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Abstract

It is often necessary to search for objects in large databases of compressed imagery.
In the past, object recognition and image compression have generally been treated as
separate problems, resulting in inefficient suboptimal performance.  Moreover,
computational and storage issues make it fundamentally prohibitive to uncompress large
images prior to object recognition. We provide two complementary solutions to the
problem of object recognition in compressed imagery, each of which integrates subband
and correlation filtering in a unique manner.

One key benefit of correlation filters is that, as linear systems, they are highly
compatible with the subband filtering process. This enables us to provide a seamless
operation in which object recognition and data compression are viewed as continuations
of the same process. The public MSTAR data set illustrates our results on a three class
problem of 79 Synthetic Aperture Radar images at one foot resolution.

Our general framework, the Pattern Recognition Subband Coder (PRSC), provides
simultaneous synthesis and recognition at full resolution in a computationally efficient
architecture. Its parallelism enables a result 1.6 times faster, in the limit, than correlation
on uncompressed imagery. Furthermore, by jointly optimizing the synthesis and

recognition filters, the PRSC achieves 100% recognition accuracy on our compressed
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data set, improving performance over that produced from the original (uncompressed)
data set, by 3.7%. We maintain this success for compression ratios up to 6:1.

Addressing the issue of reduced resolution recognition, our Subband Domain
Correlation Filters operate directly on the subband coefficients at multiple resolution
levels. For compression ratios of at least 20:1, we achieve recognition performance of at
least 90%, 85%, and 75%, respectively, on two, four, and eight foot resolution data.

Thus, through our solutions with compressed imagery, we outperform correlation
results on the equivalent original imagery in terms of both speed and accuracy, as well as

provide success at reduced resolutions of the data.
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Chapter 1

Introduction

Multimedia, high speed data transmission, and the world wide web have made visual
imagery a large part of the computing experience. Images are now ubiquitous in many
consumer, industrial and military applications which store and catalog them in various
databases. Due to the large storage requirements of typical image data, most applications
store them in a compressed format. That is, the application transforms the image data
into a new representation which requires less space in a computer's memory bank and
thus allows for more compact storage. The new compressed format is typically a
mathematical representation with little similarity to the visual characteristics of the
original image. Many applications, however, require the computer to search through a
large image database quickly selecting images containing specific objects of interest to
the user. Therein lies the question addressed by this thesis, "Given a set of compressed
images, how can we quickly and accurately find the ones we want?"

The material presented in this thesis is motivated by the goal of jointly optimizing the
three system components of recognition, compression, and implementation, thus

providing an integrated approach to the problem of object recognition in compressed
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imagery. The driving factors for system performance are 1) accurate object recognition,

2) high compression rates, and 3) low orders of computation.

1.1 Statement of the Problem

Our trilateral approach elicits the following specific research questions, which are

addressed by this thesis.

e "Can we merge an object recognition architecture with a compression architecture in
a computationally efficient manner?"

e "Can we perform object recognition in compressed imagery with the same accuracy
as in uncompressed imagery?"

e "How does the accuracy of object recognition in compressed imagery degrade with
the amount of compression?"

e "Can we perform object recognition at reduced resolutions of the compressed
imagery?"

e "Can we provide a system which allows for tuning between the two objectives of

image compression and object recognition?"

1.1.1 The Problem of Object Recognition

Finding and recognizing a particular object or pattern in an image may seem like an
easy task to a human, however, a robust and universal computer solution has proven
elusive to numerous scientists for many years. The task involves using a computer to
recognize a particular pattern of bits within a sea of distracting bits. The difficulty lies in
the physical variability of the three major components of an image scene: the objects

themselves, the sensors, and the surrounding environment. Several books and hundreds
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of journal papers [Pra78, Mar82, Hor86, Jai89, GW93], discuss these issues in great
detail. In the interest of brevity, only a few major points are reiterated here.

Addressing variations among the physical objects themselves is a difficult problem in
itself. First, an object recognition algorithm must account for variations in the object's
location within an image as well as both in-plane and out-of-plane rotations of an object.
The object may not always appear at the same position within a scene or at the same
perspective. An object may also appear in multiple types of scenes and an object
recognizer must be able to handle the different scene backgrounds. Additionally, the
object recognition system must be able to reject scenes that do not contain any object that
it has been trained or programmed to recognize. Furthermore, the distinguishing
characteristics which separate one class of objects from another may not easily be
programmed into a computer algorithm. Figure 1.1 provides an example of each object
class used in this thesis. Three military vehicles make up the object classes: a BMP

Bradley fighting vehicle, a BTR armored personnel carrier, and a T72 tank.

(a) BMP (b) BTR (c) T72

Figure 1.1 Images of the Object Classes: BMP, BTR, and T72

The image data employed in this thesis is from a Synthetic Aperture Radar (SAR),
and is shown in the above figure in its original uncompressed state. Figure 1.1

underscores the difficulty in differentiating one type of object from another, even for
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human observers, and even with visually recognizable uncompressed images. Out-of-
plane rotations and translations by the objects under investigation further exacerbate this
difficulty. These issues, as well as a low rejection rate, are the main focus of the
recognition part of this thesis investigation. Section 2.5.1 further elucidates the

characteristics of the imagery used in the thesis.

1.1.2 The Problem of Object Recognition in Compressed Imagery

The main focus of this thesis is not to make advances in the state of the art in object
recognition per se, but to perform current levels of object recognition in compressed
imagery. Why would one want to perform object recognition in compressed imagery?
As mentioned earlier, memory and computational speed requirements drive the need for
such a system. Images take an enormous amount of memory, hence they are typically
stored in a compressed format, yet many applications need very quick searches of large
image databases.

Figure 1.2 provides a compressed representation of each object class used in this
thesis. We exhibit their uncompressed counterparts in Figure 1.1. The compressed
representation shown is a subband decomposition. It is a mathematical representation of
the original image. Figure 1.2 illustrates the much greater difficulty in discriminating
between object classes once the objects are stored in the compressed domain.

Finally, we note that image compression has typically served the purpose of visual
reconstruction. That is, compression quality is currently scored with measures like the
Peak Signal to Noise Ratio (PSNR) and mean squared error (MSE) of the reconstructed

image. Researchers derived both PSNR and MSE to reflect the visual quality of the with



(a) BMP (b) BTR (c) T72

Figure 1.2 Compressed Images of the Object Classes: BMP, BTR, and T72

reproduction image. One must remember that the goal of image compression for object
recognition is not necessarily the same as the goal of image compression for visual
reproduction quality. This thesis is interested in image data compression for content

manipulation rather than content visualization.

1.2 Prior Developments in Object Recognition and Image
Compression

Typically, object recognition and image compression are treated as separate
problems. Thus, we provide a little background on the history of both fields. There is
such a large body of literature on both object recognition and image compression, that,
out of necessity, we have restricted the discussion to the most effective and relevant
models in Section 1.2.1 and 1.2.2.

The purpose of this thesis, however, is not to advance either specialty, but to join the
two, so that object recognition is now performed directly in the compressed image
domain. Researchers have only recently addressed this issue; we provide the references

and background to the prior work in Section 1.2.3.



1.2.1 Object Recognition

Object recognition techniques generally fall into two categories: 1) those that operate
directly on the data, and 2) those that extract features from the data. Classical computer
vision techniques began with the former approaches in the 1970s, with both filtering and
statistical models. Today, the field is characterized by a shift towards feature extraction
paradigms. The feature extraction methods form two branches - those that use learning
algorithms to classify the feature vectors, and those that develop semantic models of the
features. The model based approaches then try to match the acquired model with several

representative models stored apriori.

Template Matching

Some of the earliest work in object recognition grew out of the matched filter
originating in the field of communications [Nor43, Tur60]. It is well known that a
matched spatial filter is optimum for the detection of an object in a single image in the
presence of additive white noise [Nor43]. In such a system, a cross-correlation is
performed between the stored filter and the image in question. If the correlation exceeds
a predetermined threshold, then the image is declared to contain the object of interest.

Matched spatial filters were first applied to the problem of character recognition in
[MEDS56, Hig61], and to the more general problem of object recognition in [CL+60].
Their use grew throughout the 1960s and 70s, with a good discussion and synopsis given
in [And70, DH73, Pra78]. Then Casasent and Psaltis [CP84] showed how to make
correlation filters invariant to position, rotation, and scale through a log polar transform.
This procedure, however, is difficult in practice because it requires registration of the

input image. Thus, unfortunately, wide variability in an object’s characteristics make the
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matched spatial filter a very brittle method of object recognition. Matched spatial filters,

however, provided the basis for the evolution of the more sophisticated correlation filters.

Correlation Filters

Correlation filters are specially formulated generalizations of the matched spatial
filter which are able to recognize many different views of an object in the presence of
signature variations and in clutter. They were born out of Synthetic Discriminant
Functions (SDFs), which themselves evolved from linear combinations of matched
spatial filters [HC80]. A good introduction to correlation filter theory is given in Vijaya
Kumar, Mahalanobis and Juday [VKMJO00] and in Vijaya Kumar [VKu92]. The two
most important steps in the evolution of correlation filters came when Vijaya Kumar
[VKu86] introduced minimum variance SDFs to maximize SDF noise tolerance, and
when Mahalanobis, et. al., [Mah87, MVK+87] introduced Minimum Average Correlation
Energy (MACE) filters capable of producing sharp correlation peaks at the same location
as the shifted input.

In general, correlation filters are composites of several training images representative
of a particular object, thus, mitigating the brittle characteristics of a matched spatial filter.
Moreover, correlation filter theory suggests that the Minimum Average Correlation
Height (MACH) filter is statistically optimum for detecting objects in additive noise,
when Gaussian assumptions hold [MVK97b]. However, correlation filters are still not
robust enough to perform recognition over wide variations of an object. In general,

multiple correlation filters are formed for different aspects of an object.



Statistical Models

Measures of statistical information in an image can also provide signatures useful in
object classification. Typical measures are derived from image histograms and from
spatial frequency spectra. Examples of these measures are the mean, variance,
skewness, kurtosis, energy, and entropy of an image histogram. If segmentation is
performed on the objects within the image, then shape statistics, such as moments,
eccentricity, major axis orientation, area, and curvature, may also be generated. The most
recent and noteworthy example of using a statistical model (employing histogram
statistics) with SAR imagery is given in [Sim99]. SAR imagery, however, is notorious
for spectral shadows and missing spectral information. These traits are difficult to

overcome with statistical models.

Principal Components Analysis

The method of Principal Components Analysis (PCA) was introduced in the statistics
literature by Hotelling in the 1930s [Hot33]. PCA provides a way to describe the
directions of maximum variation in multidimensional data. In addition, only a small
number of principal components are necessary to form a well-defined representation of
an image. In essence, the PCA approach specifies a basis set which forms a model of
object classes. The PCA approach has been applied to several problems in the image
domain [SK87, TP91, BP93, BFP+94, MN95].
Deformable Models

Finally, we come to a more recent method of object recognition. To represent a
latitude of variations within an object class, features of a particular object class can be

arranged in a deformable spatial configuration (a.k.a. model) to form a syntactic
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representation of an object class. Objects under consideration in an image are then
matched to the appropriate parts of the stored model. Features appropriate for a syntactic
model vary depending on the application. One application of deformable models is face
recognition which may use the eyes, nose, or mouth corners for a face model. Recent
work which uses deformable models for object recognition can be found in [Yui9l,
L+93, WvdM93, PL95, Sha95, Bur97]. The main detriment of deformable models is that
they are only as good as the feature detectors that provide the inputs. A missing or
erroneous feature can cause the model to hallucinate. In addition, with a large number of

features, the search space for a correct model match can be computationally prohibitive.

Object Recognition in SAR Imagery

Synthetic Aperture Radar (SAR) imagery forms a very specific domain of object
recognition. To date, successful object recognition in SAR imagery primarily involves
template matching and correlation filters. Matched spatial filters (a.k.a. template
matching) were first applied to SAR imagery in the mid 1980s [LM85, BKS88].
Currently, both Novak [NO+97, NO+98, NO+99] and Hofstetler [Hos99] perform cross-
correlation with template filters. The template that has the lowest mean squared error
with the object in question determines the classification of the object. These templates
are formed from a mean image, over 5° spans of each object within each object class.
Thus, for 360" viewing aspects of each object class, the template method requires 72
templates for each class.

Correlation filters, while similar to template matching, form more global descriptions
of the objects under consideration. They were first used on SAR imagery in [MF+94],

while recently, Mahalanobis, et. al., [MO+99, MO+00] have shown good results with
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SAR imagery by forming correlation filters over 45° spans of the object classes. This
method requires only eight correlation filters per object class.

In addition, Simonson has done some work with statistical models [Sim99]. In this
work, she forms a probability distribution of the dominant scatterers in the SAR imagery.
The sensed probability distributions are then matched to a set of distributions stored
apriori to determine the object classification.

Finally, Diemunsch and Wissinger, et. al., [DW98, WR+99] have applied a
deformable model approach to SAR imagery. They form a syntactic relationship of the
dominant scatterers from the radar return and try to match that to a group of stored
models for object classification. A novelty of this approach is that through their Predict
Extract Match Search (PEMS) technique, they can iteratively try to elicit an optimum
classification from the object in question. In follow up work by Ettinger [Ett00],
however, it is suggested that a better way of performing the match may be to use methods
similar to cross-correlation to match an image domain representation of the apriori

models with the sensed imagery.

1.2.2 Image Compression

The objective of image compression is to reduce the number of bits of information
necessary to represent a given image by eliminating redundancy in the image or by
introducing distortion into the image in a manner that is acceptable to the viewer, or in
our case, to the object recognizer. Early work in image compression began with
predictive techniques formulated by Oliver and Elias [Oli52, Eli55] and the Differential
Pulse Code Modulation (DPCM) predictive method introduced by Culter [Cul52].

Transform coding, introduced by Andrews and Pratt [AP68, AP69, And70], was the next
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big step in compression of two-dimensional data. Both Jain [Jai81] and Rabbani and
Jones [RJ91] provide a good review of the early work in image compression.

The first popular image compression technique was the Graphics Interchange Format
(GIF), developed by CompuServe Information Service to encode graphical images. It is
a variant of the Lempel Ziv Welch (LZW) algorithm [Wel84, ZL77, ZL78], which is an
adaptive dictionary technique similar to the ‘compress’ command in UNIX. While GIF
works well with graphical images, it is generally not the most efficient method to
compress natural images.

A current popular image compression technique, the Joint Photographic Experts
Group (JPEG) method [Wal91], combines transform and predictive coding. It uses a
block based transform coding procedure which consists of segmenting an image into
typically square blocks, applying an orthogonal transform to each block, and then
quantizing and coding the transform coefficients. Coding within a JPEG scheme can use
one of eight different linear predictive techniques (including no prediction). The main
detriment of JPEG coding is that it produces blocking artifacts at low bit rates.

Finally, the most recent image compression technique is subband coding. Detailed
information about subband coding can be found in Vaidyanathan [Vai93], Vetterli and
Kovacevic [VK95], and also in Strang and Nguyen [SN96]. The technique, first
introduced for speech coding in the 1970s, centers around splitting an image into multiple
frequency bands, and then coding the resulting coefficients. In that regard, it is similar to
transform coding. Subband coding differs, however, in that it is not block based, but
applies the filtering operation to the entire image. In addition, most subband coders

perform the filtering operation recursively to each resulting low frequency subband,
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producing a multiresolution decomposition [Mal89] of the image data. Subband coders
became more popular and viable with the advent of perfect reconstruction, made
independently by Vaidyanathan and Vetterli [Vai87a, Vai87b, Vet87].

A good summary of image compression techniques is given in Sayood [Say96]. In
addition, Baxter and Siebert [BS98] provide a survey of several image compression
techniques specifically applied to SAR imagery. Their preferred compression system for
the highest perceived SAR image quality consists of a wavelet packet transform that uses
a Gabor-like tree structure with smooth biorthogonal wavelet filters, followed by a

universal trellis coded quantizer and an arithmetic entropy coder.

1.2.3 Combining Object Recognition with Image Compression

We uncovered very little previous work combining object recognition with
compressed imagery. Our compilation of the literature references divides them into five
categories: 1) full reconstruction of the compressed image, 2) multiresolution domain
processing, 3) vector quantization domain processing, 4) unconventional compression

techniques, and 5) database query.

Full Reconstruction of the Compressed Image

Current systems typically perform the reconstruction (i.e., the inverse of
compression) and recognition tasks serially. They fully uncompress the stored images,
then apply an object recognizer to the uncompressed data. Walls and Mahalanobis
[WMO99] use this method on SAR imagery; Liu and Mitra [LM96] follow the technique
with fingerprint data; Shin and Kil [SK97] employ the paradigm with sonar images;
visual images of tanks undergo the same approach by Miller [Mil95]. If the recognizer

does not find the object of interest, then typically, the system transforms the image back
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into its compressed state and moves on to the next image, repeating this process through
the entire database finding all instances of the object. This is the most straightforward
way of dealing with compressed imagery, and what we will call the baseline compression
recognition system throughout this thesis. It is not computationally efficient, and limits
the speed of the search.

In the first three instances of the previous work, however, they demonstrate high
recognition rates for compression ratios between 50:1 and 200:1. In addition, the Walls
and Mahalanobis paper [WM99] provides us with a baseline for comparison with our

own experiments.

Multiresolution Domain Processing

A literature search revealed only two publications which acquire features from the
subband coefficients of a multiresolution decomposition. Irving, et. al., [INW97]
construct an autoregression model in scale, and use that as a feature vector for object
detection. That is, the algorithm was not used for object classification, but rather to
denote whether or not a region of an image possibly contained an object as opposed to
background clutter. In addition, this algorithm does not account for the downsampling
effects encountered in a subband decomposition and discussed in detail in Section 5.1.

The approach by Nahm and Smith [NS95] is also only used for object detection, not
to discriminate between multiple objects. In this case, they vector quantize the subband
coefficients, and use the resulting codewords to distinguish between background clutter
and possible objects. This approach is akin to the Chaddha and Perlmutter, et. al.,

[CPGY6, P+96], approach of processing directly in the vector quantization domain.
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Vector Quantization Domain Processing

Vector quantization of an image provides a compression technique that is typically
not as powerful as JPEG or subband coding, but is still quite popular. Chaddha and
Perlmutter, et. al., [CPG96, P+96] devise a method of using the codewords resulting from
vector quantization of an image to provide classification. It is a nice technique because
only the indices of the codebook are needed for the classification label. This technique,
however, has only been used to dichotomize an image with two classification labels, such
as man-made and natural, or tumor and non-tumor. The method has not been extended to

multiclass discrimination of objects.

Unconventional Compression Techniques

A few recent publications do combine unconventional compression techniques with
object recognition models. These approaches, however, do not use the standard
compression models used by most applications today. Principal Components Analysis is
employed by [LWO0O] to perform both compression and recognition. [TJ97] uses an ad
hoc compression technique based on image singularities which then form the basis for
recognition.  Multiresolution Principal Components Analysis is used by [BP98] to
provide both compression and recognition. Fractal features form the basis for both

compression and recognition in the work of both [Bon95] and [BBC98].

Database Query

A few systems, known as database query models, exploit compressed imagery to find
objects similar to the true object of interest. This thesis addresses a different problem -
that of exact object recognition. Additionally, database query models typically use

unconventional compression techniques which do not apply to many image databases.
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Pentland, et. al., [PPS95] use an independent semantics preserving image compression
technique for their Photobook system. Vasconcelos and Lippman [VL97] use an
independent library based coding and compression scheme for their image retrieval
system. A group of linear basis sets is learned in Keaton and Goodman [KG99] which
facilitates both compression and database query. Finally, Vellaikal and Kuo [VK96] use

quadtree structure information along with JPEG coefficients for effective database
queries. [KG99] can require partial decoding of the compressed data, while [VK96]

requires full reconstruction of the image to compute the quadtree structure.

1.3 Thesis Approach

Central to the approach of this thesis is the joint selection of the compression and
recognition components to provide an integrated system and facilitate an efficient
implementation. The overarching purpose of the two models remains complementary.
They must work in concert to form a synergistic system. As the image compression
model reduces the number of bits used to represent a given image, it must introduce
distortion into the image in a manner that is acceptable to the performance of the object
recognizer.

Toward this end, our approach follows these objectives:

e To obtain the result directly in the compressed domain. That is, to avoid
reconstruction of the image.

e To jointly optimize the performance trinity of recognition, compression, and
computation.

e To provide results at both full and reduced resolutions of the data.
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e To make accurate object recognition our primary objective, high compression rates

secondary, and faithful reconstruction of the image ternary.

1.3.1 Algorithm Selection

Currently, most image compression applications use one of two techniques: JPEG
coding or subband coding. With JPEG, the physical nature of separating the image into
blocks breaks up any object under consideration in an image. This did not lend itself well
to choosing an object recognition model, which would then have to find discriminating
characteristics within each block or as some amalgamation across blocks. Furthermore,
JPEG coding produces blocking artifacts at low bit rates, which are not conducive to
object recognition.

We selected subband coding as the compression model for this thesis investigation.
Subband coders provide a computationally efficient filtering system which results in a
multiresolution representation of the image data. Multiresolution image representations
provide a compact image representation as well as an efficient basis for image analysis
[Mal89]. Furthermore, subband coders allow image reproduction to degrade gracefully at
low bit rates making them appealing for integration with object recognition.

The image processing literature abounds with object recognition techniques, some of
which are discussed in Section 1.2. Most importantly, the object recognizer used in this
investigation must work cooperatively or invariantly with the downsampling intrinsic to a
subband coder. For this thesis research, we selected correlation filters as the object
recognition model. The primary reason is that, as linear systems, correlation filters are

highly compatible with a subband coder architecture. This enables a seamless operation
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in which object recognition and data compression are viewed as continuations of the
same process.

It is important to utilize object recognition techniques that operate directly on the
compressed data, and equally important to employ compression techniques that facilitate
object recognition as well as a homogenous implementation. This framework facilitates
the joint optimization of the performance of a subband architecture and the correlation

filters.

1.3.2 Two Novel Solutions

Our quest to combine subband and correlation filters resulted in the development of
two distinct yet complementary solutions to the problem of object recognition in
compressed imagery. The underlying duality between the approaches of these two
systems lies in the domain which forms the correlation filters for the object recognition.
In our first solution, the Pattern Recognition Subband Coder (PRSC), the correlation
filters are synthesized from the original image, and integrated seamlessly with the
subband synthesis filters to form a new filtering architecture. The Subband Domain
Correlation Filters (SDCFs) form our second approach by producing correlation filters
from the subband coefficients and then operating directly on the subband information.

An additional duality lies in the objectives of these two systems. The PRSC
processes compressed image data to provide an object recognition response equivalent to
that from its full resolution uncompressed counterpart. In contrast, the SDCFs provide
object recognition responses at lower resolutions of the data, which while accurate, leave

more ambiguity in object location.
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1.4 Thesis Outline and Contributions

This thesis introduces two novel systems for performing object recognition in
compressed imagery. Chapters 3 and 4 discuss the PRSC model, while Chapter 5
presents the SDCF model. The following is a chapter by chapter review of this thesis
indicating contributions made by the author.

Chapter 2 Background
We give a brief review of the basic subband coding and correlation filter models.

Essential notation and nomenclature unique to each area is provided. In addition, we

establish the baseline results for comparison with experiments in later chapters.

Chapter 3 A New Pattern Recognition Subband Coder Architecture
This chapter reveals a method for combining the correlation and subband filters into a

new compression/recognition architecture. The material addresses the computation leg of

our three prong approach. We present a full analysis of the computational efficiency of
the new architecture.

Novel contributions from this chapter include:

e A new signal processing architecture which integrates correlation and subband filters
into a homogeneous operation, and facilitates effective object recognition directly in
the compressed domain. It possesses the following characteristics.

— It is a wuniversal architecture for operating any linear filter directly on the

multiresolution data of a subband coder.

— It produces a response identical to that produced by the reconstructed image.

— It results in a response identical to that effected by the original image, within the

fidelity of the subband transform.
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— It is more computationally efficient than the separate implementation of the two
filters.

— It provides a faster response than that resulting from the original image, by a
factor of F' = 1.6, in the limit, as image size goes to infinity.

e A matrix vector formulation for operating linear systems directly in a transform
domain. It has the following attributes:
— It is universal for a linear operator and unitary transform.

— It results in a response identical to that produced by the untransformed input.

Chapter 4 Joint Optimization of the Compression and Recognition Filters

We address the remaining two legs of our three prong approach: optimizing the joint
performance of the compression and recognition tasks within the PRSC. First we review
the standard design of a quadrature mirror filter (QMF) for a subband coder. Then we
introduce the new terms which incorporate recognition performance into the design of the
QMF, as well as describe the technique for including the QMF response in the design of
the correlation filter. In addition, we present rate error curves which can be used to tune
the system between varying rates of compression and recognition performance. Finally,
we give suggestions for future work.

Novel contributions from this chapter include:
e A method of jointly optimizing the compression capability of a QMF subband filter

and the recognition performance of a correlation filter. This method provides:

— superior performance than operating the two filters independently

— superior performance to operating on the uncompressed data
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e A suggestion for jointly optimizing the compression and recognition performance to
compensate for quantization.

Chapter 5 Subband Domain Correlation Filters
We introduce our second solution to the problem of object recognition in compressed

imagery in this chapter. The approach synthesizes correlation filters that operate directly

on subband coefficients at multiple resolution levels. We present a novel training

technique as well as an additional QMF design method, both of which enhance system

performance. Again, we provide rate error curves which can be used to trade off the

compression and recognition performance. Lastly, we make suggestions for future work.
Novel contributions from this chapter include:

e A new pattern recognition algorithm which utilizes correlation filters synthesized in
the subband coefficient domain, and allows for object recognition at the multiple
resolutions of a subband coder.

e A new training methodology to accommodate the downsampling of the subband
coefficients.

e A novel method of jointly optimizing the compression capability of a QMF subband
filter and the recognition performance of a correlation filter to compensate for

downsampling in the subband coefficients.

Chapter 6 Concluding Remarks
In this final chapter, we summarize and compare the two models introduced in this

thesis as well as recount the contributions made.
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Chapter 2

Introduction to Correlation Filters
and Subband Coders

As discussed in the previous chapter, the system presented in this thesis uses subband
coding as its image compression component, and correlation filtering for object
recognition. The current chapter provides background material on these two fields as
well as describes important procedures of our experiments and additionally, recent results
of related prior work.

An outline of the chapter is as follows. Sections 2.1 and 2.2 define the notation and
terminology we use throughout this thesis. We provide a basic review of correlation
filters and subband coders along with our specific implementations in Sections 2.3 and
2.4, respectively. Section 2.5 then lays the groundwork for the experiments performed in
later chapters. We include all of the background material regarding the data,
methodology, and performance measures for the experiments. Finally, in Section 2.6 we
present current state-of-the-art results on both compressed and uncompressed data as a
baseline for comparison. These results are useful for comparison with the performance

achieved in this thesis and reported in chapters 4 and 5.
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2.1 Notation

Images in the space domain are denoted in lower case italics while upper case italics
represent their counterpart in the frequency domain. Thus, a two-dimensional image
x(m,n) has Fourier transform X(k,/). Vectors are expressed by lower case bold characters
while matrices are denoted by upper case bold characters. Either x(m,n) or X(k,/) can be
expressed as a column vector x by lexicographical scanning. We define lexicographical
scanning to proceed columnwise, unless otherwise stated. The quantities X", X* X'and
X' signify, respectively, the transpose, conjugate, transpose conjugate, and inverse of X.
Correlation and convolution are designated by the symbols ® and *, respectively. The

quantity x(n) refers to a reconstructed version of the original signal x(n).

2.2 Terminology: A Quick Reference Guide

To bridge the two disparate fields brought together in this work, we provide some
nuances of the terminology used throughout the thesis.

e The term correlation filter is synonymous with object recognition filter and MACH
filter.

e When we reconstruct the image with a subband coder, we use synthesis filters,
therefore the terms reconstructed signal and synthesized signal represent the same
thing. Yet when we create the MACH filter, we synthesize it from its training input.

e A subband coder is really a compression system. The term coding is sometimes used
to mean compressing; sometimes, however, we encode symbols with their

representative codewords.
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e A multiresolution decomposition, pyramid decomposition, subband decomposition,
and hierarchical decomposition are all the same entity.

e Analysis filters form the forward compression transform, while the inverse
compression transform uses synthesis filters (a.k.a. interpolation filters).

e The subband literature denotes the first level of decomposition as the highest level,
because it contains the highest resolution data. The last level of decomposition is
known as the lowest level.

e The high frequency subbands in a subband decomposition are known collectively as
the upper subbands.

e Throughout the thesis, we often refer to a baseline compression recognition system.
In this case, the system fully reconstructs the image prior to performing object

recognition.

2.3 Review of Correlation Filter Theory for Object
Recognition

It is well known a matched spatial filter is optimum for the detection of a single
image in the presence of additive white noise. Correlation filters are specially formulated
generalizations of the matched spatial filter which are able to recognize many different
views of an object in the presence of signature variations and in clutter. In general,
correlation filters are composites of several training images representative of a particular
object. Numerous references [VKu86, Mah87, MVK+87, Vku92, VKM+92, MVK+94,
MVK96, MVK97b] address the details of correlation filter theory at length, with the most
current and complete examination in [VKMJ00], however, we give a brief review of the

algorithm here.
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In the simplest case, the output of a correlation filter ¢(m,n) in response to an input
image x(m,n) is described by
yim,n)=c(m,n)® x(m,n) (2.1)
where y(m.n) is referred to as the correlation surface. Typically, however, the processing
is done in the frequency domain for the purpose of computational efficiency, as shown in

Figure 2.1. In this case, the correlation output is given as
y(m,n)=5"{C$(k,l)-X(k,l)} (2.2)
where C(k,l)= S{g‘(m,n)}, X(k,1)= S{x(m,n )}. S{} and S"{} represent the forward

and inverse discrete Fourier Transform operation, respectively.

& » FFT » Correlation » FET > v

input data Filter correlation
output

Figure 2.1 Correlation System for Processing Uncompressed Imagery

As stated in [VKMIJO00], correlation filter theory deals with the design of C(k,/) such
that the filter output can achieve the following three objectives:
e recognition of distorted versions of the reference pattern
e robust behavior in the presence of clutter and noise
e high probability of correct recognition while maintaining a low error rate

Many researchers have investigated numerous design techniques for building
correlation filters to meet the three objectives listed above. Our goal in this thesis is not
to develop better underlying design techniques for correlation filters, but rather to

effectively use them with compressed data. To this end, we employ one of the current
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state of the art correlation filters, the Maximum Average Correlation Height (MACH)
filter [IMVK97b].
We now provide a brief description of the formulation of the MACH filter. Consider
a set of N training images whose discrete Fourier Transforms are given by Xi(k.[),

1 <i<N. The average training image is then given by
1 N
M(k,l):FZXi(k,l) (2.3)
i=l
We also define the power spectrum of the training set as
1 & 2
D(k,l):-}VZ|X,.(k,1)| (2.4)
i=l
and a spectral variance term as

SCk,1) = Dik, 1) |M (k,Df (25)

The MACH filter is then defined in the frequency domain as

M (k,l)

C(k,l)=
oS(k,l)+ BD(k,l)+ yu

(26)

where the parameter, u, is simply the mean value of spectral variance, and the constants
o, P, and 7y are used for optimally trading between distortion tolerance, noise tolerance
and correlation energy minimization. The interested reader is referred to [Car96] for
further details about the use of these parameters in design of the MACH filter.

Figure 2.2 displays a typical correlation output of the MACH filter. Generation of the
correlation output is only the first step; a subsequent postprocessing algorithm then
interprets the peaks of the correlation surface. The height of the peak corresponds with
the likelihood of a pattern match, while the peak location corresponds with the location of

the pattern match. Numerous researchers have also developed many techniques to
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Correlation

(a) Intensity Plot (b) Surface Plot

Figure 2.2 Plots of a Typical Correlation Output
To obtain a robust correlation plane, maximize the peak, reduce the variations
due signal distortions, and reduce any sidelobes produced by noise and clutter.

interpret the correlation output and its relationship to recognition of the object in question
[SS88, WG90, MVKS96]. We selected the simplest technique for this thesis
investigation.

For each correlation surface generated, we compute the peak-to-sidelobe ratio (PSR)

y(mn)—u,
(o)

It

PSR = (2.7)

at the location of the maximum correlation response (also know as the correlation peak).
In Equation 2.7, y(m,n) is the value of a particular location of the correlation surface; L,
and oy are the mean value and standard deviation of the correlation surface over a
bounded region in its neighborhood. In fact, it can be shown that the MACH filter is an
optimum detector in the sense that it maximizes PSR for the target class. The architecture
of the classifier based on the MACH filter is simple. Given a test image at the input, the

system assigns it the label of the class corresponding to the filter which yields the highest

class = arg{max(PSR,)}, ie {1....Nc} (2.8)



where N, is the number of object classes under consideration.
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2.4 Subband Coding for Compression

The objective of image compression is to reduce the number of bits of information
necessary to represent a given image by eliminating redundancy in the image or by
introducing distortion into the image in a manner that is acceptable to the viewer, or in

our case, to the object recognizer.

compression techniques. Figure 2.3 depicts a standard compression system.

Encoding Side

Decoding Side

Forward

Transform

B

Original
Signal

Within a compression system, a subband coder performs the forward and inverse
transform operations, with analysis and synthesis filters, respectively. A two band,
one-dimensional, subband coder is shown in Figure 2.4. The analysis filters, Hy(z) and

H\(z), decompose an input signal, x(n), into lowpass and highpass filtered bands of

x(n) —p

Inverse

1 1
Quantizer Encoder =7 / " Transform

Bit Stream

Figure 2.3 Standard Compression System

Figure 2.4 Diagram of a One-Dimensional, Two Band Subband Coder
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Sayood [Say96] relates a good summary of image
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information, which are then downsampled. Resulting subband coefficients are then
coded and transmitted. The system accounts for the loss of information from
downsampling by cleverly designed synthesis filters, Go(z) and Gi(z), applied at the
decoder to reconstruct the original signal. Several references provide detailed
introductions to subband coding and its variants: Mallat [Mal89], Vaidyanathan [Vai93],
Vetterli and Kovacevic [VK95], and Strang and Nguyen [SN96].

The overall transfer function of an analysis and synthesis system for a one-

dimensional, two band subband coder like in Figure 2.4 follows the equation below.

A 1
X(2)=3 X(2)[H, (96, () + H(2)G (2)]
(2.9)

+—;X(—z)[HO(—Z)GO(z)+Hl(—z)G,(z)]
where X (z) is the reconstructed signal and X(z) represents the z transform of the time
domain signal x(n). Hy(z), Hi(z), Go(z), and G(z), are similarly defined. Signal
reconstruction consists of the frequency response (first term) and the aliasing component
(second term).

Subband coding is easily extended to two dimensions by analyzing the input signal
independently in the horizontal and vertical directions. The analysis transform can be
applied recursively to the low frequency subband, resulting in a multiresolution, or
pyramid decomposition, as displayed in Figures 2.5 and 2.6.

A typical level of a multiresolution decomposition will have four subbands of
information, one composed of only low frequency components, the LL subband, and
three containing high frequency components, the HL, LH, and HH subbands. Often,

subband literature refers to the high frequency subbands collectively as the upper

subbands.
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level 1

ooy e LL HL
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Figure 2.5 A One Level Subband Decomposition of an Image
The image of (a) exhibits a one level subband decomposition, while (b) displays
the corresponding names commonly associated with each subband.
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Figure 2.6 A Three Level Subband Decomposition of an Image
The image of (a) exhibits a one level subband decomposition, while (b) displays
the corresponding names commonly associated with each subband. The subband
literature denotes the first level of decomposition as the highest level, because it
contains the highest resolution data. In this figure, level three is the lowest
decomposition level.

In the absence of quantization and ignoring machine round-off error, subband coders
can provide lossless compression. The compact distribution of the subband coefficients

accounts for the reduction in data rate during lossless compression. Subband coders are
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most often used in lossy compression, however, in which case the compression rate
relates directly to the degree of quantization.

Additionally, with a properly designed subband filter, subband coders can provide
perfect reconstruction, in the absence of quantization. Compression applications
typically use perfect reconstruction filters [Vai87a, Vai87b, Vet87, Vai90] in the case of
both lossless and lossy compression. A popular set of perfect reconstruction filters are
the QMFs, [CEG76, Vai87b, Vai90] which we use in this thesis research. Section 4.2
discusses the details of our QMF design at great length. Again, our purpose is not to
improve the compression power and quality of QMFs, but to optimize their effectiveness

with an object recognition model.

2.5 How to Perform an Object Recognition Experiment with
Correlation Filters

Four issues are key to the quality of any object recognition experiment: 1) the image
data, 2) the preprocessing of the image data, 3) the methodology of the experiments, and

4) the performance measures. We address all of these issues here.

2.5.1 Image Data

Essential to the validity of any experiment are the quality and characteristics of the
data. With this in mind, we selected the MSTAR Synthetic Aperture Radar (SAR)
image database publicly released by Defense Advanced Research Projects Agency
(DARPA) which is easily available and widely used by many researchers. Another
reason for selecting the one foot resolution MSTAR data is that its ground truth is well

documented, an important feature for synthesizing the correlation filters. The main issue
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involving object recognition of SAR data is that changes in the object orientation and the
grazing angle of the radar sensor create strong variations in the resulting image.
We construct a three class problem to distinguish three military vehicles: a BMP
Bradley fighting vehicle, a BTR armored personnel carrier, and a T72 tank. Figure 2.7
shows photographs of each vehicle, while Figure 2.8 displays the vehicles as depicted in

the SAR imagery.

(b) BTR (c) T72

Figure 2.7 Photos of Object Classes

(a) BMP (b) BTR (c) T72

Figure 2.8 SAR Images of Object Classes

The photographs may not be displaying the exact models used in the SAR imagery. All
of the vehicles lie between 0 and 45 degrees viewing angle to the sensor, with 0 degrees
corresponding to a head-on view. All of the images are cropped to size 64 x 64 pixels for
the experiments in this thesis. It was verified that the vehicle’s dimension fit within this

image size.



Training Set

Correlation filter theory requires a set of training images to synthesize a set of
correlation filters of the objects to be recognized. To this end, we use the MSTAR data
generated from radar at 17° elevation for the training set, which Figure 2.9 shows in its

entirety.

(a) BMP

(b) BTR

(c) T72

Figure 2.9 Full Training Set of Object Classes
The training set consists of 0° - 45° views of the objects taken ata 17° elevation.
Because the ground truth is given, the vehicles are centered within the input image
prior to training. Object registration is an important step in synthesizing the correlation
filters for object recognition. The training set consists of 30 BMP images, 29 BTR

images, and 28 T72 images.
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We perform training for the PRSC with unquantized reconstructed image data. That
is, we process the images with the subband filters, but do not quantize the resulting
coefficients. This is to incorporate any artifacts of the compression process in the
correlation filter. Training data for the SDCF system comes from subbands themselves.
The subbands are formed from the original images and again no quantization is applied to

the subband coefticients.
Testing Set
The test set of our experiments, shown in Figure 2.10, uses the MSTAR data

generated from radar at 15° elevation. We do not perform any registration on the test

(a) BMP

(b) BTR

() T72

Figure 2.10 Full Test Set of Object Classes
The test set consists of 0° - 45 views of the objects taken at a 15° elevation.
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data. Images of 24 BMP examples, 28 BTR examples, and 27 T72 examples comprise

the test set.

2.5.2 Preprocessing

Correlation filter performance in SAR data improves by applying simple thresholds to
remove some of the background pixels. To our benefit, prior work [VKMIJO00] developed
a excellent thresholding method for this particular set of SAR data which we used in all
of our experiments and will review here. Prior to any thresholding, however, we take the
log magnitude of the SAR data and then convert it to byte. In the case of the training
images, we retain the integrity of the object by creating a mask from the ground truth
data. Thresholding the test images, however, is strictly a mathematical process, with no
knowledge of the object's presence or location in the input image.

The preprocessing involves two different thresholds and is a two step process. In the
case of the first threshold, its value replaces all image pixels with a value less than the

computed threshold.

x(m,n)=max{x(m,n), 1, } witht,=pu -2.20, (2.10)

where x(m,n) is a particular pixel value of the input image and p, and o, are the mean and
standard deviation, respectively, of the input image. The second threshold is computed

from these new image values and the image is thresholded again according to the

following rule.
x(m,n)=x(m,n)—t,, if x(m,n)>t, (2.11)
otherwise, x(i, j)=0

where 1, = U, -0.50 (2:.12)
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Notice that both 7, and 7, are image dependent, and that t, and oy are the new mean
and standard deviation values. In Figures 2.11 and 2.12 we show both the original and

preprocessed images of a BMP from the train and test set, respectively.

(a) (b)

Original Image Preprocessed Image

Figure 2.11 Preprocessing for the Training Images
Image (a) displays an original training image of a T72, (b) exhibits its
preprocessed counterpart. Because we know the true location and orientation of
the training data, the preprocessing can remove much of the extraneous clutter.

(a) (b)

Original Image Preprocessed Image

Figure 2.12 Preprocessing for the Test Images
We show an original T72 test image in (a) while (b) portrays its preprocessed
version. Notice that the preprocessing does not remove all of the clutter, but does
remove part of the target, particularly if the target lies in a shadow.

It is important to note that we assume the preprocessing is done on the original image
data, prior to the subband decomposition; that is, it is stored as a preprocessed image in
the compressed domain. There are two motivations for this approach. First, it is

reasonable to assume that many applications can and will preprocess the image prior to
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compression and storage. Second, the same thresholding techniques used on the original
image data apply to the subband coefficient data. We consider this task as secondary to

the main course of this research.

2.5.3 Methodology

An object recognition experiment with correlation filters consists of two phases. In
the training phase, a MACH recognition filter is built for each object class. Thus, three
filters were built in our case; one each for the BMP, BTR and T72.

During the test phase, the system processes the unknown object with each of the
stored MACH filters and computes a PSR value for each possible class according to
Equation 2.10. If there are N object classes, then there are N PSR values. As discussed
in Section 2.3, the object is classified according to Equation 2.8. Sometimes, however,
the image will not contain any of the known object classes and the system must account
for this. Therefore, we construct a PSR threshold that the output must exceed to register
a classification. If none of the PSR values are greater than the threshold, then the system
classifies the image as a 'rejection' which means that the image does not contain any
object that belongs to one of the known object classes. The rejection category is an

important tool in high quality object recognition.

2.5.4 Performance Measures
Finally, we assess the power and capability of our model for object recognition in
compressed imagery with standard performance measures from each of the three foci of

our thesis research: 1) object recognition, 2) compression, and 3) computational
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efficiency. Note that the visual quality of the reconstructed image is secondary to other
factors in this thesis investigation.
Recognition Metrics
To gauge the capability of the object recognizer, we compute the probability of
correct classification, error, and rejection, referred to as Pc, Pe, and Pr, respectively, and
always stated in percentages. A further detail of the performance is known as the

confusion matrix, an example of which is shown in Table 2.1. The confusion matrix

Table 2.1 Hypothetical Confusion Matrix

Computed Object Class
BMP BTR T72 Reject
True BMP 21 2 1 0
Object BTR 0 26 0 2
Class T72 2 0 24 I

allows us to determine which objects are being confused with others and is sometimes
helpful in performance assessment. In the case of Table 2.1, we see that the system
misjudged three BMPs; twice it misclassified a BMP as a BTR, and once as a T72. The
object recognizer did not misclassify any BTR images, however, it rejected two of them
as not having any known object within the image. Furthermore, the Pc is 89.9%, the Pe

is 6.3%, and the Pr is 3.8% in this example.

Compression Metrics
The rate of data transmission is measured in bits per pixel (bpp).

B

rate = (2.13)

where B is the total number of bits required to transmit the data for the reproduction

image, and M and N are the row and column dimensions of the reconstructed image.
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Sometimes rate is reported as a compression ratio. e.g., A bit rate of two, would elicit a
compression ratio of 4:1 for eight bit original data.

As stated previously, we are less interested in the reconstruction fidelity than we are
in the compression aspects of a subband transform. For this reason, we evaluate the
compression power solely on the basis of the bit rate. We refer to two typical
compression metrics, the PSNR and MSE, as reconstruction metrics throughout the

thesis.

Reconstruction Metrics
To quantify the quality of the compression module we use the typical measures of
mean squared error (MSE) per pixel and Peak Signal to Noise Ratio (PSNR) between the

original and reconstructed images defined below.

1 I J . )
MSE =—— x(myn)—x(m,n 2.14
MN,,,Z;I,,Z{(( )= X(m.,n)) (2.14)
52
PSNR = 10log,, i (2:15°)
MSE

where M and N are the row and column dimensions of the original image. The MSE has
no units, whereas the PSNR is measured in decibels (db). In this thesis, the MSE is
always reported for a three level subband decomposition, unless otherwise stated. Both
of these values measure how accurately the reproduced image matches the original

image, however, they are only meaningful when the context of a specific bit rate.

Computation Metrics
Lastly, to assess the computational efficiency of our model we calculate the order of

the computation by totaling the number of multiply operations necessary for the system.

to process one image.
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2.6 State of the Art Object Recognition Results using
Correlation Filters

In this section, we provide a performance baseline with which to compare the results
of this thesis investigation. We focus on the object recognition performance and the
computational order for comparison with our new system. With this baseline, our thesis
can then address the following questions:

e "How will compression degrade the recognition performance?"

e "What is the computational cost of the new system?"

2.6.1 State of the Art Results on Uncompressed Imagery

Using the system diagrammed in Figure 2.1 and the MACH filter and postprocessing
technique discussed in Section 2.3, we performed the three class experiment defined in
Section 2.5.1. The experiment utilized the original uncompressed SAR test data, and

resulted in the confusion matrix exhibited in Table 2.2.

Table 2.2 Confusion Matrix Resulting from Uncompressed Imagery

Computed Object Class
BMP BTR T72 Reject

True BMP 23 0 1 0
Object BTR 1 26 ] 0
Class T72 0 0 27 0

Table 2.3 identifies the performance percentages. They are commensurate with results

published in the open literature [VKMIJO00] for much larger experiments on similar data.

Table 2.3 Recognition Results for Uncompressed Imagery

Pc Pe Pr
Baseline Experiment 96.2% 3.8% 0%
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2.6.2 State of the Art Results on Compressed Imagery
The current baseline method of working with compressed imagery is to fully
reconstruct the image and then process it through an object recognition model. Figure

2.13 illustrates such a system.

Correlation System for Processing Uncompressed Data

[ = S i i S i (e e e i 1

1 1

Inverse : Correlati :
. orrelation 3
x, —p»| Subband }——p| FFT P O L IFFT )

. f X Filter i :
compressed |Transform ” , correlation
data / 1 1 output
reconstructed
data

Figure 2.13 Baseline Compression Recognition System
Notice that the above system is simply an augmentation of the correlation system
used with uncompressed imagery (shown in Figure 2.1).

Thus, for lossless compression, the recognition performance for the baseline
compression recognition system is exactly the same as that resulting from uncompressed
data. In the case of lossy compression with SAR imagery, previous work [WM99] shows
that the recognition performance is very robust. Using the Embedded Zerotree Wavelet
algorithm [Sha93], Walls and Mahalanobis report the following correct classification

results on a ten class problem from the MSTAR data.

Table 2.4 Recognition Results of the Baseline Compression Recognition System

Compression Ratio
10:1 20:1 100:1 186:1 350:1 675:1  1000:1
Pc 97% 95% 94% 91% 79% 35% 14%
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Chapter 3

A New Pattern Recognition Subband
Coder Architecture

Motivating the design of this new architecture, which addresses the implementation
branch of our trifurcate approach, was the drive to integrate the correlation and subband
filters into a single synergistic component. The key issues of the design parallel two
questions extended at the outset of this thesis.

e “Can we perform correlation in compressed image data and achieve an output
identical to that resulting from the original image data?”
e “Is such a process computationally efficient?”

These two objectives lead to the question, "How can one synthesize a correlation
MACH filter from original image data, and then pull it back into the individual
subbands?" Such a procedure forms the basis for image domain processing and is the
heart of our Pattern Recognition Subband Coder (PRSC) architecture. With the PRSC
architecture we provide computationally efficient correlation filtering in the compressed

domain (i.e., image reconstruction is not performed) while we preserve the subband QMF
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properties and circumvent entanglements with the downsampling effects encountered in
subband coder architectures.

Section 3.1 presents a mathematical formulation of a linear system that results in an
identical response for both compressed and uncompressed data. In Section 3.2 we
elucidate the methodology for merging the subband and correlation filters. It is here that
we define the PRSC architecture and explain its construction. We discuss the
computational efficiency of the PRSC in Section 3.3, as well as its parallel structure,
which improves the processing time over that of uncompressed images. Finally, we

summarize the effectiveness and limitations of the PRSC in Section 3.4.

3.1 One-Dimensional Formulation

Consider the linear system
y=0Cx (3.1)
Equation 3.1 represents a one-dimensional correlation process written in matrix vector
notation, where x is a one-dimensional input signal, C is a Toeplitz matrix defined by a
one-dimensional correlation filter, and y is the one-dimensional correlation output.
Matrix vector notation provides a convenient mathematical and analytical tool for the
ensuing discussion.

Our goal is to express the response y in terms of the transformed input, x,. That is,
with a linear system, to achieve an output from a transformed input that it is identical to
the one produced from its original counterpart. The following equations hold for any
linear system and any general transform that can each be written as a matrix operation.

They are not limited to the correlation process and compression transform.
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3.1.1 A General Transform Representation
Given the matrix construction of a unitary transform operator, T, note that Equation
3.1 can be rewritten as
y=CT'Tx (3.2)
We define x; as the transformed input,
x, =Tx (3.3)

C, as the 'inverse transformed' correlation matrix,

C,=CT (34)
and T is the transformation matrix. With these definitions, Equation 3.2 can be restated.
y=Cx, 3.5
If T is not unitary, the above set of equations remain intact with T' being replaced by T,
as long as T is nonsingular.
Immediately, we see that if T is a unitary compression transform, then Equation 3.5

provides an elegant method of achieving the sought after correlation surface, y, directly

from the compressed image without any reconstruction.

Implementation
The implementation for a compression and correlation system is simple and
straightforward. We assume:
1) we are given the compressed images, X,
2) we know the compression transform matrix, T, and
3) we can compute the transformed correlation matrix, Cy, a priori, and store it off-line.
Now to formulate C; we must first produce the standard correlation filter in the

uncompressed domain (and its matrix counterpart C), which does require uncompressed
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images. A typical recognition system completes the training phase a priori, however,
when time and processing power are not as limited as during system operation.
If the system specifically calls for a subband transform, the transformation matrix, T,
is created directly form the subband analysis filter pair. We discuss the construction of T
in Section 4.1. In brief, the transformation matrix, T, combines the filtering and
downsampling of a subband analysis transform over multiple levels in a matrix structure.
Our informal treatment of the T structure in the following discussion is a preface to the
detailed material of Chapter 4.
Parallelization
For recursive unitary transforms (like the subband transform), we define a unique
mathematical formulation of Equation 3.5 that lends itself to a parallel implementation.
In the case of a recursive subband transform, the first level analysis and synthesis is given
by
x =Tx and x=T'x (3.6)
The transformed signal can be separated into its low and high frequency components:
x, =[x, x,,]. Or, with proper zero padding of the individual vector components,
X, =X, Xy (3.7)
Now, adapting T for decreasing vector size, and continuing to split the low frequency
band further, the lower levels become

x,=Tx,, and x,=Tx, (3.8)

1L
Analogous to Equation 3.7, and with the appropriate zero padding, the lower levels can

also be written as a sum of their low and high frequency components.

=X, +X, and X =%, +% (3.9)
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Because the T matrix must decrease in size at every level, however, we append a
subscript, k, denoting the matrix’s accommodation of the size of the signal at the K" level.
Thus, the appropriate analysis and synthesis equations become
x =Tx x,=Tx, x,=Tx, (3.10)
¥x=Tx x,=Tx x =Tx% (3.11)
(Note that in the more formal treatment of T in Section 4.1, the matrix will no longer
require subscripts, as we will more formally define T over multiple levels of recursion.)
Finally, by writing each level as a sum of its low and high frequency components, and
using the appropriate zero padding on the signals at levels one and two, the synthesis of
the original signal, x, is as follows.
XZrI;([l‘;[T:X3+X2H]+XIH] (3.12)
=TLEx + TExy + Txy
Now, by again treating the correlation filter as a linear system, Equation 3.5 can be

computed in parallel, i.e.,

y=Cx=CTTTx, +CTTx,. +CTx.. (3.13)
After combining all the matrix terms, the above equation becomes
¥y =Cix;y + Coxoy + Cxyy (3.14)

where Cy is the appropriate combination of correlation and transform matrices for level
k, and the signals at levels one and two still carry the appropriate zero padding. Equation
3.14 can also be viewed as

Yy=¥;+¥%+% {3.13)

where y; is the correlation output surface for level k.
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By nesting the recursion (Equation 3.12), we manifest a parallel implementation as
clearly elucidated in Equation 3.14. This equation can be helpful in the implementation
of one-dimensional linear systems in the transformed domain. The formal treatment here
is one possible mathematical expression of the new signal processing architecture

introduced in Section 3.2.

3.1.2 Extension to Two Dimensions

While the implementation of Equation 3.2 is straightforward in one dimension, this is
not always the case for two dimensions. It is only uncomplicated in two dimensions
when both the transform, T, and the linear operator, C, are separable. The subband
compression transform that we use in this thesis research is separable, and therefore can
be written as T, for the row operations and T for the column processing.

The correlation operation, however, is not separable. It becomes quite cumbersome
to use Equation 3.2 when searching for two-dimensional patterns in the input signal. It is
natural to use a Toeplitz matrix (C in Equation 3.2) to implement convolution of a one-
dimensional signal, however, the equivalent structure necessary to perform convolution
of a two-dimensional signal is not so obvious. While tractable mathematically and
algorithmically, the resulting matrix is impractical and computationally expensive. When
processing uncompressed imagery, correlation filters avoid the issue completely by not
utilizing a matrix implementation, but rather operating in the frequency domain, as
explained in Section 2.3. Thus, we must find another structure to operate two-
dimensionally in the compressed domain and execute an 'inverse transformed' correlation

filter.
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3.2 Merging the Interpolation and Correlation Filters

To provide an alternative method of implementing an 'inverse transformed'
correlation filter, we turn to polyphase structures. These allow us to manipulate the
correlation filter and operate it within the inverse transform, i.e., the interpolation filters,

of the individual subbands within a subband coder.

3.2.1 Polyphase Structures

Fundamental to many signal processing applications is the polyphase decomposition
introduced by Bellanger, et. al., [BBC76]. While many sources discuss the concept at
great length [CR81, CR83, Vai88, Vai90, Vai93, SN96], we review the basic equations
here.

Consider a transfer function, H(z), which represents a digital filter.

H(z)= ih(n);‘” (3.16)

A polyphase decomposition is simply a way of splitting a filter into its even and odd
components as Equation 3.17 illustrates.

H(z)=H,()+z 'H/(Z) (3.17)

with H,(z)= > h(2n)z ", and H (z)= > hQ2n+1)z" (3.18)

Also useful to our cause is the noble identity for interpolators [CR81, CR83, Vai88,

Vai90, Vai93, SN96], defined in Figure 3.1

—» G(z) —b@—» — —b@—) Gz

Figure 3.1 Noble Identity for an Interpolator
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Combining the polyphase decomposition with the above noble identity, results in a

new construction known as an efficient interpolator [CR81, CR83, Vai88, Vai90, Vai93,

SN96], and exhibited for one-dimension in Figure 3.2.

x(n) —D@—b G(zY)

— y(n)

(a)

x(n) —pr—p G (2)

y(n)

Figure 3.2 An Efficient Interpolator ‘Identity’
Figure (a) portrays a standard interpolation filter, while (b) illustrates its efficient
interpolator counterpart. It is called an efficient interpolator because the filters in
(b) operate at half the sampling rate as in (a). Structures (a) and (b) are

equivalent. Either one may replace the other.

Note that the structure of Figure 3.2(a) can replace that in Figure 3.2(b) and vice-versa.

Thus, we say that Figure 3.2 illustrates an efficient interpolator ‘identity’. The efficient

interpolator becomes the architectural building block used to pull the correlation filter

from the uncompressed domain into the compressed space, thus dissolving the boundary

between the recognition and compression components.

3.2.2 Rearranging the Architecture

We initiate this discussion with a review of the baseline compression recognition

system (defined in Section 2.2 and diagrammed in Figure 2.13). In this case, the system

fully reconstructs the image prior to performing recognition with the correlation filter.
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Figure 3.3 diagrams the reconstruction and recognition portions of such a system for a

one-dimensional signal with both a one level and two level decomposition.

X (n) —"@'—V F(z)

lowpass synthesis filter

C(z) ¥ y)

le(n)_P@—_’ G(z) | correlation filter

highpass synthesis filter

(a)

»@—» F(z)
Xy (1)
lowpass synthesis filter
DO
lowpass synthesis filter
»@—» G(2) 1 c) >
Xy (n) y(n)
highpass synthesis filter correlation filter
X,H(n)—>®—> Gz) |

highpasssynthesis filter

(b)

Figure 3.3 Synthesis and Correlation of a Baseline Compression Recognition System
The signal is fully reconstructed prior to object recognition with the correlation
filter. Diagram (a) depicts a one level decomposition and (b) a two level.

Throughout the ensuing discussion, we represent all filters in their z Transform
notation. For simplicity of notation, we represent lowpass and highpass synthesis filters
as F(z) and G(z), respectively, although traditionally, these two filters are denoted as
Go(z) and G,(z), respectively.

Now we will describe a method of merging the correlation filter, C(z), with the
subband synthesis filters. In the interest of clarity, we will limit the discussion to a two
level, one-dimensional system. In this case, the rearrangement of the architecture is a

four part process which we illustrate in Figures 3.4 - 3.7.
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Step One: The correlation filter, C(z), of Figure 3.3(b) can migrate behind the sum
because addition and correlation are both linear operations. Now it is simple to combine
the correlation filter with the subband synthesis filters of level one. We define the new

filters in Equation 3.19. The new architecture is shown in Figure 3.4.

CF(2)=C(2)F(z) CG(2)=C(2)G(z) (3.19)

F(z)

>
]
=
~

lowpass synthesis filter

CF(z)

composite correlation/
lowpass synthesis filter y(n)

G(z)

highpass synthesis filter
X y(n) —b@—b CG(z)

composite correlation/
highpass synthesis filter

bal
9
I
—
=
~

Figure 3.4 Merging the Correlation and Subband Synthesis Filters: Step One
The correlation filter moves back into level one of the subband decomposition.

Step Two: Before we can continue the migration of the recognition filter, we must
employ the efficient interpolator of Figure 3.2. It is necessary to use this polyphase
structure because the subband synthesis system is a linear time varying system due to the
interpolators. We use the construction of Figure 3.2(b) to replace the low frequency leg
of level one in Figure 3.4, resulting in the diagram of Figure 3.5. The symbols CF(z)
and CF(z) represent the odd and even branches of the composite synthesis/recognition

filter, CF(z).
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efficient interpolator

xn‘(n)

lowpass synthesis filter
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highpass synthesis filter 1

CE.(2)
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______________________
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lowpass synthesis filters
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highpass synthesis filter
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Figure 3.5 Merging the Correlation and Subband Synthesis Filters: Step Two
Substitute an efficient interpolator in the low frequency channel of level one.

Step Three: The above substitution allows us to push the recognition filter further
back into the subband architecture. We move the polyphase structure on level one behind
the summation at level two, and then combine the participating filters. Equation 3.20
describes the newly merged filters in a manner similar to Equation 3.12.

CF,F(z)=CF,(z)-F(z) CF,F(z)=CF/(z)-F(z) (320)

CF,G(z)=CF,(z)-G(z) CEG(z)=CF.(z2)-G(z) -
The new filters, CF,F(z), CF.F(z), CF,G(z), and CF.G(z), retain the odd and even
structures of the underlying filters CF,(z) and CF(z). Now the architecture consists of

two efficient interpolators, one in each branch of the decomposition’s second level, as

displayed in Figure 3.6.
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Figure 3.6 Merging Correlation and Subband Synthesis Filters: Step Three
Move the efficient interpolators of level one back into level two, and merge the
filter operations.

Step Four: Finally, to complete the new architecture, we once again make use of the
efficient interpolator ‘identity’. As illustrated in Figure 3.2, the efficient interpolator of
diagram (b) is equivalent to its single branch counterpart in (a). In this final step we
make just such an ‘inverse’ replacement. Additionally, we combine the two summations
of the first and second level resulting in the parallel construction of Figure 3.7. Because
the four filters, CF,F(z), CF.F(z), CF,G(z), and CF.G(z), possess odd and even
structures, we can combine them via Equation 3.17 to form CFF(z) and CFG(z). Figure
3.7 presents the PRSC architecture for a one-dimensional signal and two decomposition

levels.
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Figure 3.7 Merging Correlation and Subband Synthesis Filters: Step Four
Substitute a single channel interpolator and filter for the efficient interpolators of
level two. The final architecture consists of only parallel branches of
computation. In each branch the subband synthesis and recognition filters have
been combined into one composite synthesis recognition filter.

We see in Figure 3.7 that only parallel branches of computation comprise the PRSC.
Each subband of the multiresolution decomposition forms its own distinct branch.
Moreover, the composite filters within the PRSC embody a complete union of the
compression and recognition domains.

Finally, correlation filters are typically implemented in the frequency domain, as
expressed in Section 2.3. In the frequency domain, the correlation filter operation takes
the form of a point-to-point multiplication rather than a full convolution. This method
greatly speeds up the computation. We can also take advantage of this computational
simplicity in the PRSC. Toward this end, we include a Fast Fourier Transform (FFT) of
each subband’s input signal in Figure 3.8. The upsampling is done in the frequency
domain (as a signal replication), and the composite synthesis/recognition subband filters
are stored in their frequency domain. Lastly, we must perform an Inverse Fast Fourier
Transform (IFFT) of the summation output to produce a correlation surface in the time

domain. We display these details of the implementation in Figure 3.8 to aid our

assessment of the computational efficiency, as reviewed in the Section 3.3.
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Figure 3.8 Computationally Efficient Implementation of the PRSC
As is typical of signal processing architectures, the PRSC is implemented in the
frequency domain. The size (on one side) of the data arrays at each step is given
in the above figure. Notice that all the correlation filters are of size N by N,
because the signal is upsampled (replication in the frequency domain) prior to
correlation. The size of each FFT, however, is commensurate with the size of its
subband input signal.

3.2.3 Extension to Two Dimensions

By continuing the above process outlined in Section 3.2.2 recursively, we can employ
the new PRSC architecture of Figure 3.8 over any number of decomposition levels.
Multiple polyphase branches have to be made for multiple numbers of interpolators, but
this process occurs only in the design stage. Operation of the PRSC is a purely parallel
process with its filters designed apriori. Figure 3.9 illustrates the PRSC architecture for a
three level decomposition of a two-dimensional signal. In Figure 3.9, the naming
convention of the composite synthesis/recognition filters follows that outlined with
Equations 3.19 and 3.20, except that we use Fourier notation rather than z Transform

notation.
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Figure 3.9 The PRSC Architecture for a Three Level Image Decomposition

The PRSC dissolves the boundary between the compression and recognition
domains.  Within each branch all the subband synthesis filters and the
recognition filter are combined into one composite synthesis/recognition filter.
The result is ten parallel branches of computation. The FFTs are necessary only
for computational efficiency.

size N/2
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The result, y(m,n), is the correlation surface which exactly duplicates the one
achieved by the baseline compression recognition system. (Such a system, albeit for a
two level decomposition of a one-dimensional signal, is shown in diagram (b) of Figure
3.3.) That is, the process exhibited in Figure 3.9 is equivalent to fully reconstructing the
two-dimensional image and then performing the correlation filtering operation on the
reconstructed signal, x(m,n). The PRSC output is also equivalent to the correlation
response achieved by operating on the original signal, x(m,n), limited only by the veracity
of the subband transform.

In Figure 3.9, we again display the sizes of the operations so as to facilitate our

assessment of the computational expense, as reviewed in the following section.

3.3 Computational Complexity

In this section we compare the computational requirements for three systems: 1) the
novel PRSC architecture, 2) the baseline compression recognition system (defined in
Section 2.2), and 3) correlation on uncompressed images. We consider only
multiplication operations in our assessment of the computational complexity of these
systems. Some of the operations in the first two systems can be parallelized. Thus, we
examine not only the total computation required, but also the maximum number of

computes necessary to arrive at an output. The latter we call the effective computation.

3.3.1 Total Computation

Baseline System and Uncompressed Case
First, we review the computation involved for performing correlation on

uncompressed images, as well the computation involved in the baseline compression
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recognition system. In both cases, we implement the correlation filter in the most
computationally efficient way, i.e., in the frequency domain. Figure 3.10 diagrams the

major processing steps of the baseline system.

Correlation System for Processing Uncompressed Data

s e et e 1
1 1
Inverse : P :
orrelation .
X, —pp| Subband {———P FFT P Filt —p IFFT P> )
compressed [Transform | * : s : correlation
data / 1 1 output

reconstructed
data

Figure 3.10 Baseline Compression Recognition System

Notice that the baseline compression recognition system is merely an aug