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Abstract 

In the first part of this thesis, we present new formulations for computing the motion 

of curva ture driven 3-D filament and surface. The new numerical methods have no high 

order time step stability constraints that are usually associated with curvature regular­

ization. This result generalizes the previous work in [23] for 2-D fluid interfaces with 

surface tension. Applications to 2-D vortex sheets, the Kirchhoff rod model, nearly anti­

parallel vortex filaments , motion by mean curvature in 3-D and simplified water wave 

model are presented to demonstra te the robustness of the methods. In the second part 

of this thesis, we investigate numerically the effects of surface tension on the evolution 

of 2-D Rele-Shaw flows and 3-D axisymmetric flows through porous media with suc­

tion . Rele-Shaw flows with suction are known to form cusp singularities in finite time 

with zero-surface-tension. Our study focuses on identifying how these cusped flows are 

regularized by the presence of small surface tension, and what the limiting form of the 

regularization is as surface tension tends to zero. We find tha t , for nonzero surface ten­

sion , the motion continues beyond the zero-surface-tension cusp time, and generically 

breaks down only when the interface touches the sink. When the viscosity of the sur­

rounding fluid is small or negligible, the interface develops a finger that bulges and later 

evolves into a wedge as it approaches the sink. Our computations reveal an asymptotic 

shape of the wedge as surface tension tends to zero. Moreover, for a fixed time past 

the zero-surface-tension cusp time, the vanishing surface tension solution is singular at 

the finger neck. The zero-surface-tension cusp splits into two corner singularities in the 

limiting solution. Larger viscosity in the exterior fluid prevents the formation of the 

neck and leads to the development of thinner fingers. For 3-D axisymmetric flow, similar 

b ehavior is observed. The surface develops a narrow finger which evolves into a cone as it 

approaches the sink. The finger diameter is smaller than the finger width for Rele-Shaw 

flow and the surface moves faster. The azimuthal component of the mean curva ture 

enhances the definition of the finger neck while smoothing the interface there. 
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Chapter 1 

Introduction and Background 

Many physical problems involve the time evolution of free interfaces. For example, the 

evolution of a phase boundary in solidification, the breakup of drops in sprays, multi-fluid 

interfaces, thin film growth [46, 47], the motion of cells in the blood, and crystal growth 

and solidification [27, 55]. The complexity of such problems means exact analytical 

solutions are very difficult to obtain, and accurate numerical computation becomes very 

important in studying these problems. 

The boundary integral method is one well accepted approach to study the interfacial 

flows numerically. It defines the motion of the interface in terms of integrals along the 

interface and thereby reduces the dimension of the problem. Boundary integral methods 

are also advantageous in that they avoid the difficulty of computing derivatives of the 

quantities which are often discontinuous across the fluid interface. Methods of boundary 

integral type have been used to compute nonlinear surface waves [3,49, 52]' vortex sheet 

motion [5, 37, 56], Rayleigh-Taylor instability [2, 49, 62], and interfaces in Hele-Shaw 

cells [15, 23, 10]. However, numerical simulations using boundary integral methods are 

still very sensitive to numerical instabilities because of the underlying physical singularity. 

Hence, straightforward discretizations tend to lead to numerical instabilities. 

In many applications, surface tension (curvature) plays an important role on the 

dynamics of interfaces. We will enhance our understanding of fluid phenomena such as 

pattern formation in Hele-Shaw cells, the motion of capillary waves on free surfaces and 

the propagation of sound waves in a porous medium flow if we understand the effect of 

surface tension better. On the other hand, surface tension introduces terms with high 

order spatial derivatives both nonlinearly and nonlocally into the governing equations, 

and this makes the calculations with surface tension even more susceptible to numerical 

instabilities. If an explicit method is used, these terms induce strong stability constraints 

on the time step. For two fluid interfaces in Euler flow, the stability constraint is of the 
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form tJ.t ~ c· (~s)3/2, while for Hele-Shaw flow is ~t ~ c· (~s)3, where ~t is the 

size of the time step and ~s is the minimum grid spacing in arclength. In practice, 

these stability constraints are time dependent and become more severe as points cluster 

along the interface. A straightforward implicit discretization leads to a nonlinear and 

nonlocal system which is extremely difficult to invert in general. The presence of such 

time stability constraint is known as stiffness. 

In this thesis, we study numerically interfacial flows with surface tension in two and 

three dimensions using boundary integral method. It is divided into two parts. In 

the first part, we propose numerical methods to remove the stiffness of surface tension 

in computing two-dimensional interface and three-dimensional filaments and surfaces. 

The second part is focused on a careful numerical study of two-dimensional Hele-Shaw 

flow with suction and three-dimensional axisymmetric flow with suction through porous 

media. 

1.1 Removing Stiffness of Surface Tension in Two and Three 

Dimensions 

In [23], Hou, Lowengrub and Shelley introduced an efficient method to remove high 

order stiffness in computing the motion of fluid interfaces with surface tension in two­

dimensional, irrotational and incompressible fluids. Their scheme is based on a refor­

mulation of the equations of motion in terms of variables more naturally related to the 

curvature and on the identification of the small-scale terms that contribute to the stiff­

ness. The natural variables are the tangent angle to the interface () and the arclength 

metric So: = Izo:l. In these variables, the surface tension term has a very simple form 

because curvature /'i, = ()o:/ So.. Furthermore, they introduced a particular tangential force 

T so that Sa is uniform in Q. Thus, So: evolves as the length of the interface L. This is 

the so-called ()-L method. Using the small scale decomposition technique, their methods 

identify the leading order terms and then treat them implicitly in time discretizations. 

They performed well-resolved calculations for large times on the motion of a vortex 

sheet, Hele-Shaw and Boussinesq flows. These interfacial problems that were previously 

not amenable are now solvable using this method. However, this ()-L method cannot be 
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generalized directly to three-dimensional filaments or surfaces since the tangent angle is 

not well defined in three dimensions. In the first part of the thesis, we propose to use 

curvature", as the new dynamical variable when computing two and three-dimensional 

free interfaces with curvature regularization. This is motivated by the e-L method. 

We first derive our ",-L method for computing the motion of two-dimensional inter­

faces. We apply our method to vortex sheets problem with surface tension which had 

been well studied in [23]. Our numerical study on this same problem indicates that our 

new formulation shares the same stability property as the B-L formulation. 

Next we extend our idea of using curvature as the new dynamical variable to three­

dimensional filaments. A natural choice to describe a three-dimensional filament is to 

use curvature and torsion variables as given in the Frenet equations. However, we found 

that these variables are not suitable for computational purpose; see also [32]. The reason 

is that the torsion variable may be singular whenever curvature vanishes. This is purely 

an artificial parameterization singularity. To overcome this difficulty, we propose to 

use generalized curvatures and the rate of rotation as the dynamical variables, "'1, "'2, w. 

These variables can be related to the natural curvature", and torsion T variables but also 

have a physical interpretation in terms of the curvature and twist of a thin non-isotropic 

rod. As in two dimensions, the total arclength of the filament, L(t), is also used as a 

dynamical variable. Together we obtain a new set of evolution equations for the filament. 

We show that by using this reformulation, we can easily remove the stiffness associated 

with curvature regularization. 

To demonstrate the robustness of the method, we apply our method to a number of 

interesting applications. Our numerical experiments demonstrate convincingly that our 

methods work well for three-dimensional filament calculations, such as the motion by 

curvature, the Kirchhoff rod model and anti~parallel vortex filaments. The Kirchhoff rod 

model has received increasing interest in recent years because it can be used as a model 

to study the dynamics of proteins and super-coiled DNA [54]. Our numerical calculations 

reveal some interesting equilibrium states for the Kirchhoff rod model. With our new 

formulation, we can now afford to perform well resolved and long time computations for 

problems in computational geometry and computational biology. The dynamics of vortex 

filaments has been studied analytically and numerically over the past thirty years (see [36] 
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for references). It has important applications involving secondary three-dimensional 

instability in mixing layers and boundary layers in high Reynolds number flows. Here 

we apply our method to study the interaction of anti- parallel vortex filament pair using 

a simplified model proposed by Klein, Majda and Damodaran [36]. Our results compare 

well with those obtained in [36]. Our approach can also be applied to the case when the 

nonlocal term becomes important. 

Generalization of our numerical methods to three-dimensional free surfaces is also 

reported in this thesis. Here we only consider periodic and non-closed surfaces. We 

begin by constructing two orthogonal directions and defining a curvature in each of those 

directions. We also define a corresponding arclength variable in each of the directions 

which we call u = IX,Bl I and v = IX,B21. As with the two-dimensional interface case, we 

can add tangential forces to the system without altering the shape of the surface. In 

order to simplify the problem, we let A = IX!31I/IX,B2 I be a constant in space but can 

be time dependent. This determines our choice of the tangential forces. Our method 

then for three-dimensional surfaces is to use the mean curvature (sum of the principal 

curvatures in the two orthogonal directions), the corresponding arclength variable in one 

direction, u, and the ratio of the two arclength variables, A, as the dynamical variables. 

We first test our method on the problem of motion by mean curvature. We show that 

our methods do indeed remove the stiffness associated with the surface tension. We also 

apply our method to a simplified water wave model. The numerical simulations of surface 

waves are very expensive because of the high computational cost of approximating the 

defining integrals which give the surface velocity and velocity potential. This requires 

O(N4 ) calculations where N is the number of points used in each dimension. In this 

model equation, we replace the velocity integral by its leading order contribution at high 

modes and thus, allow us to reduce the operation count to O(N2 log N) operations per 

time step. In [21], Haroldsen and Meiron studied the three-dimensional water waves with 

zero-surface-tension numerically. We use the same initial condition which is a Gaussian 

wave. Our numerical simulations on our model equation with surface tension T = 0.0001 

compare well with those reported in [21]. Also, we see almost no difference between this 

very small surface tension case and the zero-surface-tension case. Hence the simplified 

model equation captures the same characteristics as the full water wave equations. We do 
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not observe the stiffness of surface tension using our numerical method. Our robust and 

efficient method also allows us to consider a wide range of surface tension coefficients. We 

also experimented with an initial condition of two identical and two different amplitude 

Gaussian waves Our results are both believable and interesting. 

Finally we tested our methods on three-dimensional gravity waves. Two-dimensional 

deep gravity breaking waves had been studied experimentally and numerically in recent 

years [43, 11, 12]. But little has been done in the three-dimensional case. We start with 

a simple sine wave of amplitude E and study its evolution with zero-surface-tension in 

time. No initial horizontal velocity is applied. By only changing the amplitude E of 

the initial wave we find very interesting behaviors of the surface evolution. For certain 

E, a focusing mechanism develops and induces jets which shoot upwards. It suggests 

cusps will occur but higher resolution is needed to definitively show this. An alternative 

scenario is obtained by considering smaller E. In this case, the jets reach maximum 

heights and subsequently fall down. Then the wave rises up at the opposite corners and 

forms jets at those locations. For an even smaller E, our numerical simulations show that 

a smooth oscillatory surface motion exists for all times. We have also experimented on 

gravity waves with small surface tension. By using our reformulation, we do not see the 

stiffness associated with surface tension. 

1.2 Numerical Study of Two-Dimensional Hele-Shaw Flow 

with Suction and Three-Dimensional Axisymmetric Flow 

with Suction through Porous Media 

Suction driven flows through porous media are of considerable interest to the oil industry. 

In a recovery process, oil surrounded by water is extracted through a well (sink) via a 

suction mechanism. Often this type of flow is modeled by the two-dimensional motion 

of a viscous fluid through a narrow gap between two parallel plates in a device known 

as a Rele-Shaw Cell. The connection between Rele-Shaw flows and saturated flows 

through porous media is Darcy's law which is assumed to govern the motion of both 

types of flows. Darcy's law states that the velocity field is proportional to the gradient 

of the pressure. The particular case of a Rele-Shaw flow in which a blob of viscous 
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fluid, surrounded by inviscid or less viscous fluid, is drawn radially into a point sink 

has attracted considerable attention. The more viscous fluid can be associated with oil, 

surrounded by water (inviscid fluid), that is recovered through a well (sink). Laboratory 

experiments [48] show that the surrounding fluid encroaches upon the oil forming long 

"fingers" which may reach the sink before all the oil is recovered. In the oil analogy, 

this fingering process could reduce the amount of recoverable oil. In the second part 

of this thesis, we investigate the two-dimensional Hele-Shaw flow with suction and the 

axisymmetric flows with suction through porous media using the ()-L method [23]. 

It is well know that sink flow in a Hele-Shaw cell with zero surface tension can develop 

finite-time singularities before the fluid interface reaches the sink. These singularities are 

generally in the form of 3/2-power cusps [25,51]. From the analytical point of view, very 

little is known about the Hele-Shaw solutions in the presence of surface tension. There 

are only short-time existence results [20]. Tian [61 J shows that singularity formation 

is inevitable if the center of the viscous blob is not at the sink. However, the type of 

singularity is unknown. The singularity could be caused by the interface reaching the 

sink or by other means. 

It is natural to use the knowledge of the zero-surface-tension solutions to study the 

asymptotic effects of surface tension as a perturbation parameter. However, a pertur­

bation analysis is difficult due to the ill-posedness of the underlying zero-surface-tension 

problem [17, 26J and to the singular nature of the perturbation. Instead, Howison, Lacey, 

and Ockendon [25J propose an asymptotic model in which small surface tension would 

cause the interface in the neighborhood of the cusp to propagate rapidly as a narrow jet, 

analogous to a thin crack. However, this so-called 'crack' model relies on the notion of a 

self-similar steady-state solution whose existence is unknown. Thus, the effects of very 

small surface tension past the cusp time remain unclear. 

Here, we investigate numerically how surface tension regularizes the cusped flows 

and what the limiting form of this regularization is as surface tension tends to zero. We 

consider the two-phase Hele-Shaw flow, known as the Muskat problem [40], and study 

also the effects that the viscosity of the surrounding fluid has on the Hele-Shaw sink flow. 

We employ the ()-L method by Hou, Lowengrub, and Shelley [23J. With high resolution, 

our computations proceed up to very close to the moment when the interface touches 
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the sink and the solution breaks down in the classical sense. 

Kelly and Hinch [29] study numerically the effects of surface tension on the Hele­

Shaw flow with suction when the surrounding fluid is inviscid. Their computations show 

that surface tension indeed regularizes the cusped flow and that a smooth narrow finger 

develops past te. However, as we show in this thesis, Kelly and Hinch computations 

lack the high accuracy necessary to capture the interface behavior for sufficiently small 

surface tension. In addition, for a given surface tension, high resolution is needed to 

compute the fast interface motion as the finger gets very close to the sink. In fact, 

recent computations by Nie and Tian [42] provide strong evidence that the flow develops 

a curvature singularity (in the form of a corner) when the interface reaches the sink. 

However, Nie and Tian do not address the limiting behavior of the interface as surface 

tension tends to zero. 

Numerical computations of unstable Hele-Shaw flows are known to be difficult due 

to the ill-posedness of the zero-surface-tension problem [16, 39]. For sufficiently small 

surface tension, even perturbations at the round-off error level can lead to a rapid growth 

of the solution high frequency components [6, 15]. In addition, surface tension introduces 

high order derivative terms that couple with the interface dynamics in a nonlinear and 

nonlocal manner. These terms lead to a severe time-step stability constraint or stiffness 

for explicit time-integration schemes. Here, we apply this method to a spectrally accurate 

discretization in space combined with a fourth-order in time implicit/explicit multi-step 

scheme. 

Our computations focus on the evolution of an initially circular blob of viscous fluid 

surrounded by less viscous fluid. The blob is drawn into a point sink located inside it 

but not at its initial center. We find that, for nonzero surface tension, the flow continues 

beyond the zero-surface-tension cusp time, and breaks down only when the interface 

touches the sink. When the viscosity of the surrounding fluid is small or negligible, the 

interface develops a finger that later evolves into a wedge as it approaches the sink. As 

in the cases reported by Nie and Tian [42], our computations strongly suggest that the 

Hele-Shaw solutions, for this type of geometry, generically break down by developing a 

corner at the tip of the wedge when the interface reaches the sink. 

Our numerical results show several new interesting phenomena as surface tension 
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is decreased. An asymptotic shape of the fingers is observed at the late stage of the 

interface motion and a wedge angle at the tip of the finger is selected in the limit as 

surface tension tends to zero. Moreover, for sufficiently small values of surface tension a 

well-defined neck develops at the top of the finger near tc. The developing finger bulges 

but, being drawn strongly by the sink, quickly evolves into the wedge. The bulging of the 

finger contradicts the 'crack' model of Howison et al. It is conceivable that the neck and 

the bulging of the finger are due to the influence of the zero-surface-tension singularity. 

In fact, our computations suggest that the vanishing surface tension solution is singular 

at the finger neck, for any fixed time past tc but not greater than the asymptotic time 

at which the interface reaches the sink. The continuation solution selected by the limit 

apparently splits the zero-surface-tension cusp into two corner singularities at the finger 

neck. 

Even in the absence of surface tension, very little is known about the corresponding 

Muskat problem, i.e., when the viscosity of the surrounding fluid is taken into consid­

eration. We find here that the viscosity of the exterior fluid alone does not prevent the 

formation of cusps. It only delays them. In the absence of surface tension, we observe 

generic 3/2-power cusps just as in the case of inviscid exterior fluid. However, as the 

viscosity ratio is decreased, we find that the zero-surface-tension cusps develop closer to 

the sink. In the presence of surface tension, the interface behavior for small viscosity 

ratios differs significantly from that corresponding the case of inviscid exterior fluid. We 

observe that large viscosity in the exterior fluid prevents the formation of the neck and 

leads to the development of thinner fingers. The fingers also tend to an asymptotic shape 

in the limit as surface tension tends to zero. Moreover, the asymptotic angle at the finger 

tip decreases as the viscosity ratio is reduced, apparently towards the zero angle (cusp) 

of the zero-viscosity-ratio solution. 

Since surface tension acts on the fluid interface by introducing a jump in the pressure 

proportional to the mean curvature, it is natural to ask what the behavior of the interface 

would be in a three-dimensional Darcy flow for similar initial conditions. Can topological 

singularities occur in three dimensions for this particular type of flow? How does the 

presence of an additional component of the mean curvature affect the fingering process? 

Next, we investigate numerically these questions. We consider the three-dimensional 
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axisymmetric flow consisting of a blob of viscous fluid driven through a point sink located 

inside the blob. The surrounding fluid is assumed inviscid. 

We know that boundary integral methods reduce the dimension of the problem by 

involving only variables on the fluid interface. However, this reduction is done at the 

expense of introducing singular boundary integrals which are understood in the sense 

of principal-value integrals. In two-dimensional motion, the boundary integrals can be 

desingularized and spectrally accurate approximations may be obtained for closed or 

periodic interfaces in the horizontal direction [57, 56]. In three-dimensional motion, the 

boundary integrals are much more difficult to treat. In the case of axisymmetric flow, the 

integrands contain a complex combination of pole and logarithmic singularities. Even if 

the leading order singularities are extracted, some derivative of the integrands will be 

singular and as a result standard quadrature rules will have a non-smooth discretization 

error. Moreover, as noted by Baker et al. [4], the integrands change rapidly at the 

two poles where the surface intersects the axis of symmetry. This makes the accurate 

evaluation of the principal-value integrals even more difficult to achieve. It is important 

to note that a non-smooth error, i.e., with many high frequency components whose 

amplitude are well above machine precision, can quickly lead to numerical instability 

and cause the computations to break down. 

For the axisymmetric flow, de Bernadinis and Moore [7] proposed a quadrature rule 

with a correction to the vortex ring method to obtain an O( h3 log h) approximation. In 

the vortex ring method the trapezoidal rule is used omitting the self-induced (diagonal) 

contribution of each vortex ring. However, de Bernadinis and Moore approximation 

(dBM) yields a non-smooth error which degenerates to O(h) near the symmetry poles. 

Nitsche [44] has designed an improvement to the dBM quadrature by constructing ap­

proximate integrands near the poles. By integrating the difference between the original 

and approximate integrands, Nitsche obtained a uniform O(h3) quadrature. Higher order 

quadratures are also possible by improving the order of the approximate integrands [45]. 

Nie and Baker [41] have also proposed accurate quadratures for the evaluation of the 

boundary integrals in axisymmetric flow. Their approximations are based on adaptive 

local quadratures near the poles. Here, we use Nitsche's quadrature extended to yield a 

uniform O(h5) discretization error. 
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Surface tension introduces additional difficulties to the computation of the dynami­

cally evolving fluid interface. It modifies the pressure on the interface by a term which 

is proportional to the local mean curvature. As a result, a nonlinear term with high 

order derivatives is introduced to the interface governing equations through the mean 

curvature. This surface tension term induces a severe time-step stability constraint for 

explicit time marching methods. Rere, we use a highly accurate and efficient method, 0-L 

method, developed by Rou et ai. [23J to remove the stiffness of the time step constraint. 

Our numerical results show that the axisymmetric flow with suction in the presence 

of small surface tension behaves very similar to the corresponding Rele-Shaw flow. We 

consider an initially spherical blob of viscous fluid surrounded by inviscid fluid. The 

blob is drawn into an eccentric point sink inside it. Just as in the Rele-Shaw flows, 

a narrow finger develops. The finger tip evolves into a cone as the interface collapses 

by reaching the sink. For sufficiently small surface tension, the finger bulges and a 

well-defined neck forms at the top of the finger. The additional azimuthal component 

of the mean curvature enhances the definition of the finger neck while smoothing the 

interface there at the same time. Rowever, this component of the curvature is not large 

enough to induce the neck to pinch off. The second case we consider is the evolution of a 

slightly perturbed spherical interface whose associated Rele-Shaw problem was studied 

numerically by Nie and Tian [42J. As in the Rele-Shaw flow, two long fingers grow close 

to the axis of symmetry and also appear to develop cones at their tips as they reach the 

sink. For both initial data, we observe that the axisymmetric flow develops narrower 

fingers than those found in the Rele-Shaw counterpart. This may be due to the stronger 

sink force in the three-dimensional flow. 

The rest of the thesis is organized as follows. In Chapter 2 we present the numerical 

methods to remove the stiffness of surface tension in computing two-dimensional inter­

face and three-dimensional filaments. In Chapter 3 we present numerical methods in 

computing three-dimensional surfaces. The numerical study of two-dimensional flow in 

Rele-Shaw cell with surface tension is given in Chapter 4, and Chapter 5 is the study of 

axisymmetric flow with suction through porous media with surface tension. 
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Chapter 2 

Removing the Stiffness of Surface 

Tension in Computing Two-Dimensional 

Interfaces and Three-Dimensional 

Filaments 

In this chapter, we present new formulations for computing two-dimensional interfaces 

and three-dimensional filaments with curvature regularization. In Section 2.1, we derive 

the K,-L formulation for two-dimensional interfaces, with an application to vortex sheets 

with surface tension. Section 2.2 is devoted to three-dimensional filaments using the 

K,1-K,2-W- L formulation. As an example of illustration, we consider the motion of a three­

dimensional curve by its local curvature. We then apply this idea to a couple of more 

interesting applications, the Kirchhoff rod model and the anti-parallel vortex filaments 

in Sections 2.3 and 2.4. We discuss some practical implementation issues in Section 2.5. 

Finally, in Section 2.6, we present some numerical results which include vortex sheets 

with surface tension, motion of a three-dimensional curve by curvature, the Kirchhoff 

rod model and the anti-parallel vortex filaments. 

2.1 The 1'\,-£ Formulation for Two-Dimensional Interfaces 

In this section, we derive the K,-L method for two-dimensional interfaces. We first mo­

tivate the formulation for the simple model problem of motion by curvature. Then we 

derive the formulation for fluid interfaces, and indicate how the K,-L formulation can be 

used to remove the stiffness of surface tension for fluid interface problems. 
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2.1.1 Motion by Curvature 

We motivate the Ii-L approach by considering the motion by curvature in two dimensions. 

Let a curve r be given by 

X(a, t) = (x(a, t), y(a , t)), a E [0,21fJ, (2.1) 

where a parameterizes the curve. Then X evolves by 

X t = U 0, U = Ii, (2.2) 

where 0 = (-Ys, xs) is the right-handed normal and the signed curvature Ii is given by 

x,-"Ycw - X,-"o:Y,-" 
Ii = xsYss - XssYs = . 

(x~ + y~)3/2 

Here s is arclength, and the s and a derivatives can be exchanged through the relation 

a/as = (l/sa.)(a/aa) , where sa. = Jx~ + y~. We assume X is 21f-periodic in a. 

A "frozen coefficient" linear analysis about an arbitrary smooth solution for Eq. (2.2) 

gives a time-step stability constraint in the form of 6.t :s; Ch( t)2 for an explicit time­

integration method, where h(t) is the minimum grid spacing at time t. An implicit 

integration method , like the backward Euler or Crank-Nicholson scheme, would give a 

more stable discretization. But since curvature is a nonlinear function of the interface 

position, this would give rise to a nonlinear system for the implicit solution at the next 

time-step. 

The Ii-L approach, on the other hand, makes the application of an implicit method 

much easier. It consists of two steps: 

(A) Formulate the evolution using the Ii and s'-" as the new dynamical variables. 

(B) Introduce a change of frame in the parameterizat ion of r so that Sa. is independent 

of a and depends only on time. Thus, the equation for Sa. becomes an ODE for L, 

the length of the curve r. This reformulation of interface motion is motivated by 

the O-L frame in [30] (also see [23]). 

We notice that the shape of the curve is determined solely by its normal velocity U. 
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A tangential motion only results in a change in frame for the parameterization of the 

curve. Therefore, we can add a tangential force to the dynamics without changing the 

shape of the curve, i.e., 

X t = U ft + T s, 

where s = (xs, Ys) is the unit tangent vector, T is the added tangential velocity which 

will be determined later. To derive the evolution equat ions for K, and Sa, we make use 

of the FrEmet equations, ass = K,ft and a8 ft = -K,s. The evolution equations for Sa and 

K, are given by 

Sat = To-UKSQ 

1 ( U a ) T K,a U 2 -- +--+K,. 
Sa Sa a Sa 

= 

(2.3) 

(2.4) 

Given Sa and K" the position (x(G, t), Y(G, t)) can be reconstructed (see Section 2.4). For 

motion by curvature, we have U = K,. The evolution in terms of K, and Sa is 

(2.5) 

(2.6) 

For an explicit integration method, the stability constraint from the diffusion term is of 

the form 

(2.7) 

where Sa = minasa , and h is the initial grid spacing 1Il G. Therefore, the stability 

constraint is determined by the minimum grid spacing (i.e., hSa ~ ~s), which is time 

dependent, and for motion by curvature, it is always decreasing. 

In the reformulated system consisting of Eqs. (2 .5) and (2.6), an implicit discretiza­

tion becomes much easier since the highest order terms are linear. The discretization 

can be simplified further if Sa does not depend on G. This can be easily accomplished 
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by choosing a special tangential velocity T to force So to be equal to its mean: 

1 1271" 1 
So: = - So' (a' , t) da' = - L (t), 

27r 0 27r 
(2.8) 

where L is the length of the curve r. It follows from Eq. (2.5) that T satisfies 

1 1271" 
- (To:' - ",2 So:' )da', 
27r 0 

which implies 

T(a, t) 
L 10 L 127r 

2' a 2' 
= T(O, t) + - '" da - -()2 '" da . 

27r 0 27r 0 
(2.9) 

Here T(O, t) is simply an arbitrary change of frame which can be taken to be 0. Now 

since So: only depends on time t, but not on a, the PDE for So is reduced to an ODE for 

L, and Land", evolve by 

(2.10) 

"'t (2.11) 

Notice that the highest order term in Eq. (2.10) has no spatially varying prefactor, an 

implicit method can be easily applied to the PDE for "'. It is sufficient to treat the leading 

order terms implicitly, and discretize the lower order terms explicitly. Also, the equation 

for L is free of stiffness; we can use an explicit method such as the Adams-Bashforth 

method. Then at every time step, L can be updated explicitly, and the implicit solution 

fi, at the new time-step can be obtained explicitly by using the Fast Fourier Transform. 

2.1.2 The Formulation for Two-Dimensional Fluid Interfaces 

In the next two subsections, we will show how to generalize the idea presented in the pre­

vious subsection to fluid interface problems. The fluid interface problem is more difficult 

than motion by curvature because it involves nonlocal singular integral operators. To 

derive an efficient implicit discretization, we also use the so-called "small scale decom­

position" technique which separates the leading order contribution of a singular integral 
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operator from the lower order contributions. Since stiffness enters only at small scales, 

it is enough to treat the leading order operators implicitly. For fluid interfaces, these 

leading order intergal operators are the Hilbert transform and its variants. They can 

be diagonalized using the Fast Fourier transform. Thus we obtain an efficient implicit 

discretization at the same cost as an explicit method. 

We consider the motion of an interface r given by X = (x(a), y(a)), separating two 

inviscid, incompressible and irrotational fluids. The density is assumed to be constant on 

each side of r. The velocity on either side of r is evolved according to the incompressible 

Euler equation 

V'. Uj = 0. (2.12) 

Here j = 1 is for the fluid below rand j = 2 for the fluid above, Pj is the pressure, Pj is 

the density, and gy is the gravitational potential. The boundary conditions are: 

(i) 

( ii) 

[UJr . ii = 0, 

[PJr = n:, 

the kinematic boundary condition, 

the dynamic boundary condition, 

(2.13) 

(2.14) 

(iii) Uj(x,y) -+ (±Voo, 0) as y -+ ±oo, the far field boundary condition (2.15) 

where [.J denotes the jump taken from above to below the interface. The velocity has a 

tangential discontinuity at r. The velocity away from r has the integral representation 

(see, e.g., [3]), 

1 J ' (-(y - y(a')), x - x(a')) , 
(u(x,y),v(x,y)) = 27f ,(a) (x _ x(a'))2 + (y _ y(a'))2da, (2.16) 

where, is called the (unnormalized) vortex sheet strength. The true vortex sheet 

strength (i.e., the tangential velocity jump) is given by 

:y = ,(a) = [uJr . s. 
Sa 

(2.17) 

While there is a discontinuity in the tangential component of the velocity at r, the 
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normal component, U(a), is continuous and given by (2.16) as 

U(a) W·n (2.18) 

where 

W(a) = ~P.v.! /,(a') (-(y(a) - y(a')), x(a) - x(a')), da'. 
21f (x(a) - x(a'))2 + (y(a) - y(a'))2 

(2.19) 

The P.V. in front of the integral denotes the principal value integral. This integral is 

called the Birkhoff-Rott integral. Using the representation (2.16) for the velocity, Euler's 

equation at the interface and the Laplace-Young condition, the equations of motion for 

the interface are 

X t Un+Ts (2.20) 

/'t On((T-W,shlsc') 

-2Ap(sn W t · s + ~Onhlsn}2 + gYn 

- (T - W . s)W n . sl sn) + SK,n. (2.21) 

Here Ap = (PI - P2)/(PI + P2) is the Atwood ratio and S is a rescaled surface tension 

parameter (see [3]). In the special case of Ap = 0, i.e., PI = P2, the evolution equation is 

greatly simplified. It is reduced to a vortex sheet equation (see [53]). 

2.1.3 The Equations of Motion Reposed 

In the previous subsection, boundary integral formulation is given for the motion of a 

vortex sheet in two-dimensional, inviscid fluid. Numerical stiffness arises through the 

presence of high order terms (i.e., high spatial derivatives) in the evolution. In this 

subsection, we reformulate the equations of motion using the Small Scale Decomposition 

for inertial flows. The Small Scale Decomposition (SSD), which identifies and separates 

the dominant terms at small spatial scales, was first presented in [23]. The key idea is 

to identify the leading order contribution of certain singular operators at small spatial 

scales. Recall that the normal velocity U is given by Eqs. (2.18) and (2.19). Let the 

complex position of the interface be given by z(a, t} = x(a, t} + iy(a, t), then U can be 
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expressed as 

1 { ZQ /+00 ,(a', t) '} 
U (a, t) = - - I m -. P. V. () (') da . 

SQ 21n -00 Z a, t - Z a , t 
(2.22) 

Note that the kernel in the Birkhoff-Rott integral can be decomposed into two terms: 

1 1 

Z ( a, t) - Z ( a' , t) zQ(a-o:') 

+ [z(a, t) ~ z(a', t) - zQ(a 1_ a')] . 
(2.23) 

The most significant contribution comes from the first term on the right-hand side, since 

the bracketed term is analytic and corresponds to a smoothing operator. Therefore, we 

obtain the leading order behavior of U at small scales as: 

1 
U(a, t) '" -2 1-lb](a, t), 

SQ 
(2.24) 

where 1-l is the Hilbert transform defined as 

(1-lI) (a) = ~ r+ oo 
f (a') da'. 

7r } -00 a - a' 
(2.25) 

Its Fourier transform is given by 

(iiJ)(k) = -i(sgn(k))j(k). (2.26) 

The notation f '" 9 means that the difference between f and 9 is smoother than f and 

g. In terms of the new dynamic variables, "', SQ and " the equations of motion for 

the inertial vortex sheets are given by Eqs. (2.3), (2.4) and (2.21). Observe that the 

dominant term in Eq. (2.21) for ,t is S"'Q at small scales. Now, substituting Eq. (2.24) 

into Eq. (2.4) gives 

~ (~(_1 1-l[,]) ) + P 
SQ SQ 2sQ Q Q 

S"'Q + Q, 

(2.27) 

(2.28) 
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where P and Q represent lower order terms at small spatial scales. This is the small­

scale decomposition. If So is given, the dominant small scale term is linear in I), and ,",(, 

but nonlocal by the virtue of the Hilbert transform. An implicit discretization can be 

obtained by discretizing the leading order terms implicitly, but treating the lower order 

t erms explicitly. However , if So is independent of a , the implicit solution can be obtained 

easily by the Fast Fourier Transform, just as in the ca.':;e of motion by curva ture. By 

choosing a particular tangential velocity, So can indeed be independent of a . 

2.1.4 The K,-L Formulation 

As we mentioned before, the t angential velocity T may be introduced into the dynamics 

without changing the shape of the interface. We can choose the particular expression 

for T so that So does not depend on a in its evolution. As in the case of motion by 

curvature, So is set to be equal to its mean, which is 

1 127r 1 
So = - Sal (a', t)da' = -L(t) , 

2n 0 2n 
(2.29) 

where L is the length of the interface. It follows from Eq. (2.3) that T satisfies the 

following equation: 

1 127r 
- (Tal - U I), Sai )da ' 
2n 0 

=> T(a, t) L 10 

aL 127r T(O, t) + - Ul),da ' - -()2 Ul),da' . 
2n 0 2n 0 

(2.30) 

The spatial constant T(O , t) just gives an overall temporal shift in frame. For simplicity, 

it is taken to be O. Thus, the expression for T is determined entirely by L , I), and U. 

Assume that Eq. (2.29) is satisfied initially, then the choice for T in Eq. (2.30) ensures 

that the constraint (2 .29) is sa tisfied for all time. Now, the evolution of the interface is 

reformulated in terms of L and I), by 

-- I),Uda ' L 127r 
2n 0 

(2.31) 

2n 2n 2 

( )

2 

r: Uaa + r:Tl),a + 1), U. (2.32) 
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Given U, Eqs. (2.30) , (2.31) and (2.32) give a complete formulation of the evolution 

problem. 

The small scale decomposition for the inertial vortex sheets in the K,-L formula tion 

is now given as: 

'Yt 

(2;) 3 1ibooJ + P 

SK,o+Q, 

(2.33) 

(2.34) 

where P and Q denote the lower order terms, which do not contribute to the stiffness, 

and will be treated explicitly. In Fourier Space, these equations are 

k2 (21f) 2 _ -iT L Ikli (k) + P(k) 

-iSkK,(k) + Q(k), 

(2 .35) 

(2.36) 

where P and Q are the Fourier transforms of P and Q in Eqs. (2.33) and (2.34), and i is 

the imaginary unit. Now the implicit integration scheme can be easily applied together 

with an explicit discretizat ion of Eq. (2.31). Since the lower order terms, P and Q, are 

treated explicitly, the implicit solution for K, and 'Y can be inverted explicitly. This gives 

an efficient implicit discret ization of the fluid interface problem at the same cost as an 

explicit method. The numerical method in our computation will be discussed in Section 

2.4.1. 

2.2 The KI-K2-W-L Formulation for Three-Dimensional Fil-

aments 

In this section, we generalize the K,-L method to three-dimensional filaments. The formu­

la tion is more subtle for three-dimensional filaments since there are two normal vectors 

(e.g., the normal and the bi-normal vectors). It turns out that the choice of orthonormal 

basis has a significant impact on the computational method. In particular , the con­

ventional Frenet frame for three-dimensional filaments is not suitable for computat ional 

purpose. It can give rise to an artificial parameterizat ion singularity when curva ture 

va nishes . To overcome this difficulty, we use a more general orthonormal basis which 
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corresponds to the /'\;1-/'\;2-W-L formulation for three-dimensional filaments. 

Let us consider a space curve X(s, t) : [0, L] --)- R3 where s is arc-length and L is the 

total length of the curve. Alternatively we may parameterize X by a material coordinate 

a, i.e., X(a,t) : [0,27f] --)- R3. The unit tangent vector along the curve X is given by 

T(s, t) = (d/ds)X(s, t). A local description of the curve is provided by an appropriate 

set of coordinate axes. One such set is the Frenet triad consisting of the unit vectors 

T, Nand B, the tangent, normal and binormal vectors respectively. This orthonormal 

triad satisfies the well known Frenet equations 

w here a prime denotes a/as. /'\; = I dT / ds I is the curvature and T = (N x N s) . T is the 

torsion. Now we can write the evolution equation for the curve in the Frenet frame: 

Xt(a, t) = UN + VB + WT, (2.37) 

where U, V, Ware the normal, bi-normal and tangential velocity components respec­

tively, each of which can depend on both a and t. In the two-dimensional case, we use 

Sa and /'\; as the new dynamical variables. Naturally, we would like to use Sa, /'\;, and T as 

the new dynamical variables for three-dimensional filaments. Using the Frenet equations, 

we derive the evolution of the curve r in terms of Sa, /'\;, and T as: 

- -
/,\;Va + WTa + + 2/,\;UT. 

Sa 

(2.38) 

(2.39) 

(2.40) 

Consider the natural generalization of motion of a closed curve by local curvature, 
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namely, () = /'i" V = 0 in Eq. (2.37). W can be added to the motion of equations without 

altering the shape of the curve. Thus Eqs. (2.38), (2.39) and (2.40) become: 

(2.41) 

(2.42) 

(2.43) 

Now, if SQ is given, the highest order terms in the equations for /'i, and T are linear in 

/'i, and T respectively. Thus, an implicit integration method can be applied. Similar to 

the two-dimensional case, we can choose a special expression for W to enforce SQ to be 

independent of CY. Then the highest order terms in Eqs. (2.42) and (2.43) do not have 

spatially varying prefactors. So the implicit discretization of /'i, and T can be updated 

explicitly. The stability constraint has the form 

max (2J/'i,QJ, JWJ) b.t < h. 
Q /'i,SQ SQ 

(2.44) 

Note that the stability constraint depends on curvature. If /'i, becomes very small, we will 

get very strong stability constraint in the numerical computation. In fact, in the Frenet 

triad, N, Band T are only defined when the curvature does not vanish. In general N 

varies discontinuously through points where /'i, = 0 even for smooth curves. This would 

lead to the blowup of T since T depends on N s . This discontinuity in N through points 

where /'i, vanishes is artificial and is due to a poor choice of coordinate frame. For this 

reaSOll, the Frenet frame is not a good choice for computational purpose. 

Instead, we propose to use a more general orthogonal basis T, N 1, N 2 = T x N 1 in 

our numerical calculation of three-dimensional filaments. The Frenet system is replaced 

by 

T' /'i,lNl - /'i,2 N 2 

Nl 
, 

-/'i,lT +wN2 

N 2' /'i,2 T -wN1 , (2.45) 
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There are natural relationships between 1'£1, "'2, wand "', T: 

/ "'I + "'~ 
"'2"'1s - "'1"'2s w+ . T 

'" 

(2.46) 

(2.47) 

If we make the special choice of w = T, then the new orthonormal basis is reduced to the 

Frenet triad. In this case, we have "'1 = "', "'2 = O. 

The unit tangent vector T(s) = (d/ds)X(s) is determined once the curve X(s) is 

known. Then we choose vectors N 1 (O),N2 (O) such that (T(O),N1 (O),N2 (O)) are a set of 

orthonormal vectors. By choosing a smooth function for the rate ofrotation, w, and using 

the relations "'1 = ",N . N 1, "'2 = -",N . N 2 , we integrate the last two equations in (2.45) 

along the arclength, s, to determine N 1 (s) and N 2 (s ). Notice that the first equation 

in (2.45) is automatically satisfied since we have used it to construct "'1 and "'2. Thus we 

obtain a smooth orthonormal basis set (T(s),N1 (s),N2 (s)). Clearly, this orthonormal 

basis is smooth as long as the curvature is smooth, even though the curvature may vanish 

at some points. 

Now we rewrite the evolution equation for the curve in our newly chosen orthonormal 

Since we have relationships between N,B and N 1,N2 , namely 

(2.48) 

it is straightforward to determine the relationships between U, V, Wand a, V, W. 

The fact that X has continuous second order derivatives in space and time implies 

that the cross derivatives of 0' and t commute. To carry out the computations associated 

with this relationship it is convenient to write the time derivatives of the basis T, N 1, N 2 
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as 

(2.49) 

where AF(a, t) = >'1N 1 + A2N2 + A3T is the rotation vector whose components AI, A2, A3 

are related to U, V, Wand hence K:l, K:2, w: 

(2.50) 

and A3 will be determined later. It can be shown (also see [28]) that the equations of 

motion for SCi) K:l, K:2, W in terms of U, V, W take the form: 

Wa + (VK:2 - UK:l)Sa 

1 (Ua ) 2wVa +waV - WK:l a _ Uw2 
Sa Sa a Sa 

+ K:r(UK:l - VK:2) +WK:2W - A3K:2 

_~ (Va) _ 2wUa + Wa U - WK:2a + Vw2 
Sa Sa a Sa 

+ K:2 (U K:l - V K:2) - WK:l W - A3K:l 

Wt 
K:l Va + K:2 Ua - wWa 2 (U V) A3a + W K:l - K:2 +-. 

Sa Sa 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

As a final remark, note that we now have four functions S,K:l, K:2 and W to describe a 

curve in R3. W measures the twist rate of the NI-N2 plane around T, and may (e.g., the 

Kirchhoff rod model) or may not (e.g. motion by curvature) have physical significance. 

As in the two-dimensional case, we can choose a tangential velocity W to force Sa to 

be everywhere equal to its mean, 

1 12K 1 
Sa = - sal(a', t)da' = -L(t), 

21f 0 21f 
(2.55) 
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where L is the length of the curve r. Specifically 

::::} W(a, t) (2.56) 

Now since So depends only on t and not a, the PDE for 8 0 reduces to an ODE for L. 

Equations for Land /\, 1, /\'2, W then reduce to 

L 1211" -- (U/\'l - V/\'2)da' 
27r 0 

/\, It ( 
27r) 2 27r 3 - U - -(2wV; + W V - W/\'l ) - Uw L aa L a a a 

+ /\'2 (U/\'l - V/\'2) - W/\'l W - >'3/\'1 

27r 27r 
[;(/\'1 Va + /\'2 Uo - wWo) + 2W(U/\'1 - V/\'2) + [;>'30. Wt 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

We now show that for motion by curvature this reformulation leads to efficient implicit 

discretization. To obtain the velocity in this new basis, we project the original equation 

X t = /\,N into the new orthonormal basis. Using the relationships between Nand 

N I , N 2 , we have U = /\'1 and V = -/'1'2. Simply substitute U, V into Eqs. (2.57) - (2.60) 

and take >'3 to be 0 (see subsection 2.5.3), we derive the formulation in terms of /\'1, /\'2, W 

and L as 

Wt 

(2; ) 2 /\,10a + 2; (2W/\,2a + Wo/\'2 + W /\'1a) 

2 2 2 + /\,d/\'l + /\'2 - W ) + W/\'2 W 

(2; ) 2 /\,20a _ ~ (2W/\,10 - Wa/\'l + W /\'20) 

+/\'2(/\,i +/\,~ -W2) -W/\'lW 

27r 
[;(/\,2/\,10 - /\,1/\,20)· 

(2.61) 

(2.62) 

(2.63) 

(2.64) 
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As in the two-dimensional case, Land w can be updated using an explicit integration 

method. The highest order terms in Eqs. (2.58) and (2.59) do not have spatially varying 

prefactors. We can invert the implicit discretization for the diffusion terms in the 11:1 and 

11:2 equations efficiently. 

2.3 Application to the Kirchhoff Rod Model 

We now apply our method to the physically interesting problem of the Kirchhoff rod. 

The study of elastic rods is the subject of continued scientific and mathematical interest. 

Applications of the dynamics of rods and filaments include the dynamics of proteins and 

super-coiled DNA [54], writhing instability in fibers and cables [65], three-dimensional 

scroll waves [64], magnetic flux tubes and the formation of sunspots [38], etc. Under some 

simplifying assumptions, the motion of an elastic rod filament can be well described by 

a one-dimensional system of equations. One such set of equations, the Kirchhoff rod 

equations [31]' can be constructed as follows [19]. The rod is represented by its center 

line X(s, t) : [0, L] ---* R3 and twist (defined below) w(s, t) : [0, L] ---* R. Here s is 

arclength and L is the length of the rod. For simplicity we assume that the cross section 

of the filament is always circular with constant radius in space. Define a reference ribbon 

by a pair of curves (X, X + EN 1) where N 1 (s, t) : [0, L] ---* R3 is a unit vector field such 

that N 1 . T = ° (T is the unit tangent vector along the curve X) and E is the width of 

the ribbon. The twist w (with respect to the reference ribbon (X, X + EN 1)) is defined 

to be the rotation rate of N1 around T moving along X; i.e., w(s, t) = (N1(s, t) x 

(djds)Nds, t)) . T. The Fr?met triad is a particular choice of ribbon which corresponds 

to choosing N1 = N. Recall that N has the same direction as (djds)T(s, t). More 

typically N 1 might point in the direction of one of the principle axes of the cross section 

of the rod. The equations of motion can be written as 

d2 d d 
-X= -F-r/l-X+g 
dt2 ds dt 

d .. . 
-d M = F x T + BlxT + WI + 7J2(Blx + W 2) + H 

s 

(2.65) 

(2.66) 

(2.67) 
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where g contains the other external forces such as gravity, contact force, etc., rand 

TJi measure respectively the relative energetic importance of twist and flexure and the 

relative time scales of viscosity and inertia. The rod shearing terms W 1 and W 2 are set 

to be 0 and r to be 1. 

We rewrite the velocity of X in terms of the ribbon basis as 

where N2 = T X N 1. To compute the main force F, we decompose it into the local 

orthonormal ribbon basis: 

The normal and bi-normal components of F can be determined immediately from Eqs. (2.66) 

and (2.67), that is FI = -11:1s and F2 = 11:2s. The determination of the tangential force 

FT = F·T is more subtle. We will derive it later. Using Eqs. (2.45), (2.49), (2.65), (2.66) 

and (2.67), we obtain the evolution equations for 11:1,11:2, w, and Sa as follows: 

= Wa - (U11:1 - VI1:2)Sa 

= 1 (Ua) 2wVa +waV - WI1:1a _ Uw2 
Sa Sa a Sa 

'\3a 11:1 Va + 11:2Ua Wa - + + 2W(U11:1 - V11:2) - W-
Sa Sa Sa 

Wa '\3 
- -TJ2-, 
Sa Sa 

where g1 = g. N1 and g2 = g. N2 . 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

(2.72) 

(2.73) 

(2.74) 

Eq. (2.74) is derived from Eqs. (2.66) and (2.67). To see this, we observe that 
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Eqs. (2.66) and (2.67) give 

(2.75) 

where Olx refers to 0 at a fixed filament position X (see [33]) (Here the dot denotes 

a/at). If we hold X steady and allow twisting, we have Nlt = >q(a,t)T x N 1 . Over an 

element of the filament from X(a) to X(a + 6a) 

where () = Js(a) wds = Ja sawda is the angle of rotation of the reference ribbon at 

X(a, t). Thus when X is fixed, Olx = A3, and Olx = ).3. Substituting these relations 

into Eq. (2.75) gives Eq. (2.74). 

Now we are going to determine the tension FT = F· T. From ~! = Sa T, we get 

ax ax 

aa aa 

(2.76) 

provided that the rod has prescribed extension rate r(a, t), i.e., Sat = r(a, t)sa, which is 

true by our choice of W from Eq. (2.56). Differentiating this equation with respect to 

time t, we get 

aa aa 
ax ax . 2 

- aa . aa + rSa + 2rsasat 
ax ax 

s;(r2 + r -ITtI2). (2.77) 

From Eq. (2.49), we get ITtl = jA? + A§. It can be shown that Al and A2 are related 

to U, V, W by 

(2.78) 



Furthermore, we have 

ax ax 
aa aa 

Thus FT satisfies 
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a .. 
saT· aaX 

a dF dX 
Sa T . aa ( ds - 'TJdi + g) 

s~T· (Fss + gs)· (2.79) 

(2.80) 

with F1 = -1);15' F2 = 1);2s and gt = g . T. The right-hand side of the equation for FT de­

pends only on known qualities and hence the tension is determined with the appropriate 

periodic boundary conditions for closed filaments. 

We now summarize the small scale decomposition in the 1);1,1);2 and W formulae as 

follows: 

with Wt rv 2; '\3a + P3 and '\3t rv ~ Wa + Q3, where Pi and Qi, i = 1,2,3 are the lower 

order terms. The highest order terms in the equations for 1);1,1);2, U, V, wand '\3 now 

appear linearly. After updating L explicitly, it is a straightforward exercise to apply an 

implicit integration method to these equations. 
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2.4 A pplication to Nearly Parallel Vortex Filaments 

Another interesting problem we consider is a nearly parallel pair of vortex filaments. Vor­

tex filaments with large strength and narrow cross section are prominent fluid mechanical 

structures in mixed layers, boundary layers and trailing wakes. It is interesting to study 

the interaction of nearly parallel and anti~parallel vortex filaments in high Reynolds 

number flows. An ensemble of vortex filaments interacts via the three-dimensional Biot-

Savart integrals for the induced velocities on the filament centerlines [34]. The induced 

motion of each filament consists of self- and foreign- induced velocity contributions. It 

has been shown by Callegari and Ting [9], Klein and Majda [35] and, using a totally dif­

ferent analytical approach, by Klein(1994) and Klein and Knio [34] that the geometrical 

evolution of the filaments in the regime considered obeys the propagation law 

(2.81) 

The first term points in the direction of the local binormal vector B i , and via the 

expression In( ~ ) + Ci , describes the influence of the vortex core structure on the filament 

motion. Here 8 « 1 relates to the small effective core sizes and Ci is a quadratically 

nonlinear functional of the detailed core vorticity distribution of the ith filament(see [9], 

[35] and [34]). Q{ is the filament motion due to non-local self stretching [35] and the 

foreign-induced velocity Qiuter has been analyzed in [36]. Klein, Majda and Damodaran 

derived simplified equations for a pair of interacting vortex filaments in [36]: 

(2.82) 

where to = (0,0,1) and i, j = 1,2. These simplified equations retain the important phys­

ical effects of linearized local self-induction and nonlinear potential vortex interaction 

among filaments but neglect other non-local effects of self-stretching and mutual induc­

tion. Now we apply our method to the nearly parallel vortex filament pair using the 

equations above. Notice that i'£B = i'£2N 1 + i'£ l N 2 . Using Eqs. (2.57) ~ (2.60), it is easy 

to derive the formulation in terms of i'£li, i'£2i, Wi and Li and the small scale decomposition 
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in the K:li, K:2i formulae is as follows: 

where Pi and Qi are the lower order terms , i = 1, 2. As before , the implicit solutions are 

easily obtained using the Fast Fourier Transform. 

2.5 Some Implementation Issues 

This section is devoted to addressing a few practical implementation issues. This includes 

the question of what implicit discretization scheme we will use, the reconstruction of the 

interface from the curvature variable, and the choice of orthogonal basis in the Kirchhoff 

rod model. 

2.5.1 Time-Stepping Considerations 

The time integration scheme we used in this thesis is a fourth order multi-step im­

plicit/explicit scheme studied in [lJ by Ascher, Ruuth and Wetton. This is one of the 

better high order implicit/explicit schemes to use in the sense that it has a large stabil­

ity region. Consider a time-dependent PDE in which the spatial derivatives have been 

discretized by either central differences or by pseudo-spectral methods. This gives rise 

to a large system of ODEs in time which typically has the form 

du 
dt = f(u) + vg(u), (2.83) 

where 9 is a linear operator containing high order derivatives and f(u) is a nonlinear 

function which we do not want to integrate implicitly in time. To avoid using excessively 

small time steps, we would like to treat the vg(u) implicitly while treating the nonlinear 

term f (u) explicitly. Typically f (u) involves only first order derivatives from the con-

vective terms, so the stiffness induced from the nonlinear term is not as severe as that 

from the linear operator g(u). 
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The fourth order implicit/explicit scheme considered by Ascher, Ruuth and Wetton 

is given as follows: 

(2.84) 

We simply apply this fourth order implicit/explicit scheme to our problems. For example, 

we use this scheme in the inertial vortex sheet problem: 

_1 (~(_1 1-lh'J) ) + p 
2so So 2so 0 0 

"It S"'o + Q, 

(2.85) 

(2.86) 

where P and Q represent the lower order terms. We obtain the following time discrete 

system: 

and 

Then with our special choice of the tangential velocity T, SO is independent of CY, and 

we can solve for ",n+l and 'Yn + 1 explicitly using the Fast Fourier Transform. 

2.5.2 Reconstruction of the Interface from Curvature 

The construction of the initial equal arclength parameterization is the same as in [23J. 

The idea is to solve the nonlinear equation for the equal arclength grid points using 
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Newton's method and Fourier interpolation. The equation that must be solved is 

1{3j ,jh 1211" , L 
S ,da = - s ,da = j h -, 

o a 27r 0 a 27r 

for {3j as j = 0, .. ) N with h = 27r/N. Here a is a given parameterization. {3j gives the 

location of points in the a parameterization that are equally spaced in arclength. L is 

obtained by trapezoidal integration of so' over its period. 

Moreover, it is important to discuss the reconstruction of the two-dimensional inter­

face (x, y) from (L, I), ), and the three-dimensional filament (x, y, z) from (L, I), 1 , 1),2, w). 

One natural way to reconstruct (x, y) from curvature is to integrate the FrEmet equa­

tions along the interface. This will generate the tangent vector T. We can then integrate 

the tangent vector along the interface to obtain the interface position. This involves two 

numerical integrations for each time step, and we need to keep track of two initial con­

ditions at the beginning point of the interface. An alternative is to use the evolution 

equation for the interface. Recall that r evolves according to X t = U ft + Ts. We can 

reconstruct (x, y) through integration of these original equations. In the inertial vortex 

sheets problem, we know that 

1 
U(a, t) '"" -1lb](a, t), 

2so 

so we get 

X t = -2
1 

1lblft + P, 
So 

(2.87) 

where P includes the lower order terms. In the computation, we treat -21 1lbl implicitly 
So 

and all the other terms explicitly. However, due to the numerical error, the points on the 

curve are no longer equally distributed (i.e., Sa is not exactly L/(27r) everywhere). This 

makes Eq. (2.87) incompatible with Eqs. (2.27) and (2.28). This difficulty is overcome 

by redistributing (x, y). For example, we can make use of the formula 

L 
X~=-T 

~ 27r' (2.88) 
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We denote the solution of Eq. (2.87) by X. Then integrate the equation 

(2.89) 

with respect to a to get X for the new time step. Of course, in the absence of numerical 

errors, the coefficient in front of Xo: should be 1. We have considered other ways of redis­

tribution, but we have found that this approach gave the best performance numerically. 

This method of reconstruction using the original evolution equation for X also applies 

to three-dimensional surfaces. 

In the case of three-dimensional filaments, a space curve r evolves according to 

X t = UN + VB + TVT, where X = (x(a, t), y(a, t), z(a, t)). If we simply reconstruct 

(x, y, z) by integrating these three equations, we will get a stability constraint of the 

form Ilt ::; C h2
, since N involves a second derivative of X. So, we try to reconstruct X 

using the first approach we mentioned earlier. First, we integrate Eq. (2.45) to get the 

tangential vector T, then integrate Eq. (2.88) to get X. By doing this, we can still have 

a stability constraint of the form tlt ::; Ch. 

2.5.3 Contact Force in the Kirchhoff Rod Model 

In practice, a contact force g is added to Eq. (2.65) to avoid self crossing of the filament. 

The contact force becomes important when the rod deforms in such a manner that points 

separated by large differences in arc-length become close to one another in space. The 

contact force can be modeled by the following integral formula (see [18]) 

! u' ([ r (s) - r (a) [) 
g(s) = - M(s,a) [r(s) _ r(a)[ [r(s) - r(a)]da, (2.90) 

where U is a self-potential generating a central force between pairs of points along the 

rod, and M is a mollifier leading to total energy and corresponding, for example, to a 

nonzero radius of the rod. In our example, we take the potential U to be proportional 

to [r(s) - r(a)[-9. 

Another point we should stress is that in the case of motion by curvature, we simply 

take >'3 to be 0 which makes the formulation much easier. But this cannot be done in the 

case of the Kirchhoff rod model. The reason is that in the case of motion by curvature, 
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we are only concerned with the shape of the curve r which is solely determined by the 

tangential vector. Therefore, we can choose a particular N 1 and N 2 by taking )..3 to be 

o. In the Kirchhoff rod model, we do not just study a space curve. Instead, we study a 

rod with some thickness. Thus the twist w is important in the evolution of the rod and 

in fact depends on )..3. 

2.6 Numerical Results 

In this section, the results of numerical simulations are presented for several two and 

three-dimensional problems. All of these simulations use the appropriate small scale 

decomposition, together with the associated numerical methods discussed in the previous 

sections. In Section 2.6.1, we consider motion by curvature in two dimensions for both 

periodic curves and closed curves. In Section 2.6.2, we consider motion by K,- < K, > 

in two dimensions. Section 2.6.3 presents the motion of inertial vortex sheets and the 

comparison of the K,-L frame with the (j-L frame presented by Hou, Lowengrub and 

Shelley in [23]. In Section 2.6.4, we compute the motion by curvature in three dimensions 

and compare the stability constraints using our K,1-K,2-W-L method and a straightforward 

explicit method in (x, y, z) coordinates. Motions for the Kirchhoff Rod Model and the 

anti-parallel vortex filaments are presented in Section 2.6.5 and 2.6.6 respectively. 

2.6.1 Motion By Curvature in Two Dimensions 

In the next two subsections, we perform several numerical tests on motion by curva­

ture in two dimensions to demonstrate the effectiveness of our method. These tests all 

demonstrate that our reformulated implicit method has only a linear stability constraint, 

i.e., b..t is of the same order of the spatial mesh size. This linear stability constraint is 

expected since we treat the convection terms explicitly. From our stability analysis for 

the convection equation, we can see a dependence of the CFL condition on the maximum 

curvature. This is also verified numerically. 

We consider a plane curve r evolving according to 

(2.91) 
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In our numerical calculations, we use the length of the curve and the curvature as our 

dynamic variables. They evolve by Eqs. (2.10) and (2.11). The reconstruction of the 

position of the curve is done by directly integrating the evolution equation (2.91). 

In our first example, we choose the initial curve as X = (a+.2 cos( 47fa) , .5 sin(27fa)), 0 ::; 

a::; 1. We graph the position of the curve at various times. In Fig. 2.1 (a)-(d), we show 

the continued evolution of the curve from t = 0.0 to t = 0.08. There are N = 128 mesh 

points in the unit interval with time step ~t = 0.00025. 

a b 
0.5n-=-~--------~----------. 0.5,----------------, 

o o 

-0.5~--~----~~~--------~ -0.5 L-____ ~~ ____ ---' 

o 0.5 o 0.5 

c d 
0.5.------------------------. 0.5,----------------, 

o 0"-

-0.5 L-_______ ~ ____ _____l -0.5 L-_____ ~ ____ _____l 

o 0.5 o 0.5 

Figure 2.1: Motion by curvature; initial sin curve; N = 128, ~t = 0.00025; curve por­
trayed every 0.005: (a) 0 to 0.02, (b) 0.02 to 0.04, (c) 0.04 to 0.06, (d) 0.06 to 0.08. 

In fact, ~t can be increased as time progresses. We list the maximum time steps 

that can be used at various times in Fig. 2.2. The time step ~t is chosen to be so small 

initially is due to the stability constraint. From Eqs. (2.10) and (2.11), we derive the 

stability constraint of the form 

max ITI~t < C· Lh. 
Q 

(2.92) 
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dt 
O.(X)2 

O,(X)l25 

O.(X)OX 

O.(X)04 

O.(X)0251-----j 

o (WI 0.02 0.03 0.04 0.05 

Figure 2.2: Maximum time steps at various times. 

Here T = JoQ (K,2)da' - a J01(K,2)da'. Thus tlt is related to the magnitude of curvature 

through T. We print out the curvature of this curve in Fig. 2.3. The maximum curvature 

of this curve is around 130. Since initially the curvature is large along some part of the 

100 

50 

-50 

-100 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
alpha 

Figure 2.3: Curvature of the initial sin curve. 

curve, the time step has to be small to satisfy the stability constraint. We see that this 

periodic curve moves faster where it has bigger curvature and it relaxes to a straight line 

with increasing time. When we increase the number of points in the calculation, we do 

see the time step decreases linearly. 

We next consider the initial curve X = (a + .lsin(27fa),.5cos(27fa)),O ::; a ::; 1, 

evolving according to Eq. (2.91). The maximum curvature of this initial curve is around 
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143. We graph the position of the curve at various times. In Fig. 2.4 (a)~(d), we show 

the continued evolution of the curve from t = 0.0 to t = O.OS. N = 12S mesh points were 

used and the time step b.t = 0.00005. This periodic curve relaxes quickly to a straight 

a b 
0.5 C--=~~--~--~-~-~ 0.5,------~--~--~-~--___, 

o 

-0.5 '-----_~ __ ~---'>.L_~_~ _ ______' -0.5 '------~--~--~-~----' 
o 0.2 0.4 0.6 0.8 o 0.2 0.4 0.6 0.8 

c d 
0.5 ,----~--~--~-~-_____, 0.5 ,----~--~--~-~---, 

o o 

-0.5 '---~--~--~-~----' -0.5 L-_~ __ ~_~~_~_------' 

o 0.2 0.4 0.6 0.8 o 0.2 0.4 0.6 0.8 

Figure 2.4: Motion by curvature: N = 12S, b.t = 0.00005; curve portrayed every 0.004: 
(a) 0 to 0.02, (b) 0.02 to 0.04, (c) 0.04 to 0.06, (d) 0.06 to O.OS. 

line as time increases. In Fig. 2.5, we list the maximum time steps that can be used at 

various times. 

We also consider the evolution of an initial closed curve 

x = (1 + 0.4sin(101fa))(cos(21fa),sin(21fa)), 0::; a::; 1, 

according to Eq. (2.91). With N = 256 mesh points, and time step b.t = 0.001, we show 

in Fig. 2.6 (a)~(d) the continued evolution of the curve from t = 0.0 to t = 0.2. The 

plots show that this star-shaped curve quickly relaxes to a circle. 
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dt 
(UX)125 

O.0(X>75 

O.()(X)5 

O.()(Xl35 

O.O(XX)5 t===:L __ l __ ~ __ ~ __ ~ ___ _ 
o (Ull 0.02 O.D3 0.04 0.05 

Figure 2.5: Maximum time steps at various times. 

a b 
2r--~--~--~--~ 2r--~--~--~---' 

0 0 

-1 -1 

-2 -2 
-2 -1 0 2 -2 -1 0 2 

c d 
2 2 

0 0 0 
-1 -1 

-2 -2 
-2 -1 0 2 -2 -1 0 2 

Figure 2.6: Motion by curvature; star-shaped curve: N = 256, ~t = 0.001; curve por­
trayed every 0.01: (a) 0 to 0.05, (b) 0.05 to 0.1, (c) 0.1 to 0.15, (d) 0.2. 
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2.6.2 Motion by K,- < K, > in Two Dimensions 

We consider the initial curve X = (-2 sin(21fa), cos (21fa) ) evolving according to 

X t = (/'£- < /'£ » n, (2.93) 

here < /'£ > is the mean of /'£, i.e., Iol/'£da. With N = 256 mesh points and b.t = 0.005, 

we show the continued evolution from t = 0.0 to t = 2.0 in Fig. 2.7. We see that a circle 

is the equilibrium state for this ellipse under the motion by /'£- < /'£ >. 

1.5 

-1.5 

_2'----"-----"-----"-----"'------'----'---.L.-~ 

-2 -1.5 -1 -D.5 0.5 1.5 

Figure 2.7: Motion by /'£- < /'£ >; elliptic-shaped curve: N 
0.0,2.0(0.2). 

256, b.t 0.005, t 

We also compute the same initial curve evolving according to Eq. (2.91). N = 256 

mesh points and b.t = 0.0025 are used and the evolution from t = 0.0 to t = 1.0 are 

shown in Fig. 2.8. Here we see that the ellipse shrinks to a point under Eq. (2.91). 

To test the dependence of b..t on the magnitude of curvature and the spatial mesh 

size h, we perform a series of resolution studies for three examples. These examples 

give the same shapes of curves, but with increasing curvature by a constant factor, 2. 

In the first example, the initial curve is given by Xl = (-4sin(21fa),2cos(21fa)). It 

evolves according to Eq. (2.91) and Eq. (2.93). Table 2.1 gives the largest possible time 

steps that give stable discretizations are shown. Using Eq. (2.91), we only calculate until 

t = 4.0 at which time the curve essentially becomes a point. 
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1.5 

-1.5 

-2 L-_L---------'_----'_--'-_---'-_---"-_----'---_---.J 
-2 -1.5 -1 -0.5 0.5 1.5 

Figure 2.8: Motion by curvature; elliptic-shaped curve: N = 256, ~t = 0.0025, t 
0.0,1.0(0.1). 

No. of points U=I'\, U = 1'\,- < I'\, > 
128 0.02 0.025 
256 0.01 0.0125 
512 0.005 0.00625 

Table 2.1: Largest possible time steps that give stable discretizations for motion by 
curvature problem. The initial curve is Xl = (-4 sin(21fa), 2 cos(21fa)). 

No. of points U=I'\, U = 1'\,- < I'\, > 
128 0.005 0.0075 
256 0.0025 0.005 
512 0.00125 0.0025 

Table 2.2: Largest possible time steps that give stable discretizations for motion by 
curvature problem. The initial curve is X 2 = (-2 sin(21fa), cos(21fa)). 

No. of points U=I'\, U = 1'\,- < I'\, > 
128 0.002 0.002 
256 0.001 0.001 
512 0.0005 0.0005 

Table 2.3: Largest possible time steps that give stable discretizations for motion by 
curvature problem. The initial curve is X3 = (- sin(21fa), 0.5 cos(21fa)). 
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In the second example, we scale the initial curve of the first example by a factor of 

2, i.e., X 2 = (-2 sin(27ra ), cos (27ra)). We evolve it by the same equations, Eq. (2.91) 

and Eq. (2.93). The largest possible time steps that give stable discretizations are given 

in Table 2.2. Using Eq. (2 .91) , we only calculate until t = 1.0 before it is essentially a 

point . 

In the third example, we scale the initial curve of the first example by a factor of 

4, i.e., X 3 = (- sin(27ra ), 0.5 cos (27ra)), and evolve it by the same equations. Again we 

list in Table (2.3) the largest possible time steps that give stable discretizations. Using 

Eq. (2.91), it will essentially be a point after t = 0.25 . 

Basically the curvature of X3 is two times the curva ture of X 2 and four times the 

curvature of Xl . From Eqs. (2.31) and (2.32) , the stability constraint is of the form 

max ITlllt < eLh, (2.94) 
Q 

under the motion by K, or K,- < K, >. Here T = J~ (UK,)da' - a Jo1(UK,)da l
• Since 

T is proportional to K,2, the time step constraint for X 3 is approximately four times 

smaller than that for X 2. Similarly the time step constra int of X 2 is approximately four 

times smaller than that for Xl. This is exactly what we observed from the numerical 

calculations. 

The above calculations all demonstrate that our numerical method is free of severe 

time step constraint. The time step is proportional to the space grid size in all these 

calculations. In fact , the particle grid spacing is decreasing in almost all the cases since 

the curve shrinks to a point. Without using our implicit discretization, the method 

would have become unstable very early on. 

2.6.3 Inertial Vortex Sheets 

Next, we apply our reformulated implicit scheme to the inertial vortex sheet problem 

with surface tension. This problem has been well studied by Hou, Lowengrub and Shelley 

in [23] using the ()-L formulation. Significant improvement on stability constra int was 

observed over conventional explicit discretizations, e.g., the fourth order Runge-Kutta 

method. It is natural for us to compare the performance of the ()-L method and our K,-L 
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method. Our numerical experiments indicate that these two reformulated schemes give 

the same stability constraint. This is also explained analytically in this subsection. This 

is an important and encouraging comparison, because our reformulation can be applied 

to three-dimensional problems. 

In order to compare our methods with the O-L frame presentedy in [23], we examine 

the long-time evolution of inertial vortex sheets with surface tension. We use the same 

initial condition as in [23]: 

x(a,O) 

'Y(a, 0) 

a + 0.01 sin 2na, 

1.0, 

y(a,O) = -0.01 sin 2na, 

(2.95) 

and choose S = 0.005 as in their calculation. In Fig. 2.9, a time sequence of interface 

positions is given, starting from the initial condition. Also we plot the vortex sheet 

strength "1 and the curvature K, at various times in Figs. 2.10 and Fig. 2.11 respectively. 

Our calculation uses N = 1024 and tlt = 1.25 X 10-4 . We also compare directly our 

numerical solutions with those obtained by the O-L frame presented in Hou et at [23]. 

We found that the O-L frame and the K,-L frame give us essentially the same numerical 

result. Also we have checked the stability constraint using these two formulations. We 

find that using the same number of points, the largest possible time steps that give stable 

discretizations are of the same order for the two methods. This can also be explained 

analytically. Using the O-L frame (assume that a E [0, 2nD, the equations of motion are 

given by 

(2.96) 

(2.97) 

It (2.98) 

where T is given by 

(2.99) 
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(b) 
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0.5 
T=0.60 

(d) 

0.5 
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0.4 0.45 0.5 0.55 
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Figure 2.9: Inertial vortex sheets; sequence of interface positions: S = 0.005, N = 

1024, ~t = 1.25 x 10-4 
: (a) t = 0, (b) t = 0.60, (c) t = 0.80, (d) t = 1.20, (e) t = 1.40, 

(f) close-up of top pinching region, t = 1.40. 
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(a) (b) 

-~I 1 -~I ~ I 
-4~----------------~ -4~----------------~ 

o 0.5 1 0 0.5 1 
T =0.0 T =0.60 

~ (~ 

=;1 === I ~E3 o 0.5 1 0 0.5 1 
T =0.80 T =1.00 

(e) (f) 

=;E3 =;E0:] 
o 0.5 1 0 0.5 1 

~1.~ ~1.~ 

Figure 2.10: Inertial vortex sheets; sequence of T S = 0.005, N = 1024, 6.t = 1.25 X 

10-4 : (a) t = O,(b) t = 0.60, (c) t = 0.80, (d) t = 1.00, (e) t = 1.20, (f) t = 1.40. 
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o 0.5 1 0 0.5 1 

T=O.O T=0.60 
(c) (e) 
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T =0.80 T =1.00 
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Figure 2.11: Inertial vortex sheets; sequence of K,: S = 0.005, N = 1024,!::it = 1.25 X 

10-4 
: (a) t = 0, (b) t = 0.60, (c) t = 0.80, (d) t = 1.00, (e) t = 1.20, (f) t = 1.40. 
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By using an implicit discretization like the one we discussed before, we will get a stability 

constraint of the form 

L 
max ITIf:::J.t < C· -h. 

n 21f 
(2.100) 

Using the K,-L frame, the equations of motion are given by Eqs. (2.31), (2.32) and (2.21), 

so the stability constraint is of the form 

where Tl is given by 

L 
max IT11f:::J.t < C· -2 h, 

n 1f 

L Ion aL 102K 

T1(a, t) = - K,Uda' - -()2 K,Uda' . 
21f 0 21f 0 

(2.101) 

(2.102) 

Using the relationships between 0 and K" K, = On/sn, for here Sn = L/(21f), it is easy to 

see to that T = T1 . This shows that the K,- L frame and 0-L frame have the same order 

stability constraints. 

The reason that we use this K,-L frame is that we could use the similar idea to the 

computation of three-dimensional curves and surfaces. The comparison of the results by 

using the K,-L frame and O-L frame shows that our K,-L frame shares the same stability 

property as the O-L frame, and yet has the advantage of being applicable to three-

dimensional filaments and surfaces. 

2.6.4 Motion by Curvature for Three-Dimensional Filaments 

We now turn our attention to three-dimensional filaments. First we test our method for 

the simple motion by curvature in three dimensions. We basically confirm the similar 

performance we observed for the corresponding two-dimensional problem. We perform 

a careful comparison with an explicit fourth order Runge-K utta discretization. For 

N = 512, the maximum allowable time step for our method is 3200 times larger than 

that for the Runge-Kutta method. We also test the reformulation using the Frenet 

frame. We found that the computation breaks down at a relative early time due to the 

formation of a vanishing curvature point. This corresponds to a blow-up in the torsion 



47 

No. of points Explicit Method ""1-""2-W-L Method 
128 0.000125 0.0750 
256 0.00003125 0.0375 
512 0.00000625 0.0200 

Table 2.4: Comparison of the maximum time step for explicit method and ""1-""2- w-L 
method. 

variable. This is an artificial parameterization singularity. The filament is very smooth 

at this time. Using the generalized curvature ""1 and ""2, we can compute well beyond 

this time without any difficulty. 

Consider the three-dimensional curve 

x = (sin(2a), cos( a), sin( a) + 2 cos(2a)), a E (0, 21f), 

evolving according to motion by curvature, X t = ""N. Using our ""1-""2-W-L formulation, 

with N = 256 mesh points, and time step tlt = 0.0005, we show in Fig. 2.12 the continued 

evolution of the curve from t = 0.0 to t = 1.4. We observe that this space curve relaxes 

to a circle and eventually shrinks to a point. 

We compare our method with a straightforward explicit discretization of X t = ""N 

in (x, y, z) coordinates. This involves using a spectral method for the spatial derivatives 

and fourth order Runge-Kutta method in time. We list below the maximum time step 

that can be taken to get a stable solution using these two methods. Due to the particle 

clustering, we can only compute up to t = 1.0 using the explicit method. Clearly we can 

see the huge advantage of using our implicit discretization. 

The motion of a three-dimensional filament by curvature is somewhat different from 

that of the two-dimensional counterpart. In the two-dimensional case, it is possible to 

interpret the geometrical significance of positive or negative curvature. However, for 

three-dimensional curves, the curvature is defined by 

(2.103) 
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Figure 2.12: N = 256, !::"t = 0.0005 : (a) t = 0.0,0.6(0.1) , (b) t = 0.7,1.0(0.1) , (c) t = 1.4. 
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The positive square root is taken in Eq. (2.103) and thus the curvature is always non­

negative, I'\, 2:: O. When it passes through points where I'\, = 0, the normal vector N varies 

discontinuously. Moreover, at points where I'\, = 0, the torsion is not well defined. Recall 

that the definition of torsion is 

T = 1'\,-2 pC . Xx X). (2.104) 

It is obvious that the torsion is only defined when the curvature does not vanish. 

We have tried the same example using I'\,-T-L formulation (2.41), (2.42) and (2.43). 

We began to have numerical difficulties around t = 1.015 when the curvature became 

close to zero at some point on the curve. In fact, we were only able to compute up 

to t = 1.015 using 256 points, no matter how small a time step we took. This is due 

to the stability constraints we derived from Eq. (2.44). On the other hand, we had no 

difficulty computing past t = 1.015 when using the 1'\,1-1'\,2-W-L formulation. In Fig. 2.13, 

we compare the plots of curvature at t = 1.015 using the I'\,-T-L formulation and 1'\,1-1'\,2-

w-L formulation by taking the time step to be /:).t = 0.00125 and tit = 0.01 respectively. 

Here we have used the relationship I'\, = J I'\,i + I'\,~ • 

By using curvature and torsion By using k1,k2 and w 
2r-------~--------~------~~ 2.---~--~--------~------~~ 

1.8 1.8 

1.6 1.6 

1.4 1.4 

1.2 1.2 

0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

OL-~----~--------~------~~ OL-------~--------~------~~ 
024 6 o 2 4 6 

N=256,dt=0.00125 at T=1.015 N=256,dt=0.01 at T=1.015 

Figure 2.13: Comparison of curvature at t = 1.015 using I'\,-T-L and 1'\,1-1'\,2-W-L formula­
tion. 

We note the similarity in the two plots of the curvature. We also note the jump in 
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the derivative of the curvature as the curvature approaches zero. This means that "'Q is 

not continuous and the Eqs. (2.42) and (2.43) break down. 

0.5 0.5 

0 
0 

-0.5 
~ -0.5 N 

~ 
-1 

-1 
-1.5 

-1.5 -2 

-2 -2.5 
0 2 4 6 0 2 4 6 

Figure 2.14: "'1 and "'2 at t = 1.02 with N = 256 and .6.t = 0.01. 

We also plot the variables "'1 and "'2 at t = 1.02 in Fig. 2.14. Note that these variables 

remain smooth along the entire curve. Thus we see the advantage and indeed, necessity 

of using the "'1-"'2-W-L formulation instead of the", - T - L formulation. 

2.6.5 Motion of the Kirchhoff Rod Model 

Next we test our numerical methods on the motion of the elastic rods. Two inter-

esting equilibrium states are reached using two different initial perturbation of a cir­

cular initial filament. As before, no stiffness is observed using our reformulated im­

plicit schemes. A sequence of snapshots of the dynamics approaching to equilibrium 

for two examples (radius r = 1) are shown in Fig. 2.15 and Fig. 2.16. In both exam-

pIes, we choose as initial conditions a circular conformation with total twist Tw = 5. 

Here Tw(X) = 2~ § w(X(s))ds. In the first example, we choose the initial twist to 

be distributed uniformly with a small localized perturbation. In particular, we choose 
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w(.s,O) = (5 + wd/(5 + 2~ § W1d.s), where 

° Ix - 7r1 < !!.. - 2' 

(2.105) 

4 cosh2( 3:-~x) 
7r < x < 3;. 

In the second example, we use the same parameters and a similar initial condition as the 

first one, except that the initial twist includes an order one non-localized perturbation 

from uniformity. More precisely, we choose w(.s,O) = 27rL- 1Tw* (1 +0.8*sin(27r.s/L)). In 

both of these examples, we use 256 grid points in our calculations, and a time step Ilt = 

0.00125. For the first example, the solutions are plotted at t = 0,1.6,2.1,2.6,4,12 re­

spectively. For the second example, the solutions are plotted at t = 0,1.2,2.4,2.8,4,6, 12 

respectively. 

In these two examples, the rods start twisting around t = 1.6 and t = 1.2 respectively. 

Because of the contact force, the rods cannot self-cross, thus it would keep twisting until 

it approaches to the equilibrium configurations. We have also investigated using different 

values for the parameters 1]1,1]2 in Eqs. (2.65) and (2.66). We find that there is little 

change in the equilibrium states in both examples, but the rate at which the rods evolve 

to these states is affected. 

We should mention the construction of the initial condition for these two examples. 

In our methods, it is necessary to specify initial values of 1\;1, 1\;2 and w. The twist of the 

circle w is already given, so we need to determine 1\;1 and 1\;2 from the curvature I\; and 

the torsion T. Since I\;Y + I\;§ = 1\;2, we parameterize 1\;1,1\;2 by I\; and ¢ as follows: 

I\; sin¢. (2.106) 

Note that the torsion T is zero everywhere for an unit circle. Substituting the above 

equations into Eq. (2.47), we get 

¢s = w. 
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Figure 2.15: Approach to equilibrium "clover" configuration. t = 0,1.6,2.1,2.6,4,12. 
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Figure 2.16: Approach to equilibrium "plectonemic" configuration. t 

0,1.2,2.4,2.8,4,6,12. 
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Thus we are able to calculate cP. The curvature of the unit circle is 1. Thus 1);1 and 1);2 

are completely determined by Eq. (2.106). 

Finally, it is necessary to include some sort of contact force g( s) to prevent the elastic 

rod from self-crossing. In a similar way to [32] we have set 

f res) - rea) 
g(s) = -. M(r(s),r(a)) (Ir(s) _ r(a)l)loda. (2.107) 

The purpose of the mollifier M is three-fold. First, some distinction must be made 

between nearest neighbor points along the curve and other points that are far away in 

arclength but close in space. Clearly, for those points which are nearest neighbors along 

the curve, no contact force is necessary and therefore M is set to be zero. However, if 

two points which are separated by a large distance in arc-length become close to another 

in space, M must be non-zero to activate the contact force. Therefore, M helps prevent 

self-crossing while ensuring that points along the curve are not forced apart. 

Secondly, the magnitude of the contact force needs to be controlled to prevent overly 

large forces from destabilizing our solution. The contact force has the form of a stiff 

inverse power law ( ex. r- lO ) so some care must be taken in choosing a constant of 

proportionality. This is the other role that M plays when the contact force is in effect. 

We assume the radius of the rod is approximately 3 times the grid spacing, i.e., hsc" 

thus M needs to be chosen so that the distance between any two points which are not 

close in arc-length cannot be smaller than 6hs Q • We do not have an explicit expression 

for M here. In our first example, we simply take M to be 0.005 if the distance is less 

than 12hsQ and 0.1 if the distance is less than 8hs Q • In our calculation SQ = L/27f is 

very close to 1. In our second example, we take M to be 0.004 if the distance is less than 

14hsQ and 0.04 if the distance is less than 8hsQ • 

Third, by setting M = 0 when res) and rea) are distant, we reduce the computational 

cost in evaluating (2.107) from O(n2 ) to O(n). This step is absolutely necessary in order 

to prevent the evaluation of g(s) from dominating the entire computation. 

By way of comparison, reference [32J used a similar model to calculate the evolution 

of an elastic rod. The method there was to directly discretize Eqs. (2.65) - (2.67) using 

second-order centered differences. Here we have the considerable advantage that no high 

order time step stability constraints are imposed. This advantage is crucial if accurate, 
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long-time computations (such as DNA modeling) are to be attempted. 

It is interesting that both of these examples start from unit circles with the same 

total twist. The only difference is the distribution of the initial twist. But they approach 

to two totally different equilibrium states. The clover-like structures are also observed 

in Langevin dynamics simulations [50] and the plectonemic conformation is similar to 

DNA studies. 

2.6.6 Motion of Anti-parallel Pair of Vortex Filaments 

Finally, we are going to test our method on the motion of the anti-parallel vortex fil­

aments. We consider large amplitude antisymmetric helical initial perturbations of the 

anti-parallel pair ([14] & [36]): 

( -0.5 + 0.3 cos a, 0.3 sin a, a) 

0.5 + 0.3 cos a, 0.3 sin a, a), a E (0, 27f). 

(2.108) 

(2.109) 

The circulation strengths r 1 , r 2 in Eq. (2.82) are taken to be 1 and -1 respectively. 

We apply the fourth order implicit-explicit scheme in our numerical experiments and find 

that the time step is indeed linearly dependent on the spatial mesh size as we expected. 

However, the fourth order scheme for this particular problem requires a small time step 

for stability constraint. Instead, we use the second order implicit-explicit scheme in our 

computation. The second order implicit-explicit scheme simply uses the leap frog scheme 

for the lower order term and the implicit Crank-Nicholson scheme for the leading order 

term: 

(2.110) 

Snapshots of the evolving filaments at times t = 0, 0.73 and 0.79 are given in Figs. 2.18 

-2.20 where 1024 mesh points and time step L':lt = 0.00125 are used. The initial separa-

tion distance between the two filaments is constant, and as time evolves, the minimum 

separation distance decreases until the pair collapses around t = 0.79. In Fig. 2.17, we 

also show the curvature K, and the twist w of the second filament X 2 at time t = 0.79. Us-

ing our method, we are also able to include the other non-local effects that are neglected 
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in the simplified equations (2.82). 
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Figure 2.17: Curvature and twist of the second filament at t = 0.79. 

2.7 Appendix: Evolution Equations for rLl, rL2 and w for 

Three-Dimensional Filaments 

We assume the space curve X evolves by 
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Figure 2.18: Snapshot of filaments for antisymmetric perturbation at time t = o. 
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Figure 2.19: Snapshot of filaments for antisymmetric perturbation at time t = 0.73. 
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Figure 2.20: Snapshot of filaments for antisymmetric perturbation at time t = 0.79. 
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where U, V, Ware the velocity components with respect to the orthonormal basis N 1, N 2, T 

which satisfies 

d 
-T 
ds 

d 
-Nl 
ds 
d 
-N2 
ds 

where OF(a, t) = 1i:2N1 + 1i:1N2 + wT. 

Also we write the time dependence of the basis T, N 1, N 2 as 

d 
-T 
dt 

AF X T 

d 
AF X N1 -N1 

dt 
d 
-N2 AF X N 2, 
dt 

(2.111) 

(2.112) 

where AF(a, t) = A1N1 +A2N2+A3T is the rotation vector whose components A1,A2, A3 

are related to U, V, W- and hence Ii:l,1i:2,W. From t8X = T, we get 

d 
da X = Set T. 

Self consistency requires equality of the a and t cross derivatives, namely 

d2 d2 

--X=-X. 
dadt dtda 

Straightforward computations show that 

Wet + (V Ii: 2 - U Ii:dSet 

Vet 
---UW+WIi:2 

Set 
Uet 
- - VW+ W1i:1. 
Set 

(2.113) 

(2.114) 

(2.115) 

(2.116) 
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Further calculation leads to the equations of motion for K:lSa, K:2Sa and WSa: 

Using Eqs. (2.114) - (2.116), we obtain the equations of motion for K:l, K:2 and W as 

follows: 

Wt 

2wVa +waV - WK:l0 _ Uw2 
So 

+ K:l (U K:l - V K:2) + WK:2 W - )...2K:2 

_~ (Vo) _ 2wUo + woU - WK:20 + Vw2 
So So 0 So 

+ K:2(UK:l - VK:2) - WK:l W - )...2K:l 

K:l Vo + K:2 Uo - wWo (U V) )...30 --------+2w K:l- K:2 +-. 
So So 

(2.117) 

(2.118) 

(2.119) 

So the equations of motion for So, K:l, K:2, W in terms of U, V, W take the forms of Eqs. 

(2.114), (2.117), (2.118) and (2.119). 
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Chapter 3 

Removing the Stiffness of Surface 

Tension in Computing 

Three-Dimensional Surfaces 

In this chapter, we present new formulations for computing three-dimensional surfaces 

with curvature regularization. In Section 3.1, we derive the K,- A - u formulation for three­

dimensional surfaces. As an example of illustration, we consider the motion of a three­

dimensional surfaces by its local mean curvature. We then apply this idea to a simplified 

water wave model in Sections 3.2. Some practical implementation issues are presented 

in Section 3.3. Finally, in Section 3.4, we show some numerical results which include 

motion of a three-dimensional surface by mean curvature, simplified three-dimensional 

water wave model on Gaussian waves and gravity waves. 

3.1 The K - .A - u Formulation for Three-Dimensional Sur­

faces 

In this section, we derive the K, -A - u method for computing the motion of three­

dimensional interfaces. We first motivate the formulation for the problem of motion by 

mean curvature. Then we derive the formulation for fluid interfaces, and indicate how 

the K, - A - u formulation can be used to remove the stiffness of surface tension for fluid 

interface problems. 

3.1.1 Motion by Mean Curvature 

We motivate the K, - A - u approach by considering the motion by mean curvature 

in three space dimensions. We parameterize the surface using parameters 01 and 02 
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so that X(Ol' 02, t) = (X(Ol' 02, t), Y(Ol' 02, t), Z(Ol' 02, t)), where t is time. In order 

to simplify our computation, it is important to use an orthogonal parameterization of 

the free surface; we call it f3 = (f31, (32), instead of the original Lagrangian variable, 

0= (01,02), l.e., 

We now want to show how to construct an orthogonal parameterization. First we 

introduce some notation (also see [59].) If p is a point on a surface X, then for each 

tangent vector v to X at p, let 

where U is the unit normal vector field on a neighborhood of p in X. Sp is called the 

shape operator of X at p (derived from U). It is the rate of change of U at p in direction 

v. It can be shown that all curves on X with a given direction v at point p have the 

same normal component of acceleration at p, namely Sp(v) . v. This is the component of 

acceleration which the bending of X forces the curves to have. 

Let v be a unit tangent vector, then the number /'£(v) = Sp(v) . v is called the normal 

curvature of X in the v-direction. The maximum and minimum values of the normal 

curvature /'£(v) of X at p are called the principal curvatures of X at p. They are denoted 

by /'£1 and /'£2 respectively. The corresponding directions are called principal directions 

with the unit vectors in these directions being the principal vectors. It can be proved 

that if /'£1 -I- /'£2, there exists one pair of orthogonal directions e1 and e2 for which the 

values of /'£ take on maximum and minimum values /'£1 and /'£2. Furthermore, 

(3.1 ) 

There are two cases that have /'£1 = /'£2: the planar point case and the special elliptic 

case in which it becomes a circle point. In these exceptional cases, all directions are 

regarded as principal directions and obviously the normal curvatures are then the same 

for all directions. This means we can easily choose one pair of orthogonal directions. 
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Thus, the orthogonal frame is constructed such that the two normal tangent vectors 

1'1 and 1'2 are the two principal vectors of the surface X. They are defined by 

where u = IXi311 ,v = IXi321. Then normal vector N is defined by 

The construction of the orthogonal parameterization numerically will be discussed in 

Section 3.3. For motion by mean curvature, the surface X evolves by 

where the mean curvature 

"" A X t = - N 
2 ' 

~ A A A 

- V', N· T1 - V" N· T2 
Tl T2 

_(Ni31 ·1'1 + Ni32· 1'2), 
U V 

(3.2) 

(3.3) 

is the sum of the two principal curvatures ""I and ""2. We assume X is 27f-periodic in f31 

and f32 and has continuous derivatives in space. This implies that the cross derivatives 

of f31 and f32 commute. From X i31i32 = Xi32i31' we get 

U (Ni32 ·Td V (Ni31 ·1'2) (3.4) 

1'1 ·1'2 Ui32 (3.5) /31 v 

1'1/32 ·1'2 Vi31 (3.6) 
U 

As in two-dimensional problems, adding tangential motions does not alter the shape 

of the surface, but the parameterization frame of the surface. Thus, we introduce two 

tangential velocities into the dynamics and rewrite the evolution equation for the surface 
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as 

(3.7) 

of course 13 = K,/2 here. it and 12 are the added forces along the two tangential directions 

which will be determined later. Now we want to derive the evolution equations in terms 

of u, v and K,. The equations for u and v are derived by differentiating u = Xi31 . Tl and 

v = Xfh . T2 with respect to time t: 

(3.8) 

(3.9) 

Differentiating Eq. (3.3) with respect to t and making use of Eqs. (3.4) ~ (3.6), we get 

the evolution equation for K,: 

Note that the high order terms in the above equation come from the first two terms in 

the right-hand side. It can be simplified if we have v = )..(t)u, where).. is only time 

dependent. We propose that this can be assured by choosing the specific tangential 

motions (it, h)· This will be discussed in Section 3.3. 

Combining Eqs. (3.8) and (3.9), one can easily derive the motion equation for )..: 

(3.11) 
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Now Vt can be omitted. Instead, Ut and Vt are combined as one equation 

Ut = ~ (hf3 + hf32 + 12 Uf32 + h u/h +h (Nf3 .T1 + Nf32 .T2)). 
2 1 A AU U 1 A 

(3.12) 

When h = 1'\,/2, the evolution equations in terms of 1'\" A and U become 

(3.13) 

(3.14) 

(3.15) 

In the above equations, we see that the equations for A and U are free of stiffness, we 

can use an explicit method to solve A and U at every time step. The high order terms 

in Eq. (3.13) are the first two terms. Since we know the new updated A and U at every 

time step, we can treat K~;,~l + ;~~~~ implicitly and the rest of the terms in Eq. (3.13) 

explicitly. For two-dimensional interfaces, we set the arclength variable Sa to be constant 

in space. For three-dimensional surfaces, we cannot set U to be independent of {3. It is 

impossible to have both U and A to be constant and keep the frame orthogonal at the 

same time. Thus, I'\, cannot be solved explicitly using the Fast Fourier transform (FFT). 

However, we can still use an iterative method to solve for I'\, using FFT which will be 

discussed later in Section 3.3. 

3.2 The Equations of Motion of Three-Dimensional Water 

Wave Problems 

We now describe the motion of a three-dimensional surface separating two inviscid, 

incompressible, irrotational fluids using the boundary integral formulation. We label the 
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region above the surface as region 1 and the one below as region 2. Since the flow in each 

region is irrotational, we introduce the velocity potentials ¢l and ¢2 given by Ul = V' ¢l 

and U2 = V' ¢2 with UI/U2 being the velocity above/below the surface. The surface can 

be considered as a distribution of dipoles of strength density; following, the potential in 

the fluid domain off the surface is defined as 

(3.16) 

where 

, 1 X-~ 
G(X,X) = - 47fIX _ X'I' V'x,G = - 47fIX _ X'1 3 ' 

(3.17) 

and the dipole strength fl = ¢_ - ¢+ is to be determined by ¢. Using the limit for the 

double layer potential, we obtain a Fredholm integral equation of the second kind for p, 

on the surface 

(3.18) 

This equation can be solved by iteration on fl. By differentiating (3.16) with respect to 

X and then integrating by parts, we obtain the velocity on the surface to be 

W(x,y,z) V' ¢(X ({3)) = Wo ({3) + Wioe ((3), 

wo(x, y, z) J K(X') x V'x,G(X,X')dS', 

Wioe(X, y, z) 
1 2 
2K(X) x (X/31 x X/3J/IX/31 x X/321 , 

here 

The evolution equation for the surface is then given by 

ax -a = w(x, y, z). 
t 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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The continuity of normal stresses gives the Bernoulli's equation which described the 

evolution equation for ¢(fJ, t). 

8¢1 1 -8 + -lwl 2 + gz = TK,. 
t X 2 

(3.23) 

Here g is the gravity constant, T is the surface tension and K, is the mean curvature. The 

TK, term comes from the pressure difference at the surface. The Eqs. (3.22), and (3.23) 

together with the relations (3.18) and (3.19), completely specify the motion of the system. 

3.2.1 A Simplified Water Wave Model 

Numerical simulations for three-dimensional water wave problem demand a great com­

putational effort. The main work is spent in evaluating the surface velocity and velocity 

potential which requires O(N4) calculations where N is the number of particles used 

to discretize the surface in each dimension. In addition, as with the two-dimensional 

problems, the three-dimensional water wave problem is susceptible to severe numerical 

instabilities. 

Motivated by the small scale decomposition, we can derive a simplified model equa­

tion to approximate the velocity integral. More precisely, we replace the boundary 

integral for the surface velocity by its leading contribution at high modes. First, we 

write the surface evolution equation in the form of Eq. (3.7). Also, noticing Wloe • N = 0, 

we have the normal velocity 

= (J (~X - ~X ) x (- X(fl) - X(fJ') ) d ') . N 
h(fJ) 8fJ1 fh 8fJ2 fh 41T IX(fJ) _ X(fJ')13 fJ (fl). 

(3.24) 

In order to get the leading contribution at high modes for h, we expand X(fJ) at fJ = fJ' 

and it leads to 

Here to simplify notations, we write /11 = -ifk and /12 = i/f;. 
Next we expand N(fJ) at fJ = fJ' and make use of the orthogonality of the frame 
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Now we introduce the Rietz transforms HI, H2 and A, defined by 

l = 1,2, (3.27) 

and 

Using integration by parts , one can show that the A operator is related to Hl , l = 1, 2 

by 

(3.29) 

where D l , l = 1,2 is a derivative operator with respect to fk 

Hou et al. [24] have proved that the Rietz transforms have the following spectral 

representation: 

(3.30) 

and 

(3.31) 

Making use of Eqs. (3.18) and (3.31), we obtain the leading order behavior of h at small 

scales as 

h IXJ31 ~XJ321 (HdDl/L) + H2(D2 /L)) 

IXJ31IlXJ32 1 A(</J) 

= J (IXfJlI2~r + IXfJ2 f~~)l /2 </J(c,)eif,'Q d~. 
IXJ311IXJ321 

(3.32) 
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Remember we have set v = AU, i.e., IXi32 1 = AIXi31 I, the above relation is thus simplified 

to be 

(3.33) 

Here A{¢) is defined as J{~r + # )1/2¢(Oei f.'CL d~. 
We denote the velocity of the Lagrangian particles on the surface as w. It can be 

different from the velocity w from Eq. (3.19) because we have freedom to select the 

tangential force. Thus, 

ax at = w(x, y, z). (3.34) 

Now, Bernoulli 's equation can be evaluated in this Lagrangian frame, by noting that 

a¢1 a¢ I -at CL = at x + Re{ w . w}. (3.35 ) 

Substituting Eq. (3.23) into the above equation, we get 

- = Re{w· w} - -lwl 2 
- gz + TK,. 

a¢1 _ 1 
at CL 2 

(3.36) 

Observing that the dominant term for ¢t is TK, (check Eq. (3.23)) at small scales and 

substituting Eq. (3.33) into Eq. (3.10) give us 

TK, + Q, 

(3.37) 

(3.38) 

where P and Q represent lower order terms at small spatial scales which do not contribute 

to the stiffness. If A and U are given, the dominant small scale terms are linear in K, and 

¢, but nonlocal by virtue of the Rietz transform. An implicit discretization can be 

obtained by discretizing the leading order terms implicitly, but treating the lower order 

terms explicitly. 
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3.3 Some Implementation Issues 

In this section, we first discuss the construction of the initial orthogonal parameterization 

of the surface X(/31Jh) = (X(/31,/h),y(/31,/32) ,Z(/31,/32)) such that 

(3.39) 

(3.40) 

We cannot prove the existence of such a parameterization yet. In our computation, 

we assume this condition holds where .\ only depends on time. A tangential motion is 

introduced into the dynamics to enforce that without changing the shape of the surface. 

We then discuss how to choose the tangential motion (iI , h). At last , we talk about the 

reconstruction of the surface from curvature and the preconditioned conjugate gradient 

method for solving /'i,. 

3.3.1 Initial Orthogonal System 

The surface we consider is given by 

Z = (x,y,ry(x,y)) (3.41) 

wi th x and y being the two parameters. We want to find a mapping (x, y) => (/31, /32) 

such that 

Z /31 . Z /32 

Z /31 . Z(31 

Suppose we have 

x 

Y 

C1 Z (32 . Z (32 

C2 Z (32 . Z /32· 

/31 + 81 (/31 , /32)' 

/32 + 82(/31 ,/32 ), 

(3.42) 

(3.43) 

(3.44) 

(3.45) 
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where 51 and 52 are periodic in (3. By the chain rule, we get 

Z(31 (X(3]l Y(3]l TJXX(31 + TJyY(3J = (1 + 51,(3]l 52,(3]l TJx (1 + 5 1,(31) + TJy5 2,(3J (3.46) 

Z(32 (X(32' Y(32' TJX Xf32 + TJyY(32) = (51,(32,1 + 5 2,f32' TJx 5 1,(32 + TJy(l + 52,(32)).(3.47) 

Thus, 

1 + 251,(31 + (51,f31)2 + (52,f31)2 + (TJx(1 + 5 1,(3J + TJy5 2,(31)2 

1 + 252,f32 + (52,(32)2 + (51,f32)2 + (TJx51,(32 + TJy(l + 52,(32))2. 

(3.49) 

(3.50) 

Substituting these equations into Eqs. (3.42) and (3.43), we get the coupled equations 

for 51 and 52: 

where 

Cd Z (32 . Z(32) - (Zlh . Z(32 - 5 1,(32 - 52,(3J == F1, 

(5 - Z(31 . Z(31 ) _ C (5 _ Z(32 . Z(32 ) == F2 
1,(31 2 2 2,(32 2 

C
2 

= < Z(31 . Z(31 > 
< Z(32 . Z(32 > 

(3.51) and (3.52) can be changed to 

C oFl oF2 
2 0(32 + 0(31 

oFl oF2 
0(31 - 0(32· 

(3.51 ) 

(3.52) 

(3.53) 

(3.54) 
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We implement an iterative method to solve this system. The iteration scheme can be 

written as 

aFr aFr 
C2 af32 + af31 (3.55) 

aFr aFr 
-----
af31 af32 

(3.56) 

This quasi-Poisson equations for Sl and S2 are easily solved using FFT. In our compu­

tation, C1 is taken to be 0 for simplicity. For our numerical examples, the orthogonal 

coordinate system can be found. 

Suppose the surface cannot be described as (3.41); instead it is given in the form of 

Z = (x(ad,y(a2),fz(a)) which is a perturbation of a plane. Using the same idea, we 

can also derive an iteration method to construct the orthogonal coordinate system. 

3.3.2 Tangential Velocities 

In order to have the system satisfy (3.39) and (3.40) for all time, we introduce a tangential 

motion (h, h). First, by differentiating v = >.(t)u with respect to t and making use of 

Eqs. (3.8) and (3.9), we get 

Also from (X,81 . X,82 h = 0, we get 

(3.58) 

We then rewrite the system for hand 12 by differentiating Eqs. (3.57) and (3.58), 

1 
f}.h + (>. - ).)12i31i32 

1 
f}.12 + (->. + ).)h i31i32 
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As in Section 3.3.1, we also solve these equations iteratively. The iteration scheme can 

be written as 

b..r+1 + (,\ - ~ )r+1 
1 ,\ 2~1~2 

(3.59) 

b..r+1 + (-,\ + ~ )r+1 
2 ,\ 1~1~2 

(3.60) 

They are easy to solve using FFT in each iteration. In the Fourier space, the above two 

equations become 

(3.61) 

In our numerical experiments, it only takes a few iterations to converge with an iteration 

error of 10- 11 . 

3.3.3 Reconstruction of the Surface from Curvature 

We use the same idea to reconstruct the surface from curvature as the two-dimensional 

cases. We reconstruct (x, y, z) through integration of the original evolution equation 

(3.7). Making use to (3.33), we get 

X t = A(¢)N + P, (3.62) 
tL 

where P includes the lower order terms. In our computation, we treat A(¢) ItL implicitly 

and all the other terms explicitly. We denote the solution of Eq. (3.62) by X. Due to the 

numerical error, X~l is not exactly tL and X~2 is not exactly '\tL. This makes Eq. (3.62) 

not compatible with Eqs. (3.11), (3.12), (3.37) and (3.38). In order to overcome this 

difficulty, we enforce X~l = tL and X~2 = '\tL to be satisfied. This is achieved by 

integrating the equations 

(3.63) 

(3.64) 
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with respect to f31 and f32 to get X for the next time step. For flows which are periodic in 

x and y, it requires X = X(f31, f32, t) to be periodic in f31 and f32' In particular, the coeffi­

cient of the linear terms in f31 and f32 should be O. Unfortunately, integrating Eqs. (3.63) 

and (3.64) using the DFT perturbs the coefficients slightly due to the numerical error. 

This difficulty is fixed by forcing the coefficients to be exactly 0, after the reconstruction 

process. From Eq. (3.63), we get 

Differentiating (3.65) with respect to {32 gives us 

Making use of (F1 )/h = (F2 )f31 and (3.64), we derive one formulation for X 

Similarly we get 

Thus combining the above two equations, we reconstruct X by using 

where 

Fdf31, (32) + Fdf31, 0), 

F2 (f31, (32) + F2 (0, (32)' 

(3.65) 

(3.66) 

(3.69) 

(3.70) 

(3.71) 

(3.72) 
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3.3.4 Preconditioned Conjugate Gradient Method 

We apply the fourth order multi-step implicit/explicit scheme studied in [1] by Ascher, 

Ruuth and Wetton to our problem (3.37) and (3.38). We obtain the following system: 

and 

~(25 qP+l _ 4¢n + 3¢n-l _ ~¢n-2 + !¢n-3) = 
tlt 12 3 4 

T",n+l + 4Qn _ 6Qn-l + 4Qn-2 _ Qn-3. 

By substituting ¢n+l into the equation for ",n+l, we can eliminate ¢n+l and obtain a 

single equation for ",n+l, which takes the form: 

(3.73) 

where N is a known quantity depending on the solutions at the previous time steps. 

The spatial derivative is discretized by a spectral method. Since u n+1 depends on (3, the 

equation is no longer diagonalized by the Fourier transform. Consequently, we use an 

iterative method to solve for ",n+l. Note that the linear operator in the left-hand side 

of (3.73) is symmetric, positive definite, we use the Preconditioned conjugate gradient 

method. The preconditioning operator M is given by: 

M( n+l)_ 2 n+l T (12 2(- n+l) 1 -( n+l ) ( ) '" - u max '" - --. -tlt) A(", ) {hfh + ( n+l)2 A '" )){hlh ,3.74 
U mzn 25 A 
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h - n+1 d -' n+1 Th M' t t ffi' t d' were U max - maxtJ U an Umin - mlntJ U . us IS cons an coe clen an IS 

diagonalized by the Fourier transform: 

(3.75) 

Note that M can be inverted in N 2 log N operations using FFT. Empirically, it only 

takes two to three iterations to converge with an iterative error of 10- 11
. The error we 

consider is the maximum change of successive iterates. 

3.4 Numerical Results 

3.4.1 Motion By Mean Curvature for Three-Dimensional Surfaces 

We begin our numerical experiments with motion by mean curvature for three-dimensional 

surfaces. First we consider a surface which is extended from a two-dimensional curve 

x = (a1 + 0.5 cos(2aJ), a2, 2 sin(aJ)) , 

Using our K,->..-u formulation, with N = 64 mesh points and time step b..t = 0.025, we 

show in Fig. 3.1 the shape of the surface at t = 0,0.5,1.5 and t = 5.0. We observe 

that the surface moves faster where it has greater curvature and relaxes to a fiat surface 

eventually. 

We compare our method with a straightforward explicit discretization of X t = K,N 

in (x, y, z) coordinates. This involves using a spectral method for the spatial derivatives 

and fourth order Runge-Kutta method in time. We list below the maximum time step 

that can be taken to get a stable solution using these two methods in Table 3.1. 

Next we consider the initial surface given by 

Using our K,->..-u formulation, with N = 64 mesh points and time step b..t = 0.01, we 

show in Fig. 3.2 the shape of the surface at t = 0,0.4,0.8 and t = 1.2. The surface 

relaxes quickly to a fiat surface. When we increase the number of points, we do see the 
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t: 0 
Motion by Mean Curvature 

t: 0.5 

t: 2.0 

t: 5.0 

Figure 3.1, Motion by mean curvatm'c, N = 64, Llt = 0.05; (a) t = 0, (b) t = 0.5, (e) t = 2.0, (d) t = 5.0. 
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Motion by Mean Curvature 

t = 0 t= 0.4 

t= 0.8 
t = 1.2 

Figure 3.2: Motion by mean curvature: N = 64,6.t = 0.002; (a) t = 0, (b) t = 0.4 , (c) 
t = 0.8, (d) t = 1.2. 

0.4 

0.2 

-0.2 

.0 .4 
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No. of points Explicit Method r;,-A-U Method 
16 0.05 0.1 
32 0.0075 0.05 
64 0.00125 0.025 

128 0.0003125 0.01 

Table 3.1: Comparison of the maximum time step for explicit method and r;,-A- U method 
on motion by mean curvature problem in three dimensions. 

time step decreases linearly. The above computation shows that our method does not 

have severe time step constraint. 

3.4.2 Simplified Water Wave Model Approximation 

Next we test our numerical methods on the simplified water wave model developed in 

the previous chapters. The initial condition is given by 

z(x,y) 
exp( -lO(x - 7r)2 + (y - 7r)2) 

10 

¢ = o. 

The initial wave profile is shown in Fig. 3.3. For our first experiment, we choose the 

surface tension to be 0.01. In Figures 3.4 - 3.8 we show the wave profile at times 

t = 0.6,0.8, 1.2, 1.8, 3.0 respectively. There are N = 128 points in each dimension and 

the time step used is tlt = 0.005. We see that the wave drops around t = 0.6 but has 

rebounded with a lower maximum amplitude, by t = 0.8. It has droped down again by 

about t = 1.4. After that, it starts spreading out and two ripples have formed at t = 3.0. 

For our next experiment, we use the same initial condition but choose a smaller 

surface tension, T = 1 X 10-4 . Initially, the wave profiles look very similar to the surface 

tension T = 0.01 case. We plot the wave at t = 0.8 in Fig. 3.9. Comparing this with the 

T = 0.01 case, we see that the peak of the wave is pointier, which is expected since a 

larger surface tension tends to smooth the surface more. We also show the wave profile 

at times t = 1.4,1.8,2.4 and 3.0 in Figs. (3.4.2) - (3.13) respectively. 

The wave begins propagating outward after t = 1.8 for both cases. One difference 
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Figure 3.3: Gaussian wave initial condition. 

Figure 3.4: Gaussian wave at t = 0.6 with surface tension T = 0.01. 
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Figure 3.5: Gaussian wave at t = 0.8 with surface tension T = 0.01. 

Figure 3.6: Gaussian wave at t = 1.4 with surface tension T = 0.01. 
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Figure 3.7: Gaussian wave at t = 1.8 with surface tension T = 0.01. 

Figure 3.8: Gaussian wave at t = 3.0 with surface tension T = 0.01. 
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Figure 3.9: Gaussian wave at t = 0.8 with surface tension T = 1 X 10-4
. 

Figure 3.10: Gaussian wave at t = 1.4 with surface tension T = 1 X 10-4 . 



85 

Figure 3.11: Gaussian wave at t = 1.8 with surface tension T = 1 X 10-4 . 

Figure 3.12: Gaussian wave at t = 2.4 with surface tension T = 1 X 10-4 . 
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Figure 3.13: Gaussian wave at t = 3.0 with surface tension T = 1 X 10-4
. 

we notice between these two cases at t = 3.0 is that for surface tension T = 1 X 10-4
, we 

observe more ripples than the T = 0.01 case. If we look at Figs. 3.4.2 and 3.11, we notice 

that near the origin for the T = 1 X 10-4 case, the wave has greater amplitude and this 

eventually generates the additional ripple that we see at later times. We also set the 

surface tension to be zero and observe almost no difference in the profiles of the surface 

wave with the T = 1 X 10-4 case. Haroldsen and Meiron in [21] presented numerical 

calculation of water waves using the full equations with the same initial data and zero­

surface-tension. Our numerical simulations compare well with their results. Our robust 

and efficient numerical method also allows us to consider a wide range of surface tension 

coefficients. Also as before, no stiffness is observed using our methods. 

In order to see how two Gaussian waves interact with each other, we consider placing 

two Gaussian waves next to each other. The velocity potential cp is still set to be zero 

initially. First we let the two initial Gaussian waves have the same height and width; 

see Fig. 3.14. We take surface tension T = 1 X 10-4 . Again, we take N = 128 and 

!:it = 0.005 in our calculations. The two Gaussian waves move at the same speed. 

Fig. 3.15 shows that the two Gaussian waves meet at about t = 0.8. The wave profile at 

times t = 1.6,2.0,2.4 and 3.0 are also plotted in Figs. (3.16) - (3.19) respectively. At 

t = 3.0, we see that the outer ripples from each wave are joined together and the inner 
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Figure 3.14: Two identical Gaussian waves at t = O. 

Figure 3.15: Two identical Gaussian waves at t = 0.8 with surface tension T = 1 X 10-4
. 
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Figure 3.16: Two identical Gaussian waves at t = 1.6 with surface tension T = 1 X 10-4
. 

Figure 3.17: Two identical Gaussian waves at t = 2.0 with surface tension T = 1 X 10-4
. 
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Figure 3.18: Two identical Gaussian waves at t = 2.4 with surface tension T = 1 X 10-4
. 

Figure 3.19: Two identical Gaussian waves at t = 3.0 with surface tension T = 1 X 10-4 . 
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two cross each other. We also started with two uneven initial Gaussian waves. One of 

them is two times higher than the other. (See Fig. 3.20). Since their amplitudes are 

Figure 3.20: Two uneven Gaussian waves at t = O. 

different, they move at different speeds. The lower one moves faster but not two times 

faster, as can be seen in Fig. 3.21. We plot the final stage of the wave profile at t = 3.0 

in Fig. 3.21. It is clearly shown that the larger amplitude Gaussian waves dominates the 

smaller one. 

3.4.3 Gravity Waves 

The intriguing problem of wave breaking has been a subject of great interest in re­

cent years. The interesting formation of upward-pointing thin jets occurring in two­

dimensional gravity waves impinging on a vertical wall has been observed experimentally 

by Nishimura and Takewaka [43] and by Chan and Melville [11]. Due to the experimental 

difficulties involved, the exsiting documented works are mainly under two-dimensional 

conditions. There has also been great effort in establishing numerical models to study in 

detail the breaking wave kinematics. The numerical simulations of steep waves meeting 

a wall reported by Cooker and Peregrine [12, 13] also show the surprising formation 
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Figure 3.21: Two uneven Gaussian waves at t = 0.8 with surface tension r = 1 x 10-4
. 

Figure 3.22: Two uneven Gaussian waves at t = 3.0 with surface tension r = 1 x 10-4 • 
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of a thin jet in a very violent motion accompanied with large accelerations and pres­

sures. However, the existing work on breaking waves has been mainly restricted to 

two-dimensional conditions. 

In our calculations, we use the simplified water wave model to study the three­

dimensional gravity waves. We observe an interesting variety of surface evolutions for 

simple initial data by only changing the small amplitude of the initial waves. The initial 

data is given by 

x(al' a2, 0) 

y(al,a2,0) 

z(al' a2, 0) 

¢(a,O) 

E sin(al - 0.5) sin(a2 - 0.5), 

0, 

where 0 ~ aI, a2 ~ 1. All the following computations use this initial data. Our first 

experiment is for E = 0.06 with zero-surface-tension. Figure 3.23 shows the wave profile 

at various times. We see that oscillatory waves exists for all time. 

We now consider a larger amplitude E = 0.12. The motion begins with the wave 

troughs rising up and the wave crests fall down (See Fig. 3.24). The localized humps 

appear in the rising-up regions at t = 0.15 (Fig. 3.25) and then quickly develop into thin 

jets shooting upwards near t = 0.19 (Fig. 3.26). We used N = 256 in each direction and 

fl.t = 1 x 10-4. It looks like the thin jets are going to form sharp cusps. Unfortunately, 

due to the limited computer memory, we do not have the necessary resolution here to 

compute the wave motion further to determine whether the motion will become singular. 

Although we do not show any results for E = 0.09, we will briefly describe what we 

found in this case. We see similarities with the E = 0.12 case up to t = 0.15 except 

the amplitudes are smaller. But instead of the jets continuing to increase in amplitude, 

when E = 0.09, they reach a maximum height and subsequently fall down. Then the 

wave rises up in the opposite corners and forms jets at these locations. At this point, 

these jets form structures much like we see in Figure 3.26 at around t = 0.76. Again our 

computation stops when the jets seem to form sharp cusps. This is mostly likely because 

the orthogonal coordinate system breaks down near the point of the cusp. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 3.23: Sequence of wave profiles at various times for E = 0.06. N = 128 and 
!.It = 0.005. (a) t = 0.0, (b) t = 0.1, (c) t = 0.2, (d) t = 0.5, (e) t = 0.6, (f) t = 0.65. 
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Figure 3.24: Gravity wave profile at t = 0.1 for E = 0.12. N = 256 and f::lt = 1 x 10-4
. 

Figure 3.25: Gravity wave profile at t = 0.15 for E = 0.12. N = 256 and f::lt = 1 x 10-4
. 

Figure 3.26: Gravity wave profile at t = 0.19 for E = 0.12. N = 256 and f::lt = 1 x 10-4 . 
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We also considered surface tension T = 0.001 for the initial amplitude E = 0.12. We 

tested using N = 64, 128, 256 points in each dimension, and the time steps that were 

used were !:!.t = 0.001, 0.0005 and 0.00025. Using our method, we do not see the stiffness 

associated with the surface tension. 



96 

Chapter 4 

Numerical Study of Hele-Shaw Flow 

with Suction 

It is well known that sink flow in a Hele-Shaw cell with zero-surface-tension can develop 

a finite-time cusp singularity. In fact, for an initial limacon of fluid containing a sink, 

Howison et at [25] constructed an analytic solution which forms a 3/2-power cusp in finite 

time. For non-zero surface tension, no analytic solution exists for the suction problem. It 

is generally believed that surface tension regularizes the cusp singularity, and allows the 

solution to exist after the singularity time for the zero-surface-tension solution. However, 

it is still not very clear how the regularized solution behaves beyond the singularity time 

for the non-zero surface tension case. Our study focuses on identifying how these cusped 

flows are regularized by the presence of small surface tension, and what the limiting form 

of the regularization is as surface tension tends to zero. The two-phase Hele-Shaw flow, 

known as the Muskat problem, is considered. 

4.1 The Governing Equations 

Typically in a Hele-Shaw cell, two viscous fluids are confined between two closely-spaced 

parallel plates. Here, we consider the case of a blob of viscous fluid being sucked by an 

interior sink. The blob is surrounded by a less viscous fluid which fills the rest of the Hele­

Shaw cell. For simplicity, we assume that the fluids are immiscible and incompressible 

with constant but differing viscosities. We use the subscripts 1 and 2 to refer to the 

fluids in the interior and exterior of the blob. The velocity field Uj of each fluid is given 

by Darcy'S law, 

(4.1 ) 
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where b is the cell gap, JLj is the viscosity, and Pj is the pressure. M = b2 /12JLj is the 

fluid mobility. The incompressibility condition implies that V' . Uj = ° and therefore the 

pressure in each fluid satisfies Laplace's equation: 

(4.2) 

In other words, the interior and exterior fiuids are potential. Consequently, the fiow can 

be obtained from the dynamics of the free interface (blob boundary) between the two 

fluids. Denote the fluid interface by f. The interface motion is subject to the following 

conditions 

[U· nJlr = 0, 

[PJlr = T~, 

(4.3) 

(4.4) 

where [.J denotes the jump across the interface taken as the difference of the interior 

minus the exterior quantity. Here, n is the exterior unit normal to f, T is the surface 

tension, and ~ is the interface mean curvature. The kinematic boundary condition (4.3) 

states that the normal component of the velocity field is continuous across the interface. 

This implies that particles on the interface remain there. The relation (4.4), known as 

the Laplace-Young boundary condition, gives an account of how the presence of surface 

tension modifies the pressure across the interface. 

We assume that there is a point sink at the origin, inside the fluid blob. For large 

distances away from the sink, the velocity field tends to the simple radial flow: 

x 
u(x) ~ Q Ix1 2 ' as Ixl ~ 00. (4.5) 

Here, Q is the suction rate which is assumed constant and negative. 

Let the interface f be represented, at any instant t, by (x(a, t), yea, t)), where a 

in [0,27rJ defines a counterclockwise parameterization of f. Both x and yare periodic 

functions of a. The interface governing equations can be put in a convenient form 

by introducing the the complex position variable z(a, t) = x(a, t) + iy(a, t) and the 

complex conjugate velocity W(a, t) = u(a, t) - iv(a, t). This interface velocity can be 



98 

represented by a boundary integral plus the sink contribution as follows (for a derivation, 

see, e.g., [63]): 

W = _Q_ + _1_ P.V. (Ir ,,(a', t) da', 
z(a, t) 27ri io z(a, t) - z(a', t) 

(4.6) 

where the P.V. denotes the principal value integral. "is the (unnormalized) vortex sheet 

strength which measures the tangential velocity jump across the interface by 

,,= so[ullr ·5, (4.7) 

where So = Jx~ + y~, the subscript a denotes differentiation with respect to that 

variable, and 5 is the unit tangential vector on f. W(a, t) gives, in complex form, 

the average velocity (u, v) = ~ (u 1 + U2) on the interface and satisfies the boundary 

condition (4.5), provided" has zero mean. To close the system, an equation for " can 

be derived by using Eq. (4.1). We have that 

(4.8) 

(4.9) 

Using the dynamic boundary condition (4.4) and the complex conjugate velocity, we 

obtain the following equation for" 

(4.10) 

Here, AJL = (ILl - IL2)/(ILI + IL2) is the viscosity Atwood ratio and S = 1~2flT is a scaled 

surface tension parameter. We nondimensionalize the equations of motion by taking the 

initial blob radius to be 1 and by setting Q = -1. Taking into account that there is 

freedom in selecting the tangential velocity at the interface, the evolutions equations can 
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be written as 

__ 1_ + _1_ P.V. r27r 
,(a', t) da' + A(a, t) za(a, t) (4.11) 

z(a,t) 2ni io z(a,t) -z(a',t) IZa(a,t)1 

,(a,t) 2A Re (_ za(a, t) + za(a, t) P.V. r27r 
,(a', t) da') 

It z(a, t) 2ni io z(a, t) - z(a', t) 

(4.12) 

where the bar denotes the complex conjugate. Here, A(a, t) is arbitrary and only de­

termines the parameterization (frame) of the interface but does not affect its dynamics. 

For example, the frequently used Lagrangian frame is obtained by taking A = r/(2Izal). 

4.2 The Numerical Method 

A spectrally accurate spatial discretization of equations (4.11) and (4.12) can be achieved 

easily by computing the space derivatives with the pseudo-spectral approximation, i.e., 

using the Fast Fourier Transform. The principal value integral can also be computed 

with spectral accuracy by employing the alternate-point trapezoidal rule [57]: 

127r ,(a') 
P. V. () () da' ~ 

o z ai - z a' 

N-l rj L 2h, 
j=O Zi - Zj 

(4.13) 

(j - i) odd 

where N is the number of computational particles on the interface, h = 2n / N, and 

ai = ih for i = 0 ... N - 1. The quantities with subscripts are the corresponding 

discrete approximations. However, surface tension introduces a term (i'£a) with high­

order derivatives that couple into the interface dynamics in a nonlinear and nonlocal 

manner. This leads to a high-order stability constraint (stiffness) for explicit time­

integration methods and makes implicit methods difficult to implement. We use the 

B-L scheme that Hou et al. designed in [23]. Their method uses two natural variables 

B = tan-1(Ya/xa) which is the tangent angle to the interface and L which is the total 
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length of the interface. The evolution equations are given by 

(4.14) 

(4.15) 

where U is the normal velocity and the tangential velocity T is chosen as 

10 a 1271" 
T(a, t) = Oo,Uda' - - Oo,Uda'. 

o 21f 0 
(4.16) 

The stiffness is hidden at the small spatial scales of Uo in the equation for O. The leading 

order behavior of U at small scales is given by [23] 

1f 
U(a, t) '" LHb](a, t), (4.17) 

where H is the Hilbert transform which is diagonalizable by the Fourier transform as 

NUl = -isign(k)j. Moreover" is dominated by the surface tension term at small 

scales , that is 

(4.18) 

Therefore, 

(4.19) 

The equations of motion can now be written as 

( 4.20) 

(4.21) 

where P represents lower order terms at small spatial scales. L can be updated by an 

explicit method as Eq. (4.20) is free of stiffness. To remove the high-order stiffness it 

is sufficient to discretize implicitly the leading order term in Eq. (4.21) and treat the 
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lower order term P explicitly. This gives a linear time-step stability constraint, i.e., 

/}.t ::; Ch, where /}.t is the time-step size. Moreover, because of its constant coefficients, 

the implicit term can be easily inverted by using FFT. Here, we use the following fourth 

order explicit/implicit method studied by Ascher, Ruuth, and Wetton [1] 

(4.22) 

L is updated first using a fourth order explicit Adams-Bashforth multi-step scheme to 

obtain L n +1 before computing en +1 via FFT. 

Note that, at each time step, '"Y has to be obtained from (4.12) to compute the ve­

locities. It has been shown [3] that the Fredholm integral equation for '"Y has a globally 

convergent Neumann series. We solve for '"Y by fixed point iteration, accelerated by con­

structing a fourth order extrapolated initial guess from previous time steps. It typically 

takes a few iterations to obtain a convergent solution for '"Y when the interface is relatively 

smooth. The overall method is fourth order in time and spectrally accurate in space. 

4.3 Numerical Results 

We consider an initially circular blob of viscous fluid surrounded by less viscous fluid. The 

center of the initial blob is at (0, -0.1) and the sink is placed at the origin. Our numerical 

results focus on the regularizing effect of surface tension, past the S = ° singularity 

time, and on the limiting behavior of the interface as surface tension tends to zero. The 

results are divided in two main parts. First, we present the case where the viscosity of 

the surrounding fluid is negligible, which corresponds to Ail = 1. In the second part, we 

investigate the additional effect that non-zero viscosity in the surrounding fluid has on 

the interface dynamics, i.e., Ail < 1. 

All the computations presented here are performed in 64-bit arithmetic (standard 

double precision). Krasny filtering [37] is used to prevent the spurious growth of the 

high-frequency components of the round-off error. This nonlinear numerical filter is 

implemented by setting to zero all the Fourier modes of the solution whose magnitude 

are below a certain level. In our computations we set this filter level to be 10- 12 . The 
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number N of uniformly spaced points along the interface is chosen so that all the Fourier 

modes of the tangent angle O(a, t) are well-resolved. Initially, we use N = 2048 for most 

of the computations. The time step ~t is selected so that, decreasing it further, would 

not produce any appreciable difference within plotting resolution in the curvature of the 

interface. We double N as soon as the magnitude of the highest frequency mode of 

O(a, t) is greater than the filter level. Very small values of ~t are required to compute 

accurately the interface motion as it approaches the sink. At the latest stage of the 

motion, the number of grid points typically increases to N = 8192 or N = 16384 and 

~t = 2 x 10-7 . A detailed resolution study is presented later in this section. 

4.3.1 Development of the Interface for All = 1 

Zero-surface-tension Cusp Formation 

In the absence of surface tension, an initially circular blob whose center is not at the 

sink develops a 3/2-power cusp singularity in finite time. 

·1 

·1 .().s 0.5 

Figure 4.1: Evolution and collapse of the interface for the initially circular blob centered 
at (0, -0.1) being sucked by a point sink at the origin. S = 0 and All = 1. The curves, 
from the outer perimeter inwards, correspond to the times t = 0, 0.1, 0.2, 0.24, 0.28, 
and 0.2842. The cusp is formed approximately at t = 0.2842. The computation was 
performed using N = 2048 and ~t = 1 x 10-5 in the Lagrangian frame. 



103 

Fig. 4.1 shows the evolution and collapse of the fluid interface for AIL = 1 and S = O. The 

cusp occurs at approximately tc = 0.2842 and is located at (0,0.2305) for this particular 

case where the blob is initially centered at (0, -0.1). To resolve well the interface up 

to times very close to the formation of the cusp, we take advantage of the particle 

clustering characteristic of the Lagrangian frame. That is, for this special case (S = 0), 

we discretize directly equations (4.11) and (4.12) with A = ,/(2Iznl) using the pseudo­

spectral approximation for the derivatives and the alternate-point trapezoidal rule (4.13) 

for the singular integral. An explicit fourth order Adams-Bashforth scheme is used to 

integrate in time. 

The Regularizing Effect of Surface Tension 

The presence of surface tension regularizes the cusped flow in a very special way. Fig. 4.2 

shows the fluid interface at different times for S = 0.01. 
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Figure 4.2: Evolution of the initially circular fluid blob for S = 0.01 and AIL = 1. The 
curves, from the outer perimeter inwards, correspond to the times t = 0, 0.080, 0.160, 
0.240, 0.284, 0.290, 0.296, 0.300, and 0.301419. The distance of the tip of the finger to 
the sink, for the last computed interface (t = 0.301419), is 5.9848 x 10-3 . N = 8192 and 
tlt = 2 x 10-7 for the last stage of the motion. 
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A smooth finger with a rounded tip develops past the zero-surface-tension breakdown 

time tc = 0.2842. As the interface gets closer to the sink, the finger evolves rapidly into 

a wedge. We stop the computation when the distance of the finger tip to the sink is 

5.9848 x 10-3 . We use N = 8192 and b..t = 2 X 10-7 for the last stage of the computation. 

The formation of the wedge as the interface approaches the sink is consistent with the 

results reported by Nie and Tian [42] for the two values of surface tension they computed. 

We decrease now surface tension to the value S = 4 X 10-4 . A time sequence of the 

interface evolution for this small surface tension is presented in Fig. 4.3. 

0.5,---,----,----,------,--,----,-----.----

Or-#--------~--------~ 

y 

-0.5 

_1~~ __ ~ __ L__~ __ ~_~ __ ~~ 

-0.6 -0.4 -0.2 o 
x 

0.2 0.4 0.6 

Figure 4.3: Evolution of the initially circular fluid blob for S = 4 X 10-4 and All = l. 
The interface is plotted at times around tc = 0.2842 and well past it. From the the outer 
perimeter inwards, the curves correspond to the times t = 0.280, 0.284, 0.288, 0.290, 
0.292, 0.293, and 0.2932. N = 16384 and b..t = 2 X 10-7 for the last stage of the motion. 

The interface passes smoothly the zero-surface-tension cusp time tc. Soon after tc, we 

observe the appearance of an almost straight finger that begins to bulge but is quickly 

drawn into the sink forming a wedge. Note that the top of this finger is narrower than 

the one corresponding to the larger surface tension S = 0.01 (Fig. 4.2). A look at the 

tangent angle O( CY, t) around the finger tip for S = 4 X 10-4 , shown in Fig. 4.4, strongly 

suggests the formation of a corner when the interface touches the sink. 
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Figure 4.4: Behavior of the tangent angle 8(a, t) around the finger tip (a = 0) as the 
interface is about to collapse, for S = 4 X 10-4 and AIL = 1. The tangent angle, plotted 
against the parameterization variable a at the times t = 0.2920, 0.2930, and 0.2932, 
appears to develop a discontinuity. N = 16384 and tlt = 2 X 10-7 . 

The tangent angle 8 appears to develop a discontinuity at the finger tip (a = 0), precisely 

when the Rele-Shaw solution breaks down. The computations of Nie and Tian [42], for 

another type of initial data, also suggest this breakdown scenario. The formation of the 

wedge and the tip corner seem to be generic for this type of flow. 

Smaller values of surface tension reveal new features in the interface evolution. Fig­

ure 4.5 shows the interface shape for S = 5 X 10-5 . 

The finger clearly bulges and develops a well-defined neck before it becomes a wedge. 

It is interesting to note that this neck appears at a height close to that of the zero­

surface-tension cusp. It is conceivable that the formation of the neck and the bulging 

of the finger are due to the influence of the zero-surface-tension singularity. In fact, a 

look at the curvature shown at Fig. 4.6(a) for the time t = 0.2860, which is very close 

to tc = 0.2842, shows already the appearance of two symmetric spikes corresponding to 

the location of the neck. The behavior of the interface curvature at subsequent times is 

shown in Figs. 4.6(c) and 4.6(d). 

Note in particular that the curvature grows almost ten times in magnitude from t = 

0.2916 (Fig. 4.6(c)) to t = 0.2918 (Fig. 4.6(d)). The sharp and large spike at a = 0 is 
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Figure 4.5: Evolution of the initially circular fluid blob past t e , for S = 5 X 10-5 and 
AJL = 1. (a) The interface plotted at t = 0.2880,0.2900, and 0.29181. (b) A close­
up of the interface finger at the times t = 0.2840,0.2860,0.2880,0.2900, and 0.29181. 
N = 16384 and Ilt = 2 x 10-7 for the last stage of the motion. 
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Figure 4.6: Interface curvature "'(0:, t) versus 0: around the finger tip (0: = 0) at different 
times past te for S = 5 X 10-5 and AJL = 1. (a) t = 0.2860. (b) t = 0.2880. (c) t = 0.2916. 
(d) t = 0.29181. N = 16384 and Ilt = 2 x 10-7 were used to resolve the largest curvature 
(d). 
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y ~(0.0008, 0.0004) ~(0.0004, 0.0002) ~(0.0002, 0.0001) ~(0.0001, 0.00005) 
0.1 1.63 x 10 -s 1.17 x 10-s 8.96 x 10 -4 6.62 X 10 -4 

0.06 1.24 x 10 ;5 9.14 x 10 -4 6.98 X 10 -s 5.39 x 10 -4 

0.02 5.99 x 10 -4 4.57 X 10-4 3.45 X 10 -4 2.47 X 10 -4 

Table 4.1: Change in the finger widths as surface tension is decreased for AI' = 1. The 
first column shows the height level at which the fingers are compared. Columns 2-5 
give the difference ~(S, S/2) between the width of the finger corresponding to a surface 
tension S and that corresponding to S /2. 

an indication of the corner singularity forming as the tip of the wedge touches the sink. 

We use N = 16384 and ~t = 2 x 10-7 to resolve accurately this large curvature motion. 

The Interface Limiting Behavior as S ---+ 0 

We investigate now the interface limiting behavior before and past te. We present numer­

ical evidence to show that an asymptotic corner angle is selected in the limit as surface 

tension tends to zero when the finger tip is about to reach the sink. The computations 

presented here also suggest that the vanishing surface tension solution is singular at the 

finger neck. 

To obtain information on the behavior of the wedge angle in the limit as surface 

tension tends to zero, we compare the interfaces for a set of decreasing values of surface 

tension. Since the velocity of the interface depends on surface tension, we compare the 

interfaces when their finger tips reach the same level above the sink rather than at a 

fixed time. As surface tension is reduced, the finger tip reaches the given level faster. 

Figure 4.7 provides some indication of the asymptotic trend of the fingers as surface 

tension is successively halved from S = 8 X 10-4 to S = 5 X 10-5 . The fixed level is 

y = 0.01 so that the finger tips are very close to the sink. 

As surface tension is decreased, the fingers develop a neck at about y = 0.27. However, 

away from the neck, the finger width changes very little. More precisely, as surface ten­

sion is reduced, the change in the finger width decreases. Table 4.1 gives the difference 

~(S, S/2) between the width of the finger corresponding to a surface tension S and that 

corresponding to S/2 at three different levels. It is observed that ~(S, S/2) decreases 
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Figure 4.7: Comparison of the interface finger for a sequence of surface tensions with 
Ai' = 1. From the outer curve inwards, the fingers correspond to the surface tension 
values 8 = 8 X 10-4 , 4 X 10-4 , 2 X 10-4 , 1 X 10-4 , and 5 x 10-5 . Each interface is plotted 
when the tip of the finger reaches the fixed level y = 0.01 at x = O. N = 16384 and 
tlt = 2 X 10-7 . 

as surface tension is reduced. The fingers are converging to an asymptotic shape. Ta-

ble 4.2 suggests that an asymptotic angle is selected for the wedge as it touches the sink. 

The difference between consecutive angles (corresponding to surface tensions 8 and 28) 

decreases as surface tension is reduced. Note also that there is an asymptotic time at 

which the limiting wedge reaches the sink. 

While the asymptotic trend of the wedge angle is clear, the limiting behavior of the 

interface in the vicinity of the neck is not obvious. More precisely, we would like to find 

the form of the continuation solution selected in the limit as surface tension tends to zero 

S Wedge angle Variation 
8 x 10 .'1 0.67459 -

4 x 10 -1 0.65719 0.0174 
2 x 10-'1 0.64399 0.0132 
1 x 10 4 0.63660 0.0074 
5 x 10-:1 0.63359 0.0030 

Table 4.2: The angle of the wedge (in radiants) for a decreasing set of surface tensions. 
The variation (third column) is the difference between consecutive angles, corresponding 
to surface tensions 8 and 28. 
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for any fixed time past te but before the time at which the limiting wedge reaches the 

sink. As expected, before t e , the interface converges to the smooth zero-surface-tension 

solution as S --t O. This is illustrated in Fig. 4.8 which shows a close-up picture of the 

interface for a set of decreasing surface tensions at a time (t = 0.2840) slightly before te. 

The zero-surface tension solution is also shown in Fig. 4.8. 
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Figure 4.8: Limiting behavior of the interface before te = 0.2842 for At-! = 1. This figure 
shows a close-up picture of the interface around x = 0 for a set of surface tension values, 
decreasing from top to bottom, and plotted at time t = 0.2840. The zero-surface-tension 
solution is also shown. N = 4096 and tlt = 5 X 10-5 . 

We observe a very different behavior past te. Figure 4.9 presents close-up pictures 

of the interface finger developing just past te. The interfaces correspond to the surface 

tension values S = 1 X 10-5 and S = 5 X 10-6 , plotted at t = 0.2857. 

Note that the width of the small finger is approximately the same for both surface 

tensions. But a more pronounced neck with two corners can be observed for S = 5 X 10-6 

in Fig. 4.9(b). Unfortunately, well-resolved computations for surface tensions smaller 

than this value are extremely difficult due to interface singular behavior and to growth 

of the round-off error noise. Nevertheless, the non-smooth transition observed for the 

previous values of surface tension hints a possible singularity formation in the limit. 
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Figure 4.9: Close-up of the interface around x = 0 at t = 0.2857 (just past tc ) for 
All = 1. The interfaces correspond to (a) 5 = 10-5 and (b) 5 = 5 X 10-6 . N = 8192 
and llt = 5 X 10-6 . 

Indeed, a look at the tangent angle (}(a, t) in Fig. 4.10 provides further indication of a 

singularity scenario in the limit as 5 --+ O. 

The two spikes in () correspond to the finger neck. While the tangent angle changes 

smoothly around the finger tip, two small kinks observed for 5 = 5 X 10-6 mark an almost 

discontinuous transition in () at the finger neck. We use N = 8192 and llt = 5 X 10-5 to 

resolve accurately both () and the curvature for this case. Figure 4.11 shows the curvature 

near the finger tip at two very close times for 5 = 5 X 10-6 . 

There is a rapid growth of the curvature at the neck. A comparison with the curvature 

corresponding to 5 = 5 X 10-5 (Fig.4.6(a)) shows the singular trend of the interface 

limiting behavior. Although the numerical evidence is somewhat limited and further 

study is required for smaller values of surface tension, we conjecture that the neck will 

asymptote to corners in the limit as 5 --+ o. 

4.3.2 All < 1 : The Effect of the Surrounding-fluid Viscosity 

Zero-surface-tension Cusp Formation 

Very little is known for the Rele-Shaw flow with suction when All < 1, i.e., for the two­

phase (Muskat) problem, even if surface tension is neglected. We first present a series of 

computations for several Atwood ratios in the absence of surface tension. These compu-
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Figure 4.10: The tangent angle O(a, t) versus a around the finger tip (a = 0) at t = 0.2857 
for AJL = 1. The plots correspond to (a) S = 10-5 and (b) 5 x 10-6 . N = 8192 and 
tlt = 5 X 10-6 . 
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Figure 4.11: The curvature K:(a, t) versus a around the finger tip (a = 0) for AJL = 1 
and S = 5 X 10-6 , at (a) t = 0.2850 and (b) t = 0.2855. N = 8192 and tlt = 5 X 10-6 . 
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tations for S = 0 are performed in the Lagrangian frame as explained in Section 4.3.l. 

Figure 4.12 shows the breakdown of the Hele-Shaw solution for AIL = 0.8 and AIL = 0.2. 
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Figure 4.12: Collapse of the interface in the absence of surface tension. (a) AIL = 0.8. 
The cusp is formed approximately at tc = 0.3070. (b) AIL = 0.2. The cusp is formed 
approximately at tc = 0.3809. The computations were performed using N = 2048 and 
!:J..t = 1 x 10-5 in the Lagrangian frame. 

The viscosity of the exterior fluid alone does not prevent the formation of cusps in the 

interface. Note that the breakdown times occur later than that for the AIL = 1 flow. As 

a result, more interior fluid gets sucked as AIL decreases. Figure 4.13 presents close-up 

plots of the zero-surface-tension cusps for AIL = 1, 0.4, 0.2, and 0.08. 

As the fitting curves demonstrate, the 3/2-power cusp singularity appears to be very 

generic. In all these cases the cusps are formed before the interface reaches the sink. 

However, as AIL is reduced, the cusps develop closer and closer to the sink. It may be 

thought that for sufficiently small AIL the cusp singularity will be formed only when the 

interface touches the sink. Nevertheless, at least for AIL as small as 0.01, we find no 

evidence of this. The cusp still forms before the interface reaches the sink. Apparently, 

only for AIL = 0 the cusp occurs right at the sink. 

Surface Tension and Large Viscosity Ratio 

We consider now the flow for AIL = 0.8 with surface tension S = 5 X 10-5 . Figure 4.14 

shows the interface at different times as it evolves. Just as in the AIL = 1 case, a finger 

develops past tc and evolves into a wedge as it is drawn into the sink. 
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Figure 4.13: Zero-surface-tension cusps and 3/2-power fitting curves for different values 
ofthe viscosity Atwood ratio, shown at the approximate breakdown time te. (a) AI' = 1.0 
at te = 0.2842. (b) AI' = 0.4 at tc = 0.3745. (c) AI' = 0.2 at te = 0.3807. (d) AI' = 0.08 
at tc = 0.40135. The computations were performed using N = 2048 and 6.t = 1 x 10-5 

in the Lagrangian frame. 
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Figure 4.14: Evolution of the initially circular fluid blob past t e , for S = 5 X 10-.5 and 
AI' = 0.8. (a) The interface plotted at t = 0.3106,0.3126 and 0.3136. (b) A close-up of 
the interface finger at the times t = 0.304,0.3076,0.3106,0.3126, and 0.3136. N = 16384 
and bot = 2 X 10-7 for the last stage of the motion. 
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This particular value of surface tension was also considered for All = 1 (see Fig. 4.5). A 

comparison of these two cases, All = 1 and All = 0.8, shows a smoothing effect of the 

exterior-fluid viscosity on the interface. For All = 0.8, the finger has a less pronounced 

neck. The behavior resembles that of All = 1 with much larger surface tension, except 

that the finger is thinner for AJ.L = 0.8. However, the side indentations of the finger neck 

do develop for smaller surface tension as Fig. 4.15 demonstrates. 
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Figure 4.15: Evolution of the initially circular fluid blob past te , for S = 1 X 10- 5 and 
All = 0.8. (a) The interface plotted at t = 0.31222. (b) A close-up of the interface finger 
at the times t = 0.3080,0.3111, and 0.31222. N = 32768 and f}.t = 1 x 10-7 for the last 
stage of the motion. 

The interface motion shown in this figure corresponds to S = 1 X 10-5 . We use N = 32768 

and f}.t = 1 x 10-7 to resolve the last stage of the flow. Note that the wedge angle is 

smaller than that corresponding to All = 1. The formation of a corner at the finger 

tip can be clearly appreciated in Fig. 4.16 which is a plot of e around the finger at 

t = 0.31222. 

At this time, the distance of the finger tip to the sink is 9 x 10-3 . In addition to the 

discontinuity at a = 0, we observe two abrupt changes in e corresponding to the finger 

neck. This is analogous to the almost discontinuous transition in e observed for AJ.L = 1 

and S = 5 X 10-6 in Fig. 4.1O(b) and which we believe will lead to the formation of pair 

of curvature singularities at the neck in the limit as S ~ 0. 
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Figure 4.16: Tangent angle 0(0, t) versus ° around the finger tip at t 
S = 1 X 10-5 and AJ.l = 0.8. N = 32768 and At = 10-7 . 

Surface Tension and Small Viscosity Ratio 

0.31222 for 

The Hele-Shaw flow for small Atwood ratios differs significantly from the AJ.l = 1 flow. 

Figure 4.17 shows the evolution of the interface for AJ.l = 0.2 as it approaches the sink 

for several values of surface tension. 

The interface develops a very thin finger whose width decreases with surface tension. 

Unlike the larger AJ.l flows, for AJ.l = 0.2 the zero-surface-tension cusp occurs already 

very close to the sink so that small surface tension acts very briefly past tc. In the 

short time interval from tc to the time where the interface touches the sink, the sink 

flow is dominant and the interface profile is similar to that with zero-surface-tension. 

The effect of small surface tension is to round slightly the tip of the thin finger. This is 

illustrated clearly in Fig. 4.18(a) where a close-up picture of the finger, for AJ.l = 0.2 and 

S = 1 X 10-5 , is shown as the interface is about to collapse at t = 0.38124. 

We use N = 32768 and At = 1 X 10-7 to resolve the interface motion up to this time. 

The zero-surface-tension AJ.l = 0.2 cusp is also shown. Figure 4.18(b) is a plot of the 

tangent angle 0(0, t) around the finger tip. This plot suggests once more the formation 

of a corner singularity at the finger tip as it touches the sink. Note also that there are 

no signs of neck formation for this case, as reflected in O. 
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Figure 4_17: Evolution of the interface for A" = 0.2 with different surface tensions as it 
approaches the sink. (a) S = 1 X 1O~2, (b) S = 1 X 1O~3, (c) S = 1 x 1O~4, and (d) 
S = 1 X 1O~5 . N = 8192 and b.t = 5 X 1O~6. 
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Figure 4.18: Collapse of the interface for A" = 0.2 and S = 1 X 1O~5. (a) Close-up of 
the finger tip at t = 0.38124. The distance of the tip to the sink is 0.0095l. The dotted 
line curve corresponds to the zero-surface-tension cusp at tc = 0_3809. (b) tangent angle 
e(o:, t) near the interface tip (0: = 0) at t = 0.38124. This computation ended with 
N = 32768 and b.t = 1 X 1O~7_ 
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Finally, we study the asymptotic behavior of the thin fingers for AJl = 0.2 in the 

limit as surface tension tends to zero. Figure 4.19 provides a close-up of the fingers at 

t = 0.3800, just before te. As expected, the fingers converge to the zero-surface-tcnsion 

solution. 
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Figure 4.19: Limiting behavior of the interface before te = 0.3809 for All = 0.2. This 
figure shows a close-up picture of the interface around x = 0 for a set of surface tension 
values, decreasing from top to bottom, and plotted at time t = 0.3810. The zero-surface­
tension solution is also shown. N = 4096 and llt = 1 X 10-5 . 

To study the interface asymptotic behavior past te we compare the fingers, for a 

decreasing set of surface tension values, when they reach a given fixcd level close to the 

sink. This comparison is given in Fig. 4.20 for surface tension ranging from S = 1 X 10-2 

to S = 1 X 10-5 . The interfaces correspond to different times past te. 

An asymptotic shape of the fingers is apparent. Table 4.3 shows the convergmg 

trend of the finger widths as surface tension is decreased. Note that the asymptotic 

wedge angle for AJl = 0.2 is smaller than the angles observed for All = 0.8 and All = 1. 

The asymptotic angle decreases with All' apparently towards the zero angle of the AJl = 0 

cusp. 
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Figure 4.20: Comparison of the interface finger for a sequence of surface tensions with 
AJ-I = 0.2. From the outer curve inwards, the fingers correspond to the surface tension 
values S = 1 X 10-2 , 1 X 10- 3 , 1 X 10-4 , and 1 x 10-5 . Each interface is plotted when the 
tip of the finger reaches the fixed level y = 0.01 at x = O. N = 8192 and ~t = 1 x 10-6 

for S = 1 X 10-2 and S = 1 X 10- 3 . N = 16384 and ~t = 2 x 10-7 for S = 1 X 10- 4 and 
S = 1 X 10- 5 . 

y ~(1O ."'!, lO- J) ~(10-J , 10 -4) ~(10-\ 10 -J ) 
0.04 0.01148 0.00445 0.00174 
0.03 0.00914 0.00377 0.00148 
0.02 0.006138 0.002874 0.001218 

Table 4.3: Change in the finger widths as surface tension is decreased for AJ-I = 0.2. 
The first column shows the height level at which the fingers are compared. Columns 2-4 
give the difference ~(S, S/lO) between the width of the finger corresponding to a surface 
tension S and that corresp onding to S/lO. 
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4.3.3 An Analysis of Numerical Errors 

As described in the beginning of this section, our computations are performed so that all 

the Fourier modes of the tangent angle O( a, t) are well-resolved at all times. To achieve 

this we successively double the number of points N as soon as the magnitude of the 

highest frequency mode of O(a, t) is greater than the filter level. The time-step size D..t 

is selected so that decreasing it further would not produce any appreciable difference 

within plotting resolution in the curvature of the interface. 

We now present a resolution study for the long-time computation that is most difficult 

to resolve. This is the case corresponding to All = 1 and S = 5 X 1O~5 for the 10% offset 

initial data. In lack of an exact solution, we compare two different resolutions computed 

as follows. One computation starts with N = 1024 and D..t = 1 X 1O~4 and ends with 

N = 16384 and D..t = 2 x 1O~7. The other computation uses twice the number of points 

and half the time-step, i.e., it starts with N = 2048 and D..t = 5 x 1O~5 and ends with 

32768 points and D..t = 10-7. The number of digits in the maximum difference between 

these two resolutions for 0 is presented in Fig. 4.21. Up to the end, the computations 

agree within at least three digits of accuracy for O. A similar resolution study for All = 0.2 

and S = 1 X 1O~5 gives a maximum difference of 2.8 x 10-4 at t = 0.38124. 

4:~ _____ ~ 
3.5 

" " :; 2.5 

'.5 

0.5 

002''::''--:-:0.2=''-=-5 ---:0-7:28::-' ---:0-='.28="--:-02'::-'--:-:0.2="':-5 ---:0-="-:-' ---::0-:'::.2'=15-~O.29:;: 
t 

Figure 4.21: The digits of accuracy in 0 versus time for S = 5 X 10~5 and All = 1 as re­
flected by the maximum difference between two computations with different resolutions. 
One computation starts with N = 1024 and 6.t = 1 X 10-4 and ends with N = 16384 
and D..t = 2 x 1O~ 7 . The other computation uses twice the number of points and half the 
time-step, i.e., it starts with N = 2048 and D..t = 5 x 1O~5, and ends with 32768 points 
and D..t = 1 X 1O~7. 
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By monitoring closely the spectrum of the solution at all times, we verify the resolu­

tion in Fourier space and check for signs of numerical instability and noise. The spectrum 

of the vortex sheet strength , at various times for AJ.L = 1 and S = 5 X 10-5 flow is 

shown in Fig. 4.22. The spectra appear free of any sign of numerical instability and noise 

pollution is inappreciable. 
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Figure 4.22: The spectrum of , at various times for S = 5 X 10-5 and AJ.L = 1. 

Another useful check for the numerics is the conservation of the first moment for 

AJ.L = 1: 

j = dd / r zdxdy = 0 
t in(t) 

(4.23) 

where n is the domain of the viscous fluid and z denotes the complex position of the 

fluid particles. This identity can be easily shown by noting that 

j = r zU ds = - M r z \1 p . ftds, 
ir(t) ir(t) 

(4.24) 

where again r(t) IS the free boundary, U is the normal velocity, and we have used 
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U = -M\lp· li. Since p and both the real and imaginary part of z are harmonic 

functions, a Green's identity implies that 

{ z\lp· lids = ( p\lz· lids. 
ir(t) ir(t) 

(4.25) 

Moreover, pir = TK, for Ai' = 1. Thus, 

i = -M { z\lp· lids = -M { p\lz· lids = -MT ( K,\lz· lids 
ir(t) ir(t) ir(t) 

= iMT { Osei(}ds = iMT (27r ei(}dO = 0, 
ir(t) io 

(4.26) 

where we have used K, = Os. Throughout all the computations for Ai' = 1, Iii remains of 

order 10-12 or smaller. 

4.3.4 Effect of Offset Shift 

We consider now the effect of a shift in the position of the center of the initially circular 

blob. In Fig. 4.23, we compare a 20% offset sink (the blob center is (0, -0.2) initially), 

with a 10% offset sink (the blob center is (0, -0.2) initially), with surface tension S = 0.01 

and Ai' = 1.0. 

0.35 

0.3 

10% Offset at T=0,301418 

200/. Offset at T =0.20804 

-1 

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 

Figure 4.23: Comparison of finger widths for 10% and 20% offset sinks, with S = 0.01 
and Ai' = 1.0. The interface for the 10% offset initial data is plotted at t=0.301418 and 
that for the 20% offset case is plotted at t =0.20804. (a) The two interfaces and (b) a 
close-up of the fingers. N = 8192 and tit = 1 x 10-6 for the last stage of the motion. 
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Although the viscous finger forms much earlier for the 20% offset case, the width 

and shape of the finger are unaffected by the offset shift. We now consider a similar 

comparison for S = 5 X 10-5 and AIL = 1.0. This is shown in Fig. 4.24. 
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Figure 4.24: Comparison of finger widths for 10% and 20% offset sinks with S = 5 X 10-5 . 

The interface for the 10% offset initial data is at t=0.291806 and that for the 20% offset 
case is plotted at t =0.19945. N = 16384 and flt = 2 x 10-7 for the last stage of the 
motion. 

We find that the finger tips match very well and thus, the corresponding solutions 

break down with the same corner angle. The overall development of the two finger is 

qualitatively the same. In particular, similar side indentations at the neck are formed 

and the fingers slightly bulge before becoming a wedge. 

4.4 Further Discussion 

Surface tension regularizes the cusped Rele-Shaw flows with suction. In the presence of 

small surface tension, and when the viscosity of the surrounding fluid is neglected, a long 

finger develops after the zero-surface-tension singularity time. This finger evolves rapidly 

into a wedge as it approaches the sink. The Rele-Shaw solutions for AIL = 1 appear to 

generically break down by forming a corner at the wedge tip when the interface touches 

the sink. 

As surface tension is decreased systematically, new features of the Rele-Shaw flow 

are discovered. The angle at the tip of the wedge converges to a selected asymptotic 
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value in the limit as S ~ O. Moreover, for sufficiently small values of surface tension, 

side indentations forming a neck develop at the top of the finger. As opposed to the 

predicted behavior of the crack model of Howison et al. [25]' the developing finger for 

Ap. = 1 bulges after the zero-surface-tension cusp time tc. The formation of the neck and 

the bulging of the finger are intriguing phenomena that could be linked to the influence 

of the zero-surface-tension singularity for very small values of surface tension. 

It could also be argued that this somewhat singular behavior is caused by the impact 

of a curvature-induced complex singularity. This so-called daughter singularity, whose 

concept was introduced by Tanveer [60], is generated by a zero in the derivative of the 

conformal map that describes the Hele-Shaw flow. The daughter singularity is spawn 

by the zero through the surface tension term, in the complex plane outside the physical 

domain. The zero and the daughter singularity travel with different speeds towards the 

physical domain. Depending on the initial data, the daughter singularity mayor may not 

impact the physical domain before the zero does. For the particular initial data that we 

use here, the daughter singularity would hit the physical domain well after the zero, i.e., 

much later than tc. The daughter singularity impact time can be estimated by solving 

an ordinary differential equation [60, 58]. Since the neck formation and the bulging of 

the finger are observed around t c , we rule out the effects of the daughter singularity for 

the particular flow we consider here. 

The numerical evidence presented here also suggests that the limiting solution as 

S ~ 0 is singular at the finger neck, for any fixed time past tc but before the asymptotic 

time at which the wedge tip touches the sink. Unfortunately, well-resolved computations 

are difficult to achieve due to the rapid growth of the round-off level noise for very 

small surface tension and to the singular interface behavior. Although further numerical 

study is required to compute effectively the limit, we believe that corners will develop 

at the finger neck in the limit as S ~ o. The vanishing surface tension solution selects 

a continuation solution past tc in which the zero-surface-tension cusp is split into a pair 

of corner singularities. 

The viscosity of the exterior fluid alone does not prevent the formation of cusps. It 

only delays them. In the absence of surface tension, we observe generic 3/2-power cusps 

just as in the case of Ap. = 1. However, as the viscosity ratio AIL is decreased, we observe 



124 

that the zero-surface-tension cusps develop closer and closer to the sink. We find that 

even for values of AJ.l as small as 0.01, the cusp singularity develops before the interface 

reaches the sink. In the presence of surface tension and for large viscosity ratios, the 

interface evolution is very similar to that of AJ.l = 1 but with larger surface tension. 

The viscosity of the exterior fluid has a smoothing effect on the flow and a thinner finger 

develops. The interface behavior is significantly different for small viscosity ratios. In this 

case, the zero-surface-tension cusp occurs already very close to the sink. Small surface 

tension only rounds slightly the tip of the cusp before this part of the interface rapidly 

accelerates to the sink. As a result, thin cusp-like fingers develop for small viscosity 

ratios. These fingers appear to converge also to an asymptotic shape as surface tension 

is reduced. It is noted that the angle of the asymptotic wedges decreases with Aw We 

believe that this angle will collapse to zero (a cusp) in the limit as AJ.l -+ O. 
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Chapter 5 

Numerical Study of Axisymmetric Flow 

with Suction through Porous Media 

Through the similarity in their governing equations, three-dimensional saturated flows 

through porous media are linked with Rele-Shaw flows with suction. In the following 

chapter, we study the axisymmetric flow consisting of a blob of viscous fluid driven 

through a point sink located inside the blob. The surrounding fluid is assumed inviscid. 

In Section 5.1, we present the equations of motion for the axisymmetric flow through 

porous media in a boundary integral formulation. We describe the numerical method 

in Section 5.2, The main idea to construct the uniform order quadratures of Nitsche is 

outlined here. We also explain how to adapt the technique of Rou et al. to obtain an 

efficient non-stiff time discretization for the computation of the axisymmetric flow in 

the presence of surface tension. Several important numerical issues such as numerical 

stability and filtering are also discussed in Section 5.2. As a test to the numerical method, 

we compute the evolution of an initially spherical vortex sheet [41, 45]. Section 5.3 is 

devoted to present the numerical results on the axisymmetric flow with suction along 

with some comparisons with the corresponding Rele-Shaw flow. 

5.1 The Governing Equations 

We consider an axisymmetric blob of incompressible viscous fluid surrounded by air or 

gas whose density is so light (compare to that of the viscous fluid) that the motion of 

the gas is unimportant. The velocity field u of the viscous fluid is given by Darcy's law: 

k 
u = --Vp, (5.1 ) 

J-l 
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where k is the permeability of the medium, f-l is the viscosity of the fluid, and p is the 

pressure. The incompressibility of the fluid expressed as 'V . u = ° implies that the 

pressure satisfies Laplace's equation 

(5.2) 

The nonlinearity of the flow comes from the boundary conditions on the fluid interface 

(the boundary of the fluid blob). Denoting the interface by r, these conditions can be 

written in the following form: 

[u· nJ!r 

[PJ!r 

0, (5.3) 

(5.4) 

where [.J denotes the jump across the interface. Here, n is the exterior unit normal to 

r, T is the surface tension coefficient, and K, is the mean curvature of the interface. The 

kinematic boundary condition (5.3) states that the normal component of the velocity field 

is continuous across the interface. This implies that particles on the interface remain 

there. The relation (5.4), known as the Laplace-Young boundary condition, gives an 

account of how the presence of surface tension modifies the pressure across the interface. 

We assume that there is a point sink at the origin, inside the fluid blob. For large 

distances away from the sink, the velocity field tends to the simple radial flow: 

x 
u(X) --+ Q !X!3 ' as IX! --+ 00. (5.5) 

Since the flow is potential, it can be described by the dynamics of the free interface 

r. Furthermore, we assume that the flow is axisymmetric. Thus, the surface r can be 

represented by its cross section with the x - y plane, as depicted in Fig. 5.1 for the case 

of a spherical surface. At any time t, we write r in parametric form as (x (a, t), y(a, t)), 

where a is a Lagrangian parameter. Both x and yare 211" periodic functions in a. Note 

that, because of symmetry, (x(a, t), y(a, t)) with a E [O,11"J suffices to describe the whole 

interface. 
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Figure 5.1: Spherical surface: (a) Three-dimensional perspective and (b) curve repre­
senting the cross section of the flow in the x - y plane. 

Taking into account the sink, the radial (u) and axial (v) velocities are given by [8J 

u(a,t) 

v(a, t) 

_1_ (" "/ y' - y [F()") _ (y' - y)2 ~ x'2 + x2 
E()")] da' 

27rX 10 P2 Pl 
x 

+Q (x2 + y2)3/2' 

~ rr ,'~ [F()") _ (y' - y)2 ~ x'2 - x
2 
E()")] da' 

27r 10 P2 PI 
y 

+Q (x2 + y2)3/2' 

(5.6) 

(5.7) 

where pi = (y - y')2 + (x - x')2 and p~ = (y - y')2 + (x + X')2. Rere, is the analogue 

to the two-dimensional vortex sheet strength. F()..) and E()") are the complete elliptic 

integrals of the first and second kind given by: 

F()") 1~ VI - ~~ cos2 0' 

E()") fo~ \/1 - ).,2 cos2 OdO, 

with )..2 = 4xx' / p~. The integrals in (5.6) and (5.7) are understood as principal-value 

integrals. Following the derivation for Rele-Shaw flow (see, for example [10, 63]), we get 
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a similar integral equation for, at the cross section with the x-y plane: 

(5.8) 

Here, S = Tkj J1, is a scaled surface tension parameter. Thus, the motion of the axisym­

metric flow through porous media with suction is described by Eqs. (5.6), (5.7), and 

(5.8). We nondimensionalize the equations of motion by setting Q = -1 and by taking 

the initial radius of the interface to be 1. Finally, the mean curvature can be computed 

using the following formula: 

(5.9) 

where So = Jx~ + y~. For future reference, we write the two components of the curva­

ture separately as 

xoYoo - XooYo 

Yo 
XS o 

s~ 
(5.10) 

(5.11) 

We see that the governing equations are very similar to those for the two-dimensional 

Hele-Shaw flow, except for the additional component ""2 of the mean curvature, and the 

integrands of the boundary integrals. Also the point sink has a different form. 

5.2 The Numerical Method 

There are two main components in obtaining a numerical solution to the initial value 

problem given by (5.6), (5.7), and (5.8): an accurate discretization in space which in­

cludes the evaluation of the principal-value integrals and the solution of the integral 

equation for " and an efficient and accurate time marching scheme. The appropriate 

choice of each discretization is nontrivial as the boundary-integral formulation is very 

sensitive to numerical instabilities. In addition, in the presence of small surface tension, 

discretetizations become even more sensitive due to the ill-posedness of the underly­

ing zero-surface-tension problem [17, 26J. We describe in this section our discretization 
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choices and illustrate why high accuracy and delicate numerical filtering are required to 

compute reliably the nonlinear interface evolution. 

5.2.1 Evaluation of the Principal-value Integrals 

Unlike the case for the analogous two-dimensional motion, the integrands in the boundary 

integrals for three-dimensional axisymmetric flow have a very complex structure involving 

poles and logarithmic singularities. Even if the leading order singularities are extracted, 

some derivative of the integrands will be singular and as a result standard quadrature 

rules will have a non-smooth discretization error. Moreover, as noted by Baker et al. [4], 

the integrands change rapidly at the two poles where the surface intersects the axis 

of symmetry. This makes the accurate evaluation of the principal-value integrals for 

axisymmetric flow even more difficult to achieve. 

Here, we use a high order quadrature due to Nitsche [44]. This quadrature achieves 

a uniform discretization error. We implement this quadrature to fifth order for the 

computations accounted here. We present next only the main ideas in the construction 

of this quadrature and refer the reader to [44] for the the implementation details. 

Each boundary integral can be written in the following form: 

w(a,t) = 10" G(a,a',t)da' , (5.12) 

where 

G ( a, a', t) = G ( "y ( a', t), x ( a, t), y ( a, t), x ( a' , t), y ( a', t) ) (5.13) 

is a function given in terms ofthe elliptic integrals F(A) and E(A) as expressed in Eq. (5.6) 

and Eq. (5.7). Note that there is a different G for each boundary integral. Expanding 

the elliptic integrals around A = 1 and performing a Taylor expansion around a' = a, it 

follows that 

( ') (' cl(a,t) Loo 

(/)k I I I G a, a, t = G s a, a, t) + + cda, t) a - a log a - a, 
a'-a 

(5.14) 
k=O 

where Gs(a, a', t) is a smooth function in both a and a' . Consider a uniform mesh in a 
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given by ai = ih for i = 0,1, ... ,N and h = 7fjN. Sidi and Israeli [57] show that 

10
7r , , '"""' h 

G(ai, a, t)da = h L G(ai, aj, t) + hGs(ai, aj, t) + cO(ai, t)h log 27f 
° ji.i 

2m 

+ L Vkck(ai, t)hk+l 
k=2 

2m+l Ok Ok 
+ L 'Yk[oa'k G(ai' 7f, t) - oa'k G(ai' 0, t)]h

k
+

1 + O(h2m+3) 
k=l 

(5.15) 

for any integer m > 1. The constants Vk and 'Yk (not to be confused with the vortex 

sheet strength 'Y) are given in [57}. The first term in the right-hand side of (5.15) 

corresponds to the ring vortex approximation while the first three terms together give the 

de Bernadinis and Moore quadrature. Quadratures of higher order may be constructed 

by approximating the principal-value integral by the right-hand side of (5.15) for a given 

m ~ 1. However, the error for all these quadratures is nonuniform and deteriorates 

severely near the poles of the symmetry axis (a = 0 and a = 7f). As pointed out 

by Nitsche [45], this is because both the coefficients Ck and the derivatives okGjoa'k 

are not uniformly bounded. In fact, Nitsche [44] shows that, as ai ---+ 0, they behave 

asymptotically as 

and (5.16) 

for the boundary integral in the radial velocity u given by (5.6), and as 

and (5.17) 

for the boundary integral in the axial velocity v given by (5.7). Similar estimates hold 

for ai ---+ 7f. 

The main idea of Nitsche's quadrature is to construct functions BO and B7r that 

approximate G at the symmetry poles a = 0 and a = 7f to get corrections for the 

nonuniform quadratures derived from (5.15). The functions BO and B7r are obtained by 

Taylor expanding the integrand G about the poles. Let us denote any of the nonuniform 

quadrature rules by Q[.]. Near a = 0, G - BO is smoother than G and consequently 
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Q[C - BO] = Q[C] - Q[BO] has a smoother discretization error than Q[C]. Therefore, 

the approximation 

(5.18) 

behaves better than Q[C] near 0: = O. Note that 

(5.19) 

acts as a local correction to the error in Q[C]. A similar correction EdB"] can be 

obtained near 0: = 7r. The final approximation due to Nitsche [44] can be written as 

(5.20) 

where WI and W2 are positive weight functions that satisfy WI + W2 = 1. Both EQ[BO] 

and EdB"] can be computed efficiently with a very small overhead to Q[C]. Except for 

simple factors, the corrections are time-independent and can be precomputed. We find 

that due to cancellation of digits, the time-independent terms in the corrections need to 

be precomputed using quadruple precision to achieve the O(h5) quadrature we employ 

here. This quadrature is obtained from (5.15) for m = 1 and the appropriate corrections 

EQ[BOl and EQ[B"l. 

5.2.2 Time Integration: Removing the Surface-tension Induced Stiff-

ness 

Through the curvature, surface tension introduces high order derivatives of the interface 

position that couple nonlinearly and nonlocally with the flow. The presence of high 

order space derivatives causes a severe time step stability constraint for explicit time 

integration schemes. Hou et al. [23] have designed an ingenious technique to remove 

the severe stability constraint, i.e., stiffness. In their method, the interface evolution 
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equations in terms of the tangent angle e and the arclength metric Sa = J x;; + y~ are 

Ta - (}aU, 

1 
-(Ua + Tea), 
Sa 

(5.21) 

(5.22) 

where T and U are the interface tangential and normal velocity respectively. The stiffness 

is hidden at the small spatial scales of Ua in the e-equation. The leading order behavior 

of U at small scales can be obtained by noting that, for x f- 0, the leading order terms 

of the integrands in the velocity [Eq. (5.6) and Eq. (5.7)J are 

S;;(o:' - a) 
and 

s~(a' - a) 
(5.23) 

for the radial and axial velocity respectively. Therefore, it can be easily shown that 

1 
U(a, t) rv -'ti[/](a, t), 

2sa 
(5.24) 

where 'ti is the Hilbert transform which is diagonalizable by the Fourier transform as 

H[jJ = -isign(k)j. Moreover, / is dominated by the surface tension term S/'i,l at small 

scales, that is 

(5.25) 

Therefore, 

(5.26) 

This dominant term at small scales simplifies if the arc-length metric Sa is constant in 

space. This can be achieved by exploiting the freedom in selecting the tangential velocity, 

as the interface motion is solely determined by the normal velocity U. By letting 

(5.27) 
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So is maintained constant and equal to its mean at all times, i.e., So = L(t)/27f, where 

L(t) is the total length of the curve in the cross section at time t. The equations of 

motion can now be written as 

r27r 

- 10 (}a, Uda' , (5.28) 

S (27f)3 "2 L 7-l[(}]aaa + P, (5.29) 

where P represents lower order terms at small spatial scales. L can be updated by an 

explicit method as Eq. (5.28) is free of stiffness. To remove the high-order stiffness, it 

is sufficient to discretize implicitly the leading order term in Eq. (5.29) and to treat 

the lower order term P explicitly. This gives a linear time-step stability constraint, 

i.e., l'lt ::S Ch, where l'lt is the time-step size and C is a constant. Moreover, because 

of its constant coefficients, the implicit term can be easily inverted by using the fast 

Fourier transform. Here, we use the fourth order explicit/implicit method to update () 

(Eq. (4.22)). 

Note that, at each time step, , has to be obtained from the integral Eq. (5.8) to 

compute the velocities. As pointed out by Baker et al. [3], (5.8) can be solved efficiently 

by fixed point iteration accelerated with a good initial guess. Here, we use a fourth order 

extrapolated initial guess constructed from previous time steps. It typically takes a few 

iterations to obtain a convergent solution for, when the interface is relatively smooth. 

5.2.3 Filtering and Numerical Stability 

To test our implementation of the fifth order quadrature for the evaluation of the 

principal-value boundary integrals, we compute the motion of a vortex sheet in a homo­

geneous incompressible inviscid fluid in the absence of surface tension. This test example 

allows us also to illustrate some important issues concerning numerical stability. We use 

the following initial data: 

x(a,O) = cos(a), y(a,O) = sin(a), ,(a,O) = cos(a), 
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which corresponds to the cross section of a spherical sheet. This is the problem computed 

by Nitsche [44J, and by Nie and Baker [41], using two different quadratures. Note that for 

this problem, is constant in time and only the interface position needs to be updated. 

Thus, the computational cost is significantly less than that of the axisymmetric suction 

flow where, has to be obtained from the integral Eq. (5.8) every time step. 

Figure 5.2 shows the Fourier spectrum of the boundary integrals for the initial data. 

This is a plot of the magnitude of the Fourier coefficients of the complex vortex sheet 

velocity 'U + iv [Eq. (5.6) and Eq. (5.7) with Q = OJ. The integrals are computed using 

10~ 
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Figure 5.2: Fourier spectrum of the velocity 'U + iv for the initial data of the spherical 
vortex sheet. The velocity was computed using the fifth order quadrature with N = 256 
and N = 512. 

Nitsche's fifth order quadrature with N = 256 and N = 512. Here N is the total number 

of uniformly spaced points along the complete interface (a E [0,27fJ). Note that there 

is a plateau of high frequency modes for each N. The plateau comes from the non­

smooth discretization error. Its level decreases by approximately a factor of 32 when 

the resolution is doubled. If this plateau is not removed, the coupling of the interface 

position with the velocity will cause a rapid growth of the high frequency modes of the 

numerical solution and this will in turn lead to numerical instability. 

Krasny filtering [37J provides a way of removing the high frequency modes introduced 

by the non-smooth discretization error in the velocity integrals. Given a grid-defined 

function h Krasny filter is implemented by taking the FFT of h setting to zero all 
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the Fourier modes of J; whose magnitude are below a certain level, and transforming 

back. Note that to maintain accuracy, the filter level must be chosen as low as possible. 

Typically, it is selected in the order of 103 times the round-off error. 

Using the L-() formulation given by (5.28) and (5.29) with N = 2048 points and 

!:It = 0.0001, we compute the motion of the initially spherical vortex sheet. At every 

time step, the velocity is filtered with a level set to 7.5 x 10-11 . All the computations 

presented here are performed with standard double precision. In addition, to prevent 

the spurious growth ofround-off error high-frequency modes under the Kelvin-Helmholtz 

instability, Krasny filtering is applied to () with a filter level set to 1O- l3
. Figure 5.3 shows 

the interface profile, the mean curvature, and the spectrum of the velocity at t = 1.09. 

Figure 5.3(b) gives clear indications of a curvature singularity developing at the interface. 

The spectrum of the velocity is free of any sign of numerical instability. 

It is important to note that the vortex sheet remains smooth at the poles a = 0 and 

a = 7r at all times. As we will see in the next section, this is not the case for the ax­

isymmetric flows we are interested in. Since the quadrature we use is based on a Taylor 

expansion about the symmetry poles, the accuracy deteriorates as the poles lose regular­

ity. Very high spatial resolution is required to maintain the high frequency components 

of the non-smooth discretization error below an acceptable filter level. In addition, 'Y 

couples with the principal-value boundary integrals through the integral Eq. (5.8). This 

extra coupling makes the computation more sensitive to numerical instability than that 

for a vortex sheet where 'Y is constant (zero surface tension) or explicitly determined 

(with surface tension). In our implementation, the integral equation (5.8) is solved it­

eratively. The iteration process is stopped when the difference between two subsequent 

iterations is less than a tolerance set to 10-11 . Krasny filtering is applied to u and v 

given by (5.6) and (5.7) in every iteration used to solve for 'Y. The filter level for u and 

v is selected lower (smaller) than 10-11 to guarantee the convergence of the iterations 

up to the tolerance level but high enough so that the non-smooth part of the error is 

removed. After the iterations are completed at every time step, 'Y is also filtered wit h a 

filter level slightly higher than the iteration tolerance. To summarize, filtering is applied 

as follows for the computation of the axisymmetric flow interface motion: 

• Filter () every time step with a level set to 1O- l3 . This is a typical filter level for 



136 

Ib, 

-1 

- 2 

-" 

·1 -0 8 -06 -0.4 - 0.2 0 0.2 0 4 0.6 0 8 1 -40L--~--~-----:---:--------:---!-, 

(c) 
10

0 ,--,----,----,----,----,---,---r--,----r--,-----., 

10->< '-----'------'----- -'----'------'----'----'------'------'------':-:------' 
o 100 200 300 400 500 600 700 800 900 1000 1 100 

Figure 5.3: Vortex sheet test run. These plots correspond to t = 1.09 with N = 2048 
and b.t = 0.0001. (a) Cross section of the vortex sheet. (b) Mean curvature versus (l'. 

(c) Fourier coefficient ICkl of the complex velocity u + iv . 
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double precision computations. 

• Filter u and v for every iteration used to solve for f with a level equal to 10-12
. 

• Filter f after the iterations are completed at every time step with a level set to 

2.5 x 10-11 . 

• Filter the boundary integrals (u and v) with a level set to 7.5 x 10-11 to compute 

the normal velocity. This filter level is higher because of the filtering applied to f. 

5.3 Numerical Results 

We now present the numerical results obtained for two different sets of initial data: a 

spherical interface centered at (0, -0.1,0) (see Fig. 5.1) and a slightly perturbed spherical 

interface corresponding to one of the Rele-Shaw flows considered by Nie and Tian [42]. In 

both cases the sink is located at the origin. Most of the computations start with N = 512 

and b.t = 0.000l. N is doubled before all the Fourier modes of the tangent angle B(a, t) 

are above the filter level equal to 10- 13 . The time step b.t is selected so that decreasing 

it further would not produce any appreciable difference within plotting resolution in the 

curvature of the interface. At the same time, 6.t is chosen sufficiently small so that with 

Krasny filtering applied every time step, the growth of the high frequency components 

introduced by the discretization error in the boundary integrals is kept under control. 

This is in effect what dictates the size of b.t and not the surface tension stiffness which 

has been removed by the technique of Rou et al. [23]. Indeed, we find that, before the 

interface begins to deform at one pole, the method we use has only the linear constraint 

b.t ~ Ch. 

We consider first the initially spherical interface. Figure 5.4 shows the interface cross 

section profile at different times for S = 0.0l. A three-dimensional perspective of the 

interface for the last computed time t = 0.179876 is presented in Fig. 5.5. Just as in the 

Rele-Shaw flow, a thin finger develops. As it gets closer to the sink, the finger evolves 

rapidly into a cone. The cone forms much earlier than the wedge in the Rele-Shaw flow. 

Also, the diameter of the top of the finger is smaller for the axisymmetric flow. These 

differences may be due in part to the stronger suction force in the three-dimensional flow. 
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Figure 5.4: Evolution of the initially spherical blob of fluid with S = 0.01. The interface 
profiles, from the outer perimeter inwards, correspond to the times t = 0, 0.1, 0.15, 
0.171, 0.1768, 0.1786, 0.1795, 0.1798, and 0.179876. N = 4096 and tlt = 5 X 10-8 for 
the last stage of the motion. 
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We stop the computation when the distance of the cone tip to the sink is 0.0148. At this 

time, the formation of a corner singularity at the tip of the cone as the it reaches the 

sink is evident. This can be clearly appreciated in the plot of the tangent angle e(ex, t) 

in Fig. 5.6. The angle appears to develop a discontinuity at the finger tip (ex = 'if). 

The mean curvature at the tip at that time is around -671. We use N = 4096 and 
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Figure 5.6: Behavior of the tangent angle B(ex, t) around the finger tip (ex = 0) as the 
interface is about to collapse, for S = 0.01. The tangent angle, plotted against ex at the 
times t = 0.17980, t = 0.17985, and t = 0.179876, appears to develop a discontinuity. 
N = 4096 and !:It = 1 X 10~7 for t = 0.17980 and t = 0.17985. N = 4096 and 
!:It = 5 X 10~8 for t = 0.179876. 

/).t = 5 x 1O~8 for the last stage of the computation. This is the maximum resolution we 

can afford and, as we explain next, it is also the minimum resolution needed to compute 

the motion up to this stage. 

As mentioned before, the accuracy in the evaluation of the boundary integrals in the 

equations of motion relies on the smoothness of interface at the symmetry poles ex = 0 

and ex = 'if. However, for the initial data we just considered, the interface is the least 

smooth, and eventually singular, precisely at one of the poles where the finger develops. 

As a result, we are forced to increase the spatial resolution to maintain accuracy and to 

keep the non-smooth discretization error in the approximation of the boundary integrals 

below our filter level. Figure 5.3 shows the spectrum of the normal velocity for two 

different resolutions at t = 0.1723, right after the interface begins to deform at the north 
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pole a = lr. As illustrated by this figure, it is necessary to use N = 1024 to have the 
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Figure 5.7: The Fourier coefficients ICkl of the normal velocity at t = 0.1723: (a) N = 512 
and (b) N = 1024. 

plateau of high frequency components below the filter level. Note that this happens well 

before all the Fourier modes of the numerical solution has been used for the N = 512 

resolution. 

An additional factor that makes our computation very sensitive to numerical insta­

bility is the coupling of 'Y with the principal-value boundary integrals. This coupling 

occurs through the integral equation which is solved for 'Y iteratively every time step. 

After the iterations are completed at every time step, Krasny filtering is also applied to 

'Y. The time step b.t is selected sufficiently small so that, with Krasny filtering applied to 

e and 'Y every time step, the growth of the discretization error in the boundary integrals 

is kept under control. Figure 5.8 shows that a very small b.t is required to suppress the 

growth of unstable high frequency modes in the normal velocity. 

We now decrease the surface tension to the value S = 4 X 10-4 . Figure 5.9 shows 
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the interface cross section profile at varIOUS times. The developed finger now clearly 
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Figure 5.9: Evolution of the fluid interface for S = 4 X 10-4 . (a) The interface cross 
section profile plotted at t = 0.1729,0.1739,0.1749,0.1754,0.1756, and 0.175734. (b) A 
close-up of the finger formation. N = 4096 and ~t = 2 x 10-8 for the last stage of the 
motion. 

bulges and a well defined neck is observed. A comparison with the Hele-Shaw flow for 

the same value of surface tension appears in Fig. 5.10. The interfaces are not plotted at 

the same time t but when the tip of the finger reaches 0.0865 for both cases. The finger 

in the axisymmetric flow shows a more visible bulging and a more pronounced neck. A 

curvature plot for these two interfaces given in Fig. 5.11 shows that the two-dimensional 

mean curvature /);1 is more singular in the axisymmetric flow. In Fig. 5.11, the two 

symmetric spikes correspond to the location of the neck while the two small dips next 

to the spikes correspond to the bulging area. The large negative spike at a = 7r points 

to the formation of a corner singularity. 

In Fig. 5.12, we plot the two principal curvatures /);1 and /);2, and the mean curvature 

/); = /);1 + /);2 for the interface in the axisymmetric flow with S = 4 X 10-4 at t = 0.175734. 

From this plot, we see the effect of the curvature in the axial direction. At the location 

of the neck, /);1 has a positive spike while /);2 is negative. This smooths the interface at 

the neck (but /);1 is still dominant). However, at the bulging area, immediately next to 

the neck, both /);1 and /);2 are negative and thus, together, enhance the finger bulging. 

For Hele-Shaw flow, there is an asymptotic shape of the fingers at the late stage of the 

interface motion [10J. We compare in Fig. 5.13 the interface profile for the axisymmetric 
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Figure 5.10: (a) Cross section profile of the axisymmetric flow at t = 0.175734 and the 
Rele-Shaw flow at t = 0.2922625 with the same surface tension S = 4 X 10-4

. (b) A 
close-up look of the fingers. The solid curve corresponds to the axisymmetric flow and 
the dashed line corresponds to the Rele-Shaw flow. N = 4096 and flt = 2 x 10-8 for the 
axisymmetric flow. N = 2048 and flt = 2.5 x 10-6 for the Rele-Shaw flow. 

Figure 5.11: Comparison of the interface two-dimensional mean curvature (I);r) for the 
axisymmetric and the Rele-Shaw flows with S = 4 X 10-4 . (a) 1);1 versus 0: for the 
axisymmetric flow at t = 0.175734. N = 4096 and flt = 2 x 10-8 . (b) 1);1 versus 0: for 
the Rele-Shaw flow at t = 0.2922625. N = 2048 and flt = 2.5 x 10-6 . 



144 

50,----,----,----,-----,----,----,-----,----,----, 

" 
o bo-=-~~=_="'"_=""~-~- / \ - ...... \/---, , 

-so 

-100 

-150 

-200 

lC,-

-250 L---__ -"-____ -'-____ L-__ -"-____ --'--____ L---__ -L ____ --'--__ --' 

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 
a 

Figure 5.12: Axisymmetric-flow curvature components at t = 0.175734 for S = 4 X 10-4
. 

The solid line corresponds to '" = "'1 + "'2. The dashed line corresponds to "'1 (two­
dimensional mean curvature) and the dashed-dotted line to "'2. N = 4096 and b.t = 
2 X 10-8 . 

flow for S = 4 X 10-4 at t = 0.175734 and for S = 8 X 10- 4 at t = 0.176129 when the 

finger tip reaches around 0.086. The finger width varies very little away from the neck 

and an asymptotic shape is conceivable based on the similar behavior observed in the 

Hele-Shaw flow. 

Next, we consider the second initial data. The initial interface is now given by the 

conformal mapping [42] 

(3w 
f(w) = c¥w + ---'--­

I -WOW 
(5.30) 

Here f = x + iy and the coefficients C¥, {3, and Wo are determined by the following system 

of equations 

ri + 1/2, (5.31) 

(5.32) 

(5.33) 
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Figure 5.13: Comparison of the interface finger in the axisymmetric flow for two different 
values of surface tension, S = 4 X 10-4 at t = 0.175734 and S = 8 X 10-4 at t = 0.176129. 
N = 4096 and !::"t = 2 x 10-8 for S = 4 X 10-4 . N = 4096 and !::"t = 2.5 x 10-8 for 
S = 8 X 10-4 . 

with Tl = 0.7 and T2 = 0.1. After solving numerically (5.31), (5.32), and (5.33), we get 

a ~ 0.9902, {3 ~ 0.0094, and w ~ 0.78799. The mapping f generates a slightly perturbed 

circular profile in the x - y plane. The point sink is, as before, at the origin. This is 

one of the sets of initial data considered by Nie and Tian [42]. In the absence of surface 

tension, the Hele-Shaw interface separates into one big and one small circle. Nie and 

Tian refer to this as the "big and small circle" data. One reason we choose this initial 

interface is that the fingers will not form at the poles and thus, the quadrature maintains 

its accuracy better. 

Figure 5.14 presents the Hele-Shaw interface at various times with surface tension 

S = 0.002. Two long fingers form and approach the sink at the same pace. Each 

finger develops a corner at its tip when it touches the sink. In our computation for 

the axisymmetric flow, we start with N = 256 points and we are able to use all the 

modes of the numerical solution before we double the number of points. Figure 5.15 

pictures the axisymmetric flow interface at various times for S = 0.002. Similar to 

the Hele-Shaw flow, the interface forms two long fingers which are drawn into the sink. 

We stop our computation at t = 0.283179. At this stage we use N = 4096 and !::"t = 
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Figure 5.14: Evolution of the" big and small circles" initial interface with S = 0.002 for a 
Rele-Shaw flow. The interface profiles, from the outer perimeter inwards, correspond to 
the times t = k x 0.05 for k = 0, .. , 6, t = 0.342+k x 0.04, for k = 0, .. ,4, and t = 0.355388. 
N = 4096 and 6.t = 1 x 10-6 for the last stage of the motion. 
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Figure 5.15: Evolution of the fluid interface in the axisymmetric flow for the slightly 
perturbed sphere corresponding to the two-dimensional "big and small circles" initial 
data with S = 0.002. The curves, from the outer perimeter inwards, correspond to 
the times t = 0,0.05, 0.10, 0.15, 0.20, 0.25, 0.279, 0.2815, 0.2825, 0.283, and 0.283179. 
N = 4096 and 6.t = 5 X 10-7 for the last stage of the motion. 
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5 X 10- 7 . Continuing the computation requires using N = 8192 points and turns out to 

be prohibitly expensive as the number of iterations to solve for 'Y also increases. 

The three-dimensional perspective of the fluid interface at t = 0.283179 is shown in 

Fig. 5.16. 
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Figure 5.16: The fluid interface for the slightly perturbed spherical initial surface corre­
sponding to the two-dimensional "big and small circles" for S = 0.002 at t = 0.179876. 
(a) Three-dimensional perspective. (b) Cut-away plot. 

The sequence of pictures presented in Fig. 5.17 contrasts the differences between the 

Hele-Shaw and the axisymmetric flow interfaces. Note that the central bulb is wider in 

the axisymmetric flow but the fingers are thinner. 

We now decrease the surface tension to the value S = 5 X 10-4 . Figure 5.18 shows 

the axisymmetric flow interface at different times as it evolves. Due to the growth of the 

round-off error noise, and to the interface singular behavior, well resolved computations 

for such small values of surface tension are extremely difficult. We compare the profile 

of the interfaces for S = 5 X 10-4 and S = 2.5 X 10-4 in Fig. 5.19 when they reach 

around the same level in y. The oscillation next to the fingers is likely to be due to the 

influence of noise. Figure 5.19(b) shows the close-up plots of the two fingers. We shift 

0.5 
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Figure 5.17: Comparison of the axisymmetric flow at t = 0.283179 with the Rele-Shaw 
flow at t = 0.3542. (a) Axisymmetric flow. (b) Rele-Shaw. (c) Both interfaces; solid line 
axisymmetric flow and dashed line Rele-Shaw flow. N = 4096 and f).t = 5 x 10-7 for 
the axisymmetric flow. N = 2048 and f).t = 5 x 10-6 for the Rele-Shaw flow. 
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Figure 5.18: Cross section interface profiles showing the evolution of the axisymmetric 
flow for the slightly perturbed spherical initial data for S = 5 X 10-4 at t = 0.2625, 
0.2725, 0.2735, 0.2745, 0.2755, and 0.276152. N = 2048 and f).t = 2 x 10-6 for the last 
stage of the computation. 
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Figure 5.19: Comparison of the interface profiles for the axisymmetric flow with S = 
5 X 10-4 at t = 0.2745 and S = 2.5 X 10-4 at t = 0.275. (a) Cross section profile. The 
solid line corresponds to S = 5 X 10-4 and the dashed line corresponds to S = 2.5 X 10-5 . 

(b) Close-up look at the interface fingers. The inner curve is for S = 2.5 X 10-4 , but it 
has been translated to align with the S = 5 X 10-4 fingers. N = 2048 and b.t = 2 x 10-6 . 

the fingers for S = 2.5 X 10-4 in x direction to align with the S = 5 X 10-4 fingers to 

ease the comparison. For S = 5 X 10-4 , the narrowest width for the finger is about 0.1, 

and it is about 0.06 for S = 2.5 X 10-4 . 
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In the first part of this thesis, new formulations and new methods are presented for com­

puting the motion of a curvature driven three-dimensional filament and surface. These 

numerical methods have no high order time step stability constraints. We applied our 

methods to compute the motion of two-dimensional vortex sheets with surface tension, 

motion of three-dimensional filament by curvature, the Kirchhoff rod model, anti-parallel 

vortex filaments and simplified three-dimensional water wave model on Gaussian waves 

and gravity waves. Our numerical results convincingly demonstrate that our methods 

remove the severe time step stability constraint associated with explicit discretizations 

for both two-dimensional and three-dimensional interfaces. 

In the second part of this thesis, we numerically study the two-dimensional Rele-Shaw 

problem with suction and three-dimensional axisymmetric flow through porous media 

with suction. We find several interesting phenomena as surface tension is decreased for 

both flows. Fingers form and quickly develop into wedges, in two dimensions, and cones, 

in three dimensions, as they approaches the sink. An asymptotic shape of the fingers 

is observed at the late stages of the interface motion and the angle of the wedge and 

cone at the tip of the finger is selected in the limit as surface tension tends to zero. 

Moreover, for sufficiently small values of surface tension, a well-defined neck develops 

at the top of the finger. The developing finger bulges but, being drawn strongly by the 

sink, quickly evolves into the wedge or cone. We also observe that the axisymmetric flow 

develops narrower fingers than those found in the Rele-Shaw counterpart. The additional 

azimuthal component of the mean curvature simultaneously enhances the definition of 

the finger neck and smoothes the interface there. 
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