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Abstract

Mixing and the geometry of jet-fluid-concentration level sets in turbulent trans-
verse jets were experimentally studied. Jet-fluid concentration fields were measured
with laser-induced fluorescence and digital imaging techniques for transverse jets
in the jet Reynolds number range 1.0 × 103 ≤ Rej ≤ 20 × 103. The scalar field
is assessed in terms of classical measures, such as two-dimensional power spec-
tra, as well as probability-density functions (PDFs). Enhanced scalar mixing with
increasing Reynolds number is found in the evolution of PDFs of jet-fluid con-
centration. In the far field of the transverse jet, the scalar PDF evolves from a
monotonically-decreasing function to a strongly-peaked distribution with increas-
ing Reynolds number. Turbulent mixing is found to be flow dependent, based on
differences between PDFs of scalar fields in transverse jets and axisymmetric, turbu-
lent jets. The distribution of scalar increments is studied for separations of varying
distance and direction using a novel technique for whole-field measurement of scalar
increments. Probability-density functions of scalar increments are found to trend
toward exponential-tailed distributions with decreasing separation distances. The
scalar field is anisotropic with decreasing scale, as seen in the two-dimensional power
spectra, directional scalar microscales, and in directional PDFs of scalar increments.

The geometric complexity of level-sets (iso-concentration contours) in turbulent
mixing is assessed within the framework of fractal geometry. Generalized coverage
statistics are introduced for anisotropic, non-self-similar geometries. This general-
ized coverage counting involves covering with parallelepipeds of varying size and
aspect ratio. A scale-dependent measure, β, of the anisotropy of a set is also in-
troduced. It is shown that β transforms the coverage count, N(λ1, λ2), to isotropy
through a scale-dependent normalization of the coordinates. Level sets of jet-fluid
concentration in the transverse jet are found to be anisotropic at both large and
small scales. The small-scale anisotropy is attributed to vertically-oriented exten-
sional strain caused by a counter-rotating vortex pair, and the large-scale anisotropy
is associated with the horizontally-elongated shape of the cross-section of the trans-
verse jet. For the special case of isotropic box-counting, the scale-dependent cover-
age dimension is found to vary from unity, at the smallest length scales, to 2, at the
largest length scales, indicating that the isosurfaces produced by turbulent mixing
are more complex than can be described by power-law fractals.
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CHAPTER 1

Introduction

The turbulent jet discharging into a crossflow, or transverse jet, is a turbulent

free-shear flow of both fundamental significance as well as environmental and tech-

nological application. Thermal plumes generated near ground level by volcanoes,

thunderstorms, or forest fires can often rise to heights in the atmosphere where

significant crossflow exists. Plumes emitted from smokestacks into a crosswind are

perhaps the most familiar instances of transverse jets. However, transverse jets

also arise in situations as diverse as effluent discharge into rivers from sewage treat-

ment plants, VTOL/STOL aerodynamics, steering jets, blade-and-endwall cooling

in gas-turbines, and potentially, fuel injection in high-speed airbreathing propul-

sion devices, such as SCRAMJETS (Mathur et al. 1999). Buoyancy is important

to varying degree in many of the transverse jets discussed; however, buoyancy-driven

transverse jets are similar in structure, and appear to share many characteristics

with, momentum-driven transverse jets.

Early studies of transverse jets focused on jet trajectories, mean velocity fields,

and cross-sectional shapes (Keffer and Baines 1963, Kamotani and Greber 1972,

Chassaing et al. 1974). The existence of a persistent counter-rotating vortex pair

in the far field of the transverse jet was noted in numerous experiments (Keffer and

Baines 1963, Fearn and Weston 1974). Broadwell and Breidenthal (1984) modeled

the counter-rotating vortex pair as a global consequence of the normal momentum

imparted by the jet to the freestream. Karagozian (1986) studied the vorticity

associated with a transverse jet, and modeled jet trajectories, mean vortex-pair

strength, and reaction lengths. Periodic motion in the wake of the transverse jet

was noted by Gordier (1959), McAllister (1968), and Reilly (1968). Characteristic

Strouhal frequencies were measured by McMahon et al. (1971) and Moussa et al.

(1977). Vortices in the wake of a turbulent jet issuing transversely to a freestream
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were first visualized by Kuzo and Roshko (1984). Fric and Roshko (1994) studied

the origin and formation of wake vortices, and their work generated renewed interest

in the structure and dynamics of vorticity in transverse jets (Kelso and Smits 1995,

Morton and Ibbetson 1996, Kelso et al. 1996). Kuzo (1996) reported that, under

certain conditions, the mean flow state in the far field of the transverse jet is not a

symmetric vortex pair, but unsteady and asymmetric with possible tertiary vortices.

A comprehensive review of jet-in-crossflow research was presented by Margason

(1993).

Mean scalar fields in transverse jets have been experimentally measured by An-

dreopoulos and Rodi (1984) and Niederhaus et al. (1997). Large-eddy simulations

were conducted by Yuan et al. (1999), among others. Three-dimensional vortex

elements were used by Cortelezzi and Karagozian (2001) to compute the formation

of the counter-rotating vortex pair in the near field of transverse jets. The vortex

interaction region, mean trajectories and concentration decay, and overall structural

features of mixing were studied by Smith and Mungal (1998). Yet, as noted by

Niederhaus et al. (1997), “...the vast majority of the published work [on transverse

jets] has focused on issues concerning the velocity field. Remarkably, there is a

scarcity of research directed toward scalar transport or mixing, even though the

majority of applications require knowledge of the transport of either mass or heat.”

The geometry of the isosurfaces of the scalar fields in turbulence is important for

many applications. In the case of non-premixed combustion, for instance, the rate of

chemical reaction depends on the area of the instantaneous stoichiometric surface,

an isosurface of fuel-to-air ratio. The isosurfaces produced by turbulent mixing

have long been proposed to be candidates for description by a fractal geometry

(Mandelbrot 1975). A generalized fractal geometry that is allowed to depend on

the scale of observation was introduced by Takayasu (1982). Independently, Miller

and Dimotakis (1991), on the basis of their experiments, and Dimotakis (1991),

on the basis of scaling arguments, introduced a scale-dependent geometry in the

context of fluid turbulence. Dimotakis (1991) gave scaling arguments regarding

the dimensional inconsistency of constant (power-law) fractal dimensions in nature.

Catrakis and Dimotakis (1996) also found scale-dependent coverage dimensions,

D2(λ)), i.e., the geometric complexity of the isosurfaces in turbulent axisymmetric
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jets is greater than can be described by a power-law fractal. They also established

a connection between the scale-dependent fractal geometry, and the distribution of

spatial (largest empty-box) scales in the flow.

Experiments are described here on the mixing and isosurface geometry of trans-

verse jets as a function of Reynolds number. Details of the experiment and imaging

procedure, and sample image data, are given in Ch. 2. A local, circulation-based

Reynolds number is introduced, and viscous-dissipation and scalar-diffusion scales

are estimated. In Ch. 3, classical measures of turbulent jets, such as trajectories,

concentration decay, and power spectra, are presented for the transverse jet. Chap-

ters 4 and 5 describe the scalar field, and scalar-difference field, respectively. The

scalar field of the transverse jet, and Reynolds-number effects on turbulent mixing,

is described in Ch. 4 in terms of probability-density functions (PDFs) of jet-fluid

concentration. Comparison is made between mixing in transverse jets, and turbu-

lent jets discharging into a quiescent reservoir. In Ch. 5, a technique for whole-field

measurements of scalar increments is introduced, and PDFs of scalar increments

are computed in the far field of the transverse jet. Whole-field measurements are

made of the PDFs of scalar concentration differences,

∆rC ≡ C(x + r, t) − C(x, t) , (1.1)

as a function of the separation distance, r, and jet-exit Reynolds number. Direction-

dependent scalar microscales are considered, and the scalar-field anisotropy is quan-

tified as a function of Reynolds number. An explanation for the observed anisotropy

of the scalar field in transverse jets is proposed.

The geometry of level sets of jet-fluid concentration in the transverse jet is also

assessed. Chapter 6 reviews fractal geometry, and introduces a generalization of

fractal geometry that is applicable to anisotropic sets. The ideas involved in this

generalization are illustrated using two simple examples of a rectangular perimeter,

and a Sierpinski carpet. A scale-dependent measure of anisotropy is introduced as

the normalization required to transform the coverage count to isotropy. In Ch. 7,

the generalized coverage count, and scale-dependent anisotropy, of transverse-jet

isosurfaces, are computed for varying concentration thresholds and two different

Reynolds numbers. The special case of isotropic (box-counting) coverage statistics
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is considered for the transverse-jet data, and comparisons are made to previous

investigations of turbulent, axisymmetric jets.
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CHAPTER 2

Experiments and imaging technique

This chapter details experiments on turbulent mixing and the isosurface geom-

etry of jets in crossflow (transverse jets). The transverse-jet facility in the GALCIT

Free-surface Water Tunnel (FSWT) is described, along with laser-induced fluores-

cence (LIF) and digital-imaging techniques that enabled quantitative measurements

of jet-fluid concentration fields for liquid-phase transverse jets. Concentration mea-

surements were made in planes perpendicular and parallel to the freestream, for jet

Reynolds numbers 1.0 × 103 ≤ Rej ≡ djUj/ν ≤ 20 × 103, where dj is the jet-nozzle

diameter, Uj is the exit velocity of the jet, and ν is the kinematic viscosity. The

calibration procedure used to normalize LIF images into scalar concentration data

is described. Examples of scalar concentration fields are given for two different jet-

to-freestream velocity ratios, and the differences are discussed. Three-dimensional

visualizations of the jet-fluid-concentration isosurface for low Reynolds numbers

are shown. An assessment is made of the local, circulation-based Reynolds number,

ReΓ ≡ Γ/ν, as a function of the jet-exit Reynolds number Rej ≡ djUj/ν. The

Kolmogorov and scalar diffusion scales for the flow conditions are estimated and

compared to the imaging resolution.
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2.1 Experimental facility

Experiments on turbulent mixing and isosurface geometry in liquid-phase trans-

verse jets were conducted in the GALCIT Free Surface Water Tunnel (FSWT) using

laser-induced fluorescence (LIF) and digital-imaging techniques. The FSWT is a

closed-circuit facility with a 20 in (0.508 m) wide by 30 in (0.762 m) deep test sec-

tion. For these experiments, the FSWT was operated as a water channel with a

square cross-section by maintaining the water level at a depth of 20 in (0.508 m)

and fitting a surface plate flush to the top of the water surface (Fig. 2.1). Jet

flow transverse to the freestream was established by air-pressurizing an inverted,

liquid-filled plenum and injecting downward into the test section, through a noz-

zle in the surface plate. Water in the plenum was seeded with a fluorescent dye,

rhodamine-6G chloride, at molar concentrations between 1.4×10−6 and 1.4×10−5.

Tunnel water, which was left unseeded, did not fluoresce under laser illumination.

The non-dimensional ratio of kinematic viscosity, ν, to scalar diffusivity, D, is the

Schmidt number, Sc ≡ ν/D. Rhodamine-6G, dissolved in water, is estimated to

have a Schmidt number Sc � 8.4×103 (Axelrod et al. 1976, Walker 1987). At this

high Schmidt number, the scalar diffuses much more slowly than the vorticity, and

the dye, once it enters a vortex, would continue to mark the core of the vortices.

The scalar field for Sc > 1 may have length scales smaller than the smallest length

scales of the vorticity field, as discussed in Sec. 2.5.

The laser-excitation and fluorescence-emission peaks of rhodamine-6G, when

dissolved in water, are at λ = 526 nm and λ = 555 nm, respectively (Pringsheim

1949). The output from a frequency-doubled, Q-switched Nd:Yag laser (Continuum

YG661) was passed through a series of cylindrical lenses, which expanded the beam

into a sheet, while focusing it to a waist at the center of the imaged field of view.

The thickness of the laser sheet was less than 1 mm throughout the field of view of

the camera. Figure 2.1 shows a schematic of the experimental facility and imaging

configuration for acquiring streamwise sections of the scalar-concentration field on

the centerline of the transverse jet. Transverse slices of the jet scalar field were

also measured at a downstream location x/dj = 50, where dj = 7.62 mm is the jet

diameter, by inserting an elliptically-shaped, flat mirror in the water at 45◦ to the

freestream. The CCD camera was mounted on top of the water channel, and looked
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Fig. 2.1 Experimental facility and imaging configuration for acquiring streamwise
sections of transverse jet.

Fig. 2.2 Experimental facility and imaging configuration for acquiring transverse
sections of transverse jet, measured at downstream location x/d = 50.

down on the mirror through an optical window at the water surface (Fig. 2.2).
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2.2 Jet-fluid concentration measurements

LIF images of the scalar (jet-fluid) concentration field were recorded at 10

frames/second with a custom, 12-bit/pixel, (1024× 1024)-pixel digital-imaging sys-

tem, dubbed the “Cassini camera.” The camera, designed and built by D. Lang, in

collaboration with S. A. Collins and M. Wadsworth of the Jet Propulsion Labora-

tory, utilizes a low-noise, high dynamic-range CCD sensor developed for NASA’s

Cassini spacecraft. Contiguous time-sequences of 254 images were recorded for

streamwise sections of the jet, and 508 images for transverse sections. All data were

recorded in a darkened laboratory to minimize noise from ambient light. A Ko-

dak #21 optical low-pass filter was used to block residual (excitation) laser light.

The jet-fluid concentration field, referenced to a known concentration, was com-

puted by calibrating the raw fluorescence image data with 32 ensemble-averaged,

uniform-concentration images and 32 ensemble-averaged, background-illumination

images,
c(x1, x2, t)

cref
=

Iraw(x1, x2, t) − 〈 Iback(x1, x2) 〉
〈 Iref(x1, x2) 〉 − 〈 Iback(x1, x2) 〉 . (2.1a)

For streamwise (vertical, plane-of-symmetry) slices of the transverse jet, the

coordinates x1, x2 denote the streamwise, x, and vertical, y, directions, respectively

(Figs. 2.3 - 2.6). For transverse slices of the transverse jet, x1, x2 denote the

horizontal (spanwise), z, and vertical, y, directions, respectively (Figs. 2.7 - 2.10).

The origin of the coordinate system is taken to be the jet-nozzle exit in all cases.

X −Y −Z form a right-handed coordinate system, with x pointing in the direction

of jet injection (downward), y aligned with the freestream flow, and z directed in

the spanwise direction.

The background images, Iback(x1, x2), were recorded shortly before each run,

with the laser firing and the optical low-pass filter on the camera lens, but with-

out the (fluorescent-dye seeded) jet running. The reference images, Iref(x1, x2),

were recorded after each run by immersing a transparent Lucite container filled

with well-mixed fluorescent dye of known concentration, cref , in the test section.

This procedure provides a pixel-by-pixel calibration that normalizes the collective

effects of CCD-pixel sensitivity variation, laser-illumination nonuniformity, and the

imaging-system optical transfer function. The imaged jet-fluid concentration was
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then referenced to the jet-plenum dye concentration, c0, by scaling all values with

cref/c0 to yield the normalized jet-fluid-concentration scalar values, C, i.e.,

0.0 ≤ C(x1, x2, t) ≡ c(x1, x2, t)
c0

=
c(x1, x2, t)

cref

cref

c0
≤ 1.0 . (2.1b)

The jet-plenum dye concentration, c0, and the reference concentration, cref ,

are known when the dye solutions are mixed. For streamwise sections of the jet,

shot-to-shot variations in the output power of the pulsed laser were normalized by

measuring the fluorescence-intensity fluctuations at the jet-exit (c0 is constant dur-

ing the course of an experiment, and the jet exit is visible in the streamwise images).

For transverse sections, the jet exit is not visible in the images, so a fiber-optic probe

was used to collect a small fraction of the laser output and direct the illumination

to a test tube filled with a rhodamine-6G solution. The intensity fluctuations of

this fluorescent sample were imaged in an unused corner of the CCD array, and

shot-to-shot laser-power variations were normalized with this measurement.

2.3 Jet Reynolds numbers and velocity ratios

The experiments were conducted at jet Reynolds numbers of Rej ≡ Uj dj/ν =

1.0, 2.0, 5.0, 10, and 20 × 103. Uj is the mean jet-exit velocity, dj is the jet-nozzle

diameter, and ν is the kinematic viscosity. The jet-to-freestream velocity ratio,

Vr ≡ Uj/U∞, was 10.1. Examples of the calibrated and normalized scalar-field data

for streamwise sections of the transverse jet are shown in Fig. 2.3 for Rej = 1.0×103

and Fig. 2.4 for Rej = 10 × 103.

Examples of transverse sections of the jet at the downstream location x/dj = 50

are shown in Figs. 2.7 and 2.8. The images are of the Vr � 10.1 jet for Rej = 1.0×103

and 10 × 103.

For comparison, examples of streamwise slices (plane of symmetry) of the trans-

verse jet for Vr � 32.3 are depicted in Figs. 2.5 and 2.6. Thin vertical “fingers” of

dye are seen to extend from the body of the jet toward the wall through which the

jet was injected. Jet fluid, in the form of these “fingers”, is also seen in transverse
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Fig. 2.3 Jet-fluid concentration in a streamwise slice (plane of symmetry) of the
transverse jet for Rej = 1.0 × 103. Vr � 10.1. Image data scaled by x1/2

to compensate for downstream decay (for display purposes only).

sections of the high-velocity-ratio jet (Figs. 2.9 and 2.10). This suggests that it

may be possible for jet shear-layer vorticity to be transported into the wake of the

transverse jet at high velocity ratios. Jet fluid is not seen in the wake region of the

transverse jet for Vr ≤ 10 (Fric and Roshko 1994).

The field of view spans 53 × 53 jet-exit diameters for the streamwise sections

displayed in Figs. 2.3 and 2.4. The pixel resolution is λp = 392 µm, and the jet

diameter was dj = 19λp. The field of view for the transverse sections of the jet (Figs.

2.7 and 2.8) is 31 × 31 jet-exit diameters at a pixel resolution of λp = 230 µm. In

the transverse views, dj = 33λp.

The high-velocity-ratio images (Figs. 2.5, 2.6, 2.9, 2.10) are provided for com-

parison with the low-velocity ratio cases. All subsequent analysis is performed on

Vr � 10.1 jets (Figs. 2.3, 2.4, 2.7, 2.8).
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Fig. 2.4 Jet-fluid concentration in a streamwise slice (plane of symmetry) of the
transverse jet for Rej = 10 × 103. Vr � 10.1. Image data scaled by x1/2 to
compensate for downstream decay (for display purposes only).

2.4 Jet-fluid-concentration level set

From the measured scalar field, C(x, t), level sets of jet-fluid-concentration,

C(x, t) = Ciso, can be extracted. These isolines (in two-dimensions), or isosur-

faces (in three-dimensions), are geometrically complex, and important to chemical

reaction rates, and for fluid mixing on the molecular scale (Ch. 1). Experimentally-

measured data, consisting of time sequences of two-dimensional images, may be

assembled into three-dimensional space-time measurements of the scalar field. Un-

der certain conditions, this space-time measurement is an approximation of the

three-dimensional spatial structure of the scalar field. These assumptions, and the

details of the three-dimensional visualization, are discussed in Appendix B.

A space-time visualization of the jet-fluid concentration level set is shown in

Fig. 2.11 for the Rej � 1.0×103, Vr = 10.1, transverse jet. The isosurface visualiza-
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Fig. 2.5 Jet-fluid concentration in a streamwise slice of the jet for Rej = 1.0 × 103

and Vr � 32.3 (cf. Fig. 2.3). Image data scaled by x1/2 to compensate for
downstream decay (for display purposes only).

tion were computed in collaboration with Santiago Lombeyda of Caltech’s CACR.

An isosurface of jet-fluid concentration is highlighted by choosing a small range of

jet-fluid concentrations to be reflecting in the volume visualization. The structure of

the transverse jet is seen to be dominated by kidney-shaped, counter-rotating vor-

tices in Fig. 2.11. At this low Reynolds number, we find two large, counter-rotating

vortices, and a smaller, tertiary vortex. The rotation of this tertiary vortex is ev-
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Fig. 2.6 Jet-fluid concentration in a streamwise slice of the jet for Rej = 10 × 103

and Vr � 32.3 (cf. Fig. 2.4). Image data scaled by x1/2 to compensate for
downstream decay (for display purposes only).

ident in the filaments of jet-fluid that wrap around it. “Fingers” of dye are seen

to reach up from middle of the counter-rotating vortex pair, and wrap around the

tertiary vortex. The structure and topology of the jet appears to be fairly steady

during the course of one experiment.

A visualization of the three-dimensional level set of jet-fluid concentration is
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Fig. 2.7 Jet-fluid concentration in a transverse slice of the jet at downstream loca-
tion x/dj = 50. Vr � 10.1 and Rej = 1.0 × 103.

also depicted in Fig. 2.12 at a higher Reynolds number. In comparison to the Rej �
1.0×103 transverse jet, the isosurface at Rej � 2.0×103 is symmetric, or nearly so.

The structure of the transverse jet is again seen to be dominated by a kidney-shaped,

counter-rotating vortex pair. “Fingers”, or small-scale streaks extend vertically

from the main body of the jet. No evidence of a tertiary vortex is seen in the scalar

scalar. We note that temporal sampling rate of the Cassini camera does not enable

resolution down to the diffusion scales in the streamwise (freestream) direction at
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Fig. 2.8 Jet-fluid concentration in a transverse slice of the jet at downstream loca-
tion x/dj = 50. Vr � 10.1 and Rej = 10 × 103.

Rej � 2.0 × 103. The main features of the isosurface geometry are still visible,

however.

Kuzo (1996) performed experiments measuring the velocity and vorticity fields

of transverse jets at Reynolds numbers and velocity ratios similar to those inves-

tigated in this thesis. One component of vorticity was computed from digital-

particle-imaging velocimetry (DPIV) measurements of velocity in a transverse plane
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Fig. 2.9 Jet-fluid concentration in a transverse slice of the jet for Vr � 32.3 and
Rej = 1.0 × 103.

at x/dj = 115. The mean vorticity fields measured by Kuzo (1996) in cross-sections

of the transverse jet are shown in Fig. 2.13. At Rej = 2079, Kuzo found tertiary and

quaternary vortices in addition to the dominant vortex pair. Only a tertiary vortex

was seen at Rej = 4370, and, by Rej = 7250, the jet consisted of a counter-rotating

vortex pair.

Kuzo (1996) defined a symmetry parameter as the (absolute value of the) ratio
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Fig. 2.10 Jet-fluid concentration in a transverse slice of the jet for Vr � 32.3 and
Rej = 10 × 103.

of circulation of the strongest positive and negative vortices. He found that the

asymmetry in the strength of the vortices increased with Reynolds number, until

approximately Rej � 7 × 103, at which point the tertiary and quaternary vortices

disappeared, and the vortex pair become symmetric (for Vr = 10). This transition

from asymmetric to symmetric flow states was found to be abrupt, and a discon-

tinuous function of Reynolds number (Fig. 2.13). These existence domain of these

symmetric/asymmetric flow states is shown in Fig. 2.14 as a function of Reynolds
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Fig. 2.11 Three-dimensional visualization of an isosurface of jet-fluid concentration
for Rej � 1.0 × 103, Vr = 10.1 transverse jet. The visualization is com-
puted in collaboration with Santiago Lombeyda of Caltech’s CACR.

number and velocity ratio. The Reynolds number for the transition to symmetric

vortices was found to increase with velocity ratio.

Direct comparison is not possible between our LIF measurements of the scalar

field, and Kuzo’s DPIV measurements of the vorticity field in the transverse jet.

However, our isosurface visualizations of the transverse jet are qualitatively sim-
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Fig. 2.12 Three-dimensional visualization of an isosurface for Rej � 2.0×103, Vr =
10.1 transverse jet. The visualization is computed in collaboration with
Santiago Lombeyda of Caltech’s CACR.

ilar to the flow states found by Kuzo. Asymmetric mean flow is seen at low

Reynolds number (Fig. 2.11), and a symmetric, or nearly symmetric vortex pair

is seen at higher Reynolds numbers (Fig. 2.12). However, at similar Reynolds num-

bers (Rej � 2 × 103), the isosurface visualization labels three vortices, while the

vorticity measurement shows four vortices. The difference may be real, or may sim-
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Fig. 2.13 Vorticity and circulation in transverse slices of jet at x/dj = 115. Velocity
ratio Vr = 10. Top left: Rej = 2079. Top right: Rej = 4370. Bottom left:
Rej = 7250. Bottom right: Symmetry parameter (ratio of circulation of
strongest positive and negative vortices) against Reynolds number. From
Kuzo (1996).
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Fig. 2.14 Existence domain of symmetric/asymmetric flow states. From Kuzo (1996).

ply be a consequence of the entrainment (or lack thereof) of dye into the quaternary

vortex.

2.5 Local Reynolds number and dissipation scales

For an axisymmetric jet discharging into a quiescent reservoir, the local Reynolds

number, Re(x) ≡ δ(x)Um/ν, is constant after several nozzle diameters, dj. Here,

δ(x) is the local width of the jet, Um is the local mean centerline velocity, and ν

is the kinematic viscosity. The local Reynolds number in the case of the turbulent

jet in a quiescent reservoir is approximately equal to the jet-exit Reynolds number,

Rej ≡ djUj/ν, where Uj is the jet-exit velocity. However, as will be shown, the local

Reynolds number for the transverse jet is not constant in the far field, but decays

with increasing downstream distance.
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We follow Broadwell and Breidenthal (1984) in considering a jet of density ρj

and velocity Uj discharging perpendicularly into a freestream of density ρ∞ and

velocity U∞. In the limit in which the jet momentum flux, ṁjUj = ρjπ(dj/2)2U2
j , is

held constant as jet diameter, dj, decreases, and the discharge velocity, Uj, increases

accordingly, the jet approaches a point source of normal momentum. This source

of normal momentum, a “lift” force of vanishing drag, generates a counter-rotating

vortex pair that is the analogue of tip-vortices behind a lifting wing. Broadwell and

Breidenthal argue from dimensional analysis that, if viscosity has no global role and

only serves to dissipate energy at the Kolmogorov scale, then the only global length

scale for this limiting case of the transverse jet is:

l =
(

ṁjUj

ρ∞U2∞

)1/2

∝ Vr dj, (2.2)

for Vr ≡ Uj/U∞, and equal jet and free-stream densities, ρj = ρ∞. The circulation

of one vortex, Γ, the vortex-core separation distance, R, and the vortices’ vertical

velocity, dy/dt, are related by
dy

dt
=

c1Γ
R

. (2.3)

The fluid impulse per unit length, P , is related to the circulation, Γ, and the vortex-

core separation by

P = c2 ρ∞ΓR. (2.4)

The constants c1 and c2 depend on the distribution of vorticity in the vortex pair,

e.g., for line vortices, c1 = π/4 and c2 = 2. Equations 2.3 and 2.4 assume that the

transverse jet forms a single counter-rotating vortex pair, in the far field. As noted

in the previous section, tertiary and quaternary vortices are sometimes formed,

particularly at low Reynolds numbers. In such a situation, the vortices would

no longer have equal circulation, and each vortex could have a different induced

velocity. But, for simplicity, we consider the high Reynolds-number case, in which

a single vortex pair is always found. Assuming a similarity form in which the flow

is independent of l in the far field (i.e., R is proportional to y), Eq. 2.4 may be

substituted into Eq. 2.3, and integrated to find

y = c3

(
P

ρ∞

)1/3

t1/3 (2.5)
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We use the (far-field) transformation x = U∞t, and note that P = ṁjUj/U∞, to

find that the trajectory is (Broadwell and Breidenthal 1984)
y

l
= c3

(x

l

)1/3
.

The circulation of one vortex is
Γ

U∞l
= c

(x

l

)−1/3
, (2.6)

where x is downstream (horizontal) distance from the jet exit, and c is a constant.

This result may be expected to hold in the far field (x � l) of high-velocity ratio

(Vr � 1) transverse jets. Although the fluid impulse per unit length, P , is constant,

the separation distance, R, is a function of x. Thus, the circulation is found to be a

function of downstream distance, x. This is consistent with the physical picture of

two counter-rotating vortices in close proximity decaying through viscous diffusion.

As an aside, we note that the similarity analysis of Broadwell and Breidenthal

(1984) assumes that the form of the transverse jet is a counter-rotating vortex pair,

and that the vortex-core separation distance, R, is proportional to the penetration

depth, y, in the far field (c � l). It was suggested (Leonard and Hornung 2001)

that, yet further downstream, the transverse jet might “forget” about the wall, and

R would be a constant independent of both l and y. If this is the case, Eq. 2.3 and

Eq. 2.4 may be combined to yield
dy

dt
=

c3P

ρ∞R2 . (2.7a)

Noting that P is constant, and using the far-field transformation, x = U∞t, we find

that the trajectory would be proportional to x, i.e.,

y =
c3Px

ρ∞U∞R2 ∝ x. (2.7b)

Although the prediction of Broadwell and Breidenthal is that y ∝ x1/3 in the far

field, Eq. 2.7 suggests that, further downstream, the transverse-jet trajectory may

become linear. However, a linear jet trajectory would imply that the circulation

is constant (cf. Eq. 2.4), since P and R are constants. It appears unlikely that

two counter-rotating vortices in close proximity could maintain constant circulation

in the face of viscous diffusion and vorticity annihilation. However, we note this

possibility of linear trajectories because it has not been experimentally considered

to our knowledge. Up to x/dj < 50, this thesis (Ch. 3), and other experiments, show

approximately power-law jet trajectories of the form y ∝ x1/3.
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For high Reynolds-number jets, the counter-rotating vortex pair is the dom-

inant dynamic structure, and the primary mechanism for entrainment of irrota-

tional freestream fluid by the transverse jet. In this case, a local, circulation-based

Reynolds number, ReΓ, is likely more relevant to turbulence and turbulent mixing

in the transverse jet than the jet-exit Reynolds number, Rej. A local Reynolds

number can be defined based on the vortex circulation,

ReΓ(x) ≡ Γ
ν

= c
U∞l

ν

(x

l

)−1/3
. (2.8)

The local Reynolds number, Re(x), is seen to be related to the jet-exit Reynolds

number, Rej, as

Re(x) ≡ ReΓ(x) = c
Ujdj

ν

(x

l

)−1/3
= cRej

(x

l

)−1/3
, (2.9a)

where we have used l = Vr dj. For a given velocity ratio, the local Reynolds number

decays as (x/dj)−1/3 with increasing downstream distance. Although the precise

value of the constant, c, is undetermined, we expect the local Reynolds number,

ReΓ(x), to approach the jet-exit Reynolds number, Rej, as x/l → 1. Taking the

constant c � 1, and using the conditions of the present experiments (x/dj = 50 and

Vr = 10.1), we find

ReΓ(x) =
(

x/dj

Vr

)−1/3

Rej � 0.6 Rej. (2.9b)

Thus, the jet-exit Reynolds number Rej referred to in this thesis may be related to

local Reynolds numbers at x/dj = 50 by multiplying by 0.6.

An estimate of the dissipation scales of the flow may be made based upon the

local Reynolds number, ReΓ(x). The Kolmogorov scale, based upon the energy

dissipation rate, ε, is defined as

λK ≡
(

ν3

ε

)1/4

. (2.10)

A direct calculation of the Kolmogorov scale for the transverse jet is not possible

since no estimate for the energy dissipation rate ε is available in the literature.

However, from scaling arguments, the Kolmogorov scale is related to the (local)

outer scale, δ(x), by
λK

δ(x)
� c3Re(x)−3/4, (2.11a)
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where Re(x) is the local Reynolds number. The constant, c3, in Eq. 2.11 is taken

to be unity on the basis of results in turbulent jets (Dimotakis 2000). For the

experiments on the transverse jet described here, the outer scale δ(x) � 1000 pixels.

The Kolmogorov scale, based upon the local, circulation-based, Reynolds number,

is
λK

δ(x)
� Re(x)−3/4 � Re−3/4

j

(x

l

)1/4
. (2.11b)

We find the respective Kolmogorov scales to be λK � 8.4, 5.0, 2.5, 1.5, and 0.89

pixels, respectively, for jet Reynolds numbers Rej = 1.0 × 103, 2.0 × 103, 5.0 ×
103, 10 × 103, and 20 × 103, at x/dj = 50.

The viscous scale, λν , defined as the scale where the turbulence spectrum

deviates from -5/3 power-law behavior, is estimated to be a factor of 50 times

larger than the Kolmogorov scale λK (Dimotakis 2000). This result is found to hold

for a variety of flows across a wide range of Reynolds numbers. We estimate the

scalar-diffusion scale, λD, as a multiple of the viscous scale, λν , i.e.,

λD � Sc−1/2λν = 50Sc−1/2λK,

where Sc ≡ ν/D is the Schmidt number. For the present experiments on the trans-

verse jet, the scalar-diffusion scales are estimated to be λD � 4.6, 2.7, 1.4, 0.82,

and 0.49 pixels, respectively, for jet Reynolds numbers Rej = 1.0, 2.0, 5.0, 10, and

20 × 103, at x/dj = 50.
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CHAPTER 3

Turbulent mixing in jets: classical measures

Classical measures of turbulent jets are studied using two-dimensional measure-

ments of jet-fluid concentration. Trajectories and maximum mean-concentration

decay for transverse jets are investigated at two different Reynolds numbers, Rej =

1.0 × 103 and Rej = 10 × 103. Ensemble-averaged, two-dimensional scalar power

spectra are also computed for these two Reynolds numbers. The Reynolds-number

dependence and isotropy of the scalar field is assessed in terms of these classical

measures.
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3.1 Jet trajectory

Mean transverse-jet trajectories have been defined in a variety of ways. Yuan

et al. (1999), for instance, define the trajectory as the mean streamline originating

from the center of the jet nozzle. Depending on whether the primary interest is in

scalar mixing or flow dynamics, trajectories have been more commonly identified by

the locus of points of concentration or velocity maxima on the jet centerline (Pratte

and Baines 1967, Kamotani and Greber 1972). We have chosen to define the trajec-

tory as the locus of points for which the mean jet-fluid concentration is maximum on

the centerplane. The ensemble-averaged concentration field for streamwise views of

the transverse jet is shown in Fig. 3.1 for Rej = 1.0×103. Trajectories are computed

from the maximum concentration points in such ensemble-averaged images. Figure

3.2 shows scalar jet trajectories, for Rej = 1.0 × 103 and 10 × 103, each calculated

from ensemble averages of 254 streamwise sections on the centerline of the transverse

jet. For comparison, a line of slope 1/4, corresponding to a power-law trajectory,

y/dj ∝ (x/dj)1/4, is shown. A line of slope 1/3, corresponding to a power-law tra-

jectory, y/dj ∝ (x/dj)1/3, is also shown. Pratte and Baines reported a power-law

trajectory of the form y/dj ∝ (x/dj)0.28 in their experiments, while Broadwell and

Breidenthal predict a power-law trajectory of the form y/dj ∝ (x/dj)1/3 from their

similarity analysis.

Trajectories computed as loci of scalar maxima are known to differ from maximum-

velocity trajectories and mean nozzle-streamline trajectories. This has been shown

both experimentally (e.g., Kamotani and Greber 1972) and by large eddy simu-

lation (e.g., Yuan et al. 1999). Penetration depths for scalar maxima are found

to be slightly, but consistently, smaller than those of velocity maxima, or nozzle-

streamlines.
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Fig. 3.1 Mean concentration field for Rej = 10 × 103 and Vr � 10.1. Ensemble
averaged from 254 streamwise (plane-of-symmetry) slices of transverse jet.

3.2 Concentration decay

The decay of the maximum centerline concentration of the ensemble-averaged

scalar field is plotted in Fig. 3.3 as a function of nondimensionalized downstream

distance, x/dj, and penetration depth, y/dj, for Rej = 1.0× 103 and 10× 103. Con-

centration decay with downstream distance is nearly power-law with an exponent

-2/3, consistent with the gas-phase transverse-jet experiments of Smith and Mungal

(1998). Little variation with Reynolds number is seen between Rej = 1.0 × 103

and 10 × 103. However, the maximum concentration decay with penetration depth

is clearly not power law, and also shows an initial dependence on Reynolds number

that is attributable to the longer potential-core length for lower-Reynolds-number

jets. By y/dj � 5, the initially slower-mixing Rej = 1.0 × 103 jet is unsteady and

turbulent, and its decay trajectory overlaps with that of the Rej = 10 × 103 jet.

There is agreement in the literature that the jet trajectory is power law (Pratte and
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Fig. 3.2 Maximum jet-fluid-concentration trajectory. Penetration depth versus down-
stream distance with logarithmic axes. Lower comparison line is y/dj ∝
(x/dj)1/4 (cf. experiments of Pratte and Baines 1967). Upper compari-
son line is) y/dj ∝ (x/dj)1/3 (cf. prediction of Broadwell and Breidenthal
1984). Rej = 1.0 × 103: circles, Rej = 10 × 103: crosses.

Baines 1967, Kamotani and Greber 1972, Chassaing et al. 1974). We note that it

would be inconsistent for the maximum-concentration trajectory, y = Y (x), to be

power law if maximum-concentration decay with downstream distance, x, is power

law, and maximum-concentration decay with penetration depth, y, is not power

law.
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Fig. 3.3 Decay of maximum mean concentration, in logarithmic coordinates. Rej =
1.0×103 is shown with circles, Rej = 10×103 with crosses. Top: Concentra-
tion decay with downstream distance. Comparison line is C ∝ (x/dj)−2/3

(cf. Smith and Mungal 1998). Bottom: Concentration decay with pene-
tration depth.
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Fig. 3.4 Two-dimensional power spectra of the scalar field of the transverse jet at
x/d = 50. Contour plot in log10 increments of 1.0. Top: Rej = 1.0 × 103.
Bottom: Rej = 10 × 103.

3.3 Scalar power spectra

The scalar field of the transverse jet is spatially confined, and thus inhomoge-

neous. Scalar power spectra are shown in Fig. 3.4 for Rej = 1.0 × 103 and 10 × 103

jets at x/d = 50. These two-dimensional power spectra indicate that the transverse-
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jet scalar field is not isotropic. Power spectral densities (PSD) are calculated as the

modulus squared of the discrete Fourier transform of the Hann-windowed concen-

tration field, and ensemble-averaged over 508 images for each Reynolds number.

Contour plots of the ensemble-averaged PSD, in log10 increments of 1.0, show that

the scalar field is not axisymmetric in any statistical sense. The power-spectra con-

tours are increasingly elliptical with higher wavenumbers. These results indicate

that scalar gradients are steeper horizontally than vertically, due to overall vertical

straining (or history of vertical straining), in the transverse jet. While large scales

(small wavenumbers) are more isotropic in the two in-plane directions, y and z,

the smaller length scales are increasingly anisotropic. Small-scale scalar anisotropy,

evident in the spatial power spectra, stands in contrast to the statistical axisym-

metry of the ordinary round turbulent jet (cf. Catrakis and Dimotakis 1996). The

anisotropy of the scalar field for the transverse jet is, however, consistent with scalar

anisotropy for other turbulent shear flows. (e.g., Sreenivasan 1991).
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CHAPTER 4

Probability density function of scalar field

The spatial probability-density function of the scalar field is considered in

this chapter. The difference between one-dimensional, temporal PDFs and d-

dimensional, spatial PDFs is discussed. Spatial PDFs for two-dimensional measure-

ments of the jet-fluid-concentration field are analyzed for both transverse (x/dj =

50) and streamwise sections of the jet in crossflow. The evolution with Reynolds

numbers of several scalar-field measures is discussed: the PDF of jet-fluid concen-

tration, the mean concentration, the peak concentration, and the mean mixed-fluid

concentration. A comparison is made between mixing in transverse jets and tur-

bulent jets discharging into a quiescent reservoir. Based upon this comparison, the

flow-dependence of turbulent mixing in free-shear flows is discussed.
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4.1 Introduction

Probability-density functions (PDFs) describe statistics of the fluctuating quan-

tities (e.g., velocity or scalar concentration) inherent to turbulent flows. They can

be used to compute all moments of the fluctuations, and form the basis for statistical

approaches toward turbulent flow with chemical reactions (Pope 1985, Goldin and

Menon 1997). In these formulations, the Navier-Stokes equations, along with scalar-

transport and chemical-reaction equations, are recast into an evolution equation for

the joint PDF of flow variables.

The PDF, f(C), of a random variable, C, is defined such that its integral gives

the probability that C1 ≤ C < C2, i.e.,

Pr{C1 ≤ C < C2} =
∫ C2

C1

f(c)dc = F (C1) − F (C2). (4.1)

The PDFs discussed in this thesis are spatial, rather than temporal, PDFs. They

are based upon the probability of occurrence for C within image data of the scalar

concentration field. The spatial PDF is (normalized magnitude of) the differential

area associated with a differential concentration (Kuznetsov and Sabelnikov 1990,

Catrakis and Dimotakis 1996), in two-dimensions,

f(C) =
1

Atot

∣∣∣∣dA(C)
dC

∣∣∣∣, (4.2a)

and in d-dimensions,

fn(C) =
1

Vd,tot

∣∣∣∣dVd(C)
dC

∣∣∣∣. (4.2b)

In two-dimensions, A(C) is the area associated with a specified value of the scalar

concentration, C, in the image. In d-dimensions, Vd(C) is the d-dimensional volume

associated with each value of C. Atot and Vd,tot are the total area and volume,

respectively, of the spatial measurement of the scalar field.

In general, PDFs depend not only on the statistics of the scalar field, C(r, t),

but also on the dimensionality of the space or measurement (see Appendix A). We

note that spatial PDFs differ from one-dimensional, temporal PDFs at a point.

Rather than the temporal probability of occurrence of C at a fixed spatial loca-

tion, the spatial PDF is associated with the differential probability of finding scalar

concentration C in d-dimensional space.
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4.2 Scalar probability-density functions in transverse sections

For the transverse jet, spatial PDFs of jet-fluid concentration are computed

from normalized histograms of the scalar-image data (Figs. 2.7 and 2.8). The PDFs

at each Reynolds number are estimated from 508 images, each image (1024×1024)-

pixels in resolution, so that the PDFs consist of 5.4 × 108 point measurements

of the scalar concentration field. The large number of measurements allows the

concentration histograms to be computed for order 102 bins, yielding PDFs that

are well resolved in C.

Figure 4.1 shows the PDF for transverse sections of the jet at x/dj = 50, for

Reynolds numbers Rej = 1.0, 2.0, 5.0, 10, and 20 × 103. The singularity in the

PDFs at C = 0 is a consequence of the unmixed, freestream fluid surrounding the

spatially-confined jet. This singularity at the origin is excluded in the normalization

of the PDFs. At Rej = 1.0 × 103, the PDF is peaked around C = 0 and decreases

monotonically with increasing scalar concentration. This is qualitatively similar to

the PDF of a diffusive (Gaussian) concentration distribution (Appendix A). The jet-

fluid concentration PDF at Rej = 2.0×103 still decreases monotonically, but shows

less probability for unmixed, high-C fluid than at Rej = 1.0 × 103. By Reynolds

number 5.0×103, a distinct peak in the PDF has formed near C � 0.04. Peaks in the

jet-fluid-concentration PDF, which occur for Rej ≥ 5.0 × 103, are not symmetric

about the most probable concentration, but biased toward lower concentrations.

At fixed downstream location, the scalar PDF qualitatively changes shape over the

range 1.0×103 ≤ Rej ≤ 20×103, with growing peaks implying more-uniform mixing

(i.e., better spatial homogenization of the scalar field) with increasing Reynolds

number. In this sense, mixing is enhanced by increasing Reynolds number.

Figure 4.2 shows that the peaks, Cpeak, of the jet-fluid concentration PDFs

shift slightly to lower concentrations at successively higher Reynolds numbers, but

appear to asymptote between Rej = 10 × 103 and 20 × 103. Recall from Ch. 2

that the local Reynolds number, ReΓ, is approximately 0.6 times the jet Reynolds

number, Rej, for velocity ratio Vr = 10.1 and x/dj = 50. Thus, jet Reynolds

numbers Rej = 10 × 103 and 20 × 103, have corresponding local (circulation-based)

Reynolds numbers of ReΓ = 5.9 × 103 and 12 × 103, respectively. The asymptotic

behavior of the PDFs that is seen around Reynolds numbers ReΓ = 5.9 × 103 to
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12 × 103 is consistent with the mixing transition documented in other flows for

(local) Reynolds number Re � 104 (Dimotakis 2000). The mean mixed-fluid-fluid

concentration, defined as the mean of all concentrations C > 0.01, also decreases

with increasing Reynolds number, and levels off around Re = 104.

As an aside, we note that control-volume analysis shows that the mean concen-

tration, C̄, in a far-downstream transverse plane, depends linearly on the jet-exit

concentration, C0, and the velocity ratio, Vr,

C̄ =
∫ ∞

−∞
C f(C) dC =

∫ 1

0
C f(C) dC � C0 Vr

Aj

A
(4.3)

where Aj is the exit area of the nozzle and A is the total area of the image plane.

Recall that 0 ≤ C ≤ 1, from Eq. 2.1. When C0 and Vr are constant, as they are in

these experiments, the mean concentration, C̄, in a far-downstream plane should be

independent of Reynolds number. This is verified in Fig. 4.2 for 1.0 × 103 ≤ Rej ≤
20 × 103.

4.3 Scalar probability-density functions in streamwise sections

Probability-density functions are also computed from streamwise sections of

the scalar-concentration field on the centerline of the transverse jet (e.g., Figs. 2.3

and 2.4), for Rej = 1.0, 2.0, 5.0, and 10×103. The downstream progression in scalar

mixing is studied by computing jet-fluid-concentration PDFs for eight vertical, 6dj-

wide strips, with the first strip covering the jet exit, and the last strip centered

at x/dj = 50 (Fig. 4.3). Figure 4.4 shows the scalar-field PDFs with increasing

downstream distance for Rej = 1.0×103 and 10×103 transverse jets. A small peak

near C = 1 is seen in the PDF of the strip that includes the jet exit. The jet-fluid

concentration PDFs shift toward lower concentrations with increasing downstream

distance. Maximum concentration on the centerplane of the jet decreases rapidly

with increasing downstream distance. This suggests that much of the entrainment of

crossflow fluid and mixing of high scalar concentrations occurs relatively close to the

jet nozzle (cf. Smith and Mungal 1998). A comparison of the PDFs for Rej = 1.0×
103 and 10× 103 shows that the probability of finding unmixed, high-concentration
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Fig. 4.1 PDFs of jet-fluid-concentration in transverse slices (cf. Fig. 2.7) of jet
at x/dj = 50. Concentrations normalized by plenum-exit concentration,
C = c/c0. Increasingly peaked PDFs at C � 0.04 with increasing Reynolds
number for Rej = 1.0, 2.0, 5.0, 10, and 20 × 103.

fluid at any given downstream location, x/dj, decreases with increasing Reynolds

number. The enhanced scalar mixing at higher Reynolds numbers also manifests

itself in the sharp peaks in the PDF at Rej = 10 × 103, which indicate a preference

for uniformly-mixed fluid. For Rej = 1.0 × 103, peaks in the PDF have not yet

developed for x/dj = 50, and the PDF shows (approximately) equal probability for

a broad range of jet-fluid concentrations.
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Fig. 4.2 Concentrations in transverse section of jet at x/dj = 50. Squares: mean
concentration, C̄. Crosses: mean mixed-fluid concentration, C̄m, for C >
0.01. Triangles: peak concentration, Cpeak, defined as point of zero slope
(for Rej = 5.0, 10, and 20 × 103), or as point of maximum negative curva-
ture (for Rej = 2.0 × 103).

4.4 Comparison with jet in quiescent reservoir

Comparison of the transverse-jet scalar PDF with the PDF of ordinary tur-

bulent jets reveals flow-dependent differences in turbulent mixing (Figs. 4.1 and

4.5). Entrainment (engulfment of large pockets of irrotational flow species into the

turbulent flow region), stirring (kinematic motion responsible for the generation of

large interfacial surface area between mixing species), and molecular mixing have

been viewed as the initial, intermediate, and final stages of the turbulent mixing

process (Eckart 1948, Dimotakis 2000). For the transverse jet, increasing Reynolds

numbers result in taller peaks in the scalar concentration PDFs, with slight shifts

in preferred concentration toward lower concentrations. For the ordinary turbu-

lent jet (Catrakis and Dimotakis 1996), peaks in the PDFs become less prominent
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Fig. 4.3 The eight, six-jet-diameter-wide strips used to calculate jet-fluid-concentration
PDFs in streamwise sections of transverse jet. The smaller strip at the ex-
treme left does not contain jet fluid, and is not counted as one of the eight,
6dj-wide strips.

with increasing Reynolds number (Fig. 4.5). The “valley” on the low concentration

side of the PDF peak fills in with increasing Reynolds number, and the preferred

concentration shifts strongly toward lower concentrations.

Experiments by Smith and Mungal (1998) offer a clue to understanding the

different behavior of the transverse-jet and the regular-jet PDFs. For the transverse

jet, they found that mean centerline concentration in the far field decayed at a rate

s−2/3. This is slower than the s−1 decay rate of the ordinary jet (s is the arclength

along the jet trajectory). We note that the centerline-concentration decay rate,

which is calculated from ensemble-averaged images of the scalar field, is a measure

of entrainment, rather than molecular mixing. The mean concentration can not

distinguish between two concentration PDFs having the same first moment. Thus,

although the jet-fluid concentration PDF is found to evolve with Reynolds number
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Fig. 4.4 Jet-fluid-concentration PDFs in streamwise sections (cf. Fig. 2.3) of trans-
verse jet. PDFs calculated from strips shown in Fig. 4.3. Concentrations
normalized by plenum-exit concentration, C = c/c0. PDF of strip nearest
to jet exit shows small peak near C = 1; PDFs shift toward lower con-
centrations with increasing distance from nozzle. Top: Rej = 1.0 × 103.
Bottom: Rej = 10 × 103.
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Fig. 4.5 Jet-fluid concentration PDFs for jets in a quiescent reservoir. Lines of
increasing solidity denoting increasing Rej = 4.5, 9, and 18×103 (Catrakis
and Dimotakis 1996, Fig. 8).

in the transverse jet, the mean centerline concentration decay is seen to be largely

independent of Reynolds number (Fig. 3.3). We infer, based on Smith and Mungals’

experiments, that the entrainment rate, relative to stirring and molecular mixing,

is higher in the ordinary turbulent jet than in the far-field of the transverse jet.

Thus, the transverse jet entrains less ambient fluid than the ordinary jet (as seen

from the mean centerline concentration decay), but is able to homogenize entrained

fluid more effectively. The growing preferred-concentration peaks in the scalar PDF

suggest that, for the transverse jet at d/dj = 50, the balance between entrainment,

stirring, and molecular mixing tilts toward stirring and mixing, producing better

homogenization with increasing Reynolds number. In ordinary jets, the entrainment

rate is higher and the balance tilts toward entrainment, with PDFs tending toward

smaller peaks (and lower preferred concentrations, Cpeak), with increasing Reynolds

number. As a result of competition between entrainment, stirring, and molecular

mixing, we conclude that different mixing is possible for two very-similar turbulent

flows. This is found to be the case for transverse jets and jets discharging into a
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quiescent reservoir.
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CHAPTER 5

Probability density function of scalar increments

A technique is introduced for whole-field measurements of scalar increments,

also known as scalar differences, ∆rC ≡ C(x + r, t) − C(x, t). The distribution

of scalar increments in a variety of turbulent flows is discussed. PDFs of scalar

increments for transverse jets are computed from measurements of the jet-fluid con-

centration field, for varying Reynolds numbers and separation distances, r. The

PDFs of scalar increments for the transverse jet are normalized by their own stan-

dard deviation to compare shapes of distributions for different separation distances.

Isotropy of the scalar field is assessed in terms of PDFs of scalar increments for

separations in different directions. A direction-dependent scalar microscale is in-

troduced, and computed in two orthogonal directions, to quantify the scalar-field

anisotropy as a function of Reynolds number. The anisotropy is shown to be local-

ized to specific regions of the scalar field, and an explanation is proposed.
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5.1 Introduction

Scalar differences, ∆rC, also called scalar increments, are differences between

simultaneous measurements of the scalar field at two points separated by distance r

(1.1). The probability density function, f(∆rC), of scalar differences expresses the

probability of finding scalar concentration C+∆C at a vector distance r away from a

point of concentration C. Intermittency of the scalar field can be described in terms

of the PDF of scalar differences as an excess of large fluctuations as compared to a

Gaussian distribution (Shraiman and Siggia 2000). The nth-order scalar structure

functions in a turbulent flow can be expressed as moments of the PDF of scalar

increments:

〈[C(x + r) − C(x)]n〉 = 〈(∆rC)n〉 =
∫ 1

−1
(∆rC)n

f(∆rC) d∆rC, (5.1)

where 0 ≤ C ≤ 1.

The statistics of passive scalars and their derivatives in turbulence have been

studied by numerous investigators. Probability-density functions of temperature

and temperature fluctuations were measured by Alisse and Sidi (2000) in stably-

stratified atmospheres, and by Jayesh and Warhaft (1992), and Tong and Warhaft

(1994), in grid turbulence. Guilkey et al. (1997) reported on exponential-tailed

scalar PDFs in turbulent-pipe-flow. Kailasnath et al. (1993) measured scalar con-

centrations (temperature and scalar-species concentration) and inferred scalar-dissipation

rates, conditioned on the scalar value, for turbulent wakes, jets and boundary layers.

Statistics of temperature increments have been gathered by point measure-

ments in a variety of flows, at low Prandtl numbers. Mydlarski and Warhaft (1998)

measured spatial temperature differences in decaying grid turbulence. Ould-Rouis

et al. (1995) reported on temporal temperature increments in a turbulent bound-

ary layer. Antonia et al. (1984) conducted experiments on temperature differences

on the centerline of a turbulent plane jet, and found, for this flow, reasonable agree-

ment between the statistics of temporal and spatial temperature increments. Ching

(1991) reported on the PDFs of temporal temperature differences for Rayleigh-

Benard convection at the center of a helium-gas cell. Collectively, these experi-

ments found that PDFs of passive-scalar differences behaved like an exponential, or
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stretched exponential, at separations on order of the Kolmogorov scale, i.e., r ∼ λK,

and tended toward Gaussian distributions for large, integral-scale separations, i.e.,

r ∼ L. A review of passive-scalar turbulence is given by Shraiman and Siggia

(2000).

5.2 Whole-field measurement of scalar increments

Two-dimensional scalar-concentration image data (e.g., Figs. 2.7 and 2.8) en-

able whole-field measurements, rather than point measurements, of scalar incre-

ments. To compute scalar differences, measured concentration fields are spatially

shifted by a vector distance r, and subtracted from unshifted data. As was the

case for the PDF of scalar concentration (Ch. 4), up to 5.4 × 108 measurements of

scalar differences are made from a total of 508 images, each (1024 × 1024)-pixels.

Examples of the two-dimensional scalar-difference fields for horizontal (spanwise,

z-axis) shifts of 2 and 16 pixels are shown in Fig. 5.1. The PDF of scalar increments

is computed from histograms of the scalar-difference field, conditioned on the inter-

section between the shifted and unshifted image data (the extent of the jet is defined

by a scalar threshold). This condition on the PDF is equivalent to requiring two,

spatially-separated measurement points to both be within the instantaneous body

of the jet. Without the condition, the PDF would be dominated by the difference

between the jet and the dark, C = 0, portions of the image. The unconditional

PDF of scalar differences would thus approach the jet-fluid concentration PDF,

and its reflection about the line ∆rC = 0 (the vertical axis), in the limit of large

separations r ≥ L. Thus, a condition on the PDF is necessary because of the spatial

confinement and inhomogeneity of the transverse-jet concentration field.
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Fig. 5.1 Jet-fluid concentration difference. Left: Horizontal (z-axis) shift of 2 pix-
els. Right: Horizontal shift of 16 pixels.

5.3 Scalar increments

Conditional PDFs of scalar increments for horizontal (spanwise, z-axis) sep-

arations of r = 2 ẑ, 4 ẑ, 16 ẑ, 64 ẑ, and 128 ẑ pixels are shown in Fig. 5.2. The

PDFs of scalar increments were computed from jet-fluid concentration fields at

x/dj = 50 for Rej = 2.0×103 and 20×103. The distributions are nearly symmetric,

as would be expected for statistically-converged measurements. At jet Reynolds

number 20 × 103, the small separations (r = 2, 4 pixels) show exponential-tailed

distributions of scalar increments (straight lines on the log-linear plot). In Ch. 4,

the Kolmogorov scale was estimated to be 0.89 pixels for Rej = 20 × 103. As

separations become substantially larger than the Kolmogorov scales and approach

inertial and integral scales, the shoulders of the distribution broaden, and the tails

drop. Others have reported Gaussian PDFs for large separation distances (e.g.,

Ching 1991). Decreasing probability for fluid of similar concentration, i.e., smaller

f(∆rC = 0), is seen with increasing separation distance. For low Reynolds num-

bers, Rej = 2.0×103, the shoulders of the PDF of scalar increments, f(∆rC), again

broaden with increasing separation distance, r; however, the tails of the PDFs for

small separations are no longer strictly exponential but rather stretched exponen-

tial. For reference, the Kolmogorov scale for Rej = 2.0 × 103 was estimated to be



– 49–

5.0 pixels in Ch. 4. The relevant scalar-diffusion scales, λD, are 3 and 0.5 pixels, for

Rej = 2.0 × 103 and 20 × 103, respectively.

5.4 Standard-deviation-normalized scalar increments

Probability density functions are normalized by their own standard deviation

to compare shapes of distributions. Figure 5.3 shows the PDF of scalar increment,

f(∆rC/〈(∆rC)2〉1/2), as a function of normalized separation distance. The sepa-

ration distance, r, is normalized by the square root of the variance, 〈(∆rC)2〉1/2.

For the range of Reynolds numbers studied, the normalized PDFs show wider ex-

ponential tails with decreasing separation distance. An excess of large and small

concentration differences is seen, relative to a Gaussian distribution of the same

variance. This is a hallmark of the intermittency of the scalar field (Shraiman and

Siggia 2000). This intermittency of the transverse-jet scalar field is apparent when

the PDFs are based on the normalized scalar difference ∆rC/〈(∆rC)2〉1/2.

5.5 Anisotropy of scalar increments

Anisotropy of the jet-fluid-concentration field at small scales, which was seen in

the 2-D scalar power spectra of Fig. 3.4, is also evident in comparing PDFs of scalar

increments for vertical (y-axis) and horizontal (z-axis) separations. Figure 5.4 shows

the PDF of scalar differences in the cross-section of the transverse jet for separations

of r = 2 ŷ pixels and r = 2 ẑ pixels. The narrower width of the PDF for a vertical

separation of 2 pixels, relative to a horizontal separation of 2 pixels, indicates that

the scalar field is anisotropic for small separation distances, r. In particular, the

scalar field has less variation (in terms of the width of the PDF of scalar increments

and all higher moments) in the vertical direction than in the horizontal direction.

Scalar-field anisotropy, seen in the difference in the PDFs between 2-pixel vertical

and horizontal shifts, is less evident for the larger separation distance of 16 pixels

(Fig. 5.4). This result is consistent with the 2-D scalar power spectra (Fig. 3.4),

which are more-nearly axisymmetric at low wavenumbers and increasingly elliptical

with increasing wavenumber. The (in-plane) anisotropy of small scales, and near
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Fig. 5.2 PDFs of scalar increments at x/dj = 50 for horizontal separations of r =
2 ẑ, 4 ẑ, 16 ẑ, 64 ẑ, and 128 ẑ pixels. Innermost, triangular PDF is for
smallest separation distance, while outermost, broad-shouldered PDF is
for largest separation. For comparison, the scalar diffusion scales for the
Rej = 2.0 × 103 and 20 × 103 jets are 3 and 0.5 pixels, respectively. Top:
Rej = 2.0 × 103. Bottom: Rej = 20 × 103.
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isotropy of the large scales, is not only a low-Reynolds-number result, but persists to

the highest Reynolds number investigated, Rej = 20×103 (Fig. 5.5). The anisotropy

of small scales appears to decrease with increasing Reynolds number. More evidence

of this will be seen in Sec. 5.6.

Anisotropy of small scales is also visually apparent in images of the jet-fluid

concentration difference. Figure 5.6 compares scalar-difference fields for a horizon-

tal shift of r = 2ẑ pixels and a vertical shift of r = 2ŷ pixels. Both images use

the same (linear) intensity scaling for scalar concentration. The occurrence of large

scalar differences, shown as purely black or white features in the scalar-increment

field, is more prominent and frequent for the horizontal separations than for the

vertical ones. This difference in contrast indicates that scalar structure is preferen-

tially oriented in the vertical (y-axis) direction, and that scalar gradients are larger

horizontally than vertically. Small-scale anisotropy of the scalar field is particularly

apparent near the vertical centerline, and in the “finger” extending upwards at the

top of the jet. The location of these small, vertically-oriented structures suggest

that they are produced by the mean strain field of the dominant, counter-rotating

vortex pair.

Fig. 5.6 Jet-fluid concentration difference for Rej = 10×103. Left: Horizontal shift
of r = 2 ẑ pixels. Right: Vertical shift of r = 2 ŷ pixels. Same intensity
scaling used to display both images.
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Fig. 5.3 PDFs of standard-deviation-normalized scalar increments at x/dj = 50 for
horizontal separations of r = 2 ẑ, 4 ẑ, 16 ẑ, 64 ẑ, and 128 ẑ pixels. Concen-
tration difference normalized by square root of the variance for each PDF.
Outermost, triangular PDF is for smallest separation distance, while in-
nermost PDF is for largest separation. Top: Rej = 2.0 × 103. Bottom:
Rej = 20 × 103.
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Fig. 5.4 PDFs of scalar increments for horizontal (z-axis) and vertical (y-axis)
shifts. Rej = 2.0 × 103 and x/D = 50. Top: Outer PDF is for horizontal
separations of r = 2 ẑ pixels and inner PDF is for vertical separations of
r = 2 ŷ pixels. Bottom: r = 16 ŷ pixels and r = 16 ẑ pixels.
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Fig. 5.5 Same as Fig. 5.4, but for Rej = 20×103. Top: Outer PDF is for horizontal
separations of r = 2 ẑ pixels and inner PDF is for vertical separations of
r = 2 ŷ pixels. Bottom: r = 16 ŷ pixels and r = 16 ẑ pixels.
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5.6 Microscale for scalars

A microscale for scalar fluctuations may be defined analogously to the Taylor

microscale for velocity fields. For an isotropic scalar field, the scalar microscale, λC ,

can be defined as (Tennekes and Lumley 1972, Cook and Dimotakis 2000):

λ2
C ≡

〈
C ′2〉〈(
∂C′
∂x

)2
〉 , (5.2a).

To generalize to an anisotropic field, the scalar microscale, λC,i, in a given direction,

xi, is defined as

λ2
C,i ≡

〈
C ′2〉〈(
∂C′
∂xi

)2
〉 . (5.2b)

The variance of the scalar fluctuations, < C ′2 >, may be expressed as the second

moment of the PDF of the scalar field, f(C),

〈
C ′2〉 =

〈
(C − C̄)2

〉
=

∫ 1

0
(C − C̄)2 f(C) dC. (5.3)

Equation 5.3 can be used to compute the variance, < C ′2 >, from the PDF of con-

centration, f(C). Similarly, we write the variance of the scalar partial derivatives,

< (∂C′
∂xi

)2 >, as

〈(
∂C ′

∂xi

)2
〉

=
∫ ∞

−∞

(
∂C ′

∂xi

)2

f

(
∂C ′

∂xi

)
d

(
∂C ′

∂xi

)
, (5.4)

no sum on i. The spatial partial derivatives ∂C′
∂xi

are estimated from the PDF of

scalar increments by noting that

∂C ′

∂xi
= lim

r→0

C(xi + r) − C(xi)
r

= lim
r→0

−∆rC

r
� −∆rC

r
, (5.5a)

for small separation distances, r. In this case, we estimate ∂C′
∂z and ∂C′

∂y as

∂C ′

∂xi
� −∆xiC

xi
= −1

2
∆xiC (5.5b)
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Fig. 5.7 Scalar microscale at x/dj = 50 as a function of jet Reynolds number.
Error bars smaller than plot symbols in all cases. Length scale is pixels.
Squares: Microscale in the vertical, y, direction. Triangles: Microscale in
the horizontal, z, direction.

for horizontal shifts of 2 ẑ pixels, and vertical shifts of 2 ŷ pixels, respectively.

The scalar microscale in each direction for the transverse-jet scalar field is com-

puted from PDFs of concentration and PDFs of scalar increment. Horizontal and

vertical microscales are computed for each image, and the mean microscales at each

Reynolds number are found by ensemble averaging over 508 realizations. Figure 5.7

shows the scalar microscales for Rej = 1.0, 2.0, 5.0, 10, and 20 × 103. The scalar

microscale in the vertical, y, direction is seen to be consistently larger than the

microscale in the horizontal, z, direction. This evidence of longer length scales in

the vertical direction, as compared to the horizontal direction, is consistent with

the results of the two-dimensional power spectra, and the directional PDF of scalar

increments. The ratio of the horizontal microscales to the vertical microscales is



– 57–

Fig. 5.8 Ratio of horizontal to vertical scalar microscales. Error bars smaller than
plot symbols in all but lowest Reynolds number case.

plotted in Fig. 5.8 as a function of Reynolds number. The anisotropy of the scalar

microscale is found to increase slightly with increasing Reynolds number, and then

decrease for jet Reynolds numbers greater than approximately 10×104. In the limit

of high Reynolds numbers, the scalar microscale, referenced to the outer scale, is

expected to decrease as the square-root of the local (outer) Reynolds number. In

these experiments, the scalar microscale is found to increase with Reynolds number

up to Rej = 10×104. The data for Rej = 20×104 suggest that the scalar microscale

begins to decrease with further increases in Reynolds number. However, in order to

draw firm conclusions about the asymptotic behavior of the scalar microscale, even

higher Reynolds numbers would be required. We note that the local Reynolds num-

ber, ReΓ(x), is approximately 0.6 times the jet Reynolds number Rej, for velocity

ratio Vr = 10.1 and x/dj = 50 (Ch. 2).

The precision in determining the mean scalar microscales, λC,z and λC,y, is
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Fig. 5.9 Localized scalar microscale superimposed upon the mean scalar field, for
Rej = 20 × 103. Microscales are ensemble averaged over 508 images, in
each rectangular section shown. Horizontal and vertical dimensions of the
rectangles are 2λC,z and 2λC,y, respectively.

indicated by the error bars in Fig. 5.7. The error bars, which are of size equal to

two standard deviations of the microscales, are less than the size of the plot symbols.

The standard deviation of the mean is computed as

σ<λC,i> ≡
√√√√ 1

N(N − 1)

N∑
n=1

(λC,i − 〈λC,i〉)2, (5.6)
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where N = 508 (the number of images at each Reynolds number), and < λC,i > is

the mean microscale length. Error bars for the ratio of horizontal-to-vertical length

scales, < λC,z > / < λC,y >, are computed in the same way. For all but the lowest

Reynolds number (Rej = 1.0 × 103), the error bars for the anisotropy ratio are

smaller than the size of the plot symbols. The error bars on the mean microscales,

λC,i, and the mean anisotropy ratio, < λC,z > / < λC,y >, are an indication of the

precision, rather than the accuracy, of the measurement.

The global dynamics of the transverse jet are believed to be responsible for

the observed anisotropy of the scalar field at small scales. The counter-rotating

vortex pair which dominates the flow in the far field of the transverse jet induces a

vertically-aligned mean strain field. This mean strain field acts on the scalar field to

produce thin, vertical filaments, or “fingers,” in the wake of the jet. As a result, the

anisotropy is localized to specific regions of the transverse jet. Figure 5.9 shows the

scalar microscale computed in small sections of the transverse jet. Rectangles rep-

resenting the microscales are superimposed on an image of the ensemble-averaged,

jet-fluid-concentration field at x/dj = 50, for Rej = 20 × 103. The rectangles have

horizontal and vertical dimensions corresponding to 2λC,z and 2λC,y, respectively.

The anisotropy of the scalar fluctuations is seen to be greatest in the upper half of

the image, particularly in the region between the vortex centers. This is precisely

the area where extensional strain is produced by the counter-rotating vortex pair.

We conclude that anisotropic, large-scale flow can impose itself on the small-scale

features of the scalar field. Thus, a scalar field can be anisotropic at small scales,

even if the small-scale velocity field is isotropic.
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CHAPTER 6

Generalized coverage statistics for anisotropic sets

Fractals, and scale-dependent coverage statistics, for self-similar geometric sur-

faces are reviewed. We introduce generalized coverage statistics suitable for anisotropic,

non-self-similar geometries. This generalized coverage counting involves covering

with parallelepipeds of varying sizes and aspect ratios. For curves embedded in two

dimensions, the generalized coverage count, N(λ1, λ2), is a function of two vari-

ables. A scale-dependent measure, β(λ), of the anisotropy of a set is introduced. It

is shown that β(λ) transforms the coverage count, N(λ1, λ2), to isotropy through a

scale-dependent normalization of the coordinates. Examples of generalized coverage

statistics are given for a simple rectangular perimeter, and an anisotropic Sierpinski

carpet. The anisotropy of the set is measured in each case.
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6.1 Introduction

The term “fractal” was coined by Mandelbrot (1975) to describe complicated

geometric figures having repeated features at different length scales, i.e., self-similarity,

or scale-invariance. This symmetry across scales, and lack of characteristic length,

yields shapes that are more complicated than ordinary geometric figures, such as

lines, (Euclidean dimension DE = 1), squares (DE = 2), and cubes (DE = 3).

Fractal geometries are non-rectifiable, having “lengths,” “areas,” or “volumes” that

depend on the resolution of the measurement (Richardson 1961). For instance, the

coverage length of a fractal curve embedded in a plane increases without limit as

scale is decreased. Mandelbrot recognized that the geometric complexity of these

self-similar objects could be characterized by a non-integral dimension defined by

Hausdorff (1919).

Consider a geometric figure (set), A, embedded in d-dimensional space. Cover

the set with d-spheres of variable radius ri ≤ ε and define the function,

Hα,ε(A) = inf
∑

i

rα
i ,

where the summation is over all spheres required to cover A. The Hausdorff measure,

Hα(A), which is suited for fractal geometries, is defined as the smallest-possible sum,

for ε → 0, of the α-dimensional volume of the coverage spheres:

Hα(A) = lim
ε→0

Hα,ε(A) = lim
ε→0

inf
∑

i

rα
i .

The Hausdorff measure has the property that there exists a critical value of α = DH

such that

Hα(A) = ∞ for α < DH

and

Hα(A) = 0 for α > DH.

This defines DH, the Hausdorff dimension of A. The Hausdorff dimension is non-

integer for fractal geometries, and reduces to the Euclidean dimension for simple

figures.
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The capacity, or coverage, dimension is another way of defining a non-integral

dimension that is related, and usually equal, to the Hausdorff dimension, although

counterexamples exist (Cross 1999). Consider coverage of a set A in d-dimensional

space with equal-sized d-spheres of radius r = ε, and count the number of d-spheres

containing points in A. The capacity is defined as

DC = lim
ε→0

log N(ε)
log(ε−1)

,

where N(ε) is the number of spheres needed to cover the given set. In order for the

capacity to be constant, the coverage count must be a power-law function of the

measurement scale, λ, i.e., N(λ) ∝ λ−DC . This behavior was termed “power-law

fractal” by Miller and Dimotakis (1991). For box-counting, the equal-sized d-spheres

are replaced by d-cubes of size ε. The box-counting method lends itself readily

to computation and is a particularly-convenient definition of fractal dimension for

experimental datasets.

A generalized fractal geometry that depends on the scale of observation was

introduced by Takayasu (1989), and independently suggested by Miller and Dimo-

takis (1991), on the basis of their experimental data, and Dimotakis (1991), on the

basis of scaling arguments. Within this scale-dependent framework, the coverage

dimension, DC is, in general, a function of scale λ,

DC(λ) =
d log N(λ)
d log(λ−1)

. (6.1)

Power-law fractals, where DC is a constant, are seen to be a special case of the

scale-dependent geometry. The scale-dependent coverage dimension is related to

a distribution of geometric scales, in particular the probability density distribu-

tion of “largest-empty-box scales” (Catrakis and Dimotakis 1996). From experi-

mental measurements of jet-fluid concentration in jets discharging into a quiescent

reservoir, Catrakis and Dimotakis (1996) found that the coverage dimension of

two-dimensional isosurfaces increased monotonically with increasing scale, varying

smoothly from near unity at smallest scales to 2 at largest scales.
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6.2 Generalized coverage for anisotropic sets

For self-similar geometries, it is natural to consider the statistics of covering

a set with d-dimensional spheres or cubes, and to define the coverage dimension

based upon the coverage count, N(λ). However, many natural phenomena are not

isotropically scale invariant and thus are not readily addressed within the frame-

work of isotropic fractal geometry. Self-affine sets, for instance, become self-similar

upon anisotropic rescaling by an affine transformation, S. Affine transformations

are a combination of translation, rotation, dilation, and possibly reflection. Such

transformations, S : Rd → Rd, may be expressed as

S(A) = T(A) + b,

where T is a linear transformation on A, and b is a vector, in the space Rd.

In general, affine transformations can contract or expand by differing amounts in

different directions. Self-similar sets are a special case of self-affine sets.

Falconer (1990) reported that ferns and grasses are well-represented by self-

affine sets. Fracture in geologic materials important for oil and gas recovery have

been found to be self-affine fractals (Drazer and Koplik 2000). Vicsek et al. (1990)

found self-affine shapes of bacterial colonies when growth was initiated from a

straight line segment in an agar plate. Thin films grown in a vacuum are self-

affine surfaces when the process of deposition is realized at low temperature and

the angle of incidence is non-normal to the substrate (Pfeifer et al. 1989, Vicsek

et al. 1990). Vicsek (1990) argues that, in general, self-affine geometries may be

produced by marginally-stable growth of interfaces, in which fluctuations (which

would die out for stable interfaces, and grow exponentially for unstable interfaces)

can persist for long times.

Anisotropic driving forces can also introduce a preferred direction in the growth

of complex interfaces. In Rayleigh-Taylor unstable flows, for instance, a constant

acceleration (i.e., gravity) drives the growth of the mixing zone in one direction.

Additional (horizontal) small scales of the interface are generated as a consequence

of secondary, Kelvin-Helmholtz instabilities of the vertical shear layers produced

by the Rayleigh-Taylor instability (Cook and Dimotakis 2000). Self-similar fractal
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geometric descriptions may be inadequate for Rayleigh-Taylor unstable interfaces

because of the existence of different characteristic length scales in different direc-

tions.

In turbulence, local isotropy does not appear to hold in general for scalar

fields. For instance, Sreenivasan (1991) argues that small-scale scalar fields can

be directly influenced by anisotropic large-scale motions, and thus might be more

anisotropic than the small-scale velocity field. As seen in two-dimensional scalar

power spectra (Ch. 3), the directional PDF of scalar increments (Ch. 5), and the

scalar microscales in two directions (Ch. 5), the scalar field of the transverse-jet is

anisotropic, particularly at small length scales.

We introduce generalized coverage statistics for anisotropic sets by considering

coverages with anisotropic, d-dimensional ellipses or parallelepipeds. In two dimen-

sions, consider covering a plane curve, e.g., an iso-concentration contour in a 2-D

concentration field, with rectangles of size λ1×λ2. The generalized coverage counts,

N(λ1, λ2), are functions of two variables and may be viewed as contour plots in a

[log(λ1), log(λ2)]-plane. Coverage counts with high-aspect-ratio rectangles lie close

to the axes of such contour plots. Box-coverage counting, which is used for isotropic,

self-similar sets, is a special case of the generalized coverage count. Ordinary box-

counting can be recovered by considering the line log(λ1) = log(λ2) on the contour

plot of generalized counts.

The generalized coverage counts allow a simple test for isotropy. An isotropic

geometry would have coverage counts that are invariant to interchange of the λ1-axis

with the λ2-axis. Thus, isotropy would be evidenced by reflective symmetry about

the line log(λ1) = log(λ2) in the generalized coverage count, N(λ1, λ2). Conversely,

anisotropy of a geometric figure (e.g., jet-fluid-concentration level set for the trans-

verse jet) is detectable by a lack of reflective symmetry about log(λ1) = log(λ2).

We introduce a measure of the anisotropy of a contour embedded in two di-

mensions by considering the locus of points where the gradient of the coverage,

∇N(λ1, λ2), is aligned with the line log(λ1) = log(λ2), i.e.,

∇N(λ1, λ2) ‖ (ê1 + ê2), (6.2)
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where ê1 and ê2 are unit vectors corresponding to the log(λ1)-axis and the log(λ2)-

axis. We can define the (negative) partial logarithmic derivatives of the coverage

(cf. Eq. 6.1) to be DC,i,

DC,i ≡ −∂ log N(λ1, λ2)
∂ log λi

(6.3)

The alignment of the gradient of coverage, as defined in Eq. 6.2 is equivalent to

requiring DC,1 = DC,2. At points given by Eq. 6.2, the generalized coverage is

normalizable to yield (at least local) isotropy through rescaling of the axes by the

ratio β(λ),

β(λ) =
λ1

λ2

∣∣∣∣
DC,1=DC,2

. (6.4)

β(λ), as defined by Eq. 6.4, is a scale-dependent measure of anisotropy for the set

being covered, in the following sense: For every scale λ1, there exists a multiplicative

scaling, β(λ), given by Eq. 6.4, of the log(λ2)-axis that transforms the generalized

coverage count, N(λ1, λ2), into N(λ1, λ
′
2 = βλ2). The transformed coverage count,

N(λ1, λ
′
2 = βλ2), has local reflective symmetry about the line log(λ1) = log(λ′

2)

in the [log(λ1), log(λ′
2)]-plane. Thus, the geometric set can be renormalized in a

scale-dependent manner to be isotropic. This isotropy is, in general, local about

the line log(λ1) = log(λ′
2), but in special cases can be complete for the entire

[log(λ1), log(λ′
2)]-plane. We note that the points of equal partial derivatives given

by Eq. 6.4 are not necessarily unique for a given length scale.

For instance, consider the simple affine transformation in two dimensions,

S(A) = T(A) + b,

where

T =

[
s1 0

0 s2

]
, (6.5)

and b = 0. For s1 �= s2, this is an anisotropic contraction or expansion in dif-

ferent directions. If Eq. 6.5 is applied to a self-similar fractal set, e.g., a Koch

snowflake or an isotropic Sierpinski gasket, the resulting figure is self-affine rather

than self-similar. Through the generalized coverage formalism described in Eq. 6.2

and Eq. 6.4, the imposed anisotropy β = s1/s2 may be recovered. For this simple
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case, the anisotropy is the same at all scales (i.e., β is a constant), and a simple

rescaling of the set by:

R =

[
1 0

0 β

]
∝ T−1 (6.6)

would return the set to isotropy. In general, for scale-dependent anisotropy, β is

a (not-necessarily-single-valued) function of scale, i.e., β = β(λ), and a different

renormalization for each scale transforms the anisotropic set to local isotropy. In

this sense, β(λ) is a scale-dependent measure of the anisotropy of the set being

covered.

6.3 Example: Rectangular perimeter

Consider the outline shown in Fig. 6.1, a rectangular perimeter with sides of

width a and height b in the aspect ratio π : 1. This simple figure serves as a

useful example of generalized coverage counting by allowing analytic calculation of

N(λz, λy) and its partial derivatives. For a smooth curve, such as the rectangle, the

figure can be drawn with a single stroke, and the location of a point on the curve

can be specified with a single number. The topological dimension and the “fractal”

dimension are equivalent and have the value 1, the number of degrees of freedom of

the curve. The number of rectangular tiles of size λz × λy necessary to cover the

line is seen to be:

N(λz, λy) � 2 (
a

λz
+

b

λy
) . (6.7)

The logarithmic partial derivatives of the generalized coverage count are

∂ log N(λz, λy)
∂ log λz

=
−aλy

aλy + bλz
(6.8a)

and
∂ log N(λz, λy)

∂ log λy
=

−bλz

aλy + bλz
. (6.8b)
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Fig. 6.1 Simple plane curve (rectangle) of width a and height b with aspect ratio
a : b = π. Horizontal axis is z, vertical axis is y.

Equation 6.7 for the generalized coverage count is approximate because it allows

for non-integer numbers of covering rectangles. The expression for N(λz, λy), which

is plotted in Fig. 6.2, is a poor approximation for large coverage tiles but becomes

more accurate as the tile size tends to zero. The locus of points for which the

gradient of log N(λz, λy) is directed along the line log λz = log λy is found by

equating the partial logarithmic derivatives in each direction,

DC,1 = DC,2 ⇒ a

λz
=

b

λy
.

These points, for which ∇N(λz, λy) ‖ (l̂ogz + l̂ogy), form a line given by log λz =

log λy + β, where β = λz/λy = a/b (Fig. 6.3). The ratio of horizontal to vertical

scales, β, is the aspect ratio of the rectangular perimeter shown in Fig. 6.1. In this

simple case, the anisotropy is identical for all length scales, so β has a constant

value of π for all λ. A simple scaling of the vertical, y-axis by β = π, as in Eq. 6.6,

would transform the rectangle into a square and return the set to isotropy.

The actual generalized coverage count of the rectangular curve shown in Fig. 6.1

is displayed in Fig. 6.4. The contour plot of coverage is shown in equal logarithmic

increments of 0.2. A maximum of approximately 103 pixel-sized tiles are neces-

sary to cover the rectangular perimeter. In “real” coverage counting (as opposed

to the analytic expression plotted in Eq. 6.7), an integer number of tiles is guar-

anteed. Thus, for large coverage tiles (along the top and right-most edges of the

contour plot), the coverage statistics do not match with Fig. 6.2. The difference



– 69–

Fig. 6.2 Contour plot of analytic expression for N(λz, λy) given in Eq. 6.7. The
coverage is plotted in equal (base-10) logarithmic intervals. Anisotropy of
set being covered is seen in the lack of reflective symmetry about the 45o

line bisecting the axes.

between Fig. 6.4 and Fig. 6.2 decreases as the coverage tiles shrink and the num-

ber, N(λz, λy), of coverage tiles increases. Figure 6.5 shows the locus of points of

DC,1 = DC,2. The anisotropy of the rectangular perimeter can be computed from

the ratio of horizontal to vertical scales at the points of equal partial logarithmic

derivatives (Eq. 6.4). For the simple rectangle of aspect ratio π : 1, the anisotropy
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Fig. 6.3 Locus of points where partial logarithmic derivatives of analytical expres-
sion for N(λz, λy) are equal, i.e., where ∇N(λz, λy) ‖ (l̂ogz + l̂ogy) in
Fig. 6.2. These points are plotted as the line where DC,1/DC,2 = 1.

is expected to be independent of scale, and to have the exact value β = π. This is

confirmed by Fig. 6.6, which shows the anisotropy ratio computed from the coverage

count shown in Fig. 6.4. The experimental value of β = λz/λy � 100.497 = 3.14

matches the imposed anisotropy of the rectangular perimeter being covered.
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Fig. 6.4 Actual coverage N(λz, λy) of Fig. 6.1, plotted in equal base-10 logarithmic
contours. Anisotropy of rectangular perimeter being covered is seen in the
lack of reflective symmetry about the 45o line bisecting the axes.

6.4 Example: Sierpinski carpet

The Sierpinski carpet is a classical fractal which is a higher-dimensional gen-

eralization of the one-dimensional Cantor set (Peitgen et al. 1993). A vertical or

horizontal transect of the Sierpinski carpet, taken through the center of the figure,

is precisely the Cantor set. Beginning with a square, the Sierpinski carpet is iter-
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Fig. 6.5 Locus of points where ∇N(λz, λy) ‖ (l̂ogz + l̂ogy) for the actual coverage
count depicted in Fig. 6.4. The log λz intercept of the DC,1 = DC,2 line
gives the measured anisotropy of the rectangular perimeter, β = λz/λy �
100.497 = 3.14.

atively constructed by subdividing the initial square into nine, smaller, congruent

squares, and deleting the middle square. The limiting set of this process is the Sier-

pinski carpet. An anisotropic variant of the Sierpinski carpet can be constructed in

an analogous fashion by starting with a rectangle and removing the central “1/3”

of the rectangle. The anisotropic initial conditions lead to a self-affine set, rather
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Fig. 6.6 Measured anisotropy of rectangular perimeter. The scale-dependent mea-
sure of anisotropy, β(λ), is calculated using Eq. 6.4 from the coverage plot
shown in Fig. 6.4. Comparison line of β = π shows expected anisotropy,
the original aspect ratio of the rectangle.

than an isotropic figure. The first few iterations of a self-affine Sierpinski carpet,

constructed from an initial rectangle of aspect ratio 3 : 1, are shown in Figs. 6.7

and 6.8.

Although an analytic expression for the generalized coverage count is not avail-

able for the Sierpinski carpet, the count can still be computed. The coverage count

for the self-affine Sierpinski carpet is displayed in Fig. 6.9 as a function of tile size,

λz × λy. The maximum level shown in the logarithmic contour plot is 5.6, hence

approximately 4.0× 105 pixel-size tiles are necessary to cover the Sierpinski carpet.

The loci of points where partial logarithmic derivatives of N(λz, λy) are equal is

shown in Fig. 6.10 as lines of DC,1/DC,2 = 1. Along the line of DC,1 = DC,2 in

Fig. 6.10, we find log λz � log λy + 0.477. As measured by the generalized cov-
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Fig. 6.7 First three iterations of the construction of a self-affine Sierpinski carpet
embedded in two dimensions from a rectangle of aspect ratio 3 : 1. The
central “1/3” is removed from each rectangle.

erage statistics, the anisotropy of the set is constant for all scales, and has value
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Fig. 6.8 Next three iterations.

β = 100.477 = 3.0 (Fig. 6.11). This matches the 3 : 1 aspect ratio of the initial

conditions used to construct the self-affine fractal. A linear transformation, R, of
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the form

R =

[
1 0

0 β

]
would rescale the anisotropic Sierpinski carpet to a self-similar fractal.

Fig. 6.9 Coverage N(λz, λy) of self-affine Sierpinski carpet, shown in base-10 loga-
rithmic contours. The final iteration of the construction shown in Fig. 6.8
is used. The set is anisotropic, and the coverage is not reflectively symmet-
ric about the 45o line bisecting the axes. This can be seen in the partial
logarithmic derivatives of N(λz, λy).
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Fig. 6.10 Locus of points where ∇N(λz, λy) ‖ (l̂ogz + l̂ogy) for the self-affine Sier-
pinski carpet. The log λz intercept of the DC,1 = DC,2 line gives the
measured anisotropy of the set, β = λz/λy � 100.477 = 3.00.
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Fig. 6.11 Measured anisotropy of Sierpinski carpet. The scale-dependent mea-
sure of anisotropy, β(λ), is calculated using Eq. 6.4 from the coverage
plot shown in Fig. 6.9. Comparison line of β = 3 shows the expected
anisotropy, the original aspect ratio of the Sierpinski carpet imposed by
the initial conditions.
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CHAPTER 7

Geometric complexity of transverse-jet isosurfaces

The geometric complexity of level sets of jet-fluid concentration in transverse

jets is investigated for varying concentration thresholds. Two different Reynolds

numbers, Rej = 1.0 × 103 and 20 × 103, are investigated. Ensemble-averaged cover-

age counts, N(λ1, λ2), are computed at each Reynolds number from coverage counts

of six images of the jet-fluid concentration field. The anisotropy of the scalar iso-

surface is assessed in terms of the scale-dependent measure, β(λ). The special case

of ordinary (isotropic) box-counting is considered, and ensemble-averaged cover-

age counts, N2(λ), coverage lengths, L2(λ), coverage fraction, F2(λ), and coverage

dimension, D2(λ), are calculated for the Rej = 20 × 103 jet. Comparisons are

made between the transverse jet, and the turbulent jet discharging into a quiescent

reservoir.
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7.1 Isoscalar bounding-box size

The geometric complexity of isoscalar surfaces in the transverse jet is described

within the formalism of generalized coverage counts introduced in the previous chap-

ter. Iso-concentration contours embedded in two-dimensional image data are cov-

ered with tiles of varying size and shape. This anisotropic coverage-counting begins

by finding the bounding rectangle, of size δb,z × δb,y, that encloses the isosurface

defined by a chosen concentration level, Ciso. The bounding rectangle is succes-

sively subdivided, and coverage counts are computed as the number of partition

tiles containing the level-set contour of jet-fluid concentration. The partition of the

bounding rectangle takes place in two directions, so the coverage is found as a func-

tion of coverage-tile size, λz × λy. In the first iteration of the coverage process, the

bounding rectangle, δb,z × δb,y, is subdivided into two rectangular coverage tiles, so

λ
(1,0)
z = δb,z/2 and λ

(1,0)
y = λb,y. The subdivision continues in both directions, so

that upon the (i, k)th iteration, the coverage tile has size λ
(i,k)
z × λ

(i,k)
y , where:

λ(i,k)
z =

δb,z

2i
(7.1a)

λ(i,k)
y =

δb,y

2k
. (7.1b)

Bilinear interpolation is used to represent the isosurfaces for noninteger-sized cov-

erage tiles. This anisotropic coverage-counting method produces counts over the

entire range of scales, from (nearly) the image-pixel resolution to the outer spatial

extent of the jet-fluid-concentration isosurface. The generalized coverage counts,

N(λz, λy), are functions of horizontal and vertical scales, λz and λy, and are suit-

able for the anisotropic, non-self-similar sets that are expected for transverse jets.
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7.2 Generalized coverage for transverse-jet isosurfaces: Rej = 1.0 × 103

The level-set geometry of turbulent mixing in transverse jets was investigated

using data from transverse sections at Reynolds number Rej = 1.0× 103 and veloc-

ity ratio Vr = 10 (e.g., Fig. 2.7). Contour plots of the ensemble-averaged coverage

counts, N(λz, λy), of the level sets of jet-fluid concentration for Ciso = 0.01, 0.03,

and 0.05 are shown in Figs. 7.1, 7.3, and 7.5, respectively. Coverage counts are in-

dividually computed at each concentration level from six images of the cross-section

of the transverse jet. The images were recorded 50 nozzle-diameters downstream

from the jet-exit. Frames 0, 100, 200, 300, 400, and 500 were used from the sequence

of 508 images of scalar concentration in the jet. The six individual coverage counts

are then averaged with Gaussian interpolation functions to generate the ensemble-

averaged coverage plots of N(λz, λy). Horizontal scales, λz, and vertical scales, λy,

are normalized by the overall, threshold-dependent bounding-box size for the image,

δb(C; Rej). This overall bounding-box size, δb, is defined as the root-mean-square

of the individual bounding-box sizes:

δb(C; Rej) ≡
√√√√ 1

N

N∑
n=1

δz,bδy,b. (7.2a)

The above definition of the bounding box is based upon the mean area of the

individual bounding-boxes. An alternative definition based on the geometric mean

of the bounding-box size is possible,

δb(C; Rej) =
1
N

N∑
n=1

√
δz,bδy,b. (7.2b)

The difference between Eq. 7.2a and Eq. 7.2b is small (as it is in this case) if the

distribution of bounding-box sizes is small over the N images. For the results

described here, the overall bounding box size defined in Eq. 7.2a is used to normalize

length scales. Coverage counts, plotted in base-10 logarithmic increments as a

function of normalized coverage-tile size, range from 1, for the bounding box, to

greater than 104 for the smallest, pixel-sized, coverage tile.

The scale-dependent anisotropy of the level sets (isolines of jet-fluid concen-

tration) is assessed by computing the points for which the partial derivatives of



– 82–

Fig. 7.1 Generalized coverage of level sets of jet-fluid concentration for Ciso = 0.01
at Rej = 1.0 × 103. Coverage count, N(λz, λy), is plotted as (base-10)
logarithmic contours. Length scales nondimensionalized by bounding-box
size, δb, at this concentration level (Eq. 7.2a). Anisotropy of the level set
is seen in the lack of reflective symmetry about the 45o line bisecting the
axes (see also Fig. 7.2).

the coverage N(λz, λy) are equal. This is plotted in Fig. 7.2, Fig. 7.4, and Fig. 7.6

for the ensemble-averaged coverage counts for isosurfaces of Ciso = 0.01, 0.03, and

0.05. The anisotropy measure, β(λ), is shown in Fig. 7.7 for all three concentration
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Fig. 7.2 Rej = 1.0 × 103 and Ciso = 0.01. Locus of points where partial logarith-
mic derivatives of coverage N(λz, λy) are equal, i.e., where ∇N(λz, λy) ‖
(l̂ogz + l̂ogy). These points are plotted as the line where DC,1/DC,2 = 1.
Departure of this line from a 45o bisector of the axes indicates anisotropy
of isoscalar surface at this concentration, Ciso.

levels. Values of β(λ) greater than 1 indicate that a stretching of the vertical axes

is required to transform the isosurface contour to local isotropy; conversely, β(λ)

less than 1 indicates a contraction of the vertical axes is necessary for isotropy.

Thus, log β(λ) > 0 suggests a statistical preference for horizontal structures in the
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iso-concentration contour, and log β(λ) < 0 a preference for vertical structures, at

length scale λ. Figure 7.7 indicates that, for isosurfaces in cross-sections of the

transverse jet at Rej = 1.0 × 103, small scales are anisotropic and tend to be ver-

tically oriented, while large scales are anisotropic but horizontally oriented. Slight

variations are seen in β(λ) with iso-concentration level, e.g., there is a small in-

crease in the measured anisotropy at small scales with increasing concentration

level. However, the overall tendency for vertical structures at small scales, and

horizontal structures at large scales, is consistent for all iso-concentration levels

studied.

Fig. 7.7 Measured anisotropy of iso-concentration surface for Rej = 1.0×103. Small
scales of isosurface contour are preferentially stretched (β(λ) < 1) in the
vertical direction, ŷ, while large scales are preferentially stretched (β(λ) >
1) in the horizontal direction, ẑ. Squares: Ciso = 0.01. Triangles: Ciso =
0.03. Crosses: Ciso = 0.05.
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Fig. 7.3 Generalized coverage N(λz, λy) of isoscalar surface for Ciso = 0.03 at Rej =
1.0 × 103.

7.3 Generalized coverage for transverse-jet isosurfaces: Rej = 20 × 103

The level-set geometry of turbulent transverse jets was also investigated at

Reynolds number Rej = 20 × 103 and velocity ratio Vr = 10. Figures 7.8, 7.10,

and 7.12 show the coverage counts N(λz, λy) for three isosurfaces of Ciso = 0.01,

Ciso = 0.03, and Ciso = 0.05. Six images are ensemble averaged to produce the

coverage counts shown. Again, frames 000, 100, 200, 300, 400, and 500 are selected
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Fig. 7.4 Rej = 1.0 × 103 and Ciso = 0.03. Locus of points where partial derivatives
of coverage N(λz, λy) are equal. Departure of line from a 45o line bisecting
the axes indicates anisotropy of isoscalar surface at this concentration, Ciso.

from the sequence of 508 images of the jet-fluid-concentration field. Anisotropy of

the iso-concentration surface is measured by computing the points for which the

partial logarithmic derivatives of the two-dimensional coverage are equal. These

equal-partial-derivative points are plotted in Figs. 7.9, 7.11, and 7.13 for each

concentration level. The scale-dependent anisotropy of the isosurface is measured

by computing β(λ) for all three concentrations, as seen in Fig. 7.14. The anisotropy
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Fig. 7.5 Generalized coverage N(λz, λy) of isoscalar surface for Ciso = 0.05 at Rej =
1.0 × 103.

measure, β(λ), is found to be less than unity for small scales, indicating a preference

for small, tall, narrow structures. At larger scales, the value of β(λ) increases and

becomes greater than unity, showing a preference for large, short, wide features in

the isosurfaces. There is no clear variation of β(λ) with concentration level at this

high Reynolds number.
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Fig. 7.6 Rej = 1.0 × 103 and Ciso = 0.05. Locus of points where partial derivatives
of coverage N(λz, λy) are equal. Departure of line from a 45o line bisecting
the axes indicates anisotropy of isoscalar surface at this concentration, Ciso.

7.4 Anisotropy of transverse-jet isosurfaces

The iso-concentration surfaces of the transverse jet are anisotropic for the

Reynolds numbers investigated, ranging from 1.0 × 103 to 20 × 103. The scale-

dependent measure of anisotropy, β(λ), is less than unity for small scales and crosses

over to values larger than unity for large scales. This is an indication that, in the
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Fig. 7.8 Generalized coverage N(λz, λy) of isoscalar surface for Ciso = 0.01 at
Rej = 20 × 103, plotted as (base-10) logarithmic contours. Length scales
nondimensionalized by bounding box size, δb, at this concentration level.
Anisotropy of the set is seen in the lack of reflective symmetry about the
45o line bisecting the axes.

isosurfaces produced by turbulent mixing in the transverse jet, vertically-stretched

structure is found at small length scales, and horizontally-stretched structure at

large scales. Essentially the same mechanism proposed in Ch. 5 is believed to be

the cause of this anisotropy of the scalar isosurfaces. We offer some conjectures
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Fig. 7.9 Rej = 20 × 103 and Ciso = 0.01. Locus of points where partial derivatives
of coverage N(λz, λy) are equal, i.e., where ∇N(λz, λy) ‖ (l̂ogz + l̂ogy).
These points are plotted as the line where DC,1/DC,2 = 1. Departure of
this line from a 45o bisector of the axes indicates anisotropy of isoscalar
surface at this concentration, Ciso.

concerning the source of this anisotropy of the scalar isosurfaces. In the far field,

the dynamics of the transverse jet are dominated by a counter-rotating vortex pair

that defines the main body of the jet. The vortex pair also defines the large scales

of the jet-fluid-concentration field, and its isosurface contours. The body of the jet



– 91–

Fig. 7.10 Generalized coverage N(λz, λy) of isoscalar surface for Ciso = 0.03 at
Rej = 20 × 103.

is kidney-shaped and horizontally-elongated because of the side-by-side vortex pair,

and thus produces isosurfaces that are horizontally stretched at large length scales.

However, the counter-rotating vortex pair causes an extensional strain field, aligned

vertically, which produces vertical “fingers” and other small-scale structures. This

extensional strain is believed to be the source of the vertically-stretched structure

of the scalar isosurface at small length scales.
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Fig. 7.11 Rej = 20×103 and Ciso = 0.03. Locus of points where partial derivatives
of coverage N(λz, λy) are equal. Departure of line from a 45o line bisecting
the axes indicates anisotropy of isoscalar surface at this concentration,
Ciso.

It should be borne in mind that anisotropy of level sets is distinct from anisotropy

of the overall scalar field. In particular, β(λ) is a measure of the anisotropy of the

jet-fluid-concentration level set, C(x, t) = Ciso, while two-dimensional power spec-

tra, directional PDFs of scalar increments, and scalar microscales are statistics of

the entire scalar field, C(x, t). Although isosurfaces are level crossings of the scalar
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Fig. 7.12 Generalized coverage N(λz, λy) of isoscalar surface for Ciso = 0.05 at
Rej = 20 × 103.

field, direct connection can not be made between measures of the scalar field and

measures of the geometric complexity of scalar isosurfaces. Information on the

relative spacing of isosurfaces is lost when level sets are extracted from a scalar

field.
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Fig. 7.13 Rej = 20×103 and Ciso = 0.05. Locus of points where partial derivatives
of coverage N(λz, λy) are equal. Departure of line from a 45o line bisecting
the axes indicates anisotropy of isoscalar surface at this concentration,
Ciso.

7.5 Special case: Isotropic coverage statistics

The special case of coverage with squares is considered. This is the usual box-

counting approach, and allows comparison with the results of previous investigators

(e.g., Catrakis and Dimotakis 1996, larger review in Dimotakis and Catrakis 1996).
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Fig. 7.14 Measured anisotropy of iso-concentration surface for Rej = 20 × 103.
Similar behavior to lower Reynolds case shown in Fig. 7.7. Small scales of
isosurface contour are preferentially stretched (β(λ) < 1) in the vertical
direction, ŷ, while large scales are preferentially stretched (β(λ) > 1) in
the horizontal direction, ẑ. Squares: Ciso = 0.01. Triangles: Ciso = 0.03.
Crosses: Ciso = 0.05.

For the isotropic coverage statistics, (very-nearly) square coverage tiles are used

to compute the coverage count as a function of scale, λ. Coverage length, L2(λ),

coverage fraction, F2(λ), and the scale-dependent fractal dimension, D2(λ), are

derived from the isotropic coverage count, N2(λ). These were investigated for scalar

thresholds of Ciso = 0.01, 0.03, and 0.05 for the transverse jet at Rej = 20 × 103.

Figure 7.15 shows the ensemble-averaged coverage count, N2(λ), of isoscalar

surfaces for three concentration values, with lines of increasing solidity denoting

increasing scalar threshold. The coverage count is the ensemble average of six images

of the jet-fluid concentration field at x/dj = 50. Spatial scales, λ, are normalized by

δb(C), the root-mean-square bounding-box size for each scalar threshold, defined
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Fig. 7.15 Isotropic coverage count, N2(λ), for Rej = 20 × 103. Lines of increasing
solidity indicate increasing isosurface concentration. Squares: Ciso =
0.01. Triangles: Ciso = 0.03. Crosses: Ciso = 0.05.

by Eq. 7.2. The coverage counts for the intermediate threshold, Ciso = 0.03, are

seen to be larger than for Ciso = 0.01 or Ciso = 0.05. This corresponds to the peak

in the scalar-field PDF near C = 0.03 (Fig. 4.1).

The scale-dependent coverage length, L2(λ), is shown in Fig. 7.16 for three

jet-fluid concentrations, Ciso = 0.01, 0.03, and 0.05. Coverage length, defined as

L2(λ) ≡ λ N2(λ), (7.3)

is a measure of the resolved isolength at scale λ. The intermediate concentration

value is seen to have longer coverage lengths than the other concentration values.

This corresponds to the peak in the scalar-field PDF at the same jet-fluid concentra-

tion, C � 0.03. For the intermediate concentration threshold, the ratio of coverage

length to bounding-box size reaches L2(λ)/δb � 101.55 = 34.5 in the limit of small
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Fig. 7.16 Isotropic coverage length, L2(λ), for Rej = 20 × 103. Lines of increasing
solidity indicate increasing isosurface concentration. Squares: Ciso =
0.01. Triangles: Ciso = 0.03. Crosses: Ciso = 0.05.

length scales, i.e., λ/δb → 0. The asymptotic behavior of the coverage length is an

indication that the measurements are spatially well-resolved. The perimeter of the

bounding box is estimated to be 4δb, since the bounding box is nearly square. Thus,

turbulent mixing in the high Schmidt-number transverse jet produces isoscalar con-

tours with small-scale coverage lengths that are 34.5/4 � 8.8 times longer than the

perimeter of the bounding box. For comparison, in the turbulent jet discharging

into a quiescent reservoir, the asymptotic value of the ratio of coverage length to

perimeter of bounding-box was found to be approximately 11 at an intermediate

concentration (Catrakis and Dimotakis 1996).

The coverage fraction, F2(λ), is plotted in Fig. 7.17 for scalar thresholds of

Ciso = 0.01, 0.03, and 0.05 for the transverse jet at Rej = 20 × 103. This statistic

is again estimated from the ensemble average of six individual coverage counts.
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Fig. 7.17 Isotropic coverage fraction, F2(λ), for Rej = 20×103. Lines of increasing
solidity indicate increasing isosurface concentration. Squares: Ciso =
0.01. Triangles: Ciso = 0.03. Crosses: Ciso = 0.05.

Coverage fraction at a length-scale λ is defined from the coverage count, N2(λ), as

F2(λ) ≡ N2(λ)
N2,total

=
(

λ

δb

)2

N2(λ),

where N2,total is the total number of two-dimensional boxes of size λ that can fit in

the bounding box of size δb. It may be identified as the probability that a λ-sized

box, randomly placed in the bounding box, will contain (i.e., “cover”) part of the

set (Dimotakis 1991, Catrakis and Dimotakis 1996). The coverage fraction is seen

to decrease monotonically from unity with decreasing scale. Coverage fraction is

largest for the intermediate concentration, Ciso = 0.03.

Finally, the scale-dependent coverage dimension, D2(λ), computed from the

ensemble-averaged coverage counts, is shown in Fig. 7.18. Three concentration val-

ues, Ciso = 0.01, 0.03, and 0.05, are considered, with lines of increasing solidity
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Fig. 7.18 Scale dependent fractal dimension, D2(λ), for Rej = 20 × 103 com-
puted from isotropic coverage counts. Lines of increasing solidity indi-
cate increasing isosurface concentration. Squares: Ciso = 0.01. Triangles:
Ciso = 0.03. Crosses: Ciso = 0.05.

denoting increasing scalar threshold. The coverage dimension, defined in Eq. 6.1, is

seen to vary smoothly between unity, at the smallest scales, to 2 at the largest scales.

These bounds are the topological dimension, and the embedding dimension, respec-

tively. The variation of coverage dimension with length scale is consistent with the

results of Miller and Dimotakis (1991), and Catrakis and Dimotakis (1996), indi-

cating that isosurfaces produced by turbulent mixing are more complicated than

can be described by a power-law fractal description.
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CHAPTER 8

Conclusions

Reynolds number effects and flow dependence of PDF of scalar con-

centration — Enhanced scalar mixing, i.e., better spatial homogenization, with

increasing Reynolds number is found in experimental investigations of liquid-phase

transverse jets in the range 1.0×103 ≤ Rej ≤ 20×103. Classical measures of the jet,

such as scalar trajectory and maximum mean-concentration decay, are seen to be

independent of Reynolds number. However, the probability density function of jet-

fluid-concentration evolves with Reynolds number. In the far field of the transverse

jet, the scalar PDF evolves from a monotonically-decreasing function to a strongly-

peaked distribution with increasing Reynolds number. The behavior of the PDF is

explained as a consequence of the competition between entrainment, stirring, and

molecular mixing. Turbulent mixing is seen to be flow dependent, based on the

difference between the trends with increasing Reynolds number for the transverse

jet, and the jet discharging into a quiescent reservoir.

Scalar increment PDF — A technique for whole-field computation of scalar

differences is introduced and applied to experimentally-measured scalar fields in

the transverse jet. The PDFs of scalar differences are found to tend toward long-

tailed distributions with decreasing separation distance. These exponential, or

stretched-exponential, PDFs of scalar differences are found despite the inhomogene-

ity, anisotropy, and non-Gaussian distribution of the scalar field in the transverse

jet. This result is consistent with investigations in grid-turbulence, Rayleigh-Benard

convection, and other turbulent flows.

Anisotropy of scalar field — The scalar field is seen to be inhomogeneous

and anisotropic with decreasing scale. Two-dimensional power spectra of jet-fluid

concentration in the far field of the jet are found to be isotropic for low wavenum-

bers, and increasingly anisotropic for higher wavenumbers. This anisotropy at small
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scales is also reflected in the directional dependence of the PDF of scalar increments.

PDFs of scalar increments are narrower for small, vertical increments than for small,

horizontal increments. The scalar field has less variation (in terms of PDFs of scalar

increments, and scalar structure functions) in the vertical direction than in the hor-

izontal direction. The small-scale anisotropy of the scalar field persists from the

lowest Reynolds numbers investigated, Rej = 1.0 × 103, to the highest Reynolds

numbers studied, Rej = 20 × 103. Further evidence for the anisotropy of the scalar

field is also seen in the directional dependence of the scalar microscales. The ob-

served, small-scale, anisotropy of the scalar field is believed to be a consequence of

extensional strain in the vertical direction caused by the dominant, kidney-shaped

vortex pair in the transverse jet. The anisotropic, large-scale flow imposes itself on

even the smallest features of the scalar field.

Generalized coverage for anisotropic geometries — We introduce cov-

erage statistics suitable for describing complex, anisotropic sets. The ordinary

(isotropic, fractal) coverage count is generalized to consider coverings with anisotropic,

d-dimensional parallelepipeds. A scale-dependent measure of anisotropy is defined

by the normalization required to transform the anisotropic set to local coverage

isotropy. The generalized coverage and scale-dependent anisotropy are derived and

computed for simple examples of an ordinary figure (rectangular perimeter), and

an anisotropic fractal (Sierpinski carpet).

Complexity and anisotropy of isosurfaces in transverse jets — Level

sets of jet-fluid concentration in the turbulent transverse jet are found to be anisotropic

at both small and large scales. The scale-dependent measure of anisotropy, β(λ),

is less than unity for small scales, and crosses over to values larger than unity for

large scales, indicating a preference for vertically-stretched structures at small length

scales, and horizontally-stretched structures at large length scales. The small-scale

anisotropy is attributed to the extensional strain caused by the vortex pair, and

large-scale anisotropy is associated with the kidney-shaped, horizontally-elongated

cross-section of the transverse jet. For the special case of isotropic box-counting,

the scale-dependent coverage dimension is found to vary from unity, at the smallest

length scales, to 2, at the largest length scales. The isosurfaces produced by turbu-

lent mixing are more complicated than can be described by power-law fractals.
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APPENDIX A

Probability density functions in d-dimensional space

The PDF for a distribution, C(r), in d-dimensional space is the differential

d-dimensional volume, dVd(C), associated with a differential concentration, dC,

fd(C) =
1

Vd,tot

∣∣∣∣ dVd(C)
dC

∣∣∣∣ .

Normalization by the total volume, Vd,tot, is necessary so that the PDF has the

properties discussed in Ch. 4, and proper dimensions, 1/C.

Consider, for instance, the Gaussian scalar distribution,

C(r, t) =
1

2d(πDt)d/2 e−r2/4DT =
1

(2π)d/2σd
e−r2/2σ2

. (A.1)

This is the solution to the d-dimensional initial-value problem for the diffusion

equation on an infinite domain with initial conditions of a delta function at the

origin, C(r, t = 0) = δ(r). Here, σ2 = 2Dt. The differential length, dr, at any given

time (i.e., σ = constant) is related to dC by

dr

dC
= − (2π)d/2σd

2r
er2/2σ2

. (A.2a)

Using (A.1), dr/dC can be written as a function of C alone:

dr

dC
=

1
2 C r

=
1

2σC
{ − 2 ln

[
(2π)d/2σdC

] }1/2 . (A.2b)

The differential d-dimensional volume dVd(C) may then be expressed as a function

of C using (A.1) and (A.2) to yield the form of the PDF for a d-dimensional Gaussian

distribution:

fd(C) ∝ [ ln(1/C) ]d/2−1

C
. (A.3)
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Fig.A.1 PDFs of diffusive (Gaussian) distributions C(r). Solid line: one-dimensional.
Dashed line: two-dimensional. Dotted line: three-dimensional.

The PDF for a one-dimensional Gaussian-concentration distribution is then:

f1(C) ∝ 1

C [ ln(1/C) ]1/2 . (A.3a)

This function, which is shown in Fig. A.1, peaks at C = 0 and C = 1.

For a two-dimensional Gaussian distribution, dA = 2πrdr = π/C, and the

PDF is proportional to 1/C,

f2(C) ∝ 1
C

. (A.3b)

The PDF peaks at C = 0 and decreases monotonically to a (non-zero) minimum at

C = 1 (Fig. A.1).

Similarly, for a three-dimensional Gaussian, dV = 4πr2dr, and the PDF is

proportional to [ln(1/C)]1/2
/C,

f3(C) ∝ [ ln(1/C) ]1/2

C
. (A.3c)
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This function peaks at C = 0 and decreases monotonically to f(1) = 0 (Fig. A.1).

D-dimensional transects of a higher-dimensional Gaussian are themselves d-

dimensional Gaussians. For this reason, the PDFs discussed above can be viewed

as PDFs of concentration distributions in d-dimensional space, or as d-dimensional

measurements of a higher-dimensional distribution. The shape of a PDF can depend

on the dimensionality of the space (or measurement), as well as the distribution,

C(r).
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APPENDIX B

Three-dimensional isosurface visualization

The streamwise velocity deficit of the transverse jet, relative to the freestream

velocity, decays rapidly with downstream distance (e.g., Yuan and Street 1998).

Far downstream from the jet exit (x/dj � 1), the streamwise velocity of the jet is

approximately the freestream velocity, Ux � U∞. Taylor’s frozen flow hypothesis

may then be used to approximate spatial coordinates with scaled time coordinates,

x =
Ux

t
� U∞

t
. (B.1)

The transverse jet is in this sense a flow geometry that is well-suited for three-

dimensional measurements of the scalar field. A three-dimensional, pseudo-spatial

measurement of the scalar field can be assembled by recording a time sequence of

transverse slices of the jet-fluid concentration field at fixed x/dj � 1. The temporal

sampling requirement for assembling three-dimensional spatial concentration fields

is that the sample period be less than advection time of diffusion scales in the

streamwise direction:

tsample ≤ λD
U∞

. (B.2)

The diffusion scale, λD, is estimated in Ch. 2 to be 4.6 pixels, translating to

0.11 cm, for the Rej � 1.0 × 103 jet. For velocity ratio Vr = 10.1, the freestream

velocity is U∞ = 1.3 cm/s. The advection time of diffusion scales is estimated

to be λD/U∞ � 0.08 seconds using Eq. B.1. Thus, the 10 Hz framing rate of the

Cassini camera is close to resolving the diffusion scale in streamwise direction for

Rej � 1.0 × 103 (Eq. B.2). The corresponding advection time for diffusion scales in

the Rej � 2.0 × 103 jet is 0.04 seconds. In particular, the streamwise direction is

resolved to 1.25 times the scalar-diffusion scales at Rej � 1.0 × 103. The framing

rate is only sufficient to resolve 2.5 times the scalar-diffusion scales in the streamwise

direction at Rej � 2.0 × 103.
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APPENDIX C

Vorticity generation and dynamics

The primary vortical structures of the transverse jet are summarized in Fig. C.1:

the dominant counter-rotating vortex pair, jet shear-layer vortices, horseshoe vor-

tices, and wake vortices. The wake vortices, which extend from the jet toward the

injection plane, are similar in appearance to the vortices shed by circular cylinders

above a critical Reynolds number. Although periodic motions in the wake of the

transverse jet were noted by several early investigators (Gordier 1959, McAllister

1968, Reilly 1968, McMahon et al. 1971, Moussa et al. 1977), Kuzo and Roshko

(1984) were the first to directly visualize the wake vortices. Fric and Roshko (1994)

subsequently noted that the sources of vorticity for the transverse jet are distinct

from those of the circular cylinder. In particular, vorticity cannot be generated

within an incompressible, Newtonian flow, in the absence of body forces, and must

originate from boundaries. Flow visualizations suggested that the wake vorticity in

the transverse jet originated in the cross-flow wall boundary layer, rather than in jet

shear layer. This led Fric and Roshko to conclude that separation events occurred

periodically on the crossflow wall to redirect wall-parallel boundary-layer vorticity

into wall-normal wake vortices.

Although the primary focus of this thesis is on mixing and isosurface geometry,

some flow visualization experiments were conducted on vortical structures in the

wake of a transverse jet. In order to study the influence of cross-flow boundary

conditions on the wake vortices, the jet was injected through a free surface and

compared to the jet injected through a surface plate. Laser-induced fluorescence

was used to visualize the wake structure of the transverse jet for velocity ratio

Vr = 10.1 and Rej = 10 × 103. Fluorescent dye was introduced with a fine needle

upstream of the jet nozzle and entrained into the wake vortices. The wake region of

the transverse jet was visualized by spreading the beam from a Nd:YAG laser into

a 3-D volume, and recording images with the Cassini camera.
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Fig.C.1 Vortical structures in the transverse jet, from Fric and Roshko (1994).

The jet was first discharged through the laminar boundary layer of a surface

plate. A flat plate with a 4:1 elliptical leading edge was installed in the test section,

and the tunnel water level was adjusted to graze the surface plate. The jet exited

through a flush-fitting, convex-contoured nozzle with a 44:1 area contraction ratio

(Fig. C.2). The boundary layer on the surface plate was laminar (Rex = U∞x/ν <

20 × 103) and thin (δ � O(dj)) at the jet exit. This was verified with hydrogen-

bubble visualizations of the boundary layer, shown in Fig. C.3.

A frame from a sequence of volume-illuminated LIF images is shown in Fig. C.4.

The dye enters the field of view from the left, passes around the jet core, and is

entrained by the wake vortices. The sequence of images shows axial flow in the

core of the wake vortices, pulling dye from the wall, toward the body of the jet.

Vorticity in the newly-formed wake vortices (close to jet exit) is rapidly amplified

by vertical straining along the vortex axis as the jet body penetrates deeper into

the freestream. The wake vortices are counter-rotating, and sometimes cut and

reconnect to form upside-down U-shaped vortices, as seen in Fig. C.4.

After it was demonstrated that wake vortices could be visualized with LIF

volume illumination in the case of the jet issuing through a wall boundary layer, the
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Fig.C.2 Nozzles used to create jets. Both nozzles are convex-contoured (to sup-
press Gortler vortices) and have 44:1 area contraction ratio. Left: Nozzle
that fitted flush to surface plate. Right: Nozzle used to inject jet through
free surface.

transverse jet was injected through a free surface. The water level in the tunnel was

lowered to a height below the surface plate and the jet was injected with a surface-
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Fig.C.3 Hydrogen-bubble visualization of the thin, laminar boundary layer on sur-
face plate. Rex < 20 × 103 at jet exit, and δ � O(dj). Flare in the shape
of a “cross” is approximate location of nozzle.

piercing nozzle (Fig. C.2). Free-surface curvature and surface tension gradients were

negligible, and hydrogen bubble visualization showed no evidence of a boundary

layer at the free surface (Fig. C.5).

A volume-illuminated LIF image of the jet injected through the free surface is

shown in Fig. C.6. Despite the absence of wall boundary-layer vorticity upstream

of the jet exit, wake vortices are seen. In a fashion similar to the wall-bounded

transverse jet, the counter-rotating wake vortices are amplified by the overall jet

trajectory, and exhibit axial flow from the free-surface to the jet body. Unlike the

wall-bounded jet, however, the wake vortices of the free-surface jet can connect to

the surface.

Our experiments with free-surface transverse jets demonstrate that wall-boundary-

layer vorticity is not necessary for the formation of wake vortices in transverse jets.

Since no vorticity generation is possible within an incompressible, Newtonian fluid

in the absence of body forces, vorticity in the transverse jet wake (as well as in

the main body of the jet) must enter through imposed boundary and initial condi-

tions. There are several possibilities for the source of vorticity for wake vortices in

free-surface jets:
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Fig.C.4 Wake vortices for transverse jet injected through laminar boundary layer
of surface plate. Rej = 10 × 103 and Vr = 10.1.

Vorticity could be generated because of free-surface unsteadiness, or flow along

a curved free surface (e.g., Sarpkaya 1996). To motivate this, consider two-dimensional,

free-surface flow. The vorticity at a free surface may be expressed in terms of the

local and tangential components of the velocity field (Lugt 1987, Longuet-Higgins

1992, Wu 1995, Lundgren and Koumoutsakos 1999):

ω = −2
∂u
∂s

· n̂ = −2
∂u · n̂

∂s
+ 2u · ∂n̂

∂s
. (C.1)

The first term on the right is relevant for unsteady free surfaces, and the second

term for flows along a curved free surface. This equation, which is a kinematic

consequence of the zero shear stress condition at a free surface, is also derived for

three-dimensional flow by Lundgren (1989). Regardless of how it is generated (e.g.,

by flow along a curved free-surface, or by surface-tension gradients), the vorticity at

an unsteady free-surface, as given by Eq. C.1, can then diffuse into the bulk flow, or
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Fig.C.5 Hydrogen bubble visualization of free-surface. No free-surface curvature,
and negligible surface-tension gradients (Reynolds ridge is downstream of
test section at these conditions). Hence, no boundary-layer vorticity is
evident.

be transported by surface-normal flow. Our visualizations show that the transverse

jet does indeed induce free-surface curvature in the form of two depressions, or

“dimples”, on the downstream lateral sides of the jet (Fig. C.7). These dimples

are unsteady, with a period that are not dissimilar to the period of alternating-

signed wake vortices. It is likely that unsteadiness of the free surface, and/or flow

along a curved free surface, produces vorticity on the free surface through which

the transverse jet is injected. What is not understood, however, why this would

produce a pattern of wake vortices so similar to that of the wall-bounded transverse

jet.

It also possible that vorticity originating from within the jet nozzle could be

turned and amplified by vertical straining in the wake of the transverse jet. This

process would be initiated by local tilting and turning of jet shear layer as the jet

exits the nozzle and transitions to turbulence. This hypothesis could be tested by

reducing or eliminating the boundary layer within the jet nozzle of the transverse

jet. The boundary layer could be sucked away in an experiment, or, perhaps, a slip

boundary condition could be implemented in a numerical simulation. We believe
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Fig.C.6 Wake vortices for transverse jet injected through free surface. Rej =
10 × 103 and Vr = 10.1.

that eliminating the jet-nozzle boundary layer, if that is even possible, is unlikely

to eliminate the wake vortices, however.

There appear to be kinematic constraints on the circulation of a jet in crossflow.

These constraints are entirely a result of the imposed geometry of the transverse-

jet. If this is the case, the circulation would be independent of wall and jet-nozzle

boundary layers. LIF visualizations of transverse jets for high velocity ratios suggest

that the jet core is initially shielded from the crossflowing freestream. Thus, the

velocity in the freestream direction changes from zero inside the jet core to U∞
outside the jet core. A constant, nonzero circulation Γ ≈ U∞L would be computed

along a closed circuit of dimension L × δ around one side of the jet (Fig. C.8). The

mean vertical vorticity inside that contour would be < ωz > ≈ U∞/δ, where δ is

the thickness of the jet shear layer.
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Similarly, the vertical velocity changes from Uj inside the jet core to zero in the

freestream. A circulation of Γ ≈ UjH would be computed for a contour of height

H and width δ around the front half of the jet (Fig. C.8). The mean cross-stream

vorticity within this contour would be < ωy > ≈ Uj/δ, where δ is the thickness of

the jet shear layer.
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Fig.C.7 Free-surface curvature induced by transverse jet. Jet is injected from
above into the free-surface, with freestream flow from left to right. Free
surface rises up in a “hill” at the front of the jet, where streamwise veloc-
ities go to zero. Two “dimples”, or depressions, are formed on opposite
downstream sides of the jet core.
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Fig.C.8 Kinematic constraints on circulation at free surface. Jet fluid is shown as
shaded areas. Left: Horizontal plane taken at jet exit. Right: Vertical
plane taken through jet axis, close to jet exit.
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