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Abstract 

One model of human learning involves choosing an action based on past experiences in 

similar situations. The chosen action is typically modified to compensate for any dis

crepancies with the current situation. After sufficient experience has been obtained, 

at least in a particular regime, the experiences are conceptualized into a general 

response mechanism. This thesis presents an algorithm that formalizes this hybrid 

reasoning process and applies it to control of a nonlinear physical system. Experiences 

are stored as vectors of variables known as cases in a set called a casebase. Vector 

norms are used to select an appropriate case from the casebase which is then modified 

using an adaptation routine. Once the modified action is applied to the system and 

the resulting outcome is observed, the casebase is augmented to include the new expe

rience for improved future performance. A gated expert neural network is eventually 

trained on subsets of the casebase to create local inverse model approximations for 

regions of the input space where sufficient data is available to support generalization. 

The gate network selects one of the experts if appropriate or otherwise defaults back 

to case-based reasoning. The applicability of the hybrid algorithm is demonstrated 

on a nonlinear control problem, setpoint regulation in a ball and beam system. 
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Chapter 1 Introduction 

Being members of the animal kingdom, we as human beings have certain basic biolog

ical responses built into our makeup. Often they are referred to as instincts or reflexes 

and they occur involuntarily whenever the external environment triggers t hem. We 

have no control over them and often cannot modify those behaviors. In most situa

tions that we encounter, however, we must decide on an appropriate action to take 

based on the outcome we desire. 

One basic learning model simply involves rote memorization of action-result pairs. 

This type of reasoning is modeled using some type of reference, for example a lookup 

table or decision tree. The reference dictates the appropriate action to perform to 

achieve the desired result based on the current state of the system, hence t he decision 

process consists of merely searching the reference. Learning only involves organizing 

the reference to expedite the searching, i.e., frequently encountered situations are 

located more quickly. Clearly this form of learning is constrained to tasks where there 

is only a limited number of discrete results and system states so that generalization 

is unnecessary. Furthermore, the system must be time invariant so that the same 

actions will be applicable at any time, i.e., the only relevant decision variables are 

the current state and the desired result. 

A slightly more advanced way to decide on what actions to take in a given sit

uation is through the use of past experiences, modeled using associative memories 

or case-based reasoning. These experiences are obtained either directly, for example 

trial and error runs, or indirectly, for example from instruction. If a particular course 

of action performed in a similar situation produced a result similar to the desired one, 

then that action is a logical starting place for the decision process. Based on the dis

similarities between the actual situations involved and the particular outcome desired, 

the action may be modified to compensate for these differences. After performing the 

action, the outcome is evaluated and stored for future reference thus expanding the 
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number of examples from which to draw. In so doing, performance can be improved 

in subsequent situations by basing the decisions on experiences that are more similar 

to the current situation. 

A third method of producing an action is using concepts. The concepts are gen

eralizations derived from extensive experience. Neural networks are often used to 

model this type of learning by approximating a mathematical function from a given 

set of experiences (input-output data pairs). One condition for this type of learning 

to be successful is the training data set must be sufficient to adequately represent the 

underlying function. Furthermore, the network model must be complex enough to 

approximate the function but not excessively complex to overfit the data. 

The contribution of this thesis is to formalize a synthesis of the above decision 

processes using a hybrid case-based reasoning and neural network algorithm and 

apply it to a nonlinear control problem. Case-based reasoning provides an inference 

scheme to make reasonable decisions when only a limited amount of information is 

available. As more experiences are acquired, storage and retrieval of these experiences 

becomes an issue. This problem is overcome by training neural networks on subsets of 

these experiences reducing the storage and retrieval concerns. Therefore, the hybrid 

system utilizes case-based reasoning to generate data sets that are then generalized 

using neural networks when appropriate. 

In the implementation of the case-based module , experiences arc stored as vectors 

of variables known as cases in a set called a caseba8e. Vector norms are used to select 

an appropriate case from the case base which is then modified using an adaptation 

routine. Once the modified action is applied to the system and the resulting outcome 

observed, the case base is augmented to include the new experience for improved future 

performance. \Vhen sufficient experiences have been generated in a particular region 

of the input space, a neural network (known as an expert) is trained on this subset 

which is then subsequently removed from the casebase. A second network (known 

as a gate) is trained concurrently to select one of the experts when appropriate or 

otherwise default back to case-based reasoning. 
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The second chapter presents a brief review of case-based reasoning, neural net

works, and control theory along with a mathematical basis for the algorithm. Chapter 

three formally defines the hybrid reasoning structure and gives a simple example to 

demonstrate the algorithm. Chapter four describes the ball and beam control prob

lem and defines the actual implementation of the hybrid system. The results from 

both simulated and physical system trials are presented in chapter five. Finally, chap

ter six provides a discussion of the results along with some conclusions and possible 

extensions to the algorithm. 
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Chapter 2 Background 

2.1 Case-based Reasoning 

As Riesbeck and Schank [33] describe case-based reasoning, "input a problem, find a 

relevant old solution, adapt it." Barletta [4] subsequently lists five issues in case-based 

system development: 

* representation 

* indexing 

* storage and retrieval 

* adaptation 

* learning. 

Simply put, given the desired result and the current system state, the algorithm 

will select an action from a similar prior experience. Unless the desired result and 

current situation are identical to the prior experience, the selected action may be 

modified to compensate for these differences. After executing the new action, the al

gorithm observes the actual results and compares these results to what was expected. 

The errors provide additional experience that can be used in subsequent trials to 

improve future performance [10]. In this way, the algorithm increases the proficiency 

of performing a task through repeatedly acquiring more experiences upon which to 

draw in the decision process. 

From a few initial experiences, the algorithm is able to predict appropriate ac

tions in new situations with different desired results for which there is no previous 

direct experience. This prediction usually consists of some form of interpolation or 

extrapolation from the prior experiences within the casebase (inference). It essentially 

provides a "best guess" which then generates additional experiences to continually 

expand the size of the casebase. 
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Case-based reasoning is typically used in expert systems for planning and di

agnostic tasks, e.g., medical treatment [2, 23] and fault analysis [21]. It has also 

been successfully applied to robot navigational control. Ram et al. improve reactive 

robot performance by utilizing case-based reasoning to discretely select and adapt 

the control parameters [30]. Ram and Santamaria further develop a technique for 

implementing case-based reasoning in a continuous fashion and also apply it to the 

task of robot navigation [31]. 

2.1.1 Mathematical Analysis of 1D Function Approximation 

The rational behind case-based reasoning is to develop an algorithm which "learns" 

to improve its performance in subsequent trials through the expansion of the set of 

experiences, i.e., the casebase. This means that as the casebase grows in size, the error 

between the predicted outputs based on case modification and the actual resulting 

outputs should decrease. The following section gives a result to justify this procedure 

in the case of a scalar function. 

Assume there is an unknown, twice differentiable function Y f(x) such that 

1f'(X)1 ::; ,. Let YI = f(XI) and Y2 = f(X2). Furthermore, let 

Y x) = (x - xd + YI = k (x - xd + YI A( (Y2 - Yl) 
X2 - Xl 

which defines the secant line between (Xl, YI) and (X2' Y2) with slope k, and define a 

function 

E(X)=y-fj 

Since E(X) is continuous on [Xl, X2] and differentiable on (Xl, X2), by the Mean 

Value Theorem from calculus E(X) will achieve an extrema either at E(XI), E(X2), or 

where E'(X) = O. Since E(XI) = E(X2) = 0, either E(X) = 0 =} Y = fj over the interval 

[XI,X2] or the absolute extrema occurs in the interval (Xl,X2), say at x, and satisfies 

E'(X) = O. 



6 

Since 

E(X:2) = rX2 

E'(x)dx + E(xd = r E'(x)dx + ~X2 E'(x)dx + E(xd 
l XI l XI li; 

applying the boundary conditions and defining the value at the extrema as fJ gives 

I i; lx2 
E' ( X ) d.7: = - _ E' (.7: ) dx = ,/J 

XI X 

Considering the unknown function !(J:) , the Mean Value Theorem also states 

that k S , over the interval (Xl , X2 )' Therefore E'(X) = f'(x) - k must satisfy 

, - 1 k 1 s jE' (x) 1 s , + 1 k I· Wi thou t loss of generality, if we assume that the function 

is increasing in the interval (.1:[, x) with maximal slope, + Ikl, then over the interval 

(x, X:2) the maximal magnitude for the slope is , - Ikl. Hence we can bound the 

magnitude of the extrema by the following two inequalities 

Combining these two inequalities gives 

IfJl s 2,(x - Xd(X2 - x) 
(:[,2 - Xl) 

Since Xl < :1: < :J:2 , the maximum of (x - Xd(X2 - x) occurs where 

d _ _ _ _ _ X2 + .7:) 
0= dx (:1: - Xd(X2 - x) = X2 - X - (x - xd '* X = 2 
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Hence 

The last equation says that the maximal error is proportional to the size of the 

input interval. Therefore, the approximation error decreases as the number of input 

space intervals is increased, i.e., as more cases are generated. Conversely, a maximal 

input interval size can be computed for a desired error level assuming an upper bound 

on the derivative of the underlying function can be approximated. 

2.2 Neural Networks 

The human brain operates based on a large distributed array of simple computational 

elements called neurons. These neurons are interconnected by a network of axon 

and dendrites. Information is passed from neuron to neuron through a series of 

electrical impulses which travel along the initiating neuron's axon to the various 

synaptic junctions with dendrites of receiving neurons. The signals are coded by the 

sequential timing of the impulses (frequency) along with loss based on the location 

of the synapse in relation to the receiving neuron's soma (amplitude). 

2.2.1 Basic Computational Elements 

Artificial neural networks attempt to simplistically model the biological system in a 

similar fashion using basic interconnected computational elements. One common ele

ment consists of a soft thresholding function, often the hyperbolic tangent or logistic 

function. The inputs to the neuron, Xi, are multiplied by weights, Wi, and offset by 

a bias, b. The output of the threshold function is then multiplied by a second gain, 

W, and offset by a second bias, B, to give the final output of the neuron, y. These 
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dements produce a soft thresholding of the weighted inputs. Hence the equation for 

a hyperbolic tangent artificial neuron is given below with the corresponding picture 

in Figure 2.1. 

y = W tanh (L WiXi - b) - B 
l 

x • l
x, 

:" 
Figure 2.1: Pictorial representation of an artificial threshold neuron computational 
element. 

A second commonly used computational element is the radial basis neuron. The 

output of this element is a measure of the distance (norm) between the input and the 

center (mean) of the basis function. Typically an l2 vector norm is used as the distance 

metric and the basis function is some form of gaussian. Such elements produce a 

response in a local region of input space around the element's center. In the case 

of gaussian elements, the degree of localization is controlled by the variance. These 

elements are mathematically represented by the following equation and pictorially 

shown in Figure 2.2. 

IIX-/L II 
Y = J;Ve--;;'l 

~+-·Y 

Figure 2.2: Pictorial representation of a radial basis artificial neuron computational 
element. 
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2.2.2 Feedforward Networks 

To perform useful computations, combinations of the above simple elements are con

nected in various patterns to form networks. One common connection pattern consists 

of organizing the neurons into layers such that the outputs of one layer are fed into 

the inputs of subsequent layers. If the connections are only between adjacent layers 

with no feedback, the network is called a feedforward network [13] pictorially shown 

below in Figure 2.3. Such networks are commonly used with thresholding elements 

for model-free function approximation problems. 

W l l ' 

X Y 

• 
win, • • 

Figure 2.3: Schematic diagram of a threshold element feed forward network. 

2.2.3 Competitive Networks (Winner-Take-All) 

Another type of network, which is often used for input classification problems, is 

a competitive or winner-take-all network [13]. These networks consist of uniquely 

indexed (usually radial basis) neurons which compute the distance , typically the 

Euclidean vector norm, between the input and the neuron 's center (mean). The index 

of the neuron with the minimum distance, i.e. , the "winner," is the output value of the 

network. Such networks partition the input space into discrete (perhaps overlapping) 

regions. The partitioning is useful when clustering or discrete classification of the 

input data is desired. 
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2.2.4 Mixture of Experts Networks 

A hybrid network which combines feedforward and competitive networks is known 

as a mixture of experts network [34]. This type of network uses several simple feed

forward networks (experts) whose output is valid for particular regions of the input 

space (regions of expertise). The input is simultaneously processed by a competi

tive network (gate) which generates a ranking for each expert. The final output of 

the hybrid network is then a combination of the outputs from the experts based on 

the gate 's rankings. Two common combination techniques involve normalizing the 

rankings and applying them as a weighted sum of the experts' outputs (continuous), 

or simply selecting the highest ranking expert's output (discrete). The mixture of 

experts structure is shown in Figure 2.4. 

y 
x 

Figure 2.4: Schematic diagram of a (discrete) mixture of experts network architecture. 

These networks avoid the need for a large single network to accurately model input 

spaces that are only sparsely populated by locally dense pockets of data. Instead , 

several simple expert networks can be trained quickly to accurately model smaller 
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subsets of the data. The gate then only needs to be trained to select the corresponding 

expert instead of approximate the actual output value. A subsequent advantage of 

such an architecture is the capacity to add or expand experts to cover new data as 

it becomes available without retraining the entire network. Only the new expert and 

the gate networks need to be updated, significantly reducing retraining time. 

2.2.5 Learning Models 

Backpropagation 

An efficient algorithm for training feedforward networks is backpropagation (see [13, 

35] for a complete formalization of the algorithm). This method consists of pass

ing the input signals forward through the network to generate the network outputs. 

These outputs are then compared with the desired outputs to compute an error sig

nal. The weight updates are computed by propagating the error backwards through 

the network. The backward propagation step is performed using gradient decent 

to update the weights based on the derivative of the error function with respect to 

each weight. Weight updates are computed layer by layer since the updates for the 

(i - 1 )th layer can be computed directly from the updates for the ith layer, hence the 

term backpropagation. 

Competitive Learning 

Training of competitive networks is dependent on the type of problem under con

sideration. If the output classification is given for the training data, i.e. , supervised 

learning, the network can be trained using backpropagation since the error signal is 

available. The input space is subsequently partitioned into regions that have pre

defined classifications. 

A second type of training, unsupervised learning or self-organizing maps, consists 

of clustering data with similar inputs without regard to the corresponding outputs, 

i. e. , the classification is simply the arbitrary index of the closest neuron. Typically the 

clustering neurons are radial basis functions and minimizing the expected maximum 
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likelihood metric is the training objective [16] . This procedure involves processing the 

training examples with the network to produce an initial classification. The mean of 

the examples in each class is then used to adjust the center of the classifying neuron 

closer to the mean of the cluster. The network then repeats the reclassification and 

neuron center updating until a stopping criteria is achieved. This type of learning 

clusters the data by distributing neurons within densely populated regions of the 

input space. 

Mixture of Experts Training 

Since mixture of experts networks are hybrids of both types of networks, both back

propagation and competitive learning are used to train the hybrid network. Initially 

the gate network (typically a radial basis network) is trained using unsupervised 

competitive learning. This step separates the training examples into subsets. These 

subsets are then used as individual training sets for the expert networks which ap

proximate a local input-output function based on the data. The expert networks 

(usually standard feedforward networks) are trained using backpropagation. There

fore , the gate network is trained to select the appropriate expert based on the input 

and then the selected expert is trained to predict the output from the given inputs 

within its region of expertise. 

Perturbative Learning 

One final learning technique presented because of its inherent simplicity (allowing 

for implementation in analog circuitry [5]) involves perturbative methods [1] . In 

this scheme, a random perturbation of the weights in the network is applied. If 

the perturbation reduces the output error of the network, then the perturbation is 

kept. Otherwise the perturbation is removed and a new one applied. Typically an 

annealing schedule is required to adjust the size of the perturbations so that the 

weights converge to at least a local error minimum. The obvious advantage of this 

method is its computational simplicity; however, the drawback is that training is 

often orders of magnitude slower than gradient methods such as backpropagation. 
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2.3 Control Theory 

2.3.1 System Identification 

The first step in any control design is to model the system to be controlled. This iden

tification can either be done from physical first principles, empirically from collected 

data, or from a combination of both. Such models are inherently incomplete for any 

physical system since no model will capture all the dynamics, particularly induced 

by noise, of the system. Furthermore, generally the models are linear in nature since 

there is a rich set of analysis and design tools available for such systems [19]. If the 

system is fairly linear with reasonable noise levels, such a linear model is often suffi

cient to design a robust controller that achieves the desired performance level when 

applied to the real system [8]. However, the model will only be as accurate as the 

data used to generate the model. Hence any noise present in either the applied input 

signals or in the output sensor measurements will limit the precision to which the 

system can be modeled. Furthermore, if aspects of the physical system change over 

time, for example due to wear or changes in components, then a new data set must 

be obtained to derive a new model. 

Model free identification systems, such as neural networks, provide a tool for 

generically approximating the input-output map of the underlying physical system (at 

least locally) without any a priori knowledge of the dynamics [20, 25]. Such models, 

however , generally give no information about the structure of the system, particularly 

in operating regimes where no training data is available. Therefore, caution must be 

exercised when these models are used for controller design or validation since the 

controller may drive the system into regions where the model is not valid. Since the 

model can be continuously updated over time as necessary to compensate for changes 

in the physical system, however, the controller can simultaneously be adjusted to 

hopefully allow for successful adaptive control. 
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2.3.2 Linear System Analysis 

Many powerful techniques for designing robust controllers for linear systems exist [8]. 

Often times for non-critical applications, a standard PID controller is used. The 

controller gains are tuned by hand until acceptable performance is obtained. Algo

rithms also exist to allow the controllers to be self- tuning where the parameters are 

adjusted automatically based on the deviation of the desired output from the actual 

output [28]. Such controllers avoid the need for system identification on a quanti

tative level but have limitations to the systems they are able to adequately control. 

More complex systems, either high order linear or nonlinear, require system identifi

cation before more advanced techniques , such as I-l-synthesis, can be used. Moreover 

some systems have nonlinearities, present in any physical system, that are sufficiently 

large such that any robust controller designed using linear techniques cannot provide 

acceptable performance. 

2.3.3 Nonlinear System Analysis 

Due to the wide range of possible nonlinear systems, a general controller synthesis 

technique does not yet exist. There are techniques which are useful for designing con

trollers for particular classes of nonlinear systems that satisfy certain conditions [27]. 

For example, the approximate linearization technique attempts to input-output lin

earize a system about an operating point and then apply linear control theory to 

design a controller [12]. The technique can be repeated for several operating points 

and a scheduler implemented to select the appropriate controller depending on the 

particular operating point of the system. This technique is effective only if the system 

has a significant linear range about the selected operating points. Furthermore, such 

a design requires a system identification step for each operating point. 

Other techniques exist to design nonlinear controllers that remove the nonlinear 

dynamics of the system thus making the extended system linear [1 5]. The rich set of 

linear control techniques can then be applied to the new system to derive a robust 

controller. Such procedures again require a fairly accurate system identification, 

particularly of the nonlinearities, and can be sensitive to unmodeled dynamics [17] . 
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2.3.4 Neural Network Control 

Recently neural networks have been employed in both system identification and con

troller design [9, 20, 24, 25, 29]. The advantage of neural controllers is their inherent 

model-free representation, thus avoiding system identification (although if done may 

provide a good initial starting point for training the controller) . One disadvantage is 

the complexity of the controller must be high enough to model the underlying system 

dynamics but not too high that the data is overfit producing poor generalization. Also 

the controller must first be trained, either on-line or off-line, before being employed, 

which may not be feasible on certain critical or unstable systems. Three neural con

trol schemes that will be briefly discussed are inverse model control, forward model 

control, and perturbative control. 

Inverse Model Control 

This controller model uses a neural network to approximate the inverse input-output 

map of the system [37] and has been applied to many control problems including robot 

control [38]. The inputs to the inverse model neural network are the actual outputs 

of the system. The desired output of the neural network is the actual applied input 

to the system. Hence, the error signal used for training is the difference between the 

actual applied input and the input the model network would predict given the actual 

system output. A copy of the inverse model network is then used as a feedforward 

controller. The desired plant output is input to the controller which then predicts an 

appropriate plant input to achieve that output. This scheme is shown in Figure 2.5. 

weight copy 

Figure 2.5: Schematic diagram of inverse model control. 
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Initially, a rich set of system inputs and resulting outputs needs to be gathered 

In order to train a reasonable starting model and corresponding controller. After 

the initial training, the predicted system inputs from the controller and the resulting 

system outputs provide new training examples which are used to continually update 

the inverse model and controller. Thus control can be performed successfully even on 

systems which change over time (assuming the changes occur on a slower time scale 

t han is required to sufficient ly adapt the network). Furthermore, the general function 

approximation capabilities of neural networks allow this technique to be applied to 

both linear and nonlinear systems. One limitation of this technique, however, is that 

it cannot be used for systems which either do not have an inverse or with an unstable 

inverse, since the network will be unable to converge to a stable set of weights. 

Forward Model Control 

To avoid the problem of the existence of an inverse plant , a second neural control 

scheme, known as forward model control, can be used [24, pages 216-217] . This setup 

employs two distinct networks , one for the model and one for the controller. The in

put to the model network is the actual input to the plant (which is also the output of 

the controller network). The desired output of the model network is the correspond

ing output from the plant. The error signal is the discrepancy between the predicted 

output from the model and the actual output. This error signal is backpropagated 

through the forward model to update the model weights. Then further backpropaga

tion from the model is applied to update the controller weights. Figure 2.6 shows a 

schematic representation of this setup. 

Both networks are trained as if t hey a re a single larger multi-layer network . Prac

tically, two networks are typically used so that they can be updated at different rates , 

for example updating the weights of the model more frequently than those of the 

controller. The advantage of this technique is that t he forward model can always be 

t rained to provide at least a locally accurate model of the plant, hence a local con

troller can theoretically also be trained. The disadvantage is that since both networks 

act as a single larger network for training purposes, training can be prohibitively slow 
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controller weight 
update 

model weight 
update 

y 

Figure 2.6: Schematic diagram of forward model control. 

particularly initially. Hence, if the system is rapidly changing, the networks (the 

forward model in particular) may never converge adequately. 

Perturbative Control 

A third neural control technique involves using only a controller network. The net

work is trained using perturbative methods [1] where the applied perturbations are 

influenced by the performance of the controller. Clearly this technique is of limited 

utility due to the slower convergence rates of perturbative learning. However, for cer

tain systems that have very slow dynamics, such a technique provides for a physically 

implement able controller due to the simplicity of the learning algorithm. This simple 

scheme is shown in Figure 2.7. 

+ 
on troller weight 

update 

Figure 2.7: Schematic diagram of perturbative model control. 
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2.4 Related Work 

Many hybrid schemes have been developed combining case-based reasoning with neu

ral networks and other techniques in various applications. Neural networks have been 

combined with case-based reasoning in the medical field for congenital heart disease 

diagnosis [32J. The hybrid system attempts to circumvent the deficiencies inherent 

in the two approaches when implemented separately, namely storage and retrieval 

issues for case-based reasoning and output explanation and interpretation for neural 

networks. Another hybrid algorithm has been successfully implemented for the design 

of mixing systems where fuzzy logic and neural networks are used to perform case 

adaptation [18J. 

Many hybrid schemes have also been implemented in control applications. A 

combination of a rule-based expert system with fuzzy logic and neural networks was 

applied to the truck and trailer backer-upper control problem [14]. Associative mem

ories, a technique similar to case-based reasoning, has also proven useful for control 

problems [11]. For example, Atkeson et al. have successfully applied this approach to 

train a robot to perform a juggling task [3]. 

A wide range of controllers have been designed for the ball and beam problem. 

Hauser, et al. design a nonlinear controller by approximating the ball and beam system 

with one that is input-output linearizable [12]. Several different variations of fuzzy 

logic controllers have likewise been successfully applied to ball and beam control [6, 

22, 36]. A recurrent neural network solution has been developed by Chu, et al. [7] 

Finally, Ng and Trivedi present a hybrid fuzzy logic and neural network controller 

and demonstrate its ability to control a physical ball and beam apparatus [26]. 
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Chapter 3 Hybrid Reasoning System 

The motivation behind this thesis is to combine case-based reasoning with neural 

networks to realize the advantages of both methods. Case-based reasoning is used 

to intelligently generate an initial set of data (the casebase). This data set is then 

partitioned into local clusters using a radial basis competitive learning network (the 

gate). Separate simple threshold neuron feedforward networks (the experts) are then 

trained to approximate the underlying local input-output fun ctions represented by 

the local subsets of cases. Whenever the desired output lies sufficiently close to the 

center of one of the experts, the gate will select that expert to generate the predicted 

input. Otherwise if no expert is close, the gate will pass the decision to the case

based reasoning module to determine the action to implement. As more cases are 

generated, the system can retrain or add new experts (and concurrently modify the 

gate) to incorporate the new informat ion. Furthermore, if the experts no longer 

produce acceptable results, for example due to changes in the underlying system, 

they can be removed until a new set of cases is created in that region of input space. 

3.1 Case-based Reasoning Model 

Initia lly a case structure needs to be defined that represents all the relevant informa

tion necessary for the algorithm to make decisions . The syst em then needs a method 

of input acquisition in order to filter out the relevant measurements from the exter

nal world and index them in a format that the reasoning engine can process. This 

data is passed on to a case selection routine which retrieves the most relevant past 

experience, t he basi" case, from the casebase. The selected basis case is passed to 

the case modification routine which adapts this case in an attempt to compensate 

for the differences between the past experience and the actual current situation. The 

algorithm then uses case application to implement the computed inputs on the ex-
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ternal system. The resulting output is analyzed by the result evaluation module to 

determine whether some type of unusual or anomalous event occurred during the 

execution of the input. If the output is reasonable, the casebase is expanded using 

case augmentation to construct a new experience based on the applied input/resulting 

output pair allowing the system to learn from the experience. The entire procedure 

is shown schematically in Figure 3.1. The remainder of this section describes each of 

these routines in more detail. 

External 

Sensors 

Figure 3.1: Schematic diagram of the case-based reasoning algorithm. 

3.1.1 Case Structure 

Each case consists of a number of variables which contain information about the 

resulting output (and usually the initial state) and the applied input. Hence, a case 

is generically defined as a vector C consisting of two subvectors y and u 

c = [ : 1 

where y contains the initial and final states of the system, i.e. , the resulting output, 

and u contains the applied input. Other values, such as time for execution or expended 

energy, may also be included for use in case selection. 

3.1.2 Input Acquisition 

The starting point of any reasoning system involves acquiring data describing the 

current state of the system. Human beings use their five senses to collect information 

about the environment in which they are operating. Machine systems obtain this 

data through sensors that measure physical quantities of interest. Typically this raw 
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data can be noisy and cluttered with extraneous information. Hence some form of 

signal preprocessing, i.e., a filter, is applied so that only the important information 

is passed on. This preprocessing step is important in improving the efficiency of the 

reasoning engine. 

For any algorithm to work, the input data must sufficiently describe the current 

state of the system. Addit ionally, the algorithm must also be provided with the 

desired result to be obtained. Compiling these two pieces of information in the desired 

result vector , Y d, a decision can be made as to what action is necessary to achieve 

the desired result given the current state. 

3.1.3 Case Selection 

Once the desired result vector is constructed , the second step in the reasoning process 

involves selecting the basis case, denoted by C*, which represents the past experience 

that is most similar to the current situation. This selection is done by choosing a 

distance metric (typically the l2 vector norm) as a measure of the distance between 

the desired result vector, Yd , and the output vector from each case, y(i ). A weighting 

matrix, rv , can be used to bias the metric in favor of certain important components 

within the output vector. Assuming discretely numbered sequential cases indexed by 

i, the selection criteria is given by 

A useful extension is often to apply a temporal weighting factor to the metric so 

that the most recently generated cases are favored more heavily. This technique allows 

for the casebase to dynamically adapt to a system that may be changing over time, 

for example due to mechanical wear. Since the recent cases represent examples of the 

inpu t-output map at the current time, they may be more appropriate for determining 

a proper action than distant past experiences, even if the more recent output vector 

is not the "best" in the simple weighted l2 norm sense. Hence defining the temporal 

weighting function as f (i) , the modified selection criteria becomes 
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Sometimes due to natural symmetry within the system, additional cases can be 

inferred from the existing ones. In particular, if the system is time invariant, then an 

"inverse" case can be created by applying the inputs backwards in time and reversing 

the initial and final states. 

3.1.4 Case Modification 

The input vector from the basis case provides the initial input "guess" denoted by u*. 

In general, however, the selected basis case will not be an exact match to the desired 

result vector. Hence, the system can either directly apply the basis case (u = u*) 

thus accepting that significant error may exist in the output, or modify the input 

vector from the basis case in an attempt to produce a better output. A common 

method of modifying the basis case is to use first order gradient information within 

a local neighborhood. By numerically approximating the gradient using cases close 

to the basis case, a first order linear correction factor can be computed. Depending 

on the dimensionality of the system and the density of the cases within the local 

neighborhood, higher order corrections can also be computed. 

3.1.5 Case Application 

After modification of the inputs from the basis case, the final input, u, is then applied 

to the system. The algorithm monitors the state of the system to watch for anomalous 

behavior. Once the input sequence has completed, the resulting outputs are measured 

and passed on to the result evaluation routine. 

3.1.6 Result Evaluation 

Before constructing a new case, the results must be validated to avoid corrupting the 

casebase. The validation step often checks if something anomalous occurred during 

case execution. Any anomalous cases are flagged in order to prevent them from 

being directly used in the case modification step. Including such cases would cause 

an erroneous gradient to be computed and hence incorrectly modify future selected 
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inputs. However, t.he anomalous cases are often stored in a separate casebase so 

that modified cases can be compared with them in order to prevent the system from 

performing a similar mistake. 

3.1. 7 Casebase Augmentation 

Assuming nothing anomalous occurred during the execution of the case, the initial 

state and resulting output is stored in a vector y(i+I). Combining this vector with 

the applied input vector, il, a new case is constructed as 

[ 

(i+I) 1 
C(i+I) = Y il 

The case base is augmented with this new case which is then used in subsequent case 

selection and modification steps. 

3.2 Neural Network Generalization 

Since each case in the casebase represents an input-output pair from the underlying 

system's transfer function , a natural extension is to generalize a sufficiently dense case

base into a mathematical function. This procedure reduces the storage and retrieval 

requirements of the case-based algorithm by directly computing the appropriate sys

tem input given the desired output. Any function approximation technique can be 

employed to generalize the data. For specific systems, it may be beneficial to tailor 

the functional form in order to take advantage of physical principles or other known 

relationships inherent in the underlying system. Otherwise, model-free approxima

tion techniques, such as neural networks, can be used for more generic generalization. 

Typically these techniques will require more data to avoid overfitting and insure good 

generalization performance. The benefit is that they are not restricted to any partic

ular system and require no a priori knowledge or modeling of the underlying system. 
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As discussed in Section 2.2.4, mixture of experts networks are often used for 

problems that have clusters of data. The advantage of this technique is that several 

simple networks can be quickly trained to cover the important regions of the state 

space rather than attempting to cover the entire state space with a single complex 

network. Expert networks are only created in regions where enough experience has 

been gained to support generalization. Outside these regions, the computed output 

can either be an interpolated value between experts or an extrapolated one based on 

the nearest expert. Each expert can be viewed as implementing a local version of 

inverse model control (refer to Section 2.3.4) and updated whenever it is selected to 

generate the system output. 

3.3 Hybrid Algorithm 

The purpose of this work is to combine a discrete variation of the mixture of experts 

technique, known as a gated expert network, with case-based reasoning. In this 

implementation, the gate network produces a winner-take-all decision rather than a 

vector of mixing coefficients. Hence, each data point is allocated to one and only one 

expert, dividing the input space into mutually exclusive regions. The center of each 

region, i.e., the mean of the corresponding gate network neuron, is denoted by p,. 

The algorithm used in this work additionally bounds the regions of expertise of the 

expert networks to a local area where there is data by setting a threshold, denoted by 

f, around the expert centers. This bounding allows the gate to default the decision 

to the case-based reasoning module if the desired result is not within the regions of 

expertise of any of the expert networks. Formally the output of the hybrid algorithm 

is given by 

{ 

UC 

u= 
u(il minllYd - p,(illl otherwise 

z 

·fll - (illl \-1·-1 1 Yd P, >fv~- , ... ,n 
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A schematic diagram of the hybrid algorithm is given below in Figure 3.2. 

g 
u" 

u 
U( I I 

Figure 3.2: Schematic diagram of t he hybrid case-based reasoning and gated expert 
algorithm. 

3.4 ID Case-based Reasoning Example 

The case-based reasoning procedure will now be demonstrated through a simple 1D 

function approximation problem. Assume the underlying function is given by f (u) = 

eU over the interval 0 ::; u ::; 1. Furthermore, take as ini t ial cases t he four data points 

given by 

c = [ y ] = { [ 1.26 ] , [ 1.63] , [ 1.84] , [ 2 . 5~ ] } 
u 0.23 0.49 0.61 0.90 

Finally, let the desired output be f(u) = 2.44. 
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3.4.1 Input Acquisition 

For this simple example, the desired result vector is only the desired output value 

Yd = 2.44. 

3.4.2 Case Selection 

L~sing the ahsolute difference as the metric, the distances are computed as follows 

IIYd - y(i) II = IYd - y(i)1 = {1.18, 0.81, 0.60 , 0.15} 

Hence, the selected basis case is 

C* = {C(i) I min IIYd - y(i) II} = c(4) 
1 

3.4.3 Case Modification 

In this 10 example, simple first-order linear interpolation will be used to modify 11,*, 

refer to Figure 3.3. The nearest case in input space to C*, which shall be denoted by 

C** , is clearly C(3). Formally, 

Therefore , a correction factor , a , is computed as 

Yd - y* 2.44 - 2.59 
n = = = 0.20 

y** - y* 1.84 - 2.59 

Applying this correction factor gives a predicted input of 

11, = (1 - n)u* + nu** = (0.80)(0.95) + (0.20)(0.61) = 0.88 
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3.4.4 Case Application 

Applying the predicted input u = 0.88 produces the actual output y = f(u) = 2.41 

giving an error of Iy - Ydl = 12.41 - 2.441 = 0.03. 

3.4.5 Result Evaluation 

Since the predicted input is within the interval for which the underlying function is 

defined, the output is valid. Therefore, y(5) = 2.41. 

3.4.6 Casebase Augmentation 

Hence, the case base can be updated to include the new case 

C(5) = [ y(5) 1 [ 2.41 1 
u 0.88 

y 

* y ----- -- --------------- ------------------------- --
y d --------------------------------------------------------- , 

ex ,//td) 
C* 

C (3) ,/ ,/ 
, / 

* y -------------- ------------------------

C (1) //// 

. ,-,-,-
....... ' 

,-
... .,. .......... , ...... 

-------+--------------------~**--------~~-*~u 

u u u 

Figure 3.3: Case-based reasoning example. 
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Chapter 4 Experimental Setup 

4.1 Description of Experimental Systems 

The experimental system selected to demonstrate the hybrid algorithm is the standard 

ball and beam control problem [12]. The objective of the control is to rotate the 

beam in such a way that the ball position follows a desired trajectory. For the 

experiments, three distinct setpoints are defined along the beam and the control 

algorithm produces inputs that transition the ball position between these setpoints, 

i.e., a setpoint regulation task. The system with corresponding variables is pictorially 

given below in Figure 4.1. 

-
. -)8.W 

r = B(rm 2 -Gsin 8 ) 

Figure 4.1: Diagram of the ball and beam system. 

4.1.1 M athematical Equations for the System 

Given the moment of inertia for the beam Jb; the mass, radius, and moment of 

inertia of the ball M, R, and J respectively; and the acceleration due to gravity G; 

the equations of motion for the system are given by 

o = (~~ + M) r + MGsinB - MriP 

T = (Mr2 + J + Jb) jj + 2MrriJ + MGr cos B 
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where T is the ball position, () is the beam angle, and T is the applied torque on the 

beam. Furthermore , setting the input u = () gives 

T = 2MTiiJ + MGrcos{) + (Mr2 + J + Jb) U 

Defining a constant B as 

M 
B = -0---

1&+M 

the equations of motion can be rewritten in state-space form as 

Xl 

.T2 

X3 

:£4 

y 

where 

X2 

B(x \:d - G sin X3) 

X4 

U 

X l 

r 

T 
X= 

() 

() 

y=T 

However, for the experimental systems under consideration, only the desired beam 

angle, X3, can be commanded. Thus the actual dynamics of the beam servo in tran

sitioning from one beam angle to another are hidden from the controller. 
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4.1.2 Simulated Systems 

The computer simulation computes the dynamics of the equations given above using 

a fourth order Runge-Kutta method. Constraints are placed on the ball position to 

account for the ball reaching the end of the beam. If this situation occurs, the ball 

position is clipped to the beam end and the velocity is set to zero (simulating a stop 

at each end of the beam). Furthermore, the beam transition dynamics are modeled 

using a constant angular velocity resulting in a linear angular change from the current 

angle to the commanded angle. The program is written such that the simulation runs 

in real-time with the update time user definable. This setup allows for accurate 

prediction of the performance of the hybrid control algorithm when applied to the 

physical system. 

The computer simulation allows for three different simulation modes. The first 

mode is a full state mode in which the reasoning algorithm is provided with the exact 

position and velocity of the ball at each update time. The second mode is a position 

only mode where the algorithm is given just the exact ball position. In this mode, 

the controller must approximate the ball velocity thus introducing a time lag into 

the velocity measurement. The final mode is a noisy position mode which introduces 

additive, uniformly distributed noise into each ball position measurement. The noise 

level is set to roughly correspond with the noise level present in the physical system. 

For this mode the algorithm is again required to approximate the velocity from the 

noisy position measurements. 

4.1.3 Physical System Construction 

The physical system consists of a beam that is 4 ft. in length and utilizes a steel 

pinball. The beam is constructed from two parallel rods attached via a mechanical 

linkage to a standard RC servo. A PC is connected to the system using a custom built 

I/O board which attaches through the parallel port. The board consists of buffered 

analog inputs that are converted to discrete lO-bit integers using a Maxim 186 A/D 

chip. The board also provides analog output channels with lO-bit resolution using a 

Maxim 536 D / A chip. 
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One of the beam's rods is constructed of threaded nylon wrapped with resistive 

Ni-chrome wire giving an end to end resistance of approximately 100 ohms. The 

second rod is made of aluminum. A fixed voltage from the I/O board (5V) is applied 

to the ends of the resistive rod. The ball then acts as a contact between the resistive 

wire and the aluminum rod. Hence, the ball's position on the beam is sensed as the 

voltage on the aluminum rod. This signal is passed through a simple low pass filter in 

order to smooth out the signal before being fed into one of the analog input channels 

on the I/O board. 

The beam angle is set using an analog output channel on the I/O board. The 

analog voltage is fed into a standard RC transmitter which performs the necessary 

signal conversion and transmission to a standard RC receiver attached to the beam 

support. A servo is then connected to the receiver and mechanically linked to the 

beam. This setup provides a generic interface for the computer to control any system 

utilizing RC servos. A photograph of the complete system is shown below in Figure 

4.2. 

Figure 4.2: Picture of the experimental ball and beam system. 
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4.2 Case-based Reasoning System 

The details of the implemented case-based control algorithm using the structure pre

sented in chapter three will now be presented. 

4.2 .1 Case Structure Variables 

The input sequence consists of tilting the beam to a particular angle, Ul, until the 

ball passes a particular reference position on the beam, Ym. The beam is then tilted 

to another angle, U2, until the ball achieves a particular velocity, Vm , at which point 

the beam is returned to level. This sequence produces a corresponding roughly linear 

velocity change and subsequent quadratic positional change in ball position as shown 

in Figure 4.3. 

e 

• t 

y", 

Yo -1--"'----------. 

Figure 4.3: Graphical representation of input sequence. 

The input sequence variables are stored in a vector, u , defined as 

Ul 

Ym 
U = 

U2 

Vm 
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The initial state variables of the system and the resulting output variables are stored 

in a vector, y, defined as 

b.y YI - Yo 

.6. V VI - Vo 
y= 

Yo Yo 

710 Vo 

Combining the above two vectors, the ith case is defined as a vector C(i) as follows 

y(i) 

C(i) = u(i) 

.6.t(i) 

where .6.t = t I - to is the total case execution time. 

4.2.2 Input Acquisition Procedure 

The reasoning algorithm is given the measured (possibly noisy) ball position, Yo· 

For the full state simulations, the algorithm is also given the measured velocity, vo, 

otherwise the velocity is approximated by a simple linear regression fit within a sliding 

window of positional data. The desired final setpoint, Yd , and desired final velocity, 

Vd , are also provided. Thus the desired result vector is constructed as 

Yd - Yo 

Yd = 
Yo 

Vo 

4.2.3 Case Selection Procedure 

Case selection is based on a weighted 12 norm for both the actual case and the inverse 

case. The weighting matrix used is given by 
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1 0 o o 
o 0.5 0 0 

W= 
o 0 0.5 0 

o 0 0 0.1 

This matrix emphasizes the positional change variable and to a lesser extent the 

velocity change and initial position variables. Hence, the basis case, C*, is found by 

4.2.4 Case Modification Procedure 

Case modification is performed using a simple linear interpolation/extrapolation rou

tine. The casebase is searched to find the adaptation case, C**, that has minimum 

distance in input space (again using the l2 norm) from the basis case, C*, selected in 

the previous step. 

A linear correction factor, a, is then computed using the positional change variable 

as 

6.Yd - 6.y* 
a=-----

6.y** - 6.y* 

The correction factor is used to compute the actual input, u, to be applied to the 

beam as follows 

U = (1 - a)u* + au** 
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Additionally, the transition velocity, Vrn , is modified based on the final velocity of the 

basis case, the desired final velocity, and the ratio of the second beam angles by 

Vrn (v~ - (vj - Vd)) ~~ 

(v;n - (~v* + v~ - Vd)) u: 
1L2 

4.2.5 Case Application Procedure 

The input vector, u, is then applied to the system from the initial conditions, Yo and 

va, using the sequence of beam angle transitions described in Section 4.2.1. If at any 

time during the execution of the case the ball reaches the end of the beam, an invalid 

flag is set to indicate this anomalous situation. 

4.2.6 Result Evaluation Procedure 

If the invalid flag was not set during case execution, then the measured final ball 

position, Yf, and ball velocity, vf, are used to form the resulting output subvector 

Yf - Yo 

Vf - Va 

Yo 

Va 

4.2.7 Case base Augmentation Procedure 

This resulting output subvector is then combined with the applied input vector to 

generate the new case 

c(i+1) = U 

~t 
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4.2.8 Neural Network Generalization Procedure 

After a substantial number of cases have been generated, generalization using a gated 

expert neural network is performed. The cases are first clustered based on the po

sitional change variable, boy, and the initial position variable, Yo. This clustering 

is done using a simple radial basis network (the gate) trained using EM unsuper

vised competitive learning as described in Section 2.2.5. The number of radial basis 

neurons in the gate network (and correspondingly the number of expert feed forward 

networks) is chosen based on the number of possible set point transitions. One neuron 

(and expert) is allocated for each distinct combination of positional change and initial 

position. The center of each neuron, denoted by J1-{i), represents the mean of the class 

corresponding to the particular combination. 

Once the gate network is trained, the original case base is segmented into individual 

casebases based on the classification from the gate. Individual feedforward threshold 

neuron networks (the experts) are trained using backpropagation for each subset of 

cases using y(i) as inputs and u(i) as the corresponding target output. Each expert 

network essentially approximates a local inverse plant model from its training set. 

The network function for the ith expert is denoted by 

A threshold, denoted by t, is set for the output of the gate network neurons to 

insure that the regions of expertise for the experts are bounded and mutually exclu

sive, i.e. , produce distinct classes for all inputs. As subsequent desired result vectors, 

Yd, are presented to the gate network, the outputs of the gate neurons are compared 

to the threshold. If the output of a neuron is less than the threshold (meaning the 

desired result vector lies within the region of expertise of the corresponding expert), 

then the final output of the hybrid algorithm, u, is the output of that expert given the 

desired result vector. Otherwise, if the output of all the neurons exceeds the thresh

old, the gate defaults back to case-based reasoning to determine the final output, 

refer to Figure 3.2. 
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Formally, the final output of the hybrid algorithm is given by 

{ 

c of II _ (i)11 \.-10-1 u 1 Yd J.L >Ev~- ,ooo,n 

U = U(i) = E(i)(Yd) minllYd - J.L(i)11 otherwise 

Each new resulting output/applied input pair, (y, u) , is then used as either a training 

point for the selected (inverse model) expert as discussed in Section 203.4 or as a new 

case in the casebaseo 
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Chapter 5 Results 

For all the simulation experiments, except the hybrid run, there are three fixed set

points located at 25%, 50%, and 75% of the total beam length and will be referred to 

as 8 } , 82 , and 83, respectively. The update time for the simulation is set to oms, the 

lumped constant in the state space equations given in Section 4.1.1 is B = 0.7, and 

the gravitational constant is set as G = 9.81. All ball positions are given as a nor

malized fraction of total beam length, i.e., zero representing the left end of the beam 

and one representing the right end. Velocity values are correspondingly fractions of 

beam length per second. Finally, unless otherwise stated, the desired final velocity is 

assumed to be zero (Vd = 0), i.e. , the ball is stopped at the setpoint. 

5.1 Initial Cases 

Two paradigm cases are given to the algorithm to create the initial casebase. The first 

case consists of applying beam angles of approximately half the maximum angular 

displacement in an attempt to transition from the initial position, Yo , to 83 with a 

final velocity Vd. The transition point , Ym, is given as 40% of the distance to the finish 

position. Hence after applying the initial inputs the first case is given by 

(1) 
Yf - Yo 

(1) 
Vf 

Yo 

o 

:!!:..zruu:. 
2 

where the final position and final velocity are denoted by yY) and vjl) respectively. 
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From the ending state of the first case, (yj1), v?») , the second case attempts to 

return the ball back to Yo using beam angles of approximately one quarter maximum, 

again with final velocity Vd. The final transition velocity is computed based on the 

final velocity after the completion of the previous case (refer to Section 4.2.4) as 

Hence, the second case is given by 

(2) (1) 
Yf - Yf 

(2) (1) 
Vf - Vf 

(1) 
Yf 

(1) 
C(2) = Vf 

where the final position after applying the case is yj2) and the final velocity is vj2). 

5.2 Analytic Control- Hand Tuned PD Controller 

The first controller implemented for baseline comparison is a simple PD (Proportional

Derivative) linear controller. The control law is given by 

u = Py + Dy = Py + Dv 

The values for the constants were empirically chosen as P = -1.0 and D = 

-1.5 to give a slightly overdamped response with good performance. The results 

of implementing this controller in the full state simulation is shown in Figure 5.1. 

Figure 5.2 shows the performance of the same PD controller when random uniform 

additive noise perturbations (with a level of 0.005 , refer to Section 5.5) are applied 

to the position data. 
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Figure 5.1: Hand tuned PD controller full state simulation results. 
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Figure 5.2: Hand tuned PD controller noisy simulation results. 
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5.3 Full State Simulation 

As described in Section 4.1.2, the reasoning algorithm in this simulation mode is 

provided with both the exact position and velocity. These variables are used to 

create the desired result vector as well as determine the transition points during case 

execution. In order to demonstrate the feasibility of case-based reasoning, ten trial 

runs using random initial conditions were conducted. Each trial consisted of a random 

sequence of transitions between the three setpoints. The positional error after the 

completion of each case was measured. Figure 5.3 shows a plot of the rms, minimum, 

and maximum error versus case iteration. Clearly the algorithm successfully learns to 

perform the task after only a few iterations by converging to within a small residual 

error. It should also be noted that the velocity at the completion of nearly all the 

transitions was negligible, i.e. , the algorithm was able to stop the ball at its final 

position. 

e 
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Figure 5.3: Error convergence for the case-based reasoning algorithm. 
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Figure 5.4 illustrates the transition sequence for one of the trial runs showing the 

rapid convergence of the algorithm. After a few initial transitions which show appre

ciable error, the algorithm is able to accurately predict inputs that allow successful 

transitions between any two setpoints. 
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Figure 5.4: Full state simulation results. 

To demonstrate the flexibility of the algorithm, another simulation was run with 

a non-zero final velocity (Vd = 0.05). The absolute errors as a function of iteration 

are shown in Figure 5.5. The algorithm achieves the desired final velocity while 

maintaining final position accuracy. 
O.05 r-r.---- ,---.,-----,------.------,----., O.OS 

- Absolule position error 

0.04 - Absoluteveloatyerror 0.04 

0.03 

Figure 5.5: Absolute error results for a full state simulation run with Vd = 0.05. 
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5.4 Position Only Simulation 

This simulation mode only provides the ball position data to the reasoning algorithm. 

Hence, the velocity is computed using the slope from a linear regression fit for a 

moving window of the last fifty position readings (250ms). Again the casebase is 

initialized using the two cases presented in Section 5.1. Figure 5.6 shows that the 

algorithm requires more transitions to learn the proper input sequences using the 

approximated velocity but eventually obtains reasonable performance. 
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Figure 5.6: Position only simulation results. 

5.5 Noisy Simulation 

This simulation mode is similar to the position only mode in that the reasonmg 

algorithm is again only provided with position data. However, in this mode the 

positional data is perturbed with uniformly distributed, additive noise. The algorithm 

attempts to filter out some of the noise in the position data using a moving average 

window of the last five data values (25ms). The velocity is again approximated in 

the same manner as in the position only simulation, i.e., linear regression on the last 

fifty position values. 
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In order to assess the effects of noise on the algorithm, simulations were run for 

increasing levels of noise until the algorithm failed. The simulations consisted of sixty 

repeated back-and-forth transitions between 81 and 83, measuring the positional and 

velocity error at the end of each transition. Plots of the rms values for these errors 

as a function of noise level are given in Figure 5.7. Clearly the algorithm is able to 

roughly achieve a similar final positional error for different noise levels. However, as 

the noise level increases, the algorithm gets progressively worse at stopping the ball 

at the final position as indicated by the increasing velocity error curve. 
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Figure 5.7: Rms errors as a function of noise level. 

~ 

Figure 5.8 shows a simulation run with a noise level of 0.005. This noise level was 

selected to approximate the noise level present in the physical hardware experimen

tal setup. Again the system eventually learns appropriate inputs but requires more 

transitions to achieve similar performance. 

5.6 Physical Hardware System 

The position sensor in the physical system was polled every 5ms producing new 

data at the rate modeled in the simulation runs. The noise level in the sensor is a 

perturbation of approximately twenty counts in the 10-bit value (a normalized value 
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Figure 5.8: Noisy simulation results using a noise level of 0.005. 

of approximately 0.005). Figure 5.9 gives the results of the algorithm applied to the 

physical hardware experimental setup using the same computer and control software 

used in the simulation runs. The algorithm was still able to achieve the desired final 

position, but due to unmodeled dynamics such as friction and servo noise, usually 

with a non-zero final velocity (as expected from the noisy simulation runs). 
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Figure 5.9: Physical hardware experimental system results. 
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5.7 Neural Network Generalization 

Since the full state simulation experiments were run using three set points, there are six 

unique combinations of positional change, !:ly, and initial position, Yo, pairs. Hence, 

the casebase generated from the full state simulation run (refer to Section 5.3) was 

clustered using a six element radial basis neuron gate network. Based on the classi

fication of the trained gate network, the casebase was segmented into six individual 

subcasebases. A standard feed forward network consisting of two hyperbolic tangent 

hidden units with linear output units was subsequently trained on each subcasebase 

to predict the system input vector, U , given a desired output vector, Yd. The results 

of the clustering are presented in Figure 5.10. 
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Figure 5.10: Gated expert network clustering results. x - case data, 0 - cluster center 

Figure 5.11 shows the performance of strictly the gated expert neural network 

controller, i.e., all decisions are computed by the nearest expert. As expected, the 

results of this controller are nearly identical to the case-based reasoning controller 

(refer to Figure 5.4). 

5.8 Hybrid System 

In the hybrid scheme, the region of expertise for each expert is bounded to a local 

region about the cluster center. For ease of implementation in the simulation code, 

the regions were defined to be circular around the cluster center with radius 0.07, 

see Figure 5.10. Furthermore, setpoint three was changed from 75% to 85% of the 
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Figure 5.11: Gated expert neural network controller results. 

beam length. Transitions between setpoints one and two, therefore, were within 

the neural experts domain and all other transitions utilized case-based reasoning. 

Figure 5.12 shows the results with the case-based transitions shown in red, the neural 

network transitions shown in green, and the desired setpoint shown in dotted blue. 

As expected, the neural network transitions maintain identical performance to the 

neural controller in the previous section. Furthermore, the case-based algorithm is 

able to adapt to the modified setpoint transitions after only a few trials. 
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Figure 5.12: Hybrid system results. 
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Chapter 6 Discussion and Conclusions 

One model of human learning involves choosing an action based on past experiences 

in similar situations. Applying these actions produces subsequent new experiences 

which can then be used to further improve future performance. Once sufficient ex

perience has been acquired in a particular regime, the individual experiences can 

be generalized into conceptual form and the particular experiences discarded. This 

thesis presents a model of this type of hybrid reasoning using a case-based structure 

combined with a gated expert neural network. The applicability of the hybrid algo

rithm is demonstrated on a nonlinear control problem, setpoint regulation in a ball 

and beam system. 

Each experience is stored as a vector of relevant variables known as a case in a 

set called the casebase. The algorithm performs input acquisition to collect relevant 

information about the current state of the system to form the desired result vector. 

Case selection then chooses the case from the casebase, the basis case, whose resulting 

output is most similar to the desired result to serve as a starting point for determining 

an appropriate action. The action from the basis case is further modified using case 

modification to compensate for differences between the basis case and the actual 

situation before being applied to the system during case application. Result evaluation 

then determines whether anything anomalous occurred during the application of the 

action ; and if not , then casebase augmentation updates the casebase with the new 

experience. Once a sufficient number of cases have been generated , n eural network 

genemlization segments the case base using a competitive radial basis network (the 

gate) and then trains local inverse model, feed forward neural networks (the experts) 

on the resulting partitioned data sets. The regions of expertise for the experts are 

bounded and distinct. The trained gate network selects an expert if the desired result 

lies within one of the expert's regions of expertise, otherwise it selects case-based 

reasoning to generate the hybrid algorithm output. 
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6.1 Discussion of Results 

As the resul ts in the previous chapter show, the case-based reasoning algorithm is 

able to learn appropriate behavior, i. e., accurate setpoint regulation, through re

peated transitions both for zero and non-zero final desired velocities. In the full state 

simulation, case-based reasoning has comparable performance to a hand-t uned PD 

controller and a gated expert neural network controller trained on the casebasf'. The 

hybrid system is also able to quickly learn new transitions using case-based reasoning 

while maintaining performance on the old transitions using the neural experts. When 

the algorithm approximates the velocity, it is still able to achieve good performance 

after several addit ional transitions. When noise is further introduced into the sensor 

measurements, performance expectedly degraded with increasing noise levels. The 

algorithm was still able to achieve the desired results even with noise levels greater 

t han those present in a crude physical system. This robustness was demonstrated by 

implementing the hybrid a lgorithm to control an actual physical system. 

6.2 Advantages and Disadvantages of the Hybrid 

Algorithm 

T he most obvious advantage of the hybrid algorithm is the elimination of the require

ment for system identification . As long as a functional form for the inputs is provided, 

the reasoning algorithm requires no further knowledge of the system dynamics. Infor

mation about the system can be useful in improving either t he case selection or case 

modification routines but is not essential. Case-based reasoning provides a method 

for generating reasonable data points, particularly initially. In order to avoid the 

problem of excessive storage requirements as the casebase expands over time (and 

the corresponding retrieval issue) , particularly in the situation where the experiences 

are densely clustered, neura l network experts provide a functional approximation in 

these regions allowing those data points to be removed from the casebase. 
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Since each transition generates a new data point, the algorithm inherently adapts 

to time varying systems either by augmenting the case base or by updating the ap

propriate expert using the training example. By adding a historical decay weighting 

term to the case selection procedure, the system can emphasize more recent experi

ences through essentially "forgetting" what happened in the distant past. Likewise, 

updating the experts produces local inverse models that adapt to any changes in the 

underlying system. This advantage can also extend to a system that has a discrete 

physical change. In this situation , the original casebase and experts can either serve 

as a rough guess or discarded altogether allowing the algorithm to generate a new set 

of experiences. This property makes it useful for control of t ime-varying nonlinear 

systems that do not have strict robustness or performance requirements , since explicit 

modeling and controller design is unnecessary. 

The disadvantages of the hybrid reasoning scheme are similar in nature to those 

of most model-free adaptive systems. The case structure provides little insight into 

the actual physics of the underlying system. The cases do provide data that could 

be used for system identification , but the algorithm itself does not explicitly model 

the system. Likewise, the neural network experts only provide a local approximation 

to the inverse input-output map, giving no information about the dynamics of the 

underlying system. This limitation makes guarantees of robustness and performance 

difficult, thus restricting the utility of the algorithm for critical systems. 

6.3 Further Extensions 

In the implementation for this work, the entire input sequence is selected by the 

reasoning algorithm and then applied until completion. An extension would be to 

have the algorithm select the entire input sequence but then possibly adjust t he second 

beam angle based on the state of the system at the transition point. This extension 

would improve learning time since the algorithm would be able to independently 

adjust both parts of the input sequence dynamically rather than having to wait until 

another similar circumstance presented itself. Adaptation of this sort could also be 
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accomplished using a neural network. One other possibility would be to break each 

case up into two separate cases. Then the reasoning procedure would be used once, 

based on the initial conditions, to determine the first beam angle; and then a second 

time to select an appropriate action to achieve the desired result based on the actual 

system state at the transition point. 

Finally, in the work presented, the gated expert neural network was trained off

line from a pre-generated casebase. This procedure was done for simplicity in both 

the simulation code and for real time performance evaluation of the algorithm. Given 

parallel processing computational resources, a natural extension would be to perform 

the network training and subsequent updates while the system is running online. 
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