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Abstract 

Laser-Induced Thermal Acoustics (LITA) is a non-intrusive, remote, four-wave mixing 

laser diagnostic technique for measurements of the speed of sound and of the thermal 

diffusivity in gases. If the gas composition is known, then its temperature and density 

can be inferred. 

Beam misalignments and bulk fluid velocities can influence the time history and 

intensity of LITA signals. A closed-form analytic expression for LITA signals in­

corporating these effects is derived. The magnitude of beam misalignment and the 

flow velocity can be inferred from the signal shape using a least-squares fit of this 

model to the experimental data. High-speed velocimetry using homo dyne detection is 

demonstrated with N02-seeded air in a supersonic blow-down nozzle. The measured 

speed of sound deviates less than 2% from the theoretical value assuming isentropic 

quasi-ID flow. Boundary layer effects degrade the velocity measurements to errors 

of 20%. Heterodyne detection is used for low-speed velocimetry up to Mach number 

M = 0.1. The uncertainty of the velocity measurements was "-' 0.2 m/s. The sound 

speed measurements were repeatable to 0.5%. The agreement between theory and 

experiments is very good. 

A one-hidden-layer feed-forward neural network is trained using back-propagation 

learning and a steepest descent learning rule to extract the speed of sound and flow 

velocity from a heterodyne LITA signal. The effect of the network size on the per­

formance is demonstrated. The accuracy is determined with a second set of LITA 

signals that were not used during the training phase. The accuracy is found to be 

better than that of a conventional frequency decomposition technique while being 

computationally as efficient. This data analysis method is robust with respect to 

noise, numerically stable, and fast enough for real-time data analysis. 
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The accuracy and uncertainty of non-resonant LITA measurements is investigated. 

The error in measurements of the speed of sound and of the thermal diffusivity initially 

decreases with increasing signal intensity (excitation beam pulse energy) and increases 

again after passing a minimum. The location of the minimum error for the speed of 

sound and for the thermal diffusivity coincide. The errors at the minimum are 0.03% 

and 1%, respectively. The uncertainties for the speed of sound and the thermal 

diffusivity decrease monotonically to 0.25% and 5%, respectively. The increased error 

for high excitation beam pulse energies results from finite-strength waves that cannot 

be treated using the linearized equations of motion. 
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Chapter 1 

Introduction 

1.1 Motivation 

1 

The original idea in the development of Laser-Induced Thermal Acoustics (LITA) 

was to use it as a flow diagnostic tool for Caltech's T5 hypervelocity shock tunnel. l 

Test times in this facility are approximately 2 ms and some flow regions reach tem­

peratures up to 10,000 K. High levels of luminosity are present in these regions as 

well as particulates from various sources. Turnaround times between experiments 

are 2 hours and the costs of operating and maintaining this facility are substantial. 

Current data collection uses shadowgraphs and Schlieren images for qualitative flow 

visualization, holographic interferograms for quantitative measurements of the den­

sity field, and surface-mounted pressure and temperature transducers for quantitative 

measurements. Hence, at present, quantitative thermal measurements are limited to 

the surface of the test body. A non-intrusive technique for the outer flow is very de­

sirable. The aggressive flow environment, slow turnaround and high costs, however, 

make T5 unsuitable for technique developments. Hence, a special rig was built to 

develop and test LITA. 

This thesis looks at two points of possible improvement of LITA, namely the 

user-friendliness and the amount of data that can be extracted per laser-shot. For 

other, more common laser diagnostic techniques such as Particle Image Velocimetry 

(PIV) and Laser Doppler Velocimetry / Anemometry (LDV /LDA), there are commer­

cial turn-key systems available that are aligned and calibrated by the manufacturer. 

To reach a similar point of sophistication with Laser-Induced Thermal Acoustics, we 
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require a system that is capable of autonomous alignment and is adaptable to a wide 

range of applications. The data analysis has to be fast, robust and be an integral com­

ponent of the system. As for the yield of data per LITA measurement, Cummings2 

already proposes the use of LITA for velocimetry. A proper theoretical treatment of 

this proposition, and its experimental confirmation, can allow simultaneous measure­

ments of the speed of sound and the flow velocity. 

1.2 Background on Laser-Diagnostic Techniques 

The development of powerful lasers has enabled a variety of flow measurements such 

as concentration, temperature, flow velocity, or combinations thereof. Some of these 

are point-measurements, others can be applied along lines, grids, in a plane or in a 

three-dimensional sample volume. Velocimetry techniques differ by how many ve­

locity components are measured simultaneously, by their time-resolution, and by the 

time it takes to take a measurement. Another important aspect are their signal lev­

els. Typically, nonlinear optical techniques provide stronger signals, making short 

measurement times in hostile environments possible (see Section l.1). Their disad­

vantage is the complexity of the data analysis, for which linear techniques are easier 

to analyze. In the next paragraphs Laser-Induced Thermal Acoustics is compared to 

these techniques and its advantages and disadvantages are noted. The following list is 

not complete. For some widely used techniques, attention is restricted to super- and 

hypersonic flows, and to combustion where luminosity and particles are of importance . 

• In planar Laser-Induced Fluorescence (PLIF) one uses a laser sheet to excite 

certain species in a flow and to look at their fluorescence either immediately or 

at later times. The intensity of the fluorescence is a function of the local species 

concentration and temperature. To achieve quantitative results one must model 

a large number of these molecular energy transfer processes correctly. Typically, 

O2 , OR and NO are used as fluorescing molecules which makes this technique 
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very useful for flows where these species occur naturally such as in combustions3 

or in shock tunnels.4 In its pure form only species concentrations are measured. 

These can then be compared to CFD simulations,4 and to measurements with 

other flow diagnostic techniques. 5 The molecular energy transfer rates also de­

pend on the excitation wavelength and the temperature. Hence, by scanning 

through a variety of excitation laser frequencies, i.e., by a spectroscopic ap­

plication, one can use PLIF for thermometry.6 By applying image correlation 

techniques,7 velocity measurements might become feasible in the near future. 

This technique has been used successfully in T3 at the Australian National Uni­

versity.6 T3 is a predecessor of T5 which suggests the applicability to T5. But 

due to luminosity, the previous experiments were limited to flow enthalpies of 

less than 4.1 MJ /kg. This value represents the lowest achievable flow enthalpy 

in T5 where values reach as high as 32 MJ /kg for some test conditions. Fluo­

rescence is an incoherent phenomenon. This means that the fluorescent light is 

radiated equally in all spatial directions. Hence, only part of the total emitted 

light fall on the detector. Furthermore, this makes spatial filtering impossible. 

Luminosity thus poses a significant challenge for this technique, as it does for 

other linear laser-diagnostics (see below) . 

• Miles et al.8 use Flow tagging in sonic air jets. A UV laser transforms the air's 

oxygen into ozone along its path. At later times, the convection and deformation 

of the line can be detected by laser induced fluorescence (LIF) . Diffusion can 

be neglected for many instances. This provides velocity information during 

the lifetime of the ozone for particles that were located on the tagged line by 

comparing two subsequent LIF images. The time resolution is only limited 

by the time separation between two images. Instead of the 02/03 reaction, 

hydroxyl (OH) radicals can be created by photo-dissociation of vibrationally 

excited H20 molecules. 9 Also, N02 (seeded1o or as combustion product 11 ) can 

be reduced to NO. A stereoscopic camera setup measures all three velocity 
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components. ll Recent experiments in supersonic flOWS12 and in shock tubes13 

use excimer lasers to ionize sodium atoms, and look for a depletion of sodium 

in the read-out phase. Due to dissociation, seeding with H2 0 or N02 is not 

possible in T5. Sodium seeding, however, has been demonstrated. 14 The laser 

pulse energy dictates if one can create multiple lines or a grid of lines. Multiple 

velocity components can be measured for tagged lines in a grid pattern. At high 

flow enthalpies in T5, the lifetime of the tagging species will not be sufficient. 

LIF constitutes the read-out phase and all limitations of LIF apply for flow 

tagging . 

• For Particle Image Velocimetry (PIV), the flow is seeded with solid, neutrally­

buoyant particles which are are a few 11m in diameter. Light from a laser sheet 

is scattered by the particles, making them visible on a camera system. The 

comparison of two subsequent pictures yields the displacement vector of each 

particle and thus the velocity vector. PIV is predominantly applied to low-speed 

flows, but some authors use PIV in supersonic floWS15,16 and with a stereoscopic 

setup,17 yielding three velocity components. PIV requires a suitable particle 

density in the flow field. Artificial seeding in T5 has to be excluded due to the 

high flow temperatures and the difficulty of achieving uniform particle number 

densities. In high-speed compressible flows the assumption that the particles 

follow the flow breaks down. PIV yields in-plane velocity components for parti­

cles illuminated by the laser sheets. The time delay between pictures is chosen 

according to the flow velocities and the camera resolution. For the study of 

hypersonic boundary layers, the wide range of flow velocities poses a challenge, 

as does luminosity. Due to out-of-plane velocity components, some particles 

that are present in the first picture are not visible in the second picture, and 

vice versa. This complicates the pairing of corresponding particle images on the 

two pictures and introduces erroneous velocity vector. Data processing is too 

slow for real-time applications. 
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• A dipole moment is induced into molecules if they are excited by light. With 

a small likelihood, the oscillating dipole will re-radiate light at the excitation 

frequency (plus a Doppler shift). This effect is called Rayleigh scattering. 

The intensity of the scattered light from a collection of molecules is proportional 

to their number (i.e., density) and their scattering cross section. The scattering 

cross section is small for all "simple" molecules and, as a result, the signal levels 

are low. Filtered Rayleigh scattering employs a tunable, narrow-band excitation 

laser and a notch filter in front of the detector. It measures flow velocities over 

a wide field of view.I8,19 Alternatively, using a Fabry-Perot etalon in front of 

the detector allows simultaneous velocity and temperature measurements at a 

single point. 20,21 

Rayleigh scattering is an incoherent scattering phenomena which makes it very 

susceptible to luminosity. The scattering frequency is identical to the excitation 

frequency which makes it subject to interference with light from the excitation 

light source (e.g., off windows, particles, etc. ). Rayleigh scattering is related 

to LIF. For LIF, however, the excitation laser frequency is chosen to be in 

resonance with the absorption lines of the target molecules. Rayleigh scattering 

shows the same limitations as LIF but its signal levels are even lower than in 

LIF . 

• Coherent Anti-Stokes Raman Scattering (CARS): Raman scattering is 

similar to Rayleigh scattering except that the re-radiated photons have a differ­

ent wavelength than the excitation photon. The energy difference between the 

absorbed and emitted photon is equal to the energy difference of the vibrational 

quantum which depends on the species and the rotational temperature. The 

spectrum of the Raman scattered light hence contains information on species 

concentrations and the rotational temperature which, in most applications, is 

close to the static temperature. Wavelength above and below the excitation 
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wavelengths are refered to as Stokes and anti-Stokes Raman scattering. Raman 

scattering is a linear technique and two to three orders of magnitude weaker 

than Rayleigh scattering. 

For coherent anti-Stokes Raman scattering (CARS) two pulsed excitation beams 

are used. One is at a fixed wavelength, the second is tunable and at a slightly 

lower frequency than the first laser. Both laser beams are focussed collinearly 

on the point of interest. If the frequency difference between the two laser beams 

is equal to the vibration frequency of the species at the focus, the vibrations of 

the molecules are driven coherently, thus generating a coherent phase grating in 

the gas that scatters the excitation beams into two collinear and coherent signal 

beams, the Stokes and the anti-Stokes branch. The latter is preferred in ex­

periments. 22 The intensity of the scattered beam from this nonlinear technique 

is proportional to the square of the species concentration. As with incoherent 

Raman scattering, the rotational temperature can be obtained from the spec­

trum of the scattered beams. CARS combines the advantages of the species 

selectivity of Raman scattering with strong signals typical for nonlinear (coher­

ent) techniques. Scanning of the laser wavelength is necessary, but single-shot 

measurements are required in shock tunnels. Multiplex CARS avoids the ne­

cessity of scanning by using a broadband excitation laser, which decreases the 

sensitivity significantly.23 Dual-line CARS combines the single-shot feature of 

multiplex CARS with the sensitivity of CARS.24 Applications to supersonic, hy­

personic and chemically reacting flows have been demonstrated (e.g., Anderson 

et a1. 25
). 

• A particle's motion through a fringe pattern, created by a pair of crossed laser 

beams, is observed in Laser Doppler Velocimetry (LDV). The light scattered 

by particles crossing the fringe spacing is modulated at the Doppler frequency. 

Commercial systems for this point-measurement technique are widely available. 
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The fringe pattern only illuminates the particles crossing it. It does not create 

a response in the fluid as is the case for LITA. The required laser power is thus 

low. Compact and affordable laser diodes are used resulting in small system 

size and good mobility.26 Several approaches exist to measure multiple velocity 

components. Using two perpendicular fringe patterns with different wavelength 

is one. Alternately pulsing lasers27 avoid the need for multiple photodetectors 

and data acquisition chains, and lasers of the same wavelength can be used. 

LDV depends on a suitable particle number density in the flow. The concen­

tration has to be such that one particle is passing through the fringe pattern at 

any time. The requirement of seeding and the susceptibility to luminosity limit 

the applications of PIV. 

Of the techniques discussed above, only CARS shows promise for high-enthalpy 

shock tube applications. While it allows the measurement of species concentrations 

and temperatures, it does not yield velocity information and it requires substantial 

data analysis. Laser-Induced Thermal Acoustics (see Section 1.3) can complement 

CARS with velocimetry data. 

1.3 Introduction to Laser-Induced Thermal Acous­

tics 

The creation of a LITA signal involves two steps: opto-acoustic forcing, and acousto­

optical scattering. In the first step, a powerful, pulsed laser beam is split into two 

phase-coherent halves which intersect at a shallow angle in the test fluid (Fig. 1.1). 

Interference results in an electric field intensity grating. 

Two effects dominate the fluid's response to the electric field grating: thermal­

ization and electrostriction. Thermalization refers to energy absorption by means of 

inelastic intermolecular collisions. The temperature increases in regions with high 
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Figure 1.1: Two driver laser beams of wavelength Ad intersect at angle e. In the inter­
section region, they create an interference grating with fringe spacing q1/J = Ad/ sin e. 

electric field intensity but remains unchanged elsewhere. The temperature fluctu­

ations are 0(0.1 K). The temperature increase is almost instantaneous compared 

to other LITA time scales. Fig. 1.2 shows the creation of the temperature grating 

schematically. The fluid expands with increasing temperature, and if the expansion 

speed is comparable to the sound speed, sound waves are generated. The effect of 

polarizable molecules which are accelerated in the direction of electric field gradients 

is refered to as electrostriction. It induces a velocity grating into the fluid. Math­

ematically, thermalization represents a forcing term in the energy equation while 

electrostriction is a forcing term in the momentum equation. 

Due to the short duration of the laser pulse (0(10 ns)), there cannot be a density 

grating at t = 0+ for either mechanism. Acoustic waves are generated that cancel the 

steady-state solution at t = O. Fig. 1.3 shows the decomposition of the density fields 

for the cases of thermalization (left) and electrostriction (right). The evolution of 

the density grating is observed in the second step, the acousto-optical scattering. A 

third, continuous laser beam (interrogation beam) is directed at the Bragg angle onto 
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Figure 1.2: Creation of temperature grating by pulsed driver beams at t = 0 assum­
ing finite-rate thermalization. The creation in early times is governed by the finite 
thermalization rate. Thermal diffusion governs behavior at later times. After Eichler 
et a1. 28 

the grating (Fig. 1.4). The index of refraction is a function of the density. Hence, the 

grating acts like a diffraction grating and scatters a small fraction (typically ~ 0.01 %) 

of the interrogation beam coherently into a signal beam. The instantaneous intensity 

of the signal beam depends on the modulation depths of the density grating. Due 

to constructive and destructive interference of the acoustic waves with each other as 

well as with the thermal grating (for the case of thermalization), the signal will be 

modulated at the Brillouin frequency. 

The time history of the signal beam is recorded using one of two techniques. 

Homodyne detection measures the intensity history of the signal beam. Fig. B.1 
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Thermalization Electrostriction 

1=0 1=0 

acoustic wave 1 acoustic wave 2 

Figure 1.3: Decomposition of density gratings for thermalization (left) and elec­
trostriction (right) along a cross section of the grating. For the case of thermalization, 
two identical acoustic waves cancel the thermal density grating initially. At t > 0 
they travel at the local speed of sound in opposite directions. They decay at the 
acoustic damping rate. Meanwhile, the stationary thermal grating decays due to the 
effects of diffusion. In the case of electrostriction, two acoustic waves of opposite sign 
are created at t = 0, which travel in opposite directions at later times. 
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signal 

x 

source 
99.99% 

Figure 1.4: The source beam (wave length AO) incident at the Bragg angle 'lj; is 
scattered into a coherent signal beam by the density grating. The signal beam will 
be Doppler-shifted if the grating is convected in the y-direction. 

gives an example of a typical LITA signal obtained with homodyne detection. The 

speed of sound is encoded as the Brillouin frequency (oscillations in the early part 

of the signal). The Brillouin frequency is equal to the speed of sound divided by the 

fringe spacing. Thermal diffusion governs the signal decay. The profiles at late times 

in Fig. 1.2 depict the diffusive decay of the thermal grating after the acoustic waves 

have traveled out of the region of interest. 

Heterodyne detection records the superposition of the signal beam with a refer­

ence beam. The signal beam frequency is Doppler-shifted if the density grating is 

convecting in a direction along the grating normal vector. By mixing the signal beam 

with a reference beam at the interrogation laser frequency, the Doppler shift becomes 

visible in the recorded trace. Fig. 5.2 is an example for a LITA signal recorded using 

heterodyne detection. Again, the Brillouin frequency and the signal decay are gov­

erned by the speed of sound and by thermal diffusion, respectively. The low frequency 

component is the Doppler shift which is proportional to the flow velocity. The ratio 

of the Doppler frequency to the Brillouin frequency is the local Mach number. 
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If only the speed of sound and the flow velocity are to be measured, a frequency 

decomposition technique can be used for data analysis. To also find the thermal 

diffusivity (and the flow velocity using homo dyne detection, see Chapter 3), a fitting 

technique has to be employed. A theoretical model is fitted to the experimental data 

where the speed of sound, thermal diffusivity, and flow velocity are fitting parameters. 

Cummings et a1. 29 derived such a model which is generalized in Chapters 2 and 5. 

Frequency decomposition methods are fast (0(0.01 s) per signal) compared with the 

fitting routine (0(1 s) per signal).* The fitting method requires good initial guesses 

for the algorithm to converge to the correct solution. A new approach for LITA data 

analysis is introduced in Chapter 5, using artificial neural networks. This technique 

combines the accuracy and generality of the fitting technique with the speed and 

robustness of the frequency decomposition techniques (see Section 1.4). 

LITA is highly accurate (0(0.01%) error for the speed of sound, 0(1%) for the 

thermal diffusivity, and 0(0.5%) for the flow velocity). Its applications so far have 

been limited to high-accuracy static measurements and to thermometry in flames. 

Each LITA measurement takes 0(1 J1s) which makes LITA suitable for high-speed 

applications. Spatial and frequency filtering removes ambient incoherent luminosity 

originating from the coherent signal beam. This and the short test time make LITA 

applicable to T5. 

1.4 Introduction to Neural Networks 

Current methods for analyzing LITA signals require user input and expertise. This 

is unacceptable for packaged LITA systems. In Chapter 5 a neural network (NNs) 

is trained to perform the data analysis. This section gives an introduction to the 

background and concepts of neural networks. The theoretical treatment in Section 

5.3 is more detailed and mathematically more rigorous. 

*c.f. typical Nd:YAG laser repetition rates of 10 Hz 
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The human brain contains approx. 1011 nerve cells (neurons).t Each neuron 

receives inputs through a tree-like network of nerve fiber (dendrites) and passes its 

output through a single long nerve fiber, called axon. The axon branches out and 

connects to approx. 1, 000 other neurons by forming junctions (synapses) with their 

dendrites or the cell body directly. Each input has the effect of raising or lowering the 

electrical potential of the neuron relative to its surrounding through complex chemical 

processes. If the potential increases beyond a threshold, a pulse-like signal, called 

action potential, is produced which travels along the axon, changing the potential 

in the connected neurons. The amplitude of the action potential is fixed, i.e., not 

a function of the inputs. The lower limit for the time between action potentials is 

approx. 1 ms which corresponds to a "clock speed" of the brain at less than 1, 000 

Hz. t The computational power of a single neuron is very small , but their number and 

their connectivity make the brain superior in some tasks to the fastest computers. 

Driven by the desire to understand how data is processed and stored in the human 

brain, the field of neural computation goes back to a paper by McCulloch and Pitts in 

1943.30 It introduces a simple circuit of idealized "brain cells," not unlike the neural 

network being used in Chapter 5. The output of each computational neuron, which 

is called call "unit" to distinguish it from the biological term, is unity if the weighted 

sum of all its inputs is greater than a certain threshold and zero otherwise, i.e., 

(1.1) 

where Yi is the output of the neuron i, H is the Heaviside step function , Wij is the 

weight between unit j and unit i and /1i is the threshold of this unit. The biological 

analog to the weights is the strength of a synapse. The weights can be positive or 

negative just as synapses can be excitatory or inhibitory, i.e., they can raise or lower 

the cell's potential. Minsky31 showed that a circuit of these simple units is capable of 

t e.f. 2.8 . 107 for Intel Pentium III processor , 7.5 . 106 for Intel Pentium II processor. 
'te.f. hundreds of MHz for computer processors. 
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universal computation. Units with other properties as in Eqn. 1.1 are used today, each 

with its advantages and disadvantages. One can use linear and nonlinear, continuous-

valued or probabilistic units where the Heaviside step function in Eqn. 1.1 is replaced 

by a probability density function. 

A few standard architectures, however, have crystallized. E.g., the so-called Hop­

field network where every unit is connected to every other unit can be used for image 

storage and recollection, and simple implementations to solve the traveling salesman 

and similar problems exist.§ The most popular standardized circuit architecture is the 

feed-forward neural network where units are arranged in layers (Fig. 5.1). Each unit 

passes information only to units in the next higher layer. These kind of networks can 

be "trained" to learn tasks such as data compression by means of principal component 

analysis (PCA) and function approximation/curve fitting. This latter application is 

utilized for the LITA data analysis. 

All feed-forward networks have at least one input layer and one output layer. In 

Chapter 5 a LITA signal is used as input for the units in the input layer and the 

units in the output layer represent the speed of sound and the flow velocity. Between 

the input and the output layer there can be additional layers (hidden layers). It can 

be shown that with one hidden layer, any continuous function on a bounded domain 

can be approximated to arbitrary accuracy given a sufficient number of units in the 

hidden layer.' The question of what the term "sufficient" means is discussed in more 

detail in Chapter 5. With the theoretical results derived in Chapters 2 and 4 we 

conclude that a continuous function exists between the inputs and the outputs. 

The training algorithm back-propagation was invented several times indepen­

dently.32-35 It requires that a training set is available, i.e., a number of example 

inputs where the desired output is known. For this training set, an error measure 

can be defined which is zero if and only if the actual network outputs are equal to 

§But not more efficient than other algorithms for this NP-complete problem. 
, Similarly, it can be shown that with two hidden layers any function can be approximated to 

arbitrary accuracy given a sufficient number of units in each of the two hidden layers. 
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the desired outputs. Since the network outputs can be expressed in terms of the 

weights and the input values, the error measure can also be expressed in terms of 

these parameters. By simple differentiation of the error measure w.r.t. the weights, 

the weights can be updated as to minimize the error measure iteratively. The details 

are given in Chapter 5. This iterative scheme constitutes the training as the error 

decreases continuously. The name back-propagation comes from the fact that first 

the weights between the output layer and the last hidden layer are updated, then 

the weights between the two preceding layers, etc. The convergence behavior of the 

training depends on a the numerical minimization routine and the number of hidden 

units. Two kinds of errors are observed: bias and variance. Bias is the error that 

is due to the network architecture, in particular to an insufficient number of hidden 

units. Variance is the error that is due to the fact that the training set does not cover 

the entire parameter space evenly or densely enough. 

Theoretically, one could use a large number of hidden units to minimize the bias. 

But this increases the computational cost which scales approximately linearly with 

the number of hidden units. More importantly, for a fixed number of samples in the 

training set, an effect called over-training is observed. The reason for over-training 

is that the network has enough degrees of freedom to "memorize" the entire training 

set. This can be compared with fitting data by a polynomial with too many degrees 

of freedom. E.g., if the number of degrees of freedom is equal to the number of data 

points, the function will pass exactly through all data points. But if we obtain an 

additional data point, it will most likely be far off the fitted curve. In the context of 

neural networks, this is refered to as poor generalization. A solution is to increase the 

size of the training set, but this adds again to the computational cost. In Chapter 5, 

a different approach is taken in addition to limiting the number of hidden units to a 

small value. 

Feed-forward neural networks are compelling for several reasons 

• Once trained, they are computationally very efficient and stable. 
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• They lend themselves to hardware implementations for parallel processing (neu­

ral network VLSI chips) . 

• Neural networks are capable of generalization. This means from a finite sample 

out of an infinite number of possible input-output combinations, they can in­

terpolate and extrapolate the correct solution for inputs they were not trained 

on. 

1.5 Outline 

Chapters 2-5 and Appendix B represent conference papers and published or submitted 

papers. They are included mostly unchanged from their published (or submitted) 

version. If additional results have been obtained since their submission, however, 

they are added. Furthermore, some explanations and comments are more detailed 

than in the published versions where space is very limited and color reproduction is 

not possible. Each of these chapters is self-contained. Unfortunately this also results 

in some overlap in the material in different chapters. A comprehensive bibliography 

at the end of this thesis replaces the individual bibliographies for each chapter . 

Chapter 236 lays the theoretical foundations for Chapters 3 and 4. It includes the 

effect of beam misalignments and bulk fluid velocities to the LITA theory, originally 

derived by Cummings,2 and verifies some of the results experimentally. Chapter 337 

tries to verify some more theoretical results from Chapter 2 experimentally. Where 

previous experiments examined different kinds and degrees of beam misalignment, 

we investigate utilizing beam misalignments for velocity measurements. Chapter 438 

generalizes the model further by allowing for different detection methods: homo­

dyne detection and heterodyne detection. Due to length constraints, the theoretical 

derivation on which the work is based is not given. Instead, the derivation is part 

of Chapter 5. Chapter 539 introduces the concept of neural networks and presents a 

neural network implementation to perform the data analysis on LITA signals. Section 
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7.2 represents ongoing work on multi-point LITA measurements and results will be 

presented in Schlamp et a1. 40 Chapter 6 summarizes the main results. Finally, Chap­

ter 7 gives some starting points for further improvements and shows the next steps 

towards making LITA a usable system for T5. Appendix B41 demonstrates aspects 

regarding the accuracy of LITA experimentally. 
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Chapter 2 

Beam Misalignments and Fluid Velocities 

in Laser-Induced Thermal Acoustics 

(LITA) 

2.1 Introduction 

The four-wave mixing technique laser-induced thermal acoustics (LITA) is used in 

various laboratories to measure the sound speed and thermal diffusivity42- 44 as well as 

fluid velocities. 45 A grating-shaped pressure and temperature perturbation is created 

in a fluid by two coherent intersecting pulsed laser beams. These perturbations evolve 

hydrodynamically in time and space. This evolution can be examined by focusing 

a third continuous laser beam on the associated density gratings at its Bragg angle. 

Depending on the modulation depth of the density grating, a fraction of this source 

beam is coherently scattered into a weak signal beam. The induced acoustic waves 

move outwards, modulating the density field and hence the signal at the grating 

Brillouin frequency, or the frequency of sound waves with the grating wavelength. 

Hence, one approach to measure the sound speed is to measure the frequency of the 

signal modulation by means of a frequency decomposition method. However, finite 

signal lifetime and sampling resolution limits the accuracy of this technique. 

Another approach is to model the physics of the interactions that produce the 

LITA signal and derive an analytic expression for the signal as a function of experi­

mental parameters, fluid properties including the sound speed and thermal diffusiv­

ity, and fluid velocity. A least-squares fit of this expression to experimental signals 
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then provides best estimates of the signal parameters and hence fluid properties. 

Cummings et al. 29 derived such an expression that includes thermalization and elec­

trostriction as the two main mechanisms for the creation of the grating. However, 

the assumption was made that the system was in perfect optical alignment and that 

the fluid was at rest. Obviously this approach breaks down when these assumptions 

are grossly violated. In these cases, the theory is not a valid representation of the 

experiment and the fitting procedure returns erroneous values. 

The work presented here extends the earlier theory to include the effects of a 

convection velocity and finite beam misalignment. These may then be measured 

through the least-squares fitting procedure, simplifying LITA velocimetry. Present 

velocimetry techniques using LITA rely on the measurement of a small Doppler shift 

of the signal beam using heterodyne detection. Now, only from the recorded signal 

and using the simpler homo dyne detection, sound speed, velocities and transport 

properties of the fluid can be extracted simultaneously. In addition we can extract 

beam misalignment measurements from the signal and either realign the optics with 

this information or take them into account in the data analysis. 

In Sections 2.2-2.6 we extend the LITA analysis of Cummings et al.29 using 

nomenclature mostly adapted from that derivation. First, the grating creation due 

to the opto-acoustic forcing is modeled. The functional form of the electric field 

grating in the sample volume is derived. Next, the fluid response to the electric field 

is examined. Since the underlying physics have not changed, the fluid response to 

electric fields has been left unchanged from Cummings et al., 29 only the results are 

given, and the interested reader is referred to there and to Eichler et a1. 28 Finally, the 

scattering of the source beam into the signal beam is modeled using the linearized 

equation of light scattering. In Sections 2.7-2.9, experimental results are presented 

that validate the theory. 
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2.2 Frame of Reference 

We define our frame of reference so that the origin of our fixed Cartesian coordinate 

system is at the focus of the source beam as shown in Fig. 2.1. The source beam lies 

in the x - y-plane and forms an angle 'ljJ with the x-axis. The x - z-plane bisects the 

two driver beams so that each one intersects this plane at an angle e. They intersect 

the x - y-plane at angles (PI and (h (angular misalignment). Their foci are at TI and 

f2, respectively (spatial misalignment). We denote the time of the short driver pulse 

as t = o. A perfectly aligned LITA setup would have PI = f2 = ¢I = ¢2 = 0 but not 

e = o. 

I 
I 
I 
I 
I 
'ii 
I 
I 
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~ L..~ _ _ ____ ~ _ _ it-=--

z y 

Figure 2.1: Frame of reference for LITA analysis. The beams' diameters at their foci 
are wand a for the driver beams and interrogation beam, respectively. 
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2.3 Optoacoustic Forcing 

We first model the electric field grating in the sample volume defined by the shallow-

angle intersection of the two driver beams. Assume each driver laser beam has a 

Gaussian profile with Gaussian half-width wand denote the normalized electric fields 

of the two driver lasers by Edl (r, t) and Ed2 (r, t) respectively so that 

(2.1a) 

where ()* denotes the complex conjugate. Then 

(2.1b) 

(2.1c) 

where E(t) is the temporal electric field envelope, 0 denotes the vector cross product, 

fd is the driver laser frequency, kd is the wave vector magnitude, Tl = (Xl , Yl, zd and 

is = (X2, Y2, Z2 ) are the Cartesian coordinates of the foci of the two beams respectively, 

and 

e2 = (cos e cos 1>2, - sin e, sin 1>2) 

(2.1d) 

(2.1e) 

are unit vectors in the direction of the driver beams, where e is the driver beam 

crossing half-angle and 1>1 and 1>2 are the angular misalignments of the driver beams. 

One assumption that is made is that the driver beams are of equal strength and 

geometry. This will be impossible to achieve experimentally. Deviations from this 

condition result in an otherwise equivalent grating with a Gaussian background in­

tensity28, 46,47 (Fig. 2.2b) which will cause no significant scattering of the source beam 
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(a) 
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Figure 2.2: Electric field intensity for two intersecting laser beams of equal strength 
(a) and for the case where one beam only has 1/4 the intensity of the other one (b). 
We see the low frequency (Gaussian) background contributions in the electric field 
grating that are dropped in Eqn. 2.2. After Eichler et a1.28 

at the grating Bragg angle so that this assumption can safely be made. To keep the 

algebra as compact as possible, angular misalignments will be dropped at this point , 

i.e. , (PI = (P2 = o. Also note that since the driver pulse is short compared to all 

other relevant time scales, we assume the fluid does not move during the pulse and 

so any velocity terms (not shown in Eqns. 2.1b and c) can be safely neglected for 

the opto-acoustic forcing process. They have to be included, however, for the grating 

evolution which takes several orders of magnitude longer. Now, calculate the electric 

field grating intensity to be 

I IEdl + Ed212 = (Edl + Ed2 )(Ed1 + Ed2)* 

rv 2 (EiE2 + E1E;) = EdIdPd(t) (2.2) 

where only the cross terms were retained in the first step as the other terms do not 

add spatially oscillating contributions but only a slowly spatially varying background 

(see Appendix A), similar to the case of not equally strong driver beams mentioned 

above. In the second step we decompose the intensity into the total driver laser energy 

Ed, the normalized spatial grating intensity distribution I d, and the normalized driver 
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laser temporal profile Pd which we will approximate by a Dirac delta function at a 

later point. The result for Id is 

Id =~ cos {2kd [-~ cos e + (y - 71) sin eJ} 
7rW 

x exp { - ~2 [x - (~ - ~ 1J) r -:2 [Y - (71 - ~ ~ ) r -;2 [( z - (f + (2] }, 
(2.3a) 

where 

X= 
W Y=~ Z= 

sine cose 
W 

~ =(X1 + x2)/2 71 =(Y1 + Y2) /2 ( = (Zl + z2)/2 (2.3b) 

~ =(X1 - x2)/2 1J =(Y1 - Y2)/2 ( =(Zl - Z2 ) /2 . 

At this point we use the fact the the beam crossing angle is small and that hence the 

X » Y, Z. Consequently, we neglect all variations in the x-direction including the 

misalignments. The side effect of this assumption together with the assumption of no 

angular misalignments is that we exclude any rotation of the grating, i.e. , it is always 

perpendicular to the y-direction. The proper limit of Eqn. 2.3a is then 

Id = 7r~2 exp { - :2 [(y - r;)2 + 1J2] - ;2 [( Z - () 2 + (2] } cos {q7j; (Y - 71)} 

(2.4) 

with q1jJ = 2kd sin e. Eqn. 2.4 represents a fringe pattern perpendicular to the y­

direction with a Gaussian intensity profile centered at (0,71, (). 

At a later point we will have to take the three-dimensional convolution of Id 

with Green 's function of the fluid response to the electric field. This operation will 

be performed by mUltiplying the expressions in Fourier space. The spatial Fourier 
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transform of Eqn. 2.4 is 

2.4 Grating Evolution 

Here one invokes an analysis of optoacoustic effects and the evolution of the resulting 

hydrodynamic disturbances in order to model how the fluid responds to the electric 

field grating. 

Two such effects have been observed in LITA. Thermalization is the process of 

absorption of driver laser energy by the fluid. The fluid temperature increases locally 

where the electric field grating intensity is high. The temperature perturbations are 

typically fractions of 1 K. This heating process due to super-elastic collisions typically 

occurs quickly compared to the Brillouin period of the grating. In the short duration 

of the driver pulse, no bulk fluid displacement can occur. Therefore, the density field 

cannot change during this time frame. Linear hydrodynamics shows that this field 

may be decomposed into the superposition of three density perturbation gratings 

that cancel at t = O. One grating is due to the temperature grating and represents 

the equilibrium solution. It is offset by two density gratings of opposite sign and 

half the amplitude. For t > 0 these propagate in opposite directions at the local 

speed of sound. The second effect is electrostriction, which describes the effect that 

polarizable molecules accelerate along or against an electric field gradient. As with 

thermalization, the driver pulse is too short for bulk fluid displacement. As a result 

two acoustic waves of opposite sign are created at t = O. For t > 0, they propagate in 

opposite directions. If we briefly assume our frame of reference to move with the fluid, 

we can adopt the analysis of the opto-acoustic response of the fluid to the electric 

field from Cummings et al. 29 and, to switch back to our original fixed coordinate 
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system, superimpose a (constant) external fluid velocity i1 = (0, v, w). 

Starting from the linearized equations of motion with forcing terms for electrostric­

tion (in the momentum equation) and for thermalization (in the energy equation), 

the Green's functions Ho and He for the opto-acoustic response of the fluid to ther-

malization and electrostriction, respectively, are 

(2.6a) 

(2.6b) 

where 

and 

<PPl ,2 (q , t) = exp {-rq2t ± icsqt + ivtqy + iwtqz} 

<pr(q, t) = exp {-Drq2t + ivtqy + iwtqz} 

<PD(q, t) = exp {-ho + InO)t - Dsq2t + ivtqy + iwtqz} (2.6c) 

HOPI = [1 + i(~ - G)][l - GIT - iIT] _ H* 
2[1 + (~ - G)2][(l - GIT)2 + IT2] - OP2 

1 n2 

Hor = [1 + (~ _ G)2][1 - ~IT] HOD = [(1 - GIT)2 + IP][1 - ~n] 
. [1 - ih~ - G)][l + i(~ - G)] * h - 1)~ 

HePl = 1, 2[1 + (~_ G)2] = HeP2 Her = [1 + (~- G)2]' 

(2.6d) 

(2.6e) 

~ is the thermal grating damping over a period of acoustic motion, and r is the 

acoustic damping rate (r = 1/2[h - l)Dr + Dv]) . IT is the ratio of the sound wave 

frequency with the wave vector qy to the excited state energy decay rate. I is the ratio 



26 

of specific heats, DT the thermal diffusivity, Dv the longitudinal kinematic diffusivity 

of the fluid, and Ds the diffusivity of excited-state target molecules. 18 is the rate 

of excited-state energy decay caused by thermalization while In8 is the energy decay 

rate not due to thermalization. 

<I> PI and <I> P2 are associated with the acoustic waves traveling in opposite direc­

tions, <I>T is related to the density perturbations caused by the thermal grating, and 

<I> D is due to the finite thermalization rate. A single-rate thermalization process is 

assumed. The density-time behavior is then 

(2.7) 

where U8 and Ue are the approximate modulation depths of the thermalization and 

the electrostriction grating respectively, and 0 denotes a temporal convolution. 

Id(if) is peaked at if = (0, q1j;, 0). So, assume that H8PI ,P2,T,D and HePI ,P2,T are 

equal to their values at q = q1j;' Also, approximate to first order, q ~ qy. This implies 

the assumption of plane wave fronts which is a good approximation if the waves have 

not traveled too far from their point of origin and if the fringe spacing is small. Also 

note that qz = 0 implies a constant intensity in qy-direction when, in fact, the intensity 

has a Gaussian profile in this direction. But the error is only a multiplicative factor, 

since all grating cross sections perpendicular to qz are self-similar. 

Taking the inverse Fourier transform of the products 

(2.8) 

we obtain: 
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<I>~L(r, t) = 7f~2 exp { - :21]2 - ~2 (2 } exp { -rq~t} COS {(y - (V ± cs)t) q1j;} 

X exp {-:2 [y - (7j + (V ± Cs)t)]2 - ;2 [z - ( + wt)f} (2.9a) 

<I>!;!) (r, t) = 7f~2 exp { - :21]2 - ;2 (2 } exp { - DTq~t } COS {(y - vt) q1j;} 

xexP {-:2[y-(7j+vt)]2- ;2 [z- (+wt)f} (2.9b) 

<I>~)(f, t) = 7f~2 exp { - :21]2 - ~2 (2 } exp {-Dsq~} t - (10 + 'YnO)t} COS {(y - vt) q1j;} 

xexP {-:2[y-(7j+vt)]2- ;2 [z- (+wt)f}· (2.9c) 

In Eqns. 2.9a-c, the assumption is made that the length scales do not change due to 

diffusion over the LITA time scales. Also, a phase shift of 7jq1j; has been dropped in 

all three cosine terms. 

2.5 Acousto-Optical Scattering 

After describing the creation and time evolution of the density grating in the sample 

volume, the next step is to model how a continuous source beam focused at the origin 

and incident on the grating at the phase-matched angle 'ljJ scatters off the grating into 

the coherent signal beam. 

If we assume the density variations pI to be small, we can use the linearized 

equation of light scattering.48 A narrow-band source beam Eo(f, t) cos (Jot) scatters 

into the electric field Es by a small disturbance in the susceptibility x(r, t; I). In the 

far field: 

_ k2 --
Es(R, t; if) = - 4'/R cos (ks . R - fot)ll(q, t), (2.10) 

where ks is the wave vector of the scattered beam, fa is the frequency of the source 



28 

beam, R is the position vector relative to the scatterer, and /-L(q, t) is the Fourier 

transform of the overlap of the susceptibility grating and the source laser field 

/-L(i, t) = x'(i, t; fo)Eo(i, t). (2.11) 

Just as with the driver beams, we assume the source beam to have a spatial 

Gaussian intensity profile. Hence, 

Es = Eo + E~ (2.12a) 

• A _ • eo 0 r 1 
{ 1 

A -1
2

} Eo = "2 exp {'tkoeo' r - 'tfot} exp - -0'- (2.12b) 

eo = (cos 'lj;, sin 'lj;, 0) . (2.12c) 

Proceeding as before with the driver lasers, the electric field of the source laser is 

Es(i, t) = Po(t)lo(r) cos (Jot) with 

(2.13a) 

where 0' is the Gaussian half-width of the source laser and 

0' 
0' =--

Y sin'lj; O'z = 0'. (2.13b) 

In Eqns. 2.13a,b variations in x-direction have been neglected by assuming O'x = 

0' / sin 'lj; » O'y, 0' z. Define <I>~~~~P2,T,D} (i, t) = lo( T)<I>~~1,P2,T,D}' the field of the overlap 

of the source beam and the evolving density grating. Taking the Fourier transform 

of these products, we can write 

(2.14a) 
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where 

In Eqn. 2.14c, the contributions from a similar lobe centered at qy = -q.Ij; have been 

neglected. Using this result in Eqn. 2.10 yields the electric field of the signal beam, 

where we used 

(2.15b) 

and where R(·) denotes the real part. 
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2.6 Detected LITA Signal 

The detected LITA signal using heterodyne detection is then simply the integral of 

Eqn. 2.15 over the detection angle where the detector is centered at if = (0, q'ljJ, 0). 

In the limit for a small detector, Eqn. 2.15 multiplied by the detection angle is the 

LITA signal. In the experiments presented here, homodyne detection is used. The 

detector measures the intensity of the electric field, i.e., the square of the modulus of 

Eqn.2.15. 

x (API <I>~iO) + ApI <I>~20) + AT<I>~'O) + AD<I>~'O») 

x (A~I <I>~iO)* + A~I <I>~20)* + AT<I>~'O)* + AD<I>~'O)*) (2.16) 

In Eqn. 2.16 we used the fact that the driver pulse (~ 7 ns) is short compared to the 

inverse Brillouin frequency and it was approximated by a Dirac delta function which 

eliminated the double temporal convolution over the driver pulse time history. 

In the large detector limit the integration over the detection angle can be approx­

imated by infinite integrals. The final result is then 

where PI = ApI~PI' T* = AT~T' etc. , and where the symbols ApI ,P2,T,D and 

~PI,P2,T,D are defined in Eqn. 2.15b and Eqn. 2.14d, respectively. 
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In the absence of beam misalignments and fluid velocities, Eqn. 2.17 collapses to 

the solution in Cummings et al. 29 with the exception of a multiplicative constant. 

This difference is due to the fact that variations in the x-direction were dropped much 

ear lier than in Cummings et al. 29 

In the absence of bulk fluid velocities, only the misalignment 'fj changes the time 

history of the LITA signal whereas 'rJ, (, and"( simply decrease the signal intensity. 

Also, Eqn. 2.17 is symmetric w.r.t. all possible misalignments. In the absence of 

beam misalignments, both fluid velocities have a similar influence on the signal that 

resembles additional acoustic damping and thermal diffusion. Among all misalign­

ment and velocity components, 'fj and v are the most interesting. In particular by 

introducing a known 'fj it is possible to measure the time it takes the density grating 

to travel to the interrogation beam, thereby obtaining the velocity component v more 

precisely than by means of an enhanced decay rate. Fig. 2.3 shows how intentionally 

misaligning the beams can produce a dependence of the signal on velocity that is more 

orthogonal to other parameters and therefore more accurately inferred from signals. 

Note that oscillations are still present in the signal so that the sound speed can also 

be measured. Depending on the range of velocities to be measured, suitable values 

for fj, w, and g can be chosen. 

2.7 Experimental Setup 

Figure 2.4 depicts a schematic diagram of the experimental setup. A Q-switched, 

frequency-doubled Nd:YAG laser (Spectra Physics, GCR-150-1O) drives a dye laser 

emitting'" lO-mJ, 7-ns pulses at 589 nm with a repetition rate of 10 Hz. Behind iris 

i2, beam splitter bs splits the beam in approximately equal-intensity halves. Beam 

splitter bs and mirrors m3, m4, m5 are placed to match the path length of the two 

beams within '" 1 mm. Lens l2 with focal length of 750 mm focuses both beams 

onto the sample volume in the test section. Lens [2 and mirror m6 are mounted on 
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Figure 2.3: Theoretical LITA signals for atmospheric air from Eqn. 2.17 with () = 
1.230

, W = 370 11m, (J = 700 11m, misalignment 77 = -2w and with fluid flow in 
+y-direction with different Mach numbers; a) M = 0, b) M = 0.25, c) M = 0.5, d) 
M = 0.75, e) M = 1.0, f) M = 1.5, g) M = 2.0, h) M = 3.0; c.f. Fig. 3.1. 
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Figure 2.4: Schematic diagram of experimental LITA setup. 

a translation stage with a lO-Jim-resolution micrometer drive. The test section is a 

high-pressure bomb with optical access via anti-reflective coated BK7 windows on 

opposite sides. 

A CW Argon-ion laser (Spectra Physics, Model 165) at 488 nm provides 0.5 W 

for the source beam. A chopper wheel ch (Scitech Instruments, Optical Chopper) 

blocks the beam except for pulses of I-ms duration which are synchronized (Lab Smith 

LC880) with the Q-switch trigger of the Nd:YAG laser. As with the driver laser, iris 

il partially removes unwanted beam modes, and lens 11 (f=1 m) focuses the beam 

onto the sample volume. The beam passes just over mirror m6 which directs the 

driver beams into the test section. Note that this optical setup introduces a small 

angular beam misalignment with (PI = ¢2. Mirror m 7 directs the scattered beam 

through iris i3 into the receiver unit where lens l3 focuses it on d onto pinhole ph 

with a diameter of 400 ,""m. 

The signal beam is detected by a photomultiplier tube (Hammamatsu model 

OPTO-8) and recorded on a digital storage oscilloscope (Tektronix, TDS 640A) from 

which it is transferred over an IEEE 488 bus to a personal computer for data analysis. 
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The transmitted part of the source (interrogation) beam is blocked as is one of the 

two driver beams exiting the test section. The other is detected by photo detector 

PD (Thor Labs, DET-2SI) and used to trigger the data acquisition. Each signal 

contains 2, 000 data points taken at a sampling rate of 5 . 108 samples per second. 

2.8 Procedure 

For all experiments presented here, the test section was filled with atmospheric air 

seeded with N O2 at concentrations on the order of parts per million. The low level 

of seeding enhances the signal level by typically two orders of magnitude without 

changing the results of the measurements. Also, this seeding makes thermalization 

predominant over electrostriction which can therefore be ignored. 

For the data analysis, a standard personal computer (Pentium, 150MHz) is used 

to find the least-squares fit of a theoretical signal (Eqn. 2.17) to an experimental 

trace. To keep the number of floating fitting parameters as low as possible, values for 

the beam diameters wand a, beam crossing angle e, etc. , are obtained from a set 

of calibration measurements. A Levenberg-Marquardt scheme is used for the least­

squares fit, which is a combination of the inverse Hessian (multi-dimensional form of 

Newton's method) scheme and the method of steepest descent.49 

Eqn. 2.17 was validated by moving the translation stage with lens l2 and mirror 

m6 in the y-direction, thus creating a known misalignment rt. The measurement 

started at a value of rt = - 2 mm and a trace was recorded every 10 J1m until reaching 

rt = +2 mm. Every trace was averaged over 64 driver-laser shots to reduce the noise 

levels at larger misalignments. 

For these measurements in which the correct beam misalignment was to be inferred 

from the signal shape, only the misalignment component in question and Ue, the 

thermal grating modulation depth, were adjusted during the numerical fit. The latter 

parameter had to be included to serve as a multiplicative factor since Eqn. 2.17 
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cannot accurately give the absolute signal but rather a relative time history whose 

total amplitude depends additionally on the characteristics of the detector and other 

factors. 

In a second set of measurements, we wanted to find whether small beam misalign­

ments affect the repeatability and/or accuracy of LITA measurements. This was of 

particular interest since it did not seem possible to detect such misalignments by the 

fitting procedure. Hence, at a number of fixed beam misalignments fj, 500 64-shot 

averages were obtained as data for a statistical analysis. Here, only the sound speed, 

thermal diffusivity, and Ue where adjusted during the fitting procedure. These data 

sets were analyzed three different ways: first, with all misalignments (wrongly) set to 

zero, secondly with the misalignments held fixed at their correct values, and finally 

with the misalignment fj set as a fitting parameter during the data analysis. 

2.9 Results, Discussion 

Fig. 2.5 shows LITA signals recorded with various misalignments together with the 

final results of the fitting routine for the theoretical traces. The theoretical results 

are shifted above the experimental signals for better comparison. 

For large values of fj (Fig. 2.5a & b), the only visible signal is due to an isolated 

acoustic wave passing through the source beam. We see that the onset of the signal 

has a steeper slope than the tail, a result of acoustic damping. Beam diameters can 

be inferred accurately from these traces. The width of the hump in the signal gives 

a good measure of the driver beam width w. In the absence of acoustic damping, the 

deyiation of the exact shape of the signal from a Gaussian profile gives information 

about the source beam diameter (J. But, since r is known in these experiments, this 

information can still be determined using the least-squares fit to Eqn. 2.17. 

In Fig. 2.5c we see the first oscillations in the signal. This indicates that at this 

location there is a sizable overlap of the source beam with both the thermal grating 
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Figure 2.5: Experimental and theoretical LITA signals of atmospheric air, a = 

700 /-Lm, W = 370 /-Lm, () = 1.23°, and: a) fj = -1100 /-Lm, b) fj = -900 /-Lm, c) 
fj = -700 /-Lm, d) fj = -600 /-Lm, e) fj = -500 /-Lm , f) fj = 0 /-Lm. The top trace in 
each graph is the fitted theoretical signal, shifted for clarity. 

and the acoustic waves. As fj is decreased further , the hump moves to earlier times 

and the oscillations become stronger. Note the subtle change in signal shape between 

Figs. 2.5e and 2.5f considering the large change in fj. 

Fig. 2.6 shows an experimental LITA signal together with the result of the fitting 

procedure. For clarity, they are plotted separately. We see how precise Eqn. 2.17 

captures the features of a misaligned signal. 

Fig. 2.7 shows the beam misalignment inferred by the fitting routine vs. the actual 

misalignment set by the translation stage. The dashed lines with a slope of ± 1 

correspond to the ideal case. For fj > 550 /-Lm, the extracted values for fj had the 

correct slope but were generally too small by about 200 /-Lm. For large values of 

fj, the larger scatter in the measurements is due to the increased noise level in the 

signals. A linear regression for the region Ifjl > 600 /-Lm gives slopes in these regions 

of m = -.946 and m = 0.995, respectively, with a coefficient of determination,r2
, 

greater than 0.98. The standard error for the measured fj is 22 /-Lm. The labeled data 
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Figure 2.6: Experimental signal (top) and fitted theoretical signal (bottom) for fj = 

-1000 jJ,m with w = 370 jJ,m, (J = 700 jJ,m, e = 1.230 in atmospheric air. 

points A through F correspond to the traces shown in Fig. 2.5a-f. 

In the center region, the detected misalignment forms a plateau at 300 jJ,m. The 

reason for this behavior is probably that the intensity profiles of the beams in the 

experiments are not well represented by Gaussians. Fig. 2.8, which shows the peak 

signal intensity VS. 77, also provides evidence that this assumption is not satisfied. 

If we give the fitting routine the option of an additional fitting parameter whose 

effect on the signal depends strongly on the beam profiles, e.g., misalignment, while 

not accurately modeling the beam profiles, it is unlikely that the fitting routine will 

return the proper value of the parameter. 

The dashed line in Fig. 2.8 represents the theoretical value of the (visible) peak 

intensity. The intensities are normalized with the intensity at fj = o. First, consider 

the theoretical curve in which we can distinguish three regimes. 

For Ifjl < 575 jJ,m (regime I) we find a Gaussian behavior for the signal intensity 

w.r.t . fj. Here, the peak value occurs early on in the LITA signal (Figs. 2.5e & f) 
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due to constructive interference of the thermal grating with the acoustic waves. Both 

gratings have a Gaussian profile so the peak intensity scales the same way. 

In regime II (575 J.Lm :::; 1m :::; 1200 J.Lm) the peak intensity occurs at later times in 

the signal when an isolated acoustic wave passes the interrogation beam (Figs. 2.5a 

& b). The travel time of the wave scales linearly with the misalignment. The wave's 

amplitude decreases exponentially with the acoustic damping rate r. This explains 

the linear behavior on a logarithmic plot for large misalignments in Fig. 2.8. Figs. 2.5c 

& d mark the transition between these two regimes. 

For 1m > 1200 J.Lm (regime III) the theoretical signal intensity decreases again 

faster than in region II. This is an artifact of the limited duration of the data acqui­

sition. In this regime, the peak of the hump visible in Figs. 2.5a & b occurs after the 

end of the recording time. 

The measured peak intensities are higher than predicted over a range of misalign-

ments near perfect alignment before they approach the theoretical values at larger 

fj. The most likely explanation is the presence of laser modes other than TEMoo. 

A non-Gaussian beam profile could also be the explanation for fact that the oscilla-
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Figure 2.9: Uncertainty (left) and error (right) of sound speed vs. fj. The sound speed 
for fj = 0 is taken as reference. Three different fitting strategies were used. In the 
strategy denoted by "float, " fj is a floating fitting parameter, in "fixed 0," fj is fixed 
at zero, and in "fixed corr ," fj was held constant at the correct preset value. The 
experimental conditions are the same as in Fig. 2.5. 

tions decay more slowly than the theory predicts for the given (fixed) beam diameters 

(Fig. 2.5c-e). 

We can see the transition from regime I to regime II in Fig. 2.8. The transition 

to III is less pronounced as at this point signals are very weak. We can see the effect 

of noise from the large amount of scatter in the intensities in Fig. 2.8. 

As evidenced by Fig. 2.7 it was not possible to extract accurate measurements 

of small misalignments from the signal shape. This finding prompts the question 

of whether small misalignments have an impact on the accuracy and uncertainty of 

other LITA measurements. Figs. 2.9a & b respectively show the uncertainty and the 

accuracy of LITA measurements of sound speed vs. fj for the three different fitting 

strategies. 

All three fitting strategies yield almost identical results. For Ifjl ::::; 300 /-tm the 

uncertainty remains approximately constant at 0.1% as does the error of 0.2%, where 

the measured sound speed from the data set with fj = 0 has been taken as reference 

value. Only for 1m > 300 /-tm do the uncertainty and error increase significantly. 

Other types of misalignments that have been carried out experimentally include 
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measurements where only one driver beam was displaced in y-direction, thus inducing 

a simultaneous misalignment in fj and 'TI, movement of both beams in opposite direc­

tions (only 'TI), and measurements with misalignments in the z-direction, i.e., sweeps 

through (' and (. Misalignments in the y-direction produced similar results to those 

explained in detail above. For nonzero values of ( or (, no change in signal shape has 

been observed as Eqn. 2.17 predicts. 

When a small-diameter, 40 /-lm pinhole ph was used in the receiver unit, another 

form of misalignment was observed that is not included in Eqn. 2.17. Changes in 

signal shape did not appear to be symmetric w.r.t. fj. The most likely explanation 

for this asymmetry is that part of the signal beam was occluded by the pinhole. 

An illustration of this effect is shown in Fig. 2.10. In the upper half we see the 

intensity of the overlap of the density grating with the source beam in physical space 

along the y-axis as it develops over time. The bright and dark stripes correspond to 

the oscillations in the early stages of the signal whereas the bright tail reflects the 

exponentially decaying tail of the LITA signal. 

In the large detector limit we assume that the detector integrates over the entire 

horizontal range in Fig. 2.10 (and beyond). Imagine that half of the signal beam is 

blocked so the receiver sees only the left or right half of the signal beam (receiver 

misalignment). The resulting LITA signals are given in the lower half of Fig. 2.10. 

We see that for fj = 0 this has no influence on the signal shape. In fact, we could take 

any region along the y-axis and would end up with the same signal shape, meaning 

that this kind of misalignment cannot be detected if the optics are otherwise perfectly 

aligned. 

However , if fj =j:. 0 then the time histories at different positions yare no longer self 

similar, resulting in different signals depending on which part of the signal beam the 

detector sees. 

Figure 2.11 provides evidence that detector misalignment produces asymmetry in 

beam-misalignment effects. Here, two traces taken at fj = ±650 /-lm are shown from 
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Figure 2.10: Intensity of overlap of density grating with source beam from the inverse 
Fourier Transform of Eqn. 2.14 for atmospheric air and at z = 0, i.e. , along the 
grating center line. On the top, the time history as a function of y-position is plotted 
- on the left for perfect beam alignment, on the right with fj = w. The experimental 
parameters are: (J = W = 500 Mm, Ad = 589 nm, e = 0.80

• White corresponds to high 
intensities, black to low intensities. In the lower portion, the resulting LITA signals 
are shown if the receiver only detects the range y < 0 or only y > 0, respectively. 
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Figure 2.11: Two traces from a sweep through values of 1]. Left trace: 1] = -650 Mm; 
right trace: 1] = +650 Mm. A small pinhole ph with a diameter of only 40 Mm in the 
receiver unit blocked portions of the signal beam. Compare with theoretical results 
in Fig. 2.10. 

earlier measurements with the 40 Mm pinhole. We clearly see the difference in the 

signal shape. Compare Fig. 2.11 with the two traces in the lower right of Fig. 2.10. 

To fully verify the origin of the asymmetry, we performed a series of measurements 

using the 40 Mm pinhole in which, for several values of 1], the mirror m 7 was translated 

to block different regions of the signal beam. The influence of receiver misalignment 

on the signal shape was demonstrated, but since this form of misalignment is not 

included in Fig. 2.17, no quantitative data can be given. Subsequently, the use of a 

larger size pinhole eliminated the asymmetry at the cost of increased sensitivity to 

incoherently scattered light and luminosity. 

Finally, consider the case of angular beam misalignments and misalignments in 

the x-direction. Both can produce a rotation of the principal axes of the grating 

structure. As a consequence, the phase matching condition for the source beam may 

no longer be satisfied resulting in a weaker signal beam that may even be scattered 

into a different direction than anticipated. This alone, however, does not change the 

shape of the signal as long as the entire signal beam falls on the detector. 
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2.10 Conclusions 

An analytical expression for the magnitude and time history of LITA signals from 

finite Gaussian beams in the presence of fluid velocities and the most common forms 

of beam misalignment has been derived. In experiments, some deviations from this 

expression were observed that were due to non-Gaussian laser beam profiles. In 

regions where this assumption was satisfied, however, the experiments showed very 

good agreement with the theory. 

It has been demonstrated how beam misalignments can be detected quantitatively 

only from the shape of the signal. Small misalignments that could not be accurately 

measured were shown not to influence the accuracy or repeatability of sound speed 

measurements, even when the data analysis incorrectly assumed that no misalign­

ments were present during the measurement. 

Beam misalignment information provided by this technique can be used in the 

initial optical setup and to correct in real-time for slow occurring misalignments, e.g., 

due to thermal expansion. The time-scale at which misalignments can be corrected is 

limited by the repetition rate of the driver laser so that a real-time alignment is not 

possible for turbulent flows where refractive index gradients may introduce random, 

non-stationary beam misalignments. In these situations it will be necessary to allow 

for beam misalignments in the data analysis. 

Controlled beam misalignments may be advantageous for optimizing the accuracy 

of measurements of a particular parameter. For example, beam misalignments can 

improve the accuracy of homo dyne LITA velocimetry. 
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Chapter 3 

Homodyne Detection LITA Velocimetry 

3.1 Introduction 

LITA is a four-wave mixing technique that can be used to measure the speed of 

sound,29,42 thermal diffusivity,42 and flow velocity38,45 of fluids remotely, non-intrusively, 

and instantaneously. If the gas composition is known, thermometry is possible.44,5o,51 

Two pulsed laser beams (driver beams) of equal strength intersect at a shallow 

angle in a test fluid. In the intersection region (sample volume) they create an electric 

field grating which, by the molecular mechanisms thermalization and electrostriction, 

results in a density and hence in a refractive index grating. The evolution of this 

grating can be examined by a continuous interrogation beam l(source beam) which 

is directed at the Bragg angle at the grating. A small fraction of the source beam 

« 0.01%) is scattered into a coherent signal beam. The intensity of the signal 

beam depends on the instantaneous modulation depth of the refractive index grating. 

The time history of the signal beam intensity is recorded and the speed of sound, 

thermal diffusivity, and flow velocity can be extracted from the signal shape either by 

a frequency decomposition technique,42,50,51 or by a nonlinear fitting technique that 

fits the experimental signal to a theoretical mode1. 29,36,38,52 

Previous applications of LITA for velocimetry purposes employed heterodyne de­

tection. 38,45,51 Here one records the superposition of the signal beam and a reference 

beam. The convective motion of the grating produces a Doppler shift between the 

signal and reference beam that is proportional to the flow velocity and which is made 

visible by this detection method. Since heterodyne detection requires the alignment 
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and intensity adjustment of an additional laser beam, setting up and aligning such a 

system is more complex than for a LITA setup using homodyne detection where only 

the signal beam is recorded. 

Using an extension of Cummings' et al.original model,29,36 we demonstrate the 

possibility of simultaneous measurements of fluid velocities and the speed of sound 

with homo dyne detection for high-speed flows (sub- and supersonic) with single laser 

pulses. 

I 
(ij 
c: 
Cl ·w 
« 
I-
:J 
"0 
Ql 

.~ 
(ij 
E 
0 
c: 

100 100 100 99 98,.,-----, 

0 

2 

a) b) c) d) e) 

~ 
0 "-
3 

.~ f) g) 

O'-"'----~-<-J 

o 2 4 

0 \ 
5 

O'-"'----~-~ 

024 
time [I1S] 

0 '- 0 
l 

10 15 

.1\ ~ i) k) 

\ \ 
o 2 4 o 2 4 

Figure 3.1: Computed LITA signals in the presence of fluid velocities for N02-seeded 
atmospheric air, and driver beam crossing angle e = 0.80

, driver beam half-width 
w = 500 /-Lm, source beam half-width a = w. Upper row (a-e) without beam mis­
alignments, lower row (f-k) with fj = -w. Amplitudes are normalized such that the 
peak amplitude of trace a) equals 100. Fluid velocities: a & f: M = 0; b & g: 
M = 0.25; c & h: M = 0.5; d & i: M = 0.75; e & k: M = 1. 

The presence of a bulk fluid velocity causes a change of the shape of the LITA 

signal. With an extended theoretical model that includes the effects of fluid veloc-
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Figure 3.2: Schematic drawing of beam offset geometry. The essential parameters are 
the beam crossing angle () and the driver laser wavelength which together determine 
the fringe spacing. Furthermore, the velocity u along the grating normal, the beam 
half-width wand the source beam offset rj. 

ities and beam misalignments36 and using a nonlinear fitting technique such as the 

Levenberg-Marquardt scheme,49 the flow velocity can be obtained by letting the ve­

locity be a floating fitting parameter. A frequency decomposition technique is not 

capable of detecting these changes in signal shape. We show how introducing a beam 

misalignment (offset) can potentially improve the accuracy of this technique. 

In the following section we will present a summary of the derivation of the theo­

retical model. The complete closed-form analytic solution can be found in Schlamp 

et a1. 36 There, the main focus is on the effects of beam misalignments. Here, we will 

derive some conclusions with respect to homo dyne LITA velocimetry. Afterwards, 

preliminary experimental results are presented from homo dyne LITA velocimetry 

measurements in sub- and supersonic flow of N02-seeded nitrogen in a converging-

diverging 2D nozzle. 

3.2 Theory 

The theoretical treatment of LITA starts from the linearized equations of motion with 

forcing terms in the momentum equation to account for the effect of electrostriction 
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and in the energy equation to model thermalization. This assumes that the fluc­

tuations are small. Order of magnitude estimates indicate that the temperature 

perturbations due to thermalization are below 1 K. Thermalization is the process in 

which driver laser energy is converted into thermal energy in the fluid by means of 

inelastic collisions. Electrostriction describes the tendency of polarizable molecules 

to move in the presence of an electric field. The importance of these effects relative to 

each other depends on the test gas and the test conditions. We use N02 to seed the 

test gas which makes thermalization the predominant grating excitation mechanism. 

By using these equations we require that the grating Knudsen number (ratio of the 

mean-free path to the fringe spacing) is much less than unity so that the continuum 

approximation holds. In practical applications the extent of the grating is in the order 

of .3 x .3 x 6 mm3 and we assume that the fluid velocity is constant within the sample 

volume. We do allow for all three velocity components. It will turn out, however, 

that only the velocity component along the grating normal has practical importance. 

The next step is to model the opto-acoustic forcing, i. e., the response of the fluid 

to the electric field grating generated by the driver beams. Assuming single-rate 

thermalization and quasi-steady electrostriction, Green's functions for the density 

perturbation created by thermalization and electrostriction can be derived analyti­

cally.53 

The driver beams are assumed to be of equal strength, Gaussian in profile, with 

plane wavefronts where they intersect, and their pulse duration is short compared to 

the inverse Brillouin frequency so that their time history can be modeled by the Dirac 

delta function. It is also assumed that the beam crossing angle is small so that the 

grating is much longer than high or wide. Thus, variations in the lengthwise direction 

of the grating can be neglected. Furthermore, while allowing the driver beams to be 

misaligned spatially, we assume their angular alignment is perfect , i.e., all three laser 

beams are co-planar. The effect of the latter two assumptions is that the orientation 

of the grating normal does not change. With these simplifications, one can find an 
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analytic expression for the electric field grating. 28,46,47 The convolution of the electric 

field with the Green's functions for the fluid response gives an expression for density 

perturbations as a function of time. 

Next, using the linear equation of light scattering,48 we find how a Gaussian source 

beam directed at the Bragg angle on this density grating is scattered into a coherent 

signal beam. Finally, integrating the modulus of the signal beam intensity over the 

detector area gives the LITA signal. In most experiments, the detector is large so 

that one integrates over the entire signal beam. 

The final result is a rather lengthy expression, and the authors wish to refer to 

Schlamp et a1.36 for the complete expression. Originally, the work was intended to 

describe the effect beam misalignments have on the signal shape but as will be shown 

in the next section, the introduction of a known beam misalignment may prove helpful 

for velocimetry applications of LITA. 

3.3 Theoretical Results 

Fig. 3.1 shows computed traces from the theoretical model. Thermalization is as­

sumed to be the predominant grating creation mechanism. The signals demonstrate 

how the signal shape changes in the presence of fluid velocities along the grating nor­

mal direction. The signal in the upper left-hand corner is the trace that is obtained 

for a fluid at rest with an optical setup in perfect alignment. Typical values were cho­

sen for the experimental parameters such as driver beam half-width (w = 500 11m), 

source beam half-width (0- = 500 Mm), driver beam crossing angle (8 = 0.80
), and 

fluid properties (N02-seeded atmospheric air, T = 293 K). The speed of sound is 

encoded in the frequency of the oscillations in the early part of the signal (Brillouin 

frequency). The frequency is equal to the speed of sound divided by the spacing of 

the fringes in the grating which only depends on the wavelength of the driver beams 

and the driver beam crossing angle. The thermal diffusivity together with the finite 
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beam size effects govern the behavior of the decaying tail of the signal. 

To the right of this reference trace we see signals with non-zero fluid velocities 

ranging in Mach numbers from 0.25 to sonic flow in the top right-hand corner. We 

see that the signals decay faster with increasing fluid velocities. To be precise, the 

effect of the fluid velocities is to accelerate the decay by a factor that scales like 

exp( -(ut)2), where u could be any velocity component. In the presence of noise, 

however, this effect will be hard to distinguish from a change in thermal diffusivity 

which is represented by a decay which scales like exp( - DTt - rt) where DT is the 

thermal diffusivity and r is the acoustic damping rate. The accuracy is hence expected 

to be poor using this approach. 

Furthermore, all three velocity components turn out to have this identical effect 

(with some scaling factor due to the different grating sizes in the three spatial di­

rections). Only the velocity component along the grating normal has an additional 

effect that is coupled to beam misalignments. This effect is shown in the lower half 

of Fig. 3.l. 

Here, we see traces with the same experimental parameters but now the source 

beam has an offset Tj such that it is directed at a position slightly downstream of the 

intersection point of the two driver beams (Fig. 3.2). We see that the influence of the 

fluid velocity on the resulting signal is dramatically different from the effect a change 

in thermal diffusivity would have. Notice especially the shape change from M = 0 

to M = 0.5. The effect that a change in thermal diffusivity has on the signal has 

been temporally decoupled from the contribution of a bulk velocity. Mathematically, 

we see an exp( -(Tj - (cs ± V)t)2) dependence. Instead of detecting fluid velocities 

by the decay of the signal tail, we essentially measure the "time-of-flight" of the 

density gratings. Also note that the signals in the lower half of Fig. 3.1 still contain 

oscillations at the Brillouin frequency that let us determine the speed of sound. The 

frequency of these oscillations is unaffected by the convective motion of the grating. 

The signal amplitudes in Fig. 3.1 are normalized w.r.t. the reference trace in the 
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flow and with driver beam offset. Corresponds to case in Fig. 3.li. Brightnesses are 
adjusted as to make weaker acoustic waves visible. Bright colors correspond to high 
intensi ties. 

upper left-hand corner whose peak amplitude is set to 100. We see that with the 

beam misalignments the signal intensity is significantly lower. In previous experi­

ments, however, the signal intensities with and without beam misalignments were 

high enough to make this loss acceptable. Furthermore, notice that the signal inten-

sity increases with increasing Mach number in Fig. 3.lf-k. This is because the strong 

thermal grating is convected towards the source beam faster than it decays due to 

thermal diffusion (Fig. 3.3). 

For the same experimental parameters, fluid conditions, source beam offset, and 
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M = 0.75, Fig. 3.3 shows the evolution of a signal beam cross section over time. The 

flow is from left to right, the source beam is centered at y/w = 0 (where w is the 

Gaussian driver beam half-width and y is the Cartesian coordinate along the grating 

normal), and the center of the driver beams are at y/w = -1. P lotted is the intensity 

of the overlap of the density grating modulation depth and the source beam intensity, 

which is proportional to the local signal beam intensity. Bright colors represent high 

intensities, darker colors low intensities. The color scale is chosen to make the weaker 

moving acoustic waves visible. The horizontal axis represents a cross section through 

the signal beam at a given time. Going down the vertical axis corresponds to marching 

forward in time. In experiments, the receiver would integrate along horizontal lines 

and doing so with Fig. 3.3 results in the trace in Fig. 3.1i. 

The oscillations at the Brillouin frequency originate from the constructive and 
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destructive interference of three acoustic waves that are formed by the driver laser. 

The brightest streak in Fig. 3.3 represents the stationary acoustic wave which is 

the equilibrium solution for the induced temperature grating. It convects with the 

surrounding fluid to the right. It decays together with the temperature grating due 

to thermal diffusion. The driver laser pulse is too short for bulk fluid movements to 

occur. Hence, initially, the density has to remain constant. This is accomplished by 

two additional acoustic waves that initially cancel the stationary wave. They travel 

with the speed of sound (relative to the surrounding fluid) in opposite directions and 

show as weaker streaks symmetrically around the center streak. The hump visible 

in Figs. 3.1f and g represents the event when the thermal grating arrives and passes 

over the region of the source beam. 

This velocimetry approach is expected to work for high-speed sub- and supersonic 

flows. Depending on the expected flow velocity and the beam diameters, crossing 

angle, and wavelengths, a suitable value for the offset r; can be chosen. If the offset is 

chosen too small, the hump in Fig. 3.1f&g will be hidden within the early parts of the 

LITA signal and we expect poor accuracy. If the offset is too large, then the density 

gratings will have completely decayed by the time it would pass over the source beam. 

3.4 Experimental Setup and Procedure 

Measurements were performed in a converging-diverging, 10 mm deep 2-D nozzle. 

The throat cross section is 10 x 3 mm2 . The cross section at the exit is 10 x 9 mm2 

which results theoretically to a flow Mach number of M = 2.7 at the exit. Windows 

give optical access on both sides along the nozzle center line, both in the sub- and 

supersonic flow regime. 

Fig. 3.4 shows the optical setup. A Q-switched, frequency-doubled Nd:YAG laser 

(Spectra Physics, GCRI50-1O) with a folded-BOXCARS forward phase-matching54 

optical setup is used to produce the two driver beams. Lens L2 (J = 500 mm) focuses 
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Figure 3.5: Shadowgraph of supersonic nozzle before start of flow (top) and with flow 
(bottom). The flow is from left to right. Mach waves of changing Mach angle indicate 
the presence of accelerated supersonic flow. 

the parallel beams so that they intersect in the center of the nozzle cross section. 

A CW Argon-Ion laser (Spectra Physics, Model 165) at 488 nm is used as interro­

gation laser. An offset fj between the focus of the driver beams and the focus of the 

interrogation beam can be introduced by means of a micrometer-driven translation 

stage. The signal beam is detected by a photo-multiplier tube (Hamamatsu Model 

OPTO-8) and recorded on a digital storage oscilloscope (Tektronix TDS 640A). From 

there it is transferred to a personal computer for storage and data analysis. 

The nozzle is operated as a blow down nozzle which was fed by a reservoir filled 

with N02-seeded nitrogen at 4 MPa. Running times were approx. 45 s for each run 

during which time single-shot measurements were taken at a rate of 3 Hz. * Fig. 3.5 

shows shadowgraphs of nozzle without (top) and with (bottom) flow. We see Mach 

waves of decreasing Mach angle behind the throat in the bottom picture, which are 

typical for two-dimensional nozzles and which indicate the presence of supersonic 

flow. The apparent discontinuity of the nozzle contour in the throat region is due 

to the high density gradients around this location. Before each blow-down run the 

values for the driver beam crossing angle and the driver and source beam diameters 

*The driver laser repetition rate is 10 Hz but the data transfer from the oscilloscope to the 
computer limits the data rate. 
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are determined by static calibration measurements. 

For a fixed value of the beam misalignment 'fj = -750 p,m measurements are 

performed at different positions x along the nozzle centerline. We measure x as 

location of the source beam. Note that due to the offset of the driver beams the 

grating will be created slightly upstream (lower value of x) of this position. The flow 

velocity will change between these two positions. This is significant for the subsonic 

part where the fluid accelerates from M = 0.25 to sonic over a distance of only 4 mm. 

The Levenberg-Marquardt scheme49 is used for a nonlinear least-squares fitting of 

the theoretical model described in Section 3.2 to the experimental signals. The speed 

of sound and the flow velocity are fitting parameters during this procedure. To limit 

the number of fitting parameters, other experimental parameters such as the beam 

crossing angles and beam diameters are determined in a calibration measurement in 

nearly quiescent fluid in the entry region of the nozzle (Fig. 3.6a). 

3.5 Experimental Results 

Fig. 3.6 shows some of the recorded LITA signals (black) and the fitted theoretical 

model (red). The depicted signals have been averaged over 16 individual measure­

ments to reduce the noise levels. The signal intensities are satisfactory. It must be 

said, however, that the flow was heavily seeded with N02 (approx. 1 part in ten 

thousand). The signals are normalized with respect to their peak value. Similar as in 

Fig. 3.1 we see the tendency for the hump in the signal to move towards earlier times 

with increasing flow velocity, i.e., the further downstream we take the measurement. 

Table 3.1 lists the values for the speed of sound and the flow velocities after the fitting 

technique has converged to a final value. 
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Table 3.l: Theoretical and measured Cs and u y in supersonic nozzle. 
x [mm] M Cs th.jmeas. [m/s] u y th./meas. [m/s] 

-24 0.1 345/345 (calib.) % (calib.) 
±O 1.0 317/325 317/384 

+14 1.75 269/264 471/455 
+23 2.0 257/259 516/467 
+45 2.33 239/235 560/-

3.6 Conel usions 

The values for the speed of sound in Table 3.1 agree very well with what quasi-1d flow 

theory predicts. Errors are only approximately 2%. The accuracy for the velocity 

measurements is not as good. 

The 2D-nozzle is only 10 mm deep. Towards the nozzle exit the boundary layers 

on the windows are about 3 mm thick on both sides. This leaves only about 4 mm of 

undisturbed flow in between the windows. Considering that the length of the sample 

volume is approximately 5 mm, it is likely that parts of the sample volume reach into 

the boundary layer. This could explain some of the distortions in the data in Fig. 3.6 

and also the large errors for the flow velocities. In particular, we expect the hump 

to be fairly narrow. Its shape is governed by the driver beam profile. A spreading 

indicates the presence of a range of velocities within the sample volume. 

The current nozzle design was limited by the available mass flow rate at densities 

that allow good signal levels in the supersonic part of the nozzle. The signal intensity 

scales with the square of the density. Still, we observe phenomenological agreement 

between theory and experiment. 

Another source of uncertainty, as mentioned, will be that the flow velocity changes 

along the flight path of the grating. In the present experimental setup this is par­

ticularly important near the throat where the flow accelerates from M = 0.25 to 

sonic within a distance of only 4 mm. To minimize this effect we prefer small values 

for the beam offset 'ij. But the best temporal separation of the early signal parts 
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Figure 3.6: LITA signals for fj = -750 Mm at different locations along nozzle cen­
terline. Experimental data is plotted blue, fitted theoretical model is in red. The 
green numbers are the results from quasi-one-dimensional isentropic flow theory, the 
red number are the results of the data analysis. The other experimental parameters 
are: driver beam crossing angle e = 1.480

, driver beam half-width w = 240 Mm, 
source beam diameter a = 1, 500 Mm. The flow Mach number ranges from M ~ 0.1 
(x = -24 mm) to M = 2.33 (x = +45 mm). 

from the passing of the thermal grating for large fj . For applications of this tech­

nique in situations with lower velocity gradients in flow directions, this effect might 

be neglected. 

It has been demonstrated theoretically and experimentally how Laser-Induced 

Thermal Acoustics can be used to simultaneously measure the speed of sound and one 

velocity component. The Mach number follows directly and with prior knowledge of 

the fluid composition, the temperature can be obtained. Still , this technique is non­

intrusive (temperature perturbations of less than 1 K) , remote , and instantaneous 
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(~ 2 J-ls). The measurement uses only homodyne detection, which should simplify 

the experimental setup. The technique can be used for sub- or supersonic high speed 

flows. For a given set of experimental conditions (beam sizes, crossing angles, etc. ) 

and range of fluid velocities, a suitable driver beam offset can be found that maximizes 

the effect of the fluid velocity on the signal shape and hence maximizes the accuracy of 

the technique. Heterodyne detection LITA velocimetry encounters problems around 

sonic conditions. In this case, the Doppler shift is equal to the Brillouin frequency and 

the two frequencies cannot be separated. t Homodyne detection LITA velocimetry can 

be used in this range. Further measurements in a larger continuous flow supersonic 

flow facility will yield quantitative results of this technique. 

tIf the gratings result from electrostriction then this happens at M = 2. 
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Chapter 4 

LITA Velocimetry Using Heterodyne 

Detection 

4.1 Introduction 

Laser-induced thermal acoustics (or Laser-induced grating thermometry) is a four­

wave mixing technique that has been successfully used for remote, non-intrusive, 

and instantaneous measurements of the speed of sound, the thermal diffusivity, and 

the fluid velocity. LITA is used by a number of laboratories for thermometry pur­

poses,42-44,50,55 and for velocimetry applications with electrostrictive gratings,51 and 

using thermal gratings.45 A theoretical treatment of LITA can be found in Cum­

mings. 29 Schlamp et a1. 36 extends the theory to include the effect of fluid velocities 

on homodyne-detected signals. 

Heterodyne LITA velocimetry has been proposed29 as an alternative to laser 

Doppler anemometry for velocity measurements in luminous flows, flows with poor 

optical access, and flows with poor or no control of particulates. We report on the 

successful application of heterodyne LITA velocimetry with f'V 0.5% uncertainty in 

the sound speed and velocity at Mach 0.1 from single-shot signals. 

In LITA, two coherent intersecting pulsed laser beams create by thermalization 

and! or electrostriction a density grating in the sample volume that evolves over time. 

A third, continuous laser beam, directed at the Bragg angle onto the sample volume, 

is scattered into a coherent signal beam whose intensity depends on the instantaneous 

density grating modulation depth. Convective motion of the laser-induced perturba-
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tions normal to the grating produces a Doppler shift in the signal that is proportional 

to the velocity. Heterodyne signal detection is employed to recover the Doppler shift. 

In this study, phase-sensitive detection is accomplished by superimposing the signal 

beam and a reference beam on a photomultiplier tube. 

Experimental results are presented from heterodyne velocity measurements in a 

low speed wind tunnel using thermal gratings in N02 seeded air for a Mach number 

range M = O ... 0.1. Measurements were extracted from signals via optimal nonlinear 

filtering. The optimal nonlinear filter consists of a least-squares fit between a theoret­

ical and experimental signal. 29 The theoretical signal used in the filter is an extension 

of the analysis in Schlamp et al. 36 for heterodyne detection with a finite frequency 

shift between the source and reference beams. While not used in these experiments, 

such a shift (e.g., via a Bragg cell) could eliminate velocity ambiguity and improve 

the performance of the technique at low speeds. 

4.2 Experimental Setup and Procedure 

Experiments were conducted in a closed-circuit wind tunnel with a test section cross 

section of 5 cm. The tunnel was powered by a propeller mounted on an air-driven 

motor (350 W at 600 kPa) whose air supply and exhaust piped through the wind 

tunnel wall to allow closed-circuit tunnel operation. The test gas was N02-seeded air 

at atmospheric conditions. 

The motor was driven by pressurized air from a blow-down reservoir that started 

at 600 kPa. Run times were approximately 60 s with speeds starting at rv40 m /s and 

decreasing with the reservoir pressure. Data was taken continuously during runs at 

the driver laser pulse-repetition rate of 15 Hz. 

A standard forward-scattering focused-beam four-wave mixing geometry was em­

ployed. The optical setup consisted of a frequency-doubled, Q-switched Nd:YAG laser 

(Continuum, Minilite II, 25 mJ /pulse, 3 - 5 ns pulse duration) as driver laser. Its 
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beam is split in halves by a 50/50 beam splitter. An arrangement of mirrors on kine­

matic mounts and translation stages direct the two beams with equal optical path 

length parallel onto a transmitter lens (f = 500 mm) which focused the beams onto 

an intersection point in the center of the test section. The beam crossing angle was 

I'V 1.3°. 

A CW Argon ion laser (Spectra Physics, Stabilite 2017 at 488 nm) produces the 

interrogation beam. A chopper wheel (Scitech Instruments, Optical Chopper) pro­

duces 20 /-LS pulses at sixty times the driver-laser pulse repetition rate. The short 

duration of these pulses extends the linear operating range of the detector photo­

multiplier tube. The timing and coordination of the lasers, data acquisition, and 

experiment is handled using a programmable logic and timing controller with 25-ns 

resolution (Labsmith LC880). A 99/1 beam splitter divides the beam into the in­

terrogation and reference beams. A variable neutral density filter provides intensity 

adjustments of the reference beam. Both beams are directed parallel and path-length 

matched onto the transmitter lens, which focuses them on the sample volume. The 

distance between the beams is adjusted for optimal phase-matching. These beams 

intersect the plane of the two driver beams at an angle of I'V 1.5°. 

A small fraction < 0.01% of the interrogation beam scatters off the grating into 

a coherent signal beam. The reference beam is carefully aligned to follow the same 

path as the signal beam. 

In the receiver, the signal/reference beam pass through an interference filter and 

are focused by a 40-mm-f.1. lens through a 200 /-Lm-diameter pinhole to suppress inco­

herently scattered and ambient light. A photomultiplier tube (Hamamatsu, H5783-03, 

0.65 ns response time) detects the signal which is recorded onto a digital storage oscil­

loscope (Hewlett Packard, Infinium, 4 channels, 500 MHz, 2 GSa/s) and transferred 

to a Pentium II-based computer for storage and data analysis. 

Each signal consists of a sequence of 1,024 12-bit samples recorded at a sam­

pling rate of 250 MHz. During each wind tunnel run, 1, 000 single-shot signals were 
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recorded at 15 Hz. The experimental traces were optimally filtered using a Levenberg­

Marquardt-based49 least-squares fit to theory where the flow velocity, the speed of 

sound, and the phase shift between the reference and signal beams were fitting pa­

rameters. Other parameters, such as the beam diameters and driver beam crossing 

angle were determined in static calibration measurements. 

4.3 Results 

Fig. 4.1 shows examples of experimental heterodyne LITA signals and the best-fit 

theoretical signals. The theoretical signals are plotted with an offset for clarity. The 

agreement with theory is exceptionally good. Fig. 4.1a was obtained before turn­

ing on the wind tunnel, Fig. 4.1 b represents approximately the maximum velocity. 

The velocity decreases gradually from Fig. 4.1 b to Fig. 4.1f. The second frequency 

component in the data from the Doppler shift of the signal beam is clearly evident. 

Fig. 4.2 shows velocity measurements (top trace) and sound-speed measurements 

(bottom trace) during a 60-s blow-down run of the wind tunnel. The inferred flow 

velocity before the wind tunnel is turned on non-zero because of signal distortion 

produced by small detector gain nonlinearities. This problem can be eliminated by 

the use of a frequency offset between the reference and interrogation beams. The 

standard deviation of the velocity measurements is rv 0.2 m/s. The standard deviation 

in the sound speed measurements is 0.5%. 

In Fig. 4.3 the scatter around a linear regression (dashed line in top graph of 

Fig. 4.2) to the flow velocity for t ~ 3 s is plotted as a function of the flow velocity 

which can be used as an estimate for the uncertainty. Data for t < 3 s the wind 

tunnel might have been influenced by startup velocity fluctuations. We see that the 

uncertainty is inversely proportional to the flow velocity, i.e., Doppler shift. 
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Figure 4.1: Experimental (blue) and theoretical (red) heterodyne LITA signals from 
Eqn. 5.6 for thermal gratings in atmospheric air. a) M = 0.00; b) M = 0.11; c) 
M = 0.08; d) M = 0.06; e) M = 0.04; f) M = 0.02. 
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Figure 4.2: Measured flow velocities during blow-down experiment (top) and values 
for the speed of sound (bottom). The points labeled A-F correspond to the data in 
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Figure 4.3: Uncertainty of velocity measurement vs. velocity. 

4.4 Discussion and Conclusions 

Single-shot heterodyne LITA signals have been recorded in a wind tunnel. The theory 

based upon linear hydrodynamics and scattering agrees well with the experimental 

signals. From these signals , the sound speed and flow velocity were inferred simulta­

neously with rv 0.2 mls and 0.5% repeatability, respectively. The signal lifetime sets 

a lower limit on the flow velocity that can be measured accurately. For example, in 

Fig. 4.1f, the period of the Doppler shift is about the same as the signal life time. For 

the highest flow velocities measured (rv 40 ml s), the accuracy of the measurements 

was rv 0.5%. At low velocities , gain variations in the PMT over the lifetime of the 

signals produced a large (consistent) velocity error of rv 5 m/s. This error could be 

mitigated by characterizing the PMT response and removing the defects as best as 

possible from the signals. However, many effects produce low-frequency variations 

in a detected signal. Untreated, these effects produce flicker or 1 If noise. Because 

of the practical impossibility of correcting for all these effects, we propose to use a 
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Bragg cell in the path of the reference beam to shift its frequency by 0(100 MHz) (c.f. 

typical LDA implementations). This frequency offset will appear in the signal, up- or 

down-shifted by the Doppler frequency, depending upon the direction of the motion 

of the fluid. By this up-conversion of the Doppler frequency, reduces the 1 I I noise 

significantly for all practical velocities, eliminating large velocity errors at low speeds. 

The up-conversion also removes ambiguity in the sign of the velocity measurement. 

Fig. 4.4 demonstrates this approach. It is equivalent to the use of a rotating mirror 

in Particle-Image Velocimetry.56 

Heterodyne LITA velocimetry should be applicable well into the hypersonic range 

of velocities. It has advantages over LDA when optical access is limited, the flow is 

luminous, particulate content is not easily controlled, particle lag is excessive, and 

where additional simultaneous information about the flow is desired, such as the sound 

speed, thermal diffusivity, or their derived quantities, the temperature and density. 

LITA velocimetry also produces measurements with microsecond temporal resolution, 

a factor in pulsed or highly unsteady flows. The disadvantages of the technique over 

LDA are the additional complexity and the need for more powerful lasers. 
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Chapter 5 

Neural Network Data Analysis for LITA 

5.1 Introduction 

While other laser-diagnostic techniques such as Particle Image Velocimetry and Laser 

Doppler Anemometry are commercially available as packages systems, this is not true 

for Laser-Induced Thermal Acoustics (LITA). One of the reasons is the complexity of 

the optical setup and alignment for LITA. Secondly, the characteristic advantages of 

LITA (short test times, high signal levels, non-intrusiveness) only playa significant 

role for a small number of specialized applications. Finally, the data analysis can be 

cumbersome and requires user input, interaction, and expertise to ensure the integrity 

of the results. Latter point is the focus of this paper. We seek a method that performs 

the data analysis accurately, computationally efficiently, robust, and autonomously. 

We propose and demonstrate the use of a feed-forward neural network for this task. 

Laser-induced thermal acoustics (or Laser-induced grating thermometry) is a four­

wave mixing technique that has been successfully used for remote, non-intrusive, and 

instantaneous measurements of the speed of sound,42 the thermal diffusivity,42 and 

the flow velocity of gases. 37,38,45,51 If the gas composition is known, the temperature 

can be obtained from the speed of sound.44,50,51,57 

Two coherent intersecting pulsed laser beams (excitation beams) create by ther­

malization and/or electrostriction a density and consequently a refractive index grat­

ing in the sample volume that evolves over time. A third, continuous laser beam (in­

terrogation beam), directed at the Bragg angle onto the sample volume, is scattered 

into a coherent signal beam whose intensity depends on the instantaneous modulation 
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depth of the refractive index grating. 

Two detection approaches can be used. In homodyne detection, only the signal 

beam intensity is recorded over time. In heterodyne detection, the superposition 

of the signal beam and a reference beam is recorded. Since the signal beam has a 

Doppler shift proportional to the fluid velocity component along the grating normal 

direction, the latter approach makes this Doppler shift visible in the recorded signal. 

Given the time-resolved heterodyne or homo dyne signal, one of three methods 

is currently employed to obtain the speed of sound and, in the case of heterodyne 

detection, the fluid velocity. 

• One can use a technique where a signal obtained from a theoretical model is used 

for a nonlinear least-squares fit to the experimental data. The speed of sound 

and flow velocity are floating parameters during the fitting . This t echnique 

requires a theoretical model. Cummings et al.29 and Schlamp et al. 36 provide 

such a model. The theory in those references assumes, however, homo dyne 

detection. 

• Pronys method5o,58 is a simpler version of the fitting technique above. A linear 

combination of damped complex potentials is fitted to the data. No theoretical 

method is needed. 

• From the location of the peaks in the power spectrum, one can infer the Brillouin 

frequency and the Doppler frequency. The speed of sound and the flow velocity 

can be deduced. 

Previous research29
,42 has shown that LITA can also be used to measure the thermal 

diffusivity. The thermal diffusivity governs the exponential decay of the LITA signal. 

Hence, from the decay time constant of the LITA signal, the thermal diffusivity can be 

calculated. But the last two methods can only extract frequencies from the data . Only 

the first method is capable of extracting signal parameters other than frequencies from 

signals . While the full fitting technique is computationally expensive (O( n3 ) , where 
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n is the number of data points in a signal), it is more accurate than the frequency 

decomposition technique as it represents an optimal filter for the noisy data under the 

assumption that the theoretical model is a correct representation of the experimental 

signal. The frequency decomposition technique is computationally cheap (O( n log n)) 

and can be performed in real-time at driver laser frequencies of 0(10 Hz). 

Artificial neural networks are heavily used for all sorts of classification prob­

lems,59,6o robot control,61,62 speech recognition,63,64 and image processing65 but less 

extensively for data analysis in engineering problems. This is mostly due to a lack 

of familiarity of the engineering community with the concepts of neural networks. 

Secondly, the lack of analytical tools for an a priori prediction of the network per­

formance, optimal learning algorithms, amount of training necessary, or for guiding 

in the design of the network architecture is another point of dissatisfaction. Finally, 

while it is possible that a trained neural network gives accurate results for all inputs 

tested, it is impossible to prove that this will be the case for all inputs. 

We use only very basic neural network concepts to achieve the results presented 

in Section 2.9. This demonstrates that even simple neural network implementations 

can yield very satisfactory results. Excessive empirical trial-and-error with network 

architecture and learning scheme can potentially improve the network performance 

and accelerate the training process, but this is not necessary to arrive at satisfactory 

results. The disadvantage of the neural network implementation presented in this pa­

per is the requirement to train the neural network prior to its use. Without advanced 

numerical schemes this can take considerable time. It should be pointed out that the 

trained network performs the data analysis fully autonomously. The neural network 

outputs are direct functions of the network inputs so that numerical instability or 

poor convergence behavior do not pose a problem. 

In Section 5.2 we will present the theoretical framework for LITA using either 

heterodyne or homo dyne detection. It is an extension of the work presented in Cum­

mings et a1. 29 and Schlamp et al. 36 The solution will be used to create a set of LITA 
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traces which are used to train a neural network and to test its performance. In Section 

5.3 we will present a summary of the basic theory of feed-forward neural networks 

and the back-propagation learning rule. This section should provide just enough in­

formation for the reader who is unfamiliar with neural networks to follow this paper. 

For more background information, the interested reader is directed to Hertz et ai., 66 

Bishop,67 and Haykin.68 Section 5.4 shows how the theory of feed-forward networks 

can be implemented for the LITA data analysis. Section 5.5 gives some results of the 

theoretical derivation from Section 5.2 and will show the performance of the neural 

network data analysis. 

5.2 LITA Theory 

The electric field of the scattered LITA signal beam in Fourier space is36 

Ap1 ,P2,T,D are the relative amplitudes of the acoustic waves, thermal grating, and 

finite driving-time terms. <P Pl,P2,T,D contain the temporal and spatial profiles of 

these terms. 0 represents a temporal convolution. Eqn. 5.1 contains the effects of 

finite beam sizes, single-rate thermalization, and electrostriction. For a more detailed 

explanation of the terms in Eqn. 5.1, the reader is directed to Cummings et ai. 29 and 

Schlamp et al.36 

We superimpose a reference beam with the same Gaussian geometry and direction 
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as the signal beam of the form 

(5.2a) 

- - - eo ® r A 
{ I A -1

2

} Er = "2 exp {iks . R - i(fo - 6.fref)t + i¢ } exp - a (5.2b) 

to the signal beam. fo is the interrogation beam frequency, a its diameter, and ks its 

wave vector magnitude. ® and 0* denote the vector cross product and the complex 

conjugate, respectively. ¢ is used to model a phase shift between the reference beam 

and the signal beam. In the final result (Eqn. 5.6), ¢ produces a phase shift between 

the Brillouin frequency and the Doppler frequency component in the signal (Fig. 5.5). 

This effect was observed experimentally38 where ¢ took random values for every 

signal. This is caused by small time-varying perturbations (e.g., vibrations) in the 

optical setup. The frequency of the reference beam is assumed to be shifted by 6.fref 

from that of the interrogation beam. In experiments, this frequency shift could be 

introduced by a Bragg cell in the beam path. Its purpose is to improve the accuracy 

for low speed velocity measurements and to remove the direction ambiguity from the 

velocity measurements. 

For the time being, we do not specify the (temporally constant) intensity of the 

reference beam relative to the signal beam and use the prefactor A to keep Eqn. 5.2 

general. Furthermore, we will absorb any multiplicative constants that will show up 

along the way into A. For A = 0, i.e., zero reference beam intensity, we expect to 

recover the result for homo dyne detection. 

Since the Fourier transform is a linear operation, we can superimpose the Fourier 

transform of Eqn. 5.2a directly with Eqn. 5.1. The Fourier transform of Eqn. 5.2a is: 

(5.3a) 
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where 

Aref = A exp {iJ} 
<Pref = "Bref W ref 

(J 

(J =--
Y sin'ljJ 

(5.3b) 

(5.3c) 

(5.3d) 

(5.3e) 

(5.3f) 

and where q1jJ is the phase-matched scattering or grating vector. Note that in Eqn. 5.3d 

we neglected a second lobe centered at qy = -q1jJ as well as any variations in x­

direction. The latter is justified by the fact that for small driver beam crossing 

angles, the spatial extent of the grating will be much larger in the x-direction than 

in the y- or z-directions. 

Now we can superimpose signal and reference beam by including Eqn. 5.3a in 

Eqn. 5.1 as follows: 

Es(q,R,t) k;w
2 

{. (- - )} 
Po(t) = - 41fR X(Jo) exp '/, ks • R - Jot 

o ~ [API <p~t) + AP2<P~20) + AT<P~'O) + AD<P~,D) + Aref<PreJp.4) 

Detectors measure the intensity of the electric field, i.e., the square of the modulus 

of Eqn. 5.4. Also, at this point we assume that the driver laser pulse is short compared 

to all other time scales and that we can approximate it by a Dirac delta function. 

This simplifies the temporal convolution into a simple multiplication. 

Hence, the signal intensity using heterodyne detection is then 

.c (A 
",(d,O) A (d,D) A (d,D) (d,D) ) 

hel <X PI':!."PI + P2<PP2 + T<PT + AD<PD + Aref<Pref 

x (A* <p(d,O)*+A* <p(d,O)*+A <p(d,O)*+A <p(d,O)*+A* <p* )(55) 
PI PI P2 P2 T T D D ref r e f .. 
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Finally, we have to integrate Eqn. 5.5 over the detector area. In the limit of a 

small detector, we can multiply Eqn. 5.5 by the detector area. In the limit of a large 

detector we can use infinite spatial integrals of Eqn. 5.5. In the latter case, the result 

is 

where g = Ap1I:P1 , T* = ATI:T, R = ArejI:rej, etc. The term RR* at the very 

end of Eqn. 5.6 represents the constant reference beam intensity in the form of a DC 

offset. We see that for A = 0 (Arej = 0), the solution collapses onto the solution for 

homo dyne detection.36 Since we do not attempt to find an expression for the absolute 

LITA signal intensity we, as in Eqn. 5.5, neglect multiplicative constants. 

5.3 Neural Network Formulation 

Multi-layer feed-forward networks were first studied by Rosenblatt in the late 1950s69 

but, owing to the absence of a training algorithm for multi-layer networks , inter­

est subsided until the reporting of the back-propagation learning rule in 1986.35 

Back-propagation has actually been independently discovered at least three other 
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Figure 5,1: Layout of a one-hidden-layer feed-forward neural network illustrated for 
the case of m = 2 output units. 

times.32- 34,70 Bryson et ai.32 refers to work done, on a related problem, in the early 

1950s.71 

The network we are considering (Fig. 5.1) has n input units Xi, i = o ... n, h units 

Zj in the hidden layer , j = 1 ... h, and m output units Yk, k = 1 ... m. Each unit is 

connected to every unit in the next higher layer. A weight is assigned to each such 

connection. A normalized, time-discretized LITA signal £(ti ) will be used as input. 

So, n will be chosen to be the number of points in the signal trace. 

The values Zj of the units in the hidden layer are determined by the values of the 

input units , the weights Wji (from input unit i to hidden unit j), and an activation 

function (J ( .) by 

(5.7) 

Note that the index counts from zero to n and we define Xo = -1 and call it a 

bias unit. Its significance Hertz et ai.66 lies in its mathematical and algorithmic 
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convenience. It allows an affine transformation of the inputs (i.e., one involving a 

linear combination of inputs alXl + a2X2 + . " plus an offset ao) to be treated as a 

linear combination; thus, all weights, including ao, may be treated uniformly, rather 

than requiring separate treatment for ao. 

Similarly, the values of the output units are given by 

Yk = CJ (t VkjZj ) , 
J=O 

(5.8) 

where CJ(.) is the same activation function as before, Zo = -1, and Vkj is the weight 

from hidden unit j to output unit k. The only requirements for the activation function 

CJ(.) are that it is nonlinear, differentiable and bounded. Hidden layers do not expand 

the network's capabilities if the activation function is linear. This is because any linear 

combination of linear functions is again only a linear function. The requirement that 

CJ(.) is differentiable is due to the back-propagation learning rule. The boundedness 

of CJ(.) is not a strict requirement but it is helpful in avoiding overflows. We use 

1 
CJ(x) = 1 + exp(-x)' (5.9) 

but other choices such as CJ(x) = tanh(x) are possible. 

Each output unit represents one parameter that we want to filter from the LITA 

signal in the input. By the choice of the activation function (Eqn. 5.9), the output 

units can only have values in the range 0 ... 1 and we must therefore scale the outputs 

to fall in the range of the target values, i.e., speed of sound and flow velocity (see 

Eqns. 5.16a & b). 

We see that, given the proper weights Wji and Vkj, and a LITA signal as input, 

the Yk'S can easily be found. The problem is to find the correct weights that perform 

the filtering correctly. This process is referred to as training of the neural network. 

Assume we have a number J.1, = 1 ... N of LITA signals (training set) with known 
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correct output values TI~ (called target values) but the network with incorrect weights 

returns values at the output units Y~. One possibility to define an error measure is 

by 

1 N m 

E = "2 L L (Y~ - TI~)2 . 
J.t=lk=l 

(5.10) 

This represents the sum of the squares of all individual errors. E is zero if and only if 

Y~ = TI~ for all k and jJ,. By using Eqns. 5.8 and 5.9 in Eqn. 5.10 we can differentiate 

with respect to the weights Vkj and obtain 

(5.11) 

The choice of the activation function in Eqn. 5.9 allows us to express da/dx bya(x) 

itself, 

da(x) 
~ = a(x)(l - a(x)) . (5.12) 

This has the advantage that we do not have to compute at during the training. 

We can continue, use Eqn. 5.7 in Eqn. 5.11 , and differentiate with respect to the 

weights Wji. The result is 

8E ~ J.t ~ J.t ( J.t) (J.t J.t) J.t ( J.t) ~ = L.J Xi L.J Vlj Zj 1 - Zj Yl - TIL Yl 1 - Yl . 
W Jt J.t=1 l=l 

(5.13) 

This gives us all the tools we need. By updating the weights according to 

(5.14) 

where TI is called the learning rate, the error measure E can be reduced iteratively 
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provided TJ is sufficiently small. Eqn. 5.14 represents the method of steepest descent. 

More sophisticated updating rules than the one shown in Eqn. 5.14 can be used which 

show faster convergence, e.g.by introducing a "momentum" term66 

(5.15) 

ex must be between 0 and 1. Commonly a value of 0.9 is chosen. 

Some authors66,72-75 have proposed an adaptive scheme of adjusting the param­

eters ex and TJ during the training to further improve the convergence behavior. In 

most adaptive schemes TJ is increased by a small additive constant if the cost function 

E decreases monotonically over a number of iterations. An increase of E during the 

training, on the other hand, normally indicates that the minimization algorithm over­

shot the minimum and a reduction in step size is appropriate. Hence, if E increases 

over one training iteration, TJ is decreased geometrically (i.e., multiplied by a constant 

between zero and one). 

As stated in Section 2.7, however, we change the training set slightly after every 

iteration to prevent the network from over-training. This introduces noise which in 

turn prevents us from using such an easy adaptive scheme. Due to the high number 

of connections (50,000+), we cannot use a more efficient (but memory demanding) 

minimization scheme, such as the Levenberg-Marquardt algorithm. 

Hence, we know what values to use for n, m, Xi , how to calculate Yk , and how to 

find appropriate weights. The number of hidden units required cannot be precisely 

determined a priori but has to be found empirically. It can be shown76,77 that given a 

sufficient number of hidden units, a one-hidden-Iayer feed-forward network is capable 

of approximating a function to arbitrary accuracy either if the function consists of 

a finite collection of points or if it is continuous and defined on a compact domain. * 

* Similarly, a two-hidden-layer feed-forward neural network is capable of approximating any 
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From the derivation in Section 5.2 we can conclude that such a continuous function 

exists and that hence a one-hidden-Iayer network architecture is sufficient. A rule of 

thumb applicable to many problems is the geometric pyramid rule. According to this 

rule, the number of units follows a pyramid shape, with the number decreasing from 

the input towards the output. For a one-hidden layer network with n input units and 

m output units, the number of hidden units would be Vmn. In practice, one should 

try first with a small number of hidden units and increase the number until the neural 

network performance is acceptable. While a two-hidden-Iayer network could still be 

used, practice shows that learning slows dramatically when more hidden layers are 

used. 78 The reasons for this are that the gradient becomes more unstable and that 

the number of local minima increases dramatically. 

Two kinds of errors can be defined. The" bias" is the part of the error which is 

due to deficiencies in the network architecture, i.e. , insufficient number of layers or 

of hidden units. If the number of hidden units h is too large on the other hand, the 

network will learn the task "too" well, meaning that it will specialize on the training 

set but will perform poorly on data that was not used in the training phase. This is 

referred to as over-training. The "variance" is the part of the error that is due to the 

fact that the training set does not cover the entire space of inputs. 

5.4 Setup 

If for a given application the range of target values for Cs and uy is known (¢ = a ... 27r 

always) , we can create a training set by using uniformly distributed random values 

for these parameters in Eqn. 5.6. Fig. 5.2 shows a typical trace as it was used in 

a training set. Each trace consists of 1, 000 equally spaced time-discretized points. 

As only a preprocessing step, all signals are normalized to a (positive) peak value of 

unity. The training set has to consist of a sufficient number of traces in order to cover 

function. 
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Figure 5.2: Typical theoretical trace as 
used in the training and validation set 
for Cs = 340 m/s and u y = 100 m/s. 
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Figure 5.3: Frequency decomposition of 
LITA signal from Fig. 5.2. 

the parameter space well (i.e., to reduce the variance) and to avoid over-training of 

the network. In general the number of training signals should be much larger than 

the number of units in the hidden layer. To avoid an excessively large training set, 

the authors chose to vary the training set over the course of the training. After each 

updating of the weights, one randomly picked trace from the training set was replaced 

by a new trace with new random values for uy and Cs . This procedure ensures good 

coverage of the input parameter space while limiting the size of the training set at any 

one time. In addition, this scheme introduces noise into the minimization procedure. 

This helps to prevent the minimization from converging to a local minimum rather 

than to the global minimum. 

As a test case, we consider atmospheric air at rest which is accelerated isentrop­

ically to M = 0.9. Hence, we would expect to measure sound speeds in the range 

Cs = 320 ... 345 mis, and flow velocities uy = O ... 288 m/s. The phase shift J is a 

random variable out of the range o ... 27f. The experimental parameters in Eqn. 5.6 

such as laser wavelengths, excitation beam crossing angle, and beam half-widths are 

set to typical values. Instead of using Cs and uy directly as values for 'rlt, these values 

have to be scaled to fall into the range 0 ... 1. This is necessary because the range of 

outputs of the neural network is limited by the choice of the activation function to 
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be o ... 1, where 0 and 1 are approached asymptotically. By using the scaling 

1 ( ell- - 320 1) 
17i = 2 3~5 _ 320 + 2 = 0.25 ... 0.75 (5.16a) 

1l-_1( u~ 1)_ 
172 - 2 288 _ 0 + 2 - 0.25 .. . 0.75 (5.16b) 

we retain comparable network sensitivities over the full range of sound speeds and 

flow velocities. Furthermore, since the error measure in Eqn. 5.10 minimizes the sum 

of the total errors rather than the sum of the relative errors, the difference between 

these two error measures is reduced. It would be possible to adjust Eqn. 5.10 such that 

the relative errors are minimized but, as we will show later, minimizing for absolute 

errors avoids problems with the Fourier limit at very low flow speeds. The scaling 

also avoids favoring output variables with larger variability which would otherwise 

dominate the error sum. Finally, by scaling all output variables to a fixed range, the 

scaling of the weights will be comparable for both output variables. In practice, this 

has numerical advantages. 78 

The representation of the inputs can have a significant effect on the network.66 

E.g., assume we have a preprocessor that computes the correct speed of sound and 

flow velocity which are then used as network inputs. Instead of this trivial case, it 

is conceivable to use the power spectrum of the LITA signal as input, or to apply 

a noise filter on the data first . Each of these preprocessors can change the network 

performance and the number of required hidden units. We chose to use the time­

discretized LITA signal as network input directly. As only preprocessing step, all 

signals were normalized to a positive peak value of unity. 

The training was performed over up to 1.5.106 iterations with a fixed learning rate 

of 17 = 0.0075 and Q = 0.9. The training was stopped when E stopped decreasing. 

The number of hidden units was set to the values h = 5, 10,20,50. t The weights 

Wji and Vkj were set to uniformly distributed random values in the range [-1, + 1]. 

tThe geometric pyramid rule mentioned in Section 5.3 suggests using 45 hidden units. 
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The training set consisted of N = 250 traces with random values for cs , uY ' and 

J out of the range specified above. Each trace consists of 1, 000 data points , i.e., 

n = 1,000. After each iteration, a random trace from the training set is replaced by a 

new trace with random uY ' cs , and J to reduce over-training. A validation set of 250 

traces which are not used for the training is also created. The validation set remains 

unchanged during the training. It is used to check for over-training. 

5.5 Results 

First, look at some results of the expanded theoretical model from Section 5.2. 

Figs. 5.4 and 5.5 show heterodyne LITA signals from thermal gratings calculated 

from Eqn. 5.6. The speed of sound is represented by the Brillouin frequency (high­

frequency component in signals), and the flow velocity is represented by its Doppler 

shift (low-frequency component) . At M = 1, these frequencies match. All traces 

depicted have M = 0.11 , Cs = 345 m/s. 

Fig. 5.4 shows the influence of the reference beam intensity on the signal. The 

reference beam intensity increases by a factor of t en between each plot in Fig. 5.4b-f. 

The signal shape does not change for even stronger reference beams than in Fig. 5.4£. 

Even though it seems that the signal becomes stronger, one has to remember that 

the DC offset caused by the reference beam has been subtracted in Figs. 5.4 and 5.5. 

The offset grows like A2 whereas the signal excluding the offset grows linearly with A. 

Hence, the signal amplitude relative to the DC offset actually decreases in Fig. 5.4b-f. 

All traces used for the neural network training and validation were chosen to be in 

the limit of a strong reference beam. 

Fig. 5.5 shows the same trace with varying phase shifts cP. All signals would 

correspond to the same flow velocity, speed of sound, etc. , and we expect the neural 

network to be uninfluenced by different values for J. 
Fig. 5.6 shows how the error measure E as given by Eqn. 5.10 decreases during the 
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Figure 5.4: Theoretical heterodyne LITA signals for atmospheric air at M = 0.11 
from Eqn. 5.6 for different reference beam intensities. a) A = 0 (homodyne signal); 
b) A = 0.0001; c) A = 0.001 ; d) A = 0.01; e) A = .1; f) A = 1. 

training. Depicted are the cases with the most (h = 50) and the least hidden units 

(h = 5). The solid curves show E calculated using the training set, the symbols plot 

E for the validation set. The difference between the two curves indicates the amount 

by which the network has "specialized" to the training set. If the top curve was to 

level off while E for the training set continued to decrease, the performance limit of 

the network would be reached and any additional training would only represent over­

training. E.g., we see in Fig. 5.6 that both curves for h = 50 move parallel and that E 

has not reached an asymptotic value by the time the training is stopped. Continued 

training could improve the performance further. For the case h = 5, in contrast , the 
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Figure 5.5: Theoretical trace in the limit of a strong reference beam and for the same 
flow conditions as in Fig. 5.4 but with different phase shifts between the Brillouin 
frequency and the Doppler shift. a) if> = 0°; b) if> = 60°; c) if> = 120°; d) if> = 180°; e) 
if> = 240°; f) if> = 300°. 

errors for both the training set and the validation set have asymptotically reached 

minima. The curves for h = 10,20 are not plotted in Fig. 5.6, but we can summarize 

that the minimum value of E decreases with increasing h. 

Fig. 5.7 gives a direct comparison between the neural network outputs and the 

target values for a subsample of the validation set. We see very good agreement even 

for the derived Mach number (M = uy/cs ). To check the robustness of t he neural 

network data analysis approach with respect to noise, we added varying degrees of 

Gaussian noise to to the validation set (see examples in Fig. 5.8). Fig. 5.9 shows the 
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Figure 5.6: Error measure E from Eqn. 5.10 during the training phase calculated 
using the training set (solid curves, T50 & T5) and the validation set (symbols, V50 
& V5) for 50 hidden units (V50, T50) and 5 hidden units (V5, T5). The horizontal 
lines mark the states at the end of the training. 

RMS error of the neural network output for Cs and u y VB. the signal-to-noise ratio 

(SNR). The errors increase slowly with the SNR. The more hidden units are used, 

the lower the error levels are. In the limit for zero noise, the errors for the speed of 

sound are 0.25 mls (h = 50) and 1 mls (h = 5). For the velocity measurements, the 

performance also depends strongly on the number of hidden units. The errors in the 

same limit are 2 mls (h = 50) and 20 mls (h = 5). For very low SNRs, the errors 

are large and independent of the number of hidden units. They correspond to mostly 

random network outputs. 
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Figure 5.7: Direct comparison between neural network output and correct values for 
speed of sound (top) , flow velocity (center) , and Mach number (bottom) with h = 50. 
A set of LIT A signals using 100 random cs-uy combinations was created and used as 
NN input. The green lines connect correct parameter values, the red circles mark the 
actual NN outputs. 

Besides the bias and the variance there is a third error source for this particular 

application. The Doppler shift is proportional to the flow velocity. But the signal 

lifetime is limited by diffusion and the finite-size laser beams. Hence, at very low 

frequencies there will be only a fraction of a cycle within a signal, making accurate 

frequency measurements impossible. This so-called Fourier limit represents a theo­

retical limit to all data analysis techniques. Fig. 5.10 shows the uncertainty of the 

neural network output for Cs and uy VB. the flow velocity uy. Note that the absolute 

uncertainty of uy is almost constant except for low flow velocities. It increases by one 
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order of magnitude for flow speeds below 30 m/s. For flow velocities close to zero, 

the errors become independent of the number of hidden units. 

In Fig. 5.11 cs-uy combinations, covering the whole range of parameters that the 

network was trained on, are used to create signals that are used as inputs to the 

neural network with 50 hidden units. Correct (input) values are plotted as circles. 

The actual network outputs are plotted as x's. The errors are very small for the most 

part of the parameter space. Only for small flow velocities and in some other regions 

do we observe noticeable errors. 
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Figure 5.9: RMS error for Cs (top) and uy (bottom) as a function of the signal-to-noise 
ratio SNR. 

5.6 Discussion and Conclusions 

A general expression for LITA signals from thermal or electrostrictive gratings and 

using homo dyne or heterodyne detection has been derived which shows good agree­

ment with experiments. 38 The shape of heterodyne LITA signals approaches a limit 

for strong reference beams. Experiments have shown that there is a phase shift be­

tween the oscillations at the Brillouin frequency and the Doppler frequency. This 

phase shift is due to vibrations in the optical components, temperature variations, 

and other non-predictable effects. It varies randomly from signal to signal. The 

theory presented takes this effect into account. 

We implemented a one-hidden-Iayer feed-forward neural network algorithm for the 

data analysis. Its accuracy was very good with the exception of the regime of flow 

speeds below 50m/s. This is well before the Fourier limit should become significant. 
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Figure 5.10: RMS error of Cs and u y as function of u y. The color scheme is the same as 
in Fig. 5.9. The dashed lines represent uncertainties using a frequency decomposition 
technique on the same data. 

In fact, experimental results with the fitting technique show much better results in 

this velocity regime.38 Also, this theoretical limit should only affect the velocity 

measurements but not the sound speed result. Using more than 50 hidden units 

could possibly mitigate this problem. In addition, we see in Fig. 5.6 that E is still 

decreasing for the case of h = 50 when the training is stopped. This means that the 

accuracy could be further improved by prolonging the training phase. An optimized 

learning rule replacing Eqns. 5.15 will reduce the number of training iteration by 

increasing the convergence rate of E. The fact that the errors for low SNRs and very 

low flow velocities are nearly independent of the number of hidden units suggests that 

we face a theoretical limit that we cannot overcome by increasing h. 

The error for the flow velocity is fairly constant over the range of u y. This means 

that the percentage errors are large at low flow velocities. This, however, is not due 
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Figure 5.11: Neural network outputs (red crosses) VB. correct values (green circles) 
over a whole array of uy-cs combinations that the neural network was trained for. 
The dashed line represents the isentropic expansion of air (Tt = 293 K) to M = 0.9. 

to the neural network but is governed by the Fourier limit which no data analysis 

method can escape. We showed that the neural network is robust with respect to 

noise. The performance worsens gradually in the presence of noise in the data. The 

phase between Brillouin frequency and Doppler shift ¢ has, as required, no influence 

on the data analysis. 

This indicates that internally, the network performs a frequency decomposition. 

It does not only look for the location of the peaks in the spectrum but uses all avail­

able information in the processing. This would be equivalent to applying the fitting 

technique to the FFT of the experimental data. Fig. 5.3 shows the frequency decom-
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position of the signal plotted in Fig. 5.4. We see that besides the two fundamental 

frequencies, the spectrum also contains some mixtures and harmonics of those two. 

For different flow velocities, the arrangement of the peaks will vary. Without prior 

knowledge it is non-trivial to determine which peaks correspond to the Brillouin fre­

quency and the Doppler shift. The neural network is apparently capable of learning 

this task. Furthermore, note that in the case of Fig. 5.3 (uy = 50 m/s), the peak for 

the Doppler shift is at 5.5 MHz. The resolution of the spectrum is 0.5 MHz which 

corresponds to flow or sound speeds of 10 m/s. This uncertainty does not include 

the effect that close by peaks might have for different values for uy or the effect of 

noise. If we use the peak at twice the Brillouin frequency for the speed of sound de­

termination, the uncertainty is cut in half. Similarly, by using the distance between 

the peaks corresponding to f B - f D and f B + f D in the spectrum (second and fourth 

peak in Fig. 5.3) we can cut the uncertainty for the flow velocity in half. Using the 

same input data as the neural network, the dashed lines in Fig. 5.10 mark the aver­

age uncertainty levels obtained using such an FFT peak detect scheme. The neural 

network performance with h = 50 is significantly better than that of the frequency 

decomposition technique. 

Once the proper weights Wji and Vkj are found in the training phase, the neural 

network scheme is computationally very cheap. It requires only approximately O(n x 

h + h x m) operations to obtain a parameter estimate from a given input. The 

Levenberg-Marquardt scheme, in comparison, requires the inversion of the Hessian 

matrix in every iteration (O( n3 )) in addition to other calculations. Besides being 

computationally expensive, it also tends to be unstable if the Hessian matrix is near­

singular. 

We conclude that the accuracy of the neural network method presented lies in 

between the pure frequency decomposition technique and the nonlinear fitting tech­

nique. The computational cost is comparable to the fast frequency decomposition 

technique. An additional advantage of the neural network technique is its robustness. 



90 

Especially the Levenberg-Marquardt fitting scheme as described in Cummings et a1. 29 

is numerically very unstable. Lacking good initial estimates for the fitting parame­

ters, it often does not converge to the correct solution. A combination of the neural 

network technique with the Levenberg-Marquardt scheme, where the neural network 

outputs are used as initial guesses for the Levenberg-Marquardt scheme, could be 

used if very accurate results are required. With good initial guesses, the Levenberg­

Marquardt will be more stable and converge faster. While the neural network was 

only used to extract Cs and uY ' additional units in the output layer could be added, 

e.g., to extract the thermal diffusivity or the phase shift. 

It must be pointed out that the training takes considerable time. This, however, 

can be done in advance. In the actual experiment the data analysis can then be 

performed in real-time at a rate of thousands of signals per second allowing the 

possibility of real-time data analysis even for multi-point measurements. Currently, 

the LITA data analysis requires user expertise and input which is unacceptable for 

a user-friendly and packaged LITA system. Either on its own or in combination 

with the Levenberg-Marquardt algorithm, the neural network approach can provide 

significant advantages for this application. 
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Chapter 6 

Summary and Conclusions 

Beam misalignments pose challenges in Laser-Induced Thermal Acoustics. Their 

presence is not easily detected and the subtle changes they cause to the signal can 

lead to significant errors in the data analysis. The fitting technique is an optimum 

filter for the data only if the theoretical model is a correct representation of the 

physics of the problem. If beam misalignments are neglected then this is assumption 

is violated. Bulk fluid velocities of the test gas have a similar effect . 

Ideally, careful alignment of the optical setup avoids beam misalignments entirely. 

In some applications, however, beam misalignments cannot be avoided, e.g., in turbu­

lent flow situations where fluctuating density gradients cause varying misalignments 

from shot to shot due to beam steering effects. The theoretical treatment in Chapter 

2 provides a possible solution for such cases. While some forms of beam misalign­

ments only affect the signal amplitude, others also change the signal shape. It was 

demonstrated experimentally that the magnitude of beam misalignments can be ex­

tracted from the signal quantitatively with very good accuracy. Errors for small beam 

misalignments can be attributed to non-Gaussian shaped beam profiles. Using the 

misalignment information as input to motorized optical mounts such a LITA sys­

tem could perform the initial alignment almost autonomously. It could also react to 

slowly varying sources for beam misalignments such as thermal expansion of optics 

and windows. Slight misalignments that could not be detected accurately have been 

shown to have no influence on the accuracy or the uncertainty of the measurements. 

If beam misalignments are inevitable, the extended theory can be used to properly 

take them into account. 
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As byproduct of the derivation in Chapter 2 it was postulated that LITA ve­

locimetry is possible using homodyne detection. Experiments presented in Chapter 3 

confirm the postulate. An offset between the excitation beams and the interrogation 

beam can be used to decouple the effects of a bulk fluid velocity on the signal shape 

from that of other parameters. Simultaneous measurements of the speed of sound and 

the flow velocity were conducted in a supersonic 2D nozzle at Mach number up to 

M = 2.7 with N02-seeded nitrogen as test gas. The error for the speed of sound and 

the flow velocity was 2% and 20%, respectively. Boundary layer effects were respon­

sible for the large errors of the velocimetry data. They should not be experienced in 

larger facilities. 

A second approach for LITA velocimetry is used in Chapter 4 for a similar set 

of measurements in a low-speed wind tunnel and N02-seeded air as test gas. Errors 

here were 0.2 m/s and 0.5% for the flow velocity and the speed of sound, respectively. 

With heterodyne detection, the flow velocity is encoded in the signal by an addi­

tional frequency component, the Doppler shift. The Doppler shift is proportional to 

the flow velocity. Because the signal lifetime is finite, the accuracy for measuring low 

frequencies worsens ("l/f noise"). The introduction of a fixed and known frequency 

shift to either the signal or the reference beam, e.g., by a Bragg cell, can therefore 

improve the accuracy for low-speed velocimetry applications and it also removes the 

direction ambiguity. Normally, heterodyne LITA velocimetry will fail near sonic con­

ditions because the Doppler shift and the Brillouin frequency are identical at M = 1. * 

The two frequencies cannot be determined independently of each other. A Bragg cell 

also helps in this situation by moving the Doppler frequency away from the Brillouin 

frequency. 

While homo dyne LITA velocimetry is only expected to work in high-speed flows, 

heterodyne LITA velocimetry can be used over the entire range of flow speeds. It does, 

however, require an additional laser beam which makes the alignment substantially 

*For electrostrictive gratings, this occurs at M = 2. 
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more cumbersome. Since velocity and speed of sound are represented by frequencies 

in the case of heterodyne LITA velocimetry, the use of a frequency decomposition 

technique for the data analysis is conceivable. Homodyne LITA velocimetry must 

involve the more general fitting technique. 

All measurements discussed so far were resonant, i.e., the excitation beam fre­

quency fell on an absorption band of the test or seed gas. In general, resonant LITA 

provides stronger signals at a given excitation laser energy. The signal level can be 

controlled by the seed concentration. As discussed in Chapter 1, seeding is not always 

possible or desirable. In these cases an excitation laser frequency can be chosen that 

falls on an absorption line or band of the test gas. For air or nitrogen, this would 

require a wavelength in the UV range. The necessary frequency doublers or mixers 

make powerful, pulsed UV lasers very expensive. 

Another possibility for LITA without seeding and using lasers in the IR or visible 

range is to use electrostrictive gratings. If the quality of the laser beams is good, 

electrostrictive gratings can result in comparable signal levels. Appendix B describes 

a set of experiments which were conducted in unseeded air and with a standard 

frequency-doubled Nd:YAG lasers. Intuitively, we expect the accuracy to be improved 

for higher signal (i.e., lower noise) levels. If the excitation beam pulse energy is used 

to increase the signal strength, then the expected trend is reversed above a certain 

pump energy. This is because the disturbances can no longer be treated as acoustic 

waves of infinitesimal strength. Instead, they are finite-strength waves, which are not 

covered in the theoretical treatment. Hence, other ways to increase the signal level 

such as increasing the interrogation beam power, increasing the gain of the detector, 

etc. , have to be preferred. These results should also be valid for the case of LITA 

using gratings from thermalization. 

A novel approach for LITA data analysis involving artificial neural networks was 

introduced and successfully tested. After an extensive training period in which the 

neural network "learns" the task of extracting the speed of sound and the flow velocity 
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from heterodyne LITA signals from a set of examples, the network outperforms classi­

cal frequency decomposition techniques with respect to accuracy. The computational 

cost is very low so that real-time data analysis is possible. The method is also robust 

W.f. t. noise in the signal and lacks any numerical instability that the more accurate, 

but slow, fitting technique experiences. The neural network algorithm could be either 

used as the only method of data analysis or it can be used as a preprocessing step 

where it provides the fitting routine with initial guesses for the fitting parameters. 

Several technique improvements have been treated both theoretically and exper­

imentally with very good agreement. The results involving beam misalignments can 

lead to more user-friendly "turn-key" LITA systems. Previously, LITA's main ap-

plication was in quiescent gases, e.g., to determine gas properties with very high 

accuracy. Adding velocimetry to the capabilities of LITA makes it a very promising 

technique for flow diagnostics. As optical technique, it is non-intrusive and remote 

which is of particular interest for supersonic measurements. As nonlinear technique 

it can be used in hostile flow environments (particles, luminosity, short test times).t 

tLITA was demonstrated in the region behind a reflected shock wave created by a combustion­
driven shock tube (unpublished work). 
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Chapter 7 

Outlook and Future Work 

7.1 Two-component velocimetry 

Adding the capability of measuring an additional velocity component is conceivable. 

The approach would be similar to the multi-component LDV techniques. Fig. 7.1 

shows schematically an optical setup where four excitation beams create a two­

dimensional electric field intensity grating as plotted in Fig. 7.2. Driver beams labeled 

Dl and Dl' create the horizontal grating, and driver beams D2 and D2' produce the 

vertical grating. Interrogation beam 11 lies in the vertical plane and is scattered off 

the horizontal fringes into signal beam 81 , while interrogation beam 12 lies in the 

horizontal plane and is scattered off the vertical fringes into signal beam 82. All 

beams but 81 and 82 are subsequently blocked by beam blocks. The Doppler shift of 

signal beam 1 is proportional to the velocity component in z-direction w , the Doppler 

shift of signal beam 2 is proportional the the velocity component in y-direction v. 

8ince all disturbances are weak, linear behavior of the fluid and linear scattering is 

assumed. The second grating therefore does not influence the LITA processes in the 

first grating. Unlike in LDV, where the particles scatter incoherently, LITA results 

in coherent beams. Therefore, all excitation beams can be of the same wavelength. 

Also, interrogation beams can be of equal wavelength (but different from the excita­

tion beam wavelength). To simplify the optical setup, fiber optics can provide the two 

reference beams. Chapter 4 mentioned the possibility of using a Bragg cell to shift the 

frequency of the reference beam slightly. Theoretically, this improves the accuracy 

for low flow velocities and removes direction ambiguity from the measurements. The 
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setup in Fig. 7.1 allows using different Bragg cells for the two velocity components. 

This is important in situations with mostly one-dimensional flow. The beam setup in 

Fig. 7.1 cannot be used very close to the sidewalls. 

7.2 Multi-point measurements 

LITA can be converted from a point-measurement technique to a line- or multi-point 

measurement technique. Several approaches are feasible, e.g. , scanning the laser 

beams, creating a number of distinct laser beams, or using laser sheets. Considering 

the high time-resolution and pointing-accuracy requirements, the scanning approach 

will be hard to accomplish. A set of individual laser beams could easily be created by 

diffractive optics. These, however, do not have a sufficient laser power damage thresh-

old at this time. Working instead with a set of beam splitters poses the challenge 

to align each beam pair individually. For cases where the spatial extent of the mea­

surement points is small , the technique involving intersecting laser sheets (Fig. 7.3) 

is most promising. 

Using laser sheets instead of beams stretches the sample volume along a line, and 

given the capability of space- and time-resolved detection of the signal beam (sheet), 

LITA can be used as a multi-point or line-measurement technique. Work is under 



Figure 7.3: Intersecting laser sheets 
create an interference grating within a 
stretched region (sample volume). 
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Figure 7.4: Layout of receiver unit for 
multi-point measurements. 

way to demonstrate this principle using a commercially available 16-channel photo­

multiplier tube (PMT) as detector where the sensitive regions corresponding to the 

16 channels are arranged as parallel linear elements (Fig. 7.4). 

The length of the sample volume can be increased to any desired value as can 

the number of channels per unit length. There is a trade-off, however , between 

signal intensity, spatial resolution, and extent of the sample volume. The signal 

intensity scales with the square of the driver beam energy density and linear with 

the interrogation beam energy density. Hence, given fixed laser powers, we obtain a 

cubic dependence of the signal intensity with the length of the sample volume. The 

second consideration is the number of channels per unit length. The more channels 

we have the weaker will be the signal contribution for each of the channels, but the 

better will be the spatial resolution. If multi-point measurements are desired with 

large spacings in between points , optical arrangements that yield a series of individual 

point measurements should be considered. A possible application of multi-point LITA 

are boundary layer measurements as LITA allows the simultaneous measurement of 

the speed of sound (temperature) and fluid velocity. 



98 

7.3 System integration 

A flow diagnostic technique is needed that can be applied in unseeded, luminous, 

high-pressure, high-enthalpy flows. In Appendix B it is demonstrated that LITA 

does not require seeding with N02 . Electrostrictive gratings yield similar scattering 

efficiencies but require a high beam quality. Considering beam-steering effects due 

to density gradients, it is questionable if this can be achieved in the test section of 

T5. Resonant excitation, i.e., to use an excitation wavelength that falls on a natural 

absorption band of a species in the flow, can also replace seeding. 

With signal lifetimes of O(1/Ls), 106 measurements per second are possible. YAG 

lasers with sufficient pulse energies currently achieve pulse repetition rates of 50 Hz. 

Using a copper-vapor laser with pulse repetition rates of up to 50 kHz range would 

be an interesting experiment well worth the effort. Pulse energies are typically only 

in the order of 1 mJ /pulse, pulse lengths are ~ 20 ns. * The challenge would hence 

be either to lower the power requirements for LITA measurements considerably or to 

wait for advances in laser technology. 

The foremost task is to integrate the various extensions, which were presented, in 

a single experiment. This means to use a multi-point LITA setup in a wind tunnel 

to measure the flow velocity and temperature simultaneously, say across a supersonic 

boundary layer, using electrostrictive gratings in unseeded flow and real-time data 

analysis with a trained neural network. 

Preliminary experiments with a long-pulse Nd:YAG at its fundamental frequency 

of 1,064 nm as interrogation beam have shown encouraging results. Hence, a single 

laser cavity can provide the excitation and the interrogation beams. The high beam 

powers during the pulse resulted in very strong signals, detectable with a fast photo­

diode. 

*Consider that a 50 kHz repetition rate with 20 mJ pulse energies would mean an average laser 
power of 1 kW. 
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7.4 Outlook 

As with every new technique there is a considerable time-lag of many years between 

development in a laboratory setting and commercial applications. The time-lag is 

maintained between further improvements or extensions of the original technique and 

their commercial use. E.g., while three-component PlV is on the verge of becom­

ing common practice in research laboratories, it is currently not found in packaged 

systems. 

PlV and LDV have already taken the step of becoming commercially available 

whereas LITA still has to embrace the marketplace. Science, in the meantime, has 

already started the process of building on the foundations. Even with today's off-the­

shelf equipment there are undoubtedly many possible improvements and refinements 

of Laser-Induced Thermal Acoustics which will guarantee a lead of the latest scientific 

over commercial applications for years to come. 
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Appendix A 

Electric Field Intensity Terms 

Not Contributing to the LITA Signal 

At this point, we want to briefly explain the reasoning for the simplification made 

in Eqn. 2.2. The full expression we have to examine is (Edl + Ed2 )(Edl + Ed2)* with 

Term A 

+ 2 (ElEi + E2E;) 
, Vi ' 

Term B 

+ 2 (ElE2 + EiE;) , , 
v 

Term C 

+ 2 (ElE; + EiE2) 
, v ' 

Term D 

Look only at the time and y-dependencies of the individual terms: 

El '" exp { +iy sin e - iJdt} 

E2 '" exp { -iy sin e - iJdt} 

Ei: '" exp {-iy sin e + iJdt} 

E; '" exp {+iy sin e + iJdt} 

(A.l) 

(A.2) 

Substituting Eqns. A.2 into Eqns. A.l we see that term A fluctuates with a frequency 

of 2Jd. Term B shows the steady time behavior but the spatial grating has dropped 

out, i.e., it represents a (spatially) constant background to the electric field intensity. 

Term C finally fluctuates at 2Jd and it also is not varying in space. Terms A-C will 
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have no contribution to the scattering of the source beam into the signal beam (see 

Section 2.5). Only term D shows the sought after behavior 

EiE2 rv exp {-2iy sin e} , (A.3) 

i.e., they represent a steady grating. The introduction of the beam misalignments 

rl,2 does not change the previous explanation for terms A and C. But term B now 

is no longer constant. Instead, it has the shape of the superposition of two Gaussian 

distributions (similar to Fig. 2.2b) in space which does not constitute a good grating. 

Also note that the scattering of the source beam is only efficient if the incidence angle 

of the source beam on the grating is the Bragg angle. 
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Appendix B 

Accuracy and Repeatability 

of Single-Shot LITA Measurements 

B.l Introduction 

In the four-wave mixing technique Laser-Induced Thermal Acoustics, two pulsed laser 

beams (driver beams) intersect at a shallow angle in the test gas. There, interfer­

ence creates an electric field grating. By the molecular mechanisms of electrostriction 

and/or thermalization the electric field grating results in a density perturbation and 

hence a refractive index grating. Thermalization is predominant for resonant pump­

ing, whereas electrostrictive gratings dominate in the case of non-resonant pumping. 

If a continuous laser beam is directed at the Bragg angle at the density grating, part 

(0(0.01%)) of this interrogation beam is coherently scattered into a signal beam. 

Since the density grating evolves over time and the signal beam intensity is propor­

tional to the instantaneous density grating modulation depth, the signal beam allows 

us to observe the grating evolution. 

The speed of sound is encoded in the LITA signal as the Brillouin frequency, 

i.e., the speed of sound divided by the fringe spacing of the density grating. The 

thermal diffusivity together with the Gaussian beam profiles causes the exponentially 

decaying tail of a LITA signal (Fig. B.l). To extract speed of sound and the thermal 

diffusivity from a LITA signal we use a theoretical model29,36 and a nonlinear fitting 

procedure (Levenberg-Marquardt scheme,49 that fits this model to the experimental 

data. The speed of sound and the thermal diffusivity are fitting parameters. A 
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Figure B.1: Typical LITA signal from electrostrictive gratings in atmospheric air. 

frequency decomposition technique to extract the Brillouin frequency from the signal 

is also possible51 but it does not allow for measurements of the thermal diffusivity. 

The same is true for using Pronys method to extract the speed of sound. 50,58 

The accuracy (i.e., the systematic error) and the uncertainty (i.e., the statistical 

error) of this method depend on a number of parameters. The measurement of the 

Brillouin frequency will be improved if many oscillation cycles are recorded in the 

signal and if the time resolution is good. Similarly, we want the total signal recording 

time and sampling rate to be appropriate for the decay time constant of the signal 

tail. Besides this, the accuracy and uncertainty of LITA measurements is mostly 

limited by two factors: noise in the recorded signals and deviations of the theoretical 

model from reality. These latter two factors are examined here. 

To raise the signal-to-noise ratio (SNR) at a fixed noise level, one can increase 

either the driver laser pulse energy or the interrogation beam power. Theoretically, the 

signal should be proportional to the source laser power and should scale quadratically 

with the driver laser pulse energy,2 provided that all other experimental parameters 

are held constant (beam crossing angle, beam geometry, detector sensitivity, etc. ). 

The theory used in the fitting assumes that the density perturbations caused by the 

driver laser are small compared to the ambient density, i.e., that the density grating 
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behaves like an acoustic wave. This approximation becomes worse with increasing 

driver laser pulse energies. We see that there will be a trade-off between the favorable 

influence of a stronger signal and the negative effects of nonlinear behavior of the 

waves. We want to study this trade-off and find the point of best accuracy and lowest 

uncertainty. 

B.2 Experimental Setup and Procedure 

A frequency-doubled, Q-switched Nd:YAG laser (Continuum Surelite 110, max. 250 mJ, 

10 Hz) was used as driver laser. An arrangement of beam splitters and mirrors on 

kinematic mounts split the beam in halves and focuses them path-length matched 

on a point in the sample volume where they intersect at an angle of 2.175°. The 

Gaussian beam half-width in the sample volume is 180 11m as determined in a cali­

bration measurement. Test gas was unseeded atmospheric air. The pulse energy was 

adjusted by varying the flashlamp voltage. The driver laser pulse energy at different 

flashlamp voltages was measured using a laser power meter (Scientech Astral AA30). 

Pulse energies ranged from 17 mJ to 110 mJ. The data acquisition was triggered by 

a photo detector (Thorlabs DET21O, 1 ns response time) which detected the driver 

laser pulse. 

A CW Argon-ion laser (Spectra Physics Stabilite 2017, max. 1.3 W at 488 nm) 

provides the interrogation beam. The signal beam that is coherently scattered off 

the density grating is detected by a photomultiplier tube (Hamamatsu, H5783-03, 

0.65 ns response time) and recorded as 2,048 discrete points with 12-bit resolution 

on a digital storage oscilloscope (Hewlett Packard Infinium, 500 MHz) from where it 

it transferred to a personal computer for storage and data analysis. 

Sets of 1,000 single-shot measurements each were recorded for a range of driver 

laser pump energies. These measurements were taken in random order to eliminate 

systematic errors, e.g., due to variations in ambient temperature. The continuous 
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interrogation beam was operated at full power. Only to reduce the signal level further 

beyond the minimum driver laser pulse energy, the interrogation beam power was also 

reduced until the LITA signal was only barely visible. A pulse energy that resulted 

in gas breakdowns in more than 10% of the shots was taken as the upper limit. Shots 

in which a gas breakdown had occurred were discarded from the subsequent data 

analysis. The system was calibrated using 32-shot averaged signals. The calibration 

resulted in a beam crossing angle of () = 2.17° , a driver beam half-width of w = 

189 /-lm, and an interrogation beam half-width of a = 330 /-lm. The sound speed and 

the thermal diffusivity were determined for every trace using Levenberg-Marquardt 

fitting49 of a theoretical model to the experimental data. 29, 36 The deviation of the 

average sound speed (thermal diffusivity) over a set from the true value is used as 

systematic error. The standard deviation of the sound speed (thermal diffusivity) 

over each set is taken as the measure for the uncertainty (statistical error). 

B.3 Results 

Fig. B.2 shows the signal-to-noise ratio (SNR) versus the square of the driver laser 

pulse energy (Ed) times the interrogation beam power (Po). We define the SNR as 

the peak signal intensity of a given signal divided by the standard deviation of the 

noise in the pretrigger part of the signal. As the theory predicts2 the signal intensity 

is approximately proportional to the interrogation beam power and scales with the 

square of the driver laser pulse energy. For high driver beam energies, the signals 

are stronger than predicted. The calibration measurement stands out because it was 

obtained by averaging over 32 individual effects, resulting in an approximately 6 times 

higher SNR at a given driver laser pulse energy. Deviations from the dashed line are 

most likely due to errors in the measurement of Po and Ed. 

Fig. B.3 illustrates how, at high pump energies, a gas breakdown can occur in the 

sample volume. It plots the likelihood of observed gas breakdowns versus the driver 
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Figure B.3: Percentage of shots 
with gas breakdown in sample volume 
vs. driver laser pulse energy density. 

laser energy in the sample volume. Below a critical pump energy no gas breakdowns 

are observed but their likelihood increases linearly for pump energies above that 

threshold. The relevant physical quantity for the gas breakdown is the electric field 

grating intensity. Hence the threshold value for the driver laser pump energy will be 

a function of the pulse duration, beam diameter and quality, beam crossing angle, 

and also of the test gas. 

The accuracy and uncertainty of the sound speed measurements are plotted in 

Fig. B.4. Similarly, Fig. B.5 shows these results for the thermal diffusivity measure­

ments. We see that the error for the sound speed measurements initially decreases 

with increasing SNR, but increases again after passing a minimum value of 0.03%. 

The uncertainty on the other hand does not have a minimum but decreases mono­

tonically with increasing signal level. For low SNRs the measured sound speeds are 

too low and for SNRs above the optimum the measured sound speeds are too high. 

The error in the calibration signals is zero by construction. 

The uncertainty for the thermal diffusivity measurements also decreases monoton­

ically with increasing signal intensity. It is, however, approximately ten times higher 

than for the sound speed measurements at the same signal intensity. The trend for 
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Figure B.5: Accuracy and uncertainty 
for the thermal diffusivity vs. the 
signal-to-noise ratio. 

the accuracy for the thermal diffusivity is less pronounced but it appears to show 

the same behavior as the sound speed error with a minimum that coincides with the 

minimum for the sound speed measurements. The measured thermal diffusivity tends 

to be too high for SNRs above and below the optimum. 

B.4 Discussion and Conclusions 

The initial drop in the error and uncertainty with increasing laser power settings can 

be attributed to the increase in signal-to-noise ratio. The sign of the error will depend 

on the numerical scheme used for the data analysis. The increased error for high SNRs 

is due to high excitation beam pulse energies. The density waves for these conditions 

are out of the acoustic regime, which violates a basic assumption in the theoretical 

model that is used in the fitting routine. Instead, finite amplitude disturbances with 

changing wave shapes are created that travel faster than the local speed of sound 

of the undisturbed fiuid ,80,81 resulting in measured speeds of sound that are above 

the correct value. This also causes the density perturbations (and hence the signal 

intensity) to be stronger than in the acoustic regime (Fig. B.2) . 

The optimum pulse energy in our case is only slightly below the critical value that 
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causes a gas breakdown. At this point we should have already left the acoustic regime 

but the benefits of the high SNR still prevails. This optimum point will depend on the 

experimental setup used. The errors for single-shot measurements at the optimum 

are 0.03% and 1% for the speed of sound and the thermal diffusivity, respectively. 

The uncertainties at this point of best accuracy are 0.5% and 10%, respectively. 

Averaging over many driver laser shots offers the possibility of remaining in the 

acoustic limit while at the same time increasing the SNR (Fig. B.2). Similarly, high 

interrogation beam powers with lower driver laser pulse energies have to be pre­

ferred over the opposite case, e.g., by using long-pulsed, high-intensity interrogation 

beams.45 Also, photomultipliers with high quantum efficiencies will result in an in­

creased signal level at a given driver laser pulse energy. These measures will move 

the point of minimal error towards lower driver laser energies. 

The reason for the higher errors for the measurement of the thermal diffusivity are 

twofold. First, given a sufficient time resolution and number of cycles in the signal, 

we can measure a frequency much more precisely than a decay time constant. This is 

particularly true in the presence of noise. Secondly, to convert the measured Brillouin 

frequency into the speed of sound, only two parameters playa role: the driver beam 

wavelength and the driver beam crossing angle. The wavelength is fixed, constant, 

and precisely known. The bandwidth of the laser is negligible. The beam crossing 

angle is very stable. Depending on the optical setup, pointing instabilities of the 

driver laser will not change it. We can determine it in a calibration measurement 

within ±.01 %. The conversion of the decay time constant into the thermal diffusivity 

requires the knowledge of the driver beam half-width and the interrogation beam 

half-width in the sample volume. Furthermore, the theory assumes Gaussian beam 

profiles and deviations therefrom will lead to errors. Each of these parameters carries 

an uncertainty and especially the beam geometries will vary due to thermal effects in 

the lasers. 

The uncertainties are not influenced by the deviation of the theory from reality 
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as this represents a systematic rather than a statistical error. Hence, they decrease 

monotonically with increasing driver laser pulse energy (SNR). The results should 

also apply in similar fashion to the case of LITA using resonant pumping and to 

other techniques for the signal processing. 50,51 


