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Abstract 

One of the most fundamental functions of brains is to process information. Whether we 

are engaged in tasks like reading a book, listening to our favorite music station on radio, 

smelling a flower in bloom or relishing our favorite gourmet cuisine, we invariably employ 

our brains to process the information received through our senses and create a perception 

of the world around us. The physical signals incident on our sensory organs, either in 

the form of photon fluxes, acoustic vibrations, or plumes of chemical concentrations, are 

transduced, represented and processed as electrical signals within our brains. One of the 

essential inquiries in neuroscience is the nature of this representation of information in the 

brain. This is often referred to as the "neural coding" problem which has been and 

continues to be the object of a lot of theoretical and experimental scientific effort. 

In most theoretical approaches that address the problem, nerve cells are characterized 

empirically by collection of their input-output responses. The knowledge of constraints 

imposed on information processing due to biophysics of the underlying biological hardware 

is generally ignored. This thesis reports the outcome of our efforts to combine techniques 

from stochastic processes, information theory and single neuron biophysics to unravel the 

neural coding problem. We believe that a systematic reductionist analysis which takes into 

account the extant noise due to biological processes specific to neuronal processing will 

provide fundamental insights overlooked in earlier approaches. We analytically characterize 

the sources of biological noise associated with different stages in the neuronal information 

pathway, namely the synapse, the dendritic tree and the spike-initiation zone and employ 

information-theoretical measures to compute the ability of these components to transmit 

information in specific signal processing tasks. For analytical tractability, we demonstrate 

our results using abstract and simplified mathematical models. However, our approach can 

be readily applied to realistic and complicated descriptions of single neurons to provide a 

greater understanding of the role of noise in neuronal communication. 



vii 

Contents 

Acknow ledgements 

Abstract 

1 Introduction 

1.1 The neural coding conundrum . 

1.2 Membrane noise sources and neural codes 

1.3 Organization of the thesis . . . . . . . . . 

2 Information-theoretic Analysis of Synaptic Transmission 

2.1 Introduction .......................... . 

2.2 The stochastic nature of synaptic transmission in cortical neurons 

2.3 Channel model of synaptic transmission 

2.4 The signal estimation paradigm 

2.5 The signal detection paradigm 

2.6 Discussion ........... . 

3 Subthreshold Noise Sources in Biological Membranes 

3.1 Introduction ............... . 

3.2 Sources of subthreshold membrane noise 

3.2.1 Thermal noise 

3.2.2 Channel noise. 

3.2.3 Noise due to background synaptic activity 

3.2.4 Other sources of membrane noise. 

3.3 Subthreshold noise in a membrane patch. 

3.3.1 Summary of parameter values used 

3.4 Results.................... 

IV 

vi 

1 

1 

3 

8 

10 

10 

11 

13 

17 

26 

34 

37 

37 

38 

39 

46 

51 

54 

56 

61 

62 



VIU 

3.4.1 Dependence on patch area. . . 

3.4.2 Dependence on channel densities 

3.5 Discussion ................ . 

65 

66 

67 

4 Information-theoretic Analysis of Electrotonic Propagation in Weakly-

Active Dendrites 

4.1 Introduction. . 

4.2 The one-dimensional cable equation 

4.3 Subthreshold noise in linear cables . 

4.4 Electrotonic signal propagation in linear cables 

4.5 The signal estimation paradigm 

4.6 The signal detection paradigm 

4.7 Results.............. 

4.7.1 Subthreshold noise in a weakly-active dendrite 

4.7.2 Signal propagation in a weakly-active dendrite 

4.7.3 Efficacy of signal estimation. 

4.7.4 Efficacy of signal detection . 

4.7.5 Comparing cable theory and information theory 

4.7.6 Dependence on biophysical parameters. 

4.8 Discussion..................... 

5 Analysis of Preliminary Experimental Data 

5.1 Introduction ......... . 

5.2 Proposed plan of experiments 

5.3 Summary of performed experiments 

5.3.1 Preparation and recordings . 

5.3.2 Measurement of instrumental noise 

5.3.3 Measurement of biological noise .. 

6 Subthreshold Membrane Noise due to Channel Fluctuations 

6.1 Introduction ............................. . 

69 

69 

70 

75 

79 

82 

88 

92 

92 

93 

96 

99 

99 

105 

106 

114 

114 

115 

120 

120 

121 

122 

128 

...... 128 



IX 

6.2 Methods ............. . 

6.2.1 Monte-Carlo simulations. 

6.2.2 Linearized approximations. 

6.3 Results................ 

6.3.1 

6.3.2 

6.3.3 

6.3.4 

6.3.5 

6.3.6 

6.3.7 

Magnitude of subthreshold noise 

Power spectral density of subthreshold noise. 

Amplitude distribution of subthreshold noise 

Dependence of noise magnitude on patch area. 

Dependence of noise magnitude on temperature. 

Dependence of noise magnitude on channel densities 

Application to dendritic cables 

6.4 Discussion................ 

130 

133 

135 

138 

138 

142 

142 

142 

146 

149 

150 

150 

7 Variability and Coding Efficiency of Noisy Neural Spike Encoders 156 

7.1 Introduction........ 156 

7.2 Models of spike encoding. 

7.2.1 Integrate-and-fire models 

7.2.2 Stochastic ion channel models. 

7.3 Optimal linear estimation 

7.4 Results ... 

7.5 Discussion. 

8 Conclusions 

9 Appendix 

A The signal estimation problem 

B Estimation with multiple synapses 

C The signal detection problem . . 

D Detection with multiple synapses 

E Stochastic analysis of two-state channels 

F Derivation of current noise spectra . . . 

156 

157 

163 

164 

165 

171 

175 

178 

178 

182 

184 

188 

189 

197 



G 

H 

I 

x 

Linearization of active membranes 

Theoretical analysis of fast multiplicative conductance fluctuations 

Analysis of nonlinear Poisson encoding schemes 

References 

198 

206 

221 

231 



Xl 

List of Figures 

1.1 Biophysical noise sources in a single neuron . . . . . . . . . . . . . . . . .. 5 

2.1 Schematic block diagram of a synapse under the signal estimation and signal 

detection paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16 

2.2 Channel models of synaptic transmission under signal estimation and signal 

detection 18 

2.3 Performance in the signal estimation paradigm 25 

2.4 Effect of redundancy on estimation performance 27 

2.5 Performance in the signal detection paradigm . 32 

2.6 Effect of redundancy on detection performance 33 

3.1 Equivalent thermal noise models for a resistor. . . . . . . . . 41 

3.2 Electrical ladder network model of an infinite 1-D linear cable 44 

3.3 Thermal noise models for an infinite 1-D cable 45 

3.4 Electric circuit of a membrane patch . . . . . . 57 

3.5 Equivalent linearized electric circuit of a membrane patch 58 

3.6 Subthreshold noise in a patch of neuronal membrane . . . 63 

3.7 Dependence of noise magnitide on biophysical parameters 64 

4.1 Channel model of a weakly-active dendrite. . . . . 71 

4.2 Equivalent circuit diagram of a 1-D dendritic cable 72 

4.3 Channel models for the signal estimation and signal detection paradigms. 89 

4.4 Subthreshold membrane noise in a dendritic cable 94 

4.5 Electrotonic signal propagation in an infinite dendritic cable . 97 

4.6 Performance in the signal estimation task . . . . . . . . . . . 100 

4.7 Channel capacity in signal estimation using the water-filling algorithm 101 

4.8 Performance in the signal detection task . . . . . . . . . . . . . . . . . 102 



XII 

4.9 Comparison of classical cable theory and information theory. 

4.10 Dependence of subthreshold noise on biophysical parameters. 

5.1 Outline of a research program to study the influence of neuronal noise on 

information transfer . . . . . . . . . . . . . . . . . 

5.2 3-D reconstruction of a cortical pyramidal neuron. 

5.3 Experimental procedure to measure membrane noise 

5.4 Analysis of measured biological noise . . . . . . . . . 

6.1 Finite state Markov kinetic schemes for voltage-gated ion channels 

104 

107 

116 

119 

124 

125 

134 

6.2 Example of a Monte-Carlo simulation .... 136 

6.3 Steady-state i-v curves for a membrane patch 137 

6.4 Models of a membrane patch containing stochastic voltage-gated ion channels 139 

6.5 Magnitude of subthreshold voltage noise . . . . . . . . 140 

6.6 Power spectral densities of subthreshold voltage noise 143 

6.7 Amplitude distribution of subthreshold voltage noise . 

6.8 Dependence on subthreshold voltage noise on patch area 

6.9 Dependence of subthreshold voltage noise on temperature 

6.10 Dependence of subthreshold voltage noise on channel densities 

7.1 f-I curve of the adapting I&F model ...... . 

7.2 Noisy encoding models of spike timing variability 

7.3 Variability and coding performance of spike encoding models 

7.4 Information rates in signal estimation for spiking models. 

7.5 Is it signal or is it noise? ........ . 

7.6 Coding efficiency as a function of >..j Bm 

9.1 Stochastic fluctuations of a two state binary channel ... 

9.2 Statistical properties of current noise for a binary channel 

9.3 Phenomenological impedance of active voltage-gated conductances 

9.4 Linearized equivalent electrical circuit for the membrane patch 

9.5 Classification of membrane conductances ............ . 

144 

145 

147 

148 

160 

162 

167 

169 

170 

172 

193 

195 

201 

204 

210 



xiii 

9.6 Voltage distribution for passive multiplicative noise 218 

9.7 Potential surface for regenerative conductances . . 219 

9.8 Optimal linear estimation performance for nonlinear encoding schemes 224 



xiv 

List of Tables 

2.1 List of symbols for Chapter 2 . . . . . . . . . . . . . . . . 36 

3.1 Analytical expressions of membrane current noise sources 55 

3.2 Magnitude of subthreshold noise in a membrane patch 65 

4.1 Subthreshold noise magnitude in an infinite cable . 95 

4.2 List of symbols for Chapter 3 and Chapter 4 111 

5.1 Electrode resistance and instrumental noise magnitudes . . . . . . . . . .. 122 

6.1 Comparison of parameters for the Mainen et aZ. (MJHS) and Hodgkin-Huxley 

(HH) kinetic schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 155 



1 

Chapter 1 Introduction 

1.1 The Neural Coding Conundrum 

Understanding the nature and limits of the strategies employed by neural systems to repre­

sent, process and transmit sensory information to higher-level areas which make behavioral 

decisions crucial to the survival of the organism, is fundamental to learning how brains 

work. This is often referred to as the problem of neural coding and is a central issue in 

neuroscience (Rieke et al., 1997; Theunissen & Miller, 1995). 

A vast majority of neurons respond to sensory or synaptic inputs by generating a train of 

stereotypical responses called action potentials or spikes. Deciphering the encoding process 

which transforms continuous, analog signals (photon fluxes, acoustic vibrations, chemical 

concentrations and so on) or outputs from other neurons into discrete, fixed-amplitude spike 

trains is essential to understand neural information processing and computation, since often 

the nature of representation determines the nature of computation possible (Hopfield, 1995; 

Hopfield, 1999). Researchers, however, remain divided on the issue of the neural code used 

by neurons to represent and transmit information. 

On the one hand, it is commonly assumed that the mean firing rate of a neuron, defined 

as its averaged response to stimulus presentations, is the primary variable relating neuronal 

response to sensory experience (Adrian, 1932; Lettvin et al., 1959; Barlow, 1972). The 

average might represent a neuron's output summed over a given temporal interval or a 

mean response computed by multiple repeated presentations of the same signal. This belief 

is supported by the existence of a quantitative causal relationship between the average firing 

rate of single cortical neurons and psychophysical judgments made by animals trained to 

perform specific tasks. It has been demonstrated that an animal's behavior in a visual 

discrimination task can be statistically predicted by counting spikes over a long time interval 

(typically one second or more) in a single neuron in visual cortex (Werner & Mountcastle, 

1963; Barlow et al., 1987; Newsome et al., 1989; Vogels & Orban, 1990; Zohary et al., 
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1990; Britten et at., 1992). The highly variable temporal structure of neural spike trains 

observed in vivo (Softky & Koch, 1993; Holt et at., 1996; Shadlen & Newsome, 1998) further 

strengthens the view that any statistic other than the averaged response is too random to 

convey information. 

On the other hand, recent findings have indicated that spike timing can be precise and 

have demonstrated that the fine structure of spike intervals can potentially convey more 

information than a firing rate code, providing evidence for temporat coding. The precise 

relative temporal relationships between the outputs of different neurons also appears to 

be relevant for coding in certain cases. The literature on such codes is too vast to cite 

comprehensively and thus, the reader is referred to the lucid exposition in (Rieke et at., 

1997) as well as to (Perkel & Bullock, 1968; Lestienne & Strehler, 1987; Abeles, 1990; 

Bialek et at., 1991; Bialek & Rieke, 1992; Eskandar et at., 1992; Richmond & Optican, 

1992; Softky & Koch, 1993; Konig et at., 1996; Bair & Koch, 1996; Stop fer et at., 1997). 

Presently, it is unclear which, if any, is the universal coding strategy used in the brain. In 

fact, it is quite plausible that different neural systems use different neural codes, or perhaps, 

even a combination of several coding strategies, depending on the nature of the behavioral 

task at hand, the level of training of the animal and so on. It is quite clear, nonetheless, 

that the level of temporal precision of spike trains critically determines the range of neural 

codes possible. Neuronal hardware (synapses and a variety of ion channels) is inherently 

unreliable and behaves probabilistically. Thus, the process of encoding is potentially noisy 

and may result in irregular timing of individual action potentials in response to identical 

inputs (Lecar & Nossal, 1971a; Lecar & Nossal, 1971b; Schneidman et at., 1998). The 

representation used by the nervous system depends on precision with which neurons respond 

to their synaptic inputs (Theunissen & Miller, 1995). The variability of neural spike trains 

is, in turn, influenced by the sources of biological noise intrinsic to the biophysics of neuronal 

hardware (Koch, 1997; Koch, 1999). Thus, a quantitative understanding of neuronal noise 

sources and their effect on firing reliability and precision allows a determination of the 

constraints under which neuronal codes must operate (Mainen & Sejnowski, 1995; Nowak 

et at., 1997; van Steveninck et at., 1997; Reich et at., 1997; Bair & Koch, 1996). 
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Moreover, if we assume that biological systems have evolved to perform the tasks of 

information and signal processing optimally (Bialek, 1987), it can be argued that noise 

considerations must fundamentally limit the precision, speed and accuracy of computation 

in neural systems (Koch, 1999). On the other hand, variability in spike timing may represent 

faithful encoding of non-linear or chaotic network dynamics rather than noise in the encoding 

neurons, especially in large networks of neurons (van Vreeswijk & Sompolinsky, 1996; van 

Vreeswijk & Sompolinsky, 1998). The idea of high spike timing reliability is intuitively 

appealing and can provide a substrate for fine temporal coding (Abeles, 1990; Bialek et at., 

1991; Bialek & Rieke, 1992; Theunissen & Miller, 1995). 

Similarly, the widely debated question of whether cortical neurons behave as integrators­

summing over hundreds of synaptic inputs on the time scale of 10-30 milliseconds, or whether 

they act as temporal coincidence detectors-responding to the simultaneous arrival (on a 

sub-millisecond time scale) of a handful of strategic synaptic inputs, can potentially be 

answered by assessing the nature and magnitude of noise present at the level of a single 

neuron (Abeles, 1982; Shadlen & Newsome, 1994; Shadlen & Newsome, 1995; Softky, 1995; 

Konig et al., 1996; Koch, 1997; Shadlen & Newsome, 1998). 

1.2 Membrane Noise Sources and Neural Codes 

A great deal of effort in cellular biophysics and neurophysiology has concentrated on charac­

terizing nerve cells as input-output devices. A host of experimental techniques like voltage 

clamp, current clamp, whole-cell recordings, and so on, have been used to study how neu­

rons transform their synaptic inputs (which are in the form of conductance changes) to their 

outputs (usually in the form of a train of action potentials). It has been firmly established 

by now that neurons are highly sophisticated entities, potentially capable of implementing 

a rich panoply of powerful non-linear computational primitives (Koch, 1999). 

A systematic investigation of the efficacy of neurons as communication devices dates back 

to well over 40 years ago (MacKay & McCulloch, 1952). More recently, tools from statistical 

estimation and information theory have been used by researchers (Rieke et at., 1997) to 

quantify the ability of neurons to transmit information about random inputs through their 
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spike outputs. Based on Wiener's earlier work (Wiener, 1949), Bialek (Bialek et at., 1991; 

Bialek & Rieke, 1992) pioneered the use of the "reconstruction technique" towards this end. 

These techniques have successfully been applied to understand the nature of the neural 

codes in peripheral sensory neurons in various biological neural systems (Rieke et al., 1997). 

Subsequent theoretical investigations into this problem have given rise to better methods of 

assessing the capacity of neural codes (Theunissen & Miller, 1991; Gabbiani, 1996; Strong 

et at., 1998). 

Most of the earlier approaches for assessing the capacity of single neurons have treated 

the neuron as a black-box and characterized it empirically by its input-output function. 

However, it is well-known that neurons receive inputs at their synapses; synaptic inputs 

are integrated in the dendrites and delivered to the spike-initiation zone which generates 

the spike-train output and transmits it via the axon to the neuron's post-synaptic targets. 

The specific nature of information processing in the nervous system is determined by the 

details of this neural hardware. Systematic experimental and theoretical effort over the past 

thirty years has provided new understanding about the manner in which neuronal signals 

are transformed and processed at various stages (modules) in individual neurons (Koch, 

1999). However, the relationship between single neuron biophysics and neural information 

processing has still not been unraveled in a systematic and principled manner. Similar to 

its role in physical systems, noise potentially has a direct bearing on the information and 

computational capacity of biological systems and we believe that a detailed understanding 

of the different neuronal components can provide deeper insight into the role of neurons 

as communication devices. It is therefore important to quantitatively characterize and an­

alyze neuronal noise sources to better understand how computation works in the brain. 

A reductionist approach of applying experimental and theoretical tools to individual neu­

ronal components will reveal aspects of the neural code which cannot be uncovered using 

conventional black-box approaches. 

An essential step towards this goal is a characterization of noise associated with each 

of the above biophysically distinct stages (synapses, dendritic tree, axon and so on; see 

Fig. 1.1). Each stage in neuronal processing introduces a potential source of noise. Noise 
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Synapse 
- release probabi lity 
- variabi lity (vesicle size, recpetor avai lability) 

Dendrites 

- stochastic ion channels 
- background synaptic activity 

- stochastic spiking mechan ism 
- spike propagation 

Figure 1.1: Biophysical Noise Sources in a Single Neuron. 
Illustration of the sources of noise associated with different components of a single neuron. The 
synapse, the site of input to a neuron, itself introduces noise due to the probabilistic nature of 
vesicular release as well as the variability in the quantal amplitude (due to non-uniform vesicle size, 
receptor availability and other factors). The existence of stochastic, voltage-gated, ion channels and 
the incidence of a large number of constantly active synaptic inputs, distributed over the extent of 
the dendritic tree further corrupt the input as it propagates along the dendrite. The spike-generating 
mechanism which converts the integrated synaptic input into a train of action potentials which travel 
down the axon is also inherently noisy. All these sources of noise introduce jitter in the temporal 

structure of the inputs and limit the reliability and the information transmitting capability of a 
neuronal link. 
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at the input stage anses from the probabilistic nature of synaptic release mechanism as 

well as the variability of the amplitude of the postsynaptic response. Studies indicate that 

synaptic transmission in cortical neurons can be highly unreliable and variable (Dobrunz & 

Stevens, 1997; Mainen et at., 1999) and might contribute to the variability of spike timing 

as well (Zador, 1998). There are several sources of noise at the level of the dendritic tree, 

thermal noise, spontaneous stochastic opening and closing of the ligand- and voltage-gated 

membrane channels along the dendritic membrane and "background" pre-synaptic network 

activity, assuming that this "spontaneous" activity is noise (e.g., in anesthetized primary 

visual cortex with no visual input). Ion channels are protein macromolecules subject to 

random changes of conformational state due to thermal agitation. Random transitions 

between conducting and non-conducting states give rise to membrane voltage fluctuations 

(Hille, 1992; DeFelice, 1981). Previous investigations have demonstrated that spontaneous 

channel fluctuations can influence the reliability and precision of spike timing (Clay & 

DeFelice, 1983; DeFelice & Isaac, 1992; Horikawa, 1991; Horikawa, 1993b; Horikawa, 1993a; 

Strassberg & DeFelice, 1993; Fox & Lu, 1994; Chow & White, 1996; Schneidman et at., 

1998; White et at., 1998), thus limiting the efficacy of neuronal communication. Recent 

experimental and computational studies suggest that background synaptic activity may be 

the dominant noise source in vivo (Azouz & Gray, 1999; Destexhe & Pare, 1999). It is still 

unclear which noise source is most critical in determining how information is encoded and 

processed in the central nervous system. 

Our overall research strategy then is to quantify noise sources at the level of individual 

neurons, using both in vitro and in vivo preparations, as well as detailed computer simu­

lations of these at the membrane and cellular level, and to combine this knowledge with 

studies of small neuronal circuit models (on the order of 1000 neurons) to understand how 

noise sources affect both measurable variables, such as spike times, and the transmission of 

information through such networks. This should, ultimately, lead to a better understanding 

of information coding in the nervous system. 

This thesis pursues a reductionist approach by theoretical tools to assess the efficacy of 

individual neuronal components in the information-transfer capability of neurons. Towards 
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this end, we plan to experimentally measure and theoretically characterize and quantify 

the sources of membrane noise associated with these components. The whole-cell patch 

technique in an in vitro preparation of rat neocortex will be used for the experiments. Signal 

detection and signal estimation techniques will be used to analyze the loss of information 

of a signal originating at the synapse and propagating to the soma. The noise sources that 

affect this signal are the probabilistic nature of the synaptic mechanism, the stochastic 

ion channels in the dendrites and the bombardment of random synaptic activity over the 

dendritic surface. Compartmental modeling based on detailed morphology and physiology 

will enable us to combine the theoretical and experimental results for the different noise 

sources and develop a stochastic model for neocortical neurons. This model will be used 

to highlight how the different sources of noise interact with each other to determine the 

information transmission capability of the cell from its inputs to its outputs. 

The strength of our approach lies in the combination of techniques from different sci­

entific fields-single-neuron biophysics (Hille, 1992; Koch, 1999), membrane noise analy­

sis (DeFelice, 1981), cable theory, estimation theory (Poor, 1994) and information theory 

(Cover & Thomas, 1991)-and in their application to the question of neural coding from 

a novel perspective. Ultimately, our goal is to answer questions like, "is the length of 

the apical dendrite of a neocortical pyramidal cell limited by considerations of signal-to­

noise," "what influences the noise level in the dendritic tree of a real neuron endowed with 

voltage-dependent channels," "how accurately can the time course of an synaptic signal be 

reconstructed from the voltage at the spike initiation zone," "what is the channel capacity 

of an unreliable synapse onto a spine" and so on. 

Using this approach, we can address critical questions such as, which stage represents a 

bottle-neck in information transfer, are the different stages matched to each other in order to 

maximize the amount of information transmitted, how does neuronal information processing 

depend on the different biophysical parameters which characterize neuronal hardware and 

so on. Thus, the rewards from such a biophysical approach to studying neural coding are 

multifarious. 
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1.3 Organization of the Thesis 

In Chapter 2, we consider the question of how reliably cortical synapses can convey informa­

tion between neurons. Synapses are indispensable components of neuronal communication, 

yet little work has been done so far to study their role as communication devices. Incorpo­

rating the intrinsic unreliability and variability observed in central synapses into a simple 

mathematical model of synaptic transmission, we apply tools from information theory to 

estimate the performance in two distinct signal processing tasks. Results of this analysis 

have been published in (Manwani & Koch, 1998; Manwani & Koch, 2000). 

In Chapter 3, we consider some sources of subthreshold membrane noise which can 

distort a synaptic signal as it propagates from the input location along the dendrite to 

the spike initiation zone. The noise sources we consider are: thermal noise, channel noise 

due to stochastic transitions of voltage-gated ion channels and noise due to background 

network activity. We derive analytical expressions for the variance and power spectra of the 

voltage noise due to these sources and compare their magnitudes for biophysically plausible 

parameter values. In Chapter 4, we use these results to study the ability of dendritic 

structures to electrotonically propagate information from the synaptic input location to the 

output. Using a combination of tools from linear cable theory and information theory, we 

derive analytical expressions for the performance under the signal estimation and signal 

detection paradigms. The results of these two chapters have appeared in (Manwani et at., 

1998; Manwani & Koch, 1999c; Manwani & Koch, 1999a; Manwani & Koch, 1999b). 

Chapter 5 summarizes the results of preliminary experiments designed to measure sub­

threshold membrane noise in cortical neurons to verify our theoretical analysis. The ex­

periments were performed in Professors Yossef Yarom's and Idan Segev's laboratory at the 

Hebrew University of Jerusalem, as a result of a two-year long collaborative effort between 

Professors Christ of Koch, Idan Segev and Yossef Yarom to understand the role of noise in 

neural information processing. The data were collected by Yossef Yarom and his graduate 

students, and analyzed jointly by Michael London and Elad Schneidman at the Hebrew 

University and Dr. Peter Steinmetz and myself at Caltech. 
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In Chapter 6, the issue of noise due to stochastic transitions of voltage-gated ion chan­

nels is considered in greater detail. We carry out theoretical analysis of channel noise which 

improves on the accuracy of the expressions in Chapter 3. We also compare our analysis 

to numerical simulations of non-linear stochastic differential equations using Monte-Carlo 

methods. Software implementation of the simulations was carried out by Dr. Peter Stein­

metz and the analysis was performed in close collaborations with him. The results of this 

investigation have been published in (Steinmetz et at., 2000a; Manwani et at., 2000a). 

In Chapter 7 we investigate the role of the irregularity of neural firing observed in vivo on 

information processing. We employ the signal estimation paradigm to assess the influence of 

spike timing variability on neural coding. We consider two types of neural spiking models: 

integrate-and-fire models and stochastic ion channel models and estimate their ability to 

encode stimulus modulations as spike train sequences. This work was carried out in close 

collaboration with Dr. Peter Steinmetz. The results have been documented as (Manwani 

et at., 2000b; Steinmetz et at., 2000b). 

Chapter 9 is an appendix containing pedagogical notes, mathematical derivations and 

some unpublished observations which supplement the analytical treatment in the previous 

chapters. 
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Chapter 2 Information-theoretic Analysis of 

Synaptic Transmission 

2.1 Introduction 

Here we study the effect of the unreliable, probabilistic nature of synaptic transmission on 

information transfer in cortical neurons. The synapse is the locus of input to a neuron 

and thus is a critical component of neural processing. Using the known biophysical de­

tails about cortical synapses (e.g., unreliability of vesicle release and variability of response 

amplitude), we derive a simple mathematical model of a cortical synapse. Our model ig­

nores the ubiquitous use-dependent plasticity of cortical synapses. It represents a simplified 

picture of synaptic transmission and can be viewed as a first step in quantifying the ef­

fect of non-ideality of synaptic transmission on information processing. We compute the 

information-theoretical capacity of this synaptic model under two coding paradigms, signal 

estimation and signal detection. 

In the signal estimation paradigm, the information-bearing input is a random continuous 

signal encoded as the mean firing rate of a presynaptic neuron which transmits spikes across 

a noisy synapse to a postsynaptic neuron. Using tools from statistical estimation theory, 

we derive the optimal filter (in the sense of least mean-square-error) which reconstructs the 

continuous input from the postsynaptic voltage. In the signal detection paradigm, the input 

signal is in a binary all-or-none format (the presence or absence of a presynaptic spike). We 

derive the optimal detector (in the sense of minimum probability of error) of presynaptic 

action potentials from the postsynaptic voltage. The signal detection method is similar 

to the Yes/No decision paradigm used in psychophysics. We use the performance of the 

optimal estimator and optimal detector to characterize the synaptic efficacy for these two 

tasks and to derive bounds on the information capacity of cortical synapses. 
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2.2 The Stochastic Nature of Synaptic Transmission in Cor-

tical Neurons 

Our present understanding of synaptic transmission is based on the seminal work of Katz 

and his collaborators (Katz, 1969). Their central findings were that the release of neuro­

transmitter occurs in quanta through spherical, membranous, sacs called vesicles residing 

in the presynaptic terminal. Each vesicle is released independently of the others in a proba­

bilistic manner and the postsynaptic responses to vesicular releases combine linearly. Their 

theory was developed using experiments at the frog neuromuscular junction but the stochas­

tic and quantal nature of synaptic transmission has been found to be generally valid for 

central synapses as well. The probability of vesicle release at a single active zone of the frog 

neuromuscular junction was found to be quite low. However, the neuromuscular junction 

contains a large number of release sites (on the order of 1000) and as a result, the neuro­

muscular synapse is highly reliable. Thus, a presynaptic action potential invariably gives 

rise to a muscular response. 

While central synapses share many principles in common with neuromuscular junctions, 

there are crucial differences between them as well (Redman, 1990; Stevens, 1993). Synaptic 

boutons in central synapses contain only one or a few active release zones as opposed to the 

thousands or more found at the neuromuscular junction. Thus, in response to an action 

potential in the presynaptic terminal, a maximum of one vesicle is released (Korn & Faber, 

1991; Korn & Faber, 1993; Stevens & Wang, 1995). Moreover, in vitro studies in vertebrate 

and invertebrate systems have revealed that the probability of vesicle release (referred to 

as p) is generally low (Korn et at., 1986; Laurent & Sivaramakrishnan, 1992; Bekkers & 

Stevens, 1994; Stevens & Wang, 1994; Bekkers & Stevens, 1995). The probabilistic release 

of vesicles is believed to be the dominant factor responsible for the unreliability of synaptic 

transmission in cortical and hippocampal neurons (Allen & Stevens, 1994). The origin of 

the random nature of release has not been fully understood yet, though it is known that the 

precise three-dimensional spatial relationship between calcium channels in the presynaptic 

membrane and the location of the vesicles determines release dynamics (Stevens et at., 

1994). 
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However, the probability of synaptic release is not constant; it depends on whether or 

not the last presynaptic action potential led to a vesicle release and the exact timing of the 

previous presynaptic spikes. Depending on the sequence of presynaptic action potentials, 

p can either decrease or increase over a variety of time-scales, from tens of milliseconds 

to seconds, minutes and longer. This history-dependent plasticity in the state of synaptic 

efficacy is believed to be one of the substrates of learning and memory in biological neural 

networks (Abbott et aZ., 1997). p can also vary across synapses (Dobrunz & Stevens, 1997; 

Murthy et aZ., 1997) and synaptic (Stratford et aZ., 1996) types impinging onto a single 

neuron. 

The unreliability of synaptic transmission in cortical neurons is further compounded by 

the variability in the amplitude of the postsynaptic response to the successful release of a 

single vesicle (Bekkers et aZ., 1990; Edwards et aZ., 1990; Mason et aZ., 1991). This response 

variability occurs due to factors like variation in vesicle size and therefore in the number 

of neurotransmitter molecules, the number of available postsynaptic receptors and so on. 

The trial-to-trial variability in postsynaptic amplitude can be quite large; in some cases, 

the variance in the size of the EPSP is as large as the mean (Bekkers et aZ., 1990; Larkman 

et aZ., 1991; Mason et az', 1991). A note of caution is in order here: a majority of studies of 

central synapses have been carried out in culture or slice preparations that lack many of the 

neuromodulators present in vivo. This might significantly affect synaptic release properties. 

Only after a careful measurement of synaptic properties in vivo experiments will the true 

picture of synaptic transmission in real brains emerge. 

In summary, central synapses appear to highly unreliable, binary connections. This un­

reliability is several orders of magnitude higher than that observed in engineering systems 

(Koch, 1999). Theoretically, the nervous system can combat the unreliability of its compo­

nents by making use of anatomical redundancy using multiple synapses (Moore & Shannon, 

1956; von Neumann, 1956). However, cortical axons typically make only a few synaptic 

contacts onto other cortical target neurons (Sorra & Harris, 1993). Thus, the reliability of 

synaptic transmission must have a profound influence on the manner in which signals are 
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encoded and transmitted (Abbott et at., 1997; Lisman, 1997; Tsodyks & Markram, 1997; 

Zador, 1998) and the ways in which computation is performed in the brain (Stevens, 1994). 

An important debate that rages on is whether synaptic unreliability is a "bug" or a 

"feature" (Koch, 1999). In other words, do biophysical constraints limit the potential 

reliability of cortical synapses (for instance, the need to pack on the order of one billion 

synapses into one cubic millimeter of cortex might dictate the small size of synapses) or are 

there any computational advantages to this unreliability? If reliable synapses that are as 

small and compact as hippocampal synapses are found experimentally, it would certainly 

give credence to the hypothesis that synaptic unreliability is probably a design feature 

used in the brain. One possible computational advantage to having unreliable synapses is 

for reasons of plasticity. It has been argued that the release probability can be modified 

more easily over a larger dynamic range than the number of release sites, or the size of the 

postsynaptic response (Smetters & Zador, 1996; Zador & Dobrunz, 1997). Thus, synaptic 

unreliability could lead to an increase in the bandwidth of modulation of the postsynaptic 

response. 

It has also been suggested (Burnod & Korn, 1989) that the variability at central synapses 

plays the same role as the "temperature" parameter T in stochastic models of neuronal 

networks (Ackley et ai., 1985). Just as the presence of noise in large artificial neural networks 

prevents them from getting stuck in local minima, synaptic unreliability and variability 

might help brains to learn and generalize better. 

2.3 Channel Model of Synaptic Transmission 

Armed with the above knowledge about the physiology of central synapses, we can math­

ematically abstract a synapse by a model which accounts for probabilistic vesicle release 

and the variability in response amplitude. Using this model as a starting point, we will 

derive the information-theoretic channel equivalents of a cortical synapse under the signal 

estimation and signal detection tasks. These capacities will be used to quantify the efficacy 

of synaptic transmission under the two paradigms. 
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We will assume that the synaptic bouton contains only one release site. Thus, the vesicle 

release process can be modeled as a binary channel (inset of Fig. 2.1). The input to the 

channel is a binary variable which represents the presence or the absence of a presynaptic 

action potential, and its output is a binary variable representing the success or failure of 

release. The spontaneous release associated with cortical synapses is quite low and so we 

shall assume that it is zero here (Zador, 1998). Our analysis, however, does not depend on 

this assumption. Let p denote the probability of release due to a presynaptic spike. The 

unreliability of vesicle release is the dominant source of noise in the release process as p can 

be as low as 0.1 for some hippocampal synapses (Hessler et at., 1993). 

We model the postsynaptic response to the release of a single vesicle by a function h(t) 

which corresponds to the EPSP waveform of a fast, voltage-independent AMPA-like synapse 

modeled as an alpha function (RaIl, 1967), 

h(t) = hpeak _t_ exp (1 __ t_) , 
tpeak tpeak 

where hpeak is the peak EPSP magnitude and tpeak is the corresponding time-to-peak. We 

assume that the postsynaptic responses to a sequence of vesicle releases add linearly. We 

incorporate synaptic variability by multiplying the response h(t) by a random variable q 

drawn from a probability distribution P(q) which can be measured empirically. Thus, q 

models the trial-to-trial variability in the amplitude of the postsynaptic responses observed 

for central neurons. Experimentally observed amplitude distributions are generally skewed 

towards higher amplitudes though the experimental difficulties of measuring very small 

synaptic events probably also contributes to these findings (Bekkers & Stevens, 1996). Here 

we model P(q) by a Gamma distribution, 

(a q)J-l 
P(q) = a (J _ I)! exp( -a q) , 

where J is the order of the distribution. However, it can be replaced by anyone-sided 

probability density 1 for the purpose of subsequent analysis. a and J together determine 

1 Here we assume that q is a non-negative random variable; inhibitory synapses can be analyzed identically 
by reversing the sign of h(t). 
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the spread of the distribution. q denotes the mean and O"q denotes the standard deviation 

of the quantal amplitude q. 

J 
q= -, 

a 

v0 
O"q=-. 

a 

The coefficient-of-variance (denoted by CVq ) is a measure of the amplitude variability and 

is given by 

O"q 
CVq = -=­

q 

Thus, J can be used to modify the variability of q. J = 1 corresponds to an exponential 

distribution which has the highest variability (CVq = 1) and at the other extreme J = 00 

corresponds to a delta function for which there is no uncertainty in q (CVq = 0). 

In addition to these two sources of noise, we also assume that the postsynaptic membrane 

voltage is corrupted by additive, Gaussian noise n(t) which models the effect of other 

membrane noise sources like thermal noise, channel noise, background synaptic noise from 

other synapses and so on (DeFelice, 1981). We denote the power spectral density of n(t) by 

Snn(f). We assume that n(t) is band-limited (over a bandwidth Bn), 

Snn(f) 

otherwise, (2.1) 

where O"~ is the variance of n(t). We define a signal-to-noise ratio SN R for the synapse as 

(2.2) 

We have mathematically modeled a cortical synapse as a binary channel in cascade with 

a random amplitude filter and an additive Gaussian noise source (see Fig. 2.1). We ignore 

history-dependent effects (paired-pulse facilitation, vesicle depletion, calcium buffering and 

so on) on synaptic transmission which endow central synapses with characteristics of so-

phisticated nonlinear filters (Markram & Tsodyks, 1996; Abbott et at., 1997). This implies 

that the synaptic parameters in our model are constants. 
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Figure 2.1: Schematic Block Diagram of a Synapse under Signal Estimation and 
Signal Detection Paradigms. 
A cortical synapse is modeled as a binary channel followed by a filter h(t). The amplitude of the 
filter is a random variable q which has probability density P(q) = a(aq)J-l exp(-aq)/(J - I)!. 
The binary channel (inset, p = Prob [vesicle release], 1 - p = Prob [failure]) models probabilistic 
vesicle release and the random variable q models the variability in the size of the postsynaptic 
response of a single quantum observed in central synapses. The EPSP is approximated by an alpha 

function h( t) = hpeak t/tpeak exp(l- t/tpeak)' n( t) denotes additive postsynaptic voltage noise which 
is assumed to be Gaussian and white (over bandwidth Bn). In signal estimation, the objective is to 

optimally estimate a continuous input m(t) from the postsynaptic membrane voltage Vm(t). This 
estimate is denoted by m(t). The presynaptic spike train s(t) is assumed to be a Poisson process 
with firing rate modulated by the random input m(t). Performance of the optimal linear estimator 
(Wiener filter) is used to quantify performance in the estimation task. In signal detection, the 
objective is to optimally detect the presence of a single presynaptic action potential on the basis 
of Vm(t). Thus, the input X and the decision Yare binary variables. Performance of the optimal 

detector (Matched filter) quantifies performance in signal detection. 



17 

We derive closed-form expressions which provide lower-bounds on the capacity of this 

simple model of synaptic transmission under the two representational paradigms, signal 

detection and signal estimation. In signal estimation, the signal is assumed to be encoded 

in the mean firing rate of the presynaptic neuron and the objective is to estimate the 

continuous input signal from the postsynaptic voltage. In signal detection, the input is 

binary, and the presence or absence of a presynaptic action potential is to be detected from 

the postsynaptic voltage. The efficacy of information transfer in synaptic transmission is 

characterized by deriving optimal strategies under these two paradigms. 

2.4 The Signal Estimation Paradigm 

Let m(t) be a zero-mean random stimulus presented to a presynaptic neuron and s(t) the 

resulting spike train. s(t) is modeled as point-process or as a sequence of delta functions 

where ti denotes the time when the ith spike occurs. We assume that m(t) and s(t) are (real­

valued) jointly weak-sense stationary (WSS) processes with finite variances, (m2 (t)) = O"~ < 

00, (Is(t) - X12) < 00, where X = (s(t)) is the mean firing rate of the presynaptic neuron. 

In these equations, ( . ) denotes an ensemble average over the joint stimulus and spike train 

distribution. The membrane voltage Vm(t) at the postsynaptic site due to the transmission 

of the spike train s(t) across the synapse is 

(2.3) 

where qi is the EPSP amplitude in response to the ith spike and Wi is a binary variable which 

represents vesicle release. Thus, Wi = 0 implies that the ith presynaptic action potential 

did not lead to a vesicle release, whereas, Wi = 1 denotes a successful release. The mean 

voltage (Vm(t)) does not contain any information about the input m(t) and can be ignored. 
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Figure 2.2: Channel Models of Synaptic Transmission under Signal Estimation 
and Signal Detection. 
A: Effective channel model of the synapse for the signal estimation paradigm. The random stimulus 

m(t) is the continuous input to the channel, and m(t) is the best linear estimate of the input based 

on the postsynaptic voltage (Fig. 2.1). The effective reconstruction noise n(t) is the difference 

between the input and the estimate, n(t) = m(t) - m(t). B: Effective channel model of the synapse 
for the signal detection paradigm. X and Yare binary random variables corresponding to the input 
and the decision respectively. The false alarm and the miss probabilities (PF and PM respectively) 
which minimize the detection error Pe are the cross-over error rates of the binary detection channel. 
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Let v(t) refers to a zero-mean process obtained by subtracting the mean voltage from Vm(t), 

(2.4) 

We further assume that the spike train s(t) of the presynaptic neuron is a Poisson process 

with a mean firing rate A(t) which is a function of the stimulus m(t) 

A(t) = (s(t))slm = f(k(t) *m(t)), (2.5) 

where ( . ) slm denotes an ensemble average over the spike train distribution for a fixed value 

of the stimulus m(t). Since the stimulus itself is a stochastic (Gaussian) process, the spike 

train s(t) is called a doubly stochastic Poisson process. Although, in general, the Poisson 

assumption is not strictly valid for neural spike trains, it is fairly common in theoretical 

neuroscience as it allows for derivation of closed-form analytical expressions (Gabbiani, 

1996; Gabbiani & Koch, 1996). 

k(t) is a phenomenological filter which models the transformation of the stimulus mod-

ulations m( t) into the neuron's firing rate and f ( .) is a static, memory less non-linearity 

which incorporates the non-linear aspects of the neuron's input-output transformation, like 

half-wave rectification, saturation and so on. The exact form of k(t) is not important, al-

though, in order to derive closed-form expression later, we will assume that k(t) has the 

form of a simple low-pass filter. 

For simplicity, here we assume that the input-output transformation is linear, f(x) = 

>: + x2 . The power spectrum of the spike train s(t) can be expressed as 

(2.6) 

where>: is the mean firing rate and K(J) is the Fourier transform of the filter k(t). The 

variance of the firing rate (T~ is given by 

(T~ = i: df 1 K(J) 12 Smm(J). (2.7) 

-----------------------------
2We assume that "X is high enough so that the probability of .ACt) < 0 is negligible. 
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We define the "contrast" of the firing rate as c,\ = 0",\/).. The positivity of A(t) imposes a 

restriction on how large the contrast can be. For linear encoding we will require that the 

mean firing rate be at least three times as large as the standard deviation of the firing rate 

fluctuations, ensuring that the probability that A(t) is negative is less than 0.01. This implies 

that c,\ :S 1/3. Refer to Appendix I for the extension of the analysis to other non-linear 

encoding schemes. The presynaptic spike train is gated by a binary process corresponding 

to the stochastic vesicle release mechanism. Thus, the vesicle release is a Poisson process 

with rate pA(t) and v(t) is a filtered shot noise process (equation 2.3). The power spectrum 

of the post-synaptic voltage is denoted by Svv (f) and is given by 

(2.8) 

The cross-spectral density between the post-synaptic membrane voltage and the input is 

denoted by Svrn (f) and is given by 

Svrn(f) = qpSrnrn(f) H(f) K(f). (2.9) 

The objective in signal estimation paradigm is to find the optimal estimator of m(t) 

from the postsynaptic voltage v(t), where optimality is in the sense of least mean-square­

error (MSE). In general, the optimal MSE estimator is non-linear and complicated to treat 

analytically. Instead, we restrict ourselves to the optimal linear estimation. The solution 

of the optimal linear estimation problem is presented in Appendix A. We use the results 

derived therein to obtain the corresponding expressions here with the modification that the 

output process here is the postsynaptic membrane voltage and is denoted by v(t). Using 

equations A9, 2.8 and 2.9, the coding fraction can be expressed as 

(2.10) 
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where 

(2.11) 

Using equation A7, the power spectrum of the reconstruction noise n(t) can be written as 

(2.12) 

Synaptic transmission is ideal when the vesicle release is perfectly reliable, there is no 

variability in the EPSP amplitude and membrane noise at the postsynaptic site is negligible 

(p = 1, CVq = 0, an = 0); the coding fraction corresponding to this ideal case is denoted 

by C, where 

(2.13) 

In general, even for perfect synaptic transmission, C < 1 due to the stochastic Poisson 

nature of the spike train. For the parameter values we consider here (summarized in the 

caption of Fig. 2.3), the second term in equation 2.11 can be neglected. The dominant 

first term in equation 2.11 indicates that signal estimation is limited by shot noise, i. e., the 

inability to estimate the stimulus reliably is primarily due to the error in accurately esti-

mating the firing rate of the neuron. It can be shown that for a fixed firing rate contrast, 

as :x -+ 00, ~ -+ 1. In other words, perfect reconstruction takes place in the limit of infinite 

firing rates. This agrees well with intuition, since the stimulus modulations are linearly 

encoded in the firing rate .:\(t), an accurate estimate of .:\(t) can be deconvolved to recover 

the input. Thus, for the signal estimation task, synaptic unreliability and variability make 

it harder to estimate the firing rate from the postsynaptic voltage. As compared to the 

ideal case, the shot noise for a single synapse increases by a factor 

1 +CV~ 
K,=--~ 

p 
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To illustrate these results, we now apply them to a specific example modified from Gabbiani, 

(1996). Let m(t) be a white, band-limited signal over a bandwidth B m, 

(J"2 
m 

2Bm' 

o otherwise. (2.14) 

If k(t) is modeled as a simple low-pass filter, k(t) = A exp( -tiT), 

Using the above quantities, a closed-form expression for the coding fraction (denoted by 

6p ) can be obtained (Gabbiani, 1996), 

where 

(: 'Y t -1 ( () ) 
<"Jp= ()~ an ~' 

() 21fBmT, 

c~ >: 1fT 
K, tan-1 () . 

(2.15) 

() is the ratio of the signal bandwidth to the filter's bandwidth and 'Y is the effective number 

of spikes available per unit signal bandwidth. As in Gabbiani (1996), one can also derive 

the optimal encoding filter which maximizes the coding fraction for a given stimulus power 

spectrum Smm(j) under the constraint that the variance of the mean firing rate (J"~ is fixed, 

The coding fraction corresponding to the optimal filter above (denoted by ~opt) is given by 

~opt = (2.16) 
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Similarly, the lower bound for the low-pass filter hB can be obtained as 

(2.17) 

In the equation above In refers to the natural logarithm. The lower bound corresponding 

to the optimal encoding filter is given by 

(2.18) 

(2.19) 

Notice that when e « 1, 6p ---+ ~opt and the lower bound on the information rate hB 

for the low-pass filter and the optimal filter converge. Plots of ~ and hB as functions of 

the mean firing rate X and the input bandwidth Bm are shown in Fig. 2.3. It can be 

observed that ~ increases with X and decreases with Bm. This can be understood as follows: 

XI Bm denotes the average number of spikes available in the ideal case to estimate the mean 

firing rate of the spike train (thus the input) over a time period (1 IBm) during which 

the input is relatively stationary. The fewer the number of spikes available, the poorer 

the estimate and lower the coding fraction. On the other hand, hB increases with A and 

increases with Bm for low Bm but saturates at high Bm. This is because the decrease in the 

quality of estimation (~ decreases with Bm) is compensated by an increase in the number 

of independent samples (2Bm) transmitted per second. This can be observed by taking the 

limit X ---+ 0 (equivalently, Bm ---+ 00) in equation 2.18, 

2 - 2-
limhB = Bm ~ = _1_ cAl. 

:\--+0 In 2 2KBm In 2 2/'1, , 

which is independent of Bm. We refer to this condition as the low signal-to-noise regime. 

The information transmitted per spike is given by 

lim I~B =~. 
:\--+0 A 2/'1, In 2 
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Notice that the maximum information per spike depends only on the contrast c>. of the 

firing rate modulations and the factor /'1,. In the case of an ideal synapse, the maximum 

information per spike is around 0.08 bits/spike for c>. = 1/3. For a noisy synapse, the 

maximum information per spike decreases by a factor of /'1,. However, if we assume that 

the signal is encoded by a pair of half-wave rectifying neurons each representing one-half 

(positive/negative) of the input m(t) as in (Gabbiani, 1996; Gabbiani & Koch, 1996), the 

maximum amount of information that can be transmitted by an ideal synapse is approx-

imately equal to 1.13 bits/spike. This corresponds to c>. = v:;rT2 (roughly 1.25). Thus, 

the low information rates we obtain here are a consequence of our assumption of linear 

encoding, which limits the magnitude of the firing rate contrast. Nevertheless, the analysis 

can be readily extended (see Appendix I) to include other encoding schemes (integrate and 

fire models, non-linear Poisson encoding models with sigmoidal, half-wave rectification and 

other nonlinearities, and so on) which yield qualitatively similar results to those obtained 

here. 

The analysis can be generalized to the case of multiple independent synaptic connections 

between two neurons. Let N syn denote the number of parallel synaptic connections between 

two neurons which can occur in the form of N syn independent release sites driven by the 

same presynaptic process at the same postsynaptic location or as multiple synapses made 

at different locations. In either case it is assumed that the vesicle release at a given synapse 

is statistically independent of the release at other synapses. However, this does not imply 

that the EPSP waveforms corresponding to the different synapses are independent. In fact, 

EPSPs are correlated since they are driven by the same presynaptic spike train s(t). The 

postsynaptic membrane voltage can be written as 

N syn 

Vm(t) = L Lq~ wi hl(t - ti) + n(t) , (2.20) 
l=l 

where the superscript [ refers to the [th synaptic connection. As before we define v(t) = 

Vm(t) - (Vm(t)). If the synapses are distributed at different electrotonic locations on the 

postsynaptic neuron, the corresponding EPSP waveforms hl(t) are different. Similarly, if 
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Figure 2.3: Performance in the Signal Estimation Paradigm. 
A: The coding fraction ~ and B: the lower bound on information rate hB as a function of the 
mean firing rate X for different stimulus bandwidths Bm for an ideal synapse (p = 1, CVq = 0). C 
and D show the corresponding ~ and hB for a single unreliable and noisy synapse. We report the 
estimation performance for the optimal filter given by equation 2.16 and equation 2.18. Parameters 
are loosely based on those reported for cortical synapses: T = 20 msec, c>. = 0.3, p = 0.4, CVq = 

0.6, hpeak = 1 m V, tpeak = 0.5 msec, an = 0.1 m V, Bn = 100 Hz. 
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the release properties across the synaptic population are non-uniform (Rosenmund et ai., 

1993; Dobrunz & Stevens, 1997), the random variables (qi, Wi) are governed by different 

distributions. However, for the sake of analytical tractability, we assume that the synapses 

are identical and are at the same electrotonic location. For the parameter values we consider 

here, the effect of the post-synaptic voltage noise n(t) is negligible and it can be shown that 

the shot noise increases from the ideal case by a factor, 

1 1 + CVJ Nsyn - 1 
/'i;N = -- + -"'----

N syn p N syn 
(2.21) 

The details of this derivation are provided in Appendix B. In the limit of a large number 

of synapses (Nsyn ~ (0), /'i;N ~ 1. Thus, the effect of synaptic unreliability and variability 

can be offset by redundancy in the number of synaptic connections between neurons. Plots 

of the coding fraction and the information rate for the signal estimation task as a function 

of the number of parallel synapses are shown in Fig. 2.4. Thus, though a single synapse 

has very low capacity, a small amount of redundancy causes a considerable increase in 

performance. 

2.5 The Signal Detection Paradigm 

We now consider the problem of detecting the presence of a presynaptic action potential from 

measurements of membrane voltage at the postsynaptic site. The problem we consider here 

has two possibilities, the absence or presence of a presynaptic spike within a fixed temporal 

window. In our problem, the corresponding postsynaptic voltage waveform Vm(t), measured 

over a period 0 S t S T, corresponds to either the noise process n(t) (denoted by hypothesis 

Ho) or to a noisy version of the EPSP h(t) gated by stochastic vesicle release W (denoted 

by hypothesis HI)' Let X and Y be binary variables denoting occurrence of a presynaptic 

spike and the decision respectively. Thus, X = 1 if a spike occurred, else X = O. Similarly, 

Y = 1 expresses the decision that a spike occurred. The binary signal detection problem 
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Figure 2.4: Effect of Redundancy on Estimation Performance. 
A: The coding fraction ~ and B: the information rate hB in signal estimation as a function of 

the number of parallel, identical synaptic connections N syn between a presynaptic and a postsynap­

tic neuron. The empty symbols correspond to performance in the presence of the low-pass filter, 

whereas, the solid symbols correspond to the optimal encoding filter. There is little difference in 

estimation performance when k(t) (Fig. 2.1) is chosen to be a low-pass filter and an optimal en­

coding filter matched to the stimulus. The performance saturates at high N syn as it approaches 

the performance of an ideal synapse (p = 1, CVq = 0). The mean firing rate>: is 200 Hz. Other 

parameter values used are summarized in the caption of Fig. 2.3. 



can be formally expressed as 

Ho : Vm(t) 

HI : Vm(t) 
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n(t), 

q W h(t) + n(t), 

Noise 

Signal + Noise 

where q is the random EPSP amplitude and W is a binary variable representing the spike-

conditioned vesicle release process. Thus, the goal is to design an optimal decision rule that 

minimizes the probability of error of detecting the presynaptic spike from the postsynaptic 

membrane voltage. The false alarm (F) and miss probabilities (M) are defined as 

PF = Prob [Y = 1 I X = 0], PM = Prob [Y = 0 I X = 1] . 

The probability of detection error Pe is given by 

Pe = Po PF + (1 - po) PM , (2.22) 

where Po and 1 - Po are prior probabilities of occurrence of Ho and HI respectively. The 

solution of the signal detection problem has been presented in Appendix C. By analogy, 

the membrane voltage Vm(t) here corresponds to the signal s(t). Thus, the decision rule 

which minimizes Pe is given by 

which can be written as 

£(V) ~ 1 

£(V) < 1 

A (V) > £-1 X - 0 

:::} Y=O, 

:::} Y=l 

:::} Y=O. (2.23) 
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Using Bayes' rule, the spike conditional probabilities of the membrane voltage can be ex-

pressed in terms of release conditional probabilities as 

Prob [V I X = 1] 

Pro b [ V I X = 0] 

pProb [V I W = 1] + (1 - p) Prob [V I W = 0] 

Prob [V I W = 0]. 

As before, it is assumed that the spontaneous release probability is zero. The likelihood 

ratio Ax (V) can be expressed as 

Ax(V) = pAw(V) + (1 - p), 

where 

Aw(V) = Prob[VIW = 1]. 
Prob [V I W = 0] 

In terms of Aw , the optimal decision rule in equation 2.23 is given by 

Aw(V) ~ (£0
1 

- 1 + p) 
p 

Aw(V) < (£0
1 

- 1 + p) 
p 

=} Y = 1 

=} y=O. (2.24) 

In the event of a vesicle release, the amplitude of the EPSP is a random variable drawn 

from a probability distribution P(q), which allows us to write Aw(V) as 

A (V) = J d P( ) Prob [V I q; W = 1] 
w q q Prob[VIW=O] , 

(2.25) 

where Prob [ V I q; W = 1] is the probability distribution of the postsynaptic voltage con-

ditioned on the quantal amplitude of a spike-triggered vesicle release. If n(t) is a white 

Gaussian noise process with a sufficiently large bandwidth Bn which satisfies Bntpeak » 1, 

equation 2.25 can be simplified as (Helstrom, 1968), 

Aw(V) = J dqP(q) exp (2qrT yiSNRT - q2 SNRT) , 



30 

where 

The temporal support of h(t) is very small (on the order of a few milliseconds) and so 

SN RT quickly saturates with T. Thus, when the interval length T is greater than a few 

milliseconds (which we shall assume here), the upper limit T in the integrals above can be 

replaced with 00. Thus, 

lim SNRT 
T--too 

lim rT 
T--too 

When q is a one-sided random variable (here q is positive), it can be shown that Aw is 

a monotonic function of r. Thus, the decision rule in equation 2.24 reduces to 

r2:e =} Y=l, 

r < e =} Y=O, (2.26) 

where the threshold e depends on La, p, P(q) and so on. Thus, the optimal decision rule 

involves comparing the correlation, r between Vm(t) and h(t), to a threshold e and deciding 

Y = 1 if r exceeds the threshold and Y = 0 otherwise. The error probabilities (PF and PM) 

can be written as 

PF Prob [r 2: e I X = 0] = Prob [r 2: e I W = 0] , 

PM Prob [r < e I X = 1] , 

p Prob [r < e I W = 1] + (1 - p) Prob [r < e I W = 0]. 

Let P~ (Prob [r 2: e I W = 0]) and P~ (Prob [r < e I W = 1]) denote the corresponding 

errors when the vesicle release is deterministic and no spontaneous release occurs. PF and 
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PM can be expressed in terms of P~ and P~ as 

PM = P~ + (1 - p) (1 - P~ - P~) . (2.27) 

When the postsynaptic noise n(t) is negligible (SN R -t (0), both the conditional errors 

P~ and P~ -t O. However, in the limit of no postsynaptic voltage noise, PM -t (1 - p) 

due to the unreliability of vesicle release. Let P: = (1 - Po)(l - p) denotes the minimum 

possible detection error when SN R -t 00. The probability of error Pe can be written as 

(2.28) 

Since r is a conditional Gaussian random whose distribution depends on the value of the 

release variable W, the conditional means and variances of r can be derived as 

where (·)0 denotes an ensemble average conditioned on W = 0 and (. h,q denotes an 

ensemble average conditioned on W = 1 and amplitude q. Thus, P~ and P~ can be 

parametrically expressed in terms of the threshold 8, 

1 
P~ = "2 [1 - Erf(8) 1 , 

(2.29) 

where Erf(x) is the error function defined as Erf(x) = 2/y'7f fox dt exp(-t2
). 

In general, it is not possible to derive closed-form expressions for P~. Both P~ and P~ 

depend on the choice of the threshold 8; if 8 is large, P~ is low but P~ is high, whereas 

if 8 is small, P~ is low but P~ is high. Thus as 8 is varied, the probability of error Pe 

goes through a minimum. By plotting P e as a function of the threshold, we can graphically 

obtain the optimal value of 8 which minimizes Pe (Fig. 2.5). We can model the detection 

task as a binary information channel with the binary variable X as its input and the decision 
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Figure 2.5: Performance in the Signal Detection Paradigm. 
A: Plot of detection error (1 - PM) vs. false alarm error PF for a single synapse as the threshold 
e, used to detect a presynaptic action potential, is varied from -00 to 00. The curves correspond 
to different values of the signal-to-noise ratio SNR, a measure of the size of the EPSP peak relative 
to the post-synaptic noise magnitude. The dashed diagonal line corresponds to chance performance 
(SNR = 0). Parameters: P = 0.4. See below for a summary of the other parameters. B: Probability 

of error Pe = 0.5PF + 0.5PM (prior probability of a spike Po = 0.5) plotted against e to determine 
the optimal value of the threshold which minimizes Pe. The dashed horizontal line corresponds to 
the minimum possible detection error for the synaptic parameters in the limit SNR -t 00. C: Plot 
of the optimal Pe vs. SNR for different values of the synaptic release probability p. The optimal Pe 

for a given SNR is given by the minimum of the corresponding curve in (B). The curves saturate at 
high SNR to their minimum values Pe' = (1- Po)(l- p). D: Plot of the mutual information J(Xi Y) 
in the detection task as a function of SNR. Parameter values used: q = 1, CVq = 0.6, hpeak = 2 mY, 

tpeak = 1 msec, Bn = 100 Hz. 
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Figure 2.6: Effect of Redundancy on Detection Performance. 

5 

A: Probability of error Pe and B: the mutual information between X and Y I(X; Y) as a function 

of the number of synapses Nsyn for the signal detection task for different values of SNR. Synaptic 

parameters: p = 0.4, other parameters are summarized in the caption of Fig. 2.5. 
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Y as the output. The error probabilities PF and PM denote the cross-over probabilities of 

the binary channel shown in Fig. 2.2B. Performance in the detection task can be quantified 

either by Pe or the mutual information between the binary random variables, X and Y, 

denoted by I(X; Y). The synapse is ideal when Pe = 0 and I(X; Y) = 1 bit, and at chance, 

when Pe = 0.5 and I(X; Y) = 0 bits. I(X; Y) can be computed using the formula for the 

mutual information for a binary channel (Cover & Thomas, 1991), 

(2.30) 

where Py = Po (1 - PF) + (1 - po) PM and H(x) = -x log2(x) - (1 - x) log2(1 - x) is the 

binary entropy function (Cover & Thomas, 1991). 

The analysis can be generalized to the case of Nsyn independent parallel synapses (Ap­

pendix C). Plots of Pe and J(X;Y) versus Nsyn for different values of SNR for the case 

of identical synapses are shown in Fig. 2.6A and Fig. 2.6B respectively. Once again, we 

observe the poor performance of a single synapse and the substantial improvement due to 

anatomical redundancy. The linear increase of J with Nsyn is similar to the result obtained 

for signal estimation. 

2.6 Discussion 

We formulated a simple mathematical model of a cortical synapse which incorporates the 

known unreliable and variable nature of central synapses. By assessing the performance 

of this model in the signal estimation and signal detection tasks, we showed that a single 

synapse (meant to mimic a central synapse in cortex) was relatively ineffective in transmit­

ting information between neurons. However, a small amount of redundancy in the number 

of synaptic connections between neurons was sufficient to make the synaptic transmission 

robust and reliable. These results were valid for both the signal estimation and signal 

detection tasks. 

In order to obtain analytical expressions for measures of synaptic efficacy, we made some 

simplifying assumptions. In our model, the vesicle release probability for the synapse was 
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assumed to be constant. This is a gross oversimplification since it has been shown that the 

release probability can be strongly modulated by the temporal pattern of presynaptic spike 

trains and can vary over a large range (Dobrunz & Stevens, 1999). In fact, cortical synapses 

exhibit history-dependent plasticity over a variety oftime scales (Markram & Tsodyks, 1996; 

Abbott et at., 1997; Dobrunz & Stevens, 1997; Dobrunz et at., 1997). Moreover, though 

we assumed synaptic parameters to be the same at all synapses, there is substantial non­

uniformity in the values of the release probability among synapses impinging on the same 

neuron (Hessler et at., 1993; Rosenmund et at., 1993; Dobrunz & Stevens, 1999). These 

assumptions allowed us to derive closed-form expressions for the amount of information that 

can be transmitted across noisy synapses. It is noteworthy that our conclusions depend on 

the values of signal and synaptic parameters that we have chosen here to demonstrate the 

applicability of our analysis and need not hold for synapses whose properties depart strongly 

from our choice of parameters. However, the generality of the closed-form expressions 

allows an assessment of synaptic efficacy in cases when the parameters can be obtained 

from empirical data as well. 

Our results agree qualitatively with a recent study that investigated the influence of 

synaptic unreliability on information transfer (Zador, 1998), though the information rates 

we obtain here are much smaller in magnitude. This is a consequence of our assumption that 

the encoding relationship between the mean firing rate of the presynaptic neuron and the 

input is linear. This assumption constrains the contrast of the firing rate c,\ (less than 1/3) 

and limits the amount of information that can be transmitted by the spike train over the 

ideal synapse (Fig. 2.3A and Fig. 2.3B). Moreover, our spike encoding model is a doubly 

stochastic Poisson process with a stimulus-dependent mean firing rate as compared to the 

leaky integrate-and-fire model used in (Zador, 1998) to transform the continuous input to a 

spike train. It can be shown that for the same mean firing rate the leaky integrate-and-fire 

model can transmit much more information than a Poisson process since the latter is more 

random than the former. If we normalize the synaptic information rates with respect to 

the corresponding rates for the ideal synapse (using the spike train directly), we obtain the 

same behavior for a host of different encoding models. 
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Table 2.1: List of Symbols for Chapter 2. 

Symbol 

T 

Em 

En 

C;.. 

CVq 

h(t) 

hpeak 

k(t) 

K(f) 

J(X; Y) 

hB 

m(t) 

n(t) 

P(a) 

Pe 

po 

p 

q 

if 

s( t) 

tpeak 

Vm(t) 

Description 

standard deviation of the presynaptic neuron's firing rate 

standard deviation of input signal in signal estimation 

standard deviation of postsynaptic membrane noise 

standard deviation of quantal amplitude 

time constant of encoding filter in signal estimation 

normalized coding fraction in signal estimation 

bandwidth of input signal in signal estimation 

bandwidth of postsynaptic membrane noise 

contrast of the presynaptic neuron's firing rate 

coefficient of variation of quantal amplitude 

shape of the EPSP waveform 

peak of the EPSP waveform 

linear encoding filter in signal estimation 

Fourier transform of k(t) 

mutual information for signal detection 

information rate for signal estimation 

input signal in signal estimation 

number of parallel synapses 

postsynaptic membrane noise 

probability distribution of the quantal amplitude 

probability of error in signal detection 

prior probability of presynaptic spike in signal detection 

probability of vesicle release due to a presynaptic spike 

random variable quantal amplitude 

mean quantal amplitude 

presynaptic spike train 

time at which EPSP reaches its peak 

postsynaptic voltage 
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Chapter 3 Subthreshold Noise Sources in 

Biological Membranes 

3.1 Introduction 

In the following two chapters, we consider the influence of subthreshold membrane noise 

sources on the electrotonic propagation of a synaptic signal. Our analysis is divided into 

two parts. In the first part, described in the present chapter, we characterize three sources 

of subthreshold noise which arise in nerve membranes: thermal noise due to membrane 

resistance (also called Johnson Noise), noise due to stochastic channel openings and closings 

of two voltage-gated membrane channels (viz., K+ and N a + ), and noise due to spontaneous 

random background synaptic activity. We derive analytical expressions for the magnitude 

and power spectral densities of these noise sources and estimate the subthreshold voltage 

noise for an isopotential patch of membrane containing synapses and ion channels. 

In a second step, reported in Chapter 4, we carry out a theoretical analysis of the in­

formation loss of a synaptic signal as it propagates to the soma, due to the presence of 

these noise sources distributed along the dendritic membrane. We model the dendrite as 

a weakly-active linear cable with noise sources distributed all along its length and derive 

expressions for the capacity of this dendritic information channel under the signal detec­

tion and estimation paradigms. Our calculus can be regarded as a model for electrotonic 

propagation of synaptic signals to the soma along a linear, yet weakly-active dendrite. 

For real neurons, propagation is never entirely linear; the presence of voltage-dependent 

membrane conductances in the dendritic tree can dramatically influence dendritic integra­

tion and propagation of information. Depending on their relative densities, the presence of 

different dendritic ion channel species can lead to either non-linear amplification of synaptic 

signals which can combat the loss due to electrotonic attenuation (Bernander et al., 1994; 

Stuart & Sakmann, 1994; Stuart & Sakmann, 1995; Cook & Johnston, 1997; Schwindt & 



38 

Crill, 1995; Magee et at., 1998) or a decrease in dendritic excitability and attenuation of 

synaptic signals (Hoffman et at., 1997; Magee et at., 1998; Stuart & Spruston, 1998). 

The work discussed here is restricted to linear cables (passive or quasi-active (Koch, 

1984); that is, the membrane can contain inductive-like components arising from time­

dependent conductances) and can be regarded as a first order approximation to dendritic 

integration, which is amenable to closed-form analysis. Biophysically accurate scenarios 

which consider the effect of strong active non-linear membrane conductances can only be 

analyzed using numerical simulations which are reported in Chapter 6. 

3.2 Sources of Subthreshold Membrane Noise 

In general, currents flowing through ion-specific membrane proteins (channels) depend non­

linearly on the voltage difference across the membrane (Johnston & Wu, 1995), 

(3.1) 

where i represents the ionic current through the channel and Vrn is the membrane voltage. 

Often the current satisfies Ohm's law (Hille, 1992); i can be expressed as the product of the 

driving potential across the channel Vrn - Ech and the voltage- (or ligand concentration) 

dependent channel conductance 9ch as 

(3.2) 

where Ech (the membrane voltage for which i = 0) is the reversal potential of the channel. 

If i is small enough so that the flow of ions across the membrane does not significantly 

change Vrn , the change in ionic concentrations is negligible (Ech does not change) and 

so the driving potential is almost constant and i ex: 9ch. Thus, for a small conductance 

change, the channel current is approximately independent of Vrn and is roughly proportional 

to the conductance change. Thus, even though neuronal inputs are usually in terms of 

conductance changes, for small inputs, currents can equivalently be regarded as the inputs. 

This argument holds for both ligand-gated and voltage-gated channels. We shall use this 
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assumption throughout this chapter and regard currents, and not conductances, as the input 

variables. 

The neuron receives synaptic signals at numerous locations along its dendritic tree. 

These current inputs are integrated by the tree and they propagate as voltages towards the 

soma and the axon hillock, close to the site where the action potentials are generated. Thus, 

if we restrict ourselves to the study of the information loss due to the dendritic processing 

that precedes spike generation, currents are the input variables and the membrane voltage 

at the spike initiating zone can be considered to be the output variable. 

We first consider some of the current noise sources present in nerve membranes which 

distort the synaptic signal as it propagates along the cable. As excellent background source 

text on noise in neurobiological systems, we recommend the monograph by DeFelice (1981) 

3.2.1 Thermal Noise 

Electrical conductors are sources of thermal noise resulting from random thermal agitation 

of the electrical charges in the conductor. Thermal noise, also known as Johnson noise, 

represents a fundamental lower limit of noise in a system and can be reduced only by 

decreasing the temperature or the bandwidth of the system (Johnson, 1928). Thermal 

noise is also called white noise because its power spectral density is flat for all frequencies 

(except at very high frequencies where quantum effects come into play). Since thermal noise 

results from a large ensemble of independent sources, its amplitude distribution is Gaussian 

as dictated by the Central Limit Theorem (Papoulis, 1991). The power spectral density of 

the voltage fluctuations due to thermal noise (denoted by SYth) in a conductor ofresistance 

R in equilibrium, (no current flowing through the conductor) is given by, 

SYth (f) = 2kT R (units of V2 1Hz), (3.3) 
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where k denotes the Boltzmann constant and T is the absolute temperature ofthe conductor. 

Consequently, the variance of the voltage fluctuations due to thermal noise, a~th' is 

a~th = i: SYth (f) df = 4kT RB (units of V 2
), (3.4) 

where B denotes the bandwidth of the measurement system. l 

Thus, a conductor of resistance R can be replaced by an ideal noiseless resistor R 

in series with a voltage noise source vth(t), which has a power spectral density given by 

SYth (f) (Fig. 3.1A). Equivalently, one can replace the conductor with a noiseless resistor 

R in parallel with a current noise source, Ith(t) with power spectral density denoted by 

SIth(f) (Fig. 3.1B) given by the expression, 

2kT 
SIth(f) = R (units of A2/Hz). (3.5) 

Since we assume the inputs to be currents, we shall use the latter representation. A 

passive one-dimensional cable can be modeled as a distributed network of resistances and 

capacitances as shown in Fig. 3.2. rm and Cm denote the resistance and the capacitance 

across the membrane (transversely) respectively. ri represents the resistance (longitudinal) 

of the intra-cellular cytoplasm. Cm arises due to the capacitance of the thin, insulating, 

phospholipid bilayer membrane which separates the intra-cellular cytoplasm and external 

solution. In general, excitable membrane structures containing active voltage- and time-

dependent conductances cannot be modeled as ladder networks consisting of resistances 

and capacitances alone, even if they behave linearly in a given voltage range. The time-

dependent nature of voltage-gated channel conductances gives rise to phenomenological 

inductances (Sabah & Leibovic, 1969; Mauro et al., 1970; Sabah & Leibovic, 1972; Mauro 

et al., 1972; Koch, 1984). Thus, in general, the small-signal circuit equivalent of an active, 

linearized membrane is an RLC (resistor-inductor-capacitor) circuit consisting ofresistances, 

capacitances and inductances. For an illustration of this linearization procedure, refer to 

Appendix G. 

1 All power spectral densities are assumed to be double-sided, since the power spectra of real signals are 
even functions of frequency. 
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Figure 3.1: Equivalent Thermal Noise Models For a Resistor. 
Thermal noise due to a resistor R in thermal equilibrium at temperature T can be considered 
equivalently as A: a voltage noise source vth with power spectral density 2kT R in series with a 

noiseless resistance R or as B: a current noise source Ith with power spectral density 2kT / R in 

parallel with a noiseless R. 
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However, when the time constants corresponding to the ionic currents are much smaller 

than the passive membrane time constant, the phenomenological inductances are negligible 

and the equivalent circuit reduces to the passive ladder model for cable. This is true for 

the case we consider, the passive membrane time constant is about an order of magnitude 

greater than the slowest time-scale of the noise sources and so the approximation above is 

a reasonable one. rm reflects the effective resistance of the lipid bilayer (very high res is-

tance) and the various voltage-gated, ligand-gated and leak channels embedded in the lipid 

matrix. Here we ignore the external resistance, r e , of the external medium surrounding the 

membrane. All quantities (ri' rm , cm) are expressed in per unit length of the membrane and 

have the dimensions of DI/-lm, D /-lm and F I /-lm respectively. For a linear cable, modeled 

as a cylinder of diameter d, rm = Rm 17r d, Cm = 7r d Cm, ri = 4Rd7r d2 where R m , Cm 

and Ri (specific membrane resistance, specific membrane capacitance and axial resistivity 

respectively) are the usual biophysical parameters of choice. 

The current noise due to rm, has power spectral density, 

2kT 
SIth(f) = - (units of A2/Hz /-lm). 

rm 
(3.6) 

However, rm is not the only source of thermal noise. The resistance ri, representing the 

axial cytoplasmic resistance,z also contributes thermal noise. In general, the power spectral 

density of the voltage noise due to thermal fluctuations in an impedance Z is given by 

SYth(f) = 2kTRe{Z(f)} , (3.7) 

where Re{ Z (f)} is the real part of the impedance as a function of frequency. Thus, the 

voltage variance is given by 

cr~th = I: SYth(f) df (units of V2). (3.8) 
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For an infinite passive cable (Fig. 3.2), the input impedance is given as 

Z(f) (3.9) 

'* Re{Z(f)} (3.10) 

which yields 

(3.11) 

The integral of SVth (f) in the equation above is divergent, and so (]'~th is infinite. This 

can be seen easily by rewriting the expression for SVth as 

(3.12) 

In the limit of large j, SVth(f) "" j-1/2, the indefinite integral of which diverges. This 

divergence is not due to r m , but due to rio The noise due to rm alone is of finite variance since 

the cable introduces a finite bandwidth. The resolution ofthis non-physical phenomenon lies 

in realizing that a pure resistance is a non-physical idealization. The cytoplasm is associated 

with a longitudinal capacitance in addition to its axial resistance, since current flow through 

the cytoplasm does not occur instantaneously. Ionic mobility is much smaller than that of 

electrons and charge accumulation takes place along the cytoplasm as a consequence. This 

can be modeled by the addition of an effective capacitance, Ci (in dotted lines in Fig. 3.2) 

in parallel with rio Now, SVth(f) is given by 

S _ 2kTJr i rm (tan-1(h+tan-1(h) 
Vth(f) - [(1 + eD (1 + e~) P/4 cos 2 ' (3.13) 

where 

and 
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Cj 

r-I~-, r-I~-, r-I~-, r-I~-, · . ~~ft::ft~:ft~: !t . . . 

Figure 3.2: Electrical Ladder Network Model of an Infinite I-D Linear Cable. 
Tj represents the longitudinal (axial) resistance due to the cytoplasm, whereas Tm and Cm denote 

the transverse membrane resistance and capacitance respectively. Ci denotes the (usually negligible) 

axial capacitance (shown using dotted lines) which ensures that the thermal noise has a bounded 
variance. 
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Comparison of power spectral densities of thermal voltage noise in an infinite cable corresponding 

to different assumptions. When the contribution due to the cytoplasmic resistance ri is neglected 

(labeled as rm, cm), SYth(f) represents the current noise due to the trans-membrane resistance rm 
filtered by the Green's function of the infinite cable. SYth(f) '" 1-3/ 2 for large 1. When noise 

due to ri is included (labeled as rm, Cm, ri) and equation 3.12 is used, SYth(f) '" 1-1 / 2 and the 
resulting variance is infinite. When filtering due to cytoplasmic capacitance Ci is taken into account 
(labeled as rm, Cm, ri, Ci) and equation 3.13 is used, SYth(f) '" 1-2 . Since the integral of this power 
spectrum is bounded, the variance remains finite. Parameter values: Rm = 40,000 n/cm2 , Ri = 200 

ncm, T m = 30 msec, Ti = 3 JLsec. 
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Ti is the time constant of the axial RC segment. Ti is usually very low, on the order of 3 J-lsec 

(Rosenfalck, 1969). In this case, for large 1, SVth (J) ,...., 1-2 , thus its integral converges and 

O'~th remains finite. The additional filtering due to the cytoplasmic capacitances imposes 

a finite bandwidth on the system, rendering the variance finite. Since Ti « Tm , its effect 

is significant only at very large frequencies, as is shown in Fig. 3.3. Thus, neglecting the 

noise due to the cytoplasmic resistance is a very reasonable approximation for our frequency 

range of interest (1-1000 Hz). 

3.2.2 Channel Noise 

The membrane conductances we consider here are a consequence of microscopic, stochastic 

ionic channels (Hille, 1992). Since these channels open and close randomly, fluctuations 

in the number of channels constitutes a significant source of noise. In this section, we 

restrict the discussion to voltage-gated channels. However, ligand-gated channels can also 

be analyzed using the techniques discussed here. In Appendix E, we present an analysis of 

the noise due to channel fluctuations for a simple two-state channel model for completeness. 

We apply well-known results from the theory of Markov processes, reviewed in DeFelice 

(1981) and Johnston & Wu (1995), to Hodgkin-Huxley-like models of voltage-gated K+ and 

Na+ channels. It is straight forward to extend these results to any other channel type with 

discrete states. 

K+ channel noise 

The seminal work by Hodgkin and Huxley (Hodgkin & Huxley, 1952) represents the first 

and very successful attempt at explaining the nature of membrane excitability in terms of 

voltage-gated particles. Most of our present understanding of membrane channels has been 

directly or indirectly influenced by their ideas (Hille, 1992). 

In the Hodgkin-Huxley formulation, a K+ channel comprises of four identical two-state 

sub-units. The K+ channel conducts only when all are in their open states. Each sub-unit 

can be regarded as a two-state binary switch (like the model above) where the rate constants 

(a and (3) depend on Vrn . Hodgkin and Huxley used data from voltage-clamp experiments 
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on the giant squid axon to obtain empirical expressions for this voltage dependence. Since 

they are identical, the channel can be in one of five states; from the state corresponding to 

all sub-units closed to the open state in which all are open. In general, a channel composed 

of n sub-units has n + 1 distinct states if they are all identical and 2n states if they are 

individually distinct. The simplest kinetic scheme corresponding to a K+ channel can be 

written as 

Co 
3~ o 

(1) (2) (3) (4) (5) 

where Ci denotes the state in which i sub-units are open, 0 is the open state with all 

sub-units open. Thus, the evolution of a single K+ channel can be a regarded as a five state 

Markov process with the following state transition matrix: 

-4an 4an 0 0 0 

(3n -(3an+(3n) 3an 0 0 

QK= 0 2(3n -(2an+2(3n) 2an 0 

0 0 3(3n -(an+3(3n) an 

0 0 0 4(3n -4(3n 

QK is a singular matrix with 4 non-zero eigenvalues which correspond to the cut-off 

frequencies in the K+ current noise spectrum. If the probability of a sub-unit being open 

is denoted by n(t), the open probability of a single K+ channel, PK, is equal to n(t)4. At 

steady state, the probability of a sub-unit being open at time t given that it was open at 

t = 0 (II55(t) according to our convention) is given by 

(3.14) 

(3.15) 

denote the steady-state open probability and relaxation time constant of the n sub-unit re-

spectively. Thus, the auto-covariance of the current fluctuations due to the random opening 
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and closing of K+ channels in the nerve membrane can be written by analogy, 

"lKI'~(Vm - EK)2 [II55(T)4n~ - n~] , 

"lKI'~(Vm - EK)2 [n~{noo + (1- noo)e-ITI/(in}4 - n~] 

(3.16) 

(3.17) 

where "lK, I'K and EK denote the K+ channel density in the membrane, the open conductance 

of a single K+ channel and the potassium reversal potential respectively. On expansion we 

obtain 

4 

GlK(T) = "lKI'~(Vm - EK)2n~ ~ e) (1 - noo)inz,;-ie-iITII (in , 

(n) n! 
where . = ( _ .)' ., . 

~ n ~. z. 

The variance of the K+ current, a~ = GIK(O), is 

(3.18) 

(3.19) 

(3.20) 

Taking the Fourier transform of GlK ( T) gives us the power spectrum of the K+ current noise 

(3.21) 

Notice that SlK(f) is given by a sum of 4 Lorentzian functions with different amplitude and 

cut-off frequencies. For noo « 1, one can obtain a useful approximation for SlK(f) 

SlK(f) (3.22) 

(3.23) 
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where 

(3.24) 

For small values of n oo , the transitions 0 -+ C3 and Co -+ C1 dominate and the power 

spectrum can be approximated by a single Lorentzian with amplitude 8IK (0) and cut-off 

frequency fK. In this case the bandwidth2 of K+ current noise is given by BK ~ liOn. This 

approximation holds when the membrane voltage Vrn is close to its resting potential Vrest· 

Na+ channel noise 

The Hodgkin-Huxley Na+ current is characterized by three identical activation subunits 

denoted by m and an inactivation sub-unit denoted by h. The Na+ channel conducts only 

when all the m sub-units are open and the h sub-unit is not inactivated. Each of the sub­

units may flip between their open (respectively, not inactivated) and closed (respectively, 

inactivated) states with the voltage-dependent rate constants CKm and 13m (respectively, CKh 

and f3h) for the m (respectively, h) sub-unit. Thus, the Na+ channel can be in one of eight 

states from the state corresponding to all m sub-units closed and the h sub-unit inactivated 

to the open state with all m sub-units open and the h sub-unit not inactivated: 

(1) (2) (3) (4) 

Co 
3~ C1 

2am 
C2 

am 
0 ~ ~ 

13m 213m 313m 

CKh 1lf3h CKh llf3h CKh llf3h CKh llf3h 

10 
3am 

h 
2am 

12 
am 

h ~ ~ 

~ 

13m 213m 313m 

(5) (6) (7) (8) 

where Ci (respectively, 1d denotes the state corresponding to i open sub-units of the m type 

and the h sub-unit not inactivated (respectively inactivated). The state transition matrix 

is given by QNa = 
2Defined as BK = afK/2 SIK(O), the variance divided by twice the magnitude of the power spectrum. 



50 

-(3"'m+i3h) 3"'m 0 0 i3h 0 0 0 

13m -(2"'m+i3m+i3h) 2"'m 0 0 i3h 0 0 

0 213m -(2i3m+"'m+i3h) "'m 0 0 i3h 0 

0 0 313m -(3i3m+i3h) 0 0 0 i3h 

"'h 0 0 0 -(3"'m+"'h) 3um 0 0 

0 "'h 0 0 13m -( 2um+i3m+u h) 2um 0 

0 0 uh 0 0 213m -(um+2i3m+u h) "'m 

0 0 0 uh 0 0 313m -(3i3m+"'h) 

QNa has 7 non-zero eigenvalues and so the Na+ channel has 7 time constants. Thus, 

the N a + current noise spectrum can be expressed as a sum of 7 Lorentzians with cut-

off frequencies corresponding to these time constants. The auto-covariance of the current 

fluctuations due to the sodium channels is given as 

17Nal'~a(Vm - ENa)2 [m~hoo{moo + (1 - moo)e-ITI/Om}3 

{hoo + (1 - hoo)e-ITl/oh} - m~h~], (3.25) 

where 17Na, I'Na and ENa denote the Na+ channel density, the Na+ single channel conductance 

and the sodium reversal potential respectively. The steady-state values and time constants 

of the m and h sub-units are given by 

am 
8m = 

1 
moo 

am + 13m am + 13m 

hoo 
ah 

8h = 
1 

ah + (3h ah + (3h 

The variance of the current noise can be written as 

2 
(TINa 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

where PNa = m~hoo is the steady-state open probability of a Na+ channel. The power 

spectrum, obtained by taking the Fourier transform of GINa (T), is given by a combination 
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of 7 Lorentzian components. The general expression is tedious and lengthy to express and 

so we shall restrict ourselves to a reasonable approximation. For moe « 1 and hoe :::::: 1, 

around the resting potential. 

SINa(J) (3.30) 

(3.31) 

where 

(3.32) 

Thus, for voltages close to the resting potential, SINa(J) can be approximated by a single 

Lorentzian. The bandwidth of Na+ current noise under this approximation is given by 

In general, the magnitude and shape of the power spectrum is determined by the kinetics 

of corresponding single channels. For any given state transition matrix describing the 

channel kinetics, we can derive expressions for the noise power spectral densities using the 

procedure outlined above. For most kinetic models, when Vrn :::::: Vrest, the single Lorentzian 

approximation suffices. A variety of kinetic schemes modeling different types of voltage-

gated ion channels exist in the literature. We shall choose a particular scheme to work with, 

but the formalism is very general and can be used to study arbitrary finite-state channels. 

3.2.3 Noise Due to Background Synaptic Activity 

In addition to voltage-gated channels which open and close in response to membrane po-

tential changes, dendrites (and the associated spines, if any) are also awash in ligand-gated 

synaptic receptors. We shall restrict our attention to the family of channels specialized for 

mediating fast chemical synaptic transmission in a voltage-independent manner, excluding 

NMDA-type of currents for now 
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Chemical synaptic transmission is usually understood as a conductance change in the 

post-synaptic membrane caused by the release of neurotransmitter molecules from the presy­

naptic neuron in response to presynaptic membrane depolarization. A commonly used func-

tion to represent the time course of the postsynaptic change in response to a presynaptic 

spike is the alpha function (RaIl, 1967; Koch, 1999) 

ga(t) = gpeak e t e-t/tpeak u(t) , 
tpeak 

(3.33) 

where gpeak denotes the peak conductance change and tpeak is the time-to-peak of the 

conductance change. u(t) is the unit step function which ensures that ga(t) = 0 for t < O. 

More general kinetic descriptions have been proposed (Destexhe et al., 1994), but are not 

considered here. 

We shall assume that for a spike train s(t) = l:j 6(t - tj), modeled as a sum of impulses 

occurring at times tj, the postsynaptic change is given by a sum of time-shifted conductance 

functions, 

gSyn(t) = Lga(t - tj). 
j 

(3.34) 

This means that each spike causes the same conductance change and that the conduc-

tance change due to a sequence of spikes is the sum of the changes due to individual spikes 

in the train. For now, we ignore the effect of paired-pulse facilitation or depression (Abbott 

et al., 1997; Tsodyks & Markram, 1997). The synaptic current isyn(t) is given by 

(3.35) 

where ESyn is the synaptic reversal potential. As before, we assume that the synaptic 

current is small enough so that Vm is nearly constant. If the spike train of the presynaptic 

neuron can be modeled as a homogeneous Poisson process with mean firing rate An, one 

can compute the mean and variance of the synaptic current arriving at the membrane using 
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Campbell's theorem (Papoulis, 1991): 

(isyn(t)) An(Vm - ESyn) 10
00 

9oo(t) dt, 

An(Vm - ESyn)2 10
00 

(9oo(t))2 dt. 

(3.36) 

(3.37) 

It is straight forward to compute the auto-covariance C1syn (T) of the synaptic current, 

CISyn (T) An(Vm - ESyn)2 9oo(T) * 9oo( -T), 

An(Vm - ESyn)2 10
00 

9oo(t) 9oo(t + T) dt. 

Similarly, the power spectral density of the synaptic current is given by 

where 

denotes the Fourier transform of 900 (t). For the alpha function, 

GooU) = e 9peak tpeak 2 . 

(1 + j 27f jtpeak) 

(3.38) 

(3.39) 

(3.40) 

(3.41 ) 

(3.42) 

It has been shown that if the density of synaptic innervation is high or alternatively if 

the firing rates of the presynaptic neurons are high and the conductance change due to a 

single impulse is small, the synaptic current tends to a Gaussian process (Thckwell & Wan, 

1980). This is called the diffusion approximation. Since a Gaussian process is completely 

specified by its power spectral density, one only needs to compute the power spectrum of 

current noise due to random synaptic activity. If 'T]Syn denotes the synaptic density, the 

variance, auto-covariance and the power spectral density of the synaptic current noise are 
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where 

2 
O"rSyn 

CrSyn (T) 

SrSyn (f) 
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\ (gpeak e)2 (TT E )2 'r/Syn An 2 v m - Syn tpeak , 

2 [1 + I I ] -ITI/tpeak O"rSyn T Tpeak e , 

,\ [e gpeak tpeak (Vm - ESyn) F 
'r/Syn n [1+ (21ffts)2] 

SrSyn (0) 
(units of A2/Hz), 

[1 + (f / fSy nF]2 

1 
SrSyn (0) = 4 O"fSyn tpeak and fSyn = 2 . 

1f tpeak 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.4 7) 

A power spectrum of the above form is called a double Lorentzian spectrum. As before, 

the power spectrum can be represented in terms of its DC amplitude SSyn(O) , and its cut-off 

frequency fSyn. The double Lorentzian spectrum falls twice as fast with the logarithm of 

frequency as compared to a single Lorentzian because of the double pole at fSyn. Thus, 

fSyn is the frequency for which the magnitude of the power spectrum is one-fourth of its 

amplitude. Using our definition of bandwidth, the bandwidth of the synaptic current noise, 

BSyn = i fSyn = 1/8 tpeak' 

3.2.4 Other Sources of Membrane Noise 

In addition to these sources, there are several other sources of noise in biological membranes 

(Verveen & DeFelice, 1974; Neher & Stevens, 1977; DeFelice, 1981). The neuronal mem­

brane contains ionic channels (Hille, 1992) with different kinetics, in different proportions. 

Random fluctuations in the number of these channels also contributes to membrane noise. 

Additionally, myriad types of ligand-gated channels also contribute to the noise level. Using 

the analysis above, it is clear that if accurate estimates of their relevant parameters (densi­

ties, kinetics and so on) are made available, one can potentially compute their contributions 

to membrane noise as well. 
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Noise type K+ Na+ Synaptic 

a 2 
1 1)K I~ maxPK(l - PK) 1)Na I~a max PNa (1 - PNa) (e/2)21)Syn An I§ n maxtpeak 

CI(T)/ar exp( -ITI/4 On) exp( -ITI/3 Om) (1 + ITI/tpeak) exp(-ITI/!£eak) 

Ie 4/ (21rOn ) 3/(21rOm) 1/(21rtpeak) 

SI(O) arK On/2 2 arNa Om/3 4 arSvn tpeak 

SJ(J)/SI(O) 1/[1 + (J/fK)2] 1/[1 + (J / INa)2] 1/[1 + (J / ISyn)2J2 

B 1/0n 3/( 4 Om) 1/(8 tpeak) 

Table 3.1: Analytical Expressions of Membrane Current Noise Sources. 
For Na+ and K+ channel noise we have made the assumption that the membrane voltage is around 

the resting value. IK,max = rK(Vm - EK), INa,max = rNa(Vm - E Na ) and ISyn,max = 9peak(Vrn -

ESyn) denote the maximum possible values of current through a single K+ channel, Na+ channel and 
synapse respectively. Since densities are expressed in terms of per unit area, o-J, and Sf have units 
of A2/f.1m2 and A2/Hz f.1m2 respectively. 

Other types of membrane noise are l/f noise (Neumcke, 1978; Clay & Shlesinger, 1977), 

(also called excess or flicker noise), shot noise due to ions in transit through leak channels 

or pores (Frehland & Faulhaber, 1980; Frehland, 1982), carrier-mediated transport noise in 

ionic pumps and burst noise. We did not include these in our analysis, either due to a lack 

of a sound theoretical understanding of their origin or the relative insignificance of their 

magnitudes. 

A summary of the expressions we have used to characterize the noise sources is provided 

In Table 3.1. We have modeled the sources as current fluctuations by assuming that 

the membrane voltage was clamped at Vrn . The magnitude and nature of the current 

fluctuations depend on the kinetics and the driving potential, and thus on Vrn . In the 

next section, we investigate the effect of embedding a membrane patch with these noise 

sources. There we assume that the current fluctuations are small enough so that Vrn does 

not deviate significantly from its resting value, Vrest. In general, this approximation must 

be verified for the different noise sources considered. We use the expressions in Table 3.1 

to identify the contribution of each noise source to the total membrane voltage noise for 

different biophysically relevant parameter values. In Chapter 4, deriving similar expressions 

for membrane noise sources in a linear cable, we quantify the information lost by synaptic 

signal as it propagates down a dendrite due to these noise sources. 
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3.3 Subthreshold Noise in a Membrane Patch 

Consider a patch of neuronal membrane of area A, containing Hodgkin-Huxley type rapid 

sodium INa and delayed rectifier IK currents as well as fast (AMPA) voltage-independent 

synapses. If the patch is small enough, it can be considered as a single point, making the 

membrane voltage solely a function of time. We shall make this "point-like" assumption here 

and defer analysis of the general case of spatial dependence of the potential to Chapter 4. 

Let C denote the capacitance of the patch, given by the product C = CmA. The passive 

membrane conductance due to voltage-independent leak channels is given by 9L. Current 

injected into the membrane from all other sources is denoted by Iinj (t). Since the area of 

the patch is known, the absolute values of the conductances can be obtained by multiplying 

their corresponding specific values by the patch area A. On the other hand, if we wish to 

continue working with specific conductances and capacitances, the injected current needs 

to be divided by A to obtain the current density. Here we use the former convention. The 

electric circuit corresponding to the membrane patch is shown in Fig. 3.4. Using Kirchoff's 

law we have 

dVrn 
Cdt + 9K(Vrn - EK) + 9Na(Vrn - E Na ) + 9Syn(Vrn - ESyn) + 9dVrn - EL) = Iinj' 

(3.48) 

Since the ion channels and synapses are stochastic, 9K, 9Na and 9Syn in the above 

equation are stochastic processes. Consequently, equation 3.48 is, in effect, a stochastic 

differential equation. Moreover, since the active conductances (gK and gNa) depend on Vrn , 

equation 3.48 is non-linear in Vrn and in all likelihood intractable to theoretical analysis. 

However, as a consequence of the assumption that the system is in quasi-equilibrium, one 

can effectively linearize the active conductances and express them as deviations around their 
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Figure 3.4: Electric Circuit of a Membrane Patch. 
C denotes the patch capacitance and, gL, the passive membrane resistance due to leak channels. 
The membrane also contains active channels (K+ , Na+ ) and fast voltage-independent synapses, and 

their conductances are represented by gK, gNa and gSyn respectively. Current injected from other 
sources is denoted by I inj . 
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c G 9 v 

Figure 3.5: Equivalent Linearized Electric Circuit of a Membrane Patch. 
Circuit diagram of the membrane patch containing different noise sources, close to equilibrium. The 
membrane voltage V is measured as a deviation from the resting value Vrest . G is the deterministic 

resting conductance of the patch and 9 is the random component due to the fluctuating conductances. 

The conductance fluctuations also give rise to an additive current noise source In. 
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gSyn 
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gK + .9K, 

gNa + .9Na, 

o -gSyn + gSyn, 

V~+V. 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

This perturbative approximation can easily be verified by self-consistency. If the approxi­

mation is valid, the deviations (V) of the membrane voltage from the resting voltage should 

be small. For the cases we consider, the membrane fluctuations are indeed small and so the 

approximation holds. However, in general, the validity of this approximation needs to be 

verified on a case by case basis. 

V~ is chosen such that it satisfies the equation 

(3.53) 

where G = gK + gNa + gSyn + gL is the total baseline input conductance of the patch, equal 

to the sum of all the baseline conductances. SimilarlY,9 = 9K + 9Na + 9Syn denotes the total 

random component of the patch conductance. Substituting for equation 3.49-equation 3.52 

in equation 3.48 gives us the following equation: 

Gd~rn + G(Vrn - V~) + 9K(Vrn - E K) + 9Na(Vrn - E Na ) + 9Syn(Vrn - ESyn) = Iinj' 

(3.54) 

Since the steady-state (resting) solution of equation 3.48 is Vrn = v;.est, we can choose to 

linearize about the resting potential, V~ = v;.est. The effective time constant of the patch 

depends on G and is given by T = G/G. When Vrn(t) ~ v;.est, gL is usually the dominant 

conductance and so G ~ gL. However, during periods of intense synaptic activity, or for 

strongly excitable systems, G can be significantly larger than gL (Bernander et al., 1991; 
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Rapp et ai., 1992). If no external current is injected, the only other source of current is the 

thermal current noise and Iinj is equal to I th . 

Expressing Vm(t) as deviations around v;.est in the form of the variable V(t) = Vm(t) -

v;.est allows us to simplify equation 3.54 to 

where 

dV In 
Till + (1 + 6) V = G ' 

9K + 9Na + 9Syn 

G 
9 
G' 

(3.55) 

(3.56) 

(3.57) 

The circuit diagram corresponding to the above is shown in Fig. 3.5. The random variable 

6 corresponds to fluctuations in the membrane conductance due to synaptic and channel 

contributions and has a multiplicative effect on V. On the other hand, In corresponds to 

an additive current noise source arising due to conductance fluctuations at v;.est (V = 0). 

We assume that the conductance fluctuations about the v;.est are zero-mean wide-sense-

stationary (WSS) processes. Since the noise sources have different origins, it is also plausible 

to assume that they are statistically independent. Thus, In is also a zero-mean WSS random 

process, (In) = o. 

Our perturbative approximation implies that the statistical properties of the processes 6 

and In are evaluated at V = O. We are unable to solve equation 3.55 analytically because of 

the nonlinear (multiplicative) relationship between 6 and V. However, since the membrane 

voltage does not change significantly, in most cases, the deviations of the conductances are 

small compared to the resting conductance of the cell3 , implying 6 « 1, which allows us to 

further simplify equation 3.55 to 

dV In 
Tdi + V = G' (3.58) 

------------------------------
3The validity of this assumption can easily, and must, be verified on a case by case basis. 
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This equation corresponds to a linear system driven by an additive noise source. It is straight 

forward to derive the statistical properties of V in terms of the statistical properties of In· 

For instance, the power spectral density of V(t), Sv(J) can be written in terms of power 

spectral density of In, SIn(J) as 

(3.59) 

Since the noise sources are independent, 

(3.60) 

Using the single Lorentzian approximations for the K+ and Na+ spectra, one can write an 

expression for the variance of the voltage noise as 

~ 7r A [s ( ) Im!K S ( ) 1m IN a 
~ G2 IK 0 1 1 + INa 0 1 1 + 

m + K m + Na 

S (0) 1m ISyn 1~ + ISyn 1m - 21§yn S (0) f 1 
ISyn 1 + 1 12 _ 12 + Ith m, m Syn m Syn 

(3.61) 

where 1m = 1/27rT is the cut-off frequency corresponding to the membrane's passive time 

constant. 

3.3.1 Summary of Parameter Values Used 

We consider a space-clamped cell body of a typical neocortical pyramidal cell as the sub­

strate for our noisy membrane-patch model. Estimates of the somatic/dendritic Na+ conductance 

densities in neocortical pyramidal cells range from 4 to 12 mS/cm2 (Huguenard et at., 

1989; Stuart & Sakmann, 1994). We assume TJNa = 2 channels/ /-lm2 with ')'Na = 20 pS. 

K+ channel densities are not known as reliably mainly because there are a multitude of 

different K+ channel types. However, some recent experimental and computational studies 

(Hoffman et at., 1997; Mainen & Sejnowski, 1998; Magee et at., 1998; Hoffman & Johnston, 

1998) provide estimates for the K+ densities in the soma and dendrites of cortical neurons. 

We choose TJK = 1.5 channels/ /-lm2, adopted from Mainen & Sejnowski, (1998). The channel 
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kinetics and the voltage dependence of the rate constants also correspond to Mainen et al. , 

(1995). We use Rm = 40,000 Ocm2 and em = 1 p,F /cm2 obtained from recent studies 

based on tight-seal whole cell recordings (Spruston et al., 1994; Major et al., 1994), giving 

a passive time constant of Tm = 40 msec. The entire soma is reduced to a single membrane 

patch of area A = 1000 jJ-m2 . 

The number of synapses at the soma is usually small, which leads us to 'fJSyn = 0.01 

synapses/ p,m2
, that is, 10 synapses. Other synaptic parameters are: 9peak = 100 pS, tpeak 

= 1.5 msec, An = 0.5 Hz. No account is made of synaptic transmission failure, but see 

Chapter 2 for an analysis of synaptic unreliability and variability. 

3.4 Results 

We compute the current and voltage power spectra (shown in Fig. 3.6) over the frequency 

range relevant for fast computations for the biophysical scenario discussed above. Ex­

perimentally, the current noise spectrum can be obtained by performing a voltage-clamp 

experiment, while the voltage noise spectra can be measured under current-clamp condi­

tions. The voltage noise spectrum includes the effect of filtering (which has a Lorentzian 

power spectrum) due to the passive RC circuit corresponding to the patch. In a following 

chapter, we show that in a real neuron the cable properties of the system recorded from 

give rise to more complex behavior. Since we have modeled the membrane patch as a 

passive RC filter and regarded the active voltage-gated ion channels as pure conductances, 

we obtained monotonic low-pass voltage spectra. In general, as we have mentioned before, 

the small-signal membrane impedance due to voltage and time dependent conductances 

can exhibit resonance giving rise to band-pass characteristics in the voltage noise spectra 

(Koch, 1999). The relative magnitudes of the current noise power spectral densities (3[(0)) 

and the amplitudes of voltage noise due to each noise source (3Yi and aYi) are compared 

in Table 3.2. 

The contribution of each noise source to the overall spectrum depends on the exact val­

ues of the parameters-including the channel kinetics-which can vary considerably across 

neuronal types and even from one neuronal location to another. For the parameter values 
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Figure 3.6: Subthreshold Noise in a Patch of Neuronal Membrane. 
A: Comparison of the normalized correlation functions C1 (t)/C1 (0) of the different noise sources 
with the autocorrelation of the Green's function of an RC circuit (e- t / T

), for parameter values 
summarized below. B: Comparison of current power spectra 5 1 (1) of the different membrane noise 
sources, viz., thermal noise, K+ channel noise, Na+ channel noise and synaptic background noise as 
a function of frequency (up to 10 kHz). C: Voltage spectrum Sv(1) of the noise in a somatic patch 
due the influence of the above sources. Power spectrum of the voltage fluctuations due to thermal 
noise alone SYth (1) is also shown for comparison. Summary of the parameters adopted from Mainen 

& Sejnowski, (1998): Rm = 40 kD cm2 , Cm = 1 fJF /cm2 , TJK = 1.5 channels per fJm2 , TJNa = 2 
channels per fJm 2

, TJSyn = 0.01 synapses per fJm 2 with spontaneous firing rate An = 0.5 Hz. EK = 
-95 mY, ENa = 50 mY, ESyn = 0 mY, EL = -70 mY, rK = rNa = 20 pS. Synaptic parameters: gpeak 

= 100 pS, tpeak = 1.5 msec. 
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Figure 3.7: Dependence of Noise Magnitude on Biophysical Parameters. 
A: Dependence of the passive membrane parameters (Vrest , T) on the channel and synaptic densities. 
The K+ and Na+ channel densities and the synaptic density are scaled by the same factor 17 which 

varies from 17 = 0 (corresponding to a completely passive system) to 17 = 2. 17 = 1 corresponds 
to the nominal parameter values used to generate Fig. 3.6. The membrane parameters (denoted 
generically by",) are expressed as a ratio of their nominal values at 17 = 1 (denoted by "'0). B: Effect 
of varying individual densities (the remaining densities are maintained at their nominal values) on 
the magnitude of the voltage noise ov. 
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Noise type A * S[(O) (A2/Hz) Sv(O) (y2/Hz) av (mY) 

Thermal 2.21 x 10-30 3.14 X 10-11 2.05 X 10-2 

K+ 1.74 X 10-27 2.46 X 10-8 5.33 X 10-1 

Na+ 1.67 x 10-28 2.36 X 10-10 5.59 X 10-2 

Synaptic 4.12 x 10-27 5.84 X 10-8 8.54 X 10-1 

Total 5.88 x 10-27 8.33 X 10-8 1.01 

Table 3.2: Magnitude of Subthreshold Noise in a Membrane Patch. 
Current power spectral densities (A*SI(O), units of A2 1Hz), voltage power spectral densities (Sv(O), 
units of V2/Hz) and voltage standard deviations (av, units of mY) of the different noise sources 
(thermal, K+ , Na+ conductance fluctuations and synaptic background) in a space-clamped somatic 
membrane patch. 

we considered, thermal noise made the smallest contribution, and is at the limit of what 

is experimentally resolvable using modern amplifiers. Background synaptic noise due to 

spontaneous activity was the dominant component of neuronal noise. The magnitude of 

noise for the scenario we consider here is small enough to justify the perturbative approxi-

mation, but it can be expected that for small structures, especially thin dendrites or spines, 

the perturbative approximation might be violated. However, treating a dendritic segment 

as a membrane patch is not an accurate model for real dendrites where currents can flow 

longitudinally. We shall address this problem again in the context of noise in linear cables 

in Chapter 4. 

There are numerous parameters in our analysis and it would be extremely tedious to 

consider the combinatorial effect of varying them all. We restrict ourselves to studying the 

effect of varying a few biological relevant parameters. 

3.4.1 Dependence on Patch Area 

Notice that varying the patch area A does not affect the resting membrane potential v;.est 

or the passive membrane time constant T. From equation 3.59 one can deduce the scaling 

behavior of Sv with respect to A in a straight forward manner. The numerator increases 

linearly with A since the noise sources are independent and in parallel and so their con-
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tributions add. However, all the individual membrane conductances scale linearly with A, 

thus, the total conductance G also scales linearly with A. As a consequence, Sv(J) and 

O"~ scale inversely with A: the larger the area, the smaller the variance. Equivalently, o"v 

scales inversely as the square root of A. 

This might appear counterintuitive since the number of channels increases linearly with 

A, but can be understood as follows. The current fluctuations are integrated by the RC 

filter corresponding to the membrane patch and manifest as voltage fluctuations. As the 

area of the patch increases, the variance of the current fluctuations increases linearly but 

the input impedance decreases as well. Since the variance of the voltage fluctuations is 

proportional to the square of the impedance, the decrease in impedance more than offsets 

the linear increase due to the current and so the resulting voltage fluctuations are smaller. 

If all the channel and synaptic densities are increased by the same factor (a global increase 

in the number of channels), an identical scaling behavior is obtained. 

This suggests that the voltage noise from small patches might be large. Indeed, it is 

plausible to assume that for small neurons, the voltage fluctuations can be large enough to 

cause "spontaneous" action potentials. This phenomenon of noise-induced oscillations has 

indeed be borne out by simulations (Skaugen & Wall02, 1979; Skaugen, 1980b; Strassberg 

& DeFelice, 1993; Schneidman et at., 1998). 

3.4.2 Dependence on Channel Densities 

We first consider the effect of varying the different individual channel densities on the resting 

properties of the patch, that is on Vrest, G and T. The K+ and N a + channel densities and 

the synaptic densities (except gL) are first scaled individually and then together by the 

same factor. We denote the scale parameter by rl. When all densities are scaled together, 

7] = 0 corresponds to a purely passive patch containing leak channels alone and 7] = 1 

corresponds to the membrane patch scenario considered above (referred to as the nominal 

case). Similarly, when only the K+ density is varied, 7] = 0 corresponds to a membrane patch 

without K+ channels and 7] = 1 denotes the nominal value. The results of this exercise are 

summarized in Fig. 3.7 A. Instead of using absolute values for the quantities of interest, we 
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normalize them with respect to their nominal values corresponding to 'T} = 1. Notice that 

when all the densities, except leak, are varied from 'T} = 0 to 'T} = 2, Vrest varies (becomes 

more hyper-polarized) by less than 1% and T and C- 1 vary from about a 6% increase 

('T} = 0) to a 5% decrease ('T} = 2). Despite the non-linearities due to the active K+ and 

Na+ conductances, it is noteworthy that the quantities vary almost linearly with 'T}, further 

justifying our perturbative approximation. 

The effect of varying individual densities on ov is explored in Fig. 3.7B. In order to 

consider the contribution of a given process to the noise magnitude, we vary the associated 

density in a similar manner as above ('T} goes from 0 to 2), while maintaining the others at 

their nominal values. We also compare the individual profiles to the case when all densities 

are scaled by the same factor. It is clear from the figure that the synaptic noise is the 

dominant noise source. The noise magnitude drops approximately from 1 m V to 0.5 m V 

in the absence of synaptic input (as 'T} varies goes from 1 to 0), but only to about 0.85 m V 

in the absence of K+ channels. Varying the Na+ density has a negligible effect on the noise 

magnitude. Similarly, the noise increases to 1.35 m V when the synaptic density is doubled 

('T} = 2) with respect to its nominal values, but the increase to about 1.07 mV due to the 

doubling of K+ density is much smaller. 

3.5 Discussion 

The key result of this chapter is that we were able to derive closed-form expressions for the 

membrane voltage fluctuations due to the three dominant noise types in neuronal prepara­

tions: thermal noise, channel noise and background synaptic noise. However, these results 

were derived under some simplifying conditions. We assumed that the deviations of the 

membrane potential about its resting value, as a result of "spontaneous" synaptic input 

and channels switching, are small. This allowed us to make a perturbative approximation 

and express conductance changes as small deviations around their resting values, treating 

them as sources of current noise. The validity of this assumption needs to be carefully 

evaluated empirically. This can be considered analogous to the linearization of non-linear 
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differential equations about a quiescent point, except here the underlying quantities are 

stochastic as well. For a related approach, see Larsson et al. (1997). 

This approximation made it possible for us to write down the stochastic differential 

equation 3.55 for the dynamics of voltage fluctuations. We use techniques derived from the 

theory of stochastic processes to solve equation 3.55 analytically for simplified kinds of con­

ductance fluctuations in Appendix H and show that when the conductance fluctuations are 

small, the membrane volgate reduces to a Gaussian stochastic process. This analytical ap­

proach cannot be used to analyze the effect of multiple conductance fluctuations. However, 

under the simplifying assumption that the conductance fluctuations are small compared 

to the total resting conductance, equation 3.55 reduces to a linear stochastic differential 

equation which is straight forward to analyze. The validity of this assumption can also be 

easily verified. 

Using this assumption, all the three noise sources could be regarded as additive. Solving 

the associated linear stochastic membrane equation, we obtained analytical expressions for 

the spectra and variance of the voltage fluctuations. We shall show in Chapter 4 that 

a similar calculus can be applied when the noise sources are distributed in complex one­

dimensional neuronal cable structures. Estimating the properties of the subthreshold noise 

in a linear cable can allow us to determine the influence of noise on the capacity of dendritic 

information processing. 
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Chapter 4 Information-theoretic Analysis of 

Electrotonic Propagation in Weakly-Active 

Dendrites 

4.1 Introduction 

In this chapter our goal is to quantify the information loss in linear cables under the signal 

estimation and signal detection representational paradigms due to sources of subthreshold 

membrane noise. The noise sources which have been modeled and characterized in Chapter 3 

include thermal noise due to the passive membrane resistance, noise due to the stochastic 

channel openings and closings of membrane voltage-gated ion channels (K+ and Na+ ) and 

noise due to random background synaptic activity. Using results from Chapter 3, we derive 

closed-form expressions for the magnitude and power spectral densities of the noise sources 

in linear cables and compare the noise magnitudes for the simplified case of an infinite linear 

cable. Our analysis, however, is quite general and can be used to estimate the properties of 

noise in other more complicated cable geometries. 

Quantifying the magnitude of the membrane noise sources allows us to assess the effi­

cacy of information transfer in dendritic cable structures under two different paradigms. As 

before, the goal in the signal estimation paradigm is to estimate a random current wave­

form injected at a particular location from the membrane voltage at another location on 

the cable. We define a quantity called the normalized coding fraction, ~, and use it to assess 

signal fidelity in the signal estimation task. In the signal detection paradigm, the objective 

is to detect the presence or absence of a presynaptic signal (a single spike) on observing the 

post-synaptic membrane voltage. The probability of detection error, Pe , is used to quantify 

performance in the signal detection task. Much of modern psychophysical research (Green 

& Swets, 1966) uses a signal-detection paradigm to assess performance. The framework 
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is illustrated schematically in Fig. 4.1. We derive expressions for the corresponding in-

formation theoretical measures of signal efficacy (mean square error and information rate 

for signal estimation and probability of error and mutual information for signal detection) 

and examine their dependence on different biophysical parameters. A list of mathematical 

symbols used in Chapter 3 and Chapter 4 is summarized in Table 4.2 at the end of this 

chapter. 

4.2 The One-Dimensional Cable Equation 

We model the dendrite as the usual one-dimensional ladder network shown in Fig. 4.2. 

For assumptions underlying one-dimensional cable theory, see Koch (1999). ra represents 

the axial resistance of the intra-cellular cytoplasm. ra (expressed in units of OJ J-lm) can be 

obtained in terms of the more commonly used intra-cellular resistivity Ri as 

( 4.1) 

where d is the dendritic diameter (expressed in J-lm). gK, gNa and gL denote the transverse 

membrane conductances due to K+, Na+ and leak channels distributed throughout the 

dendritic membrane. Recent research has established the existence of several types of active 

voltage-gated ion channels in dendrites (Johnston et at., 1996; Colbert & Johnston, 1996; 

Yuste & Tank, 1996; Magee et at., 1998). The dendritic membrane also has an incidence of a 

large number of synapses, from a vast multitude of other neurons. However, as in Chapter 3, 

we restrict ourselves to fast voltage-independent synapses (AMPA-type) here. Let gSyn 

denote the transverse membrane conductance due to these fast AMPA-like synapses. All 

the conductances above are expressed in units of Sj J-lm. The membrane capacitance due 

to the phospholipid bi-Iayer is denoted by Cm . The units of Cm are F j J-lm and it can be 

expressed in terms of the more commonly used specific capacitance Gm as 

Cm = 7rdGm . (4.2) 
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Figure 4.1: Channel Model of a Weakly-Active Dendrite. 
The dendrite is modeled as a weakly-active 1-D cable with noise sources distributed along its length. 

By "weakly-active," we mean that the magnitude of the conductance fluctuations due to these 
sources is small compared to the baseline conductance of the membrane. Formally, this can be 
stated as J « 1 (equation 4.10). These noise sources distort the synaptic signal as it propagates 
from its postsynaptic site y to a measurement (output) location x. Loss of fidelity is studied under 
two representational paradigms. A: In signal estimation, the objective is to optimally estimate the 
input current I(y, t) from the membrane voltage Vm(x, t). The normalized coding fraction ~ and the 
mutual information are used to quantify signal fidelity in the estimation task. B: In signal detection, 
the objective is to optimally detect the presence of the synaptic input I(y, t) (in the form of a unitary 

synaptic event) on the basis of Vm(x, t). The probability of error, Pe, and mutual information are 
used to quantify signal fidelity in the detection task. 
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Figure 4.2: Equivalent Circuit Diagram of a One-Dimensional Dendritic Cable. 
The cable is modeled as an infinite ladder network. Ta (0./l1m) denotes the longitudinal cytoplasmic 

resistance; em (F / 11m) and gL (S/l1m) denote the transverse membrane capacitance and conductance 
(due to leak channels with reversal potential Ed respectively. fa (x, t) denotes the longitudinal 
current, whereas fm(x, t) is the transverse membrane current. The membrane also contains active 

channels (K+ , Na+) with conductances and reversal potentials denoted by (gK, gNa) and (EK' 
ENa ) respectively, and fast, voltage-independent (AMPA-like) synapses with conductance gSyn and 
reversal potential ESyn. All conductances are in units of S/l1m. 
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The membrane voltage Vrn satisfies the following partial differential equation, 

[ 
aVrn 

Ta crnat + gK(Vrn - EK) + gNa(Vrn - ENa) 

+ gSyn (Vrn - ESyn) + gdVrn - Ed + Iinj ] , (4.3) 

where Iinj(x, t) represents the current injected into the membrane from other sources which 

we have not explicitly considered here (thermal noise, synaptic input, stimulating electrode, 

etc) . 

Since the conductances gK, gNa, gSyn (and possibly even Iinj) are stochastic processes, 

equation 4.3 denotes a highly non-linear stochastic reaction-diffusion equation (Tuckwell, 

1988b) since the ionic conductances are functions of Vrn in themselves. However, it is more 

illustrative to express the random variables as deviations around some baseline values, as 

in Chapter 3, 

gK gK + .9K, 

gNa gNa + .9Na, 

gSyn a -gSyn + gSyn, 

Vrn V~+V. 

V~ is chosen such that it satisfies the equation 

v.a = gK EK + gNa ENa + gSyn ESyn + gLEL 
rn G 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

where G = gK + gNa + gSyn + gL is the total input conductance, given by the sum of all 

the baseline conductances. Substituting for equations 4.4-4.7 in equation 4.3 gives us the 

equation, 

(4.9) 
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where A = 1/JraG is the characteristic length constant (in /-tm) and T = ern/G is the 

characteristic passive time constant (in msec) of the cable. 8 and In are random processes 

defined as 

9K + 9Na + 9Syn 

G 

9K (EK - V~) + 9Na(ENa - V~) + 9Syn (ESyn - V~) + Znj . 

( 4.10) 

(4.11) 

8 corresponds to membrane conductance fluctuations due to synaptic and channel con-

tributions and has a multiplicative effect on V. In, on the other hand, is a sum of the 

additive noise current due to these conductance fluctuations and the random component of 

the injected current iinj (the expected value of Iinj is assumed to be zero). We assume that 

the conductance fluctuations are spatially white, zero-mean, wide-sense stationary (WSS) 

random processes, i. e., the fluctuations at a location x are independent of those at another 

location y. It is plausible to assume that the individual conductance fluctuations are sta-

tistically independent since they have different origins. Thus, In is also a zero-mean WSS 

random process, (In (x, t)) = O. 

We now make a simplifying assumption that 8 « 1 and can be neglected in equation 4.9. 

We refer to this as the "weakly-active" assumption. This allows us to reduce equation 4.9 

to a linear, stochastic, partial differential equation. We shall also assume that the dynamics 

of components of the noise current In are given by their values at Vrn = V~. The steady-

state (resting) solution of equation 4.9 (obtained by setting 8 and In to zero) is V = 

0, which implies that we choose V~ = Vrest . Consequently, G is the resting membrane 

conductance. Similarly, the baseline conductances gj satisfy gj = gi(Vrest ) where gi(Vrn ) 

denotes the steady-state value of the conductance as a function of the membrane voltage. 

Thus, our assumptions are equivalent to saying that conductances fluctuations around Vrest 

are negligible compared to the resting conductance G. Additionally, the dynamics of the 

resulting current noise can be obtained from the dynamics of conductance fluctuations 

evaluated around Vrest. These assumptions need to be verified on a case-by-case basis. The 

simplest way to ensure their validity is to check for self-consistency of the solutions. Notice 
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that equation 4.9 is an extension of the membrane patch analysis in Chapter 3 to a 1-D 

cable. 

Thus, our simplified version of the equation 4.9 reads, 

(4.12) 

and is, in effect, a stochastic version of the one-dimensional cable equation (RaIl, 1969a; 

Tuckwell, 1988a; Tuckwell, 1988b). Details of the derivation of the cable equation can be 

found in literature (RaIl, 1969a; Tuckwell, 1988a). For the most part our notation is similar 

to the one used in Tuckwell & Walsh (1983). 

4.3 Subthreshold Noise in Linear Cables 

The cable equation has a unique solution once the initial conditions and the boundary 

conditions are specified. For resting initial conditions (V = 0 for t :S 0), the membrane fluc­

tuations V are linearly related to the current input In and can be mathematically expressed 

as convolution of In with the Green's function of the cable equation for the given boundary 

conditions. The Green's function of the cable, denoted by g(x, x', t, t'), specifies the voltage 

response of the cable at the location x at time t to a current impulse 8(x - x') 8(t - t' ) in­

jected at the location x' at time t'. g(x, x', t, t' ) has units of pm-1msec-1. By superposition, 

V(x, t) can be written as 

1 100 

I it I I I I I V(x,t) = G dx dt g(x,x ,t,t) In(x ,t). 
-00 0 

(4.13) 

Since the system is time-invariant, g(X,xl,t,t') = g(x,x',t - t' ). The exact form of 

9 (x, x' , t - t' ) depends on the nature of the boundary conditions of the partial differential 

equation. The expected value of V(x, t) is given by 

1 100 
I rt I I I I I 

(V(x, t)) = G -00 dx Jo dt g(x, x ,t - t ) (In(x ,t )) . (4.14) 
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Since the current noise In is a zero-mean process, (V(x, t)) = O. Thus the variance of the 

membrane voltage fluctuations a~(x, t) = (V2(x, t)) is given by 

a~(x, t) 
G
\ /00 dx' /00 dx" t dt' (t dt" g(x, x', t - t') g(x, x", t - t") 

-00 -00 Jo Jo 
(In (x', t') In (x" ,t")). (4.15) 

The quantity (In (x' , t') In (x" , til) ) represents the auto-covariance of the current input which 

we denote by Gn(x', x", t', t"). Since In(x, t) is a spatially-white WSS process, Gn is of the 

form Gn(x', x", t', t") = Gn(t' - til) o(x' - x") which simplifies equation 4.15 to 

1 100 1t 1t 2 "'" I , " ,,, 
av(x, t) = G2 dx dt dt g(x, x ,t - t ) g(x, x ,t - t ) Gn(t - t ). 

-00 0 0 
(4.16) 

Since we assume that the cable starts receiving inputs at time t = 0, the membrane 

voltage fluctuations V cannot be a WSS process. This can be easily seen as a~ depends on 

t. However, if we wait long enough for the transients associated with the initial condition to 

die out, at long time-scales the statistical properties of V (x, t) do not depend on t. In fact, it 

can be shown that V(x, t) is asymptotically (t -+ 00) WSS (Tuckwell, 1988a). Another way 

to observe the same is by assuming that the system starts receiving its input at t = -00, in 

which case, the dynamics stabilize by t. This can be observed by changing the limits of the 

time variable to (-00, t) in equation 4.15. The steady-state variance of V(x, t) is given by 

2 1 100 '100 ,/00 , , " av(x,00)=G2 dx dt ,dzg(x,x,t)g(x,x,t+z)Gn(z). -00 0 -t 

( 4.17) 

When the auto-covariance of the current noise Gn (z) decays much faster (has a much smaller 

support) than g(x, x', t'), one can approximate it by Gn(z);::;; Go o(z), which allows equa­

tion 4.17 to be written as l 

2 Go (00 '100 
'2 " av (x,00);::;;G2J_ dx dtg(x,x,t). (4.18) 

_-:--_____________ -00 0 

lBy definition, Co = Sn(O) where SnU) is the Fourier transform of Cn, or equivalently, the power spectrum 
of the current noise. 
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This approximation holds when the membrane time constant T, which determines the tem­

poral support of g(x, x', t'), is much larger than the time constants governing the dynamics 

of the noise sources. We call this approximation the white noise approximation (WNA), 

since we approximate the current noise covariance Gn by an impulse, the correlation func-

tion of a spectrally-white stochastic process. The validity of this approximation can be 

verified easily by comparing the temporal width of Gn with the membrane time constant. 

In general, the steady-state covariance Gv (x, s) of V (x, t) is given by 

Gv(x, s) lim (V(x, t)V(x, t + s)), 
t-+oo 

1 roo I roo I roo I I I I 

G2 i-oo dx io dt i-t' dz g(x,x ,t) g(x,x ,t +z) Gn(z - s). (4.19) 

Notice that Gv(x, s) is of the form Gv(x, s) = J~oo dx' g(x, x', s) *g(x, x', -s) *Gn(s) where 

* denotes a convolution operation. Consequently, the voltage noise power spectrum is given 

by 

Sv(x,1) = F{Gv(x, t)} i: dx' 
1 9(x,x' ,1) 1

2
, (4.20) 

~----~v~------~ 

where Sn (1) = F{ Gn (s)} is the power spectral density of the current noise and 9(x, x', 1) = 

F{g(x, x', t)} is the transfer function of the Green's function ofthe system. F{g(x)} denotes 

the Fourier transform operation defined as J~oo dx g(x) exp( -i27r f x). 

Notice that we have expressed the voltage spectrum Sv(x,1) (in units of y2/Hz) III 

equation 4.20 as a product of two factors. The first factor SFn (Source Factor) represents 

the power spectral density of the current noise source scaled appropriately (by 1/G2 ) to 

have the units of y2 JLm/Hz. SFn depends on the properties of the noise sources and the 

resting membrane conductance. The second factor GFn (Geometry Factor) characterizes the 

transformation of the current noise input by the cable into membrane voltage fluctuations 

and has the units of JLm -1. G Fn depends on factors (geometry, boundary conditions, and 

so on) which determine the Green's function of the cable. This decomposition allows us to 
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decouple the effects of cable geometry from those of the current noise sources. When the 

WNA holds, SFn is a constant (SFn ;:::;:; Sn(O)/G2 ) and in effect GFn describes the spectral 

properties of V (x, t). 

Special Case: The Infinite Cable 

Here we consider the simplistic case of an infinite cable. Though this theoretical idealization 

approximates reality only very loosely, it offers significant insight in understanding more 

complicated scenarios. The analytical tractability of the infinite case allows us to derive 

closed-form expressions for the quantities of interest and use them to develop an intuitive 

understanding of some of the fundamental issues of the problem. Unfortunately, closed-form 

expressions for other cable geometries (semi-infinite cable with a sealed end, finite cable with 

sealed/killed ends) cannot be derived and one has to take recourse to numerical techniques. 

Nevertheless, the Green's functions for these cable geometries have been derived in semi-

closed form (Jack et at., 1975; Tuckwell, 1988a). Moreover, compartmental modeling of 

realistic dendritic trees (Segev & Burke, 1998) has become routine. Thus, using numerical 

approaches, it is relatively straight forward to extend the analysis to more complicated 

scenarios. 

The Green's function for the infinite cable is given as (Jack et at., 1975) 

I 1 e-T -eX-x')2 

g(x,x ,t) = AT V4nT e 4T 

I 

- 00 < x, x < 00, 0 ~ t < 00 , 

(4.21) 

where X = x/ A, X' = x' / A and T = tiT are the corresponding dimensionless variables. It 

can be shown that the geometry factor corresponding to the voltage variance is given by 

(Tuckwell & Walsh, 1983) 

(T~(x,t)= 4~T [1-Erfc(J2t/T)] ' (4.22) 
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where ErfcC) is the complementary error function, 

2 (X! 2 

Erfc(x) = .j7f ix dye- Y
. (4.23) 

Thus, in steady-state, the voltage variance geometry factor is given by 

2 . 2 ( 1 crv(x) = hm cry x, t) = -4 \ . 
t-too AT 

( 4.24) 

Note that the voltage noise variance cr~ is independent of the measurement location x. 

This is also intuitively consistent with the inherent symmetry of the infinite cable. The 

expressions for the geometry factors for Cv(x, s) and Sv(x, J) are given as 

Cv(x, s) 

Sv(x, J) 

1 
-4 - Erfc( visF) , 

.AT 
1 sin [tan-1(27flT)/2] 

2.A 27f IT [1 + (27f IT)2]1/4 . 

Notice that in the limit of high frequencies 

(4.25) 

(4.26) 

(4.27) 

Thus, for the infinite cable, the voltage noise spectrum decays asymptotically as 1-3/ 2 with 

frequency. This holds for frequencies larger than 1m = l/T but smaller than those for which 

Sn(f) can no longer be regarded as a constant (equal to its value at 1 = 0, Sn(O)). For very 

high frequencies, Sv(f) decays faster than 1-3/ 2 due to the spectral profile of the current 

noise Sn(f). The exact expression (after multiplying by SFn) for Sv(x, J) is given as 

( ) 
_ Sn(f) sin [tan-1 (27fl T)/2] 

Sv x,1 - G2 1/4 . 
2.A 27flT[1+(27flT)2] 

(4.28) 

4.4 Electrotonic Signal Propagation in Linear Cables 

Up to this point, we have addressed the problem of noise accumulation in a linear cable 

as a result of fluctuations due to different membrane conductances distributed along the 



80 

dendritic length. We now analyze the attenuation of a synaptic signal, delivered at a 

particular dendritic location, as it propagates passively along the dendrite. Our approach is 

to exploit the linearity of the cable equation and decompose the voltage at a given location 

into "signal" and "noise" components. The input signal depends on the paradigm we use. In 

the signal estimation paradigm, the input is in the form of a random current waveform Is(t), 

injected at a given dendritic location, while in the signal detection paradigm, the input is a 

unitary, excitatory, postsynaptic current pulse (EPSC) delivered across a dendritic synapse 

at the given location. 

In principle, a synaptic input should be treated as a conductance change triggered 

by a presynaptic action potential in parallel with a synaptic battery. However, in the 

signal estimation paradigm, where our goal is to assess how well continuous signals can be 

reconstructed from the membrane potential, we would need to invoke a mechanism that 

transforms a continuous signal into a spike train driving the synapse. For now, we bypass 

this problem and assume that the synaptic input corresponds to a continuous current that 

is directly injected into the cable. We will return to the problem of linking a presynaptic 

spike train to the postsynaptic synaptic current in a future publication. 

We now use the appropriate Green's function g(x, y, t) for a given cable geometry to 

derive expressions for the voltage response V(x, y, t) due to a current Is(t) injected at 

location y. By superposition, 

1 rt , " 
V(x, y, t) = G Jo dt g(x, y, t - t ) Is(t ) . (4.29) 

In the signal detection task, Is(t) is a deterministic signal, which we model by the a func­

tion, first introduced by Rall, (1967), Is(t) = Ipeak t/tpeak exp( -t/tpeak). Whereas, in the 

signal estimation task, Is(t) is a continuous random process. Consequently, V(x, y, t) is a 

(non-stationary) random process, which is asymptotically wide-sense stationary as t ~ 00 

(steady-state). It is straight forward to derive expressions for the signal component (due to 
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Is(t)), of the voltage power spectra Sv(x, y, 1) and variance (T~(x, y) as 

Sv(x, y, 1) 

(T~(x, y) 

S~{) I 9(x, y, 1) 1
2

, i: dj Sv(f) , 

( 4.30) 

(4.31) 

where Ss(f) is the power spectral density of the input Is(t). Thus, using equation 4.30 and 

equation 4.31, we can analyze how the signal component of the membrane voltage decreases 

as a function of the distance from the input location, for different cable geometries. 

Special Case: The Infinite Cable 

As before, we restrict ourselves to the case of an infinite cable. The expression for the signal 

component Sv(x, y, 1) for the infinite cable is given by 

S (x 1) = Ss(f) exp( -p Ix - yll ).) 
v,y, 4).2G2 [1+(27rjT)2jl/2' 

(4.32) 

where 

( 4.33) 

Notice that Sv(x, y, 1) is symmetric with respect to x and y, and depends only on the 

electrotonic distance X = Ix - yl/). between the input and the measurement location. For 

j -+ 00, Sv(x, y, 1) varies as 

Ss(f) exp( -..j47rjT X) 
Sv(x, y, 1) rv 4).2 G2 2 7r jT (4.34) 

If Ss(f) is almost flat over the bandwidth of the cable, we can derive a simplified expression 

for the variance (T~(X) as 

2 (X) = Ss(O) Ko(2 X) 
(Tv ).2 G2 T 27r (4.35) 
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where Ko(-) denotes the zeroth-order modified Bessel function of the second kind. Ko(u) has 

a singularity at the origin and so the variance at the input location (x = y) is unbounded. 

The asymptotic behavior of Ko(u) can be expressed as (Wan & Tuckwell, 1979) 

Ko(u) 

Ko(u) 

-log(u) (u ---+ 0) , 

[7r e-u (u ---+ (0) . 
V~ 

(4.36) 

(4.37) 

Thus, the variance O'~(X) has a logarithmic singularity at the origin and decays approxi­

mately exponentially with X for large X. The singularity is a result of the approximation 

of the auto-correlation of Is(t) by a 6 function, in comparison to the Green's function of the 

cable. This approximation breaks down for X :::::: 0 for which g(x, y, t) has a very small tem­

poral support, comparable to or smaller than the correlation time of Is(t). This eliminates 

the singularity in O'~. 

More realistic models like the "cylinder with a lumped soma model" (Rall, 1960; Rall, 

1969b), which ind udes the effect of the low somatic impedance, or compartmental models of 

neurons with extensive dendritic trees (Segev & Burke, 1998), are not amenable to cIosed-

form analysis and can only be studied numerically. However, a knowledge of the Green's 

function of the cable enables us to determine the spectral properties of both the signal 

and noise contributions to the membrane voltage fluctuations. As we will see subsequently, 

knowledge of the signal and noise spectra are sufficient to quantify the information loss. 

4.5 The Signal Estimation Paradigm 

We can use optimal linear estimation theory to analyze the problem of signal estimation in 

linear cables. We assume that information is encoded in the time variations of the input 

current Is(t) which is injected at a certain location along the cable. We are interested in 

quantifying how much information is lost due to electrotonic attenuation and the membrane 

noise sources as the signal corresponding to this input propagates passively down the cable. 

We estimate this by assessing how well we can recover Is(t) from the voltage fluctuations 

V(x, t) as a function of distance from the input location. By analogy with the problem in 
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Appendix A, m(t) corresponds to Is(t) and s(t) to V(x, t). We can decompose V(x, t) into 

two components, a signal component, Va(x, t), due to the input current Is(t) (V(x, y, t) in 

equation 4.29), and a noise component, Vn(x, t) (V(x, t) in equation 4.13), reflecting the 

combined influence of all the noise sources that have been discussed in detail in Chapter 3. 

Due to linearity, V(x, t) = Va(x, t) + Vn(x, t). 

The power spectrum of the signal component V';, (x, t) defined as S{r(x, y, j) can be 

written as 

S{r(x, y, j) = s~t) 1 Q(x, y, j) 1
2

, (4.38) 

where Ss(f) denotes the power spectral density of Is(t), Q(x, y, j) denotes the Fourier trans-

form of the Green's function of the cable and G is the input conductance. Similarly, the 

power spectrum of the noise component, Vn(x, t), defined as Sy(x, y, j), is given by 

Sy(x, j) = S~t) [: dy 1 Q(x, y, j) 12 . ( 4.39) 

We assume that the noise component Vn(x, t) and the signal component Va(x, t) are un cor­

related with each other. Thus, the power spectrum of V(x, t), denoted by Svv(x, f), can be 

expressed as 

S{r(x, y, j) + Sy(x, j) , 

Ss(f) 1 Q( f) 12 + Sn(f) 100 

d G2 x,y, G2 Y 
-00 

1 Q(x, y, j) 12 . 

Similarly, the cross-spectrum between Is(t) and V(x, t), denoted by Siv(X, j), is 

Siv(X, j) = S{r(x, y, j) , 

S~t) 1 Q(x, y, j) 12 

(4.40) 

(4.41 ) 

( 4.42) 

( 4.43) 
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Thus, using equation A5, the expression for the optimal filter can be derived in the frequency 

domain as 

S{r(x, y, f) 
(4.44) 

S{r(x, y, f) + Sy(x, f) 

and the mean-square error £ for the signal estimation task is 

£ = 100 
df Ss(f) Sy(X, f) . 

-00 S{r(x, y, f) + Sy(X, f) 
(4.45) 

Notice that the computation of £ requires the knowledge of only the signal and noise spectra 

(Ss(f) and Sn(f) respectively) and the Green's function g(x, y, t) of the cable. We assume 

that the input Is(t) is a white, band-limited signal with bandwidth Bs and variance a;. 
This implies that the signal spectra Ss(f) is flat over the frequency range [ -Bs, Bs land 

zero elsewhere, 

{ 

(T2 

Ss(f) = fIt, 
0, 

I f I ::; B s , 
( 4.46) 

otherwise. 

Substituting for equation 4.46 in equation 4.45 gives 

£ = a; rEs df Sy(X, f) . 
Bs io S{r(x, y, f) + Sy(x, f) 

(4.4 7) 

As in Appendix A, the coding fraction can be defined as 

(4.48) 

The coding fraction ~ is an index of the efficacy in the signal estimation task; ~ = 1 implies 

perfect reconstruction, whereas ~ = 0 implies performance at chance. We can also define a 

frequency-dependent signal-to-noise ratio SN R(x, y, f), which is a ratio of the signal and 

noise power at frequency f, 

SN R( f) = S{r(x, y, f) 
x,y, Sy(x,f) . (4.49) 
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This allows us to express ~ as 

~ = ~ rBs df SNR(x,y,1) . 
Es Jo 1 + SN R(x, y, 1) 

(4.50) 

If SN R(x, y, 1) monotonically decreases with frequency, for a fixed amount of input power 

a~, the coding fraction ~ decreases with the input bandwidth E s , i.e., the reconstructions 

become poorer as the signal bandwidth increases. For an infinite cable, the signal component 

of the voltage fluctuations Sy (x, y, 1) depends only on the relative electrotonic distance 

L = Ix - yl/ A between the input and measurement locations (y and x respectively) and 

not on their absolute values. Since the signal power attenuates with L, whereas the noise 

power is constant over the length of the cable, SN R(x, y, 1) (consequently 0 decreases 

monotonically with L. 

We can regard the signal estimation task as an effective continuous communication 

channel in the information theoretical sense (Fig. 4.3A). Is(t) denotes the input to the 

channel, whereas is(t), the optimal linear estimate obtained from V(x, t), denotes its output. 

The effective additive noise added by the channel can be denoted by in(t). This channel 

model allows us to compute the mutual information between Is(t) and V(x, t). If the input 

Is(t) is Gaussian and the voltage noise Vn(x, t) can be assumed to be Gaussian (see Chapter 6 

for conditions when this assumption holds), the membrane voltage V(x, t) is also Gaussian 

and the mutual information between them is given by (Shannon, 1949) 

I [Is(t); V(x, t) 1 ~1°° df I [Svv(X, 1)] 
2 -00 og2 Sy(x,1) , 

~1°°dfl [l+ Sy
(x,y,1)] 

2 -00 og2 Sy(f) 
(in bits/sec). (4.51) 

In terms of SN R(x, y, 1) and the bandwidth E s , the mutual information can be expressed 

as 

11Bs 

I [Is(t); V(x, t) 1 = - df log2 [1 + SN R(x, y, 1) 1 
2 -Bs 

(in bits/sec). 

(4.52) 
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The capacity of a communication channel is defined as the maximum amount of infor-

mation that can be transmitted across it. If the noise properties of the system are given, 

we are left to vary only the properties of the input signal to achieve maximal information 

transfer. It is known that when the noise is additive and Gaussian, the mutual information 

is maximized when the signal itself is Gaussian (Cover & Thomas, 1991). Since a Gaussian 

process is completely specified by its power spectral density, we need to find the optimal 

input power spectrum which maximizes I. This optimization is well-defined only when 

we impose some constraints on the input spectra, since I can be made arbitrarily high by 

choosing an infinite power input signal. Thus, we assume that the input is both power 

and bandwidth limited which is equivalent to saying that the input spectra satisfies the 

following constraint. 

f
Bs 

-Bs df Ss(f) = 0-; , (4.53) 

where 0-; is the input variance (power) and Bs denotes the input bandwidth. The capacity 

of the estimation channel can be formally defined as 

f
Bs 

C = argmax I [Is(t); V(x, t)] such that df Ss(f) = 0-; . 
ss(J) -Bs 

(4.54) 

We express SN R(x, y, f) as a ratio of the input spectrum Ss(f) and an effective noise power 

spectral density denoted by Sen (f), 

where 

Ss(f) 
SNR(x,y,f) = Sen (f) , 

This allows us to rewrite I [Is(t); V(x, t)] in equation 4.52 as 

1 fBs [Ss(f) ] 
I[Is(t);V(x,t)] = 2 -Bs df log2 1+ Sen(f) 

(4.55) 

(4.56) 
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Setting up the optimization problem as a Lagrange multiplier problem, we need to maximize 

the following functional: 

1 fBs [Ss(f) ] fBs 
F(Ss, l/) = "2 df 10g2 1 + S (f) - 1/ df Ss(f) , 

-Bs en -Bs 
(4.57) 

where 1/ is a Lagrange multiplier corresponding to the power constraint. A simple exercise 

in calculus of variations (Courant & Hilbert, 1989) reveals that at the extrema of F(Ss, 1/), 

the following equation is satisfied: 

where 

{

X, for X ~ 0, 
lxJ+ = 

0, for x < o. 

The Lagrange multiplier 1/ can be determined by solving 

2 o-s . 

(4.58) 

(4.59) 

(4.60) 

The optimal way to distribute the available signal power is to transmit higher power at 

frequencies where the noise power is low and lesser or even zero power at frequencies for 

which the noise power is large. This procedure is graphically illustrated in Fig. 4.3B. 

Thus, when the effective noise spectrum is low-pass (high-pass respectively), the optimal 

input signal spectrum is high-pass (low-pass respectively). Those frequencies for which 

equation 4.58 can be satisfied without violating the power constraint (equation 4.53), the 

sum of the signal and noise power is constant. This is often referred to as the "water-

filling" strategy (Cover & Thomas, 1991). By definition, the input power spectrum is non­

negative (Ss(f) ~ 0) and so equation 4.58 cannot be satisfied for all frequencies in general, 

especially if the available input power 0-; is small. Let,6.s denote the set of frequencies, 

{f I -Bs :S f :S Bs, 1/1/ - Sen(f) ~ O}, which is also referred to as the support of Ss(f)· 
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The capacity of the estimation channel can be formally expressed as 

c = ~ is df log2 [Se:(J)] (in bits/sec). (4.61) 

4.6 The Signal Detection Paradigm 

We now consider the problem of detecting the presence of a synaptic input (in the form 

of a unitary synaptic event) from measurements of the membrane voltage Vm(x, t) (over a 

period 0 ::; t ::; T) at the location x along the length of the cable. The membrane voltage 

corresponds to either the noise process Vn(x, t) (denoted by hypothesis Ho) or to a noisy 

filtered version of the EPSC (denoted by hypothesis Hd. As before, let X and Y be binary 

variables denoting occurrence of a presynaptic spike and the decision respectively. Thus, 

X = 1 if a spike occurred, else X = O. Similarly, Y = 1 expresses the decision that a spike 

occurred. The binary signal detection problem can be formally expressed as 

where 

Ho: Vm(x, t) 

HI : Vm(x, t) Vs(x, t) + Vn(x, t), 

Noise 

Signal + Noise 

1 rt I I I 

Vs(x, t) = G Jo dt g(x, y, t - t ) Is(t ) (4.62) 

is the EPSP waveform given by the convolution of the EPSC Is(t) = Ipeak t/tpeak exp(1 -

t/tpeak) with the Green's function of the cable. The false alarm (F) and miss probabilities 

(M) are defined as 

PF = Prob [Y = 1 I X = 0], PM = Prob [Y = 0 I X = 1] . 



89 

A Estimation Channel 

f\.. 

~IS(t~ 
I n{t) 
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E 
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Noise 1 . P Noise 
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Figure 4.3: Channel Models for the Signal Estimation and Signal Detection 
Paradigms. A: Effective communication channel model for the signal estimation task. The 
injected current Is (t) represents the input to the channel and the optimal linear estimate is (t) de­
rived from the membrane voltage V(x, t) represents the channel output. in(t) = is(t) - Is(t) is the 
equivalent additive noise introduced by the channel. B: Graphical demonstration of the "water­
filling" algorithm used to compute the channel capacity for signal estimation. Sen (f) represents 
the effective current noise spectral density due to the membrane noise sources (referred back to the 
input), v represents the Lagrange multiplier (equation 4.58), and Ss(f) represents the optimal signal 
power spectrum which maximizes channel capacity. For the given amount of signal power (an, the 
optimal strategy is to transmit higher power at frequencies where the noise power is low and vice 
versa, such that, wherever possible, the sum of the signal power and noise power is a constant (l/v). 
C: Effective binary communication channel model for signal detection where the goal is to detect 
the presence of a synaptic input from the voltage V(x, t) at a distance X from the input location. 
Binary random variables M and D denote the input and output of the channel respectively. False 
alarm PF and miss error PM rates of the optimal detector represent the cross-over probabilities of 
the binary detection channel. 
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The probability of detection error Pe is given by 

Pe = Po Pp + (1 - po) PM , (4.63) 

where Po and 1 - Po are prior probabilities of occurrence of Ho and HI respectively. The 

solution of the signal detection problem has been presented in Appendix C. By analogy, 

the membrane voltage Vm(t) here corresponds to the signal s(t). The decision rule which 

minimizes Pe is given by 

(4.64) 

where r is the output of the matched filter derived in Appendix C and e is the threshold 

chosen for optimal performance. Since r is a Gaussian random variable, it can be easily 

shown that its conditional means and variances (under Ho and HI) are given by 

J-lo = 0; J-ll 
~ 100 

df 1 Nsyn 9(x, y, 1) Is (f) 12 
G2 -00 S!J(f) 

(4.65) 

~ 100 df 1 Nsyn 9 (x, y, 1) Is (f) 12 
G2 -00 S!J(f) 

(4.66) 

where 15(f) = F{ls(t)} is the Fourier transform of the EPSC pulse and Nsyn denotes the 

number of parallel synapses that are activated by a pre-synaptic action potential. Here 

we assume that the synaptic transmission is perfectly reliable and the synapses respond 

synchronously to the action potential. Thus, if there are Nsyn synchronous synaptic con­

nections between the dendrite and the pre-synaptic terminal, the current injected at the 

synaptic location due to a pre-synaptic action potential is scaled by a factor Nsyn . For an 

investigation of the information loss due to synaptic unreliability, see Chapter 2. 

The optimal value of the threshold e depends on the standard deviation (J and the prior 

probability Po. However, for equi-probable hypotheses (Po = 1 - Po = 0.5), the optimal 

threshold e = (J-lO + J-lI) /2 = (J2/2 and the minimum probability of error is 

(4.67) 
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The probability of error Pe ranges between P e = 0, which implies perfect detection and 

Pe = 0.5 which implies chance performance (pure guessing). P e decreases monotonically 

as (J varies from (J = 0 to (J = 00. In the signal detection task, (J is equivalent to d' 

in psychophysics (Green & Swets, 1966) and plays the role that 8N R does in the signal 

estimation task. 

We can regard the overall decision system as an effective binary communication channel 

in the information theoretical sense. We denote the input and output of this channel by the 

binary random variables 8 and D, both of which assume values in the set {Ho,Hd. The 

effective binary channel model corresponding to the detection task is shown in Fig. 4.3C 

with the errors PF and PM denoting the channel cross-over probabilities. In addition to Pe , 

the system performance can also be assessed by computing the mutual information 1(8; D) 

between 8 and D. For the binary detection channel, 1(8; D) can be computed as in Cover 

& Thomas (1991) 

(4.68) 

where H(x) denotes the binary entropy function, 

H(x) = -[x log2(x) + (1 - x) log2(1 - x)], 0 :S x < 1. ( 4.69) 

For equi-probable hypotheses 

1(8; D) = 1 - H(Pe ) (in bits). (4.70) 

Since 8 and D are binary random variables, 0 :S 1(8; D) :S 1. As before, 1(8; D) = 1 

bit implies perfect detection with no information loss whereas 1(8; D) = 0 implies chance 

performance. 
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4.7 Results 

We now use the formalism developed above to assess the efficacy of information transfer in 

an infinite, 1-D linear cable. As a first approximation, this can be regarded as a model of a 

weakly-active apical dendrite of a cortical pyramidal cell. Thus, the biophysical parameter 

values we shall use are obtained from the literature on pyramidal neuron models (Mainen & 

Sejnowski, 1998). In addition to estimating signal and noise magnitudes and studying the 

dependence of the different measures of signal fidelity (~, Pe , 1) on the electrotonic distance 

distance X, we will also explore the effect of varying various biophysical parameters on 

these quantities. 

4.7.1 Subthreshold Noise in a Weakly-Active Dendrite 

The membrane noise sources we consider are thermal noise (due to thermal agitation of 

charge carriers), channel noise (due to stochastic channel openings/closings of K+ and 

Na+ voltage-gated ionic channels) and synaptic noise (due to the spontaneous background 

firing activity of presynaptic neurons). A discussion of the origins of these noise sources 

and their characterization was carried out in Chapter 3. Here we only make use of the 

expressions of the power spectral densities of the current noise sources, referring the reader 

to Chapter 3 for details. For Vrn ;:::;; Vrest, power spectral densities of these channel noise 

sources (K+ , Na+) are approximately Lorentzian ([1 + (f / fc)2]-1). When the EPSC is 

modeled as an 0: function and the background activity assumed to be a homogeneous Pois­

son process, the power spectral density of the synaptic background noise is shaped like a 

double Lorentzian ( [1 + (f / fc)2]-2). 

Using biophysical values for the K+ and Na+ channel densities and kinetics, synaptic 

innervation density, EPSC parameters and so on, obtained from the literature on the weakly­

active properties of apical neocortical dendrites (Mainen & Sejnowski, 1998) (parameter 

values are summarized in the caption of Fig. 4.4), we computed the magnitudes of the 

different noise sources and quantified the corresponding voltage noise in a 1-D infinite cable 

(Fig. 4.4). The normalized auto-correlation functions of the noise sources and the Green's 

function of the cable are compared in Fig. 4.4A. Notice that the temporal spread of the 
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noise sources is much smaller (except for K+ noise) than the Green' function of the cable. 

Thus, the noise spectra can be assumed to be approximately flat over the bandwidth of the 

cable thereby justifying the white noise approximation. The noise spectra are compared in 

Fig. 4.4B and the standard deviations of the voltage noise CYv due to different sources are 

compared in Table 4.1. Notice that for the parameter values considered, the magnitude 

of voltage fluctuations CYv is on the order of 1.4 m V, which is small enough to justify the 

perturbative approximation. Thus, in general, the magnitude of the voltage fluctuations 

can be used to test the validity of the approximation. It can also be seen that synaptic 

background activity is the dominant source of membrane noise. Thermal noise is almost 

negligible (at least up to 1000 Hz) in comparison to the other sources. Experimentally, these 

spectra can be computed by voltage-clamping the dendrite around v;.est and using different 

pharmacological manipulations to isolate individual contributions, e.g., TTX to eliminate 

Na+ noise, TEA to eliminate K+ noise and so on (see Chapter 5). These spectra can then 

be compared with analytical expressions corresponding to different membrane noise sources 

derived in Chapter 3 and (DeFelice, 1981). 

The power spectral density of the voltage noise in an infinite cable due to these dis­

tributed sources (using equation 4.28) is shown in Fig. 4.4C. The power spectral density of 

the contribution due to thermal noise alone is also shown alongside for comparison. Notice 

that the voltage noise spectrum is a monotonically decreasing function of frequency since 

the active membrane conductances are modeled as pure conductances. However, in general, 

the small-signal membrane impedance due to voltage and time dependent conductances can 

exhibit resonance and give rise to band-pass voltage noise spectra (Koch, 1999). 

4.7.2 Signal Propagation in a Weakly-Active Dendrite 

The filters responsible for shaping the synaptic input signal are scaled versions (1/G) of 

the Green's function of the infinite cable and are shown in Fig. 4.5A. Notice how the filter 

gain and bandwidth change with distance. At small distances from the input location (since 

g(x, y, t) is symmetric, only the relative electrotonic distance X matters), the filter is sharply 

peaked and has a high gain. However, at larger distances, the filter becomes broader and 
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Figure 4.4: Subthreshold Membrane Noise in a Dendritic Cable. 
A: Comparison of the normalized correlation functions GJ (t) / GJ (0) of the different noise sources with 
the autocorrelation of the Green's function of an infinite cable, for parameter values summarized 

below. B: Comparison of current power spectra SJ(f) of the different membrane noise sources, viz., 
thermal noise, K+ channel noise, Na+ channel noise and synaptic background noise as a function of 
frequency (up to 10 kHz). C: Voltage spectrum Sv(f) of the noise in a weakly-active dendrite due 

the influence of the above sources. Power spectrum of the voltage fluctuations due to thermal noise 
alone SVth (1) is also shown for comparison. Summary of the parameters adopted from Mainen & 
Sejnowski (1998) to mimic the apical dendrite of a layer V pyramidal neuron: Rm = 40 kncm2 , Gm 
= 0.75 /-LF / cm2

, ri = 200 ncm, d (dendritic diameter) = 0.75 /-Lm, 'TJK = 2.3 channels per /-Lm, 'TJNa 
= 3 channels per /-Lm, 'TJSyn = 0.1 synapses per /-Lm with backgrounds activity modeled as a Poisson 

process with mean firing rate An = 0.5 Hz, EK = -95 mY, ENa = 50 mY, ESyn = 0 mY, EL = -70 
mV,I'K = I'Na = 20 pS. Refer to Chapter 3 for details. 
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Noise Type av 

Thermal 0.012 mV 

K+ 0.459 mV 

Na+ 0.056 mV 

Synaptic 1.316 mV 

Total 1.395 mV 

Table 4.1: Subthreshold Noise Magnitude in an Infinite Cable. 
Comparison of the magnitudes of voltage noise contributions due to different membrane noise sources 

in our weakly-active infinitely long dendrite. For parameter values, see the caption of Fig. 4.4. 

has lower gain owing to the fact that some signal is lost due to leakage through the trans-

membrane resistance. The increase in temporal spread of the filter with distance is due to 

the increased capacitance that needs to be charged up as the measurement location moves 

further away from the input location (X increases), causing the effective time constant of 

the filter to increase. 

The voltage change due to a synaptic input (in the form of an EPSC pulse) are obtained 

by convolving the EPSC waveform (shown in the inset) with g(x, y, t)jG. The membrane 

voltage depolarizations (from v;.est) due to the delivery of a unitary EPSC at different 

distances are shown in Fig. 4.5B. The peak of the depolarization occurs at the synaptic 

location and is about 2.2 m V. Notice that at X = 0, the EPSP is almost identical in 

shape to the excitatory post-synaptic current (EPSC) waveform, implying that the filtering 

due to the cable is minimal. However, at larger distances, the EPSP becomes smaller in 

magnitude and its temporal spread increases. For both these figures, distances are expressed 

in dimensionless electrotonic units, where A is around 550 fLm. 

We also examine the dependence of variance of the voltage fluctuations a~ due to the 

injection of a random current input on the electrotonic distance X. The current Is(t) is 

in the form of a Gaussian random process of variance a;. Its power spectrum is assumed 

to be spectrally flat over a bandwidth Bs (inset of Fig. 4.5C.) The standard deviations 

of the resulting voltage fluctuations av as a function of X, for different values of B s , are 

shown in Fig. 4.5C. Notice that except for signals with small bandwidths (e.g., 10 Hz in 



96 

the mentioned figure), where the membrane voltage fluctuations might be strong enough to 

generate action potentials, our weakly-active assumption is not violated for the most part. 

Thus, by measuring the magnitude of the resulting fluctuations for a set of biophysical 

parameters, one can easily verify the validity of our perturbative approximation on a case­

by-case basis. Like the peak of the EPSP above, ay also decreases monotonically with X, 

representative of the fact that the signal component of the voltage attenuates with distance 

from the input location. Since the cable acts like a low-pass filter, higher frequencies are 

transmitted less effectively and so ay decreases with Bs (for a fixed as). This allows us 

to intuitively predict that the reconstructions of Is(t) from V(t) should get poorer as Bs 

increases. 

We are now equipped with all the information we need to estimate the information 

loss of the synaptic signal due to electrotonic attenuation and the membrane noise sources, 

under the two coding paradigms. 

4.7.3 Efficacy of Signal Estimation 

The effective communication channel corresponding to the estimation task is shown in 

Fig. 4.3A. The channel input is the random current Is(t) and the channel output is the 

estimate is(t), obtained from V(x, t) after convolution with the optimal linear filter h(t). 

The effective noise introduced by the channel is the difference, In(t) = is(t) - Is(t). If 

we assume that Is (t) is a Gaussian process with variance a;, the channel reduces to the 

classical additive white band-limited Gaussian noise channel (Cover & Thomas, 1991). It 

is straight forward to compute the mutual information and capacity for this channel model 

(equation 4.52). 

The coding fraction ~ and the mutual information I[Is(t); V(t)] as functions of X are 

plotted in Fig. 4.6A and Fig. 4.6B respectively. ~ is close to one for short distances but 

falls rapidly as X increases because the signal attenuates with distance. Moreover, the rate 

of decay of ~ with respect to X depends on Bs. Additionally, if the signal-to-noise ratio is a 

monotonically decreasing function of frequency (equivalently, signal power spectrum decays 

faster than the noise spectrum), ~ also decreases with Bs. Similarly, the mutual information 
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synaptic potentials in response to an unitary EPSC input (inset: calibration 1 pA, 2 msec) at 
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in A. C: The standard deviation of voltage fluctuations (Iv in response to a Gaussian white band­
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standard deviation (Is = 5 pA plotted as a function of X for different values of Bs. 
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I decays monotonically with X. However, its dependence on Bs is slightly more complicated; 

at small distances I increases with Bs but this behavior reverses at larger distances. 

An intuitive explanation for this phenomenon is as follows. The mutual information I 

broadly depends on two quantities, the signal-to-noise ratio (SN R) and the input bandwidth 

CBs). In general, SN R is a function of frequency but for the moment let us assume that 

it is a frequency-independent constant. The expression for I in terms of SN Rand Bs (a 

simplified version of equation 4.52) is given as I = Bs log(l + SN R). SN R is inversely 

proportional to Bs (SN R = /'i,/ Bs , where /'i, is the constant of proportionality) since for 

a fixed input power, if we increase B s, the signal power per unit frequency (and thus 

SN R) decreases. For small values of X, the signal power is possibly much larger than the 

noise power and the S N R values for different Bs are large enough to lie in the saturating 

regime of the logarithm. Thus, for small X, the bandwidth component of the product 

(I = Bs log(l + SN R)) dominates and I increases with Bs. On the other hand, for large 

X, the magnitude of S N R is small, which implies Bs log( 1 + S N R) :::::; Bs S N R = /'i,. Thus, 

one expects I to be independent of Bs for large X. The above analysis is valid exactly when 

the SNR does not depend on f (signal and noise spectra vary with f in a similar manner), 

which is not true in our case since the signal and noise spectra have different shapes. In our 

case, for large X, the product is marginally larger for a lower value of Bs as opposed to a 

higher value. This causes the slight reversal in I for large X. 

We also numerically compute the information capacity for signal estimation using the 

"water-filling" algorithm, maximizing I by choosing the optimal Ss(f) at each distance X 

(procedure illustrated in Fig. 4.7). In reality this is biophysically unrealistic since the 

optimal Ss (f) depends on X, i. e., the optimal signal power distribution is different for 

synaptic inputs received at different input locations. However, this allows us to compare 

performance for a particular choice of input spectra Ss(f) (white band-limited spectrum, in 

our case) against the best achievable performance. We find that for the parameter values 

we consider, the capacity C is not significantly different in magnitude from I computed 

using a white band-limited input spectrum. I is indistinguishable from C for small X (high 

S N R) and is not significantly different in absolute terms for large X. As an example, the 
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maximum difference between C and 1 (as = 5 pA, Bs = 100 Hz) is on the order of 8.5 

bits/sec for X ~ 1. However, the magnitudes of C and 1 for X ~ 1 are about 22.4 bits/sec 

and 13.9 bits/sec respectively, and so as a percentage, the capacity is about 100% higher. 

4.7.4 Efficacy of Signal Detection 

The effective binary communication channel corresponding to the detection task is shown in 

Fig. 4.3C. The input to the channel is a random variable denoted by S which corresponds 

to the binary nature of the presence or the absence of an EPSC. Since the goal in the 

detection task is to detect whether or not such an event occurred, the output of the channel 

corresponds to this binary decision denoted by D. The cross-over probabilities of this 

detection channel are given by PF and PM. 

The probability of error Pe and the mutual information 1(S; D) for the detection task are 

plotted in Fig. 4.BA and Fig. 4.BB respectively. Pe varies from Pe = 0 (perfect detection) 

for X = 0 to Pe = 0.5 (pure guessing) as X ~ 00. Correspondingly, 1(S; D) varies from 1 to 

o bits. We also vary the number of synchronous synapses N syn , assumed to deliver EPSCs 

simultaneously in response to a pre-synaptic action potential. As can be seen from the 

figures, there is a critical distance before which an EPSC can be detected almost perfectly. 

However, once this threshold distance is exceeded, performance deteriorates considerably. 

This critical distance depends on the signal-to-noise ratio of the detection task, and increases 

with N syn . This threshold behavior is due to the non-linear threshold decision rule of the 

signal detection task. 

Thus, we find that considerations of signal-to-noise limit the distance over which synaptic 

signals can be reliably transmitted in noisy, weakly-active, dendritic cables. This is true for 

both the paradigms we consider here, though the threshold behavior is more pronounced 

for detection. 

4.7.5 Comparing Cable Theory and Information Theory 

In order to analyze and characterize the role of neurons as information-transmission and 

processing devices, we argue that the relevant metrics should not only be quantities like 
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Figure 4.6: Performance in the Signal Estimation Task. 
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5 pA). Parameter values are identical to those in Fig. 4.5. 
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Figure 4.7: Channel Capacity in Signal Estimation Using the Water-Filling Al­
gorithm. Graphical algorithm used to compute the channel capacity for the estimation task at 
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denotes the effective noise Sen (f) , the broadly dashed line represents the Lagrange mUltiplier l/v 

(equation 4.58), the dot-dashed curve represents the optimal signal power spectrum which maximizes 
channel capacity Ss(f) and the narrowly dashed line represents the flat band-limited spectrum Ssf(f) 
(equation 4.46). A: For X = 0, Sen(f) is a low-pass spectrum, the optimal Ss(f) is high-pass and 
is non-zero over the entire available bandwidth (Bs = 100 Hz) since there is sufficient input power 
available (us = 5 pA). The channel capacity C and the mutual information I for a flat input spec­

trum Ssf are equal to 328 bits/sec. B: For X = 0.5 (C, I;::::j 88 bits/sec), the band-pass nature of 
Sen (f) reflects attenuation and filtering due to the cable. The optimal Ss (f) has a complementary 

shape and is non-zero over the entire bandwidth. C: For X = 1.0 (C = 22.4 bits/sec, I = 13.9 
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faster than the noise spectrum. Sen (f) is high-pass and due to signal attenuation, the magnitude of 
the noise is large compared to 0';. Equation 4.58 can only be satisfied over a limited portion of the 
available bandwidth. Parameter values are identical to those in Fig. 4.5. 



102 

A 
"': 0.5 r----.--...------.--= ... ::_:::::-: .==-: _=== . .;-:::=::!. -::-~._:.~::-.:F-1 ... 
D. ......... ' 
........, ,," ", ... 
I.. 0.4 *' " o // ", 
t:: I ' 

w 0.3 " / 
'to- I " o I " I , 
~ 0.2 I t 

I " 
I " .c I I 

,g0.1 // 
o I,' 
10.. I ' 

N syn = 1 
N syn = 2 
N syn = 3 

D. 0 ~~/~,'~ __ ~ ____ ~ __ ~ ____ ~ __ J 

o 

B 
1 

0.8 -I/) :E 0.6 --C 0.4 
tJ) -- 0.2 

o 
o 

0.5 1.0 1.5 2.0 2.5 3.0 

X 

\ ' , 
I, 
\ ' • I, 
I' • I. 
I' . 
I, 
I', 
I , 
I ' , 
\ , 

\ " \ ' 
\ " \ ' 

\ '-
\ I 

, I, 

.... " 
...... -:.. ......... -

0.5 1.0 1.5 

X 

N syn = 1 
N syn = 2 
Nsyn = 3 

2.0 2.5 3.0 
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to those in Fig. 4.5. 
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electrotonic length, attenuation of the EPSP peak or the charge delivered, and so on, which 

are motivated by physiology and an extensive application of cable theory over the last 40 

years, but should also include information theoretical measures. As an application of our 

approach we have considered different information theoretical quantities like ~, Pe , I and 

so on and examined how they vary with X. 

In order to contrast our approach with that of classical cable theory, we compared 

some of our metrics against physiologically relevant quantities. In Fig. 4.9A, we plot the 

standard deviation of the voltage fluctuations av in response to white band-limited noise 

injection as a function of X for different input bandwidths Bs. The standard deviations 

are normalized by their values at X = 0 (av (0)) since their absolute values depend on 

Bs. The same procedure is carried out for the mutual information I [Is(t); V(x, t)], shown 

in Fig. 4.9B. It is clear that, for a given B s , I decays relatively faster with X than av. 

Moreover, the rate of decay with respect to X depends on Bs and is higher for I than av. 

Thus for small X, even though I is higher for higher bandwidths (as seen in Fig. 4.6C), 

the rate of loss of information with distance is higher for signals with larger bandwidths. 

This can be intuitively expected since for large X the cable bandwidth is small and higher 

Bs signals have a greater portion of their power outside the bandwidth of the cable. 

We also compared the mutual information I(3; D) in the binary detection task with the 

peak of the synaptic potential and the steady-state voltage attenuation (e- X ) in response 

to DC current injection in Fig. 4.9C. It is clear that for small distances, I(3; D) is almost 

constant even though the peak of the EPSP decays faster than e-x . This is because the 

magnitude of the EPSP close to the postsynaptic location is large (around 2.2 mV at X = 0, 

Fig. 4.5B) compared to the level of the ambient noise (av = 1.395 mY, Table 4.1) and 

can be detected almost perfectly. However, as soon as the EPSP becomes smaller than 

the noise, performance drops precipitously, much more steeply than the rate of decay of 

the peak post-synaptic potential. This threshold distance depends on the magnitude of the 

EPSP at X = 0 in comparison to the noise and is a measure of the signal-to-noise ratio 

of the detection task. This threshold behavior is quite characteristic of non-linear systems. 

The threshold nature of PM radio reception is a classic example of this phenomenon. 
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Figure 4.9: Comparison of Classical Cable Theory vs. Information Theory. 
A: Standard deviation of voltage fluctuations av and B: mutual information 1[1s(t); V(t)] for the 

signal estimation paradigm as functions of the electrotonic distance X from the input location for 

different input bandwidths Bs (as = 5 pA). For ease of comparison, all curves are normalized with 

respect to their values at X = O. I is much more sensitive to Bs than av. C: Comparison of the 
dependence of the normalized peak of the EPSP and the mutual information in the signal detection 
paradigm 1(5; D) (Nsyn = 1) on X. The normalized steady-state electrotonic attenuation due to 
DC current injection is also shown. The detection performance is close to ideal for small X but after 
a certain threshold distance, performance drops significantly. 
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4.7.6 Dependence on Biophysical Parameters 

There are several parameters in our analysis and it is neither prudent nor necessary to 

consider the effect of varying all of them, in multitude of different combinations possible, 

on the different variables of interest. Since the parameters belong to different equivalence 

classes (varying parameters within a class has the same effect on the variable of interest), 

it suffices to explore dependence with respect to the few abstract parameters characteristic 

of these classes instead of varying all the individual parameters. As a simple example to 

demonstrate this, consider the expression for the steady state synaptic conductance, 

(4.71) 

where TJSyn is the synaptic density, .An is the background mean firing rate of pre-synaptic 

Poisson neurons, gpeak is the peak synaptic conductance of a unitary synaptic event (mod­

eled by an a function) and tpeak is the time when the peak is reached. Since gSyn depends 

linearly on all the parameters in the product above, scaling the magnitude of any of the 

above parameters by a factor TJ causes gSyn to be scaled by a corresponding factor TJ. Thus, 

these parameters belong to the same class (with respect to gSyn) and can be represented by 

an abstract scale factor TJ. 

First we consider the effect of simultaneously varying different parameters on the rest­

ing properties of the dendrite viz., Vrest, G, T and.A. We vary the abstract parameters 

corresponding to K+ , Na+ and synaptic conductances (except gL) by the same factor. We 

denote this scale parameter TJ. Thus, TJ = 0 corresponds to a purely passive cable with only 

leak channels, whereas TJ = 1 corresponds to the nominal values of the parameters, obtained 

from the literature, that we have used so far. The results of this exercise are summarized 

in Fig. 4.10A. Instead of using absolute values for the quantities of interest, we normal­

ize them with respect to their corresponding values at TJ = O. Notice that Vrest changes 

(becomes more positive) by about 4%, .A changes (decreases) by about 9% and T and G- 1 

change (decrease) by about 17%, as TJ is varied from 0 to 1. Despite the non-linearities due 
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to the active conductances K+ and Na+ , it is noteworthy that the quantities vary almost 

linearly with ry. This further justifies our perturbative approximation. 

The effects of parameter variation on the coding fraction ~ and the mutual information 

I [Is(t); V(t) 1 is explored in Fig. 4.10B and Fig. 4.10C respectively. Here, we allow 

parameters corresponding to the different noise sources to change individually (ry goes from 

o to 1), while maintaining the others at their nominal values, in order to determine which 

noise source is dominant in determining performance. It is clear from the figures that the 

system performance is most sensitive to the synaptic noise parameters. The coding fraction 

~ (for X = 0.18, corresponding to a distance of 100 p,m from the input location) drops from 

around 0.96 in the absence of synaptic noise to around 0.78 when synaptic parameters are at 

their nominal values. This effect is even more dramatic for I which drops from around 480 

bits/sec to around 225 bits/sec. The sensitivity to parameters associated with potassium 

channels is small and is almost negligible for N a + channel parameters. 

4.8 Discussion 

In this chapter, we investigated how neuronal membrane noise sources influence and ul­

timately limit the ability of one-dimensional dendritic cables to transmit information. In 

Chapter 3, we characterized some of the dominant sources of membrane noise (ion-channel 

fluctuations and background synaptic activity) that influence information processing of a 

signal as it propagates electrotonically over the neuronal membrane. By assuming that 

the conductances fluctuations due to these noise sources are small compared to the rest­

ing conductance of the membrane, we were able to derive a stochastic version of the cable 

equation satisfied by the membrane voltage fluctuations. We used this to derive analyti­

cal expressions for statistical properties of the voltage fluctuations (auto-covariance, power 

spectrum) in weakly-active dendrites in terms of the current noise spectra. Although we 

assumed arbitrary forms for the nature and properties of the synapses and the ion channel 

kinetics, our analysis can be readily generalized to include a variety of synapse types and 

ion channels governed by discrete-state Markov kinetic schemes. 



107 

A 
1 

0.96 

{ 0.92 

0.88 -- Vrest 
-1 

-<>--- 't, G 
0.84 ~A 

0 0.2 0.4 0.6 0.8 
B 11 

->V' - -- Total t: 
0 --+- Syn. 
; -e----K (.) 0.90 co ~Na 
'--C) 0.85 
t: 

" 0.80 0 
() 

0.75 

C 
0 0.2 0.4 0.6 0.8 

- 11 
(.) 550 
CI) 

.!!! 500 -- Total In 
--+- Syn . .... 

450 :c - -e----K 
0 

400 ~Na -350 t: 

(ij 300 
:::s .... 250 :::s 
::E 200 

0 0.2 0.4 0.6 0.8 
11 

Figure 4.10: Dependence of Subthreshold Noise on Biophysical Parameters. 
A: Dependence of the passive membrane parameters (Vrest, T, ,\) on the channel and synaptic 
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'TJ which varies from 'TJ = 0, corresponding to a completely passive system, to 'TJ = 1 which corresponds 
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C: mutual information I at a distance of X = 100 !tm (X = 0.18) from the input location. Thus, 
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We derived expressions for information theoretical measures, quantifying the information 

loss under the estimation and detection paradigms. In Chapter 2 we made use of these 

paradigms to estimate the information capacity of an unreliable cortical synapse. Thus, 

the present chapter should be seen as a next step in our efforts to understand the problem 

of neural coding in single neurons in terms of the properties of their distinct biophysical 

constituents (the synapse, the dendritic tree, the soma, axon and so on). 

The present analysis can also be viewed within the context of a long-term research 

program to reformulate linear and non-linear cable theory in terms of an information theo­

retical framework. Instead of adopting the classical approach pioneered by Rall (Rall, 1959; 

Rall, 1969a; Rall, 1969b; Rall, 1989) which focuses on the voltage change in response to 

single or multiple synaptic inputs, its effect on the cell body, the initiation and propaga­

tion of action potentials and so on (Jack et at., 1975; Johnston & Wu, 1995; Koch, 1999), 

here we evaluate the ability of biophysical model systems to estimate, detect and transmit 

information-bearing signals. We believe that like any information processing system, neural 

systems need to be analyzed with both the (bio)-physical and the information theoretical 

aspects in mind. For a related approach applied to electrical circuits, see Andreou & Furth 

(1998). 

The novelty of our approach is that it combines classical cable theory with noise analysis 

and information theory in the context of neural coding allowing us to reinterpret results 

from cable theory using information theoretical measures. To be sure, membrane noise 

analysis has a long and successful history. Before the patch-clamp technique was developed, 

membrane noise analysis was traditionally used to provide indirect evidence for the existence 

of ionic channels and obtain estimates of their biophysical properties (DeFelice, 1977). The 

excellent monograph on membrane noise (DeFelice, 1981) contains a thorough treatment 

of different sources of noise in biological membranes, along with an exhaustive review of 

relevant early research in the field. Despite the universality of patch-clamp methods to study 

single channels today, noise analysis remains a useful tool for certain problems (Traynelis 

& Jaramillo, 1998; White et at., 2000). Although most of the tools we use here are derived 

from DeFelice (1981) and the use of the signal estimation and signal detection paradigms 
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is also quite well documented in the literature, to the best of our knowledge, we believe 

that the marriage of these disciplines with a view to develop a reductionist bottom-up 

understanding of neural coding has not been attempted before. 

Our theoretical analyses for a simplified cable geometry reveal that signal transmis­

sion is indeed limited by considerations of signal-to-noise and that information cannot be 

transmitted passively along dendrites over long distances due to the presence of distributed 

membrane noise sources. Our argument needs to be qualified, however, since the effect 

of realistic dendritic geometries and neuronal parameters needs to be more fully explored. 

Given the recent interest in determining the role of active channels in dendritic integration 

(Colbert & Johnston, 1996; Johnston et at., 1996; Yuste & Tank, 1996; Mainen & Sejnowski, 

1998), it seems timely to apply an information theoretical approach to study dendritic in­

tegration. The validity of our theoretical results need to be assessed by comparison with 

experimental data from a well-characterized neurobiological system. Refer to Chapter 5 for 

a summary of our preliminary experimental findings. 

Our analysis makes a strong argument in favor of the presence of strongly active non­

linearities along apical dendrites for the sake of enhancing information transfer. As shown 

in Fig. 4.8, detecting the presence/absence of a synaptic signal over a distance greater than 

one space constant away is extremely difficult when the propagation takes place electrotoni­

cally. While the relevance of biophysical parameters used here to neocortical pyramidal cells 

needs to be examined, our results indicate that noise might limit the ability of extended 

apical dendrites to reliably signal distal events to the spike triggering zone and champions 

the need for "smart" amplifiers in the distal apical tuft that can amplify the signal but not 

the noise (Bernander et at., 1994). Given the critical role of the apical dendrite in deter­

mining the thickness of the cortical sheet (Allman, 1990), it is plausible that signal-to-noise 

considerations also impose a fundamental constraint on the evolution of cortex. 

Since our analysis only requires the Green's function of the linear cable, it can easily be 

extended to complicated dendritic geometries. Morphological reconstructions of biological 

neurons, followed by compartmental modeling can be used to obtain realistic dendritic 

geometries (see Chapter 5). Using an information theoretical formalism to analyze different 
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dendritic morphologies can lead to the development of a graphical technique similar to the 

morpho-electrotonic transform (Zador et at., 1995) to visualize the information transmission 

through the entire dendritic tree. Such a procedure will require the numerical computation 

of the Green's function between different locations along the dendritic tree and the soma. 

The expressions we have derived will allow a quantification of the information loss (in the 

detection/estimation paradigms) between the two locations. We believe that this procedure 

can be used to provide an important graphical abstraction of the dendritic tree from an 

information theoretical standpoint. 
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Table 4.2: List of Symbols for Chapter 3 and Chapter 4. 

Symbol Description Dimension 

IK Single potassium channel conductance pS 

INa Single sodium channel conductance pS 

IL Single leak channel conductance pS 

TJK Potassium channel density channelsll1m2 (patch) 

channels 111m (cable) 

TJNa Sodium channel density channels I 11m 2 (patch) 

channels I 11m (cable) 

TJSyn Synaptic density synapses I 11m 2 (patch) 

synapsesll1m (cable) 

A Steady-state electrotonic space constant 11m 

An Spontaneous background activity Hz 

!7s Standard deviation of injected current pA 

!7v Standard deviation of voltage noise mV 

eh Time constant of sodium inactivation msec 

em Time constant of sodium activation msec 

en Time constant of potassium activation msec 

T, Tm Membrane time constant msec 

~ Normalized coding fraction 1 

A Patch area 11m2 

Bs Bandwidth of injected current Hz 

Cm Specific membrane conductance per unit length Fll1m 

G Total membrane capacitance F 

Gm Specific membrane capacitance I1F Icm2 

GIK Autocorrelation of potassium current noise A 2 111m2 (patch) 

A 2 111m (cable) 

GINa Autocorrelation of sodium current noise A2111m2 (patch) 

A 2 111m (cable) 

G ISyn Autocorrelation of synaptic current noise A 2 111m2 (patch) 

A 2 111m (cable) 

d Cable diameter 11m 
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Symbol Description 

EK Potassium reversal potential 

ENa Sodium reversal potential 

EL Leak reversal potential 

ESyn Synaptic reversal potential 

gK Potassium conductance 

gL Leak conductance 

gpeak Peak synaptic conductance change 

gNa Sodium conductance 

gSyn Synaptic conductance 

G Total membrane conductance 

h"", Steady-state sodium inactivation 

I(S; D) Mutual information for signal detection 

l(1s) V) Information rate for signal estimation 

m"", Steady-state sodium activation 

n"", Steady-state potassium inactivation 

N syn Number of synapses activated by a pre-synaptic spike 

Pe Probability of error in signal detection 

Ta Intracellular resistance per unit length 

Ri Intracellular resistivity 

Rm Specific leak or membrane resistance 

SIK Power spectral density of potassium current noise 

Power spectral density of sodium current noise 

Power spectral density of synaptic current noise 

Power spectral density of thermal current noise 

Sv Power spectral density of membrane voltage noise 

Dimension 

mY 

mY 

mY 

mY 

S 

S 

pS 

S 

S 

S (patch) 

S/p,m (cable) 

1 

bits 

bits/sec 

1 

1 

1 

1 

D./p,m 

D.cm 

D.cm2 

A 2 /Hz p,m 2 (patch) 

A 2 /Hz p,m (cable) 

A 2 /Hz p,m2 (patch) 

A 2 /Hz p,m (cable) 

A 2 /Hz p,m2 (patch) 

A2/Hz p,m (cable) 

A 2 /Hz p,m2 (patch) 

A 2 /Hz p,m (cable) 

y2/Hz (patch) 

y2/Hz p,m (cable) 
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Symbol Description Dimension 

Time msec 

tpeak Time-to-peak for synaptic conductance msec 

T Normalized time (tiT) 1 

V Membrane potential relative to Vrest mV 

Vrn Membrane potential mV 

v;.est Resting potential mV 

x, y Position pm 

X Normalized distance (x I >..) 1 
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Chapter 5 

Data 

Analysis of Preliminary Experimental 

5 .1 Introduction 

In this chapter we propose experiments that can be performed to estimate subthreshold 

membrane noise in real neurons and validate the theoretical analysis in the previous chap­

ters. We also summarize preliminary findings obtained upon analysis of data collected in 

the process of a two year long collaboration with Idan Segev's and Yossef Yarom's research 

groups at the Hebrew University of Jerusalem in Israel. The experiments were performed 

by Professor Yossef Yarom and his graduate students. 

The analytical framework described in Chapter 3 was derived for simplistic models under 

a variety of assumptions, e.g., the dendrite was modeled as an infinite I-D cable, voltage 

fluctuations were assumed to be small enough to perform linearization, channel kinetics 

were assumed to be of Hodgkin-Huxley type and so on. Closed-form analytical expres­

sions derived for these simplified models provide a general framework for characterization 

of biophysical noise sources in real biological neurons. We believe that a direct comparison 

between theoretical predictions derived for these simplified models and experimental mea­

surements can help to refine the space of parameter values relevant to the design of more 

realistic compartmental models which have a large number of degrees of freedom. 

We envision a broad interdisciplinary research program which combines theoretical, com­

putational and experimental approaches to study the limits imposed by biophysical noise 

sources on neural information processing (see Fig. 5.1). The arrows indicate the interac­

tions between theory, modeling and experiments and not a strict chronological progression. 

Existing statistical tools (e. g., signal detection and estimation theory, information theory) 

can be combined with classical cable theory and experiments involving the measurement 

of subthreshold noise to gain insight into the ability of neurons to detect or estimate the 
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synaptic inputs that impinge at different locations on the dendritic tree in the presence 

of noise. Determination of the performance during these statistical tasks allows a direct 

assessment of influence of noise on limiting the information capacity of biological neurons. 

5.2 Proposed Plan of Experiments 

The proposed experiments we describe below have been designed to characterize three 

sources of neuronal noise, noise intrinsic to the stochastic nature of synaptic transmission, 

noise resulting from stochastic transitions of voltage-gated ion channels and noise due to 

spontaneous presynaptic bombardment. Neurons of different types and sizes, obtained from 

different cortical layers will be recorded from to study the effect of neuronal morphology 

and physiology on noise and information transfer. 

Instrumental Noise 

The first step is to quantify the measurement system as it represents the smallest source 

of noise that can be resolved. Thus, the magnitude and spectral characteristics of the 

instrumental noise due to the electrode, amplifier and the accompanying electronics need 

to be determined for comparison with biological noise measurements from neurons. The 

instrumental noise can be measured by placing an electrode in the physiological solution used 

to perfuse the preparation before creating a gigaohm seal on the cell. By using electrodes 

of different resistances, the contribution of thermal noise arising due to the additional serial 

resistance of the whole-cell configuration can be accounted for. 

Estimation of Passive Membrane Properties 

Before performing any pharmacological manipulations, it is important to determine the 

impedance and the time constant of the membrane. In a cell-attached configuration, the 

entire neuronal membrane cannot be successfully clamped. This implies that the area 

recorded from cannot be assumed to be isopotential and the impedance and time constant 

measurements are corrupted by geometric effects. However, ifthe soma is small enough and 

well-isolated from the dendritic tree, this effect is not very significant. Input impedance 
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r-- Comparison of noise 
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1. Hoffman, 0., Mllgee, J., Colbert, C., & Johnston, D. Nature, 387, pp. 869-875, (1997). 

2. Rapp, M., Varom, Y.,. SlIg.V, I. PNAS, 93, pp.11985-11990, (1996). 

3. Mainen, Z., Joergn, J., Huguenlllrd, J., & Sejnowskl, T. Neuron, 15, pp.1427-1439, (1995). 

Figure 5.1: Outline of a Research Program to Study the Influence of Neuronal 
Noise on Information Transfer. 
Schematic diagram describing the different methodologies as a part of a broad research initiative 
to understand the impact of neuronal noise sources on information processing. Solid arrows denote 
an application of techniques or results from one stage to refinement of a model of the other stage, 

whereas broken lines denote a comparison between results of two stages. 
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should be measured at different membrane voltages ranging from hyperpolarization to de­

polarization. It is important to ensure that within the voltage range chosen, the membrane 

behaves approximately linearly. Stimulating the soma by brief and small current pulses and 

measuring the resulting voltage changes allows us to estimate the membrane impedance 

and the passive time constant. 

Single-Electrode Voltage- and Current-Clamp Recordings 

The next step is to perform single-electrode voltage and current-clamp measurements (in the 

subthreshold regime) from the soma under different pharmacological conditions. The noise 

sources can be characterized by their magnitude (standard deviation), power spectra and 

amplitude distributions. In order to estimate the individual contributions of the different 

sources like stochastic conductance fluctuations due to ion channels (e.g., K+ , Na+ , Ca2+), 

synaptic background activity and so on, pharmacological agents which selectively block a 

specific source of noise can be applied. 

For instance, addition of blockers of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) glutamate receptors such as 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or 

6,7-dinitroquinoxaline-2,3-dione (DNQX) can be used to eliminate noise due to fast ex­

citatory synapses. Similarly, 2-amino-5-phosphonovaleric acid (APV) blocks N-methyl-D­

aspartate (NMDA) glutamate receptors and bicuculline blocks gamma-amino-butyric acid 

(GABA) type synapses and can be used to eliminate noise due to slow excitatory synapses 

and inhibitory synapses respectively. With the synaptic noise eliminated, the residual noise 

is due to conductance fluctuations of voltage-dependent ionic channels, thermal noise and 

so on. Addition of tetrodotoxin (TTX) blocks voltage-dependent Na+ channel activity, 

tetraethylammonium (TEA) and Cs+ ions block K+ channels and replacement of extracel­

lular Ca2+ ions with Cd2+ or C02+ ions eliminates Ca2+ channel noise. 

Experiments in voltage-clamp mode measure the current noise due to stochastic conduc­

tance fluctuations, whereas, current-clamp experiments measure voltage fluctuations arising 

due to the global coupling of the voltage-dependent current noise sources through the mem­

brane voltage and the filtering due to the impedance of the neuronal membrane. Thus, a 
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comparison of the noise measured in current-clamp versus voltage-clamp conditions reveals 

the synergistic effects between different noise sources. 

Morphological Analysis 

The three-dimensional morphology of the neurons recorded from can be reconstructed upon 

staining and be used to construct detailed compartmental models (see Fig. 5.2). Using 

RaIl's 1-D cable theory, it is possible to estimate basic cable parameters, such as input 

resistance, membrane time constant and electrotonic length of the dendrites from volt­

age measurements in response to the injection of brief hyperpolarizing current pulses. By 

matching the experimental measurements to the model output in accordance with standard 

procedures documented in the literature (Segev et at., 1998), detailed, physiologically accu­

rate compartmental models for the stained cells can be constructed. Potential problems in 

obtaining faithful compartmental models, including problems with incomplete morphologi­

cal reconstruction, non-uniqueness of biophysical parameters that match the experimental 

observations and so on, are elaborated in (Segev et at., 1998). 

Dual-Electrode Recordings 

Using an infrared differential interface contrast (DIe) imaging system, it is possible to 

perform whole-cell patch recordings from different locations on the apical dendrites of pyra­

midal neurons. Recent experiments have shown that ionic channels expressed at distal 

dendritic locations differ from those present at the soma with respect to their densities and 

kinetics (Stuart & Spruston, 1998). Thus, characteristics of the noise in the apical tuft can 

be expected to be different from those of noise at the soma. 

Dual-electrode recordings need to be performed in order to estimate the contributions 

of the dendritic and the synaptic components of the neuronal noise. Experiments involving 

dual recordings from the soma and the dendrite of the same cell, though difficult to perform, 

allow a direct comparison of the characteristics of the noise at different locations of the same 

neuron. Simultaneous measurements made at the soma and dendrites in response to the 

injection of subthreshold currents, either into the soma or the dendrite, can be used to reveal 



119 

100/-lm 

Figure 5.2: 3-D Reconstruction of a Cortical Pyramidal Neuron. 
The cell was stained intracellularly with 0.5% - 1% biocytin added to the pipette solution used to 
perform physiological recordings in the laboratory of Yossef Yarom. After establishing a whole-cell 

patch configuration, short (4 msec) hyperpolarizing pulses (50-100 pA) were applied for 2 minutes, 
after which the electrode was withdrawn. The slice was maintained at 32 DC for at least one hour, 

followed by overnight fixation in 4 DC in O.lM cacodylate buffer containing 2% paraformaldehyde, 
0.2% picric acid and 0.1% glutaraldehyde. After rinsing the slice several times with pento-barbitol 

sodium, it was treated with sodium borohydride (0.5%) to prevent non-specific staining and then 
rinsed and treated with MeOH (10%) and H20 2 (3%) to block endogenous peroxidases. Subse­
quently, it was incubated for at least 3 hours in biotinylated horseradish peroxidase conjugated to 
avidin with triton (0.5%) and rinsed and developed under visual control. Three-dimensional recon­
structions were performed using the Neurolucida system (microbrightfield), with the slice mounted 
on a glass slide in glycerol (50%), or dehydrated in ethanol. The cable properties and the different 

noise sources of a reconstructed cell are determined from the voltage response to brief current pulses. 
Subsequently, a detailed stochastic compartmental model of this cell is constructed. 
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the nature of the filtering due to the dendritic tree. Computation of the voltage attenuation 

function of the neuron can be performed by comparing the power spectral densities of the 

voltage responses at the two locations (Koch, 1999). Experiments studying the effect of 

excitable dendritic channels on dendritic signal transfer can be compared with theoretical 

results obtained in Chapter 4. Dual recordings from the soma and the dendrite are also 

very useful for constraining the passive cable properties of the measured neuron. Together 

with the morphological data obtained by reconstruction, cable properties can be used to 

construct a faithful compartmental representation of the neuron. 

Similarly, dual recordings from pairs of synaptically connected layer V neurons can 

unravel the unreliability in the synaptic transmission. Presynaptic spikes with low temporal 

jitter can be induced in a presynaptic neuron and the statistics of the postsynaptic response 

can be used to estimate parameters like probability of vesicle release, coefficient of variation 

of the postsynaptic amplitude and so on of the synapse (see Chapter 2). The stimulation 

protocol needs to be performed at a frequency low enough to avoid synaptic depression or 

facilitation as well as adaptation effects in the spike generating mechanism. 

5.3 Summary of Performed Experiments 

The data summarized below were collected in vitro from pyramidal neurons in saggital slices 

of somatosensory cortex from two to three week-old rats. The neurons recorded from were 

usually of the simple-spiking type and belonged to layers IV or V. Recordings were made 

under visual inspection in whole-cell patch mode after creating a gigaohm seal between the 

patch electrode and the somatic membrane. 

5.3.1 Preparation and Recordings 

A brief description of the procedure used to obtain sagittal slices from the somatosensory 

cortex of 2-3 week old rats is as follows: rats were anesthetized with pentobarbitol sodium 

(Nembutal). Following decapitation, the brain was rapidly removed, mounted on a dissect­

ing dish containing a cooled physiological solution (contents given below) and cut into 300 

/-Lm thick sections. Slices were then incubated in this solution at 37°C for 30 minutes and 
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stored at room temperature. During the recordings, the slice was continuously perfused 

with the same solution at 32 DC. The physiological solution, aerated with 95% 02 and 5% 

CO2 , was composed of (in mM): NaCl 123, KCl 2, MgS04 1.3, KH2P04 1.2, NaHC03 26, 

CaCb 2.4, and Glucose 20. 

The whole-cell patch technique was used for intra-cellular recordings with an Axoclamp 

2A amplifier (Axon Instruments) for current-clamp experiments and Axopatch 1D for 

voltage-clamp experiments. The glass pipette was filled with intra-cellular solution com­

posed of (in mM): potassium gluconate 120, NaCl 24, CaCb 0.5, Mg-ATP 5, EGTA 5, and 

HEPES 10. The pH was set to 7.2 with KOH. With this solution, the microelectrodes have 

a DC resistance of 8-12 MO. For single channel recordings, Axopatch-1D or Axopatch-

200B was used. For on-cell configuration, the glass pipette was filled with the extracellular 

medium and appropriate drugs (TTX, TEA, 4AP, Cs+, Cd2+) were used to block specific 

ion channels. 

All experimental data was acquired and stored using a Pentium computer running Lab­

View software. The sampling rate of data collection ranged between 3 and 10 kHz corre­

sponding to a Nyquist frequency between 1.5 and 5 kHz. In hindsight, a sampling frequency 

of 5 kHz would have sufficed. A PCI MIO-16XE-1O AID card (National Instrument) was 

used to generate the different current stimuli and digitize the data. The data was digitized 

and transferred directly to the computer hard disk. This procedure enabled the sampling 

of 3 minutes of data at 10 kHz for each measured condition. The data was subsequently 

written to a CD-ROM and successfully transferred using FTP over the Internet for further 

analysis. 

5.3.2 Measurement of Instrumental Noise 

In order to measure instrumental noise, the gain of the amplifier was adjusted so that 

the entire dynamic range of the A-D converter (±32768 levels for a 16 bit card used for 

these experiments) was utilized. It can be assumed that in the presence of drifts and 

offsets the instrumental noise does not exceed 1 m V. Thus, the resolution of digitization 

available is on the order of 15 n V which is sufficient to estimate the magnitude and spectrum 
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Electrode R (MO) a (p, V) 
e3_s2 15.7 41.89 

e5 12 37.65 
e7 21.1 4.73 

e7_s2 21.1 68.13 
e8 14.8 37.03 

e12 43 48.64 
e13 46.8 92.27 

Table 5.1: Electrode Resistance and Instrumental Noise Magnitudes. 
Resistance and standard deviation of voltage noise for seven electrodes recorded after detachment 

from cell patch, placed in the extracellular space in the slice. 

of instrumental noise accurately. Another issue to consider is the sampling rate. The 

sampling frequency should be high enough to prevent aliasing and low enough for reasons 

of data storage. In the absence of an anti-aliasing filter, a sampling frequency of 5 kHz was 

sufficient. The duration of the experimental recording determines the smallest frequency 

difference that can be resolved. In the following experiments, single recordings lasted 5-10 

seconds each. In order to estimate the power spectrum of the noise accurately, 20 different 

sample records were collected. This permitted the collection of enough data to estimate the 

amplitude distribution of instrumentation noise and its power spectrum accurately. 

Preliminary measurements of instrumental noise are summarized in Table 5.1 and in 

Fig. 5.4. Approximately 10 samples each 10 seconds long were collected at Fs = 3 kHz 

giving us sufficient data to compute the relevant statistics. 

5.3.3 Measurement of Biological Noise 

Subsequent to the measurement of the instrumental noise, current clamp recordings were 

made from the soma of the pyramidal neurons under visual (IR) observation which measure 

the voltage noise due the conductance fluctuations from different sources. A three-minute-

long recording session (at 10 kHz) was performed for a given experimental condition. A 

typical recording session in the control condition (in the absence of drugs) is shown in top 

and the second row of Fig. 5.3. Due to the high measurement gain, it is critical to ensure 

that the recordings are stable. Thus, the first and the last 20 seconds in each recording 

session include the injection of small hyperpolarizing test pulses, sufficient to perturb the 
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membrane by a few millivolts. The voltage response is used for assessing the stability of 

the recording session. Changes in the voltage response between the beginning and the end 

of each session imply instability (either in electrode or in membrane resistance) and the 

corresponding recording session is removed from the analysis. This significantly reduces the 

large variance expected in the experiments due to the high-resolution of recordings required 

for measuring neuronal noise. An example of the voltage response during these time epochs 

is shown in the third row of Fig. 5.3. The same experimental protocol is performed in all 

the experiments discussed below. Finally, voltage-clamp experiments allow us to measure 

the magnitude and characteristics of the fluctuations in the current entering the soma 

at different membrane potentials, ranging from hyperpolarization to depolarization (before 

spiking occurs). An important advantage of the voltage clamp technique is that it decouples 

the interaction between different noise sources (e.g., between Na+ and K+ channels) that 

occurs as a result of global coupling due to membrane voltage changes in the current-clamp 

mode. 

In a preliminary set of experiments, noise was measured from the soma of 25 layer V 

pyramidal neurons. Whole-cell patch recording in current clamp mode were used to measure 

voltage noise under different experimental conditions. These included different steady­

state membrane voltages obtained by injection of appropriate holding currents, blockage of 

N a + channels by application of TTX at different levels of polarization, blockage of AMPA 

receptors with CNQX, DNQX and Co+ ions, blockage of GABA receptors with bicuculline 

free-base, and blockage of K+ channels with TEA. 

Temperature is expected to have a significant effect on the magnitude and frequency 

composition of the different noise sources. Our experience shows that it is easier (more 

stable) to perform the experiments at a relatively low temperature (25 CC). However, in 

order to measure noise at near-physiological conditions, we will perform the experiments at a 

near-physiological range of 32 cC. If it does not prove possible to record at this temperature 

in a stable fashion for many hours, we will reduce the temperature until a stable regime will 

be found. Furthermore, we will assess the effect of temperature on noise by measuring noise 
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Figure 5.3: Experimental Procedure to Measure Membrane Noise. 
Top row: Voltage recordings in current-clamp mode at resting potential (middle column); -5 m V 
hyperpolarization (left column) and +5 mV depolarization (right column), showing a clear increase 

in noise upon depolarization. Second row: Expanded time scale for the corresponding traces shown 
in upper traces. Slow fluctuations in the voltage noise, as well as the faster fluctuations, are clearly 
seen. Third row: At the beginning (red) and the end (blue) of each of the three-minute-long 
sessions, several hyperpolarizing current pulses (lower row) are applied. The voltage responses are 
compared to assess the stability of the recording during the session. Note the stability of recordings 
and the increase in apparent input resistance with depolarization. 
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Figure 5.4: Analysis of Measured Biological Noise. 
A: Power spectral densities of voltage noise recorded in current clamp mode from a layer V pyramidal 

neuron from the rat somatosensory cortex at different polarization levels. The membrane voltage 
was modified by injecting constant depolarizing or hyperpolarizing currents. The power spectral 

density of the instrumental noise, measured by placing the electrode in the physiological solution, 
is also displayed (black line). B: Sample traces of the voltage fluctuations recorded in the three 
corresponding membrane voltages and the instrumental noise as in A. Note the clear increase in 
voltage variability (noise) upon depolarization. C: Voltage noise spectrum from the soma of another 
layer V pyramidal neuron at the resting potential (-65 m V) for three different temperatures. There 
is surprisingly little effect of temperature on the noise measured. D: Dependence of the normalized 

variance of the noise on the membrane voltage for 15 neurons measured. The results clearly show 

the increase in variance with depolarization (red dots). We are currently performing voltage clamp 
measurements of current noise which will allow us to study the dependence of noise magnitudes on 
membrane voltage in the absence of the confounding effects of change in the membrane voltage due 
to spurious uncontrolled factors. The input impedance and time constant of the cells recorded from 
varied between 45-50 M!1 and 25-30 msec respectively. 
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(for a given pharmacological condition) at a range of different temperatures and different 

membrane voltages. 

Instead of providing figures which indicate the effect of various drugs on noise here, 

below we summarize the salient observations that can be made from the data: 

• The instrumental noise is an order of magnitude smaller in magnitude in comparison 

to the biological membrane noise. Its spectrum is flat over the range 10-1000 Hz and 

coincides with the biological noise spectra for frequencies above 1 kHz (see Fig. 5.4A). 

This implies that the biological noise has very little power at frequencies greater than 

1 kHz. 

• The magnitude of biological noise increases with depolarization of membrane voltage. 

On average, depolarization by 5 m V resulted in a 120% increase in the noise variance 

whereas hyperpolarization by 10 m V on average resulted in a 25% decrease in noise 

variance (see Fig. 5.4D). This is in rough agreement with the results of Chapter 3 

and Chapter 6. 

• It is possible, using different drugs, to consistently measure changes in noise magni­

tude and estimate the contribution due to different sources. The maximum absolute 

magnitude of noise was on the order of around 1 m V. In the neurons we recorded 

from, synaptic background activity was, in general, the most dominant source of sub­

threshold membrane noise. The magnitude of channel noise was small in comparison 

to background noise. The experiments were carried out in slices (in vitro) which are 

know to be "quieter" preparations. On the other hand, the magnitude of subthreshold 

membrane fluctuations in vivo can be quite large (on the order of 3-4 m V) (Destexhe 

& Pare, 1999) and the effect of voltage-gated ion channels can be greatly enhanced in 

those conditions. A collaborative effort to measure noise properties in vivo is currently 

underway. 

• Around ten experiments were performed to study the variation of the magnitude and 

spectra of noise with temperature. Fig. 5.4C depicts the effect of temperature on 

the power-spectra of the noise. Although noise magnitude does seem to decrease with 
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an increase in temperature, the effect is very small in the case of noise measured at 

the resting state for temperature ranging between 25-32 °C. Our theoretical analysis 

(in Chapter 6) reveals that the noise magnitude should decrease with temperature. 

Thus, the experimental result possibly implies that decrease in noise is compensated 

by some yet unknown mechanism. This issue also needs further investigation. 
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Chapter 6 Subthreshold Membrane Noise due to 

Channel Fluctuations 

6.1 Introduction 

In this chapter we take a closer look at the noise generated due to random transitions of 

ion channels in neuronal membranes. Ion channels are macromolecules which are subject 

to random changes of conformational state due to thermal agitation. When these changes 

occur between a conducting and non-conducting state, the channel acts as a microscopic 

source of noise current injected into the membrane (Hille, 1992; DeFelice, 1981). Channel 

noise can change the spiking behavior of neurons, affect the distribution of response latencies 

(Lecar & Nossal, 1971a; Lecar & Nossal, 1971b; Clay & DeFelice, 1983; Rubinstein, 1995) 

and spike propagation in branched cable structures (Horikawa, 1991; Horikawa, 1993b), 

lead to the generation of spontaneous action potentials (Skaugen & Wallm, 1979; Skaugen, 

1980b; Skaugen, 1980a; Strassberg & DeFelice, 1993; Chow & White, 1996) and influence 

the reliability and precision of spike timing (Schneidman et at., 1998). For voltage-gated 

ion channels, such as the Na+ and K+ channels response for the generation of action po­

tentials, the rates of transition between different conductance states are voltage dependent. 

This dependence on membrane voltage induces a coupling between otherwise independent 

stochastic channels. It has recently been shown that this coupling can affect spontaneous 

firing and bursting behaviors of neurons (DeFelice & Isaac, 1992; White et at., 1995; Fox & 

Lu, 1994; Fox, 1997; White et at., 1998). 

In addition to the effects on action potential timing, channel noise can also cause sub­

threshold membrane voltage fluctuations. These fluctuations were studied extensively in 

the era prior to the development of patch-clamp techniques. For the analysis of membrane 

noise in the squid axon, see (Verveen & DeFelice, 1974; Wanke et at., 1974; Fishman, 1975; 

Fishman et at., 1975). (DeFelice, 1981) contains an extensive review of noise analysis in 



129 

other systems. See (Thaynelis & Jaramillo, 1998; White et at., 2000) for more recent appli­

cations. The main objective of these investigations was to argue for the existence of single 

ion-channels and to determine their properties. 

Our interest in subthreshold voltage fluctuations stems from their potential impact on 

neural information processing. Although information is communicated in the neocortex and 

most of the peripheral nervous system using action potentials, it is important to understand 

subthreshold voltage fluctuations for several reasons: Firstly, these fluctuations may deter­

mine the reliability and accuracy of spike timing since voltage fluctuations near threshold 

affect precisely when an action potential is initiated. Secondly, computations within the 

dendritic tree, such as coincidence detection or multiplication of inputs, are performed in 

the subthreshold regime and the subthreshold channel noise might limit how well they can 

be performed. Thirdly, interaction between dendro-dendritic synapses in the olfactory bulb 

or the olivary nucleus and the operations of non-spiking neurons, such as in the retina or 

in the visual system of invertebrates, are all performed in the subthreshold regime. 

At the biophysical level, the magnitude of subthreshold voltage noise is determined by 

ion channel kinetics. In Chapter 3, we derived expressions for the magnitude and power 

spectrum of the current noise by making simplifying assumptions for the stochastic state 

transitions of ion channels whose kinetics can be abstracted using finite state Markov models 

(Stevens, 1972; DeFelice, 1981; Colquhoun & Hawkes, 1982). In this chapter, we perform 

Monte-Carlo simulations to compute the subthreshold voltage fluctuations for two different 

kinetic schemes of neural excitability. The first kinetic scheme is the Hodgkin-Huxley (HH) 

model (Hodgkin & Huxley, 1952) of action potential generation in the squid giant axon. 

This model represents an excitable system which fires action potentials when depolarized 

by only a few millivolts from its resting state. The second kinetic scheme is one that has 

been proposed by (Mainen et at., 1995) (MJHS) to model dendrites of a cortical pyramidal 

cell. This model is less excitable and does not fire action potentials for dendritic channel 

densities. These kinetic schemes represent two examples in the possible range of kinetic 

excitability. 
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The term goal of our research is to evaluate the effects of noise on information processing 

in model neurons with realistic cellular geometries. However, this type of modeling can be 

computationally very demanding and it is often useful to evaluate the ability of simpler 

approximations of channel kinetic schemes to reproduce membrane noise properties. Sev­

eral approximations have been used to study subthreshold voltage fluctuations in the past. 

Koch (Koch, 1984) divided linear approximations of kinetic schemes into two categories: 

passive linear approximations, where active channels are replaced by pure conductances, 

and quasi-active linear approximations, where active channel kinetics are replaced by phe­

nomenological impedances, which may have positive or negative resistive and reactive com­

ponents. Mauro et al. (1970) used a quasi-active linearized approximation to the HH kinetic 

scheme to study subthreshold voltage responses to a current stimulus. In earlier chapters, 

we used a passive linear approximation to the MJHS kinetic scheme to study the predicted 

voltage noise fluctuations in both a patch of neuronal membrane (Chapter 3) and a semi­

infinite cable model of a dendrite (Chapter 4). In Chapter 4 we also assessed the effect of 

the subthreshold noise fluctuations on information transfer. 

In this chapter, we evaluate the subthreshold noise magnitudes predicted by the HH 

and MJHS kinetic schemes as function of steady-state membrane voltage, channel densities, 

patch area, temperature and so on. For both schemes, there is an increase in noise with 

membrane depolarization. This may affect the ability of the neuron to function as an 

integrator. We also calculate the power spectral densities and amplitude distributions of 

noise predicted by both kinetic schemes and evaluate how well quasi-active and passive 

linear approximations reproduce the simulated noise characteristics. Finally, we study how 

noise magnitudes and the quality of the linear approximations vary depending on parameters 

such as patch area, channel densities and temperature. 

6.2 Methods 

The successful elucidation of the ionic basis underlying neuronal excitability in the squid 

giant axon by Hodgkin and Huxley (Hodgkin & Huxley, 1952) led to the development of 

more sophisticated mathematical models which described the initiation and propagation of 
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action potentials by explicitly modeling the different ionic currents flowing across a neuronal 

membrane. In the original Hodgkin and Huxley model, membrane currents were expressed 

in terms of macroscopic deterministic conductances representing the selective permeabilities 

of the membrane to different ionic species. However, it is now known that the macroscopic 

currents arise as a result of the summation of stochastic microscopic currents flowing through 

a multitude of ion channels in the membrane. 

Ion channels are protein macromolecules which switch randomly between discrete con-

formational states due to thermal agitation (Hille, 1992). In many cases, ion channel kinetics 

can be described in terms of the operation of a set of binary sub-units which can be open 

or closed. For instance, the conductance of an ion channel can be written as 

(6.1) 

where Ii denotes the open conductance of the channel and the variables m and h correspond 

to two different kinds of sub-units, viz., activation and inactivation respectively. M and H 

represent the number of activation and inactivation sub-units respectively. In standard 

deterministic models of channel kinetics (like the classical Hodgkin-Huxley model), m and 

h are continuous variables which lie between 0 and 1 and obey first order kinetics, 

dm 

dt 
dh 
dt 

(6.2) 

w here moo (hoo ) is the steady-state value and T m (Th) is the time constant of activation 

(inactivation), which are functions of the transition rates between open and closed states 

of the subunits, 

1 
Tm= --~~--~-

am(Vm) + 13m ' 
1 

Th=--­
ah + (3h ' 

where am and 13m are the rates for the activation subunits and ah and (3h are the rates 

for the inactivation subunits. For instance, for the rapidly inactivating HH Na+ channel, 
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M = 3, H = 1. For the non-inactivating K+ channel, we will use the variable n to denote 

activation and N to indicate the number of activation gates; for the HH K+ channel, N = 4. 

This classical treatment represents the average behavior of large numbers of channels 

as continuous variables. Since ion channels behave probabilistically, stochastic models of 

ion channels finite-state Markov chains with state transition probabilities proportional to 

the kinetic rates between different conformational states (Clay & DeFelice, 1983; Strassberg 

& DeFelice, 1993). Although some recent studies have argued that ion channels have an 

infinite continuum of states and should be more appropriately abstracted using fractal 

models (Liebovitch & Toth, 1990; Liebovitch & Toth, 1991), we will use the Markov model 

description given the long history of its use. Thus, in finite-state Markov models of the 

HH K+ and Na+ channels, the state variables n, m and h denote the probabilities that the 

activation and inactivation gates are open and (Xi and {3i denote the conditional transition 

probabilities between different states. 

In the limit of a large number of channels, stochastic Markov models converge to their 

corresponding deterministic versions (Fox & Lu, 1994). However, for small channel numbers, 

the stochastic models can exhibit a wide variety of behaviors (spontaneous spiking, bursting, 

chaos, and so on) that are not observed in deterministic models (DeFelice & Isaac, 1992; 

White et al., 1998). It has been shown that stochastic channel transitions can potentially 

explain the irregularity of spike timing observed in cortical neurons (Schneidman et al., 

1998). Furthermore, it was shown that the variability in spike timing depends on temporal 

properties of the input; this ability to alter the accuracy of their representation strategies 

depending on the nature of their inputs may enable neurons to act as "smart encoders" which 

adapt to the statistical structure of their ecological environment (Mainen & Sejnowski, 1995; 

Schneidman et al., 1998). 

The Markov models corresponding to the two kinetic schemes we study in this chapter 

are shown in Fig. 6.1. Salient differences between the MJHS and HH schemes are sum­

marized in Table 6.1. In order to determine the magnitude and dynamics of membrane 

voltage fluctuations due to channel noise, we shall consider three different approaches. The 

first approach is simply to model each channel using a Markov kinetic scheme and to gener-
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ate the transitions between conductance states in a Monte Carlo simulation. This approach 

accurately captures the effect of kinetic non-linearities, but is computationally very de­

manding. The other two approaches we consider are based on assuming that the magnitude 

of the voltage fluctuations about the steady-state value is small and that channel kinetics 

are approximately linear near this value; these assumptions permit closed-form solution of 

expressions for the noise fluctuations, thus reducing computational demands. 

6.2.1 Monte-Carlo Simulations 

Our Monte-Carlo simulations are similar to previous approaches (Skaugen & Wallc£, 1979; 

Skaugen, 1980b; Skaugen, 1980a; Strassberg & DeFelice, 1993; Chow & White, 1996; Schnei­

dman et at., 1998) used to study the effects of channel noise on neuron spiking behaviors. 

The number of channels in each state of the kinetic model (Fig. 6.1) was tracked during 

the course of the simulation, which was performed iteratively using a fixed time step b..t 

= 10 p,sec. During each step, the number of subunits making transitions between states 

i and j was determined by drawing a pseudo-random binomial deviate (bnldev subroutine 

(Press et at., 1992) driven by the ranI subroutine of the second edition) with N equal to the 

number of subunits in state i and p given by the conditional probability of the transition 

between i and j. The conditional probability p of making a transition was computed using 

the corresponding rate function, a( v) or f3( v), from the kinetic model under consideration, 

scaled from the base temperature for the model and channel to a standard temperature 

of 27 DC using a factor QfoT /10, where b..T = 27 - TB for the appropriate channel model. 

The current flowing through the conducting states of the channels was used to charge 

the membrane capacitance, as shown in Fig. 6.4. The membrane voltage corresponding 

to equation G 1 was integrated across the time step using the backward Euler method of 

the NEURON simulation program (Hines & Carnevale, 1997). For each set of parameters, 

492 seconds of model time were simulated, divided into 60 blocks of 8.2 seconds each when 

computing power spectral densities (PSDs). Action potentials, which occurred less than 

once per second, were removed from the voltage traces prior to computing statistics or 
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A B 

Figure 6.1: Finite State Markov Kinetic Schemes for Voltage-Gated Ion Channels. 
A: Kinetic scheme for the voltage-gated Hodgkin-Huxley K+ channel. no ... n3 represent four closed 

states and n4 is the open state of the channel. The K+ conductance gK is proportional to the 

number of open channels ([n4]). rK is the single K+ channel conductance. B: Kinetic scheme for the 
Mainenet al. K+ channel. no represents the closed state and nl the open state of the channel. The 
rates an and (3n are functions of the membrane voltage. C: Kinetic scheme for the HH and MJHS 
Na+ channel. mohl ... m2hl represent the three closed states, moho ... m3ho the four inactivated 
states and m3hl the open state of the channel. rNa denotes the open conductance of a single sodium 
channel. The rates am, (3m, ah and (3h are functions of the membrane voltage. 
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PSDs. The standard deviation of voltage noise was computed for the samples at each time 

step of 492 seconds of simulated time. A portion of one simulation is shown in Fig. 6.2. 

Due to random channel transitions, the membrane voltage fluctuates around the steady­

state resting membrane voltage Vrest . By injecting constant currents of different magnitudes 

into the membrane patch, the steady-state voltage can be varied over a broad range. The 

range of possible steady-state voltages depends on the particular kinetic scheme. The 

current required to maintain the membrane at a steady-state voltage V~ can be determined 

from the steady-state i-v curve of the system, as shown in Fig. 6.3. Voltages for which the 

slope of the i-v curve is negative cannot be maintained as steady-states. By injecting an 

external current to offset the total membrane current, a fixed point in the negative slope 

region can be obtained, but since the fixed point is unstable, any perturbation, such as 

a stochastic ion channel opening or closing, causes the system to be driven to the closest 

stable fixed point. We measured subthreshold voltage noise only for stable holding voltages 

for which no spiking occurred. 

6.2.2 Linearized Approximations 

Assuming that the magnitude of the voltage fluctuations is small and that the membrane 

voltage fluctuates around its steady-state value, the kinetic equations can be linearized 

around their steady-state values (see Appendix G for details). In the simplest form of 

linearization, the patch is modeled as an RC circuit, as shown in Fig. 6.4A. The effect of 

the channel fluctuations is modeled as current noise In in parallel with the RC circuit. The 

power spectral density of In can be derived in terms of the channel kinetics (Stevens, 1972; 

DeFelice, 1981; Colquhoun & Hawkes, 1982). As in (Koch, 1984), we refer to this model as 

the passive linearized model. 

If we include the voltage-dependence of the ionic conductances to first order, we get 

the equivalent circuit in Fig. 6.4B. rj and lj are small-signal phenomenological impedances 

which arise due to the dependence of the activation and inactivation probabilities on the 

membrane voltage and their first-order kinetics. As before, In models the effect of the 

channel fluctuations around the steady-state. Fig. 6.4B shows the equivalent circuit of the 
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Figure 6.2: Example of a Monte-Carlo Simulation. 
Monte-Carlo simulation of a 1000 p,m2 membrane patch with stochastic Na+ and deterministic 
K+ channels with MJHS kinetics for the purpose of illustration only. Bottom record shows the 
number of open Na+ channels as a function of time. Top trace shows the corresponding fluctuations 
of the membrane voltage. Holding current is injected to produce an average voltage of -65 m V. 
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Figure 6.3: Steady-state i-v Curves for a Membrane Patch. 
Steady-state i-V curves of a 1000 p,m2 membrane patch for different multiples (/'i,Na) of the nominal 

MJHS Na+ channel densities. Circles indicate locations of fixed-points in the absence of current 
injection. 
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patch given by the parallel combination of a capacitance C, a (physical) conductance G = 

gK + gNa + gL, three (phenomenological) series RL branches corresponding to K+ activation, 

Na+ activation and Na+ inactivation. The current noise In is the same as before. 

In order to verify the validity of these linearized approximations, we compare them 

to Monte-Carlo simulations of finite-state Markov kinetic schemes (Fig. 6.1) embedded 

in isopotential membrane patches. These simulations represent fully the non-linearities 

present in the kinetic scheme and allow us to compare the range of validity of the linearized, 

perturbative approximations for the two kinetic schemes. We believe that these approaches 

can be used generally to study kinetic schemes which can be described in terms of finite-state 

Markov models. 

6.3 Results 

Our goals in this research were to characterize and contrast the subthreshold noise predicted 

by two standard kinetic schemes for sodium and potassium ion channels and to then examine 

how accurately linearized quasi-active approximations to these schemes account for the 

noise. In the following sections we characterize the subthreshold noise by computing the 

variance, power spectral densities (PSDs), and distributions of voltage noise for the HH and 

MJHS kinetic schemes embedded in a 1000 p,m2 patch of membrane. We also compute the 

change in noise magnitude predicted by these kinetic schemes when the patch area, channel 

densities and temperature are varied. For each of these characterizations, we determine 

how well linearized approximations predict the noise characteristics. In the last section, 

to illustrate the application of these approximations, we use the quasi-active linearized 

approximation of Na+ and K+ channel kinetics in a basic cylindrical model of a weakly­

active dendrite to compute the efficacy of information transfer along the dendrite. 

6.3.1 Magnitude of Subthreshold Noise 

Fig. 6.2 shows the trans-membrane voltage and the number of open sodium channels 

during a stochastic simulation of ion channels in a patch of membrane. At -70 m V, only 1-2 

Na+ channels are open at anyone time for the MJHS kinetic scheme. For the HH scheme 



c 

A 

B 

c 

J 
1 

139 

c G 

G 

Figure 6.4: Models of a Membrane Patch Containing Stochastic Voltage-Gated 
Ion Channels. 
A: Passive linearized model of the membrane patch containing stochastic voltage-gated ion channels 
(K+ , Na+). C denotes the transverse membrane patch capacitance. G is the sum of the steady­

state conductances due to the active ion channels and the passive leak. The stochastic nature of 
the conductance fluctuations are modeled as a Gaussian current noise source In in parallel with the 
membrane. The power spectrum of In is computed from the Markov model of the channel kinetics. 
B: Quasi-active linearized model which includes the small-signal phenomenological impedances due 
to voltage-dependence of the K+ and Na+ conductances. Tn, Tm and Th denote the phenomenological 
resistances due to K+ activation, Na+ activation and inactivation respectively; tn, tm and th are 
the corresponding phenomenological inductances. In is a Gaussian current noise source as in A. 
C: Stochastic model of the patch used for Monte-Carlo simulations. gK and gNa are stochastic 
ionic conductances with kinetics as in Fig. 6.1. E L , EK and ENa denote the reversal potentials 
corresponding to the leak, K+ and Na+ conductances respectively. 
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Figure 6.5: Magnitude of Subthreshold Voltage Noise. 
A: Standard deviation, av, of voltage fluctuations in a 1000 J-lm2 patch with MJHS kinetics as 
function of the steady-state voltage, V~ (current clamp mode). Circles: results of the Markov 

simulations; broken line: prediction of the passive linearized model; solid line: prediction of the 

quasi-active linearized model. B: (IV of voltage noise for the HH kinetic scheme; note different 
voltage scale; symbols as in A. C: Individual contribution to (IV from the K+ and Na+ noise sources 

for the MJHS kinetic scheme. D: As in C for the HH kinetic scheme. 
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at Vrest=-65 mY, 5 channels are open on average. Fig. 6.5 shows the standard deviation of 

voltage noise predicted for the membrane patch using the HH and MJHS kinetic schemes. 

The HH scheme is strongly excitable and its threshold for firing an action potential is only 

2.5 m V above the resting membrane potential (-65 m V); consequently, we only examine the 

subthreshold behavior below -62.5 m V. For both kinetic schemes, noise is nearly doubled 

as the trans-membrane voltage is depolarized from rest by 2.5 m V. 

The underlying cause of this increase is the increasing probability that ion channels 

will spontaneously open. In the quasi-active linear model, this is reflected by a tuned LC 

circuit with a phenomenological inductance which is an increasing function of membrane 

voltage. Fig. 6.5 shows individual ionic contributions to total voltage noise for the HH and 

MJHS kinetic schemes. These contributions were computed using a deterministic noise-free 

model of the channel not under consideration. The variances due to each channel add, so 

the standard deviation of the voltage noise with both noisy channels present is less than 

the sum of the standard deviations with each noisy channel separately. For both kinetic 

schemes, potassium channel noise is the dominant noise source. 

For the MJHS kinetic scheme, noise continues to increase as the voltage is depolarized to 

-50 mY, for the reason given above. Above -50 mY, there is a decrease in voltage noise with 

further depolarization. This decrease is caused by the increasing membrane conductance, 

which reflects the large percentage of channels which are open in the steady-state. The 

inflection in the contribution of potassium channel noise between -40 and -30 m V is due to 

the rate of change of the sodium activation variable as a function of voltage; this change 

causes the membrane to act as tuned bandpass filter, which amplifies potassium channel 

noise. 

For both kinetic schemes, comparison of the results from the Monte-Carlo simulations 

and quasi-active linearized approximations shows excellent agreement - to within 0.1 m V 

over all voltage ranges studied. In general, agreement with the quasi-active linear approx­

imation will be good when noise fluctuations are small enough so that the linearization of 

the kinetic functions remains accurate. For example, for the K+ channel, the linearization 

noo(V~ + c5Vrn ) ::::; noo(V~) + d noo/dVrn c5Vrn is valid so long as Ic5Vrnl < 2 mY. The results in 
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section 6.3.4 will show cases where this approximation fails to be as accurate. The passive 

linear approximation is much less accurate once the voltage fluctuations become larger than 

0.5 mY. 

6.3.2 Power Spectral Density of Subthreshold Noise 

Fig. 6.6 shows the power spectral densities of voltage noise for the HH and MJHS kinetic 

schemes. The overall trends in the magnitude of the PSDs are reflected in the noise variances 

and were discussed above. The increasing value of the phenomenological inductance created 

by sodium channel activation shows itself in the PSDs for both kinetic schemes. For the 

MJHS scheme, the corner of the PSD for -40 m V is much sharper than the corners for 

-70 and -90 mY; this is caused by an LC circuit of phenomenological reactances which has 

a resonant frequency near 80 Hz. This tuned circuit of phenomenological reactances is 

even more evident in the PSD for the HH kinetic scheme. The PSD for -62.5 m V has a 

pronounced peak at 90 Hz, as measured by Mauro et al. (1970). 

6.3.3 Amplitude Distribution of Subthreshold Noise 

Fig. 6.7 shows the distributions of voltage noise for the HH kinetic scheme at two resting 

membrane potentials. At both voltages, the distribution of noise in a 1000 /-Lm2 patch is 

Gaussian when the noise magnitude is 0.1 m V or larger. Similar results are obtained for 

the MJHS kinetic scheme. For more hyperpolarized voltages the noise magnitude is less 

than 0.1 mY, the shape of the distribution is less regular, and is difficult to interpret in 

light of the limited accuracy of numerical simulations; The magnitude is so small at this 

point, however, that the exact shape of the distribution will have little or no effect on neural 

information processing. 

6.3.4 Dependence of Noise Magnitude on Patch Area 

In this chapter, we have focused on comparing noise in two standard kinetic schemes which 

have been used in the literature. Each scheme is characterized by a number of kinetic pa­

rameters, such as voltages of half-activation and the power of the activation and inactivation 
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Figure 6.6: Power Spectral Densities of Subthreshold Voltage Noise. 
A: Voltage power spectral densities for a 1000 p,m2 patch with MJHS kinetics at different steady­
state voltages. Circles indicate power spectral density estimates from simulations and the solid 
curves correspond to expressions for the quasi-active linearized model. The power spectral density 
is estimated by averaging (n = 60) the spectrograms (Hanning window, fe = 10 kHz) obtained from 

8.2 second traces. B: Voltage PSDs for the HH kinetic scheme; symbols as in part A. 
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Figure 6.7: Amplitude Distribution of Subthreshold Voltage Noise. 
A: Histograms of subthreshold voltage fluctuations due to channel noise in a 1000 f-Lm2 membrane 
patch with MJHS kinetics for two different holding voltages (V~ = -70 mV and V~ = -40 mY). Bars 

indicate results from simulations (n = 49,1520), solid curves show a normal distribution with the 
corresponding mean and and standard deviation. B: Amplitude histograms for a 1000 f-Lm 2 patch 
with HH kinetics at V~ = -65 mV and -61 mY. 
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Figure 6_8: Dependence on Subthreshold Voltage Noise on Patch Area. 
av as a function of the patch area A for MJHS (V~ = -60 m V) and HH (V~ = -65 m V) kinetics_ 
Circles indicate the results from the Monte-Carlo simulations, whereas the solid curve indicates the 
l/VA behavior expected from the linearized, quasi-active modeL 
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variables in the expressions for channel current; variation of these parameters changes the 

kinetic scheme from the standard model. Nonetheless, we wanted to determine how the re­

sults presented above vary with changes in several fundamental properties of the membrane 

patch, such as patch area and temperature. 

Fig. 6.8 shows the membrane voltage noise for the MJHS kinetic scheme varies as a 

function of patch area. This figure shows that membrane noise decreases with increasing 

patch area, because the total membrane current represents the average behavior of a larger 

number of channels. In terms of linearized membrane patch models, the variance of the 

channel current noise increases linearly with the number of channels and the patch area, 

thus aJ ex A. The impedance of the membrane patch, Z, is inversely proportional to area, 

Z ex A -1. Since V = Z I, a~ = 1 Z 12 aJ ex A -1. Thus, as patch area decreases, the variance 

of the voltage noise becomes larger. 

The quasi-active linearized approximation is accurate within 8% down to a patch area 

of 100 /-Lm2, where the deviation between simulation and theory becomes substantial. For 

the reasons discussed in section 6.3.1, when noise fluctuations become larger than 2 m V, 

the quasi-active linearized approximation becomes less accurate. 

6.3.5 Dependence of Noise Magnitude on Temperature 

Fig. 6.9 shows the membrane voltage noise predicted by the MJHS and HH kinetic schemes 

as a function of temperature. Because the kinetic rate functions are scaled by the factor 

Q~T /10, increasing the temperature decreases the time constants for both ion channels and 

effectively speeds up ion channel transitions. Consequently, the corner frequency of the 

current noise PSD increases to a higher frequency. Since the membrane capacitance and 

leak resistance act as a low pass filter, less noise power is passed by this filter, resulting 

in lower membrane voltage noise. Fig. 6.9 shows this decrease in noise magnitude as a 

function of temperature for both kinetic schemes. 
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Figure 6.9: Dependence of Subthreshold Voltage Noise on Temperature. 
av as a function of temperature for MJHS (V~ = -60 m V) and HH (V~ = -65 m V) kinetics for 
a 1000 11m2 patch. Circles denote simulations and the solid curves represent the results of the 

quasi-active linearized model. Simulations for Fig. 6.2 - Fig. 6.8 were carried out at T = 27 cC. 
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Figure 6.10: Dependence of Subthreshold Voltage Noise on Channel Densities. 
Standard deviation of the voltage noise av in a 1000 p,m 2 patch as a function of the steady-state 
membrane voltage V~. Circles denote results of the Monte-Carlo simulations for the nominal MJHS 

parameter values. The solid curve corresponds to the theoretical expression obtained by linearizing 

the channel kinetics. A: Effect of increasing the sodium channel density by a factor (compared to 
the nominal value) of 2 (pluses), 3 (asterisks) and 4 (squares) on the magnitude of voltage noise. B: 
Effect of increasing both the sodium and potassium channel densities by a factor of two (pluses). 
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6.3.6 Dependence of Noise Magnitude on Channel Densities 

Fig. 6.10 shows the voltage noise for a 1000 f-Lm2 patch as a function of the holding voltage 

for different values of the channel densities. Noise increases as the membrane is depolarized 

from rest towards -50 m V and the rate of increase is higher for higher N a + densities. The 

range of V~ for subthreshold behavior extends up to -20 m V for nominal densities, but 

does not exceed -60 m V for higher N a + densities. For moderate levels of depolarization, 

an increase in the magnitude of the ionic current noise with voltage is the dominant factor 

which leads to an increase in voltage noise; for higher voltages phenomenological impedances 

are large and shunt away the current noise. Increasing Na+ density increases voltage noise, 

whereas increasing K+ density causes a decrease in noise magnitude (compare Fig. 6.10A 

and Fig. 6.10B). We linearized the closed-form expressions provide accurate estimates of 

the noise magnitudes when the noise is small (of the order 3 m V). 

Increasing Na+ channel density increases both the magnitude of the noise and its rate 

of increase with membrane voltage. On the other hand, increasing the rates of channel 

transitions by increasing temperature, leads to a decrease in noise. It has previously been 

shown that neural excitability increases with Na+ channel density (Sabah & Leibovic, 1972) 

and decreases with temperature (Mauro et at., 1970). Thus, our findings suggest that an 

increase in membrane excitability is inevitably accompanied by an increase in the magnitude 

of subthreshold voltage noise fluctuations. The magnitude and the rapid increase of voltage 

noise with depolarization suggests that channel fluctuations can contribute significantly to 

the variability in spike timing (Schneidman et at., 1998) and the stochastic nature of ion 

channels may have a significant impact on information processing within individual neurons. 

It also potentially argues against the conventional role of a neuron as integrator of synaptic 

inputs (Shadlen & Newsome, 1998), as the slow depolarization associated with integration 

of small synaptic inputs would be accompanied by noise, making the membrane voltage a 

very unreliable indicator of the integrated inputs. 



150 

6.3.7 Application to Dendritic Cables 

When the magnitudes of the noise and the phenomenological impedances are small, the 

non-linear kinetic schemes are well-modeled by their linearized approximations. These an­

alytical approximations can be used to study noise in more sophisticated neuronal models 

incorporating realistic dendritic geometries, where Monte-Carlo simulations may be too 

computationally intensive to use. We found that the quasi-active approximation is valid 

for membrane geometries, besides a patch, by carrying out Monte-Carlo simulations for a 

finite linear cable and comparing them to the corresponding linearized approximations. The 

quasi-active approximation is valid over a larger steady-state voltage range in comparison 

to the passive approximation (data not shown). Previous work used the passive linearized 

approximation to compute how well the subthreshold electrotonic signal represented by the 

activation of a single synapse could be detected at a distance along a dendrite containing 

noise sources, such as a low density of K+ and Na+ channels as well as synapses activated 

by random background activity. We believe that the use of the quasi-active approximation 

in the context of this formalism will lead to better estimates of the efficacy of weakly-active 

dendritic structures at transmitting information. We are currently applying the quasi-active 

approximation to estimate noise in realistic dendritic morphologies. 

6.4 Discussion 

In the neuronal dendrite, soma, and axon hillock, the stochastic operation of individual 

ion channels represents a significant cellular source of noise. Previous work has shown that 

stochastic fluctuations of ion channels in a small patch of membrane can affect the accuracy 

and reliability of spike timing (Schneidman et al., 1998). This random jitter in spike timing, 

however, is a result of underlying fluctuations in both the number of open channels and the 

membrane voltage when the cell is depolarized near threshold. The magnitude of these 

fluctuations is determined by the number of ion channels, their conductance states, and the 

rate of transitions between these states. In this chapter, we studied how the underlying ion 

channel kinetic model determines the subthreshold voltage fluctuations of an isopotential 

patch of membrane. For illustration, we compared two kinetic schemes in common use, 
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the canonical Hodgkin-Huxley (HH) scheme for the squid giant axon, and the Mainen et 

al. (MJHS) scheme for the dendrite of a neocortical pyramidal cell. 

Our objective differs from that of Strassberg & DeFelice (Strassberg & DeFelice, 1993), 

who showed the convergence of the stochastic Markov model of the Hodgkin-Huxley kinetics 

and the deterministic macroscopic equations. A finite-state Markov model of a Hodgkin­

Huxley like kinetic scheme can be represented by a master equation for a stochastic au­

tomaton, as reported by Fox & Lu (Fox & Lu, 1994; Fox, 1997). When the size of system is 

sufficiently large (which can be informally expressed as requiring large numbers of channels), 

Master equations can be approximated by continuous partial differential equations called 

Fokker-Planck equations. A Fokker-Planck equation can in turn be represented by a set 

of stochastic differential equations (Langevin equations), where the stochastic fluctuations 

are represented by additive Gaussian white-noise terms. The linearized approximations ex­

amined here can be viewed as specialized versions of these general approximations. Our 

objective was to determine how well the linearized approximations predict noise magnitudes 

for practical use with several kinetic schemes. This question can only be answered by em­

pirical studies, such as those performed here (Fox & Lu, 1994; Fox, 1997). An additional 

advantage of the linearized approximations presented here is that they have electrical cir­

cuit analogs which can help develop an intuitive understanding of how changing the kinetic 

scheme changes noise. 

For both the HH and MJHS kinetic schemes, subthreshold voltage noise caused by ion 

channel fluctuations increases rapidly as the membrane potential is depolarized 2-10 m V 

from rest. This is significant since noise of this magnitude could affect spike generation in 

two ways: noise may trigger spikes spontaneously if the cell is otherwise near threshold, 

or subthreshold noise may change the timing of spikes, even if insufficient to cause spikes 

independently. Both of these effects might prevent the neuron from accurately integrating its 

inputs; in this case, ion channel noise would interfere with the neuron acting as an integrator 

of balanced excitation and inhibition, which has been posited as a method of mean rate 

coding (Shadlen & Newsome, 1998). This case also implies that the spike output of the 

neuron more accurately represents volleys of simultaneous input which rapidly depolarize 
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the cell to threshold. A further examination of this issue requires the combination of the 

noise models described here with a model spiking mechanism; an effort presently underway 

in our laboratory. 

In addition to these effects on spike timing, the effects of noise sources on computation 

and information processing inside individual neurons are of interest. In earlier chapters, we 

reported the effect of ion channel and synaptic noise on the accuracy of signal detection 

and estimation in a patch of membrane as well as in a simplified model of the dendrite. An 

important step will be to extend these analyses to neuron models with realistic geometries 

and channel densities. The simulation of the complete Markov kinetic schemes used here 

within each compartment of a large neuron model will be computationally intense (more 

than 36 hours on a 450 MHz Pentium II processor) and thus an important question is 

whether an equivalent linearized model of channel kinetics is accurate enough to predict 

the effects of these noise sources on information transmission and processing. 

The results presented here demonstrate that subthreshold voltage fluctuations caused 

by stochastic sodium and potassium channels in the HH and MJHS kinetic schemes can be 

well approximated by their quasi-active linear equivalent circuits. The standard deviation of 

the noise fluctuations agrees within 8% in a voltage range starting from near the potassium 

reversal potential up to the threshold of neuronal firing in the HH scheme or to -20 m V 

in the MJHS scheme. Thus, over subthreshold voltage ranges, a quasi-active linearized 

approximation is quite accurate. The passive linearized approximation fits the data less 

well, particularly between -50 and -20 m V for the MJHS kinetics. 

Why is the quasi-active linear approximation so accurate? As discussed in section 6.3.4, 

this accuracy arises because the membrane potential fluctuations due to stochastic ion 

channels are generally smaller than 2 m V. Over this small a voltage range, the curves 

representing channel activation and time constants can be accurately represented by lines. 

When this condition no longer obtains, for example, when the patch area is below 200 /-Lm2, 

then the linear approximation becomes less accurate. 

These approximations are accurate for computing subthreshold voltage noise, which is 

of interest in a variety of places within the nervous system, such as in non-spiking neurons 
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in the retina or in neuronal compartments which do not initiate spiking. A limitation of the 

applicability of these approximations is that they do not address spike timing and the initi­

ation of action potentials. In order to study this issue, the linearized approximations must 

be combined with more accurate models of spike generation in other model compartments. 

For the kinetic schemes examined here, the distribution of the voltage noise also simpli­

fies in a fashion conducive to large scale modeling. As shown in section 6.3.3, the distribution 

of voltage noise is nearly Gaussian, particularly when the noise variance is high. This dis­

tribution allows the efficient computation of the effects of noise on information processing 

using closed form solutions for detection thresholds and reconstruction error (Chapter 4). 

Overall, the quasi-active linear approximation to channel kinetics permits efficient eval­

uation of subthreshold voltage fluctuations for both the more excitable HH kinetic scheme, 

which at 27 DC initiates a spike only 2.5 m V above the resting potential, and the less ex­

citable MJHS scheme, which does not initiate spikes at dendritic channel densities. This 

suggests that the quasi-active linearized approximation may be used to examine subthresh­

old noise in a variety of channel kinetic schemes and for quantitatively assessing the effects 

of biophysical noise sources on information transfer in realistic neuron models. 

Given these results, the accuracy of linear approximations in representing subthreshold 

voltage fluctuations in real neurons will be determined by the accuracy of the underlying 

kinetics models in representing channel kinetics. The Hodgkin-Huxley kinetic scheme suc­

cessfully explains the generation of the action potential, but fails to explain other aspects 

of neural excitability, such as spike frequency adaptation, bursting and so on. Both the HH 

and MJHS kinetic schemes do not model mechanisms, such as long term (longer than one 

second) changes in probability of channel transitions (Toib et at., 1998; van den Berg & 

Rijnsburger, 1980; van den Berg et at., 1975) and the interdependence of the activation and 

inactivation gates of the sodium channel. These effects could be incorporated into kinetic 

models using additional kinetic states; the effect on such modifications on channel noise can 

then be explored using the techniques applied in these studies. 

Experimental measurement of noise in cortical pyramidal cells of the in-vitro cortical 

slice preparation is in rough agreement with the predictions of these models (see Chap-
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ter 5). Dissection of the noise contribution of different ionic channel types, as well as more 

precise quantitative agreement between theory and experiment, is an ongoing effort in our 

laboratories. The data from in-vivo recordings of pyramidal cells in anesthetized cat sug­

gest that synaptic noise may make a larger contribution to voltage noise than previously 

determined using in-vitro preparations (Pare et al., 1997; Pare et al., 1998; Destexhe & 

Pare, 1999). If synaptic noise is dominant, then further modeling will need to incorporate 

both synaptic and ionic channel noise into realistic neuronal cellular geometries in order to 

develop a quantitative understanding of the relative effects of these neuronal noise sources 

on information processing in cortical pyramidal cells. 
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Table 6.1: Comparison of Parameters for the Mainen et al. (MJHS) and Hodgkin­
Huxley (HH) Kinetic Schemes. 

MJHS HH 

rK Potassium channel conductance 20 pS 20 pS 

rNa Sodium channel conductance 20 pS 20 pS 

11K Potassium channel density 1.5 channels/ fLm 2 18 channels/ fLm 2 

l1Na Sodium channel density 2 channels / fLm 2 60 channels/ fLm 2 

em Specific membrane capacitance 0.75 fLF/cm2 1 fLF /cm2 

EK Potassium reversal potential -90 mV -77 mV 

ENa Sodium reversal potential 60 mV 55 mV 

EL Leak reversal potential -70 mV -54 mV 

gL Leak conductance 0.025 mS/cm 2 0.3 mS/cm 2 

H Na+ inactivation subunits 

M Na+ activation subunits 3 3 

N K+ activation subunits 4 

QlOK K+ temperature scale factor 2.3 3 

QlONa Na+ temperature scale factor 3 3 

TBK K+ base temperature 16 DC 6.3 DC 

TBNa Na+ base temperature 27 DC 6.3 DC 

Vrest Resting potential -70.7 mV -65 mV 
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Chapter 7 Variability and Coding Efficiency of 

Noisy Neural Spike Encoders 

7.1 Introduction 

In this chapter, we employ the signal estimation paradigm to assess the functional role of 

spike timing variability in neural coding by quantifying the ability of two types of neu­

ral spiking models (integrate & fire models and stochastic ion channel models) to encode 

information about random time-varying inputs. The goal is to reconstruct a random time­

varying current injected into a spike encoding model from the corresponding spike train 

output. As before, the encoding efficacy is determined using optimal least mean square 

estimation. The coding fraction quantifies the fraction of variability in output spike train 

which conveys information about the input. Our findings suggest that spike timing vari­

ability can greatly reduce the ability of spike trains to encode rapid time-varying stimuli. 

Moreover, contrary to expectations based on earlier studies, we find that spiking models 

are more effective at encoding slowly varying stimuli than rapid ones. 

7.2 Models of Spike Encoding 

We consider two classes of mathematical spiking models which transform continuous, time­

varying input signals into sequences of action potentials or spikes. The spike train output 

of a model in response to the injection of an input current i(t) is denoted by s(t). s(t) 

is assumed to be a point process and is mathematically modeled as a sequence of delta 

functions at time instants {td when the model generates spikes in response to the current 

as 
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The models we consider below are inherently noisy and generate irregular spike trains in 

response to repeated presentations of the same input and can be regarded as representations 

of irregular spiking behavior in real biological neurons. We use a specific signal processing 

task (signal estimation) to study the effects of spike timing variability on the encoding of 

time-varying input modulations in the context of these models. 

7.2.1 Integrate-and-fire Models 

Integrate-and-fire models (I&F) are simplified, phenomenological descriptions of spiking in 

biological neurons (Stein, 1967a; Stein, 1967b; Knight, 1971; Jack et al., 1975; Tuckwell, 

1988b). They retain two important aspects of neuronal firing, a subthreshold regime where 

the input to the neuron is passively integrated, and a voltage threshold which when exceeded 

leads to the generation of stereotypical spikes. The simplest member of this class is called 

the perfect integrate-and-fire model, which comprises of a single capacitance C followed by 

a fixed threshold 11th. Though physiologically inaccurate, this abstraction is often used 

because of its extreme simplicity and its analytical tractability to model biological spike 

trains. The membrane voltage of the perfect integrator in response to an input current i(t) 

is given by 

C
dVrn = i(t). 
dt 

(7.1) 

When the membrane voltage reaches 11th, a spike is generated and voltage is reset to zero. 

For the perfect integrator, the instants of successive spike occurrence ti can be recursively 

obtained using the following equation: 

(7.2) 

The average number of spikes generated per unit time by the model is called its mean firing 

rate. The dependence of the mean firing rate of a model (in response to constant current 

injection) on the magnitude of the injected current is called the f-I curve. The f - I curve 

for the perfect integrator is linear and is given by >: = I/(C1Ith), where>: denotes the 
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firing rate and I the constant current input. Biological neurons are characterized by an 

absolute refractory period following a spike occurrence during which a second spike cannot 

be generated. This fact can be incorporated in I&F models by maintaining the membrane 

potential at zero for a fixed duration tref immediately following a spike. The refractory 

period causes the f-I curve of the perfect I&F model to saturate at high firing rates 

- I 
A= -----

C vth + trefI 
(7.3) 

A more realistic spiking model of a biological neuron should account for the passive trans-

membrane resistance of nerve membranes and incorporate a leak resistance in addition to 

the capacitance in the subthreshold domain. This model is called the leaky integrate-and-fire 

model. Its membrane voltage in the subthreshold domain is given by 

C dVrn Vrn .( ) 
--+-=~t . 
dt R 

The f-I curve of a leaky I&F model with a refractory period tref is given by 

x = [tref + T log (I ! I
th

) ] -1 , where vth 
Ith = If' T=RC. 

(7.4) 

(7.5) 

Due to the leak conductance, there exists a threshold current for constant injected current 

magnitudes Ith' below which the model does not generates spikes. 

Real neurons often shown evidence of firing rate adaptation, which means that their 

firing rate decreases with time in response to constant, steady inputs. There are a lot of 

processes which can result in firing rate adaptation, the release of neurotransmitters and 

neuromodulators, presence of Ca2+ -dependent and other ion channels and so on. In order 

to account for the 50 to 100 millisecond time-course of adaptation, Wehmeier and colleagues 

(Wehmeier et al., 1989) introduced a purely time-dependent shunting conductance gadapt 

with a reversal potential equal to the resting potential (here assumed to be zero). Each 

spike increases gad apt by a fixed amount Gine. Between spikes, gad apt decreases exponentially 

to zero with a time constant Tadapt. This effectively models the effect of membrane calcium­

dependent potassium conductance and reproduces the effect of an absolute and a relative 
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refractory period following spike initiation. We refer to this model as an adapting integrate-

and-fire model. However, a refractory period tref is required in order to mimic the very 

short-term aspect of adaptation. In the subthreshold domain 

i( t) , (7.6) 

(7.7) 

If Vrn reaches vth at time ti, a spike is generated at tiand gadapt(td is increased by Gine· 

The model is completely characterized by the parameters: vth, C, R, tref, Gine and Tadapt· 

The f-I curve of the model is shown in Fig. 7.1. 

The spiking models discussed so far are deterministic; repeated presentations of the 

same input stimulus give rise to identical spike trains. Biological neurons in vivo, however, 

show a substantial variability in the exact timing of action potentials to identical stimulus 

presentations (Softky & Koch, 1993; Holt et al., 1996; Shadlen & Newsome, 1998). A simple 

modification to reproduce the random nature of biological spike trains is to regard the 

voltage threshold as a random variable drawn from some arbitrary probability distribution 

p(vth) (Holden, 1976; Gestri et al., 1980). We refer to this class of models as integrate and 

fire models with random threshold. In general, p(vth) can be arbitrary but here we assume 

that it is given by a gamma distribution of order n, 

with 

( 
V; 

) n-l ( V;) th -n th 
Pn(vth) = Cn =- exp --=---- , 

V th V th 

Cn = 
nn 1 

(n - I)! Vth ' 

(7.8) 

where Vth denotes the mean voltage threshold. n, the order of the distribution determines 

the variability of the spike trains in response to a constant current injection. For a perfect 

integrator, the interspike interval (denoted by T) is proportional to the voltage threshold. 

Thus, the resulting interspike intervals (ISIs) for the random threshold model are also 
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Figure 7.1: f-I Curve of the Adapting I&F Model. 

2 

The mean firing rate of the adapting integrate and fire model in response to constant current 
injection estimated using the 1st, 2nd and adapted ISIs. Adaptation linearizes the f-I curve. Model 
parameters adopted from (page 327, Koch, 1999): Vth= 16.4 mY, C= 0.207 nF, R= 38.3 MO, tref= 

2.68 msec, Ginc = 20.4 nS, Tadapt= 52.3 msec, ~t = 0.5 msec. 
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gamma distributed around their mean value /1T 

CVth 
/1T = -[- + tref . 

The standard deviation of the length of the ISIs is denoted by O'T. A statistic used to 

measure the variability of the spike train is the coefficient of variation (CV) of the lSI 

distribution, defined as ITT divided hy the /1T. For a non-adapting I&F model with random 

threshold the CV is given by 

O'T 

/1T 
(7.9) 

Thus, one can obtain spike trains by of varying regularity by varying the parameter n. 

When n = 1 and the refractory period is zero, the model gives rise to Poisson spike trains. 

In the class of I&F models with gamma distributed threshold, the Poisson model gives rise 

to spike trains with highest variability. For constant current injection, CV = 1, in the case 

of the Poisson model. On the other hand, when n -+ 00, the model reduces to the perfect 

integrate-and-fire model discussed above. For constant current injection, all the ISIs of a 

perfect integrate-and-fire model are identical and so its CV = O. 

While CV cannot be evaluated in closed-form for the adapting I&F model, it decreases 

monotonically as n is increased. A schematic diagram of the adapting integrate and fire 

model with random threshold is shown in Fig. 7.2A. 

Realistically speaking, the random voltage threshold model is not physiologically plau-

sible since it is believed that the spiking mechanism in real neurons is very reliable (Calvin 

& Stevens, 1968; Mainen & Sejnowski, 1995). However, in the case of a perfect or non-leaky 

integrate-and-fire model, a random threshold can be shown to be equivalent to a random 

input current (Gestri et at., 1980). Moreover, in most cases, the random threshold model is 

mathematically and computationally easier to deal with (Gabbiani & Koch, 1998). Thus, 

we shall use it as a phenomenological model to reproduce the variability commonly observed 

in neural spike trains. 
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Figure 7.2: Noisy Encoding Models of Spike Timing Variability. 
A: Schematic diagram of an adapting integrate and fire model with random threshold. The mem­

brane is modeled as a parallel combination of a resistance R and a capacitance C. A time-varying 
current stimulus m(t) is integrated by the membrane to generate the membrane voltage Vrn . When 

Vrn exceeds a threshold 11th a spike is generated and the integrator is reset for a duration equal to 

the refractory period tref. 11th is a random variable drawn from a probability distribution p(Vrn ), 

which is modeled as an nth order gamma distribution. n determines the variability in spike timing 

(inset shows gamma distributions for n = 1, 2 and 10). Each spike increases the amplitude of the 

conductance gadapt which corresponds to a calcium-dependent potassium conductance by an amount 
Ginc . gadapt is responsible for firing rate adaptation and decays exponentially to zero between spikes 
with a time constant Tadapt. B: A time-varying current input m(t) is injected into a membrane patch 

containing stochastic voltage-gated ion channels which is capable of generating action potentials in 
response to adequately strong current inputs. When the membrane voltage exceeds an arbitrarily 

chosen reference value above resting potential (10 mV in this case), a spike is recorded in the output 

spike train s(t). Parameters correspond to the kinetic model for regular spiking cortical neurons 

derived by Golomb & Amitai (1997) .. 
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While a proper adjustment of model parameters allows I&F models to provide a fairly 

accurate description of the firing properties of some cortical neurons (Softky & Koch, 1993; 

Holt et at., 1996; Shadlen & Newsome, 1998; Stevens & Zador, 1998b; Koch, 1999), it must 

be noted that many neurons cannot be modeled by integrate-and-fire models. Neuronal 

membranes contain several voltage- and ligand-gated ionic currents which are responsible 

for a variety of physiological properties which phenomenological models fail to capture. 

7.2.2 Stochastic Ion Channel Models 

In Chapter 6, we studied the influence of the stochastic nature of voltage-gated ion chan­

nels in excitable neuronal membranes on subthreshold membrane voltage fluctuations. Here 

we assess the influence of the stochastic nature of ion channels on the ability of the spik­

ing mechanism to encode time-varying inputs. The ion-channel model we consider here is 

a stochastic variant of the single-compartment model of a regular-spiking cortical devel­

oped in (Golomb & Amitai, 1997). The original version contains Hodgkin-Huxley type ion 

channels and excitatory synapses. The original version consists of a fast sodium current, 

a persistent sodium current, a delayed-rectifier potassium current, an A-type potassium 

current (for adaptation), a slow potassium current, a passive leak current and excitatory 

synaptic (AMPA- and NMDA-type) currents. We are interested in the variability due to 

the stochastic nature of ion channels and so in the model here we assume that the synap­

tic currents are absent. In order to simulate stochastic Markov models of the ion channel 

kinetics, we performed Monte-Carlo simulations of single compartmental models of mem­

brane patches of area A. As in the case of the I&F model, band-limited white noise current 

is injected into a patch of membrane containing stochastic voltage-gated ion channels and 

Monte-Carlo simulations are carried out to determine the response of the model to ran­

dom suprathreshold stimuli (Fig. 7.2B). For a detailed description of the Monte-Carlo 

simulations, see (Schneidman et at., 1998; Steinmetz et at., 2000a). 

When the length of the time step of the simulation is sufficiently small, the membrane 

voltage can be assumed to be constant over the duration of the step. Since they depend 

on the membrane voltage, the kinetic transition rates between different states and equiva-
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lently the corresponding state transition probabilities l can be computed. Random numbers 

specifying the number of channels making transitions between any two states are drawn 

from multinomial distributions parametrized by the transition probabilities and used to 

determine the modified populations of channel in the different states. The membrane con-

ductance due to an specific ion channel is determined by the tracking the number of members 

of the given channel type populating its open state. Knowing the conductances due to the 

different ion channels and the magnitude of the input current allows us to determine the 

total current entering the patch. This membrane current is integrated over the time step to 

compute the membrane voltage for the next time step. This procedure is applied iteratively 

to obtain the membrane voltage trajectory in response to the input current waveform. The 

voltage trajectory is transformed into a sequence of spikes by considering an instance of the 

membrane voltage crossing a threshold (here 10 m V with respect to resting potential) as 

a spike occurrence. This simple recipe to detect spikes works quite well for the model we 

consider here. 

7.3 Optimal Linear Estimation 

Let m(t) be a zero-mean random time-varying input signal that we wish to encode using 

the output spike train s(t) of a spiking neuron model. In general, the current i(t) injected 

into the model can be expressed as a nonlinear function of m(t) and can be expressed as 

i(t) = f([k * m](t)) , (7.10) 

where * denotes a convolution operation. f ( .) is a static, memory less nonlinearity which 

models nonlinear aspects of the neural processing (like rectification, saturation and so on) 

and k( t) is a linear filter which models the temporal aspects of the neuron's input-output 

transformation. However, for the purposes of this paper, we assume that i(t) has the form, 

i(t) = 1+ m(t) where I is the constant component and m(t) is the fluctuating component 

IThe transition probabilities are computed by multiplying the corresponding rates by the length of the 
time step assuming the product is much smaller than one. 
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of the injected current. The following analysis can be easily extended to other nonlinear 

encoding schemes. 

s (t) is a point-process determined only by the sequence of spike times {ti}. We assume 

that m(t) and s(t) are (real-valued) jointly weak-sense stationary (WSS) processes with 

finite variances, (m 2 (t)) = ()~ < 00, (Is(t) - ~F) < 00, where X = (s(t)) is the mean firing 

rate of the neuron. 

Using the results of Appendix A, the coding fraction ~ and the lower bound on the 

information rate hB can be written as 

~ 100 
df [Ssm(f)]2 

()~ -00 Sss(f) 
(7.11) 

I[m(t); m(t)] 2: hB 1100 

"2 -00 df log2 [SNR(f)] (in bits/sec), (7.12) 

where SN R(f) is the signal-to-noise ratio defined as 

SNR(f) = Smm(f) . 
Sftft(f) 

(7.13) 

The information rate measures the amount of information about the input that can be 

reliably transmitted per second in the form of spike train. Quite clearly, hB depends on 

the rate at which spikes are generated, the higher the mean firing rate of the neuron, the 

higher is the maximum amount of information that can be transmitted per second. To 

eliminate this extrinsic dependence on mean firing rate we define a quantity, Is, the mutual 

information per spike as Is = hB/X, The coding fraction ~ and the information rates (hB, 

Is) can be used to assess the ability of spike generation mechanisms to encode time-varying 

inputs in the specific context of signal estimation. 

7.4 Results 

We carried out simulations for the I&F model and the stochastic ion channel model and 

recorded the output spike times in response to the injection of pseudo-random, Gaussian, 

band-limited (flat power spectrum Smm(f) over bandwidth Bm) noise and computed the 
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coefficient of variation (CV) of the interspike interval distribution and the coding fraction 

for signal estimation task. CV measures the variability of the spike train in response to 

the input, whereas the coding fraction quantifies the fraction of the variability in the spike 

train which is functionally useful to accurately reconstruct the input modulations. 

Fig. 7.3A shows the CV for the two models as a function of the mean firing rate "X of 

the spiking models for a input bandwidth of Bm= 50 Hz. For the I&F model the mean 

firing rate "X can be determined by the f-I curve, since "X depends only on the mean injected 

current I. For a membrane patch containing stochastic ion channels, in addition to the 

magnitude of the mean current I, "X depends on a variety of parameters such as the area of 

the patch A, the standard deviation of the input am and bandwidth of the input Bm. For 

both models, I was varied while maintaining the contrast of the input, defined as c = ami I, 

constant at c =1/3. In both cases, CV increases monotonically with mean firing rate. 

Fig. 7.3B shows the CV for the two models as a function of the bandwidth of the input 

Bm. For both models, I was adjusted so that the mean firing rate "X was approximately 

equal to 50 Hz. In both cases, CV decreases with increasing Bm which is in qualita­

tive agreement with earlier experimental (Mainen & Sejnowski, 1995) and computational 

(Schneidman et al., 1998) findings that demonstrated an inverse relationship between spike 

timing precision (using a measure different from CV) and the temporal bandwidth of the 

input. Within the class of I&F models, as expected, models with higher n which fire more 

regularly have lower CV values. 

Next, we explored the dependence of coding efficiency on the mean firing rate and the 

input bandwidth. In Fig. 7.3C and Fig. 7.3D, the coding fraction ~ is plotted as a 

function of "X (for Bm = 50 Hz) and Bm ("X = 50 Hz) respectively. For both spike encoding 

mechanisms, ~ increases with mean firing rate and decreases as with input bandwidth. This 

is contrary to intuition; an decrease in variability of spike timing with input bandwidth 

suggests an increase in encoding efficiency. However, we find that the noisy spike encoding 

models considered here encode slowly-varying stimuli more effectively than rapid ones. We 

believe that in the context of a signal estimation task, this is a generic property of all models 
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Figure 7.3: Variability and Coding Performance of Spike Encoding Models. 
A: Coefficient of variability (CV) of the interspike interval distribution of the spike train generated 
by a spiking model as a function of the mean firing rate of the spike train X. The input to the model is 
a Gaussian, white, bandlimited (bandwidth Bm = 50 Hz) input, with mean I and standard deviation 

affi' The mean firing rate of the model is varied by changing the mean current I while maintaining 
the contrast of the input, defined as c = ami I, constant (c = 1/3). The solid curves correspond to the 
adapting I&F model for different values of the order n of the gamma-distributed voltage threshold 

distribution. The dotted curve corresponds to a 1000 JLm2 membrane patch containing stochastic 
ion channels derived from (Golomb & Amitai, 1997). B: CV as a function of input bandwidth Bm. 

X for both the models was maintained at 50 Hz. Panels C and D show the dependence of the coding 
fraction ~ in the signal estimation task for the two types of spiking models on the mean firing rate 
X (for Bm = 50 Hz) and the input bandwidth Bm (for X = 50 Hz) respectively. Model parameters 
for the adapting I&F model are derived from (Koch, 1999) and are summarized in the caption of 
Fig. 7.2. Parameters for the stochastic channel model are obtained from (Golomb & Amitai, 1997). 
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which encode continuous signals as firing rate modulations of sequences of discrete spike 

trains. 

Next, we explored the dependence of the mutual information rates on the mean firing 

rate and input bandwidth. Fig. 7.4A and Fig. 7.4B respectively show that the lower 

bound of the mutual information rate hB increases with ~ and Bm. This behavior can be 

better understood in light of the phenomenological expression: hB = Bm log2 (1 + K:~"! B m), 

where K: is a constant which depends on the details of the encoding scheme. The above 

expression is exact when the instantaneous firing rate of the model is a linear function of 

the input (as in the case of the perfect I&F model) and the input is a white bandlimited 

Gaussian signal with bandwidth Bm. From the expression one can deduce that for low firing 

rates hB increases linearly with ~ but at higher rates hB becomes logarithmic with A. One 

can also conclude that hB increases with Bm for small bandwidths but quickly saturates 

at high bandwidths at the value K:~/ In 2. This qualitatively agrees with Fig. 7.4A and 

Fig. 7.4B. 

The dependence of the information rate per spike Is on ~ and Bm can be similarly 

explored. The expression for hB is sub-linear with respect of ~ and thus, one can deduce 

that Is should decrease monotonically with firing rate when the bandwidth Bm is held fixed. 

Infact, its maximum value, Is = K:, occurs at ~ = O. On the other hand when ~ is held 

fixed, Is should increase with Bm initially but saturate at high bandwidths at K:/ In 2. Once 

again, Fig. 7.4C and Fig. 7.4D agree qualitatively with these predictions. 

In order to further understand the role of variability in the context of signal estimation, 

we plot measures of coding efficiency (~ and hB/ Bm) versus the corresponding CV values 

for the two models as different parameters are varied. Fig. 7.5A and Fig. 7.5B show the 

dependence of coding performance on the variability of spike timing for the I&F model and, 

Fig. 7.5C and Fig. 7.5D show the corresponding behaviors for the stochastic ion channel 

model. For both models, estimation performance improves with variability when the mean 

firing rate and input bandwidth parameters are varied. This implies that the variability 

in the output spike train represents faithful encoding of the input modulations, and thus, 

greater variability leads to better signal estimation. On the other hand, when the order 
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Figure 7.4: Information Rates in Signal Estimation for Spiking Models. 
A: Lower bounds of the information rate hB for the two spiking model classes considered in this 
paper. The solid curves correspond to the adapting I&F model for different values of the order n of 
the gamma-distributed voltage threshold distribution. The dotted curve corresponds to a 1000 J.lm2 

membrane patch containing stochastic ion channels derived from (Golomb & Amitai, 1997). As in 

Fig. 7.3, the input is a bandlimited Gaussian process with bandwidth Bm = 50 Hz. B: hB as a 
function of the input bandwidth Bm for X = 50 Hz. C: The mutual information transmitted per 

spike on average, Is = hB/X, as a function of X (Bm = 50 Hz). D: Is as a function of input 
bandwidth Em for X = 50 Hz. Model parameters summarized in the caption of Fig. 7.2. 
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Figure 7.5: Is it Signal or is it Noise? 
A: Parametric relationships between measures of coding efficiency and the variability of the spike 

train as different parameters were varied for the two spiking models. A: Coding fraction ~ and 
B: the mutual information transmitted per input time constant hB/ Bm for the I&F model as a 
function of the CV of the spike train. Increase in estimation performance with CV when the mean 
firing rate "X and input bandwidth Bm were varied (n = ()()) suggests that the variability arises as a 
result of faithful encoding of the input and thus represents signal, whereas a decrease with CV when 

the order n of the threshold distribution was varied suggests that the variability impedes encoding 
and thus represents noise. A: Coding fraction ~ and B: the mutual information transmitted per 

input time constant hB/ Bm for the stochastic ion channel model as a function of the CV of the 
spike train as the mean firing rate "X (A = 1000 /Lm2, Bm = 50 Hz), input bandwidth Bm (A = 

1000 /Lm 2 , "X = 50 Hz) and the area of the patch A (Bm = 50 Hz, "X = 50 Hz) were varied. 



171 

of the gamma distribution for the I&F model or the area of the membrane patch for the 

stochastic ion channel model is varied, coding performance decreases with variability. This 

suggests that the variability is due to noise (randomness of the spiking threshold). Thus, 

we find that the role of variability on the coding efficiency of spiking models is ambivalent 

and the beneficial or detrimental consequences of the variability of spike timing depend on 

the specific nature of the signal processing task the neuron is expected to perform (signal 

estimation here) and the parameter that is varied. 

Fig. 7.6A and Fig. 7.6B demonstrate that for the spiking models we have considered 

here, performance in the signal estimation task is determined by the ratio "XI Bm and not 

on the absolute values of "X and Bm. The quantity "XI Bm represents the number of spikes 

observed during the input time constant, a time interval over which the iput is relatively 

constant. Thus, the larger the number of spikes available for the estimation task, the better 

the estimate of the neuron's instantaneous firing rate '\(t) and consequently, the better the 

estimate of the instantaneous value of the input m( t). Thus, estimation of the input is 

equivalent to estimating the instantaneous firing rate of model from the spike train. This 

is further explained in Appendix A. This suggests that the relevant variable which encodes 

the input modulations is the neuron's instantaneous firing rate arguing for the use of a 

mean rate code. 

7.5 Discussion 

In this chapter, we addressed the role of the variability of spike timing on the ability of 

spiking neuronal models to encode information about time-varying random signals. We 

considered two classes of models, the I&F models and Hodgkin-Huxley type stochastic 

ion channel models and computed the variability, coding fraction and information rate in 

response to injection of white bandlimited Gaussian inputs. For both types of encoding 

mechanisms, the coding fraction was higher for smaller input bandwidths. This suggests 

that noisy spike encoders encode slowly varying stimuli better than rapidly varying stimuli. 

This is in contrast to earlier results (Mainen & Sejnowski, 1995; Schneidman et al., 1998) 
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Figure 7.6: Coding Efficiency as a Function of "XI B. 
A: Coding fraction ~ and B: mutual information transmitted per input time constant, hB/Bm' for 
the two spiking models as a function of the mean number of spikes available per input time constant, 

>../ B m, for different combinations of Bm and>" (hollow symbols: Bm varied, empty symbols: >.. varied). 

The solid curves correspond to the adapting I&F model (different symbols represent different values 

of the order, n, of the voltage threshold gamma distribution), whereas the dotted curve corresponds 
to a 1000 11m2 membrane patch containing stochastic ion channels (Golomb & Amitai, 1997). The 
contrast of the input, c, was maintained at 1/3. 
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which used measures like spike timing reliability and precision and demonstrated that spike 

trains become less reliable and precise at lower input bandwidths. 

The differences between these approaches reflect a fundamental difference in the pro­

posed goals for computation within the nervous system. Measuring spike timing reliability 

and precision implicitly assumes that the exact times of individual spikes are meaningful 

and convey information. On the other hand, estimation of the coding fraction assumes 

that knowledge of the detailed time course of the input signal is the critical variable. In 

our opinion, this issue cannot be definitely resolved until the relevant neural codes are 

determined. In the absence of an unequivocal choice, we believe that the coding fraction 

represents a reasonable metric to assess the performance in signal estimation tasks. In cases 

where the signal estimation task has little relevance to the computational role of a neuron, 

for instance, when the neuron is involved in higher order feature extraction, other pertinent 

measures need to be employed. 

Furthermore, our results suggests that the relationship between the observed variability 

of the spike trains and the performance in a given information-theoretic setting depends 

on the nature of the task. Thus, depending on the task, the variability might represent a 

very accurate encoding of the input modulations or may be an unavoidable consequence 

of noisy processes. We also found that mutual information rates for the signal estimation 

task depend greatly on the noise in the spike generating mechanism; noise in the form 

of variability of the spiking threshold can greatly reduce the ability of spiking systems to 

transmit information reliably. 

While interpreting these results, two general limitations must be borne in mind. First, 

the coding fraction is computed using bandlimited white noise as the input. The actual 

neural code used by cortical pyramidal neurons, though presently unknown, possibly varies 

between different areas in the brain. Our input choice allows us to determine performance in 

encoding signals which have their power distributed over a range of frequencies. However, 

nervous systems have probably been inexorably optimized through evolution to process 

natural and ecologically relevant signals with specific statistical properties and white noise 

may not represent these signals accurately. Thus, the coding fraction for white noise stimuli 
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can only be interpreted as an indicator of average performance over a broad range of possible 

input signals. However, if knowledge of the statistical milieu in which a neuron processes 

information is available, the approach can be modified accordingly. 

The second limitation which concerns the use of the estimation paradigm in general is 

that the coding fraction represents the performance of the optimal linear estimator; non­

linear encoders may lead to far better performance. However, Bialek et al. (Rieke et al., 

1997) have shown that in most cases the difference in performance between linear and non­

linear estimators is marginal. Thus, if the mean rate of neuronal firing or any function of 

it is the variable used to encode information, the coding fraction examined here is likely to 

be a good indicator of coding efficiency. 

Our theoretical results can be tested experimentally by performing recordings similar to 

those of Mainen & Sejnowski (Mainen & Sejnowski, 1995). One would need to inject current 

into a neuron in vitro and analyze the coding fraction of the resulting spike train instead 

of measuring precision of the spike train. Preliminary experimental estimates of the coding 

fraction in cortical pyramidal cells for sinusoidally varying stimuli have been reported by 

Fellous et al. (1999). 
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Chapter 8 Conclusions 

This thesis documents our efforts to develop a reductionist, bottom-up theory of neuronal 

communication which makes use of the knowledge of the underlying single-neuron biophysics 

to resolve information transmission between neurons. The approach we employ here is 

different from some of the other techniques used to decode the nature of the neural code 

which regard the neuron as a black-box. We are interested in deconstructing neuronal 

information transfer into its constituent biophysical components and assessing the role of 

each stage in this context, rather than arriving at an accurate estimate of neuronal capacity. 

Our research program is driven by the hypothesis that noise fundamentally limits the 

precision, speed and accuracy of computation in the nervous system (Koch, 1999). Assessing 

the role of each biophysical stage in information transfer requires a characterization of the 

corresponding sources of variability that can cause loss of signal fidelity at different stages 

in the neuronal link. Some possible sources of biological noise in a single neuron include the 

probabilistic nature of the synaptic release mechanism and the variability in the amplitude 

of the postsynaptic response, the stochastic fluctuations of the ligand- and voltage-gated 

membrane channels, and the synaptic bombardment due to spontaneous background net­

work activity. 

In most of the previous approaches, noise analysis has been exploited as an investiga­

tive measurement technique. Decoding the neural code requires an understanding of the 

biophysical constraints which limit the temporal precision of neuronal spike trains. Our in­

terest lies in understanding how the inherent sources of noise at the single-neuron level have 

bearing on the temporal precision with which neurons respond to sensory input or direct 

current injection. These questions have received renewed scrutiny in recent times. Previous 

investigations have used simulations of stochastic models of voltage-gated membrane ion 

channels to explore the possibility that the noise due to random channel fluctuations can 

explain the variability observed in neural spike trains (Strassberg & DeFelice, 1993; Fox & 
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Lu, 1994; Schneidman et at., 1998). On the other hand, recent studies suggest that the 

unreliable and variable nature of of synaptic transmission in cortical neurons can have a 

significant impact on the ability of neurons to transmit information (Dobrunz & Stevens, 

1997; Zador, 1998). However, several experimental and computational studies propose that 

background synaptic activity may be the dominant noise source in vivo (Calvin & Stevens, 

1967; Bell et at., 1996; Reich et at., 1997; Stevens & Zador, 1998a; Azouz & Gray, 1999; 

Destexhe & Pare, 1999). Thus, it is still unclear which of the above is the most significant 

source of biological noise. 

We believe that this question can be readily addressed using information theoretical 

analysis. Information theory provides us with measures that can be used to study the rel­

evance of the different membrane noise sources to biological signal processing. Application 

of these measures individually to the different biophysical components allows us to measure 

which noise source causes the greatest loss of information. To demonstrate the applicability 

of this hypothesis, we studied the effect of synaptic unreliability on the amount of informa­

tion transmitted across synaptic connections in Chapter 2. We showed that single cortical 

synapses transmit information poorly in the signal estimation and signal detection tasks. 

However, a small amount of redundancy is sufficient to render synaptic transmission robust 

and reliable. 

In Chapter 3, we characterized different sources of subthreshold noise (thermal noise, 

channel noise, spontaneous background noise) in neuronal membranes and investigated how 

these sources influence and, ultimately, limit the ability of one-dimensional cable structures 

to propagate information in Chapter 4. In Chapter 7, we studied the role of variability 

in spike timing of real neurons in conveying encoding time-varying input for two types of 

noisy spike encoders. We showed that depending on the nature of the task, variability might 

either represent faithful encoding of the input and lead to an improvement in performance 

or represent noise in the spike generation mechanism and lead to a substantial loss of 

performance. 

The long term goal of our research program is to understand how the nervous system pro­

cesses information using very noisy and unreliable components, such as individual neurons. 
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Our approach is reductionist: we use a combination of methods from three disciplines ~ 

information/ signal detection theory, compartmental modeling, and membrane biophysics~ 

to analyze the noise sources in component parts of the neuron, such as the synapse, den­

drite, and soma, and to determine their impact on the ability of the neuron to transmit and 

process information. Ultimately, our goal is to answer questions like, "what is the channel 

capacity of an unreliable synapse onto a spine?", "is the length of the apical dendrite of a 

neocortical pyramidal cell limited by considerations of signal-to-noise?", "what influences 

the noise level in the dendritic tree of a real neuron endowed with voltage-dependent chan­

nels?", "how accurately can the time course of an synaptic signal be reconstructed from the 

voltage at the spike initiation zone?" and so on. 

The validity of our theoretical results needs to be assessed by comparison to experimental 

data obtained from a well-characterized neurobiological system. We currently are in the 

process of analyzing these noise sources using detailed biophysical models and studying the 

effect of the measured noise on the temporal precision of spike firing in anatomically and 

physiologically characterized neuronal models. This will allow us to estimate the information 

capacity of these neurons and explore the possible functional role of noise. 

As we began this investigation in the search of a resolution of the neural coding conun­

drum, it is fitting that, in conclusion, we leave the reader with this point to ponder: "Is 

noise a bug or a feature?" That is to say, does neuronal noise simply impair the ability of 

neurons to detect weak signals and place a limit on the computational and communicational 

ability of the brain, or can noise also playa positive functional role (Koch, 1999)? In this 

thesis, we subscribe to the former world-view which obviously needs to be questioned in the 

face of several proposals which have been advanced to argue in favor of a computational 

role of noise, such as stochastic resonance (Berzukov & Vodyanoy, 1995; Levin & Miller, 

1996) and exploitation of the stochastic nature of the firing threshold or of spike trains to 

implement multiplication (Srinivasan & Bernard, 1976; Suarez & Koch, 1989). Only time 

will tell which of these suppositions (or if both) prevails, but if history is any guide, it will 

be a long time before the matter is fully resolved. 
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Chapter 9 Appendix 

A The Signal Estimation Problem 

Consider the following problem of estimating a random signal in the presence of noise. Let 

m(t) and s(t) be (real-valued) jointly weak-sense stationary (WSS) processes with finite 

variances, (m 2 (t)) = O"~ < 00, (Is(t) - (s(t)) 12) = 0"; < 00. In these equations, (.) denotes 

an ensemble average over the joint input and output distribution. Our goal is to recover 

the signal m(t) from the noisy measurements s(t) optimally. The criterion of optimality we 

adopt is the mean-square error (MSE) between m(t) and an estimate of m(t) obtained from 

s(t), denoted by m(t). Thus, we choose m(t) such that the variance of the error between 

m(t) and m(t) is minimized. For the sake of simplicity, we will restrict ourselves to linear 

estimates of the form 

(AI) 

Since m(t) is completely specified by the filter h(t), the objective is to derive the optimal 

filter which minimizes the MSE denoted by £, 

(A2) 

Thus, estimation performance is quantified by £; the lower the value of £, the better the 

performance. 

This optimal linear estimation problem was first formulated and solved by Wiener 

(Wiener, 1949) and led to the development of statistical communication theory and in­

formation theory (Shannon, 1949; Cover & Thomas, 1991). Recently it was modified by 

Bialek and colleagues (Bialek et at., 1991; Bialek & Rieke, 1992; Rieke et at., 1997) and 

successfully applied to quantify information-processing in some peripheral biological sys­

tems (van Steveninck & Bialek, 1988; van Steveninck & Bialek, 1995; Rieke et at., 1993; 
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Rieke et al., 1995; Rieke et al., 1997). Their approach is called the reconstruction technique, 

and has become an important tool in theoretical neuroscience (Theunissen & Miller, 1991; 

Wessel et al., 1996; Gabbiani et al., 1996; Gabbiani, 1996); for an extensive tutorial on the 

topic, see Gabbiani & Koch (1998). 

Optimal linear estimators satisfy the orthogonality principle (Gabbiani, 1996) which can 

be expressed as 

(A3) 

For additional properties on optimal linear estimators, refer to Papoulis (1991). If the 

constraint of causality is not imposed on the filter h(t), the optimal filter can be obtained 

by substituting for m(t) from equation A1 in equation A3 

(A4) 

where Rsm(z) = (s(t)m(t + z)) is the cross-correlation between s(t) and m(t) and Rss(z) = 

(s(t)s(t + z)) is the auto-correlation of s(t). Taking Fourier transforms on both sides of 

equation A4 gives us the transfer function G(f) of the optimal filter in terms of the power 

spectrum of s(t), denoted by Sss(f), and the cross-spectrum between s(t) and m(t), denoted 

by Ssm (f), 

G(f) - Ssm(f) 
- Sss(f) , (A5) 

where 

G(f) = .F{g(z)}, Ssm(f) = .F{Rsm(z)} and Sss(f) = .F{Rss(z)}. (A6) 

.F{.} denotes the Fourier transform, which for a square integrable function h(t) is defined 

as 

H(f) = .F{h(t)} = i: dz h(t) e-j2nJt , h(t) = .F-1{G(f)} = i: df H(f) e12nJt
. 
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We define a reconstruction noise for the signal estimation problem as the difference 

between the stimulus and the optimal estimate n(t) = m(t) - m(t). It is clear that 

£, = (n2 (t)). The additive noise n(t) has zero mean and its auto-correlation is given by 

Rnn(z) = Rmm(z) - (g * Rsm)( -z) (using equation A4). The power spectrum of the noise 

is given by 

() { ()} () 
I Ssm (JW 

Snn f =:F Rnn Z = Smm f - Sss(J) , (A7) 

where Smm(J) is the power spectral density of the input. Thus, the MSE can be expressed 

as 

£, = r df SA' (f) = 2 _ r df I Ssm(J) 12 is nn am is Sss(J) , 
(AS) 

where the set S = {j 1 Sss(J) i= O} is called the support of Sss(J). As in Gabbiani & Koch 

(199S), we define a normalized measure called the coding fraction, 

£, 
~=1--2 . 

am 

The coding fraction lies between 0 and 1, 0 ::; ~ ::; 1, where ~ = 0 denotes chance performance 

and ~ = 1 denotes perfect reconstruction. Using equation AS, we can write 

~ = _1 r df 1 Ssm (J) 12 
a~ is Sss(J) 

(A9) 

Information theory (Shannon, 1949; Cover & Thomas, 1991) allows us to quantify the 

amount of statistical information one random quantity conveys about another, given their 

joint probability distribution. It also provides a model-independent measure of the similarity 

between random covarying quantities a and b, called the mutual information (denoted by 

J(a; b)) between a and b. For stochastic processes m(t) and s(t), the mutual information 

is measured in units of bits/sec and referred to as the information rate. In general, the 

information rate depends on the joint probability distribution of the two processes. 
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Our analysis so far has remained independent of the probability distributions of m(t) and 

s(t). Only a knowledge of the power spectra and cross-spectra of the two processes (second­

order statistics) was needed to compute~. This is because we restricted ourselves to the 

class of linear estimators. In order to derive more sophisticated nonlinear estimators, which 

outperform linear estimators in general, one would need to make use of higher order (greater 

than second-order) statistical information about the processes. However, these nonlinear 

estimators are usually analytically intractable to derive and difficult to implement. Besides, 

it can be shown that if input and output processes are jointly Gaussian, the optimal linear 

estimator is also the most optimal estimator (over the class of all estimators). Since Gaussian 

processes are completely characterized by their second order moments (power spectra), the 

coding fraction and the information rate depend only on the joint spectral properties of 

m( t) and s(t). 

The Gaussian assumption allows us to derive closed-form expressions for the information 

rate as well. In an experiment, the choice of the input usually lies with the experimenter, 

and so m(t) can be assumed to be Gaussian by design. In cases for which the Central 

Limit Theorem (Papoulis, 1991) holds, the output can also be closely approximated by a 

Gaussian process and the information rate can be computed exactly. On the other hand, 

when the output does not behave like a Gaussian process, one can derive lower bounds on 

the information rate. According to the data processing inequality (Cover & Thomas, 1991), 

it can be shown that the mutual information between m(t) and s(t) is greater than the 

mutual information between m(t) and m(t) 

I[m(t); s(t)] ~ I[m(t); m(t)]. 

A lower bound for I[(m(t); m(t)] and thus for I[m(t); s(t)] is given by (Gabbiani, 1996; 

Gabbiani & Koch, 1996) 

I[m(t); s(t)] ~ hB = ~ Is df log2 [~::(~i] (in bits/sec) . (AlO) 
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The lower bound is reached when the reconstruction noise n(t) is Gaussian. Equation AlO 

differs from the expression for capacity of an additive Gaussian channel model, commonly 

used in information theory (Cover & Thomas, 1991), because unlike, in the case of the 

standard Gaussian channel, the reconstruction noise n(t) is not independent of the input 

m(t). 

B Estimation With Multiple Synapses 

In the case of multiple synapses the postsynaptic membrane voltage is given by equa-

tion 2.20. We assume that the EPSP waveforms corresponding to the different synapses are 

identical, h1(t) = h(t), V l. 

N syn 

V(t) = L L q! W i
1 h(t - ti) + n(t). 

1=1 i 

As before, the postsynaptic noise n(t) is assumed to be independent of the input m(t) and 

the presynaptic release processes. The cross-spectrum between the zero-mean membrane 

voltage v(t) and m(t) for N syn synapses is a scaled version of the cross-spectrum for a single 

synapse equation 2.9, 

(B1) 

The autocorrelation function for the membrane voltage can be computed as follows: 

(V(t)V(t + z)) 

(B2) 
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The above expression can be simplified as a sum of the following four terms 

(~~(qj)' (Wi)' h(t - til h(t + z - ti)) 

+ \~ ~ j~i qjq; wfwj h(t - til h(t + z - tj )) 

+ I~ ~ Lq~qiWlWrh(t-ti)h(t+Z-td) 
\ l=l m=l, m~l l 

+ /~ ~ LLq~qjWlWrh(t-tdh(t+Z-tj)), (B3) 
\ l=l m=l, m~l l J,J~l 

We assume that ql and wI are independent and identical random variables corresponding 

to conditionally independent synapses. Thus, 

(B4) 

where 6ij denotes the Kronecker delta function. Using these expressions, Rvv(z) can be 

simplified as 

R,,(z) N,yn P ('1' + ,,~) (~h(t - til h(t + z - ti )) 

+ Nsynp2ZP / L .L h(t - ti) h(t + Z - t j )) 
\ l J,J~l 

+ N,,," (N,y" - \) p''1' (~h(t - til h(t + z - til ) 

+ Nsyn(Nsyn -1)p2ZP 1 LLh(t - ti) h(t + z - t j )) 
\ l J,J~l 

U sing the following expressions, 

(~h(t - til h(t+ z - til ) 

12: .2:.h(t-ti)h(t+Z-tj)) 
\ l J,J~l 

>: (h * k)(z) , 

(BS) 

(B6) 

(B7) 
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where h(t) = h( -t), the power spectrum of v(t) can be obtained by taking the Fourier 

transform of Rvv(z), 

N s
2
yn rp p2IK(f)12IH(f)12 Smm(f) 

+ N syn p ~ IH(f)12 [UP + (}~) + (Nsyn - 1) 7P p] + Snn(f) . (B8) 

Substituting for Svm(f) and Svv(f) in equation A9, the coding fraction ~ can be written as 

(B9) 

where 

Assuming that the second term in the above expression is negligible, in comparison to the 

ideal case, the shot noise is multiplied by a factor 

1 1 + CV~ N syn - 1 
i'£N = -- + ---''----

Nsyn p Nsyn 
(BI0) 

Note that i'£N ---+ 1 in the limit of a large number of synapses, Nsyn ---+ 00. 

C The Signal Detection Problem 

In the signal estimation paradigm, both the signal and noise were continuous random pro­

cesses. We now consider a different problem, that of detecting the presence of a known 

deterministic signal in noise. This scenario arises quite frequently in science and engineer-

ing (radar, communications, pattern recognition, psychophysics, etc.) and is commonly 

known as the signal detection problem. There exists a substantial amount of experimental 

literature on the so-called lower envelope principle which states that the performance of an 

animal on psychophysical threshold discrimination tasks is determined by single neurons 

(Parker & Newsome, 1998). The most dramatic illustration is from recordings of single 

peripheral fibers in the median nerve of conscious human volunteers (Vallboa & Johannson, 

1976; Vallbao, 1995). Remarkably, the occurrence of a single action potential in the fiber 
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predicted the detection of the stimulus by the observer almost perfectly. This points to the 

functional utility for the system to be able to carry out a signal detection task of the type 

we study here. 

The objective in signal detection is to decide which member from a discrete set of signals 

was generated by a source, on the basis of measurements (possibly noisy) of its output. We 

restrict ourselves to the binary case, where the set has two elements viz., the signal (denoted 

by m(t)) and the noise (denoted by n(t)). We further assume that m(t) is filtered by a 

known filter h(t) and additively corrupted by n(t), to give rise to the measured output 

(denoted by s(t)). Our goal is to decide whether the observations s(t) (available over a 

period 0 ::; t ::; T) are due to noise n(t) (hypothesis Ho) or a filtered, noisy version of the 

signal m(t) (hypothesis HI)' This can be formally expressed as the following: 

Ho : s(t) 

HI : s(t) 

n(t), 

(h * m)(t) + n(t), 

Noise 

Signal + Noise (C1) 

Thus, a signal detection task involves making a decision about the presence or absence of 

a known signal m(t) buried in noise n(t) on the basis of the observations s(t). In psy­

chophysics, such a procedure is known as a Yes/No task (Green & Swets, 1966). Within a 

neurobiological context, Newsome and his colleagues used a binary motion detection task to 

great effect (Newsome et al., 1989; Britten et al., 1992; Shadlen & Newsome, 1998) to study 

the extent to which individual cortical neurons explain the performance of the monkey. 

Decision errors are of two kinds. A false alarm (F) error OCCurS when we decide in favor 

of the signal (HI) when actually only noise was present (Ho), while a miss (M) error occurs 

when we decide in favor of the noise (Ho) when in fact the signal was present (HI). The 

probabilities of these errors are denoted as 

PF = P [Choose HI I Ho present 1, PM = P [Choose Ho I HI present]. 
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The probability of detection error Pe is given by 

(C2) 

where Po and PI = 1 - Po are the prior probabilities of Ho and HI respectively. We define 

a likelihood ratio A (s) as 

A(s) = P[slHd 
P[sIHo] , 

(C3) 

where P [s I HI] and P [s I Ho] denote the conditional probabilities of observing s(t) under 

the hypotheses HI and H 0 respectively. Using Bayes' rule, A (s) can be expanded as 

A(s) - P[HI Is] P[Hol 
- P[Hols] P[Hd' 

(C4) 

where P[HI I s] and P[Ho I s] denote the posterior probabilities of the hypotheses con­

ditioned on s(t). The ratio £(s) = P[HI I s]IP[Ho I s] is commonly referred to as the 

posterior likelihood, whereas £0 = P [Ho liP [HIl = pI/po is called the prior likelihood. All 

the information needed to disambiguate between the two hypotheses using s(t) is contained 

in £(s). The decision rule which minimizes Pe is given by (Poor, 1994), 

Choose HI for {s(t) I £(s) 2': 1}, 

Choose Ho for {s(t) I £(s) < 1}, 

which can be compactly written as 

Hl 
£(s) ~ 1 

Hl I 
A(s) ~ £0 . 

Ho Ho 

(C5) 

(C6) 

If the noise n(t) is Gaussian, the above decision rule reduces to convolving s(t) with 

a linear filter gd (t) and comparing the sampled value of the filter output at t = T to a 

threshold. If the output exceeds the threshold, hypothesis HI is chosen, else Ho is chosen. 

gd(t) is called a matched filter (Poor, 1994) and depends on the input signal m(t), the filter 
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9d(t) and the auto-correlation of noise n(t). For finite T, deriving the exact form of 9d(t) 

involves solving an analytically intractable Fredholm integral equation (Helstrom, 1968) in 

general. However, in the limit T ~ 00 (which means we can delay our decision indefinitely), 

we can derive a simple closed-form expression for 9d(t) in the frequency domain, 

(C7) 

where H(f) = F{h(t)}, M(f) = F{m(t)} and Sn(f) is the noise power spectral density. 

Let us denote the sampled value of the output of the matched filter at t = T by the 

random variable r, 

(C8) 

Notice that r has the form of a correlation between the measurement m(t) and the time­

reversed matched filter 9d(T - t). When the noise n(t) is white (Sn(f) has a fiat spectrum), 

9d(t) is a shifted, time-reversed version of the filtered input signal (h * m)(t) and r is 

a correlation between s(t) and (h * m)(t). We can rewrite the optimal decision rule in 

equation C6 in terms of r as 

(C9) 

where e is the threshold chosen for optimal performance. Thus, the performance of the 

matched filter can be determined in terms of the statistical properties of the random variable 

r. Since 9d (t) is a linear filter, r is a Gaussian random variable and its conditional means 

and variances (under Ho and Hd specify it completely, 

0"0 

Itl 

(r2 I Ho) - 1t5, 

(r2 I HI) - Itr . 
The error probabilities PF and PM can be computed as 

(00 (8 
PF = ) 8 dr P [r I Ho J dr ; PM = } -00 dr P [r I Hd . (ClO) 
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The probability of error Pe ranges between Pe = 0, which implies perfect detection and 

Pe = 0.5 which implies chance performance (pure guessing). 

D Detection With Multiple Synapses 

It can be shown that the optimal decision rule for multiple synapses also involves comparing 

the correlation between the membrane voltage V(t) = ~;::r ql WI h(t) +n(t) and the EPSP 

shape h(t) to a threshold 8. The random variable r can be written as 

(Dl) 

where qN = ~;:;r ql WI. Since no spontaneous vesicle release occurs, qN == 0 in the absence 

of a presynaptic spike (X = 0). In this case, r is a zero-mean, unit variance Gaussian 

random variable with probability density, 

1 (r2) Prob [r I X = 0] = v'2i exp -2- (D2) 

However, when a presynaptic action potential occurs (X = 1), qN is a random variable which 

depends on the number of synapses at which vesicle release occurs and the postsynaptic 

magnitude subsequent to a release. The spike-conditioned density of r is given by 

(D3) 

where PN(qN) is the probability density of qN. Since qN is a sum of independent identical 

random variables, PN(qN) can be obtained by convolving the probability density of the 

random variable ql = q W with itself Nsyn times. Thus, 

(D4) 

Nsyn times, 
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where 

(D5) 

In the equation above (1 - p) 8(qd denotes the probability mass at ql = 0 corresponding 

to release failure and P(q) is the postsynaptic EPSP amplitude distribution when a single 

release occurs. Thus, the error probabilities (PF and PM) can be written as 

1 rlO (r2) Prob [r 2': e I X = 0] = V21f J 8 dr exp -2- , (D6) 

Prob [r < e I X = 1] 

1 18 r~o [-(r - qwJSNR)2] V21f -00 dr Jo dqN PN(qN) exp 2 (D7) 

E Stochastic Analysis of Two-State Channels 

The simplest and the most widely used model for single voltage-gated channels is the two­

state model. Under this model, a channel is like a stochastic binary switch, that can 

either be in the open state that conducts current, or the closed state that does not. The 

random opening and closing of the channel modulates the current flowing through it and the 

statistics of channel fluctuations are reflected in the current fluctuations. At steady-state, 

the expected number of channels is constant and the average number of open channels 

contributes to the membrane resistance rm. However, since the channels randomly flip 

between their open and closed states, the number of open channels is a random variable. For 

voltage-gated channels, the probabilities of channel transitions are functions of membrane 

voltage and thus in turn depend on the current flowing across the membrane. However, 

as we mentioned before, if the current flowing through the membrane is small, the voltage 

change due to channel openings is negligible and so the process of opening and closing of 

channels can be considered independent of the current flow. 

This is a reasonable but important assumption. If the current flow through the channel 

is large, it would cause a significant change in membrane voltage which in turn would 

influence the channel kinetics. One can then no longer assume the channel statistics to 
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be stationary. This is exactly what happens when an action potential is initiated in an 

excitable membrane. During the course of an action potential, the channel statistics change 

with time and are thus non-stationary. Thus, our assumption holds when the membrane is 

close to its resting value, far from threshold. Alternatively, one can imagine a scenario in 

which the membrane is voltage-clamped to a certain value which ensures that the random 

current does not cause a change in channel kinetics. 

The channel models we consider have a finite (two in this case) number of discrete 

states, as opposed to fractal channel models which assume an infinite continuum of states 

(Liebovitch & Todorov, 1996). Thus, the sequence of channel states in time can be regarded 

as a discrete-state continuous-time random process. Consider a single two-state channel 

which switches randomly between its closed (C) and open (0) state and can be described 

by the following kinetic scheme: 

c o 
{3 

(1) (2) 

ab..t denotes the conditional probability of a channel transition from the closed state to 

the open state in a time interval b..t, and f3b..t denotes the probability of a corresponding 

transition from the open state to the closed state. For a finite-state process, the conditional 

probabilities (also called transition probabilities) can be represented as a square matrix 

function whose dimension equals the number of states (two, in our case). a and f3 have the 

dimensions of sec- l and so they can be regarded as transition rates between the correspond­

ing states. For a fixed voltage and given our assumptions, a, f3 are constants. l We assume 

that the channel transitions are memoryless, that is, the probability of a channel transition 

depends only on the present state of the channel and not on the history of the channel, 

i.e., the channel's prior states. This is called the Markov property and so our memoryless 

assumption implies that the channel gating process is a Markov process. A Markov process 

is called homogeneous if the probability of a channel transition in an interval b..t depends 

lFor voltage-gated channels, a and f3 are functions of Vrn , but since we assume currents are small, Vrn is 
close to its resting value and a and f3 can be considered to be constant. 
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only on the length of the interval and not its starting point. This implies that the transi-

tion matrix is a function of only one variable representing the length of the interval between 

transitions. tlt is chosen to be sufficiently small to ensure that there is a maximum of one 

transition in tlt. This can be expressed more formally as 

1
. Prob [ 2 or more transitions in tlt ] 
1m = O . 

.6.t-tO tlt 
(E1) 

Processes satisfying this property are called ordinary processes. The well-known Poisson 

point process is an example of an ordinary, homogeneous process. 

Thus, we model channel transitions as an ordinary, homogeneous, discrete-state continuous-

time Markov process which allows us to apply the theory of continuous-time Markov chains 

to derive the matrix differential equation, the Chapman-Kolmogorov equation (C-K)2, for 

the state transition probabilities. Several excellent treatments of this exist in the literature 

(Colquhoun & Hawkes, 1982; Johnston & Wu, 1995). 

For the two-state channel, let x( t) denote the state of the channel at time t. Let us 

numerically represent the closed state by 1 and the open state by 2. The matrix of transition 

probabilities between states is represented by I1(t) = [I1ij(t)] where I1ij(t) = Prob[x(t) = 

j I x(O) = i] is the probability that the channel is in state j at time t given that it was in 

state i at t = O. Since x(t) is a homogeneous process, IIij(t) = Prob[x(t+z) = j I x(z) = i] 

for any z. Similarly, let P(t) = [Pdt) P2 (t)] denote the vector of state probabilities where 

Pi(t) = Prob[x(t) = i] is the probability that the channel is in state i at time t. Together, 

I1(t) and P(t) completely specify x(t) since all the statistics of x(t) can be determined in 

terms of I1(t) and P(t). For the two-state channel I1(t) is a 2 x 2 matrix function. I1(t) 

satisfies the C-K equation, 

d~;t) = II(t) Q. (E2) 
------------------------------

2 Conventionally, Chapman-Kolmogorov equation refers to the equivalent integral form of the differential 
equations. In physics, the differential form is called the Master equation. 
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The initial condition for the above differential equation is II(O) = I, where I = [Oij] is 

the unity matrix. Q = [QiJ] is called the infinitesimal matrix and is defined as 

Q = lim II(.6.t) - I = II'(O) . 
6.t-tO .6.t 

(E3) 

It can be shown that as long as x (t) is an ordinary process, II' (0) is well defined and the 

above equality holds. The elements of Q are called transition probability rates of x(t). 

Since II(t) is a matrix of conditional probabilities, 

(E4) 
j j 

A matrix for which the sum of columns adds up to 1 (II above) is called a Markov matrix. 

For the two-state channel, 

r 
-0; 

Q= 
(3 

(E5) 

Since the columns of Q add to zero, Q is singular matrix. It can be shown that for an 

n state Markov process, Q has n - 1 non-zero eigenvalues. Thus, in our case Q has one 

non-zero eigenvalue. P(t) can be expressed in terms of II(t) and the initial state probability 

vector P(O) as 

P(t) = P(O) II(t) . (E6) 

A property of finite-state Markov processes is that, independent of the initial state, P(t) 

and II(t) tend to stationary solutions, ps and IP respectively, given by the equations, 

pS Q = 0, Irs Q = O. (E7) 

One can easily see from the above equations that p{ = IIh = Q!/3 and PJ. = II~2 = 

Q~,B respectively. Thus, at steady-state, the state probabilities, P/, and the transition 

probabilities, IIYi' are equal irrespective of the initial state of the channel. The complete 
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i(t) 

i = 0 

t ---. 

Figure 9.1: Stochastic Fluctuations of a Two State Binary Channel. Sample current 
record for a single two-state channel switching randomly between its open and closed state. The open 
state is characterized by a conductance 'Y and the closed state does not conduct. Inset: Equivalent 
electrical circuit of the channel. 

solutions for Pi(t) and l1ii(t) can be written as 

P 1 (t) = P{ - [PI - n (O)]e-(a+f3 )t , 

1111 (t) = I1h - [l1h - 1]e-(a+f3)t , 

P2(t) = P1 - [P2 - P2(O)]e-(a+ f3 )t 

1122(t) = 1122 - [1122 - 1]e-(a+f3)t . 

(ES) 

(E9) 

All the probabilities above follow an exponential time course with a time constant () = 

1/0: + f3, which is called the relaxation time constant. Let 'Y denote the conductance of 

a single channel in the open state (the closed state does not conduct current). 1(t), the 

current through the channel, fluctuates between 0 and 'Y(Vm - Ech) , as shown in Fig. 9.1, 

where Ech is the reversal potential of the channel and Vm is the membrane potential. Since 

1(t) is a binary process, its expected value (1) at equilibrium is equal to the product of 

'Y (Vm - Ech ) and the steady-state open probability, P1- Thus, 

(ElO) 

Similarly, 

(Ell) 

Thus, the variance of the current fluctuations at equilibrium o} = (12) - (1)2 is given by 

(E12) 
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The autocorrelation of I(t), Rr(z) = (I(t)I(t + z)) is given by 

(E13) 

'"Y2 (Vrn - Eeh)2 Prob[x(t) = 2] Prob [x(t + z) = 2 I x(t) = 2] (E14) 

'"Y2 (Vrn - Eeh)2 P1 II22 (z) (E15) 

"12 (V, _ E )2 _a_ [_a_ + _j3_e-(a+,B)z ] (E16) 
I rn eh a+j3 a+j3 a+j3 

'"Y2 (Vrn - Eeh)2 a 2 + "(2 (Vrn - ECh)2 aj3 e-(a+,B)z (E17) 
(a+j3)2 (a+j3)2 

(I)2 + 0-[ e- 1zl / 1i • (E18) 

The auto-covariance function is defined as 

C(z) = R(z) - (1)2 = 0-[ e- 1zl / 1i (E19) 

and is shown in Fig. 9.2A. The power spectral density of the current fluctuations, 81(1), 

can be obtained by taking the Fourier transform of C(z) according to the Wiener-Khinchine 

theorem, 

Thus, 

where 

81(1) = F{C(z)} = 100 

C(z)e-j21fjz dz = 2 roo C(z) cos(2n}z) dz. 
-00 io 

2aj3 '"Y2(Vrn - Eeh )2 
a+j3 (a + j3)2 + (2nf)2 

81(0) 

1 
81(0) = 2 0-[ e and Ie = 2ne . 

(E20) 

(E21) 

(E22) 

(E23) 
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Figure 9.2: Statistical Properties of Current Noise for a Binary Channel. A: The 
noise covariance Gr(z) (equation E19) is a double-sided exponential with a decay constant e. B: The 
power spectral density Sr(f) (equation E22) is a Lorentzian with a cut-off frequency fc = 1/27re. 
The bandwidth BI = 7r /2fc corresponds to a frequency for which the area of the shaded rectangle 
equals a} /2 (since SI(f) is an even function). Parameters used: fc = 1000 Hz, SI(O) = 1 A2 /Hz. 

A power spectrum of the above form is called a Lorentzian spectrum. 8r(1) can be 

expressed in terms of two parameters, its amplitude, 8r(0) and its cut-off frequency, fe, 

at which the magnitude of the power spectrum is half of its DC value (~8(0)). fe can 

also be written in terms of the time constant 0 as fe = 2;0' A commonly used definition of 

"bandwidth" of a random signal is the variance of the signal divided by twice the magnitude 

of its power spectrum at f = O. This is illustrated in Fig. 9.2B. The shaded rectangle has 

one of its sides equal to 8 r(0) while the other side is equal to the bandwidth Br so that its 

area is equal to half the variance of the signal (o-[). Thus, for a Lorentzian spectrum of 
2 

J(t), Br = 2:[0) = ~ fe. In terms of the time constant 0, Br = 1/40. 

Now consider a patch of neuronal membrane which contains N such binary channels. 

We assume that all the channels open and close independently of one another, that is, there 

are no cooperative effects between them. As before, we assume that the membrane voltage 

is maintained at Vrn either artificially by clamping the patch or by assuming that the total 

current through the channels does not make Vrn deviate significantly. Since the channels 

are identical, the statistics of every channel is the same as derived above. Because the N 

channels are in parallel, the total current through the patch (1) is the sum of the currents 
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through individual channels denoted by i j , 

Thus, 

Similarly 

N 

(1) = L (i j ) = NP{ I'(Vrn - Ech)· 
j=l 

N N 

(12) = L L (iji k ) . 

j=lk=l 

Since the individual currents are independent of one another, (ijik) = (ij) (ik), 

Simplifying this expression yields 

(E24) 

(E25) 

(E26) 

(E27) 

(E28) 

In other words, the variance of the current scales linearly, and not quadratically, with 

the number of channels N. Since the statistics of I are identical to ij, Gr(z) and Br(f) can 

be obtained by simply scaling their single channel counterparts. Usually, N is expressed as 

a product of the channel density (denoted by 17) and the area of the membrane patch. We 

here, for convenience, express all quantities in terms of their corresponding specific units 

and multiply them by the patch dimensions when desired. 

Most of the ion channels found in biological membranes, either voltage-gated or ligand-

gated, have more than two states and do not not resemble the binary switch model analyzed 

above. For instance, some channels have multiple open and closed states while others have 

additional blocked, inactivated or desensitized states. A host of kinetic models exist for a 

number of known channel types in both the voltage-gated and ligand-gated classes (Hille, 
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1992). Some of these models are quite complicated, containing tens of states and so their 

behavior can only be studied numerically. Several techniques have been developed to analyze 

these models and extract model parameters from experimental data (Johnston & Wu, 1995; 

Weiss, 1996a; Colquhoun & Hawkes, 1982). 

Despite this complexity, the theoretical treatment of these multiple-state models is con­

ceptually similar to that of the two-state model. Channel kinetics are characterized by 

the matrix Q of transition probabilities and the power spectrum of the conductance fluc-

tuations can be written as a sum of Lorentzian spectra with cut-off frequencies given by 

the non-zero eigenvalues of Q (Johnston & Wu, 1995). We shall restrict ourselves to two 

such multi-state models, the voltage-gated K+ and Na+ channels underlying the classical 

Hodgkin-Huxley potassium and sodium currents. 

F Derivation of Current Noise Spectra 

For ion channels modeled as finite-state Markov chains (Fig. 6.1), it can be shown that 

under voltage-clamp at V~, the auto covariance of the K+ current noise in an isopotential 

membrane patch of area A can be derived as (DeFelice, 1981; Johnston & Wu, 1995) 

(F1) 

where TJK denotes the K+ channel density in the patch and rK denotes the open conductance 

of a single K+ channel. nOll (t) is the conditional probability for a potassium activation 

subunit to be in the open state at time t, given that it started in a closed state at t = 0 

and is given by (Johnston & Wu, 1995) 

On expanding equation F1 we obtain 

CIK(t) = A TJKrR(V~ - EK)2n~x 
N 

L (~) (1 - noo)in~-ie-iITI/Tn . 
2=1 

(F2) 

(F3) 
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By the Wiener-Khinchine theorem (Papoulis, 1991), the power spectral density of the 

K+ current noise, SIK(f), is given by the Fourier transform of C1K(t), 

(F4) 

Thus, the K+ current noise spectrum can be expressed as a sum of N Lorentzian functions 

with cut-off frequencies Ii = i/(27rTn ), i = {1, ... ,N}. When noo « 1, SIK(f) is well 

approximated by a single Lorentzian with cut-off frequency N /27rTn . Similarly, the auto­

covariance of Na+ current noise can be written as (DeFelice, 1981) 

CINa(t) = A 7]Na'Y~a(V~ - ENa)2 X 

m~h! [m~l (t) h~l (t) - m~h!] 

where 

(F5) 

(F6) 

(F7) 

For the HH and MJHS kinetic schemes (M = 3, H = 1), SINa(f) can be expressed as a 

sum of seven Lorentzians with cut-off frequencies corresponding to the time constants Trn , 

G Linearization of Active Membranes 

Consider an isopotential membrane patch of area A containing voltage-gated K+ and Na+ channels 

as well as leak channels. The dynamics of the membrane potential are given by 

dVrn 
-C -- = h + INa + h + Iinj , 

dt 
(G1) 
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where C is the capacitance of the patch and IK, INa and h are transmembrane currents 

given by 

h gL (Vm - Ed, 

(G2) 

(G3) 

(G4) 

where gi denotes the conductance and Ei denotes the reversal potential of the corresponding 

membrane current Ii. Iinj denotes the current injected into the patch with the convention 

that inward current is negative. 

Quasi-active Linearization 

The current through a given membrane conductance can be written in general as 

(G5) 

To first order, a deterministic deviation in Ii (denoted by OIi) around the steady-state mem-

brane voltage V~ can be expressed in terms of the corresponding deterministic deviations 

in Vm and gi as 

(G6) 

where gi denotes the steady-state conductance at V~, OIi = Ii (Vm) - I(V~), i5Vm = Vm - V~, 

and i5gi = gi(Vm) - gf. V~ can be obtained by solving for dVm/dt = 0 (equation G1-

equation G4), 

(G7) 

The conductance of the leak channels is constant, thus, i5gL = O. However, for the active 

K+ and Na+ ion channels, i5gK and i5gNa are functions of i5Vm. It has been shown that to 

first order, the voltage and time dependence of active ion channels can be modeled by phe-
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nomenological impedances (Mauro et al., 1970; Koch, 1984). For the sake for completeness, 

we derive the phenomenological impedances corresponding to the K+ and Na+ conductances 

here. 

Consider a first-order activation or inactivation variable (denoted generically by n) 

dn noo - n 
dt Tn 

(G8) 

Perturbing this equation to first-order yields 

(G9) 

Since the deviations are assumed to take place around the steady state, the third term in 

the above expression is zero. Thus, 

d (bn) bn bnoo 
--+-=--. 

d t Tn Tn 
(G10) 

Since noo is a function of Vrn alone, bnoo :::::: (dnoo/dVrn) bVrn , which gives, 

(GU) 

where I denotes a derivative with respect to Vrn evaluated at the steady-state voltage V~. 

The above equation can be rewritten as 

(G12) 

Using Laplace transforms we can rewrite equation G12 as 

(G13) 

where bVrn(s) and bn(s) denote the Laplace transforms of bVrn and bn respectively. Thus, 

if bn is considered analogous to a current, equation G 13 is identical to that of an electric 

circuit with a resistance r of magnitude 1/n~ in series with an inductance l = Tn/n~. The 
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A) B) 

Figure 9.3: Phenomenological Impedance of Active Voltage-Gated Conductances. 
A: Equivalent electric circuit corresponding to the delayed rectifier potassium current obtained by 
linearization around a fixed membrane potential. The circuit consists of a pure conductance, G K, in 
parallel with a series, phenomenological RL branch with resistance Tn and inductance In. For V > 
EK, all the three components are positive. B: Equivalent linearized electric circuit corresponding 
to the fast, inactivating Na+ current potential. The circuit consists of a pure conductance, GNa , 

in parallel with two series RL branches, one corresponding to activation (Tm, lm ) and the other 
to inactivation (Th' lh). For the physiological range of voltages V < ENa , Tm and lm are negative, 
whereas Th and lh are positive. 

time constant of this series RL circuit is equal to llr = Tn. Note that these quantities are 

evaluated at V~. Since these impedances do not represent physically realistic components 

and are used, instead, to describe the voltage- and time-dependence of active ionic con-

ductances, they are called phenomenological impedances (Sabah & Leibovic, 1969; Mauro 

et al., 1970; Koch, 1984; Koch, 1999). 

For the non-inactivating K+ conductance, 

gK = A7]KI'Kn
N

, (G14) 

OgK = N 7]K I'K nr:a- 1 On and substituting for On derived from equation G13 in equation G6 

(after taking Laplace transforms on both sides) we obtain 

oh(s) = [9K + 1 l ] oVm(s) , 
rn + s n 

(G15) 



202 

where 

(G16) 

and the phenomenological impedances corresponding to K+ activation (rn, In) are given by 

1 

(G17) 

Notice that as V~ -+ EK, rn -+ 00 and In -+ 00. Thus at its reversal potential, K+ channel 

behaves as a pure conductance gK' The equivalent electrical circuit corresponding to the 

K+ channel is shown in Fig. 9.3A. Similarly, for the inactivating Na+ current, 

gNa = A 'TJNa I'Na m M hH , (G18) 

ogNa can be written as 

[H hom + Mmoh] . (GIg) 

Substituting for ogNa in equation G6, it can be observed that the equivalent electrical circuit 

for an inactivating conductance has two RL branches in parallel with a conductance gNa' 

The expressions for the different components are given by the following expressions: 

gNa A 'TJNa I'Na m~ h!, 
1 

M A 'TJNa m{;3-1 h~ I'Na (V~ - E Na ) m'oo ' 

1 

H A 'TJNa m{;3 h~-lI'Na (V~ - ENa) h'oo ' 

Th rh· (G20) 
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Notice that for V~ < ENa, Tm < 0, lm < O. Thus, for physiological values of the membrane 

voltage, the activation component corresponds to a negative resistance and a negative in-

ductance. This is to be expected since the activation variable m is responsible for the 

positive-feedback characterizing the fast rising phase of an action potential. Since h is an 

inactivation variable which decreases as the membrane potential is increased, h~ < 0 im-

plying that for V~ < ENa, Th > 0, lh > O. The equivalent electric circuit corresponding to 

the Na+ channel is shown in Fig. 9.3B. 

Similarly, the equivalent impedance of the active membrane patch corresponding to 

equation Gl is given by parallel combination of capacitance C, a (physical) conductance 

G = G K + G N a + 9 L, which is equal to the sum of resting channel conductances and two 

(phenomenological) series RL circuits arising due to the time-dependent nature of the ionic 

conductances. The complex admittance of the circuit is 

Y(f) 
1 

G + j27r j C + '2 j l + 
Tn+J 7r n 

1 1 
Tm+j27rjlm + Th+j27rjlh 

(G21) 

where G = gK + gNa + gL denote the total steady-state patch conductance at the voltage 

V~. The linearized equivalent circuit corresponding to the membrane is shown in Fig. 9.4. 

So far we have considered the system to be deterministic; incorporating the voltage­

dependence of the ionic conductances we derived the linearized equivalent circuit for the 

membrane patch. The effect of stochastic conductance fluctuations of the active ion channels 

can be modeled by including a noise current In 

(G22) 

in parallel with the admittance Y. 9K and 9Na denote the stochastic components of the 

conductance deviations around their respective steady-state values. The resulting voltage 

fluctuations are denoted by V. It is straightforward to derive the power spectral density of 



204 

c G 

Figure 9.4: Linearized Equivalent Electrical Circuit for the Membrane Patch. 
Equivalent RLC circuit for a membrane patch containing K+ and Na+ conductances, voltage­
independent synapses and passive leak channels. C denotes the transverse membrane capaci­
tance and G the sum total of the resting conductances of the different sources. The small-signal 
phenomenological impedances due to K+ and Na+ conductances are given by the three series RL 
branches. 

V (denoted by Sv(f)) for this linear system as in (Papoulis, 1991) 

(G23) 

where SIn(f) is the power spectrum of In. Since the noise sources are independent, 

(G24) 

The variance of the voltage fluctuations a~ can be written as 

(G25) 

Using the expressions for the power spectral densities of the current noise due to channel 

fluctuations under voltage-clamp (SIK and SINa), derived in Appendix F the magnitude and 

spectral density of the resulting sub-threshold voltage noise can be computed. 
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Passive Linearization 

For the passive linearized approximation (Koch, 1984), we neglect the voltage-dependent 

dynamics of the ionic conductances. This is equivalent to ignoring the second term on the 

right side of equation G6. Thus, the ionic conductances and the membrane voltage are 

expressed as 

v~+v. (G26) 

Let 9 = 9K + 9Na denote the sum of the conductance fluctuations around steady-state. 

When 9 « G, equation G 1 can be simplified as 

(G27) 

where T = C /G is the passive membrane time constant. Refer to (Manwani & Koch, 1999a) 

for further details. Thus, under passive linearization, the patch is modeled as an RC circuit 

given by the parallel combination of the membrane capacitance C and a conductance G 

equal to the sum of the steady-state values of the ionic and leak conductances. As before, 

the effect of noise due to ionic channel conductance fluctuations can be modeled as a current 

noise source In in parallel with this RC circuit. The equivalent circuit corresponding to this 

approximation is shown in Fig. 6.4A. The complex admittance of this circuit is 

Y(f) = G + j27rfC. (G28) 

For passive linearization, By (f) (equation G23) can be simplified as 

(G29) 
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The variance of the voltage fluctuations (T~ can be written as 

2 1 roo SIn (f) 
(Tv = G2 J-oo df 1 + (27rfT)2 . (G30) 

H Theoretical Analysis of Fast Multiplicative Conductance 

Fluctuations 

In earlier chapters (Chapter 3 and Chapter 6), we derived expressions for the magnitude 

and power spectrum of the voltage noise due to stochastic conductance fluctuations (both 

ligand-gated and voltage-gated conductances) in neuronal membranes under simplifying 

assumptions, viz., the small magnitude of voltage fluctuations allowing conductance fluc-

tuations to be treated as current noise, and the linearization of membrane nonlinearities 

about the steady-state resting voltage. Here we carry out a theoretical analysis in the ab-

sence of these simplifying approximations. We will assume, however, that the dynamics of 

the conductance fluctuations are rapid compared to those governing the membrane voltage. 

We will refer to such conductances as fast conductances. While this assumption is valid 

for several biophysical processes (e.g., the activation of voltage-gated ion channels like K+ , 

Na+ and Ca2+ , and ligand-gated conductances like AMPA-type glutamate, GABA-A and 

glycine), it does not include others (e.g., inactivation of voltage-gated Na+ channels). 

Classification of Membrane Conductances 

There exist a wide variety of mechanisms of ion-transport across nerve membranes which 

endow them with their electrical excitability. In a large number of cases, the membrane 

currents depend on the voltage difference across the membrane (Johnston & Wu, 1995; 

Weiss, 1996a; Weiss, 1996b), 

i = f(Vm , t) 

where i is the membrane current, Vm is the membrane voltage and the argument t indicates 

that, in general, the current i might also depend on time. Ion transport can be broadly clas-

sified into passive and active mechanisms. Ionic flux in the direction of its electrochemical 
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gradient is called passive. We shall restrict ourselves to passive membrane currents which 

include a diverse array of voltage-gated and ligand-gated ion channels. Examples of active 

currents and fluxes include the variety of ion-pumps and carrier mediated transport and 

exchange mechanisms in the neuronal membrane (Weiss, 1996a; Weiss, 1996b). 

The physical constraint that the current corresponding to a particular ionic species be 

in the direction of its electrochemical gradient allows it to be expressed as (Hille, 1992) 

i = g(Vrn, t) (Vrn - E) , (HI) 

where E is the membrane voltage for which i = 0 and is called the reversal potential. 

For currents due to the flow of a single ionic species, E coincides with the electrochemical 

Nernst potential corresponding to the ion. 9 is the voltage- and time-dependent also called 

the chord conductance. An alternative and equivalent definition of passive flux is that 

it involves only the dissipation of energy; no energy is generated. This implies that the 

product of the current and driving potential (Vrn - E) for a passive mechanism is always 

non-negative, i. e., 

This implies that the chord conductance of a nonlinear passive conductor is positive, neces-

sitating that its current-voltage curve (plotted with respect to Vrn - E) lies in the first and 

third quadrants. Another type of membrane conductance is the slope conductance defined 

as the derivative of the current with respect to the membrane voltage 

ai ag(Vrn, t) 
aVrn = g(Vrn, t) + (Vrn - E) aVrn . (H2) 

We classify membrane conductances into three types. The first class includes voltage­

independent conductances for which g(Vrn, t) is independent of membrane voltage. We refer 

to them as passive conductances. Some examples of voltage-independent conductances 

include the leak conductance responsible to maintain the resting potential, ligand-gated 

conductances like AMPA and GABA, and so on. Conventionally, the term passive has 

often been used in the literature to refer to such voltage-independent conductances (Koch, 
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1984; Koch, 1999). Inasmuch as this usage is confusing and misleading given the discussion 

of passive flux mechanisms above, we adopt it here since we restrict our attention to passive 

flux mechanisms only. 

The second class of conductances includes voltage- and time-dependent conductances 

for which the slope conductance is positive over the range of interest. The positivity of the 

slope conductance requires that 8g (Vrn , t)/8Vrn 2: -g(Vrn , t)/(Vrn - E). Such conductances 

are responsible for the recovery of the membrane voltage towards rest and will be referred 

to as non-regenerative conductances. The different types of voltage-gated K+ conductances 

belong to this class. 

The third class of conductances includes voltage-dependent conductances responsible for 

increased membrane excitability and action potential generation. The threshold behavior 

of nerve cells is due to the presence of regenerative conductances which have negative slope 

conductance over the physiologically relevant voltage range. We refer to them as regenera­

tive conductances. Salient members of this class are voltage-gated ionic conductances like 

Na+ and Ca2+ , and voltage-dependent synapses like NMDA and so on. 

In general, membrane conductances are time-dependent and are not unique functions 

of the membrane voltage alone. Thus, for a given voltage, g(Vrn, t) denotes a family of 

conductances indexed by time t. However, we assume that the temporal dynamics of g(Vrn' t) 

are much faster than the rate of change of Vrn and that the conductances quickly attain 

their steady-state values g(Vrn, <Xl) corresponding to the relatively quasi-static voltage value. 

This is an alternative definition of fast conductances, which are uniquely determined by the 

magnitude of the membrane voltage alone. While there are some membrane processes like 

K+ and Na+ channel activation, AMPA and GABAA synapses which reach steady-state 

before the sub-threshold membrane voltage changes appreciably, the above approximation 

is not valid for slower processes like Na+ channel inactivation, GABAB and NMDA-type 

synapses and so on. However, as long as there is a marked separation between the time 

scales at which the conductance and the membrane voltage change, one can regard the 

slower quantity to be constant relative to the other. This is the idea behind the principle 

of adiabatic elimination (also called the slaving principle) of variables (Gardiner, 1996). 
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Consider an isopotential patch of membrane characterized by a capacitance C and a 

leak conductance 9L in addition to a fast membrane conductance. The dynamics of the 

membrane voltage Vm of the patch are given by 

The steady-state relation between the membrane voltage and current, called the i- V curve, 

is given by i = Im(Vm) and can be determined by setting dVm/dt = 0 in equation above. 

The i-V curves for membranes containing the three different types of conductances defined 

above are shown in Fig. 9.5. In all the three graphs, the origin is assumed to be at the 

resting potential of the membrane defined as the voltage Vrest for which ImC\';;·est) = o. For 

passive conductances, the i-V curve is linear. For non-regenerative conductances, the i-V 

curve is nonlinear but intersects the voltage axis only once (at Vrest). Also because that slope 

conductance is always positive, it can be shown that the fixed point at Vrest is stable and 

the membrane eventually returns to Vrest. For regenerative conductances, the i-V curve can 

have multiple steady-states. The fixed point at Vrest is locally stable, whereas its adjacent 

fixed point is unstable because of the negative slope of the i-V curve in its neighborhood. 

This is a consequence of the negative slope conductance and can lead to spiking behavior 

in the membrane (Jack et al., 1975). 

The dynamical equation governing the membrane voltage (equation H3) is similar to 

the first order nonlinear differential equation 

dx = J(x) 
dt 

which can be expressed as a gradient descent along a potential surface 

dx 

dt 
oU(x) 

ox 
where U(x) = - JX dz J(z) . (H4) 
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A B c 

Passive Non-regenerative Regenerative 

Figure 9.S: Classification of Membrane Conductances. 
Current vs. voltage relationships in steady-state for an isopotential patch of membrane containing 

different types of membrane conductances. The origin of the voltage axis corresponds to the resting 

potential Vrest of the membrane. A: Passive. Passive conductances are independent of membrane­

voltage and the i-V curve is linear. B: Non-regenerative. Non-regenerative conductances are 

responsible for the recovery of the membrane voltage to rest and are characterized by a positive 

slope conductance. The i-V curve has one fixed point and intersects the voltage axis only at the 
resting potential. C: Regenerative. Regenerative conductances are required for spiking behavior 

and are characterized by regions of negative slope conductance. The i-V curve has multiple fixed 
points. 

Noise can be introduced in the deterministic state equation by adding a Langevin term 

which models the effect of random fluctuations 

dx 
dt = f(x) + O'~(t). (HS) 

~(t) is a Gaussian white noise process 

(~(t) ~(s)) = o(t - s) 

and 0' is the magnitude of the Langevin term which can be determined from other physical 

considerations. For a constant 0', equation HS represents an additive stochastic differen-

tial equation. The solution x(t) of the above equation for a given initial condition Xo has a 

stochastic trajectory and cannot be specified deterministically. However, one can talk about 

the conditional probability that x(t) is at location x at time t given that it was at location y 

at an earlier time s defined as p(x, t; y, s). Let p(x, t) denote the marginal probability distri­

bution p(x, t) = J dyp(x, t; y, s)p(y). p(x, t; y, s) specifies the dynamical evolution of p(x, t) 
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and satisfies a deterministic partial differential equation called the Fokker-Planck equation. 

When a steady-state solution of p(x, t) exists, it is defined as Ps(x) = limH<Xlp(x, t). For 

equation H5 Ps(x) is given by (Horsthemke & Lefever, 1984) 

[
-2 U(x)] 

Ps(x) = N exp (J"2 (H6) 

where N is the constant of normalization which ensures that J dxps(x) = 1. Thus, Ps(x) 

is localized close to the fixed points of the energy surface U (x) and has a maximum at 

the coordinate that corresponds to the minimum of the potential. The fixed point for the 

deepest potential well is globally speaking the most stable one and the other fixed points 

are called metastable. Thus, for additive noise, the number and position of the extrema of 

Ps (x) and U (x) coincide and fully characterize the steady-state behavior of the system. 

Since the randomness in neuronal membranes occur in the form of conductance fluc-

tuations, the additive noise approximation is not valid as the magnitude of the resulting 

current noise fluctuations are given by the product of the conductance fluctuations and the 

driving potential which is a function of the membrane voltage. Due to this coupling with 

voltage, conductance fluctuations represent a source of multiplicative noise. The steady-

state behavior of systems driven by multiplicative noise can differ significantly from the 

deterministic fixed points of U(x). It can be shown that multiplicative noise can lead to 

macroscopic behavior (e.g., creation of fixed points or limit cycles) which is not present or 

can be predicted by the deterministic macroscopic equations. The theory of noise-induced 

transitions (Horsthemke & Lefever, 1984) addresses the behavior of such systems. This 

makes a point in favor of a potentially useful role of noise in biological systems. Stochastic 

resonance is a notable example of noise-induced behavior which can playa functionally 

advantageous role in biology (Berzukov & Vodyanoy, 1995; Levin & Miller, 1996). In the 

following, we derive the Fokker-Planck equations for multiplicative noise and use the results 

to study voltage noise due to conductance fluctuations. 
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Fokker-Planck Equations for Multiplicative Noise 

Consider the following stochastic differential equation (SDE) 

dv 
- = f(v) + ()" g(v) ~(t) 
dt 

where ~(t) is a Gaussian white noise process with autocorrelation 

(~(t) ~(s)) = o(t - s) 

(H7) 

()" is a constant which determines the magnitude of the noise. Since the factor multiplying 

the noise term is a function of v itself, the noise is referred to be of multiplicative type, as 

opposed to the better known additive type when g(v) is a constant. 

In general, f and 9 can be functions of time but here we will assume that they are 

static, memoryless nonlinear functions of the dependent variable v(t) alone. It can be 

shown that under mild conditions regarding the "smoothness" of functions f and g, the 

above equation implies that v(t) is a Markov process with sample paths which are continuous 

everywhere (van Kampen, 1992; Gardiner, 1996). Markov processes defined by equation H7 

are called diffusion processes and the functions f (v) and g( v) are called the drift and 

diffusion parameters of the process v(t) respectively. The Wiener process and the Ornstein­

Uhlenbeck process are special cases of diffusion processes (Gardiner, 1996). Because of the 

extreme irregularity of the white noise process, care has to be taken in interpreting the 

SDE defined in equation H7 since strictly speaking, the derivative of v(t) is not defined 

in the ordinary sense. One way to get around this technical difficulty is to interpret ~(t) 

as a derivative in the generalized function sense of a Wiener process and bring the theory 

of generalized stochastic processes to bear on equation H7. Another way of looking at 

equation H7 and avoiding the framework of generalized stochastic process is to switch from 

its differential form 

dv(t) = f(v(t)) dt + ()" g(v(t)) dW(t), (HS) 
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to its equivalent integral form 

v(t) = Vo + ht ds f(v(s)) + a ht ds g(v(s)) dW(s) (H9) 

where W(t) is a Wiener process. The first integral in equation H9 can be understood 

as an ordinary Riemann integral for each realization of v(t) since the sample paths of 

v(t) are as irregular as W(t) and continuous everywhere. Thus, a formal definition of the 

SDE H8 depends on the interpretation of the second integral in equation H9. There are two 

reasonable interpretations of the second integral which lead to two different interpretations 

of equation H7 and consequently two distinct but equivalent calculi for stochastic differential 

equations. The nature of the interpretation depends on the value of v for which g(v(s)) is 

evaluated in the Riemann sum approximation 

rt ds g(v(s)) dW(s) ~ lim z= g(vd [W(ti+l) - W(ti)] io ~-+o . 
~ 

where 6. = max Iti+l - til, 
~ 

. In the formalism developed by Ito, Vi is chosen to be equal to the value at the beginning 

of the interval, Vi = V(ti), which implies that g(vd is independent of [W(ti+l) - W(ti)]. 

The stochastic integral defined using this convention is called the Ito integral. Although 

the Ito interpretation leads to the cleanest formal treatment of the theory of stochastic 

differential equations involving diffusion processes, a new calculus has to used to deal with 

such equations since the rules of ordinary calculus no longer apply. 

On the other hand, in the formalism due to Stratonovich, Vi is chosen to be equal to 

the average of the two end-points, Vi = [V(ti) + v(ti+dl/2. The probability density of v(t) 

satisfies the following Fokker-Planck (Risken, 1996) equation, 

(1) 
o a 2 02 

- ov [J(v)p(v, t)l + 2 ov2 [g2(v) p(v, t)] (HIO) 

(8) 
o a 2 0 0 

- ov [J(v)p(v, t)l + 2 ov {g(v) ov [g(v)p(v, t)]}, (Hll) 
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where (I) and (5) indicate whether equation H7 is interpreted as an Ito or a Stratonovich 

SDE. The steady-state (stationary) solution for the above partial differential equations with 

natural boundary conditions is given by (Sancho et al., 1982; Horsthemke & Lefever, 1984) 

N [2 IV f(w) ] 
Ps(v) = gV(v) exp (72 dw g2(w) (H12) 

where N is a normalization constant. The exponent v = 1 for the (8) form and v = 2 

for the (I) form of the Fokker-Planck equation (Horsthemke & Lefever, 1984; van Kampen, 

1992; Gardiner, 1996). 

Passive Conductance Fluctuations 

Using the results derived above, here we compute the magnitude of voltage noise due passive 

conductance fluctuations. Since ion channels have discrete conformational states, their 

conductances are quantized and, strictly speaking, conductance fluctuations should not be 

modeled as continuous stochastic processes. In fact the discrete random transitions of ion 

channels are best handled using Master equations (Frehland & Solleder, 1985; Frehland & 

Solleder, 1986; Solleder & Frehland, 1986; Fox & Lu, 1994; Fox, 1997). Master equations 

are almost impossible to solve in closed-from except in very simple cases (van Kampen, 

1992). However, when the number of ion channels in question is large, it can be shown 

that the Master equations can be approximated by continuous Fokker-Planck equations 

which implies that the channel fluctuations can be approximated by continuous stochastic 

processes (van Kampen, 1992). We shall make this assumption here. 

Consider the membrane voltage equation as before, 

(H13) 

where C is the capacitance of the patch, Vrn is the membrane voltage, gL and ga are the leak 

and synaptic conductances and EL and Ea are their respective reversal potentials. Note 

that both the conductance ga and the membrane voltage Vrn are stochastic quantities and 
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can be expressed as fluctuations around their deterministic steady-state values. 

~ a 
ga = ga - ga' (HI4) 

where g~ and V~ satisfy, 

va = gLEL + g~Ea + Iinj 

m gL + g~ 
(HI5) 

Rewriting equation H13 in terms of 9a and V 

(HI6) 

Let G = gL + g~ denote the total steady-state conductance and T] = 9a/G be the nor­

malized conductance fluctuations. The above equation can be expressed as the following 

dimensionless equation 

dv 
dT = -v + (E - v) T](t) , (HI7) 

where the dimensionless time is given by T = t/T. T = G/G is the passive time constant 

of the membrane, E = (Ea - V~)/Vnorm denotes the normalized reversal potential and 

v = if /Vnorm denotes the membrane voltage normalized with respect to some voltage Vnorm . 

Equation H17 is a nonlinear stochastic differential equation since the magnitude of the 

stochastic term is the synaptic driving potential (E - v), which is a function of the voltage v. 

Thus, the conductance fluctuations T] represent a multiplicative source of noise. Notice that 

when the magnitude of the voltage fluctuations is small, E - V ;::::: E, and equation H17 reduces 

to a linear stochastic differential equation with additive noise which was used to obtain the 

results in Chapter 3. Since the fluctuations are assumed to be fast, we can assume that the 

correlation time scale of T]a is much smaller than T. This means T](t) can be approximated 

by a white noise process denoted by ~(t). Formally, we assume that BaT» 1 where Ba is 
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the bandwidth of the conductance fluctuations ga and replace equation H17 with 

where 

dv 
- = -V+(T(E-V)~(t) 
dT 

(~( t) ~ (s )) = b (t - s) and 

(HI8) 

(T~ is the variance of the conductance fluctuations gao Depending on whether the stochastic 

differential equation H18 is interpreted in the Ito sense or the Stratonovich sense, cor-

respondingly, the probability density v(t) satisfies the following Fokker-Planck equations 

(Risken, 1996), 

(I) 

(5) 

ap(v, T) 
aT 

ap(v,T) 
aT 

a (T2 02 2 
- av [v p(v, T)] + 2" av2 [(10 - v) p(v, T)] , (HI9) 

a (T2 a a 
-- [vp(v,T)] + --{ (E - V)-[(E - v)p(v,T)]}. 

av 2 av av 
(H20) 

For natural boundary conditions the steady-state solutions for equation H20 and equa-

tion H20 are given by (Sancho et al., 1982; Horsthemke & Lefever, 1984) 

N [2 JV -w] Ps(v) = (E _ v)v exp (T2 dw (E _ w)2 (H21) 

where N is a normalization constant. The exponent lJ = 1 for the Stratonovich interpreta-

tion and lJ = 2 for the Ito interpretation (Horsthemke & Lefever, 1984; van Kampen, 1992; 

Gardiner, 1996). Equation H21 can be solved to obtain 

Ps(v) = (10 _ ~D+V exp [-D (E ~ V)] , -00 ~ v ~ E, (H22) 

where D = 2/ (T2. The mean value of v is given by 

j f [f(D + lJ - 2)] 
(v) s = d w w Ps ( w) = E 1 - D ( ) 

-00 f D + lJ - 1 
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where 

f(x) = loco dttx-1exp(-t) 

is the Gamma function which satisfies the recursive relation f(x + 1) = x f(x). Using the 

recursive relation, we can simplify the expression for the mean voltage as 

( 
v-2 ) 

(v)s = E D + v - 2 . (H23) 

Thus, (v)s = 0, in the Ito case whereas (v)s = -E/(D - 1) in the Stratonovich case. This 

discrepancy arises due to the fact, whereas in the Ito version v(t) is a non-anticipatory 

function and depends only on the values of e(s), s < t which implies that (v(t) e(t)) = 0; 

this does not hold in the Stratonovich case. 

Similarly, in the Ito case (expression for the Stratonovich case is a little more involved 

but simple to compute exactly), the variance of v can be computed as 

2 
2 / 2) 2 E 

av = \ v s = (v)s = D _ 1 . (H24) 

When D » 1, it can be shown that the above expression yields a magnitude for the mem-

brane voltage noise which coincides with the results derived in Chapter 3 which agrees 

without intuitive understanding that when the conductance fluctuations are small (D is 

large), the additive noise approximation is valid and the membrane voltage fluctuations ap­

proximately obey Gaussian statistics. Fig. 9.6 shows the steady-state voltage distributions 

for three different values of D. 

Non-regenerative Conductance Fluctuations 

Here we consider the influence of voltage-dependent non-regenerative conductance fluctua-

tions. Once again let 

(H25) 
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Figure 9.6: Voltage Distribution for Passive Multiplicative Noise. 
Steady-state Ito distribution of voltage noise due to multiplicative, voltage-independent conductance 
fluctuations for three different noise magnitudes. Membrane noise is expressed in normalized units. 
As D -+ 00, Ps(v) converges to a Gaussian. The normalized reversal potential of the conductance 
f = 1. The mean steady-state voltage for all the three curves is at the resting potential v = o. 

where 9b denotes a conductance of the non-regenerative type. For the sake of simplicity, we 

assume that the kinetics of the conductance 9b = 9bn can be expressed in terms of a single 

binary sub-unit n (N = 1 in Appendix G). 9b is the maximal conductance of the sub-unit 

in the open state. n obeys first order dynamics 

(H26) 

where nCXJ(Vrn ) and Tn(Vrn) are the voltage-dependent steady-state value and the time con­

stant of n respectively. ~(t) is the Langevin term with magnitude (J. We assume that the 

dynamics of the conductance fluctuations are much faster compared to the dynamics of the 

membrane voltage. Formally, Tn « 1, which implies that n(t) ;::::; nCXJ +Tn (J ~(t). Substituting 

for n(t) in equation H25, 

(H27) 
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Figure 9.7: Potential Surface for Regenerative Conductances. 
The potential surface U(x) for regenerative conductances has multiple extrema since the i-V curve 

has multiple zeros. Coordinates a and c are stable and metastable fixed points of U(x), whereas b is 
an unstable fixed point. Conductance fluctuations may occasionally cause the membrane potential 

to jump from the vicinity of a to c crossing the barrier at b. In neuronal membranes, random sodium 

channel transitions represent a source of regenerative fluctuations and the barrier crossings can lead 

to the generation of spontaneous action potentials. 

which can expressed as 

where 

gL (Vrn - Ed + 9b(Vrn - Eb ) noo(Vrn) 
C 

9b (Vrn - Eb) a Tn 

C 

(H28) 

The above equation is similar in form to equation H7 and substituting for the functions f 

and g, we can obtain the steady-state distribution and the corresponding mean and variance 

of the voltage noise. Because of the non-regenerative property, f (Vrn) = 0 only at the resting 

potential v;.est. 

Regenerative Conductance Fluctuations 

The analysis of regenerative conductance fluctuations is complicated because of the multi-

plicity of the fixed points of U(x) (see Fig. 9.7). In the two earlier cases the membrane 
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voltage fluctuations occurred in the vicinity of the resting potential. For regenerative noise, 

a unique steady-state voltage does not exist. Thus, while the membrane voltage hovers 

around one metastable location (say a), every once in a while the fluctuations can cause 

it to jump in the neighborhood of the other metastable location (c). The frequency of 

these jumps depends on the size of the barrier (at b) relative to the noise magnitude. The 

lower the size of the barrier, the more frequent the noise-induced barrier crossings. An 

instance of regenerative conductance fluctuations in neuronal membranes is the presence of 

sodium channel transitions. The corresponding barrier crossings can lead to the generation 

of spontaneous action potentials. Thus, the effect of regenerative conductance fluctuations 

is two-fold, subthreshold voltage fluctuations when the voltage is in the vicinity of the 

steady-state and occasional spontaneous spiking when the voltage makes a transition. 

The derivation of the frequency of the spontaneous firing due to channel fluctuations 

had been carried out before (Chow & White, 1996). Instead of repeating the analysis here, 

we present the underlying principles behind the approach. A one-dimensional multiplica­

tive stochastic differential equation type can be transformed into an additive equation by 

a change of variables such that the coefficient of the noise term becomes a constant. Sub­

sequently, the expression for the mean escape rate for a particle to cross over a potential 

barrier due to thermal noise derived by Kramers (Kramers, 1940; van Kampen, 1992) can 

be used to derive the mean spontaneous firing rate. Kramers' analysis relies on the assump­

tion that the system is quasi-stationary which requires that the magnitude of the noise 

(temperature) be small compared to the height of the barrier. For our case, the reciprocal 

of number of sodium channels plays the role of noise. Thus, the analysis is valid when 

the number of sodium channels is large. The analysis of subthreshold voltage noise can be 

carried out as in the case of the passive and non-regenerative conductances. 
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I Analysis of Nonlinear Poisson Encoding Schemes 

We assume that statistics of spike train s(t) = 2:i b(t - ti) are Poisson and the relationship 

between the stimulus m(t) and instantaneous firing rate '\(t) is nonlinear, 

'\(t) = (s(t))s!m = J[(k * m)(t)]. (Il) 

The accuracy of optimal linear decoding the stimulus using the spike train depends on the 

specific nature of the nonlinearity involved. A neuron which encodes specific features of its 

time-varying input rather than mirroring the input modulations in its firing rate will yield 

poor estimation results. Instances of such nonlinear feature extractions can be found in 

(Rieke et al., 1995; Gabbiani et al., 1996). In contrast, other nonlinearities like firing rate 

saturation and half-wave rectification do not significantly alter stimulus estimation perfor­

mance (Wessel et al., 1996). In fact, certain types of nonlinearities can even improve the 

encoding of time-varying stimuli in single spike trains under adequate conditions (Gabbiani 

& Koch, 1998). In the following, we carry out the analysis of optimal linearly decoding for 

a few nonlinear encoding nonlinearities. 

For the Poisson process, it can be shown that the cross-correlation between the stimulus 

and the spike train and the autocorrelation of the spike train are given by 

Rss(z) = Ru (z) + X b(z) 

where X = (s(t))s,m is the mean firing rate of the neuron. Here the refractory period is 

assumed to be zero, but see (Franklin & Bair, 1995). Since the optimal linear filter g(t) 

depends only on the cross-correlation Rms ( T) and the autocorrelation Rss ( T), any random 

process y(t) which has the same cross-correlation, Rmy(z) = Rms(z), with the stimulus and 

the same autocorrelation function, Ryy(z) = Rss(z) as the spike train, s(t), will lead to 

exactly the same estimation problem. This is true even if the statistics of y(t) differ from 

that of the spike train s(t). Thus, for the case of the Poisson spike train model, if instead 
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of the point process s(t) the following continuous process is observed, 

(12) 

where w(t) is Gaussian white noise with unit variance and Rww(z) = 8(z), estimation of 

the stimulus m(t) from the spike train is equivalent to estimation using the signal >..(t) = 

J[(k * m)(t)] corrupted by Gaussian white noise w(t). 

Using results from nonlinear system identification, we can derive closed-form expres­

sions for the estimation performance for a variety of encoding nonlinearities. It is known 

that the cross-correlation between a Gaussian stimulus m(t) and its output across a static 

nonlinearity (e.g., >..(t) = J[(k*m)(t]) is given by 

(V= 
\ x (J (x) - ~)) 

O"~ 
(13) 

where 0"; is the variance of x (t) = (k * m)( t) and Rmm (z) is the autocorrelation of the 

stimulus. This result is known as Bussgang's theorem (Bendat, 1990). Using the expressions 

derived in Appendix A, the coding fraction and the lower bound on the information rate 

are given by 

(14) 

(15) 

where K(J), 8mm (J) and 8>..>..(J) are the Fourier transforms of k(t), Rmm(t) and R>..>..(z) 

respectively and 8 nn (J) is the power spectral density of the reconstruction noise 

(16) 

The above expressions require a knowledge of the input and noise spectra. In the absence 

of detailed spectral information about the processes and their cross-spectrum except their 

variances and the scalar cross-correlation value, the estimation problem reduces to the scalar 
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estimation problem 

-1/2 
Y = f(x) + A W 

where x, y and ware scalar random variables. To distinguish between the two estimation 

problems, we denote the coding fraction and mutual information for the scalar estimation 

problem by C and JLB which are given by 

a 2 [I~oo df K(J) Smm(J)f 

I~oo df S>.>.(J) + A 

~ 10 [I~oo df Smm(J)] 
2 g2 I~oo df Sun (J) 

(17) 

(bit sample-I). (IS) 

Using Jensen's inequality (Cover & Thomas, 1991), one can show that ~ 2: C and 

hB 2: JLB · The equality holds if and only if the spectra K(J), Smm(J) and S>.>.(J) are flat 

over the bandwidth of interest. The inequality can be intuitively understood as follows. In 

the absence of information about the cross-correlation between m(t) and A(t) (except the 

scalar correlation Rm>.(O)) and the autocorrelation of m(t) and A(t) (except a~ = Rmm(O) 

and a~ = Ru(O)), the best that can be done is to estimate m(t) from the instantaneous value 

of y(t). Given the lack of statistical information about the signal and noise, it is reasonable 

to expect that ~ 2: C. When the processes are white, the temporal course of correlations 

provides no information in addition to the corresponding instantaneous correlations and the 

expressions in the two cases converge. Thus, C can be regarded as a simple lower bound 

on estimation performance. Below, we compare estimation performance for some nonlinear 

encoding schemes with the linear encoding model studied in Chapter 2. The results are 

graphed in Fig. 9.8. 
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Figure 9.8: Optimal Linear Estimation Performance for Nonlinear Encoding 
Schemes. A: Examples of some nonlinearities which transform the input of a Poisson spiking 
neuron into its firing rate. The dotted lines represent a half-wave rectifying nonlinearity (a) and 
its complementary counterpart (a'). The straight line (b) corresponds to linear encoding, (c) curre­
sponds to a saturating-type sigmodial nonlinearity and (d) denotes a threshold function. B: Scalar 
coding fractions as a function of the mean firing rate of the neuron "X for the nonlinearities shown 
in A. Sigmoidal performance corresponds to p = 0.5. 

Linear encoding 

When the input-output transformation is linear, .\ (t) = f (x (t) ) "X + x(t), the power 

spectral density and variance of the firing rate are given by 

Sxx(f) = I K(f) 12 Smm(f) , 

a~ = i: df I K(f) 12 Smm(f). 

Substituting for f (x) in equation 13, a = 1. We define the contrast of the firing rate as 

c,\ = a,\/"X. For the firing rate to be positive .\(t) 2: 0, we need to restrict how large c,\ 

can be. Since the input m(t) (thus x(t)) is Gaussian, there will be a finite probability 

that .\(t) < 0 which can be reduced by increasing the magnitude of the mean firing rate "X 

relative to the standard deviation of the firing rate fluctuations a,\. For linear encoding, we 

will require that "X be at least three times as large as a,\ which ensures that the probability 

that .\(t) is negative is negligible (less that 0.01). This implies that c,\ ~ 1/3. The coding 

fraction and the scalar coding fraction can be computed using equation 14 and equation 17 
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respectively. 

where r = (k * Rmm)(O)/a~. In terms of the contrast and the mean firing rate, e can be 

expressed as 

(19) 

The minimum value and maximum values of e and e are zero (when "X -+ 0) and one (when 

"X -+ 00) respectively. The coding fractions are monotonically decreasing functions of the 

mean firing rate which indicates that the estimation is shot noise limited which means that 

estimation noise arises because of an inability to estimate the firing rate perfectly, and the 

better the estimation of the firing rate the better is the performance at the estimation task. 

Threshold encoding 

The function j (x) is a threshold hard limiter of the form 

j(x) = A~ax [1 + sgn(x)] (110) 

where sgn(x) denotes the sign function. Thus, the firing rate is either 0 when x(t) < 0 or 

Amax when x( t) > O. Although, biologically implausible, this scenario is a special case of 

the sigmoidal encoding discussed subsequently. Since x is a zero-mean Gaussian random 

variable with variance a~, its probability density is given by 

1 
p(x) = exp 

J27r a~ 



Thus, 

(x (f (x) - ~)) 
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(f(x)) = Amax 
2 

Amax 100 

dxlxlp(x) = 
2 -00 

A~ax fO dxp(x) + A~ax [00 dxp(x) = A~ax. 
4 -00 4 io 4 

Using Bussgang's theorem, the cross-correlation between m(t) and A(t) can be computed 

The auto-correlation of A(t) can be computed using Price's theorem (Bendat, 1990), 

R () - A~ax . -1 [Rxx(Z)] 
AA Z - -- sm 2' 

21f ax 

The scalar coding fraction for the hard-limiter (denoted by '~I) can be derived by substi-

tuting for the above quantities in equation 17, 

(Ill) 

For a given value of ax, the maximum value of 'hi = 2r2a~/1fa~ ~ 0.64r2a~/a~ occurs 

when );" ~ 00. 

Thus, using the output of a hard-limiting nonlinearity, a scalar optimal linear estimator 

can estimate the input within an error equal to 36% of the input variance. Since the hard-

limiter is effectively a 1-bit quantizer (A-D converter), it is understandable that perfect 

estimation cannot occur even in the absence of noise (infinite firing rate). When only 1 

bit of information about a Gaussian random variable is available, the minimum possible 

MSE that can be achieved by arbitrarily complicated encoding and decoding schemes can 

be computed using rate-distortion theory and is equal to 25% of the input variance which 

corresponds to an effectively coding fraction of 0.75 (Cover & Thomas, 1991). Thus, in 

the absence of noise, the simple encoding-decoding scheme of quantizing inputs into binary 
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values followed by optimal scalar estimation achieves a level of performance reasonably close 

to ideal. The performance can be further improved if the complete spectral information 

about the processes is used. 

Sigmoidal encoding 

The function f(x) is a sigmoidal smooth limiter is of the form 

(I12) 

A simple calculation gives 

Amax 

2 

(x (f(x) - ):)) Amax 100 
dx x Erf (; aJ 

A~ax (00 dx [Erf (_x_)] 2 = A~ax sin- 1 [ a~ ] 
2 ) 0 v'2 af 27r a~ + al 

Similarly, 

R)..)..(z) 

The scalar coding fraction for the smooth limiter (denoted by ~:l) is given by 

22\ e - r ax p /\ 
sl - a~ sin -1 p A + 7r / (2 sin -1 p) , 

(I13) 

where p = 1/[1 + (ar/ax )2], 0 ::::; p ::::; 1. P determines the dynamic range of the sigmoidal 

nonlinearity, for p = 1, we recover the expressions for the hard limiter. For an arbitrary 

value of p, the maximum value of ~:l occurs when A -7 00. On the other hand, we can also 

maximize ~:l with respect to p for a given value of):. The optimal value of scalar coding 
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fraction with respect to p is denoted by e~t and is given by 

e~t = cos (), 

where () satisfies the transcendental equation, 

71" 
tan () = () + ---= . 

2,\ 

Half-wave rectification 

The function f (x) is of the form 

{

X, 
f(x) = 

0, 

x2::0, 

x < O. 

For which the corresponding expressions are 

Similarly, 

(x (J (x) - X)) 

(k * Rmm)(z) 
2 

(J"~ [Rxx(Z) + ~ 
4 (J"~ 71" 

(J"x 

yf'iK , 

1
00 (J"2 

dxx 2 p(x) = 2., 
o 2 

100 d 2 () ,2 (J"~ (71" - 1) 
xx p x - 1\ = 2 . 

o 71" 

Thus, the scalar coding fraction for the half-wave rectifier denoted by ehw is given by 

r2 (J"2 71" A e x 
hw = (J";;' -2('--71"---1-:-) A + 1/ (71" - 1) . 

The maximal value of ehw is 71"/2(71" - 1) ;:::: 0.74r2 (J"~/(J"?n. 

(114) 

(115) 

(116) 
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Paired rectification 

Consider the problem of encoding by a pair of complementary half-wave rectifying neurons 

studied by Gabbiani (Gabbiani, 1996; Gabbiani & Koch, 1996). One neuron encodes pos-

itive stimulus modulations while the other encodes negative stimulus modulations in its 

firing rate. It can be shown that while the encoding at the level of the individual neurons 

is non-linear (half-wave rectification), an optimal decoding of the stimulus combining spike 

trains from both neurons leads to a linear estimation problem which performs better that 

the linear encoding example considered before. Since the detailed derivation of this result 

has been carried out quite lucidly in (Gabbiani, 1996; Gabbiani & Koch, 1996), we will not 

repeat it here, and make use of an intuitive and simple argument instead. 

Let A+(t) and A_(t) denote the firing rates of the neurons encoding the positive and 

negative stimulus modulations x(t) = (k * m)(t) respectively, 

{ 

x(t), 
A+(t) = f+(x(t)) = 

0, 

x ?: 0, 

x < 0. { 

-x(t), 
A_(t) = f-(x(t)) = 

0, 

x ~ 0, 

x> 0. 
(117) 

Let s + (t) and B- (t) denote the spike trains corresponding to the firing rates A+ (t) 

and A_ (t) respectively. The estimation problem is to reconstruct the input by a linear 

combination of the two spike trains where the optimal filters involved in the combination 

operate individually on the respective spike trains. The corresponding continuous versions 

of the estimation problem are 

By symmetry, >:+ = >:_ = o-x/V2if. Since we have two neurons here, in order to compare 

with earlier encoding schemes, we define >:+ = >:/2 where>: represents the mean firing rate 

of the two neurons taken together. The random processes w+(t) and w+(t) are statistically 

independent as spike generation in the two neurons are assumed to take place independently. 

Furthermore, by symmetry (although this can be proved rigorously by the application of the 

orthogonality principle as in Gabbiani (1996), it is obvious that the estimate m(t) should 
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have the form 

(118) 

Since y+(t) - y_(t) is identical to x(t), we recover a variant of the linear encoding problem, 

the difference being that here X = J2F O"x depends on the standard deviation of the filtered 

input x(t). It can be shown that the coding fraction and the scalar coding fraction denoted 

by ~~r are given by 

Substituting for O"x in terms of X, we get 

2 2 \ 
~s = r O"x =-_A __ 

pr O"~ A + 2/,rr 
(119) 

Notice that the scalar coding fractions have the generic form 

(120) 

where ~max is the maximum value of the scalar coding fraction in the absence of noise (limit 

of infinite firing rates) and CA = O"I/X is the contrast of the firing rate which determines 

the rate of increase of e with A. The higher the value of CA, the better the estimation 

performance. This argument holds for the coding fraction (derived using spectral informa­

tion) as well though, in general, ~ can be significantly greater than e. The contrast for 

the paired rectification is }7f/2 ~ 1.25 which is much larger than the value (1/3) linear 

encoding was restricted to. This leads to a substantial increase in the estimation perfor-

mance and explains the somewhat low information rates observed for synaptic transmission 

in Chapter 2. 
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