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Abstract

Chemical vapor deposition (CVD) is a process by which thin solid films are de-
posited on solid substrates for various technological applications. Roughly speaking,
a multispecies chemically reacting gas flows past a heated substrate on top of which
the deposition and subsequent formation of the alloy or compound of interest take
place via a series of heterogeneous chemical reactions. The growth rate of the thin
film is determined by the competition between the diffusive and convective transports
of species in the gas phase, the homogeneous and heterogeneous chemical kinetics,
and the morphology of the gas-film interface.

In chapter 2, a thermomechanical macroscopic model is proposed that couples
the multicomponent chemically reactive gaseous flow to the bulk of the growing thin
solid film via the equations that govern the morphological evolution of the film-gas
interface. The surface is modeled as a separate anisotropic elastic phase, and such
phenomena as surface species diffusion, heat conduction and chemistry are accounted
for. In particular, the driving force at the surface is identified, and a thermody-
namically consistent kinetic relation linking it to the growth velocity is proposed. A
specialization of this general framework to the case of a multicomponent ideal gas
and a linearly elastic solid film separated by an isotropic surface is considered.

In chapter 3, we examine a multicomponent gas flow in a vertical axisymmetric
MOCVD reactor whose geometry is characterized by a small aspect ratio (defined
as the ratio of the height of the reactor channel to the radius of the substrate) and
operating under conditions insuring a small Mach number. A two-parameter asymp-
totic analysis yields, in the limit of vanishingly small aspect ratio and Mach number,
a set of approximate equations governing the gas phase, combined with approximate
boundary conditions at the showerhead and the gas-film interface. A specialization
to the steady-state approximation is then proposed, and an analytical solution to the

approximate problem is derived. It is found that this solution is of the similarity
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type, thus insuring a uniform temperature and chemical composition profiles along
the film surface.

Finally, in chapter 4, the growth of a generic thin film via a ledge-and-terrace mech-
anism is examined. Of particular interest is the interaction between the microstruc-
ture of the surface and the chemical kinetics by which the adsorption/desorption of
species along the terraces and the formation of the compound at the steps occur.
A simple step-flow model is proposed and its specialization to the case of a binary
compound is used to illustrate the complex dependence of the averaged growth rate
on the chemical composition of the gas phase as well as on the morphology of the

evolving surface.
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Chapter 1 Introduction

1.1 Background

Chemical vapor deposition (CVD) is a widely used technique for the deposition
of thin solid films on solid substrates. Its main industrial applications are the fabri-
cation of integrated circuits, in particular Silicon-based semiconductor devices such
as computer chips, the production of compound semiconductors (such as Gallium-
Arsenide films) for opto-electronic applications, the synthesis of diamond films for
such applications as cutting tools, the filling of grooves for interconnect lines, as well
as the manufacture of various anticorrosion and antiwear industrial coatings (cf., e.g.,
Kleijn [K] and Goodwin and Butler [GB]). A more recent technological development
has been the use of CVD to grow high-temperature superconducting Y BasCu3O7_s
films which are incorporated in high-performance microwave filters for commercial
wireless and aerospace communications (e.g., cf. Bourdillon and Bourdillon [BB]).

As a deposition process, metallorganic CVD is more attractive than other pro-
duction methods (such as molecular beam epitaxy (MBE) or pulsed laser deposition
(PLD)) because of a variety of factors. It typically has higher growth rates and it is a
low-unit-cost manufacturing technique. Most importantly, it has the capability of de-
positing highly uniform films, both in terms of thickness (even on irregular surfaces)
and chemical composition (e.g., cf. Houtman et al. [HGJ]).

The huge technological progress accomplished over the recent years in the produc-
tion of semiconductor devices, leading to the current generation of ultra-large-scale-
integration (ULSI) circuits, characterized by the presence of millions of components
on a single chip whose typical dimensions are of the order of a micron or less, has
led to increasing demands on the performance of CVD processes. Thus the need to
understand quantitatively the fundamental physics and chemistry of such processes,

in the hope that physically-based theoretical models and numerical simulations can
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help in the design, optimization, and control of CVD reactors. Moreover, the recent
interest in the deposition of compounds such as Y Bay;Cu307_;s superconductors and
PbTi0O4 ferroelectrics poses the additional challenge of providing a very accurate con-
trollability of the chemical composition of the grown thin films in order to prevent
the formation of secondary phases with disastrous consequences on the performance
of the manufactured devices. As an example, consider Y BaysCu3zO7_s films. Even a
slight excess in Ba can lead to the degradation of the superconductivity of the film
(e.g., Waffenschmidt et al. [W]), while the formation of Cu-rich precipitates interferes
with line patterning thus making it difficult to produce multilayers.

Roughly speaking, chemical vapor deposition of compounds consists of flowing a
multispecies chemically reacting gas past a heated substrate on top of which the depo-
sition of the desired species occurs via a series of adsorption reactions. The adatoms
diffuse along the surface and react chemically to form the compound of interest. From
the brief description above, it can be seen that chemical vapor deposition is a highly
complex process. This complexity results mainly from two reasons: (a) the multitude
of physical and chemical mechanisms present in the reactor, and (b) the presence of
multiple length scales.

In order to discuss (a), consider the growth of a thin film by MOCVD. The atoms
to be deposited on top of the substrate are carried by metallorganic precursor com-
pounds, more or less diluted with an inert carrier gas (usually Hydrogen or Nitrogen).
These precursors are chosen so that they have the adequate volatility at the source
temperature (i.e., in the separate temperature-controlled ovens containing each of the
precursors of interest), but they must also decompose to release the atoms from the
organic ligands at the substrate temperature. The precursors and the carrier gas mix
and flow into the reactor channel in which the heated substrate is positioned. The
transport of species in the gas phase occurs both by convection and diffusion. In
parallel, a series of heat-activated homogeneous chemical reactions take place in the
gas flow, leading to the formation of reactive intermediate products. These inter-
mediates reach the surface of the substrate where they adsorb, releasing the organic

ligands into the gas. The adatoms (i.e., the adsorbed particles) then diffuse along the
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surface, and react chemically, ultimately leading to the formation of the compound of
interest, while the exhaust gases leave the reactor through the vacuum ports. From
the description given above, it can easily be seen that the rate of growth of the film
depends on the competition between homogeneous and heterogeneous chemical kinet-
ics, as well as the convective and diffusive transport phenomena. It should be noted
here that the chemical kinetics and transport properties are functions of the process
conditions, i.e., they depend on the temperature, pressure, chemical composition of
the gas mixture, and inlet conditions (flowrates, inlet temperature, etc.), as well as
on the reactor geometry. Various mathematical models have been successfully devel-
oped to describe the behavior of the gas flow, complemented by chemistry and heat
transfer models (on general CVD models, cf., e.g., Winters, Evans and Moen [WEM],
Coltrin, Kee and Rupley [CKR], and the excellent review article by Kleijn [K] and
the references therein; on stagnation-point flow CVD, see, e.g., Houtman, Graves and
Jensen [HGJ] and Evans and Greif [EG]; on Silicon CVD, cf., e.g., Coltrin, Kee and
Miller [CKM1] and [CKM2], Pollard and Newman [PN], and Houf, Grcar and Brei-
land [HGBYJ; on GaAs CVD, see, e.g., Mountziaris and Jensen [JM] and Omstead et
al. [OSLJ], as well as Coltrin and Kee [CK]). We note here that a common feature
of these models is the assumption that the film surface is flat.

The presence of multiple length scales is obvious from the observation that the
typical dimension of the reactor chamber is of the order of inches, while the height of
the grown thin film is typically less than a micron. It is this observation that justifies
the assumption of flatness of the surface of the film in the various gas-phase models
mentioned above. In reality, the surface is not flat, and a crucial question concerns
the dependence of the deposition kinetics on the morphological details of the evolving
gas-film interface.

The morphological evolution of the surface has been the focus of numerous studies
ranging from particle-based Monte Carlo simulations at the atomistic or molecular
scale to continuum models at the macrosopic scale and passing by semi-continuum
models at the mesoscopic scale. Monte Carlo simulations of the deposition kinetics

during epitaxial growth are based on solid-on-solid (SOS) models. These atomistic
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models describe the random deposition of particles onto lattice sites and their sur-
face migration via nearest-neighbor hopping mechanisms (for a brief description of
the Monte Carlo procedure, cf. Saito [S] and the references therein). Vvedensky
et al. have focused mainly on simple deposition kinetics such as those characteriz-
ing MBE processes (one reason for this being that the kinetics underlying the SOS
models contain free parameters that can either be determined based on molecular-
dynamics calculations or obtained by indirect comparison with in-situ experimental
observations, thus the choice of MBE because of its simple deposition kinetics and the
relative ease with which in-situ measurements can be performed in its ultra-vaccum
environment— cf., e.g., Vvedensky [V], Vvedensky, Haider, Shitara et al. [VHS] and
Ratsch, Smilauer, Vvedensky et al. [RSV]). Recently, Srolovitz et al. have studied the
CVD of diamond using Monte Carlo simulations based on kinetics parameterized by
conventional surface chemical reaction-rate coefficients (see, e.g., Battaile, Srolovitz
and Butler [BSB1, BSB2, BSB3]). However, due to computational limitations, these
simulations remain essentially too microscopic (the surfaces simulated have typical
dimensions of the order of nanometers). Semi-continuum mesoscopic models find
their justification in the experimental observation that, under certain growth condi-
tions, epitaxially deposited films grow by the “terrace and ledge” mechanism. That
is, atoms are adsorbed to large terraces separated by unit-cell ledges; they then dif-
fuse along these terraces and are finally incorporated into the film at the ledges. This
terrace-and-ledge model has been studied extensively since the seminal work of Bur-
ton, Cabrera and Frank [BCF] (also see, e.g., Zangwill [Z], Bales and Zangwill [BZ],
Villain [V], Villain and Pimpinelli [VP] and Elkanini and Villain [VE], as well as the
references therein for more recent studies). These studies, however, concentrate on
the growth of films of a single chemical species or element. In addition, they are
often confined to the case of deposition by a ballistic flux of atoms, thus reducing
the complexity of the coupling with the gas-phase. Finally, macroscopic continuum
models have been developed that describe the morphological evolution of the surface
at length scales sufficiently large so that the microstructure can be neglected, i.e.,

the evolving surface is modeled as a smooth two-dimensional manifold. These models
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were pioneered by the works of Mullins [M] and Mullins and Sekerka [MS] (for more
recent works, cf. Spencer, Voorhees and Davis [SVD] and Davi and Gurtin [DG], as
well as the references therein). These studies have mostly focused on the growth of
single-component films, and more recently, there has been a growing interest in alloy

films (cf., e.g., Guyer and Voorhees [GV]).

1.2 Scope of the Present Work

The objective of the present work is to address several issues concerning the model-
ing of thin film growth by chemical vapor deposition. The context within which most
of this investigation was conducted is the growth of Y Ba;CusO7_s high-temperature
superconducting films by MOCVD. This is a highly complex process still suffering
from an incomplete theoretical knowledge and experimental characterization of many
of its underlying fundamental physical mechanisms, the most significant handicap
being perhaps the very partial knowledge we possess of the gas-phase and surface
chemical kinetics. As a result, the approach espoused here was to treat the general
case of a multicomponent system with NV constituents, where N > 2. In doing so, our
ambition was to acquire some qualitative understanding of the physics underlying
CVD processes rather than the quantitative characterization of a specific physical
system.

The goal was to build upon the impressive body of work already available. As
mentioned above, models exist that deal with the very complex chemistry that charac-
terizes many CVD systems which have been extensively investigated (such as Silicon
or Gallium-Arsenide CVD), and the interplay between the various transport phenom-
ena that occur in the gas phase (i.e., species and momentum transport as well as heat
transfer) and the deposition chemistry. But these models have mostly payed little
attention to the morphology of the surface separating the gas phase from the bulk of
the film. On the other hand, microscopic Monte Carlo, mesoscopic terrace-and-ledge
and macroscopic continuum models that have investigated the influence of surface

morphology and elastic stress on the growth of thin films have been mostly confined
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to single-species or binary alloy systems growing by MBE (or other ballistic deposition
techniques), thus reducing the complexity of the gas-phase transport phenomena and
the heterogeneous chemical deposition kinetics. In chapter 2, we attempt to provide
a unified macroscopic framework within which to model the morphological evolution
of multispecies films grown by CVD.

In chapter 3, the focus is on the modeling of the multispecies reactive gas flow.
The specialization to a vertical axisymmetric reactor with small aspect ratio (defined
as the ratio of the height of the reactor’s channel to the radius of the substrate on
top of which the deposition occurs) and operating under conditions insuring a small
Mach number is the consequence of our involvement in the VIP (Virtual Integrated
Prototyping) project whose experimental MOCVD reactor can be idealized to corre-
spond to the one we study. A two-parameter asymptotic expansion yields a set of
approximate equations governing the behavior of the flow and boundary conditions
at the showerhead and the substrate. This approximate problem can be solved ana-
lytically, leading to a similarity-type solution which guarantees the uniformity of the
temperature and chemical composition on most of the substrate.

Finally, in chapter 4, the interaction between the microstructure of a generic thin
film grown by MOCVD and the surface chemistry by which the adsorption and incor-
poration of adatoms take place is examined in the light of experimental observations
suggesting that, within a certain operating regime, the growth of Y Ba;Cu307_; films
occurs via a terrace-and-ledge mechanism. A simple one-dimensional step-flow model
is proposed, and its application to a binary compound illustrates the interesting non-
linear effects of the morphology of the terraced surface and the gas-phase chemical

composition on the overall growth rate of the thin film.




Chapter 2 A Macroscopic
Thermomechanical Model of Multispecies

Film Growth by CVD

2.1 Introduction

The present chapter is an attempt to provide a unified continuum treatment of
the growth process of multicomponent thin solid films (either substitutional alloys or
compounds) by chemical vapor deposition (CVD). The basic setup is shown in Figure
2.1 which represents the schematic of a vertical stagnation-point flow reactor such as
are used to deposit high-temperature superconducting thin films of Y BayCuzO7_s
on MgO substrates via MOCVD (metallorganic CVD). A chemically reactive gas
mixture with N constituents (N > 2) flows through a showerhead into the reactor
chamber and past an independently heated substrate on top of which it deposits var-
ious chemical species whose conglomeration forms the compound or alloy of interest
(for a general and extensive overview of the modeling of chemical vapor deposition
processes, we refer the reader to the excellent article by Kleijn [K]). Our goal is to
formulate a set of equations governing both the fluid flow in the channel and the
growth of the thin solid film on the substrate (via the morphological evolution of the
vapor-solid interface). In both the gas flow and the bulk of the solid film, we al-
low for the transport of species by convection and diffusion, and the diffusive species
fluxes can suffer discontinuities across the gas-film evolving interface. Homogeneous
and heterogeneous chemical reactions are also accounted for, where the former are
confined to the gas phase (and thus involve only gaseous species), while the latter
occur along the gas-film interface and typically involve gaseous, bulk and superficial

species. Heat transport by conduction and radiation is considered under the con-



Figure 2.1: Schematic of a vertical
axisymmetric stagnation-flow re-
actor used to grow Y Ba;Cu3zO7_s
high-T, superconducting thin films
on MgO heated substrates by
MOCVD. The flow of carrier gas
(Nitrogen), Oxygen, and the three
precursor  species  (Ba(tmhd)z,
Cu(tmhd), and Y (tmhd)s) enters

Substrate Showerhead

the reactor channel through the Q0000
showerhead. The gas exhausts ax-

isymmetrically through the annular

gap surrounding the substrate (cf. Heater

[G1]).

straint of continuity of the temperature, but the bulk heat flux can jump across the
interface. Along the interface, we permit for surface species diffusion and heat con-
duction (both defined in the limit of an infinitely thin surface as tangential vectorial
fields). Finally, we consider only coherent surfaces, i.e., surfaces across which the
deformation is continuous but its derivatives with respect to time (material velocity)
and position (deformation gradient) can suffer discontinuities.

In section 2.2, we introduce a number of key concepts at the core of the continuum
model we propose. Essential to our description of the problem is the treatment of
the flowing gas mixture as a single phase (an approach which is consistent with the
fact that it is a miscible mixture). In each phase, we view the diffusion of a given
chemical species as the motion of those particles belonging to the species in question
relative to the motion of the mixture as a whole. We begin by introducing, in the
current configuration, the species mass density and velocity spatial fields. We then
define a mass-averaged (convective) velocity field and use it to introduce a reference
configuration in the material space (subsection 2.2.1). Next, we use the Eulerian
framework once more to introduce the Cauchy stress tensor (section 2.2.2). We can
then define its Lagrangian counterpart, the Piola-Kirchhoff stress, in the reference
configuration introduced above. Finally, we adopt a Gibbsian view of the interface

(or surface) separating the growing thin solid phase from the ‘mother’ gas phase. That
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is, we view the surface as a separate phase endowed with mass and volume. Hence the
requirement that the fundamental principles (i.e., the conservation of mass and other
balance laws) along the surface be satisfied. However, we assert that the thickness
of the surface is much smaller than any of the other characteristic dimensions of
the physical system at hand (e.g., the height of the reactor channel or the typical
thickness of the thin film). Consequently, when formulating the balance laws at
a macroscopic scale, we treat the surface as a smoothly evolving two-dimensional
manifold (subsection 2.2.3).

In section 2.3, we introduce a number of preliminary results and mathematical
identities that are indispensable for the formulation of the equations governing the
growth process.

In section 2.4, we formulate the various equations resulting from the requirement
that the fundamental principles of mechanics and thermodynamics be satisfied. More
specifically, in each of the three phases (gas, surface and bulk), the balances of mass
for the various chemical species present, the conservation of the linear and angular
momenta, the balance of configurational forces, the balance of energy and the en-
tropy inequality are expected to be satisfied. We note here that, given a material
surface, there exist two physical mechanisms by which the area of the surface can
be changed: one is by deformation (think of the stretching of an elastic membrane),
and the other is by accretion, that is, by addition (or deletion) of material particles
to the surface of interest. The former mechanism maintains the mass of the surface
intact, but its properties (such as the density of particles per unit area or the state
of strain of the surface) can be greatly affected. The latter mechanism modifies the
total mass of the surface, but its local characteristics remain unaffected. Following
Gurtin (e.g., cf. [G3]), we view the standard forces as accounting for the first (defor-
mational) mechanism, while the configurational forces are associated with the second
(accretive) mechanism. The existence of two separate force balances (the standard
balance of forces or conservation of linear momentum and the additional balance of
configurational forces) is then an adequate way of accounting for those two distinct

mechanisms separately.
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In section 2.5, we make constitutive assumptions on the behavior of the various
phases. The gas mixture behaves like a multicomponent fluid which is assumed, in
addition, to be viscous and Newtonian. The solid phase behaves like a' multicompo-
nent elastic material, while the driving force at the surface is identified and a kinetic
relation linking it to the growth velocity is proposed. Of particular relevance to CVD
processes is the Soret effect, i.e., the dependence of the species diffusion on the tem-
perature gradient, and this is accounted for in our constitutive formulation. That the
Soret effect should not be neglected in our setting can easily be seen from the fact
that the variation in temperature between the inlet and the substrate is of the order
of a few hundred degrees Celsius. Also, if the temperature along the interface is not
uniform, it is conceivable that the surface Soret effect would lead to phase segregation
and the formation of unwanted secondary phases such as BaO- or CuO-islands with
disastrous consequences on the superconducting properties of the thin film (cf. [W]).

In section 2.6, we list all the evolution equations, thus providing the reader with
a condensed formulation of the general free-boundary problem. Here, we make the
additional assumptions that the gas mixture behaves like a multicomponent ideal
gas and that the thin film is linearly elastic. This is followed, in section 2.7, by a
specialization to the case of ‘local equilibrium’ with a particular emphasis on single-
species systems for which we obtain the Mullins-Sekerka type of evolution equations
(cf. [MS]). Finally, we conclude, in section 2.8, with a comparaison of our thermo-
mechanical model to the more classical treatment of similar physical systems within
the conceptual framework of the theory of mixtures (cf., e.g., [BD] and the references

therein).
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2.2 Key Concepts

2.2.1 Kinematics

Consider a continuum composed of N species!, where N > 2, and let the mass
density gy and the velocity oy of the kt* species be given as functions of position (in

the current configuration) and time:
ﬁk :ﬁk(y,t) and 'Dkzﬁk(y,t), szl, ,N. (21)

We define the total mass density as the sum (over all species present) of the species

densities and a mass-averaged (convective) velocity as follows:

N
pw.t) 23 mwt), (2.2)
Ay, t) €3 ey, Do, 1), (2.3)

We also define the (spatial) diffusive mass fluxes associated with the various chemical

species present: Vk=1,... NV,
T def _ ,_ _
hk :f Pk (’Uk - ’U); (24)

that is, the diffusive motion of the k*" species is a motion relative to the (convective)
motion of the mixture as a whole. From the definitions (2.4), (2.2) and (2.3), it follows

that the total diffusive mass flux is identically null:
hE S e =0 (2.5)
k=1

We are interested in chemically reacting mixtures such as can be found in chemical

vapor deposition processes. Hence, we introduce the notion of mass production due

1We use the terms constituent and chemical species interchangeably.
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to chemical reactions: let Ry = Rx(y, t) be the mass production rate of the k™ species
due to the creation or destruction of k-particles by all the chemical reactions involving
it. In addition, we postulate that there is no net production of mass due to chemical

reactions, i.e.,
N
RY S R =0 (2.6)
k=1

We now use the mass-average spatial velocity field @ introduced above to define
a reference configuration. Our goal is to find a time-dependent mapping y(z,t) from
the material space into the current configuration {2, (a time-dependent region in the

physical space) such that:

g—zt/(x,t) = O(y(z,t),1), and (2.7)
y(z,0) = wol). (2.8)

In what follows, fix an arbitrary z in the material space and suppress it from the

notation. Consequently, for this fixed z, the equations (2.7)-(2.8) may be written as:

The following theorem guarantees the local existence of a solution y to these equations:
Theorem. If 9(y,t) satisfies the Lipschitz condition for y in some domain D in
R x R, then there exist » € Rt and an exact solution y = y(t) of the equation
y = o(y,t) for [t| < h, such that y(0) = yo (see, for example, Hurewicz [H2]).

It can also be shown that such a solution is unique. We repeat this for each
material point z, thus defining the mapping y(z,t). Now, we can also show that if
the function yo(x) is smooth in z and with det Vo positive, then the function y(z, )
is also smooth in z with det Vy positive locally in time. In addition, let us assume

that the mapping = — v is invertible for small times. We can then use the mapping
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y~! to define the reference configuration.

We have thus implicitly defined a single reference configuration in the material
space whose image by y, at an arbitrary instant in time ¢, is the observable current
configuration in the physical space at that time.

In this reference configuration, we can now define the species densities, partial
velocities, diffusive fluxes and production rates as the Lagrangian (i.e., material)

counterparts of the Eulerian (i.e., spatial) fields introduced above: V k =1,... , N,

) = J(=@,)p(y(z,1),1),

) = w(y(z,t),t),

he(z,t) = J(@)F T (2, )he(y(z,1),t),  and
) = J(z,t)Re(y(z,1),1),

where F(z,t) %/ V.y(z,t) and J(z,1t) %S et F(z,t). Making use of (2.5) and (2.6),

it can be seen that:

N
h® Sh =0 and
k=1
p N
RE 3SR =0
k=1

We note here that the introduction of the mass averaged velocity and the reference
configuration has many advantages in our treatment as it will enable us to make four
key assumptions about the species velocity fields, namely equations (2.40), (2.56),
(2.57) and (2.83), all of which will be instrumental in the formulation of the governing

equations.

2.2.2 Deformational stresses

We begin by postulating that the contact forces exerted by one part of the body

on another across the surface S; separating them in the current configuration (at time
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t) can be written as

/ t(y,t; ny)day, (2.9)
St

where t(y, t;n,) is the traction per unit current area and n, is the unit normal to S;
at y. It is important to note that this definition of the total traction is independent
of the chemical nature of the continuum at hand. That is, the total traction (2.9) is
caused by the interactions between the particles of all species lying on both sides of
the surface. Then, following the usual arguments (see for example Gurtin [G2]), we

deduce the existence of the Cauchy stress tensor 7" such that

t(y, t;ny) = T(y, t)ny.

We now recall the deformation mapping y(z,t) defined earlier, and use it to in-

troduce the material description of the Cauchy stress

T(z,t) ¥ T(y(s,1),1),

and, consequently, the Piola-Kirchoff (or nominal) stress tensor defined as
S gTFT.

As usual then, if S is the pre-image of S; in the reference configuration, it is easy to

verify that

Tn, day, = /Snz da,.
s

St

2.2.3 The surface phase

We consider a physical system constituted of three phases (each containing multi-
ple chemical species): the gas or fluid phase, the solid or bulk phase and the surface

phase. Following Gibbs [G], we treat the surface as a separate phase, which can be
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viewed as a ‘layer’ of material of finite thickness. Because it is a separate phase, the
surface is endowed with a set of thermodynamic variables that account for its struc-
ture. Of particular relevance are the mass densities of chemical species present in the
interfacial phase. Being three-dimensional, the surface phase has two interfaces, one
with the vapor and the other with the bulk. This way of conceiving the surface will
be central when we study the balance of mass of the various chemical species present
at the surface. More specifically, we will postulate three separate mass balances: one
holding between the vapor and the surface phases (2.27), one within the surface phase
(2.25) and third between the bulk and the surface phases (2.28).

We will assume that the thickness of this three-dimensional phase is much smaller
than any other characteristic length of the system in question such as the height of
the thin film (typically, the surface phase is a few monolayers high, i.e., of the order of
Angstroms, while the growing film’s height is of the order of microns). Consequently,
even though it is a three-dimensional phase, the surface can be reasonably modeled,
in the setting of macroscopic continuum mechanics, as a two-dimensional smoothly
evolving surface. Put differently, we treat the surface as a phase endowed with mass
and structure but of negligible volume. We do so by introducing a parameter 7 (of
dimension length) such that, as the surface becomes infinitesimally thin, 7 — 0.

More specifically, consider a closed region in the material space (the reference con-
figuration) and divide it into three time-dependent regions: 4(t), ,(t), and Q(t),
the gas, surface and film phases (respectively). This dependence on time is merely a
way of accounting for the fact that the solid phase is growing at the expense of the
gaseous one, via the motion of the interfacial phase in the reference configuration.

The following limits hold:

V f Q) x [0,00) = R, 3 F:8(t) x [0,00) = R s.t.

1 fdv = f da,
T Jas(t) 5(t)

V§:Q,(t) x[0,00) >R, 3G :5() x[0,00) = Rs.t.

1

—/ didv =3 [ 5 da,
T JQ,(t) S(t)
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where S(t) is the two-dimensional manifold representing the limit of Q,(t) C R® as

7 — 0, and
. def 1 . . — .
() = " +y7), with
=l lim )(z,t), and
y zeﬂg(t)l—mes(t)y( 1),
._ def . .
= | z,t).
VT e VY
Now define f = 7 fand ¢ = 7§ It follows that the previous limits can be
rewritten as:
fdv =3 f da, and
Q(t) 5(t)
T—0
—

/ gydv
Qs(t)

2.3 Preliminaries

[S 0! (y) da.

2.3.1 Control volume

As mentioned above, we consider a physical system characterized by the presence
of N chemical species, where N > 2. It should be noticed that we do not make the
distinction between species present in some phases but absent from others. In such a
case, the variables relative to the species of interest are set to zero in the phases from
which these species are absent.

Let P(t) denote an arbitrary evolving control volume in the reference configuration
(cf. Figure 2.2). When P(t) contains material in all three phases, the portions F,(?),
Py(t), and S(t) that lie, respectively, in the gas phase, the solid phase and the surface
phase will be functions of time. The interface is oriented such that its unit normal
field n, points into the vapor. We denote v, the velocity of the interface and v, its
normal component in the direction of its normal (i.e., v, = v - ns). Also, u denotes
the velocity of the boundary of the control volume 0P(t) = 0Ff(t) U 0F,(t) and U

represents its normal component in the direction of its normal field n. In what follows,
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Figure 2.2: The evolving
control volume in the ref-
erence configuration whose
intersections with the flow
phase, the bulk, and the
moving surface are P?, P/
and S; (respectively). The
unit normal to P, = 0P U
&P/ is denoted n. The nor-
mal to S, is n,, while the
unit normal and tangent to
0S; are v and t respectively.

we shall rely heavily on the property that only the normal components v, and U of
the two velocity fields defined above are intrinsic, i.e., do not depend on the local

parametrization of S(t) and 0P(t) (respectively).

2.3.2 Surface kinematics

In the reference configuration, the evolving surfaces S(t) and 0P(t) can be parametrized

as follows:
S(t) ¥ {z = #(er,a0t) || (01,00) EDCRE,teRT},  and
oPt) Y {z = 2B, B t) || (Bi,B) €D CR:,tc R}

We define the velocities of S(t) and dP(t) (respectively) as follows:

Us = o and ud-i-f%%,
where %ti denotes the derivative of f(v,t) with respect to ¢ holding v fixed. If either
evolving surface is reparametrized, only the normal component of the surface velocity
remains unchanged. This dependence of the tangential velocities on the parametriza-
tion will yield important identities when combined with the requirement that the
working of the various forces acting on the moving surfaces be independent of the

particular parametrization chosen.
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Let S(t) and OP(t) denote the images of S(t) and OP(t) respectively in the de-

formed configuration:

S(t) = y(S(t),t) and OP(t) = y(0P(t),t).

Consequently, these two surfaces can be parametrized in the current configuration as:

“f Gan, az,t) || (a1, a2) € D C Rt € RY}, and

5(t) ={y = y(&(on, 02, 1), 1)
ap(t) :{y = y(i‘(ﬁhﬁ%t)at) déf 'g(ﬁhﬂ?’t) ” (ﬁlvﬂ?) € DI C RQ,t c R+}

Let ¥, and @ be the velocities of S(t) and OP(t) respectively:
_ des OF _ def OF
U = g and @ = v (2.10)
It can then easily be shown that:
7, = 9T+ Ffv, = (§) +(F)vs,  and (2.11)

@ = y+ Fu. (2.12)

Also, for a coherent interface, we have the classical Hadamard jump condition at the
interface, stated as follows:

[Fl=a®n, with o [[F]n,,

which we rewrite as:

[F]}(1 - ns ®n,) =0,

or equivalently:

[F]IP =0, (2.13)
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where P € Lin(R?,R?) is the projection tensor, i.e.,
Va€R Pa “a— (a-ny)n, € R (2.14)

Finally, the combination of (2.13) and (2.11) yields an additional compatibility

condition:
@] = —vn [F]] ns. (2.15)

2.3.3 Surface deformational stress

In this subsection we define the superficial Piola-Kirchhoff (or nominal) stress.
Consider the time-dependent closed region of the physical space P; introduced pre-
viously, and let P be its codomain in the material space, i.e., the closed region in
the reference configuration whose image in the deformed configuration is F;. Assume
now that P is traversed by an evolving surface whose intersection with P we label
S,. We denote by S, the corresponding evolving surface in the current configuration,
ie., S; = y(Sit). We begin by postulating that the contact forces exerted by one
part of the deformed surface on an adjacent part can be represented by a traction
t(y € Ct, t; v,) along the oriented curve C; separating them, where v, is the unit nor-
mal to the curve. Following Gurtin & Murdoch (cf. [GM]), we deduce the existence

of the superficial Cauchy stress tensor, T® € Lin(niy, R?), such that:
t(y € C, C Sy, ti1y) = TP(y € C, C S, t)uy.

Next, by making a change of variables from the current configuration into the reference

one, we have the following relation:

/ Ty, dl, = / JTsFTy, dl,
(95': aSt
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where T is the material representation of the Cauchy surface stress:
Ts(y € Sia t) = TS(y(m € St7 t)at) déf TS(:L. € Sta t)a
and F is the restriction of F to the surface, i.e.,
def

F< P(F)I,

and j “f det F. Here, the inclusion tensor in the reference configuration is defined

as:
I € Lin(nt, R®) such that Ja ¥ a, Vaent,
and the projection tensor in the current configuration is given by:
P € Lin(R®, 7)) such that Pa “ o~ (a7, VaeERE,

Consequently, ' € Lin(nt, 7), and j and F~! are defined accordingly.
It follows that:

/ Tou, dl, = / S*v, dl,,
a5 85,

where:
S8 déf st F—T

is the superficial Piola-Kirchhoff stress tensor.
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2.3.4 Transport theorems

Let ¢ be any (scalar or vectorial) bulk field and ¢* be any (scalar or vectorial)

surface field. We introduce the following terminology:

/ odv / o(z, ) dv(a),
P(t) P(t)

def
/ oda / o(z, 1) da(z),
aP(¢) aP(t)

/ ©° da déf/ ©° (a1, g, t) da(an, a2), and
S(t) S(t)

/ ©°® ds def / ©* (a1, ag, t) ds(aq, ag),
85(t) 8s(1)

where ¢°(a1, @9,t) is an arc-length description of ©°.
A normal arc-length trajectory through a point (@i, as,ty) of the domain of 7 is

a path (@;(t), @2(t)) such that:

£(@(0), B2(0),1) - o (@1 (0) 82(6),6) = O,

where t is any vector tangential to S(¢) and
5&1(t0) = Oy, dz(to) = (.
We can then define the normal time derivative ¢° (s,t) as

° ef d¢° -
@ (an, 0,8) & = (8 (1), Ga (1), 1)

We can now state the bulk and surface transport theorems (respectively):

4 pdv = / g'odv~/ [[ellvn da+/ U da, (2.16)
dt Jp) P(t) ) aP(t)

jd_/ e dv = / (c/;s —(KUy) da+/ ©°vs - v ds, (2.17)
dt Js) S(t) as(t)

where for any scalar, vector or tensor field f that suffers a discontinuity across the
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surface S(t), [f]] = f* — f~, with f* the limit as f approaches the surface from the
vapor phase (the phase towards which n, points) and f~ the limit as f approaches
S(t) from the film phase. x denotes the mean curvature of the surface, and v is the

in-plane unit normal field (or binormal) to 0S(t).

2.3.5 Bulk and surface divergence theorems

Let a be a vector field and A be a tensor field in the bulk, both of which are

discontinuous across the evolving interface, then the following identities hold:

/ V-adv = / a-nda— [a]] - ns da, and (2.18)
P(t) aP(t) S(t)

/ VoAdd = An da— / [[A]] n, da. (2.19)
P(t) aP(t) S()

Identically, if a® and A® are superficial vector and tensor fields, then the following

identities are valid:

Vs-ada = / a-vds, and (2.20)
S(t) 85 (1)

/ Vs-Ada = / Av ds. (2.21)
S() as(t)

2.4 Balance Laws

2.4.1 The mass balances or species equations

We begin by writing the integral version of the mass balance for the k" species
(1 < k < N) as it applies to the evolving control volume defined previously. We
postulate that the temporal rate of change of mass of the k-species in the control
volume is balanced by the diffusive flux of this species into (or out of) the volume,
the chemical reactions that generate or consume particles of the species of interest in

the volume and the accretion by the motion of the boundary (see Figure 2.2 for sign
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conventions):

d d d ;
— pgdv+—/ psda+—/ pr dv =
dt Jp,m ¢ dt Jsw dt Jp, "

—/ hi-ngda—/ Z-uds—/ W -n; da
aP,(t) as(t) aPy(t)

+ R} dv+ / R; da
Py(t) S5(t)

+/ piu - ny da +/ PrUs - v ds +/ plu-n; da, (2.22)
8Py (1) as(t) 8P;(t)

where we have adopted the following terminology: p is the mass density of the k*
species present in the phase «, h¢ is the diffusive mass flux of the k% species across
the part of the boundary of the control volume that lies within the phase o, and Ry
is the net mass production of species k by all the chemical reactions involving the k**
species that take place inside of the phase a.

Consider the left-hand side of (2.22). The first term represents the temporal
change in the mass of species k present in the gas phase. The second and third terms
account for the temporal changes in mass of the same species present in the interfacial
and solid phases respectively. Now consider the right-hand side of the equation. The
first three integrals account for the mass exchanged between the control volume and
its exterior via diffusion across its boundaries. Notice that A}, the interfacial diffusive
mass flux associated with the k-particles along the surface, is tangential to the surface
by definition. The next two terms represent the net mass production of species k by
all the chemical reactions involving the species in question that take place in the
vapor and at the surface respectively. Note that we have assumed that there are no
chemical reactions taking place in the bulk of the thin film. Such would not be the
case if we allow for the chemical formation of secondary phases (precipitates) in the
bulk, but such mechanisms are confined, in our model, to the surface phase where
chemical phase segregation is often observed experimentally (cf. [W]). The remaining
three integrals account for the exchange of species k between the control volume and

its environment due solely to the motion of its boundaries.
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Making use of the transport and divergence theorems stated above, and then

localizing, we obtain the following local versions of the species equations:

o +V-hi—R! = 0 in the gas phase, (2.23
k K 1t
pl+V-hl = 0 inthefilm, (2.24)

I;Z ~([lox]] + pik)vs + [[M&]) s + Vs -hg — R = 0 at the surface, (2.25)

where V - () and V- () are the bulk and surface divergences respectively in the
reference configuration.

In order for our formulation to be complete, we now write additional mass balance
laws for the k** species at the two interfaces of the surface phase as discussed earlier
(subsection 2.2.3). Consider first the interface separating the gas from the surface
phase. We write the integral version of the mass balance for species k as it holds in

the evolving control volume P,(t) whose boundary is 0P, (t) U S(t):

d
— pp dv — piu-ng da=
dt Jpy() 0

1
—/ hy - g da+/ (Jk + =pivn) da+/ RY dv,  (2.26)
OPy (1) S(t) T

Py(t)

where j7 is an interfacial (scalar) field accounting for the mass flow of species k out of
the surface and into the vapor (and vice-versa). Shrinking P,(t) to its interface with

the surface phase, which is mathematically identical to the surface itself, we obtain:
g -9 1 s
—pivn = —hi -ns+ ji + =Pin. (2.27)

An identical procedure applied to Pf(t) yields the following localized version of the
mass balance for species k at the interface separating the bulk of the film from the

surface phase:

, 1
plvn = bl n, + i - ;pivn. (2.28)
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Finally, from (2.27) and (2.28), we deduce the following relations which will be useful

at later stages:

([he]]l - s = [[oe]lvn +2(jk),  and (2.29)

(he) e = 5[0+ (o) + 2 o)en (230)

In each phase, the total mass density is defined as the sum of the partial densities
over all the species present in the phase of interest: p9/ def lec\le pﬂ’f *. It fol-
lows that we can choose as our set of independent fundamental variables (i.e., those
variables describing the chemical composition of a given phase) either {pif SN or
{pofs, {pPP*} =1}, Tt is common in the literature on the modeling of the gas phase
behavior during CVD to adopt the latter representation (e.g., cf. Kleijn [K] and
Coltrin and Kee [CK]). We thus provide localized versions of the global mass balance
by summing the (already derived) localized versions of the species equations, but it

is important in doing so to keep in mind that the following relations hold:

N N N
Wl N hgl =0, LY np=0, RN R =0
k=1

k=1 k=1

It can then easily be shown that:

=0 in the gas phase, (2.31)

o =0  in the bulk of the thin film, (2.32)

;s —([[p]] + P°Kk)vs - ns =0 at the surface, (2.33)
(r° + % P’ s - s+ j9 = at the vapor-surface interface, (2.34)

(pf + %ps)vs “ Mg — jf =0 at the film-surface interface. (2.35)
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2.4.2 The balance of deformational forces

We postulate that the deformational contact forces acting on the evolving control

volume introduced above are balanced by the body forces:

/ S9ng da +/ Sin; da + Sy dl
OP,(t) OPs(t) a5(t)

+ / (b9F + b9f) dv + / b* da = 0, (2.36)
Py ¢(t) S(t)

where we have decomposed the density of body forces in the gas and bulk phases
into a purely inertial component b9/ and an external noninertial component b9/, An
example of an external noninertial boby force that plays an important role in the
setting of vertical CVD reactors is gravity. Its omission would lead to an incomplete
modeling of the behavior of the fluid flow.

We note that this statement of the balance of deformational forces for a multi-

component physical system is approximate and valid only under the assumption
N
Zpkvk@)vk = pv @ v. (2.37)
k=1

More specifically, let us consider a single-phase mutli-species physical system in the
Eulerian setting. The ezact statement of the balance of forces as it applies to a fixed

control volume D in the current configuration is:

S (2 free) - > [ ot n a3 [
— p vt dv | = Tn da — prut)o" - n da + / b* dv, (2.38
at <k=1 D g oD k=1 aD( ) k=1 D ( )

where the linear momentum of the system is defined as the sum of all the the linear
momenta associated with the individual species, T is the Cauchy stress tensor and bk
is the density (per unit current volume) of body force acting on particles of the kth

species. Now, making use of the divergence and localization theorems, we can state
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the exact localized version of the momentum equation in the current configuration:
N
= ) +v- O it er*) =V T+, (2.39)

where

and V - () is the spatial divergence. If we assume that the Eulerian counterpart of

(2.37) holds, i.e., if

N
Y Frrertxmen, (2.40)
k=1
then we can approrimate the localized momentum equation as:
o __ o -
a(pv)—f-v-(pv@v) =V -T+b. (2.41)

The integral formulation of the force balance (2.36) is therefore to be viewed as a
Lagrangian approzimation of the exact formulation of the linear momentum equation
as it applies to a multiphase multicomponent physical system when approximation
(2.37) holds.

Now back to (2.36). Applying the divergence theorems and then localizing yields

the following pointwise equations:

V-54+b+b = 0 in the gas phase, (2.42)
V-S'+b +b8 = 0 in the bulk of the film, (2.43)
[S]lns + Vs-S*+b° = 0  at the surface. (2.44)

In addition, following Gurtin and Podio-Guidugli [GP], we postulate that for an
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evolving control volume:

bgdv+/ bfdv+/ b da
Py(t) Py (t) S(t)

— . . _ £ . _ s/ .
/an(t)(pgy)u r da /BPf(t)(p YJu-n da /%t(P ())vs - v dl

d d d
= —— Py dv— — pfg'/dv——-/psy da. 2.45
dt Jpy () dt Jp;(e) dt Js, v (24

Away from the interface, the use of the bulk transport and localization theorems,
as well as the recourse to the total mass balances in the bulk phases (2.31) and (2.32)

yield the following identities:

¥ o= —p%y in the gas phase, (2.46)
b = —p/ij  in the bulk of the film. (2.47)

Along the surface, the surface transport and localization theorems yield:

b = ([legl] + £p*(@))vs - s — (0°(®))°. (2.48)

Now, making use of the identity

[f9]] = [[fIKg) + (Nllgl] (2.49)

and the compatibility condition (2.15) as well as the surface total mass balance (2.33),

we obtain the following relation:
v = —p*(9)° — valo)[FIns. (2.50)

2.4.3 The balance of configurational forces

As mentioned above, the surface separating the vapor from the bulk of the film
can be viewed as a phase boundary. In situations of growth of thin films by vapor

deposition (whether physical or chemical), the atoms deposited on the top mono-
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layer are ultimately incorporated into the bulk phase, thus causing the motion of the
surface (during the chemical vapor deposition of compound films, the adatoms react
chemically to form the compound in question). That is, as soon as the compound is
formed, it is identified as being part of the bulk, thus forcing the ‘redefinition’ of the
bulk-vapor interface so as to incorporate the newly formed compound into the bulk.
Consequently, the motion of the surface is relative to the particles of the system and
it results in changes in the reference configuration (i.e., changes that would occur
even in the absence of any deformation of the physical system in question).

A convenient framework for studying changes in the reference configuration is
through the introduction of configurational forces following Gurtin [G3]. These forces
may be viewed as the work-conjugate ‘generalized’ forces associated with the kine-
matic variables that describe the changes which take place in the reference configura-
tion. The classical body forces and stresses are deformational and are work-conjugate
to the kinematic variables accounting for changes in the current (i.e., deformed) con-
figuration. The postulate that there are two distinct balance laws, one balancing con-
figurational forces and the other balancing deformational forces, can then be viewed
as reflecting the fact that these two sets of forces act in two distinct configurations
(the reference and deformed ones respectively).

Following Gurtin we postulate the existence of two types of configuration forces.
The first is a contact force and hence may be expressed in terms of a stress tensor
(C9,C*,C7 in the gas, surface and film respectively), while the second is a body
force (g9,g° ¢/ in the gas, surface and film respectively). We postulate that the
configurational contact forces acting on any part of the body are balanced by the

configurational body force:

/ Cny da + / C'ng da+ C’v ds
dPy(t) oP(t) as(t)

+[ g° dv +/ g dv+/ g° da=0. (2.51)
Py(t) Py(t) 5(t)

g9

Using the bulk and surface divergence theorems and then localizing, we obtain the
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following pointwise equations:

V-CI+¢° =0 in the gas phase, (2.52)
V-Cf+¢/ = 0 in the bulk of the film, (2.53)
[[Cllns +Vs-C°*+¢° = 0  at the surface. (2.54)

Moreover. we decompose ¢?, ¢/, and ¢°® into an internal and an external compo-
) b] bJ

nent each:

de'f Wy e
g = il + ghl.

2.4.4 The energy balance

We begin by postulating that the rate of change of the internal energy of the
evolving control volume introduced above P(t) U S(t), where P(t) = P,(t) U Py(t) is

balanced by the rate at which energy is supplied to the control volume:

% - e dv+ % s € da=W(P(t)) + W(S(t)), (2.55)
where W (P(t)) + W(S(t)) is the rate at which energy is supplied to the body (the
splitting of the energy supply rate into the rate of energy supplied to the bulk of the
control volume P(t) and that supplied to the surface S(t) will turn out to be useful
at later stages in simplifying the formulation of the problem which is already quite
complex).

In addition to (2.40), we make the following approximations

N
Z be - Uk 2 b1, and (2.56)
k=1

N

D (Prvk ® )0k = (p0 ® 1) (2.57)

k=1

in order to explicitly write the expressions corresponding to the rates of energy sup-
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plies W (P(t)) and W(S(?)).
More specifically, consider for now a single-phase multi-species mixture occupying

a fixed region in space D. The balance of energy in this region is given by

N
Tn-vda+ /Bk-ﬁ dv—/ g-nda

N
_ _ 1 o
+/ de—Z/ (ﬁkﬂk+§/)kvk'vk)vk'"da-
D k=1 oD

(2.58)

2/("+1§:‘z7~z7)dv—/
ot DP€ 5 PrVk - Vg =

aD

The first term in the integrand on the LHS of the above equality represents the
internal energy of the physical system which occupies the fixed region D at the time

t, with the mass-averaged internal energy density defined as
o &
pE ‘éf Z Pilli + €mix; (2.59)

wherein €., is the energy density of mixing (per unit current volume), i.e., the excess
energy resulting from the mixing process and the ensuing interactions between the
various species. The second term of the integrand on the LHS is the exact kinetic
energy of the multi-species system. On the RHS of (2.58), the first integral is the
working of the deformational stress, the second term is the sum of the workings of
the various non-inertial body forces associated with the species present, the third
integral represents heat conduction, the fourth accounts for heat radiation, and the
last integral accounts for the supply of energy (into or out of D) due to the motion
of the various species across its boundary 9D.

Using the trace of (2.40), (2.56) and (2.57), we can rewrite the above equation as:

9 (ﬁ€+lﬁf}-i‘))dv:/ Tn-z‘;da+/13-z7du—/ g-n da
2 8D D 8D

at J,
o 1
+ | Qdv-— / kiU -1 + =p(0 - 0)0 - n) da.
/DQ ; aD(Plekk 29( ) )
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For later use, we state the localized Eulerian version of the energy balance as it
applies to a single-phase multi-species physical system. Making use of the (Eulerian
versions of the) divergence and localization theorems, the definition of the species
diffusive mass fluxes (2.4), the species mass balances (2.23) and (2.24), as well as the

momentum equation (2.41), we obtain the following equation:

de N dpx N o _
i ﬁkE-Fth‘Vﬂk'i'ZﬂkRk
k=1 k=1 k=1
) N
+V-g+Q-T D—(Zﬁkﬁk V-95=0, (2.61)
k=1
where
d | def O

It should be noted here that in deriving (2.61) we have neglected the mixing energy.
This is a reasonable approximation when the mixture of interest is dilute (a situation
often encountered in CVD processes). In the limit of a multicomponent ideal gas,
a case of interest as it approximates properly many CVD gas mixtures, the mixing
energy is identically zero.

Let us now consider an evolving control volume in the reference configuration P(t)
whose image coincides with the region D in the current configuration at time . We

can use (2.60) to postulate the following energy balance for P(¢):

—d—/ edv:/ (Sn-a+Cn-u) da+/ (b+be) -y dv
dt Jp aP(2) P(t)

—/ q-nda+ Qu-nda+/ Q dv
BP(t) dP(t) P(t)

Urpru -1 da — / prhi - m da}, (2.62)
aP(t)

where we have added the working of the configurational stress tensor as it accounts

for the incorporation or removal of material into the evolving control volume via the
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motion of its boundary 8P(t) in the reference configuration. The additional terms

N
/ Qu-n da and Z/ LkPru -1 da
aP(t) w1 JOP(t)

come from the fact that the control volume considered is an evolving one in the
reference configuration.
Now let us return to a multi-phase, multi-species body and the postulate (2.55).

Generalizing the argument above, we write:
W(P(t))déf/ (Sn-a+Cn-u) da+/ (b+be) -y dv
dP(t) P(t)

—/ q~nda+/ Qu-nda+/ Q dv
8P(t) dP(t) P(t)
N
+ Z{/
k=1 Y0

W(S(?)) "éf/ (S°v - B, + C°v - v) ds+/ (950 - Us + b° - T;) da
as(t) S(t)

wrpru - n da — / urhg - n da}, and (2.63)

P(t) OP(t)

——/ ¢ -vds+ Q°vs - v ds+ Q° da
as(t) as(t) 5(t)

+ Z{/ UpPRUs -V dS — / uphy - v ds}. (2.64)
- as(t)

Consider the equality (2.63). The first integral on the RHS of the equality represents
the mechanical workings of the bulk deformational and configurational stresses on
the evolving boundary of the control volume 9P (t) = 0P,(t) U 0Ff(t). The velocity
conjugate to the Piola-Kirchhoff stress is the velocity of the boundary in the deformed
configuration, while the velocity conjuguate to the configurational stress is that of the
moving boundary in the reference configuration?. The third integral is the standard

working of the inertial and noninertial external body forces. Notice that ¢27 perform

2The working of the Cauchy stress on the boundary of a moving control volume in space D(t)
is typically written as [, aD(t) Tn, - @ da, where @ is the velocity of the boundary and ny its unit
outer normal. It is then just a matter of changing variables between the current and the reference
configurations to obtain the working of the nominal stress. On the other hand, the configurational
stress acting on a moving surface in the material space, it seems only natural to take the velocity of
the surface in question as its work-conjuguate variable.
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9,f

o>+ perform no work because

no work as they are internal to the control volume, while g
material points in the reference configuration are stationary. The fourth integral
accounts for the exchange of heat between P(t) and its environment by conduction,
while the fifth term represents the amounts of heat exchanged between P(t) and its
exterior as its boundary dP(t) evolves. The sixth integral represents the external
radiative supply of heat to the control volume.

Finally, for each k (1 < k < N), uf represents the amount of energy (per unit
mass) associated with the k" species present in the o phase (@ = g, f). Conse-
quently, ufhg - no is the amount of energy transported by diffusion of particles of
the k** species (per unit area and unit time) and pgp¢u - n, is the amount of energy
associated with the incorporation (or detachment) of particles of species k into Py(t)
solely due to the motion of its boundary (per unit area and unit time). Notice that
the rate of production of energy associated with the gas-phase chemical reactions in-
volving the k%" species (either as a reactant or a product) does not appear in W (P(t))
as it is internal to the control volume.

Now consider (2.64). The first integral accounts for the working of the superficial
deformational and configurational stresses in an analogous fashion to their bulk coun-
terparts: the first component represents the standard working done on the evolving
surface, while the second accounts for the working associated with the supply of mass
to the surface via addition or removal of particles. The second integral accounts for
the working of the surperficial inertial and noninertial body forces. The third integral
represents the conductive heat supply to the surface, where ¢° is a tangential vector
field by definition, while the fourth integral represents heat supply to the surface
solely due to its tangential (or in-plane) motion. The sixth integral accounts for the
external supply of heat to the surface by radiation. The last two integrals account
for the energy supply to the surface due to the incorporation of particles via the
tangential motion of the surface and the surface diffusion of adatoms (by definition
a tangential vector field). Finally, it should be remarked that the production rate of

energy associated with the heterogeneous chemical reactions® is absent from W (S(t))

3By heterogeneous chemical reactions,we mean those reactions taking place at the surface that
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as it represents an internal production of energy.

2.4.5 The invariance of the working under reparametrization

First, define the mechanical working on P(t) as follows:

W (P(%)) et / (Sn-(g+ Fu)+Cn-u) da +/ (b+be) -y dv,
aP(t) P(t)

where we have used (2.12). Next, rearrange W,,(P(t)) as follows:

Wm(P(t))déf/ {(C+FTS)n-u+Sn -y} da+/ (b+b.) -y dv.
8P(t) P(t)

We now require that the mechanical working be independent of the local parametriza-
tion of 0P(t). But, under reparametrization, the only invariant component of the
velocity field u is the normal one. Consequently, if W, (P(t)) is to remain unchanged,

the following relation should be satisfied:
(C+ FTS)n-m =0, Y m such that m-n = 0.
It then follows that:
C=nl-FTS, (2.65)

where 7 is a scalar (yet to be determined).
Making use of the bulk divergence theorem (2.18) and the balances of deforma-

tional forces (2.42) and (2.43), we can rewrite the bulk mechanical working as

Wn(P(t) = / mu-n da+ S-F dv —+—/ [[Sns - 9]] da. (2.66)
oP(t) P(t) S(¢)

involve only surface species. As for those chemical reactions involving both vapor and surface species,
they are already accounted for in the terms ji of the species equations at the gas-surface interface
(2.27).



36

Identically, define the mechanical working on the S(t) as

Win(S(t)) = WD(S(1) + WD(S(1)),
where
W(S(t)) wf C’v-vsds+ S ((9) + (F)vs) ds,
as(t) as(t)
and
WSO Y [ gk v+ (@) + (Fo)] da
S(t)

(2.67)

We begin by rewriting W) (S(t)) as:
S°v-(y) ds + / (C* + (F)'S*)v - v, ds.
as(t)

W(S() =
as(t)
We now require that the superficial mechanical working be invariant under

reparametrization of dS(t). This requirement holds if and only if:
(C* +(F)T)w-t=0, where t % n, xv. (2.68)
(2.69)

It can then be shown that:
C° = oP+n,®¢— (F)T'S°,

where
¢ (C* + (F)TS*)Th,.

Note that we have defined the superficial configurational stress tensor as a linear
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transformation from R? to R?® that satisfies the following relation:
C’ns = 0. (2.70)
We can rewrite (2.69) as follows:
C* = oP+n,®c— FT5°, (2.71)
where the scalar ¢ is the surface tension and
¢ C*Tn,

is the (tangential) surface shear, and the surface deformation gradient

FY Ftp = (F)P
has been defined so as to be in Lin(R?, R®) and to satisfy the relation Fn, = 0.
Making use of the surface divergence theorem (2.20) and (2.21), as well as the
following two identities (cf., e.g., Simha and Bhattacharya [SB])

V({9 + v (F)ns) = (F)° — (F)n, ® ny — v, (F)L) P, and

LS
TLS - _vsvna

we obtain the following expression for W (S(t)):

WD (S(t)) :/ ovs - v ds+
85(t)

s {(V-8%)- @)+ 8- (F)° =[S (F)ns + ] -n} da+

/ S {(Vs-S°) - (Fyng + Va-c— (FYTS* - L} va da,  (2.72)
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where the curvature tensor L is defined as

L% —Vn,.

Now back to (2.4.5). We rearrange W,(nz)(S(t)) as follows:

W2 (S(t)) = S(t){[gjzt+(F)Tbs]-vs+bs-(1’/)} da. (2.73)

We also require that the mechanical working remain unchanged if S(t) were to be

reparametrized. This can be true only if there exists a scalar 4° such that:
Gear = Bns — (F)T0". (2.74)
Consequently, (2.73) reduces to

wesw) = [ BtV do (2.75)

Grouping (2.72) and (2.75), and making use of the interfacial balance of standard
forces (2.44), we obtain the following expression for the mechanical working on the

surface:

W (S(t)) -——/ ovs - v ds — [[S]Ins - () da +
as(t) S()

- {S*-(F)° = (S*T(F)ns +¢) - n2} da+

{(Vs-S*) (F)ny+Vs-c— (F)TS*- L+ 3°} v, da.  (2.76)

5(8)
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It then follows from (2.66) and (2.76) that

Wa(P(t)US(t) = Wn(P(1) +Wn(S() =

/ wu'nda-i—/ ovs -V ds + S-F dv
aP(t) as(t) P(t)

+ S(){(VS-SS) AF)ng+Vy-c— (FYTS*- L+ 3 — (S)n, - [[F]]ns}vn da

+/ {S*-(F)° = (ST(F)n, +c)-n} da, (2.77)
S(t)

where we have used the compatibility condition (2.15).

Finally, define the nonmechanical rates of energy supply to P(t) and S(t), i.e.,
those supplies due to bulk and surface heat exchange, species diffusion, external
supply of heat as well as the motion of the boundary of the control volume in the

reference configuration, as follows:
Wa(P(£) = W (P(t)) - Wan(P(t), Wa(S(#) < W(S(#)) = Win(S()).

Using the bulk and surface divergence theorems, we obtain the following integral

expressions:
Wa(P(t) = —/ V-qdv—/ (lg]] - e da+ Qu-nda+/ Q dv
P(t) S(t) aP(1) P(%)
N
+Z{/ prpru-nda— [ V- (uphg) du —/ [[uxhil] - ns da},
k=1 8P(t) P(t) S(¢t)
Wy(S(t) = - Vs-¢® da+ Q°vs - v ds+ Q° da
S(t) 8s(t) S(t)
N
34 koo vds— [ V.- (uih) dal.
1 Jos(t) 5(t)

We are now in a position to explicitly formulate the first law of Thermodynamics
which, as stated above, requires that the temporal changes in the energy of the system

(i.e., the sum of the bulk and surface energies) be exactly compensated for by the
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power supplied to the system by its environment.

2.4.6 The energy balance (continued)

Now, return to (2.55). Making use of the bulk and surface transport theorems,

we can rewrite (2.55) as follows:

/P(t)é dv — /S(t)[[e]]vs ng da + /aP(t) eu-n da+ /S(t)(es —€e° KV, - ng) da
—+-/ vy v ds = Wn(P(t)) + Wa(P(t)) + Win(S(t)) + Wa(S(t))
a5(t)

Using the previously derived expressions for the bulk and interfacial power sup-
plies, and then recombining various terms, we arrive at the following statement of the

first law of thermodynamics as it applies to the evolving control volume:

{6=S-F+V-q—Q+> (V- (uxhi)} dv

P(1) k=1

N
+/<9P(t){6 TToes ;ﬂkpk}u e
4 [ e =85 (F)° + (ST(F)n, + c)- 1,
5(t)
—([[€]] + €K+ (Vs - 8°) - (FYny + Vg - c— (FYTS* - L+ 5 — (S)n, - [F]]ns)vn

+ gl ns = Q@+ Vs g* + (Vs (uihi) + [[1ihl] -} da
k=1

N
+ {€-0-Q° - Zuipi}vs ds = 0.
BS(t) panet

(2.78)

At any time t we can define another evolving control volume P’(t) such that
P'(t) = P(t), but its boundary velocity field u' is such that «’' - n’ # u - n where
n(z,t) = n'(z,t), i.e., the normal velocities of the two control volumes are not identical

even though they coincide at the instant in time under consideration. The energy
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balance in the bulk should hold for both control volumes P(t) and P’(t). This can

be the case if and only if:
N
e—W—Q—Z,ukpkzo. (2.79)
k=1

Identically, at any instant ¢ in time, we can define a moving surface S’(t) that
coincides with S(t) at that instant but whose boundary velocity field is distinct from
that of S(t), i.e., vs - v # v} - V/,where v(z,t) = V'(z,t). Again, the interfacial energy

balance is expected to hold for both surfaces, which implies that:
N
e€—-—0—-Q° - Z prpr = 0. (2.80)
k=1

2.4.7 The dissipation inequality
The second law of Thermodynamics

We postulate the following statement of the second law of Thermodynamics (or

law of entropy growth):

1
_(_1_ ndv—i—d nsdaz—/ —q.nda—i-/ gdv+
P(t) dt Js ap(t) 0 Py 0

/ —u- nda—/ z/ds+/ —da-— Q s - v ds(2.81)
op() 0 85(t) 2 s 0 8s(1) 2N

where 6° is the superficial temperature field, n and 7° are the mass-averaged bulk and

superficial entropy densities, i.e.,

N
P = PkTk + Thmixs and P°1° =D PR + M (2.82)

k=1 k=1
with 7mix and n7,;, the bulk and surface entropy densities of mixing (resulting from the
molecular interactions between the various chemical species present in the mixture).

We note that this statement is once again approximate and relies on the following
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approximation:

N
> pengue = p*n°, (2.83)
k=1

where o = g, f, s.

Now back to (2.81). Applying the divergence and transport theorems, and assum-
ing that the temperature field is continuous accross the surface, i.e., 0~ = 6+ = 6°,

we arrive at the following integral version of the second law of thermodynamics:

UH—V-(%Q)—%} dv+/(9p(t)(n—%)u-nda

P(t)
) s 1 1, @
+ S(t){n —([[]] + n*K)vs + @;[[q]] ‘ng+ V- (5;(1 ) — 9_5} da

8§

+/ (n° - %)vs v ds>0. (2.84)
a5s(t) 4

Next, using an argument identical to that which yields (2.79) and (2.80), we obtain

the following identities:

—% = 0, and (2.85)
@ _
- =0 (2.86)

Combining (2.79) and (2.85) provides us with a definition of the scalar 7 as the

grand canonical energy density of the bulk phase in question:
r = G, (2.87)
where
def al
€
G = 6—977“Zﬂkpk‘
k=1

Identically, combining (2.80) and (2.86) enables us to define the (scalar) surface
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tension as the grand canonical energy density of the surface phase:
J N
o=G with G*He -0 -3 s (2.88)
k=1

The gas and solid dissipation inequalities

Localization of the energy balance and the growth inequality in the gas phase,

away from the surface, yields the following equations:

N N
€8-S9 F+V-¢"—Q+> h{-Vul+> pV-hi = 0, and

k=1 k=1

. 1 1 Q

94 -V -09— —¢9- - = > 0.
7}+0Vq 92q Ve 9_0

Next, making use of the species equations in the vapor phase (2.23) and combining
the above two equations, we obtain the localized version of the dissipation inequality

in the gas phase:
. . . N . N N
9+ 19— 89 F — Zﬂi/’i 4 ZNiRi + Zhi Vg +¢°-V(Ing) <0. (2.89)
k=1 k=1 k=1

An identical procedure yields an analogous localized dissipation inequality in the

bulk of the thin solid film:

N . N
W +nf0—ST-F = upl+ Y - Vul+¢ V(o) <0, (2.90)

k=1 k=1

where ¥* wf o fn* is the Helmholtz free energy density (per unit volume) in the
« phase.
The dissipation inequality at the surface

Localization of the energy balance and entropy inequality at the suface yields the

following interfacial equations:
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e 50 (FY° 4+ (S*T(Fyny+¢)-n° — fo, +[[q]] ' ns — Q@+ V,-¢°
+3 Ve i+ > ki Vs + > (e[l - ng + (]l (ki) - 1) = 0, and
7 () + )+ ellal] e+ Va0~ eV 0,

where

FEN +er+ (V- S - (F)ny + V- ¢ = (F)TS*- L+ 5 — (S)ny - [[FIn,.

Multiplying the entropy inequality by # and subtracting the resulting equation
from the energy balance, and then using the species equations at the surface (2.25),

we obtain the dissipation inequality at the surface:

N
VA= g ok —S° - (F)°+ (ST(F)ng +¢) - g

k 1
+Z;fRS+th Vi +¢° - Vi(Inb) — fo,
k=1
N

+ > A = [Pl - s + [aall (i) - 1} <0,

k=1

where

“fwn+wK—§:m ([lpd] + p3w)

=1

(V- 8%) (F)ng + V- c— (FYTS* - L+ 3* — (S)n, - [[Flins,

and * el e 6°n® is the Helmholtz free energy density (per unit area) of the surface.
The temperature is assumed to be continuous across the surface.

Define, for the k™ species, the mass flux from the phase « into the moving surface
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phase as:
o def o 1
Je = g8 = —pivs ma,  VE=1...,N, (2.91)

with ng = —n, and ny = n,.

Making use of the interfacial species balances (2.27), (2.28), the identity P - L =
k, as well as the interfacial balance of deformational forces (2.44), and after some
tedious but straightforward algebra, we obtain the following version of the dissipation

inequality at the surface:

O 4 6 =S (F >° + (S T(F)n, +c) - nd

N N
= i o +Zh5 Vg +¢° - Vi(nb) + > piRy

k=1 k=1 k=1
N
—fon+ > (1 — 13 Jg+2 ~ up)Ji <0, (2.92)
where
FE 0, [[G1~ FTS]In, + (G°P — (F)TS*) - L+ V,-c— b - (F)n, + 8 (2.93)

is identified as the driving force at the surface whose conjugate variable is the normal

velocity of the surface v,. Here,
def a
Ge Ly = pept
i=1

is the density of the grand canonical energy in the phase a (a = g, f,s) and b° is
given by (2.48).
In order to explicitly identify (3°, we postulate the equivalence of the inertial

working and the temporal changes in the kinetic energy (cf. [GP]). In the bulk
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phases g, f, the densities (per unit volume) of kinetic energy are given by:
9. %t lpgfy "
2 )

where p9/ are the total mass densities in the vapor and film phases respectively.

Along the surface, the density (per unit area) of kinetic energy is given by

s de 13. .
B0 @) - @),

where p° is the total interfacial mass density and () is the (mass-averaged) material
velocity associated with the particles along the surface. We now require that the
production of kinetic energy in the evolving control volume defined previously P(t)

be equal to the negative of the working of the inertial forces on P(t):

d
4 k9:f dv—/ kg’fu-nda+—/ k® da
dt P, (1) BP9 (t) dt 5(¢)

—/ k*vs-v ds = —/ b9l g dv —/ (b° - U5 + gopy - Us) da. (2.94)
as5(t) Fo.5() 5(t)

g

Making use of the bulk and surface transport theorems, we rewrite (2.94) as:

J

g

k97 du —/ [[k]]vs - ns da +/ (kos —kk®vs - ng) da
£() 5 5@

-

g

bl .y do — / b* - (¢)) da — / (92, + (F)TV°) - v, da, (2.95)
N10)) S(t) S(¢)

where we have used (2.11).

Away from the surface, localization yields the following identity:
kb = —pof g (2.96)

The definitions of the bulk kinetic energies as well as the relations (2.46) and (2.47)
show that (2.96) is identically satisfied.
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At the surface, localization and (2.74) yield the following relation:
— k° +(([k]] + E°R)vn = Bvn + 7 (9). (2.97)

Using the relation (2.50), the compatibility condition (2.15), the identity (2.49), the
total mass balance at the surface (2.33), and assuming that v, # 0, we obtain the

following relation:

B = SUa)E) — (oid) - [Flngvn, (299

which can be rewritten, with the help of (2.15), as:

g = A, - [Fl)ny) (2.99)

It follows that the generalized thermodynamic driving force at the interface re-

duces to:

f =n,-[[G1 - FTS|n, + (G°P — (F)TS*) - L+ V,-c—b°- (F)ns+ 5° (2.100)

with
¥ o=~ E(Flin,  and
5 = RleN(Fn, - [Flin,).

2.5 The Constitutive Equations

2.5.1 The gas phase

First, model the gas mixture as a viscoelastic multicomponent material, i.e., as-
sume that the behavior of the multispecies gas depends on the temperature, the

state of strain, the local chemical composition as well as the velocity gradient. More
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specifically, we begin by making the following constitutive assumptions:

P = 00, F {Y{HL),

7 = 770, F,{¥{}il),

gy = #O,FA{Y}L), VE=1,...,N,

T = T(6,F{Y o) + o8, F{YHL)(L],

g = a6, F {Y}ly, Vy(n0), {Vyui}ily),

R = RO, F{Y}N,V,(n0),{V,ul}), VE=1,...,N,  and

Rf = RIO,F{Y}L), YVk=1,...,N, (2.101)

where

yo 4! Pk
e

is the mass fraction of the k** chemical species present in the mixture, and

.
-

LE V5
is the velocity gradient. Here (as previously), the bar denotes a spatial scalar, vec-
torial or tensorial field and the subscript y denotes differentiation with respect to
the position in the current configuration. Note that we have decomposed the Cauchy
stress T' into an elastic component T and a viscous component o both of which depend
on the temperature, deformation gradient and local chemical composition. Moreover,
we assume that the viscous part of the stress acts on the velocity gradient.

In the gas phase, it is best to adopt an Eulerian viewpoint. Consequently, we
will consider the dissipation inequality resulting from the combination of the energy
balance (2.61) with the localized Eulerian form of the entropy inequality. The latter

can be stated as follows:

—péz—Z—V-q—kQ—i—q-Vy(an) <0, (2.102)
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where we define the mass-averaged density of entropy as follows:
N
é Z ﬁk + ﬁmixa (2103)
k=1

with 7jmix the density (per unit deformed volume) of the entropy of mixing. We thus

have the following Eulerian dissipation inequality:

s M
Plag + ) +(pgaF —T)-L—L-o[L]
i dpz ] _
St e 2 (G- a) o
N -~
+ ﬂsz+th~vynz+q-vy<lne) <0, (2.104)
k= k=1

where we have made use of the following relations:

d_(z_f = _ Ejf -1 dF
L=Vu0= o F7 & r = (V0)F, and
5 Yy 1dpl pldp 1 dpt
Yg — E& k _ —— Kk _ R _k 79 . q .
kT T Tat  mdt pa ol TV )
(2.105)

We postulate that the generalized Clausius-Duhem inequality be satisfied for all
admissible thermodynamic processes. Following Coleman and Noll [CN], we define
a thermodynamic process as the list of the following scalar, vector and tensor fields
(defined as functions of the material point x and time t): the deformation mapping
y, the temperature 6, the species mass densities {pj}2_,, the Cauchy stress and the
body force density, the external heat supply Q, the internal energy €, the species
partial energies {fif};_,, the entropy 79, the heat flux g, the species diffusive fluxes
{R{}Y_, and the species chemical production rates {R{}N_, that are compatible with
the balance laws, i.e., that satisfy the species, linear and angular momenta, and energy
equations. By admissible thermodynamic process, we mean one that is compatible

with the constitutive relations (2.101).
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If the dissipation inequality is not to be violated by any admissible thermody-
namic process, then it clearly should hold for an admissible process such that the
deformation, the temperature, and the mass fractions are homogeneous (i.e., depend
only on time), and the various chemical species present in the system are diffusionless

and do not react chemically with each other. For such a process, we have:
V,(n6) =0 and A{=R{=0, Vk=1,...,N.

It follows that the dissipation inequality then reduces to:

_, 09 df oPs
Pog +1 )dt+(p"3F

+Z ayg— i) Z;ﬂ;(dyg ﬁi) V, - 9<0. (2.106)

FT—-T)-L—-L-o[L)

As temporal fields, 6(t), F(t) (and consequently L(t)), and {pl(t)}_, can be chosen
arbitrarily®. Consequently, at any time, ¢ dt, L, and {d—p&} k=, can be assigned arbitrary

values. In order for (2.106) to be satisfied at any time, the following relations should

hold:

R
n - _60 ’
_ 9y?
A 01/1-" T
T = pPP—— oF —F and
o[L]-L > O. (2.108)

Note that from (2.107) it follows that the last term on the LHS of (2.106) is identically

Z€ro.

4This arbitrariness results from the requirement that all admissible thermodynamic processes
be compatible with the dissipation inequality. An expert in Rational Mechanics will note that
not all such admissible thermodynamic processes satisfy the species mass balances as stated above.
However, this inconsistency is easily corrected by the introduction of external species supplies in the
species equations and the corresonding energy supplies in the energy balance.
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Next, we specialize to the case of a (linearly) viscous fluid, i.e.,

99, 7%, T, 4, {Bgk}Yis,, (R}il.}, and {R{}L,

depend on F only through det F or equivalently through the specific volume v =8 /P°.

We refer to Coleman and Noll [CN] who use a frame-indifference argument to obtain

the following constitutive relation:
T = —pl +2uD + \trD)I

where

oI def

= D = T
p 3 and (L+ L")

[ SR

are the hydrostatic pressure and the rate-of-deformation tensor respectively. The
inequality (2.108) then yields the following constraints on the material parameters A
and u:

2
o> Oand)\+§u > 0.

We can now rewrite the dissipation inequality as follows:

N N
STHRL+Y R Va4 G- Vy(ln6) <0, (2.109)
k=1

k=1

Consider next an admissible thermodynamic process such that the various chemical
species present in the system are not chemically reactive. The equation (2.109) then

reduces to:
N -
> h{-Vyi+g-V,(n6) <0. (2.110)

We appeal to a lemma by Gurtin and Voorhees [GV1] to obtain the following consti-



52

tutive relations for the heat and species fluxes:

N

§ = —k*V,(In8) - Y k{V,a!, and (2.111)
i=1
N

h{ = -Di{V,(n6) - DLVE, VYk=1,...,N, (2.112)
=1

where the matrix

k9 k] R
. DQ Dy Dg
K? = K9(V,(Inf), {V,a}Y,, 6, & {yQL)& |+ W
| DY DY, - Diy |

is such that K9(0, 0, 6, p, {Y}4,) is positive semi-definite. The dependence of the
diffusive species fluxes on the temperature gradient is known as the Soret effect, while
the dependence of the heat flux on the concentration gradients of the various chemical
species present is known as the Dufour effect. As mentioned above, in many CVD
processes, the Soret effect is important because of the large temperature gradient in
the gas phase, while the Dufour effect can often be neglected as the gas multi-species
flows of interest are reasonably approximated as dilute mixtures.

Finally, consider an isothermal diffusionless admissible thermodynamic process.

Consequently, the dissipation inequality assumes the form:

N
> BRI <O0. (2.113)
=1
One would have to postulate constitutive relations of the form
=g def = —
REE RY6, 7, (YY)

such that (2.113) is satisfied.
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2.5.2 A remark on the special case of a multicomponent ideal
gas

Consider now the case of a mixture of ideal gases. From Thermodynamics, we
have the following relation between the chemical potential of the k™ species, the
temperature field 8, and the partial pressure p; associated with the species of interest:

Vk=1,...,N,
wrfy = wppp(0) + ROInpy, (2.114)

where (4 is the standard chemical potential associated with the k' species (per unit

mass) and
ﬁ]g; = Rkepiv

with Ry =l R/wyg, R being the universal ideal-gas constant and wy the molar weight

of the k** species. It follows that (2.114) can be rewritten as:
wpiy = wgfy + ROInpy, (2.115)
where
Wi % wipS + ROIn(Ry0).

For illustrative purposes, consider the following simple reversible homogeneous

chemical reaction taking place in the gas phase:
AB(g) = A(g) + B(g), (2.116)

with kf(6) and k,(8) its forward and backward reaction-rate constants respectively

(both being positive functions of temperature). A thermodynamical-statistical cal-
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culation® then yields the following expression for the reaction rate associated with

(2.116):
R = k‘f(ﬂ)& - kb(e)ﬁ-@. (2.117)

WAB wa WA

Suppose for now that this is the only reaction taking place in the gas phase. It follows

that the dissipation inequality (2.113) reduces to
fapRyp + ByRY + EpRE <O,
which can be rewritten as
(wap¥y + wpiy — wappg)R < 0. (2.118)
From (2.115) it follows that
R0

(39— o
p! = exp [M] Vi=A,B,AB. (2.119)

Consequently, (2.117) can be rewritten as

= ——e

o _ k10 [ww(ﬂ%g—ﬂ%s)]

WAB RO
kb (6) wa(fy — %) wp(fip — Fp)
. exp l: 0 exp 70 . (2.120)

From Thermodynamics, we know that chemical equilibrium is embodied in the

following condition (cf. Callen [C]):

wAi—‘ii‘eq + wB,agBieq = wABﬁ%Bleq- (2.121)

Substituting (2.114) into (2.121), we can define the equilibrium constant associated

SE.g., cf. Hill [TH].
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with (2.116) as follows:

5 | o0 wapjiS g — WaLY — WRHS
ko PleaPgleq ABHYp — WAy — wplg (2.122)

— = €xp ,
p!/]&B eq RO|eq

where it should be noted that k., is a function of temperature only. Also, the reaction-

rate constants are related to the equilibrium constant via the relation: (cf. [TH], p.

198)

ke(0) _ was
LT o ko) (2.123)

It can then easily be shown that:

—~g 10 9
R - ks (6) exp was(Eyp — Fap) 1 — exp Aps , (2.124)
WaB R6

where
_odef _ _
Apf = wafl% + wpiy — wWaplhp-

Consequently, (2.118) reduces to

kr(6) - was(Fhp — Fap) Aps
——LAp? 1- — ]| < :
wan i? exp 70 exp | g <0, (2.125)

which is trivially satisfied when Af¢ < 0, i.e., when the forward reaction (decompo-
sition of the .AB- molecules) is favored.

The preceeding case study was developed for pedagogical purposes. We are now in
a position to generalize the above reasoning to the more relevant (and highly complex)
case of a multicomponent system such that N, chemical reactions (with N, > 2) occur
in the gas phase. As a starting point, consider the following generic reversible reaction

labelled a:

Ng Ng
ST =) K, (2.126)
=1 k=1
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where N and N7 are the numbers of reactants and products (respectively) that
contribute to (2.126), and {¥2}~7, and {yg},’ffl are the stochiometric coefficients
associated with the reactants and products respectively (all stochiometric coeflicients
being positive integers by definition). The reaction rate associated with (2.126) is

given by the following relation:

NE ﬁg uf‘ N,‘,’ ﬁi u,‘:
R = k3(0)[] (E) -k I (wﬁ) , (2.127)
1=1 t k=1

with k% and kf the forward and backward reaction-rate constants (again positive
functions of the temperature only). Making use of the definition of the chemical

potential for an ideal gas (2.114), we can rewrite as:

Ne Ng

o _ Lo 1 Viaw’i(ﬁzg — [1’?) a T 1 V/?wk(ﬂi — ﬁﬁ)
R* = kf(ﬁ)];I1 w:? exp [ R0 kp (9)}:[1 w:? exp R0 :

(2.128)

If (2.126) were to be the only homogeneous chemical reaction that takes place
in the gas phase, the chemical equilibrium would be characterized by the following

condition:
NP Ny
o —=9 — (o3 =9
E :Vi Wilk{leq = § :kak/‘kleq’ (2.129)
=1 k=1

from which we can define the equilibrium constant associated with the a-reaction:

k2, def M = exp (_ A;{;O) , (2.130)
J R

where

AL o & Zkak 2'/ w; i3
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It then follows that the reaction-rate constants are related via the relation:

Ne (50 \% o
ko) _ TS (R)" g AR
L = —r = = exp| %7 |- (2.131)
kg (6) v (ﬂi) K [1:2, we* RO

=1\ w;

We can then show that the reaction rate associated with the a-reaction reduces

to the following expression:

NO

k¥(6) vew;(iad — [m?) Aps
R = —fa—;a—Hexp [L——”—’] [1 — exp (—)] , (2.132)
[T w® i R ko
where
Ng Ne
Ajf def Z VW] — Z viw; . (2.133)
k=1 i=1

It can then easily be seen from (2.132) that if Ag? < 0, then R* > 0, i.e., the forward
reaction is favored.

Finally, when N, homogeneous chemical reactions occur in the gas phase, each
reaction a involving N7 reactants and N products, the dissipation inequality (2.113)

reduces to the following:

N, [ Ny NP
S wmraig =D wnvpp, | R* <0, (2.134)
a=1 m=1 m=1

so that, if (2.133) is negative for each a (1 < a < N.), then (2.134) is satisfied, thus
insuring that all such chemical reactions occurring in a mixture of ideal gases are

compatible with the second law of Thermodynamics.

2.5.3 The solid phase

Consider the dissipation inequality in the bulk phase away from the surface (2.90).
We make the constitutive assumption that the Helmholtz free energy density of the

film phase depends on the state of strain in the bulk via the deformation gradient F',
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the temperature field # and the chemical composition of the film via the bulk species

mass densities {p]}2_,:
de
o Lyl 6, F, (o},

Using the Coleman-Noll procedure, we can then show that, in order for the dissipa-
tion inequality in the film not to be violated, i.e., for (2.90) to hold for all admissible
thermodynamic processes (where an admissible thermodynamic process bears the
same definition as was introduced within the context of the Eulerian study of a single
phase viscous fluid), we can show that the following constitutive relations should be

satisfied:

op! o' o'
K a6 > = aF 4 apl’

Vk=1,...,N.

Consequently, the bulk dissipation inequality reduces to:
N
> hl-Vul+¢-V(ng) <o.
k=1

It can be then shown that the following constitutive relations are consistent with

the bulk dissipation inequality (cf. [GV1]):

¢ = —k'V(no) Zkfwl, and (2.135)
bl = —D[V(lng) - ZD vul, Vk=1,...,N, (2.136)
if the matrix
[ k! k{ k1fv |

de pl pf. ... Df
K/ =K/(V(n6), {Vu{}¥,, 0, F, (o} | 70 T T
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is such that K/(0, 0, 6, F, {p{})_,) is positive semi-definite.

2.5.4 The surface phase

Consider the dissipation inequality along the surface (2.92). If we make the con-
stitutive assumption that the interfacial helmholtz free energy density is dependent
on the temperature at the surface, the average deformation gradient, the local orien-
tation of the surface (via its dependence on n,), as well as the chemical composition

of the surface via {p{}' ., i.e., if

def

103 (9, {plsc}llcvzlv <F>’ ns),

then, it follows from the Coleman-Noll procedure that the below constitutive rela-

tions should hold in order for (2.92) to be satisfied for all admissible thermodynamic

processes:
s _oy?
T T T
wo= gw:,Vk_l N,
S = %, and
¢ = gf:: ST (F)n,

Consequently, the surface dissipation inequality reduces to:

N N
DB Ve +¢ -V + Y iRy

k=1

N N
oo+ > (ud — p)JE+ D (uh — pp)J{ <o. (2.137)
= k=1

Consider an admissible thermodynamic process such that the surface satisfies the
condition of local equilibrium (i.e., the driving force at the surface f is nearly null

and the species chemical potentials are continuous across the interface, that is, pj =
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,u,’: = ui, Yk =1,...,N). Assume in addition that the interfacial species are not

chemically reactive. The dissipation inequality (2.92) reduces to:
N
> _hi-Vepi 44 Vi(Ing) <0,
k=1

from which we deduce that the following constitutive relations for the interfacial heat

and species diffusive fluxes

N

hi = =Y DyV.u - DiV,(n#), and (2.138)
i=1
N

¢ = =D kiVel —k'V,(n0) (2.139)
=1

are compatible with the dissipation inequality at the surface if

r =

kS kS e k%
. Ds DS . DS
K* = K*(V,(In0), {V,u}¥,, 0, (o} | 70 7 T
| Dy Dy -+ Diy |

is such that K*(0, 0, 6, {p{}i_,) is positive semi-definite.

Consider now an admissible process such that the surface species are diffusionless
as well as chemically reactionless and suppose there is no interfacial heat conduction.
Assume in addition that the surface is stationary (i.e., v, ~ 0). The interfacial

dissipation inequality then reduces to:

N N
= )T+ (uf - up) L <o. (2.140)

The following constitutive relations

JE = TR0, {p%, m L) (2.141)
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are compatible with the dissipation inequality if

Mz

— ) Je 0, {nf, p}iL,) < 0. (2.142)
k:l

Typically, the deposition of the k" species along the surface can be modeled as a

reversible adsorption/desorption reaction of the following form:
K(g) = K(s) (2.143)

where K(g) and K(s) denote the k™ species in the gas phase and along the surface
respectively. Let k;(6) and K,(#) be the reaction-rate constants associated with the
adsorption and desorption reactions respectively. The k*» deposition flux can then be

written as
i = —(kp(0)oh — kol6)p}), (2.144)

where the first minus sign on the RHS of (2.144) accounts for the fact that more
adsorption is assumed to be taking place than desorption. At equilibrium, the forward

and backward reactions have identical rates, i.e.,
ki (O)pkleg = ko(6)pk
It follows that the k** deposition flux can be rewritten as
= —k(0)(p - plla). (2.145)

Now suppose the k™" gaseous species behaves like an ideal gas. Consequently, its
p y

chemical potential is given by the following thermodynamic formula:

pp = pi’(6) + Reflnpl. (2.146)
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From (2.146) it follows that

9 9
Hh = bile
ot = s (M)
Again, at equilibrium, we have
P = .uzleq-
From (2.147) and (2.148), it follows that

Hy — B
7 = —ue (M),

where

Q(0) Y kp(6)plleq > O,

so that (2.140) is satisfied when

and

uka<0

Mz

k:l

(2.147)

(2.148)

(2.149)

(2.150)

(2.151)

The condition (2.150) is in fact a necessary condition for deposition to take place and

is assumed to be satisfied, so that (2.140) reduces to (2.151). Finally, we note that,

for small deviations from equilibrium, (2.149) can be approximated by

TP = Qg — mk),

(2.152)



where

- Q
i ey
R0

Next consider an admissible isothermal thermodynamic process such that the
surface is in equilibrium locally (as defined above), and the surface species are diffu-

sionless. The interfacial dissipation inequality can then be written as:
N
> uRE <0
k=1
which would be satisfied by the following constitutive assumptions on the chemical

production rates:

Vi=1,....N, R Y R0, {0}V (2.153)

if
N
> R0, {p}}Y,) < 0. (2.154)
k=1

We note here that, if one can treat the superficial species as ideal gases (a reason-
able approximation in the limit of very low densities of adatoms along the surface),
then a reasoning similar to the one developed in section (2.5.2) shows that the dissi-
pation inequality along the interface (2.154) is not violated. ‘

Finally, consider an evolving surface such that there is no interfacial heat con-
duction, species diffusion or adsorption-desorption between the bulk phases and the

surface. (2.92) reduces to:
fon <0,

from which we see that a kinetic relation® between the driving force and the normal

5The notion of kinetic relation was first introduced by Abeyaratne & Knowles, cf. [AK].
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interfacial velocity of the form
f = —BO)v, (2.155)

would not violate the interfacial dissipation inequality if 3(f) is a positive scalar

function of temperature.

2.6 Formulation of the Free Boundary Problem

2.6.1 The fluid phase

In what follows, the bars and the y subscript are omitted in order to simplify an
already quite cumbersome notation. The governing equations for the viscous fluid
flow can be summarized as follows:

(i) The species equations:

88—’;”;+V-(p;’;v)=—v-hi+3i) Vk=1,...,N. (2.156)

(i) The linear momentum equation:
0
5;(p—"v)+V-(pgv®v):V-T+b, (2.157)
where we have the following constitutive relations:

wg = 1/19(9, pga {Ykg}llcVZI),
_ 20
p = —p° 35 and (2.158)
T = —(p— % utrD)1 + 2uD,

and b is the body force density (e.g., gravity in the case of vertical CVD reactors).
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(iii) The energy equation:

de? a
P =T DV g = Q + 3 V- (ufh])

with the following constitutive relations:

aw
9 .9 _
¢ = =055
o9
9 T _ =
uk-—aykg, Vk=1,...,N,

k=1

N
¢ == KOVWn8) = > KO {ph}nar) Vil

b = — D38, {p%}h_)V(In o) — ZD Vek=1,...
R} =R{(8, {1 W), Vk=1,...,N,
where
k9 K k%
9 g 9
Ko - koo (i | DT T
| DY D Dy |
is positive-definite, and
N
zuiRi(ﬁ, {uf}il;) <0
k=1

=0, (2.159)

,N, and (2.160)

It should be noted that we have N + 5 unknown scalar variables: the N species

densities {p]}}_,, the three components of the velocity field v, the pressure p and the

temperature 6. We also have N + 5 scalar equations: the N species equations, the

three projections of the linear momentum equation along a given set of coordinate

axes, the energy balance, as well as the constitutive relation (2.158) which gives the

pressure if a well suited constitutive relation for the Helmohltz free energy of the gas
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phase is postulated. So that, a priori, and given an appropriate set of initial and

boundary conditions, the problem is well-posed in the fluid flow phase.

2.6.2 Specialization to the case of a multicomponent ideal
gas

Assume the gas mixture behaves like an ideal gas. Consequently, we have:
e? =8,

where cg = Zz Yic, ; is a constant.
Now, the flow being viscous, and making use of the continuity equation, we can

rewrite the energy balance as:

pgcﬁdt—i-V _Qo- Rod—”q—T D+ZV () = 0, (2.161)
k=1

where we have also made use of the ideal-gas equation of state:
p = p'R0. (2.162)

Adding and subtracting the term Rp9% to (2.161), and making use of (2.162) as well
as the relation between specific heat at constant pressure and specific heat at constant
volume for an ideal gas, i.e., ¢§ = c¢j + R, we obtain the following energy balance for
a multicomponent ideal gas:

dp

N
b S a9 — 09 (1IP9) =
pgcgdt 5 T D+V-¢ - Q +§TV (Lhg) = 0. (2.163)

Twhich is to be viewed as a specialization of (2.158) to the case of an ideal gas



67
2.6.3 The bulk of the thin solid film

We confine ourselves to the (physically relevant) quasi-static case and assume

in addition that the thin film behaves like a linearly elastic solid. Consequently,

the formulation is based on the dispacement field rather than the deformation field

(linear elasticity) and inertia will be neglected. In the context of linear elasticity,

there is no formal distinction between the reference and current configurations, so

that differentiation in the equations to follow is with respect to spatial coordinates,

thus yielding a set of equations compatible with those governing the behavior of the

gas phase. The governing equations in the bulk can then be listed as follows:

(i) The species equations®:

8Pk f
= Vk=1,...
5 +V.h, =0, 1, , N,

with:

wf = wf(e’{pk k= I’E)

f
u{:%, Vk=1,...,N, and
op;
hl = —DL6,{p[}Y.)V(Ino) - ZD OVul, Vik=1,...

where E &/ 1(Vu+ VuT) is the infinitesimal strain tensor.

(ii) The balance of forces®:
V-T=0,

where:

def

T = C'f(e {P }k DE.

8in the absence of homogeneous chemical reactions in the solid phase
%n the absence of body forces

(2.164)

N, (2.165)

(2.166)
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Notice that the tensor of elastic moduli is not only a function of the temperature but
also of the local chemical composition of the thin solid film.

(iii) The energy balance:

Oe’ : al
= _T. .of —Of Al B =
o T E+V-d-Q +§V (uihl) =0,
where:
o'
= ol -2
€ (A TR
N
o/ = KOV -3 K@ {pi) VA,
i=1
with T given by (2.166), and the matrix
[t Y 8 ]
f pf ... Df
K =K/, {p/}¥ )Y Dy Du Diy
| D& Dlu - Dy

is positive-definite.

Again, it should be noted that we have as many scalar unknowns as we have scalar
equations (the unknowns being the N species densities { p;':}f:l, the three components
of the displacement field and the temperature field, the equations being the NV species

equations, the three components of the force balance and the energy balance.

2.6.4 The equations governing the evolution of the interface

We consider a structured surface endowed with a surface energy and interfacial
species densities, i.e., the surface can sustain mass and we account for its anisotropy
via the dependence of the surface energy density on the outer unit normal field. More-

over, we neglect the superficial elastic stresses. In addition, we confine ourselves to the
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quasi-static situation, and consequently inertia will be neglected along the surface!®.
Finally, we assume that there is no slip along the interface, i.e., the tangential com-
ponent of the velocity jump across the interface is identically zero. This, in addition
to the requirement that the surface be coherent, i.e., the normal component of the
velocity jump is null, yields the continuity of the material velocity across the evolving
film-gas interface. But the bulk phase being quasi-static, this continuity condition
reduces to a zero gas-phase velocity at the surface. It then follows that the governing
equations at the surface reduce to:

(i) The species equations:

02 —((lpe]] + Por)om + [[Ax]] - na + Vo - BE — RS =0, (2.167)

where the superficial species diffusive fluxes are given by:
N
hy = —Di(0, {pi}rey) Vs(In8) = D DL(OV(H), Yk=1,...,N,
i=1

where the chemical production rates are given by (2.153).

(ii) The species flux-matching conditions: V£ =1,..., N,

—plvn =—h -ng+ J¢, and

plog = bl -ng+ J, (2.168)

where the gas and film species diffusive fluxes are given by (2.160) and (2.165) re-
spectively, and the adsorption-desorption species fluxes are given by (2.141).
Consider the single-species case (so that there are no chemical reactions taking

place along the surface), in the absence of surface diffusion and such that the super-

10Neglecting inertia at the surface would have also been a physically reasonable approximation
in the limit where the interfacial species densitites can be ignored, i.e., if they are negligible with
respect to, say, the bulk species densities.
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ficial mass density is negligible with respect to the bulk mass density. Consequently,

(2.167) reduces to
[[pllon = [[A]] - 7.
Adding the two equations (2.168), we obtain:
[olvn = ([A]] - ms + I+ J°.
Now, combining the above two equations yields the following relation:
Jh = —Js.

Next, we note that there is no bulk diffusion in a single-species film, so that the

second equation in (2.168) reduces to

which, for small deviations away from equilibrium, can be rewritten as

Q@

Up = f(ug — u’). (2.169)

)

The linear growth law (2.169) is often known as the Hertz-Knudsen formula (cf. Saito

[SD)-

(iii) The continuity-of-traction condition:
T/n, =0, (2.170)

where we have assumed that the gas-phase stresses are negligible when compared to

those of the bulk along the surface.
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(iv) The surface energy equation:

E

N
€ —fvn +c Tis +[[Q” ‘ns + Vs : qs - Qs + Z Vs : (Nihi) + [[:u‘khk]] ‘g = O,

k=1 k=1
(2.171)
where:

Pt = 1/13(9 ns’{pzs ijil)v
s __ $ 81/15
€ = V=05
c = ——&ps

- On,’
s _ 0Y° _
Hk = 8 5 ,V k 1 N
¢ = —k*(0)V,(In6) - ste{pk}k )Vspf,  and
f = [[G]+G°k+V,-c. (2.172)

In the absence of interfacial structure (i.e., in the absence of superficial mass), the
RHS of (2.172) includes the additional term —n, - [[F7S]]ns. The no-slip condition
(i.e., the requirement that the material velocity be continuous across the interface)
reduces this additional contribution to —[[F]|n, - (S)n,. In the context of linear
elasticity, this is equivalent to —[[Vu]]n, - (T)n, (cf., e.g., [GV2] or [LS]). Moreover, if
the approximation of negligible gas-phase stresses at the surface is made, then (2.170)
cancels this last term, thus yielding the expression (2.172) for the driving force at the
interface (cf. [GV]). By contrast, in the case of an interface separating two solid bulk
phases, this supplementary term cannot be neglected.

(v) The kinetic relation:

f = B(O)va, (2.173)

where 3 is a positive function of temperature.
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The unknown variables along the surface are the N superficial species densities
{pi}Y_, and the normal velocity of the interface v,. The corresponding N + 1 equa-
tions are the surface species equations and the kinetic relation. Thus, the problem
seems a priori to be well-posed at the surface, and the explicit determination of those
unknowns (given appropriate initial and boundary conditions) would allow us to ac-
count for the morphological evolution of the interface (i.e., the growth of the thin
solid film). The species flux-matching conditions provide boundary conditions for
the species equations in the gas and bulk phases. The interfacial energy balance
(2.171) combined with the requirement that the temperature be continuous across
the interface constitute the boundary conditions needed to determine the tempera-
ture profiles in the bulk phases. Finally, the jump condition (2.170) combined with
the requirement that there be no slip along the coherent surface represent the neces-
sary boundary conditions at the evolving surface needed to solve for the velocity field

in the gas phase and the dispacement field in the bulk of the thin film.

2.7 Special Cases

2.7.1 The case of local equilibrium

In what follows, local equilibrium means a vanishingly small driving force along
the evolving interface whose normal velocity is taken to be finite. In addition to local
equilibrium, a number of assumptions will be made. We believe that these assump-
tions constitute physically reasonable approximations to the conditions under which
some growth processes are operated. Begin by considering the case of a structured
surface (in the sense of a moving surface endowed with a surface energy density) that

cannot sustain mass, i.e., Vk=1,... , N,
or =~ 0. (2.174)

By a surface which cannot sustain mass we mean that the superficial species den-

sities are very small if compared to, say, the bulk species densities. Consequently,
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these interfacial species density fields can be neglected in the equations describing
the morphological evolution of the surface, thus the approximations (2.174). But the
superficial chemical potentials cannot be neglected. We also assume that the super-
ficial diffusive flux associated with a given species along the interface is proportional
to the surface gradient of the chemical potential of the species in question. This last
assumption is consistent with the fact that the surface species are very dilute. We

can thus write the species equations (2.167) as follows:
[pxllon = [[h&]] - ns — Vs - by + Ry (2.175)

Moreover, we consider only small departures from chemical equilibrium along
the gas-surface interface, i.e., for any chemical species, its deposition flux (from the
gas phase) is proportional to the jump in its chemical potential across the interface
separating the gas phase from the superficial one. In addition, we restrict ourselves to
the isothermal case, a reasonable approximation when the substrate on top of which
the film is growing is maintained at a fixed constant temperature and the film is of
negligible thickness so that temperature variations across its height can be reasonably
ignored. It follows that the surface species diffusivities, which in the dilute limit are

functions of the temperature only, are constant. Consequently, (2.175) reduces to:
—[loellon = —[[h]] - s + DiAp; + RE({1 1) (2.176)

Also, if we assume the continuity of the chemical potential across the film-surface
interface, i.e., if 4/ = ug, then the equation (2.28), the definition (2.91), and the

constitutive assumption (2.152) yield the following result: V&£ =1,... , N,
h,{ -ng = 0.
Making use of (2.27), it then follows that (2.176) reduces to:

plv, = —J¢ + DiAug + Ry({pHY)),
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which, having assumed small departures from chemical equilibrium at the gas-surface

interface, can be rewritten as:
plvn = M(uf — 1) + DiAsug + Ry({uf})- (2.177)

If we consider now the case of a growing film of fixed chemical composition, i.e., p{
is constant, and treat the gas phase as a resevoir, i.e., 4 is constant, we obtain the

following equations: Vk=1,...,N,

1
Un = Ay + Bkﬂi + CkAsui + _fRIsc({ll'f ilil)v (2'178)
Pk
with
pd A D3
Ak = —’;,u,’;, Bk = __Ifc7 and Ck = —;c
Pk P Py

If we now restrict our attention to isotropic surfaces, i.e., the surface shear c is iden-
tically zero, the local equilibrium condition, i.e., the zero-driving-traction condition,

reduces to:

N
Yoolut = W =00+ Y At - on, (2.179)

N
k=1 k=1

where, because of the assumptions of constant temperature, fixed chemical composi-
tion of the film, isotropic surface which cannot sustain mass, and the approximation
of the gas phase as a reservoir, ¥9, {p{}&_, and o = 1/* are all constant.

It follows that (2.178)-(2.179) represent a set of N +1 partial differential equations

for the N + 1 scalar variables {u}r_, and vy.
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2.7.2 Specialization of the local equilibrium case to single-

species systems

We now specialize to the case of a single-species system. Consequently, there
are no chemical reactions occurring at the surface. It follows that (2.179) yields the
following standard relation between the surface chemical potential and the interfacial

curvature (cf. Herring [H1] and Mullins [M]):

p’ = a+ bk, (2.180)

where:

f_ a9 g
_ Y z/)f+up9’ and b= -2
P p!

a

Finally, (2.178) yields the following relation between the growth velocity and the
curvature of the surface (cf. Mullins [M], Davi and Gurtin [DG] and Spencer et al.

[SVD]):
Vp = € + Cok + c3As (Y — oK), (2.181)
with:

o = (e =+ (o = )

Y

c = ——;‘, and
ol
Ds

3 = F,

where it is important to notice that the influence of the stress in the bulk of the film
on the morphological evolution of the moving surface is ‘buried’ in the dependence of

the bulk Helmholtz free energy 1/ on the infinitesimal strain tensor E.
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2.8 Discussion

We conclude by briefly comparing our approach to that developed in the more
classical continuum treatments of mixtures in an attempt to justify a posteriori our
methodological choices. In the classical treatment of mixtures, a fundamental postu-
late of the theory is that, for a mixture of N constituents (N > 2), each constituent be
modeled as a distinct continuum. The superposition of these N separate continua then
forms the mixture of interest. More specifically, in the material space, there would be
as many reference configurations as there are constituents present in the mixture. To
each distinct reference configuration ), there corresponds an independent motion y
mapping the reference configuration in question into the unique current configuration
(i.e., the time-dependent region in the physical space occupied by the mixture which
is ‘visible’ to the experimental observer). The constituent (or partial) velocities are
then defined as the time detivatives of the various mappings introduced above. In
addition, one would define partial stresses to account for the contact forces on a given
constituent resulting from contact with all the other constituents. Moreover, one
would need to introduce two additional fields that do not appear in the theory for
single continua: the local forces acting on a given constituent and the local energy
supply to that constituent, both due to the presence of the other constituents and the
need to account for the interactions among different constituents (for an extensive
discussion of the classical mixture theory, we refer the reader to [BD]). One would
also have to formulate, in the current configuration, the fundamental balances laws
(i.e., the conservation of mass, the linear and angular momenta equations, and the
energy balance) for each of the constituents present in the mixture. Finally, an ad-
equate version of the Clausius-Duhem inequality would then impose restrictions on
the constitutive assumptions one can make on the various fields introduced above.

As is obvious from the discussion above, the classical mixture theory requires a
large number of constitutive relations (and the more constituents we have, the larger
the number of constitutive assumptions we would have to make). By introducing the

notions of a single stress tensor and a single velocity field, we have chosen to approach
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the issue of the presence of many constituents differently, in part to avoid making a
large number of constitutive assumptions. But our main motivation for doing so
can be stated as follows: when one writes balance laws for each of the constituents
present in the mixture, one is implicitly treating each constituent as a separate phase.
This formualtion is best suited for immiscible mixtures, i.e., those mixtures whose
‘constituents remain physically separate on a scale which is large in comparison with
molecular dimensions’ (Drumheller). Typical examples of immiscible mixtures are
bubbly liquids (e.g., a nonreacting mixture of a Newtonian fluid and a gas with
a single temperature), fluid-saturated porous media, etc. The gas mixtures used
in chemical vapor deposition processes cannot be treated as immiscible mixtures,
precisely because the mixing is such that the various chemical species present are
not separable at the macroscopic level. Consequently, the gas-mixture flow is best
modeled as a single phase (with a single temperature field), thus requiring one set of

balance laws rather than as many as there are species present.
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Chapter 3 Multicomponent Gas Flow in
a Vertical Axisymmetric CVD Reactor

3.1 Formulation of the Problem

3.1.1 Framework

In the present chapter, we investigate the flow of a multicomponent gas in a vertical
axisymmetric stagnation-point low CVD reactor. The physical setting is that shown
in Figure 2.1 of chapter 2. Our goal is to examine the conditions under which the
similarity solution first introduced by von Kdrman [K] holds. The similarity solution
is of interest to the practitioners of CVD of compound thin films mainly because
it insures the uniformity of the chemical composition of the growing thin film. Our
procedure consists of an asymptotic analysis of the flow equations in the limit of small
Mach number and small aspect ratio (defined here as the ratio of the height of the
reactor channel to the radius of the substrate on which the deposition takes place).
This approach was applied first by Hariharan et al. [YHC] to a vertical reactor of a
different geometry in the context of a dilute single-species flow.

The axisymmetric geometry leads to the choice of a cylindrical system of coor-
dinates within which to express the equations that govern the gaseous flow. The
multispecies viscous flow enters the chamber via a horizontal showerhead, which can,
for simplicity, be modeled as a porous plate and its entrance velocity is assumed to
be vertical (downward-oriented) and spatially uniform. The heated substrate on top
of which the deposition of the thin solid film takes place is located below the shower-
head at a distance L and is modeled as a thick horizontal plate whose radius 7, is the
same as that of the showerhead. Typically, the substrate is undergoing a rotational

motion whose purpose is to ensure a better uniformity of the deposited film, but for
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the sake of simplicity, we shall assume (without loss of much generality since the main
features of the flow will still be identified) that the substrate is fixed. Consequently,
the circumferential component of the velocity field is identically zero (and the cir-
cumferential momentum balance is thus trivially satisfied). Also, the axial symmetry
of the reactor implies that none of the flow fields of interest depends on the angular
coordinate ¢.

We limit our investigation to the case of a very dilute mixture, i.e., the various
chemical reactants are assumed to be highly diluted in a single carrier inert gas (usu-
ally hydrogen or nitrogen). Such a limiting case is arguably a physically reasonable
approximation of many CVD processes, in particular, the growth of superconducting
Y Ba;Cu3O7_s thin films by MOCVD, where the metallorganic precursors carrying
the species to be deposited are typically very diluted in nitrogen. As a consequence
of the dilute-mixture approximation, we can make the following assumptions:

(i) The material properties of the gas mixture (e.g., the shear viscosity coefficient
i, the heat conductivity k9, etc.) are assumed to be identical to those of the carrier
gas. Consequently, these material properties will be functions of the temperature
exclusively (rather than being also dependent on the chemical composition of the
mixture in question). Moreover, the Dufour effect (i.e., the heat conduction resulting
from the presence of species concentration gradients) is negligible if compared to the
heat convection and conduction. It then follows that the heat flux obeys the simplest
form of Fourier’s law, i.e., it is proportional to the temperature gradient, where the
‘constant’ of proportionality is the temperature-dependent conductivity of the carrier
gas.

(ii) The diffusion of each species is treated as a simple binary diffusion process in
the carrier gas. That is, the diffusive mass flux of a given species k (k =1,... ,N —1,
the N* species being assumed here to be the carrier gas) is proportional to the tem-
perature gradient (the Soret effect) and the density gradient of the species in question
to the exclusion of all the other species density gradients. It should be noted here that
the Soret effect cannot be neglected as the difference in the temperature between the

showerhead and the independently heated substrate can be quite significant (typically
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of the order of a few hundred degrees Celsius). More specifically, the diffusive flux of

the kt* species is given by
ki = DiVpl + DiV0,
where the thermal diffusion coefficient has the following functional dependence:

Dltc(gv pi) = piakc(a, P;’})Di((?),

with D% and D§ the thermal and ‘effective’ diffusion coefficients (respectively), ax.
the Soret coefficient (where the subscript ¢ denotes the carrier gas), pj the partial
mass density field of the k** species present in the mixture, and 6 the temperature
field. In addition, we assume that the diluted species are heavier than the carrier gas,

ie,Vk=1,...,N—-1,
pi<<p!]’ Wi > W, Ok > Oc,

where the subscript c refers to the carrier gas, wy and w, are the molar weights of the
kt" species and the carrier gas (respectively), and o and o, are the collision diameters
of the molecules of the k** species and the carrier gas (respectively). Moreover, if we
assume that the molecules of the various species behave like rigid elastic spheres,
then, from the kinetic theory of gases, it can be shown that the Soret coefficients
{arc}N=! can be approximated by constants (cf. [K] and the references therein).

We will first consider the general case, i.e., the unsteady flow of a chemically
reacting multicomponent gas. When solving analytically the first order approximative
equations (obtained by expanding asymptotically the flow fields about the Mach
number and the aspect ratio), we shall specialize to the case of a steady flow. The
steady-state assumption is motivated by the observation that the time scales for
convection and diffusion of gaseous species are much smaller than the time scale of
growth by deposition of the thin solid film, so that it is reasonable to assume that

the equations governing the behavior of the flow are time-independent.
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Finally, the gas mixture is assumed to behave like a multicomponent ideal gas,

and the flow is modeled as a viscous Newtonian one.

3.1.2 Terminology

Let (7, ¢,2) be a cylindrical coordinate system in the Euclidean (physical) space,
such that the z-axis coincides with the axis of symmetry of the vertical CVD reactor
(cf. Figure 2.1). As mentioned above, the geometry of the reactor being axisymmetric,
the flow fields depend only on the radial and axial coordinates r and z.

Let p? be the total mass density (per unit current volume) of the gas mixture, and
let pf be the partial mass density of the k" chemical species present in the gas mixture
(we consider the general case of a multicomponent system with /V constituents where
N > 2).

Let v be the radial (scalar) velocity field, w the circumferential (scalar) velocity
field (identically zero), and u the axial (scalar) velocity field. p denotes the pres-
sure and g is the gravity constant (the only body force of interest, which cannot be
neglected in the case of a vertical reactor). Finally, let # denote the temperature field.

It should be noted that a purely Eulerian approach is adopted here, so that all of
the fields defined above are spatial ones. Also, the flow being viscous, the stress tensor
can be decomposed into an isotropic elastic component —pl and a viscous component
7 such that 7 = 2uD+\(V-v)1, where v is the (vectorial) velocity field, D is the rate-
of-deformation gradient (D %/ 2(Vv +VvT)), and p and A are the shear and bulk
viscosities (respectively) and are assumed to be temperature-dependent. Moreover,
we make Stoke’s hypothesis, i.e., we assume that A = —% L.

The gas mixture being a multicomponent ideal gas, its enthalpy is a function of
temperature only and its specific heat at constant pressure Cj is a constant. Finally,
k9 denotes the thermal conductivity (as it appears in Fourier’s law), and it is to be

distinguished in what follows from the thermal diffusivity .
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3.1.3 The governing equations

We can now state the equations that determine the behavior of the flow as follows:

(i) The total mass balance (Continuity equation):

0
2T (pr) + 5 (o) =0, (3.)

(ii) The radial momentum equation:

ov ovy _ Op 20 ov 1
p96t+pg< az) = “'57«*;5;[ (ar_EV )]

2u (v 1 0 ou Ov
(5 y) (G w)) e

where:

def OV v+8u

Vov= 8r+r 0z

(iii) The axial momentum equation:

10 ou Ov 0 ou 1
s (o) em G- e

(iv) The energy balance:

00 06
9 (& 102 =
”gpat "gc( r+u8z)
Op 00 10 (00, 0 (,08)
U6r+u82+ ar (rk 6r>+8z (k 5 +7-D, (3.4)

where the viscous dissipation is given by:

ov (Ov 1 viv 1
TD—,U{Q'a—(E——V V) ;(;—§Vv)}

+2 Ou (Ou lV’-v +@ 6_u+@
Hla9z \oz 3 0z \Or 0z )
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It should be noted here that we have assumed that there is no heat transfer by
radiation. Also, having made the dilute-mixture approximation, we neglect the energy
supply due to the homogeneous chemical reactions that occur in the gas flow. Finally,
we have assumed that the specific heats (at constant pressure) associated with the
various species present in the mixture are roughly equal (an approximation valid when
the various molecules are of comparable size). When combined to the requirement
that the total diffusive flux (defined as the sum over all species of the partial diffusive
fluxes) be null, the latter assumption results in neglecting the energy supply associated
with the species diffusion.

(v) The species equations: Vk=1,... ,N -1,

opy 10 0 _
B + ;‘5;(7?%”) + gz(piu) =
10 0pl  DLow o (. .00, DLOW
T [(D ot oo )| TPy Taa) TR B9

where D¢ is the effective diffusion coefficient, Dj is the thermal diffusion coefficient
for the k" species, and Ry is the rate of production of particles of the k™ species by
all the homogeneous chemical reactions involving the species of interest.

(vi) Finally, the ideal-gas equation of state:

p = Rp%0 (3.6)

with R %/ -Z, where R is the universal gas constant and W is the molecular weight
of the gas mixture.

Notice that the circumferential momentum equation was omitted from the list of
governing equations as it is trivially satisfied when the circumferential velocity field
is identically zero. It should also be noted that only N — 1 species equations have
been included in the above list of governing equations. Indeed, the total mass density
being defined as the sum over all the species present in the gas mixture of the partial
mass densities, if it is included in the list of independent variables, then we are only

left with N — 1 species densities as independent variables, the last species density
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being determined from the relation p9 def lecv:l p;. Consequently, the corresponding
governing equations are the continuity equation (3.1) and the N — 1 species equations
(3.5). This is consistent with the fact that the continuity equation can be obtained
by summing the N species equations under the assumption that the total diffusive

mass flux vanishes.

3.1.4 The boundary conditions

The variables of the problem are the following: the total mass density p9, the
N — 1 independent species densitites {p]}5_,', the radial and axial velocities v and
u, the temperature 6, and finally the pressure p, that is a total of N + 4 scalar
variables. The equations of the problem are: the continuity equation (3.1), the two
linear momentum equations (3.2) and (3.3), the energy balance (3.4), the N —1 species
equations (3.5), and finally the ideal-gas equation of state (3.6), that is N + 4 scalar
equations. Consequently, the problem is formally well-posed, granted an adequate
set of boundary conditions.

Along the showerhead (z = L), the following boundary conditions hold: V r €
[0,75], V t €[0,00),

the temperature is prescribed: 8(r, L,t) = 6;, (3.7
the axial velocity is known: u(r, L, t) = u;, (3.8)
the radial velocity is identically zero: v(r, L,t) = 0, (3.9)
and the species inflow fluxes are known: Vk=1,... ,N -1,

appr(r, L, t) 90

o0t
pi(”', La zf)uz"*_Dk (E(Tv L7 t) + 01' oz

(r, L,t)) = — 1, (3.10)

where the subscript ¢ designates the inlet (prescribed) quantities, 1y is the flow rate
of the kt* species into the reactor chamber, Dy its effective diffusion coefficient and
aj is its Soret coefficient (constant).

The microstructural features of the surface morphology are much smaller than the

thickness of the growing thin film. Consequently, we can approximate the evolving



85

interface separating the bulk of the film from the gaseous phase as a flat moving sur-
face. Moreover, the height of the growing thin film is itself negligible! when compared
to any of the other characteristic dimensions of the problem at hand (whether the
height of the channel L, or the radius of the showerhead r;, or even the thickness
of the substrate on which the deposition and the subsequent growth take place). It
is then reasonable to assume that the gas-film interface is stationary, i.e., the gas
mixture only ‘sees’ a flat surface? located at z = 0 (where we have chosen the origin
of the system of cylindrical coordinates to coincide with the center of the circular
substrate).

We can now list the boundary conditions that hold along the film surface (z = 0):

Vrellrs,Vte]|0o00),

the film temperature is constant: 6(r,0,t) = 6y, (3.11)

the axial velocity is equal to the growth velocity: wu(r,0,t) = v,, (3.12)
the radial velocity is identically zero: v(r,0,t) = 0, (3.13)
and the species flux-matching conditions are: Vk=1,... ,N — 1,
Opi axpi(r,0,t) 00
pz(r,O,t)vs—Dk (a—zk(’f‘, O,t)-i—le&(T,O,t) ZJIg, (314)

where the subscript f designates the film (prescribed) quantities. The film height
is so small that temperature variations across the film thickness can be neglected,
and the film temperature is assumed to be constant and equal to the fixed tempera-
ture of the substrate. In a continuum model that couples the gas phase to the thin
solid film via the equations governing the morphological evolution of the surface, the
growth velocity (i.e., the normal component of the interfacial velocity) is one of the
fundamental unknown variables of the formulation. Here, we consider this growth
velocity to be given, and this provides one of the two boundary conditions needed

to explicitly determine the profile of the axial velocity in the gas phase. Finally, the

10r, equivalently, the growth velocity of the thin film is much smaller than any of the other
characteristic gas-phase velocities, whether diffusive or convective.
2E.g., cf. [YHC] or [GG] or [MKD].
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term J7 represents the adsorption flux or flux into the surface (or, in the absence of
surface structure, flux into the bulk of the film) of the k* species. We assume that
the adsorption of a molecule takes place via an elementary irreversible adsorption re-
action, i.e., we make the following constitutive assumptions on the adsorption fluxes

along the vapor-film interface:
g def g
Jk - Akpz’ szl,...’N_l (3.15)

where the reaction-rate constant A is a function of temperature only. The constitutive
relation (3.15) is chosen for simplicity. In chapter 4 we show that the deposition flux
associated with the k** species can depend on the chemical composition of the gas
flow as well as on the morphological features of the film-gas interface. But having
approximated the interface by a flat surface, (3.15) is to be thought of as an averaged
deposition flux over the microstructure of the interface.

Finally, we assume that the mean pressure in the reactor chamber is a prescribed

constant p,.

The integral continuity condition

For future use, we derive the following equation by integrating the continuity

equation (3.20):

z=L z=L z=L
/ ra—pg dz +/ 58—7:(7',091)) dz +/ %(rpgu) dz =0. (3.16)

Making use of the boundary conditions (3.8) and (3.12), and assuming that the growth
velocity v, can be neglected with respect to the inlet axial velocity u;, we can rewrite

the above equation as:

F;. z=L b z=L
= - Ju; = 0. 1
e (/7;0 o dz) + Ew (r - v dz) + 77 u; 0 (3.17)
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Integrating with respect to r, we obtain the following integral version of the continuity

equation:

z=L z=L E=r
Pvdz = —%pfuir - % % (/ Ep9(&, 2,t) dfdz) . (3.18)

z=0 =0 £=0

3.1.5 Scaling

Let 6; and 6; be the temperatures at the inlet showerhead and the heated sub-
strate respectively. The typical height of the grown film being much smaller than the
thickness of the substrate, it is reasonable to assume that the variation in temperature
along the thickness of the thin film is negligible, i.e., we shall assume that the film is
at constant temperature §;. We now define the reference temperature as the average
of the above two temperatures: 6, def %(Hi + 6f). All the reference quantities are

evaluated at the reference temperature 6, and at some prescribed reference pressure

Pr-

In order to nondimensionalize the set of governing equations, we now introduce
the following characteristic scalings:

(1) The time is scaled as follows: t = t,t, with ¢, wf L/v7, where L is the height
of the channel and v7 is the typical growth rate of the thin solid film at the reference
temperature 0, (and at the reference pressure p,).

(2) The total mass density p? is scaled by the reference density pf = —g};—r giving

i . o d
the nondimensional total mass density p =4 %.

(3) The temperature 6 is scaled using the reference temperature 6, thus intro-

. . . ~def
ducing a nondimensional temperature § = @0-.

(4) The radial coordinate 7 is scaled by the radius of the showerhead r; giving the

. . . . _ de . . . . .
nondimensional radial coordinate 7 ef L; identically, the axial coordinate is scaled

by the height of the channel L yielding the nondimensional axial coordinate z =2 £

(5) The nondimensional pressure 7 is defined via the relation p = p,p where

= pd s the reference dynamical pressure and k, wf k(6,) is the reference

pT L2

thermal diffusivity of the gas mixture.
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(6) The N — 1 independent species densities are scaled using the (known) in-

let species densities {p',’;’i}f:’:”ll, thus introducing the nondimensional species densities

o X ;"{L Vk=1,...,N—1.

(7) f‘inally, the radial and axial components of the velocity field are scaled as
follows: o = ;- and @ = -, where the reference velocities are given by v, “f ’% and
u, & iﬂ

3.1.6 Non-dimensionalization
The non-dimensional governing equations

Having introduced the above scalings, we can now rewrite the governing equations
(3.1)-(3.6) in their non-dimensional form. In doing so, we will introduce a number of
dimensionless parameters (e.g., Prandlt’s number, Froude’s number, etc.) which we
shall interpret as being ‘measures’ of the relative ‘magnitudes’ of the various com-
peting physical mechanisms at play in the gas phase (the convective and diffusive
transport of species, the homogeneous and heterogeneous chemical kinetics, the con-
duction of heat and the effect of gravity and viscosity, etc.).

(i) The continuity equation:

Py 0p  plke (10 v 9 V) _
T + oL <7—‘37‘—(er) + ag(pu)) = 0. (3.19)

Omitting the bars, we can rewrite the nondimensional continuity equation as

follows:
10 0
+ ;E(TPU) + ‘a—Z(PU) =0, (3.20)

where

is a ‘measure’ of the time scale for convection in the flow vs. the time scale for the
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growth of the film.

(ii) The radial momentum equation:

First, rewrite (3.2) as follows:

ov ov ovy Op 20 ov v Ou
”"a‘“’g(%*“a)—‘aﬁym[‘”(237- ’a—)]

It follows that:

2z "o T r2? \Var T las

_;_k’”“rl 2 3 2_82..__@ —_ i Qi_@_@
rep 3 \or M\ T 7 8z)| T F\*eFr T or T a2

+krurg _ou +krﬂr£ _0u
r2L 0z Hor I 9z \"az )’

where u, = p(6,) and [ is the dimensionless viscosity coefficient of the gas mixture.

plk.vl O N pgk2_<_8z7 85) _ Pkl op

<

For the purpose of simplifying the notation, we drop the bars, and we rewrite the

dimensionless radial momentum equation as:

= @+ @_{_ Qg —— @+’P.§. @
“Pa TP\ Yor TY5z) T or 9z \"5z

Lepd < %) , (3.21)

where € is the aspect ratio

e L (3.22)
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and P is Prandlt’s number

def Hr Uy
P = = -
Pg kr ky

(3.23)

with v, = ’;—;T the kinematic viscosity. Prandlt’s number is a ‘measure’ of the relative
‘magnitudes’ of viscous effects vs. heat conduction effects.
(iii) The axial momentum equation:

First, rewrite (3.3) as follows:

8u
e (02) -2

10 ou Ov 20 ou Ov w
o [*“‘ (a + a)] *35: [“ (2& T ‘)] - (329

Next, using the scalings introduced above, we rewrite the above equation as:

8u> _Op

ikl 06 k2 ( 0u | ou\ _  pikldp
L 8t+r2Lp U5 tUg; ) =7 T[s g5 Fr9P

4 krpr 1 0 _f@ 4 krpr1 8 _f@
T3 7 OF a or rsL2r6r s 0z
2kpur 0 [_ (.00 O O

T3 3r,[2 9z {# (2£ o ;)J '

Finally, dropping the bars, we can write the dimensionless axial momentum equa-

tion in the following form:
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and can be regarded as the ‘ratio’ of inertia effects to gravity effects.

(iv) The energy conservation equation:

Begin by writing the viscous dissipation term as follows:

D2 2p Ov <28v v in)

3or\or r 02

-+ gg 22_@__@ +@ 26U_@_E +8v @-’r@
FUu v \"r " or ~ 32 0z \ 0z Or 0z \or 09z)])
It then follows that the energy balance (3.4) can be rewritten as:

L ”at‘ rsL
pIk3 piCk0:1 0 _-_5 p;’CkG _00
roL3 8r + Bz T r T L2 Ak
_+_2'u’k— a_’U av_?._@ +§ 2__@_@ +.a_ 2@_@_9
3r 2L2 or 67‘ T 0z T T or 0z 0z 0z or T
k2 850 pk? (00’
terfazar T P '

C30.v" 90 C9k,0, h
pf P v3—60+p$1’ —(1—).8_0_*_@8_?)

Dropping the bars, we can rewrite the above equation as:

=,9 . (,9 . ,90) -
=Por TP \Ysr T8 ) T

k2 dp  Op 10 ( 89\ 10 [, 00
cIL%0, (”a +“‘a;) o ("’“a) NPT (ka_>
2k u{a_v (2@_2_3_“> +2(29_@_3_U>}

rsLp?C360," | 0r \"0r 1 0Oz r\'r Or Oz

2k, Bu( ou Ov v) L trky (91} ou trkeTs (@)2

rLpiC30, "7 “ar 7)) T nLsfcie "o T I34ce A\ s

+ 8z Or

Now, by definition, the speed of sound (denoted in what follows by a) is the speed

at which small disturbances (i.e., waves) are propagated through the compressible

a = a0 )
0%/,

fluid in question:
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where the disturbances produced in the fluid by a sound wave, i.e., the induced
temperature and velocity gradients, are so small that it is reasonable to assume that
each fluid particle undergoes a nearly isentropic process (cf. [LR]). For an ideal gas

undergoing an isentropic process, it can be shown that the following relation holds:

a®* = ~RY,

with « the ratio of the specific heats at constant pressure and volume defined be-
low. Consequently, we choose as a nominal (or characteristic) speed of sound for the

multicomponent ideal gas at hand the following:

a, & (R6,)'2,

We can now define Mach’s number as:

€ T kr
W (3.26)

M = =
ar L(RO)'/2’

which, as the ‘ratio’ of the characteristic speed of the flow to the speed of sound in

the gas mixture at hand, is a ‘measure’ of the effects of compressibility in the moving
fluid.

Also, introduce the ratio of the specific heat at constant pressure to that at con-
stant volume for the multicomponent ideal gas:

def o
Y= C_ga

which implies that the following relation holds:

y—-1  C§-C7
S
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The gas mixture being ideal, we obtain:

- 'y—l
R=1—0

where we have used the ideal-gas identity Cj — C} = R.

Consequently, we have the following relation:

Similarily, and making use of the definition of Prandlt’s number (3.23), we can

show that the following realtions hold:

prky v—1 2
AL M2P, d
r LA C20, y © an

W krTs vy—-11_,

L A SR Ry V £ 8
3AC3, ~ 5 LT

It then follows that the nondimensional energy balance equation can be written

as:

_ 06 00 90\  ,10 ( 080\, 0 (.80 v—1,, [Ov)\°
‘5"’E+6p(”ar+”az>_erar (Tk8r>+az <k z>+ S MPu 5,

27— oppep, [0V (00 v _Ou) v (yv Ov Ou
+3 v EM'PM[(?T 287‘ r 0z +r 27‘ or 0z

g@<28u_8_v_2)+ dv Ou
30z

Y—1 9500
M bl
+ 0% ¢ PM[ 0z Or r

Y=l (92,08
+ . eM (”ar+”az)’ (3.27)

with Mach’s number given by (3.26).
(v) The species equations:

Recall the definition of the Soret coefficient associated with the thermal diffusion

of each of the chemical species present in the system:

Dltc(g’pi) défakplecc(a)7 Vk=1,...,N,
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and introduce, for each species k, the change in terminology Dy, = Dj.

The species equations then become: Vk=1,... ,N =1,

%0 12 trpg) + - (ef) =

ot
10 api akpi 00 Bp,’; O!kpi 06

Consider now the following generic reversible reaction labelled a:

Nz Ng
S vrT=> ek, (3.29)
=1 k=1

where N and N are the numbers of reactants and products (respectively) that
contribute to (3.29), and {¥2}N, and {1/,‘:},1:[51 are the stochiometric coefficients as-
sociated with the reactants and products respectively (all stochiometric coefficients
being positive integers by definition). The reaction rate associated with (3.29) is given

by the following relation:

NP ﬁg v Np /—)i vy
R = k20) ][] (E) kO[] (E) : (3.30)
=1 t k=1

with k¢ and kj the forward and backward reaction-rate constants (again positive

functions of the temperature only). It follows that:

o

Ne NZ ﬁg vy Ny ﬁg vy
Re=u 3 kO (2) -kOI[(Z) {6
a=1 =1 t

k=1

where N, is the total number of homogeneous chemical reactions that involve the k"
species as either a reactant or a product. (3.31) can be rewritten as:

R, = U)kZ |:ka 1——[ (pg ) mjl k?(é) H /—)Vg,
1 H 57, (3.32)

—Wkg Z kgir 1:[1 (iﬁ:)

a=1
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with k%, wf k$¢(6r) and kg, def kg (6:). It then follows that (3.28) can be rewritten as:

PriVs Opx | PRikr 1O, - 0
L o " nD [%5%(”*”)*”%(%“)]
Dirpii10 [_~ (Opr axpr 08 Dispi; 0 [~ (0  owpi 00
2 o [’Dk(ﬁ+ g ’a‘)}*‘f“a— [D<a_+70_>}

N¢ N o NG
+> {aiki @) [T 7% - oeks0) I ] p"’a‘) :
a=1 m=1 n=1

with

[ Ne o ™
a def @ pfn,z i
a, = wy |k§, H ” ) and

L m=1 m
def ” ([ =
e i
e kgj,H< ) |
n=1 Wn

and where we have scaled the species diffusion coefficients as follows:
Dy = Di,Di,  where Dy, € D2(6,). (3.33)

Dropping the bars, we state the dimensionless species equations as follows:

., 0 10 0
e:’Pkﬂ + Py [;—(rpkv) + éz(pku)} =

at or
10 apk U Pk o6 0 apk O Pk 15,/
2 \rDy [ =+ ——=— — | D | —+ ———
erar[ k<6r+ 6 or +Bz k 8z+ 6 Oz
Ne N Ng
+> | eDp k2 0) [[ 77 — Dk (B) [ 27 | (3.34)
a=1 m=1 n=1
where the Péclet number associated with the k%" species is defined as follows:
def kr
Pk B Dk,r

is to be regarded as an indication of the relative ‘magnitudes’ of convective mass
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transport vs. diffusive mass transport associated with the kt* species, and

a®Lr

D:,f def ks and
pi,ka,r

P def by Lrg

¢ PiiDkr

are the gas-phase Damkohler numbers associated with the forward and backward o-
reactions (respectively) and are ‘measures’ of the typical time scale of diffusion of
the k** species vs. the typical time scale of the forward and backward reactions of
interest.

We note here that we have implicitly assumed that the time scales for convection
and diffusion of species are comparable. In the diffusion-limited regime, i.e., when
the time scale for species diffusion is much larger than the time scale for convection,
the above Damkohler numbers would have to be defined as

agr?

def
pxl s and
k pi,ka,r

def b 7'3
- 9
Pi,iD k,r

a,b
Dk

and the last two terms in (3.34), i.e., those terms accounting for the net production
(or destruction) of k-particles by homogeneous reactions, would have the factor €2
rather than e. Both regimes will lead to the same approximate equations in the limit
of vanishingly small aspect ratio, as terms of order O(e) or higher order will drop out
(see equations (3.118)).

(vi) The ideal-gas equation of state:

Finally, we rewrite the equation of state (3.6) as:
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which yields the dimensionless ideal-gas equation of state:
M?%*p = pé, (3.35)

where we have dropped the bars in order to simplify the notation which is already

quite cumbersome.

The non-dimensional boundary conditions

Along the showerhead (Z = 1), we have the following non-dimensional boundary

conditions, where for simplicity we have once again dropped the bars: V r € [0, 1],

vVt € [0,00),
. ~ aef 20
6(r,1,t) = 6, where 6; & —0—1_-—_5—9;, (3.36)
u(r,1,t) = 4, where 4 =2 %s;i, (3.37)
v(r,1,t) = 0, (3.38)
(3.39)
andVik=1,... N—-1,
. 0 agpr(r,1,t) 00 .
ePyitspi(r, 1,1) + Dy (g(r, 1,1) + %—)5(7«, 1,t)> = i, (3.40)
where:
M def ka
k pka,r.

Recall the following constitutive relation linking the adsorption flux of the k*

species to its density at the gas-film interface:
T N 0)pl(r,z=0), Vk=1,...,N—1, (3.41)

where A{(6) is the temperature-dependent sticking coefficient accounting for the ad-
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sorption of the k™. For each species k, we scale the ‘sticking coefficient’ A} as follows:
M =X X  where X ). (3.42)

Consequently, along the gas-film interface (Z = 0), the non-dimensional boundary

conditions can be written as: V r € [0,1], V ¢ € [0, 00),

o(r,0),t = 60y, where 0, e 0i2_ff0f, (3.43)
u(r,0,t) = ¥,  where @, % T;:’S, (3.44)
v(r,0,t) = 0, (3.45)
andVk=1,... N-1,
6’Pk:'i}.spk(rv Oa t) -
Op o pe(r, 0,t) 00 o A
Dk (8—:(7', O, t) + —9}—‘5'2-(7‘, 0, t) = GDk)\k(Hf)pk (’I‘, O, t), (346)
where:
s def /\k,rrs
D; = De. (3.47)

is the surface Damkohler number associated with the k** species and is a ‘ratio’ of
the adsorption velocity to the diffusive velocity of the k** species (or, in other words,
it is the ratio of the typical time needed for the k-particles to diffuse in the gas
phase towards the interface to the characteristic time it takes to incorporate these
k-particles into the surface).

Finally, the prescribed background pressure can be written in its non-dimensional

form as follows:

o % P (3.48)
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The non-dimensional integral continuity equation

Using the scalings introduced above, we write the nondimensional integral conti-

nuity equation (3.18) as follows:

z=1 1 = 9 z=1 pé=r
/ pvdz = TSP = — (/ £p(€,2,t) dédz) , (3.49)

=0 £=0

where we have dropped the bars for simplicity.

Before proceeding with the asymptotic analysis, we briefly summarize the problem
at hand by listing the non-dimensional governing equations and the corresponding
non-dimensional boundary conditions. The continuity equation is given by (3.20),
the radial and axial momentum equations are given by (3.21) and (3.25) respectively,
the energy balance by (3.27), the N — 1 species equations by (3.34), and the ideal-gas
equation of state by (3.35). The corresponding non-dimensional boundary conditions
at the inlet are given by (3.36)-(3.40). The non-dimensional boundary conditions at
the film-gas interface reduce to (3.43)-(3.46). Finally, the non-dimensional prescribed
background pressure is given by (3.48).

3.2 The Asymptotic Analysis

3.2.1 Asymptotic expansions of the flow fields

We are interested in investigating the behavior of the low-Mach-number flow in
an axisymmetric reactor whose geometry is characterized by a small aspect ratio
€, i.e., a reactor such that the inlet showerhead and substrate have a very large
common radius 7 in comparison to the height of the channel L. In the limit of
infinite radius, the gas flow behaves like a stagnation-point flow, i.e., it can be fully
described by a similarity solution (first established by von Karmaén, cf. [K]. See
also Pollard and Newman [PN]). This similarity solution results in a uniform film
thickness and chemical composition, which is why this design is of so much interest

to experimentalists who have investigated the operational conditions under which the
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similarity solution is a valid approximation over most of the substrate. It is precisely
the question of what is a good approximation and under which assumptions (on the
geometry as well as the flow regime) that we attempt to study. Also, typical CVD
flows are characterized by Mach numbers much smaller than one (usually M < 10~2).
Consequently, we shall work in the limit of vanishingly small aspect ratio ¢ and Mach
number M, with the assumption that € > M?2. By using two-parameter asymptotic
expansions of the various flow fields, we can obtain an analytical solution of the set
of governing equations up to the leading order.

Consider the scaled equation of state (3.35). For this equation to reduce to the
incompressible limit as M — 0, it suffices to expand the pressure p asymptotically in
powers of M? in the following fashion (cf. Hariharan et al. and the references therein

[YHC])):

p = Hp§+po+M2p1+--- (3.50)

Now, consider the scaled radial momentum equation (3.21). In order for the
pressure gradient term not to vanish as the aspect ratio becomes infinitely small, it

suffices to expand py asymptotically in ¢ as follows:
_ P
Py = Z+po+ep1+--- (3.51)

It follows that the two-parameter asymptotic expansion of the pressure is:

_ D P . - 2
p = —M3+(;+po+ep1+--->+Mp1+--- (3.52)
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Similarly, we asymptotically expand all the other field variables as follows:

p = ,00+M2p1+'-- , (3.53)
0 = O+ MO +---, (3.54)
v = vo+ Mo+, (3.55)
u = ug+ Muy+---, (3.56)
andvVk=1,..., N -1,
ok = P+ Mg+, (3.57)
where
Po = Po+e€pr+--- (3.58)
00 = éo + Eél +--- (359)
Vo = ’170 + 61’)1 + - (360)
Uy = ’ll[) + 6’(21 + - (361)
andvVk=1,...,N—1,
Pk = Pro + €Pka + -+ (3.62)

The (scaled) heat conduction coefficient is a function of the (scaled) temperature.

Consequently, we have:
k(0) = k(fo) + €k'(80)6; + - - - + MK'(6)0, + - - - (3.63)

Identically, we can expand the other temperature-dependent (scaled) parameters
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as follows:

w(8) = p(fo) + e (Bo)fy + -+ - + M*1/' ()8 + - - - (3.64)

Dy(8) = Dyi(fo) + eD(60)6: + - - - + M?Dy(8)6; + - -- (3.65)

Finally, the sticking coefficient associated with the adsorption of the k™ species
at the gas-film interface, as well as the forward and backward reaction-rate constants
associated with the homogeneous reaction « can be expanded as follows: V k =

1,...,N,andVa=1,... N,

€Me(0) = Me(Bo) + eXg(fo)fy + - -+ M2X,(0)6: + - - -,
20) = k3(fo) + k¥ (B0)0y + -+ M°kF ()61 +---,  and
k2(0) = kS (Bo) + ekg (60)6s + -+ M2k (0)81 + - - (3.66)

The continuity, momentum, energy equations and the ideal-gas equation of state
can be solved separately, i.e., as a set of coupled equations for the total density,
velocity, energy and pressure variables. Once the temperature and velocity fields are
explicitly determined, it becomes possible to solve the N — 1 species equations for the
N — 1 species densities.

We shall then begin by solving the flow equations, and only then do we solve the
species equations. We will proceed as follows: we first expand the variable fields in
power series of M? (as done above), substitute these expansions into the governing
equations and keep all the terms up to the first order in M 2 (an approximation valid
in the limit of vanishingly small Mach numbers). We then expand these terms in
power series of ¢ (again as done above) and throw away terms of first and higher

order in € (a procedure justifiable in the limit of very small aspect ratios). We finally
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solve the remaining approximate equations analytically.

3.2.2 The asymptotic equations

We begin by substituting the asymptotic expansions of the flow fields in terms of M?

in the non-dimensional equations and boundary conditions listed above.

The flow equations

Consider first the scaled continuity equation. The substitution of the expansions
(3.53), (3.55) and (3.56) into (3.20) yields the following O(1) equation:
dp

0
ey
t

(1]

S | =

s, 0
E(TPOUO) + 5(/’0“0) = 0. (3.67)

Next, consider the scaled radial momentum equation. The substitution of the
expansions (3.50), (3.53)-(3.56) and (3.64) into (3.21) leads to the following O(1/M?)

equation:

op

5 = 0, (3.68)

and the following O(1) equation:

- a'l}o 81;0 a'Uo . Bpg 8 8’00
6._.,00—5%‘ + €0o (’Uo"a—r— + Uo-;) = —¢€ ar +,P'a; ,U(oo)a

0
0 Ov 2 0 Ovy vy Ou
2pl b £ = -0 _ 0 _ T
+ep {82: (ﬂwo) 0z ) + ror {ru(ﬂg) (2 o r 0z )] }

(3.69)

A similar procedure applied to the scaled axial momentum equation (3.25) yields
the following O(1/M?) equation:

9p

5, =0 (3.70)
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and the O(1) equation below:

— 8 8u0 aUO _ 6p0 1 3 10 8’(10
Sy + o (”O or T az) =%, T Fh TP g () 5o

+€P {%% (r,u(@o)%) + ; [,u(ﬂo) (2% - %? — %9)] } . (3.71)

Identically, the same procedure applied to the scaled energy balance (3.27) gives

the following O(1) equation:

06, 06 06 210 00
€Zp0—— + €Po (vo——-g ~+ ug 0) =€ (rk(@o) 0)

ot 0 0z ror o
0 00 v—1 op op
+az (k(GQ) 9z ) + ~ € (UO or + anz (372)

Finally, the scaled ideal-gas equation of state (3.35) yields the following O(1)

equation:

The corresponding boundary conditions

We also substitute the asymptotic expansions of the flow variables in power series
of M? (3.53)-(3.56) into the scaled boundary conditions along the showerhead (3.36)-
(3.38) and along the gas-film interface (3.43)-(3.45), thus obtaining the following O(1)

in M? boundary conditions:

00(7‘,22 1) = 01‘, (374)
up(r,z=1) = and (3.75)

v(r,z=1) = 0, (3.76)
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and

bo(r,z=0) = 6y, (3.77)
up(r,z=0) = s, and (3.78)
vo(r,z=0) = 0. (3.79)

The integral continuity equation

Substituting (3.53) and (3.55) into (3.49), we obtain the following O(1) equation
in M?:

z=1 1 =9 =1 pé=r
/Z pPovo dz = —HPIUT T (/2 Epo(&, 2,t) dﬁdz) . (3.80)

=0 =0 Je=0

Next, we substitute the expansions of the flow fields in terms of power series of ¢ into
the governing equations and boundary conditions derived above and then truncate
all the terms of order e or higher, thus obtaining the desired approximate equations

and their corresponding boundary conditions.

The flow equations

We now consider the equations (3.67)-(3.73) which are O(1) in M?2. Substituting
the expansions in power series of € (3.51), (3.58)-(3.61) and (3.63) into these equations,
we obtain the following equations:

(i) The O(1) continuity equation:
A 0, .
('I‘povo) + —B-;(po'u,o) = 0. (381)

(ii) The O(1) radial momentum equation:

op 0 [ 5 B0\ _

As will become obvious when we solve the O(1) equations, we will also need the



106

O(e/M?) radial momentum equation:

op
= = 0. (3.83)
(iii) The O(1) axial momentum equation:
o .. _
o~ Fho = 0. (3.84)

We also need the O(1/M?) axial momentum equation

op

5, =0 (3.85)

and the O(1/¢) axial momentum equation

9p
5. = 0. (3.86)
(iv) The energy balance:
PN
% (k(90)5> = 0. (3.87)
(v) The O(1) ideal-gas equation of state:
P = pobo. (3.88)

The corresponding boundary conditions

Substituting the expansions of the flow variables in power series of € into the
inlet boundary conditions (3.74)-(3.75) and those at surface separating the gaseous

flow from the solid film (3.77)-(3.79), we obtain the following O(1) in € boundary
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and

Oo(r, z = 1)
do(r,z = 1)
vo(r, 2z =1)
éo(r,z =0)
Uo(r, 2 = 0)
Oo(r, 2 = 0)

The integral continuity equation
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Vs, and

(3.89
(3.90
(3.91

(3.92

(3.93)
(3.94)
(3.95)

Substituting (3.58) and (3.60) into (3.80), we obtain the following integral mass

balance which is O(1) in e

/2:1
2=0

3.2.3 The solution procedure for the steady-state case

oo dz = —— =0 (7 [ (e, 1) de
Poly G2 = 2,0,'11,17‘ r 6t /zzo =0 é-pO(é-,za ) 5 z}.

(3.96)

We now specialize to the case of a vanishingly small =, i.e., as mentioned above, we

assume that the typical time scale for the growth of the thin solid film is much larger

than the convective and species diffusive characteristic time scales in the gaseous flow.

Consequently, we shall solve the approximate steady-state equations (3.82)-(3.88) and

the corresponding approximate boundary conditions (3.89)-(3.95), in addition to the

steady-state continuuity equation

10,
T Or

. o, . .
Tpolo) + 5;(»00“0) = 0,

(3.97)
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and its integral form
z=1 1
/ ﬁo’[}o dz = —Erpiu,-. (398)
z

The temperature field

We begin by making constitutive assumptions on the temperature-dependence of
the viscosity and heat conduction coefficients. More specifically, we shall assume the

following ‘generalized’ Sutherland laws:

1(0) def 6%, and (3.99)
def

k() = 67, (3.100)
where o and 3 are real numbers (0 < a, § < 1).
Now, substituting (3.100) into the energy balance (3.87) and integrating with

respect to z, we obtain the following relation:

1 0 -
ma(%ﬂl) = afr),

where a(r) is yet to be determined.

Integrating a second time with respect to z yields the following relation:

~ 1

Oo(r,2) = (a(r)z +b(r))s+, (3.101)

where a(r) ) (8 + 1)a(r) and b(r) can be explicitly determined using the boundary
conditions (3.89) and (3.93). We find that a(r) and b(r) are constant and given by

following relations:

b = 67", and (3.102)
a = 67 -7 (3.103)
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The total mass density profile

From (3.83) and (3.85), we conclude that p is constant:
p = P, = constant. (3.104)

It then follows from (3.88) that the total mass density field gy is inversely propor-

tional to the temperature field 6, (and consequently is independent of 7):

po(z) = . (3.105)

The radial velocity field

First, from (3.86) we conclude that p is a function only of r. Consequently, we

can rewrite the radial momentum equation (3.82) as follows:

9 ( .00\ 1.
5 (s@5E) = i

Integrating twice with respect to z, we obtain the following relation:

Oolr, 2 :Ii/£Q . § d€ + c(r = 1 d€ + d(r
o9 = 250 [ S 0 ) gy A0

where ¢(r) and d(r) are yet to be determined.

Making use of the boundary conditions (3.91) and (3.95), we find that:

where

def fﬁ =0 u(9o(§))

f§ =0 u 00(5
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This allows us to rewrite the radial velocity as a product of two functions, one of

r and the other of z:

%o = R(r)Z(2), (3.106)
where:
R(r) ¥ %ﬁ'(r), and (3.107)

Now, substituting the constitutive relation (3.99) into (3.108), we have:

£=2 £=2

2(2) = [ €byo(e) de +c / 6o (e) de. (3.109)

£=0 £=0

Integrating the first term on the RHS of (3.109) by parts, and then making a
change of variables n — a¢ + b, where a and b are given by (3.102) and (3.103), and
after some tedious but straightforward algebra, we obtain the following relation for

the radial velocity field as a function of the temperature field:

26 = T - oty (B -57)
C(]' +ﬁ) pl+8—-a gl+B8—a
rten e L MO R BRI

Next, we substitute (3.106) and (3.104) into the integral continuity equation (3.98)
and solve for R(r). This yields the following relation:

R(r) = Dr, (3.111)

where D is a constant given by:

def 0i;

Ty =129 e
2f5=0 do(€) d§

(3.112)
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where we have used the ideal-gas equation of state as it applies at the inlet:

. de
Pi =

-
SIS

Consequently, the leading term of the radial velocity profile is of the form
by x rZ(z), (3.113)
the constant of proportionality being D and where Z(z) is given by (3.110).

The axial velocity profile

Finally, we use the continuity equation (3.97) to determine the axial velocity field.
Substituting (3.106), (3.111) and (3.105) into (3.97), and then integrating with respect

to z, we obtain the following relation:
(3

do(r,2) = —2Dbo(2) /EZO e £(0)o(2), (3.114)

where f(r) is yet to be determined.

Substituting (3.114) into the inlet boundary condition (3.90) yields the following

relation:
f(r) = constant = f = QD/'E=1 Z(€) d£+&
£=0 éo(f) 6’
and we can rewrite (3.114) as follows:
io(z) = E(2)y(2), (3.115)
where
e = 2()
B(z) ¥ -2D | = sde+f 3.116
) /s=0 doie) 7 (3.116)
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Remark

We note here that the growth velocity need not be prescribed as it is not needed
to explicitly determine the O(1) flow fields (nor is it needed to determine the species
density profiles as will be seen below). This is due to the fact that, in the integral
continuity equation, the term containing this growth velocity p?vs is neglected on the
basis that the growth velocity v, is much smaller than the inlet velocity u;. Underlying
such an approximation is the assumption that the gas densities p{ and pﬁ are of the
same order of magnitude. If this were not to be the case, then we cannot make the
approximation mentioned above and consequently the growth velocity will need to be

prescribed if one is to explicitly determine the O(1) radial velocity profile.

The species density fields

We are now in a position to determine explicitly the O(1) species density profiles.
In order to do so, we proceed in a fashion analogous to the procedure applied above
to the flow fields. That is, we begin by substituting the expansions of the species
densities in power series of M? (3.57) into the scaled species equations (3.34), keeping
only those terms that are O(1) in M?. We thus obtain the following O(1) species
equations in M>: Vk=1,... ,N—1,

P 10 . 8
6:7’1:% + €Px {;g;(rpkvo) + a(l)kuo)] =
210 Op _ arpr 99 9 Opr _ axbr 0%
€5 TP 5o+ =5 | T as [P\ B T B
N NZ Np
+ 3 [ eDplke(80) [ 5% — €Dk (60) [T 27 | - (3.117)
a=1 m=1 n=1

Next, we substitute the expansions of the species density fields in power series of

€ (3.62) into the above equations (3.117) and we neglect O(¢) and higher order terms,
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thus obtaining the following O(1) species equations: V£ =1,... ,N — 1,

0 5\ [ Obro | cuiro 80 _
o [Dk(ﬁo) ( 5% + G, 02 >:| = 0. (3.118)
Integrating with respect to z, we obtain the following relations: Vk =1,... ,N—1,
>\ | Obro ax 00\ .
Dy(6 : —— = M .
k(6o) [ g + B, 02 Pk,0 (1), (3.119)

where the M (r) are yet to be determined.

Consider now the inlet boundary conditions (3.40). Substituting first the expan-
sions in power series of M? and then those in power series of € of the species densities
(3.117) and (3.118) (respectively) into (3.40), we obtain the following boundary con-
ditions which will be O(1) in both M2 and e: Vk=1,... ,N — 1,

iy [ 9Pk _ _A _ L
Dy(6;) ( £ (ryz=1)+ —éi P (ryz = 1)) = TMg. (3.120)

We expect (3.119) to hold everywhere in the domain of integration, in particular
along the showerhead. Consequently, substituting (3.119) into (3.120) yields the
following result: Vk=1,... /N -1,

Next, we rewrite (3.119) as follows:

O0pr.0 . M,
—— 4+ F(z = — 3.121
0 1 Pl = 5t (3.121)

where

F(z2) o akdiz(ln Bo(2)).

Consider the homogeneous equation associated with (3.121). It can easily be
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shown that the general solution of this homogeneous equation is of the form:

pro(r z) = bi(r)exp f(2), (3-122)

with
{=z

fz) = - (€) dE.

£=0

Substituting (3.122) where by is now taken to be a function of both coordinates r

and z into (3.121), we obtain the equation:

Oby _ oy exp(=f(2)
0z (T, Z) B Mk Dk(éo(Z))
whose solution is given by:
g [T eR£©)
be(r,z) = My /gzo D (Bo(6)) d€ + Ni(r), (3.123)

where Ni(r) is yet to be determined.

Applying to the boundary conditions (3.46) along the gas-film interface a, pro-
cedure identical to that applied to (3.40) along the showerhead yields the following
O(1) (in M? and €) equations: Vk=1,...,N —1,

- [0p or.0(T, 0) OO S
Dkwf)( g”;’°(r,0)+%’;§‘—r——)a—;(r,o>> = Dih()io(r,0),  (3.124)

where D ! €D = M\L/Dy, has been assumed to be O(1), i.e., D = O(1/¢), so
that the deposition is governed by the diffusion of the reactants rather than by the
surface kinetics. Now, substituting (3.120), (3.122) and (3.123) into the equation
(3.124) leads to the following relation: Vk=1,... ,N — 1,

1 Di(6;) .
—_— = M.
D Me(65)

Nk(r) = Nk =
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Consequently, we can rewrite the O(1) species density profiles as:

Pro(r,2) = bi(2) (9()0;(Z)) ; (3.125)
f

where

_ o [ 04O 1 Dil(B) g,
) = G </5 Deoe) T Binin)” ) (3120)

3.3 Summary

We have developed a model for the viscous and heat conducting flow of a chemi-
cally reactive multicomponent gas mixture in the channel of an axisymmetric vertical
chemical vapor deposition reactor such as are widely used for industrial applications.
The gas mixture is assumed to be very dilute and the precursors are taken to be
much heavier than the carrier gas. The flowing vapor is also assumed to behave like
an ideal gas and the various material parameters (e.g., viscosity, heat conduction co-
efficient, species diffusivities, etc.) are assumed to be dependent on the temperature.
The Soret effects are taken into account as the temperature gradients are typically
very large in CVD processes, but heat radiation is ignored. An asymptotic analysis
is performed in the limits of small aspect ratio (i.e., a reactor geometry characterized
by a substrate radius much larger than the channel height) and small Mach numbers
(a reasonable approximation for many CVD flows).

It is found that the temperature profile is given by (3.101), (3.102) and (3.103).
The total mass density profile is given by (3.105). The radial velocity profile is
given by (3.113), (3.112) and (3.110), while the axial velocity profile is described by
(3.115) and (3.116). Finally, the species density profiles are given by (3.125) and
(3.126). The leading order solutions listed above are of the similarity type, i.e.,
they reduce the level of complexity of the system (by making the flow fields depend
only on the vertical coordinate rather than both the radial and axial ones). Most

importantly, they indicate that for such limits, the uniformity of the temperature and
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species densities along the substrate can be approached, thus justifying a posteriori
the interest in CVD reactors characterized by a geometry like the one described above

and operating under experimental conditions insuring a low Mach number.
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Chapter 4 A Mesoscopic Step-Flow
Model for the Growth of Multispecies

Films

4.1 Introduction

The growth of epitaxially deposited thin solid films often proceeds by the “terrace
and ledge” mechanism. The surface of the growing film is characterized by large
terraces separated by steps, which are often of multi-atom height. Atoms adsorb at
the terraces from the gas phase, then diffuse along those terraces and finally attach to
the ledges where they react to form the compound as shown in Figure 4.1. The study
of the terrace-and-ledge mechanism was pioneered by the seminal work of Burton,
Cabrera and Frank [BCF] (see also Zangwill [Z] and Pimpinelli and Villain [VP] and
the references therein for more recent studies). As mentioned in the introduction,
these studies have focused on the growth of films of a single chemical species or
element.

There is currently a growing interest in perovskite thin films for their ferroelectric
(such as in PbTiO;) and superconducting (such as in Y BasCu3O7_5) properties.
The role of heterogeneous chemistry, i.e., the chemical reactions that occur along the
surface separating the solid phase from the vapor, during the growth of these films
is of great importance. The models describing the growth of thin films by chemical
vapor deposition (CVD) deal extensively with the surface chemistry (cf., e.g., [CK]).
However, with the exception of Mountziaris and Jensen [JM], these models often
assume that the surface of the growing film is flat.

The morphological evolution of mulispecies films has been investigated and macro-

scopic continuum models have been proposed in the setting of alloys, i.e., of substitu-
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tional thin solid films (e.g., see Spencer et al. [SVD] and Guyer and Voorhees [GV]).
A significant difference between alloys and compounds is that compounds have to
satisfy the constraint of stochiometry while alloys are not subject to such require-
ments. Consequently, alloys can readily absorb excess quantities of deposited species,
but compounds do not have this ability. Thus, during the growth of compound thin
films, the presence of chemical species in excess leads to a build-up that could result
in (i) a nonlinear dependence of the growth rate on the concentrations of gas-phase
species, and (ii) the nucleation of undesired secondary phases (such as islands of CuO
or BaO in the case of Y BayCuzO7_s).

In this chapter, we present a simple attempt to model the growth of a multi-
species compound thin film by a terrace-and-ledge mechanism. We consider a model
system with N chemical species (where N > 2), and postulate a series of mechanisms
for the adsorption/desorption of species along the terraces as well as a sequence of
incorporation chemical reactions at the steps. This work was motivated by the desire
to gain a better understanding of the growth of high-temperature superconducting
Y Ba,Cu3z07_s thin films by metal-organic CVD (MOCVD). Unfortunately, many
of the exact physical and chemical mechanisms by which the growth occurs at the
atomistic or molecular scale are not completely understood nor experimentally fully
characterized for such complex systems as Y Bay,Cu3zO7_s. However, we believe that
the mechanisms postulated here are quite general and realistic, and reflect the non-
linear interactions that are inherent to multispecies physical systems.

We describe the adsorption-desorption, terrace diffusion and attachment mech-
anisms in detail and write down the corresponding governing equations in section
4.2. We note here that we have restricted ourselves to the isothermal situation, since
the terraces are much smaller than the length-scale on which significant tempera-
ture variations occur in the film. Consequently, the temperature-dependent material
parameters that enter our model (e.g., the diffusion coefficients, the reaction-rate
constants, etc.) will be constant.

We then study in section 4.3 the growth of the film by the motion of a one-

dimensional train of equidistant steps. Clearly, the exact morphology of growth of
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the surface microstructure
and growth mechanisms.
The gas-phase precursors
are symbolically shown as
diatomic molecules. Along
the terraces, adatoms diffuse
until they reach the upper
step where compound for-
mation occurs via chemical
reaction.

Figure 4.1: Schematic of ’ ' a
4 | ?

various thin films is more complicated (for example, Y BasCu3O7_5 grows by the
motion of steps which spiral around screw dislocations). It is our belief, however,
that this simplified setting of step-flow correctly demonstrates the interesting features
resulting from the interactions between the multiple species. We then calculate the
overall growth rate of the film, and its dependence on the gas-phase concentrations
and the terrace widths.

In sections 4.4 and 4.5, we illustrate the complex dependence of the averaged
growth rate on the gas-phase chemical composition and the surface morphology by
specializing to the case of two species. We finally fit the results to simple constitutive

relations.

4.2 The Multispecies Terrace-and-Ledge Model

4.2.1 The general framework

Consider the growth of a thin solid film of a multicomponent compound (denoted
C) made up of N chemical species (denoted Sy, Ss,...Sn) by chemical vapor depo-
sition (CVD). Here, a chemically reacting gas is introduced into a reactor where it
flows past a heated substrate and deposits a film on the substrate. The gas phase
consists of metallorganic precursors diluted in a neutral carrier gas. The precursors

are organic molecules to which the species of interest are bound. As they approach
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the heated substrate, the precursors undergo a series of reactions, leading ulimately
to the adsorption of the species of interest on the terraces.

We are interested in the growth of the film, and hence concentrate on the part
of the vapor directly above the film. This region consists of precursors of the form
XSk, where X} is the organic ligand bound to Sk, mixed with the inert gas. We
assume that the concentration of XS is given (constant). This is reasonable since
the terrace widths are much smaller than the mean-free paths of the molecules in the
gas. Each compound XS is adsorbed to the terrace where it decomposes into Xy
which is released to the gas and the species S which attaches to an adsorption site.
The various adsorbed species diffuse around the terrace, a small fraction is desorbed
back into the vapor while the remaining particles reach the step, where they undergo
a series of chemical reactions, leading to the formation of the compound which is then

incorporated into the film, thus causing the step to move.

4.2.2 Adsorption-Desorption

The mechanisms by which the adsorption and desorption of species along the

terraces take place can be formalized as follows: Vk=1,...,N,
k
XiSk(g) + O(F) 24 Si(t) + Xi(9), and (4.1)
)‘Ic
Se(t) =% Sk(g), (4.2)

where ¢ denotes the gaseous species and ¢ the species along the terrace. O(t) repre-
sents an open adsorption site, and Af,. and AE . denote the reaction-rate constants
associated with the adsorption and desorption (respectively) of the k** species. Note
that in the above proposed chemical formalism, we have implicitly assumed that there
is only one type of adsorption sites, i.e., any open adsorption site is capable of hosting
an adsorbed molecule regardless of which species it belongs to. This is obviously not
the only mechanism possible, as there are situations in which different species adsorb
on distinct sites. Consequently, for such a deposition mechanism, one would need

to introduce as many types of open sites (denoted {Ok(t)}i_,) as there are species
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present in the system of interest.
The rate of production of k-adatoms (along the terraces) by the reactions (4.1)

and (4.2) can be expressed as follows:

N
R = wk{xgds[xksk]g (F- Z—) - A’gesg—’;}, (4.3)

=1 ?

where py, is the terrace density of k-adatoms, wy is the molar weight of the k™ species,
I is the total molar density of sites along an individual terrace and [ XS], is the molar
concentration of the precursor carrying the k* species in the gas phase (assumed to
be constant). It follows that I' — Zfi L pi/w; is the terrace density of open sites, i.e.,
those that are not already hosting an adatom. Now, if vazl pi/w; is much smaller
than I, i.e., if the adatoms are very dilute along the terraces, then the production

rate of k-particles can be approximated by the following expression:
Tk kb Pk
Ry = wyg ()‘ads[XkSk]g - Adesa—;) ’ (44)

where 3 %/ Pk

ads ads®
Note that in the presence of N distinct types of open site, the reaction rate is
identical to that given by (4.3) except that I' — Zfil i—’ is replaced by I'y, — ﬁ:, where
the latter is the terrace density of open sites of the k™ type (i.e., those sites that
can still adsorb k-particles). Consequently, we obtain an expression for the rate of

adsorption-desorption of k-adatoms analogous to (4.4):

Ry = wy (S\st[XkSk]g - j\ﬁesi—i) , (4.5)
Ak def k Nk oodef vk k
where )‘ads - Fk}‘ads and )‘des ’\ada [stk]!) + /\des'

As will become clear from sections 4.4 and 4.5, the form of Ry (i.e., whether it is
expressed by (4.3) or (4.4)) makes a significant difference in terms of the dependence
of the growth rate of the film on the chemical composition of the gas phase. We

shall call (4.3) the production rate of k-particles corresponding to the deposition
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scenario with competition, while (4.4) corresponds to the case of deposition without

competition.

4.2.3 Diffusion

Along an individual terrace, the equation governing the evolution of the terrace

density of adatoms of the k™ species is given by: Vk=1,... N,

0
—gf = Dkvzpk + Ry, (4'6)

where p; is the mass density of adatoms of the k" species along the terrace, Dy
its diffusion coefficient, and R} is the mass production rate of k-adatoms due to
adsorption and desorption along the terrace.

The reaction-diffusion equations (4.6) obviously require boundary conditions at
the upper and lower steps that delimit the terrace of interest. These boundary con-

ditions will be discussed in the next subsection.

4.2.4 Incorporation

It is at the steps that the different species react to form the compound of interest
which is then incorporated into the film. Typically, at any given step, the incorpora-
tion of the particles from the upper terrace is much smaller than the incorporation
of the species from the lower terrace in view of the Ehlrich-Schwoebel barrier (e.g.,
see Elkinani and Villain [VE]). We take this to an extreme, and assume that there
is no incorporation from the upper terrace (the so-called infinite Ehlrich-Schwoebel
barrier). Thus, we have the following boundary conditions:

—Dp(Vpr)” -ny = PrVs My at the lower step, and (4.7)

8

—Dk(vpk)+ n:— = p;c‘-vj n:— - anc

at the upper step, (4.8)

where RE

k . is the rate of production (or destruction) of k-particles associated with

the formation of the compound at the upper step.
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The incorporation from the lower terrace proceeds by a series of reactions. We de-
scribe this series of reactions for a model case of a compound AB,Cj3 of three species
A, B and C. We assume that the step is of unit cell height and that the unit cell con-
sists of layers ordered C BC AC B and repeated periodically CBCACBCBCACB....
A complete step provides a site O(s) where a C-atom can attach to form C(s). A
B-atom can now attach to form CB(s) to which another C-atom can attach to form
CBC(s) and so forth till the final B-atom attaches to form a complete step and thus

generate a new site O(s). We thus propose the following chemical formalism at the

upper step:
O(s) +C(t) 3 C(s)
C(s)+ B(t) 3 CB(s)
CB(s)+C(t) % CBC(s)
CBC(s) + A(t) 2% CBCA(s)
CBCA(s)+C(t) 23 CBCAC(s)
CBCAC(s)+ B(t) 2% CBCACB(s)+ O(s), (4.9)

where s denotes particles at the upper step. The reaction rates associated with the

above chemical reactions are:

Ry =k1p:{Ts — [C], — [CB] — [CBC), — [CBCA], — [CBCAC),},

Ry =kaps[C]s,

R3 =k3p.[CBl;,

Ry =k4p,[CBC];,

Rs =ksp[CBCA],,  and

Rs =keps[CBCAC]s, (4.10)

where T, is the total molar concentration of incorporation sites along the upper step,

and [Si], is the molar concentration of incorporation sites occupied by particles of
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the k™ species, so that Ty — [C], — [CB]; — [CBC]s; — [CBCA], — [CBCAC]; is the
molar concentration of open incorporation sites (i.e., those sites along the upper step
capable of hosting C-atoms). Also, py is the terrace density of Si-atoms at the upper
step, and {k;}%_, are the reaction-rate constants associated with the incorporation
reactions listed above.

It then follows that:

Opa

ot = Rgnc = — wa Ry,

8

% =R =—wy(R+Re), and
0pc

a/; = RS, =— we(Ry + Rs + Rs),

(4.11)

which are then substituted into the boundary conditions (4.8).

We now make the following simplifying assumption. We assume that these reac-
tions occur much faster than the diffusion of adatoms along the terraces, so that we
can assume that the step formation reaches a steady state. In other words, we assume
that each of the reactions above proceeds at the same rate, i.e., Ry = Ry = --- = Rs.

It then follows that

a —
Rinc - waRfinc,
Rt

nc

R;,. = — 3wcRine,

mnc

= — 2wy Rine, and

where

klrspc

ki o ki 4 kype | kype | Kkipe’
1+k3+k5+kzpb+k4pa+kepb

Rine =
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or equivalently,
s

1,1 1Y (1111
(kl+k3+k5)pc+(k2+k5)pb+k4pa

Rine = (4.12)
We note here that R;n. is proportional to the inverse of the “harmonic mean” of
the reaction-rate constants corrected by the adatom terrace densities. Suppose now
that one of the reaction-rate constants is much smaller than the others, say, k; <
ko, ... ke, i.e., the first reaction in the incorporation sequence (4.9) is much slower

than the others. Consequently, the following approximation holds:
Rinc = klrspm

i.e., the first reaction of the incorporation sequence (4.9) is the “rate-limiting reac-
tion,” and Rinc has a simple linear dependence on the terrace density of C-adatoms
at the upper step. If, however, the reaction-rate constants are of comparable magni-
tudes, then one is forced to recourse to the nonlinear form of R;,. given by (4.12).

It can be seen from the above calculation that for any compound, the rate of
incorporation can be explicitly determined following a procedure which generalizes the
one described above, assuming that the exact sequence of incorporation reactions at

the upper step is known and under the approximation of steady-state step formation.

4.3 The Step-Flow Model

4.3.1 The steady one-dimensional flow of steps

We now specialize to the one-dimensional case, where all the steps point in the
same direction (this is the so-called 1+1 dimension with one dimension being the

lateral one and the other being the height— cf. Figure 4.2). It follows that (4.6)



Figure 4.2:
Schematic of the
one-dimensional
train of equidistant
steps, where all the
steps are pointing in

the same direction. X
reduces to the one-dimensional reaction-diffusion equation:
Opx 320k
9Pk _ pLP LRy, 4.1
ot " 9r2 T (4.13)
and the boundary conditions (4.7) and (4.8) reduce to:
D Opr\ -
o) = Pr Vs at the lower step, and (4.14)
9o \ " _ + 0t
Dy 5. ) = TPEY T Wi Rine at the upper step, (4.15)
where vE wf vi . (—e,) is positive, and e, is the unit vector along the z-axis.

We now introduce the following dimensionless variables:

_ T
r = Z,
_ ]
Vs = —,
Un
—_ Upt
P= =,
L
— k
Pk = p_a
Pk,r
_ R
R, = k and
/\k,rpk,'r
i R
Rine = anc,

where the subscript and superscript r denote a reference quantity. Here, £ is a
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characteristic terrace width, v, a characteristic step velocity, Ax, a characteristic
reaction-rate constant associated with the adsorption of the k% species along the
terrace, pir = wil'y, with I', a characteristic molar density of adsorption sites along

r def pf

an individual terrace, and R . = —%vn, with p% the characteristic bulk density and

nc w
wy the molar weight of the compound. All of the above characteristic quantities are
either evaluated or measured at some characteristic temperature of growth 6,, and v,
can be deduced from growth-rate measurements.

It follows that the dimensionless diffusion equation can be written as:
0Pk 0° b

Pkﬁ = o5 + Dy Ry, (4.16)

where the terrace Péclet number associated with the k** species

def UL
Pk éf 17;,-’
k

with D} = Dy(6,), is the ratio of the typical time for the diffusion of k-particles along
the terrace to the characteristic time associated with the motion of the step, and the
terrace Damkohler number associated with the k** species

D, % Ak [ XSkl L2
Dy

where [X; S, is the gas-phase molar concentration of the precursor carrying the k*
species at the reference temperature, measures the typical time for adatoms to diffuse
along the terrace vs. the characteristic time needed for them to adsorb.

Also, the dimensionless boundary conditions at the lower and upper steps can be

expressed as follows:

= —Pip, 7, , and (4.17)

= —’Pkﬁ:ﬁs +Pk Rinc- (418)

Pk,r
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When the motion of the steps is much slower than the diffusion of adatoms along
the terraces, the Péclet numbers associated with the various species become vanish-
ingly small and the transient term in the LHS of (4.16) as well as the the ‘convective’
terms in the boundary conditions at the lower and upper steps (i.e., the first terms
on the RHS of (4.17) and (4.18) respectively) can be neglected. Notice that the ratio
0%/ prs is sufficiently large for the last term on the RHS of (4.18) not to be negligible.

In what follows, we restrict ourselves to the case of a train of equidistant steps.
As mentioned above, this is consistent with the steady-state approximation assuming
that the initial state is such that all the terraces are of equal width £. At any instant
in time ¢, an arbitrary terrace then consists of the domain [zo + vnt, To + Vst + L]
along the z-axis, where z; is arbitrary (zo is the initial position of the lower step of
the arbitrary terrace of interest- cf. Figure 4.2) and v, is the step velocity (which
is now identical for all steps as the train of steps is steady). After the change of

variables t — = — g — vnt, the approximate governing equations reduce to steady

diffusion-reaction equations: V k=1,..., N,
O0x? ’ ’ '

complemented by the following boundary conditions:

Ope, _
5 (z=0) = 0, and (4.20)
0

Dkg’;’i(x=£) = —wiRine. (4.21)

4.3.2 The overall growth rate

We are interested in determining the net deposition fluxes of the various species
from the gas phase into the terraces as they are an indication of the growth rate of
the solid thin film. For the individual terrace under consideration (z € [0, £]), the

average flux of the k* species (i.e., the total flux of k-mass to the terrace divided by



129

the terrace width) is given by the following integral:

=L
(Ri) = % / R (4.22)

and making use of (4.19) and (4.20), we obtain the following relation

_DeOpx

(Be) = —F 52

(I:[')a

which, in turn, and with the help of (4.21), reduces to
_ Wk _ N
(Be) = — Rinc({pelz = L) }e=). (4.23)

Consequently, our task consists of solving the set of equations (4.19) combined with
the boundary conditions (4.20) and (4.21) listed above in order to determine the
values of the species densities at the upper step px(z = £) forall k =1,... ,N. The
species net deposition fluxes then follow from (4.23).

Consider a film with a large number of steps growing according to the mechanism
described earlier (i.e., a steady step-flow growth such that the terraces are of equal
width). Let h describe the average thickness of the film. By average we mean that
we model the film at a sufficiently large lengthscale that the details of an individual
terrace or step are not visible. Thus, at any point along the interface separating the
film from the vapor, Vh = a/L where a is the step height and £ the terrace width.

The model described in the previous sections gives us the net deposition flux

(4.23), and the growth of the film is then described by the equation:

oh
Pro = wiG(L, {pl 1),

where N is the total number of species present along the surface, py the bulk (nominal)
mass density, and the partial time-derivative of the average height h is nothing but

the vertical component of the growth velocity. G is a measure of the growth rate of
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the thin solid film and is defined as follows:
def 1
G < ZRuc({on(z = ONL).

It should be noted here that we are interested in the functional dependence of the
growth rate on the surface morphology (via its dependence on the terrace width L)
and the molar concentrations of the precursors in the vapor {[XSk]}r=;-

In what follows, we shall specialize the formalism laid out above to systems char-
acterized by the presence of two chemical species A and B (more specifically, the
precursors XA and XpB, the ligands X4 and Xp, and the desorbed molecules A
and B in the gas phase; the adatoms A and B along the terraced surface; and the
compound AB in the bulk of the solid thin film). As mentioned above, we will exam-
ine the two mechanisms by which species deposition takes place: in section 4.4, we
deal with the noncompetitive mechanism, and in section 4.5, we consider the case in

which the adsorption of adatoms is accompanied by a competition for open sites.

4.4 The Two-species Noncompetitive Case

Consider the i** species. In the absence of competition for open adsorption sites,
the equation governing the distribution of i-adatoms along an individual terrace is
given by: V S; = A, B,

dQPz‘

D=
dx?

(x) + kzdsp&isi - k(liespl(l') = 07 V S [0’ E]’ (4'24)
where pg(i s, denotes the mass density of the precursor X;S; in the gas phase, with X;
the organic molecule shielding the particle S; to be deposited at the surface of the
thin film.

We rewrite (4.24) as follows:

d2/’z‘

dl‘2 (I) - Wfpi(m) = - ade p!}](isi’ (4'25)

D;
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i 2
df_f (kdes>1/
T, = _D .

1

where

Making use of the infinite-Schwoebel-barrier boundary condition at the lower step

dp;
dz

(z=0) =0, V5 =AB,

we can write the solution to (4.25) in the following form

ki
pi(z) = ¢; cosh(mz) + k‘;ds PX.5:0 Vz € [0, L],

des

where the constant of integration c; is yet to be determined.

At the upper step, the boundary conditions can be expressed as follows:

dpa

—DAE;(JJ =L) = o pa(z = L)pp(z = L), and
de _ _ kinc _ _
~Dp—~(e=L) = 0 pa(z = L)pp(z = L).

Combining (4.27) and (4.28), we obtain

éﬁg(:z:/l) = Dawsdpa z=L).

dz Dpwy do

(4.26)

(4.27)

(4.28)

(4.29)

This proportionality of the diffusive mass fluxes of adatoms A and B at the upper

steps is dictated by the fact that only the formation of the stochiometric compound

is allowed.

Taking the derivative of (4.26) w.r.t. z and substituting into (4.29), we obtain the

following relation between c4 and cg:

cCp = (Cju,



132

where

def Dywpma sinh(m4 L)
DB WA TB s1nh(7rB[,) (430)

Consequently, in order to explicitly determine the density profiles of both species
along the terrace, we only have to solve (4.27) for the unknown c4. For simplicity, we
change notation: c4 will be replaced in what follows by c. After some straightforward

algebra, we can rewrite (4.27) in the form of a quadratic in c:
Ac® + Bc+D =0, (4.31)
where:

A = kmcacosh(ﬂAL')cosh(ﬂBﬁ),

wp
kznc kfds kA .
B = B & ok cosh(mpL) + akA px,acosh(maLl) | + Damasinh(maL),
des des
kmc kfs kE:zs
D = kBZ kzq pg(AApg(BB'

Its discriminant A = B? — 4AD is always positive:

kinc k kA :
A - (k%zs P, cosh(mpL) — ar% ads O un cosh(wA[,)) + D% 7% sinh?(74 L)

wB des kt?es
kinc kB kads

+ (maLl) | 752 p%, 5 cosh(mpL) + a4 p% , 4 cosh(m4L)
WB kdes kdes

thus insuring the existence of two real roots of (4.31):

It can easily be shown that these two real roots are (strictly) negative. Moreover,

one can easily show that: V z € [0, £],

pa(z = L) < pa(z) < palz =0),
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where

kAd
pa(z =0)=cip+ ﬁpg(,m

des

and
c; < Gy

The integration constants ¢; and ¢, are to be viewed here as functions of the three
parameters L, p%, 4 and p%,_p. Given all the material parameters that characterize
the physical system of interest (i.e., the adsorption, desorption and incorporation
reaction-rate constants as well as the terrace diffusivities of the species, etc.), there
exists a region in the three-parameter space for which the following two inequalities

hold:

kA
1 (‘C7p,gXAA’pg(BB) + ﬁpg(AA S 0’ a‘nd

des
A

Kaas
c2(L, P 400 PxB) COSh(WA‘C)'*"]:po-gXAA > 0,
des

that is, there exists an operating regime for which there is only one positive density
profile of A-adatoms that satisfies the diffusion equation along the terrace as well
as the boundary conditions along the lower and upper steps (corresponding to c;),
the other solution of the quadratic (corresponding to c¢;) generating negative mass
densities along the terrace. In what follows, we shall assume that we are operating
within the regime described above.

We can now compute the net deposition fluxes for the two species:

Kine pA(x = ‘C)pB(x = ‘C)

(Rsy) = o Ve , and
_ kinc PA(JT = E)pB(x - E)
<RB> - wAa E
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Figure 4.2: The net depo-
sition flux (in the absence
of competition for open ad-
sorption sites) Gy, as a func-
tion of the inverse of the ter-
race width 1/L and the con-
centration of the gas-phase
precursor [X4A], for fixed
concentration of [XpB], .

or, equivalently, we determine the following measure of growth:

pa(x = L)pp(z = L)

G :kinc
L
kinc
=7 [c2(L, P s a0 PxpB) COSR(TAL) + Ba] [a(L)ea(L, 0% aas Px ) COSh(mpL) + Bs]
where
A
def ads
ﬁA = k:;d pg{AA,
def kB2,
BB - k; pg{BBv

and «(L) is given by (4.30).

The results are shown in Figures 4.2 and 4.3. The former is a plot of the growth
rate G as a function of the slope of the terraced surface (i.e., as a function of the
inverse of the terrace width £) and the gas-phase concentration of the precursor X 44,
for a fixed value of the concentration of the other precursor XpB and a particular
choice of material parameters. The latter is a plot of the growth rate G as a function
of the two gas-phase precursor concentrations corrected for the adsorption kinetics

kA

ads

[X4A], and k2, [zpB],, for a given fixed value of the terrace width £ and the

same choice of material parameters, where [X;Si], = p%, 5. /wi, V S; = A, B.
Consider Figure 4.2. For a fixed value of [X 4A]y, the growth rate is an increasing

function of the slope. That is, as the slope becomes infinite, i.e., as the terrace width

becomes infinitely small, the growth rate reaches a maximal value. This is to be
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Figure 4.3: The net depo-
sition flux (in the absence
of competition for open ad-
sorption sites) Gy as a func-
tion of the concentrations
of the gas-phase precursors
[z4A], and [XpB], for fixed
terrace width L.

expected as, when the terrace width tends to zero, the step density becomes infinite,
and since incorporation is confined to the steps (more specifically the upper steps),
one would anticipate that the growth rate reaches its maximum. On the other hand,
as the terrace width becomes infinitely large, i.e., as the slope tends to zero, the
growth rate reaches its minimal value. This is consistent with the fact that, as the
density of steps goes to zero, and the growth occurring only at the steps, the growth
rate becomes minimal.

From Figure 4.3 we can see that the growth rate is an increasing function of the
concentrations of the gas phase precursors. Indeed, there is no blocking effect as
the depositing particles are not competing for open adsorption sites along the ter-
races. Consequently, as the quantities of precursors are increased in the vapor phase,
the deposition rates are increased (since they depend exclusively on the precursor
concentrations) and the increase in the growth rate of the film follows.

The numerical simulations were performed using specific values of the various
material constants w;, D, kf;ds’ kfies and k;,.. But the qualitative behavior of the
average deposition flux (or growth rate) is independent of this particular choice of
parameters. In fact, numerical studies suggest that the following constitutive relation
accounts (at least qualitatively) for the main features of the growth rate functional

dependence on the surface morphology (via its dependence on the terrace width) and
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the molar concentrations of the two gas-phase precursors:

(5]

02+£

Gnc(‘c’ [XAA]yv [XBB]y) = ([XA/‘l]g)m1 ([XBB]g)a2 (4-32)

where a; and o are positive numbers. Here, ¢1, ¢z, a1 and s replace w;, D;, ki g, ki,

and k;,. as the relevant macroscopic material parameters.

4.5 The Two-species Problem With Competition

Along an individual terrace (z € [0, £]), the equations governing the mass density

distributions of adatoms of species A and B are given by (respectively):

d2PA
A2 (z) +
' { A pale)  pe(@) ki,
wa kA [XaAl, (r— i ) - pA(a:)} =0, and (4.33)
d*pp
Bz ) *
B
wp {kfiw[XBB]g (F -2 fu(f) -2 fuf)) - 'fj:pB(m} =0  (434)

Notice that the above two equations are coupled because of the dependence of the
adsorption reaction rates for both species A and B (the second term on the LHS of
(4.33) and (4.34) respectively) on the A-adatom density pa as well as the B-adatom
density pp along the terrace.

In addition, we impose the infinite-Schwoebel-barrier boundary condition at the
lower step:

i’ﬁ(zzo) _ dps

- @=0) = 0. (4.35)

Finally, at the upper step, the boundary conditions reduce to the following:

d d
wBDAEp:;A’(x = [,) = wADBT Ir = £) = —kinc,OA(fL' = .C)pB(x = £) (436)
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We begin by rewriting (4.33) as follows:

igf (z) — @%pa(z) = —Ba + vapp(2), (4.37)

where

Q4 = <kads[ AA]9+kdes> ’

Dy
/BA = MI‘ and
Dy
ya = wa kads[XAA]g
wp DA )
Identically, (4.34) can be rewritten as:

d2,03 2
gz @) —appp(z) = —Bp + V8P4 (z), (4.38)

with

(kads[XBB] +kd€:s>1/2
ap = ,

Dp
XgB
Bp = ———-——kaadS[ B ]gF, and
Dg
— kads[XBB]
B Wa —_DB

Taking the second derivative of (4.33) with respect to z, we obtain the following

relation:

dx? (z) = va \ dz?

d*pp, 1 (d'pa
dz?

(z) — 02 LP4 (x)> . (4.39)

Now, substituting (4.39) into (4.34) yields the following fourth order linear ordi-

nary differential equation in p4(z):

d d2
d;’f (z) - dp;‘( z) + Bpa(z) —C =0, (4.40)
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where
kA [X4A k4 kB [XpB kB
A:a?4+a23 — ads[ ADig_!_ des ads[ BD1]39+ des, (4.41)
kA kB [Xa4A kB k4 [XpB ki kB
B=a,24a23—’YA’)’B — _ads des[ A ]g+ la)dstes[ B ]g+ deskdes, and (4'42)
ALB
wakd kB
C=ay0s—v4PB = LD;%F' (4.43)

Consider the homogeneous equation associated with (4.40). The corresponding

characteristic equation is the following fourth order algebraic equation:
rt — Ar? + B=0. (4.44)
Let s = r2. We can rewrite (4.44) as a quadratic in s:
s —As+B=0. (4.45)

It can easily be shown that the discriminant of (4.45) is (strictly) positive and that the
two real roots thus generated are also (strictly) positive. Consequently, the general

solution of (4.40) is of the following form: V z € [0, L],
C
pa(x) = c; exp(r1z) + ez exp(—7r1z) + cz3 exp(rax) + ca exp(—roz) + B’ (4.46)

where

T2 = 5

def (A:t (,4-43)1/2)”2

with A, B and C given by (4.41)-(4.43), and {¢;}i-, are constants yet to be determined.
From (4.37) and (4.46), it follows that the mass density profile of B-adatoms along
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the terrace is given by:

pa(T) =L(T‘% — a?) [c; exp(r1T) + o exp(—T17)]
YA

+ % {(rg — 02) [c3 exp(raz) + ¢4 exp(—Toz)] + (ﬂA — aif—g) } . (4.47)

Taking the derivative of (4.46) with respect to z and substituting into (4.35), we

obtain the following equation:
r1(c1 — ¢2) + Ta(cs — cq) = 0. (4.48)

Similarily, taking the derivative of (4.47) w.r.t. z and substituting in (4.36) yields

the following equation:
2 2 2 2 _
7'1(7'1 - aA)(cl - C2) + 7'2(’/"2 - aA)(03 - C4) = 0. (449)

Next, solving the set of two algebraic linear equations (4.48) and (4.49) for the
two unknowns ¢; — ¢y and ¢3 — ¢4, and noting that the determinant of the associated

matrix never vanishes, we obtain the following two relations:
¢, = ¢y, and c3 = C4. (4.50)

It follows that the terrace densities of adatoms can be rewritten as:

pa(z) =d; cosh(riz) + dy cosh(raz) + %, and (4.51)
pe(x) =7i {dl(ri2 — o) cosh(riz) + dy(r2 — o) cosh(ryz) + (BA - ai%) } ,
A
(4.52)

where d; = 2¢; and dy = 2c3 are yet to be determined.

From (4.36) we have the following proportionality relation between the adatom
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mass fluxes at the upper step:

dop, _ . _ wpDadpa, _
00y = £) = TEIATAG = 1) (4.53)

Taking the derivatives of (4.51) and (4.52) w.r.t. z and then substituting into

(4.53), we obtain the following relation:
dy = ad;, (4.54)

where

Ll T Dp(r? — %) — k2, [ X aA], sinh(r L)

ads

9 Dp(r3 — o) — k2, [ X aA]y sinh(re L)

ads

We are thus left with only one constant to determine, i.e., d;. Once d; is known,
the mass density profiles of A- and B-adatoms along the terrace can be explicitly
expressed, and consequently, the net deposition fluxes will be determined thus yielding
the functional dependence of the growth rate of the thin solid film on the terrace width
as well as the concentrations of the gas-phase precursors. For simplicity, we replace
the notation d; by d. Substituting (4.54) into the boundary condition at the upper

step

(z=L) = —;U%pm = L)ppl(z = L), (4.55)

dpa
dx

and after some tedious but straightforward algebra, we can express the above condi-

tion as a quadratic equation in d:

Dd* +Ed+ F =0, (4.56)
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where
D = wakl [XaA]MN,
C C
£ = wAk:ds[XAA]g { (ﬁA - aig) M+ EN} , and
C\ C
F = wakly[Xad], (5A - aig) B
with

M = cosh(ri L) + acosh(rL), and

N = (r? —a%)cosh(r L) + a(r; — a%) cosh(ryL).

The coefficients D, £ and F of the quadratic above are functions of the terrace
width £ as well as the molar consentrations of the gas-phase precursors [X 4A], and
[XpB],. In what follows, we shall assume that there exists a region of the parameter
space within which (i) the 3 coefficients listed above, (ii) the discriminant of (4.56),
and (iii) « are all strictly positive. From (ii) it follows that, within the region of
interest, we have two real and distinct roots of (4.56), denoted below by d; and d,.
It is a trivial matter to show that, when (i) and (ii) are simultaneously satisfied, the
two roots are both negative. We then end up with two distinct density profiles of

A-adatoms along the terrace:

pi{z(x) = dj o(cosh(r,z) + a cosh(rez)) + %, (4.57)
where
B = B([XAA]ga[XBB]g)’
T2 = 7"1,2([XAA]Q’ [XBB]g)a
a = all,[Xa4], [XBly), and
d1,2 = d1,2(£7 [XAA]g’ [XBB]g)-



142

Figure 4.4: The net depo-
sition flux (in the presence
of competition for open ad-
sorption sites) G, as a func-
tion of the inverse of the ter-
race width 1/£ and the con-
centration of the gas-phase
precursor [X4A], for fixed
concentration of [XgB], .

It can easily be shown that: V z € [0, £],

In addition, we will assume that there exists a subregion of the region defined

above within which the following two inequalities hold:

d]_(]. +a) +

dy(cosh(r; £) + acosh(r, L)) + — > 0,

T AT D

that is, only one of the two roots of (4.56) generates a positive density profile of
A-adatoms along the terrace.
We are now in a position to compute the growth rate as a function of the terrace

width and the gas-phase precursor concentrations:

palz = L)pp(z = L).

G = kinc
L

The results are shown in Figure 4.4 and 4.5 for a particular choice of material
parameters. As in the case of adsorption without competition, we can conclude from
Figure 4.4 that for fixed precursor concentrations, the average flux increases with
decreasing step width (increasing step density). This behavior is to be expected
as, for both mechanisms, the formation of the compound is restricted to the steps
(more precisely the upper ones). The more interesting behavior is illustrated in

Figure 4.5 which shows the average deposition flux as a function of the two precursor
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Figure 4.5: The net depo-
sition flux (in the presence
of competition for open ad-
sorption sites) G, as a func-
tion of the concentrations
of the gas-phase precursors
[z4A], and [XpB], for fixed
terrace width L.

concentrations. Notice that the flux has a peak along the line k[ X 4A], = k2[XpB],
which corresponds to the stochiometric ratio corrected for the kinetics. Any excess of
either precursor is adsorbed to the terrace thus blocking the open sites for adsorption
and diffusion of the other species. This decreases the concentration of the other species
at the step thereby inhibiting the formation of the compound and reducing the total
deposition flux. This shows the need for controlling the gas phase composition to
a narrow range if experimental results suggest that the growth mechanism is one
for which the depositing species compete for open adsorption sites. An excess of
one precursor can in fact slow the overall growth process. Worse, the excess of the
abundant species on the terrace can also lead to the formation of precipitates of
different stoichiometry (a scenario beyond the scope of the present chapter).

Though Figures 4.4 and 4.5 were obtained using specific values of material con-
stants k%, , D;, w; and ki, the qualitative behavior of the average flux is independent
of this particular choice. In fact, extensive numerical studies suggest the following con-

stitutive relation which we believe accounts for the main features of the dependence of

the net deposition flux on the surface morphology and the gas-phase concentrations:

G.(L, [Xa4l,, [XBB]y) =

62‘1 ~exp(—cs [[Xadly = cs[XpBlol)(1 = exp(~[X441,))(1 ~ exp(~[X5B],)),

where ¢q, g, c3, ¢4 Teplace kflds, D;, w; and k;,. as macroscopic material parameters (to

be determined empirically).
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Chapter 5 Conclusion

The objective of this work was to adress several issues concerning the modeling of
the chemical vapor deposition of multispecies thin solid films. The chosen approach
was to consider a general setting characterized by the presence of N chemical species,
where N > 2. The goals were (i) to develop a unified framework within which to
couple the gas flow to the growing solid film via an understanding of the fundamental
physics governing the morphologial evolution of the gas-film interface, (ii) to investi-
gate the behavior of the multicomponent gas flow for a particular reactor geometry
and growth regime, and (iii) to have a better understanding of the complex interaction
between the surface microstructure and the heterogeneous chemical kinetics.

In chapter 2, a macroscopic thermomechanical model describing the growth of a
thin solid film by chemical vapor deposition was developed. The physical system con-
sidered consists of three separate phases (the gas flow, the bulk of the thin solid film
and the surface phase separating them), each containing multiple chemical species. In
each phase, the transport of species occurs by both convection and diffusion. In ad-
dition, homogeneous (gas-phase) and heterogeneous (surface) chemical kinetics were
included. The gas flow is assumed to behave like a Newtonian multicomponent fluid,
the bulk of the film like an elastic compound or substitutional alloy, and the surface
like an anisotropic elastic two-dimensional smoothly evolving manifold. The equations
governing the behavior of each phase were derived and thermodynamically consistent
constitutive assumptions were proposed (sections 2.4 and 2.5). Of particular interest
was the coupling of the gas flow to the bulk of the film via the equations describing
the morphological evolution of the surface (subsection 2.5.4). Moreover, the driving
force at the surface was identified (cf. equation (2.100)), and a kinetic relation linking
it to the growth velocity was proposed (cf. equation (2.155)). A specialization to the
case of a multispecies ideal gas separated from a linearly elastic film by an anisotropic

interface was discussed (section 2.6), and a further specialization to the case of local
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equilibrium along an isotropic surface was examined (section 2.7).

In chapter 3, we have focused on the multispecies gas flow in the setting of a
vertical axisymmetric stagnation-point flow CVD reactor characterized by a small
aspect ratio and operating under conditions ensuring a small Mach number. The
Soret effects (i.e., the dependence of the species diffusion on the temperature gradi-
ent) as well as the gas-phase and surface chemical kinetics were accounted for. A
two-parameter asymptotic analysis was performed, and the leading-order governing
equations (cf. equations (3.81)—(3.88) and (3.118)) and corresponding boundary con-
ditions at the showerhead and the gas-film interface (cf. equations (3.89)-(3.95),
(3.120) and (3.124)) were derived in the limit of vanishingly small aspect ratio and
Mach number. The total mass density, the velocity, the temperature, and the species
density profiles were determined analytically under the additional assumptions of
steady-state and diffusion-controlled growth regime. It was found that this solution
is of the similarity type, thus ensuring the uniformity of the thickness and chemical
composition of the thin solid film.

In chapter 4, a mesoscopic model was proposed that accounts for the microstruc-
ture of the gas-film interface. This model describes the terrace-and-ledge growth of
a compound thin film, during which gas-phase particles adsorb at the terraces along
which they then diffuse, and the formation of the compound occurs along the steps.
A simple one-dimensional step-flow model was developed whose goal was to deter-
mine the average growth rate of the film as a function of the surface morphology (via
its dependence on the terrace width) as well as the chemical composition of the gas
phase (via its dependence on the molar concentrations of the gas-phase precursors).
Finally, the complex interaction between the microstructure of the surface and the
heterogeneous chemical kinetics was illustrated by examining the growth of a binary

compound.

Future investigations can proceed in the following two directions. First, the
asymptotic analysis in chapter 3 holds in the limit of infinitely small aspect ratio,
ie.. when the radius of the substrate is infinite. This is an idealization of the ac-

bl

tual finite-geometry reactor, but it can serve as a tool to check the validity of com-
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plex numerical simulations using Chemkin or other available computational packages

One could consider the governing equations and associated boundary conditions
that result from taking into account higher order terms in the two-parameter ex-
pansions of the flow fields. These equations would need to be solved numerically,
and their solutions would exhibit a radial dependence, thus providing some insight
into the edge effects associated with the finite-radius susceptor as well as allowing us
to prescribe radially-dependent boundary conditions. Another way of approaching
the finite-geometry problem is by expanding the flow fields in terms of Tchebysheff
polynomials. The advantadge of using Tchebysheff polynomials resides mainly in
the fact that the expansions can often be truncated at low ‘degrees’ (i.e., only the
first few polynomials are needed) while maintaining a high level of ‘accuracy’ (i.e.,
polynomial approximations with the smallest maximal deviations from the exact flow
fields), which would allow us to capture the main features of the flow behavior due
to radial nonuniformities. Second, the step-flow model proposed in chapter 4 was
based on the steady-state approximation. Consequently, an initially equidistant train
of steps would remain equidistant at all times during the growth process. Moreover,
this model makes the assumption of an infinite Schwoebel barrier at the lower steps.
These approximations preclude long-range interactions between steps whose homog-
enization would result in long-range surface diffusion. Generalizing this model to the
unsteady train of steps would enable us to study the interactions between steps, and
consequently to account for the long-range surface diffusion of interfacial species. In
addition, the formation of the compound was restricted to the upper steps and the
nucleation of secondary phases was not included in the model. These issues could be
addressed via the inclusion of nucleation terms in the equations governing the density

profiles of adatoms along the terraces.
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Appendix A On the Step-Flow

Simulations

The simulations shown in Figures 4.2 and 4.3 were performed using the following
values for the physical parameters that enter the non-competitive two-species step-
flow model: the diffusion coefficient associated with the A- and B-adatoms have the

values D4 = 1 and D® = 1.5 respectively; the reaction-rate constants associated with

the adsorption of A- and B- adatoms along the terraces have the values k2, = k2, =
10, while the reaction-rate constants associated with the desorption of the adatoms

Asz

Yes s = 1. The reaction-rate constant associated

in question have the values k
with the formation of the AB-compound at the upper steps is assigned the value 1.
Finally, the molecular weights of the A and B species are taken to be ws = 2 and
wg = 3.

Figures Al and A2 represent plots of the constitutive function (4.32) for the
following choice of the constants ci, ¢, and ag: ¢; = 20, ¢; = 6, oy = 1.5 and
as = .55. Figure Al is plotted over the same domain as Figure 4.2 and for the same

fixed value of [X,B],. Identically, Figure A2 was computed over the same range of

gas-phase concentrations and for the same fixed value of L.

Figure Al: Plot of the average
growth rate as a function of the in-
verse of terrace width and the gas-
phase molar concentration of the
precursor [X 4A], for a fixed value
of [X g B], as proposed in the consti-
tutive relation (4.32) and over the
same domain as Figure 4.2.
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Figure A2: Plot of the average
growth rate as a function of the mo-
lar concentrations of the gas-phase
precursors [X 4A], and [XpB], for a
fixed value of £ as proposed in the
constitutive relation (4.32) and over
the same domain as Figure 4.3.

kXA
kX8,

Identically, in the simulations shown in Figures 4.4 and 4.5, we have used the
following values for the physical parameters that enter the competitive two-species
step-flow model: the diffusion coefficient associated with the A- and B-adatoms have
the values DA = DB =1 and the reaction-rate constants associated with the adsorp-
tion of A- and B- adatoms along the terraces have the values k2, = k2, = 10, while
the reaction-rate constants associated with the desorption of the adatoms in question
have the values ki, = k2, = 1. The reaction-rate constant associated with the for-
mation of the AB-compound at the upper steps is assigned the value 1. Finally, the
molecular weights of the A and B species are taken to be wa = 2 and wp = 1.

Finally, Figures A3 and A4 (shown on the next page) represent plots of the consti-
tutive function proposed for G. on page 143 for the following choice of the constants:
¢; = 1.5, ¢c; = .3, c3 = 1.4 and ¢4 = 1. Figure A3 is plotted over the same domain as

Figure 4.4 and for the same fixed value of [X,B], and Figure A4 was computed over

the same range of gas-phase concentrations and for the same fixed value of L.



Figure A3: Plot of the average
growth rate as a function of the in-
verse of terrace width and the gas-
phase molar concentration of the
precursor [X4A], for a fixed value
of [XpB], as proposed in the con-
stitutive relation on page 143 and
over the same domain as Figure 4.4.

Figure A4: Plot of the average
growth rate as a function of the mo-
lar concentrations of the gas-phase
precursors [X 4 A, and [XpB], for a
fixed value of £ as proposed in the
constitutive relation on page 143
and over the same domain as Fig-
ure 4.5.
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