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Abstract 

Swarm engineering is t he natural evolution of the use of swarm-based techniques 

in the accomplishment of high level tasks using a number of simple robots . In this 

approach , one seeks not to generate a class of behaviors designed to accomplish a 

given global goal, as is t he approach typically found in mainstream robotics . Once 

the class of behaviors has been understood and decided upon, specific behaviors 

designed to accomplish this goal may be genera ted that will complete the desired 

task without any concern about whether or not the final goal will actually be 

completed . As long as the generated behaviors satisfy a set of condi t ions generated 

in the init ial investigation , the desired goal will be accomplished. 

This approach is investigated in terms of three specific practical problems. First 

we apply swarm engineering to plume tracking, utilizing both real and simulated 

experiments. We init ially decide whether or not this is a problem that swarm 

engineering should be applied to at all , A careful investigation of two plume-tracking 

algorithms yields the weakness of single-robot plume tracking - the tracking of 

low density plumes. Application of swarm engineering to this sub-problem yields 

performance that is capable of t racking plumes that are significantly more diffuse 

than those which can be tracked by single plume t rackers. 

The second problem is posit ion-independent clustering, in which a cluster of objects 

is constructed from many init ial clusters, without predetermination of the final 

cluster 's location. Although we have completed a robotic instantiation of this type 

of system, the bulk of our work is theoretical and verification with simulation . A 

minimal condit ion is derived which guarantees this final global outcome, in both 

an unrealistic case and a case that is more realistic for real robots. Methods of 

generating effi ciency improvements are derived. T he application of this formalism 

to real robots is discussed. Finally, condit ions are derived and demonstrated leading 

to stable arrangements of multiple clusters, a precursor of distributed construction. 

The third and last problem is the traveling salesman problem (TSP ). Marco Dorigo 

(see, for instance, Dorigo 1996) generated much interest in the use of "ants " on 

the problem. We theoretically demonstrate that Dorigo 's ants satisfy a swarm 

engineering condi t ion generated for this problem. However, the result of Dorigo 's 
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work is also demonstrably fragile under random fluctuations. A second more robust 

ant-based method is generated and tested on a small number of standard test 

problems taken from TSPLIB, a source of many well-known TSP instantiations . 

In all cases, the new algorithm is capable of reliably finding the minimum distance 

path. 

This thesis makes a number of contributions to the literature. First , we study two 

systems that take advantage of the embodiment and interaction dynamics of the 

robot to accomplish the single robot goal. We then extend this work to answer two 

questions: 

1. Is it possible to apply swarm engineering to plume tracking? 

2. How can one apply swarm engineering to plume tracking? 

We demonstrate that is indeed possible to extend one of the two previous plume 

tracking systems to a swarm. We demonstrate that the swarm is capable of suc­

cessfully tracking plumes that are significantly more diffuse than those capable of 

being tracked by individual agents . 

Next , we derive a formal condition which must be satisfied in order for a system 

made up of many clusters and robots to become a system of one cluster and many 

robots, if the robots do not have global information. We extend this work by 

deriving ways of generating more efficient paradigms, and demonstrate how to use 

the theory in the design of individual robots . Finally, we modify our theory to 

include systems generating multiple clusters, and demonstrate how to generate 

clusters of predefined relative sizes. 

Our third contribution is a formalism for ant-based TSP algorithms . This allows 

us to understand why Dorigo's algorithms are relatively unstable. We create a 

completely new system of traveling agents that also solve TSP by having the ability 

to "die along the way" and to self replicate in a specific fashion. 

Perhaps the most important contribution here is an alternative approach to the 

design of swarm systems. This allows us to explore the three problems of interest 

here by first determining a condition that allows the completion of the task , and 

then allows the generation of behaviors satisfying the minimal condition. This 

view to system design has the advantage of allowing the design of systems that will 

generate the desired behavior , concommittantly reducing the danger of generating 

unwanted emergent behavior. 
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Introduction 

As a child, I often found myself outside watching thousands of busy ants march­

ing tirelessly to and fro in a seemingly endless struggle to find and exploit food 

sources. I would often present gifts, morsels of food that would occupy them for 

hours , until they disappeared completely. Other times, I would try to impede their 

progress by placing an object in their paths. Most times, the ants would ignore my 

efforts , smoothly finding their way en masse around the object. Individuals would 

occasionally get lost , but the group was quick to work out the problem, forming a 

stable flow as if ordered by their queen several meters away in the nest. My efforts 

were in vain , and the group ignored me altogether. Years later , this interest would 

be rekindled as I became familiar with work done in trying to understand ants and 

ant-based systems. 

As it turns out, a number of insect species form swarms of thousands of individ­

ual animals , which form efficient societies capable of a number of interesting and 

startling behaviors (Camazine 1990, Dejean 1986, Deneubourg 1983, Fittkau 1973, 

Franks 1992, Gordon 1999, Holldobler 1990, Holldobler 1994, Karsai 1993, and 

Theraulaz et al. 1998). Among these are the ability to build structures with great 

complexity in the absence of any intelligence or planner, the ability to cooperate 

without any coordination , and the ability to allocate and reallocate resources auto­

matically, without the need for an understanding of what resources are lacking in 

specific places. The ability of swarms to carry out tasks that would at first glance 

seem to require a great deal of planning and intelligence makes them interesting as 

possible design paradigms for swarm-based implementation of any of these types of 

algorithms or processes. Understanding biological swarms may provide possible im­

plementations for behaviors that are potentially extremely simple, and remarkably 

robust. 

Currently, the field of swarm based robotics is primarily exploratory, although a 

few practical applications have been built which extend or surpass the capabilities 

of current systems (Schoonderwoerd and Holland 1997, Dorigo et al. 1996). Very 

few tasks of practical interest have yet been carried out using the swarm-based 

methodology. However, many of the capabilities of agents in the natural world 

are staggering (Bonabeau 1991, Holldobler 1990, 1994) and it is interesting to 
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understand how these occur. Once these are understood , it is possible that their 

extension to real engineering problems will allow the solution to problems for which 

the complexity of the solut ion is a serious detriment to its construction . 

Already people are making strides in swarm-based research. The ability to build 

complex systems or systems with capabilities greater than those of any individual 

element is being explored in a number of different tasks, ranging from box push­

ing (Kube and Bonabeau, 2000) to distribu ted search (Gage, 1995) to distributed 

rout ing systems (Schoonderwoerd and Holland , 1997) . Along with the raw exten­

sion of the cognit ive capability of a given agent, and the development of intelligent 

behaviors, swarms have the possibility of extending the range of sensitivity of a 

given sensor modality, as is done in the fi rst P art of this thesis. Though we are 

not aware of any fur ther examples of this in the li terature, t he potent ial for fu ture 

work is great. Moreover , work in this vein may help to motivate and explain the 

tendency for groups of animals to carry out what might seem to be tasks that can 

be accomplished by individual agents , bu t are typically done by groups, as in the 

long-range migration of birds during the Fall. The precision required to accomplish 

these tasks may not be available in individual agents, requiring the employment of 

groups. 

Of course, engineering is goal-driven, and so techniques found in nature are not 

always readily applied to engineering. For instance, ant construction methods, 

though remarkable, cannot be applied to the construction of a building, as our 

goal is not an ant-style nest buil t into the ground . The goal must somehow be 

folded into the task development. The question for the engineer to answer is how 

one might build a simple robot or agent (for instance, for computa tional systems) 

which may be expanded into a swarm, the aggregate behavior of which will solve a 

given global task. One might appropriately ask questions relating to both a general 

condit ion for the accomplishment of the global task, and the t radeoff between the 

cost of the improvement of some measure of the task's completion quality and the 

level of improvement. 

Much of the li terature aimed at creating swarms of active agents has been aimed 

at understanding the global repercussions of a set of local rules. Indeed , the global 

behavior of systems created by specifying local rules are very difficult to predict , and 

the discovery of the behavior sometimes requires observation of an active system 

rather than the solution of a set of equations. The behaviors thus provided are more 

often than not ad hoc and their details are not well understood in the sense that 

one might generalize what has been learned to novel tasks. We are of the mind , 

however, tha t the goal of every engineer must be twofold : creation of a working 

model of a given design specification, and generalization of the techniques used in 
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such a solution to other possibly related problems. It is in this second point that 

we address this current work. 

We report in this Thesis work based on a general approach to developing a set of 

physical requirements and control algorithms for the completion of global tasks in 

a swarm-based architecture. This approach consists initially of the generation of a 

set of requirements for the behavior of the swarm which will guarantee that the task 

is completed correctly. Once this set of requirements is generated, by means that 

need not by analytic , local behaviors may be created which will globally satisfy 

this the requirements set down. Illustrating how this local behavior will satisfy 

the global task requirements is task-dependent , but typically yields insight into 

how one might further improve performance of the swarm on the task. We give 

this approach the name swarm engineering to explicitly communicate our intention 

that this technique should be applicable to a wide range of distributed engineering 

problems. 

Note that we use the terminology "swarm engineering" rather than more common 

terms such as "collective robotics". The use of this term is motivated by a need 

to emphasize that the techniques developed here are intended to be general. The 

possible applicability includes robotics, which forms the bulk of our work, but may 

also include software swarms, as in Part 3 of this Thesis. In addition , one might 

apply these methods to social science, effectively engineering aspects of society, 

through methods similar to game theory. While the end goal is different in each 

case, the general techniques can be similar. 

This Thesis is dedicated to the illustration of the swarm engineering approach to 

building swarms. We do so in several rather self-contained parts, and two chapters 

not contained in any part. Each part discusses a particular problem, and elucidates 

the design of novel systems based on this methodology. Part 1 discusses mobile 

plume tracking in autonomous robotic systems, both using single robots and using 

multiple robotic platforms. This is the most ad hoc part of the thesis, as no sat­

isfactory theory currently addresses this problem. Part 2 discusses a distributed 

clustering task , in which a set of objects are clustered into a single group using a 

swarm of autonomous, identical, independent robots , bereft of any global knowl­

edge. Part 3 describes the use of a computational swarm of autonomous agents in 

the solu tion of the traveling salesman problem, building theory for the work of Dori­

go (Dorigo, 1996), and extending the model. Each Part consists of a self-contained 

review of the relevant specific topics. Chapter 1, not contained within any Part , 

is designed as a rather independent review of some of those topics not discussed 

in any of the Parts. Finally, Chapter 10, also not contained within any Part, is a 

concluding chapter intended to summarize the main points made in the Thesis. 
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CHAPTER 1 

Swarms, Natural and Fabricated 

In this chapter, we define swarms of agents in a way that is both general and 

explicit. We make every attempt to encompass all current work in swarms using 

these definitions. We illustrate these definitions with examples chosen from the 

natural world , human society, and the artificial world. Once this is completed, we 

define the swarm engineering approach, motivating its design, and providing an 

example of how this approach may be applied. 

1.1. Definition of Swarms 

The study of agent-based systems occasionally begins with a definition of the term 

agent (Maes 1994, Beer 1995) . The concrete definition of such a basic element of 

what have become known as swarm-based systems would seem to be straightfor­

ward, but the precise definition has not yet been universally agreed upon. 

Maes (Maes, 1994) describes an agent as an autonomous, situated enti ty carrying 

out a set of goals in the environment in which it is situated. In this way, Maes 

characterizes the agent as first having a goal or set of goals to be accomplished. 

The use of t he term "goal" indicates an understanding of the desired end result of t he 

behavior of the agent in its environment . Quite generally, this level of understanding 

of the behavior of an agent cannot be thought of as part of the design , but rather 

imposed by the observer of the system, which may not be the agent in the first place. 

Yet , some biological systems which might seem to exhibit goal-driven behavior are 

simply reactive systems driven by nothing more than physics and chemistry. For 

instance, a virus can have goals attributed to it , but it does not pursue them. 

Rather, it behaves according to a well-defined set of rules , yet still manages to 

survive. One might argue that the 'goal' of the virus is its replication, but its 

dynamics are simple reactions to local conditions, and are completely dictated by 

the chemistry. Except in abstraction, it is unclear how one might attribute a goal 

to this behavior. 

Beer (Beer , 1995) proposes a formalism which seeks to model agents as parametric 

non-autonomous systems , whose dynamics are parametrized by the interaction with 

another system. The other system is the environment in which the agent finds 

5 
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itself. In this view, only closed systems whose evolution is determined entirely by 

consistent equations of motion are truly autonomous , and so no agent can ever really 

be autonomous, as it is never independent of its environment. This view requires 

the agent to be inextricably tied to its environment, unable to be viewed in any 

other context . Many aspects of agents and their characteristics are well treated by 

this way of thinking. For instance, the characteristics of ants and the substances 

they secrete are carefully built around the physics of the ants ' environments. Were 

it not for the detailed properties of the ants ' environments, the ants would not be 

able to depend on these characteristics , and the species would be forced to have 

developed differently. Thus, the ant is a reflection of the system in which it is found , 

and it may not be viewed in totali ty without considering the larger system. 

We take a somewhat complementary tack to both of these approaches. We relax 

the requirement that the agent must be following some explicit goals, and rather 

defer to a more general formulation. In our formulation, those agents not capable 

of independently sustaining themselves may be viewed as agents. This includes 

agents in a symbiotic (and so codependant) relationship. 

We define an agent to be any discrete component of a system which satisfies the 

following properties: 

l. An agent must be situated within the system. That is, the agent must be 

affected by the physical properties of the system it is in , restricted by its 

design, and may not be capable of modifying the fundamental structure of 

the system. 

2. An agent must have the abili ty to act within the system. This means that 

it must have the ability to change at least one external degree of freedom 

based on some locally decided upon actions. 

The first condition serves to limit the agent to an actor in the play unfolding in the 

system. This requirement neither restricts the agent to a specific locality nor as­

sumes that it cannot accumulate information about the system through interactions 

with other agents, and control other agents in some way. 

The second condition would seem to be an extension of the first condition. Agents 

cannot behave in a system in which they do not find themselves. That is , the 

system in which they are situated must be closed under the actions of the agent. 

In this way, an agent is different from an observer who may be limited by a given 

system, but may not change it. This does not presuppose that an agent works in 

a location or by changing a degree of freedom local to itself - it may communicate 

intentions to other agents. 
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Note that a virus is not identified as an agent when it is outside of a very specific 

environment, as it has no control over any degrees of freedom. In environments 

where it is incapable of independent animation, a virus would be viewed as a part 

of the system, but not an agent. When it transitions to a system in which it can 

exert independent control, it becomes an entity that can be viewed as an agent. 

This mayor may not include the interior of a cell, depending on whether the virus 

actually acts on the cell, or instead is acted upon by parts of the cell. 

We define communication to be any action of one agent which influences the sub­

sequent behavior of one or more other' agents in the system, directly or indirectly. 

In an information-theoretic way, it may be defined as the reduction in entropy of 

a given agent's behavior as a result of the receipt of some communication signal 

(Shannon, 1953). This includes two types of communication. In direct communi­

cation, the action of the first agent is capable of being sensed directly. This is as in 

a system in which agents create sounds and respond to sounds produced by other 

agents. Stigmergic communication (Beckers 1994) is communication through the 

environment, in which a change in the environment which is not made explicitly for 

communication is made, sensed by another robot , and in turn produces a different 

behavior in the sensing robot. Note that the way in which the stigmergic commu­

nication occurs may also be the desired goal of the agent. Moreover , an agent can 

communicate with itself, stigmergically. 

A swarm is a set of two or more independent agents all acting in a common en­

vironment in a coherent fashion , generating an emergent behavior. An emergent 

behavior is one in which the behavior of the swarm is a result of the interactions 

of the swarm with its environment or members, but not a result of direct design. 

Emergent behavior requires inter-agent communication, which need not be direct. 

Note that a swarm is not a group of identical robots which simply behave in the same 

environment by a similar or related set of rules of behavior. Such groups of agents 

may appear to create swarm-like behavior, but lack any deliberate communication 

that is the hallmark of a swarm. This distinction in behavioral traits also has a 

related distinction in capabilities, as we shall see in the first Part of this Thesis. Such 

groups of agents are hereafter referred to as pseudoswarms, in the spirit of Owen 

Holland and Chris Melhuish (Holland and Melhuish, 1999) to denote explicitly that 

these systems are different from swarms. 

Vve pause briefly to address the question of the minimal size of a swarm. When 

does one move from a small collection of robots to a swarm? This would seem to 

require that a lower bound on the number of robots be created which leads to the 

conclusion that a swarm has been made. The most important criterion for a swarm 

is that it consists of agents whose actions affect those of other agents in the same 
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system. The use of stigmergic communication allows this to occur even with single 

agents. This would seem to imply that single agents are capable of acting with the 

dynamics one might find in a swarm. However , in this work, we explicitly define 

swarms as requiring multiple members . The intriguing question which seems to 

come from this is whether these should be viewed simply as swarms. It may be 

that there is a larger class of dynamic agent-based system, to which swarms belong, 

which behave in the same general way as swarms do. Though we do not consider 

this question in more detail in this work, we consider it a fascinating possible future 

research direction. 

Of course, not every interacting pair of agents constitutes a swarm. A pair of nest­

ing birds exhibit communication to be sure, but they do not exhibit by themselves 

emergent behavior (or at least the author is not aware of any examples of such be­

havior). On the other hand , groups of migrating birds might exhibit the capability 

of navigating over large distances much more accurately than anyone bird would 

be capable of doing on its own. This is an emergent property of the swarm. It 

is not current ly known what the minimum number of birds required to create this 

increased capability is, and the author is not aware of any studies of this effect. 

1.2. Examples of Swarms 

Many familiar things found in the natural world are swarms. The swarms are, of 

course, made up of many individual animals, but in many cases may be thought of 

as life forms in and of themselves. Groups of ants, particularly those inhabi ting the 

same colonies are swarms. Similar organization may be observed with groups of bees 

living in hives, and termites living in nests. Each of the agents in these examples are 

independent enough to act alone, but ineffective without the combined power of the 

swarm. The dynamics of the swarms found in the natural world are both interesting 

and awe-inspiring. Indeed , they have been characterized as superorganisms, the 

dynamics of which are the interesting measurables (Holldobler 1990, 1994). 

Indeed , t he success of swarms in the natural world is nothing less than staggering. 

Since their rather late introduction to the world , somewhere in the Cretaceous 

period (Holldobler , 1994), swarms of insects have come to dominate every habitat 

where comparative studies have been made (Fittkau 1973, Dejean1986), making 

up more than 75% of the biomass of the land-based insects in the Amazon rain 

forest and in the forests and savannas of the Democratic Republic of the Congo 

(formerly Zaire) . It is not clear from studies done to date whether this success 

is t he result of advantages of swarms over their individual single-living brethren. 

More extensive study is required to obtain an understanding of both the biology 

and possible implementation of similar methodology in artificial systems. 
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The natural world is not the only source of swarms, however. In human culture, 

swarms abound, varying in size, complexity, and levels of communication. Perhaps 

the two most visible swarms are those made up of deliberately information sharing 

agents , such as investors in the stock market, or members of the various scientific 

communities. In much the same way as the dynamics of the superorganism of an 

ant hill or termite nest has interesting dynamics and complex actions contributed 

to by the individual agents, so too do the larger superorganisms made up of groups 

of interacting humans. 

The stock market is an example of such a dynamic system which evolves and grows, 

albeit in a constrained manner , subject to the contributions of thousands of indi­

vidual agents whose behaviors collectively determine the course of the market, but 

who individually are rather less than the whole, both in dynamics and capability. 

Traffic swarms represent a second class of common human swarms in which agents 

interact using a small amount of information , the nature of which is imprecise and 

approximate, and whose actions are quite constrained (Helbing and Schreckenberg 

1999, Treiber and Helbing 1999, 1999a, Resnick 1994). These systems have a rich 

behavior including traveling traffic jams and stationary traffic jams, despite the fact 

that the agents in these swarms enter and exit the system continually. 

Among the most well-developed swarms in human society are groups of technology 

producers and users. In much the same way that ants will become locked into a 

particular path after many minutes of exploration of different paths , so too does 

technology become locked into a specific standard as a resul t of the interactions of 

the technology producers and consumers. One example is the right-handed clock, 

which could as easily be implemented as a left-handed clock (and was at one time) , 

but which came to dominate as a result of a feedback effect. This feedback effect is 

not explicitly designed in any of human behaviors, yet is an emergent result of these 

behaviors , the hallmark of a swarm. Subsets of this global swarm exist throughout 

society, and it is t he belief of the author that this is indeed what defines society in 

the first place. 

However, it is not to imply that every human group interaction has swarm-like ten­

dencies. The author is not aware of emergent properties of travelers going through 

airports, although there is indeed communication and interference. In such a set­

ting, the travelers are constrained strongly, and have only a few behavioral options 

available. These options do not allow for the development of emergence, as would 

be required to be considered a swarm. Such travelers are an example of a pseu­

doswarm . 
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1.3. Creation of Robotic Swarms 

The creation of artificial swarms has become an interesting topic of research in the 

last fifteen years. This research finds its roots in the seminal work of Rodney Brooks 

(Brooks 1986) which advocated the crea tion of simple robots with simple behaviors 

in the place of robots of complex abstract models and interpreters for intelligent 

behavior. The method is called behavior- based control and has become widely 

accepted , due to the simplicity of the approach, the flexibili ty and potent ial for 

generalization to learning and and the capability of researchers to create swarms of 

simple behavior based robots capable of carrying out interesting behaviors. Several 

researchers have proposed interesting methods of creating control algorithms for 

such simple robots, including learning and evolut ionary algori thms (Harvey 1994, 

Mataric and Cliff 1996), and work cont inues on both of these general methods. 

Artificial swarm design has thus far been largely along two different lines of design. 

The first of these is the practical approach (Kelly 1996, 1998, 1998a, Mataric 1995, 

1995a, 1997a) , in which a part icular task is ident ified and a group of robots is 

built with the task in mind . This work typically contains mult iple iterations of 

design and redesign of the physical robot and/ or its controller to complete the task 

(Goldberg and Mataric, 1997). The second of these is the theoretical approach 

in which a task is examined theoretically, and a condit ion is derived which will 

yield the global goal. The design of the robots is t hen an exercise in obtaining 

robots whose real dynamics matches the desired dynamics, which can take one 

iteration . The main difference between these is that in the first approach , an 

understanding of the underlying system dynamics is generated through the building 

and improvement of various versions of the system, while the second attempts 

to generate an understanding of these dynamics, and subsequently build robotic 

systems based on this understanding. In t his way, the second approach is more 

similar to tradit ional methods in robot ics , in which the system dynamics are worked 

out before the generation of a robot . The use of this approach in swarm robotics 

would seem to provide validation of the swarm-based approach to system design, 

indicating that these methods are not unrelated to work done on individual robots 

carrying out sophisticated tasks with high precision. Rather , they may be seen 

as an extension of those methods to tasks requiring a smaller degree of individual 

precision . 

Many studies have been undertaken using the practical approach to swarm con­

struction. Among these are studies investigating navigation and exploration tasks, 

rudimentary construction tasks, task allocation studies, and communication stud­

ies. 
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Cohen (Cohen 1996) reports on a mapping and navigation task in which a swarm 

of robots spreads itself in a maze, and collectively maps the terrain. The map is 

detailed enough to allow an agent to travel from a point in the map to any other 

point in the map in a minimum amount of time, while using minimal individual 

processing, and taking advantage of an elegant communication scheme. 

Mataric (Mataric 1995a, 1992a) describes a method for designing simple orthogonal 

local behaviors which may be used to create diverse global group-level behaviors. 

The design is a process of simultaneously satisfying top-down (task-driven) and 

bottom-up (robot and environment-driven) constraints of the problem. This work 

may be seen as complementary to ours. Whereas our goal is the generation of con­

ditions which when satisfied will generate the desired behavior, this work provides 

a set of techniques which may be used to satisfy the given condition. 

Gage (Gage 1995) details the design of a multiple robot system for mine detection. 

This work focuses on illustrating the benefits in time and correctness of coordinated 

and communicating multiple robot detection schemes. The use of communication 

and coordination is found to be a serious advantage over the lack of it , in terms 

both of detection speed , correctness, and cost / success ratio. 

Dorigo and Gamardella (Dorigo 1997) describe the creation of a swarm of artificial 

virtual agents traveling on a graph made up of nodes and links. This swarm is 

designed in such a way as to solve the traveling salesman problem (TSP) , which 

we discuss later in this Thesis. The design is based on the behavior of ants, and 

is systematically improved to produce a rather computationally quick method of 

solving the problem. 

These four examples of swarm behavior illustrate the power of the method in a 

concrete way. We discuss further examples of this later , in the separate Parts of 

this Thesis. The generation of real working models represents an important and 

necessary step in the design and verification of a new technology. However, the 

main weakness in these studies is their ability to be generalized beyond closely 

related tasks, such as those investigated by Dorigo and colleagues as extensions of 

the ant-based TSP work (Dorigo 1999). It is not clear how these studies might be 

used to design new, very different swarms without significant additional effort. 

In contrast , a method based on artificial physics and derived from artificial life 

is gaining increasing support. This method purports to create a dynamic set of 

equations capable of being followed by given agents in a system which produce a 

desired behavior of the swarm. The advantage of such an approach is that these 

equations may be completely solved, yielding the stationary states of the system, 

and the modes of evolution of the system. As long as the robots are capable of 
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following the dynamic equations of motion, the method will provide the desired 

behavior (Spears 1999). 

Spears and Gordon (Spears 1999) report work on an artificial physics-based control 

algorithm intended to be employed on MAYs 1. The central design condition is 

the creation of a set of dynamic equations based on an attractive/ repulsive force . 

This force is of order r - 2 and reverses sign at a given distance between two MAYs , 

switching from an attractive force to a repulsive force . A modification of the system 

in which a sorting behavior is employed allows the system to reliably create perfect 

hexagonal and square lattices. This is the desired global outcome, and is accom­

plished using only local actuators and sensors, making the possibility of porting the 

algorithm to a MAY realistic . This work has only been carried out in simulation 

thus fa r; future work may include the use of these methods. 

1.4. Swarm Engineering 

This Thesis is complementary to both of the previous approaches. It is important 

to be able to both create working robotic platforms and simulations. However, it 

would seem to be desirable to be able to express the work in a format that allows 

generalization and ease of implementation. Thus , we propose the formal field of 

swarm engineering and use the remainder of this Thesis to illustrate it. We define 

swarm engineering as a formal two-step process by that one creates a swarm of 

agents which complete a predefined task. 

Swarm engineering has two formal steps. The first step involves the generation 

of a swarm condition. This is a condition which, when satisfied , will guide the 

generation of a swarm of agents which is capable of carrying out the desired action 

or actions. No specific method has yet been formulated for this step, and it is 

largely problem-dependent. Many methods may be employed to carry out this 

step including formal mathematical analysis, a generation of understanding of the 

problem domain through simulation or fabrication of working models, or any other 

general method . What must be understood in this step is the behavior of the 

swarm in the problem domain. For instance, as we shall see in Part 1, transfer 

of information about a plume should occur only in the upstream direction , rather 

than the downstream direction , as the latter may confuse the entire swarm. 

This first step is extremely demanding in its requirements, however. It requires 

that the problem be stated in such a way as to permit the creation of swarm-based 

actions. This means that the statement of the problem must be amenable to being 

satisfied by distributed agents, rather than a single coordinated statement. 

I Micro-air vehicles 
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EXAMPLE 1.4.1. Position-independent puck clustering is the process whereby an 

initial set of pucks are clustered into a single cluster, whose position is not specified 

ahead of time. This problem is simply stated, yet as we shall now illustrate, the 

statement will often affect the proposed solutions, making this expression of the 

problem insufficient. 

Viewing the puck clustering problem as the generation of behaviors that bring the 

pucks from smaller clusters to larger clusters implies that the robot should in some 

way have some global knowledge. The robot should understand where the large 

clusters are , and where the small clusters are , and behave in some way as to bring 

the pucks from the small clusters to the large cluster. However, this articulation of 

the problem does nothing to generate a swarm behavior, deferring to the generation 

of a much more high level behavior. 

We choose to view puck clustering as a behavior that causes more pucks to enter 

than to leave large clusters, and more pucks to leave than to enter smaller cluster­

s. This expression leads to a general microscopic condition of each of the swarm 

elements , which leads to the global behavior. 

In general , care must be taken to avoid generating expressions of the problem which 

focus on the macroscopic goal. Rather, the expression should be centered around 

the microscopic goal, which may be satisfied by the agents of possibly differing 

designs. 

The second step in swarm engineering involves the fabrication of a behavior or set of 

behaviors that satisfy the given swarm condition. If the system is understood well 

enough to generate a veritable swarm condition , the generation of a swarm behavior 

is often times straightforward. For instance, if the swarm condition is that robots 

must stay in close proximity, it is easy to generate sensors and actuators to satisfy 

this. 

The goal is to create one of any of a set of behaviors which provably fulfills the 

swarm condition. Once this has been accomplished, questions about the efficiency 

of such approaches may be asked . However , at this point , the goal has been achieved 

and the new goal is to improve the performance of the algorithm, not to generate 

the initial behaviors. 

Swarm engineering is similar in its goals to behavior-based group robotics (Mataric 

1993). In both approaches, the goal is to generate a predefined group behavior. 

However , in behavior based group robotics, the approach is largely intuitive, and 

the process is complete when a single working prototype system has been generated 

(Goldberg and Mataric, 1997). The goal of swarm engineering is to produce a 

general condition or set of conditions which may be used to generate many different 
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swarm designs any of which can complete the global goal. Once this condition or set 

of conditions is generated, specific behaviors which satisfy this (these) condition(s) 

may be generated , with absolute certainty that these will yield the desired global 

behavior. 

Thus, swarm engineering consists of two related steps. The first step is to propose 

an expression of the problem which leads to a set of conditions on the individual 

agents which, when satisfied , will complete the task. The second step is to produce 

a behavior or set of behaviors for one or many robots which accomplishes these 

requirements. We shall investigate, in the next three Parts, three independent 

problems which may be tackled using swarm-based techniques. In the first Part, no 

general theory has been formulated, but a sufficient understanding of the domains 

in which a swarm will be advantageous as well as the condition for such a swarm 

to be effective is created. The second and third Parts generate a succinctly stated 

theoretical swarm condition. However , the swarm conditon of the third Part suffers 

from the effects of random changes. We illustrate a method of circumventing this 

difficulty. 



Part 1 

Plume Tracking 



CHAPTER 2 

Plume Tracking 

2.1. General Considerations 

A plume may be defined as a coherent structure made up of odorant particles 

carried by a fluid flow from a single source, in which the rate of speed of the fluid 

is much greater than that of the diffusion rate of the odorant. Plumes occur when 

an odor-producing source is placed within some fluid flow. Odorant particles are 

produced from the source and evolved into the fluid. Once the odor particles are 

in the fluid, they are moved by two forces: diffusion and fluid flow. The effect 

of the two varies with variations in Reynolds number. In fluids of relatively low 

Reynolds number , the flow tends to be very laminar, and the spread of odorant is 

typically governed by diffusion . As a result , the odorant tends to form a long cone 

in space, spreading out as it continues downwind . However , in fluids of relatively 

high Reynolds number , the fluid tends to be quite turbulent. In this case, the plume 

will be shredded by the turbulence, and will consist only of relatively small packets 

of odorant at various concentrations. 

In natural systems , plume tracking is often critical to the survival of the individual, 

providing information about prey and about potential mates . Depending on the 

nature of the target , a number of different strategies have been developed over 

evolutionary time to find the source of the plume. As one might imagine, the 

differing evolutionary pressures and the requirements of differing environments and 

purposes have created differing strategies for plume tracking (Zanen and Carde 

1996, Belanger and Willis 1996, Murlis, Elkinton, and Carde 1992). Several flies , 

for instance, are capable of tracking plumes by making use of an iterated scheme 

in which they stop moving, integrate the approximate average wind direction over 

many seconds, and then move off again in that direction. This seems to be a 

response to the lack of a need to quickly determine the target position, and a 

commensurate requirement to save energy. 

When mating or searching for food , an insect typically has a large pressure to be 

the first to the source. This pressure leads to behaviors that consume a great deal of 

energy. These behaviors are often modulated by the instantaneous structure of the 

plume, including the frequency of delivery of packets of odorant , and perhaps their 

17 
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detailed structure. Changes in behavior include increased or decreased frequency 

of turns in the track and increased or decreased speed. 

Much work has centered a round the study of moth and fly plume tracking (za­

nen1996j. As opposed to the work on artificial systems, this work has been centered 

around the specific neural functions required to get the animal to behave as it does. 

In the remainder of this section , we will briefly review some of this work. 

2.2. Autonomous Robotic Plume Trackers 

A growing body of work is available which describes partially or fully autonomous 

robotic systems carrying out olfactory tracking. In general the state of the art seems 

to be partially autonomous robotic systems, and emphasis is usually placed on the 

search itself, not its termination . Indeed , there is no specific consensus on which 

details of the plume structure and dynamics are useful ; this is a topic of current 

research. Thus, it is not surprising that there are a large number of strategies for 

plume tracking. One might argue that the number of stra tegies one might find or 

try is as varied as those found in na ture, a very large number of strategies indeed! 

2.2.1. Enabling Technologies. A number of olfactory technologies are avail­

able for use in plume tracking system (Russell 1994) . In systems where speed of 

search is not an issue, one may use very slow olfactory technologies. In systems in 

which the speed of search is an issue, one finds that sensitivity is often traded off for 

speed , something that is not generally a problem in biological systems. A number 

of different technologies have been developed , ranging from purely artificial systems 

to remarkable fusions of real biological technology and art ificial technology. We do 

not attempt to be complete, but rather to give a brief fl avor of what has been built. 

An interesting odor recognition system has been constructed by Russell et al. (Rus­

sell et al. 1994). In this system, a quartz crystal is used as a primary odor recog­

nition device. This has the ability to change its int rinsic properties due to external 

conditions. Thus, when treated externally with a chemical which preferentially 

holds onto other volatile compounds, and then exposed to some or all of these com­

pounds, t he resonance frequency of the crystal will change, indicating the presence 

of at least one of the compounds of interest . 

This system has a simple implementation and it is capable of being very accurately 

tuned due to the resonance properties of the crystal. The transduction of the 

signal obtained by the crystal is nearly instantaneous. Finally, depending on how 

the crystal is coated , the sensor may be either broadly or narrowly tuned. 

Despite these advantages, however, the system has a serious disadvantage. In order 

to function properly, the sensor must be coated wi th a substance that attracts 
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the odorant of interest . This coating, in order to be sensitive, needs to be able 

to hold enough of the odorant to change the resonance properties of the crystal. 

However, this can make the reaction of the sensor slow, and so unsuitable for use 

in an autonomous robotic system. 

A second type of technology makes use of the properties of polymers (Lewis et 

al. 1996, White and Kauer 1997) . Many polymers react to different odorants in 

a variety of interesting ways. These effects may manifest themselves as changes in 

the conductance, the density, the tensile strength , etc ., of the polymer. These may 

be used in a number of interesting ways, from changing the index of refraction of 

the polymer to changing its size or conductive properties. Doping allows the last 

two to be coupled in non-conducting polymers . 

Polymer-based sensors have a number of desirable properties. These are broadly 

tuned, and many have reproducible responses to low odorant concentrations. In 

many cases, these sensors are very quick to respond fully to an odorant, and can 

reach equilibrium in tenths of seconds. Finally, polymers may be applied to a num­

ber of surfaces, making the development of specialized sensors built into uncommon 

parts of the robot simple. Thus, polymers may be applied to parts of the robot 

commonly used to probe difficult-to-reach areas of the robot 's world (Lewis et al. 

1996). 

The main limitations of polymer sensors also derive from their physical structure. 

Polymers are long chains of repeated units. When these chains break, the properties 

of the polymer change, including their sensitivity to some substances. This change 

is irreversible, giving the sensors a finit e lifetime that may depend on the chemi­

cals they encounter and the odorant concentrations they are exposed to. Polymer 

sensors seem to have a limited responsiveness. This responsiveness changes as the 

polymers encounter different environments. Indeed, the optimal environment for 

a polymer sensor may be one which is climate controlled , and isolated from the 

rest of the world. Some labs are attempting to develop such systems on mobile 

robots, but the work is in its infancyl. Some sensors require doping in order to 

produce conductive pathways. This adds complexity to the sensor , as the dopants 

themselves may have nontrivial properties (Lewis et al. , 1996). 

Some sensors derive from biological systems themselves. In some ways, they are 

extremely well suited sensors for olfactory search for a source of specific moth 

pheromones. These sensors are extremely sensitive, but are typically very specific 

to particular substances, such as pheromones. 

1 An example of two places in which t hi s type of control goes on a re the Lewis group in the 
C hem istry Department at t he Californi a Institute of Technology, a nd Cyra no Sciences, a company 
recently formed to develop polymer olfactory sensors. 
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In an elegant study, Kuwana and colleagues (Kuwana et al. 1995) removed the an­

tennae from a male silk moth (Bombyx mori) and installed them on an autonomous 

mobile robot. These sensors were then used to carry out a variety of different algo­

rithms for plume tracking. As the sensors were shown to have activity proportional 

to the concentration of the odorant (female pheromones), both edge-t racing algo­

rithms, and gradient-based algorithms could be used . The beauty of these sensors 

is t hat they are already engineered for a variety of environments commonly encoun­

tered by the moth, and need no further engineering. One drawback is t hat they 

cannot be fur ther engineered , and so their propert ies are unalterable, barring any 

genetic engineering or related work. 

2.2 .2. Tracking Strategies. Along with the different types of sensors come 

different types of search strategies. These strategies are widely varied , and each 

strategy is dependent on t he part icular olfactory technology available. As the de­

pendence is quite strong, the group defies classification , except in two areas. The 

fi rst is t he set of strategies that use wind direction, and second is the set that 

doesn 't. A possible subgroup is that which uses dynamic properties of the odorant 

packets sensed by the robot . However , only one group (Grasso et al. 1996) has 

reported the possible use of this. Airborne plumes typically move too quickly to 

make use of this data. 

2. 2.2. 1. Strategies Utilizing Wind Direction. The most successful strategies in 

plume tracking are those that utilize wind direction information. This piece of 

information is so important , that the lack of it can be the main reason for failure. 

Despite the great need for this piece of information, the way in which it is obtained 

can vary widely. Moreover , the accuracy of this information is less of a cri t ical 

issue than one might expect, and four directions can normally suffice for good 

performance, t hough only two need be used . 

Russell et al. (Russell et al. 1994) repor t on the design of a robot which is capable 

of tracking a camphor plume upwind to its source. In these experiments , the wind 

direction is used in conjunction with gradient information . Assuming that the 

robot can reliably determine the center of the plume by following a gradient to the 

center of the plume, the robot 's two behaviors include acquisition of an approximate 

center of t he plume by determining the differential concentration at two crystal­

based sensors spaced apart, and the following of the plume upwind , as determined 

by an on-board wind vane. An obstacle avoidance behavior was included by adding 

a sensitive bumper to the system and forcing the robot to make on- the-spot turns 

when it came into contact with an obstacle, effectively avoiding it. The robot was 

capable of reliably tracking the plume and avoiding obstacles from a meter away. 
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Ishida et al. (Ishida et al. 1996) describe a robotic system in which an 'active 

probe' is constructed. This 'active probe' uses a fan to draw air to the sensor, 

effectively handling the boundary layer problem2
, and the difficulty associated with 

a limited amount of available odorant. Wind direction information is obtained by 

rotating this sensor by 3600 and recording the direction that has the largest reading. 

Later versions included stationary directional sensors fabricated from four sensors 

arranged in a cross , providing quicker but less accurate direction information. The 

new design could also be used to find three-dimensional plume information, though 

this information was unused. 

2.2.2.2. Strategies Without Wind Direction. The simplest algorithm for deter­

mining the position of the plume source is one employed by Kuwana et al. (Kuwana 

et al. 1996) in which the robot remains completely within the plume as it is car­

rying out its tracking behavior. The robot is inactive when outside of the plume, 

and active when inside the plume. Its behavior is simple, forcing the robot to ex­

ecute turns when it approaches the edge of a plume, and to walk straight when 

completely within the plume. This strategy has two main weaknesses. Firstly, the 

robot cannot find the plume, but rather must be initially placed within the plume 

in order for it to function at all. Secondly, half the time the robot will tend to 

go downstream, and half upstream. A bad turn produced by noisy or unexpected 

sensor data might cause the robot to move in the wrong direction down the plume. 

A similar algorithm may be used to track saline plumes in water. Grasso et al. 

(Grasso et al. 1998) report the construction of a robotic 'lobster ' designed to track 

saline plumes in water. The robot is endowed with sensors which can determine 

the local concentration of saline. Using this information, the robot climbs a con­

centration gradient from the plume source. The speed of each motor is controlled 

by the sensed concentration of the salt in the water. Turns can then be affected 

by changes in the concentration. The robot, which initially moves from within the 

plume, will also employ a backing behavior if the concentration becomes too low, 

indicating that the plume has been exited. 

Kazadi (Kazadi 1998) produced a robot (Figure 2.1) capable of tracking a plume 

to its source by traversing the plume and executing turns upon loss of the plume. 

The robot utilized resistive polymer sensors (Lewis et al. 1996) and simple analog 

circuitry. Although these results were not published, a similar robot, which is 

thoroughly investigated in Chapter 3, was built with a very similar design. 

2The boundary layer problem refers to the tendency of an odorant to pass over a sensor without 
directly interacting with it. This is a serious problem when dealing with odorants whose presence 
is intermittent or sporadic. 
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(a) L..-_____ ---'100001 (b)r..:;;....o.. _____ _ 

(c) L-______ ..... (d) L....-_____ _ 

Figure 2.1 : O ur plume-tracking robot t racking a n odor plume to its source 

(steamers) . 
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In Chapter 4, we will examine a plume-tracking algori thm based on a spiral which 

does not use wind direction, and is robust to loss of source. 



CHAPTER 3 

A Case Study In Plume Tracking 

One of the most important and ubiquitous behaviors in the animal world is plume 

t racking. This skill is arrived at in a variety of ways, and is required for a variety 

of reasons. Some animals require effective tracking capabilit ies in order to locate 

prey. Other animals find potential mates by taking advantage of pheromone plumes 

emitted by members of the opposite gender. Plume-tracking stra tegies are varied in 

the natural world . 0 single algori thm is universal. Many animals have 'hardcoded ' 

t racking algorithms, while others have the capability to learn t racking and take 

advantage of new and more efficient methods of tracking. Many animals will change 

their tracking behavior in response to differing wind conditions. Though there is 

a great variation in plume-tracking strategies , constants across all algorithms are 

likely to be those characteristics of plume-tracking which will be required even in 

a minimal algorithm. Understanding these minimal requirements will a llow for the 

generation of many varied plume- tracking algorithms, as long as these conditions 

are met. 

In this work, our goal is to elucida te the potential use of swarm-based methods 

in plume-t racking. Our first step to this end is the generation of a set of minimal 

condi tions required to accomplish plume t racking. Once this is accomplished , we 

will be in a bet ter position to determine whether or not it is advantageous to 

use a swarm at all. Generation of a swarm, once the possibility of an advantage 

is discovered , will need to obey these minimal conditions, among possible other 

conditions. 

In this Chapter , we examine a legged autonomous plume tracking robot. The robot , 

originally developed as a precursor to a t rue plume tracking robot , is capable of 

detecting when it is in a water vapor plume and walking upstream to the source of 

the water vapor. The capability of the robot is quite unexpected , as its development 

was not intended to allow the robot to accomplish this task. We describe our current 

understanding of why this occurred . We also briefl y genera lize the lessons obtained 

in this investigation to the swarm regime, giving two minimal condit ions a swarm 

will need to obey in order to successfully t rack the plume upstream. 
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3.1. Basic Plume Thacker Design 

Tracking a plume to its source is a difficult task, as it is highly affected by the 

turbulence of the media and by the sensitivity of the sensors to both the media 

and other odorants in the media. In air , a sensor that is quite sensitive is often 

quite slow, and may exhibit hysteresis or a changing baseline in the presence of the 

odorant in question. An autonomous agent tracking a plume to its source is required 

to use one or both of the t ime-averaged behavior of the plume or its instantaneous 

concentration to locate the source. When the agent moves quite slowly, its sensors 

may be very slow without affecting the algorithm, and so sensitive sensors may 

be preferred , despite their speed. However, when an autonomous robot moving 

through air is used to track plumes in real t ime, the signal must be available and 

stable in a matter of tens to hundreds of milliseconds, depending largely on the 

scale of the plume and the speed of the robot. 

Once a sensor has been built that is sufficiently fast and reliable to be able to 

detect plumes in real time, the algorithm that tracks the plume must be built . 

This algorithm must be able to handle the effects of turbulence, which include large 

regions of space with no odorants, intermittent signals, and packets with different 

properties. As in all robotic instantiations, it is important to learn what information 

is necessary for the search, and to make use of this information effi ciently, adding 

extra information only when necessary. This research is still ongoing, particularly 

in the biological regime. For instance, the properties of odorant "packets" are being 

considered as possible sources of information in the biological regime (Grasso et al. 

1996). What information is encoded in those odorant packets , and how it is used 

has not yet been generally agreed upon. 

In general, most attempts at plume tracking have used the "PC on board" phi­

losophy. The assumption is t hat a great deal of processing is required to extract 

enough data to track a plume, as the data used by biological systems (Grasso et 

a l. 1996) may be quite detailed and subtle. Data ranging from edge detection to 

gradient calculations might be used to track plumes. The "PC on board" approach 

has the advantage of making it easy to prototype different schemes quickly, as the 

strategy may be programmed conveniently and tes ted . However, this requires the 

robot to carry a load of computational equipment that may not be more effective 

than simple analog circuitry with minimal controllers; it is not clear that extensive 

computation is required to lead a robot to an odor source. Rather , it is postulated 

that a simple reactive robot might be capable of tracking an odor to its source, 

requiring neither explicit memory nor formal computation. 
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The robot we use is a reactive walking robot with two different olfactory sensors 

located at the end which faces front when the robot walks (Figure 3.5). As the 

fabrication process for these sensors is in its infancy, no two sensors are identical. 

These sensors, are the resistive polymer sensors described in Chapter 2. The robot 

uses a reactive strategy which is identical in design to that developed by Kuwana et 

al. (Kuwana et al. 1996) which was described in Chapter 2. As with their model , 

the expected behavior is to remain within a plume and walk upstream or down­

stream, bouncing back and forth from edges of the plume, with equal probability of 

walking in either direction. The observed behavior, however, is quite different from 

that expected. In actuality, the robot executes turns often, preferentially moving 

upstream, and finding its way to the odor source 70% of the time, regardless of 

initial direction. Herein lies the mystery which inspired this study. Clearly some 

property of the sensors and/ or circuitry biases the robot sufficiently so as to make 

it likely that in each instance, the robot finds its way to the plume source. The 

challenge is to understand the mechanism. Once this is understood, the question is 

whether or not this property may be exploited in the design of robot plume tracking 

swarms. 

3.2. Description of the Sensors 

An odor sensor must fulfill a number of requirements in order to be useful for 

robotic olfaction. It must respond differently to a wide variety of odorants. It must 

be relatively fast on the behavioral time scale of the agent employing it. It must 

also be lightweight , be robust , and require little power. 

In this section, we briefly describe a set of sensors which seem to fulfill these require­

ments. These sensors have another desirable property derived from their physical 

deposition method - they are sensitive to the direction of wind. In Section 4, we 

will see that it is this property which leads to the ability of our robot to find an 

odor plume'S source. 

3.2.1. Resistive Sponges. Sensors used to track odor plumes in air must 

have the ability to react reliably to airborne odorants. Moreover, they must react 

to differing intensities of odorants fast enough to allow the robot to react in real time 

to changing local concentrations of odorant. In addition, the sensors ' range must 

be sufficiently wide for all regimes of use. This last condition is the most difficult to 

fulfill in general, as many conventional sensors with acceptable sensitivities are slow 

to react and have sensitivities which are dependent on environmental conditions. 

A new class of polymer-based sensors has recently been made available (Lewis et al. 

1996, White et al. 1997), and is under development in several laboratories. These 
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sensors react to a variety of different odorants by altering their physical attributes 

including audio resonances, fluorescence, and conductivity. The degree to which 

their attributes change depends largely on the identity of the analyte, but is nonzero 

for large classes of analytes. These sensors are surprisingly robust, generally reactive 

(or broadly tuned), easily fabricated, and may be cobbled into arrays of different 

sensors allowing individual identification of the odorant in question by making use 

of the responses (both temporal and absolute) of the different sensors. A variant 

of this sensor, developed by the Electronic Nose project at Caltech , is a passive 

reactive resistor whose properties change when interacting with specific classes of 

analytes. This resistor fulfills the requirements , as it is sensitive when properly 

fabricated , fast in its response , broadly tuned, and passive. 

The Cal tech resistors are polymer-based resistors which act as sponges under the 

influence of specific analytes. Although these polymers react to a wide range of 

analytes, their responses to each one is variable, providing combinatorial signatures 

across many polymers. These resistors are doped with carbon black 1. This doping 

produces a conductivity much greater than the natural conductivity of the poly­

mer. The conductivity is dependent on the absolute density of carbon black in 

the polymer. When the polymer expands under the influence of an analyte, the 

carbon black granules separate, and the conductivity decreases. On the other hand, 

in response to some analytes, some polymers will contract, and this will tend to 

increase the conductivity of the polymer. Thus, an analyte may be detected by an 

increase (or decrease in some cases) in the resistance of the sensor. 

In the laboratory, when generating control strategies for robots, one wishes to avoid 

the complexity of odor identification. One would rather use a simple sensor that 

reacts reliably to a given odor not normally found in abundance in a laboratory 

environment. As these experiments are not carried out in a wind tunnel or a lab 

with a separate air supply for test objects, odorants employed must be easy-to-make 

and non-toxic. Moreover, one would prefer a sensor whose electronic interface is 

relatively simple. Water-vapor plumes generated with vegetable steamers and fans 

were used for this study. The sensors used were poly N-vinyl pyrrolidone based 

resistive sensors. The design and cost overhead for the plume is minimal, and 

mimics wind-blown odor plumes in natural systems. 

In resistive sensors, the dynamic variable is the resistance. This will change in the 

presence of the object or phenomenon being detected. One attractive element in a 

I A form of carbon in which the carbon is a black powder, a conductive substance which may be 
mixed into gels and poly mers. 
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polymer-based sensor is its ability to give reliable d:2 readings for identical concen­

trations of analyte. This allows one to measure the concentration of an analyte no 

matter the resistance of the sensor. Since fabrication of the sensors is in its infancy, 

and no two fabricated sensors are identical (within any reasonable tolerances), this 

is a nice property to base sensor circuitry on. In these experiments, we employ 

a set of simple four-op-amp-circuits3 that automatically match the baseline resis­

tance of a given sensor. This baseline can then be compared to the instantaneous 

resistance, providing a measurement of the analyte concentration change. In our 

trials, we restrict this to one well-known analyte, assuming that all others have a 

fairly constant concentration which may be ignored. 

3.2.2. Switching Properties of Sponge Resistors. The behavioral prop­

erties of a robot are a direct reflection of the properties of its sensors and their 

interaction with the environment. The sensors exhibit behavior that depends on 

the direction from which the wind is blowing. In order to understand the behavior 

of the robot , we must first understand the sensors' behavior thoroughly. 

The relevant properties of the sensor to our plume tracking robot are the ability of 

the sensor to detect airflow, and its dynamic properties in the presence or absence 

of wind. Most important is the speed with which the signal changes state (i.e., from 

on to off or off to on). 

The speed of wind near and around this sensor is a strong effector of the sensor's 

adaptation characteristics. In the absence of wind 

2Sensors are characteri zed by their cha nge in resistance, as the ratio of the change in res istance 
to the whole resistance is relatively constant when the concentration is low. The aging of the 
resistors makes measurement of t he exact resistance an unreli able reflection of the local odorant 
concentration . 
3 A set of circu its containing only four operational amplifiers. 
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Figu re 3.1: T his graph gives t he response of a typical polymer-based sensor 

a fter a brief exposure to water vapor. Despi te a fast increase in sensor resistance, 

t he sensor does not rebound to its previous base line resistance for tens of seconds. 

T his response is unacceptable for behav ing robot ic systems. 
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t he sensor quickly « 200 ms) reaches its peak resistance. However, the resistor takes 

more than ten seconds to return to the baseline once the peak has been reached , 

and the odor source has been removed (Figure 3.1) . In the presence of wind the 

situa tion changes, and the baseline resistance is recovered more quickly. The same 

resistor placed just outside of a wind stream produced by a fan with an airspeed of 

-0.5 mis, displays a behavior 

Sensor Response in Presence of Wind 

Time (s) 
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Figure 3 .2 : T his graph gives the response of a typical polymer-based sensor a fter 

a brief exposure to water vapor in a system with sustained a irflow. The sensor 's 

res istance much more quickly rebounds to its baseline value. This response is fast 

enough to be useful for behaving robotic'systems . 

in which the baseline resistance is quickly recovered (Figure 3.2). 
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This dependence on the presence of wind is a key factor. The fast response allows 

one to use simple thresholding circuitry to determine whether an analyte is present. 

In its absence, we would need to determine the time-dependent derivative of the 

sensor response in order to determine whether or not we are currently sensing the 

odor; we would also require one bit of memory indicating the state of the boundary 

we just crossed . 

The sensor 's properties a re not only dependent on the presence of wind, but also on 

the direction of wind with respect to the face of the sensor. As sensors are coated 

with the polymer / carbon black solution only on one side, this is expected4
. This 

effects primarily the decay rate after presentation of an odorant. In two typical 

responses, a sensor facing upwind (Figure 3.3) will have a decay rate which is less 

than half that of the same sensor facing downwind (Figure 3.4) . 

Upwind-Facing Sensor Response 
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F igure 3.3 : This graph gives the response of a typical polymer-based sensor 

facing upwind , and located in t he wind st ream. The res istance increases rapidly 

wit h the onset of the odor signa l, and decrease rapidly with its removal. 

4Wind directly impinging on t he sensor face will tend to in crease the rate at which odorant is 
removed , while that impinging on t he other side will a lso increase the rate , but to a lesser degree. 



3.3. DESC RIPTION OF T HE ROBOT 

\I 
Downwind-Facing Sensor Response 

Time(s) 

Figure 3.4: This graph gives the response of a typical polymer-based sensor 

facing downwind. This particular measurement is from the same sensor that 

produced the upwind response shown in Figure 3. Note that the time required to 

fall back to baseline is more than twice that of the previous sensor. This indicates 

that the sensor 's response is dependent on its orientation in the stream. 
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Typically, the time required for sufficient odorant to "off-gas", returning the sensor 's 

resistance to its baseline value, is longer when the sensor is facing downwind than 

when it 's facing upwind. This property arises because the polymer is deposited on 

only one side of the printed circuit board . The polymer absorbs the analyte quickly, 

with a correspondingly fast rise time, but does not release it as quickly. The fall 

time is more than twice that observed with the sensor facing upwind. In this case, 

the sensor has a two second fall time rather than a one second fall time when the 

sensor is facing upstream. Concomitantly, as one might expect, the rise time, while 

being fast , is still not equal to that observed with the sensor facing upwind. 

3.3. Description of the Robot 

In this section, we describe the robot used in the development of our plume tracking 

algorithm. We built the robot using a toy chassis developed and marketed by the 

Elekit company as part of a kit designed to provide a hands-on introduction to 

robotics (Figure 3.5). This particular chassis is ideal as it is inexpensive, simple 

to use , and capable of walking. The robot is powered by two nine volt batteries , 

which provide reliable power for a half an hour behavior. 

This system has two severe drawbacks. First , the motors are simple DC motors 

with unreliable control characteristics. That is , no two motors seem to rotate at 
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identical or comparable speeds in any kit . This produces a 'limp ', making the robot 

trace out a large circle, rather than follow a linear track, as designed. The second 

drawback is the very limited space available in its cargo bulb, making the circui ts 

by necessity, small and simple. This limitation drives the design of simple analog 

circuits with limi ted processing, and led to the development of the simple strategy 

to be discussed. 

Figure 3.5 : T his robot , buil t from a toy kit produced by the E lekit company, 

contains only two sensors oriented at a 90° from each other, with their mid-angle 

located a long the robot's apparent line of motion. T he robot is powered by two 

DC motors , each controlling one sct of ' legs' , and has a sim ple combinato ri a l logic 

cont rolling t hese motors. 

Each sensor is fabricated as described in Appendix A. It consists of a printed circuit 

board with two conductive leads between which the polymer / carbon black solution 

has been deposited. Each sensor is oriented with its coated side facing 45° from the 

direction of forward motion of the robot, and oriented 90° from the other sensor. 

I t is partially occluded from behind or the side by the robot 's cargo bulb . 

The resistance is read via a voltage divider , and compared to an adaptive voltage 

which represents the time-averaged sensor reading. The circuit is given in Figure 

3.6. 
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Figure 3.6. This is the sensor circuitry of t he robot. T he robot consists of 

two sensors , each wit h t his circuitry. T he output of t he two circui ts is fed in to 

combinatorial logic, which determines the control signa ls for the motor driver. 

T he circuitry consists of three parts: a vo ltage divider , a slow voltage follower , 

and a comparator. T his provides binary sensor informati on . 
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This sensor circuitry consists of three major parts. The first part is a voltage divider 

made up of the sensor, which is essentially a variable resistor . The sensor resistance 

varies with the concentration of odorant linearly at low concentrations - and with 

substance being detected. 

The second part of the sensor circuitry is a slow voltage follower. The capacitor 

charges through a 10 MO resistor , making the time for charging (discharging) ex­

tremely long, depending on the value of the capacitor. In our experiments, we used 

a 47 /-LF capacitor , making the time constant 470 sec, a long time on the time scale 

of the robot 's actions. By contrast , typical resistance changes of the resistor were 

greater than a 100% change, and could occur completely in 0.1-0.2 sec. This means 

that the voltage measured at the capacitor is virtually unchanged for complete re­

sistance cycles which take a matter of seconds. On the other hand , lasting changes 

in the baseline resistance of the sensor , which would persist indefinitely5, would be 

'followed ' by the slow voltage follower , providing an accurate measurement of the 

time-averaged behavior of the sensor. 

The third part of the sensor circuitry is a comparator , which compares a ratio of 

the voltage across the sensor with that at the capacitor. The ratio is chosen to 

5These sensors tend to have a monotonically increas ing baseline resistance. T he cause of t his 
res istance increase is not known . 
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be small enough that the sensor noise does not sporadically trigger a false sensor 

signal. A signal, which is reflected by a rise in the voltage across the sensor, will 

cause the comparator to register a higher voltage across the sensor , and so the 

arrival of an odorant is registered . The comparator output is then fed into a PAL6 , 

which decodes the four possible states, and generates motor control signals. 

The robot's behavior is based on four possible sensor states, and is determined by 

the current state. It does not employ any explicit memory in the generation of an 

action. The four possible sensor states and corresponding behaviors are given in 

Table 3.1. 

Sensor Signals I Robot Behavior I 
No signals. Do nothing. 

Left sensor signal. Turn right. 

Right sensor signal. Turn left. 

Both sensors signal. Move forward . 

Table 3.1 : The four sensor states (left) , each correspond to a unique behavio r. 

T hese act ions a re determined entirely by the current sensor state of t he robot, 

and is not determined in any way by the previous state of the robot .7 

Although this strategy does not process any information about the robot 's current 

state or history, it is capable of keeping the robot within the plume. The robot 

is at an edge when one sensor is on and the other off. The robot then executes a 

turn , walking back into the plume. There is no explicit directionality built into this 

design, however. 

3.4. Trials 

The robot was run through several trials in a simple plume generated in the labo­

ratory. We now describe the trials and performance of the robot in our system. 

3.4.1. Plume Generation. The robot described above was tested in a plume 

made from off the shelf parts, in an attempt to include as much turbulence and 

noise in the plume itself as in a realistic case. In order for a robot to work essent ially 

off-the-shelf and in a wide variety of climates and situations, it must have the ability 

to work in a less controlled environment than that available in a wind tunnel. Thus , 

our plume was generated in open air from a steam source. 

6 PAL is an ac ronym for Programmable a rray logic. 
7The robot is a Markovian embodied reactive system. 
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Figure 3.7: T his figure gives a schem at ic view of our plume genera tor . T he 

generator consists of two steamers wit hin a colu m nat ing "tent" a nd a fan which 

blows t he a ir both t hrough t he "tent" and a round t he "tent". 
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Figure 3.7 gives the design of our plume generating system. It comprises of two 

vegetable steamers inside a small columnating "tent". In our trials, the "tent" is 

made of Plexiglas , although we have had success using paper , cardboard , and wood, 

in the same configuration. A single fan generates an ambient wind speed of -0.5 

mis, and is at one end of the "tent", pushing the steam out the other side. Figure 

3.8 shows a plume being generated using this apparatus. 

Figure 3 .8: T his is a picture of our apparatus and a s team plume it generated. 

The steam plume has nontrivial structure, as it is generated in a medium of differing 

temperature. Moreover , the quant ity of steam produced by the steamers varies 
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widely, despite continuous operation of the steamers. While the heat has artificially 

increased the amount of water vapor in the air, this plume is qualitatively similar 

to other "leaky" plumes. 

The plume has a well-defined concentration gradient which extends both across the 

plume axis and along it. Using the sensors described in Section 3.2, we are able 

to measure contours of average plume concentration. Commensurate with Grasso 

et al. (Grasso et al. 1997), we find that the plume consists of two regions. The 

near region consists of high concentration odorant, whose concentration falls off 

sharply at the edges of the plume, and whose average concentration decreases as 

one proceeds downstream. As one proceeds downstream, the plume expands, and 

the edges become less sharply defined. The time-averaged concentration decreases 

smoothly while the instantaneous concentration becomes highly variable. Despite 

this, the time-averaged plume remains well defined over several meters. 

3.4.2. Robot Trials. Five hundred trials were run during which the robot 

was placed in the plume and allowed to behave. These trials were begun at twenty 

different positions located within the plume. These positions were located at inter­

vals of one foot both across the plume and downstream along the plume axis. Each 

row consisted of five positions. Thus, the robot's initial positions covered two feet 

across the plume, and four feet downstream. At each position, twenty trials were 

run. Four initial orientations of the robot were employed: upstream, downstream, 

and each direction transverse the flow direction. The robot was allowed to behave 

for ninety seconds, during which the aperture of the "tent" would either be located 

(the robot entered the aperture), or the run would be declared a failure. 

Our data is given in Figure 9. Along the plume center axis, as many as 80% of the 

runs were successful. 
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Figure 3.9: Th is data give the number of successes (of a ll initial or ientat ions) 

of the robot from differing initial posit ions. In terestingly, with in the plume, t he 

number of successes is quite high, a nd is su rpr isingly consistent both upstream 

and downstream. T he general shape of the peaks follows the plume st ructure, 

as determined independently using the same sensors and visual inspect ion. The 

data indi cates that the plume is not straight, but rather curves downstream, a 

reality that was verified after inspection of these data. Each of the contour levels 

represents t he physical boundaries within whi ch we expect to have that number 

of successfu l trials , given the twenty total trials. 
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The success of the individual run is weakly dependent on the initial orientation of 

the robot8 . This indicates that the ability of the robot to locate the source was 

not heavily affected by its initial orientation, but is rather a result of the long-term 

behavior of the robot. Notably, the behaviors that led the robot to the source 

occurred only at the edges, as no turns other than the built in "limp" of the robot 

occurred while the robot traversed the plume. 

Interestingly, as the robot's initial position is moved further downstream, the robot 

seems to have an increasing tendency to be successful in finding the source when its 

perpendicular distance from the plume axis is greater. This is commensurate with 

the expectation that further downstream, the plume will spread out widthwise. 

During our trials, two general behaviors were observed which tended to bring the 

robot to the source when it was headed downstream. 

1. The robot would approach a boundary and turn upstream, despite facing downstream at 

the time. 

2. The robot would turn directly upstream from its given spot, and walk directly toward the 

plume. 

~ I 
II 

( 1) (2 ) 

Figure 3.10: These are two general behaviors that brought the robot to the 

source. The first behavior (1) wou ld be a wide turn upstream , where a down­

stream turn is expected , and the second (2) is an upstream turn near or at a 

boundary. 

Both unexpected behaviors were observed commonly during robot runs. As these 

behaviors are not part of the robot's design , their surprising emergence requires 

explanation. As our electronics are quite simple and understandable, this behavior 

must have its root in the sensors' intrinsic properties and the dynamics of the 

interaction of the robot with the environment. 

8The number of successes for each initial orientation also exhibited th is gross profile , but has not 
been included due to the small number of trials with any given initial orientation. No significant 
stat istical conclusion can be drawn from such a small sample. 
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Recall that the polymer sensors may be conceptually understood as sponges capable 

of absorbing specific analytes from the fluid in which they a re placed. While these 

sponges are capable of quickly adsorbing analytes, they have a much lower tendency 

to release analytes once they are adsorbed . The probability is dependent on the 

concentration of analyte in the surrounding medium. T hus, as the air speed is 

increased , hence increasing the ability of the air to remove the analytes surrounding 

the polymer, the ability of the polymer of off-gas analytes increases. 

As the polymer 's off-gassing behavior is heavily influenced by wind traveling over it, 

t he increased resistance may be retained over a long period of time when ambient 

wind is blocked. Thus, a resistor leaving the plume, which should normally return 

to a low resistance quickly, may retain its high resistance when the robot blocks 

the wind that otherwise would remove odorant from around the sensor. It may also 

retain its high resistance if the sensor itself is facing downstream. Moreover, when 

a sensor enters the plume and is again facing downstream, or is in the "shadow" of 

the robot, it may not turn on until it is out of the robot 's "shadow" and / or facing 

upstream again, depending on the local concentration of odorant. 

We can now understand why the robot turns upstream so readily when placed 

in the plume. Note again that both sensors are placed at 45° from the direction 

of travel. This means that when the robot is facing downstream by less than 

45°, t he upstream sensor is facing upstream. Moreover, the downstream sensor 

is facing directly downstream, making its dynamics considerably slower than the 

other sensor. In this scenario, the downstream sensor's resistance will return to 

baseline more slowly than the upstream sensor's even when the downstTeam senSOT 

leaves the plume jiTSt. This will , in turn, cause a turn of type one, leaving the robot 

facing upstream. 

The second type of unexpected turn is of type two. This turn is caused by the 

upstream sensor turning on before the downstream sensor turns on. Note that 

while the robot is not facing directly upstream, the downstream sensor is partially 

or completely occluded by the robot in addition to simply facing downstream. This 

makes the upstream sensor turn on exclusively, and the robot will turn. Note that 

this does not happen in all t rials. It would seem that the occlusion is only partly 

successful , and in 70% of trials, both sensors will t urn on, making the robot move 

directly forward. 

Failures of the robot are generally of two classes. 

1. The robot could not detect the plume and stopped downstream. The robot wou ld occa­

sionally sporad ically spin in both directions as a single sensor was triggered. 

2. T he robot walked completely out of t he plume. 
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Figure 3.11: T hese a re two behav iors t hat signa lled the fa ilure of a robot during 

a ny given tri a l. The first (1) behav ior is a n intermittent rotat ion of the robot, 

caused by in te rmittent sensation of the plume. T his could be caused by t he auto 

baseline of t he sensor , or by the plume diss ipat ion fa r downstream . T he second 

behav ior (2) is t he loss of t he plume d ue to t he ro bot walking ou t of t he plume. 

T his often ha ppened when t he robot's batte ries were fresh , ma king t he robot 

move faster t ha n its sensors could react . 
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The first failure is caused by the robot losing the plume as it walks too far down­

stream to reliably detect the plume. The second failure is caused by the robot 

walking out of the plume, and out of the airflow. As the robot leaves the airflow , 

the slow reaction of the sensors is recovered , allowing the robot to walk too far out 

of the plume to reacquire it . Of the two types of failures, the second one dominates 

with 70% of failures being of this type. 

3.5. Lessons for Plmne '!racking Swarms? 

This chapter has illustrated plume tracking behavior using an extremely simple 

stra tegy coupled with a fl awed robotic chassis and complicated odor detecting sen­

sors. The simplicity of the algorithm illustra tes that it is possible to solve the prob­

lem without powerful processing or careful concentration measurements. Rather , 

it is possible to use only boundary sensing and wind direction information to find 

the source. 

This raises some interesting questions about biological plume tracking. We have 

an algori thm that is surprisingly robust, and uses very li ttle processing power. It 

is a simple consequence of the physical properties of the sensors being used . In 

biological systems, similar signalling mechanisms may be involved. An adaptive 

baseline is employed to make gross measurements of odor edges finer , while nulling 

out sensation after a well-defined sensitive period . It does not seem surprising that 

olfactory sensors are active a t t he boundaries, both temporal and physical, of odors, 

and less active after a somewhat short exposure to the odor. 
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This study illustrates how two important pieces of information , the local wind 

direction and the plume edge, may be used when tracking a plume to its source. 

More notably, we have fashioned a robust algorithm out of only these two pieces of 

information , and have obtained the relevant information from a single sensor. The 

way that this information is acquired, by physical properties of odor sensors or by 

mechano-receptors located on hairs on the agent's body does not seem important. 

A stochastic walk with a higher probabili ty of moving in the right direction will 

eventually end up at the target. Hence, simple strategies that keep an agent from 

losing the odorant and at the same time move the agent upstream would seem to 

be all that are required. The diversity of natural plume tracking systems serves to 

illustrate this point . These strategies are largely different , but all seem to include 

some knowledge of wind direction in quickly moving systems in air. On the other 

hand, t he exact strategy for finding the source varies from species to species. We 

now believe we understand why information about wind direction is so ubiquitous 

in search strategies, but any other specific strategy element is not. We would 

be interested to find a biological agent that uses a similar strategy to that we've 

illustrated . 

In generalizing this result to a swarm , one design parameter must be that the swarm 

is reactive to wind direction. This means that , at least at the lowest level, the robots 

making up the swarm must be reactive to wind direction, or employ some method 

of search that uses this piece of information in some way. As we have noted , the 

plume structure itself has embedded in it information about wind direction , which 

may be exploited without the use of explicit wind direction sensors, or sensors which 

are preferentially responsive, as in this study, to odors arriving while the sensor is 

facing upwind. 

In the next Chapter, we turn to a general class of algori thms based on exploiting t he 

geometric properties of spirals in finding plume sources. We find that the algorithm 

is capable of t racking the plume to its source by executing spirals , both explicitly 

and implicitly using wind direction. 
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Spiral-Based P lume Trackers 

In the last Chapter , we presented a simple plume t racking algori thm which was 

surprisingly successful. It was capable of tracking a plume upstream, an extremely 

surprising experimental fact. The robot was not originally designed to be capable 

of tracking the plume, bu t it was not only capable of exactly that , it also was 

capable of recovering from an initial downstream-point ing initial state , which was 

even more surprising. The interesting par t of the study was the explanation of this 

behavior , which found its root in the physical properties of the sensors employed. 

In t his Chapter , we present a new plume tracking algorithm based on a spiraling 

behavior. This behavior is based , initially, on the presumption of a single source. 

The algorithm demonstrates good line-following behavior , which can be generalized 

to plume tracking, inasmuch as a plume may be considered to have the general shape 

of a line, which need not be straight. Various parameter varia tions are explored , 

generating a good understanding of the algorithm. Of particular impor tance is the 

understanding of the realms of applicability of this algorithm. Real robot t rials are 

presented , although the presentation is anecdotal in nature; further wind tunnel­

based trials are planned for a later study. Lessons for our eventual leap to a swarm 

implementation are discussed at the end of the Chapter , and lead into Chapter 5. 

In t his Chapter , we utilize two sources of data. One is derived from real digitized 

plume data obtained in a water plume using fiourescing dye (Cowen and Chang 

2000). T he second is obtained from a simulated plume in which odorant is generated 

in the form of discrete "puffs" which propagate under the influence of a simulated 

wind. The use of both models is an important step toward the verification that the 

simulated data sets perform well enough to represent viable data for extension of 

plume t racking simulat ions to behavioral regions that are inaccessible to simulators 

due to a lack of experimental data. We compare the effects of varying parameters 

in both models. We view the generation of simila r behaviors under such variances 

to be justification that the important details of the plume dynamics are captured 

with enough accuracy to validate the use of the simulation in similar regimes. 

41 
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4.1. Basic Spiral A lgorithm 

The basic spiral algori thm is designed according to t he desire to develop a minimal 

algori thm to bring an agent from its current posit ion to the source of a plume, 

without requiring the agent to be initia lly near the plume. This algori thm, in its 

basic form, does not require any knowledge other than local odorant intensity, but 

may be easily altered to include wind direction of various levels of resolu tion in 

order to improve efficiency. It is also designed according to an absolute lack of 

tolerance to failure, a condition we can la ter relax. 

Some applications of t his algorithm require that a total lack of tolerance for failure 

be adopted . That is, these applications, such as the local search of a desert ant for 

its nest , absolutely require t hat, in a fini te search t ime (which need not be short), 

the agent in question will obtain t he location of the source of the plume. Therefore, 

we need to equip t he agent with a search algori thm that will never miss t he plume 

from any starting position in an unbounded search space. 

We may use a minimal effi ciency condition in our design. This is that t he a lgori thm 

should produce a t rack which does not cross itself. This requires us to have a 

gener'alized spiral algorithm. A generalized spiral algorithm is any algorithm which 

produces a basic movement at t he center of an outwardly growing path . 

For instance, one might create a t riangular motion in the center of the track, and 

create increasing t riangles around that original t riangle. Ineffi ciencies in agent 

locomotion occur if we use patterns with corners or sharp t urns. T hus, we settle 

on a simple circular spiral algorit hm. 

T he motivation for use of t he spiral algorithm is twofold . First, t he algorithm is 

guaranteed to find the source of interest , provided the size of the spaces between 

loops does not exceed the size of t he object in question . Second , rather small 
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modifications of the algorithm can create plume tracking behaviors that are highly 

robust and quite efficient in the right circumstances, as we shall see. 

We begin with a simple example. In the most benign form , a plume may be thought 

of as a line. In this case, the simplest tracking behavior is one in which the agent 

moves forward when in contact with the line, and executes a turn when contact is 

lost , reversing the direction of the turn at each successive loss. This will provide 

the line following behavior given in Figure 4.1. 

Track 
Line 

Figure 4.1: This is an example of the use of a line following a lgorithm in which the 

agent executes success ive turns when it loses contact with the line . 

The elegant feature of this method is that it has some measure of error tolerance. 

That is , if it mistakenly takes the wrong direction along a line the head of which 

it is meant to find , it will automatically reverse itself and continue in the other 

direction, as in Figure 4.2. 

Line 

Recovered 
Plume 

Plume Losl 
Looping 

Figure 4.2: The error co rrect ion capability of the line foll owing. Reaching the wrong 

end of a line is eas ily corrected . 

What makes this somewhat unattractive for plume tracking is that plumes are 

stochastic . The exact placement of a particular odorant packet does not follow any 

systematic design , and a agent carrying out this simplistic line following behavior 
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may find itself far from the plume due to saturation of sensors or a random variation 

in the plume's trajectory. If this occurs, the agent will be unable to recover. 

j Later, after a wind shift 

o 
Plume Lost 

Figure 4.3: The failure of a agent t hat loses the trail. 

There is a movement which gained significant momentum the 1980s after a seminal 

paper by Rodney Brooks (Brooks 1986) and is still ongoing to make robots simple, 

and to somehow learn how to do complex things with these simple robots. The goal 

of the present work, along a similar philosophy, is to report on the development of a 

particularly simple but suprisingly robust method of plume tracking which is simi­

lar in spirit to the algorithm just considered, but also quite robust. We investigate 

three different algorithms, all of which correct the fault of the line-following algo­

rithm. These are the basic spiralling algorithm (BSA), the maximum-only switching 

spiralling algorithm (MOSSA), and the wind-based spiralling algorithm (WBSA). 

We explain each in turn. 

4.1.1. The Basic Spiralling Algorithm. The BSA utilizes two behaviors. 

The first is the basic spiral , while the other is a straight-line tracking. In a basic spi­

ral , the agent initially begins a clockwise or counterclockwise spiral. Upon meeting 

a trail of interest, the agent travels in a straight line through the trail. When the 

trail has been traversed, the agent reverses its direction of spiral and reinitializes 

the spiral. The result is a set of segments of length comparable to the trail length, 

assuming that the agent executes tight turns. 



:: I 
(a) 

(b) 
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Spiral Plume Tracking Algorithm 
Correct Initial Direct ion 

Spiral-Based Plume Tracking 
Incorrect Initial Direc tion 

Figure 4.4: T hese are two typ ical line following behaviors usi ng a sp iral a lgorit hm . 

Note t hat i t is capab le of recovering when it ini tiall y chooses the w rong d irect ion. The 
behavior is very re illin iscent o f cast in g 1. 
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The characteristics of the BSA are qui te interesting. As illustrated in Figure 4.4, 

initially, the agent executes a spiral that is guaranteed to bring it within sensor range 

of the target trail. Once it reaches the trail, it takes a straight line path through it , 

and changes direction, beginning its spiral through the trail. The algorithm recovers 

after reaching the wrong end, and tracks the plume in the opposite direction. 

4.1.2. The Maximum-Only Switching Spiralling Algorithm. The pre­

vious algorithm is sufficient to follow lines, but unfortunately, as is evident in Figure 

4.4, it does not know which way to track the lines . If a plume is sufficiently long 

and well defined, a agent employing this strategy might waste a great deal of time 

tracking the plume in the wrong direction. 

1 A process by which an agent repeated ly traverses a plume as it makes its way upstream . 
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Max imum-Finding Plume Tracking 

(a) 

Max imum-Findin g Pl ume Trackin g 

(b) 

Figure 4.5 : A typical MaSSA ru nnin g o n a g radient p lume . T he p lum e 's in te nsity 

decreases a long t he x-ax is . Notabl y, fro m e it he r sta rt ing con fig uration and ini t ia l in ­

teract ion point and ori entat ion , the a lgo ri thm co rrec tl y chooses the upstream d irect ion 
to t rave l. 
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Plumes are stochastic structures which have a higher probability of having a high 

concentration packet closer to the source. Thus, we are more likely of interacting 

with a high concentration packet near the source, as compared to further from the 

source from any given point. By requiring that the new spiral seed point exceed 

tha t of the previous seed point , we may restrict the agent from moving downstream, 

and rather keep it moving upstream. This is, of course, not entirely effective, as it is 

possible to obtain a high concentra tion point fa r downstream of the last sampling 

point. However, simple modifications of this basic paradigm such as a limited 

memory of the last point can serve to alleviate this problem. 

4.1.3. Wind-Based Spiralling Algorithm. The most commonly used ele­

ment in a plume t raching paradigm is the use of wind direction information. The 

use of wind direction is nearly ubiquetous in nature, and for good reason. The 

ability to obtain such information is computationally cheap, and can be done using 

a passive sensor attached to one of many different types of structures that would 
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otherwise still exist on the animal. The many ways in which wind information may 

be obtained are as varied as life itself, though they seem to cluster around three 

main categories: hair based , olfactory based , and temperature based . It is beyond 

the scope of t his paper to investgate these, so we leave off further discussion. 

We may use wind information in our spiralling algorithm in order to improve the 

performance of the algori t hm . This information may be used while in the plume, 

giving us a way of quickly t racking directly toward the plume source. The WB­

SA is then ident ical to the MOSSA with one modification: t he agent will turn 

directly upwind when it has obtained a whiff of odorant above its current baseline 

measurement. 
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Figure 4.6 : T h e use of wind informat ion in t he WBS A is ext re m e ly he lpful , c ha ng­

ing t he effect ive ness of t h e a lgo ri t hm a g reat d eal. In t hi s exa m p le , t he agent fi rst 

e ncoun te rs the piulne , t urns upwind , a nd fi nds t he source . 
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The use of this information is quite effective, as shown in Figure 4.6. Notably, the 

trajectory the agent now uses is considerably more direct. 

4.1.4. Simulations. In the following subsections, we explore several interest­

ing aspects of these algorithms. Several parameters are relevant . We now discuss 

these briefly. 

4.1.4. 1. Sensor Properties. The sensors utilized in a given robot can be wide­

ly varied , and their properties are typically very different . However , each sensor 
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generally has one or two fundamental time constants. These constants correspond 

to the amount of time it requires to register an increase or decrease in odorant 

concentration. 

For a mobile robot, both of these have important consequences. If a robot has a 

very slow sensor, it will not be able to react when it enters the plume. This means 

that it will generally be unable to respond to diffuse or small plumes . On the other 

hand , if it has a very quick sensor , then it may react immediately to very small 

changes in the concentration , reacting to a single packet far from the plume, on 

occasion, or to local variations in a diffuse plume. These parameters determine how 

a robot will interact with the plume in quest ion, and their choice must be carefully 

done. 

In practice, of course, it would seem to always be more advantageous to use very 

fast sensors, if available. An increase of the response time of the sensors may be 

done in software or hardware. However, this does not alleviate the requirement 

that behaviorally the time constant must be well chosen. 

4. 1.4.2. Memory Length. In the MOSSA algorithm, the robot or agent actively 

carries a memory of the last largest concentration hit it has encountered . However, 

in real plumes, high concentration packets may move freely downstream, without 

greatly a ltering their concentration. This means that the agent may encounter a 

high density packet while travelling downstream from the last spiral initialization 

point. In this case, t he agent will start a new spiral further downstream. More 

damaging is when the packet is very near the highest concentration to be encoun­

tered. This will cause the agent to spiral indefinitely until some stopping condition 

is met , assuming that the concentration itself is not the stopping condition. 

In order to deal with this, we have augmented the MOSSA algorithm with an ability 

to "forget" the maximum concent ration yet encountered. If Cm is the maximum 

concentration encountered by the agent thus far , the update at each iteration is 

(4. 1.1) 

where 

(4.1.2) O<a < l 

The value of this a will be examined. Simulated plumes will allow us to examine the 

variation in optimal values of a under the effect of different concentration plumes. 

4.1.4.3. Wind Direction Sensitivity. In order to track the plume upwind , an 

agent must first be able to identify the wind direction. In the natural world, as 

discussed briefly above, t his is rather quick and easy. However, for real robotic 
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systems, this is a difficult task, and requires significant time and work to determine 

the wind direction, particularly in the low wind speed case. 

Considering the amount of effort required to produce accurate, quick, low-speed 

wind direction sensors, it is interesting to understand the wind direction accuracy 

requirement. 

4.1.4.4. Data Sets. A plume is typically a very nonlinear construct, consisting 

of discrete packets of odorant which vary from extremely small in physical size to 

extremely large relative to the size of the source. Moreover , the packets of odorant 

have widely different concentrations, varying over many orders of magnitude. The 

behavior of each packet is also quite difficult to predict , as it is often subject to 

eddy currents and nonlinear motion (Grasso et al. 1996, Belanger and Willis 1996, 

Farrell 1999, Grasso et al. 1996a, Grasso et al. 1998, Grasso et al. 1998a, Ishida 

1996, Ishida 1994, Kazadi 2000, Kuwana 1995, Murlis 1992, Zanen 1996) . 

, , . 
Along Plume Coordinate (meters) 

Figure 4.7: This is a n example of a plume . T hi s data is obtai ned by digitizing a 
plume made up of fluorescing dye and illuminated wit h a planar laser. In th is figure , 

the odorant co ncentrations a re linearly d ependant on the brightness. Note that t he 

plume is extremely concentrated in small packets. The properties of t hese packets may 

be very different from instant to instant . 

We perform experiments on two different data sets. The first data set (Figure 

4.7) is provided by a group at Georgia Tech (Cowen and Chang, 2000). This data 

is digitized from an active plume of fluorescent dye, imaged by videotaping the 

brightness of light resulting from fluorescing of the dye in response to a planar 

laser. The second data set is provided by a plume simulator based on a simulator 

made by Jay Farrell of the University of California at Riverside (Farrell et al. 1999) 
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(Figure 4.8). This simulator represents plumes as aggregates of packets of odorant. 

Each packet is individually created, tracked across a predefined area, and destroyed. 

, 
Along Plume (cordinale (melers) 

Figure 4.8 : This is an example o f a n instantaneo us sc reen shot o f the s imulated 

plume u sed in t hi s stuely (Farre ll et a l. 1999). Eac h packet is evo lved o n t he far 

left- h a nd s ide of the search area , a nd t racked ac ross t h e a rea , pushed by a s imulated 

w ind . Packets a re s ph e ri cal with a gaussi a n inte n s ity. The packet s lowly expands as 

it trave ls dOwllstrealll , ma kin g a more dispersed plume o f lower intens ity . 

4.1.5. Performance Measures. In plume tracking, the central concern is 

progress made upstream. Thus , we report now on the algorithm's ability to track 

upstream . We carry out one hundred independent runs of a simulator in which 

an agent moves toward the plume source, basing its movements on one of the 

algorithms given above. The agent has a maximum speed of 17 mis, the minimum 

time that an agent may take to reach the source (judged as 10 m from the source 

along the plume axis) is 1;.0 where x is the distance measured in meters. This means 

that the performance may be judged as a function of the ratio in the average time 

to source and distance to source vs. the minimum time to source and distance to 

source. As described in the caption to Figure 5, we scale our results by the minimum 

time and distance to source, generating two dimensionless numbers. These numbers , 

the distance decrease factor (DDF) and the time decrease factor (TDF) are defined 

as 

( 4.1.3) DDF = dmin TDF = t min 
d actual ' tactual 

Note that these numbers must be smaller than one in all cases. 
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4.2. Olfactory Sensor Sensitivity 

Many different technologies exist for making wind direction sensors. As discussed 

in Chapter 2, these range in design from saline solution measures , to devices that 

use changing resonances , to conductivity measurements. In each case, the proper­

ties of the sensor are different from those of other sensors. However, the response 

of a particular sensor may be characterized in many cases as the response of two 

competing charging/ discharging processes, each of which has a different time con­

stant. The relationship between these can be a serious affector of the success of the 

algorithm, as we sha ll now investigate. 

We consider the effect of the sensor properties on the WBSA. Generalization of 

the general properties found in a study of this a lgorithm are expected to apply to 

the other algorithms, as the question here is the interaction of the agent's sensors 

with the plume. We note , however , that once a plume has been contacted, the goal 

would seem to be to move upstream as quickly as possible. A trade-off would seem 

to be in play between the speed of interaction (rise and decay) and the need to stay 

near the plume. While the details for MOSSA and BSA are likely to be somewhat 

different , the general design paradigm is thought to be similar to what is found 

here. 

We first assume that the behavior of the olfactory sensor may be modelled as 

(4.2.1) S = (f (c) - So) (1 - e-a l
) + So 

where S represents the sensor reading, J represents some function of concentration 

indicating the equilibrium response of the sensor, So represents the instantaneous 

reading of the sensor, and 0: gives the time constant of increase of sensor response. 

By the same token , we may assume that decrease is given by 

(4.2.2) S = (f (0) - So) (1 - e-i3 I
) + So 

where (3 is the constant giving the rate of decrease of the sensor response. 

If we assume that sensors behave in this way, which is a good approximation for 

many sensors including the Caltech Silicon Nose Project 's polymer sensors (Lewis 

et al. 1996), we may inquire as to the effects of changing the time constants relative 

to one another. 

We simulate the search for the source as described above, using one hundred inde­

pendent runs for each set of sensor properties. We model the sensors as given in 

equations (4.2.1) and (4.2.2) above. Sensor time constants range between 0 and 9 

seconds in length. We report the TDF measure of performance, the DDF measure 

of performance, and the average percentage of agents which find their way home. 
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TDF for Various Sensor Properties TDF Surface of Differing Sensor Properties 
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Figure 4.9: These are the TOF m easures of performance for both t he s imulated (a) 

and real (b) plumes. In both cases, the p erformance is worst when t he se nso r proper t ies 

are s u ch that t h e r ise time is much longer than t h e fall time. The properties a re more 

strongly favorable w h en t h e sen sor rise t im e is q uite short, a nd t he sensor readin g 

decay time is quite long. 
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Figure 4.9 gives the TDF measures of performance of simulated and real plumes. 

Both cases are similar in that they indicate that short sensor rise times are favorable, 

and long sensor decay times are favorable. Figure 4.10 also indicates this, t hough 

more strongly. 

(a) 

Varialion of DDF Performance wilh Sensor Properties DDF Varialion Wilh Sensor Properties 

(b) 

Figure 4.10 : These a re the DDF meas ures of performance for both s imulated (a) and 

real (b) plumes. These h ave t h e same ge neral p er form ance indicat io n s as those found 

by examining t h e plots given in Figure 9 . 
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Variation of Succesful Source Locations with Sensor Aruibutes Success Rate (out of 1.0) Variation wi th Sensor Propcnies 

(b) 

Figure 4 .11 : These figures illustrate the actua l success rate (o u t of 1.0) o f age nts 

t racking the plume to its source . Inte rest ing ly, the two models differ in their pred ic­

t ions about o ptima l b ehavior . 
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Figure 4.11 gives the performance of one hundred independent runs on the tracking 

in terms of the fraction (1.0 is all agents) of agents that actually find the source. 

The simulated data set indicates that the value of the rise times can vary largely 

when the decay time is long, providing intermediate performance, while the real 

data set implies that this is not the case. This discrepancy arises from the differing 

plume properties, indicating that the requirements of differing plumes will not be 

identical , but rather will vary with the plume properties. 

Empirically, we have found that the simulated plume has a larger gradient along 

the plume axis than the real plume, exhibiting a change in the concentration of 

the plume along the plume axis. The real plume is much more uniform than the 

simulated plume, exhibiting a very small change in the concentration of the plume 

in the downstream axis. This may be the reason for the differing sensor attribute 

effects, though a more thorough study of these properties is beyond the scope of 

this paper. However, in both cases, the best performance occurs when the sensor 

properties are such that the rise time of the sensor is small and the decay time is 

long. We consider this to be an important attribute of successful sensors. Note that 

the decay time need not be a function of the sensor , but rather may be simulated 

in either discrete electronics or in software. 

4.3 . Memory Length Sensitivity 

In the MOSSA, no wind information is needed to track the plume upstream. In 

theory, this algorithm may work as in Figure 4.5 in the perfect laminar steady state 

plume. However , in practice, there exists no gradient (other than a probability 

gradient for concentrated packets) to base the behavior on. Thus , the actual track 

is much more variable than that given in Figure 4.5. Rather, we have the situation 

given in Figure 4.12. 
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~ !I! 
Example of Age nt's Trajectory using MOSSA 

Position (meters) 

Figure 4 .12: A s ingle run of t he MOSSA a lgo r ithm in t he p rese nce o f a real plume. 

Note t hat t he t rack te nds to ove rl ap itse lf, owing to t he no nzero pro bab ili ty o f fi nding 

a higher concent rat ion of od orant down st r ealTI [!'OIl1 t he current spira l in it iation poin t. 
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In general, it is empirically determined that one critical parameter in MOSSA is 

the length of time for which a particular high density measurement is retained in 

memory. More concretely, we model t he behavior of the measure of the greatest 

previous measurement mo occurring at t ime to to be 

(4 .3 .1) m = moa- t 

where a is some posit ive number between 0 and 1. The use of t his in a real plume 

comes from the uniformity of the plume, and the existence of high density packets 

t hroughout the plume. For instance, if the agent encounters a high density packet 

downstream , t here is absolutely no way it can track upstream outside of execut ing a 

spiral and eventually stumbling on the source without ignoring or somehow reducing 

the measurement it previously made. 

The difficul ty in utilizing this method derives from the fact that if the rate at 

which the maximum measurement decays is excessive, the agent will simply retrace 

its steps indefini tely. On the other hand , if it is too small , the agent will never 

adapt to t he new levels, and will experience one large-intensity packet , spiralling 

indefinitely from that point forward . 

We investigate t his parameter by init iating several independent MOSSA runs with 

differing parameter settings and report ing t he performance measures. Each point 

is defined by one hundred independent runs, wi th all independent runs initialized 

9 meters downstream , and one meter from the center of the plume. 
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Figure 4.13 : The TOF performance of t he two m odels diffe rs g reat ly. T h e p e rfor­

m a nce on simulated data(a) is very stron gly p os itive ly affected by inc reasing a. T he 

pe rformance on real data (b) does not seem to b e affected by cha n g ing a. 
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Figure 4.14: The O O F performance of the two mode ls. As before t he s imulated dat a 

sets d o much bette r. 
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Interestingly, we obtain very different behaviors using the two models . In Figure 

4.13 , we give the TDF performance, and in Figure 4.14, the DDF performance 

on these runs. In both cases, we see that increasing the parameter a improves 

the performance. That is, the longer the simulated runs remember what they 've 

experienced , the better they seem to perform. However, this seems to have no effect 

for the real-data runs. 

Of course, this makes sense because of the profiles of the different data sets. In 

the simulated data, there is a measurable spreading out of the signal downstream, 

while in the real data, there is no such large effect , with the only variation being 

extremely slight ; remembering the maximum in an isotropic environment has little 

effect while remembering it in a variable environment has a large effect. 



4.4. WIN D D IRECTION SENSITIV ITY 57 

4.4. Wind Direction Sensitivity 

A plume is generated by moving odorant carried by wind or other mass transport. 

It stands to reason that the determination of the direction of travel of the wind is 

enough information to cause the agent to travel to the source of the plume. Indeed , 

this is certainly the case in the natural world. Many (perhaps most) macroscopic 

mobile life forms seem to have the capabili ty to track the wind or fluid flow; cer­

tainly most life forms that t racks odor have this capability. However, while animals 

have the ability to track the wind upstream, the level of sensitivity vs. behavioral 

averaging is currently unknown. Since the determination of direction can only be 

done approximately in any real instantiation, it is interesting and important to 

understand how the sensit ivity of the wind direction sensor will improve the per­

formance of the algori thm. T his provides both clues to the reasons that animals 

might or might not have explicitly sensit ive sensors, and motivation for generating 

wind sensors of a given sensitivity in the robotics world . 

In this Section, we investigate the role of increasing the sensitivity of the agent 's 

wind direction sensor. We do this by fi rst explicit ly increasing the sensit ivity. We 

assume that the agent knows two facts: 

1. The wind is coming from the front , or 

2. T he wind is coming from the left or right. 

This knowledge is tempered by a specific angular sensitivity. The agent is assumed 

to believe that the wind is coming from the front if the direction differs from directly 

ahead by less than some resolution e. We can vary the resolu tion and view the effect 

on the agent 's capabilities. 

We secondly investigate the role of noise in the determinat ion of wind direction . 

We motivate an understanding of why one might want to have noise, even art ificial­

ly generated , when determining wind direction, and demonstrate this empirically. 

T his would seem to indicate that, rather than evolving highly sensit ive wind direc­

t ion sensors, Nature may have opted simply for increasing the noise on a given wind 

sensor. T his would seem to be a design paradigm easily adop ted in the development 

of plume tracking agents. 

4.4.1. Simulation Description. We carry out one hundred independent sim­

ulations on the two data sets previously described . Each agent is endowed with only 

very basic capabilities , and carries out the search in complete isolation from all oth­

er agents. Each agent has an olfactory sensor and a wind direction sensor. The 

sensitivity of the wind direction sensor , and its inherant noise, are variable. 
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Each agent data set consists of one hundred independent agent runs. All agents 

are initiated at 9 meters downstream and one meter above the center of the plume. 

This allows the plume to be quickly located, giving a good measure of the affect 

of the change in the agent's performance due to the use of wind information. Note 

that since the agent will not move toward the source until it has located the plume, 

the maximum score is contrained to below 1. All agents have a uniform random 

noise in their movements. Each wheel is noisy in its determination of speed, with 

absolute magnitude of the noise constrained to 10% of the desired speed. This 

tends to produce spirals that are initially reasonably perfect, but later become very 

mishapen. 

4.4.2. Explicit Sensitivity. As described above, the sensitivity of the (virtu­

al) wind direction sensor used in this study is the free parameter. This sensitivity 

can be thought of as being the maximal deviation from directly ahead that will 

cause an error in the determination of direction - making the agent believe that it 

is going directly upwind when it is not. 

(a) 

Track ing a Plume wi th Resolution IT radians. Tracking a Plume with Resolution 4 radians 

iDlll.lIPmnl 

(b) 

Figure 4.15 : The prog ress ion upwind o f an agent endowed with a w ind sensor with 
reso lutio n (a) 1T a nd (b) 'f ra di a n s. The former travels over a s ig nifi cantl y lo nger 

distance than the lat t er. 

If the sensitivity of the agent is low, as in Figure 4.15a, the agent spends a great 

amount of time casting back and forth across the plume, while greater sensitivity 

provides more direct travel to the source, as in Figure 4.15b . 

We examine the question by running virtual agents in the real and simulated data 

sets. The agents are initialized near position located 9 meters downstream and one 

meter from the center of the plume. Robots are considered to have arrived at the 

source when they come within twenty centimeters of the source. 
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(b) 

Figure 4.16 : The TDF a nd TDP - l performance measures o f the agent performing 
on the real plume data as t he directional reso luti on is in creased . The pe rform ance is 
monotonically increasing, but seems to leve l o ff (b) at b etween e ight a nd ten directions. 

After thi s, the improvement seelns Quite s in a ll , indicat in g t hat e ig ht direction s, or a 

resolution of 0.40 ra dians, is suffici ent for t he ma jority of the gains to be had by 

inc reasing the angular reso lution of the sensor. 
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In Figure 4.16 we plot the performance measure TDF and its inverse. As the 

inverse plot is linear , this indicates that the the gains from increasing the number 

of resolvable directions is a monotonically decreasing function. However , it also 

indicates that at no time will the improvements end. This means that the only 

constraint in the design of a wind sensor is its cost , as improvements in sensor 

resolution provide ever improving performance. 

(a) 

},ncreasing DDF with Increasing Wind Direclion ResolUlion Irnerse DDF for Increasing Wind Direction Sensor Resolution 
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Figure 4.17: Plots a na logo us to Figure 16 usi ng DDF rather than TDF. Notably, the 

plot in (a) is linear, indi cat ing cont inuing rewards for inc reased sensit ivity to direction. 

Plot (b) indi cates a reduct ion of t he returns as the number of directions in c reases. 

Figure 4.17 also underscores this, providing the analagous plots using the DDF per­

form ance measure. Again , the inverse plot is linear , indicating decreasing returns. 

Moreover , the simulated plume reinforces this result , as the behavior of the agent 

is similar in the simulated plume to the behavior in the real plume. 
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Figure 4 .18: TDF a nd DDF measures of pe r fo rm a nce in a s im ulated p lu me. T he 
behavior is s imila r to t hat o f t he rob ot in the real p lume, ind icat ing t hat t he p lu me 

is a good approx im at ion of a real p lu me and t hat t he in1prOVell1ell t in perform ance is 

not dep enda nt on t he real p lu me data set. 
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4.4.3. Gaussian Distributed Noise. In general, the measurement of the 

wind direction by use of a single hair or multiple hairs is problematic, as it can 

be affected by the very turbulence that causes the nonlinear chaotic behavior in 

a plume. T his means that determination of the exact direction is not par ticularly 

reliable, and that the given direction is an approximation to the true direction . In 

this SubSection , we investigate the effect of noise on the ability of a robot to find 

its way upstream. 

While tracking a plume upsream using wind direction information , a choice of 

direction is made based on the wind direct ion sensor data , and possibly other 

olfactory data. Once the searcher believes it is t ravelling upstream, it will make 

a beeline toward the source. This is as we saw in Figure 4. 15. However, if the 

determination of wind direction is cont inuous, and the searcher is convinced that 

it is not moving upstream, it will attempt to correct its direction, which in our 

case means rotating. The resul t is that the robot in question would seem to require 

more time to get upstream. However , at the same time, it gains precision in moving 

upstream, yielding an overall improvement, as can be seen in Figure 4. 19. 
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" Example Wind Dirwion Noise (0.6 rad) noise . 
~ ..... , 

Figure 4 .19: This gives the effect of addin g a large a mount of noise to t he instan­

taneo us determination of wind direct ion . The co nstant co rrect ion of direction causes 

an average upstreanl direct ion , despite t he limitat ioll in the reso luti on inherant in t he 
sensors. 
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This yields two competing tendencies . The first is that as the noise increases, the 

accuracy of the path increases , decreasing the path length . The second is that the 

price for accuracy is an increase in the time, as the time to correct the path becomes 

increasingly long. We plot these trends in Figure 4.20. In these graphs one may 

note that the increase of noise initially improves performance, but later damages 

it , as the path takes a prohibitively long time to complete. 

(a) 

Wind-Error-Based Improvemem in DDF (Resolution 90 J" Wind-Error-Based Improvement in TDF (Resolution 90 ) 

, . 
• ,1 

(i3U~~lan Error (radlallll (b) 

Figure 4.20: In (a) we see the effect of increased noise on the distance travelled. This 

Ineasure of performance is somew hat constant despite the ever inc reasi ng noise. This 

indicates that the distance travelled, which does not include distance t rave ll ed while 

turning, is relatively constant with the increase in no ise. (b) indicates that the time 

init.i all y decreases, and then in creases, as the titne spent making co rrec tions increases. 

What these graphs seem to indicate is that the plume tracker will benefit from a 

limited amount of noise. Moreover , increasing the base resolution of the robot from 

~ to % does nothing more than shift the graphs, yielding the same overall behavior. 
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4.5. RO BOT TRIALS 

"Wind Direction Error-Based Improvement of DDF 
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'" Wind Direction Error- Based Improvement of TDF 
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Figure 4.21 : T h ese g r a phs a re ide nt ical in fo rm to Fig ure 4.20 a b ove, indicat in g 

that t he p er form a nce in t he fa ce o f n o ise , wh il e d ependa nt in t he pos it ion o f t he p eak 

pe rfornlance on t he no ise , is ide ntical in [orIn in both cases. T hus, any given reso lu t io n 

would see m to have a n optimal no ise leve l w hi ch is nonzero. 
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Thus, we conclude that differing resolutions will tend to have optimal noise levels, 

despite the deviation in precise noise level. The functional dependance of the noise 

level on the resolut ion would seem to be highly dependant on the plume, and the 

odor sensor properties . 

4.5. Robot Trials 

The true test of any robotic algori thm is its development on a robotic platfor­

m. While it is not possible to properly implement these algorithms and generate 

meaningful statistics on a robot outside of a continuous fl ow system, we genera ted 

anecdotal data about the implementa tion, yielding information about its applica­

bili ty, and information about required variations to the basic strategy. 

The test bed for our robotic implementation is a robot developed by Owen Hol­

land at the University of West England , now called the Moorebot . Its fabrication 

and development of control software were done in the Caltech Microsystems Lab 

by the author , Adam Hayes, and Ladd Van Tol. Its basic system is a 386 proces­

sor produced by AMPROTAf Computers, and a custom motherboard and chassis 

developed as indicated above. The robot is powered by a sealed 12V lead acid 

battery, and moves via two powered wheels and a castor wheel at one end of the 

robot. Custom hardware developed here at Caltech include proximi ty sensors and 

communication beacons, as well as the various hardware items designed to measure 

odor concentrat ion and wind direction. 
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Figure 4 .22 : T he Moorebol. 

Along with the AMPRO CoreModule T M , the PC104 stack contains a P CMCIA 

card connected to a radio LAN. The system is a stripped version of RedHat 6.0 

Linux, and a ll system files are fully contained on a 124 Mb solid state hard drive. 

Both BSA and MOSSA have been implemented on this test bed , the la t ter simply 

as a resul t of the failure of the first. The plume system is similar to that described 

in Chapter 3, although it was necessary to increase the number of steamers to 

four , due to the insensitivity of the polymer sensors. All runs were conducted in 

an arena of size 20 'x 20'. Because the arena in which these trials were conducted 

is not adequately ventila ted , water vapor quickly saturated the arena (within 15 

minutes), making any measurements with the sensors impossible. As a result, we 

only decribe our success with the two algori thms, and do not offer any systematic 

experimentation or statistics. 

All t rials of both BSA and MOSSA conducted wi th new polymer sensors (see Ap­

pendix A) and in an arena with li tt le or no water vapor were successful. T he t rials 

were typically started approximately twenty feet downstream from the source. As 

the plume was in reality a jet, its extent was not known . However , the runs in 
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low saturation conditions typically employed large spirals at the distal end of the 

plume, and employed alternating tight spirals (casting) in the proximal plume. 

As the arena became more saturated, it became necessary to alter the algorithm. 

This was the origin of the MOSSA algorithm. This algorithm was successful only 

in low concentration conditions, and failed entirely as the olfactory sensors became 

completely saturated. In this regime, the MOSSA algorithm completed the task, 

while the BSA algorithm became hopelessly lost downstream in every run. 

4.6. Conclusions and Generalizations to Swarms 

The strength of the spiral algorithm in carrying out a plume tracking behavior 

derives from its robustness in localizing a source from any given initial position. If 

the source of the plume and its associated plume is of physical extent equal to or 

greater than the distance between any two successive spirals, t he search algorithm 

will find it. 

The spiral algorithm is affected by many parameters which help to define its in­

stantiation. These include the sensor properties (which are generally fixed by the 

physical attributes of the sensor used), the decay time of a maximum sensor read­

ing, and the sensitivity and inherant noise of the wind direction sensor. We by no 

means limit the parameters to this list, but have investigated these as we believe 

that these are of primary importance. Perhaps the most sup rising result of this 

study is the advantageous property of wind direction sensor noise in localizing the 

plume. 

We have not found , in this Chapter, any properties that may be improved by a 

swarm. Thus, we do not expect a swarm to be able to improve any of the aspects 

of plume tracking discussed here. Specifically, it is unlikely that a swarm will 

positively affect the speed in which a plume may be tracked, if the plume can be 

reliably detected throughout the search. This last condition, however, is not satisfied 

in the low density plume limit , and we expect that the only place where a swarm 

might be useful is in this limit. The next Chapter will focus on this aspect of plume 

tracking, and demonstrate that it is precisely this regime of plume tracking to which 

we may apply our swarm engineering. Moreover, we will demonstrate that there is 

little advantage to the use of a swarm in any other regime. 

We have also noted that the behavior of our simulated agents in simulations utiliz­

ing both simulated data and real data is essentially identical. The behavior due to 

the "patchiness" in the data sets produced similar behaviors, as did all parameter 

variations with the exception of that resulting from the use of the MOSSA algorith­

m. In algorithms which used wind information , though the quantitative behavior 
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differed, t he qualitative behavior was extremely similar. Thus, we conclude that in 

algorithms which make use of wind direction information, the use of the simulated 

data set will not differ significantly from the use of real plume data, and so we adopt 

it as our source of plume data, whenever the analagous real data is not available. 
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CHAPTER 5 

Swarm Extension of P lume Tracking 

In t he previous Chapter , we demonstrated that a simple spiral-based search algo­

ri thm can locate an odor plume, and a perturbation of a spiral can reliably track the 

plume to its source. The approach is virtually incapable of losing a plume when the 

plume is available in large concentrations. However, the weakness of this approach, 

indeed of all single robot approaches, is that when a plume is part icularly diffuse, 

the robot will often lose t rack of it . If lost for a long enough time, the robot may 

never recover the plume. 

One approach to dealing with the loss of a plume is to give the robot some intelli­

gence and have it search the local area thoroughly taking into account the direction 

of the wind and the relative position of the last hi t. This approach would seem to 

be feasible if three conditions are met: 

1. The robot has a large memory. 

2. The robot is capable of localizing itself and other landmarks. 

3. The robot is capable of reasoning the probable position of a plume given the 

previous hi t , previous wind direction, and current wind direction. 

If we assume that the robot has a good idea of the wind direction, its current 

direction, and enough memory to remember the last direct ion, t he last condi tion is 

current ly capable of being met. However, the first two conditions are problematic. 

The question once the first condition is posed is exactly how large the memory 

should be to accommodate whatever facts are required . The second condition 

requires that one answers the question of how landmarks may be recognized from 

mult iple directions, a difficul t problem from compu tational vision that has yet to 

be solved. 

As we have previously stated , the approach we take here is a rather simpler ap­

proach. We propose to take a number of different robots of identical design , endow 

them with communication, and allow the swarm to localize the source. The use of 

multiple robots means that one robot may receive an initial smell and recrui t other 

robots to the area, allowing the other robots to search the local area while the first 

marks the spot of the fi rst encounter with the odor. T his allows mut iple roaming 
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sensors to be used simultaneously in an identified region of search , providing good 

coverage, and a larger probability of finding either the plume or the source. 

5.1. Experimental Plume Simulation 

In this study, we are interested in exploring the regions of sensitivity of single 

simulated robots, and their swarm counterparts. We utilize a plume simulator 

created by Jay Farrell of the University of California at Riverside (Farrell et al. 

1999) in all of these simulation experiments [15]. This simulator delivers odorant 

to the search space in the form of packets. Each packet is spherical in shape, 

has a well-defined size, and has a density which drops off as the distance squared 

(r - 2) from the center of the plume. Each packet is carried by a simulated wind 

downstream. As the packet ages, it widens , lowering its peak concentration, and 

increasing the area over which it has some influence. The wind is designed to 

emulate natural wind, and to produce plumes with meander. This allows one to 

investigate the effectiveness of plume strategies in variable wind conditions . 

Many parameters are important in specifying a plume. We summarize these in 

Ta ble 5.1. 

Quantity Value 

Packet Initial Size 0.1 em 

Packet Growth Rate 10.0%/ s 

Wind Speed 1 m/ s 

Plume Length 10 m 

' Vind Meander Parameter 2.5 

Table 5.1 : This table gives seve ral of the parameters associated with the plume. 

The values give n h ere re fl ect the condition of t he plume in use. The wind meande r 

parameter is a characteristic of the phllne's inh erant spectra l noi se [15]. Jt is beyond 

the scope of this paper to t horo ug hly discuss t hi s parameter. 

A simple variation of the original simulator allows the concentration of the plume 

to be greatly varied , making study of the behavior of different algorithms under 

widely variable conditions possible. In Figures 5.1-5.3 we illustrate the various 

concentration levels, spanning three orders of magnitude. Notably, in the most 

sparse plume , the probability of encounter is exceedingly small. 
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Extremely Dirruse Plume (-0.5 packets/sec) 

Along Plume Coord inale (m) 

Figure 5 .1 : A simu lated plume with 1 packet/ second re leased into the simulated 

wind. 

Plume In Medium Density ~ l 

1'1 

Along Plume Coordinale (m) 

Figure 5.2: A s imul ated plume wit h 10 packets / seco nd re leased into t he s imulated 

wi nd . 
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Along Plume Coordinate (01) 

Figure 5 .3 : A s im ulated p lume with 100 packets / second released in to t he s imu lated 

wind . 

The main question, then , is how the performance under these extreme conditions 

may be improved by use of a swarm. In the next section, we illustrate the sen­

sitivity limitations of single agents. The intent ion is to use this as a baseline for 

measuring the performance of minimally communicating swarms, and of explicitly 

communicating swarms. Careful examination of these questions may yield strate­

gies for dealing with very sparse plumes, such as those produced by explosives or 

nonvolatile chemicals. 

5.2. Sensitivity Measurements of the Solitary Spiral Algorithm 

We choose as a baseline performance that of the soli tary spiral algori thm in which 

a single agent performs a plume tracking behavior independent ly. In t his simple 

case, the agent, as illustrated in Chapter 4, will be completely self sufficient, neither 

using information from other robots, nor affecting other robots. 

Our measures of performance are scaled performance measures, giving the relative 

performance of the robot using the given algorithm to one with perfect knowledge 

which may turn directly toward the target and move right to it. T hese are defined 

by 

(5.2.1) 

and 

(5.2.2) 

TDF=~ 
tactlwl 

DDF = dmin 

dactual 
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where tactual and dacttLal represent the t ime and distance expended and travelled, 

respectively, and t min and dmin represent t heir minimal counterparts. 

Moreover , we report on the arrival t imes and distances of t he first agent to ar­

rive given a part icular plume concentration and number of agents. As we increase 

t he number of solitary searchers, we expect this performance to improve, on aver­

age. T he amount t hat it improves as well as t he numerical values of t hese average 

runs provides us wi th a view of how different methods of communication may be 

exploited to more quickly locate an odor source. 

F inally, we report on t he performance of the group of robots. For each parameter 

setting, we report on how many robots make it to the source in a span of ten seconds. 

All robots are ini t iated in a random init ial posit ion centered around twelve meters 

downstream . As the plume extends only ten meters, the robots must first locate 

the plume, and t hen track it upstream. T he robot is considered to have arrived if 

it is located to t he left of t he origin and is between - 1 m and 1 m from the origin . 

It must also have detected some odorant in order to have arrived. A sample t rack 

is given in Figure 5.4. 

Sample Plume Tracker Path 

Source 

i ""T 
Stage 2 Search 

II II 

X-Coordinate (meters) 

Figure 5.4: T hi s is a typ ical robot t rack, illust rat ing t h e two reg ions of search. In t h e 

first region of search, the robot is locat ing t h e pl u me. In t he second reg ion of search, 

t h e robot is us ing t h e p lume to fin d t h e p lume source . 

The robots have a maximum speed of 17.0 meters per second, an angular resolut ion 

on t he wind sensor of 900
, noise on each of the two wheel motors causing a variation 

in the speed equalling up to 10% of the commanded speed , and noise on the wind 

direction sensor with a guassian distribution and standard deviation 450
. This 

robot configuration is used throughout this paper. 
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We first observe the success rate of the group of robots in obtaining the source. 

Figures 5.5-5 .7 give the sensitivity curves for three group sizes. 

Success Rate Variation with Plume Intensity 

10 Agt'lllS l 

Plum: ConcePlration (log(p(kL~S(!cJ) 

Figure 5.5 : This figure gives the success rate of 10 robots searching for the source of 
the p lume . The turning point , located at a density of -1.8 packets per second (-4 log 

scale) is the t urning point of sensitivity for the robots, after which more than half the 
maximum performance of the robots is obtained . 

Success Rate Variation with Plume Concentration 

Plun~CollCellll1lliOD(log(pd:ts.(l.O l sec)l 

Figure 5.6: T hi s figure gives t he success rate of 50 robots searching for the source of 

the plume. The turn ing point is located at a density of - 1 .8 packets per second (-4 
on t his log scale). This pe rformance is identical to that given above . T his is to b e 

expected, as each robot is performing the same behavior. 
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Success Rate Variation with Plume Intensity , 

~ 1--1 

f 
Hlt+tHllfl r 

Plume Densi[}, (lo(pcllSlU.OI s)) 

Figure 5.7: This figure gives the success rate of 100 robots searching for the source 
of the plume. The turning point is located at a density of -1.8 packets per second (-4 
on this log scale). This performance is identical to that given above. This is to be 

expected, as each robot is performing the same behavior. 

These figures illustrate a design limitation of the basic spiral algorithm. This lim­

itation is that at densities lower than emmissions of 1.8 packets per second, fewer 

than half of the maximum number of robots will reach the source. Interestingly, 

the percentage of robots arriving does not drop absolutely to zero at lower concen­

trations. This means that sometimes the robot is capable of finding its way to the 

source despite the low concentration. This is illustrated in Figure 5.8. 

Medium Diffuse Plume Tracker Path 

X-Coordinate (meters) 

Figure 5.8: In this figure the trail a robot follows in tracking a plume to its source 

is illustrated. The robot in question encounters a packet , travels upstream for a short 

distance, and initiates a second spiral. This second sp iral is successful in finding the 

source of the plume. 

The probability of this occurring is not zero, but it typically occurs near the source, 

and requires only a small final search for the source. 
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We may investigate the TDF and DDF performance measures to obtain a more 

complete view of the group performance. These are given in Figures 5.9-5.11. 

(a) 

(a) 

TDF Variation with Plume Concentrntion 
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(b) 

Figure 5.9 : This gives the TDF (a) and DDF (b) performance m easures for a group 

of ten non interacting robots searching independent ly. The small TDF value indicates 

that the robot moves at a net speed that is much lower than the maximum speed. 

However , the value of DDF is much larger , indicating that the waste is not in t he 

distance travelled, but rather that the average speed over t he entire track is small. 
Note the turning point is at a higher concentration than that given above. This would 
seem to indicate that the point at which the t ime and distance-based measures turns 
over is at a higher concentration than that at which the robots are merely likely to 

find the source in the specified time. The effect would seem to be identical to that of 

reducing the search time from 10 seconds to some smaller number. 

TDF Variation with Plume Concentrntion 

j I 1 
I 

'fli 
- --1 

pt"",C"",,,,,"oo (toglpctb.IJ.O (se<1i 

(b) 

DDF Variation with Plume Concentration 
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Figure 5.10 : This gives the TDF (a) and DDF (b) performance measures for a group 

of fifty robots. The performance is very close to that of the 10 robot case. 
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(a) 

IDF Variation with Plume Density DDF Variation with Plume Density 
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Figure 5.11: This gives the tdf (a) and DDF (b) performance m easures for a group 

of one hundred robots. The performance is also very close to that of the 10 robot case. 

The small value of TDF in Figures 5.9-5.11 indicates that the robot tends to move at 

a net speed that is much lower than the maximum speed. However , the much larger 

value of DDF indicates that the waste is not in the distance travelled, but rather 

that the average speed over the entire track is small. One would expect this in a 

spiral-based algorithm, as linear progress in any particular direction is progressively 

slower as time passes and each loop becomes larger. Note the turning point , or point 

of inflection, in the TDF and DDF graphs is at a higher concentration than that 

given in the success rate graphs. This would seem to indicate that the point at 

which the time and distance-based measures turns over is at a higher concentration 

than that at which the robots are merely likely to find the source in the specified 

time. 

Note that the performance measures do not change with group size. This is expect­

ed, as the performance of anyone agent, upon which the performance measures are 

based, is not dependant on the size of the group. Thus, the average performance 

should be fairly constant across group sizes, tending to a finite limit as the group 

size increases. 

Finally, we report the minimum distance and time to source location as a function 

of the group size. 
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Minimum Search lime Variation with Cone,nrration Minimum Distance Variation with Plume Intensity i1- II(~I ~ 
~I ! ~'IIII H I 
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(b) 

Figure 5.12 : The minimum search time (a) and distance (b) are monotonically de­
creasing functions of plume concentration. 

As one might expect, this is a monotonically decreasing function of plume concen­

tration. However , this reflects only the fact that any agent is more likely to interact 

with the plume when it is dense than when it is sparse. Another expected charac­

teristic of the performance is that each of these measures is a decreasing function of 

group size (which we illustrate with the minimum search time and minimum search 

distance in Figures 5.13 and 5.14). This simply reflects the greater probability that 

at least one member of the group will interact with a plume when the group is large 

than when it is small. 
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Minimum Search lime Variation with Concentration Minimum Search lime Variation with Plume Concentration 
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Figure 5.13: Both the turning point and abso lute minimum of the arrival times are 

decreasing functions of group size , as is illustrated here with three minimum t ime 
paths. 
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Figure 5.14: Both the turning point and absolute minimum of the minimum search 

distance a re d ec reasing fun ctions of group s ize , as is illus trated here with three mini­

mum time paths. 
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Swarm engineering is the process of designing a system in which the agents of the 

system have a simple behavior which when combined produces a global behavior of 

interest. This behavior need not be an explicitly designed behavior of the system, 

though swarm engineering does not preclude this. Global group behaviors not 

explicitly designed in the creation of a system are emergent behaviors. We now 

turn to the investigation of the use of formal swarm engineering techniques in the 

generation of robust plume tracking behaviors capable of locating plume sources of 

diffuse odor plumes. 

5.3.1. Implicit Communication. We define the formal method of swarm 

engineering by two steps. 

1. Generation of an appropriate group based swarm condition. 

2. Generation of a behavior to be taken by each of the elements of the system 

which satisfies this condition and generates the appropriate behavior. 
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The combination of these two steps can be expected to yield a desired global be­

havior. 

In Sections 5.1 and 5.2, we examined a plume tracking algorithm that may be 

implemented on a single robot . This algorithm has a number of attractive qualities 

including the ability to track plumes that are nearby or far away, as well as the 

ability to track nearly directly upstream in the presence of a well defined plume. 

The main weakness in the algorithm is the position of its point of inflection, a rather 

high concentration. 

If we examine the behavior of a large number of agents carrying out the single 

plume tracking behavior we initially note that without any implicit or explicit 

communication, the robots tend to cover area in their search that other robots 

might have already gone over or be going over at the same time. This leads to 

inefficient searches of large areas, characterized by Figure 5.15. 

10 Independently Behaving Agents 

X·Position (m) 

Figure 5.15 : This figure g ives the behavior of ten robots carry ing out a general plume 

tracking algorithm. Most notably, the paths overl ap great ly, reducing the efficiency of 
the search . 
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Figure 5.16: This figure gives three screen shots of subsequent plume tracking behav­

iors of fifty robots. Note that these points a re highly clumped , and the robots seem 

to stay within the same area . This clumping behavior is highly undesirable. 

One simple correction to this problem might be to initially distribute the robots 
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around the search space. However , in open-ended search algorithms, this is not 

possible, as the search space is not known ahead of time. Any attempt to canvas 

the space would amount to nothing more than increasing the starting area, simply 

reducing the speed at which this fundamental problem needs to be dealt with. 

We thus have a swarm condition. We require a swarm behavior that will increase 

the search space of the set of robots with only a minimal change to the algorithm. 

This allows us to more adequately cover large spaces, and to find the source quickly. 

Swar m Criterion : Local behavior must increase the search area, 

reducing the overlapping search spaces. 

We now investigate one simple algorithm which will satisfy this swarm condition. 

Swarm D esign: Robots located in high robot density areas will seek 

low density areas. Robots in low robot density areas will execute 

WBSA. 
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This simple design modification adds one level of complexity on top of the simple 

wind-based plume tracking algorithm discussed above. In this strategy, the robots 

execute an avoidance behavior when in the presence of many other robots. This is 

implemented in the following way: each robot has a beacon which is always on, and 

broadcasts to other robots. Each robot is aware of the signal and signal direction 

of the other robots. The broadcast intensity drops off as a function of the square of 

the radial distance between any two robots. If the sum of the broadcast intensity 

is above some threshold, the robot calculates its centroid, and moves directly away 

from the centroid as fast as possible. If the sum is below that threshold, the 

robot will carry out a simple plume tracking behavior. Figure 5.17 illustrates this 

behavior1. 

(a) _________ ---..11 

. /', , 

(c) ...... _______ ---' 

(b) 1....-_______ ..... 

' . 
. ;' 

,'l" :. 

','" ~ .: ..... 
:: " ~ ,:';. :. 

(d) 1....-_______ ..... 

Figure 5.17: This gives the behavior of a self-avoiding swarm of robots. Each snap­

shot is separated by 0.3 seconds of simulated time. 

Note that this behavior need not be mediated by a beacon on each of the robots. 

Rather, it may be mediated using visual sensors, obstacle avoidance sensors, etc. 

This algorithm produces robot paths similar to those given in Figure 5.18. 

ISee also distributed search , (Gage 1995) . 
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(a) 

(b) 

Sample Robot Track (10 Robots) 
~~--------~~~~--------~ 

Avoidance 
Behavior 

J3 17 2S 29 33 37 

X·Position (m) 

Swarm Robot (100 Robots) 

w 
X·Coordinate (m) 

12 1l 

Figure 5.18: The behavior of the robots is quite different when utilizing the avoidance 

behavior in the presence of a small number of robots (a) and in the presence of a large 
number of robots (b). 
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Note that these behaviors are quite different. The behavior in Figure 5.18 (a) is 

that of a typical robot in the presence of a small number of other robots. In this 

case, a minor amount of avoidance is necessary. However, in the presence of a large 

number of robots as in Figure 5.18 (b), the behavior begins to be dominated by 

avoidance and exploration of what seems to be space on the fringe of the swarm. We 

can therefore expect large differences in performance by our performance measures 

in these two cases. 
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If we examine the behavior of the swarm in the small swarm case, we find compa­

rable behavior to that found in Section 5.3. 

(a) 

TDF Varialion wilh Plume Densily '" DDF Varialion wilh Plume Densily 

~ IORoow 
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~~'I~III~~~ I 

Nume !Xnsily (1ogIpcku!l.O ls)) Phllf~ lknsil), (log(p:hs/sec)) 

(b) 

Figure 5.19: The behavior of the TDF performance measure and the DDF perfor­

nlance measure is very comparable to the same measures given in the independently 
acting agent cases with similar group sizes. 

The TDF and DDF performance measures given in Figure 5.19 correspond well to 

their counterpart measures in the independently acting robot case. At these levels 

of robot density, the effect is rather minimized. Interestingly, the range of values 

over the entire range of plume densities is slightly smaller than the same in the 

noncollaborating case. Moreover, the entire graph is actually shifted downward, 

in comparison to the noncollaborating case. This would seem to indicate that 

the collaboration impedes the search of at least one agent, and this impedance is 

sufficiently strong to offset any possible benefit. Indeed, from these two graphs, it 

is hard to see how there might be any benefit at all. 

The performance measure of success rate is also quite comparable to the previous 

data sets , exhibiting comparable turning points and measures. 

Success Rale Varialion wilh Plume Densily 

IORctm 

ptll~lXnsj()'(\og(pckM'l.O l sJ) 

Figure 5.20: The performance measure of the success rate is also quite comparable 

to the same in the case of a small number of robots in the previous model. 
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Finally, (Figure 5.21) for a small number of robots, the minimum arrival time and 

minimum arrival distance seem not to be strongly affected. 

(a) 

Minimum Search lime Variation with Concentration , ~ariation of Minimum Search Distance wi Plume Density 

~. < 11111 

IO RctIoo 

-f~ 
10 Agents 

Ptu",eCo""nlnltioo ikl!:ipcklSl"cll Plume iXnsily(log(pklSlU.OIs)) 

(b) 

Figure 5.21 : These data for the minimUITI search t ime and minimUlTI search distance 
for the avoidance low de ns ity Swarm are quite s imilar to that given above in the 110n­

swarming case. However , both data sets are shifted down a bit from the independent 
agent data. This indicates a positive effect of the swarm strategy is that the first agent 

will tend to arrive in a quicke r time and with a small e r overall time. 

Thus the data are comparable to that given above. 

The situation radically changes as we increase the number of robots. This is to 

be expected from the difference in the trajectories of the robots. As the robots 

become increasingly mutually disruptive, their ability to explore becomes severely 

curtailed. This means that robots that are near the source may not find it because 

instead they are moving away from other robots. While the expansion will help a 

select few to find the source, this may be a small proportion of the group of robots . 

We see this reflected in Figure 5.22. 
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Figure 5.22: The behavior of the TDF performance measure «a) a nd (b)), the DDF 

performance measure «c) and (d)), and the success ratio performance measure «e) 
and (f)) degrade sharply with increasing group size. This is the effect of the increased 
avoidance time in the spiral search algorithm. 
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One interesting effect, however , is that the minimum search time does not increase, 

but rather decreases , as does the minimum search distance. This is the average time 

and distance used by the first robot to obtain the target. This time is expected to 

improve as the effect of the group interaction is the increase in the size of coverage 

of the group by many times, as is apparent in Figure 5.23. 



(a) 

5.3. SWARM ENGINEERING IN PLUME TRACKING 

Minimum Search Distance Variation with Group Size 

,. 1 69 P~4 

I 
i 
;S 
§ 
~ 
~ 

CiroupSizc (I) GI1J<ll s;u If I 

(b) 

Figure 5.23: This figure illustrates the benefit of adding a deliberate interaction 

behavior. If the goal is to get one robot to the source in the minimum time, these data 

illustrate the the interaction behavior provides a mechanism to allow the swarm to 

obtain the minimum in a smaller time and distance than with non-interacting robots. 

86 

In very large fields, the interaction term of small mobile robots may be effectively 

zero by design. This line of inquiry indicates that it behooves a designer of a robot 

search system to implement an avoidance behavior of the scale of interest of the 

problem. Moreover, if the size scale of the plume is much greater than that of the 

robot, a deliberate avoidance behavior may be beneficial to the performance of the 

swarm. 

5.3.2. Explicit Communication. Aside from the ability of the preceding 

swarm algorithm to find the source of the plume more quickly and using a searcher 

which requires less time, the performance was not particularly promising. All of 

the performance measures recorded a reduction in functionality as the group size 

increased. We regard this as a failure of the swarm design condition, as it seems 

not to have accounted for the increased time and effort requirements of the swar­

m. Thus, it would seem to be necessary to alter the swarm requirement to allow 

methods of overcoming the difficulties. 

Swarm Criterion: The swarm must, at the individual agent level, 

use the spiral search algorithm. It must expand in areas of little or 

no density of odorant, and contract in areas of large density, while 

making progress up the plume in measurable odorant density areas. 

This condition does a number of things at once. First , it requires that the swarm be 

capable of implementing a standard WBSA at the individual level. In the absence 

of any other agents, a single-agent swarm will be virtually indistinguisable from 

any other single agent . Next , it requires that the swarm be a space-filling entity 

in areas of low odorant density. This behavior would seem to allow the swarm to 

efficiently fill a space and discover any source of odorant or plumes. The swarm 
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must contract upon a plume or odorant source in order to concentrate resources 

in areas where the odorant may be found, but also be sparse. Finally, the swarm 

must progress upstream. This precludes any kind of communication that brings 

the robots back downstream. 

We implement these conditions by making a few addendums to the previous low­

level behavior described in Chapter 4. 

Swarm Design: Robots located in high density areas will seek low 

density areas. Robots in low density areas will execute WBSA. If 

encountering an odorant, a robot will turn on a beacon to call other 

robots, and continue to execute WBSA. Those robots downstream 

from t he emmitting robot(s) will converge on that (those) robot(s). 

Convergence behavior will take precedence over expansion behavior. 

The beacon will stay on for a predetermined period after the loss of 

the signal. 

This algorithm satisfies the design requirements of the swarm, and we now turn to 

an analysis of the swarm behavior. 

Firstly, the algorithm uses the same expansion protocol as given above. This per­

forms identically, and so will not be revisited. 

As in the first swarm design, we expect the performance on the small data sets to 

be similar to that of the independently acting robots. 
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(b) 

Figure 5.24: The small group (10 robot) beha vior of TOF and OOF is similar to that 

of the independent robots , and t he noncommunicat ing swarms . However, the range of 

TOF is roughly twice that of the other counterparts , changing from 0.00015 - 0.0016 

to a range of 0.0015 - 0.0050 . Likewise , OOF transforms from a previous range of 

approx . 0.08 - 0 .12 to a range of approx . 0.08 - 0. 24 . 

While the behavior is indeed similar to that expected, the range of performance 

measure values is greater than previous performance measure values (Figure 5.24). 

We can understand this result in the following way. The robots which interact with 
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the plume will tend to redirect other searching robots to the plume. This means 

that these robots will be more likely to quickly interact with the plume. On average, 

this is a nontrivial effect, and creates the shift in the TDF and DDF performance 

measures even at this small number of robots. 

The success ratio performance measure does perform as expected. However , the 

number of successful robots approaches 100% on average more quickly than either 

of the other two models. More concretely, the inflection point is toward the lower 

end of the concentration measure than the other two. 

Success Rale Varialion wilh Plume Densily 
IO Rcbots 

Phlllk: tNnsily(in(pkt&'O.O ls» 

Figure 5 .25: The behavior of the success rate performance m easure is very similar 

to the other two models. However , the inflection point , located at -5.5 , is at a lower 

co ncentration than that of the other models. This reflects the recruitment capability, 

y ielding both agents which may find the plume, a nd agents that will recover losses of 

the plume. 

Again, this is expected, as the recruitment both aids in the search for the source, 

and helps in the recovery of a lost plume. 

The minimum arrival time and minimum arrival distance do not have any significant 

different character than their counterparts in the noncommunicating model. There 

is a slight improvement in the minimum distance, as one might expect since the 

swarm will expand. However , this is minimal. 
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Figure 5.26 : T he behav ior o f t he minimum time a nd distance to t he sou rce in t he 

small gro u p collaborat ive m odel. This per fo rmance is nearly ident ical to t hat of t he 

othe r two m od els p resen ted earli er in t his paper . 
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Thus, as expected , the behavior of the small group is nearly ident ical to that of the 

previous models. 

The performance of the swarm changes greatly when the swarm size increases. 

Firstly, we examine the performance on the TDF and DDF performance measures. 

These are given in Figure 5.27. 
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Figu re 5 . 2 7 : These are the TDF and DDF p erformance m easures for 50 and 100 

robots. The performance measures improve as the number of robots increases , with 

t he both meas ures shifting to the left and up when going from fifty to one hundred 

robots. 
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In contrast to the performance of the previous two models, the performance im­

proves as the number of robots increases. The improvement in performance is in 

addition to the overall improvement in these performance measures over their coun­

terparts for the other two models. Numerically, the range of TDF for 50 robots 

is between 0.0013 to 0.0051, whereas its counterparts in the noninteracting and 

self-avoiding swarm models have ranges of 0.0014 to 0.0017 and 0.001 to 0.0015 , 

respectively. Thus, while the lower end of the performances is comparable, the 

higher end is significantly different from the other two models. Similar results 

are apparent for the DDF performance measure. In this case, the non-interacting 

robots have DDF values ranging from 0.08 to 0.14, while the self-avoind swarm has 

DDF values ranging from 0.07 to 0.13 . The communicating swarm has DDF values 

ranging from 0.11 to 0.49 . (Note that 1.0 is completely impossible in this model, as 

described above, since the robots must first find the plume.) We plot comparative 

measures for 50 robots in Figure 5.28. Similar performance has been measured for 

larger numbers of robots, but is not presented here. 
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Figure 5.28 : These give comparative performance measures for the t hree different 

models. Notably, t he swarm has not only a better per formance overall , bu t a lso a 

s ignifi cantly better sensit ivity , as m easured by the inflection point o f t he curve. 
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The most important result here is that the performance of the swarm is significantly 

better than that of the other models. This improvement in performance is not 

restricted to the shift upward of the graph. It is also in the shifting to the left of 

the graph. This means that the point of inflection of the graph, which is a measure 

of the sensitivity of the swarm to the plume, is also shifted to the left . This indicates 

that some plumes which are not capable of being reliably located by single robots 

or self-avoiding swarms may be reliably located by this model of communicating 

swarm. This is an important result , as it indicates a significant benefit in the use 

of a swarm over multiple instantiations of a given robot. 

Our next performance measure is the success rate of the algorithm. In Figure 5.15 , 

we plot the success rate of the swarm for 50 and 100 robots. 
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Figure 5 .29: These a re t he success rate p erformance m easures of t he swarming a lgo­

ri t hm . Both t he 50 robot a nd 100 robot are sharp ly increas ing at a concen t rat ion of 

-4.5 (log scale). The performance of b oth a lgorithms is very similar, indicating that 

t he sensi ti vity increase occu rs by t he swarm size of 50 ro bots. 
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In this graph, we find that the performance is has its inflection point at approx­

imately -4.5 on a log scale of plume intensity. Moreover , the performance of the 

50 robot swarm and that of the 100 robot swarm is extremely similar , and to 

experimental error , are overlays of one another. 

One interesting attribute of this data is that t he perfomance measure is not iden­

t ically one at plume high concent rations. This is cont rary to intuition. Further 

investigation reveals a slight error in the collaboration, which causes this unexpect­

ed result. This error causes 

(a) .... _______ ... (b) .... _______ .... 

(c) .... _______ ... 

Figure 5 .30: T hese screenshots of the swarming p rocess prov ide a n explanation fo r 
t he varia nce in t he performance. Some of t he rob ots responding to t he recru it m ent 

s igna l find t heir way to t he SOu rce (b) , bu t t hen wande r away from t he gro up (c). 

some of the robots to wander away from a group of robots despite their effective 

recruitment . This is a correctable error , but has been left in so that we may 

illustrate the strength of the swarming approach. 

Comparison of the performance of t he performance on this performance measure 

with those of the non-interacting and self-avoiding swarm models yields a view of 

how much of an advantage this swarm has over the previous plume t racking model. 
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Figure 5.31: This is a comparative plot of the different performances on the suc­

cess rate performance measure . Most notably, the performance of the communicating 
swarm has an inflect ion point significantly ahead of the other two models . 
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The inflection point of the performance measure of the communicating swarm is 

significantly to the left of the other two models. The difference in position is two 

log levels , indicating a significant difference in concentration between the points at 

which the self-avoiding swarm and non-interacting robots become reliable. This 

means that, as a reliable plume tracking entity, the swarm is more reliable at 

significantly lower concentrations than the other two models. 

Finally, as we would expect, the minimum distance to the plume source and the 

minimum time to the plume source decrease as the number of robots increases. 

However , what is not expected is that the plots also shift leftward to lower concen­

trations. This behavior was not evident in previous models. 
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Figure 5.32: T hese plots give t he average minimum a rri val t imes a nd distances of 
robots in t he communicat ing swarm model. T he plots of a la rger number of robots 

a re shifted down and to the le ft of their 50-robot counterpa rts , indicating a secondary 
effect which helps robots to achieve the sou rce init ia lly. 
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This indicates that there is some degree of help in achieving the plume at low 

concentrations. In other words, one agent may be able to find some odorant, and 

recruit others who eventually find the source. This form of aid has been seen 

elsewhere (Hayes et al. 2000) and is the subject of study. 

A comparison of the three models on these last two performance measures indicates 

that there is a no initial advantage, but that as the group size grows, the advantage 

increases. 
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Figure 5.33: These plots give a compa rat ive view of t h e minimum search time as 

a fun ction of plume de nsity for the three mode ls. Initi a ll y, a ll three a re equiva le nt , 

in t h e low concentrat io n limi t. However , as t he plume density increases, t h e t he 

performances diverge , with t hat of t he communicat ing swarm eve nt ua lly wi nning out 

over the oth e r two , t hough with no s ig nifi cant d iffere nce from t he self-avoiding swarm 

at high concen trations. 
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Moreover, the performance of the communicating swarm eventually overtakes that 

of the self-avoiding swarm, again indicating that some second order effect of the 

communication is at work. 

5.4. Discussion and Concluding Remarks 

In previous Chapters we noted that the only information required for plume tracking 

is the direction of the wind and the local concentration of odorant. A swarm 

will add little information about the direction of the wind, but may be used to 

concentrate search effort on a location that has a verified likelihood of containing 

the source. What we have illustrated is that a swarm of interacting robots is capable 

of tracking plumes of very much smaller density than those that can be tracked by 

either independent or semi-independent swarms. 

The distinction between tracking with swarms and tracking with independent or 

semi-independent swarms is important. It is, as our data would seem to indicate, 

not sufficient to cover an area with robots . Rather, the robots must share informa­

tion about the area, and use this to focus the search. This means that the swarm, 

viewed as an entity, must have the ability to react to local conditions , and to re­

arrange itself based on these conditions. In this way, the swarm may accurately 

locate the source of the plume. 

In fact , t hese requirements are exactly the requirements we specified at the outset of 

our swarm engineering effort. It would seem, then, that although we have not been 

able to analytically express the conditions required for swarm-based plume tracking, 

it was sufficient to state them clearly, and to generate a simple microscopic behavior 
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that produced the desired macroscopic effect. In the next two Parts of this Thesis, 

we shall examine systems for which we can produce an analytic description of the 

desired swarm characteristics. However , it is worth noting that the two processes, 

that of generating an analytic expression or set of expressions to describe the system, 

and that of generating an empirical understanding of how the system works, are 

actually equivalent, in that their final goal is a concise description of the system. 

The key in both efforts is to produce a condition on the individual agent which, 

when satisfied, will generate the desired group behavior. This exactly what we 

have done, in a completely anecdotal way, determined by our experience with the 

problem generated in the work presented first two Chapters of this Part. 



Part 2 

Puck Clustering and Distributed 

Construction 



CHAPTER 6 

Introduction to Puck Clustering 

6.1. Introduction to the Part 

The past few years have seen a great deal of work on autonomous robots which clus­

ter objects (Holland 1996, Franks et al. 1992, Karsai and Penzes 1993, Bonabeau 

et al. 1998, Camazine et al. 1990, Deneubourg et al. 1991 , Melhuish and Holland 

1996, Beckers et al. 1994, Maris and Boekhorst 1996, Kazadi 1997). In such a 

system, objects are manipulated by individual agents which are endowed only with 

local interaction rules . Despite this apparent deficiency, the agents in question are 

capable in many cases of causing clusters of objects to emerge, and eventually, to 

generate a single cluster. These systems exhibit emergent behavior, as their glob­

al behavior depends on the emergence of group behaviors not explicitly designed 

at the agent level rather than the explicit cluster-building design. This indicates 

that simple behaviors may be combined in such a way as to produce desired global 

behaviors, one of which might eventually be rudimentary construction behavior. 

One would like to understand what the minimal requirements of a system might be 

in order to generate a predetermined complex global behavior. Once these minimal 

requirements have been established, the system design may be done in any of a 

number of different ways that leads to the desired global behavior. 

This Part develops a series of theoretical arguments which propose a set of condi­

tions under which a system will result in the collection of all pucks into a single 

cluster from any set of initial conditions. We model the system under simple rules 

and ask what these rules imply about eventual equilibrium points. The movement 

of a puck from one cluster to another is modelled as a transport process which is 

mediated by the robots. In our model , robots are constrained to carry only one 

puck at a time. Therefore, a robot is able to deposit its single carried puck into 

a cluster or, if empty, is able to remove a puck from a cluster. If the deposit or 

removal of a puck is viewed as a random process, the probability that a puck is 

deposited in a given cluster is dependant on the number of robots in the system 

carrying pucks and the effective cross section of a cluster to the puck-carrying robot. 

Conversely the removal of a puck is dependant on the number of empty robots and 

the corresponding cross section of a cluster. The system can therefore be modelled 
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as a diffusion process in which each cluster of radius R has different cross sections 

for puck evaporation f(R) and condensation h (R). The equilibrim point of the 

system will therefore depend on the nature of these cross sections. 

We depart from previous methods of generating puck clustering swarms in an im­

portant way. This approach is to determine the condition(s) that must be satisfied 

in order for a particular final result to occur. Our goal is to illuminate a design 

requirement for robot systems undertaking this task, rather than to prove that any 

one single design will complete the task. The approach allows for the creation of 

many different strategies, all of which may lead to the final desired system. We do 

not make any attempt to address the design of efficient algorithms , deferring this 

to another later work. 

6.2. Previous Puck Clustering Work 

Puck clustering teams are an example of work done in the realm of minimalist 

design using robot groups and simple actuators (Holland 1996). These systems 

consist of robots which have very simple controllers including a small amount of 

memory (if any at all) and rigid heirarchical controllers. This view has gained 

increasing support as ever more interesting systems are designed using robots of 

this design paradigm. The allure of these systems stems from the ability to use 

very simple robots to achieve complex tasks, and obtain behavior that is similar to 

some intelligent behavior. 

Initial biological studies of insect systems (Franks et al. 1992, Karsai and Penzes 

1993) indicated that ants and termites are extremely simple creatures carrying out 

very simple algorithms. The behavior of ants and termites is extremely rigid and 

specific, yet their nests can be extremely efficient, flexible, and adaptive. Work 

on systems designed to take advantage of this newly discovered emergent proper­

ty of systems of rigid agents has uncovered interesting design paradigms govern­

ing possible construction techniques and optimal resource exploitation algorithms 

(Bonabeau et al. 1998, Camazine et al. 1990, Deneubourg et al. 1991 , Melhuish 

and Holland 1996). These studies indicated that simple rules and stigmergic actions 

were all that were required for the construction of complex structures. This formed 

some of the motivation behind the robotic test cases in which the first construction 

task, that of assembling a cluster of pucks, is undertaken. 

One of the earliest attempts to design puck clustering robots came from Beckers 

et al. (Beckers et al. 1994). In this study, a group of robots is equipped with a 

curved passive gripper in the front of the robot. This gripper is capable of clustering 

"pucks" and holding them as the robot moves. When three or more are clustered 

in the gripper, it triggers a backup motion , which leaves the pucks where they are . 
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Average simulations of three robots take just over an hour and a half to complete. 

In the final stable state, a single cluster is formed. The system is capable of forming 

the same stable state with one robot , but this takes a concommittant longer time. 

Maris and Boekhorst (Maris and Boekhorst 1996) present a system that is similar 

to that of Beckers et al. However , in this study, the robots do not have grippers, and 

so cannot recover pucks that have been lost near a boundary. In their case, pucks 

are pushed until a barrier (which may be another puck) is encountered, at which 

time the puck is left behind and the robot turns and goes in another direction. 

Once a cluster is big enough it becomes stable, as the robot cannot any longer 

approach the cluster and take off pucks. In this study, many clusters of size one or 

two were created near the boundaries , though other larger clusters were found in 

the interior of the arena. There was no global cluster formed, though one or two 

large ones were formed . 

Kazadi (Kazadi 1997) constructed a single-robot system capable of forming clus­

ters of pucks. In this system, the robot was designed with a gripper, similarly 

to that of Beckers et al. , and sensed the pucks with infrared sensors, rather than 

with mechanical motion. This allowed a smaller perturbation to the system when 

encountering existing clusters than the design of Beckers et al. The robot itself 

was designed with all of its actuators and electronics physically located within the 

circle for which the gripper was a diameter. In this system, the robot clustered the 

pucks along the walls of the arena, yet avoided losing pucks to the arena walls. A 

typical robot clustering experiment is depicted in Figure 5.1. 
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(a) 

(c) 

(e) 

(g) 

Fig ure 5 .1: A puck clustering robot clustering random ly placed pucks into a 

single cluster. 
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We do not consider here the larger general field known as puck collection in which 

the requirement that the agents not originally know where the pucks are to be 

collected is relaxed. A large body of work has been done on this, including in 

applying learning algorithms to the group task (Mataric 1992, 1993, 1994). 

6.3. Clustering Definitions 

We take a moment here to make a few definitions. These definitions will help us 

to focus our discussion on a specific set of systems, rather than a large number of 

very different systems. A number of systems exist in the literature, all using the 

term "clustering". We draw disctinctions in the way in which these systems work, 

and so we describe them now as differing entities . 

Firstly, any process in which a group of objects is clustered into a single pile is either 

a clustering process or a pseudoclustering process. The distinction between the two 

processes lies in the way in which the clustering occurs. In a clustering process, 

there is a time-averaged net flow of pucks toward a single final destination, or at 

least away from a given initial point. This may include components of flow that 

move in either of the two directions, producing a net flow as indicated. However, a 

pseudo clustering process depends on the removal of clusters to produce its clustering 

effect. That is, it is necessary that two or more clusters exist, and there is an equal 

probability of removal from either cluster. In this case, the clusters that are smaller 

will tend to be removed more quickly, and once removed, the constituents of these 

clusters will be added to the remaining clusters. In this case, there is no specific 

tendency to place the constituents on larger clusters rather than smaller clusters. 

This means that the creation of a single cluster is not driven by the system, but 

rather a result of a large number of random events. 

Though we do not show this here, there is a further consequence of this distinc­

tion. The dynamics of the two paradigms under increasing numbers of clusters 

vastly different. In clustering paradigms, the rate of convergence is expected to be 

polynomially dependent on the number of pucks in the system. This is certainly 

not the case for a pseudo clustering paradigm in which the rate is expected to be 

an exponential function of the number of pucks. The difference in scalabili ty is 

quite compelling, as it indicates that only true clustering may be extended to large 

numbers of pucks of the order of 106 - 1010 , which may be required for realistic 

construction processes. The distinction is a possible source of further research, but 

is not discussed in detail here. 

We can mathematically define clustering and pseudo clustering in such a way as to 

create a distinction between the two. Clustering is any process in which the average 

rate of change of size of the smallest cluster in the system is a negative polynomial 
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function of the size of the cluster. Pseudo clustering is any other process. Note 

that pseudo clustering does not preclude the formation of a single cluster. Rather 

it speaks only to the scalability of the system to larger sized systems. 



CHAPTER 7 

General Theoretical Arguments 

In this section, a system of two clusters is considered. This is the simplest possible 

clustering task. In such a system, two clusters have been formed, and the desired 

goal is the eventual clustering of all pucks in one of the two clusters. General 

conditions under which we may expect these clusters to evolve under the action of 

the robots to create a single cluster are derived. We do not make any assumptions 

in this or any later section regarding the physical dimension of the system, and our 

results may be generalized to any applicable system in any number of dimensions. 

In this section, it is assumed that the robot medium is perfectly mixing. This 

means that the probability that any given robot will interact with any given cluster 

depends only on the size of the cluster, and not the history of the robot. A gen­

eralization of this result under imperfect mixing conditions is discussed in Section 

7.4. 

7. 1. G en eral Considerations 

7. 1.1. Two C luster D y namics. Consider a system of two clusters and n c 

robots. Let the clusters C1 and C2 contain n1 and n2 pucks, respectively. Assume 

that the robot media is perfectly mixing, and that the probability of anyone clus­

ter having an interaction with a robot is dependant only on some monotonically 

increasing function of the size of the cluster. At each interaction with a cluster, 

a robot will determine whether or not the cluster should have a puck removed or 

deposited. If a puck is to be removed and the robot is not carrying a puck already, 

then the robot will remove a single puck from the cluster. If, on the other hand, a 

puck is to be deposited and the robot is carrying a puck, the puck will be deposited 

in the cluster. We assume that these are the only two interactions possible, and 

that each robot can hold only one puck at a time. Such a system behaves as a 

simple diffusive system. In this system the two cluster system can be likend to two 

resevoirs of pucks mediated by some transport environment containing n c robots. 
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Figure 7.1.1: This is an abstract view of a puck-clustering system. In this view, 

the clusters are effectively resevoirs of pucks, and the robots are simply pathways 

for pucks to move between clusters. 
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If the number of robots holding a puck is nm then, under the assumption that a 

robot may only carry a single puck, it follows that the number of robots available 

to remove a puck from the cluster is n c - n m . The rate of change of pucks in the 

two clusters C1 and C2 can be written as 

(7.1.1) 

(7.1.2) 

where, f is the cross section for puck removal and h is the effective cross section 

for puck deposit . 

If it is assumed that the number of pucks in the transport media is stationary (i.e., 

on average d~[' = 0), it then follows that 

dnl 

dt 
(7.1.3) 

From (7.1.1), (7.1.2), and (7.1.3) we obtain 

(7.1.4) 

Solving for nm gives 

(7.1.5) 
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This can then be substituted into (7.1.1) to produce the expression 

dnl h (nl) f (n2) - h (n2) f (nl) 
-=nc 
dt f (nd + f (n2) + h (nd + h (n2) 

(7.1.6) 

with an analogous expression for n2. 

The condition required for C1 to grow given that nl > n2 may be written as 

(7.1.7) 

If h, f > 0 then it follows from (7.1.6) that this condition is satisfied if 

(7.1.8) 

and so 

(7.1.9) 

Thus for C1 to continue to grow 

(7.1.10) 

where g(n) = ~1~l. This condition holds if g(n) is strongly monotonically decreasing 

and positive. Figure 7.1.2 shows an adequate form for g. 

Monotonical! Decreasing g Function 
".------'-------"'-"'------r----, 

Number of Pucks (N) 
,,.. 

Figure 7.1.2: Any monotonically decreasing function will serve as a clustering condition. 

Under the above assumptions, the condition for the growth of the cluster is that 

the ratio of the propensity to pick up pucks to that of the propensity to retrieve 

pucks be a strongly monotonically decreasing function. 
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7. 1.2. Multicluster D ynamics . Again, the puck cluster system is as defined 

above, but with several clusters of pucks rather than only two. The question of 

whether or not a particular cluster will be reduced or increase in size depends on 

its interaction with the other clusters which may absorb evaporated pucks, as well 

as produce free pucks which may be clustered by the cluster in question. This 

problem may be approached by deriving conditions under which any given cluster 

will decrease monotonically in size. 

The density of pucks in the transport media is again considered stationary. It is 

also again assumed that the robots are perfectly mixing. Then 

(7.1.11) 

(7.1.12) 

(7.1.13) 

and 

(7.1.14) 

This gives 

nc 2:i f (ni) 
nm = =----=---;-::.=:=-'--=--:=::---::--;----,-

2:;1 (ni) + 2: i h (ni) 
(7.1.15) 

which when substituted into (7.1.13) leads to the equation: 

(7.1.16) 
dnq nc 2:i#q (h (nq) f (ni) - f (nq) h (ni)) 

dt 2:i f (ni) + 2:i h (ni) 

The rate of change in the size of the cluster Cq will be negative provided 

dnq 0 
dt< 

which leads to the condition that 

(7.1.17) 
f (nq) 2:i#q f (ni) _ ( ) 

9 (nq) = h (nq) > 2:i#q h (ni) = 9 neJ J 
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where g(neff) is the effective cross section ratio of all clusters not belonging the 

Cq . In general, the determination of the effective rate must depend on the number 

of clusters and their relative sizes (as well as, eventually, their accessibility to the 

cluster in question). 

Recall that if 9 is a monotonically decreasing function of cluster size then, for 

nl > n2 

(7.1.18) 

If Cq is the smallest cluster then 

(7.1. 19) 

Vii- q. Summing over all i i- q it follows that 

(7.1.20) 
iiq 

Rearranging, we find that 

(7.1.21) 

which is the condition for 

(7.1.22) 

i#q 

dnq 
-<0 
dt 

Thus, irrespective of the forms of f and h, the time averaged behavior of the smallest 

cluster will be to decrease in size, as long as 9 is monotonically decreasing. 

7.2. Clustering Systems 

In this Section, we investigate several forms of g. We illustrate that these forms 

have the predicted behaviors in both the pair of cluster cases and the multiple 

cluster cases. We provide experimental evidence to support our approximation of 

the amount of variability in the number of pucks held by robots. 

7.2.1. Simple Example. A particularly simple example serves to give some 

idea of the requirements of the functional form of a puck system that converges. 

Assume that the cross sections have the simple form 

(7.2.1) f (n) = cnc> 

(7.2.2) h (n) = cn!3 

where c, Q, and fJ are some constants. Then, 
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(7.2.3) 

Thus the cluster growth condition holds if (3 > a. Where (3 = a then the system is 

static and the distribution of pucks in the clusters will remain the same on average. 

Figures 7.2 .1-7.2.3 present the results of simulations done in the non-embodied 

model (or instant transport) on a number of clusters initialized with nonzero sizes. 

Each of these simulations employs 50 robots, and the model is as given above, with 

various values for a and (3. Each one runs to completion if clustering occurs or for 

a small number of steps, allowing the outcome to be clearly ascertained. 

Two CJusler EvoJulion Under Swarm Behavior 

I!<a 

/ 

Iterations 

20 CJusler EvoJulion Under Swarm AClion r 
'1 < 
(r, 
, 
, 
C 

ItmlioD~urnlx'r 

(a) (b) 

(a) 

Figure 7.2.1: This illustrates the behavior of a system when a = 1.0, and {3 = 1.1. 

c = 0.00001 for two-clusters, and c = 0.0001 for twenty clusters. As expected , neither 

systeln converges. 

EvoJUlion of Two CJusler Syslem EvoJulion of Twenl CJusler Syslem 

b 

l1eralionSumb:r 

(b) 

Figure 7.2.2: This illustrates the behavior of a system when a = 1.0 and {3 = 1.0. 

c = 0.00001 for two clusters, and c = 0.0001 for twenty clusters. As expected , neither 

system conve rges. 
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Evolution of a Two Cluster System Evolution of System of 20 Clusters 

Iteration NumlxY 

(b) 

I 
I 
I 

Ill'rationNumoo-

Figure 7.2.3: This illustrates the b ehavior of a system when a = 1.0 and f3 = 2.0. 

c = 0.00001 for two cluste rs , and c = 0.0001 for twenty clusters. As expected , both 

systems converge to a system with one cluster containing all the pucks. 

Figures 7.2.1 through 7.2.3 illustrate the convergence states of the system under 

the action of the robot swarm. The results are as expected. Only the case in which 

f3 > a produces a stable single cluster. 

7.2.2. Physial Robot Model. Section 7.1 presents a general condition gov­

erning the condensation of two clusters. It is interesting to address the use of these 

conditions on real robots. Real robot systems have a limited sensory aperture. In 

the event that a given robot identifies the region of space based upon a line of 

sight , this aperture might be a active sensing device such as an IR transceiver or a 

passive sensing device such as a video camera. The physical design of the apparatus 

restricts the accurate identification of a region of space. This causes errors in the 

determination of the number of pucks in a particular region. It is these errors that 

allow the robot or robots to cluster the pucks into a single cluster. 

In the given model the cross section for removal and deposit depend on two major 

factors . The first is the cross section a- of the cluster itself. The second is the angle e 
at which the robot encounters the cluster. Based on this angle, the robot will classify 

the cluster as a high-density region or as a low-density region. In a high density 

region, this robot model will drop off pucks, and in low density regions , it will pick 

them up. Thus , the angle of approach has two mutually distinct classifications , 

each of which has a specific effect on the cross sections f and g. Thus, we may 

write f = a-(1- p) and 9 = a-p and 

(14) 

Recall that 9 must be a monotonically decreasing function of the number of pucks 

in order for the clusters to converge to a single cluster. This means that p must 

be a monotonically increasing function of the number of pucks in order to create 

a single cluster. That is, the probability of a cluster acquiring a puck must be a 
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monotonically increasing function of the number of pucks. Conversely, the proba­

bility of losing a puck must be a monotonically decreasing function of the number 

of pucks. 

Puck·dependencies of gand p 

Number of pucks 

Figure 7.2.4: This figure gives the behavior of the function 9 with increasing p. 

The monotonic decrease is all that is required for 9 to lead to single clustering­

behavior of the system. 

It is instructive to derive the angular dependence, and hence dependence on the 

number of pucks, for a real robotic model. 

Robot 

Figure 7.2.5: This figure illustrates the robot 's interaction with the cluster. The 

robot will determine the density characterization for clusters whose pucks fall 

within the angle of interaction . All other interactions will be viewed as obstacle 

avoidance. 

It is assumed that a robot has a cone of interaction which subtends an angle 8m . 

In this model a robot will only deposit a puck if the direction of the robot is 

such that the cone falls completely within the cluster. If the cone only falls partly 

within the cluster , the robot, if it is able, will remove a puck. If follows, therefore, 
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that the angular cross section for removal and deposit sum to the total angle of 

interaction of the robots cone 28m + 28d = e, where 8m is the interaction angle 

and 8d = arcsin ( R~r) - 8m is the deposit angle. 

Using this construction gives 

(7.2.4) h = (J(R)p(R, r) 

and 

(7.2.5) f = (J(R)(l - p(R, r)) 

where (J again is the cross section that the robot encounters a cluster and 

(7.2.6) 

(7.2.7) 

{ 
0 if b < 0 

p = b if b 2 0 

b = 2 arcsin (I!tr ) - 8m 

2 arcsin ( R~r ) + 8m 

28m = 1 - ----,---:---
2 arcsin ( R~r ) + 8m 

band p both increase with R which, in turn, increases with the number of pucks 

n. Thus g for this model is monotonically decreasing and the system will form a 

single cluster. 

Figure 7.2.5 gives a typical result of a simulation of this process. Initially, we have 

two clusters with nearly equal sizes. After many iterations, the migration of pucks 

from one cluster to the other causes the smaller of the two clusters to completely 

evaporate and the larger of the two clusters to absorb the liberated pucks. 

A Two Cluster System Evolution 

----:1 
I 

51.l loll ISO ifill 11111 

Time (arbitrary units) 

Figure 7.2.6: This figure gives the behavior of a two-cluster system under the 

influence of the robot ic system described in this sect ion. 
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7.2.3. Robot Interactions. In Section 7.1, we assumed that the robots would 

not absorb or evolve pucks on a large scale; the derivative of the number of pucks 

contained in the swarm could be ignored. We now turn to this assumption, offering 

empirical evidence that supports it. 

We present data collected in the simulations given in Section 7.2.1. In these simu­

lations , 50 robots make up the swarm. 

(a) 

Number of Pucks He.J<llly Robots 

.-
1~r.l.UOI NUII\b:r hmUOINuml)..'f 

(b) 

Figure 7.2.7: These figures give the robot swarm puck occupancy. The swarm is 

at full capacity when the number of pucks in the swarm is 50. However , this never 

becomes the case in the (a) constant clusters size case , and once a s ingle cluster is 
formed , this ceases to be the case (b) in the converging cluster case . 

Figure 7.2.7 gives the evolution of systems of clusters in differing swarm conditions. 

In (a) the swarm does not change the cluster sizes appreciably, and so the occupan­

cy of robots remains constant throughout the simulation. In (b) , the swarm does 

converge, and the occupancy transitions from a full occupancy to a medium occu­

pancy when the cluster is finally formed. This final occupancy is the equilibrium 

occupancy value which we return to in Section 6. 

7.3. Cluster Evolution under the Influence of Differing Fonlls of g. 

If we recall that g represents the effective behavior of robots over a large time, we 

can imagine that this is the effect of the swarm, and thus to step back from the 

system and ask questions about the design of the swarm around a specific goal. Let 

us examine this aspect of swarm engineering a bit more directly. 
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Swarm engineering, formally stated, requires that one creates a swarm condition 

and generates behaviors which satisfy this condition. Previously, we conditioned 

our swarm design on the desire to obtain a single cluster at the completion of the 

construction phase. This design requirement led us to the local swarm condition 

that 

In a two cluster system, the largest cluster should increase in size, 

while the smaller decreases in size. In a many-cluster system, the 

smallest cluster should decrease in size. 

This condition led us to the general condition that 9 should be strongly monotoni­

cally decreasing. We now turn to the generation of further behaviors. 

7.3.1. Increasing g. At the end of Section 7.1 , we found that the condition 

required for creation of a single cluster of pucks independent of the initial conditions 

of the system was that 9 was a strongly monotonically decreasing function of N. In 

this Section, we investigate implications of the opposite condition on g. In the next 

Sections, we give the effect of these behaviors on various forms of 9 given various 

ini tial states. 

First, we reverse the condition given in equation (7.1.9). Then 

(7.3.1) 
f (n2) f (nd 

9 (n2) = h (n2) < h (nl) = 9 (nd . 

This expresses the reverse condition. It is straightforward that this is true iff 

(7.3 .2) 

Since we have previously shown that 

(7.3.3) 
dnl h (nd f (n2) - h (n2) f (nd 
-=nc , 
dt f (nd + f (n2) + h (nd + h (n2) 

this together with (7.3.2) gives us that 

dnl 
(7.3.4) dt < 0 . 

Moreover , since 

(7.3.5) 

we have 

(7.3.6) 

This can be summed in the following Theorem. 
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Theorem 1 (Clustering Theorem): Suppose we have a two cluster 
system of pucks. If the ratio g as defined above is greater for cluster 1 
than for cluster 2, then cluster 1 will lose pucks to cluster 2. 

Note that this is also true for effective clusters in the same way as for real clusters, 

allowing this Theorem to be applicable to the multiple cluster system as well as the 

single cluster system. This means that any system in which one cluster will have 

a higher g value than the other will tend to lose pucks to the other, irrespective of 

the clusters' relative size. Now we turn to several rather specific peaked functions 

of g, in which the long time behavior is completely worked out. 

7.3.2. Forms of g. We have established an interesting behavior of the swarm­

cluster interaction under the action of differing g implementations. We now turn to 

the exhaustive investigation of some simple forms of g. Initially, we conditioned our 

investigation on the desire to have the system evolve to one containing a single large 

cluster independently of initial conditions at some time in the future. Moreover , 

we required that the system converge monotonically to this state. This produced 

g functions of the form given in Figure 7.3.1. 

Figure 7.3.1: The function 9 = -Iv is a typi cal d ecreasing function of N which will 

yield a single cl uster. 

Suppose that g has a different form. For instance, suppose that g is a decreasing 

function of N for small N but an increasing function of N for large values of N 

(Figure 7.3.2). 
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A Non·MonOionic Form of ~ 

.L~, ~ 

Figure 7.3.2: A form of 9 which has a minimum point, and an increasing behavior 

as time increases. 

What then will be the long time convergence properties of the system? In general, 

this will be a function of the initial conditions and the form of g. We illustrate a 

complete set of possible outcomes in what follows. 

We assume that 9 is made up of two linear regions , the relative slopes of which will 

be important to the eventual outcome of the system. We generally assume that the 

two linear regions meet at a point Xo which is the minimum or maximum of these 

regions. We label the first linear region h and the second I2. Note that in order for 

these regions to produce a minimum, the signs of hand I2 are opposite. There are 

then three possible situations: 

1. The slope of Ii is greater than that of I2. 

2. The slope of I2 is greater than that of Ii. 

3. The slopes of hand I2 are equal. 

We shall see that these situations may lead to different end conditions given identical 

starting conditions. A general prediction of the outcome must include the relative 

slopes of the system, and the detailed initial cluster sizes. 

7.3.3. Minimum with Equal Sloped Linear Regions. Let us suppose 

that we have a 9 made up of the juxtaposition of two linear regions which have the 

same magnitude of slope. Then we have three possible situations, with associated 

possible outcomes. 



7.3. CLUSTER EVOLUTION UNDER THE INFLUENCE OF DIFFERING FORMS OF g. ll8 

Evaluation of End Cluster (case 1) 
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Figure 7 ,3.3: This gives the b ehavior of t he pa ir of clusters when initiated on the 

decreasing region of g. The system evo lves to one hav ing a s ingle cluster , as ex pected 
from above. 

In Figure 7.3.3, we plot the evolution of a pair of clusters when initiated on the 

decreasing region of g. In this case, Cluster 1 will grow, absorbing Cluster 2, and 

eventually resulting in a single cluster of all the pucks. This is commensurate with 

the results of Section 7.1. 

Evaluation of End Cluster (case 3) 
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Figure 7.3.4: T his gives t he evo lution of two clusters initiated o n the increasing 

region of g. In t his case, t he clusters will evo lve to t he same s ize, equipa rtitioning the 

pucks. 

If we instead put the clusters initially on the increasing region of g, the situation 

radically changes. Since the larger cluster now has the larger 9 value, it tends to 

lose pucks to the smaller cluster. Thus, the two clusters approach each other in 

size, and eventually become equal in size. 
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Evaluation of End Cluster (case 2) 
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Figure 7.3.5: This figure illustrates the system evo lu t ion when t he clusters are ini­

tiali zed on different sides of t he minimum , with t he la rge r cl uster at a higher 9 value 

than the smaller. 

Figure 7.3.5 illustrates the system evolution when the clusters are initialized on 

differing sides of the minimum with the larger cluster at a higher 9 value than 

the smaller cluster. In this case, the larger cluster will lose pucks to the smaller 

cluster. Since the slopes are equal, the loss of pucks is directly proportional to the 

relative loss of g. Thus, the larger cluster cannot "catch up" in 9 to the smaller. 

The result is that the process will continue until the initially smaller cluster passes 

the minimum of 9 and begins rising in 9 to meet the initially larger cluster. We 

end up with a system of two identically-sized clusters. 
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Evaluation of End Cluster(case 41 
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Figure 7 .3.6 : This Figure illustrates t he evolu t ion of a system of two clusters initially 

on differing s ides of t he minimum , wit h the smaller cluster at higher g . 

In Figure 7.3.6, we illustrate the evolut ion of a system of two clusters initially on 

differing sides of the minimum. Initially, if the smaller cluster is at a higher 9 than 

the larger cluster , it will lose pucks to the larger cluster. This results in the gradual 
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decrease in size of the smaller cluster until it is absorbed completely by the larger 

cluster. 

Thus, if both regions have t he same slope, there are two possible outcomes: the 

clusters merge to form one cluster, or the clusters equipartition the pucks. 

7.3.4. Minimum with Large Region 1. We now turn to one of two condi­

tions in which the juxtaposition of linear regions forms a single minimum. In this 

SubSection , we assume that the magnitude of the slope of region 1 is greater than 

that of region 2. 

Different Slope Linear Regions(case I) 
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Figure 7.3.7: This gives the system evo lu tion of two clusters ini tially on t he decreas­

ing region of g. As before , the system evolves to one containing a single cluster. 

T 
Different Slope Linear Regions (case 4) 
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Figure 7.3.8: This Figure illustrates the system evolu tion of a system of two clusters 

initialized on the increasing region of g. The clusters evolve to two equal-sized clusters. 

Figures 7.3.7 and 7.3.8 give the behavior of the system of two clusters initialized 

on the decreasing and increasing regions of g, respectively. In the first case, as in 

Section 7.1 , the system evolves to one containing a single cluster of all the pucks. 
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As in Section 7.3.3, the second case evolves to one containing two clusters of equal 

size. 

"'"" t· 
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Figure 7 .3.9: Evo lu t ion of a system of cl usters in which two clusters are sepa rated 
by t he mi nimum , a nd t he larger cluster is at higher ini t ia l g. 

Figure 7.3.9 illustrates the evolution of a system of clusters in which two clusters 

are separated by the minimum, and the larger cluster is initially at higher g. The 

larger cluster will lose pucks to the smaller cluster , yielding two clusters of identical 

size. 

Different Slope Linear Regions(case 3) 
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Figure 7.3.10: T hi s F igure illust rates t he evolution of a system of two cluste rs ini­

t ia lly on opposite sides of t he minimum in 9 wit h t he sm a ller cluster at higher in it ia l 
9 t ha n t he larger cluster. 

In Figure 7.3.10, the evolution of a two cluster system with two clusters separated 

by the minimum is depicted. In this case, the smaller cluster is at a higher init ial 

9 than the larger cluster . It therefore evolves pucks to the larger cluster , and the 

system eventually becomes one with a single cluster of all the pucks. 
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Thus, in this configuration of 9 the system has two possible final states. In one 

state, the system consists of a single cluster with all the pucks, while in the second, 

the system consists of two clusters of equal numbers of pucks. 

7.3.5. Minimum with Large Region 2. In this SubSection, we assume that 

the magnitude of the slope of region 1 is smaller than that of region 2. 

(a) 

Differing Cluster Sizes (case I) 

QuslerSi1J.' 

(b) 

Differi n~ C1usler Sizes (case I) 
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Figure 7.3.11 : The evolutio n of a system of two clusters initialized on t he inc reasing 
s ide of the g. This has the capability to evolve to a one cluster or two cluster system , 

with the two cluster system conta ining clusters of diffe ring sizes . 

Figure 7.3.11 illustrates the behavior of the system of two clusters both initialized on 

the decreasing side of g. In this case, the system has two possible stable outcomes. 

In the first , the pucks are completely absorbed by the larger cluster , yielding one 

final cluster (a). In the second, (b) the slope of the second region is sufficient for 

the 9 value of the larger cluster to "catch up" to that of the smaller cluster , yielding 

a stable configuration. 

Differing Cluster Sizes (case 2) 
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Figure 7.3.12 : This gives t he b ehavior of a two cluster system initi a li zed on t he 

increasi ng pa rt of g. As before , the system forms a stable configurat ion of two clusters 
of t he same size. 
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Figure 7.3.12 illustrates the behavior of a system of two clusters initially in the 

increasing region of g. As before, this system forms a stable configuration of two 

clusters with the same size. 

(a) 

Differino Cluster Sizes (case 4) Differino Cluster Sizes (case 5) 
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(b) 

Figure 7.3.13: This Figure illustrates the system evolut ion of a system of two clusters 

initialized in opposite sides of the minimum in g. Two outcomes a re possible : a system 

of two different sized clusters , or one cluster . 

In Figure 7.3.13 , we give the evolution behavior of the system of two clusters initially 

on different sides of the minimum in 9 in which the larger cluster has a smaller 9 

value than the smaller. This produces two different results depending on the relat ive 

slopes and positions of the clusters. In the first behavior, the slope on the increasing 

side is large enough that the 9 value of the larger cluster "catches up" to that of the 

smaller. At this point 7.3.13(a) the system forms a stable configuration of different 

sized clusters. The 7.3.13(b) second behavior is observed if the slope of the second 

region is insufficient for the 9 value of the larger cluster to "catch up" to that of the 

smaller cluster. In this case, a single cluster containing all the pucks is formed . 

.-_.::.D",inc::en",,· ng Cluster Sizes (case 3) 
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Figure 7.3.14: The evolution of a system of two clusters of diffe rin g s izes separated 
across t he minimum in 9 in which the larger cluster has a la rger initi a l g. The system 

evo lves to a stable state containing two clusters of d iffering s izes. 
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In Figure 7.3.14, the system is initially comprised of two clusters of different sizes 

on opposite sides of the minimum in g. The larger cluster is at a higher g level than 

the smaller cluster, and evolves pucks which are absorbed by the smaller cluster. 

This process continues until the g levels become equal, which may happen before 

the clusters become the same size, as the slope of the second region is now greater 

than that of the first region. If the g levels do not become equal before the cluster 

sizes are equal , the system will produce two stable clusters of equal size. 

Thus, there are now three possible outcomes if g is made up of two different regions 

in which the slope of the second has a larger magnitude than that of the first region. 

In some cases the system evolves to a stable state of one cluster, while in others 

the system evolves to a stable state containing two identical clusters. However , 

suprisingly, if the system is appropriately primed, it may evolve to a stable set of 

two differently sized clusters. This suprising result may be able to be exploited in 

order to create some interesting behavior. 

7.3.6. Maximum with Equal Magnitude Slopes. We have seen in the 

preceding three sections that the use of an increasing region of g tends to create 

two identically sized clusters in a stable configuration. This unexpected result is 

interesting to investigate further, and we do so by juxtaposing it with a second 

decreasing region of varying relative slopes. In this SubSection, we investigate the 

juxtaposition of the two regions of equal magnitude slopes. 

TII'o Clu~er Evolution Under Peaked g (Symmetric) 
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Figure 7.3.15: This figure illustrates the behavior of a system of two clusters 

with a peaked symmetric g. With the clusters initia lly on the increasing region 

of 9 the system evolves to one containing two identically s ized clusters. 

Figure 7.3.15 presents the behavior of a system of two clusters evolving under the 

action of a peaked symmetric g. In this case, the larger of the two clusters loses 

pucks to the smaller of the clusters, until the size of the clusters is the same. 
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Two Cluster Evolution Under Peaked g (Syrrunetric) 
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Figure 7.3.16: This Figure illustrates the behavior of a system of two clusters 

under the act ion of a symmetric g. A system with the clusters ini t ially on the 

decreasing region of 9 evolves to one in which the smaller cluster loses pucks to 

the larger of the two until the larger absorbs t he smaller. 

Figure 7.3.16 depicts the evolution of a system of two clusters evolving under the 

action of a peaked symmetric g. In this case, the larger of the two clusters has the 

smaller 9 value, and so absorbs pucks from the smaller cluster. As the slopes are 

identical , the smaller cluster is not able to equal the larger cluster's 9 value even 

after it has passed the peak. Thus, the smaller cluster evaporates, leaving only the 

larger cluster. 

Two Cluster Evolution Under Peaked g (Synunetric) 
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Figure 7.3 .17: The evolut ion of a two cluster system under the influence of a 

symmetric peaked g. An initial configureation with each cluster on the opposite 

side of the peak, and with the larger of the two having the larger 9 value becomes 

a two cluster system with each cluster having identical size. 

In Figure 7.3.17 is the evolution of a two-cluster system on a symmetric peaked 9 

in which the larger of the two peaks is initially at a higher 9 value than the lower. 
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This will cause the larger cluster to evolve pucks, which are captured by the smaller 

cluster. The system then becomes a system with two clusters of the same size. 

Two Cluster Evolution Under Peaked g (Symmetric) 
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Figure 7 .3.18: This is the evolution of a system of two clusters under the action 

of a single peaked 9 with the initial 9 of the smaller cluster larger than that of 

the smaller, and the two separated across the peak. The system becomes a single 

cluster system, with the larger of the clusters absorbing all the pucks. 

In Figure 7.3.18 the evolution of a system of two small clusters under the action 

of a single-peaked 9 is plotted. Initially, the larger of the two clusters is located to 

the right of the peak, while the smaller is to the left of a peak. The smaller one, 

which has a higher 9 value, loses pucks, which are absorbed by the larger cluster. 

The system continues in this way until the larger cluster absorbs all the pucks from 

the smaller cluster. 

Thus, the two behaviors of such a configuration are to form single clusters or two 

clusters of the same size. 

7.3.7. Maximum with Left Asymmetric Slope Magnitudes. In the last 

SubSection, we investigated the symmetric peaked 9 case. In this SubSection, we 

investigate the asymmetric peaked 9 case with the larger slope magnitude in Region 

1. 
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• Two Cluster Evolution Under Peaked g (Asynune~ic) 
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Figure 7.3.19: A system built on the increasing side of a peaked asymmetri c 9 dis­

tribut ion evolves to a system of two cl usters of equa l s ize. 

Figure 7.3.19 illustrates the behavior noted earlier in the increasing g region . 

• Two Cluster E,OIU; unde~ ~e:~ g (Asy~nunle~IC) 
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Figure 7.3.20: The behavior of the system when both cluste rs a re on t he decreasing 
region of 9 is diffe rent from t hat on t he inc reas ing regions of g, t he system is able to 

form stat ic systems of two cl usters of differing sizes. 

Figure 7.3.20 illustrates a rather unexpected behavior . If the system is initialized 

on the decreasing region of g. The smaller cluster will lose pucks to the larger 

cluster. This would seem to be similar to all cases of this kind discussed above. 

However , once t he smaller cluster reaches the increasing region, as long as this 

region increases in g faster than the decreasing region decreases in g, the smaller 

cluster will catch the larger cluster in g and the system will fall into a state of 

dynamic equilibrium with two clusters of differing sizes. If g (0) > 0 then this may 

not form a static equilibrium state, but rather a single cluster of all the pucks. 
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Figure 7 .3.21 : T he behavior of t he system when clusters a re ini t ia li zed on a lte rnate 

sides of the maxi mu m wit h t he la rger cl uste r at a higher 9 value t ha n t he smaller 

cl uster. 

Figure 7.3.21 demonstrates the behavior of a system of clusters initialized with the 

larger cluster in the decreasing region of 9 and the smaller cluster in the increasing 

region of g, with the value of 9 for the larger cluster higher than that for the lower 

cluster . In this case, the larger cluster will lose pucks to the smaller cluster , and 

the system will converge to a system of two clusters of equal size. 

Two Cluster Evolution Under Peaked g (Asymmetric) 
. ~ . ., 

('lMal t .. 

I 

/ 

I 

QUS\t.'fSW! 

Figure 7.3.22 : Evolu t io n of a system of cl usters in it ia li zed on opp osite s ides of t he 

maximu m , wit h 9 of t he la rger cl uster lower t ha n t hat of t he sm a lle r cl uster . 

Figure 7.3.22 shows the evolution of a system of two clusters init ialized on opposite 

sides of the maximum, with 9 of the larger cluster lower than that of the smaller 

cluster. In this case, the smaller cluster will begin losing pucks to the larger cluster. 

However , this trend will cont inue only unt il the clusters' 9 values become equal. At 

that point, the system will form a second state of dynamic equilibrium in which 

the puck clusters maintain different sizes . This will happen, as in SubSection 6.4, 
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only if the 9 value of the smaller cluster falls fast enough to avoid exhausting the 

cluster. 

7.3.8. Maximum with Right Asymmetric Slope Magnitudes. The final 

case considered here is the asymmetric case in which the magnitude of t he slope 

of 9 on the higher N side of the maximal point is higher than that on the lower 

N side of the maximal point. We begin again with the monotonic increasing and 

decreasing cases. 

Two Cluster Evolution Under Peaked (As mmetric) 

., CliIIIICII 

\ 
" 

OuslerSi71 

Figure 7.3.23: In t his figure , we plot t h e evolu tion of a system of two clusters with 9 

profile as indicated a nd initia l s izes on t h e increasing region of g. As in earli er studies, 

we find t hat t h e system evo lves to one contain ing two clusters of equa l s ize. 

Figure 7.3.23 gives the behavior of a pair of clusters evolving under the influence 

of a peaked asymmetric 9 with the magnitude of slope of the decreasing region 

larger than the magnitude of slope of the increasing region. In t his case, as in 

previous cases, the system evolves to one containing two equal sized clusters with 

an intermediate size. 

• Two Cluster Evolution Under Peaked g (Asymmetric) 
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Figure 7.3.24: This figure gives the evo lu t ion of a system of two clusters under the 

influence of an asymmetric 9 with ini t ia l cluster s izes in t h e decreasing region of g. In 

th is case , the sm a ller cluster is absorbed. 
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Figure 7.3.24 gives the behavior of a system of two clusters under the influence of 

an asymmetric g with initial cluster sizes in the decreasing region of g. In this case, 

the smaller cluster loses pucks to the larger cluster , as it's initial g is larger than 

that of the smaller. The process will continue until the smaller cluster disappears 

altogether. 
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Figure 7.3.25: This figure gives the evolution of a system of two clusters under the 

influence of an asymmetric 9 with intial cluster sizes in different regions of g, and with 

a larger initial 9 for the larger cluster. 

Figure 7.3.25 illustrates the behavior of a system of clusters under the influence of 

an asymmetric g with initial cluster sizes in differing regions of g , and with a larger 

initial large cluster g. The large cluster will lose pucks to the smaller cluster until 

it is brought into the increasing region, after which time the outcome becomes as 

detailed in Figure 5.8.1. 

Two Cluster Evolution Under Peaked (As mmetric) 
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Figure 7 .3.26: This figure gives the evolution of a system of two clusters under the 

influence of an asymmetric 9 with ini t ial cluster sizes in different regions of g , and 

with a large r initial 9 for the smaller cluster. 
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Figure 7.3.26 presents the final behavior of our study - that of two clusters which 

begin on opposite sides of the maximum of g, with the smaller cluster having an 

initial 9 larger than the larger. In this case, as the magnitude of the slope of the 

descending region is larger than that of the increasing region , the smaller cluster 

cannot ever catch the larger one in 9 value, and it will eventually be absorbed. 

Thus, the two behaviors of this type of asymmetric system are to form a single 

cluster and to form a set of two clusters of equal size. 

7.3.9. Stability of Multi Points. We define multi points as those points 

at which the system settles in which two or more stable clusters exist in dynamic 

equilibrium with another. A multi point refers to the size of the cluster , rather 

than the value of g. 

We wish to understand under what conditions we can expect these multi points 

to be stable. In order for them to be stable, there must be a restoring force when 

the system moves out of equilibrium. Thus, let us start with the condition for the 

existence of a multi point. We must have two clusters of sizes N1 and N 2 , which 

are not necessarily equal. We must have that 

(7.3.7) 

Then if we change the size of cluster 1 by some amount ~ , by our conservation of 

pucks condition, we must change the size of cluster 2 by the amount -~ . Thus 

we have that 9 (N1) becomes 9 (N1 +~) and 9 (N2 ) becomes 9 (N2 - ~). Now, 

in order for a restoring force to exist , cluster 1 must start losing pucks. This can 

generally occur (Theorem 1) if 

(7.3.8) 

If ~ is small , or these are linear regions , then we may approximate 9 (N1 + ~) as 

(7.3.9) 

and 

(7.3.10) 9 (N2 - ~) ~ 9 (N2) - ~ :~ IN2 . 

Thus, noting that 9 (Nd = 9 (Nz), the condition becomes 

(7.3.11) 8g I 8g I 
8N Nl > - 8N N2 

This means that the two regions must have two conditions met. First , the region 

in which cluster 1 is located must be increasing. Second, the region which cluster 2 

is located must not be decreasing faster than the region around cluster 1 is located. 
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This gives the explanation for why we found multi points only in the situations 

outlined in Sections 7.3.5 and 7.3.7, and puts a strong bound on the appearance of 

multi points. 

7.4. hnperfectly mixing media 

Under the conditions that the media is rapidly mixing, it is possible to investigate 

the system using the number of pucks as the basis of investigation. This requires 

the assumption that the probability of encounter was either unrelated to or is some 

increasing function of the number of pucks. However, this assumption breaks down 

in imperfectly mixing media. In this Section, we consider densities of pucks rather 

than their numbers. This is motivated by a similarity between systems of moving 

robots and pucks and systems of gas molecules. Using this as a basis for our study, 

we develop an analagous condition to the previously derived condition for perfectly 

mixing systems. This is important because, while the use of only numbers requires 

perfect mixing, local densities do not, and so our analysis applies to real systems. 

7.4.1. General Considerations. Previously the rate of evolution of a cluster 

was derived in terms of the number of robots in the system. The assumption that 

the robots are perfectly mixing allowed the formulation of equations solely in terms 

of the number of pucks in each cluster. However, in a real system, a cluster's 

evolution is determined in part by the local density of carriers rather than by the 

number of pucks in the cluster. It is necessary, then, in order to include real systems 

in our formalism, to reformulate the previous equations in terms of the local density 

of carriers and the number of pucks rather than the sheer number of pucks alone. 

Two assumptions are made. 

1. The average density of robots in the arena is constant . 

2. Aside from the evaporation (and condensation) of pucks from (onto) a clus­

ter, the behavior of pucks under the action of the robots will be to become 

on average equally dispersed throughout the space. 

We consider the ability of the system to cluster under these assumptions. 

Suppose that we have a space in which there exists a sustained gradient of puck 

density. In the simplest of cases , this gradient is linear in some direction x. If we 

denote the distance along this axis by x, then we would assume that the density <5 

is a function of x, <5 (x). Assume that <5 is monotonically increasing from one end 

of the arena to the other. It is interesting to understand what might be happening 

here. 
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Recall that, all other things remaining equal, it may be assumed that the natural 

tendency is that the average density of moving pucks will tend to become constant. 

What this means is that there will be a net flow of pucks from high density areas to 

low density areas. This will tend to happen irrespective of any other considerations. 

However , this means that in order to sustain the density gradient , there must be 

a puck sink at the low density area of the arena. This means that there may only 

be a gradient if there is a net flow of pucks from the high density area to the low 

density area. 

The opposite question is also important: what is the requirement for a net flow of 

pucks from one area of the arena to the other? If we do not let the robots exchange 

pucks, this means that a single robot carrying a puck must move from one region 

and drop it off in the other region. If the total density of robots is constant , this 

means that the number of empty robots on the low density side will be larger than 

that on the high density side. The end result is that a density gradient will occur 

and be maintained. This is an important consequence. 

A net flow of pucks from one area of an arena to another may occur if 

and only if there exists a monotonic gradient in the density of robots 

carrying pucks between the areas in question, in which the density of 

robots carrying pucks is smaller at the end receiving the pucks. 

In general , the rate of change of the size of a particular cluster, then, depends on 

two things. The first is the number of carriers interacting with the cluster. The 

second is the nature of the interaction of a carrier with the cluster in question. The 

rate of change of the size of a single cluster may be written as 

(7.4.1) 

where the local density of empty robots be and of robots carrying pucks b f are func­

tions of position and time. In this equation, the functions F and Hare analagous 

to previous functions, but now include the geometric properties of the arena and 

cluster position(s). 

If we have two clusters , then the system is described by 

(7.4.2) 

(7.4.3) 
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If again, we assume that the number of pucks in the medium is stationary, then we 

have that 

(7.4.4) 

or 

(7.4.5) 

In general, the density of carriers is not constant throughout the region. However , 

if we consider only the density of robots in the arena, either empty or filled , if 

follows that this density is , on average, constant. If we let D denote the time­

averaged density of robots in the arena, and be and b f denote the time averaged 

local densities of empty and full robots, respectively, then 

(7.4.6) 

We assume that we are working in a state of dynamic equilibrium, in which the 

local density of empty carriers and of full carriers is approximately constant. This 

means that even though there may be a net flow of pucks between clusters in the 

system we now consider, we assume that the local densities are remaining constant. 

The way that the clusters evolve depends on the equilibrium states. In general, the 

system will behave in such a way as to move toward the equilibrium states of the 

individual clusters. The interaction between clusters will occur through the robot 

media, and there will be two competing tendencies. The first tendency will be to 

have time averaged densities of robots become equal throughout the space. The 

second will be the tendency of robots nearby clusters to remove or put down pucks , 

moving the local densities toward the equilibrium state of the cluster. We will 

derive the following equilibrium densities in Section 7.4.2, as it is a significant aside 

from our current discussion. For now, we state without proof that the equilibrium 

relations for a single cluster are, 

1 1 
bf = D--H- , and be = D--F- · 

l+p 1+][ 
(7.4.7) 

Then, if we denote the local densities around cluster one by bel and b", with 

analogous expressions for cluster two, substituting equation (7.4.6) into equation 

(7.4.5), 

(7.4.8) 
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This can be rearranged to read 

(7.4.9) 
J _ D (F (n2) + F (nd) - Jh (F (n2) + H (n2)) 
h- (F(nd+H(nd) 

This will be smaller than J h iff 

(7.4.10) 

(7.4.11) 

giving 

(7.4.12) 

or 

(7.4.13) 

This is the same condition found above for the case of the perfectly mixing robots. 

That is , if the ratio G = fi is monotonically decreasing, then the equilibrium 

density around larger clusters will be smaller than that around smaller clusters. J h 

being smaller than J h would seem to indicate that there are fewer robots carrying 

pucks nearby cluster one than nearby cluster two. This indicates that the robots 

are more successful in removing pucks from cluster two than from cluster one, and 

more successful in depositing pucks on cluster one than on cluster two. In this case, 

cluster one will tend to grow while cluster two tends to decrease. Moreover, there 

will be a net flow of pucks from cluster two to one. Put another way, this indicates 

that under the action of the robots, the smaller clusters will pump pucks into the 

media trying to reach their equilibrium, while the larger clusters will absorb these 

pucks, trying to move to their smaller equilibrium. 

Note that the relative density of empty or full carriers is a function of the design of 

the robot and the number of pucks in the cluster, as well as the cluster's detailed 

characteristics (eg. its geometry). Thus, as long as the design of a robotic system 

tends to create lower densities of pucks around larger clusters, the larger of two 

clusters will tend to monotonically increase in size on average. 

Perhaps most importantly, this result is easily generalizable to the multiple cluster 

regime. The minimum condition required is that the local density of robots carrying 

pucks induced by the cluster is a monotonically decreasing function of cluster size. 

Thus, nearby any given small cluster, the density will increase over that closer to 

larger clusters. Moreover, the smallest cluster will have the highest equilibrium 
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density, and therefore can be seen to monotonically decrease in size, as in the 

previous section. 

Mathematically, this can be shown as follows. Suppose that cluster q is the smallest 

cluster in the system, and that there are n clusters. Then we have 

(7.4.14) 

for all i =1= q. Then, we have 

(7.4.15) 

or that 

F (nq) L.i#q F (ni) ----- > ==~~~~ 
H (nq) L.i#q H (ni) 

(7.4.16) 

which indicates that the effective cluster built from the detailed design of the other 

clusters tends to absorb pucks from the smallest cluster , mirroring our previous 

investigation of this topic. 

Of course, the efficiency is another matter. This result does not help us to un­

derstand whether or not the system will quickly approach the desired equilibrium 

state. We return to this point in Section 7.5 . 

7.4.2. Induced Densities. In (7.4.7), the equilibrium densities of empty and 

full robots around a cluster of a given size and interaction dynamic were stated 

without proof. This subsection is devoted to deriving these relations. 

We assume that we have a single cluster located in a container of some kind. The 

robots interact with the cluster according to the previously-defined functions F and 

H , and may carry at most one puck at a time. We assume that there is no sink or 

source either of robots or of pucks. 

In order for a cluster to be in equilibrium with a robotic (or other) medium, it must 

be that 

(7.4.17) 

where H and F represent the cross sections for deposit and for removal for a cluster 

of size n. If D = 6e + 6/ then 

(7.4.18) 

IThis condition implicit ly requires the arena in which the robots a re behaving to be closed or 
otherwise bounded. 
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Thus 

(7.4.19) 

These results may be rewritten as 

1 1 
b! = D--H-, and be = D--F- . 

I+F 1+H' 
(7.4.20) 

In the event that fl is a monotonically decreasing function of n, the evolution of 

pucks from a given cluster will decrease as its size increases. The equilibrium density 

surrounding a large cluster will be smaller than that around a small cluster. Thus, 

the pucks will cluster into a single cluster as long as this condition is met. Happily, 

this is identical to our previous result, though it now contains no restrictions. 

Suppose that we have two cross sections F and H given by 

(7.4.21) F=unO!. 

and 

(7.4.22) H= 1. 

These together give us that 

(7.4.23) 

We may use this in our expression of b! . We have in a discrete model 

1 unO!. 
b!=T--=T--~ 

1 + Ii unO!. + 1 
F 

(7.4.24) 

In Figure 7.4.1 , we plot the prediction of this model and the measured occupancy 

of the robots for a nonembodied single cluster system with a varying number of 

pucks and 150 robots . 
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Figure 7.4.1 : This figure gives the agreement of the predicted and measured values of 
the occupancy of robots in a swarm model. In this case, there is one cluster of varying 

size, the robots are nonembodied and quickly circulating, there are 150 robots , and 

the propensities are given by F = un'" and H = 1. 
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The agreement here is remarkable, and indicates that the equilibrium density of 

the robots is well modeled above. 

7.5. Efficiency 

So far, we have investigated the question of whether or not a single cluster will form 

at all. This is compelling work, to be sure, but not completely satisfying to the 

engineer. The main question to an engineer, after verification that the algorithm 

will work eventually, is how to increase the speed of an algorithm. In this section, 

we discuss methods of providing algorithms that are at once capable of carrying 

out the task and of carrying it out efficiently. 

7.5.1. Positive Induced Thansport. In general the net transport between 

two clusters of differing sizes is an increasing function of the difference between 

their sizes. That is , if the difference between the sizes of two clusters is z then 

we expect the rate of transfer of pucks from one cluster to the other will be an 

increasing function of z. Mathematically, this may be expressed as 

(7.5.1) of> 0 oz -
where F represents the puck flux around the smaller cluster. 

Suppose that we have two G functions , say G A and G B corresponding to two 

different interaction schemes of simple puck clustering robots. Then around cluster 
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I , the scheme A will have an equilibrium density of empty carriers given by 

(7.5.2) 

(7.5.3) 

while near cluster two, the equilibrium density will be given by 

(7.5.4) 
A HA (N2 ) T 

Se (N2) = T FA (N2) + HA (N2) GA (N2) + 1 

(7.5.5) 

Thus , we find that 

(7.5.6) 
Tt::..G A 

t::..S: = (GA (Nd + 1) (GA (N2) + 1) 

and 

(7.5.7) 

where t::..G = G (N2 ) - G (Nd. Thus, if the transport of one algorithm characterized 

by G A is greater than that of another characterized by G B, we must have that 

(7.5.8) 

or that 

(7.5.9) 

Of course, this is dependant on both strategies using the same techniqe for moving 

pucks around the arena. Any change in basic strategy would change the formalism 

above. 

Suppose first that 

(7.5.10) 

We wish to find the minimal condition on the function r which creates a second 

function G B that is less efficient than GA. Now, we may assume without a loss of 

generality that r (Nd = O. This gives us 

(7.5.11) 
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Since ~GA > r (N2 ), we have that 

(~GA - r (N2)) (GA (N2) + r (N2) + 1) 
~------~~ < ~--~~--~~~~ 

~GA (GA (N2 ) + 1) 
(7.5.12) 

(7.5.13) 

(7.5.14) 

which leads us to 

(7.5.15) 

or more simply that 

(7.5.16) r (N2 ) > 0 

Thus, if we have two functions G A and G B , the latter will be less efficient if we 

simply have 

(7.5.17) 
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Figure 7.5.1: This figure illustrates the performance of the puck aggregation for a 

two cluster system with a number of different robot swarm sizes . 
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Figure 7.5.1 illustrates the performance of a several swarms of robots on a swarm 

aggregation task in which the 9 functions were given by 

(7.5.18) 

and 

(7.5.19) 

Each performance measure for each swarm size was calculated using a perfectly mix­

ing model of clustering in as described in Section 7.2. 10000 pucks were initialized 

in equal proportions in two clusters, requiring the system to randomly fluctuate out 

of equilibrium and into clustering behavior. As predicted above, the performance 

of the swarm with a smaller 9 is better than that of the swarm with the larger 9 in 

that the clustering time was significantly smaller, on average. 

7.5.2. Induced Transport. Previously, we assumed that the induced trans­

port was a positive increasing function of the difference in densities between two 

clusters . The analog for perfect mixing is that the induced transport is a positive 

increasing function of the difference in the number of pucks in the cluster. In this 

subsection, we verify this assumption in the imperfect mixing case. We show this 

in this section, completing our analysis. 

Previously, we found that for a given cluster of n1 pucks the rate of growth of the 

cluster is 

(7.5.20) 

Recalling that in equilibrium 

(7.5.21) 

We wish to verify that the rate of transport of pucks is an increasing function of the 

difference of induced densities between clusters. First, we assume that we have two 

clusters of differing size, say of sizes n1 and of size n2, respectively. These induce 

densities (in equilibrium) of 

(7.5.22) 
T T 

61,1 = G
1 
+ 1 and 62,1 = G

2 
+ 1 

Now, we assume that the flow of pucks is linearly dependent on the rate of change 

of the density of pucks. That is , 

(7.5.23) 
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If the cluster is much larger than the number of robots, this is approximately 

constant flow. This gives 

(7.5.24) F = TJ (a6 f + a6 f) = C ax ay 
The net flow from any area is a constant C, assuming that no pucks are allowed to 

cluster in any area of the arena. Solutions to this differential equation are 

(7.5.25) 

Assuming that both clusters are on the x - axis, we may deduce that 

( ) k = 62,/ - 61,/ 
7.5.26 ~x 

Moreover, if the clusters are located within a bounded arena, we may conclude that 

l = 0, or that there is no gradient along the direction perpendicular to the radii 

connecting the clusters. Thus, we have 

(7.5.27) 

giving 

(7.5.28) 

Clearly, if 

(7.5.29) 

where 6i'/ represents the induced density at cluster one for scheme one, 6i'/ repre­

sents the same for control scheme 2, and so on. Thus, as long as this difference is 

larger , for scheme two, then the induced flow is larger. The rest of our conclusions 

from above follow quite nicely. 

7.6. Predictions of the Model 

In this section, we present calculations based on the puck clustering models of 

Beckers et al. (Beckers et al., 1996) and Maris and Boekhorst (Maris and Boekhorst 

1996). We show that, as observed, the first model is predicted to cluster , while the 

second is not. 

Let us first consider the model of Beckers et al. Beckers and colleagues report that 

the robot has four possible interactions with the robot. 

1. Pick up a single puck 

2. Pick up two pucks 

3. Drop a single puck 
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4. Drop two pucks. 

A robot travelling in straight lines will experience cluster as in Figure 7.6.1. 

2a 

Figure 7.6.1: The modes o f interaction of the robots and clusters in Beckers et al. 

clustering paper. 
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The robot has a probability of % of pulling off a single puck, 2ra of pulling off two 

pucks (if empty), and a probability of dropping of r-;a if full of one, and of 1 if it 

has two pucks. Thus, we may write an expression for hand f as 

(7.6.1) 

and 

(7.6.2) f = Aan1 + Aano + 2Aano 

where no, n1, and n2 represent the number of robots carrying 0, I, and 2 pucks, 

respectively, and A is a proportionality constant. Then 

(7.6.3) 

Now, if r » a then 

(7.6.4) 

a (n1 + 3no) 
9 = - --;---'-----;---'---

r (1 - %) n1 + 2n2 

a (n1 + 3no) 
9 c=. -

r n1 + 2n2 

This will generally be decreasing if no is nearly constant (as in when robots are 

running in a large arena or with a small interaction probability). If this is the case, 
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then no » n1 » n2 and 

a 3no a 3 
ge::---e::--

r n1 r a 
(7.6.5) 

where a is some linear proportionality constant, generally a function of a and no. 

This also explains why many clustering experiments failed when carried out in a 

very small arena, where the n1 and n2 are large, but not in larger arenas. 

Martinoli , Ijspeert , and Mondada (Martinoli et al. 1999) report the use of a cluster­

ing experiment in which a khepera robot manipulates seeds and attempts to place 

them in long semi-linear "clusters". 

A voidance Region 

Addition! 
Removal Region 

Figure 7.6.2 : This gives the addition and subtraction regions of interaction of a 

khepera robot approaching a cluster of "seeds". 

These clusters have two ways of being modified. These are having a seed added to 

the end of the cluster , or having a seed removed from the cluster. We plot the ratio 

of probabilities that these will occur reported in (Martinoli et al. 1999) in Figure 

7.6.3. 

Maninoli et. al. g 

H 11 
CIIJSI ~r Si 7.c 

Figure 7.6.3: 9 as reported in (Martinoli et al. 1999). The error is a result of 
estimat ions of the numerical values for hand f at each point. 

This is clearly not monotonically decreasing, and so therefore does not satisfy our 

condition for monotonic clustering. Indeed, this is precisely what is reported in 
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(Martinoli et al. 1999), as the authors note that the behavior is somewhat driven by 

a probability of clusters to disappear , after which time an irreversible system change 

has occurred. The performance of the system is expected to require long times to 

converge as the time required to remove the larger clusters and add their constituent 

parts to the smaller clusters would seem to be an exponential function of the length 

of the cluster. Indeed, this is what is observed. We would characterize this behavior 

as pseudoclustering, in which no direct clustering behavior is responsible for the 

clustering itself, but it is rather the effect of irreversible random events which may 

be built upon by further irreversible random events of the same type. 

7.7. Proper Swann Engineering 

In this brief Section, we report on the use of a group of multiple robots in creating 

predefined distributions of clusters. 

A particularly simple system to create is one of two clusters in which all the pucks 

are initially in one cluster and end up in a predefined proportion in a second cluster. 

Suppose that we have a total of N pucks, and we wish to create a system of pucks 

which has N1 pucks in the larger cluster and N2 pucks in the smaller cluster. As 

initial conditions are easy to control, we assume that the initial distribution is an 

easily generated structure. 

Now, we suppose that we have two linear regions hand l2 which meet at a minimum 

of 9 for the two clusters. We assume also that the robot has an accurate method 

of determining the size of the cluster, deferring investigation of limited ability. 

Without a loss of generality, we may assume that 9 (N = 1) while 9 (N = 0) = 0.5. 

If this is the case, and we wish to have the system settle at N1 and N2 = N - N1 

then we must have 

(7.7.1) 

and 

(7.7.2) 

These yield the linear equations 

1 - g eq 
--- =m2 

N1 

geq - 0.5 
N1 = m1 

(7.7.3) (
geq - 0.5) h : y = N1 X + 0.5 

(7.7.4) 
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giving a minimum at 

(7.7.5) 

so that if g eq = 0.45 then 

(7.7.6) 
LIN - N1 

1.2 
=X 

Note that now the linear equations are given by 

(7.7.7) (-0.05) h :y= ~ x+O.5 

(7.7.8) 1 . _ (0.55) 0.45N - N2 
2· Y - N1 X + N1 
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Thus, we have a design condition. If we let the f = 1 for all cases, which means 

that the robot will pick up every puck it encounters , and let the probability to 

drop be a function of size as prescribed in the above linear equations. We graph 

the evolution of a two-cluster system initialized with one cluster containing all the 

pucks and the second containing none. 

Evolution of Two Cluster System under Robot Swarm 
1<"".....----------------

Time (Iterations x I 0) 

Figure 7.7.1 : This figure illustrates the use of a swarm engineering technique designed 
to produce two clusters of a prespecified 4:1 ratio. 

In this Figure, the sizes of the clusters are plotted as a function of time. Initially, all 

pucks are in the larger cluster. However, very quickly, the clusters begin exchang­

ing pucks, and continue to have a net flow to the smaller cluster until the desired 
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system is produced. Generalizations of this technique using a rough binary estima­

tion of size, or a noisy size estimation produce similar results, with no significant 

degradation (up to 10% error). Most importantly, this can be easily generalized to 

multiple clusters, to clusters of differing size, and of a specific spatial design. These 

further possibilities require more investigation. 

7.8. Discussion and Concluding Remarks 

Groups of cooperating robots have the potential to carry out a wide variety of tasks 

which would seem to require intelligence in order to be completed, while utilizing 

little or no intelligence at the single agent level. In the natural world, these sytems 

have been shown to be capable of carrying out tasks which seem to be complex and 

require rudimentary intelligence. Indeed, they have been shown to be more than a 

simple sum of the parts, forming an entirely new whole. 

In this work we have begun to turn the design paradigm on its head. What we've 

done is ask what the general conditions must be in order to design a system of 

puck clusterers which will cluster pucks into a single cluster. Once this condition 

has been satisfied, it is expected that any design paradigm can be shown to lead 

to the robust clustering of the system. This condition does not take into account 

the efficiency of the algorithm, but instead deals only with the final global design 

goal. Further work must be completed in order to verify these expectations with 

physical robots . 

What this does is allow a great generality and freedom in our design. We may 

now use exceptionally simple designs to complete the same global design goal. This 

allows us to build robots with extremely simple algorithms which will complete our 

task. What we have then achieved is a general methodology for creating extremely 

simple algorithms which yield a desired global behavior. Indeed, we have begun to 

unravel the idea of emergent properties and have replaced them with global design 

properties which may be seen to be different , in many cases, from those simple 

properties built into the robot. As an example, we may see that there is nothing in 

the simple robot which picks up pucks and shuttles them from group to group which 

would indicate that this would yield a global clustering behavior. However , this is 

indeed the end result, despite the fact not being immediately obvious without the 

advantage of hindsight or deep insight. 

Further work in this area may tackle the use of stigmergic communication as a 

minimal necessary means of completing tasks. In order for this to be required, 

however , it must be necessary to recruit more than one robot in order to complete 

a task. Any less than this amounts simply to an improvement in efficiency. Now 

that a good understanding of the minimal requirement for generating more efficient 
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algorithms has been established, it is advantagous to undertake a study of the 

tradeoff between the efficiency of the collective, and the design complexity. This 

may yield optimally complex and efficient designs, using a minimum of collective 

processing, but yielding a maximally efficient collective. We do not tackle the 

problem here, but rather leave it as possible future research. 



Part 3 

Swarm Engineering for TSP 



CHAPTER 8 

Previous Swarm-Based Work on TSP and 

Combinatorial Optimization 

The travelling salesman problem (TSP) is deceptively simple in its statement giving 

the illusion of having a simple proof. However, just as Fermat 's last theorem is 

simply stated, but extremely difficult to prove, so too is TSP. Much of the work 

using software swarms has centered around TSP and related problems, such as 

routing problems in telecommunication systems. We review in this Chapter a small 

subset of the work done in this area. 

Dorigo et al.'s seminal paper (Dorigo et al. 1996) on ant colony optimization 

provided a first attempt to use software swarms to solve a practial problem. In this 

paper, Dorigo et al. demonstrated the design of a system of agents travelling over a 

graph of nodes and edges which was capable of generating good solutions to small 

TSP instantiations. Moreover, it was demonstrated how one might generalize the 

system to a method of carrying out a variety of other optimizations. 

Dorigo et al. (Dorigo et al. 1996) drew their inspiration from experiments done 

by biologists (Deneubourg et al. 1983, 1989, Goss et al. 1990) . In studying ant 

systems it was noted that if a swarm of ants initially had created a stable path 

along which a group of ants was happily travelling back and forth , and an obstacle 

was placed in the way, as in Figure 8.1, the trail of ants would adapt by finding the 

shortest route around the obstacle. 

151 
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Initial Path Final Path 

Obstacle 

Short Path 

Figure 8.1 : When an obstacle is placed in the way of a stable ant trail, the trail 

adapts to find the shortest route around the obstacle. 

The question then is how this is accomplished by ants. Ants do not seem to have any 

ability to know whether or not one route or the other is longer, and their capability 

for communication seems to be limited by locality. However, the swarm of ants 

seems to be able to adapt in a way that indicates some measure of intelligence! . 

The way in which this seems to be handled is through a form of bidirectional 

feedback (Dorigo et al. 1991) . That is , ants travelling in both directions seem 

to employ a behavior which contributes to small differences in signals obtained by 

temporal differences in the arrival of ants travelling along one or the other of the 

prescribed paths. Since ants travelling along both directions will generally equally 

take one or the other paths around the obstacle, the first one to make it to the 

other side will bias the ants making later decisions. This is an unstable equilibrium, 

and the initial bias will be increased as the addition of relatively more pheromone 

on one side of the obstacle will reinforce itself on both ends. Interestingly, the 

same mechanism leads to lock in of one or the other side if the obstacle is placed 

symmetrically across the line of ants, as a random fluctuation can be fed back to 

cause the domination of one path. 

The ant system is based on this type of communication, but employs "enhanced 

ants". These ants 

1. have memory of where they've been 

2. will not be completely blind 

lOne might argue that this is not intelligence at all , but rather dynamics. Evolution may have 
incorporated a dynamics into the system that allows it to deal with this commonplace occurrance. 
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3. will update the amount of pheromone deposited on the trail based on the 

distance they travelled. 

Each ant is initialized to begin at a randomly chosen city. Each link between cities 

is initialized to have zero pheromone. As each ant moves, it calculates the total 

distance travelled, and will place a bit of pheromone the amount of which is inversely 

proportional to the whole distance on the path it travelled at the completion of a 

path. The probability of moving from city to city will be an increasing function of 

the pheromone and a decreasing function of the distance between the ant 's current 

step and the proposed next step. 

After each complete iteration, the pheromone is allowed to evaporate from each 

link, lowering the probability of those links not travelled. This allows long paths 

that have been travelled inadvertantly to become less probable as a path to take 

over many iterations. 

The algorithm is shown to perform well on a variety of problems, including a 30 

city problem known as Oliver30 for which the algorithm extends the current best to 

a new minimum distance path. Dorigo et al. provide an extensive investigation of 

the effects of the various parameters, but do not provide any informative theoretical 

analysis of the behavior of the system. 

Extensions of this work are plentiful, typically coming from Dorigo and collegues 

(Dorigo et al. 1996a,1997,1997). These include several minor modifications to the 

basic system, meant to increase the capabilities of the system's search without the 

loss of the ability to find good solutions. 

One particularly interesting extension of this work was created by Schoonderwoerd 

et al. (Schoonderwoerd et al. 1997). In this work a group of mobile "ants" were 

used to carry out dynamic load balancing on a telecommunication network. This 

was accomplished in an interesting way. In this work, the network is a directed 

symmetric graph with each node characterized by a capacity, a spare capacity, and 

a routing table , and each link having an infinite capacity. The routing table gives 

the probability that an agent will want to take a given link, in much the same 

way as the previous work used pheremones to bias the choices of ants. Ants are 

launched from random nodes and directed to random nodes. Each ant records the 

time required for its partial trip from one node to the next and updates the routing 

table entries at nodes it passes for those parts of the path going the other way. This 

is done by updating the pheremone levels on the routing table, in such a way as 

to preserve the normalization of a probability of 1 of choosing a given path. This 

and related work has laid a promising foundation for what one might hope will be 

a significantly more robust and dynamic standard method of carrying out traffic 
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routing on communications networks. Although swarm engineering techniques will 

fit nicely in this framework , we do not attempt this problem here. 



CHAPTER 9 

Swarm Engineering for TSP 

As we briefly stated in Chapter I, several researchers have been making progress 

in the area of global design using local design rules. This work is attempting to 

generate an understanding of how to attack problems using swarms while employing 

techniques that are less anecdotal and more general than those used previously. 

William Spears and colleagues (Spears and Gordon 1999, Gordon and Spears 99). 

have begun advocating the use of techniques based on artificial physics. This is a 

term borrowed from artificial life and refers to a brand of physics based entirely on 

the imagination, implemented in artificial environments that dominate "physical" 

artificial life work. In this paradigm, a set of behaviors are set up, which may 

be implemented by artificial agents using available actuators, and which must be 

obeyed by each element of the swarm. The approach seeks to generate a set of 

behaviors which may be implemented in both simulation and on real robots, based 

on a set of rules which may be easily simulated, and later uploaded to a group of 

real mobile robots. 

In this Chapter we present the application of swarm engineering techniques to 

the solution of the travelling salesman problem. Our goal is to generate a swarm 

condition which will allow the completion of the task using a swarm of mobile 

agents. We demonstrate that although the basic algorithms of Dorigo et al. satisfy 

the swarm condition, they are unstable under random fluctuations. This means 

that with a small number of agents compared to the size of the problem set, the 

probability of generating a suboptimal tour is nontrivial. Finally, we present work 

on a novel method of handling TSP based on the swarm condition and designed in 

such a way as to avoid the problems inherant in the methods of Dorigo et al. 

9.1. Swarm Criterion 

In general, the goal of swarm engineering is to provide a scaffolding upon which 

to build a set of behaviors each agent will undertake. This scaffolding should 

provide enough structure so that any behavior which fits naturally in this design 

will accomplish the task. 
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9.1.1. Initial Definitions: One way of stating the goal of the travelling sales­

man problem is that one wishes to find a path through a set of locations such that 

the distance travelled is the smallest possible given the set of locations. The main 

weakness with this statement of the problem is that it does not yield to a solution 

using a swarm of agents. Rather, it is very much centered around the generation 

of a single path, a single piece of a vast puzzle. 

Swarms, by definition, have an effect as a group. Thus, we must look for a second 

statement of the problem which is amenable to solution by swarms. We choose to 

restate the problem this way. 

Given a set of N nodes {nd~l' there are (N~l)! different paths possible which 

completely travel through each node, ending up at the beginning node again, with­

out passing through anyone node twice. There is an inherant order from shortest 

to longest of these paths. Thus, we seek a method of removing paths from the 

longest end of the list to the shortest end until the only path left is the shortest. 

Thus, the group of path lengths is the interesting quantity here, and we wish to 

create a system under which this set of paths will evolve, eventually generating a 

single path which is the smallest path among those generated by the set of locations. 

Given the set of nodes, we have a set of connections {Cd~(t'-l) between nodes. 

These represent one part of a possible path. Each member of the swarm might 

be able to travel on these connections while travelling from node to node. We 

may model such travel as a stochastic process in which a particular node is chosen 

by an agent and travelled to with some probability Pi j, where i represents the 

agent's current node and j represents the next node. The object of the swarm's 

interaction with the network of nodes is to modify these probabilities in such a way 

as to effectively (or deliberately) remove all links except those contributing to the 

minimum path. 

We restate this formally in the next section, and it becomes our swarm condition. 

9.1.2. Swarm evolutionary conditions and actions. Each path has a total prob­

ability of being traversed equal to 

(9 .1.1) 
N - l 

P). = II P i (H l) 

i=1 

where A {n).(1) , n)'(2) , ... ,n)'(N)}' We can therefore state the following set of 

swarm conditions. 
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Swarm Criteria 

1. (Initialization) P>. < PA' for all paths ,\ and A' with the distance of ,\ larger 

than that of A'. 

2. (Increasing dispersion) The swarm should affect the probabilities in such a 

way that as t?, Ip>. - PA'l ? 
3. (Absolute best probability) The swarm should also affect the probability of 

passing over the best path. As t ?, P>'", ;n ? where P>'", ;n is the probability 

of the minimum path being travelled. 

4. (Robust against error.) The system must be robust to sampling error. 

The swarm is capable of doing two things in its travels over a network of cities and 

paths. 

1. A swarm is capable of carrying out the travel and evaluating the path it 

took. 

2. A swarm is capable of modifying the probabilities of the links it passes over. 

The way in which modification of the probability of travelling over a given link is 

done may be quite general. Many researchers have done this with using a link­

specific marker, many times called a pheromone. We now illustrate formally the 

effect of the use of a paradigm that uses a marker or other probability measure. 

When travelling over a trail , a real ant will leave pheromone scattered on the trail, in 

response to cues both internal and external. Simulated TSP algorithms also employ 

a pheromone-based update method. In these methods, pheromone is typically left 

on the trail as a function of the distance the agent has travelled. 

(9.1.2) 7)=f(d) 

where d is the total distance travelled by the agent. Thus, the amount of pheromone 

left on a particular link is given by 

(9.1.3) 
c 

where Pc represents the probability of a given agent travelling over a circuit c of 

distance de and N is the number of agents passing through the system. The sum 

is assumed to run over all circuits c containing the given link. 

Let 

(9.1.4) 
c 
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We define the average inverse distance travelled over the entire set of complete 

paths which use the link in question 

(9.1.5) 

Then the amount of pheromone makes 

(9.1.6) ph = NZ \~) 
where f (de) is L· 
In actuality, pheromone merely causes a change in probability of an agent passing 

through a given link. Thus, 

(9.1. 7) 

where again d represents the average distance travelled through the given link and 

9 represents the function of pheromone which indicates how a given amount of 

pheromone translates to a given probability. 

Example: For instance, this may be given by 

(9.1.8) 

where a is some proportionality constant and (10) is the average of the inverse dis­

tances travelled by agents through the whole system, as opposed to those travelling 

through the link. 

Now, suppose that we have a four city TSP problem as given in Figure 9.1. 

4 

Figure 9.1 : This figure gives an extremely small TSP problem. 

We start this in the state that the probability of taking anyone path between cities 

is equal. If this is the case, then we have the following equation for the amount of 

pheromone deposited on the link 1 - 2. 



(9.1.9) 

where 

(9.1.10) 
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if j =I- k and j,k E {3 , 4} 

otherwise 
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This 2-d tensor describes the paths which may be considered . This gives us, if the 

level of pheromone is proportional to the rate of change of probability 

(9.1.11) dP12 (~ ) dt = NP12 L (Jjkf (d12jd P2jPjkPkl + C 
Jk 

giving stationary solutions or solutions to this in the approximation that ps are not 

changing much 

(9 .1.12) 

where 

(9.1.13) Q ~ N (~'''f (d,,;,) p,;p;,p,,) + C 

with C possibly being some evaporation term or normalization term. 

The most compelling part of this study is that such a system will generally increase 

or decrease depending on how the terms in equation (13) work out. If f is a 

nonnegative function, then the probabilities will never decrease, and will saturate 

(become 1) quickly. The resulting system is not selective. On the other hand, if 

the function f is negative, the probabilities will decrease, making the set of paths 

impassible by an agent. 

We note also that the evolution of any given probability does not depend on the 

probability P1 2 itself, but merely on the ensemble of paths going through it . 

We choose to model our f as 

(9.1.14) 
1 1 

f=---
d dave 

where da ve is the average distance of the complete paths taken by agents moving 

through the grid. Thus, 

(9.1.15) _ P2jPjkPkl )) . 

dave 
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As long as this is negative, the link will decrease in probability. If it is positive, it 

will increase in probability. If there is a single path, the probabilities will remain 

stable. 

9.1.3. Sampling Constraints. In general, it is very difficult , if not impossi­

ble to generate dave or d12 . The calculation of these quantities requires that one 

obtains the result for a large number of paths, comparable to the number of possible 

paths in the search space. Practical approximations are nonetheless approximation­

s, and are limited by definition. Thus, any system attempting to approximate the 

previous design will be limited in its ability to faithfully reproduce the equations 

presented. 

We return to this point later in this work, illustrating how our results are affected. 

9.2. Swarm Engineering Case Studies 

Dorigo et aI 's seminal work on swarm based optimization initially centered around 

the use of computational agents he called 'ants ' to solve the travelling salesman 

problem. This work provided both inspiration and a basis for later work on the 

use of ant systems in the solution of combinatorial problems. In this section, we 

apply our previous theory to the solutions initially obtained in an effort to begin 

to understand why these algorithms performed as they did. 

9.2.1. Initial ant-based optimization. Dorigo 's initial ant-based optimization 

system makes use of discrete agents which travel over a graph made up of nodes 

and symmetric links between nodes. Each node represents a location, and each 

link represents the distance between nodes. Nodes are infused with a quantity of 

a "substance" called pheromone which influences the ant 's likelihood of travelling 

along a given link. Ants are assumed to continually travel , keeping a record of the 

path they take. Ants are not allowed to retrace their path, and so cannot take a 

link that leads to a node they have already visited. 

At each node, an ant must decide which path to take. This is done according to 

the amount of pheromone on each of the available links. The probability of an ant 

taking a particular node is given by 

(9.2 .1) k. (t) = hj (t)]'" . [1Ji j] fJ 
p 'J '" fJ L:l hi (t)] . [1Jil] 

where Tij represents the amount of pheromone on a link between node i and j , 1J 

represents a visibility parameter, the sum l runs over all links from node i , and a 

and f3 are adjustable parameters. Note that the sum of these is set to one, meaning 

that the ant will always take some path, a condition we relax in Section 4. 
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Each complete path of all ants constitutes a complete iteration. At the completion 

of each iteration, each ant updates the pheromone levels on each link as indicated 

by equation (9.2.2). 

(9.2.2) A .. _ { Q/Lk (t) 
UT'J - o 

if (i,j) E Tk (t) 

if (i,j) ~ Tk (t) 

Tk (t) is the tour undertaken by the ant at iteration t , and Lk (t) is its length. Thus , 

[Ti· (t) + L .. Q(Llt)] " . [17i l 
J e'l L c.. J 

Pij(t+~t)= 'J" 
Ll ([Til (t) + L ei/ Qi~/t) ] . [1)il] f3 ) 

(9.2.3) 

where c runs over all tours passing through this link. We assume that Q may be 

modelled as a function of time and that Q is continuous and Q (0) = O. Thus, the 

difference between the two is 

Now, if Q « T then 

This leads us to 

Pij (t + ~t) - Pij (t) ~ a ~ ~ Q (~t) [1)il] f3 [1)ij] f3 (Tij (t~:i: (t)]" _ Til (t) 1::~ (t)]") 

which, in the limit gives us that 

(9.2.6) 

Focusing for a moment on 

, we can rewrite this as 
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For simplicity, we may assign 'T/ij = 1 yielding 

( ~ [T" (,)[" ~ (1~:) ) -~ [T;; (')[" ~ ( T1,~:) ) ) 
In principle, if the paths going through a link were long compared to other paths, 

the first term would tend to be smaller than the second, while if they were short, 

the second would tend to be smaller. This means that this system, would tend to 

satisfy our swarm condition, and should lead to a system that creates a shortest 

path. 

However in real systems, one cannot know the values of these sums accurately, 

and there will always be an inherant error. Thus, the system will evolve under 

conditions that are not quite accurately predicted by these equations. The amount 

of change of pheromone, then under an error will determine the stability of the 

system. In a real ant-based system, the amount of change will be determined by 

where a represents the agent in the system over which the sums are actually taken. 

Now, if a long path has an initially large estimate of the first term, T will increase 

along that link. This increase will in turn bias the ants from the second term to 

the first term, and if this bias is large enough, will tend to cause a link that should 

not increase to increase in probability, locking in a poor path. Indeed, this is 

precisely what is reported. Thus, although the system obeys our first three swarm 

engineering criteria, it fails to satisfy the fourth, which in practice significantly 

reduces the capability of the system. 

9.2.2. Evaporation. Dorigo et al. propose a modification to the system which 

includes the use of pheromone evaporation. This is an attempt to provide a restora­

tive force which will satisfy condition 4. In this case, we have 

[Tij (t) (1- /1-) + 2:c Q~~t)r . ['T/ij t 
Pij (t + t:..t) = a 

2:1 [Til (t) (1 - /1-) + 2:c Q~~t) ] . ['T/U] .6 
(9.2.7) 

Here, again, we may assume that /1- is a function of the change in time t:..t which 

goes to zero when t:..t goes to zero. Then 
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if again Q « T, then 

Pij(t+Llt)-Pij(t)~ "," ( • ) 
2:1 ([Til (t) (1- J.L) + 2: C i/ Qi~,t)] . [1Jilt) 2:1 hI (t)]",· [1Jilt 

In this case, the damping term depresses the change in probability, controlling the 

random fluctuations. This allows the system to be tuned with an appropriatly 

chosen J.L to a rate of change in probability that is small enough to manage and to 

relieve random fluctuations. Dorigo et al. report that this is sufficient to limit the 

effects of random fluctutation. However , there is a tradeoff between the strength 

of the evaporation and the effectiveness of the algorithm. If the evaporation term 

is too large, the denominator in equation (3.9) will also become small, making the 

size of the fluctuation increase. If this is the case, the system will never be able 

to lock into the desired minimum distance, but rather will continue to endlessly 

fluctuate . 

9.3. Probabalistic Agents 

The main weakness of ant-based systems is that they are vulnerable to random 

effects. This has led to a variety of different algorithms designed to minimize these 

effects. The weakness stems from the fact that the agent must make a decision 

about which path to take at every iteration. This is in contrast to first making a 

decision about whether or not to take a link in the path at all. 

One might imagine a geddanken in which electrons are fired through an absorptive 

medium from each of the cities toward each of the other cities. If one were riding 

along with these electrons, one would note that the number of companion elec­

trons travelling with the electron providing the ride would decrease as an inverse 

exponential of the distance. Thus, we would have 

(9.3.1) 

where>. is some characteristic distance, and d is some distance. Were one to 

send the electrons along to the next city, one would find a similar phenomenon 

occurring. This would happen again and again, until the final electrons arrived at 

their destination, with numbers reflecting the distance travelled. Thus, 

(9.3.2) 

with dt representing the total distance travelled. 

We choose as model agents for our swarm agents as improved 'electrons '. Each 

agent has a probability of travelling from one node to another given by equation 
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(9.3 .1) . At each node, each agent duplicates itself so as to provide enough total 

agents to travel to each node not travelled to on the path it has already taken. 

Each new agent will then pick up where the first agent left off, travelling to the new 

nodes in the same way as the previous agent did in the last iteration. Note that 

if one agent is initialized at each node, and the probability travelling is 1 (). is 0) , 

each possible path will be travelled. The behavior of an agent and its duplicates is 

depicted in Figure 9.2. 

1st Agent 
;/OllPJ;Cate II ~gents 

• 

Figure 9.2: This depicts two parts of one iteration of the agent 's motion on a map. 

Note that in the first part of the iteration, one agent exists. In the second part , 

three agents exist. The number of agents equals the number of possible paths one 

might take while going through the first link. 

It is straightforward to verify that the paths travelled by the agents in this system 

occur with an exponentially decreasing probability commensurate with equation 

(9.3.2). We illustrate this in Figure 9.3, 
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Histogram of Completed Path 

\ 

i 

110 Distance 
n, 

Figure 9.3: This illustrates the distribution of path lengths obtained from agents 

which completed a tour of ten randomly placed nodes. 

in which 105 iterations of a sample graph have been run. 
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This method has two main flaws. Any attempt to handle large graphs immediately 

causes one of two outcomes: 

1. A virtual explosion in the number of agents in the intermediate stages of the 

search. 

2. No agents completing tours , as a result of the extremely low probability of 

any agent completing a tour given the low pairwise probabilities required to 

limit the explosion of agents. 

Moreover , the method is not a swarm at all. Indeed, it uses the predefined system 

to find the smallest path, using a large number of trials only to verify that the 

correct path has indeed been found. 

A swarm has been defined in Chapter 1 as a group of communicating agents ex­

hibiting emergent behavior. We employ a swarm-based method which derives from 

these probabilistic agents. We initialize the system with one agent. This agent has 

a predefined initial path {al, ... , aN, ad with some distance da , which becomes the 

first estimated minimum distance. 

All probabilities are initialized according to 

(9.3.3) P·· - e- >'dij 
.) -
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This biases the algorithm towards a small number of completing paths, with a small 

average distance. At each iteration, this probability is reduced according to 

(9.3.4) 

where v is some positive number smaller than 1. 

In order to generate new tours for sampling, the current tour is shifted to the left 

by M elements, i.e. , 

(9.3.5) 

where * indicates an unassigned node in the tour. The last M elements are chosen 

according to the guidelines given for probabalistic agents above, yielding many new 

paths in the process. Thus, the probability distribution of paths resulting from this 

method is 

(9.3.6) 

where the probabilities are the given according to choices for last elments. At every 

step, the new paths become truncated and duplicated, yielding a small number of 

new final paths. 

If we define do to be the current estimate of the minimum distance, we denote the 

update of transition probabilities by 

(9.3.7) 

where de,; is given by 

(9.3.8) 

and the sum is over all tours c which travel through a given link. Let us examine 

this in terms of our swarm condition . 

• The initial state is exactly as desired in the swarm engineering condition. 

• As more iterations pass, two types of updates occur. First, the probabilities 

are updated by multiplying a factor (for instance 0.99) to all link probabili­

ties. This lowers the probability of the group of paths. Next, when an agent 

completes the path, the links along that path are updated by adding the 

multiplying by quantity exp (~) to each of the link probabilities along the 

path. This increases the probability of going on the link, thereby increasing 

the probability of going along any small distance path going through this 

link. This satisfies condition 2. 
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• The probability of visiting a nearby link is limited by a small number of 

links, indicating that the previous problems of both explosion and low prob­

ability have been solved. Moreover , as shown above, the smaller paths will 

be visited more often than the larger paths. Thus, those paths with small­

er portions contributing will be selected more often than those with large 

portions selected. 

• The longer distance paths have a decreasing probability which decreases at 

a larger rate than the shorter distance paths. The links contributing to 

these paths will have a smaller number of signals completing, and a smaller 

positive controbution per signal. Thus condition 3 is satisfied. 

• As the best path is always of distance smaller than or equal to the current 

estimate do, the probability of this and all other paths decreases steadily. 

However, the system is reinitialized with the new estimate of the minimum 

distance, increasing the rate of decrease of long paths, but holding steady 

that of the minimum distance path. 

• Finally, errors in sampling are of a different kind than previous errors . It is 

unlikely to lock in a path that is suboptimal, unless the rate of probability 

alteration is extremely high, as new paths may then be found easily which 

are superior. These will lead to a reduction in the relative probability of 

travelling over the suboptimal path. Since 

(9.3.9) P (t + 6.t) = p (t) + 6.0: (-d 1 - -d 1 ) 
comp Oes t 

in practice, it is impossible have an estimated minimum distance do .. , s­

maller than the actual minimum. Thus, the probability of all paths will 

initially decrease, with the rate of decrease changing with each new better 

distance. The relative increases in rate of probability decrease is different 

for links of differing average distance, with those links which contribute to a 

small total path having a smaller acceleration than those links contributing 

to large paths. 

We test these on three paths given in the TSPLIB, a standard set of travelling 

salesman test problems. In each case, the initial probabilities are given by P ij = 

eO.001dij and the initial path is {I, 2, ... ,N, I} where the path has N nodes. In 

each case, the minimum is found with sufficient time. As a comprehensive analysis 

of the performance is beyond the scope of this chapter, we present only several 

minimum distances found on small paths. The results are given in Table 9.1. 
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TSP Problem Minimum Distance Distance Obtained Iterations (Average) 

Burma (14) 3323.0 3323.0 47.7 

Ulysses (16) 6859.0 6859.0 1000.2 

Ulysses (22) 7013.0 7013.0 2194.2 

Table 9.1 : This table gives the performance of the swarm based on probabilistic 

agents on a set of three standard TSP test problemsl . 

In each case, the minimum distance was obtained, indicating that the swarm con­

dition illustrated above does indeed produce the desired outcome. 

Thus, the use of this type of swarm-based computation would seem to be promis­

ing, as reliable algorithms may be constructed simply by conforming to a given 

condition. 

9.4. Conclusions 

In this Chapter, we have examined the design of a swarm-based optimization system 

using a rational technique to initially design a swarm condition. Swarms are then 

engineered based on this condition. Those that satisfy this condition are expected 

to produce a desired final outcome for the system, while those that do not are not 

expected to be able to complete the task in a satisfactory and robust manner. 

Investigating some of the previous work in this light has illustrated that, although 

most of the swarm condition imposed for the TSP are satisfied, they are not robust 

under the effect of noise. Addition of evaporation served to limit the amount of 

noise available for changes in probability. However , an evaporation rate that is too 

high would seem to produce paths with great variability, as is observed in practice. 

This work represents the third and final illustration of a general procedure for 

producing swarms of a predefined desired behavior. The correct development and 

application of such techniques would seem to be a necessary step for creating a 

process whereby swarms can be applied to practical problems and used to produce 

useful results. Further work will address the developement of a swarm-based way 

of guaging efficiency, with the hope for such work lying in the generation of swarm 

actions of a particular efficiency. 

IThe average number of iterations for the Ulysses TSP algorithm is somewhat artificially low, as 
the runs were terminated at 10000 iterations, and these averages reflect the completing runs. 



CHAPTER 10 

Discussion and Conclusions 

This work provides a first look into a potentially fruitful field in which many re­

searchers currently work under a number of different names. Swarm engineering 

refers to a general approach to generating swarms of independent agents capable of 

completing specific global tasks, while using robotic or software agents which are 

relatively simple to individually construct. 

Swarm engineering departs from the design of most l multiple-agent systems in that 

our inital focus is on the general global characterization of the problem, rather than 

the local rules of the problem. The creation of a general set of conditions which 

allow the global goal to be achieved makes the design of individual agents, indeed 

groups of agents, somewhat simpler. However, this set of conditions can take a 

great deal of effort to build, and need not require the generation of an analytical 

solution to the problem. 2 Thus, any behavior which satisfies these conditions 

can be thought of as a solution to the problem. While this approach is similar to 

the approach of traditional robotics, swarm-based robotics has departed from this 

approach. 

We studied in this work three different systems, and the use of swarm engineering 

techniques in these three systems. The three systems were very different in the 

nature of the problem and in the type of solution. Plume tracking is correctly 

done in an embodied system, and as we have seen, the differing properties of the 

systems can lead to differing dependencies on parts of the solut ion. However , an 

analytic generation of a minimal condition for swarm-based exploration of plumes 

is both difficult and unnecessary. This is not to imply that generating a general 

condition for swarm-based exploration is unnecessary, simply that an attempt to do 

so analytically is unecessaily difficult. With puck clustering systems, the situation 

is quite different. We have generated a set of conditions which, when satisfied, 

will allow the system to accomplish the goal. In this case, analytic methods have 

1 We do not claim that we are the first to approach problems in this way. 
2In fact , although analytic solutions are desirable in many conditions, as illustrated in two of our 
three studies, their generation in some cases is unnecessarily complicated, and may hinder the 
work to be accomplished. It is our belief, however , that whenever possible and practical, such 
methods shou ld be applied , as their study can often times lead to innovations that cannot be 
found in any other way. 
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proved to be quite useful. Finally, in the travelling salesman problem, we have used 

analytic methods as well to investigate the strength of the basic systems used in 

ant-based systems. These methods proved useful in generating an understanding 

of the weakness of the Dorigo ant-based algorithms, a new method for attacking 

the problem with encouraging results. 

10.1. P lume Tracking 

A plume tracking algorithm is one in which a robot physically finds its way from 

a point downstream from the source of a plume to the source, using information 

available in the direction of motion of the surrounding fluid and in the intensity of 

the plume. This problem has its uses in both the natural world and in the unnatural 

world. 

We discovered quite accidentally that a simple robot endowed with sensors with 

a directional response could be fabricated in such a way as to produce a behavior 

that carries the robot to the source of the plume. Interestingly, this behavior was 

discovered accidentally, and indicated that the solution of the general problem could 

be created quite easily. The many different solutions available in nature serves to 

underscore this point , indicating that artificial solutions need not be as complicated 

or involved as one might think. 

A second algorithm for finding the plume source was investigated. This algorithm, 

unlike the first, has the advantage that it is unlikely to lose the plume once it has 

found it. Moreover , it is extremely efficient in tracking the plume to its source. We 

investigated the adaptation of the algorithm using and excluding the use of wind 

direction information in a configuration that used the direction to indicate whether 

or not the robot was facing upwind. The algorithm was investigated using both real 

experimental data obtained using a laser-scanned plume source (Cowen and Chang 

2000) and simulated data using a simulator produced by Jay Farrell (Farrell et al. 

1999) and adapted in house to produce tunable concentrations. The performance 

on both data sets was comparable except in the use of concentration information in 

producing tracking behavior. Overall, the algorithm was found to be quite robust 

over a large number of different pertubations of the system. 

Finally, we applied swarm engineering to a swarm designed to extend the sensitivity 

of the system of robots. This swarm's design was based on the condition that the 

system should make progress upstream, and should focus its search in areas of 

interest discovered by agents who might otherwise lose the source. The extension 

of the sensitivity of the system was demonstrated using a variety of performance 

measures, though the extension of the first arrival was only slight. 
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10.2. Puck Clustering 

The application of swarm engineering techniques to puck clustering systems is quite 

straightforward. We may analytically investigate this system, and this was done. 

This required the restatement of the puck clustering problem in a format that 

allowed the focus to be on single agents rather than on global parameters, but also 

allowed the global goal to be achieved. 

The basic swarm condition was generated in two ways. The first way was the 

consideration of the number of pucks in a pair of clusters of pucks. The general 

condition on the form of the ratio of the propensity to lose pucks f versus the 

propensity to gain pucks h was determined. Using this condition, it was shown 

that in a system of many clusters, the smallest of clusters always decreased in size, 

a requirement for the eventual absorption into a single cluster3 . The same condition 

was again derived using a statistical physics approach in which local densities were 

considered assuming a diffusive environment. The same condition as was previously 

obtained was obtained in this consideration, allowing the extension of the system 

to real robot systems. 

A brief investigation of the method of determining the relative efficiencies of two 

algorithms was carried out. This consisted of determining the minimal condition 

required to create a system that is less efficient than a given system. We found 

that if the ratio 9 was being compared to another ratio g', the latter would be more 

efficient if 9 > g' . 

We enumerated the ways in which a non-monotonic system of two clusters contain­

ing two linear regions and a maximum or minimum would evolve. We found that 

such systems would in many cases create two stable clusters of pucks. Moreover , we 

discovered that in many cases both clusters had identical size, but in some cases, 

some clusters had differing sizes. Finally, we demonstrated that we could determine 

the sizes of the clusters ahead of time. This has exciting possible applications in 

distributed construction. 

10.3. Travelling Salesman Problem 

Our final investigation centered around the use of software swarms in the solution of 

the travelling salesman problem. This problem has been extensively investigated by 

other researchers, and our main contribution in this area was to establish that this 

was an incidence of swarm engineering and to put the work on firm mathematical 

footing. Once this had been accomplished, we observed the weaknesses of the 

systems from the equations that describe them. 

30f course, the size to which we refer is a time-averaged size 
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We proposed a second method of solving the travelling salesman problem which 

circumvents this difficulty. This method employs tunnelling agents, capable of 

dying along the way and of reproducing themselves. Left to travel to each node 

and not capable of dying, these agents could travel to all nodes over all paths if 

initiated by a single agent. An adaptation of this method was shown to satisfy 

the swarm engineering condition, and found good results when applied to three 

standard test problems , although more work on more test problems is required to 

validate the algorithm. 

10.4. Summation 

This thesis has provided an example of a global-first approach to swarm engineering. 

The set of techniques employed here may be extended to a wide variety of possible 

applications. In the author's view, one of the most exciting possible applications 

is distributed construction in difficult to reach areas inaccessible to humans. The 

use of such techniques might make it realistic to create structures allowing the har­

vesting of energy in both sustained mountaintop air currents or undersea currents. 

Construction of enclosures both undersea and in extraterrestrial locations may be 

possible, allowing colonization of both regions. Finally, the exploitation of such 

methods may allow search and rescue teams of robots to perform tasks more quick­

ly and efficiently than may be capable for conventional search and rescue teams, 

allowing the combination of many individual robots ' capabilities in the right times. 
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