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Abstract

The overarching goal of this thesis is to develop new numerical time integration schemes for La-

grangian mechanics that better cope with the challenges of understanding the dynamic behav-

ior of materials. We specifically address the formulation of convergent time integration schemes

that exhibit good long-term behavior—such as conferred by symplecticity and exact conservation

properties—and that have the ability to automatically and asynchronously modulate the time step in

different regions of the domain. We achieve these properties in a progression of three developments:

(i) energy-stepping, (ii) force-stepping, and (iii) asynchronous energy-stepping integrators. These

developments are based on a new method of approximation for Lagrangian mechanics, proposed in

this thesis, that consists of replacing the Lagrangian of the system by a sequence of approximate

Lagrangians that can be solved exactly. Then, energy-stepping integrators result from replacing the

potential energy by a piecewise constant approximation, force-stepping integrators result from re-

placing the potential energy by a piecewise affine approximation, and asynchronous energy-stepping

integrators result from replacing localized potential energies by piecewise constant approximations.

Throughout the dissertation, the properties of these time integrators are theoretically predicted and

born out by a number of selected examples of application. Furthermore, we address the challenges

of understanding the propagation of solitary waves in granular crystals at low impact velocity condi-

tions by investigating the role of energy-trapping effects with the numerical time integration schemes

developed in this work.
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Chapter 1

Introduction

For the past several years, the challenges of understanding the dynamic behavior of materials have

inspired the development of new experimental techniques, theoretical models and numerical meth-

ods. The overarching goal of this thesis is to develop new numerical time integration schemes for

Lagrangian mechanics that cope with some of these challenges. Our sources of inspiration are those

applications in material science and structural mechanics characterized by dynamical systems that

exhibit, in time and space, a wide range of time scales and whose interesting dynamics take place in

a small region of the domain that may drift in space as time progresses (e. g., shock waves, solitary

waves, dynamic fracture, propagation of structural and material instabilities, many-body impact

dynamics, etc.). Thus, in this dissertation, we specifically address the formulation of convergent

time integration schemes that exhibit good long-term behavior—such as conferred by symplecticity

and exact conservation properties—and that have the ability to automatically and asynchronously

modulate the time step in different regions of the domain. It is worth noting that the formulation

of convergent time integration schemes with exact conservation properties has been a longstanding

goal of numerical analysis and computational mechanics. Finally, we address the challenges of un-

derstanding the propagation of solitary waves in granular crystals at low impact velocity conditions

by investigating the role of energy-trapping effects with the numerical time integration schemes

developed in this work.

This thesis is organized as follows. Each chapter is conceived as a separate journal article, with

its own introduction, motivation, conclusions and avenues of future research. However, many of
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these directions of research are carried out in full in subsequent chapters. Thus, we intend this

dissertation as a progression of ideas and intertwined but distinguishable developments. Specifically,

the work incorporated in and arising from this thesis is:

∙ Energy-stepping integrators in Lagrangian mechanics, Gonzalez, Schmidt, and Ortiz [24].

We present a class of integration schemes for Lagrangian mechanics, referred to as energy-

stepping integrators, that are momentum and energy conserving, symplectic and convergent.

This result has been a longstanding goal of numerical analysis and computational mechanics.

⊳ We include this work in Chapter 2.

∙ Force-stepping integrators in Lagrangian mechanics, Gonzalez, Schmidt, and Ortiz [25].

We formulate an integration scheme for Lagrangian mechanics, referred to as the force-stepping

scheme, that is symplectic, energy conserving, time-reversible and convergent with automatic

selection of the time step size. The scheme also conserves approximately all the momentum

maps associated with the symmetries of the system. Exact conservation of momentum maps

may additionally be achieved by recourse to Lagrangian reduction.

⊳ We include this work in Chapter 3.

∙ Asynchronous energy-stepping integrators in Lagrangian mechanics, Gonzalez, et al. [26].

We develop a symplectic-energy-momentum time integrator for Lagrangian mechanics, referred

to as asynchronous energy-stepping integrators, that has the ability to automatically and

asynchronously modulate the time step in different regions of the domain, if any. The time

integrator additionally accounts for the exact momentum fluxes across subdomain boundaries.

⊳ We include this work in Chapter 4.

∙ Mesoscopic approach to granular crystal dynamics, Gonzalez, et al. [27].

We present a mesoscopic approach to granular crystal dynamics, which comprises a three-

dimensional finite-element model and a one-dimensional regularized contact model. The ap-

proach aims at investigating the role of vibrational-energy trapping effects in the overall dy-

namic behavior of one-dimensional chains under small to moderate impact velocities, and has
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as its only inputs the geometry and the elastic material properties of the individual particles

that form the system.

⊳ We include this work in Chapter 5.

energy
stepping

force
steppingSYMPLECTIC

STRUCTURE ENERGY

MOMENTUM

Q1 & Q2) Appraisal ….

Energy-stepping integrators

Remark:   The formulation of convergent time-integration schemes with 
exact conservation properties has been a longstanding goal of numerical 
analysis and computational mechanics. 

Figure 1.1: The numerical time integration schemes presented in this thesis, namely energy-stepping,

force-stepping and asynchronous energy-stepping integrators, bridge the gap between two areas of

active research in numerical time integration of Lagrangian mechanics: symplectic-momentum and

energy-momentum integrators.
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Chapter 2

Energy-stepping integrators

We present a class of integration schemes for Lagrangian mechanics, referred to as energy-stepping

integrators, that are momentum and energy conserving, symplectic and convergent. In order to

achieve these properties we replace the original potential energy by a piecewise constant, or terraced

approximation at steps of uniform height. By taking steps of diminishing height, an approximating

sequence of energies is generated. The trajectories of the resulting approximating Lagrangians can

be characterized explicitly and consist of intervals of piecewise rectilinear motion. We show that the

energy-stepping trajectories are symplectic, exactly conserve all the momentum maps of the original

system and, subject to a transversality condition, converge to trajectories of the original system

when the energy step is decreased to zero. These properties, the excellent long-term behavior of

energy-stepping and its automatic time-step selection property are born out by selected examples

of application, including the dynamics of a frozen Argon cluster, the spinning of an elastic cube and

the collision of two elastic spheres.
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2.1 Introduction

The formulation of convergent time-integration schemes with exact conservation properties has been

a longstanding goal of numerical analysis and computational mechanics. In a seminal contribution,

Ge and Marsden [19] showed that, in general, integrators with a fixed time step cannot simultaneously

preserve energy, the symplectic structure and other conserved quantities, such as linear and angular

momenta. This observation led to a dichotomy in the literature between symplectic-momentum

and energy-momentum integrators. In principle, symplectic-energy-momentum integrators can be

devised by adopting a space-time viewpoint and allowing for time-step adaption in order to satisfy

the constraint of conservation of energy [40]. However, due to lack of solvability of the time-step

optimization problem, especially near turning points where velocities are small [40,51], non energy-

preserving steps are inevitable in some schemes.

The design of symplectic-momentum methods can be accomplished in a systematic and natural

manner by recourse to a discrete version of Hamilton’s variational principle (cf., e. g., [52,53,58]; see

also [30], Chapter VIII, and references therein) based on an approximating discrete Lagrangian. The

resulting variational time integrators are, for a non-dissipative and non-forced case, symplectic and

momentum preserving. However, it should be carefully noted that the momenta conserved by varia-

tional integrators are those corresponding to the discrete Lagrangian, which in general approximate—

but differ from—those of the original Lagrangian. Many standard integrators, whether explicit or

implicit, are indeed variational in this sense, including the widely used Newmark method [42], mid-

point rule, symplectic partitioned Runge-Kutta schemes, and others (cf., e. g., Marsden and West [58]

for details). Experience has shown that, while not being exactly energy conserving, constant time-

step symplectic-momentum methods tend to exhibit good energy behavior over long times (see,

for example, [42] and references therein), though the good energy behavior tends to degrade when

variable time-steps are used [8, 20].

In general, good geometrical and invariance properties do not supply a guarantee of good accuracy

and convergence of integration schemes, which must be carefully analyzed separately. In the context

of linear structural systems, a powerful tool for investigating convergence is furnished by phase-error
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analysis [3, 35, 83]. Phase error analysis aims to establish the convergence of the amplitude and

frequency of oscillatory numerical solutions to the amplitude and frequency of the exact solution.

Phase error analysis is a particularly powerful tool inasmuch as it establishes the convergence of

solutions in a global, instead of merely local, sense. This attribute is in analogy to backward

error analysis [29, 30, 71], which is also global in nature, and in contrast to other conventional

methods of analysis, such as Gronwall’s inequality [58], which provide local exponential bounds on

discretization errors. The engineering literature on the subject of phase-error analysis relies on a

case-by-case analysis of linear time-stepping algorithms. An extension of phase-error analysis to

nonlinear systems may be accomplished by recourse to notions of Γ-convergence [62].

The work presented in this chapter is concerned with the formulation of time-integration schemes

for Lagrangian mechanics that are symplectic and exactly conserve all the invariants of the system

by construction. We achieve these desirable properties by the simple device of replacing the poten-

tial energy of the system by an approximating sequence of energies that have the same invariance

properties as the original potential energy and whose trajectories can be characterized exactly. This

strategy may be regarded as the reverse of that underlying backward-error analysis. Thus, whereas

backward-error analysis seeks to identify a nearby Lagrangian that is solved exactly by the solutions

generated by a numerical integrator, the approach followed here is to directly replace the Lagrangian

by a nearby one that can be solved exactly. If the approximating Lagrangians are constructed so as

to have the same symmetries as the original Lagrangian, then it follows from standard theory that

all the invariants, or momentum maps, of the original system are conserved exactly by the numer-

ical solutions. Additionally, since the numerical trajectories are exact solutions of a Lagrangian it

follows that the numerical trajectories are symplectic. By generating a sequence of approximating

Lagrangians that converges to the original Lagrangian in an appropriate sense, a sequence of ap-

proximating trajectories is generated that may be expected to converge to trajectories of the original

system. By this simple procedure, momentum and energy conserving, symplectic and convergent

time-integration schemes can be constructed.

We specifically investigate piecewise-constant approximations of the potential energy. Thus, we
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replace the original potential energy by a stepwise, or terraced, approximation at steps of uniform

height. By taking energy steps of diminishing height, an approximating sequence of energies is

generated. The solutions of the approximating Lagrangians thus defined are piecewise rectilinear

and can be constructed explicitly. In reference to the manner in which the potential energy is

approximated and the numerical solution proceeds, we refer to the resulting integration scheme

as energy-stepping. The rectilinear segments that comprise the energy-stepping trajectory span

constant-energy surfaces and are thus of variable duration, which results in automatic time-step

selection. By construction, the approximating Lagrangians are invariant under all the action groups

that the original Lagrangian is itself invariant under, i.e., the approximating Lagrangians inherit

all the symmetries of the original Lagrangian, and thus the energy-stepping solution conserves all

the momentum maps of the original Lagrangian exactly. In addition, since the energy-stepping

trajectories are exact solutions of a Lagrangian they are automatically symplectic. Furthermore, we

show that, subject to a technical transversality condition, the energy-stepping trajectories converge

to trajectories of the original system as the energy step decreases to zero.

The chapter is organized as follows. The energy-stepping time-integration scheme is defined

in Section 2.2. The conservation properties of energy-stepping are presented in Section 2.3. In

Section 2.4 we proof convergence of trajectories satisfying a transversality condition. Finally, in

Section 2.5 we present selected examples of application that illustrate the convergence, accuracy

and conservation properties of energy-stepping, including the dynamics of a frozen Argon cluster,

the spinning of an elastic cube, and the collision of two elastic spheres. Finally, a summary and

concluding remarks are collected in Section 2.6.

2.2 Energy-stepping integrators

For definiteness, we specifically consider dynamical systems characterized by Lagrangians L : ℝd ×

ℝd → ℝ of the form

L(q, q̇) =
1

2
q̇TMq̇ − V (q) (2.1)
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where M is the mass matrix and V is the potential energy. Lagrangians of this form arise in a number

of areas of application including structural dynamics and molecular dynamics. The trajectories of

a Lagrangian system can be approximated by replacing L(q, q̇) by an approximating Lagrangian

Lℎ(q, q̇) that can be solved exactly. A particular type of approximating Lagrangian is

Lℎ(q, q̇) =
1

2
q̇TMq̇ − Vℎ(q) (2.2)

obtained by introducing an approximation of the potential energy. In this work, we specifically

investigate piecewise constant approximations of the potential energy. Thus, we replace the original

potential energy V by a stepwise or terraced approximation Vℎ at steps of uniform height ℎ, namely,

Vℎ = largest piecewise-constant function with values in ℎℤ majorized by V (2.3)

or, equivalently,

Vℎ(q) = ℎ⌊ℎ−1V (q)⌋ (2.4)

where ⌊⋅⌋ is the floor function, i.e., ⌊x⌋ = max{n ∈ ℤ : n ≤ x}. By taking steps of diminishing

height, an approximating sequence of potential energies and Lagrangians is generated in this man-

ner. The chief characteristics of the new systems thus obtained are that they can be solved exactly,

as demonstrated in Section 2.2.1, and that they have the same symmetries as the original system,

as shown in Section 2.3. Evidently, other types of approximations, such as piecewise linear interpo-

lations of the potential energy, also result in exactly integrable approximating systems. However,

a naive piecewise linear approximation breaks the symmetries of the system in general. Piecewise

constant and piecewise linear approximations of the Kepler potential are shown in Figure 2.1 by way

of illustration.
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Figure 2.1: Kepler problem. Exact, piecewise constant and piecewise linear continuous approximate
potential energies.

2.2.1 Computation of the exact trajectories of the approximating La-

grangian

We now proceed to compute the exact trajectories of the approximate Lagrangian Lℎ (q, q̇) resulting

from the piecewise constant approximation (2.3) of the potential energy. Suppose that the system

is in configuration q0 at time t0 and in configuration q2 at time t2 and that during the time interval

[t0, t2] the system intersects one single jump surface Γ1 separating two regions of constant energies

V0 and V2, Figure 2.2. By the construction of Vℎ, Γ1 is the level surface V = V2 for an uphill step

V2 = V0 + ℎ, or the level surface V = V0 for a downhill step, V2 = V0 − ℎ. For simplicity, we shall

further assume that V is differentiable and that all energy-level crossings are transversal, i.e.,

n(q1) ⋅ q̇−1 ∕= 0 (2.5)

where q̇−1 = q̇
(
t−1
)

and n(q1) is a vector normal to Γ1 pointing in the direction of advance.

It is possible for discrete trajectories be trapped and become embedded within a jump surface

for a finite time interval, e. g., when the intersection of the trajectory with the jump surface is

non-transversal and the surface turns toward the trajectory in the direction of advance. In this

case, the embedded trajectory segment is a geodesic of the jump surface in metric defined by the

mass matrix M . However, the likelihood of non-transversal intersections resulting in the trapping of

trajectories within jump surfaces is exceedingly low in practical applications and will not be given

further consideration.
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Under the preceding assumptions, the action integral over the time interval [t0, t2] follows as

Iℎ =

∫ t2

t0

Lℎ (q, q̇) dt =

∫ t1

t0

Lℎ(q, q̇) dt+

∫ t2

t1

Lℎ(q, q̇) dt (2.6)

where t1 is the time at which the trajectory intersects Γ1. In regions where Vℎ(q) is constant the

trajectory q(t) is linear in time. Therefore, the action of the system can be computed exactly and

reduces to

Iℎ = (t1 − t0)

{
1

2

(
q1 − q0

t1 − t0

)T
M

(
q1 − q0

t1 − t0

)
− V0

}
+

(t2 − t1)

{
1

2

(
q2 − q1

t2 − t1

)T
M

(
q2 − q1

t2 − t1

)
− V2

}
(2.7)

where q1 = q (t1) is constrained to be on the jump surface Γ1. Assuming differentiability of Γ1,

stationarity of the action with respect to (t1, q1) additionally gives the energy conservation equation

(
q1 − q0

t1 − t0

)T
M

(
q1 − q0

t1 − t0

)
+ 2V0 =

(
q2 − q1

t2 − t1

)T
M

(
q2 − q1

t2 − t1

)
+ 2V2 (2.8)

and the linear momentum balance equation

M
q1 − q0

t1 − t0
−M q2 − q1

t2 − t1
+ �n(q1) = 0 (2.9)

where � is a Lagrange multiplier.

Negative step Null stepg p p

Figure 2.2: Trajectory of a system whose potential energy is approximated as piecewise constant.
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In order to make a more direct connection with time-integration schemes we reformulate the

problem slightly by assuming that t0, q0—the latter on a jump surface Γ0 except, possibly, at the

initial time—and the initial velocity

q̇+
0 = q̇

(
t+0
)

=
q1 − q0

t1 − t0
(2.10)

are known. Let t1 and q1 be the time and point at which the trajectory intersects the next jump

surface Γ1. We then seek to determine

q̇+
1 = q̇

(
t+1
)

(2.11)

A reformulation of eqs. (2.8) and (2.9) in terms of q̇+
1 gives

(
q̇+
1

)T
Mq̇+

1 =
(
q̇−1
)T
Mq̇−1 − 2ΔV (2.12)

q̇+
1 = q̇−1 + �M−1n(q1) (2.13)

where q̇−1 = q̇+
0 and the energy jump ΔV = Vℎ

(
q(t+1 )

)
− Vℎ

(
q(t−1 )

)
. Next we proceed to parse

through the various cases that arise in the solution of (2.12) and (2.13).

2.2.1.1 Diffraction by downhill energy step

Suppose that ΔV = −ℎ, i.e., the system decreases its energy as the trajectory crosses Γ1. Then

(2.12) becomes (
q̇+
1

)T
Mq̇+

1 =
(
q̇−1
)T
Mq̇−1 + 2ℎ (2.14)

Then, the system (2.13 - 2.14) has the real solution

q̇+
1 = q̇−1 −

q̇−1 ⋅ n1 +

√(
q̇−1 ⋅ n1

)2
+ 2ℎnT1 M

−1n1

nT1 M
−1n1

M−1n1 (2.15)

This solution represents the diffraction, or change of direction, of the trajectory by a downhill energy

step.
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2.2.1.2 Diffraction by uphill energy step

Suppose now that ΔV = ℎ, i.e., the system increases its energy as the trajectory crosses Γ1. Then

(2.12) becomes (
q̇+
1

)T
Mq̇+

1 =
(
q̇−1
)T
Mq̇−1 − 2ℎ (2.16)

Suppose, in addition, that (
q̇−1 ⋅ n1

)2
> 2ℎnT1 M

−1n1 (2.17)

Then, the system (2.13 - 2.16) again has a real solution, namely,

q̇+
1 = q̇−1 −

q̇−1 ⋅ n1 +

√(
q̇−1 ⋅ n1

)2 − 2ℎnT1 M
−1n1

nT1 M
−1n1

M−1n1 (2.18)

This solution again represents the diffraction of the trajectory by an uphill energy step when the

system has sufficient initial energy to overcome the energy barrier.

2.2.1.3 Reflection by uphill energy step

Suppose now that ΔV = ℎ, i.e., the system increases its energy as the trajectory crosses Γ1, but,

contrary to the preceding case, (
q̇−1 ⋅ n1

)2
< 2ℎnT1 M

−1n1 (2.19)

Then, the system (2.13 - 2.16) has no real solutions, showing that the system does not have sufficient

initial energy to overcome the energy barrier. Instead, the trajectory remains within the same energy

level and equation (2.12) becomes

(
q̇+
1

)T
Mq̇+

1 =
(
q̇−1
)T
Mq̇−1 (2.20)

Then, the system (2.13 - 2.20) is solved by

q̇+
1 = q̇−1 − 2

q̇−1 ⋅ n1

nT1 M
−1n1

M−1n1 (2.21)
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This solution represents the reflection of the trajectory by an uphill energy step when the system

does not have sufficient initial energy to overcome the energy barrier.

2.2.2 Derivation of the Hamilton principle for the discontinuous energy

stepping potential by regularization

The energy stepping potential (2.4) is not continuous and the corresponding action functional (2.6)

is not Gateaux-differentiable on the space of curves in phase space. In particular, the first variation

of Iℎ is not well-defined on this space and so the notion of critical points does not have a well-

defined meaning in the classical sense. However, the calculations in the previous subsection can be

given a rigorous interpretation by recourse to a smooth approximation procedure. In the spirit of

identifying solutions to non-smooth differential equations by suitable selection principles, we will

show that the energy-stepping dynamics for fixed ℎ is given by those solutions to (2.8) and (2.9)

that are limiting trajectories of a nearby smooth dynamical system. It should be carefully noted

that there are solutions to these equations other than those described in Section 2.2.1, as exemplified

by a particle bouncing at an energy barrier that can be overcome energetically.

This approximation result has three important consequences:

(i) The notion of a critical point of Iℎ is given a rigorous definition.

(ii) The physical solutions to (2.8) and (2.9) are selected.

(iii) The existence of a nearby smooth system will prove extremely useful when investigating ana-

lytical aspects of the energy-stepping trajectories such as conservation properties (cf. Section

2.3).

Here we call a solution q to the equations (2.8) and (2.9) physical if and only if q behaves as described

in Paragraph 2.2.1.1, 2.2.1.2 or 2.2.1.3. For later use we note that this is the case if and only if q

passes an energy jump surface precisely if this is possible without violating energy conservation. As

a consequence, an energy-stepping trajectory is uniquely given by q(0) and q̇(0).
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For fixed ℎ > 0 consider the smooth approximation �" to the stepping function t 7→ ℎ⌊ℎ−1t⌋ as

given by the convolution

�(t) =

∫
ℝ
"−1�("−1(t− s))ℎ⌊ℎ−1s⌋ ds, "≪ ℎ (2.22)

where � denotes a standard mollifier, i.e., � ∈ C∞c (−1, 1), � ≥ 0 and
∫ 1

−1
� = 1. Now define

Lℎ,"(q, q̇) =
1

2
q̇TMq̇ − Vℎ,"(q) for Vℎ,"(q) := �"(V (q)) (2.23)

Since Lℎ," is a smooth function, there is a well-defined classical dynamics corresponding to this

Lagrangian. We will prove that, as "→ 0, the critical points of the action functional

Iℎ,"(q) =

∫ t2

t0

Lℎ,"(q, q̇) dt (2.24)

converge to the trajectories identified in Section 2.2.

More precisely, we have the following

Theorem 2.2.1 Suppose q is an energy-stepping trajectory satisfying ∇V (q) ∕= 0 and (n ⋅ q̇−)2 /∈

{0, 2ℎnTM−1n} for n = n(q) = ∇V (q)
∣∇V (q)∣ on every energy jump surface. Let q" be the smooth trajectory

corresponding to Lℎ," with the same initial conditions (q0, q̇0). Then q" converges to q strongly in

W 1,p(0, T ) for each T > 0 and all p <∞ and weak∗ in W 1,∞(0, T ). Moreover, q̇" → q̇ uniformly on

[0, T ] ∖ Sr(q) for every r > 0, where Sr(q) is the r-neighborhood of the jump set of q̇.

It is worth noting that a proof for this result can be given that does not make use of the explicit

formulae for q obtained Section 2.2. Instead, we will see that limiting trajectories satisfy the discrete

variational principle leading to (2.8) and (2.9) and thus give an a priori justification of the procedure

employed in Section 2.2 to compute q.

Proof. First note that as " → 0, �"(V (q)) → ℎ⌊ℎ−1V (q)⌋ = Vℎ(q). In particular, q"(t) is linear in

time except in a small neighborhood of the energy jump surfaces. It suffices to consider the case

when q meets a jump surface Γ precisely once, at time t1 ∈ (t0, t2), for example, and so we may
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assume that q is a physical solution to (2.8) and (2.9).

We begin by showing that q" → q̃ as " → 0 strongly in W 1,p(t0, t2) for all p < ∞ (and weak∗

in W 1,∞(t0, t2)), where q̃ is linear on (t0, t1) and (t1, t2). By Γ" we denote the neighborhood of Γ

defined by

Γ" = {x ∈ ℝN : V2 − " ≤ V (x) ≤ V2 + "} (2.25)

Note that as ∇V (q(t1)) ∕= 0 by assumption, in the vicinity of q(t1) Γ" lies in an O(")-neighborhood

of Γ. q" being a critical point of Iℎ," satisfies the Euler-Lagrange equation

q̈" = −M−1∇Vℎ," (2.26)

Choose �1,", �2," such that q" enters Γ" at time t1 − �1," and leaves it at time t1 + �2,". Writing

∇Vℎ,"(x) = �(x)n+ �(x)Px (2.27)

for n = n(q(t1)), P the projection onto the plane perpendicular to n and �, � ∈ ℝ, we obtain that

∣�(x)∣ is bounded on r"-neighborhoods of q(t1) independently of " for each r ∈ ℝ, whereas �(x)

scales with "−1. Splitting the trajectories accordingly as

q"(t) = q∥" (t) + q⊥" (t) with q∥" ∈ q(t1) + ℝM−1n, q⊥" ∈M−1Pℝd (2.28)

we obtain that

q̈∥" (t) = −M−1�(q"(t))n, q̈⊥" (t) = −M−1�(q"(t))Pq"(t) (2.29)

It is not hard to see that �2," + �1," = O(") and so ∣q̈∥" (t) + M−1�(q
∥
" (t))n∣ ≤ C, ∣q̈⊥" (t)∣ ≤ C, on

(t1− �1,", t1 + �2,") for some suitable constant C > 0. This proves that in fact q̇⊥" (t1− �2,")− q̇⊥" (t1−

�1,")→ 0 as "→ 0 and, by energy conservation,

q̇"(t1 − �2,")− q̇"(t1 − �1,")→ q̇+ − q̇− (2.30)
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where q̇+ is given by (2.15) resp. (2.18) resp. (2.21). From here it is now straightforward to obtain

that q" converges to q̃, where q̃ is linear on (t0, t1) and (t1, t2) and satisfies the jump condition (2.15)

resp. (2.18) resp. (2.21) at t1.

Since we do not wish to use the fact that q is explicitly given by these equations in our proof,

we proceed as follows. As q" is a critical point of Iℎ,", for all ' ∈ C∞c ((t0, t2),ℝd × ℝd), the first

variation

�Iℎ,"(q, ') =

∫ t2

t0

q̇TM'̇−∇Vℎ,"(q)'dt (2.31)

vanishes. A standard approximation argument show that this remains true for all ' ∈W 1,∞
0 ((t0, t2),ℝd×

ℝd). Now suppose that q′ is another piecewise linear trajectory with q̃(t0) = q′(t0), q̃(t2) = q′(t2),

which is nearby q̃ and meets the same energy jump surface Γ at time t′1. Choose � ′1,", �
′
2,", such that

q′ enters, resp. leaves, Γ" at time t′1 − � ′1," resp. t′1 + � ′2,"

Now construct the following particular approximation q′" to q′:

∙ q′"(t) is linear on (t0, t
′
1 − �1,") and on (t′1 + �2,", t2),

∙ q′"(t′1 − �1,") = q′(t′1 − � ′1,") and q′"(t
′
1 + �2,")− q′(t′1 + � ′2,")→ 0 as "→ 0 and

∙ Vℎ,"(q′"(t′1 + t)) = Vℎ,"(q"(t1 + t)) for t ∈ [−�1,", �2,"].

It is not hard to see that, as "→ 0, q′" → q′ strongly in W 1,p for all p <∞ (and weak∗ in W 1,∞),

and in particular Iℎ,"(q")→ Iℎ(q̃), Iℎ,"(q
′
")→ Iℎ(q′). In fact, due to the careful definition of q′", we

also obtain control over the difference

Iℎ,"(q")− Iℎ,"(q′")→ Iℎ(q̃)− Iℎ(q′) (2.32)

To see this, it suffices to note that

∫ t′1+�2,"

t′1−�1,"
V (q′"(t)) dt−

∫ t1+�2,"

t1−�1,"
V (q"(t)) dt = 0. In fact, since q" is

a critical point of Iℎ,", we have

∣Iℎ,"(q")− Iℎ,"(q′")∣ = o(∥q" − q′"∥W 1,2) (2.33)
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with a term o(⋅) independent of ". (Consider a path [0, 1] ∋ s 7→ q"(⋅, s) in the space of curves such

that q"(⋅, 0) = q", q"(⋅, 1) = q′" and Vℎ,"(q"(t1(s) + ⋅, s)) = Vℎ,"(q"(t1 + ⋅)) on [−�1,", �2,"], where t1(s)

interpolates between t1 and t′1, i.e., t1(0) = t1 and t1(1) = t′1.)

As a consequence we obtain

∣Iℎ(q̃)− Iℎ(q′)∣ = o(∥q̃ − q′∥W 1,2) (2.34)

and thus that q̃ is a critical point of the action functional Iℎ on piecewise linear trajectories as

identified in Section 2.2. Now since q(0) = q̃(0) and q̇(0) = ˙̃q(0), we obtain q̃ = q. Hence, q is the

limit, as "→ 0 of the smooth trajectories q" corresponding to the smooth Lagrangian Lℎ,".

2.2.3 Summary of the energy-stepping scheme

We close this section by summarizing the relations obtained in the foregoing and defining the energy-

stepping approximation scheme resulting from a piecewise-constant approximation of the potential

energy.

Definition 2.2.1 (Energy-stepping) Suppose
(
tk, qk, q̇

+
k

)
and a piecewise-constant approxima-

tion of the potential energy Vℎ are given. Let tk+1 and qk+1 be the time and point of exit of the

rectilinear trajectory qk + (t − tk)q̇+
k from the set {V = ℎℤ}. Let ΔV be the energy jump at qk+1

in the direction of advance. The updated velocity is, then,

q̇+
k+1 = q̇+

k + �k+1M
−1nk+1 (2.35)
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where

�k+1 =

⎧⎨⎩

− 2
q̇+
k ⋅ nk+1

nTk+1M
−1nk+1

,

if
(
q̇+
k ⋅ nk+1

)2
< 2ΔV

(
nTk+1M

−1nk+1

)
,

−q̇+
k ⋅ nk+1 + sign (ΔV )

√(
q̇+
k ⋅ nk+1

)2 − 2ΔV
(
nTk+1M

−1nk+1

)
nTk+1M

−1nk+1
,

otherwise.

(2.36)

These relations define a discrete propagator

Φℎ :
(
tk, qk, q̇

+
k

)
7→
(
tk+1, qk+1, q̇

+
k+1

)
(2.37)

that can be iterated to generate a discrete trajectory.

Algorithm 1 Energy-stepping integrator

Require: V (q), q0, q̇0, t0, tf and the energy step ℎ
1: k ← 0
2: while tk < tf do
3: tk+1 ← Smallest-Root(V (qk + (tk+1 − tk) q̇k)− V (qk) + ΔV = 0)
4: qk+1 ← qk + (tk+1 − tk) q̇k
5: nk+1 ← ∇V (qk+1)
6: q̇k+1 ← Update-Velocities(q̇k, nk+1, ℎ)
7: k ← k + 1
8: end while

The implementation of the energy-stepping scheme is summarized in Algorithm 1. The algorithm

consists of two methods. The first method Smallest-Root determines the earliest root of the

equation

V (qk + (tk+1 − tk) q̇k)− V (qk) + ΔV = 0 (2.38)

where ΔV can take values in {0, ℎ,−ℎ}. This task can be effectively accomplished by locating first,

by means of an incremental search technique, a time interval containing the smallest positive root and

then zeroing in on the root by means of an iterative procedure such as bisection, Newton-Raphson,

or a combination thereof. The nature of the step, i.e., whether it consists of a diffraction by an
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uphill energy step, a diffraction by a downhill energy step or a reflection at an uphill energy step, is

identified simultaneously with the computation of tk+1. The second method Update-Velocities

is responsible for updating velocities according to Definition 2.2.1 and reduces to only two scenarios.

The method is defined in Algorithm 2.

Algorithm 2 Update-Velocities(q̇0, n1, ℎ)

1: if q̇0 ⋅ n1 ≥ 0 then
2: ΔV ← ℎ // Positive energy jump approached
3: else
4: ΔV ← −ℎ // Negative energy jump approached
5: end if
6: if (q̇0 ⋅ n1)

2 ≤ 2ΔV
(
nT1 M

−1n1

)
then

7: �← −2 q̇0⋅n1

nT
1 M

−1n1
// Reflects back from energy barrier

8: else

9: �←
−q̇0⋅n1+sign(ΔV )

√
(q̇0⋅n1)2−2ΔV (nT

1 M
−1n1)

nT
1 M

−1n1
// Overcomes energy jump

10: end if
11: return q̇0 + �M−1n1

It bears emphasis that energy-stepping requires the solution of no system of equations and,

therefore, its complexity is comparable to that of explicit methods. However, the need to compute

the root of a nonlinear function adds to the overhead of one application of the algorithm. It is still

possible, however, that such overhead may be offset by the higher accuracy in particular applications.

These and other trade-offs are investigated subsequently by way of numerical testing.

2.3 Conservation properties

Because the stepwise approximation of the potential energy (2.4) preserves all the symmetries of the

system, and the discrete trajectories are exact trajectories of a Lagrangian system, energy-stepping

exactly conserves all the momentum maps and the symplectic structure of the original Lagrangian

system. These two types of conservation properties are examined next in turn.

2.3.1 Conservation of momentum maps

The theory of symmetry of smooth Lagrangian systems is well-known [57] but may stand a brief

summary, specifically as it bears on the present application. We recall that a Lagrangian is a
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function L : TQ→ ℝ, where Q is a smooth, or configuration, manifold of the system and TQ is the

corresponding tangent bundle, consisting of pairs of configurations and velocities. For simplicity,

we restrict attention to time-independent or autonomous Lagrangians. Let X denote some suitable

topological space of trajectories q : [0, T ]→ Q joining fixed initial and final configurations q(0) and

q(T ), respectively. Then, the action integral I : X → ℝ over the time interval [0, T ] is

I(q) =

∫ T

0

L
(
q(t), q̇(t)

)
dt (2.39)

where we assume sufficient regularity of L and q(t) for all mathematical operations to be well defined.

According to Hamilton’s principle, the physical trajectories of the system are the critical points of

I, i.e., q ∈ X is a trajectory if

�I(q, ') = 0 (2.40)

for all variations ' ∈ C∞c (0, T ). Throughout this chapter the configurational space of interest is

Q = E(n)N , where E(n) is the Euclidean space of dimension n (i.e., d = nN), and the Lagrangian

is assumed to be of the form (2.1), with V smooth and bounded below, or (2.2) with Vℎ piecewise

constant. An appropriate space of trajectories is X = W 1,p([0, T ]), p < ∞, as demonstrated in

Section 2.4. We note that in the case of a piecewise constant potential energy the Lagrangian is not

differentiable and the Euler-Lagrange equations are not defined in the classical sense. However, the

trajectories can still be understood as critical points of the action functional Iℎ as shown in Theorem

2.2.1.

Let G be a Lie group with Lie algebra g = TeG. A left action of G on Q is a mapping Φ :

G × Q → Q such that: i) Φ(e, ⋅) = id; ii) Φ(g,Φ(ℎ, ⋅)) = Φ(gℎ, ⋅) ∀g, ℎ ∈ G. Let � ∈ g. Then, the

infinitesimal generator of Φ corresponding to � is the vector field �Q ∈ TQ given by

�Q(q) =
d

dt
[Φ(exp(t�), q)]t=0 (2.41)
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The momentum map J : TQ→ g∗ defined by the action Φ then follows from the identity

⟨J(q, q̇), �⟩ = ⟨∂q̇L(q, q̇), �Q(q)⟩, ∀� ∈ g (2.42)

We say that the Lagrangian L is invariant under the action Φ if

L(Φg(q), TΦg(q)q̇) = L(q, q̇), ∀g ∈ G, (q, q̇) ∈ TQ (2.43)

where we write Φg(⋅) = Φ(g, ⋅). Under these conditions, we additionally say that G is a symmetry

group of the system and that Φ expresses a symmetry of the system. The classical theorem of

Noether states that if L is invariant under the action Φ, then the corresponding momentum map J

is a constant of the motion, i.e., it remains constant along trajectories. Classical examples include:

i) Conservation of linear momentum. In this case, Q = E(n)N , G = E(n) and Φ(u, q) =

{q1+u, . . . , qN+u} represents a rigid translation of the system by u ∈ E(n). The corresponding

momentum map is the total linear momentum of the system, J = p1 + ⋅ ⋅ ⋅ + pN . If the

Lagrangian is invariant under translations, then the total linear momentum is a constant of

the motion.

ii) Conservation of angular momentum. In this case, Q = E(n)N , G = SO(n) and Φ(R, q) =

{Rq1, . . . , RqN} represents a rigid rotation of the system by R ∈ SO(n). The corresponding

momentum map is the total angular momentum of the system, J = q1 × p1 + ⋅ ⋅ ⋅ + qN × pN .

If the Lagrangian is invariant under rotations, then the total angular momentum is a constant

of the motion.

Conservation of energy can be fit into this framework by resorting to a space-time formulation in

which time is regarded as a generalized coordinate, e. g., q0. The corresponding space-time La-

grangian is L(∥, ∥′) = L((q0, q), (q
′
0, q
′)) = L(q, q′/q′0, q0), where L(q, q̇, t) is a general time-dependent

Lagrangian. The space-time configuration manifold is ℚ = ℝ×Q. Let G = ℝ, Φ(s, q) = (q0 + s, q)

is a time-shift and suppose that L is invariant under Φ, i.e., L is time-independent. Then J =
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L− ∂q̇L ⋅ q̇ = −E, i.e., the total energy of the system, is a constant of the motion.

A particularly appealing property of the piecewise constant approximation (2.4) of the potential

energy is that it preserves all the symmetries of the system exactly. To verify this property, since the

kinetic energy of the system is not approximated, it suffices to verify that Vℎ has all the symmetries

of V . Thus, suppose that G is a symmetry group of V and Φ is an action that leaves V invariant,

i.e.,

V ∘ Φg = V, ∀g ∈ G (2.44)

Then,

Vℎ ∘ Φg = (ℎ⌊ℎ−1V ⌋) ∘ Φg = ℎ⌊ℎ−1V ∘ Φg⌋ = ℎ⌊ℎ−1V ⌋ = Vℎ (2.45)

Similarly, we obtain for the smooth approximation of Vℎ introduced in (2.23)

Vℎ," ∘ Φg = �" ∘ V ∘ Φg = �" ∘ V = Vℎ," (2.46)

It therefore follows from Noether’s theorem that the corresponding momentum map J is constant

along trajectories of the approximate Lagrangian Lℎ,". By Theorem 2.2.1 and a standard approxima-

tion argument then show that the momentum map J is constant along energy-stepping trajectories.

It bears emphasis that what is conserved along the trajectories of the approximate Lagrangian Lℎ

is the exact, time-continuous, momentum map of the original Lagrangian L. This is in contrast to

discrete variational integrators, which conserve discrete form of the momentum maps, instead of the

exact, time-continuous, momentum maps of the original Lagrangian L. Thus, in particular: if V is

invariant under translations then energy-stepping conserves the total linear momentum p1 + ⋅ ⋅ ⋅+pN

of the system; and if V is invariant under rotations then energy-stepping conserves the total angular

momentum q1 × p1 + ⋅ ⋅ ⋅+ qN × pN of the system.

As indicated above, the exact conservation of energy attendant to energy-stepping applied to

time-independent Lagrangians follows in the manner described above from a space-time extension

of the configuration manifold. However, exact energy conservation follows more directly as a conse-
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quence of (2.12), i.e., energy conservation is built explicitly into the energy-stepping scheme.

2.3.2 Conservation of the symplectic structure

We now look at the Lagrangian systems defined by (2.1) and (2.2) from a Hamiltonian perspective.

To this end we introduce the phase space P = T ∗Q, consisting of pairs (q, p) of configurations

q ∈ Q = E(n)N and momenta p ∈ T ∗qQ, and the Hamiltonian H : P → ℝ as

H(q, p) = sup
v∈TqQ

{p ⋅ v − L(q, v)} =
1

2
pTM−1p+ V (q) (2.47)

Likewise, the Hamiltonian corresponding to the approximate Lagrangian (2.2) is

Hℎ(q, p) = sup
v∈TqQ

{p ⋅ v − Lℎ(q, v)} =
1

2
pTM−1p+ Vℎ(q) (2.48)

We endow P with the canonical symplectic two-form

Ω = dq1 ∧ dp1 + ⋅ ⋅ ⋅+ dqN ∧ dpN (2.49)

Then, the pair (P,Ω) defines a symplectic manifold.

We recall (cf. e. g., [1, 2, 32]) that a diffeomorphism ' : P → P is symplectic if it preserves the

symplectic two-form, i.e., if

Ω(T'(z)�1, T'(z)�2) = Ω(�1, �2) (2.50)

The symplecticity of Lipschitz maps has been investigated by Whitney [79] and by Gol’dshtein and

Dubrovskiy [21] but their results do not apply to the present setting. However, it is possible to verify

the symplecticity of energy-stepping directly. To this end, we may write '(q0, p0) = (q(t), p(t)) and

T' ≡

⎛⎜⎜⎝ ∂q'q ∂p'q

∂q'p ∂p'p

⎞⎟⎟⎠ =

⎛⎜⎜⎝ Qq Qp

Pq Pp

⎞⎟⎟⎠ (2.51)
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then ' is symplectic if

PTp Qp = QTp Pp (2.52)

PTp Qq = QTp Pq + I (2.53)

QTq Pq = PTq Qq (2.54)

As shown in the appendix, these relations are identically satisfied by energy-stepping, which estab-

lishes the symplecticity of the scheme.

2.3.3 Summary of the conservation properties of the energy-stepping

scheme

The results proven in the foregoing are collected and summarized in the following theorem.

Theorem 2.3.1 The energy-stepping time-integration scheme is a symplectic-energy-momentum

time-reversible integrator with automatic selection of the time step size. In particular, the scheme

conserves exactly all the momentum maps of the original Lagrangian.

Symmetry or time-reversibility of energy-stepping follows directly from the definition of the

scheme. The automatic time-step selection property also follows by construction. In particular,

in regions where the potential energy gradient ∇V is steep, the energy jumps are more closely

spaced and the resulting time steps are small. By contrast, if the potential energy gradient is small,

the resulting time steps are comparatively large. We again emphasize that the momentum maps

conserved by energy-stepping are precisely those conserved by the original system. This is in contrast

to variational integrators, which conserve discrete momentum maps that differ from the momentum

maps of the original system in general.
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2.4 Convergence analysis

Our aim in this section is to ascertain conditions under which a sequence qℎ of energy-stepping

trajectories with potential Vℎ and initial conditions qℎ(0) = q0 and q̇ℎ(0+) = q̇0 converges in a

suitable sense to a solution q of the original equations of motion as ℎ→ 0. For the sake of simplicity,

we consider the motion t 7→ q(t) ∈ ℝd of a particle in a smooth potential energy landscape V with

diagonal mass matrix of the form M = m Id. The convergence analysis presented in the following

carries over unchanged to the general case, albeit at the expense of slightly more cumbersome

notation. The trajectories q are stationary points of the action functional

I(q) =

∫ T

0

m

2
(q̇(t))2 − V (q(t))dt (2.55)

For smooth trajectories, this principle is equivalent to the satisfaction of the equations of motion

mq̈(t) = −∇V (q(t)), given q(0) = q0, q̇(0) = q̇0 (2.56)

We will assume throughout that V is bounded from below and, without loss of generality, we may

specifically assume that V ≥ 0.

Within this setting, the aim of convergence analysis is to elucidate the limiting behavior of the

stationary points of the approximating functionals Iℎ that arise when the smooth potential V is

approximated by piecewise constant potentials Vℎ. However, due to the non-differentiability of Vℎ,

the first variation

�Iℎ(q, ') := lim
s→0

1

s

(∫ T

0

m

2
(q̇ + s'̇)2 − Vℎ(q + s')dt−

∫ T

0

m

2
(q̇)2 − Vℎ(q)dt

)
(2.57)

does not exist in general for arbitrary ' ∈ C∞c (0, t;ℝd). The equation of motion (2.56) needs to be

adapted to this situation by allowing the approximating acceleration to be a measure, specifically,

a sum of suitably rescaled Dirac masses. With this extension, we may summarize the the energy-

stepping scheme formulated in Section 2.2.3 by saying that the approximating sequences satisfy the
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Euler-Lagrange equations

mq̈ =
∑
t∈S(q)

�(q(t), q̇(t−), q̇(t+))n(q(t))�t (2.58)

in the sense of ℝd-valued measures, where

�(q(t), q̇(t−), q̇(t+)) =

⎧⎨⎩
−2mq̇(t−) ⋅ n(q(t)) if

√
2ℎ
m > q̇(t−) ⋅ n(q(t)) > 0

−ℎ∣∣∣ q̇(t+)+q̇(t−)
2 ⋅ n(q(t))

∣∣∣ otherwise
(2.59)

n(q) = ∇V (q)
∣∇V (q)∣ and S(q) denotes the set of times t where q̇(t) jumps. Indeed, as q̇ is only piecewise

constant, q̈ is only defined as a distribution. In order to identify q̈, let ' : (0,∞)→ ℝd be a smooth,

compactly supported function. We have to verify that

−
∫ ∞

0

mq̇(s) ⋅ '̇(s) ds =

∫ ∞
0

'(s) ⋅ d

⎛⎝ ∑
t∈S(q)

�(q(t), q̇(t−), q̇(t+))n(q(t))�t

⎞⎠ (s) =

∑
t∈S(q)

�(q(t), q̇(t−), q̇(t+))n(q(t)) ⋅ '(t) (2.60)

In fact, by recourse to a partition of unity it suffices to verify this identity for ' supported on

intervals (t′, t′′) that contain at most one point of S(q). If S(q) ∩ (t′, t′′) = ∅, then q̇ is constant on

(t′, t′′) and both sides of (2.60) are zero. Now let S(q)∩ (t′, t′′) = {t} and denote the velocity q̇ prior

to t, resp. after t, by q̇(t−), resp. q̇(t+). Then (2.60) is equivalent to

−
∫ t′′

t′
mq̇(s) ⋅ '̇(s) ds = �(q(t), q̇(t−), q̇(t+))n(q(t)) ⋅ '(t) (2.61)

Splitting the integral as
∫ t
t′

+
∫ t′′
t

we obtain

−
∫ t′′

t′
mq̇(s) ⋅ '̇(s) ds = m(q̇(t+)− q̇(t−)) ⋅ '(t) (2.62)
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and Equation (2.60) follows with

�n = m(q̇(t+)− q̇(t−)) (2.63)

This identity in turn is consistent with the more direct approach followed in Section 2.2.3. Indeed,

if the trajectory reflects at an energy level surface, (2.63) is directly implied by Definition 2.2.1. If,

contrariwise, an energy level surface is crossed Definition 2.2.1 gives

m
(
q̇(t+)− q̇(t−)

)
= m

(
−q̇(t−) ⋅ n+ sign(ΔV )

√
(q̇(t−) ⋅ n)2 − 2ΔV m−1

)
n =: �n (2.64)

with ΔV = Vℎ(q(t+)) − Vℎ(q(t−)), ℎ = ∣ΔV ∣. Multiplying with q̇(t−) + q̇(t+), we obtain from

Equation (2.12)

−2ΔV = m
(
(q̇(t+))2 − (q̇(t−))2

)
= �

(
q̇(t−) + q̇(t+)

)
⋅ n (2.65)

whence indeed

� =
−ΔV

q̇(t+) + q̇(t−)

2
⋅ n

=
−ℎ∣∣∣∣ q̇(t+) + q̇(t−)

2
⋅ n
∣∣∣∣ = � (2.66)

In general, the approximating sequences thus defined may fail to converge to trajectories of the

original system as ℎ→ 0. The nature of the difficulty is illustrated by the following three examples.

2.4.1 Failure of convergence

The first example shows that convergence does not necessarily hold true even for one-dimensional

problems.

Example 2.4.1 For definiteness suppose that m = 1, q0 = 0, q̇0 = 1 and V is given by V (x) = 1
2x

2.

Then (2.56) describes a harmonic oscillator and the trajectory is q(t) = sin(t). Similarly, qℎ increases

monotonically as long as Vℎ(qℎ) < 1
2 . Let k = ⌊ 1

2ℎ⌋. Then on {t : qℎ(t) ∈ (
√

2kℎ,
√

2(k + 1)ℎ)} the

approximating velocity is q̇ℎ =
√

1− 2kℎ, and the time from reaching the top energy level kℎ until
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bouncing at qℎ =
√

2(k + 1)ℎ is

Δt =

√
2(k + 1)ℎ−

√
2kℎ√

1− 2kℎ
≈ ℎ√

1
2 − kℎ

(2.67)

In particular, qℎ does not converge to q if the last expression does not converge to zero as ℎ→ 0.

This example shows that there may be sequences ℎi such that the stationary trajectories of Iℎi

do not converge to stationary trajectories of I. Of course, this does not rule out the existence of

sequences ℎi for which convergence does take place, and non-convergence situations of the type

illustrated by the example can be readily avoided by a proper choice of sequence. The second

example shows that convergence of qℎ to q may fail due to non-transversality of the velocity with

respect to ∇V .

Example 2.4.2 Let V : ℝ2 → ℝ+ and suppose that V (x, y) = 1
2x

2. If m = 1, q0 = (1, 0)T , q̇0 =

(0, 1)T , then the solution q of (2.56) is given by q(t) = (cos(t), t)T . However, the solutions qℎ of

(2.58) are uniform motions in y-direction, i.e., qℎ(t) = (0, t)T , independently of ℎ.

While in this example the lack of convergence is due to the approximating trajectories not feeling

the force in x-direction, we show in the last example that even if there are no long time intervals

over which none of the level sets {V = kℎ} is hit, the approximating trajectory may fail to converge

to a solution of (2.56).

Example 2.4.3 Let V : ℝ2 → ℝ+, V (x, y) = 1
2 (x2 + y2) and assume that m = 1, q0 = (1, 0)T and

q̇0 = (0, )T ,  > 0. Let k = ⌊ 1
2ℎ⌋. Elementary geometric considerations show that dist(q0, {V =

(k+1)ℎ}) ≤ ℎ+o(ℎ) and, if qℎ hits the set {V = (k+1)ℎ}, then 
√

2ℎ+o(
√
ℎ) > q̇ℎ(t−)⋅n(q(t)) > 0.

If  < 1, then qℎ bounces and then indeed qℎ bounces whenever it hits the set {V = (k + 1)ℎ}, that

is the trajectory describes a polygon approximating the circle with radius 1 centered at 0. However,

the solution q of the continuum problem is q(t) = (cos(t),  sin(t))T and, hence, for  < 1, qℎ can

not converge to q (see Figure 2.3 for an illustration).
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Figure 2.3: Illustration of Example 2.4.3. Red line: Exact solution. Blue line: Energy-stepping
solution.

These examples suggest that the lack of convergence is connected to very slow motion in the

direction parallel to ∇V . As observed in Section 2.4.3, in one dimension this can be overcome by

a suitable selection of the initial conditions. This is due to the fact that in one dimension, energy

conservation furnishes a one-to-one correspondence between the initial velocity and the velocity

at a later time near a turning point. Analogously in higher dimensions, a proper choice of the

initial conditions could remedy the lack of the convergence that might appear at the first point the

continuum trajectory becomes non-transversal to an energy jump surface. However, there seems to

be no natural condition that would guarantee convergence also at later turning points. (Note that

energy conservation only gives control over the absolute value ∣q̇∣. In higher dimension ∣q̇ ⋅ ∇V ∣ can

be very small even if ∣q̇∣ is large.) Examples 2.4.2 and 2.4.3 have to be understood in this vein: Even

if the trajectory is well behaved initially on the time interval [0, t0], for example, convergence might

fail after time t0 > 0. This is indeed the case if (q(t0), q̇(t0)) assumes the value denoted (q0, q̇0) in

Example 2.4.2 or 2.4.3.

2.4.2 Convergence of transversal trajectories

In view of the preceding examples we introduce the following definition.

Definition 2.4.1 Let qℎ be a sequence of solutions of (2.58) and set Δqℎ,k := qℎ(tk+1) − qℎ(tk),
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where S(qℎ) = {t1, . . . , tNℎ
} is the jump set of q̇ℎ(t). We say that qℎ is transversal if

lim
ℎ→0

min
k

∣n(tk) ⋅ q̇ℎ(t−k )∣√
ℎ

=∞ and lim
ℎ→0

max
k

∣Δqℎ,k∣√
ℎ

= 0

Then, we have the following convergence result.

Theorem 2.4.4 Let q0 and q̇0 be given such that ∇V (q0) ⋅ q̇0 ∕= 0 and suppose qℎ solves (2.58) with

qℎ(0) = q0 and q̇ℎ(0+) = q̇0 for ℎ > 0. Then if the sequence qℎ is transversal, qℎ → q in W 1,p(0, T )

for each fixed T > 0 and all p <∞, where q is the unique solution of (2.56).

Proof. Since V is bounded from below, we have ∥qℎ∥L∞ , ∥q̇ℎ∥L∞ ≤ C for some constant C inde-

pendent of ℎ. Therefore, by passing if necessary to a subsequence we can assume that

qℎ
∗
⇀ q in W 1,∞ (2.68)

for some q ∈W 1,∞, and thus qℎ → q uniformly. Let ' ∈ C([0, T ];ℝd). Then

∫ T

0

ℎ
∑

t∈S(qℎ)

�(qℎ(�), q̇ℎ(�−), q̇ℎ(�+))n(qℎ(�)) ⋅ '(�)�t(d�) =

ℎ

Nℎ∑
k=1

�(qℎ(tk), q̇ℎ(t−k ), q̇ℎ(t+k ))n(qℎ(tk)) ⋅ '(tk) (2.69)

where t1 < t2 < . . . < tN are such that {t1, . . . , tN} = S(qℎ) = {t : V (qℎ(t)) ∈ ℎℕ}. By transversal-

ity, ∣Δqℎ,k∣ → 0 as ℎ→ 0 uniformly in k and q̇ℎ(t+k ) ⋅n(qℎ(tk+1)) = q̇ℎ(t−k+1) ⋅n(qℎ(tk+1)) /∈ (0,
√

2ℎ
m ).

Therefore, we have

ℎ = ∣V (qℎ(tk+1))− V (qℎ(tk))∣ =∣∣∣∣∇V (qℎ(tk)) ⋅Δqℎ,k +
1

2
D2V (�kqℎ(tk) + (1− �k)(tk+1))(Δqℎ,k)2

∣∣∣∣ =∣∣∣∣∇V (qℎ(tk)) ⋅ q̇ℎ(tk+)(tk+1 − tk) +
1

2
D2V (qℎ(�k))(Δqℎ,k)2

∣∣∣∣ (2.70)
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for some �k ∈ (0, 1), resp., �k ∈ (tk, tk+1). Again, by transversality we obtain

ℎ = ∣∇V (qℎ(tk)) ⋅ q̇ℎ(tk+)∣(tk+1 − tk) + o(ℎ) (2.71)

Next we note that ∣�∣ ≤ C
√
ℎ since, if q̇(t−) ⋅ n(q(t)) ≥

√
2ℎ
m , then

q̇(t+) + q̇(t−)

2
⋅ n(q(t)) ≤ q̇(t−)

2
⋅ n(q(t)) (2.72)

whereas, if q̇(t−) ⋅ n(q(t)) ≤ 0, then

q̇(t+) + q̇(t−)

2
⋅ n(q(t)) ≤ q̇(t+)

2
⋅ n(q(t)) ≤ −C

√
ℎ (2.73)

From these bounds we obtain ∣q̇ℎ(t−k )− q̇ℎ(t+k )∣ ≤ C
√
ℎ. As ∣n(tk) ⋅ q̇ℎ(t−k )∣ ≫

√
ℎ, this in turn implies

that

ℎ =

∣∣∣∣∇V (qℎ(tk)) ⋅
q̇ℎ(t−k ) + q̇ℎ(t+k )

2

∣∣∣∣ (tk+1 − tk) + o(ℎ) (2.74)

It now follows that

∫ T

0

ℎ
∑

t∈S(qℎ)

∇V (qℎ(�)) ⋅ '(�)

∣∇V (qℎ(�)) ⋅ q̇ℎ(�+)+q̇ℎ(�−)
2 ∣

�t(d�) = ℎ

Nℎ∑
k=1

∇V (qℎ(tk)) ⋅ '(tk)

∣∇V (qℎ(tk)) ⋅ q̇ℎ(t+k )+q̇ℎ(t−k )

2 ∣
=

Nℎ∑
k=1

∇V (qℎ(tk)) ⋅ '(tk)(tk+1 − tk) + o(1) (2.75)

where we note that Nℎ ≤ Cℎ−1. As qℎ → q uniformly as ℎ→ 0 and

max
k
∣tk+1 − tk∣ ≤

∣Δqℎ,k∣
∣q̇ℎ(t−k+1)∣

≪
√
ℎ√
ℎ

= 1 (2.76)

we obtain by a Riemann sum argument that the last term converges to

∫ T

0

∇V (q(t)) ⋅ '(t)dt. We

have thus shown that the right hand side of (2.58) converges weak-* in measure to −∇V (q). But

then, as q̈ℎ → q̈ in the sense of distributions, we can take the limit ℎ → 0 on both sides of the
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Euler-Lagrange equations (2.58) to conclude that q satisfies the limiting equation

mq̈(t) = −∇V (q(t)) (2.77)

We next have to show that q satisfies the proper initial conditions. Clearly q(0) = q0 since qℎ → q

uniformly. To prove q̇(0) = q̇0, we may assume, without loss of generality, that q̇0 ⋅ n(x) ≥ c for

some c > 0 and all x in a neighborhood U of q0 (the case ≤ −c is analogous). As the velocities

are bounded in terms of V and q̇0, we may choose s > 0 such that qℎ(t) ∈ U for all ℎ > 0 and all

t ∈ [0, s]. Now let sℎ ∈ S(qℎ) be the smallest time in [0, s] such that q̇ℎ(s+
ℎ ) ⋅ n(q(sℎ)) ≤ c

2 if such a

time exists, sℎ := s otherwise. Then, since #(S(qℎ) ∩ [0, sℎ]) ≤ Csℎℎ
−1 and � ≤ Cℎ on qℎ∣(0,s), it

follows that

∣q̇ℎ(t)− q̇ℎ(t̃)∣ ≤ Csℎ for t̃ ∈ [0, sℎ] (2.78)

In particular, if sℎ < s, then ∣q̇0 − q̇ℎ(s+
ℎ )∣ ≥ c

2 and therefore sℎ ≥ C for some constant C > 0.

Choosing s sufficiently small, again from (2.78) we deduce that

∣q̇ℎ(0+)− q̇ℎ(t)∣ ≤ Cs for t ∈ [0, s] (2.79)

and, since q̇ℎ∣[0,s] ⇀ q̇∣[0,s] in L∞(0, T ),

∣q̇ℎ(0+)− q̇(t)∣ ≤ Cs for t ∈ [0, s] (2.80)

Now sending s → 0 proves the claim. By the uniqueness of the solutions of (2.56), we additionally

conclude that the entire sequence qℎ converges weak-* to q in W 1,∞. But then qℎ → q uniformly

and, hence, ∥q̇ℎ∥2L2 → ∥q̇∥2L2 since

1

2
(q̇ℎ)2 + V (qℎ) = Eℎ → E =

1

2
(q̇)2 + V (q) (2.81)

By virtue of the boundedness of ∣q̇ℎ∣, the convergence is indeed strong in W 1,p for all p <∞.
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2.4.3 Discussion of the transversality condition

We conclude this section with a formal argument that, for generic initial data, we may expect

convergence of the approximating trajectories beyond turning points. This conjecture is born out

by the numerical tests presented in subsequent sections, which suggest that the energy-stepping

trajectories may be expected to converge in practice.

In one dimension the argument can be made precise. Assume that q̇ℎ (0) ∕= 0. Then, the

conserved total energy of the system is E = m
2 q̇

2
0 + Vℎ(q0) and the exact trajectory is a periodic

motion between two turning points. We additionally suppose that V ′ ∕= 0 at the turning points.

Within a finite time interval these points are met finitely often. Under these conditions, convergence

fails if and only if the time spent by the trajectory on the highest energy level near the turning

points does not converge to zero. As in Example 2.4.1, we see that such is the case if and only if

lim sup
ℎ→0

Δt = lim sup
ℎ→0

Δq√
2E−kℎm

∕= 0 (2.82)

with k =
⌊
E
ℎ

⌋
and Δq = qk+1 − qk with V (qk) = kℎ and V (qk+1) = kℎ + ℎ. Now for Δq near a

turning point q we obtain

Δq =
ℎ

V ′(q)
+O(ℎ2) (2.83)

and Δq scales with ℎ. From (2.82), it follows that convergence fails if

lim inf
ℎ→0

E − kℎ
ℎ2

<∞ (2.84)

However, generically E − kℎ is of the order ℎ. The probability of spending a finite amount of time

near a turning point is therefore asymptotically less than ℎ� ≪ 1 for any � < 1. Thus, as surmised

in connection with Example 2.4.1, it is always possible to select sequences ℎi such that the stationary

trajectories of Iℎi converge to trajectories of I. Figure 2.4 illustrates the typical behavior of Δt(ℎ)

when the trajectory is in the vicinity of a turning point. It is evident in the figure that Δt(ℎ) indeed

becomes vanishingly small as ℎ→ 0 on the complement of an exceptional set of small measure.
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Figure 2.4: The behavior of Δt(ℎ) near a turning point.

In arbitrary dimension, for smooth V the motion near a turning point q may be decomposed

into a component parallel to the energy jump surface and a transverse component in the direction of

∇V (q) (cf. Equation (2.28)). In this transverse direction the motion is ostensibly one-dimensional

and we expect the preceding argument applies. In order to render this formal argument rigorous

we would need an estimate ensuring that the energy associated with the transverse motion at the

turning point is not too small. However, no such estimate is known to us for general systems.

2.5 Numerical examples

Next, we present selected examples of application that showcase the conservation, accuracy, long-

term behavior and convergence properties of energy-stepping. We select two areas of application

where those properties play an important role. For instance, good long-term behavior is essential for

purposes of computing equilibrium thermodynamic properties in molecular dynamics. Good energy

conservation properties are likewise important in elastic collision problems, especially in many-body

problems where the fine structure of collisions may influence significantly the overall behavior of the

system. We illustrate the performance of energy-stepping in those areas of application by means of

three examples: the dynamics of a frozen argon cluster, the dynamics of a spinning elastic cube, and

the dynamics of two colliding elastic spheres.



35

2.5.1 Frozen argon cluster

Molecular dynamics falls squarely within the framework considered in this chapter. Many appli-

cations in materials science, such as the calculation of free energies, require the integration of the

system over long periods of time. In these applications, it is essential that the time integrator have

good long-time behavior, such as conferred by symplecticity and exact conservation properties.

The velocity Verlet scheme, which is identical to Newmark’s method (cf., for example [42]) of

structural dynamics, is perhaps the most widely used time-integration scheme in molecular dynamics.

The constant time-step velocity Verlet scheme is symplectic-momentum preserving and, therefore,

does not conserve energy. As it is often the case with symplectic-momentum preserving methods,

it nevertheless has good energy-conservation properties for sufficient small time steps. However,

due to the conditional stability of the method the time-step is constrained by the period of ther-

mal vibrations of the atoms, which renders calculations of equilibrium thermodynamic properties

exceedingly costly. The development of integration schemes that alleviate or entirely eliminate the

time-step restrictions of explicit integration in molecular dynamics applications is the subject of

ongoing research (cf., for example [36,38]).

We proceed to illustrate the performance of energy-stepping in molecular dynamics applica-

tions by analyzing the dynamics of a simple argon cluster. Specifically, we consider the numerical

experiment proposed by Biesiadecki and Skeel [5]. The experiment concerns the two-dimensional

simulation of a seven-atom argon cluster, six atoms of which are arranged symmetrically around the

remaining central atom, Figure 2.5. The atoms interact via the pairwise Lennard-Jones potential

� (r) = 4"

[(�
r

)12

−
(�
r

)6
]

(2.85)

where r is the distance between two atomic centers, "/kB = 119.8 K and � = 0.341 nm are material

constants for Argon, and kB = 1.380658 ⋅ 10−23 J/K is the Boltzmann’s constant. In addition, the

mass of an argon atom is m = 66.34 ⋅ 10−27 kg. The initial positions of the atoms are slightly

perturbed about the configuration that minimizes the potential energy of the cluster. The initial
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velocities are chosen such that the total linear momentum is zero and the center of mass of the

cluster remains fixed. The corresponding total energy of the cluster is E/" = −10.519. Table 2.1

summarizes the initial conditions for the simulation.

Figure 2.5: Frozen argon cluster.

Atom 1 2 3 4 5 6 7

Position [nm] 0.00 0.02 0.34 0.36 −0.02 −0.35 −0.31
0.00 0.39 0.17 −0.21 −0.40 −0.16 0.21

Velocity [nm/nsec] −30 50 −70 90 80 −40 −80
−20 −90 −60 40 90 100 −60

Table 2.1: Frozen argon cluster: initial conditions.

Three different energy steps are employed in the energy-stepping calculations: ℎ1 = E0/100,

ℎ2 = E0/60 and ℎ3 = E0/30. The time steps employed in the velocity Verlet calculations are

Δt1 = 56.98 fsec, Δt2 = 87.56 fsec and Δt3 = 124.88 fsec. These time steps correspond to the

average time steps resulting from the respective energy-stepping calculations. The total duration of

the analysis is 100 nsec.

Figure 2.6 shows the evolution in time of the total energy. As expected, energy-stepping is energy

preserving regardless the energy-step employed. By way of sharp contrast, whereas velocity Verlet

has remarkable energy behavior for the short time step, it becomes unstable for the intermediate

time step and blows up for the larger time step. This blow-up behavior is expected owing to the

conditional stability of velocity Verlet.

In order to assess the long-time behavior of energy-stepping, we study the qualitative behavior

of the trajectories of the argon atoms for a time window of [99.95, 100] nsec, corresponding to the
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Figure 2.6: Frozen argon cluster. Top left: Energy-stepping. Top-right: Velocity Verlet, Δt1 = 56.98
fsec. Bottom-left: Velocity Verlet, Δt2 = 87.56 fsec. Bottom-right: Velocity Verlet, Δt3 = 124.88
fsec.
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Figure 2.7: Trajectories of argon atoms for a time window of [99.95, 100] nsec. The dashed line
hexagon represents the initial position of the atoms. Top-left: velocity Verlet, Δt = 10 fsec. Top-
right: Energy-stepping, ℎ1 = E0/100. Bottom-left: Energy-stepping, ℎ2 = E0/60. Bottom-right:
Energy-stepping, ℎ3 = E0/30.
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last 50, 000 fsec of the simulations. A velocity Verlet solution computed with a time step equal to

Δt = 10 fsec is presumed to be ostensibly converged and is used by way of reference. Trajectories

of the seven argon atoms, each represented by a different color, are depicted in Figure 2.7 and

the configuration at t = 0 is represented by the dashed line hexagon. A notable feature of the

energy-stepping trajectories is that, even for large time steps, they remain stable over long periods

of time.

Finally, the convergence statement of Theorem 2.4.4 is illustrated by Figure 2.8. We first recall

that, as demonstrated in Section 2.4, the approximate space of trajectories is X = W 1,p(0, T ),

p <∞, and of particular interest is the space H1(0, T ) := W 1,2(0, T ). Then, distances are measured

with respect to the H1-norm

∥q∥H1(0,T ) =

(∫ T

0

(
∣q(t)∣2 + ∣q̇(t)∣2

)
dt

)1/2

(2.86)

and a relative H1-error is defined by

H1-error =

∣∣∥qℎ∥H1(0,T ) − ∥q∥H1(0,T )

∣∣
∥q∥H1(0,T )

(2.87)

where ∥q∥H1(0,T ) is estimated from numerical results. The relative H1-error is shown on the left

side of Figure 2.8 as a function of the energy step, for T = 1 nsec. The slope of the convergence plot

is also directly related to the rate of convergence in energy step ℎ, that is H1-error = O(ℎr). This

gives an estimated rate of convergence in the H1-norm of r ≃ 1/2. Furthermore, it is interesting to

observe on the right side of Figure 2.8 that the average and the maximum time steps selected by

energy-stepping are O(ℎ) and O(ℎ1/2), respectively. Therefore, the sequence qℎ is indeed convergent,

transversal, and limℎ→0 maxk Δtk = 0, as expected from the discussion in Section 2.4.3.

2.5.2 Finite-element models

Next we consider finite-dimensional Lagrangian systems obtained by a finite-element discretization

of the action of a nonlinear elastic solid (cf., e. g., [51] for details of finite-element approximation
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Figure 2.8: Convergence analysis of the frozen argon cluster. Left: Convergence is observed in the
H1-norm with estimated convergence rate of r ≃ 1/2. Right: The average (★) and the maximum
(∙) time steps selected by energy-stepping are O(ℎ) and O(ℎ1/2), respectively.

in elastodynamics). For these applications, the generalized coordinates q of the system are the

coordinates of the nodes in the deformed configuration of the solid. We present two numerical

examples which illustrate the performance of energy-stepping in that area of application. The first

example concerns the dynamics of a spinning neo-Hookean cube, the second concerns the collision

of two neo-Hookean spheres. In all applications, we assume a strain-energy density of the form

W (F ) =
�0

2
(log J)

2 − �0 log J +
�0

2
tr
(
FTF

)
(2.88)

which describes a neo-Hookean solid extended to the compressible range. In this expression, �0 and

�0 are the Lamé constants.

In problems involving contact we additionally consider the kinematic restrictions imposed by the

impenetrability constraint. We recall that the admissible configuration set C of a deformable body

is the set of deformation mappings which are globally one-to-one. In so-called barrier methods,

the interpenetration constraint may be accounted for by adding the indicator function IC (q) of the

admissible set C to the energy of the solid. We recall that the indicator function of a set C is the

extended-valued function

IC (q) =

⎧⎨⎩
0 if q ∈ C

∞ otherwise

(2.89)
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Kane et al. [41] and Pandolfi et al. [68] have provided a computationally convenient characterization

of the admissible set C for polyhedra, such as result from a discretization of the domain ℬ by

simplices, as the set of configurations that are free of intersections between any pair of element faces,

Figure 2.9. Thus, q ∈ C if no pair of element faces intersect, q ∕∈ C otherwise. Often in calculations,

the indicator function IC is replaced by a penalty approximation IC,� ≥ 0 parameterized by a small

parameter � > 0 and such that IC,� = 0 over C. In this approach, as � → 0, IC,� → IC pointwise

and interpenetration is increasingly penalized. A convenient choice of penalty energy function for

contact is of the form (Kane et al. [41] and Pandolfi et al. [68]

IC,�(q) =
1

2�

∑
�∈I

g�(q) (2.90)

where the index set I ranges over all pairs of boundary faces and

g� (q) =

⎧⎨⎩
0, if the faces do not intersect

∥A−B∥2 , otherwise

(2.91)

where A and B are the two extreme points of the intersection between a pair of simplices, as shown

in Figure 2.9. It follows from the invariance properties of the admissible set C that IC (q) and IC,� (q)

are themselves invariant under the action of translations and rotations. It therefore follows that the

constrained Lagrangian retains its energy and momentum preserving properties.

Figure 2.9: Three types of intersections between boundary simplices.

The application of energy-stepping to dynamical problems subject to set constraints, and in

particular to dynamic contact problems, is straightforward. The case in which the constraints are
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represented by means of a penalty energy function IC,� falls right within the general framework

and requires no special considerations. In addition, energy-stepping provides an efficient means of

enforcing set constraints exactly. Thus, suppose that the set constraints are accounted for by the

addition of the corresponding indicator function IC to the energy, as discussed earlier. Then, the

boundary ∂C of the admissible set is an energy step of infinite height that necessarily causes the

energy-stepping trajectory to reflect. In this case, the only modification of the algorithm that is

required consists of restricting the solution of (4.39) to the admissible set C. When the admissible set

is the intersection of the zero sets of non-negative constraint functions {g�, � ∈ I}, this restriction

simply corresponds to choosing ti+1 as the minimum of the solution of (4.39) and of the solutions of

g� (qi + (ti+1 − ti) q̇i) = 0+ (2.92)

In particular, collision is automatically captured by the intrinsic time adaption of energy-stepping

(cf., for example [10, 80], for a detailed discussion of time-step selection considerations in contact

problems).

For purposes of assessing the performance of energy-stepping, in the subsequent examples we

draw detailed comparisons with the second-order explicit Newmark method, namely, the member

of the Newmark family of time-stepping algorithms corresponding to parameters � = 0 and  =

1/2 (cf., for example [42] for a detailed account of Newmark’s method). In the linear regime,

explicit Newmark is second-order accurate and conditionally stable, with a critical time step equal

to twice over the maximum natural frequency of the system. As already noted, explicit Newmark

is identical to velocity Verlet. For constant time step it is also identical to central differences.

It can also be shown that the Newmark solution is in one-to-one correspondence, or shadows, the

solution of the trapezoidal-rule variational integrators (cf., for example [42]). Thus, explicit Newmark

provides a convenient representative of a time-integrator commonly used in molecular dynamics,

finite-differencing and variational integration.

Detailed analyses of the implicit members of the Newmark family of algorithms, their stability
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and energy preserving properties (for linear systems) were given in Belytschko and Schoeberle [4],

Hughes [35] and related papers.

2.5.2.1 Spinning neo-Hookean cube

Figure 2.10: Spinning neo-Hookean cube. Snapshots of the energy-stepping trajectory for ℎ = 10−5

at times t = 2 and t = 12.

Our next example concerns the spinning of a free-standing elastic cube of unit size. The mesh

comprises 12,288 4-node tetrahedral isoparametric elements and 2,969 nodes. The cube is a com-

pressible neo-Hookean solid characterized by a strain-energy density of the form (2.88). The values

of the material constants in (2.88) are: �0 = 0.0100, �0 = 0.0066, and � = 0.100. The cube is

imparted an initial angular velocity !0 = 1 about one of its axes. The material properties are

chosen such that the cube is compliant and undergoes nonlinear dynamics consisting of an overall

low-frequency rotation coupled to large-amplitude high-frequency vibrations. A sequence of snap-

shots of the energy-stepping trajectory corresponding to ℎ = 10−5 are shown on the left side of

Figure 2.10. The large-amplitude oscillations undergone by the spinning cube are evident in the

figure.

The motion of the point X = (0.5, 1.0, 1.0), the total energy, the potential energy, the kinetic

energy and the z-component of the total angular momentum are shown in Figs. 2.11, 2.12, and

2.13 for the energy-stepping solutions corresponding to ℎ = 1 ⋅ 10−5, ℎ = 3 ⋅ 10−5 and ℎ = 6 ⋅

10−5, respectively, and for Newmark solutions with Δt = 0.0082, Δt = 0.0204 and Δt = 0.0381,

respectively. In every case, the time step employed in the Newmark calculations is the average

time step of the corresponding energy-stepping trajectory. In Figure 2.11, an ostensibly converged



43

0 10 20 30 40 50 60 70 80
−0.5

0

0.5

1

1.5

Time

x

0 10 20 30 40 50 60 70 80
−0.5

0

0.5

1

1.5

Time

y

0 10 20 30 40 50 60 70 80
−0.5

0

0.5

1

1.5

Time

z

0 10 20 30 40 50 60 70 80
8.43

8.4305

8.431

8.4315
x 10

−3

Time

T
ot

al
 E

ne
rg

y

0 10 20 30 40 50 60 70 80
0

0.005

0.01

Time

V
 , 

T

0 10 20 30 40 50 60 70 80
−0.02

−0.018

−0.016

−0.014

Time

L z
Figure 2.11: Spinning neo-Hookean cube. Blue line: Energy-stepping solution with ℎ = 10−5. Black
line: Newmark solution with Δt = 0.0082. Red line: Newmark solution with Δt = 0.0001.
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Figure 2.12: Spinning neo-Hookean cube. Blue line: Energy-stepping solution with ℎ = 3 ⋅ 10−5.
Black line: Newmark solution with Δt = 0.0204.
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Figure 2.13: Spinning neo-Hookean cube. Blue line: Energy-stepping solution with ℎ = 6 ⋅ 10−5.
Black line: Newmark solution with Δt = 0.0381.

Newmark solution computed with a time step of Δt = 0.0001 is also shown for comparison.

0 0.02 0.04 0.06 0.08 0.1
0

1000

2000

3000

4000

5000

Time increment

F
re

qu
en

cy

0 0.02 0.04 0.06 0.08 0.1
0

500

1000

1500

2000

2500

Time increment

F
re

qu
en

cy

Figure 2.14: Spinning neo-Hookean cube. Histogram of time steps selected by energy-stepping. Left:
ℎ = 3 ⋅ 10−5. Right: ℎ = 6 ⋅ 10−5.

For the smaller energy and time steps, both the energy-stepping and Newmark solutions are

ostensibly converged up to a time of 80. It bears emphasis that no special precautions are taken to

ensure transversality of the energy-stepping trajectory, as defined in Definition 2.4.1, which provides

an indication that non-transversality is a rare event that is unlikely to turn up in practice. As

expected, both solutions additionally exhibit exact linear and angular momentum conversation.

In addition, the energy-stepping solution also exhibits exact energy conservation. By contrast, in
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Newmark’s solution the total energy, while bounded, drifts somewhat. These trends are accentuated

at the intermediate energy and time steps. By way of sharp contrast, at the larger energy and time

steps the stability, energy and momentum conservation properties of energy-stepping are maintained,

while the Newmark solution loses stability and blows up.

Finally, Figure 2.14 shows a histogram of the time steps selected by energy-stepping for the

intermediate and the largest energy steps. The broad range of time steps is noteworthy, as is the

scaling of the average time step with the energy step employed in the calculation. Thus, a small

(large) energy step results in comparatively smaller (larger) time steps on average, as expected.

Figure 2.14 also illustrates the automatic time-selection property of energy-stepping. This property

may in turn be regarded as the means by which energy-stepping achieves symplecticity and exact

energy conservation. It also bears emphasis that, unlike variable time-step variational integrators

designed to conserve energy [40, 51], energy-stepping always selects a valid (albeit possibly infinite)

time step and is therefore free of solvability concerns.

2.5.2.2 Dynamic contact of two neo-Hookean spherical balls

Figure 2.15: Collision of two neo-Hookean spherical balls.

Our last example concerns the collision of two free-standing elastic balls of unit radius, Fig-

ure 2.15. The mesh of each ball comprises 864 4-node tetrahedral isoparametric elements and 250

nodes. The ball is a compressible neo-Hookean solid characterized by a strain-energy density of the

form (2.88). Initially, one of the balls is stationary, whereas the other ball is imparted an initial
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head-on velocity of magnitude 5 and and angular velocity of magnitude !0 = 2.5 about an axis per-

pendicular to the relative position vector between the centers of the balls. The values of the material

constants in (2.88) are �0 = 1.154 ⋅108, �0 = 7.96 ⋅107, and � = 7, 800. As in the preceding example,

the material properties are chosen such that the balls are compliant and undergo nonlinear dynam-

ics consisting of an overall rigid-body motion coupled to large-amplitude high-frequency vibrations.

The contact constraint is enforced using the penalty energy (2.90) and (2.91) with � = 10−7.

Figure 2.16 compares the time histories of total energy, potential energy, kinetic energy, and

time step attendant to the energy-stepping trajectory for ℎ = 103 and Newmark’s trajectory for

Δt = 3 ⋅ 10−5, the latter chosen to be within the range of stability of the Newmark method.

As expected, the kinetic energy of the system is partly converted to potential energy during the

approach part of the collision sequence, and vice versa during the release part. We recall that period

elongation, causing solutions to lag in time, is indeed a principal measure of the loss of accuracy of

Newmark’s method with increasing time step (cf., e. g., [35]). In this regard it is interesting to note

that, despite the selection of a time step much smaller than the average energy-stepping time step,

the Newmark kinetic and potential energies lag behind the corresponding energy-stepping energies.

Also characteristically, energy-stepping is observed to conserve energy exactly through the collision,

whereas the Newmark energy history, while bounded, drifts somewhat. Other notable features of

the calculations are the ability of energy-stepping to detect the time of collision (∼ 0.1) and to

automatically modulate the time-step so as to resolve the fine structure of the intricate interactions

that occur through the collision.

Figure 2.17 shows the time history of the center-of-mass linear and angular velocities of each of

the balls and of the entire system. The center-of-mass linear and angular velocities of a system are

defined as the total linear and angular momenta divided by the total mass, respectively. Because the

system is free of external forces, the total linear and angular momentum of the system is conserved

through the collision. We note from Figure 2.17 that the energy-stepping trajectory does indeed

conserve total linear and angular momentum exactly. We also note that the transfer of linear

momentum from incoming to target ball is largely in the direction of impact, with slight amounts
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Figure 2.16: Collision of two neo-Hookean spherical balls. Blue line: Energy-stepping solution with
ℎ = 103. Black line: Newmark solution with Δt = 3 ⋅ 10−5.

of transfer of linear momentum in the transverse direction and of angular momentum owing to

asymmetries in the mesh.

It is interesting to compare the results of the finite-element calculations with the classical theories

of impact between smooth rigid bodies (see, e. g., reference [22]) and of Hertzian contact between

elastic bodies. For two rigid spheres undergoing head-on impact, with the target sphere initially

stationary and the incoming sphere having initial speed v0 and angular velocity !0, a conventional

way of expressing the final linear and angular velocities is in terms of the coefficient of restitution

e. For two spheres of the same mass one has

Tf
T0

=
1

2
(1 + e2) (2.93)

where T0 and Tf are the initial and final kinetic energies of the center-of-mass motion. For the
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Figure 2.17: Collision of two neo-Hookean spherical balls. Energy-stepping solution with ℎ = 103.

energy-stepping trajectory the final center-of-mass velocities of the balls are

V1,f = (−4.91, 0.31, 0.35) , Ω1,f = (0.001, 0.067,−0.044) (2.94a)

V2,f = (−0.09,−0.31,−0.35) , Ω2,f = (−0.001, 1.005, 0.044) (2.94b)

which roughly corresponds to a coefficient of restitution of e = 0.964. For elastic collisions, the

coefficient of restitution provides a simple measure of the fraction of translational kinetic energy that

is transferred into vibrational energy along a specific trajectory. We note, however, the coefficient

of restitution is not constant but varies from trajectory to trajectory.

Another useful reference point is provided by the Hertzian theory of elastic contact (cf., e. g., [22]).

While the theory applies to bodies in static equilibrium only, the resulting laws of interaction are

often used to describe the dynamics of systems of spheres [22]. When applied in this manner, the

theory predicts a contact duration time

� = 4.53

[
1− �2

E

4

3
R3�

]2/5 [
2

v0R

]1/5

(2.95)

where E is Young’s modulus, � Poisson’s ratio, � is the mass density, R is the radius of the spheres
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and v0 is the impact velocity. For the problem under consideration, this formula gives � = 0.069,

whereas the value computed from the energy-stepping solution is � = 0.0476. Thus, while Hertzian

theory does provide a rough estimate of the contact time an accurate interpretation of experiments

may require more detailed analyses such as presented here.

2.6 Summary and discussion

We have formulated a new class of time-integration schemes for Lagrangian mechanics, which we re-

fer to as energy-stepping, that are momentum and energy conserving, symplectic and convergent. In

order to achieve these properties we adopt a strategy that may be viewed as the reverse of backward-

error analysis. Thus, whereas backward-error analysis seeks to identify a nearby Lagrangian system

that is solved exactly by the solutions generated by a numerical integrator, the approached followed

here is to directly replace the system by a nearby one that can be solved exactly. We have specifi-

cally investigated piecewise constant approximations of the potential energy obtained by replacing

the original potential energy by a stepwise or terraced approximation at steps of uniform height.

By taking steps of diminishing height, an approximating sequence of energies is generated. The

trajectories of the resulting approximating Lagrangians can be characterized explicitly and consist

of intervals of piecewise rectilinear motion. We have shown that the energy-stepping trajectories

are symplectic, exactly conserve all the momentum maps of the original system and, subject to

a transversality condition, converge to trajectories of the original system when the energy step is

decreased to zero. These properties are born out by selected examples of application, including

the dynamics of a frozen Argon cluster, the spinning of an elastic cube and the collision of two

elastic spheres. These examples additionally showcase the excellent long-term behavior of energy-

stepping, its automatic time-step selection property, and the ease with which it deals with systems

with constraints, including contact problems.

It is suggestive to note that in classical Hamiltonian mechanics energy and time are conjugate

variables. Conventional integration schemes are based on discretizing time, and the energy history

then follows as a corollary to the integration scheme. By contract, energy-stepping may be regarded
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as the result of discretizing energy, with the time increments then following from the integration

scheme. In this manner, energy-stepping schemes may be regarded as dual to time-stepping schemes.

We close by pointing out some limitations of our analysis and possible avenues for extensions of

the approach.

Firstly, our convergence analysis relies on a technical condition of transversality of the energy-

stepping trajectory. It is possible that such a transversality condition can be relaxed if slight adjust-

ments of the initial conditions are allowed and by assuming suitable lower bounds on the curvature

of the energy surface. Indeed, our experience with selected numerical tests appears to indicate that

the transversality condition is not of major concern in practice. However, a more clear delineation

of essential and inessential conditions for the convergence of energy-stepping is desirable, if beyond

the scope of this work.

Secondly, it is clear that a piecewise energy approximation of the potential energy is not the

only—perhaps even the best—approximation that generates exactly solvable Lagrangians. A case in

point consists of piecewise linear approximations of the potential energy over a simplicial grid. The

corresponding approximating trajectories are piecewise parabolic and correspond to free fall within

each of the simplices of the energy grid. Since the corresponding force field is piecewise constant

the time-integration scheme thus defined may be thought of as force-stepping. The convergence

properties of force-stepping are in fact much more readily established that those of energy stepping.

However, a drawback of force stepping is that the approximating Lagrangian necessarily breaks some

of the symmetries of the original Lagrangian in general. The systematic investigation of approxima-

tion schemes of the type proposed here, the elucidation of their properties and the determination of

the best types of approximating Lagrangians in each area of application, are worthwhile directions

of future research.
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Appendix: Verification of the symplecticity of energy-stepping

integrators

We proceed to verify that the identities (2.52) are identically satisfied by the energy-stepping scheme.

For simplicity of notation and without loss of generality we take the mass matrix to be of the form

M = mI. In addition, it suffices to consider mappings defined by the trajectory depicted in Fig. 2.2,

the general result then following by recursion. Evidently, the symplectic form is trivially conserved

for t ∈ [t0, t1), where t1 is the time of intersection with the potential energy jump. For t ∈ (t1, t2),

the dependence of t1 on the initial conditions (q̇0, q0) must be carefully accounted for. The following

relations are readily computed:

∂t1
∂q̇0

= (t1 − t0)
∂t1
∂q0

= − t1 − t0
q̇0 ⋅ n1

n1 = −
∣∣∣∣ ∂t1∂q̇0

∣∣∣∣n1

∂n1

∂q̇0
= (t1 − t0)

∂n1

∂q0

∂n1

∂q0
=

D2V1

∥∇V1∥
− n1 ⊗ n1 ⋅D2V1

∥∇V1∥
− D2V1 ⋅ q̇0 ⊗ n1

∥∇V1∥ (q̇0 ⋅ n1)
+

(
n1 ⋅D2V1 ⋅ q̇0

)
n1 ⊗ n1

∥∇V1∥ (q̇0 ⋅ n1)

For t ∈ (t1, t2) we have

q̇(q0, q̇0, t) = q̇0 + �1n1

q(q0, q̇0, t) = q0 + (t− t0) q̇0 + (t− t1)�1n1

where �1 = �1(q0, q̇0) = −q̇0 ⋅ n1 + sign(ΔV )
√

(q̇0 ⋅ n1)
2 − 2ΔV

m and

∂�1

∂q̇0
=

−�1

q̇0 ⋅ n1 + Δq̇
n1 + (t1 − t0)

∂�1

∂q0

∂�1

∂q0
= − �1

∥∇V1∥ (q̇0 ⋅ n1 + �1)
q̇0 ⋅D2V1 +

�1 (q̇0 ⋅ n1)

∥∇V1∥ (q̇0 ⋅ n1 + �1)
n1 ⋅D2V1

+
�1

(
q̇0 ⋅D2V1 ⋅ q̇0

)
− �1

(
n1 ⋅D2V1 ⋅ q̇0

)
(q̇0 ⋅ n1)

(q̇0 ⋅ n1 + �1) ∥∇V1∥ (q̇0 ⋅ n1)
n1
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From these identities, the components of the Jacobian matrix T' are found to be

Pq =
�1

∥∇V1∥
D2V1 −

�1�1

∥∇V1∥ (q̇0 ⋅ n1 + �1)
n1 ⊗ n1 ⋅D2V1 −

�1

∥∇V1∥ (q̇0 ⋅ n1 + �1)
n1 ⊗ q̇0 ⋅D2V1

− �1

∥∇V1∥ (q̇0 ⋅ n1)
D2V1 ⋅ q̇0 ⊗ n1 +

�1 (q̇0 + �1n1) ⋅
(
D2V1 ⋅ q̇0

)
(q̇0 ⋅ n1 + �1) ∥∇V1∥ (q̇0 ⋅ n1)

n1 ⊗ n1

Qq = (t− t1)Pq +

[
I +

�1

q̇0 ⋅ n1
n1 ⊗ n1

]
Pp = I − �1

(q̇0 ⋅ n1 + �1)
n1 ⊗ n1 + (t1 − t0)Pq

Qp = (t− t1)Pp + (t1 − t0)

[
I +

�1

q̇0 ⋅ n1
n1 ⊗ n1

]

In addition,

PTp Qp = (t− t1)PTp Pp + (t1 − t0) I + (t1 − t0)
2
PTq ⋅

[
I +

�1

q̇0 ⋅ n1
n1 ⊗ n1

]
= sym

QTq Pq = (t− t1)PTq Pq +

[
I +

�1

q̇0 ⋅ n1
n1 ⊗ n1

]
⋅ Pq = sym

PTp Qq = QTp Pq + I = I + (t− t1)

[
I − �1

q̇0 ⋅ n1 + �1
n1 ⊗ n1

]
⋅ Pq

+ (t1 − t0) (t− t1)PTq Pq + (t1 − t0)PTq ⋅
[
I +

�1

q̇0 ⋅ n1
n1 ⊗ n1

]

and the symplecticity relations (2.52) follow from the identity

[
I +

�1

q̇0 ⋅ n1
n1 ⊗ n1

]
⋅ Pq = sym =

�1

∥∇V1∥
D2V1 +

�1

(
q̇0 ⋅D2V1 ⋅ q̇0

)
∥∇V1∥ (q̇0 ⋅ n1)

2 n1 ⊗ n1

− �1

∥∇V1∥ (q̇0 ⋅ n1)

[
D2V1 ⋅ q̇0 ⊗ n1 + n1 ⊗ q̇0 ⋅D2V1

]

The symplecticity of the energy-stepping scheme is thus directly verified.
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Chapter 3

Force-stepping integrators

We formulate an integration scheme for Lagrangian mechanics, referred to as the force-stepping

scheme, that is symplectic, energy conserving, time-reversible and convergent with automatic se-

lection of the time step size. The scheme also conserves approximately all the momentum maps

associated with the symmetries of the system. Exact conservation of momentum maps may addi-

tionally be achieved by recourse to Lagrangian reduction. The force-stepping scheme is obtained by

replacing the potential energy by a piecewise affine approximation over a simplicial grid, or regular

triangulation. By taking triangulations of diminishing size, an approximating sequence of energies

is generated. The trajectories of the resulting approximate Lagrangians can be characterized explic-

itly and consist of piecewise parabolic motion, or free fall. Selected numerical tests demonstrate the

excellent long-term behavior of force-stepping, its automatic time-step selection property, and the

ease with which it deals with constraints, including contact problems.
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3.1 Introduction

In a recent paper [24] and in Chapter 2, the authors have proposed a method of approximation for

Lagrangian mechanics consisting of replacing the Lagrangian L(q, q̇) of the system by a sequence of

approximate Lagrangians Lℎ(q, q̇) that can be solved exactly. The approximate solutions qℎ(t) are

then the exact trajectories of Lℎ(q, q̇). In this manner, the approximate solutions are themselves

trajectories of a Lagrangian system and, therefore, have many of the properties of such trajecto-

ries such as symplecticity and exact energy conservation. If, in addition, the approximation of the

Lagrangian preserves its symmetry group, then the approximate trajectories conserve all the mo-

mentum maps of the system. It bears emphasis that, in contrast to variational integrators (cf.,

e. g., [52, 53, 58]), the momenta that are conserved are the exact momenta of the system and not

some time discretization thereof. Finally, if the approximate Lagrangians Lℎ(q, q̇) converge to the

exact one L(q, q̇) in a topology that implies, in particular, convergence of stationary points, then

the approximate trajectories qℎ(t) converge to exact trajectories q(t) of the original system.

In [24], this program has been carried out in full for Lagrangians of the type: L(q, q̇) =

K(q̇)− V (q), with K(q̇) a quadratic form, and for approximate Lagrangians of the type Lℎ(q, q̇) =

K(q̇) − Vℎ(q), with Vℎ(q) a terraced piecewise constant approximation to V (q), Figure 2.1b. This

type of approximation does indeed result in exactly solvable Lagrangians. The approximate trajec-

tories are piecewise rectilinear, with the intervals of rectilinear motion spanning consecutive level

contours of the potential. Conveniently, the terraced potential Vℎ(q) has all the symmetries of the

original potential V (q), and the approximate trajectories exactly conserve all the momentum maps

of the system, whether explicitly known or not. The durations of the intervals of rectilinear motion

may be regarded as time steps, whose determination is part of the solution process. In this manner,

the approach overcomes an intrinsic limitation of fixed time-step variational integrators, which can-

not simultaneously conserve energy, the symplectic structure and other conserved quantities, such

as linear and angular momenta [19]. Under mild restrictions on the potential, the approximate

trajectories are found to indeed converge to exact trajectories of the system, subject to technical

transversality constraints.
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The terraced piecewise constant approximation of the potential considered in [24] may be thought

of as the lowest-order approximation that results in convergence. Evidently, approximations of in-

creasing order can be obtained by recourse to piecewise polynomial interpolation of the potential. In

this chapter, we consider the next order of approximation consisting of approximate potentials Vℎ(q)

obtained by piecewise-linear interpolation of V (q) over structured simplicial meshes, Figure 2.1c. Ev-

idently, within each simplicial element in the interpolation mesh, the forces are constant, hence the

term force-stepping, and the system is in free fall. In particular, the approximate Lagrangian can be

solved exactly and the approximate trajectories are piecewise quadratic. In Section 3.3, we provide

an efficient implementation of the scheme that establishes its feasibility in practical, possibly high-

dimensional, applications. In particular, we show in Section 3.6 that the typical numbers of time

steps, or time intervals between crossings of simplicial boundaries, and their sizes are within the

expected range for explicit integration. In Section 3.5, we show that the approximate trajectories

thus computed do indeed converge to exact trajectories of the system.

However, the matter of conservation requires careful attention as the piecewise-linear approximate

Lagrangians break the symmetries of the system in general, which in turn results in a lack of exact

momentum conservation of the force-stepping scheme. This symmetry breaking raises an interesting

challenge that is not present in the case of the energy-stepping scheme and that we address in several

ways. The first way to deal with the lack of exact conservation of the force-stepping scheme—and

possibly the most effective—is to do nothing. Indeed, we show in Section 3.4 that the force-stepping

scheme is nearly-conserving for all symmetries of the system, whether explicitly known or not.

The conservation error is controlled uniformly on compact time intervals by the asymmetry of the

approximate Lagrangian. The numerical experiments presented in Section 3.6 further show that the

corresponding momentum maps tend to remain nearly constant uniformly for all times. This near-

conservation property is frequently sufficient in applications that require good long-time behavior

of the solutions. An alternative strategy, described in Section 3.4.2, for avoiding broken symmetries

in the force-stepping scheme is to appeal to the theory of Lagrangian reduction. For symmetries

for which explicit reduced Lagrangians are known, an application of the force-stepping scheme to
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the reduced Lagrangian results in exact momentum conservation. A case in point is translational

invariance, which can be dealt with effectively by the introduction of Jacobi and center of mass

coordinates.

The chapter is organized as follows. The force-stepping time-integration scheme is defined in

Section 3.2 and the construction of continuous piecewise-linear approximate energies is discussed in

Section 3.3. The conservation properties of force-stepping, together with a general procedure for

reducing translational symmetry, are presented in Section 3.4. In Section 3.5 we prove convergence of

trajectories except for a negligibly small set of initial conditions. In Section 3.6 we present selected

examples of application that illustrate the convergence, accuracy and conservation properties of

force-stepping, including the motion of two bodies which attract each other by Newtons law of

gravitation, that is the Kepler problem, the dynamics of a frozen argon cluster, and the oblique

impact of an elastic cube. Finally, a summary and concluding remarks are collected in Section 3.7.

3.2 Force-stepping integrators

For definiteness, we specifically consider dynamical systems characterized by Lagrangians L : ℝd ×

ℝd → ℝ of the form

L(q, q̇) =
1

2
q̇TMq̇ − V (q) (3.1)

where M is the mass matrix and V is the potential energy. Lagrangians of this form arise in a

number of areas of application including structural dynamics, celestial mechanics and molecular

dynamics. The trajectories of a Lagrangian system can be approximated by replacing L(q, q̇) by an

approximating Lagrangian Lℎ(q, q̇) that can be solved exactly. A particular type of approximating

Lagrangian is

Lℎ(q, q̇) =
1

2
q̇TMq̇ − Vℎ(q) (3.2)

obtained by introducing an approximation of the potential energy. In this work, we specifically

investigate continuous piecewise-linear approximations of the potential energy. Thus, we construct

a regular triangulation Tℎ of ℝd, as shown in Section 3.3, and define Vℎ as the corresponding
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continuous piecewise affine approximation of V . By taking triangulations of diminishing size, an

approximating sequence of energies and Lagrangians is generated in this manner.

The chief characteristics of the new systems thus obtained are that they can be solved exactly, as

demonstrated in Section 3.2.1, and that they retain symmetries of the original system, as shown in

Section 3.4. In contrast to piecewise constant interpolations of the potential energy, which preserve

all the symmetries of the system [24], piecewise-linear interpolations break some symmetries in gen-

eral. This difficulty can be partially overcome by recourse to Lagrangian reduction, as demonstrated

in Section 3.4. However, we emphasize that the only assumption on the Lagrangian is its form—

Equation (3.1)—and therefore no further considerations to Lagrangian reduction will be required in

this section, i.e., L(q, q̇) may also be a reduced Lagrangian.

3.2.1 Computation of the exact trajectories of the approximating La-

grangian

We now proceed to explicitly compute the exact trajectories of the approximate Lagrangian Lℎ (q, q̇)

resulting from Vℎ, the continuous piecewise-linear approximation of the potential energy. Suppose

that the system is in configuration q0 at time t0 and in configuration q2 at time t2 and that during

the time interval [t0, t2] the system intersects one single boundary B1 separating two regions ΔI and

ΔII , of the underlying triangulation, with linear energies VI+∇VI ⋅(q−qI) and VII+∇VII ⋅(q−qII),

Figure 3.1. By the construction of Vℎ, the following continuity condition is attained at the boundary

surface B1

VI +∇VI ⋅ (q − qI) = VII +∇VII ⋅ (q − qII) ∀q ∈ B1 (3.3)

For simplicity, we shall further assume that V is differentiable and that all boundary crossings are

transversal, i.e.,

n(q1) ⋅ q̇1 ∕= 0 (3.4)

where n(q1) is a vector normal to B1 pointing in the direction of advance. It is possible for discrete

trajectories to be non-transversal and therefore become ambiguously defined. However, the set of
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initial conditions which result in non-transversal trajectories has negligible dimension and will not

be given further consideration. More precisely, we will show in Section 3.5 that this exceptional set

has Hausdorff-dimension 2d − 1 in the 2d-dimensional phase space and consequently its Lebesgue

measure vanishes.

Under the preceding assumptions, the action integral over the time interval [t0, t2] follows as

Iℎ =

∫ t2

t0

Lℎ (q, q̇) dt =

∫ t1

t0

Lℎ(q, q̇) dt+

∫ t2

t1

Lℎ(q, q̇) dt (3.5)

where t1 is the time at which the trajectory intersects B1. In regions where Vℎ(q) is linear the

trajectory q(t) is quadratic in time. Therefore, the action of the system can be computed exactly

and reduces to

Iℎ = (t1 − t0)

{
1

2

(
q1 − q0

t1 − t0

)T
M

(
q1 − q0

t1 − t0

)}
+ (t2 − t1)

{
1

2

(
q2 − q1

t2 − t1

)T
M

(
q2 − q1

t2 − t1

)}
−

(t1 − t0)

{
VI +

1

2
(q1 + q0 − 2qI) ⋅ ∇VI +

(t1 − t0)
2

24
∇V TI M−1∇VI

}
−

(t2 − t1)

{
VII +

1

2
(q1 + q2 − 2qII) ⋅ ∇VII +

(t2 − t1)
2

24
∇V TIIM−1∇VII

}
(3.6)

where q1 = q (t1) is constrained to be on the boundary surface B1. Stationarity of the action with

respect to (t1, q1) additionally gives the energy conservation equation

(
q1 − q0

t1 − t0

)T
M

(
q1 − q0

t1 − t0

)
+ (q0 − q1) ⋅ ∇VI +

(t1 − t0)
2

4
∇V TI M−1∇VI =(

q2 − q1

t2 − t1

)T
M

(
q2 − q1

t2 − t1

)
+ (q2 − q1) ⋅ ∇VII +

(t2 − t1)
2

4
∇V TIIM−1∇VII (3.7)

and the linear momentum balance equation

M
q1 − q0

t1 − t0
− 1

2
(t1 − t0)∇VI −M

q2 − q1

t2 − t1
− 1

2
(t2 − t1)∇VII + �n(q1) = 0 (3.8)
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where � is a Lagrange multiplier.

V̄ ( )Vh(q)

∆II∆I q2

B1q0 q1
n

q0 q1

Figure 3.1: Trajectory of a system whose potential energy is approximated as continuous piecewise-
linear.

In order to make a more direct connection with time-integration schemes we reformulate the

problem slightly by assuming that t0, q0—the latter on a boundary surface B0 except, possibly, at

the initial time—and the initial velocity

q̇+
0 = q̇

(
t+0
)

=
q1 − q0

t1 − t0
+

1

2
(t1 − t0)M−1∇VI (3.9)

are known. Let t1 and q1 be the time and point at which the trajectory intersects the next boundary

surface B1. We then seek to determine

q̇+
1 = q̇

(
t+1
)

=
q2 − q1

t2 − t1
+

1

2
(t2 − t1)M−1∇VII (3.10)

A reformulation of eqs. (3.7) and (3.8) in terms of q̇+
1 gives

(
q̇+
1

)T
Mq̇+

1 =
(
q̇+
0

)T
Mq̇+

0 − 2 (q1 − q0)∇VI (3.11)

q̇+
1 = q̇+

0 − (t1 − t0)∇VI + �M−1n(q1) (3.12)
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Then, the system (3.11 - 3.12) has the solution

q̇1 = q̇
(
t+1
)

= q̇
(
t−1
)

= q̇+
0 − (t1 − t0)M−1∇VI (3.13)

3.2.2 Stationary points of the action integral as weak solutions of the

equation of motion

According to Hamilton’s principle, the physical trajectories of a smooth Lagrangian system are

the stationary points of the action integral I =
∫ T

0
Lℎ(qℎ(t), q̇ℎ(t)) dt, T > 0. By analogy, the

trajectories of an approximating Lagrangian Lℎ of the form (3.2) should emerge as critical points

of the corresponding action functional Iℎ. We note that in the case of a continuous piecewise-linear

potential energy the Lagrangian Lℎ is not differentiable everywhere and so the notion of critical

points does not have a well-defined meaning in the classical sense. However, the calculations in

the previous subsection can be justified by interpreting stationary points of the action integral Iℎ

as weak solutions of the equation of motion. As we will show below in Section 3.5, for almost all

initial conditions a discrete trajectory will not spend a positive amount of time in ∂Tℎ, the union

of element boundaries in Tℎ. In order to derive the equation of motion, we will therefore restrict to

such trajectories.

Theorem 3.2.1 Suppose qℎ ∈ W 1,2((0, T );ℝd) satisfies ∣{t : qℎ(t) ∈ ∂Tℎ}∣ = 0. Then, the action

functional Iℎ is differentiable at qℎ and qℎ is a critical point of the action functional if and only if

Mq̈ℎ(t) = −∇Vℎ(qℎ(t)) (3.14)

in the sense of distributions.

Note that the right hand of (3.14) is an element of L∞((0, T );ℝd), so qℎ is a distributional

solution of (3.14) if and only if qℎ ∈ W 2,∞((0, T );ℝd) and Mq̈ℎ(t) = −∇Vℎ(qℎ(t)) holds almost

everywhere.
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Proof. Let qℎ, ' ∈W 1,2((0, T );ℝd). Clearly, the first term in the first variation of Iℎ is

lim
"→0

1

2"

(∫ T

0

(q̇ℎ(t) + "'̇(t))TM(q̇ℎ(t) + "'̇(t))− q̇Tℎ (t)Mq̇ℎ(t) dt

)
=

∫ T

0

q̇Tℎ (t)M'̇(t) dt (3.15)

On the other hand, if ∣{t : qℎ(t) ∈ ∂Tℎ}∣ = 0, then

1

"
(Vℎ(qℎ(t) + "'(t))− Vℎ(qℎ(t)))→ ∇Vℎ(qℎ(t)) ⋅ '(t) (3.16)

almost everywhere as "→ 0. Since Vℎ is locally Lipschitz, we furthermore have

∣∣∣∣1"Vℎ(qℎ(t) + "'(t))− Vℎ(qℎ(t))

∣∣∣∣ ≤ C∥'∥L∞ ≤ C∥'∥W 1,2 (3.17)

bounded independently of t. By dominated convergence we may therefore conclude that the second

term in the first variation of Iℎ is

lim
"→0

1

"

∫ T

0

(Vℎ(qℎ(t) + "'(t))− Vℎ(qℎ(t))) dt =

∫ T

0

∇Vℎ(qℎ(t)) ⋅ '(t) dt (3.18)

Summarizing, we have shown that the action functional is differentiable at qℎ and that its derivative

in direction ' is given by

�Iℎ(q, ') =

∫ T

0

q̇Tℎ (t)M'̇(t)−∇Vℎ(qℎ(t)) ⋅ '(t) dt (3.19)

This expression vanishes if and only if qℎ is a weak solution to (3.14).

3.2.3 Summary of the force-stepping scheme

We close this section by summarizing the relations obtained in the foregoing and defining the force-

stepping approximation scheme resulting from a continuous piecewise-linear approximation of the

potential energy.
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Definition 3.2.1 (Force-stepping) Suppose (tk, qk, q̇k) and a continuous piecewise-linear approx-

imation of the potential energy Vℎ are given. Let tk+1 and qk+1 be the time and point of boundary

crossing of the parabolic trajectory qk+(t− tk) q̇k− 1
2 (t− tk)

2
M−1∇Vk. Then, the updated velocity

is q̇k+1 = q̇k − (tk+1 − tk)M−1∇Vk.

These relations define a discrete propagator

Φℎ : (tk, qk, q̇k) 7→ (tk+1, qk+1, q̇k+1) (3.20)

that can be iterated to generate a discrete trajectory.

Algorithm 3 Force-stepping integrator

Require: V (q), q0, q̇0, t0, tf , Δ0 ∈ Tℎ, V0 and ∇V0

1: k ← 0
2: while tk < tf do
3: {tk+1, Bs} ←Time-Step(qk, q̇k,∇Vk, tk; Δk)

4: qk+1 ← qk + (tk+1 − tk) q̇k − 1
2 (tk+1 − tk)

2
M−1∇Vk

5: q̇k+1 ← q̇k − (tk+1 − tk)M−1∇Vk
6: Vk+1 ← Vk + (qk+1 − qk) ⋅ ∇Vk
7: {∇Vk+1,Δk+1} ←Update(∇Vk,Δk;Bs)
8: k ← k + 1
9: end while

The implementation of the force-stepping integrator is summarized in Algorithm 3. The algo-

rithm consists of two methods. The first method Time-Step determines the time of exit of the

parabolic trajectory from the simplex Δk ∈ Tℎ

qk + (tk+1 − tk) q̇k −
1

2
(tk+1 − tk)

2
M−1∇Vk ∈ Bs (3.21)

where Bs ∈ ∂Δk is the boundary surface intersected. The second method Update is responsible for

updating all simplex-related information, e. g. ∇Vk+1 of the adjacent simplex Δk+1. Both tasks can

be effectively accomplished upon a unique, systematic and efficient representation of the continuous

piecewise-linear approximate potential energy, as presented in Section 3.3.
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It bears emphasis that force-stepping requires the solution of no system of equations and, there-

fore, its complexity is comparable to that of explicit methods. However, the need to compute the

root of a nonlinear function and to update all simplex-related information adds to the overhead of

one application of the algorithm. It is still possible, however, that such overhead may be offset by the

higher accuracy in particular applications. These and other trade-offs are investigated subsequently

by way of numerical testing.

3.3 Continuous piecewise linear representation of the ap-

proximate potential Vℎ

One of the most successful applications of continuous piecewise-linear functions has been in nonlinear

circuit theory, in particular, in the field of nonlinear resistive networks. In 1965, Katzenelson [45]

presented an effective approach for the search of the operating point of a piecewise-linear resistive

network. Since then, the same idea has been extended, improved and generalized [11,13,18]. Among

these extensions and generalizations are the resolution of general nonlinear equations of the form

f(x) = 0 where f : ℝd → ℝm is a continuous mapping [12], and the introduction of a canonical

piecewise-linear function [43, 66] which allows for the compact and closed representation of any

function using the minimal number of parameters by taking advantage of a simplicial partition of

the domain [39].

Our aim in this section is to describe a unique, systematic and efficient representation of the

continuous piecewise-linear approximation of a function f : ℝd → ℝ, in general, and the potential

energy V : ℝd → ℝ, in particular. With this goal in mind, we first consider a region S ∈ ℝd and

its regular tessellation in hyperrectangles or orthotopes with characteristic length ℎj ∈ ℝ+ in the

j-th direction, with j = 1, 2, . . . , d. We then subdivide each hyperrectangle into proper simplices by

introducing a unique, regular triangulation Tℎ in accordance with Chien and Kuh [11], see Figure 3.2.

For later reference, we define the homeomorphism Λ : S → SC , represented by a diagonal matrix T ,

i.e., z = Tq, which maps hyperrectangles in S into hypercubes [0, 1]d in a new region SC ∈ ℝd. For
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later reference, we name V and VC the sets of vertices contained in regions S and SC , respectively.

Figure 3.2: Simplicial partition of hypercubes [0, 1]2 and [0, 1]3.

Before we discuss further details of the continuous piecewise-linear representation of the approx-

imate potential energy, we may first recall some properties of a simplex and its boundaries.

Definition 3.3.1 Let q0, q1, . . . , qd be (d+1) points in general position in the d-dimensional space. A

simplex Δ(q0, q1, . . . , qd) is defined as the convex hull of q0, q1, . . . , qd—the vertices of the simplex—

Δ(q0, q1, . . . , qd) =

{
q : q =

d∑
i=0

�iq
i, 1 ≥ �i ≥ 0, i = 0, 1, 2, . . . , d and

d∑
i=0

�i = 1

}

In addition, corresponding to the (d + 1) vertices, there are (d + 1) boundaries. The boundary Bs

which corresponds to the vertex qs is defined as

Bs =
{
q : q ∈ Δ(q0, q1, . . . , qd) with �s = 0

}

Since Bs contains all the vertices except qs, there is a one-to-one correspondence between vertices

and boundaries.

We now present the key steps for achieving a unique and systematic representation of force-

stepping trajectories. To this end, we first subdivide each hypercube which belongs to SC into
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non-overlapping simplices by properly arranging vertices of VC in a fixed order [11]. This ordering

relation allows for a unique representation of every point z ∈ SC and q ∈ S (see Lemma 3.3.1).

Therefore, there is a unique representation of the affine function Vℎ(q) : ℝd → ℝ with Vℎ(qi) = V (qi)

for all vertices qi ∈ V (see Lemma 3.3.2) upon which force-stepping trajectories are systematically

built.

Lemma 3.3.1 Every z ∈ SC has a unique representation z =
∑m
i=0 �iz

i where �i > 0, zi ∈ VC , for

i = 0, 1, . . . ,m(≤ d),
∑m
i=0 �i = 1, and the following ordering relation is attained z0 ⩽ z1 ⩽ . . . ⩽

zm ≦ z0+1. Likewise, every q ∈ S has a unique representation q =
∑m
i=0 �iq

i where qi = T−1zi ∈ V,

and the following ordering relation is attained Tq0 ⩽ Tq1 ⩽ . . . ⩽ Tqm ≦ Tq0 + 1.

Proof. The proof in SC is given by Kuhn [47]. The proof in S follows from the fact that the

homeomorphism Λ(⋅) is defined by a positive-definite diagonal matrix T and therefore preserves the

ordering of vertices.

Corollary 3.3.1 If m = d, z is an interior point of the simplex Δ(z0, z1, . . . , zd). Otherwise, z lies

on the boundary of a simplex. In addition, every d-dimensional simplex defined by (d + 1) vertices

contains z0 and z0 + 1 which define the hypercube C(z0) containing the simplex.

Lemma 3.3.2 A nonlinear function V (q) : ℝd → ℝ is approximated by an affine function Vℎ(q) :

ℝd → ℝ as follows

Vℎ(q) = ∇VΔ ⋅ q + V0

for q ∈ Δ(q0, q1, . . . , qd), ∇VΔ = J̄ℎ,[1...d]T ∈ ℝd—the first d elements of the vector—and V0 =

J̄ℎ,[d+1] ∈ ℝ. The Jacobian matrix of the piecewise-linear transformation is unique for a given

simplex Δ and has the form

J̄ℎ(q0, q1, . . . , qd) =

(
V (q0) ⋅ ⋅ ⋅ V (qd)

)⎛⎜⎜⎝ Tq0 ⋅ ⋅ ⋅ Tqd

1 ⋅ ⋅ ⋅ 1

⎞⎟⎟⎠
−1

=: VΔZ
−1
Δ

with VΔ ∈ ℝd+1 and Z−1
Δ ∈ ℕ(d+1)×(d+1).
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Proof. It follows from Lemma 3.3.1 that there is a unique representation of points q ∈ Δ(q0, q1, . . . , qd)

and z = Tq given by

⎛⎜⎜⎝ z

1

⎞⎟⎟⎠ =

⎛⎜⎜⎝ Tq

1

⎞⎟⎟⎠ =

⎛⎜⎜⎝ Tq0 ⋅ ⋅ ⋅ Tqd

1 ⋅ ⋅ ⋅ 1

⎞⎟⎟⎠� = ZΔ� (3.22)

We now define the affine function Vℎ(q), with Vℎ(qi) = V (qi) for i = 0, 1, . . . , d, as

Vℎ(q) =

(
V (q0) ⋅ ⋅ ⋅ V (qd)

)
⋅ � = VΔZ

−1
Δ ⋅

⎛⎜⎜⎝ z

1

⎞⎟⎟⎠ = J̄ℎ ⋅

⎛⎜⎜⎝ Tq

1

⎞⎟⎟⎠ (3.23)

Then, the claim follows from writing the affine function as Vℎ(q) = ∇VΔ ⋅ q + V0. We note that

both matrices ZΔ and Z−1
Δ belong to ℕ(d+1)×(d+1) due to the fact that hypercubes in SC have unit

volume, i.e., det(ZΔ) = 1.

We then show that force-stepping trajectories {tk, qk, q̇k}, as described in Definition 3.2.1, can

be systematically tracked in phase space. In particular, we show that successive times of boundary

crossings t0 < t1 < t2 < . . . and the corresponding sequence of positions q0, q1, q2, . . . can be obtained

from the simplicial partition presented above. The procedure applied for solving this problem,

namely the time-step problem (see Proposition 3.3.1), is indeed the method Time-Step required by

the implementation of the force-stepping integrator presented in Algorithm 3,

{tk+1, Bs} ← Time-Step
(
qk, q̇k,∇Vk, tk;Z−1

Δk

)

Proposition 3.3.1 (The time-step problem) A general trajectory of the form q(t) = qk + (t −

tk)q̇k − 1
2 (t− tk)2M−1∇Vk, with q(t+k ) ∈ Δ(q0, q1, . . . , qd) and t > tk, intersects the boundary Bs of

the simplex Δ(q0, q1, . . . , qd) at q(tk+1) = qk+1 with

tk+1 = min
r∈[0,d]

inf
{
t > tk : �1,r + (t− tk)�2,r + (t− tk)2�3,r = 0

}
s = arg min

r∈[0,d]

{
�1,r + (tk+1 − tk)�2,r + (tk+1 − tk)2�3,r = 0

}
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where (
�1 �2 �3

)
= Z−1

Δ

⎛⎜⎜⎝ Tqk T q̇k −M−1T∇Vk/2

1 0 0

⎞⎟⎟⎠
Proof. It follows from Definition 3.3.1 and Lemma 3.3.1 that a trajectory of the form q(t) =∑d
r=0 �r(t)q

r, with q(t+k ) ∈ Δ(q0, q1, . . . , qd) and t > tk, intersects the boundary Br∗ of the simplex

Δ(q0, q1, . . . , qd) at q(t∗) if and only if the r∗-th component of �(t∗) is equal to zero with all other

components positive. Then, the following equality holds

�(t) = Z−1
Δ

⎛⎜⎜⎝ Tq(t)

1

⎞⎟⎟⎠ = Z−1
Δ

⎛⎜⎜⎝ Tqk

1

⎞⎟⎟⎠
︸ ︷︷ ︸

�1∈ℝd+1

+(t−tk)Z−1
Δ

⎛⎜⎜⎝ T q̇k

0

⎞⎟⎟⎠
︸ ︷︷ ︸

�2∈ℝd+1

+(t−tk)2Z−1
Δ

⎛⎜⎜⎝ −M−1T∇Vk/2

0

⎞⎟⎟⎠
︸ ︷︷ ︸

�3∈ℝd+1

and the claim follows from the fact that tk+1 is the earliest t∗ > tk for which �r∗=s(t
∗) = 0 among

all possible pairs (t∗, r∗).

It is worth noting that the representation of the approximate potential energy Vℎ can be restricted

solely to the current simplex Δk and the relevant simplex-related matrices are ⟨VΔk
, ZΔk

, Z−1
Δk
⟩, with

VΔk
=

(
V (q0) ⋅ ⋅ ⋅ V (qs) ⋅ ⋅ ⋅ V (qd)

)
(3.24a)

ZΔk
=

⎛⎜⎜⎝ z0 ⋅ ⋅ ⋅ zs ⋅ ⋅ ⋅ zd

1 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1

⎞⎟⎟⎠ (3.24b)

We then claim that the replacement rule (see Chien and Kuh [11] and Lemma 3.3.3) provides for a

very efficient scheme to construct the adjacent simplex Δk+1 knowing only the boundary Bs of the

current simplex Δk intersected by the trajectory. Moreover, we describe an efficient procedure for

updating all simplex-related matrices required to compute the force-stepping trajectory in Δk+1. In

particular, given all Δk-related matrices and the intersected boundary Bs, matrices are updated as



68

follows

VΔk+1
=

(
V (q0) ⋅ ⋅ ⋅ V (q′s) ⋅ ⋅ ⋅ V (qd)

)
(3.25a)

ZΔk+1
=

⎛⎜⎜⎝ z0 ⋅ ⋅ ⋅ z′s ⋅ ⋅ ⋅ zd

1 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1

⎞⎟⎟⎠ (3.25b)

Z−1
Δk+1

= Z−1
Δk
−
(
Z−1

Δk
us
)
⊗
(
vsZ−1

Δk

)
1 + vsZ−1

Δk
us

(3.25c)

where z′s = zs+1 + zs−1 − zs, q′s = T−1z′s, us = z′s − zs, and vsi = �i,s. Matrices ZΔk+1
and

VΔk+1
are obtained by replacing zs with z′s and V (qs) with V (q′s), respectively. The matrix Z−1

Δk+1

is 1-rank updated by means of the Sherman-Morrison formula [28]—with algorithm complexity

O(d2)—instead of computing the inverse of ZΔk+1
—with algorithm complexity O(d3). The overall

gain in efficiency is remarkable.

Lemma 3.3.3 (The replacement rule) Let Bs be the boundary shared by two adjacent simplices.

Given the simplex Δ(q0, q1, . . . , qs−1, qs, qs+1, . . . , qd), with Tq0 ⩽ Tq1 ⩽ . . . ⩽ Tqd, its neighbor is

simply defined by replacing qs with q′s. The new vertex is defined as

q′s = qs+1 + qs−1 − qs

where qd+1 ≡ q0 and q−1 ≡ qd.

Corollary 3.3.2 The replacement rule preserves the order in the set of vertices V.

Proof. For s = 1, . . . , d−1, the following relation holds Tqs−1 ⩽ Tq′s ⩽ Tqs+1. For s = 0 (s = d) a

simple backward (forward) shift of indices has to be introduced in the updated set of vertices. After

the shift is performed, the new set of vertices verifies the ordering relation.

We conclude this section with the second method required by the implementation of the force-

stepping integrator presented in Algorithm 3,

{
∇Vk+1, ⟨VΔk+1

, ZΔk+1
, Z−1

Δk+1
⟩
}
← Update

(
∇Vk, ⟨VΔk

, ZΔk
, Z−1

Δk
⟩;Bs

)
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The method is defined in Algorithm 4 and is responsible for applying the replacement rule as well as

updating ∇Vk and all simplex-related matrices ⟨VΔk
, ZΔk

, Z−1
Δk
⟩. We remark that, for all practical

purposes, there is no need to shift indices after vertices q0 or qd are updated by the algorithm, as

suggested by Corollary 3.3.2.

Algorithm 4 Update
(
∇Vk, ⟨VΔk

, ZΔk
, Z−1

Δk
⟩;Bs

)
Require: z′s = zs+1 + zs−1 − zs, us = z′s − zs, vsi = �i,s and q′s = T−1z′s

1: Z−1
Δk+1

← Z−1
Δk
−

(Z−1
Δk
us)⊗(vsZ−1

Δk
)

1+vsZ−1
Δk
us

2: ZΔk+1
←
(
z0 ⋅ ⋅ ⋅ z′s ⋅ ⋅ ⋅ zd

1 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1

)
3: VΔk+1

←
(
V (q0) ⋅ ⋅ ⋅ V (q′s) ⋅ ⋅ ⋅ V (qd)

)
4: J̄ℎ ← VΔk+1

Z−1
Δk+1

5: ∇Vk+1 ← J̄ℎ,[1...d]T

6: return ∇Vk+1, ⟨VΔk+1
, ZΔk+1

, Z−1
Δk+1
⟩

3.4 Conservation properties

Some symmetries of Lagrangian systems, such as time-reversal, parity and invariance under time

shifts in the particular case of autonomous or time-independent systems, are preserved upon piecewise-

linear approximation of the potential energy, which results in the exact conservation of the corre-

sponding momentum maps. In particular, force-stepping trajectories conserve energy exactly. By

contrast, and unlike energy-stepping, which results in exact conservation of all momenta, piecewise-

linear approximation may break some symmetries of the potential energy, such as translation and

rotation invariance. resulting in lack of exact conservation of the corresponding momenta. However,

in this section we show that the force-stepping scheme is nearly-conserving for all symmetries of

the system, whether explicitly known or not. The numerical experiments presented in Section 3.6

further show that the corresponding momentum maps tend to remain nearly constant uniformly

for all times. We also show that some broken symmetries can be restored exactly by recourse to

Lagrangian reduction.
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3.4.1 Conservation of momentum maps

We recall (cf., e. g., [57]) that a general Lagrangian is a function L : TQ→ ℝ, where Q is a smooth

manifold, known as configuration manifold, and TQ is the corresponding tangent bundle, consisting

of pairs of configurations and velocities. For simplicity, we restrict attention to time-independent or

autonomous Lagrangians. Let X denote some suitable topological space of trajectories q : [0, T ]→ Q

joining fixed initial and final configurations q(0) and q(T ), respectively. Then, the action integral

I : X → ℝ over the time interval [0, T ] is

I(q) =

∫ T

0

L
(
q(t), q̇(t)

)
dt (3.26)

where we assume sufficient regularity of L and q(t) for all mathematical operations to be well defined.

According to Hamilton’s principle, the physical trajectories of the system are the critical points of

I, i.e., q ∈ X is a trajectory if

�I(q, ') = 0 (3.27)

for all variations ' ∈ C∞c (0, T ). Throughout the present work the configurational space of interest

is Q = E(n)N , where E(n) is the Euclidean space of dimension n (i.e., d = nN), and the Lagrangian

is assumed to be of the form (3.1), with V smooth and bounded below, or (3.2) with Vℎ continuous

piecewise-linear. An appropriate space of trajectories is X = W 2,∞
loc ([0,∞)), as demonstrated in

Section 3.5. We note that in the case of a continuous piecewise-linear potential energy the Euler-

Lagrange equations are not defined in the classical sense. However, the trajectories can still be

understood as critical points of the action functional Iℎ as shown in Theorem 3.2.1. In particular,

on element boundaries the acceleration is not uniquely defined. However, we show in Section 3.5

that, for almost all initial conditions, simplex boundaries are crossed only at isolated points in time,

and for those initial conditions the discrete trajectories are well defined and convergent.

Let G be a Lie group with Lie algebra g = TeG. A left action of G on Q is a mapping Φ :

G × Q → Q such that: i) Φ(e, ⋅) = id; ii) Φ(g,Φ(ℎ, ⋅)) = Φ(gℎ, ⋅) ∀g, ℎ ∈ G. Let � ∈ g. Then, the
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infinitesimal generator of Φ corresponding to � is the vector field �Q ∈ TQ given by

�Q(q) =
d

dt
[Φ(exp(t�), q)]t=0 (3.28)

The momentum map J : TQ→ g∗ defined by the action Φ then follows from the identity

⟨J(q, q̇), �⟩ = ⟨∂q̇L(q, q̇), �Q(q)⟩, ∀� ∈ g (3.29)

We say that the Lagrangian L is invariant under the action Φ if

L(Φg(q), TΦg(q)q̇) = L(q, q̇), ∀g ∈ G, (q, q̇) ∈ TQ (3.30)

where we write Φg(⋅) = Φ(g, ⋅). Under these conditions, we additionally say that G is a symmetry

group of the system and that Φ expresses a symmetry of the system.

The classical theorem of Noether states that if L is invariant under the action Φ, then the corre-

sponding momentum map J is a constant of the motion, i.e., it remains constant along trajectories.

Classical examples include:

i) Conservation of linear momentum. In this case, Q = E(n)N , G = E(n) and Φ(u, q) =

{q1+u, . . . , qN+u} represent a rigid translation of the system by u ∈ E(n). The corresponding

momentum map is the total linear momentum of the system, J = p1 + ⋅ ⋅ ⋅ + pN . If the

Lagrangian is invariant under translations, then the total linear momentum is a constant of

the motion.

ii) Conservation of angular momentum. In this case, Q = E(n)N , G = SO(n) and Φ(R, q) =

{Rq1, . . . , RqN} represent a rigid rotation of the system by R ∈ SO(n). The corresponding

momentum map is the total angular momentum of the system, J = q1 × p1 + ⋅ ⋅ ⋅ + qN × pN .

If the Lagrangian is invariant under rotations, then the total angular momentum is a constant

of the motion.
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Conservation of energy can be fit into this framework by recourse to a space-time formulation

in which time is regarded as a generalized coordinate, e. g., q0. The corresponding space-time

Lagrangian is L(q,q′) = L((q0, q), (q
′
0, q
′)) = L(q, q′/q′0, q0), where L(q, q̇, t) is a general time-

dependent Lagrangian. The space-time configuration manifold is ℚ = ℝ × Q. Let G = ℝ,

Φ(s, q) = (q0+s, q) is a time-shift and suppose that L is invariant under Φ, i.e., L is time-independent.

Then J = L−∂q̇L⋅ q̇ = −E, i.e., the total energy of the system, is a constant of the motion. However,

exact energy conservation follows more directly as a consequence of (3.11), i.e., energy conservation

is built explicitly into the force-stepping scheme.

Evidently, a näıve continuous piecewise-linear approximation of the potential energy breaks the

symmetries of the system in general, including translation and rotation invariance. Thus, if G is a

symmetry group of V and Φ is an action that leaves V invariant, the corresponding momentum map J

may not be constant along force-stepping trajectories in general. This lack of exact conservation can

be remedied by recourse to Lagrangian reduction, as shown subsequently. However, even the näıve

force-stepping scheme, with no symmetrization of the approximated potential, has near-conservation

properties, as shown next.

Theorem 3.4.1 Suppose that G is a symmetry group of the potential V , i.e., V ∘ Φg = V for all

g ∈ G, and let J(q, q̇) be the corresponding momentum map. Let q0, q̇0 ∈ ℝnN and ℎm → 0. Suppose,

in addition, that qℎm
∈W 2,∞(0, T ) are force-stepping trajectories corresponding to the approximate

potentials Vℎm and q is a trajectory corresponding to the original potential V , with q(0) = qℎm(0) = q0

and q̇(0) = q̇ℎm
(0) = q̇0 for all m. Then we have J(qℎm

, q̇ℎm
)→ J(q, q̇) ≡ J(q0, q̇0) in W 1,∞

loc ([0,∞))

for almost all initial conditions (q0, q̇0).

Proof. From Theorem 3.5.2 we deduce that, except for a (2nN − 1)-dimensional set of initial

conditions (q0, q̇0), qℎm
converges to the continuum solution q strongly in W 2,∞

loc ([0,∞)). Since L

and, thus, J are smooth this implies that J(qℎm , q̇ℎm)→ J(q, q̇) in W 1,∞
loc ([0,∞)). As J is conserved

along the continuum trajectory (q, q̇), i.e., J(q, q̇) ≡ J(q0, q̇0), the claim follows.

It is interesting to note that an approximate Noether theorem can also be obtained for general

potentials, not just those resulting by approximation of a symmetric potential. We state it here for
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smooth potentials and compact almost-symmetry groups. In order to quantify the extent to which a

Lagrangian L fails to be symmetric with respect to a Lie group G acting on Q via Φ, we introduce

the functions

Lg(q, q̇) = L(Φg(q), TΦg(q)q̇) (3.31)

parameterized by g ∈ G. In the symmetric case, Lg = Le = L exactly. The following theorem

shows that, for an approximate conservation estimate, we require that Lg ∼ L up to first order in q

and up to second order in q̇. In particular, these assumptions are satisfied for the piecewise-linear

Lagrangians (3.2), which approximate the original Lagrangian (3.1) to first order in q and to second

order in q̇.

Theorem 3.4.2 (Approximate Noether’s theorem) Suppose G is a compact Lie group and Φ

is a smooth left action of G on Q with momentum map J . Let U ⊂ TQ be relatively compact and

assume that L is uniformly strictly convex on U with respect to q̇. Suppose (near symmetry) that

sup
g∈G

(
∥L− Lg∥L∞(U) +

∥∥∥∥∂L∂q − ∂Lg
∂q

∥∥∥∥
L∞(U)

+

∥∥∥∥∂L∂q̇ − ∂Lg
∂q̇

∥∥∥∥
L∞(U)

+
∥∥∇2

q̇L−∇2
q̇Lg

∥∥
L∞(U)

)
≤ "

(3.32)

Then, for all trajectories (q, q̇) such that (q(t), q̇(t)) ∈ U for t ∈ [0, T ], there exists a constant C > 0

such that

∥J(q, q̇)− J(q0, q̇0)∥W 1,∞([0,T ]) ≤ C" (3.33)

Note that for Lagrangians of the form (3.1), for given T , q0 and q̇0 one can find a relatively

compact set U satsifying the assumptions of Theorem 3.4.2 which only depends on the minimum

value of V . This is easily deduced from energy conservation.

Proof. Define the symmetrized Lagrangian L′ by

L′(q, q̇) := −
∫
G

L(Φg(q), TΦg(q)q̇) dg (3.34)

where −
∫
G

(⋅ ⋅ ⋅ ) dg = 1
∣G∣
∫
G

(⋅ ⋅ ⋅ ) dg denotes the normalized integration with respect to the right
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invariant Haar measure of G. Then L′ is invariant under Φ since

L′(Φg̃(q), TΦg̃(q)q̇) = −
∫
G

L(Φg(Φg̃(q)), TΦg(Φg̃(q))TΦg̃(q)q̇) dg =

−
∫
G

L(Φgg̃(q), TΦgg̃(q)q̇) dg = −
∫
G

L(Φg(q), TΦg(q)q̇) dg = L′(q, q̇) (3.35)

for all g̃ ∈ G. By Noether’s Theorem we thus conclude that the momentum map J ′ corresponding

to L′ is conserved along trajectories q′ corresponding to the Lagrangian L′, i.e., on paths satisfying

∂L′

∂q
(q′(t))− d

dt

∂L′

∂q̇
(q′(t)) = 0 (3.36)

Now we have, by assumption,

∥L− L′∥L∞(U) =

∥∥∥∥−∫
G

(L− Lg) dg
∥∥∥∥
L∞(U)

≤ −
∫
G

∥L− Lg∥L∞(U) dg ≤ " (3.37)

since −
∫
G

1 dg = 1. In addition,

∥∥∥∥∂L∂q − ∂L′

∂q

∥∥∥∥
L∞(U)

=

∥∥∥∥−∫
G

(
∂L

∂q
− ∂Lg

∂q

)
dg

∥∥∥∥
L∞(U)

≤ −
∫
G

∥∥∥∥∂L∂q − ∂Lg
∂q

∥∥∥∥
L∞(U)

dg ≤ " (3.38)

and, similarly,

∥∥∥∥∂L∂q̇ − ∂L′

∂q̇

∥∥∥∥
L∞(U)

≤ " and
∥∥∇2

q̇L−∇2
q̇L
′∥∥
L∞(U)

≤ " (3.39)

Also by assumption, the Hessian ∇2
q̇L is uniformly non-singular. The previous estimate (3.39) shows

that this is also true for ∇2
q̇L
′, as we may, without loss of generality, assume that " is sufficiently

small. As a consequence, we obtain that the solutions q and q′ of

∂L

∂q
(q(t))− d

dt

∂L

∂q̇
(q(t)) = 0 resp.

∂L′

∂q
(q′(t))− d

dt

∂L′

∂q̇
(q′(t)) = 0 (3.40)
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subject to the same initial conditions q(0) = q′(0) = q0, q̇(0) = q̇′(0) = q̇0 satisfy the estimate

∥q − q′∥W 2,∞(0,T ) ≤ C" (3.41)

Another consequence of the above estimates (3.37), (3.38) and (3.39) is that, since by (3.29) the

momentum maps J and J ′ depend smoothly on ∂q̇L and ∂q̇L
′, respectively,

∥J − J ′∥W 1,∞(U) ≤ ∥L− L′∥W 1,∞(U) ≤ C" (3.42)

(Note that W 1,∞ is an algebra.) Finally, from (3.41) and (3.42) it follows that

∥J(q, q̇)− J(q0, q̇0)∥W 1,∞(0,T ) ≤

∥J(q, q̇)− J ′(q′, q̇′)∥W 1,∞(0,T ) + ∥J ′(q0, q̇0)− J(q0, q̇0)∥W 1,∞(0,T ) ≤ C" (3.43)

In essence, the preceding theorem states that almost-symmetries, in the sense of (3.32), result in

almost-conservation in the sense of (3.33). The theorem thus effectively removes the rigidity of the

classical Noether’s theorem, which applies to exact symmetries only.

3.4.2 Lagrangian reduction

A general strategy for avoiding broken symmetries in the force-stepping scheme is supplied by the

theory of Lagrangian reduction. The aim of this theory is to reduce the dimension of the configuration

space of a Lagrangian by systematically exploiting constants of motion and symmetry groups (cf.,

e. g., [57, 59] and references therein). Thus, suppose G is a Lie group, L : TQ→ ℝ is a Lagrangian

invariant under a smooth left action Φ of G on Q, with momentum map J . Then, the theory defines

a reduced Lagrangian l : TQ/G → ℝ in which the group coordinates are eliminated. Classical

examples include:
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i) Total linear momentum. In this case, Q = E(n)N , G = E(n) and J = p1 + ⋅ ⋅ ⋅ + pN . Then,

given a total linear momentum � ∈ g∗, the isotropy group G�, i.e., the group of actions that

leaves the level set J−1(�) invariant, reduces to G� = G. Thus, the corresponding reduced

phase space is given by J−1(�)/G� = T (E(n)N−1) and has dimension 2n(N − 1).

ii) Total angular momentum (n = 3, N ≥ 3). In this case, Q = E(3)N , G = SO(3) and

J = q1 × p1 + ⋅ ⋅ ⋅ + qN × pN . Then, given a total angular momentum � ∈ g∗, the dimension

of the corresponding reduced phase space J−1(�)/G� depends on the value of �. For � = 0,

any rotation leaves the level set J−1(0) invariant, that is G� = G, and therefore the reduced

phase space has dimension 6(N − 1). For � ∕= 0, only rotations along the direction of � leave

the level set J−1(�) invariant, that is G� = S1, and therefore the reduced phase space has

dimension 6N − 4.

iii) Total linear and angular momenta (n = 3, N ≥ 3). Given a total linear momentum �1 and a

total angular momentum �2, one concludes from the preceding analysis that the corresponding

reduced phase space TQ/G has dimension 6N − 12, resp. 6N − 10, for �2 = 0, resp. �2 ∕= 0.

The reduced Lagrangian resulting from the elimination of constrained degrees of freedom repre-

sents the intrinsic or internal dynamics of the system. Furthermore, the reduced Lagrangian implic-

itly inherits the conservation laws of the original system. In addition, it is possible to reconstruct

the original dynamics from the reduced dynamics.

As an application of the theory, consider Lagrangians of the form (3.1) with diagonal mass matrix

M and potential V , invariant under translations and rotations. Such systems are known as N -body

problems and are the subject of a vast body of literature (cf., e. g., [54,55,60,69,81]). Reduction with

respect to translational symmetry may be achieved by recourse to Jacobi coordinates q′ ∈ E(n)N−1

and center of mass coordinates qcm ∈ E(n), defined as

q′j = qj+1 −
∑j
i=1miqi∑j
i=1mi

, 1 ≤ j < N (3.44)

qcm =

∑N
i=1miqi
mT

, (3.45)
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where mi is the mass of the i-th particle and

mT =

N∑
i=1

mi (3.46)

is the total mass of the system. Clearly, the map by the map � : q → (q′, qcm) is linear and

bijective, and its inverse �−1(q′, qcm) → q is given by

qj = qcm + q′j−1

∑j−1
i=1 mi∑j
i=1mi

−
N∑

i=j+1

miq
′
i−1∑i

k=1mk

, 1 ≤ j ≤ N (3.47)

with q′0 = 0. The corresponding constant of the motion is the total linear momentum �1 =
∑N
i=1miq̇i

and the reduced Lagrangian

l(q′, q̇′) =
1

2
q̇′TM ′q̇′ − V ′(q′) (3.48)

retains the desirable form (3.1). It is readily shown that the reduced mass matrix M ′ is diagonal

with nonzero elements

m′j = mj+1

∑j
i=1mi∑j+1
i=1 mi

(3.49)

and that the reduced potential is

V ′(q′) = V
(
�−1(q′, 0)

)
(3.50)

It should be carefully noted that the evolution of the center of mass qcm(t) is decoupled from the

dynamics of the reduced system and, as part of the reconstruction of the original dynamics, it can

be trivially obtained as

q̇cm =
�1

mT
(3.51)

The trajectories of the reduced Lagrangian system can now be approximated by replacing (3.48) by

an approximate reduced Lagrangian lℎ(q′, q̇′) that can be solved exactly, e. g. of the form

lℎ(q′, q̇′) =
1

2
q̇′TM ′q̇′ − V ′ℎ(q′) (3.52)
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obtained by replacing V ′ by its piecewise-linear approximation V ′ℎ. By this construction, the ap-

proximate Lagrangian lℎ is translation invariant and the total linear momentum is exactly conserved

along the corresponding trajectories.

The reduction with respect to the rotational symmetry, in applications which involve an arbitrary

number of particles (N ≥ 3) and non-vanishing angular momentum, is presently the subject of active

research (cf., e. g., [54, 55, 69, 81]). Unfortunately, it is not possible to construct internal or shape

coordinates which result in a reduced Lagrangian of the form (3.1).

3.4.3 Conservation of discrete symmetries

Lagrangian systems may also have some symmetries that are associated with actions of discrete

groups rather than with actions of continuous groups—Lie groups G presented in previous subsec-

tions are continuous. This is the case of many non-relativistic systems which are invariant under

parity. Parity is a discrete symmetry expressed by an operator P , whose action on configuration

space Q = E(3)N is given by Pqj = −qj , and on Q = E(2)N is given by flipping the sign of only one

component of qj . In general, G-invariant reductions may or may not preserve the parity symmetry

P . However, reductions with respect to translations given by the map �(q), (3.44)-(3.45), induce

effective potentials V ′(q′) invariant under parity, that is V ′(Pq′) = V ′(q′).

yy ya) b) c)

xx x

Figure 3.3: Three feasible regular triangulations of ℝ2. Triangulation a) breaks the parity invariance
of V (q); triangulations b) and c), do not.

In applications, we employ regular triangulations Tℎ which result in piecewise-affine approximate

potentials V ′ℎ invariant under parity. Figure 3.3 illustrates the simple case of Q′ = E(2). The

extension to Q′ = E(n)N−1 is straightforward and falls squarely within the construction presented
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in Section 3.3. In addition, time-reversibility follows directly from the definition of the force-stepping

scheme. The time-reversal symmetry of Lagrangian systems is a discrete symmetry that is widely

considered to be essential to the design of efficient time-integration schemes (cf., e. g., [30] and

references therein).

3.4.4 Conservation of the symplectic structure

In order to establish the symplecticity of the force-stepping scheme, we proceed to look at the

Lagrangian system defined by (3.1) from a Hamiltonian perspective. To this end, we introduce the

phase space P = T ∗Q, consisting of pairs (q, p) of configurations q ∈ Q = E(n)N and momenta

p ∈ T ∗qQ, and the Hamiltonian H : P → ℝ as

H(q, p) = sup
v∈TqQ

{p ⋅ v − L(q, v)} =
1

2
pTM−1p+ V (q) (3.53)

For a G-invariant reduced Lagrangian defined by (3.48), we also introduce the reduced Hamiltonian

H� : P� → ℝ as

H�(q′, p′) = sup
v∈Tq′Q/G

{p′ ⋅ v − l(q′, v)} =
1

2
p′TM ′−1p′ + V ′(q′) (3.54)

Likewise, the Hamiltonian corresponding to the approximate reduced Lagrangian (3.52) is

H�,ℎ(q′, p′) = sup
v∈Tq′Q/G

{p′ ⋅ v − lℎ(q′, v)} =
1

2
p′
T
M ′−1p′ + V ′ℎ(q′) (3.55)

We now endow P with the canonical symplectic two-form

Ω = dq1 ∧ dp1 + ⋅ ⋅ ⋅+ dqN ∧ dpN (3.56)

Then, pairs (P,Ω) and (P�,Ω�) define symplectic manifolds, where the reduced symplectic form Ω�

is determined by the Symplectic Reduced Theorem [59]. For systems with Abelian symmetries, Ω�
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carries the canonical symplectic structure modified by magnetic terms ��. In particular, reductions

with respect to translations given by the map �(q), (3.44)-(3.45), induce the following reduced

symplectic two-form

Ω�1
= Ω− ��1

= q′1 ∧ dp′1 + ⋅ ⋅ ⋅+ dq′N−1 ∧ dp′N−1 (3.57)

where p′i = m′iq̇
′
i and ��1 is the curvature of the mechanical connection, i.e., ��1 = dR ∧ d�1.

We recall (cf. e. g., [1, 2, 32]) that a diffeomorphism ' : P → P is symplectic if it preserves the

symplectic two-form, i.e., if

Ω(T'(z)�1, T'(z)�2) = Ω(�1, �2) (3.58)

Likewise, in reduced phase space, a diffeomorphism ' : P� → P� is symplectic if it preserves the

reduced symplectic two-form. The symplecticity of Lipschitz homeomorphisms has been investigated

by Whitney [79] and by Gol’dshtein and Dubrovskiy [21]. Then, in the present setting, it is possible

to verify the symplecticity of force-stepping directly. To this end, we may write '(q′0, p
′
0) = (q(t), p(t))

and

T' ≡

⎛⎜⎜⎝ ∂q′'q′ ∂p′'q′

∂q′'p′ ∂p′'p′

⎞⎟⎟⎠ =

⎛⎜⎜⎝ Qq′ Qp′

Pq′ Pp′

⎞⎟⎟⎠ (3.59)

then ' is symplectic if

PTp′Qp′ = QTp′Pp′ (3.60)

PTp′Qq′ = QTp′Pq′ + I (3.61)

QTq′Pq′ = PTq′Qq′ (3.62)

We proceed to verify that these identities are indeed identically satisfied by the force-stepping scheme.

For simplicity of notation and without loss of generality we take the mass matrix to be of the

form M = mI. In addition, it suffices to consider mappings defined by the trajectory depicted in

Figure 3.1, the general result then following by recursion. Evidently, the symplectic form is trivially

conserved for t ∈ [t0, t1), where t1 is the time of intersection with the boundary of the underlying
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triangulation. For t ∈ (t1, t2), the dependence of t1 on the initial conditions (q̇0, q0) must be carefully

accounted for, i.e.,

∂t1
∂q̇0

= (t1 − t0)
∂t1
∂q0

= − t1 − t0
q̇(t1) ⋅ n

n = −
∣∣∣∣ ∂t1∂q̇0

∣∣∣∣n (3.63)

For t ∈ (t1, t2) we have

q̇(q0, q̇0, t) = q̇0 −
t1 − t0
m
∇VI −

t− t1
m
∇VII (3.64)

q(q0, q̇0, t) = q0 + (t− t0)q̇0 −
(2t− t1 − t0)(t1 − t0)

2m
∇VI −

(t− t1)2

2m
∇VII (3.65)

From these identities, the components of the Jacobian matrix T' are found to be

Pp = I − 1

m
∣∇VII −∇VI ∣

∣∣∣∣ ∂t1∂q̇0

∣∣∣∣n⊗ n (3.66)

Qp = (t− t0)I − t− t1
m
∣∇VII −∇VI ∣

∣∣∣∣ ∂t1∂q̇0

∣∣∣∣n⊗ n (3.67)

Pq = − 1

m
∣∇VII −∇VI ∣

∣∣∣∣ ∂t1∂q0

∣∣∣∣n⊗ n (3.68)

Qq = I − t− t1
m
∣∇VII −∇VI ∣

∣∣∣∣ ∂t1∂q0

∣∣∣∣n⊗ n (3.69)

where the following identity has been used

∇VII −∇VI = ± ∣∇VII −∇VI ∣n (3.70)

A straightforward calculation shows that the symplecticity relations (3.60) are identically satisfied

by (3.66), (3.67), (3.68) and (3.69), which establishes the the symplecticity of the force-stepping

scheme.

3.4.5 Summary of the conservation properties of the force-stepping scheme

The results proven in the foregoing can be summarized as follows:
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The force-stepping time-integration scheme is a symplectic, energy conserving, time-

reversible integrator with automatic selection of the time step size. The scheme also

conserves approximately all the momentum maps associated with the symmetries of

the system. Exact conservation of momentum maps may be achieved by recourse to

Lagrangian reduction.

Time-reversibility and parity-invariance of force-stepping follow directly from the definition of

the scheme. The automatic time-step selection property also follows by construction. In particular,

in regions where the velocity is high, the times effectively spent by the trajectory inside a simplex

are short and the resulting time steps are small. By contrast, if the velocity is low, the resulting

time steps are comparatively large.

Theorems 3.5.2 and 3.4.2 show that the näıve force-stepping scheme, while not exactly conserv-

ing in general, results in approximate momentum conservation, with the conservation error con-

trolled uniformly on compact time intervals by the asymmetry of the approximate Lagrangian. This

near-conservation property is frequently sufficient in applications and is born out by the numerical

examples presented in Section 3.6.

We again emphasize that the momentum maps that are nearly conserved by force-stepping are

precisely those conserved by the original system. This is in contrast to variational integrators, which

conserve discrete momentum maps that are a discretization of—and differ from in general—the

momentum maps of the original system.

3.5 Convergence analysis

Assume that the configuration space is ℝd and the potential V : ℝd → ℝ is a C1 function bounded

from below. We use a regular triangulation Tℎ of ℝd (see Section 3.3) and define Vℎ as the corre-

sponding continuous piecewise affine approximation of V . Clearly, Vℎ → V uniformly on compact

subsets of ℝd.

The approximating trajectories qℎ can be represented by their successive times of element bound-
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ary crossings 0 = t0 < t1 < t2 < . . . and the corresponding sequences of positions qℎ(0), qℎ(t1), qℎ(t2), . . .

and velocities q̇ℎ(0), q̇ℎ(t1), q̇ℎ(t2), . . .. Note that the trajectories for the piecewise-linear continuous

approximation are defined unambiguously as long as they are never tangential to the boundary of

any cell of the underlying triangulation while crossing this boundary. We will call trajectories such

that, for every k, q̇ℎ(tk) is not aligned with F , where F is a face of a triangulation element such

that qℎ(tk) ∈ F , transversal. If q is non-transversal we denote by tmax the first time t for which q(t)

lies on an element boundary and q̇(t) is aligned with that boundary.

We also have to make sure that our iterative procedure defines an approximate trajectory for all

positive times. This does not follow from transversality as the sequence (tk) could be bounded. If

this is indeed the case, we define tmax := limk→∞ tk ∈ ℝ, and our approximate trajectory will be

defined only on [0, tmax). For transversal trajectories with tk →∞ as k →∞ we set tmax =∞.

The main goal of this section will be to justify our approximation scheme by proving that—

except for a negligibly small set of initial conditions—the approximating trajectories converge to the

original trajectory in a rather strong sense along any sequence of triangulation parameters ℎ tending

to zero. More precisely, the exceptional set is shown to be of Hausdorff dimension at most 2d− 1 in

the 2d-dimensional phase space (and consequently its Lebesgue measure vanishes).

By construction, an approximating trajectory qℎ lies in C1([0, tmax)) and satisfies

Mq̈ = −∇Vℎ(q) on (0, tmax) (3.71)

for all times t such that q(t) lies in the interior of some triangulation element. As an immediate

consequence we obtain that qℎ conserves energy:

Lemma 3.5.1 If qℎ is an approximating trajectory with initial conditions (q0, q̇0), then

1

2
q̇Tℎ (t)Mq̇ℎ(t) + Vℎ(qℎ(t)) =

1

2
q̇T0 Mq̇0 + Vℎ(q0)

for all t ∈ [0, tmax).
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Proof. If t ∈ [tk, tk+1], then

1

2
q̇Tℎ (t)Mq̇ℎ(t) + Vℎ(qℎ(t)) =

1

2
q̇Tℎ (tk)Mq̇ℎ(tk) + Vℎ(qℎ(tk)) (3.72)

since qℎ is a solution of the Euler-Lagrange equation (3.71) on [tk, tk+1]. The claim now follows by

induction on n.

The approximating trajectories, being smooth inside the cells (a quadratic function) and C1

across element boundaries, in fact belong to the Sobolev class W 2,∞
loc ([0, tmax)) of twice weakly

differentiable functions whose second derivative is bounded on any compact time interval. More

precisely, we have the following

Lemma 3.5.2 Approximating trajectories qℎ are elements of W 2,∞
loc ([0,∞)) if tmax =∞. If tmax <

∞, then qℎ ∈ W 2,∞([0, tmax]). Moreover, if (qℎ)ℎ>0 is a family of approximating trajectories with

the same initial conditions, then, for each finite T ≤ tmax, ∥qℎ∥W 2,∞([0,T ]) is equi-bounded in ℎ.

Proof. Indeed, by Lemma 3.5.1 and the fact that V , and hence Vℎ, is bounded from below, q̇ℎ(t) is

bounded uniformly in ℎ and t and therefore qℎ(t) is bounded uniformly in ℎ and uniformly in t on

finite time intervals. But then also q̈ℎ is bounded uniformly on finite time intervals as qℎ satisfies

(3.71) for almost all t ∈ [0, tmax). In particular, if tmax <∞, then q̇ℎ can be extended as a Lipschitz

function to [0, tmax].

For purposes of analysis, it is useful to note that in fact any non-transversal trajectory satisfies

the Euler-Lagrange equation in the weak sense:

Proposition 3.5.1 Suppose t 7→ qℎ(t) is an approximating trajectory. Then (3.71) is satisfied in

the weak sense, i.e., q̈ is the (piecewise continuous) weak second derivative of q and the equality is

understood as equality almost everywhere on (0, tmax).

Proof. This follows from the proof of Lemma 3.5.2: Since qℎ lies in C1([(0, tmax)), q̈ is piecewise

continuous with only finitely many jumps on any compact interval in (0, tmax) and qℎ satisfies (3.71)

for all times t /∈ {t0, t1, t2, . . .}, (3.71) is easily seen to hold in the sense of distributions.
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Restricting our attention to transversal trajectories is justified by the following result.

Lemma 3.5.3 Let ℎ > 0. The set of initial conditions (q0, q̇0) for which the trajectory (qℎ(t), q̇ℎ(t))

is non-transversal has Hausdorff-dimension 2d− 1.

Proof. We first consider a single step (qk−1, q̇k−1) → (qk, q̇k) of the dynamics: Let ∂Tℎ be the

collection of element boundaries and define the mapping � : ∂Tℎ × ℝd → ∂Tℎ × ℝd in the following

way: For (q, q̇) ∈ ∂Tℎ × ℝd solve the Euler-Lagrange equation (3.71) backwards in time with initial

condition (q, q̇) and define �(q, q̇) to be the position and velocity at the first element boundary

crossing. This is a well defined mapping as long as q̇ is not aligned with the boundary q lies on. In

the exceptional case that q̇ is aligned with this boundary we will view � as being multivalued, more

precisely �(q, q̇) consisting of the set of transversal points in phase space (q̃, ˙̃q) that are mapped

to (q, q̇) under the discrete dynamics. (Note that #�(q, q̇) is bounded by the number of elements

incident to (q, q̇).)

Fix T > 0. Then on the set of those (q, q̇) for which �(q, q̇) is reached in a time span less than or

equal to T , the mapping � is locally Lipschitz. Since the set of non-transversal points (q, q̇), i.e., for

which q lies on some element boundary and q̇ is parallel to this boundary, is (2d − 2)-dimensional,

this proves that, for fixed k ∈ ℕ, the set of points (q1, q̇1) for which the corresponding trajectories

satisfy tk ≤ T and qℎ is non-transversal at tk is locally of finite (2d − 2)-dimensional Hausdorff

measure.

Now note that clearly the pre-images of the mapping (q0, q̇0) 7→ (q1, q̇1) are of finite one-

dimensional Hausdorff measure on the set of those (q0, q̇0) for which t1 ≤ T . Now finally sending

k → ∞ and T → ∞, we obtain that the set of initial conditions for which tk is non-transversal for

some k is (2d− 1)-dimensional.

We also need to show that the set of trajectories with tmax <∞ is negligible in a suitable sense.

Note first that our approximating trajectories—being elements of W 2,∞(0, tmax)—can be extended

to functions in C1([0, tmax]). To this end, we introduce the following two subsets of ℝd: By Δ1

denote the set of all vectors in ℝd which are aligned with some triangulation element face. Since we

use regular triangulations (see Section 3.3), Δ1 is an (d − 1)-dimensional set (the union of a finite
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number of hyperplanes) in ℝd. Similarly, let Δ2 denote the set of vectors which are aligned with

two non-parallel faces of some triangulation element. Then Δ2 is a finite union of codimension 2

subspaces of ℝd, and in particular Δ2 is (d− 2)-dimensional.

Lemma 3.5.4 Suppose qℎ is transversal. If tmax <∞, then necessarily q̇ℎ(tmax) ∈ Δ2.

Proof. If tmax <∞, then tk → tmax and there are infinitely many boundary crossing times tkm , for

example, at which the points qℎ(tkm) lie on the same face F of a single triangulation element. We

can decompose the particle motion qℎ = qF⊥ℎ + qFℎ into scalar part qF⊥ℎ perpendicular to F and an

(d− 1)-dimensional motion qFℎ parallel to F . Denote the two closed elements adjacent to F by F+

and F−.

We first show that qℎ(tmax) cannot lie in the interior of F . Suppose the contrary were true.

Since tkm+1
− tkm → 0 and the boundary ∂(F+ ∪ F−) of (F+ ∪ F−) is a positive distance apart

from qℎ(tmax), for sufficiently large m, qℎ cannot cross this boundary in between two crossings of

F . Otherwise the transversal velocity q̇F⊥ℎ would diverge. It follows that, for t large enough, qℎ(t)

alternates between F+ and F−. But then the explicit form of qF⊥ℎ as a parabola shows that the time

that elapses between two crossings of F can only take two different values (depending on wether the

particle moves through F+ or F−) and in particular does not converge to zero. This contradicts the

convergence of (tk).

So we may assume that qℎ(tmax) ∈ ∂F . As we have just seen that qℎ cannot lie in the interior of

F+ ∪F− for all times close to tmax, we thus get another sequence tk′m such that qℎ(tk′m) ∈ G, where

G is another face of F+ or F− such that qℎ(tmax) ∈ ∂G.

Note that the vector qℎ(tkm+1
)− qℎ(tkm), and thus also the difference quotient

qℎ(tkm+1
)−qℎ(tkm )

tkm+1
−tkm

is aligned with F . Taking the limit m → ∞ we deduce that q̇F⊥ℎ (tmax) = 0, i.e., that also q̇ℎ(tmax)

is aligned with this element face, since qℎ ∈ C1([0, tmax]). An analogous argument with F replaced

by G shows that q̇ℎ(tmax) is aligned with G, too. So in fact q̇ℎ(tmax) is aligned with F ∩G, and this

concludes the proof.

Before we prove convergence of the approximating trajectories, let us note that, for transversal

initial conditions, the trajectories remain transversal for a non-zero time span independent of ℎ.
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Lemma 3.5.5 Suppose q̇0 /∈ Δ1. Then there exists T > 0 independent of ℎ such that tmax(ℎ) > T

for all ℎ.

Proof. Since q̈ℎ(t) is bounded independently of ℎ on compact intervals by Lemma 3.5.2, by choos-

ing T small enough, we may assume that ∣q̇ℎ(t) − q̇0∣ is so small that q̇ℎ(t) /∈ Δ1 for all t ≤

min{T, tmax(ℎ)}. But then qℎ is transversal on [0,min{T, tmax(ℎ)}], and in particular tmax(ℎ) > T .

The claim now follows.

As a consequence, for transversal initial conditions this implies lim infℎ→0 tmax(ℎ) > 0.

Theorem 3.5.1 Fix initial conditions (q0, q̇0) such that q̇0 /∈ Δ1. For all 0 < T < lim infℎ→0 tmax(ℎ),

the approximating trajectories qℎ converge to the continuum trajectory q strongly in W 2,∞([0, T ]).

Proof. By Lemma 3.5.2 ∥qℎ∥W 2,∞([0,T ]) is bounded independently of ℎ. Passing—if necessary—to

a subsequence, we may assume that qℎ
∗
⇀ q in W 2,∞([0, T ]) for some q ∈W 2,∞([0, T ]). But then qℎ

converges strongly in W 1,∞ by the Rellich compactness theorem and since ∇Vℎ → ∇V uniformly

on compacts, we may pass to the limit in (3.71) to obtain that

Mq̈ = −∇V (q) on [0, T ] (3.73)

Since the right hand side of (3.71) converges uniformly, also q̈ℎ converges uniformly to q̈ and we

obtain qℎ → q strongly in W 2,∞([0, T ]).

Applying the above reasoning to an arbitrary subsequence ℎm → 0, we have thus proved that a

further subsequence converges to a solution q of the original equation of motion. Since this solution

is unique, indeed the family qℎ converges to q.

We are now in a position to state and prove our main global convergence result. In Lemma 3.5.3

we have seen that the element boundary crossings of approximating sequences are transversal except

for a (2d − 1)-dimensional set of initial conditions. This exceptional set does indeed depend on ℎ

and, therefore, if ℎ is viewed as a real variable we cannot expect that the set of exceptional initial

values can be chosen negligibly small independently of ℎ. However, in practice this problem does
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not occur since every numerical scheme is restricted to sequences ℎm → 0. Under these conditions,

the following theorem shows that the exceptional set is indeed negligible.

Theorem 3.5.2 Let ℎm → 0. Then except for a (2d − 1)-dimensional set of initial conditions

(q0, q̇0), qℎm converges to the continuum solution q strongly in W 2,∞
loc ([0,∞)).

Proof. Since {ℎm} is countable, by Lemma 3.5.3 we may assume that all the element boundary

crossings at times t1(ℎm), t2(ℎm), . . . are transversal. By Theorem 3.5.1 it suffices to show that

lim infm→∞ tmax(ℎm) =∞. Suppose this were not the case, that is lim infm→∞ tmax(ℎm) = t̄ <∞.

By passing to a subsequence (not relabeled) we may assume that t̄ = limm→∞ tmax(ℎm). Now

Lemma 3.5.4 implies that q̇ℎm
(tmax(ℎm)) ∈ Δ2. On the other hand, we deduce from Theorem 3.5.1

that, for all T < t̄, q̇ℎm(T ) → q̇(T ). Since by Lemma 3.5.2 sup[T,tmax] q̈ℎm(t) is uniformly bounded,

Δ2 is closed and q̇ is continuous, sending T → t̄ we deduce that q̇(t̄) ∈ Δ2. We conclude the proof by

showing that the set of initial conditions for which q̇(t) ∈ Δ2 at some positive time t has Hausdorff

dimension 2d−1: Let Φ : ℝ×ℝd×ℝd → ℝd×ℝd be the flow associated to the continuum equations

of motion

q̇(t) = p(t) (3.74)

ṗ(t) = −M−1∇V (q(t)) (3.75)

i.e., solutions with initial conditions (q0, p0) are given by (q(t), p(t)) = Φ(t, q0, p0). The critical set

of initial conditions under investigation is then given by

∪
t∈[0,∞)

Φ−1
t (ℝd ×Δ2) = Φ−1(ℝd ×Δ2) (3.76)

where Φt = Φ(t, ⋅). Since (t, q, p) 7→ (t,Φt(q, p)) is a diffeomorphism on ℝ2d+1 and Δ2 is (d − 2)-

dimensional, the set {(t, q0, p0) : (t,Φt(q0, p0)) ∈ ℝ×ℝd×Δ2} is (2d−1)-dimensional. But Φ−1(ℝd×

Δ2) is just the projection onto the first coordinate of this set. Since projections—being Lipschitz

continuous—do not enlarge the dimension of a set, we have indeed dim Φ−1(ℝd ×Δ2) ≤ 2d− 1.
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3.6 Numerical examples

We begin with the following quote from the survey of open problems in symplectic integration by

McLachlan and Scovel [61]:

How efficient can symplectic integrators be, given only the Hamiltonian (Lagrangian)
function?

The answer of this question is of practical relevance either when the Lagrangian is so complicated

that one does not wish to calculate its derivative by hand or when the numerical evaluation of the

derivative is so computationally demanding that one does not wish to use a time integrator that

relies on its calculation, e. g. multiscale modeling of materials. The force-stepping integrator defined

in Section 3.2 and the continuous piecewise-linear representation of approximate energies presented

in Section 3.3 result in a time integration scheme which only requires one evaluation of the potential

energy in each step. Thus, force-stepping could shed some light on the question posed above.

Next, we present selected examples of application that showcase the conservation, accuracy, long-

term behavior and convergence properties of force-stepping. These properties play an important

role in the long-term behavior of problems with strong nonlinearities, e. g. long-term integration

in celestial mechanics and computation of thermodynamics properties in molecular dynamics. For

instance, experience has shown that time-step adaption provides an efficient way to cope with strong

nonlinearities, but it is also observed that it tends to degrade the long-term behavior of standard

time integrators [8,20]. We illustrate the performance of force-stepping in those areas of application

by means of three examples: the motion of two bodies which attract each other by Newton’s law

of gravitation, that is the Kepler problem, the dynamics of a frozen argon cluster, and the oblique

impact of an elastic cube. In the first example, we investigate Lagrangian reductions with respect

to translational and rotational symmetries. In the second example, we only investigate translational

symmetry reductions by means of the general procedure presented in Section 3.4. In the third

example, we do not carry out any Lagrangian reduction.

For purposes of assessing the performance of force-stepping, we draw detailed comparisons with

the second-order explicit Newmark method, namely, the member of the Newmark family of time-
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stepping algorithms corresponding to parameters � = 0 and  = 1/2 (cf., e. g., [42] for a detailed

account of Newmark’s method). In the linear regime, explicit Newmark is second-order accurate and

conditionally stable, with a critical time step equal to twice over the maximum natural frequency of

the system. Explicit Newmark is identical to velocity Verlet and, for constant time step, it is also

identical to central differences. It can also be shown that the Newmark solution is in one-to-one

correspondence, or shadows, the solution of the trapezoidal-rule variational integrators (cf., e. g.,

[42]). Thus, explicit Newmark provides a convenient representative of a time-integrator commonly

used in molecular dynamics, finite-differencing and variational integration.

Detailed analyses of the implicit members of the Newmark family of algorithms, their stability

and energy preserving properties (for linear systems) were given in Belytschko and Schoeberle [4],

Hughes [35] and related papers.

3.6.1 Kepler problem

3.6.1.1 Lagrangian reduction

The motion of two bodies which attract each other by Newton’s inverse square law of gravitation is

often called the Kepler problem. This problem is characterized by a Lagrangian L : ℝ6×ℝ6 → ℝ of

the form (3.1) and is rich in symmetries and constants of motion. Among these invariants, the total

linear momentum and the total angular momentum are relevant to our analysis. We first apply the

ideas of Lagrangian reduction, presented in Section 3.4, to reduce the dimension of phase space to

TQ = ℝ2×ℝ2. More precisely, we chose one of the bodies as the center of the coordinate system in

order to have a two dimensional motion q = (x, y). Then, the Lagrangian reduces to

L(x, y, ẋ, ẏ) =
1

2

(
ẋ2 + ẏ2

)
+

1√
x2 + y2

. (3.77)

and the solution is stable and periodic for initial conditions of the family

q0 = (1− e, 0) , q̇0 =
(

0,
√

1+e
1−e

)
(3.78)
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with 0 ≤ e < 1. Indeed, Kepler’s first law states that planets move in elliptic orbits with the sun at

one of the foci.

It is possible to further reduce phase space by first changing coordinates to a polar representation

and then by eliminating the angular components, i.e., the group coordinates associated with the

rotational symmetry. Then, reduction by stages gives a reduced Lagrangian l : ℝ × ℝ → ℝ of the

form (3.1),

l(r, ṙ) =
1

2
ṙ2 − V ′(r) (3.79)

�(t) =

∫ t

0

Θ

r(�)2
d� + �0 (3.80)

where the effective potential is V ′(r) = −1

r
+

Θ2

2r2
, and the total angular momentum is Θ = r�̇ =

xẏ − yẋ. Initial conditions are

r0 = 1− e , ṙ0 = 0 , Θ =
√

1− e2 , �0 = 0 (3.81)

A unique property of 2-body problems, e. g. the Kepler problem, is that reduction with respect to

translational and rotational symmetries induces Lagrangians of the desirable form (3.1). Therefore,

force-stepping trajectories can be readily obtained either from (3.77) or from (3.79). The latter are

linear and angular momenta preserving and the former are linear momentum preserving. This is in

sharp contrast to N -body problems with N ≥ 3, which only allow for an effective reduction with

respect to the translational symmetry, as described in Section 3.4.

We first consider the Kepler problem described by the Lagrangian (3.77) and initial conditions

(3.78) with e = 0.85. The size of the underlying simplicial triangulation employed in the force-

stepping calculations is ℎx,y = 0.022. The time step employed in the time-stepping calculations is

Δt = 0.0125, which corresponds to the average time step resulting from the force-stepping calcula-

tions. The total duration of the analysis is 64�.

The constant time-step explicit Newmark method is symplectic-momentum preserving and, there-

fore, does not conserve energy. As it is often the case with symplectic-momentum preserving meth-
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ods, it nevertheless has good energy-conservation properties for sufficiently small time steps. How-

ever, due to the conditional stability of the method the time-step is constrained by the maximum

natural frequency of the system. The one-step explicit algorithm is

qk+1 = qk + Δtq̇k −
Δt2

2
M−1∇V (qk) (3.82a)

q̇k+1 = q̇k −
Δt

2
M−1 [∇V (qk) +∇V (qk+1)] (3.82b)

By way of contrast, LaBudde and Greenspan [50] presented a second-order accurate and symmet-

ric method which is energy-momentum preserving and, therefore, does not conserve the symplectic

structure. This time integrator was designed as a modification of the midpoint rule method consid-

ering a potential energy of the form V (q) = U(∣q∣), e. g. the Kepler problem satisfies this restrictive

condition. The one-step implicit algorithm is

qk+1 = qk +
Δt

2
(q̇k + q̇k+1) (3.83a)

q̇k+1 = q̇k −Δt
U(∣qk+1∣)− U(∣qk∣)
∣qk+1∣2 − ∣qk∣2

M−1 (qk+1 + qk) (3.83b)

Figure 3.4 shows the trajectories provided by force-stepping, explicit Newmark, and the energy-

momentum preserving time integrator. Although a precession effect is characteristic of these nu-

merical trajectories, we note that orbits are stable and elliptic over long times. The good long-time

behavior of force-stepping and explicit Newmark is due to their exact conservation of the symplectic

structure. In contrast, the good long-time behavior of the energy-momentum method is understood

as a consequence of its time-reversibility more than of its exact conservation properties [30]. Con-

servation of total energy and/or angular momentum of these methods are verified in Figure 3.5. It

is also worth noting that, at least for this dynamic system of interest, there is no apparent drift in

the angular momentum of force-stepping trajectories. This may be understood as a consequence of

the near-momentum conservation properties of the method (Theorem 3.4.2).

Figure 3.6 shows a histogram of the time steps selected by force-stepping. The broad range of
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Figure 3.4: Kepler problem described by L(x, y, ẋ, ẏ) with e = 0.85 and Δt = 0.0125. Left: Force-
stepping (blue line), Newmark (red line), energy-momentum (green line) and exact (black line)
trajectories in configuration space. Right: Spatial distribution of time steps selected by force-
stepping for ℎx,y = 0.022.
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Figure 3.5: Kepler problem described by L(x, y, ẋ, ẏ) with e = 0.85. Blue line: Force-stepping
solution with ℎx,y = 0.022. Red line: Newmark solution with Δt = 0.0125. Green line: Energy-
momentum solution with Δt = 0.0125.
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time steps is noteworthy, as is their distribution in configuration space shown on the right side of

Figure 3.4. In regions where the velocity is high (low), the resulting time steps are small (large).

Thus, theses figures also illustrate the automatic time-selection property of force-stepping. This

property may in turn be regarded as the means by which force-stepping achieves symplecticity,

exact conservation of energy, and approximate conservation of momentum maps. It also bears

emphasis that, unlike variable time-step variational integrators designed to conserve energy [40,51],

force-stepping always selects a valid time step and is therefore free of solvability concerns.
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Figure 3.6: Kepler problem described by L(x, y, ẋ, ẏ) with e = 0.85. Histogram of time steps selected
by force-stepping for ℎx,y = 0.022.

We now consider the Kepler problem described by the reduced Lagrangian (3.79) and initial

conditions (3.81) with e = 0.85. The size of the underlying simplicial triangulation employed in

the force-stepping calculations is ℎr = 0.0067—we note that the simplicial triangulation reduces to

a one-dimensional grid. The time step employed in the time-stepping calculations is Δt = 0.0125,

which corresponds to the average time step resulting from the force-stepping calculations as well as

to the time step employed in the above calculations. The total duration of the analysis is 64�.

Figure 3.7 shows the reconstructed trajectories provided by force-stepping and explicit Newmark.

The original dynamics is reconstructed from the reduced dynamics by computing �(t) from (3.80).

The angular displacement can be exactly obtained from force-stepping trajectories and therefore the

total angular momentum map is conserved along the reconstructed trajectories. Conservation of

total energy and angular momentum of the reconstructed trajectories are verified in Figure 3.8. As
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demonstrated in Section 3.4, force-stepping is a symplectic-energy time-reversible integrator which,

by recourse to Lagrangian reduction, conserves exactly the total linear and angular momentum maps

of the original Lagrangian.
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Figure 3.7: Kepler problem described by l(r, ṙ) with e = 0.85 and Δt = 0.0125. Left: Force-stepping
(blue line), Newmark (red line) and exact (black line) reconstructed trajectories in configuration
space. Right: Spatial distribution of time steps selected by force-stepping for ℎr = 0.0067.
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Figure 3.8: Kepler problem described by l(r, ṙ) with e = 0.85. Blue line: Force-stepping solution
with ℎr = 0.0067. Red line: Newmark solution with Δt = 0.0125.

It is suggestive to note that the automatic time-selection property of force-stepping leads to a

sharper distribution of time steps in the reduced configuration space than in the original configuration

space (cf. the right side of Figure 3.4 and the right side of Figure 3.7). The direct relationship

between group symmetries of the system and optimal time-step adaption is noteworthy.
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3.6.1.2 Strong nonlinearities

McLachlan and Scovel [61] recognize the Kepler problem with e→ 1 as a strong nonlinear problem

and suggest taking this case as a good test of a variable time step method. We then consider the

Kepler problem described by the Lagrangian (3.77) and initial conditions (3.78) with e = 0.99.

Thus, the potential energy gradient goes from ∇V (q0) = (104, 0) at the initial configuration to

∇V (qa) ≃ (1, 0) at the apoapsis—farthest point from the focus. The size of the underlying simplicial

triangulation employed in the force-stepping calculations is ℎx,y = 0.000247. The time step employed

in the time-stepping calculations is Δt = 0.000175, which corresponds to the average time step

resulting from the force-stepping calculations. The total duration of the analysis is 16�.

−2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

x

y

−2 −1.5 −1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

x

y

 

 

Min Max

Figure 3.9: Kepler problem described by L(x, y, ẋ, ẏ) with e = 0.99 and Δt = 0.000175. Left:
Force-stepping (blue line), Newmark (red line), energy-momentum (green line) and exact (black
line) trajectories in configuration space. Right: Spatial distribution of time steps selected by force-
stepping for ℎx,y = 0.000247.

Figure 3.9 shows force-stepping, explicit Newmark, and energy-momentum preserving trajectories

in configuration space. We first note that the orbits of both force-stepping and energy-momentum

methods are stable and elliptic over long times, while explicit Newmark does not even exhibit the

qualitative periodic behavior of the solution. We also note that a larger precession effect of the

energy-momentum preserving integrator is in clear detriment of its pointwise accuracy. The remark-

able behavior of force-stepping relays on its automatic time-step selection required for achieving

symplecticity, exact conservation of energy, and approximate conservation of momentum maps. In-

deed, the direct relationship between the spatial distribution of time steps and the nonlinearity of
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Figure 3.10: Kepler problem described by L(x, y, ẋ, ẏ) with e = 0.99 and Δt = 0.000175. Force-
stepping (blue line), Newmark (red line) and energy-momentum (green line) solutions.

the problem—visualized by the iso-curves of potential energy—is illustrated on the right side of Fig-

ure 3.9. In contrast, the good behavior of the energy-momentum method may relay on its implicit

algorithm specially designed for central field forces, i.e. V (q) = U(∣q∣), which is significantly more

computationally expensive than force-stepping. Finally, conservation of total energy and angular

momentum are verified in Figure 3.10.

3.6.1.3 Convergence analysis

We motivate this section with the following problem posed by McLachlan and Scovel [61]:

Develop variable time step symplectic integrators so that they are competitive for point-
wise accuracy with standard methods for the Kepler problem, while retaining the good
long-time behavior of constant time step symplectic methods.

To this end, we first recall those characteristic parameters that describe the exact solution of the

Kepler problem, i.e., the semi-major axis a = L2
0/(1 − e2) = 1, the semi-minor axis b = (1 − e2)1/2

and the period ! = 2�. In the spirit of phase error analysis, these are the statistical quantities

relevant to a global accuracy analysis rather than individual trajectories over intermediate to long

time scales.

Figure 3.11 shows convergence results for aℎ → a = 1 and !ℎ → ! = 2�, i.e., the spectral

convergence. Figure 3.12 shows convergence results for ∣qℎ − q∣∞ → 0, i.e., pointwise convergence.

We note that the force-stepping is one order of magnitude more accurate than explicit Newmark
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Figure 3.11: Kepler problem described by L(x, y, ẋ, ẏ) with e = 0.85 and e = 0.99. Blue line:
Force-stepping solution. Red line: Newmark solution.

when the problem has strong nonlinearities (e = 0.99). We also note that both methods have the

same convergence rate and exhibit nearly identical accuracy characteristics when the problem has

moderate nonlinearities (e = 0.85). These results not only indicate that standard time integrators,

e. g. explicit Newmark, are particularly not efficient nor effective in solving problems with strong

nonlinearities during large periods of time, but they also demonstrate that force-stepping significantly

outperforms classical methods under these conditions.
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Figure 3.12: Kepler problem described by L(x, y, ẋ, ẏ) with e = 0.85 and e = 0.99. Blue line:
Force-stepping solution. Red line: Newmark solution.
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3.6.2 Frozen argon cluster

Molecular dynamics falls squarely within the framework considered in this chapter. Many appli-

cations in materials science, such as the calculation of free energies, require the integration of the

system over long periods of time. In these applications, it is essential that the time integrator have

good long-time behavior, such as conferred by symplecticity and exact conservation properties.

The velocity Verlet scheme is perhaps the most widely used time-integration scheme in molecu-

lar dynamics. As already noted, velocity Verlet is identical to explicit Newmark and, for constant

time steps, it is symplectic-momentum preserving with good energy-conservation properties for suf-

ficiently small time steps. However, due to the conditional stability of the method the time-step is

constrained by the period of thermal vibrations of the atoms, which renders calculations of equilib-

rium thermodynamic properties exceedingly costly. The development of integration schemes that

alleviate or entirely eliminate the time-step restrictions of explicit integration in molecular dynamics

applications is the subject of ongoing research (cf., e. g., [36, 38]).

We proceed to illustrate the performance of force-stepping in molecular dynamics applications by

analyzing the dynamics of a simple argon cluster. Specifically, we consider the numerical experiment

proposed by Biesiadecki and Skeel [5]. The experiment concerns the two-dimensional simulation of

a seven-atom argon cluster, six atoms of which are arranged symmetrically around the remaining

central atom, Figure 2.5. The atoms interact via the pairwise Lennard-Jones potential

� (r) = 4"

[(�
r

)12

−
(�
r

)6
]

(3.84)

where r is the distance between two atomic centers, "/kB = 119.8 K and � = 0.341 nm are material

constants for Argon, and kB = 1.380658 ⋅ 10−23 J/K is the Boltzmann’s constant. In addition, the

mass of an argon atom is m = 66.34 ⋅ 10−27 kg. The initial positions of the atoms are slightly

perturbed about the configuration that minimizes the potential energy of the cluster. The initial

velocities are chosen such that the total linear momentum is zero and the center of mass of the

cluster remains fixed. The corresponding total energy of the cluster is E/" = −10.51928. Table 2.1
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summarizes the initial conditions for the simulation.

Two different discretizations of configuration space are employed in the force-stepping calcula-

tions: ℎ1 = 0.020 nm and ℎ2 = 0.005 nm. The time steps employed in the velocity Verlet calculations

are Δt1 = 3.12 fsec and Δt2 = 0.80 fsec. These time steps correspond to the average time steps

resulting from the respective force-stepping calculations. The total duration of the analysis is 10

nsec.

The first row of Figs. 3.13 and 3.14 show the evolution in time of the constants of motion

of the system: i) total energy, ii) total linear momentum, and iii) total angular momentum. As

expected, force-stepping is energy and linear momentum preserving regardless the discretization of

configuration space employed. It is worth noting that, while not being exactly angular momentum

conserving, force-stepping exhibits good angular momentum behavior over long times.

In order to assess the long-time behavior of force-stepping, we present on the second row of

Figs. 3.13 and 3.14 the qualitative behavior of the trajectories: iv) the evolution in time of the

numerical temperature of the cluster, v) a histogram of time steps selected by the time integrator,

and vi) the trajectories of the argon atoms for a time window of [9.95, 10] nsec (the configuration

at t = 0 is represented by the dashed line hexagon). The numerical temperature of the cluster is

computed, under the assumption of ergodicity, by

T (t) =
1

tNkB

∫ t

0

1

2
m∥q̇(�)∥2d� (3.85)

where N = 7 is the number of particles of the cluster. We note that force-stepping does not

suffer from numerical dissipation and the system quickly reaches a thermodynamic temperature—

the thermodynamic temperature is defined in the limit of t → ∞. We also note that trajectories

of the seven argon atoms, each represented by a different color, remain stable over long periods of

time.

Finally, the convergence statement of Theorem 3.5.2 is illustrated by Figs. 3.15 and 3.16. We first

recall that, as demonstrated in Section 3.5, the approximate space of trajectories is X = W 2,∞
loc (0, T ).
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Figure 3.13: Frozen argon cluster. Blue line: Force-stepping solution with ℎ1 = 0.02 nm. Red line:
Newmark solution with Δt1 = 3.12 fsec.
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Figure 3.14: Frozen argon cluster. Blue line: Force-stepping solution with ℎ2 = 0.005 nm. Red line:
Newmark solution with Δt2 = 0.80 fsec.
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Then, distances are measured with respect to the W 2,∞-norm

∥q∥W 2,∞(0,T ) = ∥q(t)∥L∞ + ∥q̇(t)∥L∞ + ∥q̈(t)∥L∞ (3.86)

and a relative W 2,∞-error is defined by

W 2,∞-error =

∣∣∥qℎ∥W 2,∞(0,T ) − ∥q∥W 2,∞(0,T )

∣∣
∥q∥W 2,∞(0,T )

(3.87)

where ∥q∥W 2,∞(0,T ) is estimated from numerical results. The relative W 2,∞-error of force-stepping

with and without parity-invariance is shown on the right side of Figs. 3.15 and 3.16, respectively,

as a function of the simplicial grid size ℎ, for T = 0.1 nsec. The slope of the convergence plot

is also directly related to the rate of convergence in grid size, that is W 2,∞-error = O(ℎr). This

gives an estimated rate of convergence in the W 2,∞-norm of r ≃ 1. Furthermore, it is interesting

to observe on the left side of Figs. 3.15 and 3.16 that the average and the maximum time steps

selected by force-stepping are O(ℎ). Additionally, the minimum time step selected by the method is

O(ℎ7/4) when an approximate potential Vℎ with parity-invariance is employed, and O(ℎ2) when the

approximate potential breaks the parity symmetry of the exact potential V . It is also interesting to

note that force-stepping with parity-invariance exhibits a region of asymptotic convergence larger

than force-stepping without parity-invariance. Therefore, the sequence qℎ is indeed convergent and

transversal, as expected from the analysis in Section 3.5, and force-stepping with parity-invariance

exhibits better convergence properties.

3.6.3 Finite-element model with contact: oblique impact of neo-Hookean

cube

Next we consider finite-dimensional Lagrangian systems obtained by a finite-element discretization

of the action of a nonlinear elastic solid (cf., e. g., [51] for details of finite-element approximation

in elastodynamics). For these applications, the generalized coordinates q of the system are the

coordinates of the nodes in the deformed configuration of the solid. The example that we present
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Figure 3.15: Convergence analysis of the frozen argon cluster using force-stepping with parity-
invariance. Right: Convergence is observed in the W 2,∞-norm with estimated convergence rate of
r ≃ 1. Left: The average (★) and the maximum (∙) time steps selected by force-stepping are O(ℎ),
whereas the minimum (■) time step is O(ℎ7/4).
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Figure 3.16: Convergence analysis of the frozen argon cluster using force-stepping without parity-
invariance. Right: Convergence is observed in the W 2,∞-norm with estimated convergence rate of
r ≃ 1. Left: The average (★) and the maximum (∙) time steps selected by force-stepping are O(ℎ),
whereas the minimum (■) time step is O(ℎ2).
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to illustrate the performance of force-stepping in that area of application is the oblique impact of a

neo-Hookean cube in a rigid wall. To this end, we assume a strain-energy density of the form

W (F ) =
�0

2
(log J)

2 − �0 log J +
�0

2
tr
(
FTF

)
(3.88)

which describes a neo-Hookean solid extended to the compressible range. In this expression, �0 and

�0 are Lamé constants, and J is the Jacobian of the deformation gradient F .

In problems involving contact we additionally consider the kinematic restrictions imposed by the

impenetrability constraint. We recall that the admissible configuration set C of a deformable body

is the set of deformation mappings which are globally one-to-one. In so-called barrier methods,

the interpenetration constraint may be accounted for by adding the indicator function IC (q) of the

admissible set C to the energy of the solid. We recall that the indicator function of a set C is the

extended-valued function

IC (q) =

⎧⎨⎩
0 if q ∈ C

∞ otherwise

(3.89)

Often in calculations, the indicator function IC is replaced by a penalty approximation IC,� ≥ 0

parameterized by a small parameter � > 0 and such that IC,� = 0 over C. In this approach, as �→ 0,

IC,� → IC pointwise and interpenetration is increasingly penalized. A convenient choice of penalty

energy function for contact with a rigid hyperplane is of the form

IC,�(q) =
1

2�

∑
�∈I

g�(q) (3.90)

where the index set I ranges over all boundary nodes and

g� (q) =

⎧⎨⎩
0, if (q −O) ⋅ n ≥ 0,

∥(q −O) ⋅ n∥2 , otherwise,

(3.91)

where O and n are the hyperplane reference point and outer-pointing normal. We note that the

admissible set IC,� is not invariant under the action of translations and rotations. It therefore
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follows that the constrained Lagrangian does not retain its momentum preserving properties and

the Lagrangian reduction described in Section 3.4 cannot be carried out.

The application of force-stepping to dynamic contact problems is straightforward. The case in

which the constraints are represented by means of a penalty energy function IC,� falls right within

the general framework and requires no special considerations, that is V (q) = W (F (q)) + IC,�(q).

In addition, collision is automatically captured by the intrinsic time adaption of force-stepping (cf.,

e. g., [10, 80], for a detailed discussion of time-step selection considerations in contact problems).

Our example concerns the oblique impact of an elastic aluminum cube of size equal to 0.1 m.

The mesh comprises 192 4-node tetrahedral isoparametric elements and 71 nodes. The cube is a

compressible neo-Hookean solid characterized by a strain-energy density of the form (3.88). The

values of the material constants in (3.88) are: �0 = 60.5 GPa, �0 = 26 GPa, and � = 2700 kg/m3.

The cube is imparted an initial velocity v0 = (1, 1, 1) km/s. The rigid wall is described by a

hyperplane with O = (0.101, 0.101, 0.101) m and n = (0,−1,−1). A sequence of snapshots of the

force-stepping trajectory corresponding to ℎ = 5 ⋅ 10−4 m are shown on Figs. 3.17 and 3.18.

0 5 10 15 20 25 30

35 40 45 50 55 60 65

70 75 80 85 90 95 100

Figure 3.17: Oblique impact of neo-Hookean cube. Sequence of snapshots of the force-stepping
trajectory with ℎ = 5 ⋅ 10−4 m displaying the yz-midplane of the cube. Numbers indicate times in
�s and oblique lines represent the rigid wall.

Figure 3.19 compares the time histories of total energy, potential energy and kinetic energy

attendant to the force-stepping trajectory for ℎ = 5 ⋅ 10−4 m and Newmark’s trajectory for Δt =

0.2 nsec, the latter chosen to be in the order of the average time step resulting from the force-
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t = 0 t = 20 t = 35 t = 40

t = 60 t = 80 t = 100

Figure 3.18: Oblique impact of neo-Hookean cube. Sequence of snapshots of the force-stepping
trajectory with ℎ = 5 ⋅ 10−4 m. Numbers indicate times in �s and red lines provide a reference for
the first points of impact, that is the (x, 0.101, 0.101)-line.

stepping calculations. As expected, the kinetic energy of the system is partly converted to potential

energy during the approach part of the collision sequence, and vice versa during the release part.

Also characteristically, force-stepping is observed to conserve energy exactly through the collision,

whereas the Newmark energy remains within tight bounds due to the small time step and the

appropriate penalty energy, i.e. (3.90) and (3.91) with � = 10−14. Other notable features of the

calculations are the ability of force-stepping to detect the time of collision and to automatically

modulate the time-step so as to resolve the fine structure of the intricate interactions that occur

through the collision.

Figure 3.20 shows the time history of the linear and angular momenta of the cube. Because the

cube impacts with a rigid wall, the total linear and angular momenta of the system are not conserved

through the collision but evolve in a characteristic way with time. We note from Figure 3.20

that force-stepping trajectory does indeed follow closely Newmark trajectory, even though force-

stepping does not conserve linear and angular momenta. We also note that the transfer of linear

momentum from the rigid wall to the cube is in the direction normal to the hyperplane and the

motion in the orthogonal direction is unperturbed. Similarly, the oblique impact introduces angular

momentum into the system. The good momentum behavior of force-stepping is noteworthy and
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Figure 3.19: Oblique impact of neo-Hookean cube. Blue line: Force-stepping solution with ℎ =
5 ⋅ 10−4 m. Black line: Newmark solution with Δt = 0.2 nsec.
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Figure 3.20: Oblique impact of neo-Hookean cube. Blue line: Force-stepping solution with ℎ =
5 ⋅ 10−4 m. Black line: Newmark solution with Δt = 0.2 nsec. The insets show in detail the
x-component of momentum maps.
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may be understood as a consequence of the near-momentum conservation properties of the method

(Theorem 3.4.2).

Finally, we investigate the relationship between the average time step and the number of degrees

of freedom of the system d = 3N . To this end we consider three different meshes with increasing

level of refinement, i.e. meshes I, II and II with 213, 375 and 1287 degrees of freedom, respectively.

Figure 3.21 shows the average time step selected by force-stepping is O(ℎ/N2), where ℎ is the

simplicial grid size. We note that these results are consistent with and extend the results obtained

in Section 3.6.2, i.e. a dependence of the form O(ℎ).
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Figure 3.21: Oblique impact of neo-Hookean cube. The average time step selected by force-stepping
is O(ℎ/N2), where ℎ is the simplicial grid size and 3N is the number of degrees of freedom of the
system. Three different meshes are considered and depicted on the right hand side.

3.7 Summary and discussion

We have formulated a class of integration schemes for Lagrangian mechanics, which we refer to as

force-stepping integrators, that are symplectic-energy and time-reversible with automatic selection of

the time step size. The scheme also conserves approximately all the momentum maps associated with

the symmetries of the system. Exact conservation of momentum maps may be achieved by recourse to

Lagrangian reduction. The general strategy leading to the formulation of the force-stepping scheme,

and its forerunner, the energy-stepping scheme [24], may be viewed as the reverse of backward-

error analysis. Thus, whereas backward-error analysis seeks to identify a nearby Lagrangian system
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that is solved exactly by the solutions generated by a numerical integrator, the approach followed

here is to directly replace the system by a nearby one that can be solved exactly. The force-

stepping scheme is obtained by replacing the original—or reduced—potential energy by a piecewise

affine approximation over a simplicial grid, or regular triangulation. By taking triangulations of

diminishing size, an approximating sequence of energies is generated. The trajectories of the resulting

approximate Lagrangians can be characterized explicitly and consist of piecewise parabolic motion,

or free fall. We have shown that the force-stepping trajectories are symplectic, energy preserving,

approximately conserve momentum maps of the original system and, except for a negligible small

set of initial conditions, converge to trajectories of the original system when the size of the simplicial

grid is decreased to zero. Selected numerical tests, including the Kepler problem, the dynamics of a

frozen argon cluster, and the oblique impact of an elastic cube, demonstrate the excellent long-term

behavior of force-stepping, its automatic time-step selection property, and the ease with which it

deals with constraints, including contact problems.

We have also described a unique, systematic and efficient representation of the piecewise-linear

approximation of the potential based on a regular triangulation of ℝd into proper simplices. The

interpolation of the approximate potential can be restricted to one simplex at a time, and the

replacement rule provides an efficient scheme to construct adjacent simplices as the numerical solu-

tion crosses simplicial boundaries. In particular, we have developed an algorithm for updating all

simplex-related matrices required to compute force-stepping trajectories that has complexity O(d2).

We close by pointing out some limitations of our analysis and possible avenues for extensions of

the approach.

Firstly, our analysis of near conservation of momentum maps holds for given time intervals [0, T ]

with T <∞, that is the momentum map of force-stepping trajectories converges to the original one in

W 1,∞
loc ([0,∞)). It is possible that such analysis can be extended to W 1,∞([0,∞)) if conditions under

which approximating trajectory errors average out over long times are understood. Our experience

with selected numerical tests suggests that the nearly-conserved momentum maps remain within

tight bounds for long periods of time. However, a rigorous analysis of this property is beyond the
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scope of this work.

Secondly, automatic time-step selection is an attractive feature of the force-stepping scheme.

We have shown a linear relationship between the simplicial grid size and the average time step. In

practice, this scaling could be improved by using triangulations that require fewer simplices. The

review of Brandts et al. [7] on nonobtuse simplicial partitions, the work of Bliss and Su [6] on lower

bounds for simplicial covers and triangulations of cubes, and other related work suggest possible

directions in that regard.

Thirdly, piecewise polynomial interpolation of the potential, including piecewise constant inter-

polation (energy-stepping [24]) and piecewise linear interpolation (force-stepping) do not exhaust

the class of approximations that generate exactly solvable Lagrangians. A case in point concerns

the use discontinuous piecewise-linear approximations of the potential energy over a grid of poly-

topes. However, criteria for constructing the piecewise-linear patches and convergence properties

of the resulting time-integrator are not well-understood at present. The systematic investigation of

approximation schemes of the type proposed here, the elucidation of their properties and the deter-

mination of the best types of approximating Lagrangians in each area of application, are worthwhile

directions of future research.
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Chapter 4

Asynchronous energy-stepping
integrators

We present a symplectic-energy-momentum time integrator for Lagrangian mechanics, referred to as

asynchronous energy-stepping integrator, that has the ability to automatically and asynchronously

modulate the time step in different regions of the domain, if any. In order to achieve these proper-

ties we introduce a localization of the configuration space, or domain partition, that allows for an

additive decomposition of the global Lagrangian into local Lagrangians amenable to energy-stepping

approximations. Thus, we replace the original localized potential energies by stepwise or terraced

approximations at steps of uniform heights. The trajectories of the resulting Lagrangians can be

characterized explicitly and consist of intervals of rectilinear motion that span consecutive level con-

tours of the localized potential energies. We show that the asynchronous energy-stepping trajectories

are symplectic, exactly conserve all momentum maps of the original local systems and account for

the exact momentum fluxes across subdomain boundaries. These properties, the excellent long-term

behavior of asynchronous energy-stepping and its automatic and asynchronous time-step selection

property are born out by selected examples of application, including the head-on collision of soft

elastic spherical balls and the propagation of solitary waves in a chain of elastic beads.
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4.1 Introduction

In recent papers [24, 25] and Chapters 2-3, the authors have proposed a method of approximation

for Lagrangian mechanics consisting of replacing the Lagrangian L(q, q̇) of the system by a sequence

of approximate Lagrangians Lℎ(q, q̇) that can be solved exactly. The approximate solutions qℎ(t)

are then the exact trajectories of Lℎ(q, q̇). In this manner, the approximate solutions are themselves

trajectories of a Lagrangian system and, therefore, have many of the properties of such trajectories

such as symplecticity and exact conservation of the momentum maps associated with the symmetry

groups of L(q, q̇) preserved by Lℎ(q, q̇). For example, in [24], this program has been carried out

in full for Lagrangians of the type: L(q, q̇) = K(q̇) − V (q), with K(q̇) a quadratic form, and for

approximate Lagrangians of the type Lℎ(q, q̇) = K(q̇) − Vℎ(q), with Vℎ(q) a terraced piecewise

constant approximation to V (q). This type of approximation does indeed result in exactly solvable

Lagrangians which have all the symmetries of the original system. The approximate trajectories then

exactly conserve all the momentum maps of the system, whether explicitly known (e. g., total energy,

linear and angular momenta) or not. It bears emphasis that, in contrast to variational integrators

(cf., e. g., [52, 53, 58]), the momenta that are conserved are the exact momenta of the system and

not some time discretization thereof. The approximate trajectories are piecewise rectilinear, with

the intervals of rectilinear motion spanning consecutive level contours of the potential, hence the

name energy-stepping integrators. The durations of these intervals may be regarded as time steps,

whose determination is part of the solution process. In this manner, the approach overcomes an

intrinsic limitation of fixed time-step integrators, which cannot simultaneously conserve energy,

the symplectic structure and other conserved quantities, such as linear and angular momenta [19].

Additionally, under mild restrictions on the potential, the approximate trajectories are found to

indeed converge to exact trajectories of the system, subject to technical transversality constraints.

Many applications in material science and structural mechanics are characterized by dynamical

systems which exhibit a wide range of strain rates and time scales that coexist in time and space

(e. g., many-body contact dynamics). Moreover, in most cases the interesting dynamics takes place

in a small region of the domain and this region of interest drifts in space as time progresses (e. g.,
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propagation of shock waves, solitary waves, structural and material instabilities, or fracture dy-

namics). In these applications, an effective and efficient time integrator must have good long-term

behavior—such as conferred by symplecticity and exact conservation properties—and the ability to

automatically and asynchronously modulate the time step in different regions or subdomains. Some

of these properties are shared by subcycling methods [34, 63], group implicit algorithms [67], asyn-

chronous variational integrators [51], energy-stepping integrators [24], and related works. Energy-

stepping integrators, in particular, are convergent time-integration schemes with exact conservation

and automatic time-step selection properties. In this chapter, we endow energy-stepping with asyn-

chronous time-step selection properties, hence the term asynchronous energy-stepping integrators.

We achieve these desirable properties by a localization of the configuration space that allows for

an additive decomposition of the original global Lagrangian into local Lagrangians amenable to

energy-stepping approximations (for example, in the context of finite-elements models, the localiza-

tion is often the result of partitioning the mesh into subdomains). By this simple procedure, the

approximate trajectories are symplectic and exactly preserve all conservation laws of the original

local systems. Furthermore, the approximate trajectories are piecewise rectilinear, with intervals of

rectilinear motion that span consecutive level contours of the localized potential energies. Thus, the

durations of these intervals differ in each subdomain and may be regarded as local time steps, whose

asynchronic determination is part of the solution process.

The chapter is organized as follows. The asynchronous energy-stepping time-integration scheme

is defined in Section 4.2. The global and local conservation properties of asynchronous energy-

stepping are presented in Section 4.3. In Section 4.4 we discuss some aspects of the implementation

and computational efficiency of the method. Finally, in Section 4.5 we present selected examples

of application that illustrate the efficiency, convergence, accuracy and conservation properties of

asynchronous energy-stepping, including the head-on collision of soft elastic spherical balls and the

propagation of solitary waves in a chain of elastic beads. Finally, a summary and concluding remarks

are collected in Section 4.6.
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4.2 Asynchronous energy-stepping integrators

For definiteness, we specifically consider dynamical systems characterized by Lagrangians L : ℝd ×

ℝd → ℝ of the form

L(q, q̇) =
1

2
q̇TMq̇ − V (q) (4.1)

where M is the mass matrix and V is the potential energy. Lagrangians of this form arise in a

number of areas of application including structural dynamics and molecular dynamics. Let us now

define nLV local variables q(j) ∈ ℝmj<d as the localization of the configuration q, that is

q(j) = Lo(j)q (4.2)

where Lo(j) ∈ ℝmj×d is the j-th localization matrix. It is clear that {q(1) . . . q(nLV )} carries the same

information as q, since the former is obtained from the latter as simple process of localization. In

the context of finite-elements models, the localization is often the result of partitioning the mesh,

i.e., each extended variable corresponds to a subdomain in the partition. In the context of coupled

systems with an interface (e. g., many-body contact dynamics) domain decomposition methods apply

in a natural way, since subdomains are already defined. In molecular dynamics, the localization is

often achieved by decomposing the potential energy into contributions with different characteristic

time and length scales. Let us also assume that the dynamical systems in consideration allow for

an additive decomposition of the Lagrangian into local Lagrangians L(j)(q(j), q̇(j)) of the form (4.1),

that is

L(q, q̇) =

nLV∑
j=1

L(j)(q(j), q̇(j)) =

nLV∑
j=1

{
1

2
(q̇(j))TM (j)q̇(j) − V (j)(q(j))

}
(4.3)
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Then, the localized mass matrix M (j) and potential energy V (j) naturally verify the following rela-

tions

M =

nLV∑
j=1

(Lo(j))TM (j)Lo(j) (4.4)

V (q) =

nLV∑
j=1

V (j)(q(j)) (4.5)

Following the method proposed by the authors in [24,25], the trajectories of a Lagrangian system

can be approximated by replacing L(q, q̇) by an approximating Lagrangian Lℎ(q, q̇) that can be solved

exactly. A particular type of approximating Lagrangian is

Lℎ(q(j), q̇(j)) =

nLV∑
j=1

1

2
(q̇(j))TM (j)q̇(j) −

nLV∑
j=1

V
(j)
ℎ (q(j)) (4.6)

obtained by introducing an approximation of the potential energy. In this work, we specifically

investigate piecewise constant approximations of the localized potential energies. Thus, we replace

the original localized potential energies V (j) by stepwise or terraced approximations V
(j)
ℎ at steps of

uniform height ℎ(j), namely,

V
(j)
ℎ (q(j)) = ℎ(j)⌊(ℎ(j))−1V (j)(q(j))⌋ (4.7)

where ⌊⋅⌋ is the floor function, i.e., ⌊x⌋ = max{n ∈ ℤ : n ≤ x}. By taking steps of diminishing

height, an approximating sequence of potential energies and Lagrangians is generated in this manner.

The chief characteristics of the new systems thus obtained are that they can be solved exactly, as

demonstrated in Section 4.2.1, and that they have the same symmetries as the original system, as

shown in Section 4.3. It bears emphasis that asynchronous energy-stepping integrators result from

the piecewise constant approximation of the localized potential energy V (j)(q(j)), whereas energy-

stepping integrators result from the piecewise constant approximation of the global potential energy

of the system V (q) [24].
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4.2.1 Computation of the exact trajectories of the approximating La-

grangian

Figure 4.1: Trajectory of a system whose localized potential energy is approximated as piecewise
constant.

We now proceed to compute the exact trajectories of the approximate Lagrangian Lℎ(q(j), q̇(j))

resulting from the piecewise constant approximation (4.7) of the potential energy. Suppose that the

system is in configuration {q(1)
0 . . . q

(j)
0 . . . q

(nLV )
0 } at time t0 and in configuration {q(1)

2 . . . q
(j)
2 . . . q

(nLV )
2 }

at time t2 and that during the time interval [t0, t2] the system intersects one single jump surface

Γ
(i)
1 separating two regions of constant energies V

(i)
0 and V

(i)
2 , Figure 4.1. By the construction of

V
(i)
ℎ , Γ

(i)
1 is the level surface V (i) = V

(i)
2 for an uphill step V

(i)
2 = V

(i)
0 + ℎ(i), or the level surface

V (i) = V
(i)
0 for a downhill step, V

(i)
2 = V

(i)
0 − ℎ(i). For simplicity, we shall further assume that V (i)

is differentiable and that all energy-level crossings are transversal, i.e.,

n(i)(q
(i)
1 ) ⋅ q̇(i)−

1 ∕= 0 (4.8)

where q̇
(i)−
1 = q̇(i)(t

(i)−
1 ) and n(i)(q

(i)
1 ) is a vector normal to Γ

(i)
1 pointing in the direction of advance.

Under the preceding assumptions, the action integral over the time interval [t0, t2] follows as

Iℎ =

∫ t2

t0

Lℎ(q(j), q̇(j)) dt =

∫ t
(i)
1

t0

Lℎ(q(j), q̇(j)) dt+

∫ t2

t
(i)
1

Lℎ(q(j), q̇(j)) dt (4.9)

where t
(i)
1 is the time at which the trajectory intersects Γ

(i)
1 . In regions where V

(j)
ℎ (q) is constant

the trajectory q(j)(t) is linear in time. Therefore, the action of the system can be computed exactly
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and reduces to

Iℎ =
(
t
(i)
1 − t0

) nLV∑
j=1

⎧⎨⎩1

2

(
q

(j)
1 − q

(j)
0

t
(i)
1 − t0

)T
M (j)

(
q

(j)
1 − q

(j)
0

t
(i)
1 − t0

)
− V (j)

0

⎫⎬⎭+

(
t2 − t(i)1

) nLV∑
j=1

⎧⎨⎩1

2

(
q

(j)
2 − q

(j)
1

t2 − t(i)1

)T
M (j)

(
q

(j)
2 − q

(j)
1

t2 − t(i)1

)
− V (j)

2

⎫⎬⎭ (4.10)

where q
(i)
1 = q(i)(t

(i)
1 ) is constrained to be on the jump surface Γ

(i)
1 . Assuming differentiability of Γ

(i)
1 ,

stationarity of the action with respect to (t
(i)
1 , q1) additionally gives the global energy conservation

equation

nLV∑
j=1

⎧⎨⎩
(
q

(j)
1 − q

(j)
0

t
(i)
1 − t0

)T
M (j)

(
q

(j)
1 − q

(j)
0

t
(i)
1 − t0

)
+ 2V

(j)
0 −

(
q

(j)
2 − q

(j)
1

t2 − t(i)1

)T
M (j)

(
q

(j)
2 − q

(j)
1

t2 − t(i)1

)
− 2V

(j)
2

⎫⎬⎭ = 0

(4.11)

and the global linear momentum balance equation

nLV∑
j=1

{
(Lo(j))TM (j) q

(j)
1 − q

(j)
0

t
(i)
1 − t0

− (Lo(j))TM (j) q
(j)
2 − q

(j)
1

t2 − t(i)1

}
+ �1(Lo(i))Tn(i)(q

(i)
1 ) = 0 (4.12)

where �1 is a Lagrange multiplier.

In order to make a more direct connection with time-integration schemes we reformulate the

problem slightly by assuming that t0, q0—the latter on a jump surface Γ
(i)
0 except, possibly, at the

initial time—and the initial velocity

q̇+
0 = q̇

(
t+0
)

=
q1 − q0

t
(i)
1 − t0

(4.13)

are known. Let t
(i)
1 and q1 be the time and point at which the trajectory intersects the next jump

surface Γ
(i)
1 , i.e., V (i)(Lo(i)q1) = ℎ(i)ℤ. We then seek to determine

q̇+
1 = q̇(t+1 ) (4.14)
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A reformulation of equations (4.11) and (4.12) in terms of q̇+
1 gives

(q̇+
1 )TMq̇+

1 = (q̇−1 )TMq̇−1 − 2ΔV (4.15)

q̇+
1 = q̇−1 + �1M

−1n1 (4.16)

where q̇−1 = q̇+
0 , and the energy jump ΔV and the normal vector n1 are

ΔV = V
(i)
ℎ (q(i)(t+1 ))− V (i)

ℎ (q(i)(t−1 )) (4.17)

n1 = (Lo(i))Tn(i)(q
(i)
1 ) (4.18)

Next we proceed to parse through the various cases that arise in the solution of (4.15) and (4.16).

4.2.1.1 Diffraction by downhill energy step

Suppose that ΔV = −ℎ(i), i.e., the system decreases its energy as the trajectory crosses Γ
(i)
1 . Then

(4.15) becomes

�2
1(n

(i)
1 )TM−1(i)n

(i)
1 + 2�1q̇

(i)−
1 ⋅ n(i)

1 − 2ℎ(i) = 0 (4.19)

where the inverse mass matrix is localized as follows

M−1(i) = Lo(i)M−1(Lo(i))T (4.20)

We note that the localized inverse mass matrix is not equal to the inverse of the localized mass

matrix, that is M−1(i) ∕= (M (i))−1. Then, the system (4.16 - 4.19) has the real solution

q̇
(j)+
1 = q̇

(j)−
1 + �1Lo

(j)∩(i)M−1(i)n
(i)
1 (4.21)

where

�1 =
−q̇(i)−

1 ⋅ n(i)
1 −

√(
q̇

(i)−
1 ⋅ n(i)

1

)2

+ 2ℎ(i)
(

(n
(i)
1 )TM−1(i)n

(i)
1

)
(n

(i)
1 )TM−1(i)n

(i)
1

(4.22)



119

and Lo(j)∩(i) = Lo(j)(Lo(i))−1 ∈ ℝmj×mi stands for the boundary mapping of local variables q(i)

and q(j) (e. g., Lo(j)∩(i) reduces to the identity mapping if j = i, and to the null mapping if q(j) and

q(i) are disjoint subsets of q). This solution represents the diffraction, or change of direction, of the

trajectory by a downhill energy step.

4.2.1.2 Diffraction by uphill energy step

Suppose now that ΔV = ℎ(i), i.e., the system increases its energy as the trajectory crosses Γ
(i)
1 .

Then (4.15) becomes

�2
1(n

(i)
1 )TM−1(i)n

(i)
1 + 2�1q̇

(i)−
1 ⋅ n(i)

1 + 2ℎ(i) = 0 (4.23)

Suppose, in addition, that

(
q̇

(i)−
1 ⋅ n(i)

1

)2

> 2ℎ(i)
(

(n
(i)
1 )TM−1(i)n

(i)
1

)
(4.24)

Then, the system (4.16 - 4.23) again has a real solution, namely,

q̇
(j)+
1 = q̇

(j)−
1 + �1Lo

(j)∩(i)M−1(i)n
(i)
1 (4.25)

where

�1 =
−q̇(i)−

1 ⋅ n(i)
1 +

√(
q̇

(i)−
1 ⋅ n(i)

1

)2

− 2ℎ(i)
(

(n
(i)
1 )TM−1(i)n

(i)
1

)
(n

(i)
1 )TM−1(i)n

(i)
1

(4.26)

This solution again represents the diffraction of the trajectory by an uphill energy step when the

system has sufficient initial energy to overcome the energy barrier.

4.2.1.3 Reflection by uphill energy step

Suppose now that ΔV = ℎ(i), i.e., the system increases its energy as the trajectory crosses Γ
(i)
1 , but,

contrary to the preceding case,

(
q̇

(i)−
1 ⋅ n(i)

1

)2

< 2ℎ(i)
(

(n
(i)
1 )TM−1(i)n

(i)
1

)
(4.27)



120

Then, the system (4.16 - 4.23) has no real solutions, showing that the system does not have sufficient

initial kinetic energy to overcome the energy barrier. Instead, the trajectory remains within the same

energy level and equation (4.15) becomes

(q̇
(i)+
1 )TMq̇

(i)+
1 = (q̇

(i)−
1 )TMq̇

(i)−
1 (4.28)

Then, the system (4.16 - 4.28) is solved by

q̇
(j)+
1 = q̇

(j)−
1 + �1Lo

(j)∩(i)M−1(i)n
(i)
1 (4.29)

where

�1 = 2
q̇

(i)−
1 ⋅ n(i)

1

(n
(i)
1 )TM−1(i)n

(i)
1

(4.30)

This solution represents the reflection of the trajectory by an uphill energy step when the system

does not have sufficient initial energy to overcome the energy barrier.

4.2.2 Summary of the asynchronous energy-stepping scheme

We close this section by summarizing the relations obtained in the foregoing and defining the asyn-

chronous energy-stepping approximation scheme resulting from a piecewise-constant approximation

of each localized potential energy.

Definition 4.2.1 (Asynchronous energy-stepping) Suppose
(
t
(i)
k , q

(i)
k , q̇

(i)+
k

)
and a piecewise-

constant approximation of the potential energy V
(i)
ℎ are given. Let t

(i)
k+1 and q

(i)
k+1 be the time and

points of exit of the rectilinear trajectory q
(i)
k + (t(i) − t(i)k )q̇

(i)+
k from the set {V (i) = ℎ(i)ℤ}. Let

ΔV (i) be the energy jump at q
(i)
k+1 in the direction of advance. The updated velocity is, then,

q̇
(j)+
k+1 = q̇

(j)+
k + �k+1Lo

(j)∩(i)M−1(i)n
(i)
k+1 (4.31)
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where

�k+1 =

⎧⎨⎩

− 2
q̇

(i)+
k ⋅ n(i)

k+1

(n
(i)
k+1)TM−1(i)n

(i)
k+1

,

if
(
q̇

(i)+
k ⋅ n(i)

k+1

)2

< 2ΔV (i)
(

(n
(i)
k+1)TM−1(i)n

(i)
k+1

)
,

−q̇(i)+
k ⋅ n(i)

k+1 + sign
(
ΔV (i)

)√(
q̇

(i)+
k ⋅ n(i)

k+1

)2

− 2ΔV (i)
(

(n
(i)
k+1)TM−1(i)n

(i)
k+1

)
(n

(i)
k+1)TM−1(i)n

(i)
k+1

,

otherwise,

(4.32)

These relations define an asynchronous discrete propagator

Φℎ :
(
t
(i)
k , q

(i)
k , q̇

(i)+
k

)
7→
(
t
(i)
k+1, q

(i)
k+1, q̇

(i)+
k+1

)
(4.33)

that can be iterated to generate a discrete trajectory. We provide in Section 4.4 details of its

implementation and computational efficiency.

4.3 Conservation properties

We first recall that energy-stepping [24] exactly conserves all the momentum maps and the symplectic

structure of the original Lagrangian system because the stepwise approximation of the potential

energy preserves all the symmetries of the system and the discrete trajectories are exact trajectories

of a Lagrangian system. Likewise, as we show in this section, asynchronous energy-stepping exactly

conserves all the momentum maps and the symplectic structure of the original local Lagrangian

system.

In order to facilitate the analysis we recast Definition 4.2.1 into its sequential or synchronous

form. Then, the potential energy is additively decomposed (4.5) and stepwise approximated (4.7)

but a single sequence of times is employed (i.e., {tk} =
∪
j{t

(j)
k }). Indeed, it bears emphasis that

the asynchronicity of the method is an algorithmic consequence of its formulation, as opposed to the

result of further approximations or a priori selection of different time steps.
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Definition 4.3.1 Suppose
(
tk, qk, q̇

+
k

)
, the localization matrices Lo(j), and a piecewise-constant

approximation of the potential energy Vℎ =
∑
j V

(j)
ℎ are given. Let tk+1 and qk+1 be the time and

points of exit of the rectilinear trajectory qk + (t − tk)q̇+
k from the set {V (i)(Lo(i)q) = ℎ(i)ℤ}. Let

ΔV (i) be the energy jump at qk+1 in the direction of advance. The updated velocity is, then,

q̇+
k+1 = q̇+

k + �k+1M
−1nk+1 (4.34)

where nk+1 = (Lo(i))Tn(i)(Lo(i)qk+1) and

�k+1 =

⎧⎨⎩

− 2
q̇+
k ⋅ nk+1

nTk+1M
−1nk+1

,

if
(
q̇+
k ⋅ nk+1

)2
< 2ΔV (i)

(
nTk+1M

−1nk+1

)
,

−q̇+
k ⋅ nk+1 + sign

(
ΔV (i)

)√(
q̇+
k ⋅ nk+1

)2 − 2ΔV (i)
(
nTk+1M

−1nk+1

)
nTk+1M

−1nk+1
,

otherwise,

(4.35)

It is now clear that we can take advantage of the symmetry considerations that have been

discussed in Gonzalez et al. [24]. Since the piecewise constant approximation of the additively

decomposed potential energy preserves all the symmetries of the local systems exactly, and the

discrete trajectories are exact trajectories of a Lagrangian system, we have the following

Theorem 4.3.1 The asynchronous energy-stepping time-integration scheme is a symplectic-energy-

momentum time-reversible integrator with automatic and asynchronous selection of the time step

size in each subdomain. In particular, the scheme conserves exactly all the momentum maps of the

original local Lagrangians. Moreover, if the process of localization preserves all the symmetries of

the global system, asynchronous energy-stepping preserves all the momentum maps of the original

global Lagrangian.

Symmetry or time-reversibility of asynchronous energy-stepping follows directly from the defini-

tion of the scheme. The automatic and asynchronous time-step selection properties also follow by

construction. In particular, in regions where the localized potential energy gradient ∇V (j) is steep,
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the energy jumps are more closely spaced and the resulting time steps of the subdomain are small. By

contrast, if the localized potential energy gradient is small, the resulting time steps of the subdomain

are comparatively large. It bears emphasis that what is conserved along the trajectories of the ap-

proximate Lagrangian Lℎ is the exact, time-continuous, momentum map of the original Lagrangian

L. This is in contrast to discrete variational integrators, which conserve discrete forms of the mo-

mentum maps, instead of the exact, time-continuous, momentum maps of the original Lagrangian

L. Thus, in particular: if V is invariant under translations then asynchronous energy-stepping con-

serves the total linear momentum p1 + ⋅ ⋅ ⋅+ pN of the system; and if V is invariant under rotations

then asynchronous energy-stepping conserves the total angular momentum q1 × p1 + ⋅ ⋅ ⋅+ qN × pN

of the system. Throughout this chapter we consider configurations q ∈ Q = E(n)N and momenta

p ∈ T ∗qQ, where E(n) is the Euclidean space of dimension n (i.e., d = nN).

4.3.1 Global and local conservation laws

In the context of continuum solid mechanics, the classical theorem of Noether states that each

variational symmetry of a Lagrangian L(', '̇) leads to local and global conservation laws, where '

is the deformation mapping [57]. If the system is free of external forces, the global momentum map

J defined by a symmetry is a constant of the motion, i. e., it remains constant along trajectories. If

the conservation law is localized to the subdomain Ω(s), the local momentum map J (s) defined by a

symmetry is a constant of motion that additionally accounts for momentum fluxes across subdomain

boundaries, i.e., ∂Ω(s)∖∂Ω.

Likewise, in the context of finite-dimensional Lagrangian systems L(q, q̇) (e. g., Lagrangian sys-

tems obtained from the finite-element discretization of the action of a continuum solid [51], or

Lagrangian systems employed in molecular dynamics simulations), each symmetry of the system

leads to local and global conservation laws in accordance with Noether’s theorem. We restrict atten-

tion to those scenarios where the process of localization preserves all the symmetries of the global

system, therefore asynchronous energy-stepping exactly conserves all global momentum maps of the

system, as described above, and all local momentum maps as we examine next.



124

Let G be a Lie group with Lie algebra g = TeG. A left action of G on the local configuration

space Q(s) is a mapping Φ(s) : G×Q(s) → Q(s), and the infinitesimal generator of Φ(s) corresponding

to � ∈ g is the vector field �Q(s) ∈ TQ(s). We say that the local Lagrangian L(s) is invariant under

the action Φ(s) if

L(s)(Φ(s)(g, q(s)), TΦ(s)(g, q(s))q̇(s)) = L(s)(q(s), q̇(s)), ∀g ∈ G, (q(s), q̇(s)) ∈ TQ(s) (4.36)

Then, the local momentum map J (s) : TQ(s) → g∗ defined by the action Φ(s), which expresses a

symmetry of L(s), follows from the identity

⟨J (s), �⟩
∣∣∣T
0

= ⟨∂q̇(s)L(s), �Q(s)⟩
∣∣∣T
0

+
∑
j ∕=s

[
⟨∂q̇(s)L(j), �Q(s)⟩

∣∣∣T
0
−
∫ T

0

⟨∂q(s)L(j), �Q(s)⟩dt

]
, ∀� ∈ g

(4.37)

Naturally, the coupling terms in L(j), i.e., terms which involve configurations that belong to Im(Lo(j)∩(s)q(s)),

result in momentum fluxes across subdomain boundaries. Classical examples include:

i) Local conservation of linear momentum. In this case, Q(s) = E(n)Ns , G = E(n) and

Φ(s)(u, q(s)) = {q(s)
1 +u, . . . , q

(s)
Ns

+u} represents a rigid translation of the system by u ∈ E(n).

The corresponding momentum map is the total linear momentum of the local system plus a

linear momentum flux,

J (s)
∣∣∣T
0

=

Ns∑
a=1

p(s)
a

∣∣∣T
0

+
∑
j ∕=s

∑
a∈!(j,s)

[
p(j)
a

∣∣∣T
0

+

∫ T

0

∂
q
(j)
a
V (j)dt

]

where !(j,s) = {a : q
(j)
a ∈ Im(Lo(j)∩(s)q(s))}.

ii) Local conservation of angular momentum. In this case, Q(s) = E(n)Ns , G = SO(n) and

Φ(s)(R, q(s)) = {Rq(s)
1 , . . . , Rq

(s)
Ns
} represents a rigid rotation of the system by R ∈ SO(n). The

corresponding momentum map is the total angular momentum of the local system plus an
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angular momentum flux,

J (s)
∣∣∣T
0

=

Ns∑
a=1

q(s)
a × p(s)

a

∣∣∣T
0

+
∑
j ∕=s

∑
a∈!(j,s)

[
q(j)
a × p(j)

a

∣∣∣T
0

+

∫ T

0

q(j)
a × ∂q(j)

a
V (j)dt

]

iii) Local conservation of energy. In this case, a space-time configuration manifold is considered,

i.e., ℚ(s) = ℝ × Q(s), G = ℝ and Φ(s)(u, (t(s), q(s))) = (t(s) + u, q(s)) represents a time-shift

by u ∈ ℝ. The corresponding momentum map is the total energy of the local system plus an

energy flux,

J (s)
∣∣∣T
0

= − E(s)
∣∣∣T
0
−
∑
j ∕=s

∑
a∈!(j,s)

[
1

2
p(j)
a ⋅ q̇(j)

a

∣∣∣∣T
0

+

∫ T

0

∂
q
(j)
a
V (j) ⋅ q̇(j)

a dt

]

A particularly appealing property of the additive decomposition of the Lagrangian (4.3) assumed

in this work and the piecewise approximation of the localized potential energies (4.7) is that they

preserve all the symmetries of the original system exactly. To verify this, we simply observe that

V
(j)
ℎ has all the symmetries of V (j)—which itself has all the symmetries of V by assumption—, that

is

V
(j)
ℎ ∘ Φ(j)

g = (ℎ⌊ℎ−1V (j)⌋) ∘ Φ(j)
g = ℎ⌊ℎ−1V (j) ∘ Φ(j)

g ⌋ = ℎ⌊ℎ−1V (j)⌋ = V
(j)
ℎ , ∀g ∈ G (4.38)

where G is a symmetry group of V (j) and Φ(j) is an action that leaves V (j) invariant, i.e., V (j)∘Φ(j) =

V (j). Then, it follows from the regularization procedure of Theorem 2.2.1 (Theorem 2.1 in [24]),

and a standard approximation argument, that the local momentum map J (s) is constant along

asynchronous energy-stepping trajectories given by Definition 4.2.1.
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4.4 Implementation and computational efficiency

4.4.1 Implementation

The implementation of the asynchronous energy-stepping scheme is summarized in Algorithm 5. The

algorithm consists of three methods. The first method Smallest-Root determines the earliest root

of the equation

V (j)(q
(j)
k + (t

(j)
k+1 − t

(j)
k )q̇

(j)
k )− V (j)(q

(j)
k ) + ΔV (j) = 0, ∀j ∈ [1, nLV ] (4.39)

where ΔV (j) can take values in
{

0, ℎ(j),−ℎ(j)
}

. This task can be effectively accomplished by locating

first, by means of an incremental search technique, a time interval containing the smallest positive

root and then zeroing in on the root by means of an iterative procedure such as bisection, Newton-

Raphson, or a combination thereof. The active subdomain, i.e., the i-th subdomain, and the nature

of the step, i.e., whether it consists of a diffraction by an uphill energy step, a diffraction by a downhill

energy step or a reflection at an uphill energy step, is identified simultaneously with the computation

of t
(i)
k+1. The second method Update-Velocities is responsible for updating velocities according

to Definition 4.2.1 and reduces to only two scenarios, as it was the case in the energy-stepping

scheme [24]. The third method Boundary-Communicator modifies the boundary subdomains

with the recently updated positions and velocities.

Algorithm 5 Asynchronous energy-stepping integrator

Require: {Lo(j)}, {V (j)}, q0, q̇0, t0, tf and {ℎ(j)}
1: {k(j)} ← {0}
2: while min{t(j)k } < tf do

3: t
(i)
k+1 ← Smallest-Root

(
V (j)(q

(j)
k + (t

(j)
k+1 − t

(j)
k )q̇

(j)
k )− V (j)(q

(j)
k ) + ΔV (j) = 0

)
4: q

(i)
k+1 ← q

(i)
k + (t

(i)
k+1 − t

(i)
k )q̇

(i)
k

5: n
(i)
k+1 ← ∇V (i)(q

(i)
k+1)

6: q̇
(i)
k+1 ← Update-Velocities

(
q̇

(i)
k , n

(i)
k+1, ℎ

(i)
)

7: < q
(j)
k+1, q̇

(j)
k+1 >← Boundary-Communicator

(
q

(i)
k+1, q̇

(i)
k+1

)
8: k(i) ← k(i) + 1
9: end while
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4.4.2 Computational efficiency

In analyzing the computational efficiency of an algorithm relative to others, one usually focuses on

speedup. We first recall that the speedup of a parallelized implementation of an algorithm relative

to its serial counterpart is defined as

� =
T1

Tp
(4.40)

where T1 is the sequential execution time on one processor and Tp is the parallel execution time on p

processors. Under the assumption that the problem size remains fixed when parallelized, Amdahl’s

law provides the maximum speedup that can be achieved when a fraction s (with 0 ≤ s ≤ 1) of the

algorithm remains sequential and only a fraction 1− s is amenable to p-fold parallel execution

� =
p

1− s+ sp
(4.41)

Likewise, in order to asses the computational efficiency of asynchronous energy-stepping, we define

the speedup of an asynchronous method relative to its synchronous counterpart as

� =
TES

TAES,p
(4.42)

where TES is the execution time of (synchronous) energy-stepping and TAES,p is the execution time

of asynchronous energy-stepping based on a p-fold decomposition of the domain.

It bears emphasis that the resulting speedup obtained from the application of Definitions (4.40)

and (4.42) depends on the problem under consideration. The speedup of a parallelized implemen-

tation of an algorithm depends on the fraction s of the algorithm, in terms of the computational

time-cost, that remains sequential. Similarly, the speedup of an asynchronous method which is based

on a p-fold decomposition of the domain will depend on the dynamics of the problem under consid-

eration. In Section 4.5, we illustrate the speedup of asynchronous energy-stepping under different

scenarios.
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4.4.3 Domain decomposition

Domain decomposition or mesh partitioning is relevant to the effective and efficient execution of

mesh-based scientific simulations on parallel architectures. The strategy one has to follow is such

that the computations are balanced and the interprocessor communication is minimized. This can

be effectively achieved, among others, by solving a graph-partitioning problem that minimizes the

number of edges cut by the decomposition and that keeps an equal number of vertices in each

partition. Algorithms for solving such problems are implementing, for example, in the library MeTiS

[44]. We show in Figure 4.2 the finite-element mesh of a cube partitioned by using MeTiS.

X Y

Z

Finite element partitions

Finite element
model

Figure 4.2: Domain decomposition of the finite-element mesh of a cube by recourse to the mesh
partitioning library MeTiS.

The properties of an optimal domain decomposition for asynchronous energy-stepping are not

entirely clear in general meshes or domains, if beyond the scope of this work. However, decomposition

methods apply in a natural way in particular applications. This is the case of coupled systems with

an interface, e. g., many-body contact dynamics, where a näıve strategy one may follow is to identify

each subsystem or body in the system as a partition of the domain. We show in Figure 4.3 the mesh

partitioning of a finite-element model that comprises the head-on impact of two balls. It is worth

noting that three partitions are defined in this example, i.e., each ball results in a finite-element

partition and the set of boundary-faces pairs that characterize the interpenetration constraint is
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also a primitive subdomain. This natural and intuitive decomposition also appears to be an effective

and efficient strategy in the context of asynchronous energy-stepping integrators. In particular, each

subdomain will have its own time scale with no detriment to accuracy in the resolution of the fine

structure of collisions.

Finite element partitions

Interpenetration constraint

Finite element
model

Figure 4.3: Natural and efficient partition of a finite-element model that comprises the head-on
impact of two balls.

4.5 Numerical examples

Next, we present selected examples of application which showcase the efficiency, convergence, accu-

racy, long-term behavior, asynchronicity, automatic time step size selection and conservation prop-

erties of asynchronous energy-stepping. We select two areas of application where those properties

play an important role. For example, good energy conservation and automatic time size selection

are essential in many-body contact dynamics, where the fine structure of collisions may influence

significantly the overall behavior of the system. Asynchronous time size selection is furthermore im-

portant in reducing the computational cost of—or even in making affordable—many-body dynamics
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simulations, where a wide range of strain rates and time scales may coexist in time and space. Good

long-term behavior, exact local and global conservation properties, and asynchronous time size se-

lection are likewise relevant to the effective and efficient numerical solution of those problems where

the interesting dynamics takes place in a small region of the domain and this region of interest drifts

in space as time progresses (e. g., propagation of shock waves, solitary waves, structural and material

instabilities, or fracture dynamics). We illustrate the performance of asynchronous energy-stepping

in those areas of application by means of two examples: the head-on collision of two soft elastic

spherical balls, and the propagation of solitary waves in a chain of elastic beads.

For purposes of assessing the performance of asynchronous energy-stepping, in the subsequent

examples we draw detailed comparisons with energy-stepping [24] and with the second-order explicit

Newmark method, namely, the member of the Newmark family of time-stepping algorithms corre-

sponding to parameters � = 0 and  = 1/2 (cf., for example [42] for a detailed account of Newmark’s

method). In the linear regime, explicit Newmark is second-order accurate and conditionally stable,

with a critical time step equal to twice over the maximum natural frequency of the system. Detailed

analyses of the implicit members of the Newmark family of algorithms, their stability and energy

preserving properties (for linear systems) were given in Belytschko and Schoeberle [4], Hughes [35]

and related papers.

4.5.1 Head-on collision of soft elastic spherical balls

Finite element model

Finite element model

Figure 4.4: Setup of the head-on collision of two soft elastic balls of radius 0.025 m.
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We proceed to illustrate the performance of asynchronous energy-stepping in contact dynamics

applications by analyzing the head-on collision of two soft elastic spherical balls of radius 0.025 m,

Figure 4.4. Initially, the balls are spaced 0.10 m apart, the target ball is stationary and the incoming

ball is imparted an initial head-on velocity of magnitude 4.0 m/s. The mesh comprises 34,080 4-node

tetrahedral isoparametric elements and 6,994 nodes, and it is partitioned as depicted in Figure 4.3.

The balls are compressible neo-Hookean solids characterized by a strain-energy density of the form

W (F ) =
�0

2
(log J)

2 − �0 log J +
�0

2
tr
(
FTF

)
(4.43)

The values of the material constants in (4.43) are �0 = 12.04 ⋅ 104 Pa, �0 = 1.34 ⋅ 104 Pa, and

the density is � = 1059 kg/m3. The material properties are those of an acrylamide gel synthesized

by a standard polymerization in water (100 g) of acryamide monomer (10 g) and cross-linker of

acrylamide (0.30 g)—rheological characterization of this gel revealed that it behaves as an elastic

material in the frequency range from 0.1 to 100 Hz [77]. A sequence of snapshots of the asynchronous

energy-stepping trajectory of the target ball corresponding to ℎ = 5 ⋅10−5 J are shown in the bottom

row of Figure 4.5. The large deformation undergone by the gel ball is evident in the figure.

Figure 4.5: Head-on collision of two soft elastic balls of radius 0.025 m. The bottom row shows
snapshots of the asynchronous energy-stepping trajectory with ℎ = 5 ⋅ 10−5 J. The top row shows
high-speed camera snapshots of the deformation process of an acrylamide gel ball of radius 0.025 m
that impacts a rigid wall at a head-on velocity of magnitude 2.0 m/s (figure adapted from [77]). The
first, third, and last pictures show the gel at the initial contact, the maximal deformation and the
taking-off, respectively.

Tanaka and co-workers [75–77] have performed experimental studies of the impact of spherical

acrylamide gel balls of radius 0.025 m on a rigid substrate at high impact velocities, i.e., beyond the



132

Hertzian regime. A sequence of high-speed video camera snapshots of the deformation process of

a gel ball, with composition and size described above, impacting a rigid wall at a head-on velocity

of magnitude 2.0 m/s [77] are shown in the top row of Figure 4.5. Clearly, the numerical setup

described above is equivalent to the experimental setup of Tanaka and co-workers. Furthermore, it

is interesting to observe that the agreement between asynchronous energy-stepping trajectories and

experimental observations is excellent.

The time histories of the total energy, potential energy and kinetic energy of the asynchronous

energy-stepping solution corresponding to ℎ = 5 ⋅ 10−5 J are shown in Figure 4.6. As previously

illustrated in Gonzalez at al. [24], energy-stepping is observed to conserve energy exactly throughout

collisions. Additionally, asynchronous energy-stepping exhibits exact local conservation properties

discussed in Section 4.3. Then, before and after the collision, the total energy of each subdomain,

i.e., each gel ball, is exactly preserved by asynchronous energy-stepping, as illustrated in Figure 4.7.

Through the collision, linear momentum and energy are transfered from incoming to target balls

and the method automatically modulates the time-step to resolve the fine structure of the intricate

interactions that occur during this process. Figure 4.8 shows time histories of the linear momen-

tum of the system and of each individual subdomain, i.e., incoming and target balls. We again

emphasize that asynchronous energy-stepping accounts for the exact momentum fluxes across sub-

domian boundaries, through the collision, and it exactly preserves all the momentum maps of each

subdomain, otherwhile (Section 4.3).

We now illustrate the ability of asynchronous energy-stepping in particular, and energy-stepping

integrators in general, to capture the intricate interactions that occur through the collision. The

contact force is a footprint of these dynamic interactions that is amenable to experimental validation.

Tanaka and co-workers [77] have studied the profile of the contact force during the impact of spherical

acrylamide gel balls. Then, in order to validate the model, the contact force is evaluated by simply

applying Newton’s second law, that is the external force acting on the s-th subdomain is given by

F
(s)
ext =

d

dt
J (s) (4.44)
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Figure 4.6: Head-on collision of two soft elastic balls of radius 0.025 m. Asynchronous energy-
stepping solution with ℎ = 5 ⋅ 10−5 J. Time history of total, kinetic and potential energies.
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Figure 4.7: Head-on collision of two soft elastic balls of radius 0.025 m. Asynchronous energy-
stepping solution with ℎ = 5 ⋅ 10−5 J. The top and bottom figures correspond to the target and
incoming balls, respectively.
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Figure 4.8: Head-on collision of two soft elastic balls of radius 0.025 m. Asynchronous energy-
stepping solution with ℎ = 5 ⋅ 10−5 J. Conservation of total linear momentum and time history of
individual subdomains—only the component align with the direction of impact is shown.

where J (s) is the linear momentum of the subdomain, i.e., J (s) =
∑Ns

a=1 p
(s)
a . Figure 4.9 shows

experimental observations and numerical predictions of the contact force that corresponds to the

setup discussed above. The good agreement of the model is evident in the figure.
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Figure 4.9: Head-on collision of two soft elastic balls of radius 0.025 m. The curve corresponds to

the contact force computed from the asynchronous energy-stepping solution with ℎ = 5 ⋅10−5 J. The

dots correspond to the contact force measured during the deformation process of an acrylamide gel

ball of radius 0.025 m that impacts a rigid wall at a head-on velocity of magnitude 2.0 m/s [77].

A simple modification of the previous setup facilitates the analysis of a different aspect of asyn-

chronous energy-stepping performance. We now consider the head-on impact of two soft elastic balls
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of radius 0.025 m and 0.050 m, Figure 4.10. The difference in size of the balls results in one body

suffering larger deformations than the other. Then, each ball deforms with different strain rates

and time scales, though they are strongly coupled by the fine structure of the collision which has to

be resolved accurately. The model has the same mesh topology, strain-energy density and material

constants as the previous setup. A sequence of snapshots of the asynchronous energy-stepping tra-

jectory corresponding to ℎ = 5 ⋅ 10−5 J are shown in Figure 4.11. Cross-sections of the mesh at time

of contact and at later times during the collision are shown in Figure 4.12. The asymmetry of the

large deformations undergone by the gel balls is evident in the figures.

Finite element model

Finite element model

Figure 4.10: Setup of the head-on collision of two soft elastic balls of radius 0.025 m and 0.050 m.

The time histories of global total energy, potential energy and kinetic energy of the asynchronous

energy-stepping solution corresponding to ℎ = 5 ⋅ 10−5 J are shown in Figure 4.13, and their local

counterparts are shown in Figure 4.14. It is worth noting the natural asynchrony and different time

scale of incoming and target ball motions. We also show in Figure 4.15 the time histories of the

global linear momentum and of each local individual contribution.
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Time: 0 msec + tC Time: 9 msec + tC Time: 15 msec + tC

Time: 17.5 msec + tC Time: 20 msec + tC Time: 26 msec + tC

Figure 4.11: Head-on collision of two soft elastic balls of radius 0.025 m and 0.050 m. Snapshots
of the asynchronous energy-stepping trajectory with ℎ = 5 ⋅ 10−5 J, at time of contact tC and later
times during the collision.

Time: 0 msec + tC Time: 9 msec + tC Time: 15 msec + tC

Time: 17.5 msec + tC Time: 20 msec + tC Time: 26 msec + tC

Figure 4.12: Head-on collision of two soft elastic balls of radius 0.025 m and 0.050 m. Cross-sections
of the mesh for the asynchronous energy-stepping trajectory with ℎ = 5 ⋅ 10−5 J, at time of contact
tC and later times during the collision.
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Figure 4.13: Head-on collision of two soft elastic balls of radius 0.025 m and 0.050 m. Asynchronous
energy-stepping solution with ℎ = 5 ⋅ 10−5 J. Time history of total, kinetic and potential energies.
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Figure 4.14: Head-on collision of two soft elastic balls of radius 0.025 m and 0.050 m. Asynchronous
energy-stepping solution with ℎ = 5 ⋅ 10−5 J. The top and bottom figures correspond to the target
and incoming balls, respectively.
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Figure 4.15: Head-on collision of two soft elastic balls of radius 0.025 m and 0.050 m. Asynchronous

energy-stepping solution with ℎ = 5 ⋅ 10−5 J. Conservation of total linear momentum and time

history of individual subdomains—only the component align with the direction of impact is shown.

The histograms of the time steps selected by asynchronous energy-stepping in the first (Fig-

ure 4.4) and second (Figure 4.10) setup are shown in Figures 4.16 and 4.17, respectively. The broad

range of time steps asynchronous energy-stepping employed in each partition and contact constraint

is noteworthy. It also bears emphasis the differences and similarities of both setups. While the his-

tograms that correspond to the contact constraint are almost equal for both setups, the histograms

that correspond to the incoming and target balls are remarkably different. In the fist setup, the

symmetry in the time steps selected by asynchronous energy-stepping suggests that the method

does not break the characteristic synchronic behavior of the problem, albeit possibly at the expense

of a small computational overhead. By contrast, in the second setup, the asymmetry in the time

steps selected by the time-integration scheme clearly shows the automatic and asynchronous time-

step selection properties of the method. These properties may result in a speedup of asynchronous

energy-stepping over (synchronous) energy-stepping, as we will discuss in our next example.
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Figure 4.16: Head-on collision of two soft elastic balls of radius 0.025 m. Histogram of time steps

selected by asynchronous energy-stepping for ℎ = 5 ⋅ 10−5 J.
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Figure 4.17: Head-on collision of two soft elastic balls of radius 0.025 m and 0.050 m. Histogram of

time steps selected by asynchronous energy-stepping for ℎ = 5 ⋅ 10−5 J.

4.5.2 Chain of elastic beads

Our next example concerns the formation and propagation of solitary waves in a chain of ten elastic

beads of diameter 3/8”. Initially, a chain of nine beads is stationary and the incident solitary pulse

is generated by a striker bead with impact velocity of 0.44 m/s, Figure 4.18. In this example,

the interesting dynamics takes place in a small region of the system, i.e., the beads that support

the solitary pulse, and this region of interest drifts in space as the wave travels along the chain.

The mesh comprises 28,480 4-node tetrahedral isoparametric elements and 6,510 nodes. The balls

are compressible neo-Hookean solids characterized by a strain-energy density of the form (4.43).
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The values of the material constants correspond to steel and are equal to �0 = 9.70 ⋅ 1010 Pa,

�0 = 8.26 ⋅ 1010 Pa, the density is � = 7780 kg/m3.

Front view

Front view

Figure 4.18: Setup of the chain of ten elastic beads with diameter 3/8” and impact velocity of

0.44 m/s. On the right hand side, it is shown a detail of the finite-element mesh employed in the

calculations.

The time histories of the total energy, potential energy and kinetic energy of the asynchronous

energy-stepping solution corresponding to ℎ = 10−7 J are shown in Figure 4.19. The localized

nature of the dynamics is clearly observed in the time histories of the local—as opposed to global—

energies depicted in Figure 4.20 for the first four beads of the chain. It is also worth noting that,

before and after the solitary wave travels along a bead, the local energy is exactly preserved by

asynchronous energy-stepping. Similarly, all global momentum maps of the system and all local

momentum fluxes across bead boundaries are exactly preserved by asynchronous energy-stepping.

In particular, Figure 4.21 shows the exact conservation of total linear momentum and the change in

shape of the local contributions J (s) as the solitary wave propagates along the chain.

As we have discussed previously, there are two unique properties of asynchronous energy-stepping:

i) automatic and asynchronous selection of the time step size in each subdomain, and ii) exact

conservation of all local and global momentum maps of the systems. These features allow for a

confident and straightforward analysis of the local behavior of a Lagrangian system. For example,

the formation and propagation of solitary waves are of particular interest to the dynamics of a one-

dimensional chain of elastic beads. Numerous experimental and theoretical investigations have been

conducted with the aim of understanding the shape and the speed of these solitary waves (see, for
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Figure 4.19: Chain of ten elastic beads. Asynchronous energy-stepping solution with ℎ = 10−7 J.
Time history of total, kinetic and potential energies.
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Figure 4.20: Chain of ten elastic beads. Asynchronous energy-stepping solution with ℎ = 10−7 J.
Time history of total (black curve), kinetic (dashed blue curve) and potential (blue curve) local
energies.
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Figure 4.21: Chain of ten elastic beads. Asynchronous energy-stepping solution with ℎ = 10−7 J.
Conservation of total linear momentum and time history of individual J (s)—only the component
align with the chain of beads is shown.

example, [9] and references therein). However, the amount of vibrational kinetic energy retained in

each bead during and after collision has never been accounted for. This is clearly a local behavior of

the system that can be readily studied with asynchronous energy-stepping. The vibrational kinetic

energy of each bead is defined as

VKE(s) =

Ns∑
a=1

1

2
ma∥q̇a − ⟨q̇⟩(s)∥2 (4.45)

where ⟨q̇⟩(s) is the center of mass velocity of the s-th bead. Figure 4.22 illustrates the amount of

vibrational kinetic energy in the system as the solitary wave travels along the chain and it also shows

the individual contribution of each bead. It is worth noting that, for this particular finite-element

mesh and initial conditions, the vibrational kinetic energy trapped in the system is not negligible

and naturally accumulates as the solitary wave travels along the chain.
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Figure 4.22: Chain of ten elastic beads. Asynchronous energy-stepping solution with ℎ = 10−7 J.

The top figure illustrates the amount of vibrational kinetic energy (VKE) in the system as the solitary

wave travels along the chain. The bottom figure shows the time history of individual components

VKE(s).

Finally, we investigate the computational efficiency of asynchronous energy-stepping over energy-

stepping and explicit Newmark for the setup depicted in Figure 4.18. We compare the execution

time of asynchronous energy-stepping for ℎ = 10−6 J and the mesh partitioned into 10 subdomains

(TAES-10,10−6), with execution times of energy-stepping for ℎ = 10−6 J (TES,10−6) and explicit New-

mark for a small time step Δt = 10−4 �sec (TNM,10−4)—this time step is 10 times smaller than the

average time step resulting from the energy-stepping calculations. As each numerical time integra-

tor provides a different approximation of the exact solution of the problem, it is not only important

to compute the timing of each simulation but also to quantify the accuracy of the numerical ap-

proximation. To this end we additionally compute the asynchronous energy-stepping solution for

ℎ = 10−7 J and we compare the time history of energies for each numerical solution as an indication

of accuracy. Figure 4.23 shows that the explicit Newmark solution quickly loses stability and blows

up, even though the time step employed is small and therefore the execution time is 25 times larger

than TAES-10,10−6 . Figure 4.24 shows that asynchronous energy-stepping solutions with ℎ = 10−6 J

and with ℎ = 10−7 J are in reasonable agreement. In contrast, Figure 4.25 shows that the energy-
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stepping solution is less accurate than its asynchronous counterpart for the same energy step. The

execution time for these different cases is summarized in Table 4.1 in terms of speedup relative to

TAES-10,10−6 (see Section 4.4.2). It bears emphasis that the asynchronous energy-stepping solution is

more computationally efficient and more accurate than its synchronous counterpart. These results

suggest that, for this particular finite-element mesh and initial conditions, a speedup of the form

� =
TES,10−7

TAES-10,10−6

∼ 5.2

is more appropriate than � = TES,10−6/TAES-10,10−6 ∼ 2.5, as shown in Figure 4.26. Nonetheless, a

speedup of ∼ 2.5 is consistent with the fact that, for this example, the solitary wave has a support

of ∼ 4 beads and the chain comprises 10 beads.

TAES-10,10−6 TES,10−6 TNM,10−4 TAES-10,10−7 TES,10−7

Speedup 1 ∼ 2.5 ∼ 25.0 ∼ 1.8 ∼ 5.2

Table 4.1: Chain of ten elastic beads. Speedup is defined as T/TAES-10,10−6 .
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Figure 4.23: Chain of ten elastic beads. Explicit Newmark solution with Δt = 10−4 �sec. Time
history of total, kinetic and potential energies— grey curves correspond to the asynchronous energy-
stepping solution with ℎ = 10−7 J.



145

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4

Total Energy

Kinetic Energy

Potential Energy

Time [μsec]

E
ne

rg
y 

[J
]

Figure 4.24: Chain of ten elastic beads. Asynchronous energy-stepping solution with ℎ = 10−6 J.
Time history of total, kinetic and potential energies— grey curves correspond to the asynchronous
energy-stepping solution with ℎ = 10−7 J.
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Figure 4.25: Chain of ten elastic beads. Energy-stepping solution with ℎ = 10−6 J. Time history of
total, kinetic and potential energies— grey curves correspond to the asynchronous energy-stepping
solution with ℎ = 10−7 J.
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Figure 4.26: Chain of ten elastic beads. Asynchronous energy-stepping solution with ℎ = 10−6 J.
Time history of total, kinetic and potential energies— grey curves correspond to the energy-stepping
solution with ℎ = 10−7 J.
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4.6 Summary and discussion

We have formulated a new class of time-integration schemes for Lagrangian mechanics, which we

refer to as asynchronous energy-stepping, that are energy-momentum conserving, symplectic, and

convergent with automatic and asynchronous selection of the time step. In order to achieve these

properties we introduce a localization of the configuration space that allows for an additive decompo-

sition of the global Lagrangian into local Lagrangians amenable to energy-stepping approximations.

Thus, we replace the original localized potential energies by stepwise or terraced approximations at

steps of uniform heights—energy-stepping integrators in contrast result from stepwise approxima-

tions of the global potential energy of the system. The trajectories of the resulting Lagrangians can

be characterized explicitly and consist of intervals of rectilinear motion that span consecutive level

contours of the localized potential energies. The durations of these intervals differ in each subdo-

main and are regarded as local time steps, whose asynchronic determination is part of the solution

process. We have shown that the asynchronous energy-stepping trajectories are symplectic, exactly

conserve all the momentum maps of the original system—if process of localization preserves all the

symmetries of the global system—and account for the exact momentum fluxes across subdomain

boundaries. We have specifically investigated many-body contact problems where localization is the

result of identifying each body in the system as a partition of the domain. Selected examples of

application, including the head-on collision of soft elastic spherical balls and the propagation of soli-

tary waves in a chain of elastic beads, demonstrate the excellent long-term behavior of asynchronous

energy-stepping, its asynchronous and automatic time-step selection property, and the ease with

which it deals with many-body concurrent contact dynamics.

We close by pointing out some limitations of our analysis and possible avenues for extensions of

the approach.

Firstly, our experience with selected numerical tests appears to indicate that for a given en-

ergy step, asynchronous energy-stepping trajectories are more accurate than (synchronous) energy-

stepping trajectories. A rigorous local convergence analysis, such as the study of local bounds on the

discretization error provided by Gronwall’s inequality, could give some insight into this behavior, if
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beyond the scope of this work.

Secondly, we have only investigated many-body contact problems where localization results from

näıvely identifying each body in the system as a partition of the domain. However, the properties of

an optimal domain decomposition for asynchronous energy-stepping are not entirely clear in general.

The investigation of optimal localization strategies in the context of other problems (e. g., propa-

gation of shock waves, structural and material instabilities, or fracture dynamics) is a worthwhile

direction of future research.
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Chapter 5

Mesoscopic approach to granular
crystal dynamics

We present a mesoscopic approach to granular crystal dynamics, which comprises a three-dimensional

finite-element model and a one-dimensional regularized contact model. The approach aims at in-

vestigating the role of vibrational-energy trapping effects in the overall dynamic behavior of one-

dimensional chains under small to moderate impact velocities, and it has as only inputs the ge-

ometry and the elastic material properties of the individual particles that form the system. The

three-dimensional finite-element model resolves the fine mesoscale structure of dynamic collisions

and explicitly accounts for the vibrational kinetic energy retained in each bead as a solitary wave

propagates along the chain. The one-dimensional regularized contact model accounts for mesoscopic

dynamic effects by means of a restitution coefficient, i.e., the vibrational energy that remains trapped

after impact is subsumed under the concept of a coefficient of restitution. We present detailed

verification and validation results, and extract conclusions about the qualitative and quantitative

predictions of this mesoscopic approach.



149

5.1 Introduction

Granular crystals or highly packed granular lattices, for example one-dimensional chains of beads,

are strongly nonlinear systems that exhibit unique wave dynamics. In particular, a chain of elastic

spherical beads supports the formation of solitary waves as the result of Hertzian nonlinear contact

interactions between the particles in the system [65]. This is in sharp contrast to disordered granular

media where the nature of the system is additionally driven by frictional and rotational dynamics.

Granular crystals can achieve extremely tunable properties by the simple expedient of combining

different materials and sizes, and by the application of weak precompression to the system [14,16,65].

Over the last decade, the response of these systems has drawn considerable attention and many

potential applications have been studied, such as sound [conference], shock [17,31] and energy [17,33]

absorbing layers, actuators [46], and sound focusing devices [74].

The formation of solitary waves in a chain of elastic spherical beads was discovered analytically

and numerically by Nesterenko in 1983 [64] and it was experimentally observed for the first time

later in 1985 [49]. Since then, numerous experimental and theoretical investigations have been

conducted, leading to a more profound understanding of these strongly nonlinear systems. A typical

experimental setup commonly used in these studies consists in a monodisperse one-dimensional chain

of spherical beads mounted in a cylindrical guide or arranged in a square four-rod stand. Selected

beads are embedded with calibrated piezosensors [15] that allow for detailed measurements of forces

acting inside the particles together with the solitary wave speed and duration. Figure 5.1 illustrates

a set of experimental observations for a chain composed of 70 steel beads [9]. The characteristic

decay of the measured force as the solitary wave propagates along the chain is shown on the left

side of the figure. The relationship between solitary wave speed Vs and maximal measured force Fm

is plotted on the right side of Figure 5.1. The solid line represents the best linear fit, which gives

Vs ∝ F 0.17
m .

A particle mechanics approach has been extensively used in the literature to address modeling

and simulation of granular crystal dynamics. In this approach, a number of hypotheses and as-

sumptions are introduced [65]. Firstly, dissipative effects are neglected. Secondly, the interaction
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Figure 5.1: Set of experimental observations for a one-dimensional chain composed of 70 steel beads
with diameter D = 0.00476 m and impacted by a steel bead with vimp = 1.77 m/s. The left side
shows the time history of the forces measured by eight sensors. The right side shows the relationship
between the speed of the solitary wave Vs and the maximal force Fm. (Figure adapted from [9])

between beads is assumed to follow Hertz law, i.e., the contact force between beads k and k − 1 is

Fk−1,k = D1/2E
3(1−�2)�

3/2
k , where D, E, � are the diameter, bulk elastic modulus, and Poisson ratio of

the particles—this formula is easily generalized to heterogeneous chains [70]. In the above equation

�k is given by �k ≡ max {uk−1 − uk, 0}, where uk is the displacement of the k-th particle from its

equilibrium configuration. Then, the equations of motion that describe the system are

Mkük =
D1/2E

3(1− �2)
(�

3/2
k − �3/2

k+1) (5.1)

where Mk stands for the mass of the k-th particle. The application of this model to the experimental

setup described above predicts the formation of solitary waves that travel along the chain with a

speed Vs proportional to F
1/6
m , which is very close to the experimental value Vs ∝ F 0.17

m . However,

as shown in Figure 5.2, the experimentally-observed decay behavior of the force is not captured

by this model. This discrepancy has recently motivated the inclusion of dissipative effects in the

model, such as friction, plasticity, viscoelasticity, and viscous drag [9,14,31,72,73,78]. Among these

attempts of improving the predictability of the simulations, Daraio and co-workers [9] proposed for

the first time a model able to capture both qualitatively and quantitatively the decay and wave

shape observed experimentally. Their model includes dissipation in the form of a discrete Laplacian
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Figure 5.2: Set of numerical results for a one-dimensional chain composed of 70 steel beads with
diameter D = 0.00476 m and impacted by a steel bead with vimp = 1.77 m/s. The left side shows
the time history of the forces predicted by the equations of motion (5.1). The right side shows the
model estimation of solitary wave speed Vs versus maximal force Fm.

in the velocities with uniform exponent � and a material-dependent prefactor  < 0, that is

Mkük =
D1/2E

3(1− �2)
(�

3/2
k − �3/2

k+1) +Mks∣�̇k − �̇k+1∣� (5.2)

where s = sign(�̇k − �̇k+1), and the phenomenological parameters � and  derive from best fitting

with experimental observations. The dashed green curve in Figure 5.1 shows the decay behavior

predicted by the model for � = 1.81 and  = −5.58, the best estimates for steel [9]. However, in

order to successfully pursue the design of engineering devices that exploit the unique wave dynamics

of granular crystals, a first-principles description that does not rely on empirical parameters but

rather just on the knowledge of particle’s geometry and material properties is required.

The work presented in this chapter is concerned with the formulation of first-principles predictive

models of granular crystal dynamics. In particular, we investigate the role of vibrational-energy

trapping effects in the overall dynamic behavior of one-dimensional chains under small to moderate

impact velocities. To this end, we formulate two models whose only inputs are the geometry and

the elastic material properties of the individual particles that comprise the granular crystal. The

first model resolves the fine mesoscale structure of dynamic collisions and explicitly accounts for the

vibrational kinetic energy retained in each bead as the solitary wave propagates along the chain,

hence the mesoscopic nature of the approach. For small to moderate impact velocities, the model is

conservative and the inclusion of dissipative effects is not required. We achieve these properties by
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abandoning the particle mechanics approach and adopting a three-dimensional finite-element model.

Specifically, our first approach is a dynamic contact problem of three-dimensional deformable elastic

bodies that interact with one another over time.

The second approach proposed in this work is a one-dimensional regularized contact model

where the vibrational energy that remains trapped after impact is subsumed under the concept of

a coefficient of restitution. For small to moderate impact velocities, the variation of this coefficient

with the impact velocity is a geometry and material dependent property that solely accounts for

mesoscopic dynamic effects and that can be obtained from an experimental or numerical campaign

of head-on collisions. We motivate this approach by a one-dimensional regularization of the three-

dimensional contact problem and, in particular, we adopt the compliant normal-force model proposed

by Hunt and Crossley [37]—where a damping coefficient is obtained from the coefficient of restitution.

Thus, the one-dimensional regularized contact model is inherently energy-consistent and momentum-

preserving, and it has the desirable properties of having as only inputs the geometry and the material

properties of individual particles.

The chapter is organized as follows. In Section 5.2 we present our mesoscopic approach to granu-

lar crystal dynamics, we describe the three-dimensional finite-element model in Section 5.2.1 and the

one-dimensional regularized contact model in Section 5.2.2. The verification and validation of these

models are discussed in Section 5.3. For validation purposes, we use a set of experimental observa-

tions for a monodisperse one-dimensional chain of 28 stainless steel beads with diameter 0.00952 m

(3/8”) and impacted by a stainless steel bead with head-on velocity of magnitude 0.44271 m/s.

Finally, a summary and concluding remarks are collected in Section 5.4.

5.2 Mesoscopic approach to granular crystal dynamics

The hypothesis and limitations of the commonly used particle mechanics approach to granular crystal

dynamics are well-known but may stand a brief review as they serve as motivation to the mesoscopic

approach presented in this section.

Firstly, the application of the static Hertz law to dynamic problems implies the following re-
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strictions: (i) the maximum stress achieved in the vicinity of the contact must be less than the

elastic limit, (ii) the size of the contact surface is much smaller than the radii of curvature of each

particle, and (iii) the characteristic time of the problem is much smaller than the natural oscillation

period of the elastic particle. However, these restrictions could be broken when, among other things,

(i) particles are made of rubber-like materials, e. g., a neo-Hookean material model is required to

describe the stress-strain behavior of polytetrafluoroethylene (PTFE) beads, (ii) the vibration pro-

duced by the collision is not negligible, and (iii) the relative motion between particles does not occur

along the line joining centers of mass, e. g., bi-dimensional or three-dimensional arrangements of not

necessarily spherical particles.

Secondly, dissipative effects are neglected in the equations of motion (5.1). Dissipative effects

related to friction are negligible because highly-packed granular lattices are designed to favor axial

stress propagation reducing then frictional and rotational dynamics. Dissipative effects during head-

on collision have three main components: (i) the vibrational energy that remains trapped after

impact, (ii) the energy loss due to plastic deformation or fracture, and (iii) the energy dissipation

due to viscoelastic behavior of the material. A distinguishing characteristic between these three

forms of energy loss is that the vibrational energy can be partially recovered by the particles as

a result of subsequent collisions while local losses are permanent. The coefficient of restitution

is then classically introduced to account for such losses and is generally treated as an empirical

material-dependent constant. However, it is well-known that the coefficient of restitution is not only

a function of the elastic properties but it also depends on the dimension of the particles and the

colliding velocity.

The formulation of a first-principle predictive model of granular crystal dynamics which has as

only inputs the geometry and the material properties of the individual particles that comprise the

system is a challenging task in general. In this work, we specifically investigate the role of energy-

trapping effects in one-dimensional granular crystals at low-impact velocity conditions. Under these

conditions, local permanent energy losses are negligible and therefore a predictive model only has to

account for the vibrational energy that remains trapped after impact, i.e., the model has to conserve
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the total energy and momentum maps of the system. We achieve these properties by abandoning

the particle mechanics approach and adopting a three-dimensional finite-element model. Specifically,

the model corresponds to a dynamic contact problem of three-dimensional deformable elastic bodies

that interact with one another over time.

In the same spirit, we formulate a one-dimensional regularized contact model where the vibra-

tional energy that remains trapped after impact is subsumed under the concept of a coefficient of

restitution. Despite being attractive for its simplicity, this approach is inherently energy-consistent

and momentum-preserving, and has the desirable properties of having as only inputs the geometry

and the material properties of individual particles.

These two models are described next in turn.

5.2.1 Three-dimensional finite-element model

The first model presented in this work makes use of a three-dimensional finite-element mesh of the

one-dimensional chain of beads. The mesh of each bead in the system comprises 27, 200 4-node

tetrahedral isoparametric elements and 5, 559 nodes, Figure 5.3. The contact constraint between

beads is enforced using a penalty energy function as shown in Gonzalez et. al [24] and in Chapter

2. The elastodynamic problem is then described by a finite-dimensional Lagrangian system of the

form

L(q, q̇) =
1

2
q̇TMq̇ − V (q)− IC(q) (5.3)

where the generalized coordinates q are the coordinates of the nodes in the deformed configuration,

M is the mass matrix, V (q) is the elastic energy, and IC(q) is the indicator function of the set of

admissible configurations C, i.e., the impenetrability or contact constraint. The striker is imparted

a uniform initial velocity which is referred to as impact velocity vimp. The elastic behavior of the

beads is described by a strain-energy density of the form

W (F ) =
�0

2
(log J)

2 − �0 log J +
�0

2
tr
(
FTF

)
(5.4)
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which describes a neo-Hookean solid extended to the compressible range, and where �0 and �0

are the Lamé constants. The Lagrangian system (5.3) is then momentum and energy preserving.

Finally, the trajectories of the strongly nonlinear dynamical system are obtained by numerical time

integration.

A

A

A-Astriker

steel beads

a) b)

Figure 5.3: One-dimensional chain of beads. a) Three-dimensional finite-element model. b) Detail
of the finite-element mesh of one spherical bead.

Strongly nonlinear three-dimensional systems, with complex dynamic contact and multiple time

scales that coexist in time and space, pose great challenges for numerical time integrators. We address

these challenges with asynchronous energy-stepping integrators. These time integrators, developed

by Gonzalez et al. in [26] and presented in Chapter 4, are energy-momentum conserving, symplectic,

and convergent with automatic and asynchronous selection of time step in each subdomain—each

bead and each contact constraint is a partition of the domain. The scheme conserves all the exact

momentum maps of the Lagrangian system and accounts for the exact momentum fluxes across sub-

domain boundaries. Furthermore, asynchronous energy-stepping is effective and efficient in solving

the dynamic behavior of a chain of elastic beads, as shown in Chapter 4.

Of particular interest to granular crystal dynamics are conservation of total energy and linear

momentum. The total energy of the system is the sum of the kinetic energy, KE(q̇) = 1
2 q̇
TMq̇, and

the potential energy V (q). The total linear momentum is given by J = Mq̇. It is interesting to

observe that the kinetic energy and the linear momentum of the system can also be expressed as the

contribution of all individual particles k in the one-dimensional granular crystal, i.e., KEk and Jk,
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given by

KEk =
∑
qi∈Vk

1

2
mi∥q̇i∥2 (5.5)

Jk =
∑
qi∈Vk

miq̇i = Mk⟨q̇⟩k (5.6)

where Mk, ⟨q̇⟩k, and Vk are the total mass, the mean velocity and the volume of particle k, and mi

is the mass of node i. We now define the vibrational kinetic energy of each bead as

VKEk =
∑
qi∈Vk

1

2
mi∥q̇i − ⟨q̇⟩k∥2 = KEk − ⟨KE⟩k (5.7)

where ⟨KE⟩k = 1
2Mk∥⟨q̇⟩k∥2 is the kinetic energy associated with the rigid motion of the particle.

The additive decomposition of the kinetic energy into vibrational and rigid-motion components will

allow for investigating the role of energy-trapping effects in granular crystals at low-impact velocity

conditions.

For the purpose of validating the model, it is essential to identify and compute forces that

resemble those measured by embedded piezosensors in experimental setups. Daraio and co-workers

[15] measure an average value of forces F leftk and F rigℎtk acting on the contact points of the particle,

that is

F avk =

∣∣∣F leftk ⋅ n
∣∣∣+
∣∣∣F rigℎtk ⋅ n

∣∣∣
2

=
1

2

(
F leftk − F rigℎtk

)
⋅ n (5.8)

where n is a unit vector aligned with the chain of beads, Figure 5.4. This averaged force is related

with the external forces acting on the beads by the following relationship

F avk =
1

2
F extk ⋅ n+

Nbeads∑
j=k+1

F extj ⋅ n (5.9)

where Nbeads is the number of beads in the chain and F extk is the external force acting on particle

k, i.e.,

F extk = F leftk + F rigℎtk =
d

dt
Jk = Mk

d

dt
⟨q̇⟩k (5.10)

Relationship (5.9) is only valid for granular crystals that do not interact with walls, i.e., for systems
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that preserve the total linear momentum. However, it can be readily extended to consider other

cases.

Figure 5.4: Measured forces acting on a bead.

5.2.2 One-dimensional regularized contact model

The second model presented in this work is motivated by a one-dimensional regularization of the

three-dimensional contact problem presented in the previous section. We first recall that Hamilton’s

principle states that trajectories q(t) of the Lagrangian (5.3) are the stationary points of the action

integral of the system, that is

0 = �

∫
L(q, q̇) dt = �

∫
[⟨KE⟩(q̇) + VKE(q̇)− V (q)− IC(q)] dt (5.11)

Then, for a one-dimensional chain of particles, we define the displacement u(t) and the velocity u̇(t)

as

u(t) := ⟨q⟩∣t ⋅ n− ⟨q⟩∣0 ⋅ n (5.12)

u̇(t) := ⟨q̇⟩∣t ⋅ n (5.13)

and we assume other components of the displacement are zero, that is ⟨q⟩ = (⟨q⟩ ⋅ n) n. This

intuitive dimensional reduction suggests recasting the three-dimensional Lagrangian system into a

one-dimensional mechanical system with forcing. Thus, trajectories u(t) are given be the Lagrange-

d’Alembert principle, i.e.,

0 = �

∫
L(u, u̇) dt → 0 = �

∫ [
⟨KE⟩(u̇)− V̄ (u)

]
dt+

∫
F (u, u̇) ⋅ �u dt (5.14)
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where F (u, u̇) is the forcing term and V̄ is a one-dimensional regularized potential. The resulting

equations of motion are then given by

Mkük = −∇kV̄ (u) + Fk (u, u̇) (5.15)

where forces are approximated by a regularized contact model or compliant contact-force model.

It is worth noting that in our approach the forcing term results in an effective dissipation of the

vibrational energy retained in the particles during and after the collision.

For direct central and frictionless impacts of two particles, Hunt and Crossley [37] proposed a

compliant normal-force model of the form

m(ü1 − ü2) = −��n − (���n)�̇ (5.16)

where � = max{u1 − u2, 0} and �̇ = u̇1 − u̇2 are the penetration depth and speed, � is the damping

factor, � is the spring constant, and m is the effective mass (i.e., m−1 = M−1
1 + M−1

2 ). This

regularized contact model falls squarely within the dimensional reduction proposed above and the

equations of motion (5.15). Indeed, the potential energy is V̄ (�) = �
n+1�

n+1 and the dissipative

forcing term is F (�, �̇) = −(���n)�̇. It is worth noting that the potential energy is chosen in analogy

with Hertz’s theory, which is a good regularized model for the contact force problem of hard elastic

bodies where the contact region remains small and no vibrational modes are exited during collision.

Then, for heterogeneous pairs of linearly elastic spheres, n = 3/2 and the spring constant � is

well-known (cf., e. g., [70]). The damping factor � is generally chosen to ensure that the energy

dissipated during impact is consistent with the energy loss subsumed in the coefficient of restitution.

Additionally, in order to prevent the contact model from applying tensile force, � must verify

�n + ��n�̇ ≥ 0 , ∀ �̇ (5.17)

Many researchers have proposed approximate [37, 48, 56] and exact [23] relationships between �
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and the coefficient of restitution (see, for example, [82] for a detailed comparison of the predictions

of these models with low speed impact measurements). In this work we adopt the exact solution

proposed by Gonthier and co-workers [23]. To this end we integrate the equation of motion (5.16)

as follows ∫ vo

vi

�̈

1 + ��̇
d�̇ +

�

m

∫ xo

xi

�n d� = 0 (5.18)

where xi, xo, vi and vo are the penetration depths and speeds at the start and the end of the collision

(i.e., xi = xo = 0). We also define the effective coefficient of restitution e = −vo

vi
that allows for

expressing the exact solution of (5.18) as an implicit relation for �, given vi and e, that is

1 + �vi

1− �vie
= e�vi(1+e) (5.19)

The solution for � has multiple branches, however a valid solution should satisfy inequality (5.17).

The model proposed by Gonthier and co-workers, i.e., (5.19), is momentum-preserving and

energy-consistent for any given value of the coefficient of restitution. Therefore, the model can be

used to simulate fully elastic to nearly-plastic impacts. At low impact velocities and for most linear

elastic materials, experimental observations [22] traditionally show that the coefficient of restitution

can be approximated by eemp = 1−c1vi, where c1 is an empirical coefficient. However, recent exper-

imental data obtained by Zhang and Sharf [82] suggest a nonlinear fit of the form eemp = 1− c1vc2i

provides a better approximation. Then, the damping factor is only a function of the speed at the

start of the collision, i.e., � = �(vi), and the empirical coefficients c1, c2.

The application of Hunt-Crossley’s regularized contact model to equations of motion (5.15) results

in

Mkük =
D1/2E

3(1− �2)

[
�

3/2
k (1 + �k �̇k)− �3/2

k+1(1 + �k+1 �̇k+1)
]

(5.20)

where �k = �k(vi,k) is given by Gonthier’s energy-consistent model. The function eemp(vi) can be

obtained from an experimental or numerical campaign of head-on collisions over a range of initial

impacting velocities. The value for vi,k is approximated by the largest attained relative velocity
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between (k − 1)-th and k-th particles (see Appendix 5.4 for evolutionary equations for vi). It

bears emphasis that eemp accounts for the vibrational energy retained in the bead after the head-on

collision, and that the equations of motion (5.20) reduce to (5.1) when eemp = 1 for all vi.

Finally, the one-dimensional model is integrated over time with variational integrators which

accurately capture the energy behavior of forced mechanical systems [42].

5.3 Verification and validation

The verification of the models presented in the previous section is twofold: (i) the assessment of the

convergence and accuracy of the numerical solutions to the exact solutions of the models, and (ii) the

assessment of the accuracy of the one-dimensional regularized contact model as an approximation

of the three-dimensional finite-element model. Our verification and validation strategy is depicted

in Figure 5.5.

One-dimensional 
regularized contact 

model

Three-dimensional 
finite-element 

model

Experimental 
observations

Verification

Verification

Validation

Validation

Verification

Figure 5.5: Verification and validation strategy.

For validation purposes, we use a set of experimental observations for a monodisperse one-

dimensional chain of 28 stainless steel beads with diameter D = 0.00952 m (3/8”) and impacted by

a stainless steel bead with vimp = 0.44271 m/s. The time history of forces measured by 15 calibrated

piezosensors is presented in Figure 5.6—piezosensors are placed in beads 2, 4, 6, 8, 10, 12, 14, 16, 18,

20, 22, 24, 26, 27, 28, where the striker is referred as the first bead. Characteristically, the measured

force decays as the solitary wave propagates along the chain. The material properties of the beads

are E = 213 GPa, � = 0.30, and the density is � = 7780.0 kg/m3.



161

0 50 100 150 200 250 300 350 400

0

10

20

30

40

50

Time [μsec]

F
or

ce
 [N

]

Figure 5.6: Left: Time history of the forces measured by 15 sensors for a one-dimensional chain
composed of 28 stainless steel beads with diameter D = 0.00952 m and impacted by a stainless steel
bead with vimp = 0.44271 m/s. Right: Experimental setup. Courtesy of Dr. Jinkyu Yang and Prof.
Chiara Daraio.

5.3.1 Verification

Convergence, accuracy, long-term behavior and conservation properties of energy-stepping and asyn-

chronous energy-stepping are carefully studied in Gonzalez et al. [24,26], and Chapters 2 and 4. The

numerical behavior of variational integrators for forced mechanical systems is analyzed in Kane et

al. [42].

We assess the accuracy of the one-dimensional regularized contact model (Section 5.2.2) as an

approximation of the three-dimensional finite-element model (Section 5.2.1) by means of numerical

experimentation. Specifically, we study the head-on impact of two stainless steel beads with diameter

D = 0.00952 m and impact velocity vimp = 0.44271 m/s. The three-dimensional model uses the

finite-element mesh shown in Figure 5.3 and it is integrated in time with asynchronous energy-

stepping integrators and an energy step of magnitude ℎ = 2 ⋅10−8 J. The model predicts a coefficient

of restitution of e = 0.975 which is in turn used as an input of the one-dimensional regularized model.

The regularized contact model is designed to exactly predict the coefficient of restitution as a

consequence of solving Gonthier’s model (5.19) for computing the damping factor �. However, an

accurate prediction of the dynamic behavior is required to successfully apply the model to granular

crystal dynamics. To this end, we compare the three-dimensional and the one-dimensional models

in their predictions of the evolution of: (i) incoming and target beads linear momenta, (ii) kinetic,
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potential and total energies 1, and (iii) the external or contact force. Figure 5.7 compares the time

histories of such three aspects of the dynamic behavior of the system. The good agreement between

the evolution in time of the total energy of the one-dimensional model and the total energy of the

three-dimensional model adjusted by the vibrational energy retained in the system is noteworthy.

It also bears emphasis the good agreement in the force amplitude and contact duration. A small

discrepancy is observed at times where the potential energy is small, i.e., at small deformations, and

this discrepancy could be attributed to the lack of refinement in the finite-element mesh for such

conditions. Figure 5.7 additionally shows the exact conservation of linear momentum in the both

models (grey curves), and the exact conservation of total energy in the three-dimensional model

(grey curve). We again emphasize that the vibrational energy that remains trapped after impact is

subsumed, in the one-dimensional model, under the concept of a coefficient of restitution.
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Figure 5.7: Head-on impact of two stainless steel beads with diameter D = 0.00952 m and impact
velocity vimp = 0.44271 m/s. Predictions of the three-dimensional finite-element model (dashed
black curves) and the one-dimensional regularized contact model (blue curves).

In order to assess the accuracy of these models in the context of granular crystal dynamics, we now

study a one-dimensional chain of stainless steel beads with diameter D = 0.00952 m and impact

velocity vimp = 0.44271 m/s. Figure 5.8 shows the solutions of the one-dimensional regularized

contact model and the three-dimensional finite-element model—the averaged force is computed as

described in Section 5.2.1. The good agreement of the models is evident in the figure, although

1The vibrational energy of the three-dimensional model is explicitly computed by (5.7) and subtracted from the
system in order to compare the predictions with the one-dimensional regularized model.
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the discrepancies observed at small deformations play a more significant role due to the higher

concurrency of this dynamic problem. Nonetheless, the accord between the evolution in time of

the total energy of the one-dimensional model and the total energy of the three-dimensional model

adjusted by the vibrational energy retained in the system is noteworthy.
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Figure 5.8: Chain of stainless steel beads with diameter D = 0.00952 m, impacted by a stainless steel
bead with vimp = 0.44271 m/s. Predictions of the three-dimensional finite-element model (dashed
black curves) and the one-dimensional regularized contact model (blue curves).

5.3.2 Validation

We now proceed to validate the one-dimensional regularized contact model (Section 5.2.2) with

the experimental observations described above and shown in Figure 5.6. In order to simulate the

dynamic behavior of the one-dimensional chain of beads, we additionally require the coefficient of

restitution e(vi) for the specific geometry and the material properties of the particles that comprise

the granular crystal. Zhang et al. presented in [82] a set of experimentally obtained coefficients

of restitution for low speed impacts of a chrome-steel ball with diameter 0.0508 m (E = 210 GPa,

� = 0.30) on a steel cylinder with diameter 0.0508 m (E = 213 GPa, � = 0.29). Figure 5.9 shows

such a set of experimental results together with a nonlinear fit of the form eemp = 1−0.0626 v0.3860
i .

In this work we perform a numerical campaign of head-on impacts with the three-dimensional finite-

element model presented in Section 5.2.1. These numerical results are also shown in Figure 5.9

together with a nonlinear fit of the form eemp = 1− 0.0370 v0.4101
i . As expected for similar material
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properties, the coefficient of restitution is larger for a smaller diameter. It is worth noting that both

models presented in this work are intertwined in the validation, as it was suggested in Figure 5.5.
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Figure 5.9: Coefficient of restitution e(vi). Black stars are experimental observations by Zhang [82],
the black curve is the best fit e = 1−0.0626 v0.3860

i . Blue stars correspond to the numerical campaign
of head-on impacts of stainless steel beads with diameter D = 0.00952 m, the blue curve corresponds
to e = 1− 0.0370 v0.4101

i .

The time history of the forces predicted by the one-dimensional regularized contact model—with

equations of motion given by (5.20)—and the forces predicted by the traditional particle mechanics

approach—with equations of motion given by (5.1)—are shown in Figure 5.10. It is evident in the

figure that the traditional particle mechanics approach does not predict the characteristic decay of

the force as the solitary wave propagates along the chain. In sharp contrast, the mesoscopic approach

proposed in this work successfully captures such behavior. Furthermore, the agreement between the

numerical results and the experimental observations is remarkable, as shown in Figure 5.11.

The one-dimensional regularized contact model is momentum-preserving and energy-consistent.

The first property is observed in Figure 5.12, namely the total linear momentum of the system is a

constant of motion though the shape of the individual contributions Jk changes as the solitary wave

propagates along the chain. In contrast, the traditional particle mechanics approach predicts the

same profile for all Jk, after a short transient period. The second property is observed in Figure 5.13,

and it is worth noting that the decaying behavior in the total energy of the system resembles the

vibrational energy that remains trapped in the beads.

Finally, the one-dimensional regularized contact model predicts all the well-known qualitative
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Figure 5.10: One-dimensional regularized contact model of a one-dimensional chain composed of
28 stainless steel beads with diameter D = 0.00952 m and impacted by a stainless steel bead
with vimp = 0.44271 m/s. Time history of the forces predicted by the model—dashed grey curves
correspond to the predictions of equations of motion (5.1).
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Figure 5.11: One-dimensional regularized contact model of a one-dimensional chain composed of
28 stainless steel beads with diameter D = 0.00952 m and impacted by a stainless steel bead with
vimp = 0.44271 m/s. Time history of measured forces (red curves) and numerical predictions (black
curves).
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Figure 5.12: One-dimensional regularized contact model. Conservation of total linear momentum
and time history of individual Jk—dashed grey curves correspond to the predictions of equations of
motion (5.1).
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Figure 5.13: One-dimensional regularized contact model. Time history of total, kinetic and potential
energies.
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behavior of one-dimensional granular crystal dynamics. In particular, we observe that:

∙ The solitary wave width remains constant after a short transient period (see Figure 5.14). The

width is measured by the full width at half maximum and it is in agreement with experimental

and numerical observations that report a value of about 2.1 particles [65, 70]. Thus, the

mesoscopic approach proposed in this work predicts solitary waves with a finite width that is

independent of the solitary wave amplitude.

∙ The decay of the force follows Fm ∝ e−�k (see Figure 5.15). This behavior is in agreement

with experimental results reported elsewhere (see, for example, [9]).

∙ The wave speed is given by Vs ∝ F 0.157
m (see Figure 5.16). This is in good agreement with

theoretical predictions [64,65] and experimental data [9, 15,16].

5.4 Summary and discussion

We have presented a mesoscopic approach to granular crystal dynamics, which comprises a three-

dimensional finite-element model and a one-dimensional regularized contact model. The approach

aims at investigating the role of vibrational-energy trapping effects in the overall dynamic behavior

of one-dimensional chains under small to moderate impact velocities. The three-dimensional finite-

element model resolves the fine mesoscale structure of dynamic collisions and explicitly accounts for

the vibrational kinetic energy retained in each bead as the solitary wave propagates along the chain.

The resulting strongly nonlinear three-dimensional system is conservative (i.e., the total energy of

the system is a constant of motion), and it poses great challenges for numerical time integrators.

We have successfully coped with these challenges by using asynchronous energy-stepping integrators.

The one-dimensional regularized contact model accounts for mesoscopic dynamic effects by means of

a restitution coefficient, i.e., the vibrational energy that remains trapped after impact is subsumed

under the concept of a coefficient of restitution. We have specifically adopted the compliant normal-

force model proposed by Hunt and Crossley, and the damping-factor model proposed by Gonthier and

co-workers. The resulting one-dimensional model is momentum-preserving and energy-consistent,
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Figure 5.14: One-dimensional model. Evolution of solitary wave width (full width at half maximum)
as a function of bead number—measured values in red.
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Figure 5.15: One-dimensional model. Evolution of the maximum force Fm as a function of the bead
number k—measured values in red. The curve corresponds to the best fit Fm = 50.947 e−0.0085411k.
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and it is integrated over time with variational integrators which accurately capture the energy

behavior of forced mechanical systems. The only inputs of these models are the geometry and the

elastic material properties of the individual particles that form the granular crystal (e. g., we have

obtained the variation of the coefficient of restitution with the impact velocity from a numerical

campaign of head-on collisions).

We have also presented a detailed verification and validation of the mesoscopic approach, which

include: (i) the assessment of the convergence and accuracy of the numerical solutions to the exact

solutions of the models, (ii) the assessment of the accuracy of the one-dimensional regularized con-

tact model as an approximation of the three-dimensional finite-element model, (iii) the one-to-one

comparison of the experimental and simulated time histories of averaged forces in a one-dimensional

chain of 28 stainless steel beads with diameter 0.00952 m and a small impact velocity of 0.44271 m/s.

The good agreement of the latter and the ability of the model to predict well-known properties of

one-dimensional granular crystal dynamics (e. g., the formation of solitary waves with a finite width

that is independent of the solitary wave amplitude, the exponential decay of the force as the solitary

wave propagates along the chain, and the F
1/6
m scaling of the solitary wave speed) are remarkable.

We close by pointing out some limitations of our analysis and possible avenues for extensions of

the approach.

Firstly, our mesoscopic approach only accounts for vibrational-energy trapping effects and it

therefore relies on the assumption of negligible permanent energy loses in the system. However,

the strain-energy density employed in the finite-element model can be easily extended to account

for elasto-viscoplastic materials, e. g., steel and teflon at high-impact velocities, or even to account

for brittle materials, e. g., glass. Daraio and co-workers have reported a considerable amount of

experimental observations that provide a wealth of data for validating a model under such conditions,

though beyond the scope of this work.

Secondly, the application of the three-dimensional finite-element model to heterogeneous systems

composed of not necessarily spherical particles, and arranged in bi-dimensional or three-dimensional

configurations, is a worthwhile direction of future research.
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Appendix: Loading/unloading conditions for vi

The damping factor �(vi) in the equation of motion

m(ü1 − ü2) = −��n
[
1 + �(vi) �̇

]
(5.21)

is determined from

1 + �vi

1− �vi e(vi)
= e�vi[1+e(vi)]) (5.22)

given the value of the impact speed vi ≥ 0. Whether vi is positive or zero depends on further

conditions involving (�, �̇), which we refer to as loading/unloading and touching/detaching conditions

for vi. We present below these conditions for functions vi : SBV ([0, T ])→ ℝ in the space of Special

Bounded Variation functions and for derivatives ai := v′i that exist almost everywhere.

1. Loading/unloading conditions (� > 0).

The irreversible nature of the percussion is captured by Kuhn-Tucker conditions

ai ≥ 0 , �̇ − vi ≤ 0 , ai(�̇ − vi) = 0

together with the consistency condition, if �̇ − vi = 0,

ai = �̈ if �̈ ≥ 0 , ai = 0 if �̈ < 0

2. Touching/detaching conditions (� = 0).

Before and after the percussion of two beads, the value of vi may experience a jump given by:

- at the first instant of contact (�̇ > 0): vi = �̇

- after the collision (�̇ ≤ 0): vi = 0
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