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ABSTRACT 

Fiber optics is a promising technology that can enable the high bit rates 

and long spans that are on increasing demand. Although the fiber bandwidth is 

as large as several terahertz, there are several phenomena, related to both 

intrinsic fiber properties and characteristics of the state-of-the-art transmitters 

and receivers, which seriously degrade the performance of fiber communication 

systems, imposing limits on the transmission bandwidths and distances that can 

be achieved. 

In this thesis, some of the issues affecting linear and nonlinear 

propagation in optical fiber will be theoretically and experimentally studied. 

Schemes for compensation of some of these phenomena or amelioration of their 

effects will be presented. 
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Chapter I. 

Introduction 

~ iber-optic communications systems use high carrier frequencies (-100THz) in 

.".;r- the near-infrared region to transmit information over distances ranging from 

a few kilometers to several hundreds or even thousands of kilometers. Two 

breakthroughs contributed to the success of the new technology: the invention of the 

laser during the 1960s [1] and the reduction of the fiber loss to about 20 dB/km in the 

wavelength region near l/-Lm in 1970 [2]. The simultaneous availability of a reliable 

optical source and a low-loss optical guiding medium led to a rapid development of 

lightwave communication systems, and the first generation of fiber-optic systems 

operating near 0.8/-Lm began to be deployed in 1978 [3]. 

The two main limitations of these first lightwave systems were fiber loss and 

dispersion. Further development of new laser sources and improvement of optical fiber 

transmission properties has enabled several-orders-of-magnitude increase in the bit rate

distance product over a period of 20 years. Thus, InGaAsP lasers and detectors were 

developed operating in the wavelength regions near 1.3/-Lm and 1.55/-Lffi where the fiber 

loss is minimum. The problem of modal dispersion was overcome by the use of single

mode fibers and nearly-single-mode lasers, although group velocity dispersion remains 

an important issue. Recently, the invention of new optical devices such as optical fiber 

amplifiers and fiber Bragg gratings has further enhanced the capabilities of lightwave 

systems. 
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This thesis deals with the study of the propagation characteristics of light 

produced by semiconductor lasers in optical fiber. For this purpose, the dynamics of 

semiconductor lasers need to be well understood. In fact, the transmission properties in 

optical fiber also reveal important features of the semiconductor laser physics. In 

addition, some new components based on coupling among several waveguide modes 

are proposed and a theory is developed to describe their operation. 

1.1 PROPAGATION IN OPTICAL FIBER. 

In the second communications window around 1.3!lm, the fiber loss is typically 

O.4dB /km. Furthermore, optical fibers exhibit minimum dispersion in this wavelength 

region. Despite this advantage, communication systems are migrating towards the third 

communications window at wavelengths near 1.55!lm where silica fiber loss exhibits a 

global minimum (typically O.2dB/km). Another factor that has largely contributed to the 

deployment of systems operating at 1.55!lm is the invention of the erbium-doped fiber 

amplifier (EDFA), for which there is no ready equivalent at 1.3!lID. 

The dispersion problem at 1.55!lm can be overcome by using dispersion-shifted 

fibers designed to have minimum dispersion at 1.55!lm. However, the huge number of 

kilometers of standard single-mode fiber already deployed make it a practical necessity 

to devise ways to deal with the group velocity dispersion. The consequences of fiber 

dispersion are especially severe with frequency chirping of the lightwave signal. Chirp

free external modulators can be used to combat this degradation. 

Once the fiber loss cannot be further reduced, the other way to enhance the 

repeater spacing is to increase the launched optical power in the fiber. This can be 

achieved by the use of high-power lasers and also of power-booster optical amplifiers. 

As a consequence of these high optical powers nonlinear effects can become important. 

Even though fused silica has very small nonlinear coefficients compared with other 

common nonlinear media, nonlinear effects can be observed at relatively low optical 
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powers due to the small fiber spot size and extremely low fiber loss. Fiber nonlinearities 

can result in degradation of the propagation characteristics of lightwave signals. It has 

become necessary in state-of-the-art systems to assess the extent of this degradation and 

to devise methods to combat it. 

The lowest-order elastic nonlinear effects in optical fiber originate from the third

order susceptibility, which is responsible for phenomena such as self-phase modulation 

(SPM), cross-phase modulation (XPM) and four-wave mixing (FWM). A second class of 

nonlinear effects results from stimulated inelastic scattering in which the optical field 

transfers part of its energy to the non optical excitations in the medium. Two important 

phenomena in this category are stimulated Raman scattering (SRS) and stimulated 

Brillouin scattering (SBS), both of which are related to vibrational excitation modes of 

silica. The main difference between them is that optical phonons participate in SRS 

whereas acoustic phonons participate in SBS. 

1.2 DYNAMICS OF SEMICONDUCTOR LASERS. 

Most fiber-optic communication systems use semiconductor lasers as an optical 

source due to their compact size, high efficiency, good reliability, emission at the 

communications wavelengths, small area compatible with that of single-mode fiber, and 

possibility of direct modulation at relatively high frequencies. Nearly-single-mode 

operation can be achieved by using a distributed feedback structure. In addition, 

superior performance can be obtained with quantum well lasers, which have lower 

threshold current, high modulation speed, low chirp and narrow linewidth. 

There is a fundamental relationship between the gain and refractive index of a 

semiconductor medium. The index changes that accompany modulation of gain in a 

laser result in frequency modulation, which is referred to as laser chirp. This frequency 

modulation has major consequences in the laser intensity modulation response after 

propagation in a dispersive optical channeL Dispersive propagation results in part of the 

frequency modulation (FM) converted into intensity modulation (IM). Depending on the 
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amount of dispersion, the FM can either add to or subtract from the IM, resulting in 

either enhancement or reduction of the intensity modulation response. This analysis is 

valid for variations in gain due to both current injection modulation and noise processes. 

The effect that dispersion has on the laser intensity modulation response and intensity 

noise can thus be used to improve the laser transmission characteristics by enhancing 

the intensity modulation response and reducing the laser intensity noise. 

In addition, the laser chirp is closely related to the physics of the semiconductor 

lasers and in particular to different damping mechanisms affecting the laser dynamics. 

These include spectral hole-burning, carrier heating, quantum capture, carrier diffusion 

and spatial hole-burning. Precise measurements of laser chirp can lead to better 

characterization of these mechanisms. 

1.3 NEW OPTICAL COMPONENTS BASED ON COUPLING 

AMONG OPTICAL MODES. 

Basic communication systems simply consist of transmitter, channel and 

receiver. However, other capabilities are necessary for the operation of more 

complicated networks, such as routing and switching. Although these can be performed 

in the electrical format, there is an advantage in reducing the electronics to a minimum 

and performing these functions in the optical domain. Most of the devices that achieve 

these operations, as well as others even more basic such as modulation and filtering, are 

based on coupling between the different optical modes that can propagate in one or 

several optical waveguides. 

The general principle of operation is as follows. Optical waveguides can confine 

optical energy in one or more optical modes. Two different modes may couple with each 

other to exchange their energy under proper conditions. This energy exchange can have 

a frequency dependence, which leads to filtering of the signals travelling in each mode. 

In addition, the coupling strength can be affected by electrical signals in electrooptic 
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materials and by optical signals in nonlinear materials. This can be used to build 

electrically-controlled or optically-controlled modulators and optical switches. 

1.4 OUTLINE OF THIS THESIS. 

In Chapter II, linear propagation of lightwave signals in dispersive channels is 

discussed. The simple small-signal theory of propagation is extended to treat large

signal propagation in optical fiber, which more closely approximates the conditions in 

practical systems. The theory is applied to light produced by direct modulation of 

semiconductor lasers [4] and systems using external modulation of the laser light. The 

degradations resulting from fiber first-order group-velocity dispersion are highlighted. 

In Chapter III, the models developed in the previous chapter are applied to the 

characterization of the laser dynamics and also to the development of new techniques to 

improve the laser transmission properties. First, a method is presented to accurately 

measure the laser chirp using propagation in fiber [5], and a model is developed 

including the different damping mechanisms in distributed-feedback multi-quantum

well lasers that explains the measurement [6]. Then, the fiber propagation theory is 

applied to the characterization of laser noise. It is shown that the many weak side modes 

that always accompany the main mode of nearly-single-mode DFB lasers contribute to 

an enhancement of the laser noise that is not predicted by single-mode theories [7]. 

Finally, some earlier results on the effect of fiber Bragg gratings on modulation response 

[8] and noise [9] are extended to demonstrate that a properly designed fiber grating can 

produce major reduction of the laser intensity noise and at the same time shape the 

modulation response in an almost arbitrary way [10]. 

Chapter IV deals with the effect of stimulated Brillouin scattering (SBS) on the 

intensity modulation and noise characteristics after fiber propagation. It will be shown 

that in addition to a power loss, SBS can induce a phase shift of the optical carrier 

relative to its sidebands. This phase shift can lead to severe distortion of the modulation 

response and increase in intensity noise (RIN) [11]. 
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In Chapter V, a new approach for mode conversion between copropagating 

modes is proposed. In this device the coupling is mediated by a third mode. This 

additional mode gives additional flexibility and as a result the devices are less sensitive 

to fabrication parameters compared to other devices. Low insertion loss and low 

polarization sensitivity can be obtained. The mode of operation of this device is 

theoretically explained by using a generalized coupled mode theory [12]-[13]. 
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Chapter II~ 

Dispersive propagation of lightwave 

signals 

7 he preferred scheme for transmission of signals in lightwave communication 

systems is based on intensity modulation (IM) of the optical carrier by an 

electrical signal and direct detection (DD) by a photodiode at the receiver end to convert 

the optical signal back to the original electrical format. An alternative approach 

transmits the information in the frequency or the phase of the optical signal and requires 

the use of homodyne or heterodyne detection techniques. Although this scheme, known 

as coherent transmission system, offers better theoretical sensitivity, it has been largely 

superseded by intensity-modulation direct-detection (IM/DD) systems due to their 

simplicity and better performance. 

There are two schemes for intensity modulation of the light produced by a 

semiconductor laser, which compete in terms of simplicity and performance. High

speed modulation of semiconductor lasers can be achieved by varying the drive current. 

This modulation scheme, referred to as direct-modulation (see Figure I), has for long been 

the preferred method due to its simplicity and large bandwidth. However, variations in 

the drive current not only modulate the light intensity, but also the optical frequency. As 

will be explained below, this frequency modulation, also known as laser "chirp," can 

cause severe degradation of the transmitted signal when the optical channel is 

dispersive. External-modulation of the laser light (see Figure 2) using chirp-free external 
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modulators such as electrooptic Mach-Zehnder modulators has been proposed as a 

solution to this problem. However, the external modulator introduces not only a large 

optical loss due to coupling to the modulator and waveguide losses but also an 

additional cost to the system. 

Power 
amplifier 

Laser attenuator Photodiode Low-noise 
amplifier 

Figure 1: IMIDD system with direct-modulation of the semiconductor laser 

light. 

Power 
amplifier 

V(O) 

External 
modulator 

Photodiode Low-noise 
amplifier 

Figure 2: IMIDD system with external-modulation of the semiconductor laser 

light. 

The transmission of signals in IM/DD systems is strongly affected by the 

dispersion of the optical channel. There are two types of dispersion, group-velocity 

dispersion, i.e., different frequency components travel at different group velocities, and 

gain dispersion, i.e., different frequency components experience different gain or loss. The 

effect of dispersion on lightwave signals is magnified when not only the intensity but 

also the frequency of the optical signal is modulated, as is usually the case for light 
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produced by direct modulation of semiconductor lasers. As a consequence of dispersion, 

part of the frequency modulation (PM) is converted into intensity modulation (IM), 

which is detected at the receiver end. This PM-to-IM conversion can result in signal 

distortion, which is manifested as, for example, pulse broadening for digital signals [1]

[2], intermodulation distortion for analog CATV signals [3]-[4], or noise enhancement for 

modulation driven by noise processes in the laser [5]-[6]. However, PM-to-IM 

conversion can also be used to advantage to improve the laser modulation response 

and/ or reduce the laser intensity noise, and is the basis of a new transmission system 

known as dispersion supported transmission (DST) [7], which has been recently 

receiving increased attention. 

Section 11.1 presents the small-signal theory of propagation of optical signals in 

optical channels exhibiting both gain and group-velocity dispersion. It is shown how the 

small-signal approximation leads to a simple description of optical communication 

systems in terms of cascaded transfer functions, similar to the ones widely used in linear 

system theory. 

The small-signal approximation provides some insight to the characteristics of 

the optical transmission. However, it can fail to describe large-signal propagation, which 

more closely approximates the conditions in practical IM/DD systems. In section 11.2, 

the large-signal theory of propagation of light produced by direct modulation of 

semiconductor lasers in optical fiber with first order group-velocity dispersion is 

derived. It will be shown that some of the conclusions extracted from the small-signal 

theory are not valid in the large-signal regime. Section 11.3 extends the previous large

signal analysis to the case of IM/DD systems using external modulation of the laser 

light. Even though, ideally, external intensity modulators do not induce frequency 

modulation, the modulator nonlinearity results in enhanced distortion after propagation 

in fiber. 
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ILl SMALL-SIGNAL THEORY OF DISPERSIVE 

PROPAGATION OF OPTICAL SIGNALS 

II.I.I Small-signal propagation in a linear optical 

channel. 

In this section, small-signal modulation of the optical carrier by a sinusoidal tone 

at a frequency !2/(21t) is considered. In general, both intensity and frequency 

modulation can be present, and the complex electric field amplitude, E, can be 

expressed in the form: 

E(t z - 0) - p1l2 (1 + m cos(nt + m ))112 eimFM sin(nt+q>FM) 
,- - 0 1M 't'IM (1) 

where Po is the average output power, mlM and mFM are the intensity modulation (lM) 

and frequency modulation (FM) indices, respectively, and qJIM and qJFM are the 

corresponding phases. 

In the small-signal regime, i.e., when the modulation indices mlM and mFM are 

much less than unity, equation (1) can be linearized as follows: 

(2) 

where 

(3) 

C (z = 0) = mlM ± mFM e±i/',.q> 
±l 4 2 (4) 

where flcp = cp FM - q> 1M is the dephasing angle between FM and lM. 

Thus, in the small-signal approximation, the optical field consists of a main peak 

corresponding to the optical carrier centered at the laser optical frequency, Ml, 

accompanied by two modulation sidebands separated from the carrier by ±n and with 

+" 
amplitude C±l e-lq>/M relative to the amplitude of the carrier. 
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The signal propagation from the transmitter at z = ° to the receiver end at z can 

be equivalently described as transmission through an optical filter with transmission 

coefficient t(OJ), where (0 is the optical frequency. The amplitude of the modulation 

sidebands, c±ll' at optical frequency OJo ± nO after transmission through t( OJ) is given 

by: 

(5) 

At the photo diode, the incoming photons are absorbed and generate electron

hole pairs. This is a square-law detection process. Only the light intensity is detected and 

the information possibly contained in the phase of the optical signal is lost. 

Mathematically, the detected photocurrent is proportional to the magnitude squared of 

the complex electric field amplitude. The proportionality function is called responsivity, 

R , and is directly proportional to the absorption quantum efficiency of the electrons in 

the photodiode. In addition, the response time of the photodiode is limited by the transit 

time for the photogenerated electrons and holes to reach the electrodes and contribute to 

the current flow. As a consequence, the responsivity is a function of the modulation 

frequency, typically introducing a low-pass filtering. 

The detected photocurrent, I (t, z), is obtained by squaring the electric field 

magnitude. By keeping only the linear terms in the modulation frequency, 0, 

~ 1 ~ 12 i(D.t+m ) -i(nt+m ) I (t,z) = E(t,z) =: I(O,z) + I(O,z)e 'rIM + I( -O,z)e 'rIM (6) 

By using (1) and keeping only the linear terms in the modulation frequency, 0, 

we obtain that the photocurrent at ° is given by: 

I(O,z)=:R(O)Po (C~C+l +Coc:1) (7) 

The DC photocurrent, I DC (z) = 1(0 = 0, z) , is given by: 

(8) 

If the photodetector is placed at the transmitter output, then the detected photocurrent 

is: 
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I(O,z = 0) ~ R(O)Po m
lM 

2 

14 

(9) 

After propagation through an optical filter with an optical transfer function t( OJ), the 

detected photocurrent is: 

I(O,z) ~ I(O,z = O)H(O,z) (10) 

where H(O,z) is the equivalent baseband transfer function that models transmission 

through the optical channel, and is given by: 

H(O,z) = He(O,z)+ 2i Ho(O,z) PIR(O) (11) 

The functions He(O,z) and Ho(O,z) are the conjugate-symmetric and conjugate-

antisymmetric parts of t( OJ )t* (OJo) around~, that is, 

He(O,z) = ~~(OJo + O)t* (OJo) + t* (OJo -O)t(OJo)] 
2 

Ho(O,z) =~~(OJo +O)t*(OJo)-t*(OJo -O)t(OJo)] 
2 

The PIR is phase-to-intensity (modulation index) ratio and is given by: 

PIR = mFM eitlcp 

im lM 

(12) 

(13) 

(14) 

For light produced by a semiconductor laser, the PIR is a function of the modulation 

frequency and is determined by several laser intrinsic parameters. 

Equations (11)-(13) indicate that the amount of FM-to-IM conversion is 

determined by the function H 0 (0, z) , which in turn depends on the amount of gain and 

group velocity dispersion. 

11.1.2 Small-signal systems description of an optical 

communications link. 

The small-signal approximation allows a simple description of the optical 

communication system in terms of transfer functions. Each component in the system can 

be replaced by a "black-box" (see Figure 3) with a particular transfer function and the 



Chapter II: Dispersive propagation of lightwave signals 15 

total system response is obtained by cascading the different ''black-boxes,'' i.e., 

multiplying the corresponding transfer functions. This representation is valid to study 

both the modulation response when the light is driven by information signals and the 

noise performance for random noise signals. 

The transmitter response in the absence of a dispersive channel is characterized 

by its intensity modulation (1M) response function, HIM(Q). This transfer function 

relates the change in optical power to the small-signal change in the driving source. The 

driving source can be an injection of electrons from a current generator, the electric field 

induced by a voltage generator in an electrooptic material, a flux of optically injected 

photons, or random generation of electrons of photons due to a Langevin noise source. 

The frequency dependence of HIM(Q) depends on the type of transmitter and driving 

source. 

/ Optical Channel "\ 

Drive Optical l~"·1t.(OJ) JJ Receiver 
Electronics Transmitter • Photodiode Electronics 

Iin(n) 
~ H 1X(Q) ~ ~ H/~Q) 1 .I H(Q,z) I "! R(Q) ~ .( HRx(Q) : 

Iouln ) 

• , 
[ PIR(Q) l 

"- ./ 

Figure 3: Transfer function description of an optical communications system. 

The baseband transfer function for the optical channel is given by (11). It is worth 

noting that this response function does not only depend on the transmission coefficient 

of the channel but also on the PIR of the transmitter. In addition, when several optical 

components are cascaded, the baseband transfer function is not the multiplication of all 

the corresponding baseband transfer functions. Instead, it is the total transmission 

coefficient that can be found by cascading the different components, and the resulting 

transfer function is calculated from (11). 
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Finally, the photo diode responsivity function, R(n), relates the photocurrent 

and the optical power incident in the photodetector. In addition, the driving and 

receiving electronics might affect the total system response with transfer functions 

H Tx (n) and H Rx (n), respectively. 

The total baseband transfer function is given by: 

(15) 

If the transmitter is modulated with a smail-signal current, I i" (0.), then the received 

current IolI/(n,z) is given by: 

(16) 

11.1.3 Small-signal propagation in optical fiber. 

A case of special interest is propagation in optical fiber. Due to the large 

bandwidth of the optical fiber at the wavelengths of interest, the fiber gain dispersion 

can be neglected for the modulation speeds that can be achieved by state-of-the-art 

transmitters. On the contrary, the group velocity dispersion of the fiber can be quite 

large. The fiber dispersion is due to the intrinsic material dispersion of the silica and to 

the waveguide dispersion of the fiber. At wavelengths near 1.3fJ.m, the so-called second 

transmission window, both forms of dispersion have the same magnitude but opposite 

sign, and the total group velocity dispersion is close to zero. Despite this advantage, 

communication systems are migrating to the third communications window at 

wavelengths near 1.55fJ.m due to the global minimum in the fiber attenuation at this 

wavelength, and to the development of the erbium-doped fiber amplifier (EDF A), for 

which there is no ready equivalent at 1.3fJ.m. However, at 1.55fJ.m, standard optical fiber 

exhibits large dispersion and its effect needs to be taken into account. 

Thus, the transmission coefficient of the optical fiber is well described by a phase 

filter and a wavelength independent attenuation as follows: 
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(17) 

where a f is the fiber power attenuation coefficient, {3( OJ) is the propagation constant, 

and z is the fiber length. Near the laser optical frequency ~, {3( OJ) can be Taylor series 

expanded as: 

For most cases of interest, this series can be truncated after three terms. The three 

coefficients, f3(OJo), f31 = f3'(OJo) and f32 = f3"(OJo) will determine the phase velocity, 

the group velocity and the first order group velocity dispersion, respectively. When {32 is 

close to zero, the next term, f33 = f3m(OJo) , corresponding to second order group velocity 

dispersion, can become important. 

Due to group velocity dispersion, linear propagation in a dispersive optical fiber 

produces a phase change of the sidebands relative to the optical carrier, which results in 

partial conversion of PM into 1M, which is then photodetected at the fiber output. 

Substitution of (17)-(18) into (11)-(13) yields the fiber baseband transfer function: 

r . ]e-a z+icp 
H(D.,z) ~ Leose - 2sme PIR(D.) J 

If only first-order group velocity dispersion is included, then 

e(D.,z) = _l f32D.2
Z 

2 

cp(D.,z) = -f31lli 

When higher-order group velocity dispersion cannot be neglected, 

e 1 2 1 4 
(D.,z) = -2 f32D. z - 24 f34D. z - ... 

(19) 

(20) 

(21) 

(22) 

(23) 
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1I.l.4 Measurement of the base band transfer function 

of an optical channel. 

ILIA.A Using a network analyzer. 

A network analyzer (NA) allows easy determination of the phase and magnitude 

of the system response to a deterministic sinusoidal tone. The experimental set-up is 

shown in Figure 4. The laser light is directly or externally modulated and coupled to the 

optical channel. The received signal is detected with a PIN photodetector. Measurements 

of the 521 parameter at the laser output and after propagation in the channel yield 

H rCO,z = 0) and HrCO,z), respectively. From (IS), HCO,z) is obtained as: 

HCO,z) = HrCO,z) 
H rCO,z = 0) 

Figure 4: Experimental setup for measuring the system response with a 

network analyzer. 

(24) 

The value of the DC photocurrent, I DC C z) = I C ° = 0, z), can also be measured with a 

current meter, and the system DC attenuation, LDC ' can be determined as: 

(25) 



Chapter II: Dispersive propagation of lightwave signals 19 

II.1.4.B Using an electrical spectrum analyzer. 

For noise signals, or when additional spectral information, such as harmonic 

distortion, is needed, an electrical spectrum analyzer (ESA) can be used. In this case, 

however, the phase information is lost. The experimental set-up is shown in Figure 5. 

In some cases, it is necessary to determine the spectrum of the receiver power 

without the effect of photodiode responsivity and receiver electronics. In the following, 

a method is presented that allows determination of the combined effect of the 

photodiode responsivity and receiver electronics on the received power spectrum, 

which can then be subtracted to obtain an accurate spectral response of the optical 

system. 

Figure 5: Experimental setup for measuring the system response with an 

electric spectrum analyzer. 

The light produced by an unmodulated semiconductor laser is photodetected 

and the noise spectrum, PN (0.), is measured. PN (0.) can be expressed as a quadratic 

function of the DC photocurrent, J DC , as follows: 

PN (0.) = a(o.) + b(o.)J DC + c(o.)J~c (26) 

The term independent of the DC photocurrent is mainly due to thermal noise 

from the amplifier and is given by: 

a(o.) = IH Rx (0.)1
2 
FN (o.)N'h (27) 
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where Nth is the input thermal noise power, F N is the amplifier noise figure and 

H Rx (n) is the transfer function of the receiver electronics. 

The shot noise power, which originates from the random creation of electrons in 

the photodiode, varies linearly with the DC photocWTent. The coefficient b(n), for 

single-sided noise power computation, is given by: 

2 

b(O) = IH (0)12 R(O) 2e/),,/ 
Rx R(O) 

(28) 

where /),,/ is the electrical bandwidth. 

The last term is the excess intensity noise, which comes from fluctuations in the 

received optical power, M , and is given by: 

c(O) = IH (0)12 R(n) 2 (IMI2) /),,/ 
Rx R(O) ~2 

(29) 

where Po is the average received optical power. 

The relative weight of the different noise contributions can be controlled by adjusting 

the received optical power, that is ! DC ' with an optical attenuator. Thus, the thermal 

noise contribution, a(n), can be measured by blocking the light, i.e., 

a(n) = PN(O)l/oc=O' The coefficients b(O) and c(O) are functions of frequency and can 

be found at each frequency n by measuring PN (n) for several values of ! DC and fitting 

it to a parabola as in (26). 

The relative excess intensity noise (RIN) is defined as the spectral density of the 

excess noise power divided by the average received power. Once a(O) and ben) are 

known at each frequency for a particular combination of photodiode and receiver, the 

RIN for any noise power measurement, PN, is computed as: 

RIN(n) == (!M!2) = 2e PN (n) - a(n) - ben)! DC 

P02 b(n)!~c 
(30) 
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The small-signal RlN after propagation through an optical channel with 

baseband transfer function H (n, z) and DC attenuation L DC (z) is given by: 

R1N(n,z) = L~c(z)IH(n,z)12 RlN(n,z = 0) 

11.2 LARGE-SIGNAL THEORY OF PROPAGATION OF 

DIRECTLY-MODULATED LIGHT IN DISPERSIVE FIBER 

(31) 

Semiconductor lasers have the very useful property that they can be modulated 

at high speed by varying the drive current. Changes in the number of injected electrons 

are followed by changes in the gain, and thus in the number of photons that are being 

generated. In addition, there is a fundamental relationship between the gain and the 

refractive index of a semiconductor medium. As a consequence, variations in the drive 

current not only modulate the light intensity, but also the optical path length and thus 

the optical frequency. This frequency modulation that always accompanies the intensity 

modulation is referred to as laser chirp, and has major consequences in the laser 

intensity modulation response after propagation in dispersive fiber. 

The technologically important problem of the effect of dispersive fiber 

propagation on the intensity modulation response of semiconductor lasers was treated 

in the past by assuming either small-signal modulation [7]-[8], in a similar way to the 

description presented in section 11.1.3, or low dispersion [9]. The small-signal theory is a 

reasonable approximation for transmitters with no chirp, but it can fail to describe 

semiconductor laser light, which usually exhibits large frequency modulation even for 

relatively small intensity modulation. In this section, the analysis in section 11.1.3 is 

extended to include large-signal and arbitrary dispersion, which more closely 

approximates conditions in IM/DD systems, for the case of direct-modulation of the 

laser light. 

For certain values of the laser chirp and the fiber length, the small-signal theory 

developed in the previous section predicts an enhancement of the laser intensity 
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modulation response up to a cut-off frequency [7] due to conversion of part of the FM 

into IM. This high-pass characteristic is the basis of operation for a new type of 

transmission system known as dispersion supported transmission (DST) [7]. In this 

section, it is shown that the highpass behavior of the fiber transfer function that is 

predicted by the small-signal theory is degraded as the amplitude of the modulation 

signal is increased, which could affect the performance of DST systems. 

11.2.1 Theory 

II.2.I.A I-tone large-signal direct modulation. 

First, direct modulation of the laser by a single sinusoidal tone at a frequency 

Qj (2n) is considered. Semiconductor lasers are nonlinear devices, and the intensity 

modulation and frequency modulation responses contain harmonics of the modulation 

frequency. However, to a first approximation it can be assumed that the intensity and 

frequency of the light vary linearly with modulation (the general case is considered 

below). The complex electric field amplitude, E, at the laser output can be expressed as 

in (1). 

In the analysis presented here it is assumed that the IM can be linearized as in 

section II.1.3, but the exact form of the FM is maintained. Thus, the IM is approximated 

by an amplitude modulation (AM) as follows: 

(32) 

where, as a first approximation, mo ~ I and the AM index m AM ~ m 1M /2 (see Appendix 

11.1 for a more accurate expression for mo and mAM ). By using (32) and expanding the 

FM as a series of Bessel functions [13], the electric field amplitude can be written as: 

- 1/ 2 ( mlM ) im sin(Ot+rn ) E(t,z=O)~Po 1+-2-cos(Qt+({JIM) e FM 't'FM 

_ n l / 2 ~ ( _ 0) in(Ot+cp 1M) 
-"0 L.JCn z- e 

(33) 

n=-«> 
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( _ 0) - inD.<p [J ( ) m 1M fJ ( ) iD.<p J ( ) -iD.<P)U 
Cn Z - - e n mFM +-4- ~ n+l mFM e + n-l mFM e J (34) 

where /lcp = cP FM - cP 1M . 

In propagation through the fiber the different harmonics acquire different phase 

changes due to dispersion according to (17). In order to simplify notation, the effect of 

the fiber attenuation, a f' and the group delay, r g= f31z, will be omitted in the following 

derivation. They contribute to a frequency-independent power loss and a linear phase 

delay, respectively. Thus, the amplitude of the nth harmonic at z can be expressed as: 

in 2e (z) 
c,,(z)=e c,,(O) (35) 

where O(z) is given in (20). 

The detected photocurrent, I (t,z), is obtained by squaring the electric field 

magnitude, 

l(t,z) = IE(t,zf = IJ(nn,z)ein(0.t+<PIM) , (36) 
11 = -0::> 

and the photocurrent at the nth harmonic J (nn, z) , is given by 

J(nn,z) = R(nn)Po~>n+k(z)c;(z) 
k 

(37) 

where R(nn) is the photodiode responsivity at frequency nn. 

In previous analyses, J(nQ,z) was calculated either numerically [14] or by using 

the small-signal approximation. Here, we have applied a summation theorem of the 

Bessel functions [13] to derive the exact J(nQ,z) for an electric field with AM and PM as 

in equation (33), and is given by: 

J(nQ,z) = R(nQ)Po i"einD.<P[J,,(U)_i
m

; cosnOV,,_I(u)e-iD.<P -J,,+I(U)eiD.<p)] (38) 

where u = 2mFM sinnO. 
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The fiber modulation -transfer function relates the photodetected current at the 

modulation frequency after and before propagation in dispersive fiber. From (38), we 

obtain: 

(39) 

where u = 2mFM sine, which simplifies in the smali-signallimit to (19). 

Equation (19) indicates that the small-signal fiber transfer function only depends 

on known fiber properties, namely Ih and fiber length, and the laser PIR, which is a laser 

intrinsic property. In the next chapter, it will be shown how the PIR can be determined 

by measuring the small-signal fiber transfer function for several lengths of fiber [11]. In 

addition, from equations (38) (or (56) in Appendix ILl) and (39) we observe that the 

large-signal response of the laser after propagation in fiber is also fully characterized by 

the laser PIR and the laser intensity modulation index, miM • 

I1.2.1.B N-tone large-signal direct modulation. 

The analysis presented in the previous section can be extended to the case of an 

input signal consisting of an arbitrary number N of tones at angular frequencies Ok 

(which is also the case when the laser nonlinear dynamics cannot be neglected and 

harmonics of the laser 1M and FM response need to be included). The complex electric 

field envelope can be expressed as: 

(40) 

By using the same type of analysis as above, we obtain that the detected signal 

after propagation in dispersive fiber is given by: 

N 

I(t,z) = 
00 N i'i,nk(nkt+({JIM) 

L I(LnkQk,z)e k=l k (41) 
" 1,1l2, . .. , IIN=~ k=l 
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N 

The photodetected intensity for the intermodulation product (IMP) nlMP == Z>knk is 
k;l 

given by: 

(42) 

where 

(43) 

(44) 

The total intermodulation distortion at a particular frequency is equal to the sum 

of all the IMP's in (41) that fall onto that frequency. 

In Appendix 11.2 the theory here developed is applied to the case of a typical 

CATV transmission system. 

11.2.2 Simulation 

In this section the validity of the approximation in (32), i.e., linearization of the 

laser IM, is verified by comparison with the exact analysis. The laser PIR is assumed to 

be that of the MQW-DFB laser tested below (~-4). Figure 6 shows the modulation 

transfer function after 85 km of standard fiber for several intensity modulation indices. It 

is observed that the large-signal fiber transfer function deviates significantly from the 

small-signal model for intensity modulation indices greater than 0.2. On the contrary, 

equation (56) remains accurate even for intensity modulation indices close to unity. The 

major discrepancy occurs at the dips of the transfer function, where the received 

intensity is very small and the effect of the small IM harmonics becomes more 

important. 

Comparison of (39) and (19) (as can also be observed in Figure 6) indicates that 

the maximum of the fiber transfer function for any given laser parameters occurs at the 
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smallest intensity modulation. Thus, the enhancement of modulation response due to 

propagation that is attained in the small-signal regime is suppressed as m 1M is 

increased. This could pose severe limitations to systems such as dispersion supported 

transmission [7] that rely on the improvement in the modulation response to combat 

dispersion. 
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Figure 6: Numerical simulations of fiber modulation transfer function after 

propagation in 85 km of fiber for different modulation indices. Dashed 

11.2.3 

from Eq. (39), dotted from Eq. (56) and solid is exact. Curve for m lM =0.1 

nearly coincides with small-signal approximation Eq. (19). 

Experiment 

The predictions of this large-signal theory have been compared to the measured 

photocurrent of light from a directly-modulated MQW-DFB laser at 1.551lm after 

propagation in several lengths of standard fiber. The experimental set-up is shown in 

Figure 1. Measurements were performed for single-tone modulation using a network 
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analyzer (NA) as signal generator, and for two-tone modulation using the combined 

signal from the NA and a signal generator (SG). The modulation response was measured 

with the NA and the intermodulation distortion with the electric spectrum analyzer 

(ESA). The electrical signal, Iill (0.), was amplified and combined with the laser bias 

current, I bias' to directly modulate the laser. The laser light was coupled to an optical 

fiber, attenuated to avoid the effect of fiber nonllnearities (see Chapter IV), and 

propagated through fiber. The detected photocurrent was amplified and measured with 

the NA or ESA. 

The FIR was determined using a measurement based on small-signal fiber 

propagation and equation (19), that will be fully described in the next chapter. The 

intensity modulation index, m 1M' was determined by measuring the modulation 

response before propagation in fiber and subtracting the receiver (photo diode + 

amplifier + network analyzer) response. 

Figure 7a shows the measured intensity modulation index, m lM , as a function of 

modulation frequency at the laser output for several modulation powers. The frequency 

dependence of m lM is due to the combined effect of the driving electronics, H Tx (0.), 

and the laser dynamics, HIM (0.). This m lM together with the FIR were used to predict 

the large-signal fiber transfer function, H(n,z), for 85km of fiber. This is plotted in 

Figure 7b (solid) together with the experimental data points. As m lM increases, the 

highpass behavior that is attained with small-signal modulation (circles) is degraded. At 

very large m 1M' equation (39) does not perfectly agree with the experiment due to the 

presence of 1M harmonics (and consequently FM harmonics) at the laser output that 

were neglected in (39), and not to the approximation in (32). This was verified by 

estimating the effect of these higher order terms in the modulation response (a complete 

determination of the modulation response including these terms was not possible 

because the relative phase between the 1M harmonics was not known). 
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Figure 7: (a) Intensity modulation index measured at the laser output for 

several modulation powers. (b) Fiber modulation transfer function after 

propagation in 85 km of fiber for the same modulation powers as in 

Figure 7a. Solid curve is theory. 
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Figure 8: Experimentally detected power in signal (circles), second harmonic 

(crosses) and third harmonic (squares) normalized by the power in the 

optical carrier, (a) at the laser output, (b) after propagation in 85 km of 

fiber. Solid curve is theory. 
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Figure 9: Experimentally detected normalized power in dBc for 2-tone 

modulation at the laser output at 01 (open triangles) and 02=0.901 (open 

circles) and after propagation in 50km of fiber at 01 (solid triangles), 02 

(solid triangles) and 01-02 (solid squares). Solid curve is theory. 
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The harmonic distortion was also measured after propagation in fiber. Figure 8a 

shows the power in the modulation frequency, .0, and in higher-order harmonics of .0 

normalized by the power in the optical carrier (denoted in log scale by dBc) at the laser 

output (z = 0). The harmonic distortion at the laser output comes from the poor spectral 

purity of the signal generator, and also to a smaller degree from the nonlinearity of the 

laser dynamics. The measured power in the modulation tone at .0 (higher order IM 

harmonics were not included in the analysis) together with the PIR were used to predict 

harmonic distortion after propagation in 85km of fiber. This theory is shown in Figure 

8b (solid curve), and agrees well with the experiment. Thus, it can be concluded that in 

this case the main source of harmonic distortion after propagation comes from beating of 

the PM sidebands and is well described by (56). It is also observed in Figure 8b that the 
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power in the harmonics exhibits the same characteristics as that in the modulation tone, 

namely peaks and dips that repeat more rapidly as 0 increases and as the order of the 

harmonic increases. 

The intermodulation distortion was measured by modulating the laser with two 

tones at angular frequencies 01 and OFO.9!k Figure 9 shows the detected signal before 

and after propagation in fiber (in dBc) at the modulation tone frequencies and in the 

IMP 02-01, which agrees with the theoretical prediction (solid curve). 

11.3 LARGE-SIGNAL THEORY OF PROPAGATION OF 

EXTERNALLY-MODULATED LIGHT IN DISPERSIVE FIBER 

Chirp-free external modulators have been proposed as a solution to the problem 

of signal distortion that arises from chirped signals propagating in dispersive fiber, such 

as the light produced by a directly-modulated laser. Among the different types of 

external modulators, electrooptic Mach-Zehnder modulators (EO-MZM) show 

particularly good performance. However, the modulation response of an ideal EO-MZM 

(even with no chirp) is highly nonlinear, and will exhibit large harmonic distortion, in 

fact larger than that that would be obtained with a directly-modulated laser with no 

chirp. In linear propagation through the fiber the different harmonics acquire different 

phase changes due to group velocity dispersion, and severe signal distortion can occur. 

In this section, the large-signal theory of propagation of externally-modulated 

light in dispersive fiber is derived. The intensity modulation response after fiber 

propagation is shown to be similar to that of a directly-modulated laser, with dips that 

repeat more frequently as 0 increases. However, since the modulator is chirp-free, there 

is never an enhancement of the modulation response, as opposed to the case of a directly 

modulated semiconductor laser. 
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11.3.1 Theory 

II.3.I.A I-tone large-signal external modulation. 

The complex electric field amplitude, E, at the output of EO-MZM can be 

expressed in the form: 

E(t, z ~ 0) ~ Po''' co{ ~ v~:) J (45) 

where Po is the input optical power, Vet) is the voltage applied to the modulator, and 

V'" is the half-wave voltage of the EO-MZM. 

If a sinusoidal tone is applied to the modulator such as 

Vet) = Vo + vsin(nt + cp) 
V", 

(46) 

where Vo is the normalized DC bias, Vo = Vo/V", , and v is the normalized amplitude of 

the modulation tone, then the electric field spectrum will consist of sidebands at 

harmonics of the modulation frequency centered around the laser optical frequency as 

follows: 

E(t,z = 0) = P
O
l / 2 fell (z = O)ein(OHcp) (47) 

11=-«> 

where 

(48) 

In linear propagation through the fiber, the different harmonics acquire different phase 

changes according to (35). 

The detected photocurrent, I (t, z) , is given by: 

l(t,z) = IE(t,z)1
2 

= fI(nn,z)ein(OHCP) (49) 
11 =-«> 
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From (36)-(37) and using the summation theorem of the Bessel functions [13], J(nO,z) 

Can be found as 

J(nO,z) =!R(nO)Pa[{ 0 12}Jn (7rVSinnO)+ 
2 (-lr 

{
n odd 

for 
n even 

(50) 

If the EO-MZM is biased at quadrature, i.e., va = ± 1/2, there is no even harmonic 

distortion at the output of the modulator. However, propagation in fiber produces a 

phase change of the sidebands relative to the optical carrier, which results in significant 

second harmonic distortion when the sidebands beat upon photodetection. Equation 

(50) indicates that for any v the maximum second harmonic distortion in a frequency 

range such that 0 ~ 7r / 4 is larger than the maximum third harmonic distortion. 

II.3.1.B N-tone large-signal external modulation. 

A similar analysis Can be used for input signals consisting of an arbitrary number 

N of tones, 

(51) 

Following a similar derivation to that in the previous sections, it is found that the 

N 

photodetected intensity for the intermodulation product (IMP) 0IMP == LnkOk is given 
k=l 

by: 

J(OIMD'Z) = !R(OIMD)Pa[{ fnkj2}n J k(7rVk sin Ok )+ 
2 (-1)k=1 k=l 

(52) 

where Ok is given in (44). 
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11.3.2 Experiment 

The general scheme for external modulation is shown in Figure 2. The DC bias, 

Vo, is controlled by using a programmable voltage source. 

In the expression for the transfer function of an EO-MZM in (45), it was assumed 

that the modulator has infinite bandwidth, i.e., its response does not depend on the 

frequency of the input signal. In practice, the bandwidth of an EO-MZM is limited 

mainly by the group-velocity mismatch between electrical and optical signals. It can be 

shown that the frequency response of the modulator can be included in the analysis by 

letting the half-wave voltage be a function of the modulation frequency, V" = V" (0). In 

the next subsection a method is presented to determine the normalized amplitude of the 

modulation tone including the effect of the frequency dependence of V" ' V= ~~~)' This 

is then used to compare the large-signal theory introduced in section 11.2.1 with 

experimental measurements of modulation response and intermodulation distortion. 

II.3.2.A Determination of the frequency dependence of the half

wave voltage. 

From equation (50) it can be deduced that when the DC voltage is set such that 

Vo = ±l or Vo = 0, the detected signal at the modulation frequency vanishes. In 

addition, in the absence of fiber, the DC photocurrent reaches minimum and maximum 

values, respectively. These are given by: 

Va = ±l, 

For (53) 

Vo =0, 
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The ratio I DCmin { only depends on the normalized amplitude of the /IDCmax 

modulation tone, V= V(O) . From the value of this ratio for several values of V(O), i.e., of 
~(O) 

the modulation power, the value of ~(O) at a particular modulation frequency nj21t 

can be fitted. 

In practice, it is the RF power that is measured. Then, the half-wave power, 

P
TC 
(0), is the RF power necessary to obtain a voltage equal to ~(n). The experimental 

set-up used for determination of P
TC 
(0) is shown in Figure 10. A sinusoidal voltage 

from a signal generator (SG) and a DC voltage from a programmable voltage source 

were applied to the EO-MZM. The detected DC photocurrent and signal at the 

modulation frequency were measured. The instruments were controlled by means of a 

Pc. At each modulation frequency, the value of the DC photocurrent was measured for 

applied DC voltages such that Vo = I and Vo = O. The DC voltage was precisely adjusted 

by suppressing the signal at the modulation frequency. 

Laser External 
modulator 

Photodiode 

Figure 10: Experimental set-up for measuring the frequency dependence of the 

half-wave voltage for an EO-MZM. SG=signal generator, ESA=electrical 

spectrum analyzer, A=ampmeter, PC=personal computer. 
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Figure 11 shows the measured P" (0) as a function of the modulation frequency. 

P" (0) increases as the modulation frequency increases, which indicates the typical low

pass filter behavior of EO-MZM's. 
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Figure 11: Measured half-wave power of EO-MZM as a function of the 

modulation frequency. 

II.3.2.B Measurement of the modulation response and harmonic 

distortion. 

The modulation response and harmonic distortion was measured for single-tone 

external modulation of the light produced by an MQW-DFB semiconductor laser at 1.55 

~m after propagation in dispersive fiber. In practice, the DC voltage of an EO-MZM 

exhibits a drift, and as a consequence, has to be adjusted constantly by means of a 

control loop. The experimental set-up is shown in Figure 12. The DC operating point 

was adjusted at quadrature for each modulation frequency by suppressing the second 

harmonic distortion at the modulator output. Then, an electrically controlled optical 
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switch was activated to measure the received power in the signal and harmonics after 

propagation in fiber. 

Laser 

rr=====;=====1 PC ..-----------, 

External 
modulator 

50:50 
coupler 

Photodiode 

Figure 12: Experimental set-up for measuring the modulation response and 

harmonic distortion for externally-modulated light after propagation in 

fiber. 

Figure 13 shows the received power at the modulation frequency normalized by 

the power in the optical carrier (in dBc) at the modulator output (empty circles) and 

after propagation in 105km of standard fiber (solid circles), the normalized power in the 

second harmonic after fiber (solid triangles) and the normalized power in the third 

harmonic at the modulator output (empty squares). The intensity modulation response 

after fiber propagation shows dips and peaks that repeat more frequently as n increases. 

However, since the modulator is chirp-free, the modulation response is never greater 

than that at the modulator output. It is also observed that even though the even 

harmonic distortion vanishes at the modulator output, it can reach significant 

magnitude after propagation in dispersive fiber. This is due to the fact that the 

modulation sidebands of the electrical field out of an EO-MZM are very large, also for 

even harmonics. At the modulator output those contributing to even harmonic 

distortion add out of phase and cancel. However, in linear propagation through the fiber 

the different modulation sidebands acquire different phase changes due to group 

velocity dispersion. For sufficiently high modulation frequency or long distance, the 
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sidebands contributing to even harmonic distortion can add in phase giving rise to large 

harmonic distortion. 

o 
In 
u 

-70 

4 6 8 10 
Modulation Frequency Q/21t 

12 
(GHz) 

14 

Figure 13: Experimentally detected power normalized by the power in the 

optical carrier at the modulator output in signal (empty circles) and third 

harmonic (empty squares), and after propagation in 105 km of fiber at 

signal (solid circles) and second harmonic (solid triangles). Solid curve 

is theory. 
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Appendix 11.1 A MORE ACCURATE AND AN EXACT LARGE

SIGNAL THEORY FOR DIRECT LASER MODULATION 

In (33) the AM index was approximated by m lM /2. We can instead expand the 

IM, i.e., the left-hand side of (32), as a Fourier series, 

(1 + m lM cosCOt + q> 1M )y l2 ~ Lmleil(D.t+({)IM) 
I 

where the Fourier coefficients, ml , are given by [13], 

m =C_l)/+lf(4n+2/-3)!(2n+/lmIM )211+1 
I 11=0 (4n + 2/)! n 2 

(54) 

(55) 

By keeping only the AM sideband at the modulation frequency, i.e., by using the 

approximation (32) with m AM = 2m1, the detected photocurrent at frequency nO is 

given by: 

l(nO,z) = R(nO)Po i"einI:J.rp [m;J
II 
(u) + 2imoml cosne(Jn+1 

(u)eiI:J.rp - I n-1 
(u)e-iI:J.rp )+ 

+4m~(2Jn(u)cos2ne -In_2(u)e-i2I:J.rp -I
n

+2 (u)e i2 I:J.rp)] ,n ~ 1 
(56) 

In section n.2.2 it is shown that the above expression is very accurate even for intensity 

modulation indices close to unity. 

If all the harmonic sidebands of the IM in (54) are taken into account, then: 

00 

l(nO z) = R(nO)P, "in+I-1' m m ei(n+I -I')I:J.rp ein (}(I+1') J (u) 
, 0 L..J I I' n+I-1' (57) 

1,1'=-«> 

Equation (57) is exact for an electric field with IM and FM. The double infinite sum in 

(57) converges fast and only a few terms are needed. This is simpler than previous 

formulations [14] that involved four infinite sums. 
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Appendix II.2 INTERMODULATION DISTORTION IN CATV 

SYSTEMS WITH DIRECT LASER MODULATION 

As an example of the theory developed in section 11.2, transmission of N NTSC 

channels of CATV is considered. At the typical CATV frequencies, the laser chirp is 

mostly adiabatic, and can be approximated by: 

a 1C0 PIR:::---
2io. 

For moderate propagation distances, 

(58) 

(59) 

Thus, the value of the IMP's depends only on the frequency of the intermodulation 

product, 0. IMP' but not on the frequency of the beating tones. 

In CATV systems, small intensity modulation indices are usually employed in 

order to avoid clipping of the signaL By substituting (59) into (42), and using a power 

series expansion of the Bessel functions, we obtain: 

(60) 

1 N 
where c; = -aIC0f32z and n = Llnkl is the order of the IMP. 

4 k=1 

Assuming that all channels have the same intensity modulation index, 

m 1M = m 1M ' the nth..order intermodulation distortion (IMDn) normalized by the power in 
k 

the RF carrier is approximately given by: 

IMD (0. z) ~ An (0.) (m io.;:)n-I 
n' (n _ I)! 1M ':> 

(61) 

where 
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(62) 

From (62) it becomes evident that by proper management of the carrier phases it 

should be possible to affect the intermodulation distortion spectrum. 

For uncorrelated carriers the total intermodulation distortion IMD is: 

2 

IMD(O z) ~"N (0) (mIMO~t-l 
, ~ n (n -I)! 

(63) 

where Nn(O) = (IAJ) is the number of beats for that order. 
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Chapter III .. 

Dynamics of semiconductor 

lasers and effect of dispersive 

propagation 

~ good understanding of the different factors affecting the laser dynamics is 

o-t critical to the laser design and also to the assessment of its performance in a 

communications system. In the previous chapter, theoretical models were presented that 

describe the effect of dispersive propagation on semiconductor laser light. In this 

chapter, these models are applied to the characterization of the laser dynamics and also 

to the development of new techniques to improve the laser transmission properties. 

First, in section III.l the concepts that were presented in the previous chapter 

about small-signal propagation in dispersive fiber are applied to the precise 

measurement of the laser chirp. Using this method, the laser chirp of several distributed

feedback multi-quantum-well (DFB-MQW) lasers is measured and it is found that the 

simple rate equations model that is commonly employed fails to accurately describe the 

measured laser chirp. 

A number of possible mechanisms have been proposed to explain the damping 

that limits the modulation bandwidth of DFB-MQW lasers. These include spectral hole 

burning, carrier heating, quantum capture, carrier diffusion and spatial hole burning. In 
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section ID.2, the effect of these different damping mechanisms on the laser chirp is 

evaluated. It is shown that the measured laser chirp can be well described by a simple 

model that includes the effect of carrier transport and quantum carrier capture into the 

quantum wells (QW's). 

The performance of a lightwave communication system is often affected by the 

laser noise, which can be a critical factor in determining the system signal-to-noise ratio. 

When the link includes propagation in dispersive optical fiber, it is important to 

determine the laser intensity noise at the fiber output, which can be different from the 

intensity noise at the laser output due to frequency modulation to intensity modulation 

conversion. A single-mode theory of noise after propagation in dispersive fiber had been 

previously derived. However, in section III.3 it is shown that this theory might not 

accurately predict the detected noise, and that is necessary to include the existance of the 

many weak side modes that always accompany the main mode of nearly-single-mode 

DFB lasers. 

The effect that dispersion has on the laser intensity modulation response and 

intensity noise can be used to improve the laser transmission characteristics. In section 

ID.4 it is shown that a properly designed fiber grating can produce major reduction of 

the laser intensity noise and at the same time shape the modulation response in an 

almost arbitrary way. 
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111.1 PRECISE MEASUREMENT OF SEMICONDUCTOR LASER 

CHIRP USING THE EFFECT OF PROPAGATION IN 

DISPERSIVE FIBER 

111.1.1 Introduction 

The performance of high-speed lightwave systems using 1.55 11m semiconductor 

lasers with direct modulation is significantly affected by the laser chirp. Semiconductor 

laser chirp is commonly characterized by two parameters, the linewidth enhancement 

factor and the cross-over frequency between the adiabatic and transient regimes of 

chirp, which follow from a rate equation analysis of the laser. Recently, it has been 

demonstrated that the frequency modulation to intensity modulation (FM-to-IM) 

conversion effect due to propagation in dispersive optical fiber can be used conveniently 

to measure the linewidth enhancement factor and cross-over frequency of the laser [1]

[5]. In careful examination of data obtained with this technique, however, it is found that 

although a good fit to theory may be obtained when fitting results for a single length of 

fiber, for some lasers a large variation of the parameters occurs for results obtained with 

different lengths of fiber. This variation for different fibers is attributed to the more 

detailed dependence of laser chirp on modulation frequency. 

In this section a new measurement technique is demonstrated that conveniently 

determines the precise characteristics of the laser chirp using the effect of propagation in 

optical fiber. Implications for simulation of high-speed lightwave systems are also 

considered. 

111.1.2 Theory 

A direct method for determining the laser chirp is to observe the sidebands of the 

optical field spectrum using an interferometer (see Appendix III.1). A more convenient 
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method, however, is to introduce some optical filtering to convert part of the frequency 

modulation (PM) to intensity modulation (IM) so that it can be photodetected. 

Propagation through dispersive optical fiber can be used to produce this filtering [1]-[5] . 

In the previous chapter, the fiber small-signal baseband transfer function was 

derived. In order to simplify the notation, the fiber attenuation can be omitted. Then, the 

small-signal baseband transfer function after propagation in standard fiber can be 

expressed as: 

H(O,z) == (cosO -2sinO PIR(O)~icp 

where the dispersion angle is given by: 

I 2 
O(O,z) = -- f320 Z 

2 

and the propagation delay angle is: 

<p(O,z) = -f310z 

(1) 

(2) 

(3) 

H(O,z) in equation (1) depends only on known or measurable fiber parameters, 

namely the inverse of the group velocity, /31, the dispersion parameter, /32, and the fiber 

length, z, and on the laser PIR. Therefore, measurements of H(O,z) with a network 

analyzer as described in Chapter II can be used to determine the PIR. 

111.1.3 Description of methods 

III.1.3.A Previous method for measuring the laser chirp [1]-[5]. 

The first reports of using propagation in dispersive fiber to determine the laser 

PIR [4], [5] start from the assumption that the PIR in the small-signal regime takes the 

fonn [6]: 

PIR=_a(I+~) 
2 iO 

(4) 

This expression can be derived from the simple rate equation model of semiconductor 

lasers. Here, a is the linewidth enhancement factor and Ie is the cross-over frequency 
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between adiabatic and transient chirp regimes. 1<: is related to the gain compression 

parameter, s, the photon lifetime, r ph' and the optical power Po through the expression 

K = cPo/r ph' 

In [1]-[5] the PIR is extracted from measurements of IH(n,zf as a function of 

frequency for a certain length of fiber, z. Using (1)-(4), the parameters a and 1<:, together 

with f32 if it is unknown, are found by least squares fitting IH (n, z )1
2 

. However, it will be 

shown in section 111.1.4 that this procedure can yield very different values for 1<: and also 

to a lesser extent for a for different lengths of fiber, which indicates that the model is not 

entirely correct. 

IlL 1.3 .B Precise method for measuring the laser chirp [7] 

In the method described above, a specific expression for the PIR was used to fit 

for the unknowns. However, for a more detailed laser model [8]-[11] equation (4) is only 

approximately correct. In this section a different approach will be used that consists of 

letting the unknowns be the real and imaginary part of the PIR at each modulation 

frequency, and then use equation (1) to derive the precise frequency dependence of the 

laser PIR from measurements of H(n,z). 

If the value of the dispersion product f32z is known, measurements of IH(n, zf 
for two different lengths of fiber, Zl and Z2' result in two equations that can be solved 

for the PIR. Using (I), the real and imaginary parts of the PIR are given by: 

{ } 
IH(n,Z2)12sin281-IH(n,ZI)12sin282 +cos28 l sin282 -cos282sin281 Re PIR = (5a) 

4sin81 sin 82 (cos 81 sin82 - cos82 sin 81 ) 

Im{PIR}= ± [H(n,ZI)1 2 
- (cos81 - 2 Re{PIR }sin8!)2 r2 

!c2sin8!) (5b) 

where 8; = 8(n,z;). Equation (5b) indicates that the sign of the imaginary part of the 

PIR cannot be resolved by measurements of just the magnitude of H(n,z). 
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The sign of the imaginary part can be obtained by measuring the phase of 

HCD.,z). In fact, measurements of phase and magnitude of HCD.,z) and the group 

delay, f31 z , after a single length of fiber yield the PIR as: 

Re{PIR}= cose - Re{HCD.,z)e-iC{J } 
2sine 

Im{PIR}= _ 1m {g(D., z) e-iC{J } 
2sine 

(6a) 

(6b) 

However, it is not straightforward to determine the group delay, since it is strongly 

dependent on the optical frequency, which in turn varies with temperature and bias 

current. 

In practice, the choice of fiber lengths determines at which frequencies a good 

measurement for the PIR is obtained. As an example, IH(D.,zf is most sensitive to 

changes in the imaginary part of the PIR near frequencies such that, 

e(D.,z) ~ arctan( -1/ a) + mf (7) 

where n is an integer. Good accuracy for a wide range of modulation frequencies could 

be obtained by measuring HCD.,z) after several lengths of fiber. In addition, use of both 

phase and magnitude of H(O,z) improves determination of the PIR because the phase 

of H(O,z) is more sensitive to changes in the PIR at frequencies at which the 

magnitude is not so sensitive. 

The procedure proposed here to measure the precise frequency dependence of 

the PIR is as follows. First, the magnitude and phase of HCO,z) are measured after 

several lengths of fiber. Then, at each modulation frequency, 0, IH(O,zf is fitted as a 

function of fiber length for a fixed value of f32 to yield real and imaginary parts of the 

PIR(O). This PIR is substituted into (1) to find the theoretical phase of H(O,z) in the 

absence of propagation delay. The linear phase term added in propagation can be 

determined by performing a linear fit to the difference between this phase and the 

experimental phase in a certain frequency range where there is confidence that the 



Chapter ill: Dynamics of semiconductor lasers 51 

previously measured PIR is sufficiently accurate. Once the propagation delay has been 

found, both magnitude and phase of H(O,z) can be used to obtain a more precise 

measurement of the PIR. The dispersion parameter f32 can be measured independently or 

can be extracted from the same measurement by selecting the value that minimizes the 

quadratic error between theory and experiment. 

In the following, it will be assumed with no loss of generality that the PIR can be 

expressed as in (4) but with /C a complex function of the modulation frequency. The 

results will display the real and imaginary parts of /C as a function of n for a certain 

value of a, which in principle can be chosen arbitrarily. Here, a is chosen to be that 

obtained from measurements of relative intensity noise (RIN) after propagation in fiber. 

In section III.2 it will be shown that this is a convenient description for a more detailed 

laser chirp analysis. In addition, this model makes it possible to visualize the frequency 

dependence of the imaginary part of the PIR, which would otherwise be masked by the 

strong adiabatic term that varies as l/n, and also to compare the values for /C thus 

obtained with those of the simple model. 

111.1.4 Experiment 

The fiber baseband transfer function, H (0, z) , was measured for several lengths 

of fiber, and the methods presented above were used to determine the laser PIR. The 

laser used in the experiment was an MQW-DFB semicoductor laser at 1.55 Ilm. 

Figure 1 shows the phase and magnitude of H(O,z) after propagation in 2km 

(circles) and 50km (triangles) of fiber. The method outlined in section III.1.3.A was used 

to find the parameters a and /C for different fixed values of f32. Values of f32 from -19 to-

21 pS/km2 were used and the value of f32 and corresponding a and /C were selected that 

yielded the minimum quadratic error. This fitting procedure was not sensitive to the 

initial guesses for a and /c. Good fits for each of the experimental curves can be obtained 

(solid in Figure 1), but each fiber yields very different values for a and /c. These values, 

when used to describe propagation in the other fiber length, produce poor agreement 
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Figure 1: Experimental change in modulation response after 2.3km (circles) and 

50.5km (triangles) of fiber. The parameters 1<. and a are determined that 

best fit the change in modulation response after 2.3 km (solid), 50.5 km 

(dashed) and both lengths of fiber (dotted). Output power at laser facet 

is 14.3mW. 
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between theory and experiment (dashed). Values for a and /( were also found by 

minimization of the combined error for both fiber lengths, but no good fits were 

obtained (dotted). In particular, the values found were: 

Fitting of IH(O, zf for z=2km => a=-S.8 and 1(=24.6 ns-' 

Fitting of IH(O,z)1
2 

for z=SOkm => a=-4.9 and 1(=79.3 ns-1 

Fitting of IH(O,z)1
2 

for bothz=2km and SOkm => a=-S.8 and 1(=42.8 ns-1 

The discrepancy is due to the fact that the simple laser model used to derive (4) does not 

fully describe the laser PM response. The reason why good fits are obtained for single 

lengths of fiber is that the value of /( mainly determines the width and depth of the dips 

in IH(O,z)1
2 

that for small /( occur near frequencies such that (7) is satisfied. The fitting 

procedure tends to adjust the value of /( so as to obtain small error near these dips. Since 

the position in frequency of these dips depends on the fiber length, and /( can be 

considered to be a function of the modulation frequency, 0, the fitted value changes for 

different lengths of fiber. In our experiment, /( was mainly determined by the first dip, 

because higher order dips are narrower, and therefore contained fewer (evenly spaced) 

data points. Thus, an estimate for the value of /( at a particular modulation frequency 

can be obtained by choosing a length of fiber, z, such that IH(O,zf has its first dip at 

the desired frequency. 

The previous results will be now compared with the PIR obtained by using the 

method introduced in section IIL1.3.B. Several spools of fiber with lengths 2,4, 8 and 

2Skm were used in the experiment. Figure 2 shows the real (circles) and imaginary 

(triangles) parts of IC{O} for a=-S.S obtained from IH(O,zf for different combinations of 

fibers. The measurement is compared with the results using both phase and magnitude 

(solid and dashed, respectively). In Figure 2 (a) and (b), IC{O) was obtained from 

measurement of two fibers. The sets of fiber were selected to yield good results in the 

frequency range from 3.5 to 8GHz and 4 to 14GHz, respectively. It is observed that the 



Chapter III: Dynamics of semiconductor lasers 

o 
8.9 km & 34 .1 km 

-50L-------~------~--------L-----~ 
o 5 10 15 20 

(a) 
_100~~~~------~----~------J 

- & 
l:J. 00 

o 

o 

2.3 km & 25 .3 km 

E-50~------~--------~------~--------
- 0 5 10 15 20 

(b) 
100~~~~------~------~----~ 

o 000 

50 

o 
4 fibers from 2.3 km to 25 .3 km 

-50~------~------~------~------~ 
o 5 10 15 20 

(c) 
Modulation Frequency n/21t (GHz) 

Figure 2: Real (circles) and imaginary (triangles) part of K(n.) with a=-4.43 

obtained from IH(Q,z)1
2 

for different combinations of fiber. Solid and 

dashed are the result from using magnitude and phase of H(Q,z) . 

Output power at laser facet is 14.3mW. 

54 



Chapter III: Dynamics of semiconductor lasers 55 

measured 1C(Q) is noisier at low frequencies for the first set, and improves at higher 

frequencies with respect to the second set. Figure 2c shows the result when four fibers 

are employed. Above 14GHz the measurement is noisy because that is the limit set by 

the shortest fiber that was used. Thus, measurement of 1C(Q) at higher modulation 

frequencies would require shorter fibers. 
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Figure 3: Real (circles) and imaginary (triangles) part of JC(o.) at several laser 

output powers obtained from magnitude and phase of H(O,z). a takes 

the values -4.37,-4.39,-4.43,-4.58,-4.57 with increasing output power. 

Solid corresponds to the theory in section 111.2.2. 

Figure 3 shows the measured 1C(Q) for several optical powers using both phase 

and magnitude of H(O,z). The value of 1((.0) in Figure 2a was used in a frequency 

range from 1 to 7GHz to determine the propagation delay as described in section 

III.1.3.B, and then the PIR was extracted from magnitude and phase of H(O,z) after 

2km of fiber. The variance of the measured PIR for different fibers was very small. At 
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high frequencies, the real part of 1C{Q) becomes negative, which cannot be determined 

from measurements of only IH(O,z)1
2 

• 

It is worth noting that the simple model predicts that the real part of 1( is constant 

with modulation frequency, and that the imaginary part is zero or at most can vary 

linearly with Q. Figure 3 clearly indicates that at least for the laser tested, this is not a 

valid model. 

The measured 1C{Q) in Figure 3 was used in simulations of propagation through 

fibers of length 2, 11 and 50 km. Figure 4 shows agreement between the predicted 

magnitude and phase of H(O,z) (solid) and the experiment. The two longest fibers had 

not been used in the original determination of 1C{Q). 

In the simple rate equation model, the real part of 1( is usually assumed to be 

positive. In this case it can be shown that the phase of H(O,z) is increasing monotonic. 

However, as observed in Figure 3, the real part of 1( can in fact become negative at some 

frequencies, at which the phase of H(O,z) changes monotonicity. This can be observed 

in the experimental data in Figure 1 and Figure 4, which also indicate that the simple 

model fails to describe the phase of H(O,z) at the frequencies at which the real part of 1( 

becomes negative. 

111.1.5 Application: transmission through fiber 

gratings 

As an example of the implications of the frequency dependence of 1( in modeling 

lightwave systems, we consider transmission through fiber gratings. It is known that 

FM-to-IM conversion can be used to advantage to obtain an increase in modulation 

response [12] and/or decrease in laser relative intensity noise [13]. The baseband 

transfer function after transmission through the grating was derived in Chapter II. 

Given the transmission coefficient of the fiber grating and the laser chirp of the optical 

source, the separation between Bragg frequency and optical laser frequency that yields 

optimal performance can be determined. 
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The amplitude of the transmission coefficient of a fiber grating vs. optical 

wavelength was measured using a tunable laser source and an optical power meter. The 

phase of the transmission coefficient was determined using a Kramers-Kronig 

transformation as described in [12]. Using this transmission coefficient, t(co) , and the 

previously determined IC{O), the baseband transfer function, H(O,z) after transmission 

in the grating was predicted. Figure 5 shows H(O,z) predicted by using the previously 

determined complex IC{Q) (solid) and a constant a and 1( that best fit the change in 

modulation response after several fiber lengths (dashed) in comparison to the transfer 

function experimentally measured (circles). Better agreement between simulation and 

experiment is achieved when precisely measured IC{Q) is used to describe the PM of the 

optical transmitter. 
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Figure 5: Baseband transfer function after transmission through fiber grating 

predicted using the measured K(Q) in Figure 3 (solid) and constant a and 

1<: (dashed) compared to measurement (circles). 
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111.2 CHARACTERIZATION OF LASER CHIRP FOR MULTI

QUANTUM-WELL DISTRIBUTED-FEEDBACK LASERS 
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Important effects that are not considered explicitly in simple laser rate equation 

analyses of laser chirp include the longitudinal and transverse spatial variations of the 

optical intensity and/ or carrier density. Roughly speaking, these contribute to adiabatic 

chirp. Sophisticated, mostly numerical, analyses of the dynamic characteristics of multi

quantum well distributed-feedback (MQW-DFB) lasers considering spatial hole burning, 

carrier transport and carrier capture exist in the literature [8]-[11],[14]-[21], and it is 

possible to infer from these analyses that in a laser the adiabatic chirp is, in fact, not 

quite adiabatic. 

In this section, the main objective is to determine the influence of the intraband 

damping mechanisms such as spectral hole burning and carrier heating, the DFB 

structure and the carrier transport and capture into the QW's on the laser chirp. First, 

the effect of the spatial hole burning resulting from the DFB laser structure will be 

evaluated by using numerical simulations for the spatial distribution of carrier and 

photon density. Next, an approximate unidimentional analytical model of carrier 

transport and capture in a MQW laser will be presented. From comparison of these 

models with experimental data it will be concluded that the main reason for the 

discrepancy between the simple laser chirp model and the measured chirp is the effect of 

the MQW structure. 

The linewidth enhancement factor was determined from measurements of 

relative intensity noise, modulation response, and linewidth. By using the more detailed 

laser chirp model including carrier transport and capture, agreement was found among 

all data, which was not possible otherwise. In addition, the power dependence of the 

linewidth enhancement factor is shown to explain the saturation of the laser linewidth at 

high optical powers. 
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111.2.1 Analysis of the FM response of DFB lasers 

including longitudinal spatial hole burning. 

III.2.1.A Theory of operation of DFB lasers. 

Long-haul cormnunication systems usually require an optical source with good 

spectral purity. This is the main motivation for the use of distributed-feedback (DFB) 

lasers [22]. These lasers do not utilize the cavity mirrors, but provide the feedback via 

Bragg backscattering from periodic perturbations of the index and/or gain of the laser 

medium itself (Figure 6). Coupling between the waves going in the backward and 

forward direction only occurs for wavelengths satisfying the so-called Bragg condition, 

which results in enhanced mode selectivity. 

~R~AR .... 
J ~ r2 Laser light output 

z=o z=L 

Figure 6: DFB laser structure. 

From the wave equation it is possible to derive coupled-wave equations for the 

forward and backward propagating fields in a periodic structure. These are given by 

[9],[23]: 

+ aR± aR± 'A ~D± • ±R'" _v --+--=-10(0.1\. -IK 
g az at g 

(8) 

where R±(t,z) are the complex amplitudes of the forward (+) and backward (-) 

propagating waves, v g is the group velocity and K: are the coupling coefficients, which 

are related to the amplitude of the periodic perturbation and the overlap between the 

perturbation and the optical mode field. For a purely index-coupled laser diode, 

(9) 
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The complex angular frequency deviation, f!..ii5 , is given by: 

-if!..ii5 = r G -if!..m -i a N rGN(N -Nth) 
2 2 
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(10) 

where r is the confinement factor, G is the stimulated recombination rate, 110.) is the 

deviation of the optical frequency from the Bragg frequency, a N is the linewidth 

enhancement factor as defined by Henry [24]-[26], N(t,z) is the carrier density, 

G N = aG / aN is the differential gain, and Nth is the carrier density at threshold. 

The carrier density is also a function of time and position, and satisfies the 

following rate equation: 

aN I N 
-=----GP at eV 1"c 

(11) 

where I is the current injection, V is the laser volume, 1" c is the carrier lifetime, and P 

is the photon density. In addition, G is a function of N(t,z) and P(t, z ), and 1" c is a 

function of N(t,z). 

Due to the optical feedback induced by the corrugated structure, the optical field 

inside the laser cavity becomes intensified at some places, which is accompanied by 

carrier depletion. Such a local variation of carrier and photon density is known as 

longitudinal spatial hole burning, and can give rise to adverse effects such as 

longitudinal mode instability and multimode oscillation. In addition, such carrier and 

photon density nonuniformity can affect the laser frequency and intensity modulation 

response. 

Equations (8)-(11) fully determine the static and dynamic behavior of the DFB 

laser. For our purposes, we only need to find the small-signal intensity modulation (IM) 

and frequency modulation (FM) responses. Then, it is not necessary to solve the 

nonlinear time-domain system above. It is sufficient to solve first the static laser problem 

at some bias point and then perform a small-signal analysis around that bias point. 

The static problem [19] is obtained by omitting the time derivatives in (8)-(11). The 

resulting equations form a nonlinear boundary value problem, where the boundary 



Chapter III: Dynamics of semiconductor lasers 62 

conditions are the facet reflectivities (magnitude and phase). This problem can be 

transformed into an initial value problem that is solved with an iterative shooting 

algorithm. The unknowns are the amplitude of the forward propagation field at the 

beginning of the structure (left facet), R+ (z = 0), and the lasing wavelength or, 

equivalently, .::lco. We can take R+ (z = 0) to be real with no loss of generality. The left 

boundary condition gives a starting value for R- (z = 0). Then the forward and 

backward fields are propagated through the laser taking into account the photon-carrier 

interaction self-consistently, which involved solving a nonlinear equation at each step 

during propagation. At the right facet, another boundary condition must be satisfied. 

The error is used to give a new estimate for the two unknowns, and then proceed 

iteratively. 

The small-signal analysis [17], [20]-[21] is performed, as usual, by assuming a 

sinusoidal variation of the different variables around the operation point, and 

linearizing the resulting equations. We will not give the linearized equations because 

they are too cumbersome although their derivation is straightforward. The equations 

obtained form a linear set that can be solved by using a finite element method. The FM 

response is described by the small-signal variation of the phase of the propagating fields 

at the laser output, and the IM response by the small-signal variation of the intensity. 

Some approximate methods for analyzing the effect of spatial hole burning on 

the dynamic response of DFB lasers have been proposed [14]-[18]. The basic approach is 

to treat the carrier density as the sum of a spatial-independent term and a small spatial

dependent term, and then solve three spatial-averaged rate equations. However, in our 

experience, this method does not explain well the chirp of DFB lasers with high 

reflection (HR) and anti-reflection (AR) facets, as the ones tested in the experiments, and 

a numerical analysis will be employed. 
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III.2.1.B Characterization of DFB lasers usmg amplified 

spontaneous emission below threshold. 

1) Theory of amplified spontaneous emission below-threshold 

In the previous section it was shown how to derive the laser 1M and FM response 

taken into account the spatial hole burning. However, in order to solve the equations 

above, it is necessary to obtain some laser material and structural parameters. The gain 

spectrum [27]-[31] together with some structural laser parameters [32]-[34] can be found 

from measurements of the amplified spontaneous emission (ASE) below threshold. 

Other parameters such as gain compression and carrier and photon lifetime can be 

estimated from the laser modulation response and relative intensity noise at the laser 

output [35]-[38]. 

The laser spontaneous emission noise was derived by Henry [39] by solving the 

noise driven wave equation using the Green's function method. Assuming a single

transverse-mode index-guided laser cavity, the average noise power, PN , out of the 

right facet (at z = L ) within a noise bandwidth B N is given by: 

(12) 

where n sp is the spontaneous emission factor, g is the material gain, <l>(x, y ) is the field 

transverse profile, f3 is the propagation constant and R2 is the magnitude of the 

reflection coefficient at the right facet. The Green functions are ZI (z) and Z2 (z) , which 

are solutions to the wave equation satisfying left and right boundary conditions, 

respectively, and W is the Wronskian [40]. 

The spontaneous emission factor is given by [28],[38]: 

1 
(13) 
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where M is the energy separation of the quasi-Fermi level between the conduction and 

valence band, kB is the Boltzmann's constant, and T is the Kelvin temperature. For a 

narrow wavelength range around the lasing wavelength, however, a linear 

approximation for n sp (A) can be used: 

(14) 

where ABragg is the Bragg wavelength. 

For modes below threshold, the photon density P can be assumed to be nearly 

zero and the z -dependence of the carrier density can be neglected, which greatly 

simplifies the solution of the Green functions. In the following, we will only consider 

index-coupled standard DFB lasers with uniform gratings. In this case, analytical 

expressions for the Green functions below threshold can be found from the coupled 

wave equations (8). 

2) Modified Hakki-Paoli method fOr DFB lasers. 

Hakki and Paoli devised a simple method [27] to obtain the gain spectrum from 

measurements of the ASE from a Fabry-Perot (FP) cavity laser. Following the same lines, 

we have derived a modified Hakki-Paoli method, which can be used to obtain the gain 

spectrum for DFB cavity lasers. 

For an FP laser, the PN can be written as follows: 

PN(z = L) = A(A) 
(1- R e(g-am)L J + 4R e(g-am)L sin2 e (15) 

where am is the material background loss and L is the laser cavity length. The 

parameters R and e are real quantities related as [27]: 

R i2rp 
e = ljr2 

e = 28L-2cp 

(16) 

(17) 
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where 1j and r2 are the complex facet reflectivities and 8 is the deviation of the 

propagation constant from the Bragg condition, that is, 

8 = Aco (18) 

For a DFB laser, (15) is only approximately correct for wavelengths sufficiently 

far from the Bragg wavelength. By solving for the Green functions, Zl(Z) and Z2(Z), 

and substituting in (12), the following expressions for R and () can be derived: 

(19) 

() = 28L 1 - g g - 2 
[ 

1(2 + ( 12)2 J 
28 2 q> 

(20) 

The expression in (15) includes a Fabry-Perot type resonant denominator with maxima 

11: 
and minima for () = n11: and () = - + n11: , respectively, with n an integer. The spectral 

2 

dependence of the function A( A) , which is mainly due to the spectral dependence of 

nsp(A) and g(A), is much slower than the rapid variation of the denominator. As a 

consequence, the wavelength dependence of A( A) for adjacent maxima and minima can 

be neglected. Then, a function Q( A) can be defined as: 

p'1/2 (A)_p'1 /2 (A) 
Q(A) - Nmax Nmm 

- P~~(A)+P~~(A) 
(21) 

where PNmax and PNmin are the values of adjacent maxima and minima, which can be 

shown to yield the laser material gain and loss as follows: 

g(A) -am = .lIn Q(A) 
L ~RIR2 

(22) 
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a = -lIn Q(co) 
m L ~ 

V.ll.l.l'.2 
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(23) 

In addition, the group refractive index, n g' can be obtained far from the Bragg 

wavelength from the Fabry-Perot mode spacing. 

3) Determination of laser parameters ffom ASE. 

With all the previous elements it is now possible to outline a procedure to extract 

several important laser parameters. First, the ASE spectrum, PN (A) , has to be measured, 

and from that the Hakki-Paoli function Q(A) in (21) has to be computed. Another 

known laser parameter is usually the cavity length, L. The unknowns are the complex 

facets reflectivities, 1j and r2 , the grating coupling coefficient, 1( g' the material gain, 

g(A), and loss, am' the group refractive index, ng , the Bragg wavelength, AOragg ' and 

the spontaneous emission factor, n sp (A) . 

The algorithm to obtain all these laser parameters is described in the flow-chart 

in Figure 7. 

Good initial guesses are necessary for rapid convergence of the search algorithm. 

Some of these can be obtained from knowledge of the laser structure or from simple 

observation of the ASE spectrum. As an example, the lasers that were tested had high

reflection (HR) and anti-reflection (AR) coatings at the facets. For this type of lasers, it is 

found that: 

~ The phase of 1j (HR facet) determines the position of the lasing wavelength 

inside the stopband. 

~ The phase of r2 (AR facet) determines the peak-to-valley ratio for the side 

modes. 

~ The magnitude of 1( g determines the width of the stopband. 
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Figure 7: Flow chart for detennination of laser parameters from measurements 

of below threshold ASE spectrum. 

III.2.1.C Experiment 
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In order to evaluate the effect of spatial hole burning on the laser chirp of the 

laser tested in section IILl.4, first the laser was characterized using measurements of 

ASE below threshold, and modulation response and relative intensity noise above 

threshold. These laser parameters were used for simulations of the DFB structure as 

explained in section III.2.1.A. 
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Figure 8 shows the measured ASE spectrum at two bias currents and the fitting 

to the theory above (solid). The laser threshold current was 23mA. The measured gain 

spectrum at several bias currents is shown in Figure 9. It is observed that the gain at the 

lasing wavelength is clamped above threshold. 
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Figure 8: Below threshold ASE spectrum at bias currents 14mA (circles) and 

17mA (triangles). Solid is theory. 

It has been shown that the maximum material gain for a quantum well laser 

follows a simple logarithmic relation with the current density below threshold [41]-[42]. 

This can be expressed as: 

I 
g -a =a.ln

m , I 
o 

(24) 

where 10 is the injection current at which the gain equals the material loss. This 

expression has been confirmed in our experiments, as shown in Figure 10. 
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Figure 9: Gain spectrum at several bias currents. 
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The steady state analysis yields the spatial distribution of the carrier density 

(Figure 11) and of the photon density (Figure 12). The photon density is maximum at the 

left HR facet, and then decreases to reach a minimum near the right AR facet. The carrier 

density is maximum at this spatial"hole" of the photon density. A small-signal analysis 

around the bias current yields the FIR, and from that and using (4) the equivalent 

frequency-dependent 1C can be extracted (Figure 13). Comparison of Figure 3 and Figure 

13 clearly indicates the spatial hole burning cannot explain the measured frequency 

dependence of 1C. In fact, the approximate analyses in [14]-[18] indicate that the effect of 

spatial hole burning can only be observed at low frequencies, since the dynamics of the 

carrier density are limited by the large carrier lifetime. 
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Figure 11: Spatial dependence of the carrier density normalized by the carrier 

density at threshold for several bias currents. 
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111.2.2 Analysis of the FM response of MQW lasers 

including carrier transport and capture. 

Multi-quantum well lasers are expected to possess very large modulation 

bandwidths owing to a large differential gain. However, large gain compression had 

been observed for these lasers, which limits the predicted advantages. A new 

phenomenological model, the "reservoir" model, considered the consequence of a 

capture and escape time of the carrier between the separate confinement (SCH) region 

and the quantum wells [43]. This model has been further expanded to accurately explain 

the carrier dynamics of MQW lasers and results in analytical expressions for the 

intensity modulation (1M) [44]-[50] and frequency modulation (FM) [10],[51] of the laser. 

In this section, the reservoir model is introduced and used to derive expressions 

for the PIR of MQW lasers. The predictions from this model are then compared with 

experimental data of modulation response after propagation in fiber. The relative 

importance of intraband damping mechanisms, carrier transport and capture and spatial 

hole burning is evaluated. In addition, this model allows precise determination of the 

linewidth enhancement factor, a, from measurements modulation response after fiber 

that agrees well with the values obtained from relative intensity noise after fiber and 

linewidth. The power dependence of a is shown to explain the saturation of linewidth at 

high optical powers. 

Figure 14: Reservoir model for quantum well lasers. 
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III.2.2.A Reservoir model for MQW lasers 

The reservoir model is illustrated in Figure 14. There are two distinct reservoirs, 

one for the confined electrons in the quantum wells, N w' and another for the 

unconfined electrons in the SCH region, N b' The exchange of carriers between these two 

reservoirs is characterized by time constants r cap and r esc for effective capture and 

escape from the quantum wells, respectively. The rate equations describing small 

variations in unconfined carrier density, !1Nb, and confined carrier density, !1N w' are 

given by: 

d!1Nb _~_(!1Nb _ !1Nw 1_ !1Nb 
dt eVSCH reap 17vr esc) rb 

(25) 

_d!1N_-,,-w = n (_!1N_b _ _ !1N_w J- _!1N_w - G P, /).]V - [_1 --G P, r + _F_~ _ _ F_p 

d 'IV NOw [' p 0 V V 
t r cap 17 V r esc r w w r ph QW QW 

(26) 

Here, M is the small-signal photon density variation, M is the modulation current; F~ 

and Fp are uncorrelated Langevin carrier and photon noise sources (see section III.3); 

Po is the average photon density; G N = 8G / 8N w is the differential gain with G the 

stimulated recombination rate in the wells; G p = -8G / 8P describes the dependence of 

G on photon density or gain compression, [' w is the confinement factor of the confined 

carriers in the quantum wells, r ph = 1/ [' wG is the photon lifetime and r w and r b are the 

differential carrier lifetimes for confined and unconfined carriers, respectively. The 

parameter 17v expresses the fact that the confined carrier density is assumed to occupy 

the volume of the quantum wells, wheras the unconfined carrier density is assumed to 

be contained in the SCH region. Thus, 

(27) 
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where VSCH is the volume of the SCH region and VQw is the total volume of the 

quantum wells. 

The photon density in the quantum wells is described by the standard rate 

equation, with only the confined carriers participating in the lasing transitions, 

dill> Fp 
--= rwGNPOl!lNw - rwGppolll> + r w --

dt VQw 
(28) 

There are two contributions to the capture and escape times. One is the carrier 

diffusion time across the SCH region, and the other is phonon-assisted quantum 

transitions between confined and unconfined states. For lasers with a very wide SCH 

region, the capture time can be primarily due to carrier diffusion in the SCH region. 

The problem of carrier transport within the SCH region is not a simple one, since 

electrons and holes are injected separately from opposite ends of this region. However, 

experimental evidence such as in [48] and later in this section indicate that a simple 

ambipolar unidimensional model might suffice to explain the key features of the 

intensity and frequency modulation response. In the case of single quantum well lasers 

it has been shown [45]-[46] that solution of this simple classical diffusion model along 

with a phenomenological model for the quantum capture and escape at the quantum 

well leads to effective capture and escape times that can be used in the reservoir model. 

Following the same approach, and neglecting diffusion along the barriers, it can be 

shown that the same equations apply to MQW lasers with effective capture and escape 

times related as: 

_ Q L~CH 
reap -17vr cap +--

8D 
(29) 

Q 
reap reap 

Rce = -- = 17v -Q-
r esc r esc 

(30) 

where r~p and r~c are the intrinsic quantum capture and escape times, LSCH is the 

length of the SCH region and D is the diffusion coefficient. 
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1) Intensity modulation response. 

Solution of the small-signal rate equations (25)-(28) for a sinusoidal current at 

modulation angular frequency 0 yields: 

where 

MQ(O) + F~ + rwFp iO+_1 + 1 
eVQw VQw VQw .. w .. Q (0) 

~=----~~~-~~~~-~---~-~ 

Do +_I_(iO+rwGppo) 
• Q (0) 

(31) 

(32) 

(33) 

(34) 

is the resonant denominator of the modulation response when carrier transport and 

capture effects are neglected, with the relaxation frequency, 00, and the damping 

coefficient, ?'O, given by: 

O~ = GNPO + rwGppo 

·ph ·w (35) 

(36) 

Comparison of (31)-(32) with the results for bulk lasers indicate that M Q(O) can 

be considered the effective current injection into the quantum wells, and TQ(O) is an 

additional effective non-radiative recombination time due to the finite effective capture 

time. They are given by: 

(37) 
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1 = R in+ lIr b 

r Q (n) ce 1 + r cap Ir b + in r cap 
(38) 

For frequencies smaller than the inverse of the effective capture time, r cap' the 

photon density, M, and confined carrier density, /)./V w' variations can be well modeled 

by the same two-pole expressions as for a bulk laser. 

2) Frequency modulation response. 

Changes in confined and unconfined carrier density, /)./V w and /)./Vb' and photon 

density, M, affect the gain or absorption in a semiconductor material, and through a 

Kramers-Kronig relation, also the optical frequency, coo' Thus, frequency variations, /).w, 

obey the equation: 

~co = d~ifJ = _ COo ~n' = _ COo [r an' /)./V + r an' /)./V + r an' M] + F (39) 
dt ng ng waNw w sch aN

b 
b w ap q, 

where ng is the group index, n' is the real part of the effective modal refractive index, 

rsch is the confinement factor of the carriers in the SCH region, and Fq, is a Langevin 

noise source for phase fluctuations. 

From (39), the small-signal phase variation in the frequency domain can be 

expressed as: 

Here, aN is the linewidth enhancement factor as defined by Henry [24]-[26], 

aN = an' / an" 
aNw aNw 

(40) 

(41) 

with n" the imaginary part of the effective refractive index. The parameter a p was first 

introduced by Agrawal [52]-[54], and gives the change in refractive index with a change 

in photon density as follows: 
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(42) 

Finally, S is related to the ratio between the refractive index change due to a change in 

confined and unconfined carrier densities, 

):: _ 1 r sch an' / an' ~ an' / an' 
..., - TJv rw aN

b 
aNw = aN

b 
aNw 

3) Phase to intensity modulation index ratio. 

(43) 

The phase to intensity (modulation index) ratio (PIR) determines, as explained in 

Chapter II, the intensity modulation response of the laser after transmission in a 

dispersive channel. Uncorrelated driving sources will not beat at the receiver, and can 

thus be considered separately. Substitution of Eq. (31)-(33) into (40) yields the PIR due to 

current variations, M: 

and the PIR due to the photon noise source, Fp, 

inp IRI = in !!.ifJ 
Fp !!.PI P, 

o Fp 

= 

=~G p, ph 1+ ce'=' +~r G p, a in + 11 r [ R ):: ] a 
2 N 0 in + 11 r w + 1 /r Q 1 + in r cap + r cap /r b 2 w p 0 

4) Linewidth. 

The laser linewidth is given by [55]: 

!!. v = (l!!.co(n)1
2 

)10=0 
27r 

From (31),(40) it can be shown that: 

!!. v = !!. V ST [1 + a! (1 + RceS) 2 ] 

(44) 

(45) 

(46) 

(47) 
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where ~VST is the Schawllow-Townes linewidth and the contribution from the second 

term in (40) corresponding to f3 was neglected. 

5) Discussion. 

Equation (33) indicates that the carrier density in the barrier, I1Nb , is comprised 

of two terms. The first one follows the dynamics of the confined carrier density whereas 

the second follows the current modulation signal. The first term contributes a factor 

(1 + Rce~) to the linewidth enhancement factor, as can be observed in the first part of 

(44) and in (47). From equation (45), this is also the main consequence in the RIN for 

frequencies smaller than the inverse of the capture time. The second term in (33) only 

affects the modulation response, since it is proportional to the current modulation. Since 

it does not follow the photon density dynamics, the resonance denominator that 

describes the photon density variation appears in the numerator of the FIR in (44). 

Comparison of (44) and (4) yields the following expression for the equivalent 

K(n) , 

K(n) = r wGppo + ~rcap (Un )2 +inyo +n~)= rwGppo + ~rcap Do 
1 + Rce~ I + Rce~ 

(48) 

where a was defined as that that would be directly measured from linewidth (and RIN 

for small r cap)' that is: 

(49) 

The first term in (48) is the same that arises from the standard rate equations. If the gain 

is expressed as G(N,P) = GN(N - N th )(1-&P), then the well-known expression [6] for a 

bulk laser K = r wGppo = GPo/r ph is obtained. The second term comes from the fact that, 

as explained above, the unconfined carrier density does not completely follow the 

photon dynamics. Three effects can be derived from (48), first a parabolic decrease of the 

real part of 1C as the modulation frequency increases, second an increase in the transient 

chirp proportional to the damping factor, and third an increase in the low-frequency 
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adiabatic chirp proportional to the relaxation frequency squared. The parabolic 

characteristic of the real part of 1( could well explain the features observed in Figure 3. 

III.2.2.B Experiment 

According to equation (48), K:(Q) is described by a second order polynomial in 

(in). However, it was found that the experimental data is more precisely described by a 

higher order polynomial such as 

(50) 

The additional coefficient, 1(3' gives some curvature to the imaginary part of K:(Q) that is 

also observed in the numerical simulations including spatial hole burning in Figure 13. 

This, in addition to the conclusions that are extracted from approximate analyses of the 

DFB structure [14]-[18], suggests that spatial hole burning could be the explanation for 

this coefficient. Figure 3 shows the fitting of the measured K:(Q) to an expression such as 

in (50). 

Identification of the coefficients 1(0 ' 1(\ and 1(2 in (50) with the parabolic 

expression of K:(Q) in (48) yields: 

(51) 

(52) 

(53) 

Figure 15 shows the coefficients 1(0' 1(\ and 1(2 as a function of laser output 

power for the laser chirp measured in section III.1.4 and displayed in Figure 3. Since n~ 

and r 0 increase linearly with laser power, so do 1(0 and 1(\ • According to Figure 15 the 

coefficient 1(2 also increases with output power, and this will be justified below. 

The laser linewidth was measured using a self-heterodyne technique [56]. The 

white and 1/ f components of the frequency noise spectrum were estimated by fitting the 
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lineshape to a Voigt profile [57], and a was obtained from the white component using 

(47) and (49). Measurements of relative intensity noise (RJN) at the laser output, which 

are parasitic-free as opposed to the modulation response, were used to determine no, 

r 0' r w' and ~ VST. Fitting of the RIN to the expression in (31) is very sensitive to initial 

guesses and does not always converge. Instead, no and r 0 were obtained from the RIN 

for fixed values of r cap and Rce. r cap and Rce were determined so as to obtain best 

agreement among the values for a obtained from the coefficients 1(0 and 1(1' from 

measurement of RIN after propagation in dispersive fiber [58] and from linewidth. The 

values reported for Rce in the literature vary from 0.01 to 0.5. For our lasers, R ce was 

negligibly small and, as a consequence, it was possible to approximate 1/ 'l"Q:::::O in 

equations (31), (45) and a ';::jaN. 
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Figure 15: Coefficients from fitting K(n) in Figure 3 to polynomial in equations 

(50). 
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Figure 16 shows ;!' cap for three different lasers. The value of ;!' cap increases as 

the optical power increases, and seems to correlate with the laser threshold intensity, i.e., 

carrier density. As opposed to the carrier density in the wells, N w' the carrier density in 

the barriers, N b , is not clamped, but increases with current injection, I, as 

TfvNb =.RceNw+!'capIleVsch. Above a critical carrier density, which for our lasers is 

estimated at Nb ~5xI016cm-3, band-gap shrinkage effects contribute to a strong 

increase of the magnitude of an' / aNb with carrier density in the barrier [59]. On the 

other hand, !' cap is expected to increase for larger carrier density in barrier due to a 

smaller diffusion coefficient and a larger quantum capture time [60]. A combination of 

both effects can explain the power dependence of ;!' cap in Figure 16. However, both 

contributions are difficult to separate and an independent measurement of ~ or !' cap 

would be necessary. 
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Figure 16: Measured ;!' cap for three MQW-DFB lasers with different threshold 

intensities. 
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The values for a obtained from measurements of linewidth, 1(0 ' 1(1 and RIN after 

fiber are shown in Figure 17 as a function of laser output power. Agreement of all the 

four measurements is found. The power dependence of a can explain the saturation of 

the linewidth at high optical powers. It was found that the power dependence of a 

originates mainly from the power dependence of G N' as determined from n o, which is 

also expected theoretically, since the carrier density in the wells is clamped and as a 

consequence an' / aN w is practically independent of optical power. 
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Figure 17: Linewidth enhancement factor as determined from Co (circles), Cl 

(squares), RIN after fiber (triangles) and linewidth (diamonds). The 

inset shows the measured linewidth, and the expected linewidth (solid) 

with power independent aN. 
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111.3 EFFECT OF MANY WEAK SIDE MODES ON RELATIVE 

INTENSITY NOISE OF DISTRIBUTED FEEDBACK 

SEMICONDUCTOR LASERS 

When the link includes propagation in dispersive optical fiber, the relative 

intensity nose (RIN) at the fiber output (i.e., at the receiver) can be different from the 

RIN at the laser due to phase noise to intensity noise conversion. 

In addition to effects which can be described by a single-mode laser theory [61], 

the side modes in a nearly-single-mode laser contribute to RIN. Mode partition noise 

(MPN) in a laser is the fluctuation of optical power among the modes in such a way that 

the total power remains unchanged. After propagation in dispersive fiber, MPN can be 

converted to laser excess noise and hence, increased RIN at the receiver [62]-[63]. 1his is 

one of the factors that lead to the choice of nearly-single-mode DFB lasers in 

communication applications. 

An effect of MPN has been observed that affects RIN in low noise lasers even 

when the side-mode suppression ratio (SMSR) is greater than 35 dB. Since the gain 

spectrum in semiconductor lasers is broad, there usually exists a broad spectrum of 

weak Fabry-Perot side modes. These modes, while greatly suppressed relative to the 

main mode, together can contribute enough power to affect the RIN in some 

circumstances. In this section, experimental evidence is given for this effect and a theory 

that accounts well for the observed phenomenon is presented. 

111.3.1 Theory 

Any laser mode, i, is driven by its spontaneous emission, which can be 

considered as a Langevin noise source acting on that mode, Fp' for photon noise source 
I 

and F~i ' If the photon number, as driven by spontaneous emission, is raised, more 
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carriers are consumed. Since there is essentially only one carrier reservoir for all laser 

modes, and above threshold this carrier population is clamped, spontaneous emission 

into one mode will reduce spontaneous emission in the other modes. Thus, a 

spontaneous emission event into one mode is anticorrelated with a spontaneous 

emission event in another mode, yielding a low total relative intensity noise. 

The carrier density fluctuations, I1N , and photon density and phase fluctuations, 

M; and !1ifJ;, at each mode i, at modulation frequency Q can be obtained by using 

small-signal rate equations. Nonlinear phenomena such as spectral and spatial hole 

burning are included here phenomenologically by using an expression for the gain 

which includes dependence on the photon density of each cavity mode: 

G; = G; + GN/11N - f3;M; - Le;/v~j (54) 

00. 00. 
where GN = __ I is the differential gain for mode i, and f3; = ___ I governs nonlinear 

/ oN of>; 

self-compression of the gain for mode i, whereas e ij = - 0;:/ accounts for the fact that 
} 

gain in one mode i is affected by the optical power in the other modes j"* i . Since these 

derivatives are evaluated at the steady-state operation point, they can be laser output 

power dependent. The resulting small-signal rate equations are [61]: 

(jn+rN )11N = F N - LG;M; 
V ; 

. rFp' L un + rp, )11P
1
' = --+ rGN PI1N - re .. PM. 

I v i l.. IJ I J 
} '1'1 

1 L R = -with r N = - + GN P , rp, = ~ + rf3.p and G. = G. - f3 .P - "e .. P . . r . i ' i P I I I I I I ~)I J 
e l l J '1'1 

(55) 

(56) 

(57) 
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In the above equations [' is the optical confinement factor, r c is the differential 

spontaneous carrier lifetime, R
SPi 

is the spontaneous emission rate per unit volume into 

the mode i, and a j is the linewidth enhancement factor. The terms FN, Fp; and FI/Ji are 

Langevin noise sources associated with carrier recombination and spontaneous emission 

into mode i. 

Equations (55)-(57) can be easily solved numerically. However, more insight is 

gained by making some approximations that are valid in the case of nearly-single-mode 

lasers. The gain margin of the i th mode, I1Gj , which is defined as the difference 

between the inverse of the photon lifetime and the gain for that mode, is related to the 

- R 
CW photon density, P;, according to I1Gj = ~ [64]. For side modes below threshold, 

P; 

the gain margin is large compared to dynamic variations in the gain and dominates the 

rate at which the photon density fluctuations are damped. Hence, for a side mode, I1P; 

is approximately independent of fluctuations in the carrier density and the photon 

density of the other modes. From (56) we get: 

M," r;"!(jQ+ R;,' } (58) 

where the main lasing mode has been assigned the subscript zero. 

The photon density fluctuations of each of the side modes, 11P;, affect the carrier 

density and photon density and phase of the main mode, Mo. Since the Langevin forces 

Fp; of different modes are uncorrelated, the I1P; (for i =1= 0) can then be considered as 

independent noise sources in (55)-(57) (for i = 0). Using the approach adopted in [61] we 

eliminate the correlation between Fp; and FN by using FN = F~ - LFp; ,where F~ is 

the part of the noise not involving spontaneous emission of photons into one of the 

longitudinal modes. 

The photon and carrier density variations in the main mode are given by: 



Chapter III: Dynamics of semiconductor lasers 

8N = 8NN
' + 8NPo + L8NP; 

i,.O 
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(59) 

(60) 

Here, two superscripts are used to denote the different contributions to the 

fluctuations !:IN , M o and f1ifJo' The first superscript indicates the physical origin of the 

noise term, either carrier noise (N' ) or spontaneous emission originating photon density 

noise (P) and phase noise (ifJ). In the case of spontaneous emission, a second 

superscript shows in which mode, 0 or i, the spontaneous emission takes place. 

Upon substitution of (58) into the rate equations (55) and (56), the contributions 

originating from carrier noise, Mt and 8NN
', and from spontaneous emission in the 

main mode, M/o and 8N Po
, are found to be approximately the same as those obtained 

with single-mode theory. The additional fluctuations caused by the side modes are 

given by 

(61) 

and 

8NP; = 1 [jn+ rf30Pa + POireOiPoMP; 
rGNoPO 

(62) 

where the factor Dcn) = _n2 + jr on + n~ is the resonant denominator, with r 0 and 

no the damping factor and resonant frequency of the main mode [61]. These can be well 

approximated by the values obtained with single mode theory in the case of a DFB laser. 

From equations (57) and (62), the phase fluctuation in mode i due to 

spontaneous emission in mode j is given by: 

(63) 
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Equation (61) shows the additional fluctuation in the photon density of the main 

mode, which is anti-correlated with the noise source M; that originates it. Two physical 

effects are present: first, depletion of carriers due to spontaneous and stimulated 

emission into the i th side mode, and second, compression of the gain of the main mode 

by the power in the side modes. 

The effect of the side modes is only important at frequencies well below the 

relaxation resonance frequency of the main mode. Closer to resonance M/o dominates 

over M/i and M;, and beyond resonance the side mode fluctuation is highly damped 

due to its low-pass characteristic, as seen in equation (58). At frequencies below l/.c and 

Go, the inverse of the response time of carriers and photons, respectively, the carrier 

and photon density are adiabatically related, and since in this regime the carrier density 

is damped, !J.N is practically zero. Considering the effect of M; separately, 

spontaneous emission into the side mode i tends to decrease the carrier density, as does 

stimulated emission into the side mode and the main mode. Hence the condition 

Fp = = 
Vi + G;M; + GoM of>t :::::: 0 has to be satisfied. This relation can also be easily derived 

from the rate equations (55)-(57) if we ignore gain compression. Unless the side mode is 

so weak that the number of photons in the side mode is comparable to the number of 

photons originated by spontaneous emission, the factor corresponding to the stimulated 

gain dominates. Taking G; :::::: Go ,which is a valid approximation for the dominant side 

modes since the gain spectrum of semiconductor lasers is quite broad (-5Onm), we end 

up with M of>t ~ -M;. This negative correlation between the noise caused by F f>t in the 

main mode and the side mode is what causes cancellation of the mode partition noise at 

the output of the laser when we compute the total relative intensity noise (RIN). 

For a multimode laser, the total detected intensity is the sum of the intensity in 

each mode. Since the different noise sources are uncorrelated, the spectral densities of 

the fluctuations are additive and therefore we can consider their effects individually. 
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The total RIN at the receiver in the case of a nearly-single-mode laser will then be given 

by: 

(64) 

where RINo is the RIN obtained with single-mode theory in [61], and the second term is 

the additional noise that comes from the side modes. We have used the fact that the 

magnitude of fluctuations caused by the conversion between the frequency chirp (PM) 

and the intensity modulation (AM) is weighted by the power in the mode (see equation 

(65) below). Consequently, the phase noise in the side modes, F~; , can be neglected. In 

equation (64), H;P} (.0) is the small-signal transfer function for propagation of intensity 

variations of the mode i driven by Fp . This transfer function is a generalization of 
} 

H 2 (.0) in [61], which corresponds to H;o (.0) in the present notation, for the multimode 

case. In the case of propagation through dispersive optical fiber Ht} (.0) is found to be: 

H:' (n) ~ [ cos(lI) - 2P; ~~ sin(lI) }XP(jiJ,) (65) 

where () = -! /32n2z and 8; = -/32/).(f);ili, with f32 the fiber group velocity dispersion 
2 

coefficient, z the fiber length and /).(f); the optical frequency spacing between mode i 

and the main mode. The factor exp(j8;) accounts for the group delay of side modes 

relative to the main mode. 

(66) 
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The approximation in the last line of (66) consists of neglecting the modal 

dependence of the linewidth enhancement parameter, ai' and the differential gain, G N
I

' 

and assumes a large SMSR. Also, since POi is close to -I, and the dependence of the 

nonlinear coefficients on wavelength is weak, PoJ3o + eOi R:i o. Equation (66) is one of 

the main results of this paper and explains why even highly suppressed side modes can 

contribute significantly to the RIN after propagation in dispersive fiber. As a 

consequence of the difference in group velocities of the longitudinal modes in dispersive 

fiber, fluctuations originating in the side modes no longer cancel out after propagation, 

but instead cause oscillations in the noise power at the receiver. Making the assumption 

POi R:i -I, which is, as justified above, a rough approximation for the frequency range 

where the effect becomes important, the contribution to the RIN from spontaneous 

emission into the side mode i after propagation is approximately given by: 

(67) 

Taking a mean value for the oscillating term, we see that there is an overall increase in 

the RIN that rolls off at high frequencies due to the low-pass characteristic of the noise 

source, M;. The last approximation in equation (66) is valid for 1 81 «I, that is, for 

small propagation distance and moderate frequencies. As in the single-mode case [61], 

excess noise for side modes is reduced after propagation when the product af32 >0 is 

positive. 

In order that MPN have a significant contribution at a given modulation 

frequency, .f}i has to be close to n(l + 2m) for one or several of the dominant side 

modes, where m is an integer. The frequency separation between the main mode and 

the i th mode is given approximately by 1~(Oil_liI2~C , with L the laser length, c the 

speed of light and i the mode index. Thus, assuming a typical value f32=-2OpS2/km at 
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. . (1 + 2m)% (1 + 2m) L(J1m) 
1.55 !lm, the condItion above becomes n ~ 1'1 I I ~ 0.1 1'1 . If the 

l 2c f3 2 l z(km) 

length of the laser in !lm divided by the mode number, L(J.lITl) Ilil, is much larger than 

the propagation distance z in km, the frequencies at which the previous condition is 

satisfied are so high that an increase in RIN is no longer seen. These conditions hold for 

short lengths of fiber and side modes close to the main mode. 
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Figure 18: RIN at laser output (crosses) and after 4.4 km and 25.3 km of fiber 

(circles). The laser output power is Pout=3.4mW, h ias=1.6Ith and 

SMSR=27dB. The solid curve is the multi mode (MM) theory and the 

dashed curve is the single-mode (SM) theory. 

111.3.2 Experiment 

The relative intensity noise of the same laser used in the laser chirp experiment 

(section IILI) was measured before and after propagation in various lengths of standard 

single mode optical fiber (see Figure 18-Figure 19). A good fit to the standard single 
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mode theory was obtained before adding fiber. However, an increase in the RIN over 

the frequency range of 500 MHz to 5 GHz depending on fiber length and laser output 

power was observed when RIN after propagation was measured. This could not be 

explained using previous theories such as that by Su et al. [65]-[66], l/f noise [67] or 

noise originating fromF~ [68]. The theory presented above provides a very satisfactory 

explanation of all the features observed in the RIN. 
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Figure 19: RIN after 4.4 km of fiber. The laser output power is Pout=16.4mW, 

hias=4.lIth and SMSR=39dB. Same notation as in Figure 18. 

Although the side modes in the stop band of the DFB laser are highly 

suppressed, there are many Fabry-Perot cavity modes that have similar power over a 

large bandwidth (Figure 20-Figure 21). Including only the strongest side mode in the 

calculations, the theory does not predict what is experimentally observed. 
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The measured optical spectrum (Figure 20) was used to determine the power in 

-40 side modes together with their separation, 11m;, from the main mode (Figure 21), 

and these data were input to our model. Since there is no need to numerically solve 

equations, a large number of side modes could be included in the analysis. Equation (66) 

was used, and the nonlinear gain coefficients were assumed to have a wavelength 

dependence as that in [66]. If we do not account for gain dispersion and mode 

dependent spontaneous emission rate, the effect of MPN is overestimated. Here both 

effects phenomenologically are included by subtracting a fitting parameter to the SMSR 

that came up between O.5dB and 1.5dB depending on operation bias current. The 

measured RIN without fiber was used to determine Rspo ' r 0 and no at each operation 

point. The rest of the parameters were estimated from the RIN with fiber so as to obtain 

the best fits, yielding a=-4.6, 't' c =0.27ns, 't' ph =5.5ps and fh=-2OpS2/km. 
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The measured RIN after propagation in several fiber lengths and for different 

laser output powers is shown in Figure 18 and Figure 19. For some fiber lengths the 

single-mode theory predicts a reduction in RIN [61], which is not necessarily achieved 

experimentally due to these multimode effects. In the inset of Figure 18, the notch 

I 
corresponds to the condition that 2 A ~coO.z is an integer multiple of 7t, with ~Q) the 

mean mode spacing, at which point all modes arrive at the detector in phase. The effect 

of MPN is observed even at high output powers and SMSR's (Figure 19). 

A similar increase in RIN has also been observed when a grating is used as 

optical filter, and our model can be readily extended to treat this problem. 



Chapter III: Dynamics of semiconductor lasers 

III.4 REDUCTION OF LASER RIN AND RESHAPING OF 

MODULATION RESPONSE USING A FIBER BRAGG 

GRATING. 
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The relative intensity noise (RIN) can be a critical factor in determining the 

system signal-to-noise ratio. In addition, the laser modulation response (MR) exhibits a 

resonance peak and subsequent damping that can distort high-speed signals. It had been 

previously shown that transmission through a uniform grating can improve the laser 

modulation response [12] and affect the RIN [13], but simultaneous RIN reduction and 

improvement in MR was yet to be demonstrated. 

In this section, it is theoretically shown that a fiber Bragg grating can indeed lead 

to a major reduction of laser RIN and at the same time shape the MR in an almost 

arbitrary way. This theory was applied to the experimental RIN reduction and MR 

flattening for one laser. The index of refraction profile required to obtain the desired 

grating reflectivity was synthesized by using the iterative Gel'fand-Levitan-Marchenko 

method [69], and a fiber grating was recorded according to it. The experimental results 

demonstrate reduction in RIN greater than 5dB over a frequency range of 15 GHz and 

improvement in the modulation bandwidth. 

111.4.1 Theory 

In a semiconductor laser, fluctuations in the photon density, M, are 

accompanied by variations in the phase of the optical field, !1CP. Thus, for any 

mechanism, intentional (signal) or random (noise), which modulates the photon density, 

the laser output light exhibits correlated intensity modulation (1M) and frequency 

modulation (FM). In Chapter II, the small-signal theory for propagation of light with 1M 

and FM in an optical filter with an optical transfer function t( ill) was presented. It was 

shown that upon photodetection, the two modulation sidebands beat with the carrier to 

give the baseband signal at Q. In the optical domain, the amplitude and phase of the two 
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sidebands relative to the carrier can be independently controlled, which gives us four 

degrees of freedom that can be used to specify the magnitude and phase of the baseband 

transfer functions, H(n,z) , for two different driving sources. 

In this case, H(n,z) is specified for the Langevin photon noise source Fp , and 

for a current modulation, M. Thus, the two conditions are cancellation of the RIN 

arising from Fp , 

(68) 

and reshaping of the MR, 

H(n,z)ILV =He +2i Ho PIRLV =HLV(n) (69) 

where PIRFp (0) and PIRLV(O) are the PIR's corresponding to photon noise and 

modulation current driving sources. 

The MR after propagation through the grating would be that before the gratings 

multiplied by H LV (n). 

Using the expressions derived in Chapter II for He and H o' the required 

transmission of the optical filter, t( co ) , is found as: 

( 0) *( ) H (0)(1 i JV(l PIRLV(O)] t liJo + t liJo = LV + 2PIR
Fp 

(0) - PIR
Fp 

(0) (70) 

The value of t(co) at the laser frequency, coo' yields the DC insertion loss, LDe , 

as follows: 

(71) 

Equation (70) indicates that in principle any function H LV (n) can be specified. The only 

constraint is that for a passive optical filter, It(liJ)1 < 1. H LV (n) will have to be scaled by 

a factor so as to satisfy this condition, which results in enhanced insertion loss. In 
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addition, equation (71) shows that the insertion loss increases as the relaxation 

frequency decreases and as the DC adiabatic chirp is raised. 

Lasers also exhibit phase noise uncorrelated with the photon noise, which can be 

converted to intensity noise after transmission through a dispersive element. However, 

this noise contribution is much smaller than the photon noise and can be neglected. In 

fact, optimization of t( co) so as to minimize the total noise from the photon and phase 

noise sources yields, for typical laser parameters, practically the same function as in (70). 

The noise performance will deviate from this theory for lasers with large 

sidemodes. The bandwidth of optical filters is usually much less than the laser gain 

bandwidth, and usually even less than the side mode separation. As explained in section 

III.3, these side modes contribute noise at photodetection that is anticorrelated with 

noise in the main mode, and thus cancels it. The filter removes the side modes, and as a 

consequence all noise in the main mode is detected. This effect is especially important at 

low frequencies and for lasers with poor side mode suppression ratio (SMSR). 

III.4.2 Experiment 

The application considered here is that of flattening the MR of the laser. This 

modulation response is characterized by a peak near the resonance frequency, 0 0, and 

subsequent damping at a rate r o. The baseband transfer function for a current 

modulation, HM(O), was set to be the inverse of the MR. A laser similar to those used 

in the previous experiments but with a better SMSR was used in the measurement. The 

laser parameters, PIRFp (0) and PIRM(O) , at a bias current of 1l0mA were determined 

by measuring the MR and RIN before and after propagation in dispersive fiber. Since 

compensation of the laser damping at high modulation frequencies can only be done at 

the expense of insertion loss, the bandwidth had to be limited to 15GHz. Using (70), 

t( co) was determined. 

The desired t( co) was realized in the form of a fiber grating in reflection. In [69] 

it was theoretically demonstrated that the transfer function of a grating in reflection is 
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uniquely related to a profile of index of refraction, and a method was given, the iterative 

Gel'fand-Levitan-Marchenko method, to obtain the required profile of the index of 

refraction for any reflection coefficient. Here, this method was applied to obtain the 

profile of the index of refraction for the previously determined t( (0 ) • 

This work was done in collaboration with the Institute of Optical Research in 

Sweden, where the grating was written by using their multiple fringes printing 

technique as described in [70]. This consists of superposing a short interference pattern 

onto the fiber whose motion is controlled interferometrically. The fiber is moved slowly, 

and a pulsed UV laser is triggered every time the fiber has reached a desired position. 

The pulse duration is only 20ns and the fiber hardly moves during the exposure. The 

length of the interference pattern is typically 0.2 mm and determines the spatial 

resolution of the index and phase profiles that can be realized. Figure 22 shows the 

measured (circles) and specified (solid) reflection spectrum of the grating. 
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Figure 22: Reflection spectrum around the laser optical frequency. 
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The laser RIN and MR were measured at the laser output and after reflection 

from the fiber grating for bias currents from SOmA to l30mA. The laser wavelength had 

to be temperature tuned to match the grating Bragg wavelength at each bias current. For 

RIN measurements at the laser output the power was attenuated to the same value as 

that after the grating, so as to ensure that the power loss in the circulator was not 

affecting the RIN measurement. Reductions in RIN over SdB were obtained in the 

frequency range from 3GHz to 20GHz at all bias currents. Using (70) it was found that 

indeed the filter performance in terms of RIN reduction is affected by changes in the 

carrier lifetime, r c' in the low frequency range, fkr c ' and the photon lifetime, r ph ' in 

the high frequency range, 0> r ph' both of which are relative insensitive to the bias 

current. However, it was not affected so much by variations of other laser parameters 

such as resonance frequency, 00, damping coefficient, r 0' or linewidth enhancement 

factor, a. Thus, the same grating should perform well for different lasers with similar 

structure. On the contrary, the MR is highly dependent on 00 and r 0' since these 

determine at which frequency the MR peaks and how fast it damps. Changes in 

temperature of 0.2°C (at constant bias current) or changes in bias current of lmA (at 

constant temperature), corresponding to a wavelength shift of -0.2 , did not 

significantly affect the filter performance. 

Figure 23 and Figure 24 show the RIN and MR for bias currents SOmA and 

110mA, respectively, at the laser output and after reflection from the grating. In both 

cases, reductions in RIN were achieved. The dotted line indicates the shot noise level. At 

high bias currents the RIN goes below the shot noise, and it becomes hard to measure. 

The MR in Figure 23 is flattened by the effect of the grating, whereas in Figure 24 an 

enhancement and increase in bandwidth is achieved. 
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Appendix IILl COMPARISON OF MODULATION RESPONSE 

AND INTERFEROMETER TECHNIQUES FOR 

DETERMINATION OF LASER CHIRP. 

In this appendix, the experimental technique developed in section Ill.1.3.B to 

measure K{O) will be contrasted with an interferometer technique. 

The power spectrum of the optical field was measured by a scanning Fabry-Perot 

for a wide range of modulation powers, and the 1M index was determined using an 

electrical spectrum analyzer. As a first approximation, the microwave power can be 

adjusted so as to obtain known PM indices. For example, the amplitude of the carrier 

frequency is approximately zero for an PM index mFM = 2.4 [9]. However, the presence 

of 1M complicates the expressions for the power in each of the side bands and this 

m 
method could not be used. Here, --flL and /).cp were obtained by fitting the power in the 

m lM 

main and first side bands as a function of m 1M • From them, the real and imaginary parts 

of /((0) were derived for a given a. 

In Figure 25, the results from the interferometer technique and the modulation 

response technique have been plotted for comparison. The interferometer technique is 

noisier, especially at high frequencies, because the microwave source and amplifier that 

was used could only yield a maximum 1M index of 0.25. Nevertheless, the same 

frequency dependence and order of magnitude is observed. Note that in the simple laser 

chirp model, the real part of K{O) would be a constant independent of 0 and the 

imaginary part would be zero. 
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~ s the launched power into the fiber is raised, the fiber response departs 

U""J increasingly from the linear behavior that was described in the two 

previous chapters. Among the nonlinear phenomena that can arise, self-phase 

modulation (SPM), four-wave mixing (FWM), stimulated Raman scattering (SRS) and 

stimulated Brillouin scattering (SBS) are the most important ones for optical 

communications systems [1]. Fiber nonlinearities may significantly degrade the 

performance of high-speed lightwave systems using high-power laser sources [2]. 

Stimulated Brillouin scattering (SBS) arises as the result of a nonlinear interaction 

between photons and acoustic phonons. As a consequence, part of the power in the 

forward propagating field is lost to a backward propagating optical field, that is 

downshifted from the forward propagating wave by the acoustic frequency. It has been 

shown through signal-to-noise ratio and bit-error rate measurements that the onset of 

SBS can be a major impairment in directly-modulated fiber-optic systems [3],[4]. 

Previous studies emphasized degradations resulting from power saturation [5], 

spontaneous Brillouin scattering noise [6], and the effect of the backward-propagating 
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signal on the laser source [2]. In this chapter it will be shown that, in addition, SBS can 

induce a phase shift of the optical carrier relative to its sidebands. 1his phase shift can 

lead to severe distortion of the modulation response (MR) and increase in relative 

intensity noise (RJN) at low frequencies due to conversion of laser frequency modulation 

(PM), i.e., laser chirp, to intensity modulation (lM). 

In an optical fiber, the acoustooptic interaction between sound and optical waves 

differs from the Brillouin scattering in a bulk medium [7]. In a fiber, a large number of 

(longitudinal) acoustic modes are excited by the light, which are the eigenmodes of the 

cylindrical structure rather than plane waves, and this leads to a relaxation of the wave

vector selection rule. As a consequence, spontaneous Brillouin scattering in the forward 

direction was observed, and was called guided acoustic wave Brillouin scattering [7]. It 

has been recently found that this effect can contribute to timing jitter in soliton 

transmission systems [8] and affect propagation of NRZ pulse trains [9]. 

Here it will be demonstrated that the guided nature of the acoustic waves in 

optical fibers can also affect backward stimulated Brillouin scattering, inducing a phase 

shift of the optical waves. In order that significant acoustooptic interaction occur, not 

only the propagation constants have to be phase matched, but also there has to be 

significant overlap between the transverse profiles of acoustic and optical modes. The 

latter condition is satisfied for modes with phase velocity close to but greater than the 

longitudinal sound velocity, VI' However, if the phase velocity is less than VI, the 

acoustic mode becomes a surface wave with maximum amplitude near the surface of the 

cylinder, and will be hardly excited by the optical wave. It will be shown that this results 

in a slight asymmetry in the Brillouin gain spectrum, which can be observed in precise 

measurements of Brillouin gain spectra (see, e.g., Figure 4a in [10]), and a phase shift of 

the optical waves affected by SBS, in agreement with our experimental results. If most of 

the optical power is contained in the carrier and the modulation frequency is larger than 

the Brillouin gain bandwidth, only the carrier undergoes SBS, and thus suffers an 

additional phase shift relative to its sidebands. As a consequence, conversion of 
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frequency modulation to intensity modulation occurs, which is experimentally observed 

in measurements of modulation response and relative intensity noise. 

Section IV.l contains a theory of the acoustooptic interaction including the 

waveguiding effect of the optical fiber on the acoustic wave. It is shown that SBS induces 

a phase shift of the optical carrier relative to its sidebands. In section IV.2, experimental 

evidence is given that SBS induces a phase change in the optical carrier with respect to 

the sidebands that leads to an increase of the MR at low frequencies due to FM-to-IM 

conversion. Section IV.3 presents the effect of SBS on RIN. The SBS induced phase 

change causes an increase in RIN at low frequencies by conversion of phase noise to 

intensity noise. In addition, it is shown that SBS causes excess noise at frequencies 

around harmonics of the acoustic wave frequency for both forward and backward 

propagating waves. 

IV.1 SCALAR THEORY OF THE ACOUSTOOPTIC 

INTERACTION IN OPTICAL FIBER. 

In an optical fiber, thermally generated acoustic field phonons initiate the process 

of SBS by providing the seed grating for the generation by Bragg reflection of a 

backward propagating field. This backward propagating field interacts with the forward 

propagating wave or pump wave to generate an acoustic wave through the 

phenomenon of electrostriction. This acoustic wave adds up to the initial field to 

backreflect more strongly, thus starting the stimulated process (see Figure 1). 

Conservation of both momentum and energy of the participating photons and phonons 

leads to a condition on the frequency of the backward propagating wave, and for silica 

fiber gives roughly llGHz [1]. 
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IV. I. 1 Acoustic wave equation. 

The acoustic field variables that characterize particle motion and deformation in 

a vibrating material medium are the particle displacement vector, u(r,t), the strain 

tensor, a(r,t), and the accompanying elastic stress tensor, 't(r,t). The vector equations that 

describe these variables can be solved to yield the acoustic modes and from them the 

gain of the stimulated process can be found. This vector approach, which is more fully 

developed in Appendix IV. 1, is quite involved, but can be greatly simplified by 

neglecting transverse variations of the material displacement and the electric field. This 

is a valid approximation for the case here considered of backward Brillouin scattering in 

a single mode optical fiber. In this case, the equation of motion can be expressed in terms 

of the material density variation, p, which, in analogy with hydrodynamics, is defined 

as: 

where po is the material density. 

Figure 1: Generation of an acoustic wave with frequency nB traveling at the 

speed of sound, V s' and a backward propagating optical wave, 

downshifted by nB from the incident wave by the process of stimulated 

Brillouin scattering. 

The material density fluctuation, p, satisfies the wave equation driven through 

electrostriction by the electric field, E, as follows (see Appendix IV.I): 

(1) 

a
2 
P = v2(l +r ~ \2 P _"I,\,2 E2 (2) 

at2 
I l s at r 2 
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where VI is the longitudinal sound velocity, rs is the damping factor and r quantifies 

the strength of the electrostrictive effect. 

In the absence of electric field, only a discrete set of acoustic modes, p" (r,cp) , 

can propagate in the fiber. From equation (2), assuming a harmonically varying acoustic 

wave at sound angular frequency Os, and neglecting the damping factor, these modes 

satisfy the wave equation: 

(3) 

Here, the operator V~ is the Laplacian acting on the transverse coordinates, and k" are 

the eigenvalues or longitudinal propagation constants of the acoustic modes. 

Only acoustic modes with no azimuthal variation will excite a polarization in a 

single mode fiber. These are usually referred to as dilatational or longitudinal acoustic 

modes [20]-[21] and have a radial dependence of the form: 

( ) _ I Jo(kl"r) 
p" r - ( \y.; ( \y.; 

na;I,2 Jg (kl"a c/ ) + J 1
2 (kl"ac/), 2 

(4) 

where acl is the radius of the acoustic guide, which is usually the fiber cladding radius, 

and the eigenfunctions are normalized such that (p", p,,) = I (see Appendix IV.2). The 

value of the transverse propagation constant of the longitudinal acoustic modes, kl'" 

follows from application of boundary conditions. If the cylindrical surface is assumed to 

be free of traction, i.e., 't. n = 0, the Pochhammer frequency equation [21] is derived, 

from which k. and k" ~ (~: J -k,~ can be calculated. When the particle vibrates in 

a longitudinal mode, radial and axial motions are coupled, and, contrary to what has 

been previously stated [8]-[9], the eigenfunctions (4), even though they form a complete 

set, are not orthogonal. 
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IV. 1.2 Acoustooptic interaction. 

P NL 
The acoustic wave originates a nonlinear polarization, , given by: 

pNL =LpE 
Po 
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(5) 

Let us assume harmonically varying forward and backward propagating optical waves, 

that is: 

(6) 

where Eo(r) is the transverse distribution of the fundamental mode in single mode 

optical fiber, and el and e2 are unit vectors in the directions of the forward and 

backward propagating fields, respectively. Here we neglect fiber birefringence (see 

Appendix IV.l for a discussion on birefringence induced by the acoustic wave), and 

assume linearly polarized electric fields, both along the same direction. The beating of 

these two fields gives rises to an acoustic wave at frequency Os = (01 - (02 and with 

4nn 
wavevector ks = f31 + f32 ~ __ 0 ,where Ao is the optical wavelength and no is the fiber 

Ao 

modal index. Since the radius of the acoustic guide, ac/, is much larger than the acoustic 

A 
wavelength, - _0_, a large number of acoustic modes are excited. The acoustic modes 

2no 

form a complete set and therefore the acoustic wave can be expressed as a linear 

combination of the p" (r,cp) such as: 

p(r,cp,z,t) = a l (z,t)a; (z,t) L)" (z,t)p" (r,cp )ei(D.,t-ksz) + c.c. (7) 
" 

Inserting the expansion for the acoustic wave (7) into the density wave equation (2), and 

using (3) the coefficients b,,(z,t) can be obtained in a "least-squared" sense by solving 

the following system of linear differential equations: 
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~[{viCI +i!1,r,{ k; -k; -2ik, ! )-in:r,} -2iQ, :, }.(P"Pm) = 

=-~k;(E~'Pm) 
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(8) 

In writing (8) we have neglected derivatives of the electric field envelope amplitudes, a l 

and a2 , second derivatives of the bll and transverse derivatives of the electric field 

against longitudinal derivatives, and we have assume that the modulation frequency of 

the acoustic wave envelope is much smaller than n s' Analytical expressions for the 

inner products in (8) have been found and are included in Appendix IV.2 (these 

integrals appeared in a similar context in [8],[9] and were evaluated numerically). In 

practice, only modes with kll :::::: ks will contribute significantly to the mode expansion 

(7), and only a reduced number of coefficients bll is needed to perfectly describe the 

acoustic wave. 

The evolution of the electric field envelope amplitudes can be found by 

substituting the electric field expansion (6) and the nonlinear polarization (5) into the 

optical wave equation. We obtain 

8al +v 8al +i f3 "8
2
al = a f a _gB la 1

2a 
8z g 8t 2 8t2 2 I 2 2 I 

(9) 

(10) 

(11) 

where (0 ~ (01 ~ (02' f3 ~ f31 ~ f32' V g is the fiber group velocity, f3" is the fiber 

dispersion parameter and a f is the fiber loss. The electric field is normalized to 

(Eo,Eo) = 0; (see Appendix IV.2), so that the power in each optical field is given by 
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From (9), the real part of gB yields the Brillouin power gain, whereas the 

imaginary part of gB is responsible for phase modulation of the optical field. In steady 

state, the pump wave undergoes a phase change, ll({>1, given by: 

/).q>1 (z) = - Im~B} S:la21

2 
dz (12) 

To a first approximation we can neglect spatial derivatives of b" and can set 

\P", Pm) ~ 0 for n -:;; m. In steady state the coefficients b" are thus given by: 

(13) 

Under this approximation, g B can be found as: 

(14) 

J-lOJ2k y 2 4rc 2n7p2 
where .oB = ks VI' /).0 = rso~ and gBO = s = 0 12 are the approximate 

2{3po VlllO CPoA~VI/).O 

acoustic wave frequency, width and maximum gain of the Brillouin spectrum in the 

absence of wave guiding effects, i.e., for 0B = ks VI ~ Os' A Gaussian approximation of 

the fundamental fiber mode was used, with beam mode waist w (see Appendix IV.2). 

As stated above, the dispersion map for the acoustic modes, i.e., the variation of 

the longitudinal propagation constant of the acoustic modes, k", with the frequency, 

Os, can be obtained by solving the Pochhammer frequency equation [21]. Here only 

modes with real k" are considered, since modes with imaginary k" will attenuate very 

rapidly. On the contrary, the transverse propagation constants, kl'" can be either real or 

o 
pure imaginary, depending on whether the phase velocity, _s , is greater or smaller 

k" 

than the longitudinal sound velocity, VI' The latter case corresponds to surface waves, 

which have maximum amplitude near the surface of the cylinder. These surface waves 
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will hardly be excited, since the optical mode is concentrated near the core region. 

Similarly, when the magnitude of kill is large, the transverse profile of the acoustic mode 

becomes highly oscillatory and the overlap integral between the optical field and the 

o 
acoustic mode is very small. Thus, only modes with k n ~ ks and _s ~ VI will interact 

kll 

significantly with the optical field. 

Figure 2: Dispersion map of longitudinal acoustic modes for VI/VI = 1.6032 . 

IV.l.3 Numerical simulation. 

Numerical calculations have been performed to obtain the Brillouin gain for 

standard single mode fiber with acl =62.5f.lm and at optical wavelength M=1.55f.lm. The 

dispersion map in the region 0sacl/vi ~ ksacl ~ 735 is shown in Figure 2 for 

VI/VI = 1.6032. For Os / kn ~ VI the group velocity of the mode tends to the longitudinal 

sound velocity, VI' from above, whereas when Os / kll < VI the mode becomes a surface 
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wave and the group velocity approaches the transverse sound velocity. The normalized 

overlap integral between the electric field and the acoustic modes, Lac/(E~ 'PlI) ' is 
(J)J.1 

plotted in Figure 3 for several normalized frequencies. The asymmetry is due to the low 

overlapping between the optical mode and the surface waves. 
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Figure 3: Nonnalized overlap integral between the optical and acoustic modes, 

Lac/ (E~, PlI)' as a function of the (arbitrary) mode number, n, for 
{J)J.1 

three different values of the nonnalized frequency, o.sac/ Ivi • 

If the effect of wave guiding of the acoustic wave is ignored, the imaginary part of 

the Brillouin gain at the frequency at which the real part reaches its maximum value, 

o.smax' is given by: 

(15) 
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Since Ml«OB, this is very small. However, when the expression (11) is used, due 

to the low coupling to the surface waves, the Re{ g B } becomes slightly asymmetric, and 

Im{ g B}max is no longer negligible. Figure 4 shows the real and imaginary parts of 

gBAeff 
----":...., where Aeff is the fiber core effective area, for ilO=15MHz. If wave guiding 

gBO 

Im{g } -4 . Im{g} 
effects are neglected, {B } ::::: 3xlO , whereas here we obtam {B } ::::: 0.1 . 

Re gB max Re gB max 

The gain spectrum depends on fiber type [10], [15] and from the above 

discussion it is expected that the induced phase-shift will also exhibit a dependence. 
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gBA'!fJ 
Figure 4: Real and imaginary part of the normalized gain, for 

gBO 

VI / V , = 1.6032 as a function of deviation in frequency from that of 

maximum Brillouin gain, n s max • 
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IV.2 EFFECT OF SBS ON MODULATION RESPONSE 

IV.2.1 Theory 

As discussed in the previous chapters, linear propagation in dispersive optical 

fiber produces a phase change of the sidebands relative to optical carrier due to group 

velocity dispersion, which results in partial conversion of PM into IM, which is 

photodetected at the fiber output [12],[13]. At low modulation frequencies the dispersion 

is very small and the change in modulation response (MR) after propagation is simply 

given by the fiber loss. However, our experimental results show that, as the optical 

power launched into the fiber increases, some optical power is backreflected by 

stimulated Brillouin scattering (SBS), and, correlated with this power loss, the MR at low 

frequencies is distorted. This distortion can be attributed to the phase change in the 

optical carrier induced by SBS. At high modulation frequency, 0, this small nonlinear 

phase change can be neglected compared to that resulting from dispersion. However, at 

low 0 it becomes dominant and, as a consequence, the large adiabatic chirp that 

semiconductor lasers present at low 0 is converted into intensity modulation. 

IV.2.1.A Small-signal theory. 

In this work, modulation frequencies Oj21t>50MHz are considered. Since the 

spectrum of the Brillouin gain is very narrow (~15MHz, as shown in section IV.3), it can 

be assumed that no cross-interactions between optical carrier and sidebands contribute 

to generation of Stokes waves. In addition, in the small-signal regime only two 

modulation sidebands need be taken into account. Since most of the optical power is 

contained in the carrier, the sidebands only suffer linear fiber loss and dispersion, 

whereas part of the power in the carrier is lost to SBS and undergoes an SB5-induced 

phase shift. 

Let 8(.Q,z) be the dephasing between optical sideband at 0 and the optical 

carrier due to both fiber dispersion and fiber nonlinearity, that is, 
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1 2 
() (0, Z) = () disp (0, Z) - () NL (Z) = - - f3 n z - () NL (z) 

2 
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(16) 

where B NL is the phase change that SBS induces in the optical carrier. Then, the detected 

photocurrent at a small-signal modulation frequency 0 at the fiber output, 1(0,z) , is 

related to that that would be detected at the laser output, 1(0,0), by: 

[ 
,Vo 1(0 z) . 

H(O,z) == L DC (z)L(0,z)r 2 ' = cosB -2smB P1R(0) 
1(0,0) 

(17) 

The electrical baseband transfer function H(O,z) is normalized by the loss in the fiber, 

where L DC (z) and L( 0, z) are the power loss suffered by the optical carrier and the 

sideband, respectively, due to both fiber attenuation and SBS. Since, as stated above, it is 

assumed that only the carrier undergoes SBS, then: 

-a z 
L(O,z) = LLiIl(Z) = e J (18) 

(19) 

IV.2.1.B Quasi-large-signal theory. 

At higher modulation powers, but low enough so that m lM is less than 2%, even 

though the small-signal theory would still be valid in the linear regime, it fails to predict 

the measured MR after propagation in fiber at high optical powers. As the modulation 

power is raised, the optical bandwidth increases due to a larger laser chirp, and the SBS 

is reduced. The consequence of this is twofold. First, since the FM index, m FM ' is a 

function of 0, the detected DC photocurrent fluctuates as 0 is swept across. Second, the 

MR at sufficiently low 0 and high modulation power returns to that of the linear regime. 

Here a quasi-large-signal model is presented that explains the observed 

phenomena. As the laser chirp increases, the optical power is distributed among an 

increasing number of FM sidebands with weights ell such as (see Chapter II): 

E = P
O
ll 2 :~:>nein(nt+q>IM) (20) 

n 
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( 0) int:..cp [J ( ) m 1M fJ ( ) it:..cp J ( ) -it:..CP)~ 
Gil Z= =e II m FM +4~ 11+1 m FM e + II-I m FM e J (21) 

where J II are Bessel functions and the fact was used that m 1M is small. Thus, after 

propagation in fiber, the coefficients Gil are given by: 

Gil (z) = .J L(nQ, z)e
iO 

("n,z) Gil (0) (22) 

The detected DC photocurrent, IDC, can be obtained as: 

(23) 
II 

where R(Q) is the photodiode responsivity, and the photocurrent at Q is given by: 

I(Q,z) = R(Q)Po L>II+1 (z)c; (z) (24) 
II 

For intermediate values of mFM , the power in some of the sidebands can be quite 

large, and even greater than the power in the carrier, thus undergoing SBS. For very 

large m FM' the power is distributed in so many sidebands, that none of them carries 

enough power to experience significant SBS. 

IV.2.2 Experiment. 

IV.2.2.A Experimental set-up. 

The diagram of the experimental set-up is shown in Figure 5. The optical source 

was a high-power MQW-DFB laser operating at 1.551lm. This laser was biased at 300mA, 

yielding an output power at the laser pigtail of 14.4dBm, and had a threshold of 18mA. 

The laser was directly modulated with the signal from a network analyzer (NA) using a 

microwave probe. The laser light was attenuated and launched into an 85/15% fiber 

directional coupler. The 85% port was connected onto a spool of standard 

telecommunications fiber (from 25 to 75 km), the output signal was photodetected and 

then the MR was measured with the NA as described in Chapter II. The power spectra 
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of the forward and backward waves were measured using an ESA. Angled connectors 

were used to minimize reflections. 

Measurements of MR and RIN before and after propagation in dispersive fiber, 

with the signal output attenuated to avoid nonlinear effects, were used to determine 

laser parameters [11],[12], such as PIR(n), resonance frequency no=14GHz, damping 

factor r a =16GHz, linewidth enhancement factor a=-4.6, photon lifetime r ph =lOps, 

carrier lifetime r c =O.l2ns, and linewidth O.5MHz, and also the fiber dispersion 

parameter 13" = _20ps 2/km. 

The amount of optical power launched into the fiber was controlled with a 

variable optical attenuator and measurements of MR and RIN were performed at several 

optical powers and modulation powers for the forward and backward propagating 

fields. 

coupler 

Figure 5: Experimental set-up. LD=laser diode, L=variable optical attenuator, 

OMM=optical multimeter, PD=photodetector, NA=network analyzer, 

ESA=electric spectrum analyzer. 

IV.2.2.B Small-signal experiments 

Figure 6 shows iH(O,z)i2 for a small modulation power and several optical 

input powers. At low modulation frequencies, the laser chirp (see equation (4) in 

Chapter III) is dominated by the adiabatic term and varies as 1/0.. A negative eNL 
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results in part of this chirp converted into IM, and IH(O,z)1
2 

increases with decreasing 

n as l/n. At high n, and using the normalization explained above, IH(O,z)1
2 

approaches its linear regime value. 
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Figure 6: Change in modulation response, IH(O,z)1
2

, for 50 km of fiber, -

28dBm modulation power, and several launched powers into the fiber. 

Diamonds is measured IH(O,z)1
2 

in the absence of nonlinear effects. 

Solid is theory. 

Since the modulation power is very small (mlM~O.08%), the small-signal 

approximation is valid and equation (17)-(19) can be used to determine the nonlinear 

phase change () NL' Using () NL as the only fitting parameter, the solid curves in Figure 6 

are obtained, which indicate that the theory above accounts well for the experimental 

results. 
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Figure 7 shows the measured e NL together with the backscattered and forward 

output powers as a function of the optical input power. Using 

gso I Aeff ::::; O.06mW-1km-1 and ria2i
2 

dz::::; ia2(O)i
2 
Leff 12, where ia2(O)i2 is the 

backscattered power and Leff is the fiber effective length, in equation (12), the dotted 

trace in Figure 7 is obtained for the nonlinear phase shift. Thus, it can be concluded that 

this effect has the correct sign and magnitude to produce the nonlinear phase change 

experimentally measured. 
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Figure 7: Left axis: forward (solid) and backscattered (dashed) optical powers 

for 50 km of fiber. Right axis: nonlinear phase change (solid is 

experimental, dotted is theoretical prediction as described in text). 

IV.2.2.C Quasi-large-signal experiments 

Figure 8 shows the measured iH(n,z)i2 and received power for several 

modulation powers. Since L(n,z) is difficult to measure, the same normalization as that 
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in the small-signal case is used as if the modulation sidebands only suffered linear fiber 

loss, i.e., H(O,z) == (LLL ' \~ 1(0,z) . This is not a valid assumption at large modulation 
lilY"" 1(0,0) 

powers and low 0, i.e., for large laser chirp. In fact, for mFM ::::: 2.4 then JO(mFM)::::: 0, 

and most of the optical power is contained in the first sideband, which is then partly 

backscattered by SBS, and L(O,z) > LUll' As a consequence of the normalization used, 

IH(0,z)1
2 

becomes negative (in dB). As the bandwidth of the signal increases, the SBS is 

reduced, and the received power rises. The ripple in IH(0,z)1
2 

and received power at 

low frequencies is due to the oscillatory behavior of the Bessel functions. On the 

contrary, the structure observed in the received power at 0/21t-0.7GHz is due to the 

frequency response of the microwave probe employed to modulate the laser. 
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Figure 8: (a) Change in modulation response, IH(Q,z)1
2 

and (b) received 

power, as function of modulation frequency for SOkm of fiber, 18m W of 

launched optical power and several modulation powers. Diamonds is 
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inset in (a) shows IH(Q,z)1
2 
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optical power (triangles) and linear regime (solid) with OdBm 

modulation power. 
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The large-signal theory described above was used to explain the experimental 

data and is represented in Figure 8 with a solid trace. To determine L(nQ,z) and 

8(nQ,z) , cross-interaction between sidebands is neglected, as in the small-signal case. 

Then, it can be assumed that the power loss and phase change in each FM sideband can 

be extracted from the previous data in Figure 7, for the given power in the FM band. 

Good agreement has been found between this simple model and the measurement. The 

main discrepancy occurs when IH(Q,z)1
2 

becomes negative in dB, which our model 

underestimates. This is attributed to the assumption of no cross-interaction. 
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The inset in Figure 8 shows IH(0,z)1
2 

in an extended frequency range for both 

linear and nonlinear regimes. It is observed that at high 0, and with the normalization in 

(17)-(19), both curves coincide. Thus, the effect of self-phase-modulation (SPM) that was 

recently reported in [14], does not appear in our data, which indicates that SBS manifests 

at lower optical powers than SPM. 

IV.3 EFFECT OF SBS ON RELATIVE INTENSITY NOISE 

IV.3.1 Theory. 

The presence of stimulated Brillouin scattering (SBS) alters the relative intensity 

noise (RIN) in two ways. First, excess noise appears around OHz and around harmonics 

of the acoustic wave frequency for both backward and forward propagating fields [15]. 

Second, it is shown here that the SBS induced phase change in the optical carrier results 

in conversion of part of the PM noise into IM noise, which causes additional excess noise 

at low frequencies. 

The FM-to-IM conversion of laser noise can be treated in a way similar to the 

case of MR in section IV.2. The PIR due to photon fluctuations, which are generated by a 

Langevin noise source Fp, is given by: 

PIRI == t1<p I 
Fp MIP 

Fp 

a O~ l+iOrph = 
2 0 2 1+ l/(iOr c> (25) 

As 0 decreases the PIR increases, and a small phase change of the optical carrier can 

result in a strong enhancement of the noise. 

The RIN spectrum of the forward (backward) wave exhibits excess noise around 

harmonics of OB due to mixing upon detection of the incident (Stokes) wave with small 

reflections of the Stokes (incident) wave caused by Rayleigh scattering [15]. When the 

laser is modulated at a frequency 0, SBS induces additional excess noise at frequencies 

mO B + nO., with m and n integers. 
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IV.3.2 Experiment. 

Figure 9 shows the low-frequency increase in RIN for several launched powers in 

the fiber. Equations (17)-(19) together with (25) can be used to determine 8NL, which is 

shown in the inset. The slight discrepancy between experiment and theory is attributed 

to the simple model used to describe the RIN, which does not include the effect of side 

modes [16] and FM-to-IM noise conversion due to double Rayleigh scattering [17]. These 

two effects are independent of the launched power and explain why 8NL does not equal 

exactly zero at small launched powers. The excess noise induced by SBS near OHz 

reported in [15] would affect frequencies below the ones here considered and does not 

need to be included in the analysis. 
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Figure 9: Relative intensity noise (RIN) for 25 km of fiber and several launched 

powers into the fiber. Solid line is theory. The inset shows the nonlinear 

phase change as a function of launched power. 

Figure 10 displays the measured RIN of the forward and backward fields after 

propagation in 75 km of fiber for frequencies around OHz and OB. The power launched 
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into the fiber was l3dBm and the laser was directly modulated at 300MHz with several 

modulation powers. As can be observed in Figure lOa, the excess noise due to FM-to-IM 

conversion also appears at harmonics of the modulation frequency, nO.. As discussed in 

section IV.2, for sufficiently high modulation power and low modulation frequency the 

input optical power is distributed in many sidebands, and the SBS, and consequently the 

excess noise, is suppressed. 
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Figure 10: RIN of forward, (a) and (b), and backward, (c) and (d), propagating 

waves after 50 km of fiber at low frequencies, (a) and (c), and around OB, 

(b) and (d). The laser light was directly modulated at 300MHz with 

modulation powers (MP) -20dBm (circles) and -10dBm (triangles). 

12 

The RIN spectrum of the backward Stokes wave at OHz (Figure lOc) can be used 

to determine the spectrum of the Brillouin gain [IS] and gives a rough estimate of the 

Brillouin bandwidth to be around l5MHz. The measured RIN level of the Stokes wave 

was approximately -SOdB/Hz (irrespective of fiber length and launched power), which 
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can be related to the strength of the Langevin noise source that describes the thermal 

excitation of acoustic waves [19]. Residual excess noise at harmonics of the modulation 

frequency is due to SBS backscattering of the incident field sidebands rather than 

beating of the small reflection of the incident field with itself. 

The excess noise of the Stokes wave around !1B (Figure lad) can be well 

explained as originating from mixing of the Stokes wave with a small reflection of the 

modulated incident wave caused by Rayleigh scattering. Thus, the complex electric field 

amplitude of the backward propagating wave at the fiber input, E B' can be expressed 

approximately as: 

(26) 
n 

where Ps is the backreflected Stokes power at the fiber input, Po is the integrated power 

of the forward propagating field along the fiber, and r R is the field reflection coefficient 

due to Rayleigh scattering. The RIN power (RINP) at !1B+n!1 can be determined 

experimentally by integrating the RIN over the spectral width of the spike (or by 

normalizing the RIN by the value at OHz). From equation (26), it can be derived that the 

RINP of the backward propagating field, RlNPB , is proportional to ICn 12 , that is: 

RlNPBco.B + nO.) = 2 ;0 Ir R121c,J 
s 

(27) 

Figure 11 shows the factor Ir RI21c,J determined from the experimentally measured 

RINPB and equation (27). The value of Po was estimated by assuming an exponential 

decay of the forward propagating field. By comparing this with IcJ from (21) (dotted 

line in Figure 11), we obtain Ir R 12 = - 35.5dB, which agrees well with the value expected 

for Rayleigh scattering. 
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dB and len 12 as determined from the laser chirp and modulation power. 
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Appendix IV.1 VECTOR THEORY OF THE ACOUSTOOPTIC 

INTERACTION IN OPTICAL FIBER 
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A solid can become strained when placed in an electric field through an effect 

known as electrostriction. In piezoelectric materials, the stress is linearly proportional to 

the applied electric field. However, isotropic materials such as glass are always non

piezoelectric. The reason for this is that reversing the sign of the electric field does not 

change the physical situation and the refractive index and strain should remain 

essentially unaltered. As a consequence, the linear effect vanishes, and the quadratic 

dependence of the stress on the electric field has to be considered. On the other hand, 

certain materials develop an electric moment under stress and, as a consequence, the 

dielectric constant is a function of the strain. In this case the linear effect does not vanish 

and is the first order effect. Physically, reversing the sign of the strain changes the state 

of the solid from tension to compression, and so, in general, modifies the dielectric 

constant. 

The three field variables that characterize the acoustic wave, the particle 

displacement vector, u(r,t), the strain tensor, cr(r,t), and the stress tensor, -r(r,t) are related 

by the equation of motion [20]-[21], 

(28) 

the strain-displacement relation, 

(29) 

and the elastic constitutive equation or Hooke's law, which for a non-piezoelectric 

material is given by: 

acr I 
't = c: cr+11 :-+-y: (E·E' ) at 2 

(30) 

Here, po is the material density, c is the elastic stiffness tensor, l'\ is the viscosity tensor, 

which accounts for the existence of dissipative or frictional forces [22], y is the 
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electrostriction tensor, which describes the stress resulting from the electric field, E, and 

the operator V s takes the symmetric part of the displacement gradient, i.e., 

The change in optical dielectric constant tensor, 6, induced by the acoustic wave is given 

by: 

f: )=p:a (31) 

where p is the strain-optic tensor. It can be shown that the tensors y and pare 

proportional [23]. 

The form of the tensors that describe the acoustooptic interaction can be derived 

from considerations of the symmetry of the medium. In an isotropic material such as 

glass, 6 is described by just one parameter, which, under suitable axes, is the value in the 

diagonal. On the other hand, the 4th rank tensors, p, T1 and y, have all the same form, and 

each of them can be reduced to just two constants. For the stiffness tensor, these are the 

Lame's constants, A., and p. By substituting these tensors into (30) and (31), simplified 

expressions for the acoustic equation of motion, (28), and the nonlinear polarization, 

p NL , are obtained as: 

a2u 
Po at 2 = 

= [Povi +1111 ~JV(V ·u) -[Povr
2 +1144 ~Jv x V x u + Yl 2 VE 2 + Y 44 V ·(E ·ET

) & & 2 

p NL = -Y12 (V ·u)E - 2y 44 (V su)· E 

(32) 

(33) 

where V /
2 _- A + 2JJ , and v

r
2 -_ _ JJ th d I . d · al d d are e square ongItu m an transverse soun 

Po Po 

velocities, respectively. 

The electrostriction constants are given by [23]: 
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(34) 

where p11=O.121 and p12=O.270 are the strain-optic coefficients for fused quartz, and no is 

the refractive index. 

The problem described by equations (32) and (33) is quite involved, but can be 

greatly simplified by neglecting transverse against longitudinal variations of the 

material displacement and the electric field, which is a valid approximation for the case 

considered here of backward Brillouin scattering in a single mode optical fiber. As 

shown below, in this case it is sufficient to consider the effect of Y12, neglecting the 

contribution of Y44, and we can express the equation of motion in terms of the material 

density variation, p, which, in analogy with hydrodynamics, is defined as: 

(35) 

Substituting pin (32)-(33) the acoustic wave equation for the material density fluctuation 

(2) is derived, where r=Y12 and r s=1]/ po. 

When the contribution of Y44 is included, the derivation continues as follows. In 

order to determine which acoustic modes are excited by the electric field VE 2 and 

V . (E . E T) have to be evaluated. The terms oscillating at Os are given by: 

oE~ (r) 
or 
o 

-ikE~(r) 

(36) 

(37) 
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where the three vector components are directed along i, cp and z. Thus, the electric 

field will excite acoustic modes with no azimuthal variation, UOn, and modes varying 

sinusoidally as 2rp, U2n. 

Next the nonlinear polarization (33) is analyzed to determine which acoustic 

modes can excite the fundamental fiber mode. The necessary condition is that 'V . U and 

'V s u have no azimuthal variation. For 'V. u this is only satisfied for modes UOn. Let's 

examine now 'V s u : 

n 1 {[ Ou r U r 1 Ou rp } ~ , ~ ~) 2 Ou z ~ ~ 
v s U =- -+-+-- xx+yy + -zz+ 

2 or r ror or 

[
Our Ur 1 OUrp} (2 )(~~ ~~) . (2 )('~ '~)] + ------ cos cp xx-yy +sm cp xy-yx + 
or r r or 

+ (r ~[~)+.!. Our )Sin(2CP)( -Xi + yy) + cos(2cp )(xy + yi)] + 
Or r r ocp 

(38) 

+(Ou z + Our fCOS(cp)ii+sin(cp)yZ]+[OUrp + Ou z ~-Sin(cp)ii+COS(CP)YZ]} 
or OZ OZ ocp J 

From (38) it can be concluded that modes UOn in combination with factors in (38) with no 

azimuthal variation and modes U2n in combination with factors in (38) varying as 2rp will 

excite the fundamental fiber mode. 

The approximation in section IV.I is justified from (38) since the only terms from 

'V s u that contribute to PNL are proportional to transverse variations of the material 

displacement. Similarly, only transverse derivatives of the electric field appear in the 

expression for 'V . (E . E T) in (37). 

The material displacement in the presence of excitation can be expanded in terms 

of the eigenmodes as was does in equation (7), yielding: 

u( r,cp,z, I) ~ a, (z, I)a; (Z,,{ ~ c" (z,I)Uo" (r,cp) + d" (z, I)u,,, (r,cp) }i(O,t-k,.l + c.c. (39) 

A similar approach to that in section IV.I can be followed to determine the coefficients 

of this expansion. 
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Equations (33),(38) show that, even though the material is isotropic, due to the 

acoustooptic interaction it becomes anisotropic and birefringent. 
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Appendix IV.2 SOME USEFUL INTEGRALS 

The inner product used in this work is defined as 

2"a 

(PII,Pm) = f f rPII(r,f/J)p:(r,f/J)drdf/J (40) 
o 0 

Using 

1 1 !(J~ (pr) - J v+1 (pr)JV _ 1 (pr)) 

I rJv(pr)Jv(qr)dr = pJ:
1 
(pr)Jv(qr) - qJv(pr)J

V
+

1 
(qr) 

2 2 P -q 

if P =q 
(41) 

if p:t; q 

we find 

( )
=2 k1nJI (k1lla cl )Jo (k1macl ) - k1mJO (k1lla cl )J1 (k1ma cl ) 

Pn'Pm 1 1 ' 

[kl;, - k/~ ][Jg (k1Ilacl ) + J I
2 (k1Ila cl ) f [Jg (k1ma cl ) + J I

2 (k1ma cl ) f (42) 

n:t; m 

By using a Gaussian approximation for the fundamental fiber mode with mode beam 

waist w, Eo (r) = l ;': f3 J eXPl- ;:' ]- where Eo(r) is nonnalized so that la; I' equals 

the power carried by mode i, i.e., (Eo, Eo) = (j)J.l ,we obtain 
f3 

(43) 
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ChapterVot 

New schemes of mode 
"-

COnVefSlOn 

O ptical waveguides can confine optical energy in one or more optical modes, 

which are characterized by a number of mode parameters such as the spatial 

distribution of optical energy, the propagation constant, and the polarization state. Two 

different modes may couple to each other and exchange energy under proper 

conditions. Mode conversion refers to the complete transfer of energy in one optical 

mode to another. Such mode conversion can be used to perform various optical 

operations on guided optical waves and has been applied in optical communications 

and optical sensor devices. 

Coupling between interacting optical modes is usually treated using coupled 

mode theory [1], [2]. In section V.l, this coupled mode theory is generalized to the case 

of multimode waveguide structures (with one or more waveguides), and the 

propagating eigenmodes, the so-called supermodes, of the structure are derived. The 

supermode theory allows simple analysis of complex devices such as those including 

adiabatic transitions. 

In sections V.2 a new approach for mode conversion between copropagating 

modes is proposed, where the mode conversion is mediated by a third mode. It will be 

shown that this additional mode affords additional flexibility and as a result the devices 

are less sensitive to fabrication parameters compared to previous devices. Low insertion 
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loss, low polarization sensitivity and both narrow-band and broadband operation can be 

obtained. 

V.I SUPERMODES OF MULTIMODE WAVEGUIDE 

STRUCTURES. 

V.I.l Introduction 

The theory of coupled modes for guided wave optics [1], [2] was developed for 

treating interactions between, mostly, confined modes of optical waveguides which are 

mediated by refractive index perturbations. Two of the most important examples are 

those of periodic index perturbation (DFB lasers [3] Bragg fiber gratings [4]) and 

coupling via evanescent fields in parallel waveguide systems [5]. 

As a result of the perturbation, the modes of the structure are modified, and the 

propagating eigenmodes, the so-called supermodes, of the perturbed structure [5], [6] 

have to be found. For quasi-periodic perturbations, these are the Floquet-Bloch modes 

[7]-[9]. 

The use of supermodes becomes a practical necessity in analyzing a new and 

emerging class of WDM-related devices [10] based on adiabatic transitions and/or 

where several waveguide modes might be involved. 

Here formal expressions for the supermodes of waveguide structures with an 

arbitrary number of modes will be derived. The supermodes, in these cases, become the 

natural new building blocks in which to analyze phenomena and devices. A metric is 

derived from considerations of power flux conservation to ensure orthonormality of the 

supermodes. 
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V.l.2 Generalized coupled mode theory 

The transverse modes of a dielectric waveguide, which form a complete 

orthonormal set, cease to be proper modes when a spatial modulation of the index of 

refraction or the gain (loss) is present, and the new eigenmodes, the so-call supermodes, 

have to be determined. 

Consider a dielectric structure consisting of an array of several waveguides 

supporting one or several modes, totaling N modes. Assuming that the waveguides are 

weakly guiding, the modes of the individual waveguides in isolation and in the absence 

of refractive index perturbation are transverse and can be expressed as: 

- ( ) - ( \.., - i/3 Z iwt Ek x,y,z,t = Ek x,y F k e k = 1,.· ·,N (1) 

where the 13k are the propagation constants of the waveguide modes, with /3k>O for 

forward propagating modes, and /3k<O for modes propagating in the - z direction. The 

Ek (x, Y ) describe the transverse profile of the fields, and satisfy the following wave 

equation: 

k=I,···,N (2) 

where V; is the laplacian operator in the transverse coordinates, ko = 2n/A is the 

wavevector in free space, and nk is the refractive index of the isolated and unperturbed 

waveguide k . For weakly guiding waveguides, (2) can be simplified to: 

k = 1,.··,N (3) 

These waveguide modes are not necessarily orthogonal (only waveguide modes 

of the same waveguide are always orthogonal) and are not the modes of the dielectric 

structure, which consists of all waveguides with possibly an additional perturbation of 

the refractive index. The electric field in the structure can be expressed as a 

superposition of its own modes, known as supermodes, as follows: 
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N - 'f3' 
-( )" A A ( )e-Z Z iOJt E X,y,z,t = L..JAkEk X,y k e (4) 

k=l 

where the fik and Ek (x,y) are the propagation constants and transverse profiles of the 

supennodes and Ak are the supennode amplitudes. 

In general, it is difficult to obtain the exact supennodes using analytical 

techniques. But if the coupling between the waveguides and the perturbation in the 

refractive index are weak enough, it is possible to express the electric field 

approximately as a superposition of the modes of the unperturbed waveguides in 

isolation as follows [5], [11]: 

-( )" - ( )e- if3k z iOJt E x,y,z,t = L..JAk(z)Ek x,y e (5) 
k 

Substitution of this expansion in the wave equation yields: 

,,( . dAk(z) k ( ):A ( )f ( ) -if3kz - 0 L..J -ISk + ono n - nk k z k x,y e -
k dz 

(6) 

where n is the refractive index of the perturbed dielectric structure and S k equals +1 for 

forward propagating modes and -1 for backward propagating modes. In deriving (6), 

the slowly-varying envelope approximation for the mode amplitude coefficients, Ak , 

and the weakly-guiding approximations were used. 

Multiplying (6) by Ej (x,y) and integrating over the transverse surface, we 

obtain 

where the coupling coefficient, Kjk' and the overlap integral, P jk , are defined as 

Kjk = ffskono(n - no)Ek(x,y), Ej(x,y)dS 

Pjk = ffs Ek (x,y) . E/x,y)dS 

It will be assumed that the fields are nonnalized as 

(7) 

(8) 

(9) 
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(10) 

so that Pick = 1. 

In general, n = n(x,Y,z) is a function of the three spatial coordinates. Here, the 

more important case is considered of a quasi-periodic dependent perturbation in the 

longitudinal coordinate, Z , as follows: 

n -no = ~n,,(x,y ~n.(Z{l +co{ ~: Z+~(Z») J (11) 

Equations (7) and (11) indicate that strong interaction or coupling between two modes 

with propagation constants 13k and 13 j will only occur around wavelengths at which 

the so-called Bragg condition is satisfied: 

2n 
f3k-f3 j ±-:::::O 

Ak 
(12) 

This phase-matching condition is equivalent to momentum conservation, where the 

momentum required to couple the modes is provided by the spatial perturbation. Only 

when 13k ::::: 13 j can exist interaction between modes k and j in the absence of grating. 

In a dielectric structure there can coexist several gratings that couple different 

waveguide modes. Let A jk be the period of some quasi-periodic perturbation or grating 

coupling modes k and j (A jk = 00 for non grating-assisted coupling). Then, from (7), 

the coupled wave equations can be expressed as 

where the detuning, 8 jk ' is defined as 

2n 
8 Ok = 13k - 13 ° ±-

J J A 
jk 

(13) 

(14) 

Here, the sign is chosen so as to satisfy the Bragg condition, i.e., to minimize the 

detuning 8 jk at the wavelength of operation. In writing (13) the sinusoidally varying 
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part of the coupling coefficient has been removed and from (13), (8) and (11), K jk for 

grating-assisted coupling is given by 

(15) 

and for non grating-assisted coupling, 

Kjk = ~nk(z) ffsko~nOk(x,y)Ek(X,y). Ej(x,y)dS (16) 

It is convenient to remove the oscillatory term in the coupled mode equations 

(13) and use new mode amplitudes defined as 

(17) 

where the reference detunings, 8 k' have yet to be determined. On substitution in the 

coupled mode equations (13), the new equations are given by 

V.l.3 

". dak -i({3k-{3j-Ok+Oj)z_ 
£ .. .}Pjk-e -

k dz 

On supermodes, orthogonality and power 

conservation. 

(18) 

In this section, the supermodes of multimode dielectric structures will be derived 

and important issues such as supermode orthogonality and power conservation will be 

discussed. Two particular cases that will be relevant in the following sections will be 

considered. First, coupling of modes propagating in several adjacent single-mode 

waveguides. In this case, it is assumed that all modes are copropagating and that the 

coupling is realized through the evanescent field, without gratings. The second example 

deals with grating-assisted coupling among modes in one multimode waveguide. In this 

case, we will consider modes which can be copropagating or counterpropagating. 
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V.1.3.A Non grating-assisted coupling among the forward

propagating modes of several single-mode waveguide. 

1) Supermodes. 

In this case, A jk = 00 for all j and k. In addition, since all modes are 

copropagating, Sk = 1 for all k. From (18), and choosing the reference detunings as 

8 k = 13k , the coupled mode equations are given by 

which can be expressed in matrix notation as 

iR da = (RE + K}:z 
dz 

(19) 

(20) 

aN y, where the superscript T means transpose, [R ]jk = P jk' 

[K ]jk = 1( jk' and B is a diagonal matrix where the diagonal elements are the 

propagation constants, [B lk = 13k, 

Equation (20) can also be written as 

ida =Ha 
dz 

where the system matrix H is given by 

H=B+R-1K 

(21) 

(22) 

If the coupling coefficients, 1( ij' do not depend on z, or vary very slowly (as in 

an adiabatic transition), it can be postulated that the vectors evolve as 

a(z)= a(O )exp(- ipz) (23) 

which when used in (21) leads to 

Ha=pa (24) 



Chapter V: New schemes of mode conversion 150 

This is an eigenvalue equation that yields the (adiabatic) eigenvectors or supermodes 

and the eigenvalues, {3, or propagation constants of the supermodes. Thus, if the 

eigenvector k is E k = [Elk E2k . . . E Nk Y , corresponding to the eigenvalue (3 k , then 

the transverse profile of the supermode k is given by 

- N 

Ek (x,y)= LEjkEk (x,y) (25) 
j=1 

2) Orthogonality of supermodes. 

In the previous section the supermodes of a grating-coupled multimode 

waveguide were derived. However, in order that any field can be easily expanded as a 

superposition of these modes, it is convenient that these supermodes are also 

orthonormal among themselves. In general, 1( jk =1= 1( kj and as a consequence it is not 

obvious from (20) and (21) that the eigenvectors, and thus the supermodes, are 

orthogonal. In the following it will be shown that the supermodes are indeed 

orthogonal. 

Equation (2) is satisfied for any waveguide two modes j and k . Multiplication 

of equation (3) for mode j by Ek (x, y), and (3) for mode k by Ej (x, y), subtraction of 

the two resulting equations and integration along the transverse dimensions yields: 

ff)Ek· V;Ej -Ej . V;Ek)dS +2konoffJ(koCnj -nk)-C{3j - {3k))Ek .EJdS 
(26) 

k =1= j = 1,·· ·,N 

Green's theorem and the fact that the fields Ej and Ek are continuous and decay 

exponentially away from the waveguide can be applied to conclude that the first integral 

in (26) is zero. Then, from (26), and the definitions of the coupling coefficient and the 

overlap integral, (8) and (9), we find: 

(27) 

In matrix notation this can be written as 
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KT -K=BR-RB (28) 

The orthogonality condition between any two supermodes E j and E k is given 

by 

LE;mE/a' ffsEk(X,y). E j (x,y)dS = LE;mPm"E/a, = 0 (29) 
m~ m~ 

which can be expressed in matrix notation as 

E;REk =0 (30) 

where the superscript ;; denotes hermitian conjugate, i.e., [A;;]ij == A;i' 

By defining the proper inner productl, 

(31) 

where the matrix R is usually referred to as the metric, equation (31) can also be written 

as 

(32) 

It can be shown [12] that the eigenvectors of the system matrix H in (22) are 

orthogonal if H is R -Hermitian, that is, if H equals its R -adjoint, H #, which is 

defined as 

(33) 

From (22) H # is given by 

H # = R-1(B + KT R-1)R = B + R-1KT (34) 

where the fact that R is symmetric was used. Substitution of (28) in the equation above 

yields: 

1 An inner product is proper when (a, a) is real and positive for any a except the null vector. 

This is always satisfied in an expression like (31) providing the matrix R is Hermitian and positive 

definite. 

(35) 
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Thus, the supermodes are orthogonal. 

3) Power conservation. 

The total power flow along the structure is given by: 

(36) 

where ~ is the power carried by each supermode. The principle of power conservation 

implies that the power remain the same at any position along the direction of 

propagation, that is, 

d~ =0 
dz 

(37) 

The requirement of power conservation, (37), again imposes the condition that 

the system matrix H be R -Hermitian. This can be shown using (36) and (21): 

dPk _ dE:RE~ E~=RdEk_ 
- k + k -

dz dz dz (38) 

=iE:(H+R-HR)Ek =0 

V.1.3.B Grating-assisted coupling among modes in one multimode 

waveguide. 

1) Supermodes. 

When the perturbed modes are confined in one waveguide, then the 

unperturbed waveguide modes are orthogonal, and as a consequence the overlap 

integrals are P jj = 1 and P I#k = 0 . In addition, from (15), K jk = K kj • Thus, (18) simplifies 

to: 

(39) 
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If the number of coupling coefficients, K jk' different from zero is less than or 

equal to the number of modes, N, which is always satisfied for bimodal or trirnodal 

structures, the reference detunings, 8;, can be chosen so that 

(40) 

Otherwise, the coupling term includes a linear phase. 

Equation (40) is actually valid for many cases of interest, and will be assumed to 

be satisfied in the following. Using (40), the coupled mode equations (39) can be written 

in matrix notation as 

i da = (D + KS)a 
dz 

(41) 

where D and S are diagonal matrices where the diagonal elements are the reference 

detunings, [Dlk =8k1 and the sign indicating direction of power flux, [slk =Sk' 

respectively. 

Equation (41) can also be expressed as in (21) where the system matrix H in this 

case is given by 

H=D+KS (42) 

For adiabatic transitions, it can be assumed that the mode amplitudes evolve as 

in (23) resulting in the eigenvalue equation (24). Solution of this equation yields, as 

before, the supermodes and their propagation constants. 

2) Supermode orthogonality and power conservation. 

Following a similar approach to that used in section V.1.3.A, a new metric or 

inner product will be derived in this section from considerations of power flow 

conservation. However, if there are counterpropagating fields, this inner product is not 

proper, which has important consequences. 

The power carrier by each supermode E k is given by 

(43) 
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where the inner product is defined as 

(a,b) = a;;!,Sb (44) 

and S is the metric. S is a parity matrix consisting of ±l in the main diagonal. Thus, 

(44) is an improper product, i.e., S is indefinite, and the inner product can be a negative 

number. This would correspond physically to power flowing in the direction of negative 

z. Again, power conservation is satisfied provided that H is S -Hermitian, which can 

be shown by direct substitution in (42). 

It can be shown [12] that the eigenvalues, /3 k , of S -hermitian matrices are either 

real or else occur in complex conjugate pairs. If f3 k is the eigenvalue associated with the 

eigenvector E k' then E kisS -orthogonal to all the other eigenvectors, E j' with 

eigenvalue {3 j different from {3:, that is 

( E k , E j ) = 0 for all j such that {3 k :t: {3; 

( E k , E j ) :t: 0 for j such that {3 k = /3; 
(45) 

Thus, the eigenvector associated with a complex eigenvalue is orthogonal to itself but is 

not orthogonal to the eigenvector associated with the complex conjugate eigenvalue. 

If the eigenvalues are not degenerate, then the eigenvectors form a complete set 

and any vector can be expressed as a linear combination of them. The coefficients of the 

linear expansion can be obtained using (68). 

V.2 MODE CONVERSION BETWEEN COPROPAGATING 

MODES VIA A MEDIATING MODE. 

Most current optical couplers and switches are based on coupling between two 

copropagating modes through some perturbation [13]. This coupling leads to periodic 

exchange of energy between them along the direction of propagation. The device length 

can be designed so that complete energy transfer from one waveguide mode to the other 
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waveguide mode occurs. In practice, however, it is not only difficult to fabricate devices 

with a specific length, but also the coupling length has a strong wavelength and 

polarization sensitivity, and this renders the device polarization sensitive, with large 

insertion loss and crosstalk and narrow-band. 

Here, a new scheme of mode conversion between two copropagating modes 

using a mediating mode is analyzed [14], which overcomes some of the previous 

limitations. The device has two coupling regions. The first region couples the output 

mode and the mediating mode, and the second one couples the mediating mode and the 

input mode (see Figure 1 and Figure 2). Under some conditions, as described below, all 

the energy in the input mode can be transferred to the output mode, with no energy loss 

to the mediating mode. This idea of using "counterintuitive" coupling, where the name 

comes from the order of the coupling regions, has been borrowed from the stimulated 

Raman process in three level systems [15]. There, the coupling mechanism is a temporal 

perturbation that couples two populations. An analogy can be established between the 

temporal populations and the spatial waveguide modes. In our case, the perturbation is 

a spatial variation of the refractive index. 

In this mode converter, the precise length of the coupling regions is not critical, 

which facilitates fabrication and improves the conversion efficiency. Also, stronger 

coupling coefficients and/or longer coupling regions always improve coupling and, in 

the case of adiabatic transitions, help ensure that the adiabaticity condition is satisfied. 

Thus, if the coupling coefficients are strong enough to produce enough coupling 

between both optical polarizations, the device would be polarization insensitive. In the 

case of adiabatic coupling between phase-matched modes (usually travelling in identical 

waveguides), broadband operation can be achieved as long as the coupling coefficient is 

strong enough to ensure adiabatic coupling in the desired wavelength range. 

The coupling can be achieved through evanescent fields in adjacent waveguides 

or assisted by a perturbation or grating. The mediating mode can be copropagating or 

counterpropagating with the input and output modes. In addition, two modes of 

operation are possible depending on whether the coupling coefficients vary slowly 
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along the structure (adiabatic coupling coefficients) or the transition between coupling 

and non-coupling regions is abrupt (non-adiabatic coupling coefficients). 

Figure 1: Adiabatic mode converter in adjacent waveguides through the 

evanescent fields. 

Figure 2: Mode converter mediated by backward Bragg scattering. 

In section V.2.1 the principle of operation of the proposed three-mode structure 

is explained using the supermode theory introduced in V.l. Then, two examples are 

more fully developed. First, in section V.2.2 the mediating mode copropagates with 

input and output mode and it can only operate in the adiabatic regime. On the contrary, 

in the device presented in section V.2.3 mode conversion is mediated by a backward 

propagating mode, where the coupling is grating-assisted. For the effective operation of 

this device adiabatic transitions are not required. 
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V.2.1 Principle of operation. 

Coupling between three modes is realized through two coupling regions (see 

Figure 1 and Figure 2). The first region couples the output mode (mode C) and the 

mediating mode (mode B), and the second one couples the mediating mode (mode B) 

and the input mode (mode A). Modes A and C are forward propagating, whereas mode 

B can be forward (Figure 1) or backward (Figure 2) propagating. The optical field can be 

expressed as a mode superposition as in (5), where the mode amplitudes are described 

by coupled-wave equations as in (21), and the system matrix H can be expressed as 

(46) 

The upper sign corresponds to mode B forward propagating and the lower sign for B 

backward propagating. In (46) it was assumed that the overlap coefficients, Pj*k' and 

the self-coupling coefficients, Kkk' are neglibible. In (21), a = [a A an acY and a; for 

i = A,B,C are the mode amplitudes for the respective modes. The reference de tuning 

D a was arbitrarily set to zero so that from (40), 

Db =-2Dab 
De = -2(Dab -Deb) 

(47) 

In order to find the eigenvalues of H, the following characteristic equation has to 

be solved: 

(48) 

Although an analytic solution exists in the general case, it is very involved and 

difficult to interpret. Here only the important case of Dc = 0 is considered, i.e., modes A 

and C are phase-matched. In this case, which will be denoted as two-photon resonance, the 

eigenvalues are given by 
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(49) 

where lC; = lCablCba + lC cb lC bc ' The corresponding unnormalized eigenmodes, or 

supermodes, are given by: 

E; = [± lC ab f3; ± lC cb Y where i = 0,+,- (50) 

If a "canonical basis" is defined in terms of the uncoupled waveguide modes: 

(51) 

then, the normalized supermode corresponding to the zero eigenvalue, Eo, is given by: 

(52) 

For the "counterintuitive" coupling sequence in the device here considered, we have 

r lCab{Z) ° => Eo ~EA for Z~-OO 1m = 
z~--oo lC cb ( Z ) 

(53) 
r lC cb {Z) ° => Eo ~Ec for z~ +00 1m = 
H+oo lC ab ( Z ) 

The analysis above enables us to predict the behavior of the device in the 

adiabatic regime. At the input, and according to Figure 1 and Figure 2, lC ab tends to zero, 

and if the canonical mode E A is incident in the mode converter, then the supermode Eo 

will be excited. The supermode Eo corresponds to eigenvalue zero, so in the adiabatic 

approximation, if excited initially, it will propagate along the structure unperturbed. 

Thus, provided that the Z -dependent perturbation is introduced slowly enough, the 
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energy remains in the supermode Eo, and is adiabatically transferred totally to the 

waveguide mode E c ' with E B not being ever excited. This is true regardless of the 

possible phase mismatch between E B and E A and between E B and E c . We notice that 

the process does not depend on the behavior of lim 1C cb (z) and lim 1C ab (z) , since these 
z~-oo z + --oo 

coefficients couple modes that ideally have not been excited. If E A and Ec are not 

phase-matched, the eigenvalue Po does not equal zero. For the effective operation of the 

device, the coupling regions have to overlap in space. 

V.2.2 Adiabatic mode conversion mediated by a 

forward propagating mode. 

V.2.2.A Theory. 

Many technologically important optical devices such as optical couplers, 

switches and modulators are based on the transfer of energy between two optical 

waveguides that are sufficiently close to each other so that the optical fields overlap in 

some region. Since the required coupling length for complete transfer of energy usually 

has a strong dependence on both the wavelength and the polarization, the above device 

may only operate in a narrow band and has a strong polarization sensitivity, large 

insertion loss and cross-talk. 

Adiabatic waveguide transitions, i.e., transitions that take place gradually with 

propagation distance, have already been used successfully to overcome these limitations 

[10]. Figure 1 illustrates a new type of adiabatic coupler that consists of three waveguide 

and two adiabatic coupling regions. The waveguide C has a segment close to the 

waveguide B to allow evanescent coupling therebetween to form the first coupling 

region. Similarly, the waveguide A has a segment close to a second portion of the 

waveguide B to form the second coupling region. These two coupling regions partially 

overlap. If the coupling regions satisfy the adiabatic condition, and if the waveguides A 
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and C are phase-matched, all the energy in the waveguide A can be transferred to the 

waveguide C, and the mode in waveguide B is never excited. No phase-matching 

between A and B or between B and C is required to achieve complete energy transfer 

between A and C. 

The coupled mode theory of this type of structure was developed in section 

V.1.3.A. There it was argued that the waveguide modes are not orthogonal, and the non

zero overlap coefficients should be taken into account. However, as a first 

approximation, P i"¢k and Kkk can be neglected, and thus R equals the identity matrix. 

Also, it will be assumed that K ik = K kj • This is not necessary but it greatly simplifies the 

notation and does not change the conclusions qualitatively. 

With the simplifications above, this problem is the exact spatial analogy of the 

stimulated Raman process in three level systems [15]. The eigenmodes at and off 

resonance can be found in [16], [17]. 

V.2.2.B On the adiabaticity condition. 

Since the devices and phenomena considered in this section depend on adiabatic 

transitions, it is important to understand the adiabaticity. This can be evaluated by 

introducing a higher-order correction to the system matrix describing the evolution of 

the adiabatic eigenmodes. 

The total field is given by: 

(54) 

Here, the matrix E, defined as: 

(55) 
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is the matrix containing the eigenmodes and the vector a = [a+ ao aJT contains the 

amplitudes of the eigenmodes. 

The system matrix H can be transformed from the canonical basis to the basis 

composed of the adiabatic supermodes. Let the vector b be 

(56) 

Then, using (21) 

. db lIb A • dE A 'EA da 
l-=.rll =l-a+l -

dz dz dz 
(57) 

From the equation above, the mode amplitudes ao and tl± satisfy the equation: 

.da H A 

l dz = ada (58) 

where the adiabatic system matrix, Had' is given by 

H = E -tHE -iE-t ~E = B -iE-t ~E 
ad dz dz 

(59) 

Here, B is a diagonal matrix with the eigenvalues in the main diagonal, ~ + Po P -J. 
The adiabatic system matrix Had can be obtained by substitution of the eigenmodes and 

eigenvalues in (59) and is given by [16] 

[ 

1(0 ~otCP if) sincp 

Had = - if} sincp 0 

-i¢ iecoscp 

where the angles cp and () are defined as 

21( tan2cp = __ 0 

8b 

i¢ ] 
- i() COScp 

-1(0 tancp 

(60) 

(61) 

(62) 
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Adiabatic evolution takes place if the adiabatic supermode Eo is effectively 

decoupled from the other two adiabatic supermodes E+ and E_. According to equation 

(60), this will be the case if the non-diagonal elements involving e are small compared 

to the non-zero terms in the diagonal. On resonance, qJ = n /4, and the adiabaticity 

condition takes the simple form 

(63) 

From (61), 

(64) 

Then, the adiabaticity condition becomes: 

(65) 

If the two coupling coefficients are roughly of equal magnitude, then e is independent 

of the coupling coefficient amplitude and inversely proportional to the speed of spatial 

variation of the coupling coefficients. Then, the adibaticity condition is satisfied if the 

total area of the coupling coefficients is large enough and the relative change with z is 

smooth enough. 

As the detuning increases, cp is not constant, and the adiabaticity condition 

becomes more restrictive and the adiabatic approximation is increasingly less valid. 

V.2.2.C Simulation. 

One of the advantages of the scheme here presented over existing devices is the 

flexibility in coupling coefficient profile. As long as the coupling coefficients follow a 

"counterintuitive" sequence, and the adiabaticity condition is satisfied, efficient transfer 

of power is achieved. Figure 3 displays the power in the different modes at the output of 

the device for two different choices of coupling coefficients and a function of the 

de tuning between A and B, with A and C on resonance (the plots are symmetric for 
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negative detuning between A and B). The coupling coefficients are normalized so as to 

have same area, defined as Area = fo~ cb dz, in both cases. The shape of K cb and K ab is 

the same. In addition, in both cases, Kcb is nearly zero at the point where K ab is 

maximum and vice versa. In the left column, the coupling coefficient is a supergaussian, 

K cb oc exp( -az4
) , and in the right column the coupling coefficient is K cb oc cos2 (az) . In 

Figure 3 it can be observed that, even though the coupling coefficients are substantially 

different, the mode power transfer is nearly the same. In addition, the analysis presented 

above remains valid even at large values of detuning between A and B, indicating that 

only A and C need to be on resonance. 
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Figure 3: Mode power (bottom plots) on two-photon resonance, i.e., f3 a = f3 c ' 

as a function of the detuning between mode A and B for the two 

coupling coefficients displayed in the upper plots. Input mode A is 

solid, mediating mode B is dotted and output mode C is dashed curve. 
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Figure 4: Power in input mode A (bottom left) and output mode C (bottom 

right) on two-photon resonance, i.e., f3 a = f3 c ' as a function of the 

de tuning between mode A and B for the coupling coefficients displayed 

in the upper plot. All coupling coefficients have same shape and area, 

but different overlap. The number in the upper plot is the ratio between 

1(cb and 1(ab at the point where 1(ab is maximum for the different 

coupling coefficients. 
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An important parameter for ensuring proper operation of the device is the 

overlap between 1( cb and 1(ab. It is required that 1(cb and 1(ab overlap to some extent, 

and the degree to which they overlap might affect the device performance. Figure 4 

shows the power in input and output modes at two-photon resonance as a function of 

the de tuning between A and B for several coupling coefficients. 1(cb and 1(ab have the 
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same shape and IC cb OC cos 4 (az). The value of a is different in each case and determines 

the amount of overlap. The coupling coefficients in all cases are normalized so as to have 

same area. The number in the upper plot indicates the ratio between IC cb and IC ab at the 

point where IC ab is maximum for the different values of a . It can be observed that when 

the coupling coefficients do not overlap (circles), there is not power transfer to mode C, 

which remains zero even on full resonance f3 A = f3 B = f3 c . As the overlap between IC cb 

and lCab increases, the power transfer efficiency improves, and the allowable detuning 

between modes A and B (or equivalently C and B) increases. When the overlap becomes 

very large, IC cb has a non-negligible value at the point where lC ab reaches is maximum. 

As a consequence, the limits in (53) are less valid, and the power transfer exhibits an 

oscillatory behavior (diamonds) that becomes worse as the overlap increases (or 

equivalently the ratio between IC cb and lC ab at the point where lC ab is maximum 

increases). 

The detailed frequency dependence of the mode power at the device output has 

been depicted in Figure 5. The gray scale indicates the mode power and the horizontal 

and vertical axes are the detunings between A and B and between A and C, respectively. 

These plots have been calculated for the coupling coefficient on the left upper plot in 

Figure 3. It is observed that as the detuning between A and B (or equivalently C and B) 

increases, the device becomes narrow-band in the sense that a small detuning between 

modes A and C can spoil the mode conversion. 

This is further observed in Figure 6, which illustrates the power in modes A 

(circles), B (triangles) and C (squares) on two-photon resonance, i.e., modes A and C 

phase-matched, (empty markers) compared to that for some de tuning between A and C 

(solid markers). On two-photon resonance, the power in mode A is efficiently 

transferred to mode C even for large detunings between A and B. However, if all three 

modes are detuned, then the power transfer is spoilt and the power remains mainly in 
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mode A with some loss to mode B, which decreases as the detuning between A and B is 

raised. 
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Figure 5: Contour plots of mode power in input mode A (a), mediating mode B 

(b) and output mode C (c) as a function of detuning between A and B 

(horizontal axis) and detuning between A and C (vertical axis). 
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The frequency behavior outlined above can be used to an advantage in a variety 

of applications. Two of these will be described in the following. 

1) Optical switch 

An optical switch with low insertion loss and cross-talk can be realized using the 

mode conversion mechanism here presented. The middle waveguide, corresponding to 

mode B, should have different propagation constant than the input and output 

waveguides, which can be achieved by proper design of waveguide dimensions and 

index of refraction profiles. The input and output waveguides should be identical in 

order to be phase-matched. 

According to the previous discussion, even for some detuning between A and B, 

efficient energy transfer occurs from input to output mode. In addition, with a relatively 
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small change in the propagation constant of mode C, which could be achieved through 

some nonlinear phenomenon, the mode conversion would be spoilt. For instance, if a 

system requirement is that the cross-talk is less than 30dB, then, as shown in Figure 6 

with the dotted lines, detunings PaL - PbL ~ 100 and PeL - PaL ~ 12.5 are required. 

There is some insertion loss «.5dB) of power transferred to mode B, but which does not 

result in cross-talk. 

This type of mode conversion has an additional advantage over other devices. 

Since there is no coupling between input and output modes, the loss that can accompany 

the change in refractive index in the cross-state, does not affect the input mode, which 

travels unaffected. In addition, all other benefits of adiabatic structures such as low 

polarization sensitivity also apply. The optical switch will be broadband if the detuning 

between A and C is large enough at all wavelengths of interest. 
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Figure 6: Mode power in modes A (circles), B (triangles) and C (squares) for 

f3a =f3c (empty),and f3a :;t:f3c (solid). (a) is for f3cL-f3aL=l2.5 and 

(b) is for f3cL - f3aL = 25. The coupling coefficients are those on the 

left upper plot in Figure 3. 

2) Wavelength-selective coupler 

169 

Recent applications require devices that couple light from one waveguide to 

another over a specific wavelength band, but leave the rest of the spectrum unaffected. 

Some of these include wavelength-division-multiplexing of the transmission bands at 

1310nm and 155Onm, and demultiplexers of pump and signal waves for erbium-doped 

fiber amplifiers. Most of the current designs use coupling between two dissimilar 

waveguides. This approach suffers from the same drawbacks mentioned before such as 

polarization sensitivity and poor efficiency. In addition, since the coupling efficiency 

varies sinusoidally with wavelength, it is difficult to nullify the coupling outside the 

band of interest, and the cross-talk can be significant. 
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Using three dissimilar waveguides, the refractive index profile and waveguide 

dimensions can be chosen so that waveguides A and C are only phase-matched at the 

band of interest. Outside this band, waveguides A, B and C are not phase-matched and 

no coupling occurs, leaving the input mode unaffected. As before, this device would 

exhibit low polarization sensitivity, low cross-talk and good coupling efficiency. 

V.2.3 Non-adiabatic mode conversion mediated by a 

Bragg backward propagating mode. 

V.2.3.A Theory. 

The structure of the mode converter is shown in Figure 2. The device should be 

fabricated in a waveguide that supports three propagating modes. In this case, adiabatic 

coupling is not required, and the principle of operation can be explained as follows. 

When mode A is incident on port <D, it travels forward unaffected by the first grating. 

When mode A reaches the second grating, it is reflected back into mode B. Mode B then 

travels backward and reaches the first grating, where it is reflected back into mode C. 

Mode C travels forward along the second grating, which has no effect on it. As a result 

mode C emerges from port 0. In addition, if mode C were incident on port <D, it would 

be very strongly reflected. 

Since efficient coupling only occurs at the Bragg-wavelength, this device is 

narrow-band. If the coupling coefficients are strong enough to produce enough coupling 

between both optical polarizations, the device would be polarization insensitive. 

The system matrix associated with this device is given by: 

1(ab 

(66) 
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One of these eigenvalues, /30' is always real, whereas the other two, /3±, can be complex 

conjugate, inside the so-called forbidden region, or both real, outside of the forbidden 

region. On the boundary the two supermodes E± are degenerate. 

The eigenvectors are given by 

where i = 0,+,- (67) 

In consideration of the discussion in section V.1.3.B, inside the forbidden region the 

eigenvectors Eo and E± can be normalized so as to satisfy the following orthonormality 

relations: 

(Eo,E±) =0, (Eo,Eo)=1 

(E±,E±) =0, (E±, E~)=1 

whereas outside of the forbidden region 

(Eo,E±) =0, (Eo,Eo)=l 

(E±,E~)=O, (E±,E±)=l 

(68) 

(69) 

On the boundary, the eigenvalues are degenerate, and the eigenvectors do not form a 

complete set. 

The characteristic equation (48) is a cubic equation that has an analytical solution 

[18]. If we define the parameters 

p = !(ObO c + ITC ab l
2 

+ ITCcl)- .!.(Ob + 0 J2 
3 9 

q = -.l-.(Ob + 0 J3 + .!(c\ + 0 c X8b8 c + ITC ab l
2 

+ ITC cb I2 )-.!8 ciTC ab l
2 

27 6 2 

(70) 

then the discriminant is given by q2 + p3. If the discriminant is positive, then one root is 

real and two are complex conjugates. If the discriminant is zero, then there are three real 

roots, of which at least two are equal. If the discriminant is negative, then there are three 
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unequal real roots. Thus the equation q2 + p3 = 0 describes the boundary of the 

forbidden region. The eigenvalues are given by 

(71) 

where 

(72) 

The eigenvalue /30 is always real whereas /3± are complex conjugate inside the 

forbidden region, i.e., for q2 + p3 > 0, are real outside of it, and are equal at the 

boundary. 

In the following only the case of two-photon resonance is considered, i.e., 

() c = - 2( () ab - () cb) = O. Further, the analysis will be restricted to the region inside the 

forbidden gap, that is 

(73) 

To simplify notation, it will be assumed that the coupling coefficients, Kab and K cb ' are 

real and positive. Normalized parameters can be defined 

Kcb r=-
Kab 

/1=~ 
2Kab 

so that the eigenvalues take the form 

/30 = 0 

/3± = KaJ/1 ± i.JI + r2 _/12 ) 

and the corresponding normalized eigenvectors satisfying (68) are 

(74) 

(75) 
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A 1 [ ]T Eo = r:---7 r 0 -1 
'\j 1 + r2 

(76) 

where 

sina = 
J1J' a E[-~ ~] 2'2 

(77) 

The "canonical basis" in terms of the uncoupled waveguide modes, (51), will be used. 

These three vectors are orthogonal and normalized to unity power flow, and correspond 

to the unperturbed waveguide modes A, B and C. This is an unusual basis in the sense 

that the power flow associated with the second mode, E B' is negative, whereas modes 

E A and Ee carry positive power flow. The eigenvectors can be expressed as 

combination of these canonical modes: 

'fi~ 
EA e (E -. r:---7l 2 ±iaE £) 

± = r:---7 ~ A + l'\j 1 + r- e B + r e 
.J2cosa '\j 1+ r2 

(78) 

The analysis above enables us to predict the behavior of the device in the adiabatic 

regime. At the input, and according to Figure 2, r tends to infinity, and if the canonical 

mode E A is incident in the mode converter, then the supermode Eo will be excited. As 

explained above, in the adiabatic approximation, this mode, if excited initially, will 

propagate along the structure unperturbed, and the canonical mode Be will emerge at 

the output. 

V.2.3.B On the adiabaticity condition. 

A similar analysis to that in V.2.2.B will be followed. The matrix e in (55) can be 

expressed in a more convenient way by defining the angles e and cp such that: 
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. e I e r sm = r:--:; , cos = r:--:; 
" I + r2 "I + r2 

-i% i% . e e 
(79) 

smQJ = .J2eosa' eosQJ = -.J'Fi=e=os=a= 

Thus, 

[

sine sinQJ eose 

E = -ieosQJ 0 

eose sinQJ - sine 

si~e. eOSQJJ 
IsmQJ 

eose eosQJ 

(80) 

This is similar to a rotation with angles () and cpo However, in this case cp is a complex 

angle, and the transformation is not S -unitary because, as mentioned above, the 

canonical modes are not all normalized to the same value. 

Using the orthonormality relations (68), it can be shown that 

E~sE=1 

where 

Thus, 

E-I =IE~E 

and substituting E from (80) we get 

A [Sine sinQJ 
E - I = eose 

sine eosQJ 

i eosQJ 

o 
- i sinQJ 

Then, substituting E and E-I in (59), we obtain 

eose SinQJJ 
- sine 

eose eosQJ 

(81) 

(82) 

(83) 

(84) 
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I(ab 

- sin 2cp + cos 2cp cot cp 
sin() 

-8 sincp 
. cos2cp 

-rtl-I( 
't' ab • () 

SIn 

8 sincp 

o 
8 coscp 

. cos2cp 
cp -I(ab • () 

SIn 

-8 coscp 
sin 2cp + cos 2cpc tan cp 

I(ab 
sin() 

where an overdot indicates derivative with respect to z . 

On resonance the matrix above simplifies to: 

-8 
8 
o 
8 

o 1 
,J2x

ab 
cosec() 

and the adiabaticity condition takes the simple form: 

. I( 

I()I«~ 
sm() 

or equivalently, substituting () and 8 from (79), 
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(85) 

(86) 

(87) 

(88) 

The same conclusions as in section V.2.2.B can be drawn. The adibaticity 

condition is satisfied if the area of the coupling coefficient is large enough and the 

relative change with z is smooth enough. 

V.2.3.C Simulation. 

Most of the conclusions drawn in section V.2.2.C for the case of adiabatic 

transitions with mode B forward propagating are also valid when mode B is backward 

propagating. In Figure 7 another example is given. Here, the power in the different 

waveguide modes has been plotted along the direction of propagation for adiabatic 

Gaussian-shaped coupling coefficients (shown in the upper plot) with several strengths. 

As expected, the backward mode, B, is hardly excited. As the magnitude of the coupling 

coefficient increases, the adiabaticity condition is more valid (as explained in section 
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V.2.3.B), and the energy transfer to mode B decreases substantially, as well as the mode 

conversion efficiency improves. 

... 
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Figure 7: Spatial evolution of mode power for adiabatic grating-assisted mode 

converter on resonance for several coupling strengths. Mode A is solid, 

mode B is dotted and mode C is dashed curve. The upper plot shows the 

coupling coefficients. 

In the case of uniform coupling coefficients, an analytic solution can be obtained 

for the propagating field by using the supermodes previously derived. If the two 

gratings do not overlap completely, three regions are distinct, and the field is a 

superposition of the supermodes, where the coefficients are found by applying the 

boundary conditions. Figure 8 shows the reflection coefficient at the input of a device 

with two overlapping uniform gratings as a function of the frequency deviations, 8 ab 

and 8 cb' The boundary of the forbidden region was calculated by using (70) and the 

theory in section V.2.3.A, and is shown with a thick solid line. Near resonance for both 

gratings, the reflection coefficient decreases because part of the input mode A is 
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converted into mode C. When the first grating that couples B and C is off resonance, 

there is a large reflection due to the second grating. Inside the forbidden region, the 

reflection coefficient is expected to be uniform, whereas outside it, all the eigenvalues 

are real, and the reflectivity has an oscillatory behavior. 

3 o 
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Figure 8: Contour plot of the reflection coefficient (in dB) at the input of a 

uniform grating-assisted mode converter with K cb L = KobL = 20. The 

thick solid line indicates the boundary of the forbidden region. 
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