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Abstract 

It is often necessary to search for objects in large databases of compressed imagery. 

In the past, object recognition and image compression have generally been treated as 

separate problems, resulting in inefficient suboptimal performance. Moreover, 

computational and storage issues make it fundamentally prohibitive to uncompress large 

images prior to object recognition. We provide two complementary solutions to the 

problem of object recognition in compressed imagery, each of which integrates subband 

and correlation filtering in a unique manner. 

One key benefit of correlation filters is that, as linear systems, they are highly 

compatible with the subband filtering process. This enables us to provide a seamless 

operation in which object recognition and data compression are viewed as continuations 

of the same process. The public MST AR data set illustrates our results on a three class 

problem of 79 Synthetic Aperture Radar images at one foot resolution. 

Our general framework, the Pattern Recognition Subband Coder (PRSC), provides 

simultaneous synthesis and recognition at full resolution in a computationally efficient 

architecture. Its parallelism enables a result 1.6 times faster, in the limit, than correlation 

on uncompressed Imagery. Furthermore, by jointly optimizing the synthesis and 

recognition filters, the PRSC achieves 100% recognition accuracy on our compressed 
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data set, improving performance over that produced from the original (uncompressed) 

data set, by 3.7%. We maintain this success for compression ratios up to 6: 1. 

Addressing the issue of reduced resolution recognition, our Subband Domain 

Correlation Filters operate directly on the subband coefficients at multiple resolution 

levels. For compression ratios of at least 20: 1, we achieve recognition performance of at 

least 90%, 85%, and 75 %, respectively, on two, four, and eight foot resolution data. 

Thus, through our solutions with compressed imagery, we outperform correlation 

results on the equivalent original imagery in terms of both speed and accuracy, as well as 

provide success at reduced resolutions of the data. 
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Chapter 1 

Introduction 

Multimedia, high speed data transmission, and the world wide web have made visual 

imagery a large part of the computing experience. Images are now ubiquitous in many 

consumer, industrial and military applications which store and catalog them in various 

databases. Due to the large storage requirements of typical image data, most applications 

store them in a compressed format. That is, the application transforms the image data 

into a new representation which requires less space in a computer's memory bank and 

thus allows for more compact storage. The new compressed format is typically a 

mathematical representation with little similarity to the visual characteristics of the 

original image. Many applications, however, require the computer to search through a 

large image database quickly selecting images containing specific objects of interest to 

the user. Therein lies the question addressed by this thesis, "Given a set of compressed 

images, how can we quickly and accurately find the ones we want?" 

The material presented in this thesis is motivated by the goal of jointly optimizing the 

three system components of recognition, compression, and implementation, thus 

providing an integrated approach to the problem of object recognition in compressed 
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Imagery. The driving factors for system performance are 1) accurate object recognition, 

2) high compression rates, and 3) low orders of computation. 

1.1 Statement of the Problem 

Our trilateral approach elicits the following specific research questions, which are 

addressed by this thesis. 

• "Can we merge an object recognition architecture with a compression architecture in 

a computationally efficient manner?" 

• "Can we perform object recognition in compressed imagery with the same accuracy 

as in uncompressed imagery?" 

• "How does the accuracy of object recognition in compressed imagery degrade with 

the amount of compression?" 

• "Can we perform object recognition at reduced resolutions of the compressed 

imagery?" 

• "Can we provide a system which allows for tuning between the two objectives of 

image compression and object recognition ?" 

1.1.1 The Problem of Object Recognition 

Finding and recognizing a particular object or pattern in an image may seem like an 

easy task to a human, however, a robust and universal computer solution has proven 

elusive to numerous scientists for many years. The task involves using a computer to 

recognize a particular pattern of bits within a sea of distracting bits. The difficulty lies in 

the physical variability of the three major components of an image scene: the objects 

themselves, the sensors, and the surrounding environment. Several books and hundreds 
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of journal papers [Pra78, Mar82, Hor86, Jai89, GW93], discuss these issues in great 

detail. In the interest of brevity, only a few major points are reiterated here. 

Addressing variations among the physical objects themselves is a difficult problem in 

itself. First, an object recognition algorithm must account for variations in the object's 

location within an image as well as both in-plane and out-of-plane rotations of an object. 

The object may not always appear at the same position within a scene or at the same 

perspective. An object may also appear in multiple types of scenes and an object 

recognizer must be able to handle the different scene backgrounds. Additionally, the 

object recognition system must be able to reject scenes that do not contain any object that 

it has been trained or programmed to recognize. Furthermore, the distinguishing 

characteristics which separate one class of objects from another may not easily be 

programmed into a computer algorithm. Figure 1.1 provides an example of each object 

class used in this thesis. Three military vehicles make up the object classes: a BMP 

Bradley fighting vehicle, a BTR armored personnel carrier, and a Tn tank. 

(a) BMP (b) BTR (c) Tn 

Figure 1.1 Images of the Object Classes: BMP, BTR, and Tn 

The image data employed in this thesis is from a Synthetic Aperture Radar (SAR), 

and is shown in the above figure in its original uncompressed state. Figure 1.1 

underscores the difficulty in differentiating one type of object from another, even for 
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human observers, and even with visually recognizable uncompressed images. Out-of

plane rotations and translations by the objects under investigation further exacerbate this 

difficulty. These issues, as well as a low rejection rate, are the main focus of the 

recognition part of this thesis investigation. Section 2.5.1 further elucidates the 

characteristics of the imagery used in the thesis. 

1.1.2 The Problem of Object Recognition in Compressed Imagery 

The main focus of this thesis is not to make advances in the state of the art in object 

recognition per se, but to perform current levels of object recognition in compressed 

imagery. Why would one want to perform object recognition in compressed imagery? 

As mentioned earlier, memory and computational speed requirements drive the need for 

such a system. Images take an enormous amount of memory, hence they are typically 

stored in a compressed format, yet many applications need very quick searches of large 

image databases. 

Figure 1.2 provides a compressed representation of each object class used in this 

thesis. We exhibit their uncompressed counterparts in Figure 1.1. The compressed 

representation shown is a subband decomposition. It is a mathematical representation of 

the original image. Figure 1.2 illustrates the much greater difficulty in discriminating 

between object classes once the objects are stored in the compressed domain. 

Finally, we note that image compression has typically served the purpose of visual 

reconstruction. That is, compression quality is currently scored with measures like the 

Peak Signal to Noise Ratio (PSNR) and mean squared error (MSE) of the reconstructed 

image. Researchers derived both PSNR and MSE to reflect the visual quality of the with 
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(a) BMP (b) BTR (c) T72 

Figure 1.2 Compressed Images of the Object Classes: BMP, BTR, and Tn 

reproduction image. One must remember that the goal of image compression for object 

recognition is not necessarily the same as the goal of image compression for visual 

reproduction quality. This thesis is interested in image data compression for content 

manipulation rather than content visualization. 

1.2 Prior Developments in Object Recognition and Image 
Compression 

Typically, object recognition and image compreSSIOn are treated as separate 

problems. Thus, we provide a little background on the history of both fields . There is 

such a large body of literature on both object recognition and image compression, that, 

out of necessity, we have restricted the discussion to the most effective and relevant 

models in Section 1.2.1 and 1.2.2. 

The purpose of this thesis, however, is not to advance either specialty, but to join the 

two, so that object recognition is now performed directly in the compressed image 

domain. Researchers have only recently addressed this issue; we provide the references 

and background to the prior work in Section 1.2.3. 
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1.2.1 Object Recognition 

Object recognition techniques generally fall into two categories: 1) those that operate 

directly on the data, and 2) those that extract features from the data. Classical computer 

vision techniques began with the former approaches in the 1970s, with both filtering and 

statistical models. Today, the field is characterized by a shift towards feature extraction 

paradigms. The feature extraction methods form two branches - those that use learning 

algorithms to classify the feature vectors, and those that develop semantic models of the 

features. The model based approaches then try to match the acquired model with several 

representative models stored apriori. 

Template Matching 

Some of the earliest work in object recognition grew out of the matched filter 

originating In the field of communications [Nor43, Tur60]. It is well known that a 

matched spatial filter is optimum for the detection of an object in a single image in the 

presence of additive white noise [Nor43]. In such a system, a cross-correlation is 

performed between the stored filter and the image in question. If the correlation exceeds 

a predetermined threshold, then the image is declared to contain the object of interest. 

Matched spatial filters were first applied to the problem of character recognition in 

[MED56, Hig61], and to the more general problem of object recognition in [CL+60]. 

Their use grew throughout the 1960s and 70s, with a good discussion and synopsis given 

in [And70, DH73, Pra78]. Then Casasent and Psaltis [CP84] showed how to make 

correlation filters invariant to position, rotation, and scale through a log polar transform. 

This procedure, however, is difficult in practice because it requires registration of the 

input image. Thus, unfortunately, wide variability in an object's characteristics make the 
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matched spatial filter a very brittle method of object recognition. Matched spatial filters, 

however, provided the basis for the evolution of the more sophisticated correlation filters. 

Correlation Filters 

Correlation filters are specially formulated generalizations of the matched spatial 

filter which are able to recognize many different views of an object in the presence of 

signature variations and in clutter. They were born out of Synthetic Discriminant 

Functions (SDFs), which themselves evolved from linear combinations of matched 

spatial filters [HCSO]. A good introduction to correlation filter theory is given in Vijaya 

Kumar, Mahalanobis and Juday [VKMJOO] and in Vijaya Kumar [VKu92]. The two 

most important steps in the evolution of correlation filters came when Vijaya Kumar 

[VKuS6] introduced minimum variance SDFs to maximize SDF noise tolerance, and 

when Mahalanobis, et. aI., [MahS7, MVK+S7] introduced Minimum Average Correlation 

Energy (MACE) filters capable of producing sharp correlation peaks at the same location 

as the shifted input. 

In general, correlation filters are composites of several training images representative 

of a particular object, thus, mitigating the brittle characteristics of a matched spatial filter. 

Moreover, correlation filter theory suggests that the Minimum Average Correlation 

Height (MACH) filter is statistically optimum for detecting objects in additive noise, 

when Gaussian assumptions hold [MVK97b]. However, correlation filters are still not 

robust enough to perform recognition over wide variations of an object. In general, 

multiple correlation filters are formed for different aspects of an object. 
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Statistical Models 

Measures of statistical information in an image can also provide signatures useful in 

object classification. Typical measures are derived from image histograms and from 

spatial frequency spectra. Examples of these measures are the mean, variance, 

skewness, kurtosis, energy, and entropy of an image histogram. If segmentation is 

performed on the objects within the image, then shape statistics, such as moments, 

eccentricity, major axis orientation, area, and curvature, may also be generated. The most 

recent and noteworthy example of using a statistical model (employing histogram 

statistics) with SAR imagery is given in [Sim99]. SAR imagery, however, is notorious 

for spectral shadows and missing spectral information. These traits are difficult to 

overcome with statistical models. 

Principal Components Analysis 

The method of Principal Components Analysis (PCA) was introduced in the statistics 

literature by Hotelling in the 1930s [Hot33]. PCA provides a way to describe the 

directions of maximum variation in multidimensional data. In addition, only a small 

number of principal components are necessary to form a well-defined representation of 

an image. In essence, the PCA approach specifies a basis set which forms a model of 

object classes. The PCA approach has been applied to several problems in the image 

domain [SK87, TP91, BP93, BFP+94, MN95]. 

Deformable Models 

Finally, we come to a more recent method of object recognition. To represent a 

latitude of variations within an object class, features of a particular object class can be 

arranged in a deformable spatial configuration (a.k.a. model) to form a syntactic 
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representation of an object class. Objects under consideration In an image are then 

matched to the appropriate parts of the stored model. Features appropriate for a syntactic 

model vary depending on the application. One application of deformable models is face 

recognition which may use the eyes, nose, or mouth corners for a face model. Recent 

work which uses deformable models for object recognition can be found in [Yui91, 

L+93, WvdM93, PL95, Sha95, Bur97]. The main detriment of deformable models is that 

they are only as good as the feature detectors that provide the inputs. A missing or 

erroneous feature can cause the model to hallucinate. In addition, with a large number of 

features, the search space for a correct model match can be computationally prohibitive. 

Object Recognition in SAR Imagery 

Synthetic Aperture Radar (SAR) imagery forms a very specific domain of object 

recognition. To date, successful object recognition in SAR imagery primarily involves 

template matching and correlation filters. Matched spatial filters (a.k.a. template 

matching) were first applied to SAR imagery in the mid 1980s [LM85, BK88]. 

Currently, both Novak [NO+97, NO+98, NO+99] and Hofstetler [Hos99] perform cross

correlation with template filters. The template that has the lowest mean squared error 

with the object in question determines the classification of the object. These templates 

are formed from a mean image, over Y spans of each object within each object class. 

Thus, for 3600 viewing aspects of each object class, the template method requires 72 

templates for each class. 

Correlation filters, while similar to template matching, form more global descriptions 

of the objects under consideration. They were first used on SAR imagery in [MF+94], 

while recently, Mahalanobis, et. aI., [MO+99, MO+OO] have shown good results with 



10 

SAR imagery by forming correlation filters over 4Y spans of the object classes. This 

method requires only eight correlation filters per object class. 

In addition, Simonson has done some work with statistical models [Sim99]. In this 

work, she forms a probability distribution of the dominant scatterers in the SAR imagery. 

The sensed probability distributions are then matched to a set of distributions stored 

apriori to determine the object classification. 

Finally, Diemunsch and Wissinger, et. aI. , [DW98, WR+99] have applied a 

deformable model approach to SAR imagery. They form a syntactic relationship of the 

dominant scatterers from the radar return and try to match that to a group of stored 

models for object classification. A novelty of this approach is that through their Predict 

Extract Match Search (PEMS) technique, they can iteratively try to elicit an optimum 

classification from the object in question. In follow up work by Ettinger [EttOO], 

however, it is suggested that a better way of performing the match may be to use methods 

similar to cross-correlation to match an image domain representation of the apriori 

models with the sensed imagery. 

1.2.2 Image Compression 

The objective of image compression is to reduce the number of bits of information 

necessary to represent a given image by eliminating redundancy in the image or by 

introducing distortion into the image in a manner that is acceptable to the viewer, or in 

our case, to the object recognizer. Early work in image compression began with 

predictive techniques formulated by Oliver and Elias [Oli52, Eli55] and the Differential 

Pulse Code Modulation (DPCM) predictive method introduced by Culter [CuI52]. 

Transform coding, introduced by Andrews and Pratt [AP68, AP69, And70], was the next 
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big step in compression of two-dimensional data. Both Jain [Jai81] and Rabbani and 

Jones [RJ91] provide a good review of the early work in image compression. 

The first popular image compression technique was the Graphics Interchange Format 

(GIF) , developed by CompuServe Information Service to encode graphical images. It is 

a variant of the Lempel Ziv Welch (LZW) algorithm [WeI84, ZL77, ZL78], which is an 

adaptive dictionary technique similar to the 'compress' command in UNIX. While GIF 

works well with graphical images, it is generally not the most efficient method to 

compress natural images. 

A current popular image compression technique, the Joint Photographic Experts 

Group (JPEG) method [WaI91], combines transform and predictive coding. It uses a 

block based transform coding procedure which consists of segmenting an image into 

typically square blocks, applying an orthogonal transform to each block, and then 

quantizing and coding the transform coefficients. Coding within a JPEG scheme can use 

one of eight different linear predictive techniques (including no prediction). The main 

detriment of JPEG coding is that it produces blocking artifacts at low bit rates. 

Finally, the most recent image compression technique is subband coding. Detailed 

information about subband coding can be found in Vaidyanathan [Vai93], Vetterli and 

Kovacevic [VK95], and also in Strang and Nguyen [SN96] . The technique, first 

introduced for speech coding in the 1970s, centers around splitting an image into multiple 

frequency bands, and then coding the resulting coefficients. In that regard, it is similar to 

transform coding. Subband coding differs, however, in that it is not block based, but 

applies the filtering operation to the entire image. In addition, most subband coders 

perform the filtering operation recursively to each resulting low frequency subband, 
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producing a multiresolution decomposition [MaI89] of the image data. Subband coders 

became more popular and viable with the advent of perfect reconstruction, made 

independently by Vaidyanathan and Vetterli [Vai87a, Vai87b, Vet87] . 

A good summary of image compression techniques is given in Sayood [Say96] . In 

addition, Baxter and Siebert [BS98] provide a survey of several image compression 

techniques specifically applied to SAR imagery. Their preferred compression system for 

the highest perceived SAR image quality consists of a wavelet packet transform that uses 

a Gabor-like tree structure with smooth biorthogonal wavelet filters , followed by a 

universal trellis coded quantizer and an arithmetic entropy coder. 

1.2.3 Combining Object Recognition with Image Compression 

We uncovered very little previous work combining object recognition with 

compressed imagery. Our compilation of the literature references divides them into five 

categories: 1) full reconstruction of the compressed image, 2) multiresolution domain 

processing, 3) vector quantization domain processing, 4) unconventional compreSSIOn 

techniques, and 5) database query. 

Full Reconstruction of the Compressed Image 

Current systems typically perform the reconstruction (i.e., the inverse of 

compression) and recognition tasks serially. They fully uncompress the stored images, 

then apply an object recognizer to the uncompressed data. Walls and Mahalanobis 

[WM99] use this method on SAR imagery; Liu and Mitra [LM96] follow the technique 

with fingerprint data; Shin and Kil [SK97] employ the paradigm with sonar images; 

visual images of tanks undergo the same approach by Miller [Mil95]. If the recognizer 

does not find the object of interest, then typically, the system transforms the image back 
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into its compressed state and moves on to the next image, repeating this process through 

the entire database finding all instances of the object. This is the most straightforward 

way of dealing with compressed imagery, and what we will call the baseline compression 

recognition system throughout this thesis. It is not computationally efficient, and lirrlits 

the speed of the search. 

In the first three instances of the previous work, however, they demonstrate high 

recognition rates for compression ratios between 50: 1 and 200: 1. In addition, the Walls 

and Mahalanobis paper [WM99] provides us with a baseline for comparison with our 

own experiments. 

Multiresolution Domain Processing 

A literature search revealed only two publications which acquire features from the 

subband coefficients of a multiresolution decomposition. Irving, et. aI., [INW97] 

construct an autoregression model in scale, and use that as a feature vector for object 

detection. That is, the algorithm was not used for object classification, but rather to 

denote whether or not a region of an image possibly contained an object as opposed to 

background clutter. In addition, this algorithm does not account for the downsampling 

effects encountered in a subband decomposition and discussed in detail in Section 5.1. 

The approach by Nahm and Smith [NS95] is also only used for object detection, not 

to discriminate between multiple objects. In this case, they vector quantize the subband 

coefficients, and use the resulting codewords to distinguish between background clutter 

and possible objects. This approach is akin to the Chaddha and Perlmutter, et. aI., 

[CPG96, P+96], approach of processing directly in the vector quantization domain. 
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Vector Quantization Domain Processing 

Vector quantization of an image provides a compression technique that is typically 

not as powerful as JPEG or subband coding, but is still quite popular. Chaddha and 

Perlmutter, et. aI., [CPG96, P+96] devise a method of using the codewords resulting from 

vector quantization of an image to provide classification. It is a nice technique because 

only the indices of the codebook are needed for the classification label. This technique, 

however, has only been used to dichotomize an image with two classification labels, such 

as man-made and natural, or tumor and non-tumor. The method has not been extended to 

multiclass discrimination of objects. 

Unconventional Compression Techniques 

A few recent publications do combine unconventional compression techniques with 

object recognition models. These approaches, however, do not use the standard 

compression models used by most applications today. Principal Components Analysis is 

employed by [LWOO] to perform both compression and recognition. [TJ97] uses an ad 

hoc compression technique based on image singularities which then form the basis for 

recognition. Multiresolution Principal Components Analysis is used by [BP98] to 

provide both compression and recognition. Fractal features form the basis for both 

compression and recognition in the work of both [Bon9S] and [BBC98]. 

Database Query 

A few systems, known as database query models, exploit compressed imagery to find 

objects similar to the true object of interest. This thesis addresses a different problem -

that of exact object recognition. Additionally, database query models typically use 

unconventional compression techniques which do not apply to many image databases. 
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Pentland, et. aI., [PPS95] use an independent semantics preserving image compression 

technique for their Photobook system. Vasconcelos and Lippman [VL97] use an 

independent library based coding and compression scheme for their image retrieval 

system. A group of linear basis sets is learned in Keaton and Goodman [KG99] which 

facilitates both compression and database query. Finally, Vellaikal and Kuo [VK96] use 

quadtree structure information along with JPEG coefficients for effective database 

quenes. [KG99] can require partial decoding of the compressed data, while [VK96] 

requires full reconstruction of the image to compute the quadtree structure. 

1.3 Thesis Approach 

Central to the approach of this thesis is the joint selection of the compression and 

recognition components to provide an integrated system and facilitate an efficient 

implementation. The overarching purpose of the two models remains complementary. 

They must work in concert to form a synergistic system. As the image compression 

model reduces the number of bits used to represent a given image, it must introduce 

distortion into the image in a manner that is acceptable to the performance of the object 

recognIzer. 

Toward this end, our approach follows these objectives: 

• To obtain the result directly in the compressed domain. That IS, to avoid 

reconstruction of the image. 

• To jointly optimize the performance trinity of recognition, compression, and 

computation. 

• To provide results at both full and reduced resolutions of the data. 
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• To make accurate object recognition our primary objective, high compression rates 

secondary, and faithful reconstruction of the image ternary. 

1.3.1 Algorithm Selection 

Currently, most image compression applications use one of two techniques: JPEG 

coding or subband coding. With JPEG, the physical nature of separating the image into 

blocks breaks up any object under consideration in an image. This did not lend itself well 

to choosing an object recognition model, which would then have to find discriminating 

characteristics within each block or as some amalgamation across blocks. Furthermore, 

JPEG coding produces blocking artifacts at low bit rates, which are not conducive to 

object recognition. 

We selected subband coding as the compression model for this thesis investigation. 

Subband coders provide a computationally efficient filtering system which results in a 

multiresolution representation of the image data. Multiresolution image representations 

provide a compact image representation as well as an efficient basis for image analysis 

[Mal89]. Furthermore, subband coders allow image reproduction to degrade gracefully at 

low bit rates making them appealing for integration with object recognition. 

The image processing literature abounds with object recognition techniques, some of 

which are discussed in Section 1.2. Most importantly, the object recognizer used in this 

investigation must work cooperatively or invariantly with the downsampling intrinsic to a 

subband coder. For this thesis research, we selected correlation filters as the object 

recognition model. The primary reason is that, as linear systems, correlation filters are 

highly compatible with a subband coder architecture. This enables a seamless operation 
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10 which object recognition and data compression are viewed as continuations of the 

same process. 

It is important to utilize object recognition techniques that operate directly on the 

compressed data, and equally important to employ compression techniques that facilitate 

object recognition as well as a homogenous implementation. This framework facilitates 

the joint optimization of the performance of a subband architecture and the correlation 

filters. 

1.3.2 Two Novel Solutions 

Our quest to combine subband and correlation filters resulted in the development of 

two distinct yet complementary solutions to the problem of object recognition in 

compressed imagery. The underlying duality between the approaches of these two 

systems lies in the domain which forms the correlation filters for the object recognition. 

In our first solution, the Pattern Recognition Subband Coder (PRSC), the correlation 

filters are synthesized from the original image, and integrated seamlessly with the 

subband synthesis filters to form a new filtering architecture. The Subband Domain 

Correlation Filters (SDCFs) form our second approach by producing correlation filters 

from the subband coefficients and then operating directly on the subband information. 

An additional duality lies in the objectives of these two systems. The PRSC 

processes compressed image data to provide an object recognition response equivalent to 

that from its full resolution uncompressed counterpart. In contrast, the SDCFs provide 

object recognition responses at lower resolutions of the data, which while accurate, leave 

more ambiguity in object location. 
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1.4 Thesis Outline and Contributions 

This thesis introduces two novel systems for performing object recognition 10 

compressed imagery. Chapters 3 and 4 discuss the PRSC model, while Chapter 5 

presents the SDCF model. The following is a chapter by chapter review of this thesis 

indicating contributions made by the author. 

Chapter 2 Background 

We give a brief review of the basic subband coding and correlation filter models. 

Essential notation and nomenclature unique to each area is provided. In addition, we 

establish the baseline results for comparison with experiments in later chapters. 

Chapter 3 A New Pattern Recognition Subband Coder Architecture 

This chapter reveals a method for combining the correlation and subband filters into a 

new compression/recognition architecture. The material addresses the computation leg of 

our three prong approach. We present a full analysis of the computational efficiency of 

the new architecture. 

Novel contributions from this chapter include: 

• A new signal processing architecture which integrates correlation and subband filters 

into a homogeneous operation, and facilitates effective object recognition directly in 

the compressed domain. It possesses the following characteristics. 

It is a universal architecture for operating any linear filter directly on the 

multiresolution data of a subband coder. 

It produces a response identical to that produced by the reconstructed image. 

It results in a response identical to that effected by the original image, within the 

fidelity of the subband transform. 
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It is more computationally efficient than the separate implementation of the two 

filters. 

It provides a Jaster response than that resulting from the original image, by a 

Jactor oj F' = 1.6, in the limit, as image size goes to infinity. 

• A matrix vector formulation for operating linear systems directly 10 a transform 

domain. It has the following attributes: 

It is universal for a linear operator and unitary transform. 

It results in a response identical to that produced by the untransJormed input. 

Chapter 4 Joint Optimization of the Compression and Recognition Filters 

We address the remaining two legs of our three prong approach: optimizing the joint 

performance of the compression and recognition tasks within the PRSC. First we review 

the standard design of a quadrature mirror filter (QMF) for a subband coder. Then we 

introduce the new terms which incorporate recognition performance into the design of the 

QMF, as well as describe the technique for including the QMF response in the design of 

the correlation filter. In addition, we present rate error curves which can be used to tune 

the system between varying rates of compression and recognition performance. Finally, 

we give suggestions for future work. 

Novel contributions from this chapter include: 

• A method of jointly optimizing the compression capability of a QMF subband filter 

and the recognition performance of a correlation filter. This method provides: 

superior performance than operating the two filters independently 

superior performance to operating on the un compressed data 
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• A suggestion for jointly optimiZing the compression and recognition performance to 

compensate for quantization. 

Chapter 5 Subband Domain Correlation Filters 

We introduce our second solution to the problem of object recognition in compressed 

imagery in this chapter. The approach synthesizes correlation filters that operate directly 

on subband coefficients at multiple resolution levels. We present a novel training 

technique as well as an additional QMF design method, both of which enhance system 

performance. Again, we provide rate error curves which can be used to trade off the 

compression and recognition performance. Lastly, we make suggestions for future work. 

Novel contributions from this chapter include: 

• A new pattern recognition algorithm which utilizes correlation filters synthesized in 

the subband coefficient domain, and allows for object recognition at the multiple 

resolutions of a subband coder. 

• A new training methodology to accommodate the downsampling of the subband 

coefficients. 

• A novel method of jointly optimizing the compression capability of a QMF subband 

filter and the recognition performance of a correlation filter to compensate for 

downsampling in the subband coefficients. 

Chapter 6 Concluding Remarks 

In this final chapter, we summarize and compare the two models introduced in this 

thesis as well as recount the contributions made. 
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Chapter 2 

Introduction to Correlation Filters 
and Subband Coders 

As discussed in the previous chapter, the system presented in this thesis uses subband 

coding as its image compression component, and correlation filtering for object 

recognition. The current chapter provides background material on these two fields as 

well as describes important procedures of our experiments and additionally, recent results 

of related prior work. 

An outline of the chapter is as follows. Sections 2.1 and 2.2 define the notation and 

terminology we use throughout this thesis. We provide a basic review of correlation 

filters and subband coders along with our specific implementations in Sections 2.3 and 

2.4, respectively. Section 2.5 then lays the groundwork for the experiments performed in 

later chapters. We include all of the background material regarding the data, 

methodology, and performance measures for the experiments. Finally, in Section 2.6 we 

present current state-of-the-art results on both compressed and uncompressed data as a 

baseline for comparison. These results are useful for comparison with the performance 

achieved in this thesis and reported in chapters 4 and 5. 
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2.1 Notation 

Images in the space domain are denoted in lower case italics while upper case italics 

represent their counterpart in the frequency domain. Thus, a two-dimensional image 

x(m,n) has Fourier transform X(k,l). Vectors are expressed by lower case bold characters 

while matrices are denoted by upper case bold characters. Either x(m,n) or X(k,l) can be 

expressed as a column vector x by lexicographical scanning. We define lexicographical 

scanning to proceed columnwise, unless otherwise stated. The quantities XT
, X*, Xl and 

X· I signify, respectively, the transpose, conjugate, transpose conjugate, and inverse of X. 

Correlation and convolution are designated by the symbols ® and *, respectively. The 

quantity x(n) refers to a reconstructed version of the original signal x(n). 

2.2 Terminology: A Quick Reference Guide 

To bridge the two disparate fields brought together in this work, we provide some 

nuances of the terminology used throughout the thesis. 

• The term correlation filter is synonymous with object recognition filter and MACH 

filter. 

• When we reconstruct the image with a subband coder, we use synthesis filters, 

therefore the terms reconstructed signal and synthesized signal represent the same 

thing. Yet when we create the MACH filter, we synthesize it from its training input. 

• A subband coder is really a compression system. The term coding is sometimes used 

to mean compressing; sometimes, however, we encode symbols with their 

representative codewords. 
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• A multiresolution decomposition, pyramid decomposition, subband decomposition, 

and hierarchical decomposition are all the same entity. 

• Analysis filters form the forward compression transform, while the inverse 

compression transform uses synthesis filters (a.k.a. interpolation filters). 

• The subband literature denotes the first level of decomposition as the highest level, 

because it contains the highest resolution data. The last level of decomposition is 

known as the lowest level. 

• The high frequency subbands in a subband decomposition are known collectively as 

the upper subbands. 

• Throughout the thesis, we often refer to a baseline compression recognition system. 

In this case, the system fully reconstructs the image prior to performing object 

recognition. 

2.3 Review of Correlation Filter Theory for Object 
Recognition 

It is well known a matched spatial filter is optimum for the detection of a single 

image in the presence of additive white noise. Correlation filters are specially formulated 

generalizations of the matched spatial filter which are able to recognize many different 

views of an object in the presence of signature variations and in clutter. In general, 

correlation filters are composites of several training images representative of a particular 

object. Numerous references [VKu86, Mah87, MVK+87, Vku92, VKM+92, MVK+94, 

MVK96, MVK97b] address the details of correlation filter theory at length, with the most 

current and complete examination in [VKMJOO], however, we give a brief review of the 

algorithm here. 
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In the simplest case, the output of a correlation filter c(m,n) in response to an input 

image x(m,n) is described by 

y(m,n) =c(m,n)®x(m,n) ( 2.1 ) 

where y(m,n) is referred to as the correlation surface. Typically, however, the processing 

is done in the frequency domain for the purpose of computational efficiency, as shown in 

Figure 2.1. In this case, the correlation output is given as 

( 2.2 ) 

where C(k,l) =3-r(m,n)}, X(k,l) = 3.p:(m,n)}. 3D and 3 -'{} represent the forward 

and inverse discrete Fourier Transform operation, respectively. 

Figure 2.1 Correlation System for Processing Uncompressed Imagery 

As stated in [VKMJOO], correlation filter theory deals with the design of C(k,l) such 

that the filter output can achieve the following three objectives: 

• recognition of distorted versions of the reference pattern 

• robust behavior in the presence of clutter and noise 

• high probability of correct recognition while maintaining a low error rate 

Many researchers have investigated numerous design techniques for building 

correlation filters to meet the three objectives listed above. Our goal in this thesis is not 

to develop better underlying design techniques for correlation filters, but rather to 

effectively use them with compressed data. To this end, we employ one of the current 
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state of the art correlation filters, the Maximum Average Correlation Height (MACH) 

filter [MVK97b]. 

We now provide a brief description of the formulation of the MACH filter. Consider 

a set of N training images whose discrete Fourier Transforms are given by Xj(k,l) , 

1 :s i:S N. The average training image is then given by 

I N 

M(k,l) =-I X/k,l) 
N ;= i 

( 2.3 ) 

We also define the power spectrum of the training set as 

1 N ? 

D(k,l) =-IIX;(k,l)I-
N ; = i 

( 2.4 ) 

and a spectral variance term as 

S(k ,I) = D(k ,l) -1M (k,l)1
2 

( 2.5 ) 

The MACH filter is then defined in the frequency domain as 

C(k ,I) = M (k ,I) 
as(k,1) + (JD(k,l)+ YJ1 

( 2.6 ) 

where the parameter, J.l, is simply the mean value of spectral variance, and the constants 

a, ~, and 'Yare used for optimally trading between distortion tolerance, noise tolerance 

and correlation energy minimization. The interested reader is referred to [Car96] for 

further details about the use of these parameters in design of the MACH filter. 

Figure 2.2 displays a typical correlation output of the MACH filter. Generation of the 

correlation output is only the first step; a subsequent postprocessing algorithm then 

interprets the peaks of the correlation surface. The height of the peak corresponds with 

the likelihood of a pattern match, while the peak location corresponds with the location of 

the pattern match. Numerous researchers have also developed many techniques to 
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Figure 2.2 Plots of a Typical Correlation Output 
To obtain a robust correlation plane, maximize the peak, reduce the variations 
due signal distortions, and reduce any sidelobes produced by noise and clutter. 

interpret the correlation output and its relationship to recognition of the object in question 

[SS88 , WG90, MVKS96]. We selected the simplest technique for this thesis 

investigation. 

For each correlation surface generated, we compute the peak-to-sidelobe ratio (PSR) 

PSR = y(m,n) - J.11' 
Cl y 

(2.7 ) 

at the location of the maximum correlation response (also know as the correlation peak). 

In Equation 2.7, y(rn,n) is the value of a particular location of the correlation surface; Ily 

and cry are the mean value and standard deviation of the correlation surface over a 

bounded region in its neighborhood. In fact, it can be shown that the MACH filter is an 

optimum detector in the sense that it maximizes PSR for the target class. The architecture 

of the classifier based on the MACH filter is simple. Given a test image at the input, the 

system assigns it the label of the class corresponding to the filter which yields the highest 

class = arg{max(PSR,)} , i E {1, ... Ne } (2.8 ) 
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where Nc is the number of object classes under consideration. 

2.4 Subband Coding for Compression 

The objective of image compression is to reduce the number of bits of information 

necessary to represent a given image by eliminating redundancy in the image or by 

introducing distortion into the image in a manner that is acceptable to the viewer, or in 

our case, to the object recognizer. Sayood [Say96] relates a good summary of image 

compression techniques. Figure 2.3 depicts a standard compression system. 
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Figure 2.3 Standard Compression System 

Within a compression system, a subband coder performs the forward and inverse 

transform operations, with analysis and synthesis filters, respectively. A two band, 

one-dimensional, subband coder is shown in Figure 2.4. The analysis filters, Ho(z) and 

HI(z) , decompose an input signal, x(n), into lowpass and highpass filtered bands of 

r-~'--_---I~ XO:I) 

x( n) 
lowpass analysis fi Iter 

X( n ) 

highpass analysis filt er highpass synthesis filter 

Figure 2.4 Diagram of a One-Dimensional, Two Band Subband Coder 
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information, which are then downsampled. Resulting subband coefficients are then 

coded and transntitted. The system accounts for the loss of information from 

downsampling by cleverly designed synthesis filters, Ga(z) and G,(z), applied at the 

decoder to reconstruct the original signal. Several references provide detailed 

introductions to subband coding and its variants: Mallat [MaI89] , Vaidyanathan [Vai93], 

Vetterli and Kovacevic [VK95] , and Strang and Nguyen [SN96]. 

The overall transfer function of an analysis and synthesis system for a one-

dimensional , two band subband coder like in Figure 2.4 follows the equation below. 

X(z) =~ X( z)[Ho(z)Go(z) + HI( z)q(z) ] 

1 +'2 X (-z)[Ho( - z )Go( z) + H I( - z)GI ( z) ] 

( 2.9 ) 

where X (z) is the reconstructed signal and X(z) represents the z transform of the time 

domain signal x(n). H a(z), H,(z), Ga(z), and G,(z), are sintilarly defined. Signal 

reconstruction consists of the frequency response (first term) and the aliasing component 

(second term). 

Subband coding is easily extended to two dimensions by analyzing the input signal 

independently in the horizontal and vertical directions. The analysis transform can be 

applied recursively to the low frequency subband, resulting in a multiresolution, or 

pyrantid decomposition, as displayed in Figures 2.5 and 2.6. 

A typical level of a multiresolution decomposition will have four subbands of 

information, one composed of only low frequency components, the LL subband, and 

three containing high frequency components, the HL, LH, and HH subbands. Often, 

subband literature refers to the high frequency subbands collectively as the upper 

subbands. 
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Figure 2.5 A One Level Subband Decomposition of an Image 
The image of (a) exhibits a one level subband decomposition, while (b) displays 
the corresponding names commonly associated with each subband. 
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Figure 2.6 A Three Level Subband Decomposition of an Image 
The image of (a) exhibits a one level subband decomposition, while (b) displays 
the corresponding names commonly associated with each subband. The subband 
literature denotes the first level of decomposition as the highest level, because it 
contains the highest resolution data. ]n this figure , level three is the lowest 
decomposition level. 

In the absence of quantization and ignoring machine round-off error, subband coders 

can provide lossless compression. The compact distribution of the subband coefficients 

accounts for the reduction in data rate during lossless compression. Subband coders are 
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most often used in lossy compression, however, in which case the compression rate 

relates directly to the degree of quantization. 

Additionally, with a properly designed subband filter, subband coders can provide 

perfect reconstruction, in the absence of quantization. Compression applications 

typically use perfect reconstruction filters [Vai87a, Vai87b, Vet87, Vai90] in the case of 

both lossless and lossy compression. A popular set of perfect reconstruction filters are 

the QMFs, [CEG76, Vai87b, Vai90] which we use in this thesis research. Section 4.2 

discusses the details of our QMF design at great length. Again, our purpose is not to 

improve the compression power and quality of QMFs, but to optimize their effectiveness 

with an object recognition model. 

2.5 How to Perform an Object Recognition Experiment with 
Correlation Filters 

Four issues are key to the quality of any object recognition experiment: 1) the image 

data, 2) the preprocessing of the image data, 3) the methodology of the experiments, and 

4) the performance measures. We address all of these issues here. 

2.5.1 Image Data 

Essential to the validity of any experiment are the quality and characteristics of the 

data. With this in mind, we selected the MSTAR Synthetic Aperture Radar (SAR) 

image database publicly released by Defense Advanced Research Projects Agency 

(DARPA) which is easily available and widely used by many researchers. Another 

reason for selecting the one foot resolution MST AR data is that its ground truth is well 

documented, an important feature for synthesizing the correlation filters. The main issue 
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involving object recognition of SAR data is that changes in the object orientation and the 

grazing angle of the radar sensor create strong variations in the resulting image. 

We construct a three class problem to distinguish three military vehicles: a BMP 

Bradley fighting vehicle, a BTR armored personnel carrier, and a T72 tank. Figure 2.7 

shows photographs of each vehicle, while Figure 2.8 displays the vehicles as depicted in 

the SAR imagery. 

(a) BMP (b) BTR (c) Tn 

Figure 2.7 Photos of Object Classes 

(a) BMP (b) BTR (c) Tn 

Figure 2.8 SAR Images of Object Classes 

The photographs may not be displaying the exact models used in the SAR imagery. All 

of the vehicles lie between 0 and 45 degrees viewing angle to the sensor, with 0 degrees 

corresponding to a head-on view. All of the images are cropped to size 64 x 64 pixels for 

the experiments in this thesis. It was verified that the vehicle's dimension fit within this 

image size. 
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Training Set 

Correlation filter theory requires a set of training images to synthesize a set of 

correlation filters of the objects to be recognized. To this end, we use the MST AR data 

generated from radar at 1 T elevation for the training set, which Figure 2.9 shows in its 

entirety. 

(a) BMP 

(b) BTR 

(c) T72 

Figure 2.9 Full Training Set of Object Classes 
The training set consists of O· - 45" views of the objects taken at a 17· elevation. 

Because the ground truth is given, the vehicles are centered within the input image 

prior to training. Object registration is an important step in synthesizing the correlation 

filters for object recognition. The training set consists of 30 BMP images, 29 BTR 

images, and 28 Tn images. 
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We perform training for the PRSC with unquantized reconstructed image data. That 

is, we process the images with the subband filters , but do not quantize the resulting 

coefficients. This is to incorporate any artifacts of the compression process in the 

correlation filter. Training data for the SDCF system comes from subbands themselves. 

The subbands are fom1ed from the original images and again no quantization is applied to 

the subband coefficients. 

Testing Set 

The test set of our experiments, shown in Figure 2.10, uses the MST AR data 

generated from radar at 15 0 elevation. We do not perform any registration on the test 

(a) BMP 

(b) BTR 

(c) T72 

Figure 2.10 Full Test Set of Object Classes 
The test set consists of 0" - 45" views of the objects taken at a 15" elevation. 
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data. Images of 24 BMP examples, 28 BTR examples, and 27 T72 examples comprise 

the test set. 

2.5.2 Preprocessing 

Correlation filter performance in SAR data improves by applying simple thresholds to 

remove some of the background pixels. To our benefit, prior work [VKMJOO] developed 

a excellent thresholding method for this particular set of SAR data which we used in all 

of our experiments and will review here. Prior to any thresholding, however, we take the 

log magnitude of the SAR data and then convert it to byte. In the case of the training 

images, we retain the integrity of the object by creating a mask from the ground truth 

data. Thresholding the test images, however, is strictly a mathematical process, with no 

knowledge of the object's presence or location in the input image. 

The preprocessing involves two different thresholds and is a two step process. In the 

case of the first threshold, its value replaces all image pixels with a value less than the 

computed threshold. 

x(m,n) = max{x(m,n), t l } with tl = J.1 ... -2.2CJx ' ( 2.10) 

where x(m,n) is a particular pixel value of the input image and J.lx and <Jx are the mean and 

standard deviation, respectively, of the input image. The second threshold is computed 

from these new image values and the image is thresholded again according to the 

following rule. 

x(m,n)=x(m,n)-t2, if x(m,n»t2 

otherwise, xU, j) = 0 

where t2 = J.1 ... - O.Sa, 

( 2.11 ) 

( 2.12 ) 
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Notice that both II and 12 are image dependent, and that J1x and ax are the new mean 

and standard deviation values. In Figures 2.11 and 2.12 we show both the original and 

preprocessed images of a BMP from the train and test set, respectively. 

(a) 
Original Image 

(b) 
Preprocessed Image 

Figure 2.1 I Preprocessing for the Training Images 
Image (a) displays an original training image of a T72 , (b) exhibits its 
preprocessed counterpart. Because we know the true location and orientation of 
the training data, the preprocessing can remove much of the extraneous clutter. 

(a) 
Original Image 

(b) 
Preprocessed I mage 

Figure 2.12 Preprocessing for the Test Images 
We show an original T72 test image in (a) while (b) portrays its preprocessed 
version. Notice that the preprocessing does not remove all of the clutter, but does 
remove part of the target, particularly if the target lies in a shadow. 

It is important to note that we assume the preprocessing is done on the original image 

data, prior to the sub band decomposition; that is, it is stored as a preprocessed image in 

the compressed domain. There are two motivations for this approach. First, it is 

reasonable to assume that many applications can and will preprocess the image prior to 
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compression and storage. Second, the same thresholding techniques used on the original 

image data apply to the subband coefficient data. We consider this task as secondary to 

the main course of this research. 

2.5.3 Methodology 

An object recognition experiment with correlation filters consists of two phases. In 

the training phase, a MACH recognition filter is built for each object class. Thus, three 

filters were built in our case; one each for the BMP, BTR and T72. 

During the test phase, the system processes the unknown object with each of the 

stored MACH filters and computes a PSR value for each possible class according to 

Equation 2.10. If there are N object classes, then there are N PSR values. As discussed 

in Section 2.3, the object is classified according to Equation 2.8. Sometimes, however, 

the image will not contain any of the known object classes and the system must account 

for this. Therefore, we construct a PSR threshold that the output must exceed to register 

a classification. If none of the PSR values are greater than the threshold, then the system 

classifies the image as a 'rejection' which means that the image does not contain any 

object that belongs to one of the known object classes. The rejection category is an 

important tool in high quality object recognition. 

2.5.4 Performance Measures 

Finally, we assess the power and capability of our model for object recognition in 

compressed imagery with standard performance measures from each of the three foci of 

our thesis research: I) object recognition, 2) compression, and 3) computational 
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efficiency. Note that the visual quality of the reconstructed image is secondary to other 

factors in this thesis investigation. 

Recognition Metrics 

To gauge the capability of the object recognIzer, we compute the probability of 

correct classification, error, and rejection, referred to as Pc, Pe, and Pr, respectively, and 

always stated in percentages. A further detail of the performance is known as the 

confusion matrix, an example of which is shown in Table 2.1. The confusion matrix 

Table 2.1 Hypothetical Confusion Matrix 

Computed Object Class 
BMP BTR Tn Re·ect 

True BMP 21 2 1 0 
Object BTR 0 26 0 2 
Class Tn 2 0 24 

allows us to determine which objects are being confused with others and is sometimes 

helpful in performance assessment. In the case of Table 2.1, we see that the system 

misjudged three BMPs; twice it misclassified a BMP as a BTR, and once as a T72. The 

object recognizer did not misclassify any BTR images, however, it rejected two of them 

as not having any known object within the image. Furthermore, the Pc is 89.9%, the Pe 

is 6.3%, and the Pr is 3.8% in this example. 

Compression Metrics 

The rate of data transmission is measured in bits per pixel (bpp). 

B 
rate=--

MN 
(2.13 ) 

where B is the total number of bits required to transmit the data for the reproduction 

image, and M and N are the row and column dimensions of the reconstructed image. 
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Sometimes rate is reported as a compression ratio. e.g., A bit rate of two, would elicit a 

compression ratio of 4: 1 for eight bit original data. 

As stated previously, we are less interested in the reconstruction fidelity than we are 

In the compression aspects of a subband transform. For this reason, we evaluate the 

compression power solely on the basis of the bit rate. We refer to two typical 

compressIOn metrics, the PSNR and MSE, as reconstruction metrics throughout the 

thesis. 

Reconstruction Metrics 

To quantify the quality of the compression module we use the typical measures of 

mean squared error (MSE) per pixel and Peak Signal to Noise Ratio (PSNR) between the 

original and reconstructed images defined below. 

1 I J 2 

MSE =-II(x(m,n)-x(m,n) J 
MN ",=I 11=1 

( 2.14 ) 

l255
2 J PSNR = 1010gio --

MSE 
( 2.15 ) 

where M and N are the row and column dimensions of the original image. The MSE has 

no units, whereas the PSNR is measured in decibels (db). In this thesis, the MSE is 

always reported for a three level subband decomposition, unless otherwise stated. Both 

of these values measure how accurately the reproduced image matches the original 

image, however, they are only meaningful when the context of a specific bit rate. 

Computation Metrics 

Lastly, to assess the computational efficiency of our model we calculate the order of 

the computation by totaling the number of multiply operations necessary for the system. 

to process one image. 
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2.6 State of the Art Object Recognition Results using 
Correlation Filters 

In this section, we provide a performance baseline with which to compare the results 

of this thesis investigation. We focus on the object recognition performance and the 

computational order for comparison with our new system. With this baseline, our thesis 

can then address the following questions: 

• "How will compression degrade the recognition performance?" 

• "What is the computational cost of the new system?" 

2.6.1 State of the Art Results on Uncompressed Imagery 

Using the system diagrammed in Figure 2.1 and the MACH filter and postprocessing 

technique discussed in Section 2.3, we performed the three class experiment defined in 

Section 2.5.1. The experiment utilized the original uncompressed SAR test data, and 

resulted in the confusion matrix exhibited in Table 2.2. 

Table 2.2 Confusion Matrix Resulting from Uncompressed Imagery 

Computed Object Class 
BMP BTR T72 Reject 

True BMP 23 0 0 
Object BTR I 26 0 
Class T72 0 0 27 0 

Table 2.3 identifies the performance percentages. They are commensurate with results 

published in the open literature [VKMJOO] for much larger experiments on similar data. 

Table 2.3 Recognition Results for Uncompressed Imagery 

Pc Pe Pr 
Baseline Ex eriment 96.2% 3.8% 0% 
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2.6.2 State of the Art Results on Compressed Imagery 

The current baseline method of working with compressed imagery IS to fully 

reconstruct the image and then process it through an object recognition model. Figure 

2.13 illustrates such a system. 

X 
1 

compressed 
data 

nverse 
Subband 

Corre lation System for Processing Uncompressed Data r----------------------------I 
I I 
I I 

FFf IFFf 
Transform X I 

Correlation 
Filter 

/ 
reconstructed 

data 

Figure 2.13 Baseline Compression Recognition System 

y 
con'e lation 

output 

Notice that the above system is simply an augmentation of the correlation system 
used with uncompressed imagery (shown in Figure 2.1). 

Thus, for lossless compression, the recognition performance for the baseline 

compression recognition system is exactly the same as that resulting from uncompressed 

data. In the case of lossy compression with SAR imagery, previous work [WM99] shows 

that the recognition performance is very robust. Using the Embedded Zerotree Wavelet 

algorithm [Sha93], Walls and Mahalanobis report the following correct classification 

results on a ten class problem from the MST AR data. 

Table 2.4 Recognition Results of the Baseline Compression Recognition System 

Compression Ratio 
10:1 20:1 100:1 186:1 350:1 675:1 1000:1 

Pc 97% 95% 94% 91% 79% 35% 14% 
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Chapter 3 

A New Pattern Recognition Subband 
Coder Architecture 

Motivating the design of this new architecture, which addresses the implementation 

branch of our trifurcate approach, was the drive to integrate the correlation and subband 

filters into a single synergistic component. The key issues of the design parallel two 

questions extended at the outset of this thesis. 

• "Can we perform correlation in compressed image data and achieve an output 

identical to that resulting from the original image data?" 

• "Is such a process computationally efficient?" 

These two objectives lead to the question, "How can one synthesize a correlation 

MACH filter from original image data, and then pull it back into the individual 

subbands?" Such a procedure forms the basis for image domain processing and is the 

heart of our Pattern Recognition Subband Coder (PRSC) architecture. With the PRSC 

architecture we provide computationally efficient correlation filtering in the compressed 

domain (i .e., image reconstruction is not performed) while we preserve the subband QMF 
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properties and circumvent entanglements with the downsampling effects encountered in 

subband coder architectures. 

Section 3.1 presents a mathematical formulation of a linear system that results in an 

identical response for both compressed and uncompressed data. In Section 3.2 we 

elucidate the methodology for merging the subband and correlation filters. It is here that 

we define the PRSC architecture and explain its construction. We discuss the 

computational efficiency of the PRSC in Section 3.3, as well as its parallel structure, 

which improves the processing time over that of uncompressed images. Finally, we 

summarize the effectiveness and limitations of the PRSC in Section 3.4. 

3.1 One-Dimensional Formulation 

Consider the linear system 

y=CX ( 3.1 ) 

Equation 3.1 represents a one-dimensional correlation process written in matrix vector 

notation, where x is a one-dimensional input signal, C is a Toeplitz matrix defined by a 

one-dimensional correlation filter, and y is the one-dimensional correlation output. 

Matrix vector notation provides a convenient mathematical and analytical tool for the 

ensuing discussion. 

Our goal is to express the response y in terms of the transformed input, Xl. That is, 

with a linear system, to achieve an output from a transformed input that it is identical to 

the one produced from its original counterpart. The following equations hold for any 

linear system and any general transform that can each be written as a matrix operation. 

They are not limited to the correlation process and compression transform. 
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3.1.1 A General Transform Representation 

Given the matrix construction of a unitary transform operator, T, note that Equation 

3.1 can be rewritten as 

We define Xt as the transformed input, 

x =Tx 
t 

C t as the 'inverse transformed' correlation matrix, 

C =CT t 

( 3.2 ) 

( 3.3 ) 

( 3.4 ) 

and T is the transformation matrix. With these definitions, Equation 3.2 can be restated. 

( 3.5 ) 

If T is not unitary, the above set of equations remain intact with Tt being replaced by r I , 

as long as T is nonsingular. 

Immediately, we see that if T is a unitary compression transform, then Equation 3.5 

provides an elegant method of achieving the sought after correlation surface, y, directly 

from the compressed image without any reconstruction. 

Implementation 

The implementation for a compressIOn and correlation system is simple and 

straightforward. We assume: 

1) we are given the compressed images, Xt, 

2) we know the compression transform matrix , T , and 

3) we can compute the transformed correlation matrix, C t , a priori, and store it off-line. 

Now to formulate C t we must first produce the standard correlation filter in the 

uncompressed domain (and its matrix counterpart C), which does require uncompressed 
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images. A typical recognition system completes the training phase a priori, however, 

when time and processing power are not as limited as during system operation. 

If the system specifically calls for a subband transform, the transformation matrix, T, 

is created directly form the subband analysis filter pair. We discuss the construction of T 

in Section 4.l. In brief, the transformation matrix, T, combines the filtering and 

downsampling of a subband analysis transform over multiple levels in a matrix structure. 

Our informal treatment of the T structure in the following discussion is a preface to the 

detailed material of Chapter 4. 

Parallelization 

For recursive unitary transforms (like the subband transform), we define a unique 

mathematical formulation of Equation 3.5 that lends itself to a parallel implementation. 

In the case of a recursive subband transform, the first level analysis and synthesis is given 

by 

XI =Tx and X=T'X 
I ( 3.6 ) 

The transformed signal can be separated into its low and high frequency components: 

XI = [X IL X IH ]· Or, with proper zero padding of the individual vector components, 

( 3.7 ) 

Now, adapting T for decreasing vector size, and continuing to split the low frequency 

band further, the lower levels become 

( 3.8 ) 

Analogous to Equation 3.7, and with the appropriate zero padding, the lower levels can 

also be written as a sum of their low and high frequency components. 

( 3.9 ) 
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Because the T matrix must decrease in SIze at every level, however, we append a 

subscript, k, denoting the matrix's accommodation of the size of the signal at the k'lt level. 

Thus, the appropriate analysis and synthesis equations become 

( 3.10 ) 

( 3.11 ) 

(Note that in the more formal treatment of T in Section 4.1, the matrix will no longer 

require subscripts, as we will more formally define T over multiple levels of recursion.) 

Finally, by writing each level as a sum of its low and high frequency components, and 

using the appropriate zero padding on the signals at levels one and two, the synthesis of 

the original signal, x, is as follows. 

(3.12 ) 

Now, by again treating the correlation filter as a linear system, Equation 3.5 can be 

computed in parallel, i.e., 

( 3.13) 

After combining all the matrix terms, the above equation becomes 

(3.14 ) 

where e,k is the appropriate combination of correlation and transform matrices for level 

k, and the signals at levels one and two still carry the appropriate zero padding. Equation 

3.14 can also be viewed as 

(3.15) 

where Yk is the correlation output surface for level k. 
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By nesting the recursion (Equation 3.12), we manifest a parallel implementation as 

clearly elucidated in Equation 3.14. This equation can be helpful in the implementation 

of one-dimensional linear systems in the transformed domain. The formal treatment here 

is one possible mathematical expression of the new signal processing architecture 

introduced in Section 3.2. 

3.1.2 Extension to Two Dimensions 

While the implementation of Equation 3.2 is straightforward in one dimension, this is 

not always the case for two dimensions. It is only uncomplicated in two dimensions 

when both the transform, T, and the linear operator, C, are separable. The subband 

compression transform that we use in this thesis research is separable, and therefore can 

be written as Trow for the row operations and Teol for the column processing. 

The correlation operation, however, is not separable. It becomes quite cumbersome 

to use Equation 3.2 when searching for two-dimensional patterns in the input signal. It is 

natural to use a Toeplitz matrix (C in Equation 3.2) to implement convolution of a one

dimensional signal, however, the equivalent structure necessary to perform convolution 

of a two-dimensional signal is not so obvious. While tractable mathematically and 

algorithmically, the resulting matrix is impractical and computationally expensive. When 

processing uncompressed imagery, correlation filters avoid the issue completely by not 

utilizing a matrix implementation, but rather operating in the frequency domain, as 

explained in Section 2.3. Thus, we must find another structure to operate two

dimensionally in the compressed domain and execute an 'inverse transformed' correlation 

filter. 
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3.2 Merging the Interpolation and Correlation Filters 

To provide an alternative method of implementing an 'inverse transformed' 

correlation filter, we turn to polyphase structures. These allow us to manipulate the 

correlation filter and operate it within the inverse transform, i.e., the interpolation filters, 

of the individual subbands within a subband coder. 

3.2.1 Polyphase Structures 

Fundamental to many signal processing applications is the polyphase decomposition 

introduced by Bellanger, et. aI. , [BBC76]. While many sources discuss the concept at 

great length [CRSl , CRS3 , VaiSS, Vai90, Vai93, SN96] , we review the basic equations 

here. 

Consider a transfer function, H(z), which represents a digital filter. 

= 

H( z) = L.h(n) z-" (3.16) 
11 =-00 

A polyphase decomposition is simply a way of splitting a filter into its even and odd 

components as Equation 3.17 illustrates. 

( 3.17 ) 

= = 
with H/z) = L.h(2n)z- ", and H ,, (z)= L.h (2n + l) z-" (3.1S) 

11 =-00 1/=-00 

Also useful to our cause is the noble identity for interpolators [CRS1, CRS3, VaiSS, 

Vai90, Vai93, SN96] , defined in Figure 3.1 

~ G(z) ~ ~ G(zL) ~ 

Figure 3. I Noble Identity for an Interpolator 
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Combining the polyphase decomposition with the above noble identity, results in a 

new construction known as an efficient interpolator [CR81 , CR83, Vai88, Vai90, Vai93, 

SN96], and exhibited for one-dimension in Figure 3.2. 

x(n) ~ G(ZL) ~ yen) 

(a) 

x(n) 
z·j 

yen) 

(b) 

Figure 3.2 An Efficient Interpolator 'Identity' 
Figure (a) portrays a standard interpolation filter, while (b) illustrates its efficient 
interpolator counterpart. It is called an efficient interpolator because the filters in 
(b) operate at half the sampling rate as in (a). Structures (a) and (b) are 
equivalent. Either one may replace the other. 

Note that the structure of Figure 3.2(a) can replace that in Figure 3.2(b) and vice-versa. 

Thus, we say that Figure 3.2 illustrates an efficient interpolator 'identity'. The efficient 

interpolator becomes the architectural building block used to pull the correlation filter 

from the uncompressed domain into the compressed space, thus dissolving the boundary 

between the recognition and compression components. 

3.2.2 Rearranging the Architecture 

We initiate this discussion with a review of the baseline compression recognition 

system (defined in Section 2.2 and diagrammed in Figure 2.13). In this case, the system 

fully reconstructs the image prior to performing recognition with the correlation filter. 
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Figure 3.3 diagrams the reconstruction and recognition portions of such a system for a 

one-dimensional signal with both a one level and two level decomposition. 

highpass synthesis filter 

highpass synthesis filler 

xIH(n) 

(a) 

(b) 

highpasssynthesis filler 

y(n) 

Figure 3.3 Synthesis and Correlation of a Baseline Compression Recognition System 
The signal is fully reconstructed prior to object recognition with the correlation 
filter. Diagram (a) depicts a one level decomposition and (b) a two level. 

Throughout the ensumg discussion, we represent all filters in their z Transform 

notation. For simplicity of notation, we represent lowpass and highpass synthesis filters 

as F(z) and G(z), respectively, although traditionally, these two filters are denoted as 

Go(z) and G,(z), respectively. 

Now we will describe a method of merging the correlation filter, C(z), with the 

subband synthesis filters. In the interest of clarity, we will limit the discussion to a two 

level, one-dimensional system. In this case, the rearrangement of the architecture is a 

four part process which we illustrate in Figures 3.4 - 3.7. 
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Step One: The correlation filter, CCz), of Figure 3.3(b) can migrate behind the sum 

because addition and correlation are both linear operations. Now it is simple to combine 

the correlation filter with the subband synthesis filters of level one. We define the new 

filters in Equation 3.19. The new architecture is shown in Figure 3.4. 

CF( z) = C( z)F(z ) CG( z) = C(z )G( z) 

x2H (n) ~ G(z) 

highpass synthes is filter 

xIH(n) 

composite correlation/ 
highpass synthesis filter 

( 3.19 ) 

yen) 

Figure 3.4 Merging the Correlation and Subband Synthesis Filters: Step One 
The correlation filter moves back into level one of the subband decomposition. 

Step Two: Before we can continue the migration of the recognition filter, we must 

employ the efficient interpolator of Figure 3.2. It is necessary to use this polyphase 

structure because the subband synthesis system is a linear time varying system due to the 

interpolators. We use the construction of Figure 3.2(b) to replace the low frequency leg 

of level one in Figure 3.4, resulting in the diagram of Figure 3.5. The symbols CFo(z) 

and CFe(z) represent the odd and even branches of the composite synthesis/recognition 

filter, CF(z). 
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efficient interpolator 

1_ - - - EoJ)jJ!J~s~ 2e.s:21!!e.o~ ili2n ___ ~ 
1 

Z-I I 
1 

composite correlation/ 
highpass synthesis filter 

Figure 3.5 Merging the Correlation and Subband Synthesis Filters: Step Two 
Substitute an efficient interpolator in the low frequency channel of level one. 

Step Three: The above substitution allows us to push the recognition filter further 

back into the subband architecture. We move the polyphase structure on level one behind 

the summation at level two, and then combine the participating filters. Equation 3.20 

describes the newly merged filters in a manner similar to Equation 3_12. 

CFoF(z) = CF;,(z)· F( z) CF"F(z) = CFeCz)' F( z) 

CF,,G( z) = CF;, (z) . G( z) CF"G( z) = CFeC z) . G( z) 
( 3.20 ) 

The new filters, CFoF(z) , CFeF(z) , CFoG(z) , and CFeG(z), retain the odd and even 

structures of the underlying filters CFo(z) and CFe(z). Now the architecture consists of 

two efficient interpolators, one in each branch of the decomposition's second level, as 

displayed in Figure 3.6. 
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efficient interpolator 

r - - - - .PO..!YJ?~~ ~e~0!llEo~i!i0!l_ - - - -
1 

1 ~ 1 
12 1 

Z-I : 
1 lowpass branch 
1 of level two 

1- ____________________ : 

1 

Z-I I 
: highpass branc 
1 of level two 

t _______ ______________ : 

composite correlation/ 
highpass synthesis filter 

Figure 3.6 Merging Correlation and Subband Synthesis Filters: Step Three 
Move the efficient interpolators of level one back into level two, and merge the 
filter operations. 

Step Four: Finally, to complete the new architecture, we once again make use of the 

efficient interpolator 'identity'. As illustrated in Figure 3.2, the efficient interpolator of 

diagram (b) is equivalent to its single branch counterpart in (a). In this final step we 

make just such an 'inverse' replacement. Additionally, we combine the two summations 

of the first and second level resulting in the parallel construction of Figure 3.7. Because 

the four filters, CFoF(z), CFeF(z), CFoG(z), and CFeG(z), possess odd and even 

structures, we can combine them via Equation 3.17 to form CFF(z) and CFG(z). Figure 

3.7 presents the PRSC architecture for a one-dimensional signal and two decomposition 

levels. 
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composite correlation/ 
lowpass/ lowpass synthesis fi Iter 

composite correlation/ 

synthesis filter at level one 

yen) 

cotTelation output 

Figure 3.7 Merging Correlation and Subband Synthesis Filters: Step Four 
Substitute a single channel interpolator and filter for the efficient interpolators of 
level two. The final architecture consists of only parallel branches of 
computation. In each branch the subband synthesis and recognition filters have 
been combined into one composite synthesis recognition filter. 

We see in Figure 3.7 that only parallel branches of computation comprise the PRSC. 

Each subband of the multiresolution decomposition forms its own distinct branch. 

Moreover, the composite filters within the PRSC embody a complete union of the 

compression and recognition domains. 

Finally, correlation filters are typically implemented in the frequency domain, as 

expressed in Section 2.3. In the frequency domain , the correlation filter operation takes 

the form of a point-to-point multiplication rather than a full convolution. This method 

greatly speeds up the computation. We can also take advantage of this computational 

simplicity in the PRSC. Toward this end, we include a Fast Fourier Transform (FFT) of 

each subband's input signal in Figure 3.8. The upsampling is done in the frequency 

domain (as a signal replication), and the composite synthesis/recognition subband filters 

are stored in their frequency domain. Lastly, we must perform an Inverse Fast Fourier 

Transform (IFFT) of the summation output to produce a correlation surface in the time 

domain. We display these details of the implementation in Figure 3.8 to aid our 

assessment of the computational efficiency, as reviewed in the Section 3.3. 
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level 2 filters 
- - - - - - - --I 

size N 1 

size N/4 

Figure 3.8 Computationally Efficient Implementation of the PRSC 

---. 
y(n) 

As is typical of signal processing architectures, the PRSC is implemented in the 
frequency domain. The size (on one side) of the data arrays at each step is given 
in the above figure. Notice that all the correlation filters are of size N by N, 
because the signal is upsampled (replication in the frequency domain) prior to 
correlation . The size of each FFT, however, is commensurate with the size of its 
subband input signal. 

3.2.3 Extension to Two Dimensions 

By continuing the above process outlined in Section 3.2.2 recursively, we can employ 

the new PRSC architecture of Figure 3.8 over any number of decomposition levels. 

Multiple polyphase branches have to be made for multiple numbers of interpolators, but 

this process occurs only in the design stage. Operation of the PRSC is a purely parallel 

process with its filters designed apriori. Figure 3.9 illustrates the PRSC architecture for a 

three level decomposition of a two-dimensional signal. In Figure 3.9, the naming 

convention of the composite synthesis/recognition filters follows that outlined with 

Equations 3.19 and 3.20, except that we use Fourier notation rather than z Transform 

notation. 
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F igure 3.9 The PRSC Architecture for a Three Level Image Decomposition 
T he PRSC di ssolves the boundary between the compress ion and recognition 
domai ns. Within each branch all the subband synthes is filters and the 
recogniti on filter are combined into one composite synthesis/recognition fi lter. 
The result is ten paralle l branches of computation. The FFrs are necessary only 
for computati onal efficiency. 

--
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The result, y(m,n), is the correlation surface which exactly duplicates the one 

achieved by the baseline compression recognition system. (Such a system, albeit for a 

two level decomposition of a one-dimensional signal, is shown in diagram (b) of Figure 

3.3.) That is, the process exhibited in Figure 3.9 is equivalent to fully reconstructing the 

two-dimensional image and then performing the correlation filtering operation on the 

reconstructed signal, x(m,n) . The PRSC output is also equivalent to the correlation 

response achieved by operating on the original signal, x(m,n), limited only by the veracity 

of the subband transform. 

In Figure 3.9, we again display the sizes of the operations so as to facilitate our 

assessment of the computational expense, as reviewed in the following section. 

3.3 Computational Complexity 

In this section we compare the computational requirements for three systems: 1) the 

novel PRSC architecture, 2) the baseline compression recognition system (defined in 

Section 2.2), and 3) correlation on uncompressed images. We consider only 

multiplication operations In our assessment of the computational complexity of these 

systems. Some of the operations in the first two systems can be parallelized. Thus, we 

examine not only the total computation required, but also the maximum number of 

computes necessary to arrive at an output. The latter we call the effective computation. 

3.3.1 Total Computation 

Baseline System and Uncompressed Case 

First, we reVIew the computation involved for performing correlation on 

uncompressed Images, as well the computation involved in the baseline compression 



57 

recognition system. In both cases, we implement the correlation filter in the most 

computationally efficient way, i.e., in the frequency domain. Figure 3.10 diagrams the 

major processing steps of the baseline system. 

XI 

compressed 
data 

Correlation System for Processing Uncompressed Data r----------------------------I 
nverse 

Subband 
Transform X I 

/ 
reconstructed 

data 

FFf 
Correlation 

Filter 

r----, : 
I 

IFFT 

Figure 3.10 Baseline Compression Recognition System 

y 
correlation 

output 

Notice that the baseline compression recognition system is merely an augmentation of the 

system for correlation on uncompressed images. 

We now quantify the computation for each step shown in Figure 3.10, assuming an 

original image of size N by N, an inverse (synthesis) subband filter of length M, and a 

decomposition of K levels. In such a system, the dimension (on one side) of a subband 

N 
on level k IS given by 2

k
• First, we exarrune the inverse subband transform (IST) 

computation. The computation required for the synthesis filters to interpolate one 

subband is 6M (:. J Therefore, the computation required to reconstruct an image from 

its compressed state is 

1ST Computation = 4 i 6M( ~ J2 
k= t 2 

K 
( 3.21 ) 

= 6 MN 22:. 41
-

k 

k = 1 
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Both the FFI' and IFFI' operations take the same number of computes, as specified in 

Equation 3.22. 

FFT Computation = IFFT Computation = N
2

10g 2 N ( 3.22 ) 

Because the filter is implemented in the frequency domain, its operation takes the form of 

a point-to-point multiplication rather than a full convolution. 

Correlation Computation = N 2 ( 3.23 ) 

Equations 3.21 - 3.23 provide the building blocks for our computation calculations. 

By adding the appropriate constructs we arrive at the following calculations of total 

computation, P, for the two systems diagrammed in Figure 3.10. 

No Compression: P = N 2 (210g2 N + 1) ( 3.24 ) 

Baseline System: P ~ N'l2 log, N + 1+ 6M ~ 4>-< J ( 3.25 ) 

PRSC Architecture 

Now we can tum our attention to the PRSC. The process in Figure 3.9 displays 

multiple parallel branches. Within each branch on level k, there is an FFI' of size ~ . 

Branch FFT Computation ~ (; J IOg,(; J ( 3.26 ) 

There are three FFI's on all levels but the lowest, in which case there are four. 

Total FFT Computation ~ {; J log, ( :. J + 3~(; J log, ( ; J ( 3.27 ) 

The IFFI' computation occurs only at the end, and is of the reconstructed image size, N. 

IFFI' Computation = N 2 log2 N ( 3.28 ) 
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Each parallel branch contains a composite synthesis/correlation filter of size N. There 

are, however, [4 + 3(K-l)] branches in a PRSC with K decomposition levels. Again, this 

filter is implemented in the frequency domain, so its operation takes the form of a point-

to-point multiplication rather than a full convolution. This filter operation is of size N 

because it occurs after the upsampling operations. 

Correlation Computation = ~ + 3(K - l)]v 2 ( 3.29 ) 

By adding Equations 3.27 - 3.29, we can write the total computation necessary for the 

PRSC operation. 

( 3.30) 

After algebraic manipulation and combining of terms, this value becomes 

( 3.31 ) 

Summary and Comparisons 

We summarize the total computation necessary for each system's operation in the list 

below. 

• No Compression: P = N \210g2 N + 1) 

• Baseline System: P = N{ZIOg, N + I +6M ~4' ~' J 

K - I 

• PRSC: P = E + 41
-

K 
]v210g2 N + ~ + K~ - 41

-
K )Jv 2 + 3N 2I4 - k (IOg2 N - k) 

k = 1 

An important observation is that the PRSC computation is not dependent on the value 

of M, i.e., the length of the subband synthesis filter. This is because the subband 

synthesis filter is incorporated into the correlation filter prior to the system operation. 
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Figure 3.11 compares the total computation expended by each of the three systems for 

varying values of N. We select one value for M and show the baseline computation over 

several values of K ; likewise we depict the computation executed by the PRSC for 

several values of K and M is not a factor in this case. 

11 

10 

VJ 

~ 9 
0.. 
E 
o 
U 8 
"o 
'
(l) 

..D 7 
E 
::::l 

;Z 

OJ) 

..2 5 Baseline Compression, M = 8 
PRSC 
Uncompressed Data 

3L-__ -L __ ~ ____ ~ __ -L ____ L_ __ _L __ ~ ____ ~ __ _L __ ~ 

4 5 6 7 8 9 10 11 12 13 14 

log2(N), Image Size in One Dimension 

Figure 3.11 Comparison of Total Computation for Three Systems 
The PRSC fares much better than the baseline compression recognition system. 
Note also that the PRSC computation is not dependent on the length of the 
subband synthesis filter, M, as the baseline system is. For larger values of M, the 
baseline computation increases. Both methods of processing compressed images 
consume more total computation than when working with uncompressed images. 

3.3.2 Effective Computation 

Recall that this term is defined to represent the total number of computations required 

to arrive at a result. By parallelizing some operations, the effective computation can be 

much lower than the total computation of a system. 
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PRSC Architecture 

For many applications, the speed of computation is more important than the total 

computation involved. In this regard, the parallelism inherent in the PRSC serves us 

well. Operation of the PRSC can be viewed as ten parallel processing steps, with the 

total processing time dictated by the longest leg (i.e. , one of the largest subbands). The 

N 
largest subband requires an FIT of size - , and a filter operation of size N. Lastly, the 

2 

final stream of data requires an IFFf of size N. Thus, the effective computation of the 

PRSC is reflected in the following equation. 

( 3.32 ) 

Baseline System and Uncompressed Case 

The inverse subband transform can also be performed in parallel in a manner 

analogous to the PRSC. Thus, the effective computation of the baseline compression 

recognition system is contingent upon only one of its largest subbands. The effective 

computation required to fully reconstruct the image is derived from Equation 3.21 and 

given below. 

Effective IST Computation = ~ MN 2 

2 
( 3.33 ) 

We refer to Figure 3.10 to determine the effective computation of the baseline 

system. After adding the effective IST value with the number of computations required 
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by the FFf, correlation filter, and IFFf operations (all of size N), we arrive at the result 

below. 

p' = ~ MN 2 + N 2 log7 N + N 2 + N 2 log7 N 
2 - -

= N{210g, N + 1+~ M J 
( 3.34 ) 

Finally, the standard method of working with uncompressed data is completely serial. 

Therefore, p= p' and is given below. 

p' = N 2 (21og2 N + I) ( 3.35 ) 

Summary and Comparisons 

We summarize the effective computation necessary for each system' s operation in the 

list below. 

• No Compression: p' = N 2 
(21og2 N + 1) ( 3.36 ) 

• Baseline System: ( 3.37 ) 

• PRSC: P = N - - loa N + -, 715 3; 
4 0 2 4 ( 3.38 ) 

We immediately see that the baseline system provides the slowest output response. 

The most important observation, however, is that the PRSC provides a faster system 

response than that provided by working with uncompressed imagery. As we see by 

subtracting Equation 3.38 from 3.36, we can arrive at a result faster with compressed 

images than with uncompressed images, by the following number of computations: 

( 3.39 ) 
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For large values of N, this difference can become quite significant as exhibited in 

Figure 3.12, where we characterize the effective computation of all three systems. We 

plot the computation of the baseline system for only one value of M; for larger values the 

computation increases. 
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Figure 3.12 Comparison of Effective Computation for Three Systems 
It is most important to note that the PRSC proves faster than even the case of 
working with uncompressed data. We display the effective computation of the 
baseline system for a single value of M ; it only increases for larger values. 

Moreover, by taking a ratio of Equation 3.36 and 3.38, we can estimate the savings 

factor , F' , achieved in the effective computation by using compressed data. In the limit, 

the factor goes to the value of 1.6, and is very close to this value even for small image 

sizes, as Figure 3.13 shows. 

F' = 810g2 N + 4 
Effective Computation Savings Factor: 510g2 N + 3 (3.40) 

F~->= = 1.6 
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Figure 3. 13 Effective Computation Savings Factor with the PRSC 
The computational savi ngs for operating the PRSC on compressed imagery, as 
opposed to standard correlation on uncompressed imagery, goes to 1.6 in the 
limit. It is very close to that value even for small image sizes . 

3.4 Summary 

The PRSC is a new architecture for performing object recognition on compressed 

image data. It is equivalent to correlation filtering on the reconstructed image and has 

several novel benefits. 

• It is a universal architecture for operating any linear filter directly on the 

multiresolution data of a subband coder. 

• It produces a response identical to that produced by the reconstructed image. 

• It results in a response identical to the equivalent filtering on the original image, 

within the fidelity of the subband transform. 
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• It provides afaster response than the equivalent filtering operation on uncompressed 

data, by a factor of F' = 1.6 as N (dimension on one side of a square image) goes to 

infinity. The factor is very close to 1.6 even for very small N. 

• It requires less total computation than the baseline compression recognition system. 

The difference between the two systems grows larger with increasing image size. 

• It combines the global correlation filter and each subband interpolation filter into one 

composite filter resulting in a new correlation filtering technique for recognizing 

patterns in compressed imagery. 

Furthermore, this chapter introduces a new mathematical formulation to operate 

linear systems directly in a transform domain. 

• It is universal for a unitary transform and a linear operator. 

• It produces a response identical to that produced by the untransformed input. 

In conclusion, the PRSC dissolves the boundary between the two domains of image 

compression and object recognition and combines them into one homogenous operation. 

Consequently, this chapter addresses two of the questions submitted for this thesis 

investigation. 

• We can peiform object recognition in compressed imagery with the same accuracy as 

in un compressed imagery, limited only by the veracity of the subband transform. 

• A correlation filter can be adapted to operate directly in the subband space In a 

computationally efficient manner. 

To summarize: By using losslessly transformed data, the novel PRSC architecture 

performs object recognition as if on the original data, and does so with faster execution. 
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Chapter 4 

Joint Optimization of the Compression 
and Recognition Filters 

Subband and correlation filters work in concert with each other in our novel 

architecture, the Pattern Recognition Subband Coder, presented in the previous chapter. 

The subband filters provide the forward and inverse compression transform, while the 

correlation filters perform object recognition within the individual subbands. This 

chapter addresses the ensuing question, "How do we jointly optimize the performance of 

the recognition and compression filters?" Our approach dictates that system performance 

is best served if: 

1) the training phase tunes the recognition filters to the compressed data, and 

2) the data compression elicits a maximal response from the recognition filters. 

We provide one algorithm for meeting these two objectives via a modified QMF design 

for subband decomposition. 

The chapter is organized as follows. First, in Section 4.1, we present a matrix 

formulation of the subband filters, which, as Section 4.2 explains, forms the basis for our 

unique approach to QMF design. Section 4.3 then defines the new recognition criterion 
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that we incorporate in the QMF design. Additionally, Section 4.3 details the interaction 

of the correlation filter and QMF design, which the optimization algorithm interweaves. 

A quantizer and encoding scheme necessary to assess system performance at varying bit 

rates is described in Section 4.4. Finally, we present results of the Pattern Recognition 

Subband Coder performance for both optimized and unoptimized conditions in Section 

4.5, as well as quantization effects on optimized performance. Future extensions to the 

optimization design technique are suggested in Section 4.6. Lastly, Section 4.7 

summarizes the chapter and discusses the robust performance of the Pattern Recognition 

Subband Coder, its benefits and limitations. 

4.1 Matrix Formulation of a Subband Decomposition 

A review of Equations 3.2 - 3.4 suggests that it would be helpful to formulate the 

subband transforms in matrix representations. Section 3.1 briefly introduced this 

construction; we present a more formal treatment here. In Section 3.1, we discussed the 

T matrix for the purpose of a single recursion level. We present the more general case of 

multiple recursion levels here. The formulation presented here evolved from the work of 

Mahalanobis, et. aI., [MS+93] which introduced a matrix representation of subband 

decomposition based on the Hadamard transform. 

The T matrix representation is useful not only for analytical purposes, but also for the 

construction of the QMF banks as we explain in Section 4.2. Central to the following 

discussion is the fact that the matrix representation we develop combines the filtering and 

downsampling of a subband analysis transform over multiple levels in a matrix structure. 

In the interest of clarity, we limit the discussion to the one-dimensional case. 
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Let x = [x (O) x(l) ... x(L-l)] be a vector of length L which contains the samples of the 

signal x(n). For simplicity, we shall assume that L = 2M, where M is any positive integer. 

Let us further assume that the subband analysis filters ho(n) and hi (n) of length N, 

decompose x(n) into two new subsequences xo(n) and xl(n) . In matrix-vector notation, 

the decomposition of x into two subsequences X o and x I of length (L + N-2)/2 can be 

succinctly expressed as 

and 

x \ =A\x 

x2 = A 2x 
( 4.1 ) 

(4.2 ) 

where An and A\ are unitary transform matrices of size (L+N-2)/2 by L. A() and AI satisfy 

the conditions A~Ao = I , A: A \ = I , and A~A\ = 0 . We construct these matrices from the 

subband analysis filters as follows: 

ho(l) ho(O) 0 0 0 0 

ho( 4) 110(3) 110(1) 110(0) 0 0 

Ao= 

0 0 ho(N-l) ho( N -2) ho(N - 3) ho(N -4) 
0 0 0 ho(N -1) ho(N-2) 

( 4.3 ) 
h\(1 ) h\(O) 0 0 0 0 

h\(4) ~(3) h\ (1) h\(O) 0 0 
A-\-

0 0 h\(N -1) h\(N -2) h\(N -3) h\(N -4) 
0 0 0 hJ(N -1) h\(N -2) 

The rows of Ao and A I are shifted versions of the subband filters , appropriately 

padded with zeros to implement the required filtering and decimation. As a result, the 
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matrix-vector multiplication of Equation 4.1 yields the desired filtered and downsampled 

subband sequences. The relation between the subband sequences and the original signal 

can also be expressed as 

( 4.4 ) 

where T = [ : : ] may be considered to be a one level decomposition matrix for splitting a 

signal into two subbands. Because the subband decomposition matrices are unitary, it 

follows that TtT = J, and 

X=T'[::] ( 4.5 ) 

which is the inverse decomposition (i.e. , synthesis) equation. 

Furthermore, we can generalize the structure of T to represent any one to M band 

transformation including partial decompositions and the maximally decimated case. We 

focus our attention on the structure of T for the case of a dyadic hierarchical 

decomposition in which only the low frequency signal is recursively decomposed. Figure 

4.1 diagrams this process for a three level decomposition of the signal x. 

Xooo 

XOOI 

x 

Fi gure 4 .1 Three Level Dyadic Decomposition of a One-Dimensional Signal 
The low frequency signal is recursively decomposed, to form a one-dimensional 
subband decomposition. 
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It is easy to see that the process in Figure 4.1 leads to the following set of equations. 

Xooo = Aooo xoo = AoooAooxo = AoooAooAox 

XOO I = Aoo lxoO = Aoo lAooxo = Aoo lAooAox 

XOI = AOlxo = AOIAox 

XI =Alx 

(4.6 ) 

In the above equations, the symbols ' 0' and ' 1' refer to the branch of the dyadic tree 

being traversed. The number of symbols in the subscripts indicates the stage of the 

decomposition. Thus, the subscript ' 001 ' refers to quantities in the second subband at the 

third stage of the decomposition process. All the sub band decomposition matrices are of 

the type in Equation 4.3, but appropriately dimensioned to match the lengths of the input 

and output signals at each stage. Based on the above formulation, it is now easy to see 

that the relation between the input signal and the subband output is given by 

Xooo AoooAoo Ao 
XOO I Aoo lAooAo 

x=Tx (4.7 ) 
XOI AOIAo 

XI AI 

where 

AoooAooAo 

T= 
Aoo lAooAo ( 4.8 ) 

AOIAo 

AI 

is the three level decomposition matrix that implements the process shown in Figure 4.1 . 

Again, because each of the subband decomposition matrices which comprise Tare 

unitary, it follows that TIT = I , and that the expression for synthesis is given by 
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xooo 

x=T1 X OOI (4.9 ) 
X OI 

XI 

Now, consider the case where the analysis and synthesis filter banks are not unitary or 

orthogonal, but rather biorthogonal, as is the case with many wavelets. The above 

equations and discussion still hold, with the exception that the biorthogonal matrix U 

replaces T\ and TU = I. The matrix U is formed in a manner analogous to the way T is 

formed, except that the submatrices, A o and AI , are composed from the subband synthesis 

filters, rather than from the subband analysis filters. In fact, as long as the forward 

transform is invertible, the matrix formulation T is applicable. (T has to be nonsingular, 

and thus invertible.) In which case rl is fom1ed from the inverse transform filters, rather 

than the forward transform filters. 

For illustration purposes, Figure 4.2 portrays a one, two, and three level T matrix 

(a) 
Level One 

(b) 
Level Two 

(c) 
Level Three 

Figure 4.2 T Matrix Images for each of Three Decomposition Levels 
Diagram (a), (b), and (c) depict a one, two, and three level T matrix, respectively, 
created from a four tap filter. [n (a) the upper and lower diagonal bands represent 
the low and highpass subband filters, respectively. The upper two diagonals of 
(b) signify the low and highpass filtering process for level two, while the lowest 
diagonal designates the highpass operation of level one. Finally, in (c) the upper 
two diagonals accomplish the low and hi ghpass filtering operations of level 
three; the next diagonal band depicts the highpass level two operation; the 
lowest diagonal band effects the level one highpass filtering process. Notice the 
increased decimation of the diagonal structures for the higher decomposition 
levels (lower levels of resolution) . 
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constructed from a four tap filter. Matrix multiplication of the one level T matrix of 

Figure 4.2(a) with an image in both the row and column direction will result in a four 

subband decomposition akin to the one in Figure 2.5. Likewise, matrix multiplication of 

an image in both row and column directions with the three level T matrix of Figure 4.2(c) 

will result in a three level subband decomposition like the one illustrated in Figure 2.6. 

In summary, the matrix construct T collapses the complete subband hierarchy into an 

aggregate structure which provides a direct channel from input to output and vice-versa. 

Multiplying an input image (in both the row and column direction) with an M level T 

results in an M level decomposition with (3M + 1) bands. Thus, the matrix T provides a 

single to multiple band relationship. In addition, formulating the subband transform as a 

matrix construct greatly benefits an effective QMF design. All the requirements of 

perfect reconstruction are succinctly captured by the condition TIT = I, as elucidated in 

the next section. 

4.2 Design of a Perfect Reconstruction Quadrature Mirror 
Filter 

A quadrature mirror filter (QMF) bank consists of a lowpass and highpass filter, ho(n) 

and hl(n) , whose purpose is to split a one-dimensional signal into two frequency bands. 

Such a frequency response is shown in Figure 4.3. 
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1t 1t 

2 

Figure 4.3 Idealized QMF Frequency Response 

The name, quadrature mirror filter, is an apt nomenclature because its design specifies 

that the magnitude of the frequency response H o(z) be a mirror image of that of HI (z) 

with respect to the quadrature frequency n12, as illustrated in Figure 4.3 . QMFs were 

first introduced by Croisier, Esteban, and Galand [CEG76]. Since then , much work has 

been devoted to their development, with the most important step being the advance of 

perfect reconstruction, made independently by Vaidyanathan and Vetterli [Vai87a, 

Vai87b, Vet87]. Very readable texts on QMFs can be found in [Vai87b, Vai90] . 

A subband coder uses both a QMF analysis bank and a QMF synthesis bank, denoted 

by the variables hand g, respectively. The two lowpass filters (one analysis and one 

synthesis) append the subscript '0' , whereas the two highpass filters use the subscript ' I '. 

To achieve a subband decomposition with multiple levels, the analysis filters are applied 

recursively to each succeeding lowpass output, also called a hierarchical decomposition. 

Likewise, the synthesis filters work in a recursive manner to recompose the signal 

without error. Section 2.4 discusses construction of a subband decomposition at greater 

length. 
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4.2.1 Our Approach Based on a Matrix Formulation of the Sub band 
Decomposition 

We apply the T matrix from Section 4.1 in a novel twist on a time domain design of 

perfect reconstruction QMF banks. As in most QMF design strategies, we design only 

the low pass analysis filter, ho(n), and derive the remaining three filters from this single 

filter. Perfect reconstruction specifies that we design the filter hoCn) such that Equations 

4.7 and 4.9 hold, allowing the subband data to recompose the original signal without any 

errors. In the absence of filter design constraints, three sources of error will impact the 

reconstructed signal: aliasing distortion (ALD), amplitude distortion (AMD), and phase 

distortion (PHD). Eliminating all three errors simultaneously results in our goal of a 

perfect reconstruction QMF bank. 

Elegantly captured in the condition 

( 4.10 ) 

are all the requirements of perfect reconstruction. (In Equation 4.10 and during the QMF 

design, we assume that our sub band filters are not unitary, but orthogonal.) Essentially, 

this condition guarantees that the forward and inverse transforms cancel and that the 

system forms an all pass filter response. Hence, meeting the condition of Equation 4.10 

ensures that both ALD and AMD are eliminated. Although not strictly necessary, we 

also assume that ho(n) is a linear phase filter which guarantees no PHD. The elimination 

of each of these three errors is examined in more detail in the following sections. 

Thus, our approach to designing a perfect reconstruction QMF bank is to optimize the 

impulse response of ho(n) until the T matrix defined in Equation 4.8 becomes an 

orthogonal transformation. Three observations are in order. First, this approach is a 

generalized form of other time-domain techniques reported by Jain and Crochiere [JC84] 
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and Hemami [HG95, Hem95], and captures the ripple-balance conditions by forcing the 

structure of TTT to be identity (i.e., it is an aUpass linear system with a net impulse 

response of only a delay). Second, the generalized structure of T facilitates orthogonality 

at multiple levels of decomposition so that the resulting QMF pair will yield perfect 

reconstruction up to the number of stages included in the definition of T. Third, we 

exclude any explicit desired response specifications, such as passband, transition band, or 

stopband criterion, but allow the cutoff frequency to fall where it may. 

Initial Conditions 

We define the initial coefficients of the lowpass analysis filter, ho(n) , with the matlab 

function, 'firl '. We specify a lowpass linear phase finite impulse response (FIR) filter of 

length 16 with a cutoff frequency of O.99(nI2). Note that because the filter is even 

symmetric, it has only eight degrees of freedom. Selecting the initial cutoff frequency 

close to the quadrature frequency of (nI2) , as well as using a FIR initialization facilitates 

a speedy and stable convergence. 

In addition, we normalize the filter coefficients of ho(n) to sum to ..fi . This 

effectively achieves an even power distribution over all levels of the subband 

decomposition. A filter design which sums the ho(n) coefficients to one should have no 

effect on the performance of the recognition filter, however, the intrinsic effect on 

compression rate will alter the characteristics of the rate versus recognition performance 

curve. 

ALD Elimination 

To achieve aliasing cancellation we first follow the standard filter selection rules as 

given in [Vai87b, Vai90, Vai93] . 
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( 4.11 ) 

The terms ho(n) and 17. 1(11.) are the lowpass and highpass analysis filters, respectively; 

likewise go(n) and gl(n) are the lowpass and highpass synthesis filters, respectively. The 

analysis and synthesis lowpass filters are identical; the highpass filters are modulated 

versions of the lowpass filter; the synthesis filters are scaled versions of the analysis 

filters. (In our case, the scaling factor is one.) 

Cancellation of the aliasing distortion, is also known as the orthogonality constraint 

because orthogonality between the analysis and synthesis filter banks ensures no aliasing 

effects. For only one level of decomposition, Equation 4.11 is enough. Recall though, 

that a pyramid decomposition downsamples between levels of recursion, providing a 

different sampling rate at each level. We need to ensure that the dual filter banks 

maintain orthogonality at all sampling rates present in the decomposition. 

Thus, we turn to the condition of Equation 4.10 in a novel solution to this problem. 

We ensure this condition through two separate criteria. First, if T is truly an orthogonal 

transform, then all off-diagonal elements of its outer product will be zero. Thus, we 

include the sum of the squared off-diagonal elements as the first error term in the 

function which we numerically optimize. 

( 4.12 ) 

Second, the condition given in Equation 4.10, dictates that every element of the main 

diagonal of TTT must be equal to one. To ensure this is the case, we employ Equation 

4.13 as the second error term contributing to our numerical optimization function. It is 

denoted as camd because this criterion also guarantees AMD elimination. 
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C 4.13 ) 

Using the T matrices to impose orthogonality conditions at all sampling rates is a time 

domain approach akin to the frequency domain solution provided in [Vai90]. 

AMD Elimination 

As alluded to in the previous paragraph, we eliminate amplitude distortion by means 

of the criterion in Equation 4.13. It is also known as the all pass or ripple balance 

criterion. Equation 4.13 dictates that the autocorrelation response of hoCn) be a delta 

function of magnitude one. This, in turn, means that hoCn) will pass all frequencies with 

equal magnitude, thus eliminating any magnitude distortion. Additionally, Equation 4.13 

represents constraining the total power of the hoCn) filter to be one. 

This criterion is equivalent to allpass equalization which is sometimes used for 

frequency domain solutions. Such equalization is defined in the frequency domain by the 

following equation, 

C 4.14 ) 

Physically, equation 4.14 says that the power of HoCz) and HI Cz) have a symmetry with 

respect to nl2, analogous to the symmetry of the HoCz) and HI Cz) frequency response 

illustrated in Figure 4.3. Also, as suggested by the name ripple balance condition, this 

criterion tries to split the ripple energy equally between the lowpass and highpass filter 

responses. Again, the frequency domain criterion given in Equation 4.14 is equivalent to 

the time domain condition defined by Equation 4.13. 
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PHD Elimination 

A linear phase filter is guaranteed to have no phase distortion and it is well known 

that a symmetric filter provides linear phase. We ensure linear phase by solving for only 

one half of the ho(n) coefficients at each iteration of our numerical optimization routine, 

and producing the entire set of ho(n) filter coefficients through the following definition. 

ho(n)=ho(N
f 
-l-n ) forn = 0, .. . , N j -l ( 4.15 ) 

Consequently, the PHD elimination criterion does not add an error term to our numerical 

optimization function . 

DC Response Constraint 

We include a third design constraint which helps to stabilize the numerical 

optimization routine. We require the filter coefficients of 110(n) to sum to ..fi. with each 

iteration. 

(4.16) 

where Nf is the filter length of 110(n). This is also the minimum passband constraint for a 

lowpass filter. It basically ensures the magnitude of the filter response at dc . We 

expound more on the effects of the value selected for the sum in the "Initial Conditions" 

portion of this section. 

Optimization Equation 

Finally, a sum of the error terms derived from our design constraints form a function , 

j, which we optimize numerically, via the matlab routine, 'fminu'. 
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C 4.17 ) 

The routine finds the coefficients of hoCn) that mInImIZe the function f In our 

experiments, the final solution produces a total error of the order 10-6, thus asymptotically 

reaching a perfect reconstruction QMF, limited only by machine precision. 

4.2.2 Results 

Using a filter length, Nj = 16, our QMF design resulted in the time domain plot of 

hoCn) depicted in Figure 4.4. The magnitude of the frequency response, Ho(z) , of this 

filter is displayed in Figure 4.5. We refer to the QMF developed in this section as our 

baseline QMF throughout the rest of the thesis. 
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Figure 4.4 Baseline QMF Time Domain Response 
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Figure 4.5 Baseline QMF Frequency Response 

4.3 New Joint Optimization Design Criterion 

To provide intelligent image compression and tailor it for object recognition we 

modify the QMF bank of the subband coder. The premise is that we can tune the 

subband filters to impact the information content of the subbands in a manner that is 

useful to object recognition. Toward that end, we introduce a new term which 

incorporates recognition performance into the design of the QMF; likewise we include 

the QMF response at every iteration in the design of the con-elation filter. Figure 4.6 

illustrates the design approach to jointly optimizing the performance of the two systems. 
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Iterative QMF Optimization 
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Condition 
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----;- Recognition ... ..... 

Condition 
1 ______ --------

Figure 4.6 Design Approach for Joint Compression Recognition Optimization 

Before visiting the QMF modification, let us explore a performance metric for the 

correlation design process. First, recall the definition of the MACH filter for one class of 

objects in Equation 2.6. By collecting the terms in the denominator, and using matrix 

vector notation, it can be rewritten as 

mB- I e= ( 4.18 ) 

where m is the average training image within one class of objects, and B is a spectral 

term defined by the denominator of Equation 2.6. Both terms are defined in the 

frequency domain. Recall that a different MACH filter is designed for each class, and 

that training is done with the reconstructed images. The latter technique integrates the 

subband transform into the recognition training process. 

Now, from correlation filter theory [VKMJOO], we know that correlation filter design 

is a constrained optimization problem where the quadratic e TBc must be minimized 

subject to the linear constraint that m T e achieve optimal peak values at the origin of the 

correlation surface. This is a Lagrange multiplier problem where the objective function 

that we wish to maximize is given as 

T T 

J(c) = c ~m c 
e Be 

( 4.19 ) 
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where c is defined in Equation 4.18. We know that the MACH filter definition of 

Equation 4.18 is the optimal solution to Equation 4.19. With this substitution, Equation 

4.19 can be rewritten as 

(B-1m) T mmT (B-1m) 
1 (c) - ...:...------:--....:.....--"'

- (B - lm)TB(B -1m) 

= mT( B-1m) 
T 

=mc 

( 4.20) 

Because m and c are defined in the frequency domain, we take only the real part of the 

final quantity as our performance measure. 

fCc) = real(mTc) ( 4.21 ) 

As the Lagrangian objective function directly relates to the success of the correlation 

process, we use the quantity 1 = real(m T c) to gauge the performance of the filter c. Yet, 

the quantity m (being the mean of all the reconstructed images) is directly dependent on 

the subband transform, and hence the QMF. Furthermore, c is dependent on m . Thus, 

we would like to optimize the QMF to maximize the value of 1. Herein, lies the crux of 

the joint optimization process. 

To jointly optimize the compression and recognition filter solutions, we add a fourth 

term to the baseline QMF design of Equation 4.17. Recall that the QMF design is an 

iterative optimization procedure which involves the minimization of several errors. Thus, 

we treat the inverse of the Lagrangian as an error term, provoking the QMF design to 

increase (for each object class) the 1 term of Equation 4.21 with every iteration. 

( 4.22 ) 

Accordingly, the full-fledged joint optimization equation follows from Equation 4.17. 
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( 4.23 ) 

We determined the constant applied to the new term empirically. The value of 17 

achieved the highest PSNR value of the reconstructed image, while providing the 

maximum recognition performance. By reducing this constant, we can increase the 

PSNR measure, but only at the expense of recognition success. 

First Order Implementation 

The only downside of the above formulation is that a full implementation requires 

decomposition and reconstruction of every image in the training set with every iteration 

of the QMF design. This is due to the fact that the B term of the MACH filter equation 

(Equation 4.18) is dependent on second order image statistics. With a first order 

implementation, however, we alter only the m term of the MACH filter equation. This 

case requires that we decompose and reconstruct only the mean training image, m, with 

every QMF design iteration. We derived the B term from the original training data, with 

no reconstruction. The first order training method is much quicker than the second order 

technique described below. Selection of the training design technique depends on the 

amount of time and computer resources available for training. 

Second Order Implementation 

In this case, we decomposed and reconstructed every image in the training set with 

every iteration of the QMF design. This allowed us to construct both a new m and B 

term with each iteration. Again, our first design objective was to achieve the highest 

recognition performance, Pc, and secondly to produce the largest PSNR possible for that 
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Pc value. Hence, the fourth constant of Equation 4.23 was empirically determined to be 

29, rather than 17. 

Results 

Our joint optimization QMF design (with a first order implementation) produced the 

time domain plot of ho(n) shown in Figure 4.7, with a QMF filter length of 16. We 

exhibit the magnitude of the frequency response of this filter, Ho(z), in Figure 4.8. 

Comparing these plots with their baseline QMF counterparts (Figures 4.4 and 4.5) reveals 

a few differences between the baseline QMF and the jointly optimized QMF. The latter 

has a later and steeper rolloff, emphasizing more high frequencies, while attenuating the 

low frequencies earlier than the baseline QMF. This suggests that the jointly optimized 
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Figure 4.7 Jointly Optimized QMF Time Domain Response 
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Figure 4.8 Jointly Optimized QMF Frequency Response 

QMF tries to boost the capability of the recognition filter through intelligent frequency 

response. Observe also that the time domain response of the jointly optimized filter has 

magnified sidelobes. 

Discussion 

Finally, we should remark that if the system is given a fixed compression filter, the 

MACH filter can still be designed with the given subband reconstruction, although this is 

a non-iterative procedure. Likewise, a QMF can also be designed around a fixed MACH 

filter, which would use an iterative technique. 

4.4 Compression System Design 

A standard compression system is shown in Figure 2.3. In this section, we discuss the 

design of our quantizer and encoder for a simple compression scheme. In summary, we 
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use a uniform step size to scalar quantize the subband coefficients, and then assume the 

data will be transmitted by an entropy coder with variable length codes and a finite length 

codebook. 

Throughout all of our experiments, quantization is applied only to the test data. The 

training phase utilizes reconstructed but unquantized image data. Prior to quantization, 

we optimally allocate the bits among the subbands with the well known expression to 

minimize distortion [Say96, SN96] by using the method of Lagrange. For a 

decomposition with M equal subbands, the number of bits allocated to the kIll subband is 

given by 

? 

J (j~ 
Rk = R + ? log2 M - 1 I 

- IT ((j ~1 ') 
k =J 

( 4.24 ) 

where R is the average number of bits per pixel to be used in the reconstructed image 

(a.k.a. the target bit rate), and cr,. is the variance of the coefficients in the kIll subband . 
• 1 

Because we assume variable length codewords, Rk can be a fractional value. Also, 

because our design is based on the set of training images, we use the maximum variance 

of each subband over the entire set of training images to define Rk• 

We also assume that the encoder uses a finite length codebook so that the code words 

can be stored apriori, i.e., transmission of codewords is not necessary. Thus, we define 

the number of quantization bins for each subband to be constant. Our design is based on 

the set of training images. That is, we construct an average probability distribution 

function for each subband from the training set of images to determine the minimum 

quantization step size possible for the bit allocation Rk. 
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Because we assume an entropy coder, we use entropy to determine the quantization 

step size. Entropy is computed by using the average probability distribution with the 

following equation [Sha48] 

N 

H = -L P, log} P, ( 4.25 ) 
1= 1 

where N is the number of bins in the probability distribution. The probability distribution 

is quantized by a uniform quantization step size, ~q . We begin with a very small 

quantization step size, ~q , which is incremented until Hk is less than or equal to the 

specified Rk . 

The test images are then scalar quantized according to Equation 4.26, which holds for 

positive or negative coefficient values. 

q = {L\ md( ;, + 05 )}- {sgn(x ) ~" } ( 4.26 ) 

In a operative system, each quantized value would be transmitted as a single codeword. 

Again, the code book would be stored apriori at both the encoder and decoder, and we 

assume a finite length codebook. If the training set is representative of the test images, 

then the number of quantization bins resulting from any test image should not exceed the 

number of codewords stored at the decoder. This was the case in all of our experiments. 

In practice, accommodations would have to be made for images which are exceptions. 

Note that we did not actually construct a codebook for the experiments conducted in 

this thesis investigation. Once the quantization of the test images was complete, we 

computed the average entropy (Equation 4.25) over the entire test set. The actual bit rate 

never met the target bit rate exactly. 
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4.5 Performance 

Finally, we are able to evaluate the system performance of the PRSC. The design 

techniques described in this chapter form the filters used in the PRSC of Chapter 3. In 

the first set of experiments we compare the performance of the PRSC to the results 

achieved with uncompressed image data (Section 2.6.1). Assessment of the PRSC is 

done with the baseline QMF and MACH filter, as well as the jointly optimized filter pair. 

Quantization is not applied to the subband coefficients during this first set of 

experiments. 

The second set of experiments then characterizes the PRSC performance over 

increased quantization (i.e., decreasing bit rate). Both sets of experiments followed the 

conventions outlined in Section 2.5, but we review a few points here. 

1) We use the training and test sets defined in Section 2.5.1. 

2) We train with unquantized reconstructed image data. 

3) We assume the images are preprocessed according to Section 2.5.2 prIor to 

compression. 

Parameter Settings 

We use the following parameter settings for all experiments in this chapter: 

• MACH filter design: a = 0.2, f3 = 0.8, Y= 0.05 (Equation 2.6) 

• Baseline QMF design: Nt = 16, where Nj is the filter length (Equation 4.17) 

• Recognition optimized QMF design: Nt = 16 (Equation 4.23) 

• MACH filter operation: psr_thresh = 5 (Equation 2.8 and Section 2.5.3) 



89 

4.5.1 Joint Optimization Effects 

We compare the recognition performance of four distinct systems in the first set of 

experiments. 

Table 4.1 System Specifications for PRSC System Performance Evaluation 

Input MACH 
Test Design MACH 
Data Data QMF Desi n 

System for original original not standard 

Uncompressed Data applicab le 

PRSC - Baseline subband reconstructed baseline standard 

QMFIMACH transformed 

PRSC - First Order subband jointly jointly 

Jointly Optimized transformed reconstructed optimized optimized 

QMF/MACH wi MACH w/QMF 

PRSC - Second Order subband jointly jointly 

Jointly Optimized transformed reconstructed optimized optimized 

QMF/MACH wi MACH w/QMF 

We compare the above systems for the following purposes. 

• "Can the baseline PRSC (which uses a transformed image) perform object 

recognition as well as using a correlation filter on the original image?" 

• "What effect does joint optimization of the QMF and MACH filters have on the 

performance of the PRSC, in terms of both compression and recognition?" 

System Performance 

A summary of the system performance metrics is shown below. Table 4.2 reports the 

object recognition measures Pc, Pe, and Pr, as well as the reconstruction metrics PSNR 

and MSE. Definitions of these measures appear in Section 2.5.4. 
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Table 4.2 PRSC Performance Evaluation 
We show both object recognition and reconstruction metrics for the four systems 
outlined in Table 4.1. The PSNR and MSE were observed from one of the BMP 
test images. 

Recognition Metrics 

System for 
Uncompressed Data 

PRSC - Baseline 
QMFIMACH 

PRSC - First Order 
Jointly Optimized 

QMF/MACH 

PRSC - Second 
Order 

Jointly Optimized 
QMF/MACH 

Pc 

96.2% 

96.2% 

100% 

]00% 

Two observations are in order: 

Pe Pr 

3.8% 0% 

3.8% 0% 

0% 0% 

0% 0% 

Reconstruction Metrics 
PSNR MSE 

not not 
applicable applicable 

105 db 2x 10.6 

43.4 db 2.97 

46.5 db 1.46 

• The baseline PRSC system does as well as the one operating on the original (j.e., 

uncompressed) image data. 

• Jointly optimizing the QMF and MACH filters improves the recognition performance 

of the PRSC, although it reduces the reconstruction veracity of the compression 

transform. 

Correlation Performance 

In Chapter 3, we stated two output characteristics of the baseline PRSC (i.e., without 

joint optimization of the QMF and MACH filters). 

• It yields the identical response as correlation on the reconstructed image data. 

• It is equivalent to the correlation response achieved by operating on the original 

image, limited only by the veracity of the subband transform. 
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To assess this claim, we examme the output correlation surfaces from the three 

appropriate systems. 

Table 4.3 System Specifications for PRSC Correlation Surface Evaluation 

System for 
Uncompressed Data 

Baseline 
Compression System 

PRSC - Baseline 
QMF/MACH 

(a) 
Original Image 

Correlation Output 

Input MACH 
Test Design 
Data Data 

original original 

reconstructed reconstructed 

subband reconstructed 
transformed 

(b) 
Reconstructed Image 
Correlation Output 

MACH 
QMF Desi n 

not standard 
applicable 

baseline standard 

baseline standard 

(c) 
PRSC 

Correlation Output 

Figure 4.9 Comparison of the PRSC Correlation Output 
In (a) we see the output of the System for Uncompressed Data, (b) the output of 
the Baseline Compression System, and in (c) the output of the baseline PRSC. 

Visually, they all look very similar. For a better evaluation, we provide the MSE 

between the different correlation output surfaces. 



92 

Table 4.4 Correlation Output MSE 
The correlation output from the baseline PRSC and the baseline compression 
system are identical, while the MSE between the baseline PRSC output and the 
original image correlation output is negligible. The latter value is less than the 
MSE of an image reconstructed with the baseline QMF, which is what the 
baseline PRSC uses as its subband transform. 

MSE between the 
PRSC and uncompressed output 
MSE between the output of the 

PRSC and the baseline com ression 

Table 4.4 verifies that our above claim is correct: 

6x 10-7 

o 

• the PRSC is equivalent to operating on the reconstructed image, and 

• its output is identical to that attained from the original image, limited only by the 

precision of the subband transform. 

Finally, we examine the improvement that joint optimization makes on the 

Lagrangian values (1 of Equation 4.21) of the MACH filter for each object class. The 

Lagrangian is measured with the training data. 

Table 4.5 Lagrangian Values for each System 
The jointly optimized systems yield much higher Lagrangians, as would be 
expected from the improved recognition performance of Table 4.2. 

PRSC - Baseline 
QMFIMACH 

PRSC - First Order 
Jointly Optimized 

QMF/MACH 

PRSC - Second Order 
Jointly Optimized 

QMF/MACH 

Lagrangian Values 
BMP BTR T72 

279 324 316 

401 441 445 

401 441 445 
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The jointly optimized systems provide significantly increased Lagrangian values for each 

object class, resulting in the improved performance seen in Table 4.2. Notice that using 

the second order technique of performing the joint optimization does not improve the 

Lagrangian values. 

Discussion 

The main goal of our compression recognition system is for content manipulation, not 

content visualization. Therefore, while we are interested in high compression rates, we 

are more concerned with tuning the compression model for object recognition rather than 

for visualization by a human observer. Accordingly, we are willing to sacrifice perfect 

reconstruction for recognition, as happens with the joint optimization of the filters. 

Moreover, the reconstruction of the image data is still quite good as exemplified in Figure 

4.10. 

(a) 
Original Image 

(b) 
Reconstructed Image 

Figure 4.10 Image Reconstruction with our Jointly Optimized QMF 
The original image is shown in (a) while (b) exhibits the reconstructed version. 
The reconstructed image has a PSNR of 26.4 and an MSE of 149. 
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Finally, although the second order joint optimization design does slightly better, we 

selected the first order implementation for our next set of experiments. Selection of the 

training design technique depends on the amount of time and computer resources 

available for training. The first order technique is much quicker to implement. 

Conclusions 

We relate the main points found in this set of experiments here, to parallel the initial 

questions. 

• "The baseline PRSC (which uses transformed data) performs object recognition as 

well as using a correlation filter on the original image." 

• "Jointly optimizing the QMF and MACH filters improves the recognition 

performance of the PRSC beyond that of correlation on the original image, while 

reducing the faithfulness of its reconstruction ability." 

Jointly optimizing the compression and recognition filters improves recognition 

performance via the following two 'simultaneous' mechanisms. 

• It prompts the subband filter to attenuate frequencies which do not aid discrimination, 

while emphasizing frequencies that do. 

• It allows the MACH filter to adapt to the frequencies present in the subbands. 

Finally, we note that the second order (and slower) technique of implementing the joint 

optimization design does not improve the recognition performance of the PRSC, but does 

meliorate its reconstruction metrics. 

4.5.2 Quantization Effects 

In this set of experiments, we characterize the performance of the PRSC over 

increased quantization (i.e., decreasing bit rate). That is, "How will compression degrade 
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the recognition performance of the P RSC?" Section 4.4 describes the quantizer design 

used in these experiments. 

Results 

The following data summarizes the performance results of the PRSC with the joint 

optimization technique (as a first order implementation) in place. We express the object 

recognition measures Pc, Pe, and Pr as a function of bit rate, in Figure 4.11 , 4.12, and 

4.13, respectively. In Figure 4.11, we augment the PRSC performance with results from 

the baseline compression recognition system (full image reconstruction prior to 

correlation) for comparison, as well as the performance of a correlation system operating 

on the original (uncompressed) data. The latter is shown with only one data point, at 

eight bpp. Reduced bit rates are not applicable to the uncompressed data. 
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In this experiment, we used the jointly optimized QMF and MACH filter with the 

PRSC, whereas the baseline compression recognition system possessed the baseline 

QMF. In this case, the QMF and MACH filter were designed independently, with the 

MACH filter designed with the reconstructed but unquantized training data. The 

reconstruction metrics PSNR and MSE for the jointly optimized QMF are also on display 

in Figure 4.14 and 4.15, respectively. For completion, Table 4.6 gathers all of the results 

from Figures 4.11 - 4.15. 

Observe that the Rate Error curve of Figure 4.12 resembles a Rate Distortion curve, 

while all three curves in Figures 4.11 - 4.13 possess similar characteristics. That is, they 

maintain good performance down to very low bit rates and then drop off quickly. We see 

a slight drop off in performance at 1.33 bpp, while a more significant drop off occurs at 

0.28 bpp. The recognition performance curves (Pc, Pe, and Pr) allow tuning between the 

two ends of compression and recognition. An operating point can be selected depending 

on the application. The reconstruction metrics PSNR and MSE were computed from one 

of the BMP test images and are exhibited for the jointly optimized QMF in the above 

figures. 

Discussion 

Three primary observations are in order. First, the PRSC does very well. In fact, it 

always performs better than the baseline system, and with one-fourth of the information, 

the PRSC performs better than correlation on the original image data. This is primarily 

due to the joint optimization of the compression and recognition filters. The joint 

optimization tunes the MACH filter over all the frequency bands present in the subband 

coder, and vice-versa, it adapts the subband information in the best interests of the 
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Figure 4.14 Peak Signal to Noise Ratio vs. Bit Rate 
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Figure 4.15 Reconstructed Image MSE vs. Bit Rate 
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Table 4 .6 PRSC Results as a Function of Bit Rate 

Compression Rate Recognition Metrics Reconstruction Metrics 
Target Rate Actual Rate Pc Pe Pr PSNR MSE 

8 bpp 7.96 bpp 100% 0% 0% 43.4 db 2.97 

6 bpp 5.94 bpp 100% 0% 0% 43.4 db 2.97 

4 bpp 3.98 bpp 100% 0% 0% 43.3 db 2.97 

2 bpp 1.87 bpp 100% 0% 0% 43.3 db 2.97 

1 bpp 1.33 bpp 98.7% 1.3% 0% 43.3 db 2.97 

0.5 bpp 0.28 bpp 72.2% 27.8% 0% 30.8 db 54.3 

0.25 bpp 0.07 bpp 51.9% 48.1 % 0% 30.4 db 59.9 

MACH filter. 

Second, we note that these results are not quite as good as in [WM99] which report 

recognition performance of over 90% for compression ratios up to 200: 1, as shown in 

Table 2.1. In this previous work, they fully reconstruct the image from a quantized 

subband decomposition, and perform recognition on the full resolution (albeit 

reconstructed) image. The most obvious reason for our reduced performance is due to 

the simplicity of our encoding scheme. 

At low bit rates, our encoding scheme begins to drop subbands. That is, at low bit 

rates, the quantizer does not have enough bits to effectively code all of the subbands on 

all levels. Hence, some of them are encoded with zero bits (effectively 'dropping' these 

subbands) . The table below displays the bit rates which require empty subbands. As a 

result, the correlation output of the PRSC contains aliasing at compression ratios below 

6:1 (corresponding with bit rates below 1.33 bpp). The aliasing in the correlation surface 

prohibits successful recognition. 
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Table 4.7 Subbands Dropped at Low Bit Rates 

Actual Rate 

1.01 bpp 

0.28 bpp 

0.07 bpp 

Subbands Dro ed 

on level I: HL, LH, HH 

on level I : HL, LH, HH 
on level 2: HH 
on level 3: HH 

on level I: HL, LH, HH 
on level 2: HL, LH, HH 

on level 3: HH 

In [WM99], they employ a gainful coding technique, the Embedded Zero tree Wavelet 

coder (EZW) [Sha93], which helps them achieve such success. In a nutshell, the EZW 

coder progressively transmits the subband coefficients in order of their magnitude 

regardless of their subband affiliation. The EZW is well known to produce some of the 

best compression rates currently available for image data. 

By employing a superior encoding technique the PRSC could improve its already 

successful performance. It is really a matter of the MSE at the output. Notice that the 

reconstruction MSE increases from 9.6 to 39.4 between the two and one bpp rate in 

Figure 4.15 . A better encoding technique could certainly decrease this MSE for even 

high compression ratios (low bit rates) . 

Lastly, we must remark on the training data. These experiments used the 

reconstructed images as training data, and the reconstruction was 'lossless ' in that it had 

no quantization. The test data, however, was quantized. Performance should improve by 

training on the quantized image data. This remains an avenue for future study. 

Conclusions 

We review the effects of quantization on PRSC performance below. 
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• For compression ratios as high as 6: 1, the PRSC achieves recognition performance 

superior to that of correlation on the original image. 

• Over all compression ratios, the PRSC performs equally or better than the baseline 

compression recognition system. 

• All of the recognition performance curves (Pc, Pe, and Pr) allow a user to select an 

operating point and tune the system between the two opposing ends of compression 

rate and recognition accuracy. 

• The PRSC would perform more successfully at higher compression ratios with a more 

sophisticated encoding scheme like the EZW coder. 

• The PRSC may also perform more successfully if the training data was quantized at 

the same rate as the test data. 

4.6 Future Extensions 

We briefly touch on two possible areas of improvement in the future. The first 

suggestion involves the optimization of the MACH filter. We discuss the joint 

optimization of the QMF and MACH filter in Section 4.3. In the current implementation, 

we maximize the Lagrangian of the filter for the object class under consideration, i.e. the 

in-class Lagrangian. It may further improve performance to minimize an out-of-c1ass 

Lagrangian term; such a term would be included in the equation for joint optimization, 

Equation 4.23. 

Secondly, note that our current training methodology uses reconstructed, but 

unquantized data. By including quantization in the training loop, the system could 

achieve optimal quantization parameters, for an 'ultimate' optimization. 
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4.7 Summary 

In the past, image compression and object recognition have been treated as separate 

problems. For our purpose, we have shown that it is better to jointly optimizing the 

performance of the two systems, rather than optimize each component individually. The 

main purpose of our compression recognition system is for automated object recognition, 

not human visualization. Therefore, we are interested primarily in recognition accuracy 

at high compression rates, and secondarily, in the reconstruction fidelity of the 

compression transform. 

To facilitate the design of our compression filter, we introduce a matrix formulation 

of a multiple level subband transform in the time domain. The inner product of this 

matrix embodies all the requirements of a perfect reconstruction QMF design. We then 

augment this design to jointly optimize the performance of the QMF and MACH filters. 

This joint design provokes the QMF to adjust the subband frequency content to aid object 

discrimination, while simultaneously, it allows the MACH filter to adapt to the 

frequencies present in the subbands. 

The systems investigated in this chapter enjoy the following characteristics, which in 

turn respond to three of the questions extended at the outset of the thesis. 

• The baseline PRSC uses a transformed image to perform object recognition at rates 

equal to that achieved with a correlation filter on the original image. 

• JointLy optimizing the QMF and MACH filters provides the PRSC with recognition 

accuracy superior to that of correlation on the original image, for compression ratios 

as high as 6:1. 
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• Moreover, joint optimization of the QMF and MACH filters provides the PRSC with 

recognition accuracy equal to or better than that with their separate implementation 

at all bit rates. 

• The rate recognition curves provided by the PRSC allow a user to select an operating 

point and tune the system between the two opposing objectives of compression rate 

and recognition accuracy. 

• At compression ratios higher than 6: 1, the PRSC can perform more successfully than 

shown in this investigation by using a more sophisticated encoding scheme like the 

EZW coder. 
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Chapter 5 

Subband Domain Correlation Filters 

To complement the Pattern Recognition Subband Coder, we introduce Subband 

Domain Correlation Filters (SDCFs) as a second and sister solution to the problem of 

object recognition in compressed imagery. As we show in Chapters 3 and 4, the PRSC 

provides suitable full resolution object recognition from compressed data, but does not 

conveniently benefit multiresolution analysis . When working with compressed images, 

however, the objective is often to do a fast cursory search across the data, even if that 

entails a reduction in accuracy. Therefore, this chapter addresses the parallel questions, 

"Can we perform object recognition at lower resolutions with reasonable accuracy?" and 

"How does the accuracy degrade with decreasing bit rate ?" The approach manifested in 

SDCFs is twofold: 1) We perform both the training and operating phases of object 

recognition directly in the subband coefficient domain, and 2) We combine the multiple 

subband responses with Polynomial Correlation Filters (PCFs), a powerful architecture 

introduced by Mahalanobis and Vijaya Kumar [MVK97a] for fusing multiple inputs into 

a single correlation output. 



105 

We present the concept of coefficient domain processing in Section 5.1. In addition, 

this first section discusses the downsampling issue inherent in coefficient domain 

processing and suggests two methods to mitigate the effect. Section 5.2 then reviews 

PCF theory and introduces its function in the fusion of subband information. Next, we 

examine the two methods proposed in Section 5.1: a training technique and a QMF 

design technique, in Sections 5.3 and 5.4, respectively. Section 5.5 reports the 

performance of the SDCF system along with the effects of decreasing bit rates. EqualJy 

important is the computational complexity of the SDCFs, which we review in Section 

5.6. For future modifications, Section 5.7 proposes possible extensions to the SDCF 

algorithm presented here. Finally, Section 5.8 concludes the chapter with a review of the 

SDCF algorithm, its performance, benefits, and limitations. 

5.1 Coefficient Domain Processing 

Performing a quick search of images in the compressed space suggests that we exploit 

the multiple resolutions available in a subband decomposition. Toward this end, we 

pursue the intuitive idea of synthesizing a correlation MACH filter from each of the 

individual subbands in a subband decomposition, and then processing each subband with 

its corresponding filter to achieve a pattern match for object classification. We call this 

approach coefficient domain processing. Aside from the issue of fusing the multiple 

outputs, a larger issue impacts this approach: variations in the subband patterns due to 

the downsampling properties of subband coders. Coefficient domain processing contrasts 

with the image domain processing technique used in the Pattern Recognition Subband 

Coder of Chapters 3 and 4. 
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5.1.1 Downsampling Effects 

Subband coders downs ample by two between levels of decomposition, as discussed in 

Section 2.4. This operation produces different subband responses to single pixel shifted 

copies of the original input image. Herein lies the crux of the issue. For example, 

assume an object at some reference point in the original image has produced a one level 

subband decomposition. (We call this the reference decomposition.) Shifting the 

original image by one pixel in any direction will result in a similar yet distinctly different 

pattern in a second subband decomposition. This is because after applying the lowpass 

and highpass filters to the original image, only every other pixel remains in the image 

representation at level one. The issue is more of a problem on the upper subbands 

because of the high frequency nature of the data, however, it is still present in the LL 

subband (defined on p. 28). We illustrate the issue for the LL subband in Figure 5.1. 

Now from the reference point, a two pixel shift of the original image in any direction 

will produce the exact same decomposition pattern (ignoring boundary effects) at level 

one as the reference decomposition. However, the output will be translated by one pixel. 

This type of displacement is not an issue for correlation filters. As noted in Section 2.3, 

they are well suited for translations of the pattern they are trying to match. Correlation 

filters are well known their shift invariant properties [VKMJOO]. They are not, however, 

downsampling invariant, nor are they very downsampling tolerant. 

Furthermore, the downsampling issues are present and multiply on every level of the 

decomposition. Although the first level has only four possible patterns, the second level 

will produce four variations of each of them. Recursive downsampling leads to a tetradic 

tree of pattern variations. 
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l _________ 1 

Shifting Tree 

LLa 

Figure 5.1 Downsampling Effect on the LL Subband Patterns at Level One 
The subband downsampling process is not shift invariant. We illustrate the issue 
for the LL subband only, although the upper band coefficients are most affected. 
Note that the four LL images shown are not simply shifted versions of each 
other. Rather, they result from shifts of the original image. On close inspection, 
one can see that the LL subband of each branch exhibits a different pattern. 
Furthermore, the problem explodes at the lower decomposition levels, as each 
shifted version on level n spawns four shift variations on level n-I. 

Moreover, when processed with identical correlation filters , similar yet distinctly 

different patterns produce dissimilar correlation surfaces. The existence of differing 

patterns for the same object consequently undermines the performance of the object 

recognizer. 
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5.1.2 Providing Downsampling Tolerance 

To mitigate the downsampling effects of a subband coder, we propose two 

complementary solutions. The first requires synthesizing the correlation filters over 

multiple shifts of the training data. The second modifies the QMF properties to account 

for correlation between neighboring pixels in the training data. We designed the two 

solutions to work in concert with one another; the first was developed with the highpass 

information in mind, while the second was constructed primarily for the lowpass 

information. SDCFs may use these two solutions separately or together to substantiate 

downsampling tolerance. 

5.2 Subband Fusion with Polynomial Correlation Filters 

While many of the fusion techniques residing in the information processing literature 

may be applicable, we selected PCFs because they are a direct extension of standard 

correlation filters. A detailed description of PCFs is given in [MVK97a], where it was 

first suggested to use PCFs with a multiresolution data. PCFs embody a multiple input 

single output system. Given multiple inputs, a PCF system calls for a like number of 

correlation filters, each corresponding to one input. Yet, the system produces a single 

integrated correlation surface output. 

In our application, the number of inputs is equal to the number of subbands in the 

pyramid decomposition. The architecture diagrammed below illustrates our use of PCFs 

with a one level sub band decomposition. Maintaining a simple approach for the proof of 

principle availed in this thesis, we incorporate only the subbands from a single level in 

our experiments. In future work, however, a system may integrate any subset of a 

subband decomposition, as discussed in Section 5.7. 
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,----------, , , , , , 

Levell Subband Decomposition 

Correlation Filters 

Figure 5.2 Subband Domain Correlation Filter Architecture 
The peF provides a way to simultaneously correlate all subbands. Each subband 
takes its own input channel, and thus its own polynomial correlation filter. We 
use an analogous structure for each level of the subband decomposition. 

Mathematically the output of a general peF is expressed as 

I' 

y(m,n)= ~>p(m , n)®xp(m , n) 
p= 1 

( 5.1 ) 

where P is the number of input channels, xp(m,n) is the data present at the input of each 

channel and cp(m,n) is the filter function for each channel. These filters are fommlated to 

jointly maximize the peak value of y(m,n) while minimizing the effects of distortions and 

noise. Equation 5.1 gives the appearance that peF theory augments standard correlation 

by only a simple summation. The real power behind peF theory, however, lies in the 

simultaneous optimization of the filters for multiple channels. We now provide a brief 

review of the peF theory and the solution for the multichannel filters. As in Section 2.3, 

all variables can be written in the frequency domain. In that case, C/k,l) = g{c/m,n)}, 

X/k,l) = g{x/m,n)}. gf} and g-If} represent the forward and inverse discrete 

Fourier Transform operation, respectively. 
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For a set of N training images, the average training image for the pili channel IS 

defined by 

1 N 
M (k,l)=-'" Xi(k,l) 

I' Nf::. I' 
( 5.2 ) 

where X;(k,l) represents the /" training image of the pili input channel. We define the 

f h .. + h III d Ih· h 1 cross-power spectrum 0 t e trammg set lor t e p an q mput c anne s as 

1 N * 
D (k,l)=-'" Xi(k,l)·X i (k,l) 

I'lf Nf::.l' If 
( 5.3 ) 

and a spectral variance term as 

( 5.4 ) 

Using these quantities, we define the cross-channel spectral statistics, 

( 5.5 ) 

The term f.1'1'CJ in Equation 5.5 is simply the mean value of the spectral variance term, Splf' 

As in Equation 2.6, the constants ex, ~, and 'Yare used for optimally trading between 

distortion tolerance, noise tolerance and correlation energy minimization. Central to the 

strength of PCF theory is the fact that each filter is a conglomerate influenced by the 

spectral content of all the input channels. Specifically, each filter is influenced by the 

power spectral density of its own inputs as well as the cross-spectral density between its 

input channel and all the others. The term Bpq(k,l) of Equation 5.5 is the collective 

spectral terms used in the derivation of the MACH filter (Equation 2.3 - 2.6), with 

modifications made to reflect multiple input channels. Consequently, the PCF filter 

solution analytically optimizes the same performance criterion as the MACH filter, but 

with respect to the cross-channel statistics. 
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Using matrix vector notation, we denote the cross-spectral statistics in Equation 5.5 

by a block diagonal matrix Bl'q' Further let ml' be the mean image of the pIli channel also 

expressed as a vector. The two channel PCF solution is then given by 

( 5.6 ) 

where cp is the optimum correlation filter vector for the pIli input channel. Thus the PCF 

amalgamates information from all input channels to obtain the best set of correlation 

filters that simultaneously process all inputs and combine them into a single result. 

Essential to the filter synthesis is that the system estimate the mp and Bpq terms over a 

large number of inputs representative of the objects under study (i.e., a training set). 

Certainly, Equation 5.2 is easily extendable to N inputs channels. Detailed information 

regarding the solution to the inverse of the generalized form of the matrix in Equation 5.6 

is provided in [MVK97a]. 

5.3 Incorporating Downsampling Tolerance through Training 

As elucidated in Section 5.1.1, single pixel variations in the placement of the original 

image produce differing subband images (excluding edge effects). The algorithm 

described here frames the following question, "Is it possible for a correlation filter to 

accommodate these variations by training over multiple shifts of each training image?" 

Partial Tetradic Tree - Our Method 

In reference to a one level decomposition, the training algorithm we use incorporates 

each input image four times: once in its original state, once after the image undergoes a 

single pixel shift up, again after we translate the image by one pixel to the left, and yet 

again after we shift the image up and to the left one pixel in each direction. We utilize a 
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circular shift technique so that the first column of x(m,n) becomes the last column of the 

shifted image. Figure 5.3 depicts such a procedure. 

We then employ this procedure at each level. That is, at level two, the LL subband 

from level one acts as the input image; it is shifted the requisite number of times, and the 

four subband images on level two make up the PCF channel inputs. All experiments in 

this thesis employ the training tree structure of Figure 5.3. Section 5.5 reports the 

performance results achieved by this methodology. 

Full Tetradic Tree 

The above procedure is but a subset of the set of shifts necessary to cover all the 

downsampling variations. To cover all possibilities, level two would have to incorporate 

four shifts for each of the four shifts in level one, and so on at each level, spawning a 

tetradic tree of training images, as diagrammed in Figure 5.4. 

Minimal Tetradic Tree 

Although downsampling induced variations are more apparent in the upper subbands 

due to their high frequency content, they still exist in the LL subband. Because the 

sub band changes are slight in the LL subband, however, it may be possible to eliminate 

the training tree structure and shift only the three upper subbands on each level during the 

training phase. This would greatly simplify and hasten the training process. If this idea 

is successful, then the HL subband should only have to be shifted horizontally, the LH 

subband vertically, while the HH subband would still need a shift both horizontally, 

vertically, and diagonally. That is, the shifts required for training may only be necessary 

in the direction of the highpass filtering operation, as shown in Figure 5.5. Note that the 

training tree structure has become linear. 
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Figure 5.5 Minimal Tetradic Training Tree for Training over Image Shifts 
Only the LL subband of the original placement spawns four shifting branches. 
Also, only one shift required by LL, two by HL and LH, and four by HH, as 
shown in bold. Results in N, 2N, 2N, and 4N training images, respectively. 
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To reduce the downsampling variations within the LL subband, we consider a 

modification of our baseline QMF. The new QMF is primarily intended to benefit the 

low frequencies, whereas the training methodology introduced above is most effective 

over the high frequency paths. Together they provide a complete solution. 

5.4 Incorporating Downsampling Tolerance through QMF 
Design 

To avoid an exploding tree structure for training, we propose to modify the QMF 

bank of the subband coder as a second and complementary method of instilling 

downsampling tolerance in the system. If the LL subband response is sufficiently robust, 

the tree used for shift training becomes linear, as discussed in Section 5.3. This idea 

gives rise to the following question, "Can we tune the QMF used for image compression 

to compensate for the downsampling within the subband coder?" 

By its very nature, the QMF compacts the energy in the upper subbands, forming a 

sparse representation. Coupled with downsampling between levels this sparseness 

impairs object recognition, as detailed in Section 5.1. In contrast, if one could stabilize 

the QMF response between adjacent coefficients, then the system could better tolerate the 

downsampling effects. With this objective in mind, we added another term, the 

downsampling tolerance criterion, to the standard QMF design (Equation 4.17). The 

QMF and our approach to its design is discussed in detail in Section 4.2. 

Too much dispersion, however, counteracts the compression capability of the 

subband coder. Energy compaction is particularly critical in the upper subbands. 

Therefore, we tune the system to compensate for downsampling over only the low 

frequency channels of the subband decomposition. Even with this limitation, 
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compression can be compromised. Thus, to provide balance, the downsampling tolerance 

constraint is a composite of two terms: a shift sensitivity term and an energy compaction 

term. 

5.4.1 Equivocating the QMF Response to Input Shifts 

Physically, the shift sensitivity term refers to the difference of the QMF response to 

an image and its single pixel diagonally shifted copy. We need to make the two 

responses as similar as possible to compensate for the downsampling of the subband 

coder in both directions (vertical and horizontal). Let hh(m, n) and hv(m, n) (or 

equivalently hh and hv in vector notation) represent the subband (QMF) filters used in the 

horizontal and vertical directions, respectively. The subband response to an image, x(m, 

n), (prior to downsampling) is then given by 

y(m,n )= h" (m ,n)* x(m,n )* h,.(m ,n ) ( 5.7 ) 

Thus, we need to minimize the amplitude of the difference between the response, y(m, n), 

and its shifted counterpart, i.e., 

,1 = E~(m,n)- y(m-l,n-l)} 

= Ef,,(m,n}~ [x(m ,n )- x(m -1,n -1)]* h,.(m ,n )] 
( 5.8 ) 

Here E{} refers to the expectation operation. It may also behoove the system to 

minimize the energy of the filtered difference image, i.e., 

,12 = E{ly(m, n)- y(m - L n -1 r J ( 5.9 ) 

Also, we utilize a circular shift technique so that the first column of x(iJ) becomes the 

last column of the shifted image. 

We now define the autocorrelation matrix. 
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( 5.10 ) 

Some clarifications are 10 order regarding the assumptions made in estimating the 

autocorrelation matrix. The matrix Rx has Toeplitz structure and is obtained by 

windowing the autocorrelation function of x(m, 11.) to the same length as the subband 

filters. We further assume that the rows and columns have separable and independent 

autocorrelation functions so that Rr can be estimated along each dimension separately 

and averaged. Admittedly, there are several alternatives to modeling Rx; we use the 

stated model for the sake of simplicity. It follows that the autocorrelation matrix of the 

difference image, 

d(m,n)= x(m,n)-x(m-l,n-1) V (m,n) ( 5.11 ) 

is given by 

( 5.12 ) 

It can easily be shown that the matrix Rd is the difference of Rx and its diagonally shifted 

version (i.e., all matrix elements moved down by one row and to the right by one 

column). Now, by rewriting Equation 5.8, the sum of the amplitudes of the pixels in the 

filtered difference image is given by 

( 5.13 ) 

We can now define the shift sensitivity measure in the LL subband as a filtering 

operation. The LL subband requires a lowpass filter in both directions. 

(5.14 ) 
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In effect, the shift sensitivity term, CP, is a scalar measure of the difference between two 

lowpass QMF responses: I) the QMF response elicited from an original image and 2) 

that resulting from a single pixel diagonally shifted version of the image. 

In addition, we are interested in measuring a unidirectional shift sensitivity on the LH 

and HL subbands. Recall that the LH and HL subband require lowpass filtering in one 

direction and highpass in the other. Hence, the equation for cP given below incorporates 

the effective response for the HL and LH subbands along with the LL response. 

( 5.15 ) 

Although we attempt to constrain the shifted response of the QMF along only the low 

frequency paths of the subband decomposition, the resulting QMF still loses some of its 

energy compaction. Therefore, we balance the shift sensitivity term with an energy 

compaction term. Together they form the downsampling tolerance constraint. 

5.4.2 Energy Compaction 

Variance of a subband distribution is one measure of its energy compaction, or 

compression capability. Smaller variance corresponds with more compression. We seek 

to provide a similar measure for our energy compaction term. 

We define the energy compaction measure as a derivative of only the HH subband by 

performing a high pass filtering operation in both directions on the autocorrelation matrix 

of a training image. The particulars of the autocorrelation matrix, Rr, are discussed after 

its definition in Equation 5.10. 

(5.16 ) 
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Thus, the energy compaction term, e, is a scalar measure of the variance in the HH 

subband resulting from the training image. Its purpose is to counterbalance the shift 

sensitivity term and ensure that the QMF bank maintains powerful compression 

performance. 

5.4.3 A Shift Tolerant QMF Solution 

Recall the baseline QMF design in Equation 4.17. To achieve a shift tolerant 

solution, we add a fourth term to Equation 4.17, which we call the downsampling 

tolerance criterion, Eds. 

E dS = A<P + (1- A)e (5.17) 

Together the error shift term, <P, and the energy compaction term, e, form the 

downsampling tolerance constraint, where A is a parameter meant to balance the two 

opposing functions. Thus, the full-fledged optimization equation for a shift tolerant QMF 

design follows from Equation 4.17 as below. We scale the downsampling tolerance 

constraint by 0.2 so as not to overshadow the important QMF properties. 

C 5.18) 

f ~ ~[(TTT)J + (hiho -I) +( %ho(n)-~ J 
C 5.19 ) 

+ 0.2 [Ah~R d (hO +hl)+(l- A)h~Rr h,] 

where hJCn) = C-l)"ho(n) as given in Equation 4.11, T is derived from hoCn) as explained 

in Section 4.1, and the autocorrelation matrices Rr and Rd are defined above in Equations 

5.10 and 5.12. Again, as in the design of the standard QMF, we use numerical 

optimization to find the coefficients of hoCn) that minimize the function f Note that the 

R matrices are computed a priori and remain unchanged during the iterative optimization; 
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A. is also a constant parameter. The T matrix and highpass filter h,(n), however, derive 

from the lowpass filter, ho(n) , and thus are computed at every iteration. The image we 

use to compute the R matrices is one of the preprocessed BMP training images, which is 

exemplary of the image statistics of the entire data set. 

Shift Sensitivity versus Compression Trade-Offs 

It is worthwhile to study the effects of A.. First, we examine the compression power 

of the QMF analysis bank as a function of A.. As mentioned earlier, variance (or standard 

deviation) of a subband distribution is one measure of its compression capability. 

Accordingly, a ratio of the standard deviation of the LL subband to the standard deviation 

of the HH subband defines our metric of compression power. 

compreSSIOn power ( 5.20) 

We compute the compreSSIOn power empirically as a mean value over the set of 

preprocessed BMP training images, which are 30 in number. Figure 5.6 plots this metric 

against varying values of A.. 

As expected, the compression power of the QMF decreases as A. increases. More 

importantly, one can tune the system over only a small range of A. from about 0.5 to 0.8. 

We cannot increase the compression power beyond its point of saturation where A = 0.5; 

likewise it reaches a minimum when A. = 0.8 and cannot be reduced further. The 

compression power of our baseline QMF (derived from Equation 4.17) lies somewhere in 

the middle these two extremes. 

Next, we studied the trade-off between the shift sensitivity and energy compaction 

terms which comprise the downsampling tolerance constraint. We use Equation 5.20 
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above to reflect the effect of the energy compaction term. To measure the shift 

sensitivity achieved by the QMF, we compute the squared error between the LL subband 
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Figure 5.6 Shift Tolerant QMF Compression Power vs. Lambda 
We vary A and empirically calculate the mean compression power over a set of 
training images processed with each resulting QMF bank. Clearly, the smaller A 
is, the more the resulting QMF will compress the data, with saturation at both 
ends. The compression power of our baseline QMF falls in the middle of the 
small tuning range of lambda. 

resulting from a reference image and the LL subband resulting from its circularly shifted 

copy. 

shift sensitivity = (xiLL(m,n) x2LL(m,n»)" V m,n ( 5.21 ) 

where x2(m,n) = xJ(m-1,n-1) Vm,n 

and xhL(m,n) represents the LL subband in a decomposition of the Image xl(m,n); 

x2LL(m,n) is analogous. Again, we calculate the shift sensitivity as a mean value over the 

aforementioned set of imagery. Figure 5.7 plots our empirical metric of compression 



123 

power against our empirical metric of shift sensitivity for A from zero to one in steps of 

0.1. 
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Figure 5.7 Shift Tolerant QMF Compression Power vs. Shift Sensitivity 
We plot mean values empirically calculated over a set of training images 
processed with various QMF and wavelet filter banks . The points on the 
optimized QMF line reflect eleven values of A from zero to one in steps of 0.1. 
As we increase A to improve shift tolerance, we lose compression power. For 
reference, the plot also indicates the performance of various other QMFs and 
wavelets. 

Clearly, increasing A improves the shift tolerance of a QMF at the cost of 

compression power, while decreasing A works conversely. Using a A value less than 0.2 

allows our QMF design to achieve the same compression power as a sixteen tap 

Daubechies or Coiflets wavelet. Our baseline QMF (derived from Equation 4.17) lies 

close to the operating curve with shift tolerance approximating that achieved by the 

optimized QMF with A = 0.55. A different set of initial filter values, allows our baseline 

QMF design more shift tolerance. The second standard QMF denoted in Figure 5.7 also 
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uses Equation 4.17, but with a different initial setting of the ho(n) coefficients. In this 

case, we initialize ho(n) to the following values: flo (0: 7 -1 )= 110 (~ + 1 : N - 1)= 0, 

Again, the operating curve in Figure 5.7 illustrates the small tuning range of A. The 

question is, "Where to set A so as to provide sufficient shift tolerance for the recognition 

while not compromising compression power?" We selected a value of A = 0.7 because it 

provided significantly more shift tolerance than our baseline QMF without a large drop in 

reconstruction performance. 

Filter Optimization Results 

Table 5.1 reports the performance metrics achieved by the baseline QMF and our 

optimized QMF. For the remainder of this chapter, all results reported for the optimized 

QMF use A = 0.7. 

Table 5.1 Performance Metrics of the Baseline and Shift Tolerant QMF 
PSNR and MSE are reported from a three level decomposition of one of the 
preprocessed BMP training image. The filter has better performance when the 
Shift Tolerant Metric is smaller, but when the Compression Metric is larger. 

Shift 
Sensitivity Compression 

PSNR MSE Metric Metric 

Baseline QMF 105 db 2x 10.6 317 4.9 

Shift Tolerant QMF 67 db I x 10-2 239 2.4 
(A. = 0.7) 

Figure 5.8 diagrams the coefficients of ho(n) for the shift tolerant optimized QMF 

with the baseline QMF coefficients shown for comparison. The shift tolerant QMF 

deviates dramatically from the baseline filter. 
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Figure 5.8 Shift Tolerant QMF Time Domain Response 

16 

The shift tolerant QMF (solid line) values are quite different from our baseline 
QMF (dashed line). Its center three values are reduced, while the remaining 
sidelobes increase in magnitude. 

We show in Figure 5.9 that the lowpass frequency response of the shift tolerant QMF 

becomes somewhat of a bandstop filter. That is, it tries to attenuate the frequencies 

which most affect the shifted response. These frequencies are probably related to the size 

of the objects under investigation. Very small objects would elicit an attenuation at 

higher frequencies. In addition to this frequency selectiveness, the shift tolerant QMF 

unexpectedly magnifies some of the higher frequencies. For comparison, we display the 

lowpass frequency response of our baseline QMF in the same figure. 
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Figure 5.9 Shift Tolerant QMF Frequency Response 
The shift tolerant QMF (solid line) forms a stopband, as it tries to attenuate the 
frequencies which most affect the shifted response_ The baseline QMF frequency 
is shown as a dashed line for comparison. 

5.5 Performance 

Finally, we may report on the performance of the SDCFs_ The first set of 

experiments examines the SDCFs ability to overcome the downsampling effects of the 

subband codeL We assess the two proposed solutions (incorporating downsampling 

tolerance through training, and designing a downsampling tolerant QMF) both separately 

and togetheL We perform this assessment at only level one of the subband 

decomposition over unquantized image data. This set of data allows us to select one 

method for SDCF algorithm definition. 

Using the algorithm selected in the first set of experiments, we then evaluate the 

multiresolution performance of SDCFs in a second set of experiments. In this case, we 
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investigate system results at each level of the subband decomposition. Additionally, we 

characterize the performance over increased quantization (i.e., decreasing bit rate). 

Both sets of experiments followed the conventions outlined in Section 2.5, but we 

review a few points here. 

1) We use the training and test sets defined in Section 2.5.!. 

2) We train with the original (i.e., unreconstructed and unquantized) image data. 

3) We assume the images are preprocessed according to Section 2.5.2 prior to 

compression. 

4) The SAR imagery has two, four, and eight foot resolution at a one, two, and three 

level decomposition, respectively. 

Parameter Settings 

We use the foUowing parameter settings for aU experiments in this chapter: 

• PCF design: a = 0.2, f3 = 0.8, Y= 0.05 (Equation 5.5) 

• Baseline QMF design: Nf = 16, where Nf is the filter length 

• Shift tolerant optimized QMF design: Nf = 16, Y= 0.7 (Equation 5.19) 

• PCF operation: psr_thresh(l) = 6, psr_thresh(2) = 5, psr_thresh(3) = 4, where the 

number in parentheses represents the level of decomposition. (Equation 2.8 and 

Section 2.5.3) 

5.5.1 Downsampling Tolerance 

We have proposed two possible solutions to the downsampling effects inherent in the 

coefficient domain processing of SDCFs. First, the filters may incorporate 

downsampling tolerance through training. Secondly, the system may benefit from a shift 

tolerant QMF design. We examine their effects with the foUowing question, "Do the 
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proposed solutions, either separately or together, provide enough downsampling 

tolerance for reasonable system performance?" To that end, we test four variations of 

the SDCF algorithm. The models tested are: 

1) Plain vanilla SDCFs using the baseline QMF and traditional training techniques 

2) SDCFs which incorporates the new training method of training over shifts 

3) A system which decomposes the data with a shift tolerant QMF. 

4) A system that employs both the new training methodology and a shift tolerant QMF. 

As this is a proof of principle experiment, we test with unquantized image data and 

analyze results at only the first level of the subband decomposition. 

Now, to evaluate a system's tolerance to downsampling, we must effectively process 

a set of test data twice. That is, we must test with the images in one position, then shift 

the data diagonally by one pixel and reprocess the data, and finally compare the results. 

Consequently, we report two sets of results for each of the four SDCF models tested. 

Furthermore, to remove another operating variable, we test on the training set of images. 

This is because the training images have an established reference point for the image 

translation. That is, we know the system should perform optimally to the training set in 

its original position. We do not know what the reference position is with the test images. 

System Performance 

A summary of the system performance metrics is shown below. Table 5.2 reports the 

object recognition measures Pc, Pe, and Pr, while Table 5.3 provides the reconstruction 

metrics PSNR and MSE. All these measures are defined in Section 2.5.4. 
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Table 5.2 Recognition Metrics for the Four SDCF Systems 
We show the probability of correct classification, error, and rejection for both the 
original training data and then for the same set after a diagonal shift of one pixel 
has been applied to all the images. Equivalent results between the two data sets 
indicate good downsampling tolerance. 

Reference Test Data Shifted Test Data 
Pc Pe Pr Pc Pe Pr 

Baseline QMFI 97.7% 2.3% 0% 95.4% 4.6% 0% 
Traditional Training 

Baseline QMFI 98.9% 0% 1.1 % 97.7% 1.15% 1.15% 
Shift Training 

Shift Tolerant QMFI 96.6% 3.4% 0% 94.3% 3.4% 2.3% 
Traditional Training 

Shift Tolerant QMFI 98.9% 0% 1.1 % 98.9% 0% 
Shift Trainin 

Table 5.3 Reconstruction Metrics for the Four SDCF Systems 
Reconstruction measures are only due to the QMF of the system. Thus, systems 
with the same QMF achieve the same performance. Both PSNR and MSE are 
given from the reconstruction of one of the BMP test images. 

PSNR MSE 

Baseline QMFI Traditional 105 db 2x 10-6 

Training 

Baseline QMFI 105 db 2x 10-6 

Shift Training 

Shift Tolerant QMFI 67 db I x 10-2 

Traditional Training 

Shift Tolerant QMFI 67 db I x 10-2 

Shift Trainin 

1.1 % 

Note that downsampling tolerance is most exemplified by stability across the two data 

sets. For completion, we provide the confusion matrices for the four systems in the 

Appendix. 
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Overall, the system does fairly well on the data set, which we expected because we 

are testing on the training set. It is unclear why the results on the unshifted data (i.e., the 

exact versions we trained on) were not 100% correct when using the baseline QMF. 

Although the decomposition contains enough information to reconstruct the original 

image, it is not the same information as in the original image. Perhaps the information at 

a one level decomposition is not linearly separable. In comparison, a quick test of the 

training data in the uncompressed domain renders 100% correct classification. The 

baseline QMF does, however, give reasonable reconstruction performance with a PSNR 

of 105. 

Correlation Performance 

While system performance is informative, the output correlation surfaces give more 

detail about variations in the output responses. Toward this end, we measured the 

standard deviation of the Peak to Sidelobe Ratio (PSR_flux) of the correlation output. 

(Recall the Peak to Sidelobe Ratio was discussed in Section 2.3.) 

Given that yl;(m,n) is the correlation surface resulting from an image x;(m,n) in the 

reference data set, and y2;(m,n) is from its shifted counterpart x;(m-l,n-l) the above 

PSR_flux metric is defined as 

where (jpsR(k)=std_dev(.1psR ( i)) 'linE object class k, 

.1PSR (i) = PSR(yJi(m,n))- PSR(y2i(m, n)) 

( 5.22 ) 

K is the number of object classes, and PSR is defined in Equation 2.7. The PSR_flux 

metric has no units. Table 5.4 contains the value of this metric for each of the four SDCF 

systems we tested. Smaller values reflect a more stable system. 
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Table 5.4 Correlation Stability Metric for the Four SDCF Systems 

PSR flux 

Discussion 

Baseline QMFI 
Traditional Training 

Baseline QMFI 
Shift Training 

Shift Tolerant QMFI 
Traditional Training 

Shift Tolerant QMFI 
Shift Training 

1.89 

0.98 

1.81 

0.93 

The shift tolerant QMFI shift training system appears to be the most stable and thus 

the most tolerant to the downsampling effects of the subband coder. It also provides the 

best recognition results. The baseline QMFI shift training system is also fairly stable, 

provides near the optimum recognition results, but in addition achieves a 57% 

improvement in the PSNR reconstruction metric. 

From this small experiment, it appears that incorporating shifted versions of the input 

images in the training set has the most impact on downsampling tolerance. Incremental 

improvements are made by optimizing the QMF for shift tolerance, but at a larger cost in 

image reconstruction performance. We recommend that the shift training be used alone 

or in conjunction with the shift tolerant QMF, but that the shift tolerant QMF is not 

effective when used by itself. 

In hindsight, a smaller value of A (Equation 5.17) may have more benefit. From the 

above experiments, we see that the baseline QMF already has substantial shift tolerance. 

A value near A = 0.55 might have allowed the additional small improvement for 

recognition stability without compromising the reconstruction performance of the QMF. 
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Conclusions 

To summarize the main points found in this set of experiments: 

• Both the baseline QMFI shift training system and the shift tolerant QMFI shift 

training system embody reasonable downsampling tolerance. 

• The new training methodology of including shifted versions of the input images in the 

training set has the most impact on downsampling tolerance. 

• Incorporating shift tolerance in the design of the QMF is not by itself enough to 

substantiate downsampling tolerance, but it does incrementally improve performance 

of the shift training method. 

• The baseline QMF employed in this thesis already exhibits reasonable downsampling 

tolerance. 

5.5.2 Multiresolution Analysis and Quantization Effects 

In this set of experiments, we assess the performance of SDCFs at lower resolutions 

In the subband decomposition. In this case, we are no longer concerned with 

downsampling tolerance, but with performance over the test set of images and the 

implications of declining bit rate. This set of experiments was designed with the 

following two questions in mind. 

• "Which of the SDCF systems from Section 5.5.1 proves capable at lower levels of 

resolution ?" 

• "How will compression degrade the recognition performance of SDCFs at each level 

of resolution?" 

Corresponding with the architecture of SDCFs outlined in Section 5.2, we decompose 

the image only to the level required for each experiment below. This is because only the 
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four subbands from an individual level are fused In the PCF structure. Thus, the 

quantization tables will be different for the different levels. That is, quantization of a 

level two decomposition has to quantize the data at both levels one and two. A level one 

decomposition, however, only quantizes the information at level one, and does not use 

the quantized data from the level two decomposition. Section 4.4 describes the quantizer 

design. Recall that the SAR imagery has two, four, and eight foot resolution at a one, 

two, and three level decomposition, respectively. 

System Selection 

We considered both the shift tolerant QMFI shift training system and the baseline 

QMFI shift training system for the multiresolution experiments. We performed an initial 

review with unquantized test data. 

Table 5.5 Multiresolution Performance of Baseline and Shift Tolerant QMF 
One of the BMP test images provides the PSNR and MSE values given below. 

levell level 2 level 3 
Pc Pc Pc PSNR MSE 

Baseline QMFI 
Shift Training 96% 85% 75% 105 db 2x 10-6 

Shift Tolerant QMFI 
Shift Trainin 93% 64% 54% 67 db I x 10-2 

Observe that the shift tolerant QMF does not duplicate the success of the baseline 

QMF system on levels two and three. This is probably due to the lower PSNR and 

increased MSE of the shift tolerant QMF. PSNR is important not only for visualizing 

reconstructed data, but also for optimal representations at the lower levels within a 

subband decomposition. Again, a smaller choice of A (Equation 5.17) may provide a 

better performing shift tolerant QMF. We selected the baseline QMFI shift training 

system for the remaining experiments. 
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Also note that for both systems, results decline as we go further into the 

decomposition. This is an expected consequence of multiresolution. As you decrease 

resolution, patterns become more ambiguous and thus harder to discriminate. In addition, 

any errors resulting from a QMF operation, only multiply with its recursion, adding to the 

pattern degradation at the lower levels. 

Results 

The following data summarizes the performance results from a set of SDCFs which 

use the baseline QMF and incorporate the new training methodology of training over 

shifts. Moreover, we characterize the performance over increased quantization (i.e. , 

decreasing bit rate). Figures 5.10, 5.11 , and 5.12 illustrate the object recognition 

measures Pc, Pe, and Pr, respectively, for a SDCF system at each of the three levels of 
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decomposition as a function of bit rate. We also display the con·esponding reconstruction 

metrics PSNR and MSE as we vary the bit rate in Figures 5.13 and 5.14, respectively. 

Observe that all three of the recognition performance curves (Figures 5.10 - 5.12) 

possess characteristics similar to that of a Rate Distortion curve. That is, they maintain 

good performance down to very low bit rates and then drop off quickly. The Pe curve 

(Figure 5.11) displays some deviations, probably due to the small sample size. We see a 

slight drop off in performance (in the Pc curve) at about two bpp for the first level, and 

around 0.3 bpp on the second and third level. The significant drop off occurs at 0.25 bpp 

on the first level, at 0.0625 bpp for the second level, and at 0.05 bpp on the third level. 

These bit rates correspond to compression ratios of 32:1,128:1, and 160:1 , respectively. 

For clarity, we tabulate the SDCF performance for all three levels of operation in Tables 

5.6 - 5.8. 

Recall that the purpose of performing object recognition at lower resolutions is 

simply to execute a fast , cursory search for the object. Thus, high recognition accuracy, 

while desirable, is not critical. A more detailed search at fun resolution can be done later 

on the areas that the low resolution search deems interesting. At lower levels of 

resolution, it is more important to have a low rejection rate. Even an error 10 

classification can flag the application to search more thoroughly at a higher resolution of 

the data. The SDCFs exhibit this trait down to compression ratios of at least 4: 1 as 

shown in Figure 5.12. 
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Table 5.6 Level One SDCF Results as a Function of Bit Rate 

Compression Rate Recognition Metrics Reconstruction Metrics 
Target Rate Actual Rate Pc Pe Pr PSNR MSE 

8 bpp 7.96 bpp 96.2% 2.5 % 1.3% 89.9 db 8x 10-5 

6 bpp 5.98 bpp 96.2% 2.5% 1.3% 74.5 db 2.3x 10-3 

4 bpp 3.97 bpp 96.2% 2.5% 1.3% 59.7 db 7x 10-2 

2 bpp 1.88 bpp 91.1 % 0% 8.9% 40.1 db 6.4 

1 bpp 0.54 bpp 91.1 % 3.8% 5.1% 33.3 db 30.6 

0.5 bpp 0.41 bpp 89.9% 5.1 % 5.1% 33.3 db 30.6 

0.25 bpp 0.25 bpp 63 .3% 6.3% 30.4% 33 .3 db 30.6 

Table 5.7 Level Two SDCF Results as a Function of Bit Rate 

Compression Rate Recognition Metrics Reconstruction Metrics 
Tar~et Rate Actual Rate Pc Pe Pr PSNR MSE 

8 bpp 7.89 bpp 84.8% 12.7% 2.5% 90.1 db 6x 10-5 

6 bpp 5.95 bpp 84.8% 12.7% 2.5% 75 .2 db 1.8x 10-3 

4 bpp 3.92 bpp 84.8% 12.7% 2.5% 60.3 db 5.6 x 10-2 

2 bpp 1.91 bpp 86.1 % 11.4% 2.5% 42.1 db 3.7 

1 bpp 0.95 bpp 86.1 % 7.6% 6.3% 34.9 db 20.7 

0_5 bpp 0.31 bpp 82.3% 8.9% 8.9% 32.7 db 35 .3 

0.25 bpp 0.06 bpp 64.6% 8.9% 26.6% 31.3 db 47.7 
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Table 5.8 Level Three SDCF Results as a Function of Bit Rate 

Compression Rate Recognition Metrics Reconstruction Metrics 
Target Rate Actual Rate Pc Pe Pr PSNR MSE 

8 bpp 7.96 bpp 74.7% 20.2% 5.1 % 90.1 db 2.97 

6 bpp 5.95 bpp 74.7% 20.2% 5.1 % 75 .1 db 2.97 

4 bpp 3.94 bpp 74.7% 20.2% 5.1 % 60.2 db 3.04 

2 bpp l.86 bpp 74.7% 20.2% 5.1 % 40.8 db 9.67 

1 bpp 0.98 bpp 74.7% 20.2% 5.1 % 35.7 db 25.4 

0.5 bpp 0.24 bpp 64.6% 15.2% 20.3% 32.1 db 54.3 

0.25 bpp 0.05 bpp 29.1% 10.1 % 60.8% 30.3 db 59.9 

Discussion 

Several observations are in order. First, we note that these results are slightly worse 

than the Walls, Mahalanobis results [WM99] which report good performance results up 

to compression ratios of 200: 1, as shown in Table 2.1. This previous work, however, is 

much different than that presented in this thesis. In [WM99], they fully reconstruct the 

image from a quantized subband decomposition, and perform recognition on the full 

resolution (albeit reconstructed) image. Moreover, they employ a very sophisticated 

coding technique, the Embedded Zerotree Wavelet (EZW) coder [Sha93], whereas our 

results use the very simplistic coding method outlined in Section 4.4. The EZW is well 

known to produce some of the best compression rates currently available for image data. 

Second, we observe that SDCFs at levels two and three maintain their initial 

performance at lower bit rates than level one SDCFs. This is primarily due to the fact 

that the higher levels require more bits to encode each subband, causing 'subband 

dropping' to occur earlier. At the bit rate of 0.5 bpp, the quantizer does not have enough 
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bits to effectively code all of the subbands on level one, and encodes the HL, LH, and HH 

subbands with zero bits (effectively 'dropping' these subbands). The LL subband is then 

encoded at two bpp and we maintain performance until 0.25 bpp when the quantization of 

the LL subband becomes too great. The table below displays the bit rates which require 

an empty subband for each level of decomposition. 

Table 5.9 Subbands Dropped at Low Bit Rates 

Approximate 
Rate 

I bpp 
0.5 bpp 

0.25 bpp 
0.125 b 

levell 
HL,LH,HH 
HL,LH, HH 
HL,LH,HH 
HL,LH,HH 

Subbands Dropped 
level 2 

HH 
HH 

HL,LH,HH 
HL,LH,HH 

level 3 
HH 
HH 

LH,HH 
HL,LH,HH 

We see from the above table that levels two and three retain more subbands at lower bit 

rates. This is expected, as their smaller size requires fewer bits for full encoding. 

Finally, we note that at low bit rates, the output correlation surfaces of the SDCFs 

contain no aliasing components, in contrast to the PRSC architecture of Chapters 3 and 4. 

Even when the bit allocation must zero out certain subbands, the PCF architecture still 

renders a complete correlation surface. 

ConcJusions 

The following conclusions address the two questions presented at the beginning of 

this set of experiments. 

• A lower PSNR hurts the performance of the shift tolerant QMFI shift training system 

at lower levels of resolution. We selected baseline QMFI shift training system for 

our multiresolution analysis. 

• Performance declines on the lower levels of decomposition. 
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• We achieve reasonable performance at compression ratios of 32:1,128:1 , and 128:1, 

at decomposition levels one, two and three, respectively. 

• Lower levels of resolution maintain their initial performance for longer with 

decreasing bit rate. 

• The SDCF system does not produce aliasing at the correlation output, even at low bit 

rates. 

5.6 Computation 

Lower resolution input data reduces both recognition accuracy and object location 

accuracy, but it also greatly reduces the computational requirements of the system. From 

Figure 5.2, we see that the SDCF system requires the following computational blocks. 

LL subband 

(All subbands 
are o f size J by J) size J size J 

IFFT y 

L..-s-iz-e-J ---J correlation 
output 
surface 

Figure 5.15 SDCF Computational Blocks 
The parallel architecture requires four FFfs and correlations; one for each 
subband. Only one IFFf is necessary after all four channels are summed. All 
computations are for the same size data array . 

We wish to quantify the total computation of the system for a k level decomposition. 

Given an original image of size N by N, the dimension (on one side) of a subband on 
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level k is given by ~. Now, using the computational building blocks of Section 3.3.1 , 

we establish the following terms for the system of Figure 5.15. 

FFT Computation ~ 4( ~ J log, (;, ) ( 5.23 ) 

Correlation Computation ~ {~ J ( 5.24 ) 

IFFT Computation ~ (~ J log, (;, ) ( 5.25 ) 

After summing Equations 5.23 - 5.25, we arrive at the total computation of the SDCF 

system. 

SDCP Total Computation: P ~(;, J ~log , N -Sk +4] ( 5.26 ) 

where N is the size (on one side) of the original Image, and k is the level of the 

decomposition. 

Because the system yields a parallel implementation, the time to reach a result is 

dictated by only one leg of the architecture. We define this as the effective computation 

(akin to the definition in Section 3.3). 

SDCP Total Effective Computation: P' ~(~ J [2 log, N - 2k + I J ( 5.27 ) 

Both computation terms (Equations 5.26 and 5.27) are plotted as a function of Nand k in 

Figures 5.16 and 5.17. 
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Figure 5.16 SDCF Total Computation 
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The plot above displays the total computations of a level k SDCF system for an 
image of size N. As k increases, the computational savings grows by a constant 
factor. The total computation also grows exponentially with increasing N. 
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The number of computations required to arrive at an answer in the SDCF system 
is shown in the plot above as a function of the decomposition level k and image 
size, N. As we increase k, the computational savings grows by a constant factor; 
the total effective computation value grows exponentially with N. 
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Now we turn our interest to the computational savings generated by halving the 

resolution of the input data (i.e., going down one level in the subband decomposition). 

By compiling the data from Equations 5.23 - 5.25, the computations follow for subbands 

of neighboring levels: 

Total Computation: 

P = f ~log 2 J + 4} for subband size J ( 5.28 ) 

P = G Y ~ log2 (1)+ 4] for subband size 1 ( 5.29 ) 

Effective Computation: 

P' =J 2 [210g2 J + 1) for subband size J ( 5.30 ) 

P' = (1 Y[210gz (1)+ 1] for subband size 1 ( 5.31 ) 

Now, the savings in number of computations by halving the resolution is found by 

taking the difference of Equations 5.28 and 5.29 (likewise 5.30 and 5.31). 

Total Computation Savings: D = ~ J 2 ~ 510g2 J + 17 ] ( 5.32 ) 

Effective Computation Savings: D' =~ f[6log 2 J +5] ( 5.33 ) 

In addition, we can use a ratio of Equations 5.28 and 5.29 (also 5.30 and 5.31) to estimate 

the savings factors achieved by halving the resolution. 

Total Computation Savings Factor: 

F 2010g?J +16 
510g2 J -1 

FJ -->~ = 4 

F' = 8 log? J + 4 
Effective Computation Savings Factor: 2log2 J -1 

FJ' = 4 
-->~ 

( 5.34 ) 

( 5.35 ) 
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where J is the size of the original subband (in one-dimension) in Equations 5.30 - 5.37. 

For the smallest values of J, both F and F' are greater than six, but in the limit, both 

factors go to the value of four, as shown in the plot below. 
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Figure 5.18 Computation Savings Factor for Halving Input Resolution 
While larger than for subbands of reasonable image sizes, the computational 
savings for halving the input resolution asymptotes to four in the limit. This is 
true for both the total and effective computation. J is the size of the original 
subband (i.e. , before halving the resolution). 

5.7 Future Extensions 

In this section, we provide a brief synopsis of possible extensions to the SDCF system 

discussed so far. 

First, our marriage of PCFs with a subband decomposition currently weights all the 

input channels equally. It is simple to scale each input channel (i.e. subband output) 

differently, which may be fruitful for some applications. Given that most of the 

downsampling effects arise in the upper sub bands, then attenuating their output response 
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may actually improve the general performance. In addition, a system may want to apply 

a weight vector to the spectral terms of Equation 5.1 to amplify (or attenuate) specific 

frequencies. 

One extreme case of the above scenano would be to completely drop the HH 

subband. This subband has the least tolerance to downsampling. Not usmg its 

correlation response may improve performance. 

Another suggestion we have is to try the minimal training method outlined in Section 

5.3 . 

In addition, we recommend integrating all the subbands from a multilevel 

decomposition. (That is, incorporate subbands from more than just one level.) This 

modification, however, will require postprocessing because the correlation responses 

from different levels are of varying sizes. 

Finally, we suggest the inclusion of an additional term, similar to Equation 4.22, in 

Equation 5.19. One could jointly optimize the SDCFs with respect to recognition, just as 

in the PRSC system. 

5.8 Summary 

The SDCF system overcomes the downsampling effects of a subband coder to offer 

multiresolution object recognition. Of the two proposed methods for downsampling 

tolerance, training over multiple shifts of the data is the most effective. Optimizing the 

QMF for downsampling tolerance offers an additional slight improvement in the 

downsampling tolerance, but the resulting decreased fidelity of the QMF transform 

impairs recognition accuracy. 

In summary, we achieve the correct classification performance denoted in Table 5.lD. 
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Table 5.10 Multiresolution Performance Summary of SDCF System 
The table reports that the SDCF achieves 96.2% correct classification at 
compression ratios, R, equal to or less than 2: I on two foot resolution data; 
likewise the system results in 89.9% accuracy at compression ratios equal to or 
less than 20: J on the same data. The remaining data are read in an analogous 
manner. 

levell level 2 level 3 
(2' resolution) (4' resolution) (8' resolution) 

Probability 96.2%, R~ 2: I 84.8%, R ~ 8: I 74.7%, R ~ 8: I 
of Correct 

Classification 89.9%, R :S 20: I 82.3%, R :S 26: I 64.6%, R :S 32: I 

With a more sophisticated encoder, the performance reported here would improve at low 

bit rates. Another benefit of the SDCF system is that its output does not exhibit aliasing, 

even when low bit rates require the encoder to drop whole subbands of information. 

Thus, we have answered three of the questions issued at the beginning of this thesis 

investigation. 

• The SDCF system can perform object recognition at reduced resolutions of the input 

data. 

• The performance of the SDCF is successful for compression ratios of at least 20:1 for 

all three resolutions tested. Depending on the level of resolution, accurate recognition 

occurs at even higher compression ratios. 

• For every reduction in input resolution of one-half, the SDCF recognition accuracy 

decreases by approximately 10%, but the system's computational requirements (both 

total and effective) also diminish by a factor offour or more. 

• SDCF performance effects a tuning curve similar to a typical rate distortion curve, 

allowing an application to select an operating point balancing the requirements of 

recognition and compression. 
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Chapter 6 

Concluding Remarks 

This thesis presents two methods, the PRSC and SDCF, for performing object 

recognition within compressed imagery. The systems meet our initial objectives: 

• To obtain the result directly in the compressed domain. That is, to ·avoid 

reconstruction of the image. 

• To jointly optimize the performance trinity of recognition, compression, and 

computation. 

• To obtain results at both full and reduced resolutions of the data. 

• To make accurate object recognition our primary objective, high compression rates 

secondary, and faithful reconstruction of the image ternary. 

Now we provide answers to the five questions submitted at outset of this thesis 

in vestigation. 

• The PRSC combines correlation and subband filters in a manner that IS more 

computationally efficient than their separate implementation. 

• Through parallelism, the PRSC arrives at a result 1.6 times jaster, in the limit, than a 

correlation system designed for uncompressed data. 
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• With the PRSC, we can provide object recognition on compressed imagery with 

superior accuracy to that of correlation on the original imagery, for compression 

ratios as high as 6: 1. 

• The SDCF performs successful recognition for data up to one-eighth the resolution of 

the original data, for compression ratios of at least 20: 1. It can still be effective at 

higher compression ratios, depending on the level of resolution. 

• Both of our systems provide a tuning curve that allows an application to select an 

operating point commensurate with its requirements of recognition and compression. 

Previously, image compression and object recognition have generally been treated as 

separate systems. With the PRSC, we provide a holistic approach to the dual problem by 

integrating correlation and subband filters into one homogeneous signal processing 

architecture. Additionally, the SDCF system dissolves the boundary between image 

compression and object recognition by allowing correlation filters to operate directly on 

the subband coefficients. Each of these models benefits different aspects of the object 

recognition in compressed imagery problem. In the table below, we provide brief 

descriptions outlining the dualities of the two systems. 

Table 6.1 Comparison of PRSC and SDCF 
The two systems investigated in this thesis embody the following attributes. 

Pattern Recognition 
Subband Coder 

Full Resolution processing 

Image Domain correlation filters 

Correlation and subband filters 
are integrated 

Downsampling Invariant 

Aliasing at low bit rates 

Subband Domain 
Correlation Filters 

Reduced Resolution processing 

Subband Domain correlation filters 

Correlation and subband filters 
are separate entities 

Downsampling Tolerant 

No Aliasing at low bit rates 
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It is worth remarking that we used a very simple compression scheme in this thesis. 

With a more sophisticated coder, like the Embedded Zerotree Wavelet (EZW) algorithm 

[Sha93] , the results at low bit rates would certainly improve. 

With that in mind, we summarize this thesis investigation with the following 

message: "Through our solutions with compressed imagery, we outperform correlation 

results on the equivalent original imagery in terms of both speed and accuracy, as well as 

provide success at reduced resolutions of the data." 

6.1 Summary of Results 

Due to our tridimensional approach, we are interested in the performance of all three 

components: compression, recognition, and computation. The opposing demands of 

compression and recognition have to balance each other, so we present these results 

together. The computational performance follows separately. 

We provide a summary of the performance for four different systems: 1) standard 

correlation filters operating on original imagery, 2) a baseline compression recognition 

system which fully reconstructs the image data prior to correlation, 3) the PRSC, and 4) 

the SDCF. The first three systems provide only full resolution responses, while the last 

system operates over three levels of reduced resolution. 

Recognition and Compression Performance 

Figure 6.1 characterizes object recognition performance over decreasing bit rate. 

Several remarks are in order: 

• The PRSC provides superior performance over that of correlation on the original 

imagery, for compression ratios as high as 6: 1. 

• At all bit rates, the PRSC effects better performance than the baseline method. 
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Figure 6 . 1 Object Recognition Performance Comparisons 

• The SDCF system operating on two foot resolution data equals the performance of 

the baseline and uncompressed system (both operating on one foot resolution data), 

for compression ratios as high as 6: 1. 

• At low bit rates, the SDCF system operating on two and four foot resolution data 

produces better results than the PRSC operating on one foot resolution because of 

aliasing in the PRSC at low bit rates (due to dropped subbands). This could be 

alleviated with a more sophisticated coder like the EZW. 

• The SDCF results on two foot resolution data do not degrade significantly until a 

compression ratio of 20: 1; likewise the significant drop-off occurs at a compression 

ratio 0/26:1 and 32:1 for the/our and eight foot resolution data, respectively. 

• For every reduction in input resolution 0/ one-half, the SDCF recognition accuracy 

decreases by approximately 10%, but the system's computational requirements also 
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diminish by a factor offour or more, and its speed increases by the same factor, as 

seen in next section. 

Computational Complexity 

In this section, we examine both total and effective computation of the four systems 

studied in this thesis: 1) standard correlation filters operating on original imagery, 2) a 

baseline compression recognition system which fully reconstructs the image data prior to 

correlation, 3) the PRSC, and 4) the SDCF. Again, the first three systems provide only 

full resolution responses, while the last system operates over three levels of reduced 

resolution. 

We display the total and effective computation as a function of image size in Figures 

6.2 and 6.3, respectively. Effective computation is defined as the total number of 

computations required to reach a result, and is thus a measure of the speed of a system. It 

can be different than the total computation because of inherent parallelism in certain 

architectures. 

Several observations are in order: 

• The PRSC requires fewer computations than the baseline system. The disparity 

grows with increasing image size. 

• The PRSC operates faster than correlation filtering on uncompressed imagery by a 

factor of 1.6, in the limit, as image size goes to infinity. 

• The computational requirements (both total and effective) of the SDCF decrease by a 

factor of four by halving the resolution of the input data. 
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6.2 Summary of Novel Contributions 

This thesis presents two distinct methods of performing object recognition 10 

compressed imagery. We reiterate the major contributions made by the author here. 

• A new signal processing architecture which integrates correlation and subband filters 

into a homogeneous operation, and facilitates effective object recognition directly in 

the compressed domain. It possesses the following characteristics. 

- It is a universal architecture for operating any linear filter directly on the 

multiresolution data of a subband coder. 

- It produces a response identical to that produced by the reconstructed image. 

It results in a response identical to that effected by the original image, within the 

fidelity of the subband transform. 

It is more computationally efficient than the separate implementation of the two 

filters. 

- It provides afaster response than that resulting from the original data, by afactor 

of F' = 1.6, in the limit, as image size goes to infinity. 

• A matrix vector formulation for operating linear systems directly 10 a transform 

domain. It has the following attributes. 

It is universal for a linear operator and unitary transform. 

It results in a response identical to that produced by the untransformed input. 

• A method of jointly optimizing the compression capability of a QMF subband filter 

and the recognition performance of a correlation filter. This method provides: 

superior performance than operating the two filters independently 

superior performance to operating on the un compressed data 
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• A suggestion for jointly optimizing the compression and recognition performance to 

compensate for quantization. 

• A new pattern recognition algorithm which utilizes correlation filters synthesized in 

the subband coefficient domain, and allows for object recognition at the multiple 

resolutions of a subband coder. 

• A new training methodology to accommodate the downsampling of the subband 

coefficients. 

• A novel method of jointly optimizing the compression capability of a QMF subband 

filter and the recognition performance of a correlation filter to compensate for 

downsampling in the subband coefficients. 

6.3 Epilogue 

To date, sub band coders have afforded the image processing world with effective 

image compression. The PRSC architecture introduced in this thesis provides more than 

correlation within a subband coder; it offers a technique for filtering in the subband 

transform domain . Thus, any image processing operation (e.g., boundary detection, 

segmentation, feature extraction, or feature description, just to name a few) that can be 

written as a linear filter, can now be performed in the transform domain with no loss of 

information, within the fidelity of the subband transform. This step then allows the 

introduction of quantization, and hence, compression. It remains to be seen what effects 

compression has on various image processing operations, but effective coding techniques 

could bring the future of image processing closer to operating directly on compressed 

Imagery. 
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Appendix 

The following tables provide information detailing the results in Table 5.2. They 

confirm that the Shift QMFI Shift Training SDCF System has the most stability. The 

systems referred to in the tables below are defined in Section 5.5.1. 

Table A.I Confusion Matrix for Baseline QMFI Traditional Training SDCF 

Computed Object Class 

Reference Test Data Shifted Test Data 
BMP BTR T72 Rej BMP BTR T72 Rej 

True BMP 30 0 0 0 30 0 0 0 
Object BTR 28 0 0 I 27 0 
Class T72 0 27 0 2 0 26 0 

Table A.2 Confusion Matrix for Baseline QMFI Shift Training SDCF 

Computed Object Class 
Reference Test Data Shifted Test Data 

BMP BTR T72 Rej BMP BTR T72 Rej 
True BMP 30 0 0 0 30 0 0 0 

Object BTR 0 29 0 0 I 28 0 0 
Class T72 0 0 27 0 0 27 
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Table A.3 Confusion Matrix for Sshift QMFI Traditional Training SDCF 

Computed Object Class 
Reference Test Data Shifted Test Data 

BMP BTR T72 Rej BMP BTR T72 Rej 
True BMP 30 0 0 0 30 0 0 0 

Object BTR 27 I 0 2 27 0 
Class T72 o 27 0 0 25 2 

Table A.4 Confusion Matrix for Shift QMFI Shift Training SDCF 

Computed Object Class 
Reference Test Data Shifted Test Data 

BMP BTR T72 Rej BMP BTR T72 Rej 
True BMP 30 0 0 0 30 0 0 0 

Object BTR o 29 0 0 0 29 0 0 
Class T72 o 0 27 0 0 27 
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