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ABSTRACT

Up to the present time, the reliability of the determination
of aerodynamic characteristics at hypersonic Mach numbers by theore-
tical calculations has been unknown due to the lack of experimental
date. This report is the calculations of these charscteristics by
four different theories of & wedge and a cone over a range of lMach
numbers from 2 to 12.

Correlation of these results with wind tumnel tests was not
possible due to scheduling difficulties of the hypersonic wind tunnel;
therefore, this report is designed to serve as the basis for comparison
of fubture hypersonic experiments.

From correlation of the various theories it is found that the
closest agreement to the exact theory at hypersonic speeds is given
by the hypersonic similarity theory. Above Mach numbers of about 3,
the first and second order theories deviate considerably from the

exect theory.
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SYMBOLS AND NOTATION

The following are the symbols and nobation with their definitions

used in this investigation.

Py static pressure of the flow., The subscripts denote flow
field
1 - fres stream
2 = flow behind shock or on body
o - stagnation conditions
s = flow on surface of body
Cp pressure coefficient = AP/g
q free stream dynsmic pressure = é— PUt = %;:E M2
Uy free streem velocity
8, speed of sound a; = !} o Subscript indicates same
conditions as pressure Lp
pi fluid density. Subscripts same as for p
M3 Mach number = ':Tl;f' Subseripts same as p
B inclinetion of shock wave, or the quantity VM12 -1
/] ratio of specific heats = 1.4 for s&ir
r,® eylindrical or spherical coordinates
x5 Cartesian coordinates. Subscripts denote orthogonal direc-

tions of axis

u, v velocity components
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SYMBOLS AND NOTATION (continued)

indicate 94 2V where i, k are coordinates of
ol ok

system being used

semi=apex angle of cone or wedge, and flow deflection in

one particular case

potential notation

angle of attack

non-dimensionel coordinates, or variables of integration

body thickness, or total apek angle

body length

thickness ratio paremeter ( 8/b)M



I. INTRODUCTION

The purpose of this investigation was to calculate the aerodynamic
characteristics of & wedge and a cone at hypersonic Mach numbers by
utilizing the existing theories, and to correlate these results with
actual test data.

The possibility of extending existing supersonic flow theories to
hyperscnic speeds has been investigated only thecretically up to this
time, due to the lack of experimental data at hypersonic Mach numbers.
Now the existence of a hypersonic wind tunnel maskes such test data
available, and this investigation is the first step in the correlétion
of such data with the various theories. Since there are so many
ramifications to the problem, boundary layer, tunnel boundery interfer-
ence, deviations from a perfect gas, etc., this is but one small phase
of the vast over=sll problem, and it is hoped that it will serve as a
basis for future experimental work.

The principal aerodynsmic characteristic obtained was the surface
pressure on various angles for wedges and cones at Mach numbers ranging
from 2 to 12, Theifour existing theories used in the determination of
the theoretical pressure distribution were:

l. Oblique Shock Theory for Wedge; Exact Theory for Cone
2, Pirst Order Theory = Linearigzed

3. Second Order Theory



4, Hypersonic Similarity.,
A brief discussion of the above theories is given in Part I1,
For the theoretical calculations, the configurations used were:
1. Wedge with apex angles of 5°, 10°, 20°, 30°, 40°, 50°
and 60° at angles of attack of 0°, 2°, and 49,
2 Cone with apex angles of 5°, 100, 20° 30° 400, 50°
and 60° at angle of attack of 0°,

Due to lack of time, actual correlation with test data was not
possible in this report. Models of a 20° wedge and cone were con-
structed, and their details are included herewith.

It is planmned that this report should serve as the first phase,

the basic groundwork, for the future experimental investigations of

hypersonic flow.



I1., CAICUIATIONS BY THE VARIOUS THEORIES

A, Oblique Shock Wave Theory for Wedge

The pressure coefficient (Cp) is defined as the ratio of the change

in pressure (AP) to the dynemic pressure (q).

(:? =(P.-F)
but {%
2 z
g = gPU = Lo M
Therefore,

= a_z___ T
G = G e BT

2 ¥
¥+

To obtain the correct oblique shock relation, it is only necessary to

1 (Mlz - 1).

The normal shock relation for (p, - pl)/bl is

replace My by M; sin B, (Ref. 1). Thus,
BB . 2% (MEswi -)
P ¥+

. 4 (MPswB-)
Cr n.‘(m)(



Where the relation between the wave angle P and the flow defection

is

| _ S22 — ¥4l SWwB SO
v = sm/s 2 Cos(B-©)

Utilizing this formula Tables I to III were computed and plotted in
Figs. 5 to 7.

B. Exact Theory for Cone

The problem of supersonic flows around cones at zerc angle of
attack is one of the two types of high speed flows in three-dimensions
that can be discussed mathematically without objectionable simplifica=-
tion.

The fundamental equation of conical flow as derived by Sebert in
Ref, 2 and in a similar memer by Kopal, (Ref. 3), is

d’& = d"(“""’cp+9)
de* vi-a®

Cone AXis




The solutions to this equation cannot be obtained analytically, so in
order tc determine them, recourse must be had to numerical intergration.
This has been carried out by Kopal and put in tabular form., He tabulates
the ratio of the pressure on the cone to that immediately behind the
shock wave Pg/Pg’ and the ratio of the pressure immediately behind the
shock wave, to that of the undisturbed air in front of the shock weve,

P?/bl’ The product of these two gives Ps/bl 80 %E can be calculated, by
1

1’: l - 'Ps - R
b R
and
= 2 P ~-P
AT

Following this procedure the data of Table IV were calculated and plobtted
in Fig. 8.

Ce Pirst Order Theory = Wedge

By assuming irrotational flow and linearizing the equations of
motion, a perturbation potential may be introduced. Considering a
uniform rectilinear velocity U at oo , it is assumed that the deviations
of the velocity from U are small, and squares and higher powers of these
perburbation velocities are neglected. This assumption corresponds to
limiting the solid boundaries to shapes whose inclination to U is always

smalle



The linearized equation of motion becomes, (Ref. 4)

i ! t
(n-u‘)_é_!-_ +9OUs 4+ 343 ~0
“az /3K, Xy  9X3

whers
(away from body) (neighborhood of body)
uy = U = constant up = U= uyt

g =0 vy = ug!

In terms of the potential function

Q = Tx, + ¢ (i)

ui.: LQ_ ((U

X

where @ (Ki) is the perturbation potential, The linearized pertur=
bation potential equation becomes

2 o, Y 2

(1-m2)do, + 20 + 38 - O
éxl a’(; axs
The same approximations are used for determining the pressure coef-

ficient. The exact relationship for p/po is

i‘____fg-z;:im: %-'\

B L\+§}M'




Linearized, this is

Pe |

3 []
-PL - - M z-g— + ..
$‘_ = | % \ o
Since
2 Z
thus,

By solving the perturbation equation together with the boundary
conditions that the normal derivative of ¢ vanishes at all solid

bounderies, the pressure coefficient equation becomes

o ]
M- | dX, boundory

For the wedge g.&.. is merely the tangent of the semi-apex

dX, boundary
angle © s OT




For the wedge at angles of attack, this same equation holds by merely
subtracting or adding @ to © for the upper or lower surfaces.

These calculations are given in Tables V, VI, and VIII and are
plotted in PFigs. 9, 10, and 11,

D. PFirst Order Theory = Cone

Following von Kermen, (Ref. 5), the linearized potential equation
in cylindrical coordinates with axial symmetry is
azo + -1 -Q—(\—g__‘)_é.:g-=o
el d JK*

vt ar

Assuming that the effects of infinitesmals can be superimposed, the

potential of the additional velocities has the form

® (") = e s _
A | @-¢)2-8r"

where

£~ V-

Placing the origin at the vertex of the body, this integral can be

transformed by letting

A-§ _ cosé«
/Jr



The potential expression becomes
(]

QO = £(x-pr) cosh udu

(‘a.r/ré:

and the velocity components are

BT
% and ;)-;

]
By solving the above equation von Kerman obtained for the over

pressure acting on the cone

Ap-pUe" h ()

Y ‘l_L
\[!—%L +0 s gy

which is approximately

ap - 607" In(Z5)

Thus
* Z
O = 26" In B
P efm*—1
The calculated results of this equation is given in Table VIII

and plotted in Fig. 12,
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E. Second Order Theory - Wedge

The next step to the linearization procedure used in the previous
section in an iteration procedure corresponding to the general techni=-
que of solution by successive approximations based on the theory of
perturbations, is the second approximation which may be made by several
different approaches. By introducing a parameter < proportional to
the thickness ratio of the body under consideration, the potential
function may be expanded in a power series in L . This has been
carried out by Busemann, (Ref, 6), for a two-dimensional supersonic
flow.

The Busemann second approximation for the pressure coefficient is

6 1is the angle of flow defection, the semi-apex angle at zero angle
of attack. The computations based on this equation are given in Tables
IX, X,and XI and are plotted in Figs. 13, 14, and 15.

FP. Second Order Theory = Cone

For axially-symmetric flow, the discovery of a particular solution
of the iteration equation has reduced the problem of determining a

second=order approximation to one of first-order,
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Following Van Dyke, (Ref. 7), the iteration equation for a cone
is
(' —t&) 5& +_@£ = M‘[Z(N-I)tz@te (@ “t§t) _
t - = l-— Fy
~2t B + B v 0 L

where (x, t) are the conical non~orthogonal coordinates and

- =M N = (euMT

@(x,t,e) = X § (te) Q‘_-P@c
@x = @ -téf &rr"éfétt

i =i;; Dy er"%‘t B

Q is first order perturbation potential

2)
@‘ = é +® is second order perturbation potential

The boundary conditions for the second order solution are

@r = slope
| +8, _
8@, (pe) = elo(ge) - ge G (p€)]

@<'°)= Qe ) = ©
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The cone has a semi-apex angle tan™* & ., Using the integrating factor

._.t._.. » the equation can be integrated to give the result

Vi-t*
5 = —A (SECJ-I-'t - v l't‘)
F B
where A = c

[ - e + E7secn”'(pe)

Substituting the first order solution into the iteration equation
and using the same integrating factor again, Van Dyke obtains for the

complete conical second-order perturbation potential

@(ﬂ- t) = ‘A(SEC\-( 't - VI-—t'—).‘.AM [B(SGCH"t =)
p(secu't) - (W) (TE" Seed™t - Q_A_ -t -t"'

The streamwise and radial velocity perturbations are
- -~
U o —A Seel™t + AWM [B Seal ™'t + (Seal™t) ~ (n-1) Jealt

Vi-t*
5, V1-t*
—-(N+1) - F £A _'?"-—_]

i’?-I)IL = Al A‘m”[—Bf"—a-t* -2 -t SEC""‘: + Ny L
t
+(N-1) £ Seed”'t +—- P"«“ |-t
ot >
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B must be adjusted to satisfy the tangency condition. It is easiest
to do this numerieally in actual computations From these results,

the pressure coefficient can be calculated as
L 1L
G = &, (- -£0] -
TS z U

These calculated values are given in Table XII and plotted in Fig. 16.

G. Hypersonic Similarity

Tsien, (Ref. 8), has developed the similarity laws for hypersonic
flows. An affined transformation which expands the flow field laterally
reduces the equations of the flows to a single non-dimensional equation.
If a series of bodies having the same thickness distribution but different
thickness ratio, &/, are put into flows of different Mach numbers My
such that the products of M; and S/b remains constant and equal to K,
then the flow patterns are similar in that they are governed by the same
transformed velocity potential.

For flow over cones, Hayes, (Ref. 9), interpretation is the propa=-
gation of cylindrical waves from a uniformly expanding circular cylinder.
To solve the associated wave problem, it is observed that the radial
velocity v, the pressure p, and the density p are functions of § = y/t

only. That is,

("31? +LJ£. %g)(\r,p, p) =0
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The equations of equilibrium and continuity became

de

v-5)dv . - L
( )ds Pd§

V-S)dg +dv +¥L =0
(7-435*—:- *s

Introducing the following changes of variable

= =_g_: 0"-‘-"15
My L=

where /AA is the new independent variable and "a" denotes the local

velocity of sound, the equations above are transformed into

df _ 28 £+(Cz0r)pu-d(1-x)
dp z4 -(-p"

dr _ _ 1 3 —(-m)”
du M 28 - (1-p)*

Shen, (Ref. 10), solves these basic equations by expanding the
solution into a series near the initial point and using a standard num-
erical inbegration thereafter. From these results, the pressure ratio
at the cone surface ps/bl can be obtained. Calling the cone half-angle

O , we have

K =Mle
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Now

G = 2o (%)

IMm:
S -2 (B-1)
or  IK*

Keeping the similarity péra.meter X constant will give the same flow
pa’ctern.v Thus, & single curve of Cp/gz vs K suffices for various slen=
der cones in hypersonic flows.

Using' Shenfs tabulated results of K vs Cp/e 2 it is a simple matter
to expand to wvalues of M and Cp for various ©s . These results are
given in Table XVI and are plotted in Fig. 2l.

For hypersonic flow over wedges Shen's procedure gives

Z !
Cp - ¥l 4+ 2y(3tl)*+
ot Z ( 4 K
Utilizing this equation, Table XIII of various values of Cp/e 2 and X
isobtained. These results are expanded as before for values of M and
Cp for various @s « These data are given in Tables XIV, XV, and XVI

and are plotted in Figs. 18, 19, and 20.
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CONCLISIONS

The conclusions of principal interest in the basic problem will
result from the correlation of the experimental date with that calcu-
lated from the various existing theories. Since in this report such
correlation is not as yet possible recourse must be had to a comparie
son of the various theories themselves.

For this purpose Fig. 22 has been plotted. This figure is a
cross=nlet of Mach number versus surface pressure coefficient as
calculated by the various theories for the model wedge and cone, i.e.,
for a 20° total apex angle. From & study of this curve, the following
conclusions may be drawn:

1. The first order theory gives values which are lower than
those of the exact or oblique shock theory throughout the entire Mach
number renge. The amount of deviation increases'wiﬁh the Mach number,

2. The second order theory gives close agreement with the
exact theory at low Mach numbers (below M = 4), and is much closer
than the first order theory throughout the entire range.

3+ The range over which first and second order theories may
be used is limited by the form of the equations. This range is deter-
mined by the apex angles For the 20° cone, imaginary results are
obtained above Mach number of 11,0 by the first order theory and above

Mach number of 5.7 by the second order theory.
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4, A%t the higher Mach numbers (ebove 6) excellent agree=
ment is obtained between the hypersonic similarity and exact solu-
tions.

The lift coefficients for the 20° wedge at 2° and 4° angles of
attack were calculated and plotted in Fige. 23. The same pattern of
devietions between the exact and other theories is found as with the

pressure coefficlients.
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TABIE 1

Wedge
Oblique Shock Theory
00 Angle of Atback

c

P
8
M 59 10° 20° 30° 40° 500 60°
2.0 JO716 o110 L2865  .433 665
4,0 .0241 L0558 L1531 .2425 L.379 .58  ,738
6.0 L0177 .C46 L1068  .203  .329  .484  ,666
8.0 .0148 .0325 .0939 .187 L3095 L463  .641
10.0 L0116  .0294 .0871 .1765 .302  .4515 ,634

12.0 026 0835 172 «295 443 «625
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TABIE II

Wedge

Oblique Shock Theory

2% Angle of Attack

M 5° 109 20° 30° 40°  50°  60°

2.0 upper «Q0133 070 0192 «352 ¢ D56 e 94
lower «104 + 168 0320 51 « 800

4.0 upper  .0045  ,038 L,100 .194 ,324 L476  .652

lower «0B0 0886 «170 «228 o444 812 + 826

6.0 upper 0028 «026 +078 » 162 « 276 «420 « 530

lower .040 068 <142 « 250 e384 552 742

8.C upper .0022 018 .066 <146 « 260 « 396 +« 566

lower « 030 +0b62 « 128 « 236 e 368 «530 « 720

10,0 upper 0015 +012 «C60 « 140 «256 #3380 + 560

lower «C26 +050 120 230 + 360 520 «710

12.0 upper «CO11 .012 +060 «140 «256 380 ¢ 560

lower +026 +0E0 +116 « 230 +360 .520 710
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TABIE ITI

Wedge
Oblique Shock Theory

49 Angle of Attack

M 50 10° 20° 30° 40° 500 80°

200 CP upper 0025 014:0 0290 04.‘70 0720
lower o154 o224 o390 .608

400 cp upper 00109 0072 0150 .270 0414 0578

lower 0080 0116 0220 0354 0506 « 0692 924

6.6 C_ upper L0069 052  .124  .226 o360 o518

P jower 060 .092  .184  .304 L450 L5900 ,830

8.0 C_ upper L0042 L044  L,110  .212  .340 .494

P iower 050 .80 o170 .288  ,428 o566 800

1000 CP upper . 0040 0040 e 104 0206 Y 334 0486

lower o042 o076 o160 o280 .420 .560 .7SO

12.0  C,, upper L0037 040 .I1CO0 .206  L.330  .480

lower 044 .076 «160  ,280 ,420 556 .786




22

TABIE IV

Cone
Exact Theory (Kopel)

0° Angle of Attack

Cp
8
M 10° 20° 30° 40° 50° 60°
2.0 L0348 L1046  .2026 43240  .473  .641
4.0 L0250 L0801 L1600 L2670  .382  .551
6.0 .0217 L0720 L1500  .2565  .375  .534
8.0 L0188  .0876  L.1465  .2530  .365  .524
10.0 L0186  .0669  .1440  ,2520  ,383  .519

12.0 .0178 +0658 1415 «2520 «363 «519
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TABIE V

Wedge
First Order Theory

0° Angle of Attack

Cp
3
M 5° 10° 20° 300 40° 500 60°
2.0 .0503 .1006 .2035 .3090 .4200 L5280 .6650
4,0 L0225 .0449 ,0909 L1380 .,1880 ,2410 ,2975
6.0 0148  ,0295 .0596 .0906 .1232 L1580 .1953
8.0 ,0110 .0219 ,0443 ,0873 L,0914 L1172 .1450
10.0 .0088 L0175 L0355 ,0539 .0732 L0939 L1160

12,0 0073 ,0146 L,0295 .0448 0608 0780 .0965
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TABLE VI

Wedge
First Order Theory

2C Angle of Atteck

8
M 59 109 20° 30° 40° 50°  60°
2.0 C, upper O  ,0604 .1625 ,2665 .3755 ,4900 6130
lower .0905 1420 .2455 .3530 L4670 .5880 L7220
4,0 C_upper O  .0269 .C725 .1190 .1678 .2190 .2740
P lower .0404 .0633 1096 1577 .2085 .2625 3220
lower 0265 .0416 .0718 .1035 .1368 .1723 .2115
8.0 C_upper O  ,013) ,0354 ,0580 ,0876 ,1066 1335
P jower .0197 .C309 .0533 .C768 .1015 .1280 1570
10,6 C_upper O  .0105 .0283 .0464 ,0654 ,0854 1070
P jower .0158 .,0247 .0426 .0615 .0813 .1025 .1258
12.0 C,upper O  .0087 ,0285 ,0386 .C544 0709 .08E8
lower L0131 ,0205 .0355 L0511 .0675 .0852 .1045
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TABLE VII

Wedge
First Order Theory

4% Angle of Attack

M 50 10° 200 30° 40° 50° 60°
2,0 C_ upper =.0302 .,0201 .1214 .2240 .3313 .4430 .5630
P yower <1312 .1830 2880 .3975 5140 .6390 7780

4,0 cP upper =.0135 ,0090 ,0542 .1000 .1480 .1980 .2510
lower L0588 ,0816 .1288 L1775 .,2295 ,2855 .3475

6.0 C, upper -, 0089 .0059 0356 .,0656 .0970 ,1300 .1650
lower .O0385 .0536 .,0844 ,1165 .1508 .1875 .2280

8,0 Cp upper =-.0066 0044 ,0284 ,0488 ,0720 ,.0963 .1225
lower .0286 .0398 .0626 .0865 L1118 L1391 ,1595

10,0 Cp upper =.0053 .0035 .0212 L0391 L0577 L0772 .0980
lower 0229 .0319 L0502 .,0693 .0895 L1115 L1358

12,0 Cp upper =,0044 .0029 .0176 ,0324 0479 .0642 .0815
lower 0190 .0265 L0417 .0575 .0745 .0925 .1127
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ZABIE VITT

Cone
Pirst Order Theory

0° Angle of Attack

Cp
M 5° 10° 20° 30° 40° 500 60°
2,0 0134 .0394 L1148  .2036  .2932 ,3720 4400
4,0 .0094 ,0268 L0658 L0930 ,0952 .0646
640 L0078  ,0208 L0402 L0354
8.0 0066 ,01682  .0220
10,0 0038 L0127 L,0080

12,0 «0031 0099
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TABIE IX

Wedge
Second Order Theory
0° Angle of Attack

C

P

M 5° 10° 20° 30° 40° 500 60°
2.0 J0B31 L1065 2460 L4020 ,5810 L,7820 11,0000
4,0 L0255 L0519 1276 .2190 .3300 4590 6070
6.0 L0170  JO371 L0960 .1721  .2651 .3775  .5087
8.0 L0133  .0300 .0808 ,1481 .2346 .3488  .4625
10.0 L0111 L0257 L0720 L1359 .2168 .3262  .4352
12,0 .0096 .0229 L0660 .1257 .2045 L3108 L4165
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TABLE X

Wedge
Second Order Theory

2% Angle of Attack

M 59 10° 20° 30°  40°  50° 60°
2.0 Cp upper .0101 ,0644 1898 ,3371 .5070 ,6990 ,9160
lower .0998 .1627 .3054 .4717 .6600 .8695 1,1040

4,0 C_ upper .0045 ,0304 .0960 .1803 .2832 .4050 5460
P jower .0480 ,0811 .1615 .2614 .3795 L5161 6720

600 Cp upper .0030 00233 00709 01389 32255 .3306 04554
lower .0340 .0553 .1236 .2069 ,3085 ,.4282 .5655

8.0 C, upper .0022 .0165 ,0586 ,1189 ,1978 ,2954 4118
lower .0271 ,0486 ,1053 .1809 .2744 .3862 .5162

10.0 Cy, upper .0O18 0188 ,0515 .1075 ,1820 .2746 .3863
lower .0232 ,0424 ,0946 .1657 .2547 ,3622 4875

12,0 C, upper .0015 ,0l21 .0468 .0994 .1707 ,2605 .3693
lower .0204 ,0383 ,0874 .1554 2411 .3457 .4675
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TABIE XL

Wedge
Second Order Theory

4° Angle of Attack

M 5° 10° 20° 30° 40° 50°  60°
2.0 CP upper =.0292 ,0205 L1369 .2752 L4357 «5220 ,8265
lower .1497 ,2113% .3685 .B446 ,7400 ,9600 1.2010
4,0 CP upper =-.0127 .0094 L0674 .1l441 ,2396 «3555 L4875
lower L0742 ,1112 1990 3070 L4316 .B760 L7388
6.0 CP upper =.0081 ,0063 .0487 .1094 ,1884 .2872 +4035
lower L0639 L0830 .1544 L2458 ,3541 L4815 .6266
8.0 Cp upper =.,0058 ,0048 .0395 .,0927 .1640 «2581 L3632
lower 00441 00692 01330 02163 03172 04367 05740
10.0 Cp upper =.0045 .0039 ,0342 ,0830 .1499 «23D68 L3393
lower .0383 L0613 ,1206 L1995 .2952 .4098 .b422
12.0 Cp upper =.0036 .0033 .,0307 ,0763 .1401 ,2222 3237
lower .0344 ,0558 L1121 .1878 .2805 ,3921 .5217
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TABLE XI1

Cone

Second Order Theory

§ =100 d =200 § = 30° § = 20°
i Cy u ¢y i C, M s
3,94  ,0253 2,14 1010 1,60  .2270 1.70 3476
7.68  .0207 5,01 .0881 2.68  .1837 2.80 ,3155
11,36  .0209 5.91 L0824 3.85  .1829
5.48 .0821

5.70  .0829
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TABIE XITT

Hypersonic Similarity Parameters

Wedge
X opfp’
ol 15,200
2 11,280
«3 7.980
o4& 6.360
5 5.380
o5 4,740
«8 3.980
1.0 3536
1.5 26992
2.0 2,762
3.0 26762
4,0 2,500
5.0 2.464
6.0 2.446

7.0

2.432

Cone (Ref. 8)

K op/9?3
.66 2.95
.92 2.65

1.22 2.45
1.59 2.31
2.10 2.20
2.74 2.14
4,00 2,10
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TABLE XV

Wedge
Hypersonic Similerity

2° Angle of Atteck

5°8 078
N CPu M CPL M Cpu bl CPL
11,50 .00115 2,50 L0710 1,92 L041 1,63 170
3.80 L0530 385 .030 2.44 120
5,06 0400 .76 o022 3025 096
6,32 <0336 7.70 017 4,06 L081
7.60 L0282 9,60 L,014 4,89 .071
10,20 ,0250 11.50 LO013 650 060
12,60 ,0223 8,14 ,L054

12,20 ,045
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TABIE XV (continued)

Wedge
Hypersonic Similarity

2% Angle of Attack

2008 50°8

M Cpu M CPL M Cpu M CPL
2,13 L1160 1.88 .28¢ 2.16 o285 1.96 .445
2.84 L127 235 o248 2.60 251 2682 L374
3.55 .108 2082 .215 3,46 .211 3608 o332
4,26 .085 3.76 ,181 4,34 187 4,90 .281
5.78 080 4,70 L1l61 6.50 .159 6.54 L.2B9
7,10 LO071 7,04 .136 8,65 .146 9.80 .242
10.60 .060 9,40 L,125 10.80 L1337 13,20 .235

o117
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TABIE XV (continued)

Wedge

Hypersonic Similarity

29 Angle of Attack

40°8 50°38
M Cp, M cPL M Co, M ch
2.39 .422 1,98 .654 1.88 .720 1.96 .925
3,00 .375 2,47 .580 2.35 .640 2,94 780
4458 o317 3071 o420 3.53 o540 3.92 L721
5.96 +293 4,95 L453 4,70 500 5,89 .694
8.95 .274 Tod2 ,424 7.06 .466 7685 .654
12,00 .265 9,90 410 9.40 453 9,80 .646
12.30 .404 11,75 445 11,75 .640
60°8

M Cp, M cPL

1,88 1,010 2,40 1,170

2.82  ,850 3.20 1,080

3.75  .786 4,80 1.010

5.73  +735 6.40 980

7.50 712 8,00 .964

9.40 .700 9.60 .960

11,20 700 11,20  .952
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IABIE VI

Wedge
Hypersonic Similarity

4% Angle of Atteck

10°8

M Cp Mo Cp M Cp
2.64 107 .70 .0045 1,90 .197
3.55 4083 11.4C .0035  2.54 .159
4,40 .070 3.16 .134
5426 .062 3.80 118
7.03 .052 | 5.06 099
8.80 046 6.3¢ .089
13,10 .039 9,50 .075

12,60 069
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TABIE XVI (continued)

Wedge
Hypersonic Similarity

4° Angle of Attack

20° 50°§
Moy ¥ Mo cp M Cp
1.9C 123 2,01 354 2,06 248 2,32 .475
2.86 .088 2.41 .294 2,58 .210 2,81 .421
3.80 .070 3.21 247 3.10 .185  4.36 .356
4.76 059 4,01 .220 4,15 ,155  5.80 ,329
5.70 052 6.01 ,185 5.16 138 8,70 4307
.60 J044 8,02 .171 7.71 .116 11,60 .298
9,50 .039 12,00 .160 10,60 .108

10.5C .033
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TABLE XVI (continued)

Wedge

Hypersonic Similarity

4° Angle of Attack

40°8 50° §

M Cp, M ch i Cp, M Cop
2,09 .394 2.25 .705 2,08 4590 2,70 .925
2.79 4330 3.37 o595 2,60 ,524 3.61 .854
3.49 o294 4,50 550 3.90 o443 Bed2 o796
5,21 .248 6,74 L514 5.,2C 408 7e22 o773
6.96 229 9.00 ,498 7.80 o382 9.01 760

10,50 .214 11,20 .490 10,40 .370  10.80 756
13,00 .364
60°8

M Cp, M CPL
2,05 .845 2,22 1,37
3.07 4715 2,96 1.26
4,1C .660 4,45 1.18
6.15 .616 5,52 1.14
8.20 ,598 7.40 1.12
10,20 .589 8.90 1,11
12.20 .580 10.70 1.1l
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ZABIE XVIIT

CL vs M

Wedge, & = 20°

a.—:zo

M Oblique First Second Hypersonic
Shock Order Order Similitude

2,0 1229 0792 «1102 »0907
4.0 .0673 0353 .0634 0730
6.0 0817 .0226 +0510 «0658
80 +0599 «0171 »0443 «0587
10.0 «0580 0144 .0414 .0556
12,0 «0540 0114 .0386 0576
o = 4°

M Oblique First Second Hypersonic

Shock Order Order Similitude
2.0 #2391 «1590 «2197 2221
4,0 01418 +0714 «1263 « 1457
6.0 1268 .0457  ,1006 .1307
8.0 21211 .0352 .0892 «1300
10.0 »1154 . 0276 .0836 <1331

12,0 «1154 0228 .0778 01282
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