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Abstract

A computational method is presented to follow the evolution of regularized three-
dimensional (3D) vortex sheets through an otherwise irrotational, inviscid, constant-
density fluid. The sheet surface is represented by a triangulated mesh with interpolat-
ing functions locally defined inside each triangle. C! continuity is maintained between
triangles via combinations of cubic Bézier triangular interpolants. The self-induced
sheet motion generally results in a highly deformed surface which is adaptively refined
as needed to capture regions of increasing curvature and to avoid severe Lagrangian
deformation. Automatic mesh refinement is implemented with an advancing front
technique. Sheet motion is regularized by adding a length scale cut-off to the Biot-
Savart kernel. Velocity evaluation takes less time than the standard O(N?) scaling,
due to utilization of multi-pole expansions of the kernel. Zero, singly, and doubly
periodic vortex sheets are simulated, modeling vortex rings, vortex/jet combinations
and standard shear layers. Comparisons with previous two-dimensional (2D) results
are favorable and 3D simulations are presented. The perturbed 3D planar shear layer
is simulated and compared with a similar experiment revealing qualitatively similar
results and agreement on the mechanism by which streamwise vorticity is created.
We find the ratio of spanwise to streamwise vorticity to vary between 7 and 9 during
early stages of roll-up.

A new technique for estimating the curvature singularity time of true vortex sheets
(i.e., non-regularized motion) is presented. The motion and singularity time of a
planar, doubly periodic sheet, evolving from a 3D normal mode perturbation, is
found to reduce to that of a well known singly periodic (and only two-dimensional)
problem, an unexpected extension of Moore’s [38] non-linear analysis for 2D vortex

sheets.
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Chapter 1 Introduction

Many fluid flows of interest are characterized by isolated regions of concentrated
vorticity. Common examples include jets, vortex rings, free shear layers and turbulent
flows. An underlying technique for computing such flows is to discretize the vorticity
field with a Lagrangian mesh. These markers move with the fluid, and furthermore
in an incompressible fluid, the velocity field can be calculated from the vorticity field
and boundary conditions alone. Computation in this sense is efficient, as only a
small portion of the flow domain is filled with the computational mesh. Diffusion of
vorticity due to viscosity causes these isolated regions to grow with time, requiring
the computational mesh also to grow and forcing the update of vorticity values in the
mesh. This methodology is the basis of “vortex methods” (see reviews by Leonard [31]
and Meiburg [34]), a broad category of computational fluid dynamics, the full span of
which will not be reviewed here. Subsequent discussions in this thesis, though falling
under the category of vortex methods, are limited to those involving the simulation of
shear layers, or generally flows in which vorticity is localized to a three-dimensional
surface.

At high Reynolds number and short times after creation, diffusion of vorticity
from the previously mentioned isolated regions is negligible; in particular these flows
are often modeled with zero viscosity — a common simplification which has been
found to maintain the underlying dynamics in many respects [51]. In particular, free
shear layers are often modeled as vortex sheets, surfaces of vorticity embedded in
an otherwise irrotational, inviscid fluid. The free shear layer is a classic problem to
study in fluid mechanics because the interaction of two different-speed fluids in contact
with one another is one of the most basic dynamics of a fluid. Further motivation
comes from the field of turbulence, in which high Reynolds numbers dominate and
vortex sheet surfaces, with their associated roll-up, are seen as the mechanism for

generating common vortex tube structures [58] (see [47] for a review of vortex methods



2
in turbulence). This thesis is concerned with inviscid, constant-density fluids within
which free shear layers, modeled as surfaces of vorticity, or vortex sheets, move as
material elements. The fluid is considered to be irrotational save for the sheet surface
itself. Henceforth the term ‘vortex sheet’ will refer to an isolated surface of vorticity,
while the modifiers ‘regularized’ or ‘smooth’ will imply an approximation to the vortex

sheet, as described below.

1.1 Tll-Posedness of Vortex Sheets

Numerical simulations of vortex sheet motion date back to Rosenhead’s [49] cal-
culations in 1931 in which he modeled, at fairly low precision, a sheet representing
a perturbed planar shear layer as a row of two-dimensional (2D) point vortices. An
attempt to refine Rosenhead’s calculations by Birkhoff and Fisher [8] in 1959 was
foiled by the discovery that increased resolution lead to irregular motion of the point
vortices rather than convergence to a smooth solution.

Indeed, the linear stability of flat, 2D vortex sheets is ill-posed in the sense of
Hadamard [17] — perturbations grow linearly with their wavenumber (this particular
instability is known as the Kelvin-Helmholtz instability). Furthermore, the non-linear
evolution of 2D vortex sheets was shown to develop a singularity (infinite surface
curvature and a cusp in the sheet strength) in finite time by Moore [38], with further
refinement by others [13, 28, 35, 55]. Singularity formation has also been observed for
axi-symmetric vortex sheets [40, 41] and suggested for fully 3D vortex sheets [23, 24],
though in each of these cases only specific initial conditions are considered and the
results cannot be considered general. In addition, the results in the fully 3D case are
only suggestive and it is not fully understood what effects the added spatial freedom
has, if any, on singularity development. In general the implications of ill-posedness
and singularity formation on the motion of vortex sheets past the singularity time
is not rigorously understood; though it is entirely possible that after the singularity
time a weak solution exists which may be calculated with a consistent regularization

of the problem. Below we present a brief review of past regularization techniques and



3

then focus on one which will be utilized in this thesis.

1.2 Regularization of Vortex Sheet Motion

Several methods have been introduced since 1959 which attempt to regularize
the vortex sheet problem, potentially allowing calculations past the singularity time.
A large collection of techniques are based on Rosenhead’s [48] modification of the
Biot-Savart kernel, in which a length scale parameter ¢ is introduced, smoothing
the kernel’s behavior. This approximate Biot-Savart kernel effectively smoothes the
vorticity distribution over a length scale ¢. When applied to 2D point vortices, this
smoothing technique produces “vortex blobs” [3, 12], the motion of which converges
to a distinct sheet profile, both before and after the singularity time, as the number
of vortex blobs increases; additionally, the solution converges for both finite values
of the regularization parameter and apparently in the limit as the parameter tends
to zero [27]. Extension of the vortex blobs to 3D line vortices, results in what is
referred to as vortex “filaments” [4, 26, 32]. Large numbers of filaments are combined
adjacent to one another to discretize a 3D vortex sheet. 3D regularized vortex sheets
have also been represented by particles [60], a triangulated surface [2], and a level
set method [20]. Of particular interest, regularized vortex sheet models utilizing
finite sheet thickness [5, 37], Rosenhead’s kernel smoothing [27] and viscosity [57]
have been shown to converge to vortex sheet motion at times before the singularity
formation, as the pertinent regularization parameter tends to zero. Incorporation of
surface tension terms into the model [45] (1) eliminates roll-up completely with strong
surface tension, but (2) introduces a new singularity as the interface collides with
itself under weak surface tension [22]. The vortex-in-cell technique has been shown to
generate roll-up past the singularity time with outer turns that converge to those of
vortex blob calculations, as the regularization parameter tends to zero [56]. Explicit
time dependence has been eliminated by examining self-similar vortex sheet roll-
up (44, 46, 52|, but matching this solution to Moore’s sheet profile at the singularity

time does not seem possible.
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We now focus on Rosenhead’s modification of the Biot-Savart kernel as a regu-
larization technique. In this shear layer model, a length scale o is introduced in the
denominator of the Biot-Savart kernel, smoothing its behavior (for ¢ > 0). The true
(original) kernel is regained in the limit of o — 0. Regularization with ¢ > 0 not only
attenuates the unbounded growth rates at large wave number but also removes the fi-
nite time singularity, allowing computation of long-time evolution, provided sufficient
accuracy [27]. The price is, of course, that the Euler equations with an embed-
ded vorticity surface are no longer being simulated, but rather some effective model
equation defined by the regularization. An important issue to address, then, is the
relation between (Rosenhead’s) regularized vortex sheets and (a) incompressible Eu-
ler calculations, (b) incompressible Navier-Stokes calculations, and (c) experimental

observation.

1.3 Suitability of the Smooth Vortex Sheet Model

Krasny [29] performed several 2D calculations with the smooth Biot-Savart kernel
to compare with experimental observations of the wake behind a cylinder in a 2D
thin-film flow. The simulations, with moderate values of the smoothing parameter
(o = 0.3), are shown to capture important dynamical features of the experimental
wake. Other 2D simulations (with o = 0.025) of the separated shear layer roll-up
behind an impulsively driven flat plate produce a spiral in good agreement with the
self-similar roll-up calculations of Pullin [44].

Nitsche and Krasny [42] performed axi-symmetric calculations with the smooth
Biot-Savart kernel in order to model a previous experiment by Didden [15], in which
a vortex ring was generated by the impulsive motion of a piston through a cylinder.
Experimental visualization was provided by a thin, dyed column of fluid spanning the
diameter of the cylinder, as seen in the top half of Fig. 1.1. The simulation (bottom
half of Fig. 1.1) clearly shows good qualitative agreement with the experiment. Fur-
thermore, the ring’s path is correctly predicted, though its velocity is approximately

15% faster than in the experiment. The shape of the outer turns of the roll-up is
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Figure 1.1: Comparison of vortex ring formation (reproduced from [42]). Experiment
visualization above with dyed material line of fluid. Simulation below utilizing smooth
kernel (o = 0.2) depicting calculated material line.

fairly insensitive to the smoothing parameter o, but the slight changes seen as ¢ — 0
improve the agreement with experiment.

Tryggvason et al. [57] performed calculations of 2D periodic shear layer roll-up
with two methods: (1) a viscous incompressible Navier-Stokes solver characterized
by Reynolds number and initial shear layer thickness, and (2) the vortex blob method
characterized by the Biot-Savart kernel smoothing parameter, 0. The viscous simu-
lation was given an initial condition to precisely match that of the regularized vortex
sheet with specified 0. Spanning a range of Reynolds numbers (10® to 2 - 10%) and
thicknesses (0 = 0.32 to 0.08), their results imply that the limit of high Reynolds
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number and small initial thickness in the viscous simulations is the same as that for
the vortex blob method as o tends to zero. Also, at moderate Reynolds number and
initial thickness, the outer turns of the roll-up region agree quite well between the
two methods. However, in this moderate thickness case, the methods do not agree as
well in the vortex core. Incompressible Euler simulations (2D) with initial conditions
matched to the regularized vortex sheet reveal a similar correspondence: agreement
in the outer turns, but differences in the roll-up core.

Overall, Rosenhead’s smoothing regularization proves to be a highly functional
method for approximating the motion of vortex sheets, both before and after the
singularity time. Furthermore, evidence suggests the regularized equations provide a

good model of real flow, deserving of new refinements and applications.

1.4 3D Regularized Vortex Sheets

3D simulations to date have generally involved sufficient smoothing of the Biot-
Savart kernel to damp the smallest wavelengths, completely avoiding singularity for-
mation issues. Each method is forced, however, to devote more effort than its 2D
counterpart with regard to “mesh” refinement, in order to maintain accurate vortic-
ity field representation despite 3D Lagrangian deformation. Of course, the beauty of a
3D simulation is the ability to capture vortex stretching and fully 3D instabilities not
found in any 2D calculations. The computational portion of the present work is an
extension of [2], adding higher order sheet representation; global, automatic mesh re-
finement; faster multi-pole velocity evaluation; and singly and doubly periodic surface
geometries.

We also present a new numerical technique for estimating the critical time (of
singularity formation) for vortex sheets with arbitrary initial configuration, which is
shown to work with the smooth Biot-Savart kernel. Finally, following a lead from
calculations, we present an extension of Moore’s [38] analysis, showing that his 2D

singularity prediction also applies to 3D normal mode perturbations of the planar

shear layer.



1.5 Overview

The following chapter provides the necessary background material and describes
the governing equations for vortex sheets as well as invariants of the system. Chap-
ter 3 is an overview of the computational technique, which leads into more detail
of mesh generation, fast velocity evaluation and periodic velocity evaluation in the
subsequent chapters. Chapter 7 is an analysis of the remaining computational issues.
Chapter 8 presents several case studies as examples of what can be simulated with this
regularized vortex sheet implementation. Chapter 9 is an application of the regular-
ized vortex sheet model to the planar shear layer with 3D perturbations. Chapters 10
and 11 cover a specific study into certain aspects of singularity development in vor-
tex sheets. Chapter 12 concludes this thesis with a discussion and presents possible

directions for future work.



Chapter 2 Theoretical Development

A brief derivation of the equations governing the evolution of vortex sheets is
given in the following three sections. The first two provide the necessary background

information from differential surface geometry and fluid kinematics respectively.

2.1 Parametric Surface

We employ a parametric surface description

X

X&)=Y |(¢n) (2.1)
A

where, as shown in Fig. 2.1, (X,Y, Z) represents a point in (z,y, 2) space on the
surface and (£,7) € X is a point in a 2-D isoparametric space. The first fundamental

coeflicients [59] of the mapping are

E = X.-X,
= X X, (2.2)
¢ = X,-X,

so that an infinitesimal segment in parameter space with components d¢ = (d¢,dn)

is mapped to a corresponding segment of length dX in physical space, where

dX? = Ed¢? + 2Fdédn + Gdn. (2.3)



n 4 X(&,n)

Figure 2.1: Mapping from parameter to physical space.

Subscripts ¢ and 7 denote partial differentiation with respect to the corresponding

parameter. Two other useful quantities are the Jacobian of the mapping,
J = |X¢ x X,| = VEG - F? (2.4)
and unit surface normal
n=X,xX,/J. (2.5)
Points for which J = 0 are singular, such as the north and south poles of a sphere

parameterized with latitude and longitude. The Gaussian curvature K is

LN — M?

= (2.6)

K = Kekp =

where k, and k; are the principal curvatures of the surface [59], and L, M, and N are

the second fundamental coefficients defined by

L = n-X&
M = n'}(@7 (27)

N = n-X,,.
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The mean curvature p is

EN +GL—-2FM

1
= - - 2-8
and the square of the total curvature kr is given by
K2 = K2 4 K2 = 2(2p® — K). (2.9)

Note that in other literature the total curvature is sometimes defined as the integral

of the Gaussian curvature over the surface [59].

2.2 The Velocity Field

Consider an unbounded uniform density and inviscid fluid. Vorticity is defined as

the curl of the velocity field
w=V xu, (2.10)

and circulation around a closed loop 8D (vorticity flux through D) is
I’:fu-dﬁz/w-nd’l). (2.11)
8D D

Combining the curl of Eq. 2.10 with the incompressibility condition (V -u = 0) gives

a Poisson equation for velocity,

Viu=-V xw, (2.12)
the solution of which is
1 ! __ !
u(z) = ~~/‘°’(“’) x(z T ) e, (2.13)
|z — 2|

47
v
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u =Vg¢~

Figure 2.2: Vortex sheet dividing an ideal fluid.

where V is the vorticity containing region [51]. A homogeneous solution of Eq. 2.12
also exists, in the form of a Laplacian velocity potential; this solution is omitted as

it is not relevant to the remaining discussion.

2.3 Vortex Sheet Motion

As discussed in Chapter 1, we wish to restrict the vorticity field to thin layers in
the fluid, which become vortex sheets in the limit as the thickness tends to zero. Of
course in this regime viscous effects are lost, but the vortex sheet provides a good
model for the large scale dynamics of a flow [42]. In order for the strength of the
sheet (that is, the magnitude of the difference in flow velocity on either side) to
remain constant throughout this limiting process, the magnitude of the vorticity in
the layer must be increased while the layer thickness is decreased such that their
product remains constant [51]. Thus the vorticity is in fact singular on the sheet
surface. For parameterized vortex sheets, the vorticity vector takes a particular form,
transforming Eq. 2.13 into an equation for the evolution of the sheet itself [2, 10, 25].
Consider a vortex sheet which divides an otherwise irrotational, inviscid fluid into
two regions, as shown in Fig. 2.2. The solenoidal velocity in each region is given

completely by velocity potentials, i.e., ut = V¢ and u™ = V¢~. Vorticity w must
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lie tangent to the surface and may be defined as
w = vd(n) (2.14)

where n is the distance normal to the sheet and § is the Dirac delta function. ~ is

the strength of the sheet given by
~ =n x [u], (2.15)

where n is the unit surface normal (pointing to the + side) and the brackets denote the
jump across the sheet, i.e., [u] = ut — u™, evaluated on the sheet surface. Consider
the circulation around a closed curve C piercing the vortex sheet through points A and
B in a clockwise sense. As the velocities on either side of the sheet have potentials
and vorticity is non-zero only on the sheet, circulation depends only on the location

of points A and B, i.e.,
u-de (2.16a)
B A

ut-dé+ / u -de (2.16Db)

= /B[u] . de (2.16¢)

A

= /B(v¢+ —V¢~)-dt (2.16d)
A

= [¢l(B) — [¢](A4). (2.16e)

If the vortex sheet surface is represented by X(&,n), with (¢,n7) € L, circulation can
be regarded as a point-wise quantity by taking A to be a fixed reference location in

parameter space, i.e., I'g = [¢](A4) and
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With this definition, I' is a single valued function of (£,7). Thus, some care must
be taken when considering sheets that contain irreducible curves such as a torus and
infinite cylinder [51]. Fortunately, only the circulation gradients are required in the
following discussion.
Using Eq. 2.5 as the normal direction, the vector identity (axb)xc = (a-c)b—(b-c)a,
and noting Ty = [V¢] - X¢ and T, = [V¢] - X,,, it follows from Eq. 2.15 that

reX, —I'yX;
Y =——v " (2.18)
) |X£ X an
Thus, Eq. 2.13 becomes
1 W' x (z — X')
= — dy’ 2.19
u(w) . / |312 _ XI|3 ) ( )
p)
where

W =TX, - I X,, (2.20)

and all upper case vectors are functions of (£,7,t), where t is time. An evolution
equation for the sheet is defined by restricting  to lie on X(¢,7). From Eq. 2.19 we

have
X = u(X). (2:21)

Note that in this case the integral must be interpreted as giving the average of ve-
locities allowed when @ approaches the sheet from either side; that is Eq. 2.19 must
be interpreted as as a Cauchy Principal Value or Hadamard finite part integral. For
a related discussion and a specific calculation involving a steady 3D vortex sheet,
see Moore and Pullin [39]. Although the sheet vorticity W changes with time, it is
well known that T is invariant, since vortex lines (those everywhere tangent to w)
move with the sheet [51]. Thus, in this formulation, no explicit updating of vortic-

ity is required. Examining Eq. 2.20 it is clear that with a specific parameterization
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the circulation can be a function of only one variable (I',, = 0), leaving the param-
eterized vorticity as simply W = ['¢X, (this approach is utilized in Appendix B).
This simplifies the integrand of Eq. 2.19 slightly, but in turn complicates the manual
parameterization of general surfaces.

Experience in 2-D [28] shows that time integration of Eq. 2.21 is inherently unsta-
ble due to amplification of round-off error, and a means of regularization is necessary.
As discussed in Chapter 1, one method to remedy the ill-posedness is to introduce a
length scale ¢ into the denominator of the Biot-Savart kernel, smoothing its behavior.

The modified equation is

u,(z) = i/ Wx(z-X )3/2 ds, (2.22)
|z — X'|* + 0?]

b

which as before leads to an evolution equation for the surface:
X = u,(X). (2.23)

This is precisely Rosenhead’s kernel smoothing as discussed in Chapter 1. Clearly
Eq. 2.19 is regained in the limit as ¢ — 0 in Eq. 2.22. Recall, the term ‘vortex sheet’
is used in this thesis to refer to the o = 0 limit while the modifiers ‘regularized’ or
‘smooth’ are applied to distinguish the approximated surface and motion described
by Eq. 2.23.

With the modified, smooth kernel of Eq. 2.22, the velocity field is continuous
across the regularized sheet surface and the integral involved is no longer complicated
by different limiting values when approached from either side. Recall other vortex
sheet simulations with the same regularization have proven to be good models of
various flow phenomena (e.g., [42]) and the limiting case as ¢ — 0 approaches that of
(1) true vortex sheets before the singularity time [27] and also (2) thin viscous layers
as the Reynolds number is increased and initial thickness decreased [57]. The relation
of o to other aspects of the current smooth vortex sheet implementation is discussed

in §2.5, §5.1, §6.1, §7.4, §7.5, §8.1, and §10.
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All variables mentioned hereafter are assumed to be non-dimensional, scaled with
appropriate combinations of a characteristic length Ly and circulation T'o, unless
noted otherwise. An initial value problem is now clearly defined: calculate the time
evolution of X(&,7,t), subject to Eq. 2.23, given the initial sheet position X(¢,7,0)

and relative circulation I'(§, n).

2.4 Surface Types: SWP0, SWP1 and SWP2

In order to be computationally tractable, only surfaces that can be described
with a compact parameter space domain ¥ are considered. Specifically, we take
(¢,m) € [—m..m] for all cases. Physical space surfaces with infinite extent are thus
sliced at regular intervals and constrained to periodic motion. Categorization of
surfaces is based on the prescribed constraints in parameter space. The first surface
type considered is that which results from a mapping function X, constrained to be
simply periodic in both £ and 7. X is then a torus-like surface, though the mapping is
general enough to describe an arbitrarily distorted torus. This type of surface is used,
for example, to follow the motion of hollow-core vortex rings and will be referred to
henceforth as SWP0, an acronym for “surface with periodicity 0.” Eq. 2.22 can be
used directly to calculate the evolution of the toroidal surface, but for the following
two surface types the nominally infinite domains must be accounted for explicitly.

The second surface type (SWP1) is similar to the first, but forces the first compo-
nent of X to have an additional linear variation in £. This results in a singly periodic
train of surfaces in physical space, connected smoothly from end to end. This type of
surface is used to track hollow-core vortex tubes, jets and combinations of the two.
As an example, consider the parameter space (£,n) € (—00..00, —7..7), where the

periodic-train surface is sliced at intervals of 27 in £, unit length in z, and points
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along the z axis. Then Eq. 2.22 becomes

T o0 _ ,
el / / — )3/2 dg’dn
T dr e — X' | + 0?]

—_— =0

T 7

// i U W' x [& — (X"2—|— m1)]3/2d£ i, (2.24)
mETe e — (X! + mi)| +o?

where i is the unit vector along the & axis. Direct integration of Eq. 2.24 now requires

evaluation of the following summations:

oo oo
m

1
s1(b,c) = Z [(m — b)2 + 232’ s2(b, ) = Z [(m — b)2 + 272’ (2.25)

m=—Qo0 m=—00

where b and ¢ are combinations of variables from Eq. 2.24, treated as constant in the
summations. As described in Chapter 6, there is an alternative, superior method to
capture the influence of periodic images.

The last surface type (SWP2) forces the first and second components of X to have
additional linear variations in £ and 7, respectively. This results in a doubly peri-
odic surface which splits physical space into two halves, clearly useful for examining
standard shear layer configurations. To show the parameterization clearly, consider
the parameter space (£,1) € (—00..00, —00..00), where the doubly periodic surface is

sliced at intervals of 27 in (£, 7) and unit length in (z,y). Then Eq. 2.22 becomes

1 [ T Wx(z-X
u,(x) = ——// <z~ X) 5d€'dn’
4m :B —X'l2+02]3/

// Z Z W' x [z — (X' +m:+n‘])]3/2d§d' (2.26)

m=—00 N=—00 Um _ (X/ + ml + nj) + 0-2:|

where i and j are unit vectors in the z and y directions, respectively. Direct integration
of Eq. 2.26 requires more summations than for the SWP1 surface, and thus are not

mentioned here in light of the forthcoming Chapter 6.
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Note that specific surface geometries are omitted due to their non-trivial param-
eterizations. For example, a spherical surface is omitted because of the coordinate
singularities in its parameterization associated with the poles, as noted in §2.1. This
surface type would be useful, however, for examining the motion of shocked density

bubbles [21].

2.5 Invariants

Uniform density, inviscid fluids with an embedded vortex sheet maintain an infinite
number of invariant quantities [51], though a select group of integrated quantities
provide a good set of diagnostics for a numerical method. It is important to recognize
here the difference between invariants of vortex sheet flow and those of a regularized
vortex sheet flow [60]. Due to the specific regularization taken in Eq. 2.22, it is
not obvious that regularized vortex sheet flows maintain any invariant quantities,
even with the assumption of perfect spatial and temporal integrators. However, as
highlighted in Appendix B, the following quantities, carefully regularized in the sense
of Eq. 2.22, are preserved. Each invariant has an obvious counterpart for true vortex
sheet flows. Unit density is assumed for the fluid. We introduce the subscript § to
refer explicitly to the velocity field (us) induced by a true vortex sheet with vorticity

ws = v8(n), as in Eq. 2.14 and Eq. 2.19.
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1
Volume: VZ%/V-de:—/X-(ngx )dx (2.27)

Vs
1 W . W
et . = . dr.dy’  (2.28
Kinetic energy: T 5 / u, - usdV = / / X - X| (2.28)
1%

Helicity: H

il

u,,-w,st———/U-WdE (2.29)

1l

— S —

Total vorticity: W wsdV = / WdE =0 (2.30)

I

o= <

M\ <\ <1\

1
Hydrodynamic impulse: I T XwsdV = 3 / X x WdZ (2.31)

>
1l

Angular impulse: x X (X ws)dV

Wl

Il

Q| =

X x (X xW)dE (2.32)

Here Vs represents the volume enclosed by the vortex sheet surface, V is all space
with non-zero vorticity, and ¥ is the parameterized sheet surface. For SWP1 and
SWP2 surface types, the above definitions need slight modification to account for

physical space periodicity.
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Chapter 3 Computational Development

A summary of the computational technique used is given in the next paragraph;
more details follow in the subsequent sections.

The integrand of Eq. 2.22 is approximated over an irregular, triangulated mesh
covering the parameter space domain ¥, an example of which is depicted in the
left of Fig. 3.1(a). Mesh refinement (resulting in non-uniform distribution of grid
points) is essential in order to capture local areas of high deformation in the phys-
ical sheet which develop during the sheet evolution (see Fig. 3.2). Parameter space
triangulation (both vertex placement and connection) is accomplished by an advanc-
ing front method. The vortex sheet surface is re-triangulated as needed, based on
surface curvature and stretching, with triangle size and orientation conforming to
local properties of the surface. Mesh post-processing techniques are implemented
to increase desired characteristics of the mesh. The nine functions X(&,n), X¢(§,7)
and X,(&,n) are interpolated in parameter space by a combination of cubic Bézier
triangular patches [18], providing C! continuity between triangles in X and C° con-
tinuity in X¢,X,. The spatial integration in Eq. 2.22 is approximated with Gauss
quadrature points [14] positioned inside each triangle and time integration proceeds
with standard Runge-Kutta methods. Note that in forthcoming figures, vortex sheet
surfaces are, with one exception, depicted simply with their triangular mesh skeleton.
In this piecewise planar representation, only the triangle vertices are necessarily on

the interpolated sheet surface. An example of the smooth sheet surface is shown in
Fig. 8.1(f).
3.1 Surface Interpolation

In order to evaluate the integrand of Eq. 2.22, X and its derivatives (X, and X,)

must be interpolated within ¥. This could be done trivially with linear interpolants
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defined locally inside each triangle. Using local barycentric coordinates (3, (2, (3 to
define a linear interpolant of the function X in a particular triangle, with X values

(X1, X2, X3) at its vertices, gives

X =GX1+ X+ (3X3, G+G+G=1. (3.1)

But this simple interpolant gives only C° continuity between triangles.
A higher order interpolant is given by a combination of cubic Bézier triangular
patches defined over each triangle [18]. Again the patch is a function of local barycen-

tric coordinates (i, (2, (3 and has the form

X(¢1,6,(3) = Cfb3,o,0 + Céo’bo,a,o + C§b0,0,3
+ 3¢ Caba10 + 3¢ ¢abag,1 + 3C1¢3b12,0

+ 3¢1¢3b102 + 3¢5 (3o 2,1 + 3(2(3bo,1 2

<22§32b},1,1 + C%C:?b%,m + CIZCZZbil,l
GG+ 3G+ GG ’

(3.2)

+ 6¢1¢2¢3

where the constants b;;x and bi,, depend on the values of the function to be in-
terpolated (for example X) and the first derivatives (X, and X,), at the triangle
vertices.

Unfortunately, the first derivatives of the function to be interpolated must be spec-
ified at the triangle vertices. Thus, before the constants b; ; » and bi,l,l are calculated,
derivatives are estimated at each vertex (in ¥) by means of a parabolic least square
fit of function values, taken from the vertices of the local triangle and neighboring
triangles. Care is taken to ensure enough data for the fit by including vertices from
the next ring of adjacent triangles if necessary. Once the fit is constructed, nodal
derivative estimates are extracted from the analytic form of the paraboloid. Once
function values and derivative estimates are known for the three vertices of a trian-
gle, the constants b; ; and b , ; are trivially calculated (see [18]), and the analytic
interpolant for the function is defined as above. The function’s derivatives with re-

spect to £ and n are obtained from the analytical derivative of the interpolant (see
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Appendix C). The functional interpolant is found to have O(AX %) accuracy while

its derivatives are only O(AX?) accurate (see §7.4).

3.2 Integration

In addition to the interpolant, the time stepping method and number of Gauss
points per triangle control the order of accuracy of each computation. Time stepping
is done with one of the Runge-Kutta methods, selectable for second to fourth order
accuracy. The time step size is regulated by three concerns: (1) stability, (2) preser-
vation of invariants, and (3) control over triangle edge rotation and straining. The

third is implemented by defining the strain for each edge as

|AU|At
€= ——",

; (3.3)

where L is the original length of the edge (in physical space) and AU is the difference
in velocities of the edge endpoints. The time step is varied so as to maintain € < ¢
for every edge. The parameter ¢g is chosen before computation so that invariants are
maintained to the desired accuracy (as far as time integration contributes).

The integral in Eq. 2.22 is approximated for each triangle vertex in ¥. The inte-
grand is evaluated at the Gauss quadrature points for each triangle, finally determin-
ing the global influence of the surface on each vertex. Thus, with this straightforward
implementation, calculation of the surface velocity field is an O(NN?) process. The spa-
tial integration order is easily varied by changing the number of Gauss points used in
each triangle (2" to 5 order in AX with 1 to 6 points). The O(N?) discretization
of Eq. 2.23 is

1
47

> wn Won X (Xi = Xm) (3.4)

0X
__(gia 771,) = )

1M

where n is the index running over the triangles of the sheet surface, X,, implies

X (&ém; Mm) and likewise with W ,,, and X;. The term w,, represents the weight assigned
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to the m** Gauss point (&,,7n,) for triangle n, and G, refers to the set of Gauss
points for the nt* triangle. The double summation is performed for each vertex i of
the sheet surface. Smaller values of o, or a tightly folded vortex sheet surface, lead to
near singular behavior of the integrand, forcing more Gauss points or more triangles

in order to maintain accuracy in spatial integration.

3.3 Parallelism

Both the O(N?) integration process described in the previous section, and the
faster methods described in Chapter 5 are well-suited for shared memory, multiple
thread parallelism. Most commercial modern-day compilers on computers with mul-
tiple CPUs and the ability to access a shared memory block, provide commands for
flagging specific loops to be broken into P divisions, where P is the number of CPUs.

As an example, consider the typical O(N?) velocity evaluation loop:

for each vertex V in the sheet
for each triangle T in the sheet

calculate the influence of T on V.

In this case well-suited means that each iteration through the outer (V) loop is inde-

pendent of all other iterations, which allows us to write:

split execution here into P threads, indexed by i
for each vertex V in subset i of the sheet
for each triangle T in the sheet

calculate the influence of T on V.

This velocity evaluation loop is of course just a portion of the entire program, but it
is the most CPU intensive. Hence, only this section is parallelized. The effectiveness

of this technique is discussed in §7.7.
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3.4 SWP1 Summation Approximation

As noted in §2.4, evaluation of the evolution equation for SWP1 surfaces requires
the ability to compute the summations in Eq. 2.25. Fortunately, the two summa-
tions can be calculated once, before any runs, and stored at machine precision in a
two-dimensional look-up table with the parameters (b, ¢) as the axes. This is feasible
because only a compact space from the (b, c) domain is required in order to perform
the numerical integration. Data is interpolated from the table with a 374 order accu-
rate interpolant [1]. Keep in mind that these summations and the evolution equation
modified for SWP1 surfaces (Eq. 2.24) are only relevant to the O(N?) spatial inte-
gration technique. An alternate method, though not implemented in this thesis, is

described in Chapter 6.

3.5 Trigger for Mesh Refinement

As revealed in Fig. 3.2, there is an absolute need for mesh refinement to reach
long times in a typical evolution. At which point in time (i.e., which time step) the
remeshing occurs is non-trivial to optimize, however. The remesh process is signifi-
cantly less time consuming than the velocity evaluation, so frequent remeshing is not
a burden in terms of CPU time. However, each remesh does require interpolation
for the new surface vertices, resulting in a loss of accuracy. This instantaneous ac-
curacy loss is essentially traded for long time resolution. Once triggered, the remesh
procedure is global, redefining every surface vertex and triangle.

The remeshing trigger implemented is based on the percentage of triangle edges
with lengths not suitably matched with the local curvature of the surface (i.e., too
short or too long, as detailed in §4.3). We define the length ratio of an edge as
its length divided by the length scale necessary to capture the local curvature (or
the inverse, whichever is larger). Edges with a length ratio greater than a specified
threshold t;z are deemed non-conforming. A remesh is triggered if the percentage

of non-conforming edges is greater than a second specified threshold ¢yc. Chapter 4
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gives details about the remeshing procedure and its relation to curvature of the sur-
face. §7.3 shows how the accuracy of calculations is affected by different choices of

the remeshing parameters.

3.6 Pseudocode

At this point it is informative to give the general outline of the entire program:

read parameter input file

read data input file

for each time step dt
calculate velocities and increment sheet position by dt
write sheet statistics to file
if sheet surface needs remeshing, do so

if time step should be saved, write sheet data to file.

Clearly the calculate velocities and remeshing sections are the most compli-

cated, and are discussed thoroughly in several of the remaining chapters.

3.7 Computational Hardware

Almost all computation was done on two or four processor Intel machines, running
either Solaris or Linux, with Pentium Pro or Pentium II processors. Some runs were
also done on a four processor (R8000) SGI. The hardware limitations of memory,

including disk space and RAM, were never reached — computations were always CPU

bound.
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Figure 3.1: (a) Raw and (b) post-processed parameter and corresponding physical
space for a torus.
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Figure 3.2: Demonstration via mesh skeletons of the need for mesh refinement. La-
grangian deformation of material elements in (a) reveals a loss of resolution with a
fixed mesh (600 triangles). With the same initial condition, timely remeshing in (b)
allows for an accurate representation of the sheet (5000 triangles).
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Chapter 4 Mesh Generation

4.1 Advancing Front

The advancing front technique is a powerful method for creating a mesh of trian-
gles conforming to user specified size, stretching and boundary constraints [33, 43].
In a general sense, closed directed boundaries are given as input such that the right
facing normal consistently points inside the domain. Nodes are then placed along
these boundaries (fronts) at a specified, and possibly varying, spacing depending on
the surface being triangulated. Each edge of the front (between nodes) is considered
in turn as one side of a new triangle, and the ideal location of the triangle’s third
vertex is calculated following the given size and stretching criteria (described below).
The front is adjusted as triangles are generated so as to close in on itself. This partic-
ular advancing front implementation fills a square region in parameter space (£) with
specifically sized and oriented triangles such that their mapping into physical space
creates the desired surface. Additionally, the physical space triangles are designed to
be nearly equilateral and have their area vary proportionally with the inverse of the

total surface curvature squared.

4.2 Density Function
We define a target triangle density function f(&,n) as
f=r2, (4.1)

where f represents the desired number of triangles per unit area in physical space,
and k2 is a conservative estimation of the maximum principal curvature. This type

of curvature based scaling, e.g., keeps the same number of triangles on a sphere,
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independent of its radius. Bounds are placed on the density function in order to (1)
inhibit excessively large triangles in relation to the regularization parameter o, and

(2) fix an upper bound on the possible number of triangles generated.

4.3 Triangle Size Scaling

Given the above density function, it is possible to write an approximate integral

relation between the total number of triangles N and the triangle density as

N%’R{/dezRé/deE, (4.2)

where N is the number of triangles associated with the (dimensionless) resolution
factor R, density function f, and mapping Jacobian J. For any given surface, f and
J can be calculated. The desired resolution is then determined by the specification of
R. R is held constant as the sheet evolves, thereby fixing the local relation between
density f and triangle area A. In fact, under the assumption that triangles are

equilateral in physical space with side length A X, the local triangle area must be

V3 1
“CAX? =
4 Rf’

and the local physical space length scale is thus

2 1 _ 152

ST vR S VR

(4.3)

The “resolution” of a surface discretized with this procedure is best characterized
with R, as R, not N, gives a better basis for comparison of different surface mesh
resolutions. As an example, Eq. 4.2 carried out for a sphere gives N = %’TR — the
number of triangles N depends only on the resolution R, not the size of the sphere. Of
course the typical meaning of resolution is a grid length scale like AX. For surfaces
with little curvature this is appropriate, but when there is high deformation, AX can

vary significantly across the sheet, and loses meaning as a global grid characteristic.
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4.4 Stretching Directions

To first order the mapping X can be represented in parameter space as a scaling
and rotation of the (£,7) axis. Thus one can imagine an alternate coordinate system
(i) in parameter space which locally has the same topology as the sheet surface.
Equilateral triangles defined in this alternate coordinate system (£) will thus be
equilateral (to first order) in physical space. Y is defined from a first order expression

of Eq. 2.3:

AX = AV Ecos?6 + Fsin 20 + Gsin? 0, (4.4)

where Af is a short segment in ¥, inclined at an angle 6 relative to the ¢ axis, and
AX is the corresponding mapped length. The two extreme values of AX are obtained

when 6 satisfies

2F

The two corresponding 8 values (6y,6,) designate the axes of ¥. When E = G there

is no stretching and ¥ is equivalent to £. The scaling along each axis in Y is

AX
8 = A_E = \/E cos? 8; + Fsin 26; + G sin? 6, (4.6)

fori=1,2.

4.5 Boundary Node Placement

The advancing front technique begins by placing nodes along the perimeter of the
domain, creating the initial “front.” The first node is placed in one corner, then while
marching along the perimeter, nodes are placed at a density corresponding to f. The
incremental distance (A¢) to the next node is determined by evaluating Eq. 4.3 for

the current desired physical space length scale AX. Eq. 4.4 is then used with the
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current parameter space direction () to calculate A{. When subsequent parameter
space corners are not hit exactly (typically the case), the position of each node on

the current boundary is scaled by a small amount such that they all fit exactly.

4.6 Interior Ideal Node Placement

The most common advancing front step involves examining a directional segment
in ¥ between two nodes in order to decide where a third node should be placed such
that a triangle is created with nearly equilateral mapping. To this end, the segment
is transformed to %, using the midpoint of the segment to define (6;,6,) and (sy, s2).
A new node is placed in 3 such that the triangle formed with it and the segment
is nearly equilateral, with side length AX from Eq. 4.3. Finally the new node is

transformed back to X, its location deemed ideal.

4.7 Implementation

Implementation of the advancing front method begins by defining boundary nodes
of the parameter space domain (¢ = +m,7 = +x). Since the domain is periodic (the
mesh in ¥ is always periodic, independent of the surface type being represented:
SWPO, 1, or 2), only two sides of the boundary are defined with the technique de-
scribed previously; the other two sides are redundant copies. The segments between
each node are the edges of future triangles. A single front is defined as the clockwise
traversal of the segments between nodes. Each segment is examined in turn and a
new triangle created, until the front has closed in on itself, and no segments remain.
Triangles are generated for each segment by first calculating the corresponding ideal
node location, as described in the previous section. A new node is inserted at that
location only if feasible, as in Fig. 4.1(b); otherwise, as in Fig. 4.1(a), an existing
node is used to create a new triangle and advance the front. Fig. 4.2 shows various
stages during an example mesh creation. Note that the front may pinch itself off,

generating two child fronts, as seen in Fig. 4.2(d). The initial mesh as well as subse-
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Figure 4.1: Example ideal node placement and usage, active edge shown in red. In
(a), an existing node (filled circles) in the front is close enough to the ideal position
(open circle) to be substituted. In (b) there are no nearby existing nodes — a new
node will be inserted at the ideal position and the front updated.

quent re-meshes are generated with this procedure. While generating and refining a
new mesh, the old existing one remains active in order to evaluate the density f and
stretching directions, and fill the new mesh with X. The mesh generation process
takes O(N3/?) time, as a search through O(N'/2) triangles (those with edges in the

current front) is necessary for each of the N triangles generated.

4.8 Mesh Post-Processing

The mesh generated by this advancing front algorithm is not ideal, as can be
seen with a keen eye in the physical space representation in Fig. 3.1(a). Whenever
two fronts collide, closing a region, ideal nodes are typically not selected and the
corresponding triangles in physical space are far from equilateral. But a completed
mesh can be improved with a variety of fast operations. Laplace smoothing [11] is the
name given to a mesh process in which every node is moved to the center of gravity
of its neighboring triangles. In this application, we wish to maintain equilateral
triangles in physical space, so vertex coordinates in parameter space are moved to the

physical space area-weighted average of the neighboring triangles. The method may
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be applied repetitively, but a few (< 5) iterations result in significant improvement.
Mesh relaxation [9, 16] attempts to push the number of triangles adjacent to each node
(the degree d) towards six. To this end, every edge between two triangles is considered
in turn. The edge is swapped if (a) geometrically feasible (see Fig. 4.3) and (b) the
regularity index, d = E?zl(di — 6)2, improves beyond a threshold. The summation
index ¢ runs over the four vertices needed to define the edge under consideration and
the two adjacent triangles. When d is zero, the four vertices have ideal connectivity
with respect to mesh relaxation. The third and final mesh improvement technique
swaps edges based on the desire to line them up with valleys and ridges of the surface.
Define the edge-center-distance (ECD) as the distance in physical space from the
mapping of the edge midpoint, to the middle of the physical space edge (see Fig. 4.4).
Each edge is considered in turn, and is swapped if (a) geometrically feasible and (b) the
swapped edge’s ECD is some degree less than the ECD of the current edge. Fig. 3.1(b)
shows the improvement made after two passes of Laplace smoothing followed one
pass through ECD swapping and five passes of relaxation (thresholds from 11 to 1
by 2), followed finally by two more passes of Laplace smoothing. Post processing
effectiveness is monitored by mesh statistics such as average skewness (max/min

triangle lengths) and the distribution of d.
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Figure 4.2: Advancing front in parameter space ¥ with 185, 1000, 2000, and 2650

triangles. Note how in (d) the front has pinched itself closed, generating two child
fronts.
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Figure 4.3: Dashed lines represent (a) swapped and (b) un-swappable edges.
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Figure 4.4: The two black triangles conform nicely to the local surface topology. The
edge in the valley is considered for swapping with the alternate red edge. The ECD
of the black edge is approximately zero, as its midpoint is essentially on the surface,
but the distance of the midpoint of the red edge to the surface is significantly more.
Thus the black edge will not be swapped for the red.
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Chapter 5 Improved Velocity Evaluation

5.1 Introduction

The overall algorithmic performance of a computer code, in terms of memory and
time required, is often a matter of keen interest for the obvious reason of generating
desired results as quickly as possible on a given hardware platform, with a specified
error tolerance. This chapter discusses reducing the order of a Biot-Savart integrator
from O(N?) to O(N%?) with a multi-pole expansion technique. This technique is
based on a simple Taylor expansion of the Biot-Savart kernel, but is powerful enough
to reduce the order of velocity evaluation, in stages of implementation complexity,
to O(N3/2), O(Nlog N), and even O(N). These ideas are not new and were in fact
popularized by the thesis of Greengard [19]. However, the expansions presented here
are different than the spherical harmonics used by Greengard, a necessity of the
modified Biot-Savart kernel [32].

The advantage of the multi-pole expansion is that patches of vorticity (in this
case neighboring triangles) can contribute to the velocity at a target point in groups,
rather than individually. Furthermore, a large portion of each groups’ influence can
be pre-calculated for all target points. To determine the total velocity at a target
point, contributions from nearby triangles are added individually, while contributions
from distant triangles, grouped together in geometric bounding boxes, are taken as
lump sums. An O(N3/2) method is achieved if each box has specific side dimension
Lp (defined below) and there is no hierarchy with boxes containing other boxes (as
an example see Fig. 5.1). If, however, triangles are encased by boxes in a hierarchical
subdivision (e.g., an oct-tree representation), a full velocity evaluation only takes
O(N log N) time [32]. The final speed-up, to an O(N) method, is realized by allowing
boxes to influence other boxes (and hence many target points at once), rather than

single target points. All three methods suffer from needing to re-calculate the box
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locations and generic influences prior to each full velocity evaluation (and there may
be multiple velocity evaluations per time step, depending on the time integration

technique).

Figure 5.1: An example triangulated sheet encased in a non-hierarchical subdivision
of boxes, each with side length Lg.

5.2 Velocity Evaluation

First, the optimum side length (Lp) of each box is calculated as described in
detail below. Then the triangulated vortex sheet is divided into cubes of side L,
each containing a group of neighboring triangles. Subsequently, the influence (also
described below) of each box is calculated and stored. Finally, the velocity at each
vertex (target point) is calculated and time integration proceeds. (An example target—
box geometry is shown in Fig. 5.4.)

In order to determine when to use the target-box interaction (as opposed to
target—triangle), we introduce the notion of an error tolerance, Eror. When the
target point is “close” to the box in some sense (also described below), the error
incurred with the multi-pole expansion is greater than when the box is far away.

Thus, based on the desired maximum absolute error per target—box interaction Eror,
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a critical distance d..;; is defined for each box of triangles, specifying the minimum

distance between an acceptable target—box interaction.

5.3 Scaling Arguments

At any one time, the triangulated vortex sheet with N triangles is encased by B
boxes, with an average of T triangles per box. The velocity at a target point is deter-
mined by the influence of aB boz interactions, plus (1 — a)BT triangle interactions,
where o denotes the average fraction of boxes used. Thus, the total time required to

calculate the velocity at every vertex of the sheet (a full velocity evaluation) scales as

teve < N[aB + (1 — a)BT]. (5.1)

Consistent with the definitions above, we must have N = BT. To achieve an O(N*/?)
method, we also need (1 — a) oc N~1/2, as seen by the second term inside the square
brackets of Eq. 5.1. It follows that both B o« N2 and T o« N'/2. The number of
boxes (cubes) B is determined by their side length L and the amount of space filled
by the vortex sheet. One may estimate Lp by assuming the sheet to be locally planar

inside each box, so that the total surface area A may be approximated as A ~ BL%

which leads to

Lp o< y/A/VN. (5.2)

To test all the scaling arguments discussed above, we consider a test case fixed
in time. Varying only N, we examine the behavior of tzyg, the execution time. The
results are summarized in Fig. 5.2, comparing two values of the error tolerance Eror
with the O(N?) method. With Epo; > 0 it is clear that we are quite close to an
O(N®/%) velocity evaluation technique.

Unfortunately, in a typical simulation with adaptive refinement, triangles in dif-

ferent regions of the sheet generally develop significantly different length scales (see
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Figure 5.2: Duration of one time step (single processor) versus the number of triangles,
N. O(N?) method in red; O(N%2) method in green and blue. Solid lines have slopes
2.0, 1.55 and 1.57 respectively. With Eror = 1073, speed is increased by a factor of
10 near N = 20, 000.

Chapter 8), leading to a wide variation in the number of triangles per box. In this
situation, the desired scaling (1 — ) & N~/ fails and the method reverts to O(N?).
It is, however, still considerably faster than the original O(N?) method. Fig. 5.3
shows timing data from an actual simulation. The transition from O(N%2) to O(N?)
unfortunately occurs rather quickly, but clearly the method is significantly faster than
the direct O(N?) method. Note the high red data point in the scatter for each mesh

size N represents the extra time taken for the automatic mesh refinement.
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Figure 5.3: CPU time per time step plotted against the number of current triangles
in the mesh (V) for an example simulation (see Appendix 7.1). Direct O(N 2) method
in green, O(N%/?) method in red. Time steps in the simulation implicitly travel from
left to right, N increasing as the sheet evolves. Numbers next to lines specify the
slope.

5.4 Expansion, Error Bound, and Critical Distance

The regularized Biot-Savart integral Eq. 2.22 may be written (non-parameterized)

as
/ !
uV(w) — i/ CIJ(:D) X (m T )2 d3:1:' (53)
Ar J [lz — ='|2 + 02]3/
14
-1 / w x K d*z' (5.4)
47
v
where
z—z 3/2
K="5 De= Iz — ' + 0%, (5.5)
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and V now represents the volume of a box containing a collection of neighboring

T

N
v

Figure 5.4: Patch of triangulated vortex sheet inside box with volume V. Z is the
box centroid and &' is a point on the sheet surface.

@ Target point

triangles (as shown in Fig. 5.4). To derive the multi-pole expansion, we substitute
the Taylor series of K about &' = & into Eq. 5.4. & represents a point inside the box,
henceforth the box centroid. Switching to index notation and skipping intermediate

steps, we have

1
u) (x) = ——eum/wl’Km iz’ (5.6)
A
v

1 = N
— 4_ei,mD;3 [:EmM,O +3D;%8;8m M} — My,
™

15

N—44 4 4 2 3
+ 7Da .CL‘jIBk.’Elijk —

§D;2f;li§.j —3D;%¢; M2, + - ] (5.7)

where M?, Milj, Mfkj represent the zero, first and second moments of vorticity respec-

tively, i.e.,
M) = / w) dz’ (5.8)
1%
M} = / wiz; d’a’ (5.9)
v
M2, = / w3}, dx’ (5.10)

|4
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and

&= (z' — &); (5.12)
D, = [z — |* + o}¥2 (5.13)

In this way, the generic influence of each box is represented by the moments of vor-

ticity, M*®. An error bound [53] for the above series expansion with ¢ = 0, taken to

B, By \’ (b
—_— — - 14
o5 () (d)} (o1

second order as in Eq. 5.7, is

where
By ———/||w|| dx (5.15)
v

B2:/||w||(:v—§:)-(:1:—5:) . (5.16)
v

Here b represents the radius of the box, and d is the distance from the box to the target
point, as in Fig. 5.5. The first moment B; has been eliminated by a more aggressive
expression involving B,. In practice, for each box By, B, and b are known; Ergy is
then specified in order to calculate d.,;; for the box, via iteration of Eq. 5.14. This
error bound is considered appropriate to use even for ¢ > 0 because we always have
d.rit several times larger than o.

Finally, we recognize that the error bound applies for each target—box interaction.
Of practical interest is the overall error incurred for the total velocity at each target
point, as a function of Eror. To this end, we examine the PDFs of scaled differences
(errors) between an O(N3/2) time step and an O(N?) time step. The non-dimensional
error is defined at each triangle vertex as the difference in position (after one step with

a very small At) between the O(N%/2) and O(N?) methods divided by the traveled
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Target point

Figure 5.5: Patch of triangulated vortex sheet inside box with volume V. Schematic
of box-target interaction.

distance of the O(N?) method. Thus at each vertex we effectively calculate

u —Uu
_ lwower OW)', (5.17)

IUO(N2)|

for which we approximate the PDF f, based on a 20 bin sampling of each vertex, as
shown in Fig. 5.6. As Eror drops by factors of ten, the average error does as well,
revealing the error bound Eq. 5.14 scales properly with Erop. In Chapter 7, Eror
is included in the set of parameters (time step, mesh resolution, etc.) which must be

balanced to produce an efficient calculation with a chosen overall error tolerance.
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Figure 5.6: PDF of scaled difference between O(N*/?) time step and an O(N?) time
step. Eror decreases with symbol darkness from 1072 to 1072 to 10™*. Average strain
(error) drops roughly from 1073 to 107* to 107°.
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Chapter 6 Periodic Velocity Evaluation

6.1 Introduction

As discussed in §2.4, an efficient procedure for evaluating the velocity on the
surface of a periodic sheet is needed. Two of the sheet types are of interest: SWP1
and SWP2. In essence, it is of course not feasible to evaluate the influence of infinitely
many triangles on any one target point. Even with the spatial subdivision techniques
discussed in Chapter 5, there would be infinitely many boxes in these periodic sheet
types. What is needed is a method to evaluate the influence of the infinite periodic
extension of the base period — all at once — in an acceptable amount of time. The
O(N?) technique described in section §2.4 for the SWP1 surface type accomplishes
this goal. However, that method is incompatible with the fast velocity evaluations
of the previous chapter. Thus to utilize the faster velocity evaluation method for the
SWP1 and SWP2 surface types, the techniques presented in this chapter are used.

The easiest solution is simply to think of the influence of each period on a given
target point as a term in an infinite series. This series may be trivially truncated
at p terms, say, and the resultant sum used as the velocity. This method of course
results in significant errors, depending on the number of terms taken and the con-
vergence properties of the series. A first alternative is to use the Ewald summation
technique [6], which involves transforming the aforementioned infinite series into a
new series which converges at an exponential rate. The technique presented below is
completely different, and follows from previous work by Greengard [19], though none
of the details are the same due to the fact that we cannot use the same spherical
harmonic multi-pole expansions (this is a consequence of the kernel smoothing via
o). The basic idea is to calculate the influence of one full period as a multi-pole
expansion. If this expansion can be shifted (algebraically), one can write an expres-

sion for the cumulative influence of the multi-pole expansions of all periodic images,
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as a Taylor series about the origin. That is, the influence of all periodic images is

combined into a simple Taylor series about the origin.

6.2 Example

First, as a simple 2D example, consider a function ¢(z) defined the complex plane,
which represents the “influence” (in a Biot-Savart sense) of a square region about the
origin (specifically the base period P, — see Fig. 6.1) on an arbitrary target point z.
This is, in some sense, analogous to a pre-integrated form of the Biot-Savart integral
(Eq. 2.13). We want an expression for the “influence” of all distant image periods in

Pso. We begin by writing the p** order multi-pole expansion of ¢ about the origin as

¢(z) = Z T (6-1)

which gives the influence of P, on a sufficiently distant target point z. Since each
periodic image of P, has the same expansion about its local center, we can also
trivially generalize (i.e., translate) the series to give the influence of the square region
(with the same dimensions as Pp) about w on the target point z (for w sufficiently

far from z),

bu(z) = (7%)7,; : (6.2)

m=1

Now consider w to be sufficiently far away from the origin, but z, the target point
near the origin. Then Eq. 6.2 may be expressed as a Taylor series in z about the

origin via

$u(z) =Y ba2" + O(), (6.3)

n=0
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Figure 6.1: Images about the origin of a doubly periodic function. Shaded regions are
labelled: the (a) base period Py, (b) first ring P, (c) first and all remaining rings P,
(d) second and all remaining rings Ps,,. Black circles represent the accompanying
lattice of period centered points, P;. In (c) and (d) the shaded region and lattice
extend without bound.

where

L n+m-—1 1
by, = Z Um (=1)™ = (6.4)
m=1 m—1

The series is truncated after p terms to match the order of the multi-pole expansion.

We now define a new series t(z) which includes the influence of all periodic images
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P, on the target point z as

P2)= Y. D ba" (6.5)

wepZoo n=0

where Py, represents the lattice of points in the center of each periodic image in Poo

(again, see Fig. 6.1). Finally, the order of summations in Eq. 6.5 is reversed, giving
1/)(2) = chzn, (66)

where the new coeflicients are

o - iam n+m-—1 (—1)™ Z wn1+m
m=1

m— 1 ’weploo
P n+m-—1
- Z am (_l)m n+m (6'7)
m=1 m-—1

and S, ., need only be calculated once, for each of the various powers (m + n). In
this example, S; through Sj, may be required. An efficient way to calculate these
sums numerically is presented in [7], but since this is only a one-time calculation, any
brute force method is sufficient. Thus we have an expression, 1(z), which designates
the “influence” of all distant periods P,.,. The only information we need provide is

the multi-pole coeflicients a,, and the one-time sums S;.

6.3 Implementation

The technique in the previous section carries over into the realm of evaluating
the influence of all distant periodic images (P, ) of the doubly periodic vortex sheet
(SWP2). Consider a shear layer vortex sheet in the £ — y plane. The base period P,
represents the base periodic form of the vortex sheet. We recognize that the previous

multi-pole expansion of the Biot-Savart kernel (Eq. 5.7) is applicable here, simply by
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considering V to be the volume of a larger box surrounding one period of the entire
sheet (P, for example) instead of the smaller boxes used in Chapter 5. Comparing
with the example in the previous section, Eq. 6.2 is analogous to Eq. 5.7, z is analogous
to z and w is analogous to Z. As in the example, the multi-pole expansion about &
is converted (with sufficient differentiation) to a Taylor series about the origin and
we have (in index notation)

w) (x) = BY + BLx; + Blajzi + - (6.8)

where the coefficients B™ are functions of the moments M™ (of any one period, say
P,) and & (the center or lattice point of the periodic image under consideration, V).
Finally this Taylor series is summed for each periodic image in Py (i€, T € Proo)
resulting in an expression for the influence of all periodic images in Pz on the field

point & near the origin:
w2 (z) = C + Ciz; + ijkmja:k +e, (6.9)

where the C™ are functions of the moments M™ and the double periodic sums S; ;,
analogous to the sums S; in Eq. 6.7. Again the summations S; ; need only be calcu-
lated once and simply stored. Only 12 are needed for a second order expansion, as

depicted in Tab. 6.1. Sy, for example, is

Si1 = Z Til’l = Z ;;2 , (6.10)

(zi,9:)EP2oo (miyi)eProo "

where D, ; = [z? +y? + 02]/2. See Appendix E for details on evaluating these doubly
infinite sums.

Thus the total velocity at a target point x is calculated by using the standard
box—target interactions in Py U Py, but the influence of the entire P, is given by one
simple Taylor series. The accuracy of this technique simply depends on the number of

terms retained in the Taylor expansion (Eq. 6.8 and Eq. 6.9), assuming the moments
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Table 6.1: Terms T"7 of the double summations S; ; needed to evaluate C™. The first
row represents the numerator and the first column represents the denominator of the
summed term in each S, ;, as exemplified in Eq. 6.10.

(M™) and sums (S;;) are calculated accurately.

For the implementation utilized in this thesis the third order (and higher) moments
are not calculated (as in §5.4) and the Taylor series above is similarly truncated after
the second order terms. Thus, in order to achieve sufficient accuracy, Eq. 6.8 and
Eq. 6.9 are written slightly generalized as series about an arbitrary point z, instead
of restricting the series to be centered at the origin. Five points are chosen in the base
period (P,) around which these Taylor series are expanded such that the expansion
radius in a velocity evaluation, | — ¢,| and hence the expansion error, is sufficiently

small for all  in P,.
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Chapter 7 Performance

In this chapter we examine the collection of run-time parameters which need to be

set prior to each calculation and their influence over the final solution quality. Suit-

able choices are made for many of the parameters which are valid for all subsequent
calculations. In addition we attempt to show the correctness of the simulation code
by comparing it with common 2D calculations and exact analytic solutions. Conver-
gence with respect to several parameters is discussed. Finally we show the overall
speed improvement we have achieved over the direct O(N?) method. Most of the
studies presented in this chapter are based on an example initial condition, described

below.

7.1 Example Initial Condition

The example regularized vortex sheet configuration is seemingly odd in that it
would likely be quite difficult to create experimentally. However, it provides an excel-
lent testing ground for two basic vortex sheet phenomena in one simulation: standard
roll-up and also a nearly self-impinging surface. In general, the initial condition cre-
ates a flow similar to a closed, circular jet (with circular cross-section) inside a toroidal
surface. Vortex lines are closed circles around the tube of the toroidal surface. The
strength of each vortex line is varied in this case, such that the jet impinges on itself,
as depicted in Fig. 7.1.

Specifically, the initial condition is a SWPO0 surface as follows:

0.25sin7
X = | (1+0.25c0s7n)cos¢ I' = cos§. (7.1)
(14 0.25cosn)siné
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7.2 Run-time Parameters

Several parameters must be determined for each simulation to run at peak effi-
ciency in terms of CPU time versus error in the computation. In order to determine
these parameters, several simulations of the example vortex sheet (from §7.1) are com-
puted with different values for the parameters. All runs are variants of the following
parameter set: o = 0.2 (relative to initial tube diameter), R = 40, Eror = 0.0001,
6 point Gaussian quadrature, At = 0.05, automatic mesh refinement turned off.
Henceforth all time integration is performed with RK2. To compare different runs,
we examine a selection of four of the invariants: volume, helicity, and hydrodynamic
and angular impulse magnitude. The volume is scaled by the exact initial volume,
Vo = 72/8, as is the hydrodynamic impulse, with |Io| = n%/16. Preservation of the
invariants is a necessary but not sufficient condition for a successful, accurate simula-
tion. Of course without remeshing, each case is destined for failure after some time;
thus the following plots are examined to characterize the onset and rate of departure
from constancy. In Fig. 7.2 the resolution is varied with the other parameters held
constant. In Fig. 7.3 the box—target error tolerance Eror is varied with the other
parameters held constant. In Fig. 7.4 the number of Gauss integration points is varied
with the other parameters held constant. In Fig. 7.5 the time step At is varied with
the other parameters held constant. It is interesting to note that the invariants are
insensitive to some parameters, but highly sensitive to others. Assuming the influence
of the parameters is somewhat independent, we choose R = 20, Epor, = 0.001, num-
ber of Gauss points=6, At = 0.05 as representing a solution with sufficient accuracy.
This case is shown in Fig. 7.6, with various remesh parameters. Note that in all of

these cases, the time integration is stable.

7.3 Remeshing Frequency

Having decided on typical values to use for the run-time parameters, we now

examine the benefits and drawbacks of remeshing at various frequencies, based on the
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thresholds ¢y¢ and trg. As depicted in Fig. 7.6, the less frequent mesh refinement
trigger seems to be the best trade-off between small scale adaption and invariant
stability. The three sheet surfaces consist of, at the final time, 3200, 16500, and

24500 triangles, following the red, green and blue data respectively.

7.4 Convergence Analysis

There are several convergence properties to check. Unfortunately spatial conver-
gence is somewhat difficult to characterize due to the adaptive remeshing involved.
Thus we examine three spatial convergence issues independently: (1) the spatial in-
terpolants, (2) overall spatial convergence with a regular grid, and (3) qualitative
convergence inspection with the adaptive remeshing.

To examine convergence of the interpolation scheme, we again use the example
initial condition (from §7.1). Fig. 7.7 shows the convergence properties of the inter-
polation procedure, combining data for all nine functions in X, X, and X,,. In this
case, “error” E is defined as the maximum difference between the exact and interpo-
lated values, as determined by a 10000 point sample over a regular grid spanning the

parameter space:
F = max(Xi,exact - Xi,interpai =1 to 10000) (72)

Assuming E is proportional to N™ and also to AX~?™ we see that X is third or-
der accurate in AX and the derivatives are second order accurate. The triangular
Gaussian quadrature integration was confirmed to behave as expected, integrating
low order polynomials exactly as designed.

The overall order of accuracy in space is also determined from the example initial
condition. For this calculation, the sheet is not triangulated with the advancing front
procedure; instead a “regular” triangular grid is generated, with vertices located at
evenly spaced intervals in ¥.. With this discretization, it is possible to characterize

the spatial order of convergence with successively generated grids, halving the average
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length scale with each successive iteration. We generate data from two sets of runs,
one set with the number of Gauss points at 4, the other at 6. In each set, 3 simulations
are run for 10 time steps with At = 107°, Eror = 0, no remeshing and R = 5, 20, 80.

Assuming vertex locations then behave as
|Xezact - Xcalcl = AlAXIna (73)

(i.e., the error is dominated by factors relating to spatial resolution) where A is a
constant, and the average length scale decreases by a factor of 2 with each increase

in R, we have for n, the spatial order of convergence,

_ 1 |Xc2 — Xcll
- Og 3
].Og 2 !Xcg — Xc2|

(7.4)

n

where subscripts ci represent the i** calculation as the resolution varies from R; = 5
to R3 = 80. Fig. 7.8 shows the point-wise spatial order of convergence for both 4 and
6 point Gaussian quadrature. In both cases, n varies spatially from about 1.5 to 4,
the average value increasing from 2 (with the 4 point integration) to 2.5 with the 6
point integration.

To further characterize the spatial convergence, we examine three cases with R
= 10, 20 and 40; all other parameters are as decided in §7.2 and §7.3. A single
slice through the rings (as a mesh skeleton) is shown in Fig. 7.9. The three cases do
converge to the same solution. The low resolution case (R = 10) is distinguished from
the other two, but the difference between R = 20 and R = 40 is difficult to assess.

Lastly we recall that in 2D the limit as ¢ — 0, past the singularity time appears
to exist, at least in the outer loops of the roll-up region [27]. We have no reason
to believe this characteristic does not hold in 3D as well. In Fig. 7.10 below, the
example condition is presented at ¢ = 1.8 with the kernel smoothing parameter set
at o = 0.1 (one half of its previous value) relative to the initial diameter. Clearly the
roll-up begins at earlier time and the outer shape is qualitatively similar. Following

this trend, one can begin to imagine the limiting case for o = 0.
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7.5 Comparison with Exact Velocities

7.5.1 SWP1

Consider a cylindrical vortex sheet (SWP1) with unit radius and strength, aligned

along the z axis. It may be parameterized as

£
X = sin(n) , I' = f, (75)

cos(7)

with (§,n) € (—00..00, —7..w). Substitution into Eq. 2.22 yields the velocity as a

function of r, the radial distance from the z axis. Specifically

1 2 _ .2
U=grgl+o’=r"=va), (7.6)
where
a=[1=-r?+0*[1+7)+0%]. (7.7)

Fig. 7.11 shows how the numerical method (points) compares to the above analytic
formulas, for decreasing values of o. As o decreases, the velocity profile from the
regularized vortex sheet approaches that of the true vortex sheet. In this case, the
velocity of the vortex sheet is U = 1; thus we confirm the velocity of the regularized

sheet approaches that of the vortex sheet as ¢ decreases.
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7.5.2 SWP2

We parameterize a planar vortex sheet (SWP2) modeling a shear layer, as depicted

in Fig. 11.1, via

§/2n
X=|np2|, T=-¢2n (7.8)
0

The exact velocity profile above (z > 0) this vortex sheet from the regularized kernel

(Eq. 2.22) is

—z/o

VIt (z/0)2

Fig. 7.12 shows a sampling of calculated velocities, for two different values of o,

_ % (7.9)

compared to the exact analytic expression above. The agreement is good to a height
of 50 above the sheet at which point the maximum absolute error in the velocity is

0.005.

7.6 Comparison with 2D Results

7.6.1 SWP1

Several comparisons are possible with existing 2D results. Consider, for example,
the case of a cylindrical vortex sheet, the strength of which is given by the slip
velocity of an ideal fluid as a free stream passes around the cylinder. For comparison,

the SWP1 surface type is used with initial condition

&/2m
X =]0.2sin(n) |, I' = —2sin(n) (7.10)
0.2 cos(n)
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Each period in physical space has unit length and initial radius to period ratio of
0.2. A separate 2D code, which compares perfectly with the results in [50], is used
as a test bed. The current 3D code is able to reproduce similar results, as shown
in Fig. 7.13. The projected 3D solution in Fig. 7.13(a) is a snapshot in the time
evolution with ¢ = 0.05 (scaled with initial diameter), beginning with N=1000 and
ending with N=9400 triangles. The projected 3D solution in Fig. 7.13(b) is a snapshot
in a different time evolution with o = 0.025 (scaled with initial diameter), beginning

with N = 1000 and ending with N = 27,000 triangles.

7.6.2 SWP2

Another case for comparison is a shear layer with a purely 2D perturbation. Specif-

ically, we consider

£/2m + €siné
X = 17/271' , I'= -5/271'. (711)

—esiné

We have another purely 2D code which can duplicate the regularized calculations in
[27], and is also used as a comparison test bed. Fig. 7.14 shows the 2D shear layer
after a significant amount of time, with both the 2D curve and the projection of all 3D
surface triangles onto a plane. Note the perfect agreement in the roll-up region but
slight discrepancy at the edges of the period. Both calculations were performed with
o = 0.05, relative to period length; e = 0.05. The 3D calculation has a resolution of
R=20, requiring 1000 triangles for the initial geometry, and 32000 at the final time,
depicted. Further information about the purely 2D evolution equations, and their

regularization, is in Appendix D.
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7.7 Parallel Speedup

As mentioned in §3.3 and §3.7, the simulation can be run on multiple processors
in a shared memory environment. Fig. 7.15 shows the increase in execution speed
relative to a single processor at each time step for an example case with 2, 3, and 4
processors. Clearly the speed-up is not ideal (four times faster with four processors),
but this was to be expected as only the velocity evaluation routine is parallelized.
Other sections of the program are run on a single processor only.

Fig. 7.16 shows the compound effect of the multi-pole velocity evaluation technique
of Chapter 5 combined with parallel execution on four processors, relative to the direct
O(N?%) method on a single processor for the same example simulation. A 15-20 times

speed improvement is significant.
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Figure 7.1: Shaded mesh skeleton of the example configuration, a self-impinging jet
(SWP0), with o = 0.2 relative to initial tube diameter: (a) t=0, (il t=1.1, {e) t=2.2,
(d) t=3.0. Contours depict slices through the surface.
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tNC = 10% (blue)



64

1 &
e
s
: .
Lo
H
:
-2
107
E .
~ | ]
o ~
-3 ~
107 N ]
&3] - L- 8 [}
| o
[ ~
5 ~
~o
= ~
o ~
4 ~
107 F ~8
- ~
= [} ~
N ~
~o0
u o~
| o ~
~
10° e
. L L L | R NS PN

10000 20000 30000

Figure 7.7: Maximum error E versus the number of triangles for each component of
X (hollow points), X (filled), and X, (filled). Dashed line has slope m = —1.5. Solid
line has slope m = —1.0.



65

Figure 7.8: Spatial order of convergence with a regular grid and the example configu-
ration as a shaded contour plot over the parameter space, . Dots represent vertices
for the lowest resolution case (R = 5). (a) 4 point Gaussian quadrature, (b) 6 point
Gaussian quadrature.
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Figure 7.9: Qualitative spatial convergence demonstrated with a slice through the
sheet surface at constant z at t = 2.6, R = 10, 20, 40.
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Figure 7.10: Shaded mesh skeleton and contour slices with reduced kernel smoothing

parameter, 0 = 0.1 relative to initial diameter. Contours are slices through the
surface.
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Figure 7.11: Comparison of numerical method (points) with exact velocities (lines)
from the modified Biot-Savart kernel Eq. 2.22 with o = 0.25,0.1, (filled circles) and
0.01 (open circles). Curves steepen with decreasing 0. Note the dramatic difference
in accuracy for 0 = 0.01 in (a) 500 and (b) 8000 triangles.
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Figure 7.12: Sampled velocity profile above the regularized planar vortex sheet (red)
and the exact solution from Eq. 7.9 (black). Samples taken from a uniform 25 by 25
grid over the sheet. Absolute error of 0.005 at a height of 50.
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Figure 7.14: Comparison of current 3D method (SWP2 in red), projected into the
the (z — 2) plane with 2D singly periodic vortex sheet (black line). o = 0.05, initial
perturbation amplitude € = 0.05.
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step of the example simulation (from §7.1). Two processors (red), three (green), and
four (blue). Only the velocity evaluation routine is parallelized; hence the speed-up
is not perfect.
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Figure 7.16: Cumulative program speed-up S incorporating both four processors
and the multi-pole velocity evaluation technique at each time step of the example
simulation (from §7.1).
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Chapter 8 Examples

The following examples in this chapter show a sampling of different flows that can
be modeled with the three surface types of regularized vortex sheets. In all cases,

unless otherwise specified, the run time parameters are set as follows:

time step: At = 0.05
spatial resolution: R = 20
remeshing thresholds: ;5 = 2, tyo = 20%
number of Gauss points: 6

box-target interaction error tolerance: FEgor = 0.001

8.1 Jet (SWP1)

We first consider the growth of an axially perturbed jet with circular cross section.
This is modeled with the SWP1 surface, and is thus constrained to periodic motion.
We use the following initial conditions, defining the axial first mode geometric per-

turbation:

£/2m
X = | 0.25[sin(n) + 0.1sin(¢)] r

0.25[cos(n) + 0.1sin(£)]

"3 (8.1)

I

This is a perturbation in the geometry only, not in the sheet strength and thus does
not qualify as a true linear perturbation to the infinite, circular jet (see discussion in
Chapter 9). An initial grid density of R = 20 generates 500 triangles for the initial
mesh, as shown in Fig. 8.1(a). Note that the time evolution preserves axisymmetry
as seen by eye — an artifact of the relatively large o (=0.2, relative to the initial

average diameter). No symmetries are imposed by the computational method. By



72
Fig. 8.1(d), we see significant roll-up of the sheet, essentially defining a vortex ring
around the jet axis. At this time, the sheet is defined with 24,000 triangles per period,
and computation becomes prohibitively expensive with the direct O(N?) method
(Eq. 2.24). Fig. 8.1(e) shows the amount of detail and variety of scales present in the
core of the vortex ring. Fig. 8.1(f) depicts the C! surface interpolant of the smooth
sheet actually used in the computations. Fig. 8.2 shows the effect of varying o while
keeping the initial surface type (duplicated from above) constant. Smaller values of
o lead to faster roll-up as anticipated by Fig. 7.11. Also, as o decreases, we begin to

see the introduction of small scale instabilities and a deviation from axisymmetry.

8.2 Vortex Rings, Co-axial (SWPO0 x 2)

Next we consider the interaction of two impulse aligned vortex rings. The initial

position and strength of two sheets is given by

£0.5 4+ 0.25sinn
X =|(1+0.25cosn)cos¢ r'=-—n. (8.2)
(1+0.25cosn)siné

This particular parameterization models the vortex rings as perfect toroids, with
cumulative circulation spread uniformly over each surface. The regularized motion of
an isolated single sheet of this type is not steady, as demonstrated by the non-circular
streamlines near the sheet surface in Fig. 8.3; steady motion would only be achieved
if the sheet surface were also a streamline. In general, the core dynamics of a vortex
ring could be accurately modeled with several SWPO0 surfaces, each with different ring
to tube radii, all focused around the same vortex core. We present here a model of
the large scale motion, using only a single surface to define each vortex ring.

3200 triangles are needed to define each of the initial toroids, as shown in Fig. 8.4(a).
Again, throughout the evolution axisymmetry is maintained due to the relatively large
o (=0.2 scaled with the initial tube diameter). The time step is lowered to At = 0.005.

The initially trailing ring contracts as it moves through the lead ring, then expands
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as it surrounds the lead ring, leaving a long tail of low-vorticity surface behind as in
Fig. 8.4(c). The motion is only somewhat similar to the first visualization of leap-
frogging vortex rings [61]. The initial lead ring becomes highly distorted as time
progresses, and also leaves behind a short tail which may or may not be pulled into
the vortex interaction. Unfortunately, further computation is hindered by the high
curvature tail of the initial lead ring, which becomes progressively sharper as time

continues. In frame (c) the combination of surfaces require 1.2-10° triangles to define.

8.3 Vortex Rings, Offset (SWP0 x 2)

Modeling the interaction of two impulse offset vortex rings, we define the initial
position and strength of two sheets as in the previous section, but with a slight offset

along the Y axis:

+0.5 + 0.25sin7
X =|(1+0.25c0sn)cos¢ + 0.25 ['=-—n. (8.3)
(14 0.25cosn) sin&

As in the previous section, the core dynamics of each ring are not well represented
with a single surface. The time step is again lowered to At = 0.005, o = 0.2 relative
to the initial diameters, and each initial surface has 3200 triangles.

In this simulation, we again see the trailing vortex ring contract and accelerate
as it is forced through the other, as shown in Fig. 8.5. This time, however, the top
portion of the trailing ring is forced though first, ahead of the lower portion. This
top to bottom discrepancy is exaggerated by the last time frame, producing a distinct
“V” in the trailing sheet surface (Fig. 8.5(c)). Calculation to longer time is hindered
by the relatively sharp edges spanning the entire circumference of the sheet surfaces
(clearly discernible in Fig. 8.5(c)), the time of which requires 1.4 - 10° triangles to
define. As with the in-line vortex rings, symmetry (though not enforced) is preserved

well.
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Fig. 8.6 shows the vorticity distribution at the final time. Clearly vorticity has
localized to thin circumferential bands on each surface, leaving a vast majority of
the surface area to move as a simple material surface. Finally in Fig. 8.7 we show a
cut-away of the final time’s mesh skeleton, revealing to some extent the large length

scale differences between flat areas and the sharp edges mentioned previously.

8.4 Vortex Rings, Interlocked (SWP0 x 2)

Modeling a fully 3D interaction of two interlocked vortex rings, we define the

initial position and strength of the two sheets as

0.25sinn
X =1 (1+0.25cosn)cos¢ I'=-—n (8.4)
(1+0.25cosn)siné

and

(14 0.25cosn) cos¢
X = 0.25sinn ['=—n, (8.5)
(14 0.25cosn)sin ¢

as depicted in Fig. 8.8(a). As in the previous section, the core dynamics of each ring
are not well represented with a single surface. The time step is again lowered to
At = 0.005, 0 = 0.2 relative to the initial diameters, and each initial surface has 3200
triangles.

The horizontal ring and fluid in its center are propelled upward, causing a fold
to develop in the vertical ring’s surface, despite stabilizing rotation about its tubular
core. Fig. 8.8(b) hints at the formation of this fold, while Fig. 8.8(c) and (d) give
an indication of how sharp the fold becomes. At the same time, the vertical ring
propagates into the page, creating a similar fold in the horizontal ring. At a later

time, in Fig. 8.8(c), significant length scale differentes exist in different parts of the
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sheet, as seen in Fig. 8.8(d): the smallest triangle edges at this time are 4 - 107 of
the initial ring radius. Analogous deformations occur for the horizontal ring, which
are hidden from view in Fig. 8.8(c). Each sheet in Fig. 8.8(c) has 50,000 triangles,
but again calculations cannot realistically proceed in time as the curvature in the
fold region is increasing dramatically, requiring so many triangles to resolve that the

current simulation proceeds so slowly as to be impractical.
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(a)

Figure 8.1: SWP1 vortex sheet with strength distribution simulating a hollow-core jet
with initial 1** mode axial perturbation, o = 0.2 (relative to initial average diameter).
One period calculated, two shown with second in cut-away. Shaded mesh skeleton:
(a) t=0; (b) t=0.2; (c) t=0.4; (d) t=0.6; (e) zoom of roll-up region in (d); (f) actual
smooth surface representation of (e).
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Figure 8.1: (cont)
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Figure 8.2: Shaded mesh skeleton of SWP1 vortex sheet with strength distribution
simulating a hollow-core jet at ¢ = 0.12. Initial 1°* mode axial perturbation. One
period calculated, two shown with second in cut-away. (a) o = 0.5, (b) o = 0.25, (c)
o = 0.0625.
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Figure 8.3: Slice through the vortex ring model, depicting instantaneous (¢t = 0)
velocity field in a frame moving with the vortex ring. The axes are radial distance
r from the center of the ring, and distance z parallel to the impulse vector. Color
contours represent the velocity magnitude, from zero (dark blue) to 1.8 times the
propagation velocity (red); black lines are instantaneous streamlines; the white circle
is the vortex sheet surface.
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Figure 8.4: Shaded mesh skeleton of hollow-core vortex rings (SWP0) with in-line
impulse vectors, o = 0.2 (relative to initial tube diameters). Ring to tube radius
ratio is 4. Right side is a vertical slice through the ring centers; (a) t=0, (b) t=0.44,
(e) t=D.588.
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Figure 8.5: Shaded mesh skeleton of hollow-core vortex rings (SWPO0) with offset
impulse vectors, o = 0.2 (relative to initial tube diameters). Ring to tube radius

ratio is 4. Right side is a vertical slice through the ring centers; (a) t=0, (b) t=0.44,
(c) t=0.88.
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Figure 8.6: Time slice corresponding to Fig. 8.5(c), colored by sheet strength |v/|.
Vorticity has localized to thin bands on each surface.
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Figure 8.7: Mesh skeleton corresponding to Fig. 8.5(c), detailing triangulation. Note
the high curvature fold developing in the bottom portion of the surface.
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Figure 8.8: Shaded mesh skeleton of interlocked hollow-core vortex rings (SWPO0) with
perpendicular impulse vectors. (o = 0.2 relative to initial tube diameter; ring to tube
radius ratio is 4.) Vertical ring impulse points left and into the page, while horizontal
ring impulse points up. (a) t=0, (b) t=0.28, (c) t=0.54, (d) zoom of pinched region
in (c).
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Chapter 9 Shear Layer Application

As implied in Chapter 1, the spatially evolving, perturbed planar shear layer
is a configuration ideally suited for the vortex sheet model. The free shear layer
is a classic fluid mechanics problem with applications in many areas. Particularly
interesting in the shear layer is the development of streamwise vorticity after the
primary Kelvin-Helmholtz instability forms, from initial conditions dominated by
spanwise vorticity. We choose a particular 3D initial perturbation, not to model a
specific experimental condition, but rather to characterize the behavior of a general
spanwise and streamwise perturbations. At our disposal we have the doubly periodic
SWP2 surface, and the smoothing parameter o.

The initial perturbation implemented is as follows:

§/2m
X = 17/27r (9.1)
(sin¢ + sinn)/10
I'=—¢/2m — (sin{ + sinn)/10. (9.2)

This initial condition is a true linear perturbation in the sense that the sheet strength
is perturbed in addition to the geometry as designated by a linear perturbation anal-
ysis of the planar vortex sheet; it is not, however, a single normal mode but rather a
combination (see Chapter 11 for details of the linear analysis). The initial geometry
is shown in Fig. 9.1(a); fluid above the sheet moves out of the page and to the left
(along the negative z axis), while fluid below moves in the opposite direction. The
smoothing parameter is ¢ = 0.1 and the perturbation magnitude is 0.2, both relative
to the (unit) period length. The motion of only one of the four periods depicted in
Fig. 9.1 is calculated. Extra periods, as well as two vertical plane cuts, are shown for

visual clarity.
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9.1 Observations

At t = 1.0 in the simulated shear layer evolution, the primary spanwise rollers
have clearly formed (Kelvin-Helmholtz instability), and the spanwise perturbation
has grown considerably, as shown in Fig. 9.1(b). Note that the sheet boundary in
Fig. 9.1(a) lies in constant z and constant y planes; such is not the case at later
times, as the boundaries have moved in a Lagrangian sense. The roll-up as seen by
the two plane cuts is quite similar to the roll-up of a purely 2D shear layer which,
for reference, is depicted in Fig. 10.3. At the time in Fig. 9.1(c) we see the onset of
streamwise roll-up, as evidenced by the streamwise fold, indicating that some of the
initially spanwise dominated vorticity has shifted to streamwise. Fig. 9.1(d), though
complicated to view, depicts regions where the vorticity magnitude is greater than a
threshold cut-off. One can see two distinct regions of vorticity: (1) the core of the
perturbed spanwise rollers with vorticity oriented primarily in the spanwise direction
(blue arrows) and (2) the connected looping structure containing the streamwise
vorticity, alternately pointing upstream and downstream (red arrows). These looping
structures bear a strong resemblance to the horseshoe vortices known to form in the
plane boundary layer, and the shear-generated hairpin vortices seen in homogeneous
turbulent computations. Fig. 9.2 depicts the sheet at the same time as Fig. 9.1(d),
but is color-contoured with the local vorticity magnitude, |v|, revealing not only the
streamwise development of vorticity, but also scarcity of vorticity elsewhere, besides in
the Kelvin-Helmholtz core. Indeed it would seem at this late time that representation
of the entire sheet surface is redundant, as the vorticity is so finely concentrated into
filament structures. Also shown in Fig. 9.2 are select vortex lines, visibly collecting
in the streamwise concentration of vorticity between the primary rollers.

Fig. 9.3(a) shows an approximation of the circulation held by the spanwise and
streamwise vortices as a function of time. The streamwise intensity increases linearly
with time after ¢ = 1.0, while the spanwise circulation hits a local maximum near the
end of the simulation, indicating that the two primary structures holding vorticity

have not yet reached a steady-state. The circulation ratio is shown in Fig. 9.3(b),
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ranging from 7 to 9 in the time calculated, but apparently will reach values less than 7
at longer times. Circulation is calculated by closed loop path integration, the contour
of which approximately surrounded each vorticity concentration independently.

To reveal the structure of the sheet at the final time, ¢t = 1.8, we examine plane cuts
through the surface at constant z and y, as shown in Fig. 9.4 and Fig. 9.5. Fig. 9.4
nicely reveals the extent of the Kelvin-Helmholtz roll-up and also, particularly in
frames (c) and (d), the core deformation otherwise hidden beneath the outer layers of
the sheet. Visible in frame (b), the developing streamwise vorticity is generally aligned
with the z axis, but not precisely. In Fig. 9.5 the Kelvin-Helmholtz core structure is
dissected further with plane cuts of constant z through the core. In frame (c), the
core is clearly revealed to contain axial vorticity itself, due to deformation, as it passes
into and out of a plane of constant z. Fig. 9.6 further reveals the spiral structure
visible in Fig. 9.5(c). Note in the close-up Fig. 9.6 (a) and (b) the Kelvin-Helmholtz
core is deformed upward, as it is ‘pulled’ by the opposite-signed streamwise vortices

just above it.

9.2 Other Experiments

Lasheras & Choi [30] investigated experimentally a spatially evolving shear layer
with imposed periodic spanwise and streamwise perturbations. Their shear layer was
generated with two laminar streams of water at different speed (3.4 and 1.5 cm/s)
joining at the termination of a splitter plate. Upstream conditions were carefully
controlled such that without any forced disturbances, the free shear layer extending
from the plate developed in an effectively 2D manner for several Kelvin-Helmholtz
wavelengths past the splitter plate termination line. Two periodic perturbation modes
were introduced to the free shear layer with physical perturbations of the splitter plate:
(a) vertical corrugations visible when viewed from downstream (i.e., normal to the
plate), and (b) splitter termination variations visible when viewed from above the
plate (i.e., in the plane of the plate). The experiments were run at Re=45 based on

the velocity difference of the two streams and the momentum thickness at the plate
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termination line. Their visualization was created by spotlight induced fluorescence
from fluorescein particles in the lower stream.

With the two independent splitter plate geometry variations, Lasheras & Choi
were able to test the effects of several different initial conditions. For the specific case
shown here, the splitter plate was configured with perturbations in the plane of the
plate, as visible on the left edge of Fig. 9.7(a). In this experimental visualization, flow
is from left to right. The lower, slow stream has the appearance of a solid 3D structure
when flashed with the spotlight from above. The primary Kelvin-Helmholtz rollers
are hidden from direct view, but their position can be inferred from the developed
streamwise vorticity. The developed streamwise vorticity is evidenced by the rolling
sides of the tongue-like structure, particularly above the third spanwise roller.

Despite differences in the exact conditions creating the shear layer, and of course
the presence of viscous effects in the experiment, there is a remarkable similarity
between the calculations done in this chapter and the experiment, as evidenced by
Fig. 9.7(b), which is a 3 x 3 periodic grid of the calculation presented in Fig. 9.1(c)
at time t = 1.8. The doubly periodic simulation is particularly similar to the flow
surrounding the third roller in Fig. 9.7(a). Lasheras & Choi do point out that for
many different perturbations they could introduce (in plane and normal to the splitter
plate), the subsequent introduction of streamwise vorticity are qualitatively the same.
Numerical simulations by Ashurst and Meiburg [4] model the experimental shear layer
with inviscid vortex filaments producing very similar qualitative results as well, such
that even at these low Reynolds numbers (= 100), inviscid vortex methods are suitable
models of the true, viscous shear layer.

With our initial condition, the source of streamwise vorticity is clear: the relative
motion of the sheet surface between the Kelvin-Helmholtz rollers has a spanwise
dependence. A portion of the sheet which is initially between two rollers is alternately
pulled towards one roller and then the other as the span is traversed. As vortex lines
move with the sheet, they approach each other in the surface shearing region between
the rollers where the spanwise variation is greatest. This characterization of the onset

of streamwise vorticity is essentially the same as that given in [30] and is particularly
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well revealed by the left-most sheet boundary of Fig. 9.7(b): the sheet boundary, a
material line, is seen to alternately drift towards and away from the left-most roller.
Also quite apparent from Fig. 9.1(c) is that the streamwise alignment of vorticity
occurs at a time scale much greater than that of the primary Kelvin-Helmholtz roll-
up: the streamwise vortices are just beginning to spiral while the primary rollers

already have several turns.
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Figure 9.1: Roll-up of a perturbed shear layer (SWP2). One period calculated, three
shown shaded, one shown with two vertical slices; (a) t = 0, (b) t = 1.0, (¢) t = 1.8;
(d) only triangles with vorticity magnitude over a threshold are plotted, revealing
the connectivity of the streamwise vorticity. Vortex lines follow the arrows: spanwise
(blue), streamwise (red).
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Figure 9.1: (cont)
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Figure 9.2: Different viewing angle of Fig. 9.1(c), revealing sheet strength |v| and
vortex lines. Vorticity has localized to streamwise loops (red) and spanwise rollers
(red, hidden), leaving a majority of the sheet surface with little vorticity (blue).
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Figure 9.3: Approximate circulation (a) held in the spanwise (o) and streamwise (o)
vortices as a function of time; (b) ratio of the spanwise to streamwise circulations.
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Figure 9.4: Variation of the Kelvin-Helmholtz roll-up with span at the final computed
time, t = 1.8. (a) y = —0.125, (b) y = 0. In (b), the developing streamwise vorticity
is not uniformly parallel to the z axis, as implied by the spanwise deviation of the

fold from the planar cut.
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Figure 9.4: (cont) (c) y = 0.125, and (d) y = 0.25 reveal the deformation of the
Kelvin-Helmholtz roll-up core.
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Figure 9.5: Variation of the Kelvin-Helmholtz roll-up with streamwise location at the
final computed time, t = 1.8. (a) z = —0.25, (b) z = —0.125.
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(d)

Figure 9.5: (cont) (c) z = 0, and (d) z = 0.125. The Kelvin-Helmholtz core pertur-
bations are clearly visible in (c), as revealed by the roll-up of the core as is passes
into and out of the cutting plane.
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(c), shaded with sheet strength mag-

Figure 9.6: Close-up of spiral region in Fig. 9.5
(a), and at a slight

nitude, ||, from maximum in red to minimum in blue. Head on
angle (b).
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Figure 9.7: Similarity of perturbed shear layer evolution: (a) snapshot of the slow-
speed side of a spatially and temporally developing shear layer (experiment by
Lasheras & Choi [30]), (b) shear layer interface of doubly periodic calculation as
described in §9.1. See text for conditions of the experiment.



100

Chapter 10 Vortex Sheet Critical Time

We now wish to focus on a different aspect of vortex sheet roll-up. Rather than
examining long-time behavior with a fixed smoothing parameter ¢ > 0, as in the
previous two chapters, we now look at the o — 0 limit and in particular discuss a
technique for predicting the singularity time of true vortex sheet motion, as mentioned
in Chapter 1. We apply this technique on the doubly periodic planar shear layer, as

the 2D simplification of this configuration has been studied extensively.

10.1 Background

The non-linear evolution of a doubly infinite, uniform vortex sheet subject to small
out-of-plane disturbances is a classic problem in fluid mechanics. It has long been
known that the linearized Kelvin-Helmholtz instability of the vortex sheet subject to
two-dimensional shape disturbances results in an ill-posed initial-value problem [8, 52]
— see Saffman [51] for a discussion. Moore [38] studied the non-linear problem by
constructing approximate solutions of the exact Birkhoff-Rott equation for the vortex
sheet evolution, demonstrating the formation of a finite-time singularity in the form
of an infinite sheet curvature and a cusp in the sheet strength (local velocity jump), in
finite time. The problem may seem academic but does have practical relevance to the
point-wise convergence of numerical solutions to the compressible Euler equations,
where slip surfaces (vortex sheets) are produced at triple points [54]. For convective
Mach numbers (difference in velocity over the sum of the sound speeds) less than
than unity, these vortex sheets in compressible Euler flow are also ill-posed [36];
and hence it is difficult for calculations in this regime to converge to an appropriate
weak solution for times greater than the singularity time as the mesh size, and hence
artificial viscosity is reduced.

In this chapter we present a new technique for estimating the time of singularity
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formation (t.) of vortex sheets evolving in an incompressible, inviscid flow. The
method is particularly useful in this thesis, as it can be used with regularized vortex
sheet calculations. Though general in nature, we apply the method to shear layer
simulations, as this geometry has been studied extensively in 2D. We begin with
a review of Moore’s [38] analytic result for 2D vortex sheets and the subsequent

implementation by Krasny [28] for 2D normal mode perturbations.

10.2 Finite-time Singularity for 2D Vortex Sheets

We define a strictly 2D vortex sheet evolution by

gl(Ea t) 6 O
92(£,t) 0
The field velocity (from Eq. 2.22) is then
1 [ /8 1 e
g3
u(x = — — dE€. 10.2
(@0 2w/(as)(x—gl>2+<z~gz>2 o % (102)
e -+ g1

It follows from Eq. 10.1 and Eq. 10.2 that the vortex sheet shape is invariant in the
y-direction and that vortex lines remain parallel to the y-axis. When & — X on the
sheet and the left-side of Eq. 10.2 is replaced by 0X/0t, a version of the Birkhoff-
Rott equation for 2D vortex sheet evolution results, the integrals of which are of the
Cauchy Principal Value type.

Moore [38] showed that the 2D evolution of a vortex sheet (see Fig. 10.1 for a

sketch of the shear layer model) from initial conditions given, in our notation, by

gl(g) = §, 92(5) = € sin k€7 gB(E) = —Uf, (103)

where k = 2w /A, X is the wavelength and e is the initial disturbance height, results
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Figure 10.1: Sketch of a planar vortex sheet with velocity jump U.

in a curvature singularity in the sheet shape at a time t. given by

- ~ 2
1+7mt,+In(27t,) =1In (—:) , (10.4)

TE

where é = €/\ and t, = t,U/X. The mechanism of singularity formation is the
focusing of vorticity onto the singularity point by the non-linear sheet dynamics for
¢ > 0. This particular choice of initial disturbance does not correspond to a normal
mode of the linearized Birkhoff-Rott evolution equation; however, a modification of
Moore’s result for a normal mode disturbance was given by Krasny [28], who showed

that the initial sheet disturbance of wavelength A given by

g1(§) =€ —esin(k),  g§) =esin(kf),  gs(§) = -U§, (10.5)

produced Moore’s curvature singularity at a time ¢, given by

| +7f+In(rE) = In (L) | (10.6)

2me

10.3 Numerical Estimation of the Critical Time, ¢,

Previous numerical studies of the critical time have involved calculation of true

(un-smoothed) vortex sheet motion, primarily in 2D [28]. Presented here is a method
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which generalizes easily to 3D and is suitable to implement with calculations of reg-
ularized vortex sheet motion.
The maximum curvature of the sheet s, is assumed to behave, near the critical

time, as

g

g (10.7)

Km —

where o, 3 and t,, are unknown constants depending on the initial condition and the
regularization parameter, 0. The location in the sheet where the curvature obtains
its maximum value shifts slightly with time; however, near the critical time, we find
in all cases that this location converges to a specific material point on the sheet. The
critical time is determined by eiamining the run-generated data (¢, kp,) to find the

best linear fit (in terms of maximizing the correlation coeflicient) to
/=Bt — 1), (10.8)

for all feasible values of (a, 3) and a specified time range ¢ € [t1,ts]. We define ¢, as
the time at which the (¢, k) curve first changes concavity. Then ¢, is set as a high
percentage of ts, e.g., t; = 0.85t, (see Fig. 10.2). As shown in the next section, with
smooth data, the technique is fairly insensitive to the percentage chosen.

Thus far, the critical time ¢., is a function of the initial condition, evolution
equations, and smoothing parameter ¢ (assuming an accurate integrated solution is
obtained). The quantity of interest, of course, is the limiting value of t., as 0 — 0
for a given initial condition. This value is obtained via extrapolation of the (o,t.,)

data to 0 = 0 with a quadratic fit, as will be shown in Fig. 10.4.
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Figure 10.2: Example (¢, k) data (dots) from 2D evolution defined by Eq. D.3 and
sheet parameters € = 0.01, o = .05 (see Eq. 10.9). Also four different curve fits (lines
from left to right following arrow) of Eq. 10.8 with ¢; = 0.75¢t,, 0.8t2, 0.85t, and 0.9¢,.
In this case t, = 0.84.

10.3.1 2D evolution, 2D initial condition

Consider the initial condition (periodic in £ with unit period)

X (&,0) = £ + esin 2w¢, (10.9a)
Y(£,0) = — esin2n¢, (10.9b)
L) =¢, (10.9¢)

which is the one considered in [28]. Since this is a purely 2D initial condition, Eq. 2.22
simplifies to the regularized, periodic Birkhoff-Rott equation (see Appendix D). As
detailed in the appendix, it is interesting to note that the order of adding regular-
ization and periodicity to the Birkhoff-Rott kernel does have a minor effect on the

form of the final 2D evolution equations, though their ¢ — 0 limit is, of course, the
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same. An example of the sheet evolution (subject to Eq. D.3) is shown in Fig. 10.3.
Several calculations are performed, with both 2D evolution equations and several val-
ues of the regularization parameter o and perturbation amplitude e. All calculations
in this section are done with the number of vortex blobs fixed at 500, trapezoidal
spatial integration, and RK4 temporal integration with At = 0.005. As one would
assume necessary, we find the extrapolated (¢ — 0) values of t. to be independent
of the evolution equations chosen (between Eq. D.2 or Eq. D.3), as demonstrated in
Fig. 10.4. Furthermore, we are able to reproduce the numerical critical time findings
of [28] with acceptable accuracy using this technique, as shown in Fig. 10.5, for sev-
eral slightly different initial conditions (variations in the perturbation magnitude €).
With singularity prediction success in a purely 2D initial condition and evolution, we

move to calculations with the full 3D evolution equations.

10.3.2 3D evolution, 2D initial condition

We now present an extension of the calculations done in the previous section.
Equivalent initial conditions, extruded into a 3D sheet, are used with the full 3D

evolution equations (Eq. 2.22). Specifically, we have

£/2m + esing
X(&n,t=0)= n/2m I'(&,n) =—¢/2m. (10.10)

—esiné

An example initial condition and subsequent evolution is shown in Fig. 10.6.

The same critical time estimation technique is used again, but instead of finding
the maximum curvature (k,,) over the entire sheet surface, independent spanwise
slices of the sheet are considered instead. In this manner we calculate the critical
time as a function of the spanwise location y;. The maximum curvature of each slice
is taken as the maximum principal curvature (k,) on the slice. Again calculations were
done, for several values of ¢ and fixed initial amplitude ¢ = 0.01. Fig. 10.7 shows the

extrapolated critical time as a function of the spanwise position y, (for the selected
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Figure 10.3: Example roll-up of a 2D, periodic vortex sheet (¢ = .01 and o = .05)
modeling a shear layer, subject to evolution Eq. D.3. Three snapshots represent the
times (a) t = 0, (b) t = t.,, and (c) t > t ;.

e = 0.0375). As expected, t. remains constant due to the purely 2D perturbation
and a benchmark is established for which to judge spanwise perturbations of t. for

arbitrary, fully 3D initial conditions.

10.3.3 3D evolution, 3D initial condition

Finally we consider a fully 3D initial condition: a pure 3D normal mode pertur-
bation. This is a straightforward extension of the previous section, representing the
most basic 3D perturbation as a solution of the linearized problem with potential

differences. The 3D normal modes are detailed in the following chapter. Specifically,
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Figure 10.4: Quadratic fits used to extrapolate t., to 0 = 0 with data from sheets
driven by (a) Eq. D.2 and (b) Eq. D.3, both with initial condition given by Eq. 10.9
and € = 0.01. Both approach t, =~ 0.39 as ¢ — 0, independent of the temporal
window used (¢; is a larger fraction of ¢, following arrow).

we take
¢/2n
X(Emt=0)=| n/2n T(¢,n) = —£/2m — ﬁ cos(é+n),  (10.11)
ecos(£ + 1)

as depicted in Fig. 10.8(a). The geometric perturbation is only 2D (cylindrical)
when viewed along the appropriate axis, as shown in Fig. 10.8(b), but the vorticity
distribution is not 2D in any sense.

When calculating the motion of these regularized vortex sheets at various am-
plitudes € and with different values of o, we noticed the sheet geometry remained
2D when viewed along the appropriate axis. This surprising observation lead us to
consider the motion of true vortex sheets, evolving from this normal mode initial
condition, from an analytic standpoint rather than simulation and follows in the next

chapter.
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Figure 10.6: One period (P, from Fig. 6.1) of the doubly periodic shear layer vortex
sheet (Eq. 10.10) with o = 0.0375, ¢ = 0.05, and (a) t = 0, (b) ¢t > ter. Even for
large time ¢, the solution remains 2D, as shown by the projected side view (=



110

041

0.4

038 F "

L n L 1 n 1 " I " 1 L I —
0.36)5 035 0 0.5 0.5

Ys

Figure 10.7: Extrapolated (¢ — 0) singularity time for the 3D calculation of a 2D

initial condition, as a function of spanwise position, y;. Compare with corresponding
e = 0.01 in Fig. 10.5.
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Figure 10.8: 3D normal mode initial condition and associated vortex lines. Flow is in
the positive z direction below the sheet, negative x direction above the sheet. Vertical
scale is exaggerated to demonstrate geometry: (a) view from above; (b) rotated view
from above, revealing 2D geometry. Vortex lines are not exactly parallel to the y axis.
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Chapter 11 3D Normal Mode Perturbations

11.1 Introduction

In this chapter we consider the true vortex sheet evolution when subject to a dis-
turbance which is a finite amplitude 3D normal mode of the linear stability problem.
As such we return to the non-smoothed (¢ = 0) Biot-Savart kernel and the hazards
ill-posedness and singularity formation as described in Chapter 1. In fact, the goal
of the analysis in this chapter is to characterize the singularity formation of the 3D
vortex sheet in terms derived from what is already known about 2D singularity for-
mation. The analyzed 3D normal mode is cylindrical, in a defined sense. It is shown
that the full non-linear sheet motion then remains cylindrical and that it is identical
to a suitably chosen, strictly 2D vortex sheet evolution. It follows that the singu-
larity formation process is the same as for a 2D normal mode disturbance, allowing
a straightforward extension of Moore’s result to the case of an initial disturbance

consisting of a finite amplitude, 3D normal mode.

11.2 Vortex Sheet Evolution

Consider the motion of a doubly infinite vortex sheet in three dimensions. In
Cartesian co-ordinates (z,y, z) the undisturbed sheet shape lies in the (2 — y) plane
with uniform z-velocities of ——%U for z > 0 and %—U for z < 0, where U is the velocity
jump magnitude across z = 0 in the z-direction (see Fig. 11.1). For a general sheet

shape we employ a parametric surface description

X(&m,t)
XEmt)=1vEnt) |, T=TEn), (11.1)

Z(&n,t)
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where (£,n) are Lagrangian parameters defining the sheet position X and the veloc-
ity potential jump I'. Unless otherwise specified the dependence on time ¢ will be

suppressed. At a field point x, the velocity induced by the sheet is given by Eq. 2.19:

1 [ [Wx(e-X)
u(m)—-4ﬂ__/— S ddn (11.2)

Recall (see §2.3) when £ — X on the sheet, the left-hand side of Eq. 11.2 can be
replaced by 8X /0t resulting in a Lagrangian equation [10] for the sheet evolution from
given initial conditions X(&,7,t = 0), I'(§, 7). The integral must then be interpreted
as a Hadamard principal-part integral; thus sheet velocities are the average of the
sheet-induced velocity when & — X from either side. In the sheet evolution I'(§,n)

is invariant with time.

11.3 Evolution of an Initially Cylindrical Vortex Sheet

We now introduce and define a “cylindrical” sheet. We work in Cartesian co-
ordinates (z',9, 2’) and use Lagrangian sheet co-ordinates (¢',n'). For present pur-

poses, a vortex sheet is said to be cylindrical at some time instant if the shape

z
A

S

x 1
2U

%
/ - Y
F

Figure 11.1: Sketch of a planar vortex sheet with velocity jump U.
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geometry and vorticity distribution are of the form

f1(€)
X'(¢',n) = n
(€ )
0)
W = g?’ 1

0

b

I'= f3(§) +ean (11.3a)
df1/0¢

0 , (11.3b)
0f/0¢

where ¢; is a constant equal to the gradient of I in the 3’ direction. The functions

f1 and f, are such that fi(§) =&+ fl(ﬁ), with |f1(§)/£| — 0 as £ = oo, and | f2(§)|

is bounded. A line parallel to the y'-axis is the generator of the cylindrical surface.

Substituting Eq. 11.3 into Eq. 11.2 gives the velocity at a general field point @’ as

the sum of two components

where

[ <l o} 0

, 1 B
s = 52 [ [ G |1
— 00 =0 O

o (11.4)
n d€'dn’
-X , 11.5
) i o xT (11.5)
Z’-—fg
0 d¢', (11.6)
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and

w oo | Of1/0
, o PN L aea
u(z)y = *Z;r‘// 0 x (z —X)m, (1L.7)
T \0f2/0¢

oo 0
o T (OAI0E)E ~ )~ (/0N ~ £) ,
i 5_”4 @ hP T~ RP N D

0

This last integral can be evaluated analytically (straightforward as a contour integral

in complex ¢ = f; +if;, with w = 2’ +i2') to give

u(w’)y, = j:%cl y (119)

where the plus sign holds for a field point which lies above the sheet and the minus
sign applies if the field point lies below the sheet. Thus the sheet-induced velocity in
the y'-direction is constant and non-zero at all points above and below the sheet, when
c1 # 0, irrespective of the sheet shape in the (z' — z') plane. Moreover, comparison
of Eq. 11.6 and Eq. 10.2 shows that the components of the induced velocity in the
(z' — 2') are identical to an equivalent 2D sheet, in the sense described above. When
2’ — X' on the sheet, the component of the velocity in the y'-direction, taken as
the average of the constant values from above and below, is zero at all points on the

sheet. It therefore follows that:

(i) a vortex sheet which is cylindrical at some initial time in the sense of Eq. 11.3

remains cylindrical for all time, and

(ii) the non-linear evolution of a cylindrical sheet is identical to that of an equivalent

(c1 = 0) 2D vortex sheet with the same initial conditions.
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11.4 Finite-time Singularity for 3D Vortex Sheets

Here we obtain the shape and vorticity distributions for a 3D normal mode dis-
turbance to the vortex sheet. The spatial parts of the normal modes obtained from
a linear analysis in terms of perturbation potentials above and below the flat sheet,

with uniform velocity jump U in the x-direction, are

h(z,y) = A expli(mzx+ ny)], (11.10)

¢+(z,y) = Buiexp(Fkz) expli(mz + ny)] F Uz, (11.11)

where A is the disturbance in the z direction, ¢, are velocity potentials above and

below the sheet, m,n are wave numbers in the z,y directions respectively and
2 2 2 1 m..
At an initial time ¢ = 0 this corresponds to a potential jump function
T=¢, —¢_= ~Ux—UA% expli(mz + ny)]. (11.13)

We refer to Eq. 11.10 and Eq. 11.13 as normal modes of the 3D vortex sheet.

We now rotate from (z,y, z) axes to (2,9, 2') axes using
kz' =mz +ny, ky' = —nz+my, 2=z (11.14)

In (2',y',2') axes, the sheet shape and potential jump distribution corresponding

to the real parts of the linear normal mode (Eq. 11.10 - Eq. 11.13) can then be



117

parameterized as

¢

xen) = | o (11.15)
e cos(kE')

r = -U (% ¢ — %n’) - Ue% cos(ke') (11.15b)

= —U% [€' + ecos(kg')] + U%n', (11.15¢)

where € = A. A re-parameterization & = ¢ + ecos(k¢'), 0’ = 1’ applied to Eq. 11.15

accompanied by a phase shift, and expansion of the result to O(e) gives

& — e sin(k’)
Xl(é.lanl) = TI, ) I'=-—
esin(kg')

m
k

My (g _ % 77') , (11.16)

where following the re-parameterization we have put & ¢, 7 —>n. Whenn =0,
Eq. 11.16 agrees with Eq. 10.5. When n # 0 Eq. 11.16 is the same as Eq. 10.5 if U
in Eq. 10.5 is replaced by m U/k and the term 7’ in the I' equation of Eq. 11.16 is
omitted. This is effectively a statement of Squires theorem for oblique disturbances.
We remark that the difference in form of Eq. 11.15 and Eq. 10.5 arises because the 2D
normal mode was obtained from a linear analysis of the 2D Birkhoff-Rott evolution
equation [28] whilst our Eq. 11.10 is obtained from an analysis in terms of linear
perturbation potentials; the expressions must agree to O(e).

Comparing Eq. 11.3 to Eq. 11.16 shows that in the (2',y', z’) axes, the geometry
and vorticity for the 3D normal mode correspond to our definition of a cylindrical

vortex sheet with the choices
fi=¢ — e sin(k€), fa = esin(kg'), fz= —%Uﬁ', = %U. (11.17)

If this is taken as a finite amplitude initial condition, then from (i) and (ii) following

Eq. 11.9 we can conclude that
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(a) the evolution of the vortex sheet from an initial condition corresponding to a
finite amplitude 3D normal mode disturbance remains cylindrical for all time,

and

(b) in the (z'—2') plane its non-linear evolution is the same as that for an equivalent
2D normal mode with suitably modified velocity jump and ratio of disturbance
amplitude to wavelength. When n # 0, the evolution proceeds with a uniform
shear, with velocity difference nU/k, along the generator of the cylindrical sheet

geometry. The vortex lines are then not parallel to the generator.

To the order of accuracy of Eq. 10.6, it follows that the evolution produces a

curvature singularity at a time t. obtained from

- - 1
147t +In(rt)=mn(-—), 11.18
+7t.+In(rt,) =In (27“) ( )

where we now have

~ tc (Ln‘U) t.mU
t, = L 1.19
A 2w (1 )
€
i = S="Vmitne (11.20)
A 27
2 9
A= o ST (11.21)

& VmZin?

The singularity forms along the lines mx +ny = b, parallel to the generator of the 3D
cylindrical sheet, where b is some constant. The constant ¢ takes on an infinite number
of values, corresponding to the regions of locally accumulated vorticity. Eq. 11.6,
Eq. 11.9 and Eq. 11.18 — Eq. 11.21 summarize the main results of this chapter. They
show that the singularity which forms following a finite amplitude, 3D normal mode
perturbation to an undisturbed vortex sheet is essentially the same as Moore’s result
for the 2D perturbation. When ¢,k and U are held constant, it is clear that ¢, is a

minimum for the 2D case n = 0.
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Chapter 12 Discussion

A means for computing the motion of regularized vortex sheets in three dimensions
is presented, utilizing automatic mesh refinement to maintain an accurate surface rep-
resentation despite significant deformation. Smooth (C') surface representation via
interpolation over triangular patches increases the order of the overall computation.
Three surface types (SWPO, 1, and 2) are demonstrated, suitable for modeling vor-
tex rings, vortex jet/tubes and planar shear layers. The methods described here
can be used to model several physical flows such as vortex ring interaction, trailing
wing tip vortex pair interaction, shocked density interface motion, jet and shear layer
development and stirring,.

The computational technique presented is O(N3/2) in theory, but unfortunately
reverts to O(N?) when the triangle length scales become non-uniform. A full hier-
archical spatial subdivision technique is required to achieve faster theoretical speeds.
Nonetheless, computations run 15-20 times faster than a straightforward implemen-
tation of the spatial integration required in Eq. 2.22. The automatic mesh generation
and accompanying C! surface interpolants performed quite well, contributing effi-
ciency and accuracy. The parametric surface representation was a success for all
geometries studied here, but is a limiting factor if surfaces with inherently more com-
plicated geometries are desired.

With the local hardware used at the time of this writing, computations were CPU
limited at approximately 10° to 2 - 10° triangles. Memory, either RAM or on disk,
were never in critical demand.

Several simulations were performed, most notably a perturbed planar shear layer.
Long time evolution revealed the onset of streamwise vorticity via variation of shear
on the sheet surface with respect to spanwise position. The simulated surface evolu-
tion and delayed onset of spanwise vorticity was qualitatively similar to a previous

experimental investigation of the shear layer [30]. The ratio of spanwise to streamwise
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circulation was found to lie between 7 and 9 for the duration of the simulation.

A new technique for estimating the critical time of a evolving vortex sheet was
presented which is applicable with regularized vortex sheet simulations. The method
was shown to work well with 2D vortex sheet motion, and agree with previous work.

The numerics lead us to examine in detail the motion of normal mode pertur-
bations of the planar vortex sheet. We were able to show analytically that (i) the
evolution of a vortex sheet from an initial condition corresponding to a finite ampli-
tude 3D normal mode disturbance remains cylindrical for all time and (ii) in a rotated
reference frame the non-linear evolution is the same as that for an equivalent 2D nor-
mal mode with suitably modified velocity jump and ratio of disturbance amplitude
to wavelength. Thus the singularity time in a 3D vortex sheet perturbed as such is
equivalent to the 2D normal mode singularity time and furthermore the singularity

appears simultaneously along a line on the surface. The critical time is given by

1+nt.+In(rt.)=1In <i> : (12.1)
2me
where
~ tc (Zn— U) temU
t. = k2 == :
A 2’ (12.2)
€ €
€ = —=—vm?+n? (12.3)
A 27
2 2
A= 2. L (12.4)

12.1 Directions for Future Work

The spirit of this project may be continued in many ways. From a computational
standpoint, the program is not far from a complete parallelized O(N) implementation.
This state would allow for upwards of 10° triangles to be present in any one mesh.
Also, the periodic influence of SWP1 surfaces should be incorporated into the code. It
would be impressive to drop the necessity of surface parameterization, for this would

allow computations on simple sphere-like surfaces as well as complicated, multiply-
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connected surfaces. Perhaps more light could be shed on the spiraling growth of
length scales as o tends to zero with a fully 3D investigation.

Many different fluid characteristics can be examined with regularized vortex sheets.
It would be interesting to see how random perturbations develop for all the different
surface geometries. Also, there is a class of flows in which shear layers grow from
separation points, that vortex sheets may model quite well. Lastly, the dynamics,
including the core, of vortex rings could be examined with several concentric SWP0Q

surfaces working in concert.
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Appendix A Notation

b

N ®  ®

Surface area of the vortex sheet

model coefficient of curvature behavior near t.

Number of multi-pole boxes needed to encase sheet surface
model coefficient of curvature behavior near ¢,

Distance between physical space locations ¢ and ', or X and
X!

Smoothed distance between physical space locations  and z’,
or X and X'

Dirac delta function, subscript represents true vortex sheet vari-
ables

Length of segment in physical space corresponding to segment
with components (d¢, dn) in parameter space

First fundamental coefficients of the mapping X

Error tolerance for box-target velocity evaluation

Perturbation magnitude; strain on a triangle edge

Circulation

Vortex sheet strength

2"4 parameter (Lagrangian) of parameter space

Jacobian of the mapping function X(&,7)

Gaussian curvature of the surface

Biot-Savart kernel

Principal curvatures of the surface X

Total curvature

Second fundamental coefficients of the mapping X

Side length of box containing triangles for multi-pole expansion



Mi

S1, 82

SWP0,1,2
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First, second and third moments of vorticity

Mean curvature of the surface

Number of triangles in the surface

Unit normal to the surface X(&,n)

Vorticity field

Base period of a periodic domain

Those periodic extensions of Py adjacent to P

All periods of a periodic domain except P

Those periodic extensions of F, adjacent to P;

All periods of a periodic domain except Py U P,

Lattice of centroids of the periods included in P;

Velocity potential functions above and below the surface
Resolution, as a triangle density scaling parameter

Physical space surface of vortex sheet

Doubly infinite summations required to evaluate influence of im-
ages in SWP2 sheets

Parameter space surface of vortex sheet

Scaling factors of ¥ axes

Biot-Savart kernel smoothing parameter, subscript represents
smoothed vortex sheet variables

Surface with periodicity of 0, 1 or 2

Average number of triangles in a multi-pole expansion box
Critical time of vortex sheet evolution (curvature singularity)
Angles of & axes

Velocity field

Smooth velocity field, resulting from smoothed Biot-Savart ker-
nel

Velocity contribution (influence) from vorticity contained in

physical space region V
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Volume in physical space: contains a group of triangles; a single
period; all of physical space

Parameterized vortex sheet strength

z component of the mapping function X

Mapping from parameter to physical space

Field point in physical space

1** parameter (Lagrangian) of parameter space

Barycentric coordinates
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Appendix B Invariants

Proof that the integral quantities presented in §2.5 are time invariant (for regular-
ized vortex sheet flows) is demonstrated by first introducing new surface parameters
(r, s) such that r is perpendicular and s is parallel to vortex lines. By construction,

we have I'; = 0 and
Wdgdn = T'eX, — ', X¢) dédn =T, X, drds. (B.1)

The total vorticity is thus

//W dfdn:/Fr /X8 ds pdr =0, (B.2)
£ r s

since vortex lines are closed on the surface (we consider here the surface type SWP0

only). The velocity field becomes

X(r,s) = ;117; // Xy x Kdr' ds', (B.3)

r g

where K = (X — X')/D3 and D, = [|X — X'|2+ 0?]"/%. For the first moment of

vorticity, we have

I:%//Xdogdn:%//FrXstdrds. (B.4)
£ n r 8

Time differentiation and integration by parts yields

I= // [.X x X, drds. (B.5)
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Substitution of the velocity field (Eq. B.3) yields

i= 4i////rr (Xy x K) x X, drdsdr' ds'. (B.6)
T

r sl g

Expanding the vector triple product, dropping the subsequent (X, - X,y )K term due
to asymmetry (i.e., K changes sign when the prime and un-prime coordinates swap
positions, while the dot product does not), and utilizing the identity %D; = X,-K

gives

I= —l/// r,T, /ngl ds p Xy drdr'ds' =0. (B.7)
4 0s

rr s s

Analogous arguments apply for the proof of A = 0. Volume is preserved if (a) the
bounding surface moves with the fluid, and (b) the velocity field is incompressible.
The former is implied in Eq. 2.22 and Eq. B.3; the latter is apparent from an alternate
form of Eq. 2.22:

WI

1
u,(z) = -—Vg x / ax’. (B.8)
47 J [‘w_X_I|2+O-2j|1/2

With the new parameters, kinetic energy becomes

1 X, - X, L
T=o ////FF o drdsdr’ ds'. (B.9)

r s

Time differentiation, symmetry arguments, and utilization of

LDk X)) = DX - X) - XX X,) + DX Xy)  (B0)
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for integration by parts lead to

T = %////FTI‘T,D*”{[(X—X’).Xs} (X-X,) -

r 87"81

[(X X' X] (X, - Xs')} dr dsdr' ds'. (B.11)

Substitution of the velocity field Eq. B.3 and some manipulation with vector identities

finally gives

e e[

r 8 r g g

(X~ X') x Xo] x [(X—=X") x Xy]

drdsdr' ds' dr" ds", (B.12
[IX—X,|2+0_2]3/2[|X_X"l2+0_21|3/2 rdsdr' ds dr s, ( )

which vanishes due to the asymmetry in X' and X".
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Appendix C Surface Interpolant Details

The function X is defined local to a triangle with barycentric coordinates as
X = X((1,{2,¢3). Recall the coordinates are redundant with ¢; + (o + (3 = 1.
However, aside from obtaining function values, we need also the first derivatives with

respect to the parameter space variables, X and X,. We have

E=G&+ b+ =06 &) +G&E—8)+& (C.1)

and a similar expression for n which trivially lead to the Jacobian

o(&,m) §1—& m—m
_ , (C.2)
0(¢1,2) (52 —& M- 773)

as depicted in Fig. C.1. Inverting the above matrix gives the necessary derivative

i A
(5) 77)2 E

(57 77)3

(g, 7))1

{

Figure C.1: Typical triangle in parameter space (X).
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The derivatives of X with respect to the barycentric coordinates (; are obtained from

differentiation of Eq. 3.2.
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Appendix D Regularizing the 2D, Periodic

Kernel

It is interesting to note that when considering 2D periodic vortex sheets with a
smooth kernel (i.e., length scale cut-off added as in Eq. 2.22), one can take two differ-
ent approaches in deriving the evolution equation. Either the periodic extension of the
exact (non-smoothed) kernel is derived first and the new periodic kernel smoothed,
or the operations are done in the reverse order. The differences are detailed below.

The exact (non-smoothed) evolution equations for a 2D vortex sheet are

oX 1 §

—(t) = —— dar D.1

b ="5 | @0 (D-12)
sheet

Y 1 T ~

sheet

where & = X(T,t) — X([',t), § = Y(I',t) — Y([,¢t), and (X,Y) denote the sheet
position. Eq. D.1 is simply the Birkhoff-Rott equation, without the common complex
notation. If we first assume the sheet is periodic in I' (with unit period), then smooth

the kernel by the addition of 02, the evolution equations become

1

0X 1 sinh 27§ ~
“(C.t) = —= 2
ot (T,2) 2 / cosh 27§ — cos 27Z + o2 ar, (D-2a)
0
oYy 1 / in 27
sin 2% -
—((,t)= = ~ — drl'. D.2b
ot (T,1) 2 / cosh 2wy — cos 2n% + o2 ( )

0

These are the evolution equations used by Krasny [27].

But if the operations are done in the reverse order, i.e., the kernel is smoothed
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first and then the sheet is assumed periodic in I', we obtain

1
o0X 1 sinh 27y, 7 =
—(I,t) = —= = dr D.3
ot (T,8) 2 / cosh 27y, — cos2nd y, (D-3a)
0
1
oY 1 sin 27% N
—(I,t) = = r D.3b
Bt( +¢) 2/cosh27rya—cos27ra?d ’ (D3b)
0

where y, = /9% + 02. In this thesis it is appropriate to use Eq. D.3 as it is consistent
with the smooth 3D Biot-Savart velocity field (Eq. 2.22).
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Appendix E Evaluation of the Double

Periodic Summations

As described in §6.3 several summations are needed to evaluate the velocity influ-

ence of the double periodic extension, Py,. In detail, we have

0o oo m-—1
Sig =2 [Ty +Tel, +2T50, 1 +43 > " [T, + T3] (E.1)
m=2 m=2 n=1

where the individual terms T/, depends on (4, j) as depicted in Tab. 6.1. For unit

periodic wavelength in physical space we have
z=m, y=n, D,=+vm?+n2+ 02 (E.2)

so that in combination with Tab. 6.1 the terms T}/, are specified. The double sum-
mations must be calculated numerically for each desired smoothing parameter o.
However, they only need be evaluated once.

For example, with 0 = 1/10 and i = j = 1, we have

2
1,1 _ m

™ (m? + n? + 1/100)5/2

(E.3)

which is substituted into Eq. E.1 to produce Tab. E.1. These numeric values are

determined via a series extrapolation technique such as Levin’s u-transform.



139

3.61367386064313 S1.1
0.381418661728640 Si2
0.0690596974330716  S; 3
0.0143486108393474 S 4
0.0375092324585367 S35
0.00581893175435931 S34

1.80492983701292
0.190364032377155
0.0344581056623391
0.00715850938870520

0.152510218861995
0.0285675888140927

Table E.1: Summation values S; ; for ¢ = 1/10.



