)) 
max 

l::;i::;M Pt 
Inf(Pr(n)) 

. f Pi (Pr(n), R, -\, £) 
III max 

(A,C) l::;i::;M Pt 

< Pi (Pr(n), R, A(n - 1 ), £(n - 1)) 

Pt 
= 1, (6.82) 

where the last equality is due to (6.79). Note that in Step n (2), P(Pr(n), R, -\(n), £(n)) is a 

function of the threshold power s* as given in (6.32) (£(n) = {G}) or (6.38) (£(n) -I- {G}). 

Here the threshold power s* is chosen such that the common outage probability equals 
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Pr{n), and we denote it as s*(n). Now in Step n + 1 {1J, a common outage probability 

Pr (n + 1) is to be chosen such that (6.79) holds with n replaced by n + 1, i.e., 

Pi (Pr(n + 1), R, A(n), .c(n)) 
max = 1. 

l::;i::;M P/ (6.83) 

Therefore, for the given rate vector R and the same power allocation parameter pair 

(A(n), .c(n)), we have to re-determine the threshold power s* (we will refer to it as s* (n+ 1)) 

such that (6.83) is satisfied. Comparison of (6.82) and (6.83) shows that the threshold power 

s*(n + 1) must be no less than s*(n) in order to satisfy (6.83), i.e., s*(n + 1) 2: s*(n). since 

the Common Outage Transmission Policy implies that a larger threshold s* means that the 

Af users will transmit simultaneously in more fading states and thus require larger average 

transmit power. Thus, the corresponding common outage probability Pr(n+ 1) must satisfy 

Pr(n+ 1) :S Pr(n). Consequently, {Pr(n)} (n 2: 1) is a monotonically decreasing sequence 

and, by Lemma 6.4, {Inf(Pr(n)} (n 2: 1) is a monotonically increasing sequence. 

Since each iteration in Algorithm 6.2 can be represented as a map 

T: 3t+ -+ 3t+ 

Inf(Pr(n)) H Inf(Pr(n + 1)), 

any fixed point of T will be the solution Inf(Pr*) satisfying Inf(Pr*) = 1. From (6.82) 

it is clear that 'in 2: 1, Inf(Pr(n)) :S 1, i.e., it is bounded from above. Therefore, since 

{Inf(Pr(n)} (n 2: 1) is a monotonically increasing sequence bounded from above, it must 

converge to a limit, which is a fixed point of T and hence the solution Inf(Pr*) that 

satisfies Inf(Pr*) = 1. This implies that sequence {Pr(n)} (n 2: 1) converges to the target 

minimum common outage probability Pr*, and the sequence {(A(n),.c(n))} converges to 

(A *, £*) that solves (6.76) with the common outage probability Pr equal to Pr*. 0 

Algorithm 6.3 For a given rate vector R and average power constraint yector P*, denote 

the average outage prubability vector at the nth iteration as Pr(n) = [Prl(n), Pr2(n), "', 

PrM(n)]. 

Initialization: Let Pr(O) = O. Use the HT Algorithm for the zero-outage case to solve (6.75) 

and denote the optimal (A,.c) as (A(O),.c(O)). If the infimum in (6.75) is no greater than 1, 

then rate vector R can be supported with the given average power vector P* without any 
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outage and we terminate the algorithm. Otherwise, assuming that none of the M users can 

support his given rate without any outage under his average power constraintS, for a given 

channel usage reward vector JL(O) E ~~, set n = 1 and go to Step n. 

Step n: 

(1) Given the power allocation parameter pair (~(n-l), .c(n-l)) and usage reward vector 

JL(n-l), calculate the average outage probability vector Pr(n) for which the required 

average power vector P (Pr(n), R, ~(n - 1), .c(n - 1)) of the M users satisfies 

?i(Pr(n), R, ~(n - 1), .c(n - 1)) 
max = 1. 

l:Si:SM Pt (6.84) 

The lengthy details about how to obtain Pr(n) are given in Appendix D.I0. 

(2) Given the average outage probability vector Pr(n), use the HT** Algorithm to solve 

(6.77). Denote the infimum in (6.77) as Inf(Pr(n)) and the solution (~,.c) as 

(~(n),.c(n)). For the given power allocation parameter pair (~(n),.c(n)), let JL(n) 

denote the corresponding channel usage reward vector that results in the average 

outage probability vector Pr(n) and go to Step n + 1. 0 

The iterative procedure of this algorithm is shown in Figure 6.2. For the given average 

power constraint vector P* and rate vector R, suppose that the infimum in (6.75) is larger 

than 1 and none of the At users can support his given rate without any outage under 

his average power constraint. Then by varying the initial channel usage reward vector 

JL(O) E ~~ with 'Lt!ll1i(O) = 1 in Algorithm 6.3, we will obtain all regular points9 on 

the boundary surface of the outage probability region OI(P*, R) based on the following 

theorem. 

Theorem 6.2 In Algorithm 6.3, for each given channel usage reward vector JL(O) E ~~ 

with 'Lt!ll1i(O) = 1, the sequence {Pr(n)} (n ;::: 1) converges to a boundary outage proba­

bility vector Pr* of the target outage probability region OI(P*, R). {Inf(Pr(n))} (n ;::: 1) 

is a monotonically increasing sequence and converges to Inf(Pr*) = 1. The sequence 

8This assumption is not always true even if the infimum in (6.75) is larger than 1. If there are users who 
can support their given rates with zero-outage, we will apply our algorithm to the remaining users. Details 
about how to find those users who do not have to declare any outage are given in Appendix D.9. 

9In Algorithm 6.3, it is easily seen that each different vector p(O) E ~f with 'L~llLi(O) = 1 will result 
in a distinct sequence {Pr(n)}. 
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Initialization Step I Step 2 

Outage Probability Pr(O) = 0 Pr(l) Pr(2) ... 

Opl~;~;'~~" j /») /») / 
Parameter Pair: (.\(0), £(0)) (.\(1), £(1)) (.\(2), £(2)) 

Channel Usage (0) 
Reward Vector: J.L 

JJ 

Inf(Pr(n)): Inf(Pr(O)) 

J.L(1) 

JJ 
Inf(Pr(l)) 

J.L(2) 

JJ 
Inf(Pr(2)) 

Figure 6.2: The iterative procedure of Algorithm 6.3. 

{(.\(n),£(n))} converges to (.\*,C) that satisfies C = {G} and 

Pi(pr*,~~.\*,{G}) = Inf(Pr*) = 1. VI ~ i ~ M. 
l 

Pr* 

) 
(.\*,C) 

J.L* 

JJ 

Inf(Pr*) = 1 

(6.85) 

The proof of this theorem follows similar steps as that of Theorem 6.1 and is given in 

Appendix D.11. 

6.7 Auxiliary Constraints on 'Transmit Power 

In Section 6.4 and Section 6.6 the power constraints we considered are average transmit 

power constraints of the M users. In practice, sometimes we have to consider the peak 

transmit power constraint of each user as well. That is, in addition to the average transmit 

power constraint vector P* of the !If users, for each fading state h, the transmit power 

vector of the M users must be no larger than P = (PI, P2 ,· .. , PM). Under these auxiliary 

constraints, given a rate vector R, the problem of deriving the minimum average common 

outage probability of all users or deriving the average outage probability region of the Al 

users can be similarly solved as shown in Section 6.4, except that now we have to solve the 

minimization problems (6.14) and (6.58) subject to the additional peak power constraint 

vector P, i.e., the additional constraint for problem (6.14) is: 

P(R, h) ~ P, Vh E 1ltran , 
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and the additional constraint for problem (6.58) is: 

P(S)(R,h,S)::; P, Vh E Jis, 

where Jis is given in (6.55). 

The solution to problems (6.14) and (6.58) under the additional peak power constraint 

vector P is given in [3]. That is, for a given power price vector A, assuming that Al ~ A2 ~ 

... AM, Vh E Jitran or Vh E Jis, the transmit power Pi,A (R, h) (1 ::; i ::; M) or Pi,A (R, h, S) 

(i E S) of each user i is now obtained through a greedy algorithm. Specifically, Vh E Jitran , 

by denoting x~k) as the value of Pi,A (R, h) in the kth step of the following algorithm, the 

solution Pi,A (R, h) for each user i (1 ::; i ::; M) is obtained after M steps: 

• Initialization: Set x~O) = Pi for all i (1 ::; i ::; M). If h . x(O) f/. Q(R, h) then stop, 

where Q(R, h) is defined in (6.15). Otherwise set k = 1. 

• Stepk: Let7r(k)(.)beapermutationon{1, ... ,k-1,k+1,· .. ,M} (notethat7r(k)(k) 

does not exist) such that 

Then set 

< 

X 7r (k) (k-l)h7r (k) (k-l) 

R 7r(k)(k-l) 

X 7r (k) (k+1) h7r (k) (k+l) 

R 7r(k) (k+l) 

(k) {X}k-l), if i t= k, 

Xi = ~i • maxj;ik[j(Sj U {k}) - LIESj XI], if i = k, 

where f(·) is defined in (6.16) and Sj == {7r(k)(l),···, 7r(k)(j)} with 7r(k)(k) nonexistent. 

Go to Step k + 1. 

• Stop after M steps. 0 

Similarly, Vh E Jis, Pi .A (R, h, S) (i E S) can be obtained by applying the above algorithm 

to the lSI users in set S instead of to the M users. Note that the solution Pi,A (R, h) 

(1::; i::; M) in (6.17) and the solution PiA(R,h,S) (i E S) in (6.59) that can be achieved , 

by successive decoding are obtained through an algorithm that is actually a special case of 

the above greedy algorithm [3]. However, when peak power constraints are imposed on the 
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M users, the solution Pi,>' (R, h) or Pi,>' (R, h, S) obtained through this greedy algorithm 

cannot be achieved by successive decoding in general. 

6.8 Concl usions 

In this paper, under the assumption that perfect CSI is available both at the transmitters 

and at the receiver, we have obtained the outage capacity regions offading MACs implicitly 

by deriving the minimum common outage probability or the outage probability region for 

a given rate vector. Given the average power constraint of each user, we have derived the 

power allocation policy that minimizes the common outage probability for a given rate 

vector when transmission to all users is turned off simultaneously. When an outage can be 

declared for each user individually, we have derived a power allocation strategy to achieve the 

outage probability region boundary for the given rate vector. In both cases, similar to the 

non-outage scenario, successive decoding is optimal and in each fading state, the decoding 

order is determined by the power prices of the users and their fading gains. Iterative 

algorithms are proposed for obtaining the appropriate power allocation parameters, which 

determine the optimal decoding order and power allocation for each user. By applying 

these optimal power allocation strategies, the average power regions that can support a 

rate vector with a given common outage probability or an outage probability vector for the 

AI users are also obtained. When there are additional peak power constraints, the optimal 

power allocation for the !v! users in each fading state can be obtained through a greedy 

algorithm, but in general cannot be achieved by successive decoding. 
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Chapter 7 Summary of Contributions 

The contributions of this thesis are as follows. In Chapter 3 we have proposed two feedback 

decoders, a decision-feedback decoder and an output-feedback decoder, for coded signals 

transmitted over channels with slow, flat fading. While the decision-feedback decoder was 

originally proposed in [42] for finite-state Markov channels, its bit-error-rate (BER) per­

formance for coded signals on fading channels was not investigated. The output-feedback 

decoder has a novel channel state estimator and has similar complexity and BER perfor­

mance as the decision-feedback decoder. However, unlike the decision-feedback decoder, it 

does not suffer from error propagation and therefore is robust. Based on the extremely poor 

performance of the conventional decoder, we have also proposed a simple improvement to 

conventional decoding which uses a weighted metric. In order to analyze and compare the 

performance of the various decoding algorithms, we extend the sliding window decoding 

method, originally proposed in [54] for very noisy AWGN channels, to channels with fading, 

which provides a good approximation to the BER performance of decoders with complex 

metrics. Note that it is very difficult to analyze the performance of decoders with complex 

metrics in fading directly. Simulation results for our decoding techniques are also presented 

for several different fading models and modulation types. 

In Chapter 4, we have obtained the ergodic capacity region and the optimal dynamic 

resource allocation strategy for an lV/-user fading broadcast channel with perfect CSI at 

both the transmitter and the receiver. These results are obtained for code-division (CD) 

with and without successive decoding, time-division (TD), and frequency-division (FD). 

We have shown that CD with successive decoding has the largest capacity region, while 

TD and FD are equivalent and they have the same capacity region as CD without succes­

sive decoding. For CD with successive decoding, it is demonstrated that the water-filling 

optimal power allocation procedure can be obtained through a greedy algorithm. For CD 

without successive decoding, we have found that the optimal power policy is to transmit 

the information of at most one user in each joint fading state. This policy is also optimal 

for TD, though other strategies which allow at most two users to time-share the channel 

may also be optimal. A simple sub-optimal power policy is also proposed for TD and CD 
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without successive decoding that results in a rate region quite close to the ergodic capacity 

region. 

In Chapter 5, we have obtained both the zero-outage capacity region and the outage 

capacity region of an AI-user fading broadcast channel for CD with and without successive 

decoding, TD, and FD, assuming that perfect CSI is available at both the transmitter and 

all the receivers. The zero-outage capacity region is obtained implicitly by determining 

whether the total average required minimum power of the M users for supporting a given 

rate vector in all fading conditions satisfies the total average power constraint. For CD with 

and without successive decoding, we have proved that the zero-outage capacity region of a 

broadcast channel with Nakagami-m fading converges to the capacity region of an AWGN 

broadcast channel when m goes to infinity. The outage capaci~y region of a fading broadcast 

channel is implicitly obtained by deriving the minimum common outage probability or the 

outage probability region for a given rate vector. Given the required rate of each user, we 

have derived the optimal power policy that minimizes the common outage probability when 

transmission to all users is turned on or off simultaneously. When an outage can be declared 

for each user individually, we have also derived a general power allocation strategy to achieve 

boundaries of the outage probability regions under different spectrum-sharing techniques. 

The corresponding optimal power allocation scheme is a multi-user generalization of the 

single-user threshold-decision rule. 

For an AI-user fading multiple-access channel, under the assumption that perfect CSI 

is available both at the transmitters and at the receiver, we have obtained in Chapter 6 

its outage capacity region implicitly using similar methods as for the fading broadcast 

channels. Given the average power constraint of each user, we have derived the minimum 

common outage probability and the corresponding optimal power allocation policy for a 

given rate vector when transmission to all users is turned on or off simultaneously. When 

an outage can be declared for f::lch user individually, we have derived the outage probability 

region and the corresponding power allocation strategy that achieves the outage probability 

region boundary for t he given rate vector. In both cases, iterative algorithms are proposed 

for obtaining the appropriate power allocation parameters, which determine the optimal 

decoding order and power allocation for each user such that the minimum common outage 

probability or the outage probability region boundary is achieved. For a given common 

outage probability or an outage probability vector of the At users, by applying the derived 
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optimal power allocation strategies, we have also obtained the average power regions that 

can support a rate vector with the outage probability constraint for each user satisfied. 
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Appendix A Equivalence of the Conventional 

Detector with Weighting and the Output-Feedback 

Detector with Hard-Decision in Chapter 3 

We prove here the equivalence under hard-decision decoding of the conventional decoder 

with weighting and the output-feedback decoder for modulation types that have a decision 

rule independent of the fade level of the channel. 

With hard decision, the received symbol is demodulated to be one of the symbols in the 

channel input alphabet X. Denote the size of X as Ixl and assume that the symbols in X are 

equiprobable. Suppose the demodulation criterion is such that "In = 1,2,·· ., for any fade 

level an, the demodulated symbol Yn can be any of the Ixl symbols with equal probabilityl. 

Then in (3.11), since p(xn) = I~I and "1,,(, LXnExP(Ynlxn,"() = 1, the following holds for all 

k, k = 1,2,···,K: 

LXnEX fS
k 

P(Ynlxn, "()Pa("()p(xn)d"( 

fS
k 

Pa("()d"( 

@ fS
k 

[LxnExP(Ynlxn, "()]Pa("()d"( 

fSk Pa("()d"( 
1 

lxi' 
(A.l) 

which means that all the diagonal terms of B(Yn) in (3.10) are equal to I~I. Therefore, we 

can simplify (3.10) as 

Pn+1 = Pn P. (A.2) 

Since P is the matrix of transition probabilities for the K channel states, which form an 

irreducible, ergodic 1Iarkov chain, if the initial probability vector PI is chosen to be the 

stationary distribution of the states, then Pn will be the stationary distribution for all n. If 

PI is chosen arbitrarily, then Pn will converge to the stationary distribution of the channel 

states as n increases ([80], pp. 393-394). Thus, the metric (3.12) degenerates to the metric 

IFor example, the demodulation criterion for MPSK symbols satisfies this condition but that for MQAM 
does not. 
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(3.14) and the equavalence of the output-feedback decoder and the conventional decoder 

with weighting is proved. 
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Appendix B Proofs in Chapter 4 

B.1 Proof of Theorem 4.1 

The achievability and converse of the capacity region C(P) in (4.1) is proved in Section B.1.1 

and Section B.1.2, respectively, while the convexity of this capacity region is shown in 

Section B.1.3. Since in the converse proof, the capacity of a probabilistic broadcast channel 

is used, we prove the capacity formula of a probabilistic broadcast channel in Section B.1.4. 

B.1.l Achievability of the Capacity Region 

We prove the achievability of the capacity region C(P) in (4.1) by proving the achievability 

of CCD('P) in (4.2) for each given power allocation policy P E F. 

VP E F, for j = 1,2"", M, since Pj(n) is the transmit power allocated to User j for 

the joint fading state n, by denoting 

(B.1) 

we need to prove that for any given R = (Rl' R2 , •. ·, RM) satisfying Rj < Gj, j = 

1,2"", !vI, there exists a sequence of ((2 nR1 ,n, 2nR2 ,n,"', 2nRM,n), n) codes with rate Rj.n -t 

Rj (j = 1,2" . " A1) and the probability of error En -t ° as n -t 00. The proof is similar to 

that of the achievability of the single-user fading channel capacity [72]. 

Fix any E > 0, and let Rj = Cj - 3E, 1 ::; j ::; M. Define 

i 
Vi=-, 

m 
i = 0,1,2,···,mI. (B.2) 

Since the time-varying noi:;e density nj = ~ of each user ranges from ° to 00, we say that 

a sub-channel is in state Si, i = 0,1,2"", mI if Vi ::; nj < Vi+l, where Vml+l = 00. The set 

{Vi}:!O discretizes the fading range of each sub-channel into mI + 1 states. Thus there are 

(mI + l)M = N (B.3) 
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discrete joint channel states. We denote the kth (0 ~ k ~ N - 1) of these N states as 

Sk = [Sq,(k,l), Sq,(k,2), ... , Sq,(k,M)], where [¢(k, 1), ¢(k, 2)"", ¢(k, M)] is the base-(mI + 1) 

expansion of k, with ¢(k, 1) being the least important component. That is, ° ~ ¢(k,j) ~ mI 

for all 1 ~ j ~ M and 
M 

k = L¢(k,j)' (mI + 1)j-1. 
j=l 

Note that a channel state n E Sk if and only if nj E Sq,(k,j), VI ~ j ~ M. 

Over a given time interval [0, n], let ~k be the number of transmissions during which the 

channel is in the state Sk, and let the transmit power allocated to User j (j = 1,2" .. , M) 

be 

(B.4) 

By the stationarity and ergodicity of the channel variation, 

as n -T 00. (B.5) 

Consider a time-invariant AWGN broadcast channel with sub-channel noise variances Vq,(k,l), 

Vq,(k,2), ... , vq,(k,M) and transmit power P1(Sk),P2(Sk),"',PM(Sk) of the M users. Note 

that according to (B.2), Vq,(k,j) = q,(~j), VI ~ j ~ M. For a given n, let ~k = lnp(Sk)J = 

np(Sk) for n sufficiently large. From [78], we know that for 

j = 1,2"",1\1, 

there exists a sequence of ((2~kRl,ek,2~kR2,ek, ... ,2~kRM,ek)'~k) codes {xwk[i]}T~l' Wk = 

(W1,k, W2,k,"', WM,k), Wj,k = 1,2,···, 2~kRj,ek with error probability En,k -T ° as ~k -T 00. 

The message index W E {I, 2" .. ,2nR1
,n } x { 1,2"", 2nR2

,n } x ... x { 1,2" .. , 2nRM
,n } 

is transmitted over the N channel states as follows. We first map W to the indices {wdf==-Ol 
by dividing the nRj,n bits into sets of ~kRjl.k bits for j = 1,2,···: M. We then use the 

multiplexing strategy ~72] to transmit the codeword X Wk [.] whenever the channel is in state 

Sk. On the interval [0, n], the kth channel state Sk is used ~k times. We can thus achieve 

the transmission rates 

N-1 ~k 
""R·c­L J,~k n 
k=O 
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L B log 1 + M j k f.k , 
N-l ( P (S ) ) 

k=O V¢(k,j)B + Li=l Fi(Sk)l[v¢(k,j) > V¢(k,i)] n 

j = 1,2"" ,111. (B.6) 

The average total transmit power for the multiplexed code is 

From (B.5) and (B.6), it is easily seen that for j = 1,2" . ,,111, 

So for E fixed, we can find n sufficiently large such that 

Moreover, from (B.4), it is clear that the power control policy satisfies the average total 

power constraint for asymptotically large n: 

N-l M 

L L Pj(Sk) 1 dF(n) 
k=O j=l nESk 

M N-l 

< L L 1 Pj(n)dF(n) 
j=l k=O nESk 

< P. 

The error probability of the multiplexed coding scheme is bounded above by 

N-l 

En ::; L En,k -+ 0 as n -+ 00, 

k=O 

since n -+ 00 implies f.k -+ 00, Vk = 1,2" .. , N - 1. Thus, it remains to show that for fixed 

E there exist m and I (note N = (mI + l)M) such that 
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From the definition of Cj in (B.1), it is easily shown that for j = 1,2,··· , M, 

Cj = En[BlOg(l+ MPj(n) )] 
njB + L:i=1 Pi(n)l[nj > nil 

< En [B log ( 1 + ~j(;) ) ] 

< B log [1 + En ( ~j~) ) ] 
b 
< 00, 

where a follows from Jensen's inequality and b follows from the fact that the average SNR 

for each user is finite. So for fixed f there exists an I€ such that 

< f, (B.7) 

where A(I€) ~ {n: nj > I€,Vj = 1,2,···,M}. Moreover, by defining N1 = (mI)M, for I 

fixed, the monotone convergence theorem [81] implies that 

mI-1 mI-1 mI-1 ( P,(Sk) ) 
lim L L· . . L B log 1 + M J X 

m-too 4>(k,1)=04>(k,2)=O 4>(k,M)=O v4>(k,j)B + L:i=1 P i (Sk)l[v4>(k,j) > V4>(k,i)] 

p(n : V4>(k,j) ::; nj < v4>(k,j)+1, VI ::; j ::; M) 

mI -1 mI -1 mI -1 rV<p(k,l)+l rV¢(k,2)+1 rV<p(k,M)+l 

lim L L· . . L}" }" ... }" 
m-too 4>(k,l)=O 4>(k,2)=O 4>(k,M)=O V¢(k,l) V<p(k,2) V¢(k,M) 

( 
P'(~ ) Blog 1 + M J dF(n) 

. njB + L:i=1 P i (n)l[nj > nil 

(B.8) 

Thus, using the I€ in (B.7) and combining (B.7) and (B.8) we see that for the given f there 
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exists an m sufficiently large such that 

which completes the proof. 0 

B.1.2 Converse 

Suppose that rate R is achievable, then we need to prove that any sequence of ((2 nR1 , 2nR2 , 

... , 2nRM ), n) codes with average total power P and probability of error En -7 0 as n -7 00 

must have Rj :S Cj , j = 1,2,···, M, where Cj is given in (B.l). We assume that the codes 

are designed with a priori knowledge of the joint channel state ll. Since the transmitter and 

receivers know state II up to the current time, this assumption can only results in a higher 

achievable rate. 

As in the proof of the achievability in Section B.l.l, we say that the jth sub-channel 

is in state Si, i = 0,1,2,···, mI if the time-varying noise density nj of User j satisfies 

Vi :S nj < Vi+1, where Vi is defined in (B.2) and Vm l+1 = 00. Thus, the set {vd7,:;IO discretizes 

the fading range of each sub-channel into mI + 1 states and there are N = (mI + I)M discrete 

joint channel states. We denote the kth (0 :S k S N - 1) of these N states as Sk = [S<I>(k,1) ' 

Scp(k,2) , ... , Sq,(k,M)] , where [¢(k, 1), ¢(k, 2),···, ¢(k, M)] is the base-(mI + 1) expansion of 

k, and S<I>(k,j) is the jth sub-channel state. That is, 0 :S ¢(k,j) :S mI for alII :S j S M and 

M 

k = L¢(k,j). (mI + l)j-1. 

j=1 

Note that a channel state II E Sk if and only if nj E S<I>(k,j), VI :S j :S M. 

Over a given time interval [0, n], let ~k be the number of transmissions during which the 

channel is in the state Sk, let O(Sk) be the random subset of [1,2,·· . ,n] at which times 

the channel is in the state Sk, and let Q be uniformly distributed on [1,2, .. ·, n]. By the 
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stationarity and ergodicity of the channel variation, 

as n -t 00. 

For i = 1, 2, ... , n, let pin) (i) be the transmit power allocated to User j at time i and define 

Since for any message from the base station to the M users, there is a power constraint on 

the corresponding codeword, it follows that for each n, 

N-I M 

L L Pj(Sk, n)p(Sk) :S P. 
k=O j=1 

Therefore, for all Sk such that p(Sk) i= 0, Pj(Sk, n) are bounded sequences in n. Thus, 

there exist a converging subsequence and a limiting Pj(Sk) such that 

Moreover, 
N-I M 

L L Pj(Sk)p(Sk) :S P. (B.9) 
k=O j=1 

For a given power allocation policy P, assume that Pj(Sk) is the transmit power assigned 

to User j when the time-varying broadcast channel is in channel state Sk. Let F N be the set 

of all the power allocation policies which are piecewise constant in each channel state and 

which satisfy the average total power constraint (B.9). Assuming that the noise densities 

of the M users in each channel state Sk (0 :S k :S N - 1) are constants and are denoted 

as nl(k), n2(k),"" nM(k), the N channel states So, S1, S2,"', SN-I can be viewed as N 

AWGN broadcast channels where at any given time only one of thpse N channels is in op­

eration and the probability that the jth broadcast channel is in operation is given by p(Sj), 

VI :S j :S N. We call this the probablistic broadcast channel. We will show in Section B.1.4 

that if R(N) is achievable on the probablistic broadcast channel consisting of the N broad­

cast channels So, S1, S2,"', SN-I with probabilities p(So),p(St},p(S2),'" ,P(SN-t} under 

the assumption of perfect transmitter and receiver CSI (i.e., at time i it is known at both 
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the transmitter and receivers which broadcast channel is in operation), then 

R(N) E U C(P), (B.IO) 
PE:FN 

where 

Define 

Since for 0 S k S N - 1 and 1 S j S M, 

it is clear that 

C(P) ~ C(P). (B.1l) 

VP E FN, let 
N-l 

Pj(n) = L Pj(Sd 1[n E Sk], 1 S j S M. 
k=O 

According to the power constraint (B.9), it is obvious that {Pj(n)}~l satisfies 

Thus, P E F and 

(B.12) 

where CCD(P) is given in (4.2). Taking the limit of the left-hand side of (B.12), we obtain 

(B.13) 
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For the time-varying broadcast channel, if R is achievable, then 

R E lim {R(N): R(N) E U C(P)} = lim U C(P). 
N-too PE:FN N-tooPE:FN 

(B.I4) 

From (B.ll) and (B.I4) we have 

R E lim U C(P). 
N-tooPE:FN 

That is, 

C(?) ~ lim U C(P), 
N-too PE:FN 

(B.I5) 

where C(P) denotes the capacity region of the time-varying broadcast channel. Combining 

(B.I3) and (B.I5) with the achievability result which indicates that 

U CCD(P) ~ C(P), 
PE:F 

we obtain 

lim U CCD(P) ~ U CCD(P) ~ C(P) ~ lim U C(P). 
N-too PE:FN PE:F N-too PE:FN 

Since the upper bound equals the lower bound by the monotone convergence theorem [81J, 

it is clear that 

C(P) = U CCD(P). 0 
PE:F 

B.1.3 Convexity of the Capacity Region 

We use the idea of time-sharing to prove that if R E C(P) and R' E C(P), then )'R + (1 -

),)R' E C(P) for 0 :::; ), :::; 1. We know from the proof about the achievability of C(P) that 

for a given rate R E C (P), there exists a set of codebooks for different channel states and 

R can be achieved by using the multiplexing strategy. For R' E C(P), there exists another 

set of codebooks for different channel states. We can construct a third set of codebooks 

to achieve the rate )'R + (1 - ),)R' by using the codebook from the first set of codebooks 
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for the first >"~k symbols and using the codebook from the second set of codebooks for 

the last (1 - >")~k symbols in each channel state Sk, where ~k and Sk are as discussed in 

Section B.1.1. 

Since the new codebook in each state Sk is constructed with a rate >"Rj'~k + (1- >")Rj'~k' 

by using the new set of codebooks, the rate of the new code is >"R + (1 - >..)R'. Because 

the overall probability of error is less than the sum of the probabilities of error for each of 

the segments, the probability of error for the new code goes to 0 for n large enough. It is 

obvious that the new code satisfies the total power constraint, since each of the component 

codes satisfies this constraint. Therefore, the rate >"R + (1 - >..)R' is achievable. 0 

B.1.4 Capacity of a Probabilistic Broadcast Channel with CSI 

In Section B.1.2, while proving the converse of the capacity region in Theorem 4.1, we 

have used the capacity of a probabilistic broadcast channel consisting of N discrete AWGN 

broadcast channels with given probabilities under the assumption that perfect CSI is avail­

able at both the transmitter and the receivers. Now we prove the capacity formula of 

a probabilistic broadcast channel composed of two AWGN broadcast channels with given 

probabilities. The result can be easily generalized to N (N > 2) channels. 

Assume that two discrete degraded memoryless AWGN broadcast channels 

and 

are as shown in Figure B.1. In the first channel (Channel 1), the Gaussian noises are 

denoted as Vu and V12, the noise densities of which are Nu and N12, respectively. In the 

second channel (Channel 2), thL' Gaussian noises are 1/21 and 1/22, the noise densities of which 

are N21 and N22, respectively. Let N1 = Nll + N12 and N2 = N21 + N 22 . We define the 

probabilistic broadcast channel consisting of two AWGN broadcast channels as a channel 

(X,p(y, zlx), Y x Z) with two outputs, where X = Xl U X2, Y = Y1 UY2, Z = Zl U Z2, and 
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Vu '" N(O, N u ) V12 '" N(O, N 12 ) 

t Y1 ~cb Zl 
Channell: Xl "CD " Nl = Nll +N12 

"CD 
Z2 ,,' Y2 

Channel 2: X 2 " N2 = N21 + N n 

t 
v21 '" N(O, N2d v22 '" N(O, N 22 ) 

Figure B.1: Probabilistic broadcast channel: Channell in operation with probability Pc, 
and Channel 2 in operation with probability Pc. 

Denote C(PjN) as the capacity of an AWGN channel with signal-to-nuise ratio PjN, 

i.e., C(PjN) = ! In(l + PjN). Let Rl and R2 be the transmission rates of the particular 

information to Y and Z respectively, and let Ro be the transmission rate of the common 

information. VO ::; 0:1,0:2, (3 ::; 1, let Cil = 1 - 0:1, Ci2 = 1 - 0:2, iJ = 1 - (3. 

Theorem B.1 The capacity region of the probabilistic broadcast channel in Figure B.1 is 

defined by: 

Cc {(Ro, Rl, R2) : Ro ::; PcC(O:l(3P j(Nn + Cil(3P)) + PcC(0:2iJP j(N2 + Ci2iJP)), 

Ro ::; PcC(O:l(3P j(Nl + Cil(3P)) + PcC (0:2iJP j(N2l + Ci2iJP)) , 

Ro + Rl ::; PcC((3P jNn) + PcC (0:2iJP j(N2 + Ci2iJP)) , 

Ro + R2::; PcC(O:l(3P/(Nl + iil(3P)) + PcC(iJPjN2d, 

Ro + Rl + R2 ::; PcC(fJPjNll) + Pc[C(0:2iJPj(N2 + ii2iJP)) + C(ii2iJPjN21 )], 

Ro + Rl + R2 ::; Pc[C(O:l(3P j(Nl + iil(3P)) + C(Ci l(3P jNn )] + PcC(iJP jN2t} , 

(B.16) 

assuming that the total average power is P and perfect CS! is available at both the transmitter 

and the receivers. 

Note that this capacity region is similar to that of a parallel broadcast channel composed 

of two broadcast channels [82, 83], except that in the parallel case, both Pc and Pc equal 1. 
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In the case of independent rates (i.e., Ro = 0), (B.I6) becomes 

Cc = {(R1, R2) : Rl ~ PcC((3P/Nu) + pcC(a2/3P/(N2 + ii2/3P)), 

R2 ~ pcC (al(3P /(N1 + iil(3P)) + PcC(/3P /N2d, 

Rl + R2 ~ PcC((3P/Nu) + pc[C(a2/3P/(N2 + ii2/3P)) + C(ii2/3P/N21)], 

Rl + R2 ~ pc[C(al(3P/(Nl + iil(3P)) + C(iil(3P/Nu )] + PcC(/3P/N21), 

\fa ~ al,a2,(3 ~ I}, (B.I7) 

which is equivalent to 

Cc {(R1, R2) : Rl ~ PcC(iil(3P /Nu) + pcC(a2/3P /(N2 + ii2/3P)), 

R2 ~ pcC(al(3P /(N1 + iil(3P)) + PcC (ii2/3P /N2d, 

\fa ~ al,a2,(3 ~ I}. 

The equivalence of (B.I7) and (B.I8) can be similarly shown as in [82, 83]. 

Proof of Theorem B.1: 

(B.I8) 

Achievability: For fixed aI, a2, (3 we can achieve any triple (Ro, R I , R2) E Cc by first 

dividing the total power P into the part (3P used in the first broadcast channel and /3P 

used in the second. Then (3P is divided into the power al(3P used to transmit the common 

information to Y and iil(3P used to transmit the particular information to Y; /3P is divided 

into the power a2/3P used to transmit the common information to Z and ii2/3P used to 

transmit the particular informatioll to Z. The details of the proof of achievability are 

standard and therefore omitted. 

Converse: We know that a ((2nRo, 2nR1 , 2nR2), n) code for a broadcast channel with 

perfect CSI at both the transmitter and the receivers consists of three sets of integers 

Mo = {I, 2"", 2nRo}, Ml = {I, 2"", 2nRl}, M2 = {I, 2"", 2nR2}, 

a coding mapping 
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and two decoding mappings 

where V = (VI, V2,"', Vn) represents the CSI, i.e., for 1 ::; i ::; n, if Vi = 0, the first AWGN 

broadcast channel in Figure B.l is the current channel state; if Vi = 1, the second one in 

Figure B.1 is the current channel state. Therefore, by denoting n* ~ L~l Vi, we have 

n* 
- -+ Pc as n -+ 00. 
n 

[:, 
The set of codewords is {X(wIV) : w = (wo, WI, W2) E Mo X MI X M2}. Integer Wo 

represents the common part of the message and Wi (i = 1,2) represents the independent 

part of the message. Assuming that the distribution on (Wo, WI, W2) is uniform, we define 

the mean error probabilities for decoders 91 and 92 as follows: 

Therefore, we say that a rate triple (Ro, R l , R2) is achievable for the broadcast channel if 

there exists a sequence of ((2nRo , 2nRl , 2nR2 ), n) codes with max{ P;l' P;2} -+ ° as n -+ 00. 

Assume that we are given an arbitrary sequence of codes that leads to the triple of 

rates (Ro, Rl, R2). We will show that there exist aI, a2, and f3 such that (Ro, R l , R 2) E 

Ca in (B.16). The proof follows similar steps as that of the spectral Gaussian broadcast 

channel [82, 83]1. First define random vectors XI, X 2, VI, and Y 2 as follows: Xl = 

(XI,I, X l,2,"', Xl,n-n*) is a random vector consisting of the (n-n*) components ofX(wIV) 

corresponding to the ca<;c where the first AWGN broadcast channel in Figure B.1 is the 

current channel state; X 2 = (X2,1, X2,2,' .. ,X2,n*) is a random vector consisting of the 

other n* components of X(wIV). The random vectors Y I , Y 2, Zl, and Z2 are similarly 

lIn particular, the derivation of equations (B.19), (B.26), (B.27), and (B.33) are identical to those in 
[82, 83J. We include them for completeness since [82J and [83J are not readily available. 
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defined. From Fano's inequality we have 

Thus, 

Let 

Then since 

we obtain 

nRo H(WoIV) 

I(Wo;YI, Y 2IV) + H(WoIYI, Y 2, V) 

I(Wo;Y2IV) + I(Wo;Y1IY2, V) + nt"n,l 

< I(Wo, WI ;Y2IV) +I(Wo, W2,Y2;Y1 IV) +mn,1 

< I(Wo, WI, Zl;Y2IV) + I(Wo, W2, Y 2;Y1 IV) + mn,1 

H(Y2IV) - H(Y2IWo, WI, ZI, V) 

+ H(YIIV) - H(Y1IWo, W2, Y 2, V) + nt"n,l. 

n* 
--/:,.1" 2 
{3P = - L..- Ew {IX2,i(W)1 }. 

n i=1 

(B.19) 
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Therefore, 

(B.20) 

and 

(B.21) 

It is easy to see that there exists 0:1,0:2 E [0, 1] for which 

(B.22) 

(B.23) 

Combining (B.22) and (B.23) with the conditional entropy inequalities [78] 

we have 

(B.24) 

(B.25) 

Substituting (B.20), (B.21), (B.23), and (B.24) into (B.19), dividing both sides by nand 

then taking the limit as n -+ 00 we obtain 

Similarly, we can show that 

Furthermore, 

n(Ro + Rd H(Wo, W1 IV) 

I(Wo, W1;Yl, Y 2 IV) + H(Wo, WIlY!' Y 2 , V) 
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< I(WO,WI;Y1,Y2IV)+nEn,1 

= I(Wo, W1;Y2IV) + I(Wo, WI;Y1IY2, V) + nEn,1 

< I(WO,WI,Zl;Y2IV) +I(X1;Y1IV) +nEn,l, (B.26) 

where the last inequality follows from the fact that 

and 

Since 

I(Wo, W1;Y1 IY2, V) 

< I(Wo, W1;Y1IY2, V) + I(W2;Y1IWo, WI, Y 2, V) 

= H(Y1IY2, V) - H(YIIWo, WI, Y 2, V) 

+ H(Y1IWo, WI, Y2, V) - H(Y1IWo, WI, W2, Y2, V) 

= H(Y1IY2, V) - H(Y1IWo, WI, W2, Y 2, V) 

< H(YIIV) - H(Y1IXl, V) 

= I(Xl;YlIV). 

n - n* - n - n* 
< -2- l11 [27re(,BP + N ll )] - -2- ln[27reNll ] 

(B.27) 

= (n - n*)C(,B?jNll)' (B.28) 

substituting (B.20), (B.24), and (B.28) into (B.26), we obtain 

n(Ro + RI) :::; (n - n' )C(,B? jNn) + n*C(adJ? j(N2 + ad)?)) + mn,l. (B.29) 

Thus, dividing both sides of (B.29) by n and taking the limit as n ---+ 00, we have 
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Similarly, we can show that 

n(Ro + R2) < l(Wo, W2, Y 2i Zl/V) + l(X2i Z2/V) + nEn ,2 

< (n - n*)C(O'.I/3P j(NI + iil/3P)) + n*C(i3P jN21 ) + nEn ,2, (B.30) 

and consequently, 

Finally, let us bound the sum of rates from above. Assume that for some 6 > 0, we have 

either 

or 

we have 

a 

n(Ro + RI + R2) 

H(Wo, WI/V) + H(W2/V) 

l(Wo, WI;YI, Y 2/V) + H(Wo, WI/YI , Y 2, V) 

+ l(W2; ZI, Z2/V) + H(W2/ZI, Z2, V) 

< l(Wo, WI; Y I, Y 2/V) + l(W2; ZI, Z2/V ) + n(En,1 + En,2) 

b 
< l(Wo, WI; YI, Y 2 /V) + l(W2; Zl, Z2/WO, WI, V) + n(En,1 + En,2) 

l(Wo, WI; Y 2/V) + l(Wo, WI;YI/Y2, V) + l(W2; ZI/WO, WI, V) 

+ l(W2; Z2/WO, WI, Zl, V) + n(En,1 + En,2) 

= [l(Wo, WI ,ZI;Y2/V) - l(ZliY2/WO, WI, V)] + l(Wo, WI ;YI /Y2, V) 

+ l(W2; ZI/WO, WI, V) + l(W2; Z2/WO, WI, ZI, V) + n(En,1 + En,2) 

c 
< l(Wo, WI, ZI;Y2/V) - l(Zl;Y2/WO, WI, V) + l(Wo, WI ;YI /Y2, V) 

+ l(W2, Y2; ZI/WO, WI, V) + l(W2; Z2/WO, WI, ZI, V) + n(En,1 + En ,2) 



179 

= I(Wo, WI, ZI;Y2IV) + I(W2; Z2IWo, WI, Zl, V) + I(Wo, WI ;YI IY2, V) 

+ [I(W2' Y 2; ZIIWo, WI, V) - I(ZI;Y2IWo, WI, V)] + n(En,1 + En,2) 

= I(Wo, WI, Zl; Y2IV) + I(W2; Z2IWo, WI, Zl, V) + I(Wo, WI; Y I IY2, V) 

+ I(W2; ZIIWo, WI, Y 2, V) + n(En,1 + En,2) 

d 
< I(Wo, WI, Zl; Y 21V) + I(W2; Z2IWo, WI, Zt, V) 

+ [I(Wo, WI; Y I IY2, V) + I(W2; YIIWo, WI, Y 2, V)] + n(En,1 + En,2) 

e 
< I(Wo, WI, Zl; Y 2 IV) + I(W2; Z2IWo, WI, Zt, V) 

+ I(XI; YIIV) + n(En,1 + En,2), (B.33) 

where c, follows from Fano's inequality; b is due to the independence of Wo, WI, and W2 so 

that 

c is because 

d is a result of the degraded nature of the channel so that 

and e follows from (B.27). Similarly, we can show that 

n(Ro + Rl + R2) 

< I(Wo, W2, Y2; ZlIV) + I(W1;Y1IWo, W2, Y 2, V) 

+ I(X2; Z2IV) + n(En,l + En,2). 

Combining (B.26), (B.29), and (B.33) we obtain 

n(Ro + Rl + R2) 

< (n - n*)C({3P INll) + n*C(a2!JP I(N2 + ii2!JP» 

+ I(W2; Z2IWo, WI, Zl, V) + n(En,l + En,2) 

(n - n*)C({3P INll) + n*C(a2!JP I(N2 + ii2!JP» 

(B.34) 
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+ H(Z2IWo, WI, ZI, V) - H(Z2IWo, WI, W2, ZI, V) + n(En,1 + En ,2) 

= (n - n*)C({3P INn) + n*C(a2~P I(N2 + ii2~P)) 

Now if we assume that inequality (B.31) is satisfied, we obtain 

However, this contradicts (B.22) as n -+ 00. Similarly, assuming that inequality (B.32) is 

satisfied, we obtain from (B.30) and (B.34) that 

and this contradicts (B.23) as n -+ 00. Thus the triple (Ro, R I , R2) could satisfy the six 

inequalities in Theorem B.l for some aI, a2, and {3, i.e., (Ra, RI, R2) E CG. 0 

B.2 Interpretation of the "Water-Filling" Procedure for CD 

with Theorem 4.2 

In the two-step water-filling power allocation procedure described in Section 4.3.1, we as­

sume that 

nrr(l) < 71 rr (2) < ... < nrr(M)' 

For any user '!rei) for which 3j such that i < j :S }v[ and /-L"(i) < /-L"(j) we know that 
n,,(i) - n,,(j) , 

I1rr(i) < I1rr(j)· Thus, Vz > 0, Urr(i)(Z) < urr(j)(z) and according to Theorem 4.2, no power 

should be assigned to these users '!rei) and we will remove them from further consideration. 

After this initialization step. for the remaining K users, since VI < i :S K, np(l) < np(i) 

and /-Lp(l) > /-Lp(i) , for the users p(i) with I1p(i) :S I1p(I), it is clear that Vz > 0, Up(i)(Z) < 
np(l) np(.) 

Up(I)(Z) and we do not assign power to these users. For other users p(i) with I1p(i) > I1p(I), 

Up(I)(Z) and Up(i) will cross each other once at 
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Therefore, u*(z) = Up(l)(Z) if and only if Z E [O,ZC], wherE' 

Zc ~ min { ZCi }. 
J.lp(i»J.lp(l) 

Note that Up(l)(Z) equals zero at Z = J.lP11
) - np(l)B and, as shown in the proof of Theorem 

4.2, u*(·) and Up(i)(·) (VI:::; i :::; K) are all decreasing functions. Thus, according to Theorem 

4.2, if 

That is, P;(l)(n) is as given in (4.7> Moreover, if 

then 

U*(Z) < ° for all z > [J.l P11
) - np(l)B] , 

. + 

which means that no more power should be allocated to any user in the state n. Otherwise 

if P;(1)(n) = Zc, then at least for Zc < Z < [J.lP11
) - np(l)BL, u*(z) > ° and more power 

should be allocated to state n. However, in this case, since for all Z > Zc, u*(z) > Up(l)(Z), 

the power for User p( 1) in state n has been allocated and p;( 1) (n) becomes the interfering 

power for each of the remaining K - 1 users {P(i)}~2. Now our maximization problem 

is reduced to decide which one of the K - 1 users should be chosen to transmit to at an 

interference level Z = P;(l)(n). This new problem is equivalent to assigning power for the 

K -1 users with their corresponding noise levels np(i)B all increased by P;(l)(n). Therefore, 

the iterative water-filling power allocation procedure follows. 

B.3 Proof of Theorem 4.3 

Achievability of the Rate Region: The proof of the achievability follows along the same 

lines as that for the capacity region of CD given in Appendix B.1 and is therefore omitted. 

Convexity of the Rate Region: VT > 0, 0: > 0, n > 0, let 
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R(T, a) ~ TIn (1 + Tan)' 

Since 
fPR a2/T 
fh2 (T n+a)2 < 0, (B.35) 

a2R T 
- <0 

aa2 (T n + a)2 ' 
(B.36) 

a2R a2R a 
aTaa aaaT (Tn+a)2' 

(B.37) 

from (B.35)-(B.37), we obtain the Hessian matrix 

=0. 

Therefore, R(T,a) is a concave function of (T,a). That is, VO :S A :S 1, VTi > 0, ai > 0, 

i = 1,2, 

(B.38) 

where TO = ATI + (1 - A)T2' ao = Aal + (1 - A)a2. This result will be used in the following 

to prove the convexity of the capacity region. 

\iR, R' E C(P), 0 :S A :S 1, we need to show that AR + (1 - A)R' E C(P). Let P 

and P' be the two power policies corresponding to the rates Rand R', respectively. In 

a given channel state n, according to the two policies, the transmit power and fractions 

of transmission time allocated to User j (j = 1,2, ... , M) are Pj(n) and PJ(n), Tj(n) and 

TJ(n), respectively. Therefore, for the two power policies, the achievable rates for User j in 

the state n are 

Rj(n)h(n), Pj(n)J = Tj(n)B log (1 + ~j(;)) , (B.39) 

and 

Rj(n)[Tj(n), Pj(n)J = Tj(n)B log (1 + ~j~)) , (B.40) 

respectively. (B.39) and (B.40) can also be expressed as [84J: 

( 
Aj(n)) 

Rj(n)h(n), Aj(n)J = Tj(n)B log 1 + Tj(n)njB ' 
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where Aj(n) = Pj(n)Tj(n) and Aj(n) = Pj(n)Tj(n), j = 1,2,···, M. 

If we define a third power policy P" such that in each channel state n, the transmit 

power Pj'(n) and fraction of transmission time Tj'(n) allocated to User j (j = 1,2, ... , M) 

are 

and 

respectively, then 

Since 

Aj(n) 6 Pj'(n)Tj'(n) 

ATj(n)Pj(n) + (1 - A)Tj(n)Pj(n) 

AAj(n) + (1 - >')Aj(n). 

En [t, >'Tj (n)Pj (n) + (1 - >')TJ(n)p}(n)] 

< P, 

we know that P" E C(P). Moreover, it is proved in (B.38) that for j = 1,2, ... ,M, 

is a concave function of (T, a), i.e., \In EN, 

Therefore, AR + (1 - A)R' E C(P). D 
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B.4 Proof of Lemma 4.1 

In the following, P, Pj, Tj (j = 1,2), Pa , Pb , Po, >'0 and T are all functions of n, which is 

not shown for simplicity. 

Let Tl = T and T2 = 1 - T. Define 

fo(P) = h(P) - h(P), 

where Ji(x) (j = 1,2) is given in (4.22)' then 

f~(P) 
J..l2 J..ll 

P + n2B P + nIB 
(J..l2 - J..ldP + (J..l2 n l B - J..lln2B) 

(P + nlB)(P + n2B) 
(B.41) 

1. If ~ :S ~, then J..l2nlB :2 J..lln2B. Since J..ll < J..l2 by assumption, the numerator of 

(B.41) is non-negative for any P > O. Thus, 'tiP > 0, fMP) > O. Therefore, if P > 0, 

fo(P) > fo(O) = 0, i.e., h(P) > h(P). For PI :2 0, P2 :2 0 and TP1 + (1 - T)P2 = P, we 

have 

Th(Pd + (1 - T)h(P2) < Th(Pd + (1- T)h(P2) 

< h(P). (B.42) 

The last inequality in (B.42) is due to the concavity of h(P) and the equality is achieved 

when T = 0, PI = 0 and P2 = P. Thus, in this case, the solution to (4.21) is J(P) = h(P). 

2. If I!:l > ~, from (B.41) we know that 
nl n2 

(B.43) 

Since J..ll < J..l2, for P large enough, (1 + n~B)111 < (1 + /;B)112. Thus, for large P, h(P) < 

h(P), i.e., fo(P) > o. However, fo(O) = O. Using this and (B.43), it is clear that h(P) 

and h(P) will cross each other once at some positive value Po, as shown in Figure 4.5. In 
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this figure, Pa and Pb are the points that satisfy (4.30), i.e., 

where >'0 is the slope of the common tangent line in the figure. Since 

and >'0 can also be expressed as 

>. _ h(Pb) - h(Pa ) 

0- Pb - Pa ' 

we have 

(B.44) 

(B.45) 

and >'0 satisfies 

i.e., h(>'o, n) = 0, (B.46) 

where h(x, n) is given in (4.24). Therefore, if Pa < P < Pb, by time-sharing, J(P) in (4.21) 

can achieve the values between h(Pa ) and h(Pb) on the straight line; if 0 < P ::::; Pa or 

P 2 Pb, J (P) is simply h (P) or h (P), respectively. That is, in this case, the solution to 

(4.21) is (4.25). 0 

B.5 Proof of Theorem 4.4 

For a given fading state n, from (4.23) we know that the optimal power P*(n) satisfies (4.31). 

Let Pj*(n) and Tj(n) be the optimal power and fraction of transmission time allocated to 

User j (j = 1,2) at state n, respectively. From Lemma 4.1, we know that 

1. if l!:l < ~, then J(P*(n)) = h(P*(n)). Thus, 
nl - n2 

J' (P* (n)) - J-L2 
- P*(n) + n2B 

(B.47) 
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and T*(n) = 0, Pi(n) = 0, P2(n) = P*(n). Substituting (B.47) into (4.31), we have 

Since P2(n) must be non-negative, 

2. if I!:l > &, as shown in Figure 4.5, it is clear that 
nl n2 

! 
0 < P*(n) :S Pa 

Pa < P*(n) < Pb 

P*(n) 2 Pb 

if J'(P*(n)) > AD , 

if J'(P*(n)) = AD , 

if J'(P*(n)) < AD , 

(B.48) 

where Pa, Pb and AD are all functions of n and they are given in (B.44), (B.45) and (B.46), 

respectively. Since we know from (4.31) that J'(P*(n)) = A, from (4.25), (4.27), (4.28), 

(4.29) and (B.48) we have: 

a) if A> AD then J(P*(n)) = fr(P*(n)) and ff(P*(n)) = A. Thus, P*(n) = [¥ - n1B]+. 

Consequently, 

{ 
T~(n) = 1, and {pi(n) = [¥ - n1B]+, 

T2 (n) = 0, P2(n) = 0; 

b) if A < AD then J(P*(n)) = fz(P*(n)) and fHP*(n)) = A. Thus, P*(n) = [¥ - n2B]+. 

Consequently, 

c) if A = AD, then J(P*(n)) = fr(Pa) + Ao[P*(n) - Pal and P*(n) can be any value 

between Pa and Pb. Thus, 

where TO can be any value between 0 and 1. A and TO satisfy the total average power 

constraint (4.32). 
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Because Pa < Pb, from (B.44) and (B.45), we have 

Furthermore, since h()"o, n) = 0 and 

{ 

h'(x, n) > 0 

h'(x, n) < 0 

where h'(x, n) = (n2B - nIB) - (J-l2 - J-lI)/X, we have: 

A) if ).. > P2-PI or if)" < P2-PI and h()" n) < 0 then).. > )..0· 
- n2B-nIB' n2 B - n 1B " , 

B) if ).. < PJ-fL l Band h()", n) > 0, then).. < )..0; 
n2 -nl 

(B.49) 

Therefore, the second part of Theorem 4.4 is proved by combining a), b) and c) with A), 

B) and C). 0 

B.6 Decision Region Comparison for Optimal 

and Sub-Optimal TD Schemes 

For the sub-optimal TD policy, define 

D. 
g(x, n) = m(x, n) - gi (x, n), 

where gi(X, n) (i = 1,2) is given in (4.42). Let )..oub satisfy 

then 

)..sub 
o (~)(~/~)I";.!I"I 

nIB n2B nIB 

(~)( ~/~ ) I";}I" 1 . 
n2B n2B nIB 

(B.50) 

(B.51) 
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Assuming that J.Ll < J.L2, from (B.50) and (B.51) we know that: 

1. if 1:!:1. < 1!:1. then 
ni - n2' 

Since for x > 0, g' (x, n) = I.LI ~1.L2 < 0, where g' (x, n) denotes the derivative of g(x, n) with 

respect to x, g(x, n) is a decreasing function. Thus, when the c.d.f. F(n) is continuous, the 

sub-optimal policy is equivalent to: 

a) if 1:!:1. < 1!:1. and A < ...l!:L or if 1:!:1. > 1!:1. and A < A sub then 
ni - n2 n2B ni n2 0 , 

{ 
7~(n) = 0, 

72 (n) = 1, 

Pi(n) = 0, 

P2'(n) = [¥ - n2B]+; 

b) if 1:!:1. > 1!:1. and Asub < A < J:!L then 
ni n2 0 nIB' 

{ 
7~(n) = 1, 

72 (n) = 0, 

From Theorem 4.4, it is clear that the optimal policy is equivalent to: 

a) if 1:!:1. < 1!:1. and A < ...l!:L or if 1:!:1. > 1!:1. and A < AO then 
ni - n2 n2B ni n2 ' 

{ 
7~(n) = 0, 

72 (n) = 1, 

Since if 1!:1. < 1:!:1., h(AO, n) = 0. From the definition of h(x, n) in (4.24), we have 
n2 ni 

(B.52) 
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According to (B.49) and (B.52), it is clear that g(AO, n) > O. Consequently, AO < Noub. 

Therefore, for a given A > 0, the only difference between the optimal and sub-optimal 

policy is that when n E LD, where LD is given in (4.43), the sub-optimal scheme transmits 

the information of User 2, while the optimal scheme transmits the information of User l. 

This sub-optimal allocation of resources occurs only rarely. Note that the values of A in the 

two schemes satisfying the two-user power constraint (4.32) are not the same, though they 

may be very close to each other. 0 

B.7 Proof of Lemma 4.2 

For simplicity, we denote 

then 

q'(Pt} /-ll /-l2 

Nl + P - PI N2 + PI 
(/11 + /12)P1 + [/11 N2 - /12(N1 + P)] 

(NI +P-Pt)(N2+Pt} 

If /11N2 ~ /12(N1 + P), then for 0 ::; p[ ::; P, we have q'(Pt} ~ 0 and 

q(Pt} :s q(P) = /11ln(1 + PINt}; 

thus, 

q(Pl) < max[q(P), q(O)] 

(B.53) 
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max [Ill In ( 1 + :J ,1l2 In ( 1 + :J] ; (B.54) 

if 1l1N2 < 1l2(Nl + P) and J.L2(N~~~~~J.LIN2 > P, then for 0 ~ PI ~ P, we have q'(Pt} < 0 

and 

q(P1) ~ q(O) = 1l2ln (1 + :J. (B.55) 

From (B.53), (B.54) and (B.55), we conclude that 

q (PI) ~ max [Ill In ( 1 + :1) ,1l2 In ( 1 + :2)] . 
That is, 

Now assume that (4.45) is true for M = K: 

K ( Pi) [( L~l pj
)] L Ili log 1 + K ~. max Ili log 1 + J-. ' 

i=l Ni + Lj=l,#i Pj 'E{l,2, ... ,K} N, 

then for Jvf = K + 1, 

K+1 ( Pi) L Ili log 1 + K + 1 
·-1 Ni + L·-1 . ...j..PJ· ,- J- ,Jr' 

( 
PK+1) + ilK +llog 1 + K 

NK+1 + Lj=l Pj 

< [ ( 
L~lPj)] max Ili log 1 + J-

iE{1,2, ... ,K} Ni + PK +l 

( 
PK+1) + IlK+llog 1 + K 

NK+l + Lj=l Pj 

[ ( 
,·K+l P.)] 6j=1 J 

max Ili log 1 + T • 

iE{1,2, ... ,K+l} l"i 
< 

Therefore, by induction, we know that (4.45) is true. 0 
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Appendix C Proofs in Chapter 5 

C.1 Proof of Theorem 5.1 

Achievability of the Capacity Region: We prove the achievability of the capacity re­

gion Czero(F) in (5.1) by proving the achievability ofR E nnENCcD(n, P) in (5.2) for each 

given power allocation policy P E F. 

VP E F, for j = 1,2,···, M, since Pj(n) denotes the transmit power for User j in 

fading sta';e n, VR E nnENCcD(n,P), R = (R I ,R2 ,···,RM)' we need to prove that for 

every E > 0, there exists a sequence of ((2 Rr T, 2 R2T , ... , 2 RMT ), T) codes and a coding and 

decoding scheme with probability of error pf) < E for every fading process with stationary 

distribution Q, i.e., a coding delay T which is independent of the correlation structure of 

the fading. We prove in the following that this is true for the two-user case. The result 

can be easily generalized to the M-user case (M > 2). Note that with the availability of 

CSI at both the transmitter and the receivers, the codewords can be chosen based on the 

realization of the fading process. 

Let 

Recall that we assume Pr{ ni = nj} = 0, Vi i- j. Thus 

When the channel fading states are in 4>1, let N(T) = (N(l), N(2),···, N(T)) denote 

the realization of the slowly time-varying fading process. Let Afl = 2TRr and M2 = 2TR2. 

Generate Af2 independent codewords UI, U2,···, UM2 of length T according to the nor­

mal distribution N(O, 1), scaled by JP2 (N(n)), n = 1,2,···, T. For each codeword Ui = 

(Ui,I,Ui,2,···,Ui,T) (Ui is called a cluster center, 1:::; i:::; M2), generate MI independent 

codewords xI,i, X2,i,· .. ,xMr,i of length T according to the conditional normal distribution 
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N(Ui,n, 1), scaled by v'Pt(N(n)), n = 1,2,,,·, T. 

Assuming that the source for User 1 produces integer m (1 :S m :S Md and the source 

for User 2 produces integer i (1 :S 1 :S M2), the encoder maps the pair (m, i) into a codeword 

Xm,i = (Xm,i,l, Xm ,i,2, ... , Xm,i,T)' which is then transmitted. Let y and z be the received 

sequences for User 1 and User 2, respectively. We use the decoding rule in [85]. That is, the 

decoder of User 2 decodes that i for which p(ZIUi) is maximized (a decoding failure occurs 

when there is a tie for the maximum). Let p~,~) be the probability of decoding error for 

User 2. The decoder for User 1 first decodes the cluster center Ui in the same way as the 

decoder of User 2 does, and then uses its estimate of i to choose the m for which p(ylxm,i) 

is maximized. For User 1, let p~I~ be the probability of decoding error for index i and 

let p~I~ be the prok,Hlity of decoding error for index m. Thus, by denoting p~I) as the 

probability of decoding error for User 1, we have 

peT) < peT) + peT) . 
e,l - e,ll e,12 (C.1) 

Based on the above encoding and decoding rules, the probability of decoding error for 

User 2 is bounded by[85P 

p~,~) < exp(pTR2/(2B)):L f(n)· 

( ) 

l+p 

~ ~QI(uln)[P(zlu,n)]l!p , (C.2) 

for any p > 0, where f(n) denotes the probability density function of n, QI (uln) is the con­

ditional probability density function of u, conditional on the fading being n, and p(zlu, n) 

is the conditional probability density function of the received sequence z, conditional on the 

codeword being u and the fading being n. Since 

T 

QI(uln) = II QI(unln), (C.3) 
n==l 

INote that the unit for Rl and R2 in this paper is "bits per second," while the unit in [85] is "bits per 
sample." This is why R2 in (C.2) is divided by 2B, the number of samples per second for the band-limited 
channel. 
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T 

p(Z/U, n) = II P(Zn/Un, n) 
n=l 

(C.4) 

where VI :S n :S T, Q1(un/n) '" N(O, P2(n)), Q2(X/Un, n) '" N(un, P1(n)), and p(zn/x, n) '" 

N(x, n2B). Therefore, in (C.4), p(zn/un, n) '" N(un, n2B + P1(n)). Substituting (C.3) and 

(C.4) into (C.2), it is easy to verify that 

By assumption, 362 > ° such that 

(C.5) 

Thus, 

p~,~) :S exp {-P~ [62 -log(1 + p)]}, (C.6) 

since LnEcpl f(n) :::; l. 

Similarly, we can show that 

peT) < exp(pTR2/(2B)) " f(n). e,12 L 

( )

l+P 

~ ~ Q1(u/n)[p(y/u, n)]l~p , (C.7) 

for any p > 0, where Q1 (u/n) is given by (C.3) and p(y/u, n) is the conditional probability 

density function of the received sequence y, conditional on the codeword being u and the 

fading being n. Since 

p(y/u, n) 
n=l 

(C.S) 



194 

where V1 :s n :s T, Q2(xlun , n) '" N(un, Pl(n)) as given above, and P(Ynlx, n) '" N(x, nIB). 

Therefore, in (C.8), P(Ynlun,n) '" N(un,nlB + Pl(n)). Substituting (C.3) and (C.8) into 

(C. 7), it is easily shown that 

peT) < '""' f(n). e,12 ~ 

{ [ 
R2 1 .; ( P2(n) )] } 

exp -p -T 2B + "2 ~ log 1 + (1 + p)(nlB + Pl(n)) . 

Since Vn E <1>1, nl < n2, from (C.5) we obtain 

Thus, 

P~';~ :s exp {-p~ [82 -log(l + p)]}. (C.9) 

Further moreover, for User 1, the probability of decoding error p~,;i is bounded by[85] 

p~,'ii < exp(pTRI/(2B)) L fen) . 

( 

1 ) l+p 
LLQl(uln) Q2(xlu,n)[p(ylx,n)]l+p , (C.10) 

y u 

for any p > 0, where Ql(uln) is given in (C.3), 

T 

Q2(xlu, n) = II Q2(xnlun, n), (C.11) 
n=l 

T 

p(ylx, n) = II P(Ynlxn, n), (C.12) 
n=l 

and V1 :s n :s T, Q2(xn lun, n) '" N(un, ?ten)), P(Ynlxn, n) '" N(xn, nIB). Therefore, by 

substituting (C.3), (C.11), and (C.12) into (C.10), it is easy to verify that 

peT) < '""' f(n). 
e,ll - ~ 

{ [ 
R 1 1 .; ( PI (n) )] ) 

exp -p -T 2B + "2 ~ log 1 + (1 + p)nlB J. 
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By assumption, 361 > ° such that 

Thus, 

(T) {PT } Pe,l1 ::; exp -2 [61 -log(l + p)] . (C.13) 

Denoting 6 = min{ 61, 62}, then by (C.6) we obtain 

p~,~) ::; exp {-P~ [6 -log(l + p)]}, 

and by (C. 1), (C.g) and (C.13) we obtain 

p~I) ::; 2· exp {-P~ [6 -log(l + p)]}. 

Therefore, when the channel fading states are in <I> 1 , the overall probability of decoding 

error p~T) (<I>r) for the two users is 

< peT) + peT) 
e,l e,2 

< 3· exp {-P~ [6 -log(l + p)]}. 

By taking p sufficiently small, we have 8 -log(l + p) > ° and it follows that the probability 

of error p~T)(<I>r) decreases exponentially with T, i.e., VE > 0, 3Td(<I>r) > 0, VT > Td(<I>r), 

(T)( ) Pe <I> 1 < E. 

It can be similarly shown that when the channel fading states are in <I> 2 , there ex­

ists a sequence of ((2 R1T , 2R2T , ... , 2RMT ), T) codes and a coding and decoding scheme 

for which the probability of error p~T) (<I>2) decays exponentially with T, i.e., VE > 0, 

3Td(<I>2) > 0, VT > Td(<I>2), P~T)(<I>2) < E. Thus, Vn E N, there exists a sequence of 

((2R1T , 2R2T , ... ,2RMT ), T) codes and a coding and decoding scheme for which the proba­

bility of error p~T) -+ 0 as T -+ 00. Moreover, p~T) decreases in T at a rate independent of 

the correlation character of the fading, i.e., by denoting Td = max{Td (<I> r), Td(<I>2)}, VE > 0, 

VT > Td, we have p~T) < E for every fading process with stationary distribution Q. D 

Converse: Suppose that rate R is achievable, i.e., R E Czero(P). We need to prove that 
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R cannot be outside of the region defined in (5.1). The proof is similar to that of the MAC 

capacity region [3]. 

Define Vi = ~, i = 0,1,2"", mI. Since the time-varying noise density nj of each 

user ranges from 0 to 00, we say that a sub channel is in state Si, i = 0,1,2"", mI if 

Vi ~ nj < Vi+1, where VmI+l = 00. Therefore, there are (mI + I)M = N discrete joint 

channel states. We denote the kth (0 ~ k ~ N - 1) of these N states as Sk = [S¢>(k,l) ' 

S¢>(k,2), "', S¢>(k,M)] ' where [4>(k, 1), 4>(k, 2)"", 4>(k, M)] is the base-(mI + 1) expansion of 

k, with 4>(k,l) being the least important component. That is, 0 ~ 4>(k, j) ~ mI for all 

1 ~ j ~ M and 
M 

k = ~ 4>(k,j) . (mI + 1)j-1. 
j=l 

Note that a channel state n E Sk if and only if nj E S¢>(k,j)' VI ~ j ~ M. 

Consider a sequence of Markov processes defined on N by using a Markov chain which is 

composed of the above mentioned N channel states with transition probabilities t(Sj, Sk). 

The process remains in a state Sj for an exponential time T(Sj) ~ Exponential(A(Sj)) and 

then selects a new state according to t(Sj, Sk). By choosing the appropriate {T(Sj)} f=(/ 
and transition probabilities, we assume that the Markov process has the required stationary 

distribution Q of the fading channel. 

For each T = 1,2"", let N(T) be a fading process starting with N(T) (0) = N(O), where 

N(O) is a random variable with the stationary distribution Q. The initial sojourn time 

in state N(O) of fading N(T) is given by TT(N(O)), where TT(Sj) :::::: Exponential(rTA(Sj)), 

j = 0,1, ... ,N - 1. The scaling constant rT determines the fading speed for process N(T). 

V6 > 0 fixed, by selecting an appropriate decreasing sequence {rT }T=l where rT -+ 0 as 

T -+ 00, we can have 

Pr(VT,TT(Sj) > T) > 1- 6, 0 ~ j ~ N-1. (C.14) 

Since R E Czero(F), we can choose for each T a code of size 2TRl . 2TF.2 ... 2TRM for which 

the probability of error p(T) under fading process N(T) goes to zero as T -+ 00. Let 

{X(T)(n)} :=1 denote a random selection of codewords from the codebook for the M users 

and let PY)(n) be the transmit power for User j (1 ~ j ~ M). Note that {X(T)(n)} :=1 

can be chosen according to the fading process N(T). For 0 ~ k ~ N - 1, let O(Sk) be the 
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subset of the sample space on which N(O) E Sk and 'iT, TT(Sk) > T. Let Q be a random 

variable uniformly distributed on [0, Tl. For 1 :S j :S M, define 

Vj(Sk, T) Pr {'iT, TT(Sk) > TIN(O) E Sk} 

+ Wj(Sk, T)Prf3T : TT(Sk) :S TIN(O) E Sd. 

Then the power constraint is that 'iT, 

N-l M 

L p(Sk) L Zj(Sk' T) :S P. 
k=O j=l 

According to (C.14), we have 

By the bounded convergence theorem, it is clear that there exists a a convergent subsequence 

along which if taking the limit we obtain for 1 :S j :S M and 0 :S k :S N - 1 

Therefore, 

( C.15) 

N ow we define a new fading process N by 

N-l 

N(n) = L l[N(O) E Skln1(Sk), 
k=O 

where nl(Sk) = [ni(Sk), n~(Sk)"'" n~(Sk)l and n;(Sk) ~ V</J(k,j)' 1 :S j :S M. Note that 

conditioned on N(O), the fading process is deterministic. Let q(TIO(S)) be the conditional 
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probability of error for code X(T) in the new fading channel. Then, obviously, 

By assumption, p(T) -+ 0 as T -+ 00. Thus, q(TIO(Sk)) -+ 0 as T -+ 00. But conditional on 

O(Sk)' we have a constant channel, and a sequence of codes satisfying the power constraint 

(C.15). It follows that \f0 ::; k ::; N - 1, R E CCD(n1(Sk), V), where V denotes the power 

allocation policy that assigns power Vj(Sk) to User j (1 ::; j ::; M) in channel state Sk, and 

CCD(·,·) is as given in (5.2). 

\fP E F, define 

Denote FN,o as the set of all power control policies that satisfy the power constraint l~O 

and are piecewise constant on each fading state Sk, 0 ::; k ::; N - 1. Denote PN,o as the 

power allocation policy that assigns power pro (n) to User j (1 ::; j ::; M) in each fadng 

state n, where 
N-l 

prO(n) = L Vj(Sk)l[n E SkJ. 
k=O 

Thus, PN,o E FN,o. We have shown that for any 8 > 0, 

It follows that 

where FN = FN,O. Thus, 

- u n -(N) Czero(P) ~ CCD (n, P). (C.16) 
PEFN nEN 

Now combining (C.16) with the achievability result which indicates that 

u n CCD(n, P) ~ U n CCD(n, P) ~ Czero(P). 
PEF N nEN PEF nEN 
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we obtain 

u n ( - U n -(N) CCD n, P) ~ Czero(P) ~ CCD (n, P). 
PEFN nEN PEFN nEN 

Since the lower and upper bounds converge as N -+ 00, it is clear that 

Czero(F) = U n CCD(n, P). 0 
PEFnEN 

C.2 Necessary and Sufficient Condition for Equations in (5.8) 

to Have Positive Solutions 

We show that det A > 0 is the necessary and sufficient condition for the A1 linear equations 

in (5.8) to have positive solutions for all pr;n(n) (1 :S i :S M) in every fading state n. 

Necessary Condition: Since the equations in (5.8) is equivalent to 

A. pmin(n) = Bn, 

if (5.8) has a solution for each state n, then det A "# 0 so that the inverse of A exists and the 

solution to pmin(n) is as given in (5.10). Furthermore, if pmin(n) > 0 (i.e., \11 :S i :S M, 

Pimin(n) > 0) for any given n> 0, then every component of A-I must be non-negative. 

Define the cofactor matrix 

cofA = [( _1)i+j det Aij], i,j = 1,2"", M, 

where Aij is the (M - 1) x (M - 1) matrix formed by deleting the ith row and the jth 

column of A. Then 
1 

A-I = -- . (cofAf. 
detA 

(C.17) 

Given i < j fixed, since each component of the (j - 1 )th row of Aij is -1, by subtracting 

the (j - 1 )th row from all other rows of Aij , it is easily seen that the expansion by the ith 

column of Aij is 

detAij = (_1)i+ j II (akk + 1). 
k#i,j 



Thus 

200 

(-I)i+j detAij = II (akk + 1) > 0, 
ki-i,j 

(C.18) 

since VI :S k :S M, akk > O. It can be similarly shown that (C.18) holds for i > j as well. 

Therefore, if every component of A-I must be non-negative, from (C.17) we know that 

detA> o. 
Sufficient Condition: Denote the cofactor matrix of A as cofA c 
1,2,···, M, then as shown above, 

Cij = (_I)i+j detAij > 0, Vi =I- j. 

Since VI :S k :S M, akk > 0, and the expansion by the kth column of A is 

if det A > 0, then 

M 

detA = akk· Ckk - L Cik, 

i=I,if-k 

1 ( M) Ckk = -. det A + L Cik 
akk i=l,ii-k 

> 0, VI :S k :S M. 

Therefore, combining (C.19) and (C.20) we get 

Cij > 0, Vl:S i,j :S M. 

(C.19) 

(C.20) 

By (C.17) it is clear that every component of A-I must be positive. Consequently, from 

the expression for pmin(n) in (5.10) we conclude that pmin(n) > 0 in every fading state n 

(n > 0). 0 

C.3 Proof of Lemnla 5.1 

S· C k > 0 ,; > 0 ~i+k-l (i+k-l) = 2i+k-l we have Ince lor , "_ ,L..n=O n ' 
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For ° < p < 1/2, 

00 L 2i+k-lpi(1 _ p)k 
i=k+r+l 

= (2p)k+r+1 2k - 1(1 _ )k 
1- 2p P 

(2py+1 k 
= 2(1 _ 2p) [4p(1 - p)J . 

Because 4p(1 - p) < [p + (1 - p)j2 = 1, 

lim [4p(1 - p)Jk = 0. 
k-+oo 

Therefore, for fixed integer r, 

lim L . p'(l - p)k = 0. 00 (i + k - 1) . 
k-+oo . z ,=k+r+l 

For a given positive integer k, we know that [80J 

Thus, from (C.21) and (C.22) we obtain 

k+r (i + k - 1). . 
lim L . p'(l - p)k 

k-+oo i=O Z 

C.4 Proof of Lemma 5.2 

Since for n = 1,2", " 

we have 

if x> 0, 

if x = 0, 

100 Pihd m - . 
--d'Yi = --niB, z = 1,2, 

o 'Yi m - 1 

(C.21) 

(C.22) 

(C.23) 



202 

where Pibd is given in (5.19). Thus, 

(C.24) 

(C.25) 

i = 1,2. (C.26) 

Substituting (C.26) into (5.21) and (5.22) and using (C.23), we have 

When nIB < n2B, applying Lemma 5.1 to (C.27) and (C.28), we have 

lim Da(m) = nIB, 
m-too 

Combining these limiting expressions with (C.24) and (C.25) we obtain 

lim Dc(m) = 0, 
m-too 
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lim Dd(m) = O. 
m---->oo 

C.5 Proof of Lemma 5.3 

To prove the convexity of the region O(P, R), we need to show that if two usage probability 

vectors Pron and Pron' are achievable, then '10 ::; A ::; 1, APron + (1 - A)PrOn' is also 

achievable. 

Let P be the total average transmit power. For each fading state n, let wi(n) and Pi(n) 

be the probability and transmit power that the broadcast channel transmits the information 

of User i (1 ::; i ::; M) which results in the usage probability vector Pron , and let wUn) 

and P:(n) be the probability and transmit power for User i (1 ::; i ::; M) corresponding to 

the usage probability vector Pron'. That is, in each fading state n, 'Lf!l wi(n) = 1 and 

'Lf!l w~(n) = 1. Moreover, 

En [~Wi(n)Pi(n)] ::; P, 

En [~w:(n)pf(n)] ::; P. 

We construct a third transmission strategy in each fading state n by transmitting the 

information of User i (1 ::; i ::; M) with probability wi(n) and transmit power Pi(n) in the 

first A fraction of time and with probability wUn) and transmit power Pf(n) in the last 

1- A fraction of time. Therefore, in each fading state n, 'Lf!l [Awi(n) + (1 - A)w:(n)] = 1. 

Under the new strategy, the average usage probability Pr(,:n" for User i (1 ::; i ::; ]'11) is: 

Prr" = En [Awi(n) + (1 - A)w:(n)] 

APrr + (1 - A)Prr', 
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and the total average transmit power satisfies 

En {t, [>'wi(n)P;(n) + (1 - >.)wHn)P!(n)] } 

AEn [t, Wi(n)Pi(n)] + (1 - A)En [t, w~(n)p:(n)] 
< P. 

Thus, va ~ A ~ 1, APron + (1 - A)Pronl is achievable. 0 

C.6 Proof of Theorem 5.3 

In the following, VI ~ mo ~ N, VI ~ j ~ mo, for simplicity we denote Aj(n), vj(n), zj(n), 

and uj(n) as Aj, Vj, Zj, and Uj, respectively. 

For mo = 1,2,···, N, Vn E Omo, let u* ~ lui, u2,···, u~ol, u ~ [Ul, U2, ... , umol. Since 

u * satisfies 

N mo 
P(s*) + L L [T*Vj + (1 - T*)Vj-lJ Pr(Lj(mo, s*)) 

mo=l i=l 
P, 

Vu =1= u*, by denoting A(mo) ~ {n : n E Omo' }. > zI}, we have 

(C.29) 

We now show from (5.58)-(5.61) that Vn E Omo' 

Ai Ai-l - < --, i = 2,3,···,mo. (C.30) 
Vi Vi-l 
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S· . ~ >'2->'] C • 2 (C 30)' t A . h h . k (C 30) Ince ZI > Z2, l.e., VI > V2-VI ' lor z =, . IS rue. ssumlng t at w en z =, . 

is true, or equivalently, :k-~k-l < ~, then because Zk+l < Zk, we have 
k- k-l Vk 

That is, 

Thus, when i = k + 1, (C.30) is also true. So (C.30) is true for all i 

Continuing the derivation in (C.29), we have: 

2,3"" ,mo. 

a) Vn E A(mo), since }. > Z1 = ~, from (C.30) we know that Vi = 1,2"", mo, s1. > ~, 

i.e., Vi > >'is*. Therefore, the first term in (C.29) will be: 

N mo 

> L 1 L >'is*UidF(n) 
mo=1 nEA(mo) i=l 

N mo 

s* L 1 L >'iUidF(n). 
mo=1 nEA(mo) i=1 

b) Vn E Lj(mo, s*), j = 1,2"", m, since Zj > }. > Zj+!, we have 

For i =I- j, 1 :S i :S mo, denoting 

it is easy to verify that Xi > Xi+1 by using (C.30). Since Xj-l = Zj, Xj+1 

1,2"" ,j - 1, Vk = j + 1,j + 2"", mo, we have 

Therefore, Vi =I- j, 1 :S i :S mo, 

1 
Xi> - > Xk· 

s* 

(C.31) 
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In (C.29), the second term will be: 

c) Vn E Lj(mo, s*), j = 1,2" .. ,rna, since sl. = Zj = Xj-l, we have 

Vj-l = Vj + (Aj-l - Aj )s*. 

Because Vi = 1,2, ... ,j - 2, Vk = j + 1, j + 2, ... ,m, 

Vi i= j - 1, j and 1 ::; i ::; rna, we have 

1 
Xi> - > Xk, 

s* 

Therefore, in (C.29), the third term will be: 

(C.32) 
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(C.33) 

Therefore, substituting (C.31), (C.32) and (C.33) into (C.29), we have 

Thus, if 

then 

which means that u does not satisfy the total power constraint. Therefore, Vu i= u*, 
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Appendix D Proofs in Chapter 6 

D.1 Proof of Lemma 6.1 

In the following we prove that the set Qc defined in (6.9) is convex. For a given rate vector 

R and a power allocation policy p(i) (Vi = 1,2), let w(i)(R, h) denote the probability that 

the M users transmit information at rate vector R in fading state h, Vh E llall' and let 

p(i) (R, h) denote the transmit power vector of the M users that can support rate vector 

R iL state h. Then the average common usage probability Pron(i)(R) for power allocation 

policy p(i) is: 

and the average transmit power vector p(i) (R) of the M users is: 

Therefore, Pron(i)(R) E Vc (P(i)(R),R), Vi = 1,2. That is, (Pron(i)(R),p(i)(R)) E Qc, 

Vi = 1,2. 

Now we construct a third power allocation policy p(3) as follows. In each fading state 

hE llall' VO < a < 1, let the !vI users transmit information at rate vector R in a fraction a 

of the time with probability w(l)(R. h) and transmit power p(1) (R, h), and in the remaining 

fraction 1 - a of time with probability w(2)(R, h) and transmit power P(2)(R, h). Then 

obviously the average common usage probability Pron(3)(R) for power allocation policy p(3) 

is: 

Pron(3)(R) Eh [aw(l)(R,h) + (1- a)w(2)(R;h)] 

aPron(l)(R) + (1 _ a)Pron(2) (R), 

and the average transmit power vector P(3)(R) of the M users for power allocation policy 
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Eh [aw(1)(R,h)P(l)(R,h) + (1- a)w(2)(R,h)P(2)(R,h)] 

ap(1)(R) + (1 - a)P(2)(R). 

Therefore, p ron(3)(R) E OC (P(3)(R), R), i.e., (Pron(3) (R), P(3)(R)) E Qc, which means 

that the set Qc is convex. 

D.2 Proof of Lemma 6.2 

Here we prove that both the usage probability region Ch(P*, R) given in Definition 6.8 and 

the set QJ defined in (6.44) are convex. 

Since independent outage declaration for each user is allowed, for a given rate vector R 

and a power allocation policy p(j) (Vj = 1,2), let w(j)(R, h, Sk) denote the probability that 

only all the users in subset Sk (1 ~ k ~ 2M - 1) transmit information with rate vector RSk 

in fading state h, Vh E Hall, and let P(j)(R, h, Sk) denote the transmit power vector of the 

AI users when only users in subset Sk transmit information. Then obviously, for j = 1,2, 

PY)(R, h, Sd = 0, Vi rf. Sk. From (6.41), we know that the average usage probability 

p<n(j)(R) of each user i (1 ~ i ~ Ai) for power allocation policy p(j) (j = 1,2) is 

and from (6.42), it is clear that the average transmit power vector P(j)(R) of the M users 

for power allocation policy p(j) (j = 1,2) is: 

Pron(j)(R) E OJ (P(j)(R), R) , j = 1,2. 

That is, (Pron(j) (R), p(j) (R)) E QJ, j = 1,2. 
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Now we construct a third power allocation policy p(3) as follows. In each fading state 

hE 1iall' va < a < 1, let all the users in subset Sk (VI::; k ::; 2M -1) transmit information 

with probability w(1)(R, h, Sk) in a fraction a of the time and let the corresponding transmit 

power vector of the M users be P(1)(R, h, Sk). In the remaining fraction 1 - a of time 

let all the users in subset Sk (VI ::; k ::; 2M - 1) transmit information with probability 

w(2)(R, h, Sk) in a fraction a of the time and let the corresponding transmit power vector 

of the M users be P(2)(R, h, Sk). Then obviously the average usage probability Pr~n(3\R) 

of each user i (1 ::; i ::; M) for power allocation policy P3 is 

% [a CE' w(1I(R, h, Sk)l[i E Skl) 

+ (1- a) CE' w C21 (R,h, S.)l[i E Sd) 1 
aPr~n(l)(R) + (1 - a)Pr~n(2)(R), VI ::; i ::; M, 

and the average transmit power vector P(3)(R) of the M users for power allocation policy 

p(3) is: 

[ (

2M -1 ) 
Eb a (; w(1)(R, h, Sk)p(1)(R, h, Sk) 

+ (1- a) CE' W C21 (R,h,Sk)pC2)(R,h,Sk)) 1 
ap(1)(R) + (1 - a)P(2)(R). 

Therefore, Pron(3)(R) E OJ (P(3)(R),R), i.e., (Pron(3)(R),P(3)(R)) E QJ, which means 

that the set QJ is convex. 

Now if both power allocation policy p(l) and p(2) satisfy a given average power con­

straint vector P*, i.e., pU) ::; P*, j = 1,2, then PronU)(R) E OJ (P*,R). For power 

allocation policy p(3), since 

P(3)(R) = ap(1)(R) + (1 - a)p(2)(R) 

< aP* + (1 - a)P* 

P* , (D.l) 
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it is obvious that Pron(3)(R) E Ch(P*, R), which means that the set Ch(P*, R) is convex. 

D.3 Proof of Lemma 6.3 

In an M-user system, for a given power price vector A and channel usage reward vector IL, 

{ 

2M_l 

W IL,A (R, h, Sk) } k=l in (6.64) is determined once the threshold power s* in the Indepen-

dent Outage Transmission Policy is fixed to be 1. From (6.64) we know that the average 

usage probability of each user is 

Pr~,A(R) 

1 ::; i :S M. (D.2) 

Therefore, for fixed power price vector A and threshold power s* = 1, the average usage 

probability Pran ,(R) of each user i (1 ::; i ::; M) varies with the channel usage reward t,IL,A 

vector IL. We need to show that if J-li increases while J-lj remains unchanged for all j =I- i, 

then Pron ,(R) will increase or remain unchanged, and Pron A (R) (Vj =I- i) will decrease 
t,IL,A J,IL, 

or remain unchanged. In the following for simplicity we give the proof for a two-user system. 

The M-user case can be similarly proved. 

In a two-user system, let the power price vector of the two users be A = (AI, A2), and 

let the channel usage reward vector be IL = (J-ll, J-l2). For a given rate vector R = (Rl' R2) 

and in each fading state h = (h l ,h2), let wj.L,A(R,h,S;) (i = 1,2) denote the probability 

that only User i is transmitting information, and let W j.L,A (R, h, 53) denote the probability 

that both users are transmitting through the channel. Therefore, the transmission (usage) 

probability Pron ,(R, h) of each user i (i = 1,2) is: t,j.L,A 

Note that according to the Independent Outage Transmission Policy in Section 6.5.3, at 

most one subset of the two users is chosen for transmission in each fading state h, i.e., at 

most one probability in {w IL,A (R, h, 5j) } ;=1 will be one and the other two will be zero. 

For a given state h, let PA (R, h, 5i) (i = 1,2) denote the required weighted power for User 

i when the channel is used by User i alone, and let PA (R, h, 53) denote the required total 
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weighted power of the two users when both users are transmitting information. That is, 

and if ~ > ~ then 
h1 h2' 

Since PA (R, h, 53) > PA (R, h, 51) + PA (R, h, 52), there are four possible cases: 

Case (1): PA (R, h, 52) > PA (R, h, 51) and P clPh S ) > P cl?h S ) > P l~Ws ), A ,,1 A ,,2 A ,,3 

Case (2): PA (R, h, 52) < PA (R, h, 51) and P clCh S ) > P cli\ S ) > P l~l?s ), A ,,2 A ,,1 A ,,3 

Case (3): PA (R, h, 52) > PA (R, h, 5d and P
A 

clth,s2) > P
A 

clth,SI)' and P
A 

C1i~h,S2) > 
fLl+fL2 

PA (R,h,S3) , 

Case (4): PA (R, h, 52) < PA (R, h, 51) and P
A 

C1i~h,S2) < P
A 

clth,SI) ' and P
A 

c1th,Sl) > 
fLl+fL2 

PA (R,h,S3)' 

These four cases are shown in Figures D.1 and Figures D.2, where PA (R, h, 5;) (i = 1,2,3) 

is represented by Pi for simplicity. 

In Case (1), for a given fading state h, if the subset 52 is chosen for transmission, i.e., 

{ 

0, if i = 1,3 
wj.l.A(R,h,Si) = .. 

1, If'/, = 2, 
(D.4) 

then by the Independr fbt Outage Transmission Policy, it must be true that in Figure D.1, 

the slope of the line A1A2 (we will refer to it as t12) is larger than }. = 1, and the slope of the 

line A2A3 (we will refer to it as t23) is less than 81. = 1. Therefore, if J-l2 increases while J-l1 

remains unchanged, it will still be true that t12 > 1 and t23 < 1, since t12 will increase and 

t23 will remain unchanged. Consequently, subset 52 will still be chosen for transmission, 
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Reward 

J.lI + J.l2 - - - - - - - - - - - - - - - - - - - - - - - - - - -.---,--------

:A3 
J.l2 

Power Pi (R, A, h) 

P2 

Case (1) 

Reward 

J.lI + J.l2 ---------------------------:.c--~-----

:A3 
J.lI 

Power Pi (R, A, h) 

PI 
Case (2) 

Figure D.1: Four possible cases of the two-user system: Case (1) and (2). 

i.e., W".,A(R,h,Si) (i = 1,2,3) will be the same as in (D.4). Thus, Pran ,(R,h) and 
r' 1,J.L,,,,, 

Pran ,(R, h) in (D.3) will both remaiu unchanged. 2,J.L,,,,, 
Similarly, if the subset S3 is chosen for transmission, i.e., 

{ 

0, if i = 1,2 
W J.L,A (R, h, Si) = . ._ 

1, If z - 3, 
(D.5) 

then it must be true that t2:~ > 1. Note that the slope of the line on the right side of point 

A3 is always zero. Therefore, if /12 increases while /11 remains unchanged, it will still be 

true that t23 > 1, since t23 will remain unchanged. Consequently, subset S3 will still be 

chosen for transmission, i.e., WJ.L,A (R, h, Si) (i = 1,2,3) will be the same as in (D.5). Thus, 

Pran ,(R, h) and Pr
2
an A (R, h) in (D.3) will both remain unchanged. 1,J.L,,,,, ,J.L, 
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Reward 

JLl + JL2 - - - - -- - - - - - - - --- - - - - - - - - - -"'--,.,--------

:A3 
, 

Power pieR, -X, h) 
o~--~------------~-------------
o 

Reward 

JLl + JL2 - ------ - ----- - ---- - - ------:;.;--~-----

:A3 

JL2 
Power pieR, -X, h) 

OL--~--------~----------~-

o 

Figure D.2: Four possible cases of the two-user system: Case (3) and (4). 

Now if the subset 51 is chosen for transmission, i.e., 

{ 

0, if i = 2,3 
W JL,A (R, h, 5i) = . . 

1, If'/, = 1, 

then it must be true that the slope of the line OA1 (we will refer to it as t01) is larger 

than }. = 1, and t23 < h2 < 1. This might not be true if JL2 increases and JL1 is fixed, 

since tOl and t23 will remain unchanged and t12 will increase. Once tl2 becomes larger 

than sl. = 1, the sub"et 52 will be chosen for transmission, i.e., W JL,A (R, h, 52) will equal 

one and w JL,A(R,h,5i) will equal zero, i = 1,3. Thus, PrrJL,A(R,h) in (D.3) will either 

remain unchanged or increase, and Pr~n A (R, h) in (D.3) will either remain unchanged or ,JL, 
decrease. The same argument can be applied to the case where, before JL2 increases, none 

of the subsets 51, 52, and 53 is chosen for transmission. 
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Similarly, it is easily verified that in Case (2)-(4), it is also true that if /-l2 increases while 

/-ll is fixed, then for each fading state h, Pre; ,(R, h) will increase or remain unchanged, ,J.L,A 
and Pr~JL,'x (R, h) will decrease or remain unchanged. Therefore, the resulting average 

usage probability Pre; ,(R) will increase or remain unchanged, and the average usage ,J.L,A 

probability Pr~J.L,'x (R) will decrease or remain unchanged. 

D.4 The HT Algorithm 

Given an average power constraint vector P* and rate vector R, the HT Algorithm de­

scribed below provides the optimal power allocation parameter pair ('x*,£*) that achieves 

the infimum in (6.75). Note that in this algorithm, the required average power vector 

P(R,'x, £) of the M users for supporting rate vector R without any outage is given in 

(6.74). 

Initialization: For the M users in set G = {1, 2,··· . ,M}, start with an arbi­

trary power price vector 'x(1) E R:Y. Set n = 1. 

Step n: Increase the power price of the user i with the largest normalized (nor-

1· db· . . p-*) Fi(R,,X,{G}) rna Ize y Its gIven average power constramt i average power p' . 
until its normalized average power equals that of another user, keeping the 

power prices of other users fixed. Then increase the power prices of both users 

by the same factor until the normalized average power of one of them equals 

that of a third user. Repeat the process and consider two cases: 

(1) The process continues until there are no more users left. In this case, let 

the final value of the power price vector be 'x(n + 1) and go to Step n + 1. 

(2) The process terminates when the powers of a subset U of users whose 

prices are being increased do not meet the power of any of the ot.her users, 

even when the prices of that subset are increased to infillity. In this case, 

perfect babllcing of normalized average powers between the two subsets is 

impossible, even when absolute priority is given to the users in subset U. 

Partition the users into U and L, the subset of remaining users. The users 

in U from this step on will always be given absolute priority over users in 

L. The power prices of each user i in L will be fixed at Ai(n) and will 
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not be further adjusted in the algorithm. The algorithm is now recursively 

applied to users in U as if users in L did not exist. The current power 

prices of users in U will be used as initialization. 0 

After a finite number of iterations of this algorithm, the users will be partitioned into 

subsets L 1 , L2,···, and LI, where users in Li are given absolute priority over users in L j for 

i > j and users in LI are given the highest priority, and such that no further partitioning 

of LI will take place. It is shown in [3] that the optimal absolute priority nesting £* that 

solves the optimization problem (6.75) is 

(D.6) 

where VI ::; j ::; I, 

u 
I-j+lSoiSoI 

Moreover, assuming that there exists a positive lower bound E to the fading gains of all the 

·f'()· h . f h ~1 .. h 1· Pi (R,>'(n),£*) users, 1 /\ n IS t e power pnce vector 0 t e 1~ users at IteratlOn n, t en 1m 
n-HXl Pt 

exists for each user i, 1 ::; i ::; M, and the infimum in (6.75) is: 

I
. .Pi(R, >.(n), £*) 

nlax 1m 
l:;iSoM 11-+00 Pt 

1
. Pi(R, >.(n), £*) {Vi E G1 , 
un , 

n-+oo Pt Vi E G, if £,* = {G}. 

if £* -# {G}, 
(D.7) 

D.5 Proof of Lemma 6.4 

Given two average common outage probabilities Pr(1) and Pr(2): we wish to prove that if 

Pr(l) < Pr(2), then Inf(Pr(l)) > Inf(Pr(2)). 

When the common outage probability Pr in (6.76) equals Pr(1) , denote the power 

allocation parameter pair that achieves the infimum in (6.76) as (>.(1), £,(1)), and denote 

the corresponding average transmit power vector of the M users as P(Pr(1), R, >.(1), £,(1)). 

Then P(Pr(1),R,>.(1),£,(1)) E APVout (Pr(1),R). Since Pr(1) < Pr(2), by definition of 

APVout (Pr(2) , R) given in (6.25) with Pr* replaced by Pr(2), it is clear that P(Pr(1), R, 



217 

.x(1), £(1») E APVout (Pr(2),R). Moreover, since obviously P(Pr(1),R,.x(1),£(1») is not 

on the boundary surface of region APVout (Pr(2) , R), there must exist a boundary average 

power vector P (Pr(2) , R, .x * , £*) of APVout (Pr(2) , R) that satisfies: 

Therefore, 

p.( Pr(2) R .x* C) 
max t, '" 

1::;i::;M Pt 

< max 
Pi (Pr(1) ,R, .x(1), £(1») 

lSi::;M Pt 
Inf(Pr(1»). 

That is, if Pr(l) < Pr(2), then Inf(Pr(1») > Inf(Pr(2»). 

D.6 Proof of Lemma 6.5 

Given two average outage probability vector Pr(l) and Pr(2), we wish to prove that if 

Pr(1) ~ Pr(2) and Pr(l) =I Pr(2), then Inf (Pr(l») > Inf (Pr(2»). 

When the average outage probability vector Pr in (6.77) equals Pr(l), denote the power 

allocation parameter pair that achieves the infimum in (6.77) as (.x(1),£(1»), and denote 

the corresponding average transmit power vector of the M users as P(Pr(1), R, .x(I), £(1»). 

Then P(Pr(l), R, .x(1), £(1») E APVout (Pr(1), R). Since Pr(l) ~ Pr(2), by definition of 

APVout (Pr(2), R) given in (6.66) with Pr* replaced by Pr(2), it is clear that P(Pr(l), R, 

.x(1), £(1») E APVout (Pr(2>'R). Moreover, since obviously P(Pr(1),R,.x(l),£(1») is not 

on the boundary surface of region APVout (Pr(2), R), there must exist a boundary average 

power vector P(Pr(2), R,.x*, C) of APVout (Pr(2), R) that satisfies: 

Therefore, 

P'(Pr(2) R .x* "*) 
z '" 1-max 

1::;i::;M Pt 
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< max 
Pi (Pr(1) , R, >.(1), £(1)) 

l~i~M Pt 
In] (Pr(1)) . 

D.7 The HT* Algorithm 

Given an average power constraint vector P*, a rate vector R, and a common outage 

probability Pr, the HT* Algorithm provides the optimal power allocation parameter pair 

(>.*,£*) that achieves the infimum in (6.76). The description of this algorithm is the same 

as that for the HT Algorithm given in Appendix D.4, except that the average power vector 

P(R, >., £) in the HT Algorithm is now replaced by P(Pr, R, >., C), which can be calculated 

from (6.32) for £ = {G} and from (6.38) for £ i= {G} as shown in Section 6.4.4. After 

a finite number of iterations of this algorithm, the users will be partitioned into subsets 

L 1, L2,···, and L[, where users in Li are given absolute priority over users in L j for i > j 

and users in L[ are given the highest priority, and such that no further partitioning of L[ 

will take place. We will show that in this case, the optimal absolute priority nesting £* that 

solves the optimization problem (6.76) is still as given in (D.6) and the infimum in (6.76) 

is similar to that of (D. 7). 

For 1 ~ j ~ I-I, let P.-i)iELj he the power prices of the users in L j when L j is created 

and they are the components of vector>' *\Lj ), and let Hj ~ Lj+1 u· .. U L[, which represents 

the subset of users who are given higher priority than users in L j at all fading states. The 

users in L1 U ... U Lj-1 will be given lower priority than users in L j at all fading states. 

Therefore, there is no interference from any user in L1 U ... U L j - 1 to users in Lj. Since 

the set of fading states 1-ltran where the M users transmit information simultaneously is 

determined by users in Hj, let 

'11(Hj) 6 {h(Ho) h '11 } 
TLtran = J: E TLtran , 

where h(Hj) denotes the subvector of h corresponding to users in H j . Then h E 1-ltran if 



219 

and only if h(Hj) E ll t(H
j ) and 

ran' 

Prob{h E ll tran } Prob{h(Hj ) E ll(Hj)} 
tran 

= 1- Pr. 

Since Vh E ll tran , as shown in (6.35), the optimal power allocation for each user i E L j 

is not a function of h(Hj ) but just a function of h(Lj ) and >.*(Lj) (note that h(Lj) denotes 

the subvector of h corresponding to users in Lj), i.e., 

<',<) . exp (2 I: R.) . [exp(2R.L ,{l)) - 1], IT i ~ 1, 

<:", . exp (2 k~' Rk) . [exp (2 t R7rLj (k)) 
J kEHj k=1 

- exp (2 E R7rLj (k») l' V2 :::; i :::; ILjl, 

(D.8) 

where ILj I denotes the number of users in set L j and the permutation 7rLj (-) of the ILj I 
users satisfies: 

A* A* A* 
7rL j (1) 7rL j (2) 7rL ·(ILjl) 
_~_ > > ... > _-,J,--_ 

h7rLj (1) h7rLj (2) - h7rLj (ILj I) , 

the required average power P7rL j
(i) (Pr,R,>.*(Lj),{Lj }) of each user in set Lj is: 

Eh E1-ltran [P7rLj (i),>.*(L j ) (R, h)] 

Eh(Hj)EH.;~,1.~ {Eh(Lj ) [P7rLj (i),>.*(L j )(R,h)]} 

(1 - Pr)· Eh(Lj ) [P
7rLj

(i),>.*(L j ) (R, h(Lj »)] . 

Therefore, regardless of the power allocation policy for users in H j , the required average 

power of each user in Lj will remain fixed once L j is created. Moreover, we see from 

the description of the algorithm that when the partitioning into Hj and Lj occurs, the 

minimum of the normalized average powers in Hj must be greater than the maximum of 

the normalized average powers in Lj. It can also be seen that for each j (1 :::; j :::; I -1), the 

minimum of the normalized average powers in H j (high priority users) must monotonically 

increase after the iteration when Lj is formed. Therefore, at any iteration after L j is created, 



220 

the normalized average power of any user in Hj must be greater than that of any user in 

L1 U ... U L j • In other words, the normalized average power of any user in L j must be 

greater than that of any user in Li for all j > i. Therefore, for the nesting £* given in 

(D.6kit is clear that if 'x(n) is the power price vector of the M users at iteration n, then 
. PdPr,R,'x(n),C) . . 

hm P* eXIsts for each user z E L1 U··· U L[-l. 
n-+oo . 

t 

As for the limiting behavior of the normalized average powers of users in L[ == G1 , 

the final set of users for which no further splitting occurs, it can be shown by using ex­

actly !he same argument as in [3] that they all converge to a common limit. Therefore, 

1
. PdPr, R, 'x(n), C) . . 
1m eXIsts for each user z, 1 ~ i ~ M, and the infimum in (6.76) is 

n-+oo Pt 
similar to that of (D.7), i.e., 

Fi(Pr, R,'x, £) 
inf max 

('x,.c) 15,i5,M Pt 

1
. Fi(Pr, R, 'x(n), C) 

max 1m --'---'-~---'--'-'--":"" 

15,i5,M n-+oo Pt 

1
. Fi(Pr, R, 'x(n), C) {'Vi E G1, 
1m , 

n-+oo Pt 'Vi E G, 

if C "# {G}, 

if C = {G}. 

(D.9) 

(D.lO) 

Thus, C given in (D.6) is the optimal absolute priority nesting that solves the optimization 

problem (6.76). 

D.8 The HT** Algorithm 

Given an average power constraint vector P*, a rate vector R, and an average outage 

probability vector Pr, the HT** Algorithm provides the optimal power allocation parameter 

pair (,x *, C) that achieves the infimum in (6.77). The description of this algorithm is the 

same as that for the HT Algorithm given in Appendix D.4, except that the average power 

vector P(R,'x, £) in the HT Algorithm is now replaced by P(Pr, R,'x, 'c), which can be 

calculated from (6.71) for £ = {G} and from (6.72) for £"# {G} as shown in Section 6.5.4. 

After a finite number of iterations of this algorithm, the users will be partitioned into subsets 

L 1, L2,···, and L[, where users in Li are given absolute priority over users in L j for i > j 

and users in L[ are given the highest priority, and such that no further partitioning of L[ 

will take place. We will show that in this case, the optimal absolute priority nesting C that 

solves the optimization problem (6.77) is still as given in (D.6) and the infimum in (6.77) 
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is similar to that of (D. 7). 

For 1 :S j :S 1- 1, let (XniELj be the power prices of the users in L j when L j is created 

and they are the components of vector .\*(Lj), and let Hj ~ Lj+1U·· ·ULI, which represents 

the subset of users who are given higher priority than users in L j at all fading states. The 

users in L1 U ... U L j - 1 will be given lower priority than users in Lj at all fading states. 

Therefore, there is no interference from any user in L1 U·· ·ULj_1 to users in L j . Vh E llall, 

ILl 
the optimal power allocation for each subset S E {Sd%=~ -1 of the users in L j is given in 

(6.73), i.e., 

h:':l) . exp (2 L Rk) . [exp(2Rp8 (1)) - 1], if i = 1, 
kESj 

p. (") ,.(Lj) (R, h, S) = 
ps 'l ,.1\ h:'~i) . exp (2 L Rk) . [exp (2 t Rp8 (k)) 

kESj k=l 

- exp (2 E Rp8 (k)) l, V2:S i:S ILjl, 

where Sj denotes the subset of users in Hj who are transmitting information in state h, 

and the permutation Ps (-) of the lSI users satisfies: 

A* A* A* 
1"8(1) > 1"8(2) > ... > p8(ISI). 

h p8 (1) - h p8 (2) - - hps(ISI) 

Thus, the required average power Fp8 (i) (Pr, R, .\*(Lj ), {L j }) of each user in set Lj is: 

21L jl_1 

where, as discussed in Section 6.5.4, Vh E llall' {w .(L)' .(Lj ) (R, h, Sk)} is obtained 
J.L J,A k=l 

by applying the Independent Outage Transmission Policy to the ILj \ users instead of to the 

M users with s* = 1. Therefore, the required average power of each u"er in Lj depends on 

the power allocation policy for users in H j . However, the required average power of each 

user in Lj will not increase when the power allocation policy for users in Hj is adjusted 

as described in the algorithm. This is because the transmit powers of users in H j can be 

viewed as the background noise for each user in L j and such noise will not increase when 

the normalized average powers of users in Hj are balanced as much as possible by adjusting 
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the power prices of users in Hj. Moreover, we see from the description of the algorithm 

that when the partitioning into Hj and Lj occurs, the minimum of the normalized average 

powers in Hj must be greater than the maximum of the normalized average powers in L j . 

lt can also be seen that for each j (1 ::; j ::; I - 1), the minimum of the normalized average 

powers in H j (high priority users) must monotonically increase after the iteration when L j 

is formed. Therefore, at any iteration after Lj is created, the normalized average power of 

any user in Hj must be greater than that of any user in Ll u· .. U Lj. That is, the normalized 

average power of any user in L j must be greater than that of any user in Li for all j > i. 

Therefore, it is clear that if A( n) is the power price vector of the !If users at iteration n, 
FdPr, R, A(n), C) . . 

then lim eXIsts for each user 'L E Ll U ... U L[-I. 
n-too Pt 

As for the limiting behavim of the normalized average powers of users in L[ == G1 , 

the final set of users for which no further splitting occurs, it can be shown by using ex­

actly the same argument as in [3] that they all converge to a common limit. Therefore, 

FdPr,R, A(n), C) . f h . . ~f d h . fi . (677)' lim eXIsts or eac user 'L, 1 ::; 'L ::; 1~ ,an t e m mum m . IS 
n-too Pt 
similar to that of (D.7), i.e., 

inf max 
(A,.c) l::;i::;M 

Fi(Pr, R, A, £) 
P* t 

. Fi(Pr, R, A(n), C) 
max hm 

l<i<Mn-too p.* 
- - t 

. Fi(Pr, R. A(n), C) {Vi E G1 , 

hm * ' 
n-too Pi Vi E G, 

if C i- {G}, 

if C = {G}. 

(D.ll) 

(D.12) 

Thus, C given in (D.6) is the optimal absolute priority nesting that solves the optimization 

problem (6.77). 

D.9 Determination of Users with Zero-Outage 

When independent outage declaration is allowed for each user, givea the average power 

constraint vector P* and rate vector R, we now show how to determine those users in 

Algorithm 6.3 who can support their given rates without any outage if the infimum in 

(6.75) is larger than 1. 

Assuming that the infimum in (6.75) is larger than 1, if the optimal (A * , £ *) obtained 
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from the HT algorithm satisfies £* = {G}, then as shown in Appendix D.4, .Pi (R,A*,{G}) 
Pt 

equals the infimum for each user i, 1 :::; i :::; M. Thus, 

Pi (R, A * , { G} ) 
--'----=~...:.......~ > 1, 

Pt VI:::; i:::; M. 

However, if £* i= {G} and £* = {G1,G2 ,···,G[ == G} (12: 2) as given in Appendix D.4, 

then .Pi(R;;*,C*) equals the infimum in (6.75) for each user i E G1 and .Pj(R;'*P) is less 
• j 

than the infimum for each user j f/. G1, where G1 denotes the set of users with the highest 

priority. Therefore, even if the infimum in (6.75) is larger than 1, it is possible that for 

some user j f/. G 1, 

Pj(R, A*, £*) 
p~ :::; l. 

J 

Thus, user j can support his given rate without any outage under his average power con-

straint. 

As shown in Appendix D.4, for £* i= {G}, after a finite number of iterations of the HT 

Algorithm, the AI users will be partitioned into subsets L 1 , L2,···, and L[, where users in 

Li are given absolute priority over users in Lj for i > j and G1 = L[, Gj = U[-j+l~i~JLi' 

V2 :::; j :::; 1. Since power prices (Ak)kEL i (1 :::; i :::; 1 - 1) do not necessarily represent the 

optimal decoding order that minimizes the maximum normalized average power (normalized 

by each user's given average power constraint) 

h(R,A,£) 
max , 
kEf-. P; 

the HT algorithm can be applied to the ILil users instead of to all M users to obtain the 

optimal decoding order for the users in set Li, 1 :::; i :::; 1 - 1 [86]. Once these truly optimal 

power prices are obtained for the users in each set L i , 1 :::; i :::; 1 - 1, it is easy to find 

out all the users that can support their given rates without any outage under their average 

power constraints, since they will have a normalized average power no greater than 1 with 

the truly optimal power prices. 
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D.lO Derivation of Pr(n) in Algorithm 6.3 

In Step n (1) of Algorithm 6.3, given the power allocation parameter pair (>'(n-1), £(n-1)) 

and usage reward vector J.L(n-1), we now show how to obtain the average outage probability 

vector Pr( n) that satisfies (6.84). 

If n = 1 or £(n - 1) = {G}, then the M components of vector Pr(n) are: 

{ 

2M-I 
where Vh E Hall, wJ.L(n-I),>'(n-I)(R, h, Sk)} k=l is determined from the Independent Out-

age Transmission Policy given in Section 6.5.3 once the tke"hold power s* is known. Now 

we choose s* such that (6.84) is satisfied, since Fi(Pr(n), R, >.(n - 1), {G}) (1 ~ i ~ M) is 

a function of W J.L(n-I),>'(n-l) (R, h, Sk) (1 ~ k ~ 2M - 1) and therefore a function of s*, i.e., 

with Pi,>'(n-I)(R, h, Sk) (1 ~ i ~ M) given in (6.59). 

In the case where n > 1 and £(n - 1) i= {G}, since £(n - 1) is a set of nested subsets 

of G = {I, 2,···, M}, let the subsets be denoted as G I , G2,···, GI (I 2: 2), where G I ~ 

G2 ~ ... ~ GI == G, and let UI ~ GI , Uj ~ Gj\Gj-l, V2 ~ j ~ I. The average outage 

probability Pri(n) of each user i (1 ~ i ~ M) in different subsets is given as follows. 

(a) For each user i E G1- 1 , where GI-l = Ul::;j9-1Uj, the power allocation policy 

remains unchanged. Thus, 

Pr;(n) = Pri(n - 1), Vi E GI-I, n> 1. 

(b) For each user i E Uj with j = I, 

(D.13) 
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2lUjl_l 

where Vh E Jiall' {W JL(Uj)(n_l),.\(Uj)(n_l/R, h, Sk) } k=l is determined by applying 

the Independent Outage Transmission Policy in Section 6.5.3 to the IUjl users instead 

of to the M users once the threshold power s* is known. Now we choose s* such that 

Fi(Pr(n), R, .\(n - 1), £(n - 1)) 
m~ =1 
iEUj P/ ' (D.14) 

where Fi(Pr(n), R, .\(n - 1), £(n - 1)) (Vi E Uj) is a function of 

and therefore a function of s* and is given by 

Fi(Pr(n), R, .\(n - 1), £(n - 1)) 

with Pi,(.\(n-l),L:(n-l))(R, h, Sk) (Vi E Uj) given in (6.73). 

D.II Proof of Theorem 6.2 

Here we first prove that the sequencE' {Inf(Pr(n))} (n 2: 1) obtained from Algorithm 6.3 

is monotonically increasing and it will converge to Inf(Pr*) = l. 

Vn 2: 1, we know from Step n (1) that for the given power allocation parameter pair 

(.\(n-1), £(n-1)) and channel usage reward vector J.L(n-1), (6.84) holds when the average 

outage probability vector is Pr(n). Given the average outage probability vector Pr(n), it 

is clear from Step n (2) that (.\(n), £(n)) satisfies 

m~ Fi(Pr(n), R, )..(n) , £(n)) = Inf(Pr(n)) 
l:Si:SM Pt 

. f Fi(Pr(n), R, .\, £) 
= In max 

(.\,L:) l:Si:SM Pt 
< Fi(Pr(n), R, .\(n - 1), £(n - 1)) 

1, 

P* 
~ 

(D.15) 
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where the last equality is due to (6.84). Note that in Step n (2) , given the average 

outage probability vector Pr(n) and the power allocation parameter pair (A(n), .c(n)), 

P(Pr(n), R, A(n), .c(n)) is a boundary average power vector of region APVout(Pr(n), R). 

Therefore, when .c(n) = {G}, components ofP(Pr(n),R,A(n),{G}) are implicit functions 

of a channel usage reward vector p,(n) and a threshold power s* (we will refer to it as 

s*(G, n)) as given in (6.71), with p,* and A in (6.71) replaced by p,(n) and A(n)l. By fixing 

s*(G, n) = 1, p,(n) is chosen such that the resulting average outage probability vector equals 

Pr(n). When .c(n) i {G}, as stated in Appendix D.10, we denote the nested subsets of G 

in .c(n) as GI , G2,"', G[ (I 2 2), where G I ~ G2 ~ ... ~ G[ == G, and define UI = G I , 

Uj = Gj\Gj-l, 2 ~ j ~ I. Then components of subvector p(Uj)(Pr(n), R, A(n), .c(n)) are 

implicit functions of a channel usage reward vector p,(Uj)(n) and a threshold power 8* (we 

will refer to it as s*(Uj, n)) as given in (6.72), with p,*(Uj) and (A, .c) in (6.72) replaced 

by p,(Uj)(n) and (A(n), .c(n))2. By fixing s*(Uj, n) = 1, p,(Uj)(n) is chosen such that the 

resulting average outage probability of each user i E Uj equals Pri. 

Now in Step n + 1 (1), an average outage probability vector Pr(n + 1) is to be chosen 

such that (6.84) holds with n replaced by n + 1, i.e., the required average power vector 

P(Pr(n + 1), R, A(n), .c(n)) satisfies 

max Fi(Pr(n + 1), R, A(n), .c(n)) = l. 
l::;i::;M Pt (D.16) 

That is, for the given rate vector R and the same power allocation parameter pair (A(n), .c(n)) 

and channel usage reward vector p,(n), if .c(n) = {G}, we choose a new threshold power 

s* (G, n + 1) (vector Pr( n + 1) is then determined) for the M users such that (D.16) is satis­

fied. Comparison of (D.15) and (D.16) implies that the threshold power s*(G, n+1) must be 

no less than s*(G, n) such that the M users will transmit in more fading states based on the 

Independent Outage Transmission Policy in Section 6.5.3. That is, s*(G, n+1) 2 s*(G, n) = 

1 and if s*(G, n + 1) > 1, the resulting average outage probability vector Pr(n + 1) must 

satisfy 

Pr(n + 1) tt 0 (P(Pr(n), R, A(n), .c(n)), R) . (D.17) 

lIn (6.71) P.x(R) is used to denote the boundary power vector of region APVout(Pr,R) instead of 
P(Pr, R,.x, {G}). 

2In (6.72) pC~j) (R) is used to denote the boundary power vector of region APVout (Pr(Uj), RCUj ») 
CA,C) 

instead of pCUj) (Pr, R,.x, C) for simplicity. 
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Since C(n) = {G}, we know from the HT** Algorithm in Appendix D.8 that 

fn ~ Inf(Pr(n)) = Pi(Pr(n), ~.*>.(n), C(n)), VI::; i ::; M, 
t 

which implies that P(Pr(n), R, >'(n), C(n)) = fn' P* and (D.17) is equivalent to 

Pr(n + 1) cf. 0 Un' P*, R) . (D.18) 

By denoting the infimum in (6.77) as Info(Pr(n + 1)) when Pt and Pri (1 ::; i ::; M) in 

(6.77) are replaced by fn . Pt and Pri(n + 1), respectively, it is clear from (D.18) that 

Info(Pr(n + 1)) > 1. (D.19) 

Since 

I f (P ( )) _ Inf(Pr(n + 1)) 
nJO rn+l - fn ' (D.20) 

substituting (D.20) into (D.19) we obtain Inf(Pr(n + 1)) > fn, i.e., 

Inf(Pr(n + 1)) > Inf(Pr(n)). 

If s*(G,n + 1) = s*(G,n), then obviously Pr(n + 1) = Pr(n) and Inf(Pr(n + 1)) 

Inf(Pr(n)). Thus, for s*(G,n+ 1) 2: s*(G,n), 

Inf(Pr(n + 1)) 2: Inf(Pr(n)). (D.21) 

If C(n) i= {G}, as stated in Appendix D.lO, suppose C(n) = {GI,G2,···,GJ} (I 2: 2), 

U1 = G1, and Uj = Gj\Gj-1, 2::; j ::; I. Then users in Ui are given absolute priority over 

users in Uj for i < j at all fading states and users in UI are given the lowest priority. That 

is, signals from users in U I are decoded before that of users in G I - 1 = U 1 U ... u U 1-1 in 

every fading state h and are subtracted out from the total received signal. Therefore, there 

will be no interference from users in UI to any user in G I -1 and they can be viewed as 

nonexistent to users in GI-1. For the same power allocation parameter pair (>'(n), C(n)) 

and channel usage reward vector JL(n), since we keep the threshold power for users in 

GI-1 unchanged, i.e., s*(Uj,n + 1) = s*(Uj,n), VI ::; j ::; 1- 1, it must be true that 
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Pr(Uj)(n + 1) = Pr(Uj) (n), VI ::; j ::; 1-1. Now Pr(UI)(n + 1) is determined by choosing a 

new threshold power s* (U[, n + 1) for the users in U[ such that 

Pi(Pr(n + 1), R, ~(n), C(n)) 
~ax P* = 1. lEUI i 

(D.22) 

Since the HT** Algorithm given in Appendix D.8 indicates that 

(D.23) 

where the last inequality is due to (D.15), comparison of (D.22) and (D.23) implies that 

the threshold power s*(U[,n + 1) must be larger than s*(U[,n) such that users in U[ 

will transmit in more fading states based on the Independent Outage Transmission Policy 

applied to the IU[I-user system. Therefore, given s*(U[,n + 1) > s*(U[,n), the resulting 

average outage probability subvector Pr(UI)(n + 1) must satisfy 

That is, 

Pr(n + 1) eJ (h (P(Pr(n), R, ~(n), C(n)), R) , 

and it must be true that Inf(Pr(n + 1)) ~ Inf(Pr(n)), which will be shown below. 

From the HT** Algorithm given in Appendix D.8, we know that (~(n), C(n)) solves the 

problem (6.77) for the given average outage probability vector Pr( n) and the infimum in 

(6.77) is: 

Inf(Pr(n)) = Pi(pr(n),~.*~(n), C(n)), Vi E U
I

. 

1 

The users in UI are given the highest priority, i.e., there is no interference from any user in 

Uf to users in Ul. Thus, 

(D.24) 

where p(UIl (Pr(Ul)(n),R(UIl,~(UIl) denotes the corresponding boundary power vector of 

the lUll-dimensional set APVout (Pr(Ul)(n),R(UIl) for the power price vector ~(UIl. 

Therefore, for any given average outage probability vector Pr( n + 1), so long as Pri (n + 
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1) = Pri(n), Vi E Ul, it is always true that 

Inf(Pr(n + 1)) = 

> 

.Pi (Pr(n + 1), R, A, C) 
inf max 

(A,£) l:Si:SM Pt 
. f .Pi(Pr(UI)(n + 1), R(UI), A(UI)) 
In max _'-_---'-_~'-------.c... 

A (UI) iEUI Pt 
P·(Pr(UIl(n) R(Uil A(uIl) 

inf max t " 

A (UI) iEUI Pt 
Inf(Pr(n)), (D.25) 

where the last equality is due to (D.24). From (D.21) and (D.25) it is clear that {Inf(Pr(n))} 

(n 2: 1) is a monotonically increasing sequence. 

Since each iteration in Algorithm 6.3 can be represented as a map 

Inf(Pr(n)) t-t Inf(Pr(n + 1)), 

any fixed point of T will be the solution Inf(Pr*) satisfying Inf(Pr*) = 1. From (D.15) it 

is clear that Vn 2: 1, Inf(Pr(n)) :::; 1. Therefore, {Inf(Pr(n)} (n 2: 1) is a monotonically 

increasing sequence bounded from above and must converge to a limit. The limit has to be a 

fixed point of T, and hence the solution Inf(Pr*) that satisfies Inf(Pr*) = 1. This implies 

that sequence {Pr(n)} (n 2: 1) converge~ to an average outage probability vector Pr* and 

the sequence {( A( n), C( n))} converges to (A *, C) that solves (6.77) with the average outage 

probability vector equal to Pr*. \Ve now show that vector Pr* is a regular point on the 

boundary surface of region O(P*,R), i.e., C = {G} and (6.85) holds. We prove this by 

contradiction. 

Suppose C =1= {G} and denote the set of users with the lowest priority as UI. Then 

for the given average outage probability vector Pr*, from the HT** Algorithm given in 

Appendix D.8 we know that 

.Pi(Pr*,R,A*,C) (*) 
max * < Inf Pr = 1. 
iEUr Pi 

Let S*(UI) denote the corresponding threshold for the lUll users. Now in the next iteration 

of Algorithm 6.3, while the power allocation policy remains the same for all other users, 
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a larger threshold will be chosen for the lUll users such that the resulting average outage 

probability vector Pr** satisfies 

P·(Pr** R ,X* £*) 
max t ", = 1. 
iEUI Pt 

Therefore, Pr** =f. Pr* and Pr* is not the fixed point to which Algorithm 6.3 converges. 

This contradicts the fact that the sequence {Pr(n)} in Algorithm 6.3 converges to Pr*. 

Thus, it must be true that £* = {G} and, consequently, (6.85) holds according to the HT** 

Algorithm given in Appendix D.8. 0 
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