
Intelligent Control Using Generalizing Case-Based

Reasoning with Neural Networks

Thesis by

David S. Babcock

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2000

(Submitted February 22, 2000)

11

© 2000

David S. Babcock

All Rights Reserved

III

Acknowledgements

First and forcmost, I would like to thank my advisor, Dr. Rodncy Goodman, without

whose support none of this work would have been possible. Also many thanks to all my

fellow graduate students for all the ideas we shared over the years. Much appreciation

to my uncle for his assistance in constructing the various pieces of hardware for th is

work. I want to thank my parents for their encouragement and patience with all my

pursuits. Finally and most importantly, my deepest gratitude and love goes out to my

wife, Susan, who was my inspiration and companion throughout this entire journey.

IV

Abstract

One model of human learning involves choosing an action based on past experiences in

similar situations. The chosen action is typically modified to compensate for any dis

crepancies with the current situation. After sufficient experience has been obtained,

at least in a particular regime, the experiences are conceptualized into a general

response mechanism. This thesis presents an algorithm that formalizes this hybrid

reasoning process and applies it to control of a nonlinear physical system. Experiences

are stored as vectors of variables known as cases in a set called a casebase. Vector

norms are used to select an appropriate case from the casebase which is then modified

using an adaptation routine. Once the modified action is applied to the system and

the resulting outcome is observed, the casebase is augmented to include the new expe

rience for improved future performance. A gated expert neural network is eventually

trained on subsets of the casebase to create local inverse model approximations for

regions of the input space where sufficient data is available to support generalization.

The gate network selects one of the experts if appropriate or otherwise defaults back

to case-based reasoning. The applicability of the hybrid algorithm is demonstrated

on a nonlinear control problem, setpoint regulation in a ball and beam system.

v

Contents

Acknowledgements

Abstract

1 Introduction

2 Background

2.1 Casr-based Reasoning

2.1.1 Mathematical Analysis of ID Function Approximation

2.2 -:\eural -:\etworks

2.2. 1

2.2.2

2.2.3

Basic Computational Elements

Feedforward Networks

Competitive ~etworks (\Vinner-Take-All) .

2.2.4 Mixt ure of Experts Networks

2.2.5 Learning \1odels

2.3 Control Theory

2.3.1 System Identification

2.3.2 Linear System Analysis.

2.3.3 Nonlinear System Analysis

2.3.4)ieural :\letwork Control

2.4 Related \Vork

3 Hybrid Reasoning System

3. 1 Case-based Reasoning Iv! odel .

3.1.1 Case Structure .

3.1.2 Input Acquisition

3. 1.3 Case Selection . .

HI

IV

1

4

4

5

7

7

9

9

10

11

13

13

14

14

15

18

19

19

20

20

21

VI

3.1.4 Case Modification .

3.1.5 Case Application

3.1.6 Result Evaluation .

3.1.7 Casebase Augmentation

3.2 Neural Network Generalization

3.3 Hybrid Algorithm.

3.4 1D Case-based Reasoning Example

3.4.1 Input Acquisition

3.4.2 Case Selection .

3.4.3 Case Modification .

3.4.4 Case Application

3.4.5 Result Evaluation.

3.4.6 Casebase Augmentation

4 Experimental Setup

4.1 Description of Experimental Systems

4.1.1 Mathematical Equations for the System

4.1.2 Simulated Systems

4.1.3 Physical System Construction

4.2 Case-based Reasoning System .

4.2.1 Case Structure Variables

4.2.2 Input Acquisition Procedure

4.2.3 Case Selection Procedure. .

4.2.4 Case Modification Procedure.

4.2.5 Case Application Procedure .

4.2.6 Result Evaluation Procedure .

4.2.7 Casebase Augmentation Procedure

4.2.8 Neural Network Generalization Procedure

5 Results

5.1 Initial Cases

22

22

22

23

23

24

25

26

26

26

27

27

27

28

28

28

30

30

32

32

33

33

34

35

35

35

36

38

38

Vll

5.2 Analytic Control - Hand Tuned PD Controller

5.3 Full State Simulation ...

5.4 Position Only Simulation.

5.5 Noisy Simulation

5.6 Physical Hardware System

5.7 Neural Network Generalization

5.8 Hybrid System

6 Discussion and Conclusions

6.1 Discussion of Results ...

6.2 Advantages and Disadvantages of the Hybrid Algorithm

6.3 Further Extensions

Bibliography

39

41

43

43

44

46

46

48

49

49

50

52

VIll

List of Figures

2.1 Pictorial representation of an artificial threshold neuron computational

element. .. 8

2.2 Pictorial representation of a radial basis artificial neuron computational

element

2.3 Schematic diagram of a threshold element feedforward network.

2.4 Schematic diagram of a (discrete) mixture of experts network architec-

2.5

2.6

2.7

3.1

3.2

3.3

4.1

ture

Schematic diagram of inverse model control.

Schematic diagram of forward model control.

Schematic diagram of perturbative model control.

Schematic diagram of the case-based reasoning algorithm ..

Schematic diagram of the hybrid case-based reasoning and gated expert

algorithm

Case-based reasoning example ..

Diagram of the ball and beam system.

8

9

10

15

17

17

20

25

27

28

4.2 Picture of the experimental ball and beam system. . 31

4.3 Graphical representation of input sequence. 32

5.1 Hand tuned PD controller full state simulation results. 40

0.2 Hand tuned PD controller noisy simulation results. 40

5.3 Error convergence for the case-based reasoning algorithm. . 41

5.4 Full state simulation results. 42

5.5 Absolute error results for a full state simulation run with Vd = 0.05. 42

5.6 Position only simulation results. 43

5.7 Rms errors as a function of noise level. 44

IX

5.8 Noisy simulation results using a noise level of 0.005.

5.9 Physical hardware experimental system results.

45

45

5.10 Gated expert network clustering results. x - case data, 0 - cluster center 46

5.11 Gated expert neural network controller results. . 47

5.12 Hybrid system results. 47

1

Chapter 1 Introduction

Being members of the animal kingdom, we as human beings have certain basic biolog

ical responses built into our makeup. Often they are referred to as instincts or reflexes

and they occur involuntarily whenever the external environment triggers t hem. We

have no control over them and often cannot modify those behaviors. In most situa

tions that we encounter, however, we must decide on an appropriate action to take

based on the outcome we desire.

One basic learning model simply involves rote memorization of action-result pairs.

This type of reasoning is modeled using some type of reference, for example a lookup

table or decision tree. The reference dictates the appropriate action to perform to

achieve the desired result based on the current state of the system, hence t he decision

process consists of merely searching the reference. Learning only involves organizing

the reference to expedite the searching, i.e., frequently encountered situations are

located more quickly. Clearly this form of learning is constrained to tasks where there

is only a limited number of discrete results and system states so that generalization

is unnecessary. Furthermore, the system must be time invariant so that the same

actions will be applicable at any time, i.e., the only relevant decision variables are

the current state and the desired result.

A slightly more advanced way to decide on what actions to take in a given sit

uation is through the use of past experiences, modeled using associative memories

or case-based reasoning. These experiences are obtained either directly, for example

trial and error runs, or indirectly, for example from instruction. If a particular course

of action performed in a similar situation produced a result similar to the desired one,

then that action is a logical starting place for the decision process. Based on the dis

similarities between the actual situations involved and the particular outcome desired,

the action may be modified to compensate for these differences. After performing the

action, the outcome is evaluated and stored for future reference thus expanding the

2

number of examples from which to draw. In so doing, performance can be improved

in subsequent situations by basing the decisions on experiences that are more similar

to the current situation.

A third method of producing an action is using concepts. The concepts are gen

eralizations derived from extensive experience. Neural networks are often used to

model this type of learning by approximating a mathematical function from a given

set of experiences (input-output data pairs). One condition for this type of learning

to be successful is the training data set must be sufficient to adequately represent the

underlying function. Furthermore, the network model must be complex enough to

approximate the function but not excessively complex to overfit the data.

The contribution of this thesis is to formalize a synthesis of the above decision

processes using a hybrid case-based reasoning and neural network algorithm and

apply it to a nonlinear control problem. Case-based reasoning provides an inference

scheme to make reasonable decisions when only a limited amount of information is

available. As more experiences are acquired, storage and retrieval of these experiences

becomes an issue. This problem is overcome by training neural networks on subsets of

these experiences reducing the storage and retrieval concerns. Therefore, the hybrid

system utilizes case-based reasoning to generate data sets that are then generalized

using neural networks when appropriate.

In the implementation of the case-based module , experiences arc stored as vectors

of variables known as cases in a set called a caseba8e. Vector norms are used to select

an appropriate case from the case base which is then modified using an adaptation

routine. Once the modified action is applied to the system and the resulting outcome

observed, the case base is augmented to include the new experience for improved future

performance. \Vhen sufficient experiences have been generated in a particular region

of the input space, a neural network (known as an expert) is trained on this subset

which is then subsequently removed from the casebase. A second network (known

as a gate) is trained concurrently to select one of the experts when appropriate or

otherwise default back to case-based reasoning.

3

The second chapter presents a brief review of case-based reasoning, neural net

works, and control theory along with a mathematical basis for the algorithm. Chapter

three formally defines the hybrid reasoning structure and gives a simple example to

demonstrate the algorithm. Chapter four describes the ball and beam control prob

lem and defines the actual implementation of the hybrid system. The results from

both simulated and physical system trials are presented in chapter five. Finally, chap

ter six provides a discussion of the results along with some conclusions and possible

extensions to the algorithm.

4

Chapter 2 Background

2.1 Case-based Reasoning

As Riesbeck and Schank [33] describe case-based reasoning, "input a problem, find a

relevant old solution, adapt it." Barletta [4] subsequently lists five issues in case-based

system development:

* representation

* indexing

* storage and retrieval

* adaptation

* learning.

Simply put, given the desired result and the current system state, the algorithm

will select an action from a similar prior experience. Unless the desired result and

current situation are identical to the prior experience, the selected action may be

modified to compensate for these differences. After executing the new action, the al

gorithm observes the actual results and compares these results to what was expected.

The errors provide additional experience that can be used in subsequent trials to

improve future performance [10]. In this way, the algorithm increases the proficiency

of performing a task through repeatedly acquiring more experiences upon which to

draw in the decision process.

From a few initial experiences, the algorithm is able to predict appropriate ac

tions in new situations with different desired results for which there is no previous

direct experience. This prediction usually consists of some form of interpolation or

extrapolation from the prior experiences within the casebase (inference). It essentially

provides a "best guess" which then generates additional experiences to continually

expand the size of the casebase.

5

Case-based reasoning is typically used in expert systems for planning and di

agnostic tasks, e.g., medical treatment [2, 23] and fault analysis [21]. It has also

been successfully applied to robot navigational control. Ram et al. improve reactive

robot performance by utilizing case-based reasoning to discretely select and adapt

the control parameters [30]. Ram and Santamaria further develop a technique for

implementing case-based reasoning in a continuous fashion and also apply it to the

task of robot navigation [31].

2.1.1 Mathematical Analysis of 1D Function Approximation

The rational behind case-based reasoning is to develop an algorithm which "learns"

to improve its performance in subsequent trials through the expansion of the set of

experiences, i.e., the casebase. This means that as the casebase grows in size, the error

between the predicted outputs based on case modification and the actual resulting

outputs should decrease. The following section gives a result to justify this procedure

in the case of a scalar function.

Assume there is an unknown, twice differentiable function Y f(x) such that

1f'(X)1 ::; ,. Let YI = f(XI) and Y2 = f(X2). Furthermore, let

Y x) = (x - xd + YI = k (x - xd + YI A((Y2 - Yl)
X2 - Xl

which defines the secant line between (Xl, YI) and (X2' Y2) with slope k, and define a

function

E(X)=y-fj

Since E(X) is continuous on [Xl, X2] and differentiable on (Xl, X2), by the Mean

Value Theorem from calculus E(X) will achieve an extrema either at E(XI), E(X2), or

where E'(X) = O. Since E(XI) = E(X2) = 0, either E(X) = 0 =} Y = fj over the interval

[XI,X2] or the absolute extrema occurs in the interval (Xl,X2), say at x, and satisfies

E'(X) = O.

6

Since

E(X:2) = rX2

E'(x)dx + E(xd = r E'(x)dx + ~X2 E'(x)dx + E(xd
l XI l XI li;

applying the boundary conditions and defining the value at the extrema as fJ gives

I i; lx2
E' (X) d.7: = - _ E' (.7:) dx = ,/J

XI X

Considering the unknown function !(J:) , the Mean Value Theorem also states

that k S , over the interval (Xl , X2)' Therefore E'(X) = f'(x) - k must satisfy

, - 1 k 1 s jE' (x) 1 s , + 1 k I· Wi thou t loss of generality, if we assume that the function

is increasing in the interval (.1:[, x) with maximal slope, + Ikl, then over the interval

(x, X:2) the maximal magnitude for the slope is , - Ikl. Hence we can bound the

magnitude of the extrema by the following two inequalities

Combining these two inequalities gives

IfJl s 2,(x - Xd(X2 - x)
(:[,2 - Xl)

Since Xl < :1: < :J:2 , the maximum of (x - Xd(X2 - x) occurs where

d _ _ _ _ _ X2 + .7:)
0= dx (:1: - Xd(X2 - x) = X2 - X - (x - xd '* X = 2

7

Hence

The last equation says that the maximal error is proportional to the size of the

input interval. Therefore, the approximation error decreases as the number of input

space intervals is increased, i.e., as more cases are generated. Conversely, a maximal

input interval size can be computed for a desired error level assuming an upper bound

on the derivative of the underlying function can be approximated.

2.2 Neural Networks

The human brain operates based on a large distributed array of simple computational

elements called neurons. These neurons are interconnected by a network of axon

and dendrites. Information is passed from neuron to neuron through a series of

electrical impulses which travel along the initiating neuron's axon to the various

synaptic junctions with dendrites of receiving neurons. The signals are coded by the

sequential timing of the impulses (frequency) along with loss based on the location

of the synapse in relation to the receiving neuron's soma (amplitude).

2.2.1 Basic Computational Elements

Artificial neural networks attempt to simplistically model the biological system in a

similar fashion using basic interconnected computational elements. One common ele

ment consists of a soft thresholding function, often the hyperbolic tangent or logistic

function. The inputs to the neuron, Xi, are multiplied by weights, Wi, and offset by

a bias, b. The output of the threshold function is then multiplied by a second gain,

W, and offset by a second bias, B, to give the final output of the neuron, y. These

8

dements produce a soft thresholding of the weighted inputs. Hence the equation for

a hyperbolic tangent artificial neuron is given below with the corresponding picture

in Figure 2.1.

y = W tanh (L WiXi - b) - B
l

x • l
x,

:"
Figure 2.1: Pictorial representation of an artificial threshold neuron computational
element.

A second commonly used computational element is the radial basis neuron. The

output of this element is a measure of the distance (norm) between the input and the

center (mean) of the basis function. Typically an l2 vector norm is used as the distance

metric and the basis function is some form of gaussian. Such elements produce a

response in a local region of input space around the element's center. In the case

of gaussian elements, the degree of localization is controlled by the variance. These

elements are mathematically represented by the following equation and pictorially

shown in Figure 2.2.

IIX-/L II
Y = J;Ve--;;'l

~+-·Y

Figure 2.2: Pictorial representation of a radial basis artificial neuron computational
element.

9

2.2.2 Feedforward Networks

To perform useful computations, combinations of the above simple elements are con

nected in various patterns to form networks. One common connection pattern consists

of organizing the neurons into layers such that the outputs of one layer are fed into

the inputs of subsequent layers. If the connections are only between adjacent layers

with no feedback, the network is called a feedforward network [13] pictorially shown

below in Figure 2.3. Such networks are commonly used with thresholding elements

for model-free function approximation problems.

W l l '

X Y

•
win, • •

Figure 2.3: Schematic diagram of a threshold element feed forward network.

2.2.3 Competitive Networks (Winner-Take-All)

Another type of network, which is often used for input classification problems, is

a competitive or winner-take-all network [13]. These networks consist of uniquely

indexed (usually radial basis) neurons which compute the distance , typically the

Euclidean vector norm, between the input and the neuron 's center (mean). The index

of the neuron with the minimum distance, i.e. , the "winner," is the output value of the

network. Such networks partition the input space into discrete (perhaps overlapping)

regions. The partitioning is useful when clustering or discrete classification of the

input data is desired.

10

2.2.4 Mixture of Experts Networks

A hybrid network which combines feedforward and competitive networks is known

as a mixture of experts network [34]. This type of network uses several simple feed

forward networks (experts) whose output is valid for particular regions of the input

space (regions of expertise). The input is simultaneously processed by a competi

tive network (gate) which generates a ranking for each expert. The final output of

the hybrid network is then a combination of the outputs from the experts based on

the gate 's rankings. Two common combination techniques involve normalizing the

rankings and applying them as a weighted sum of the experts' outputs (continuous),

or simply selecting the highest ranking expert's output (discrete). The mixture of

experts structure is shown in Figure 2.4.

y
x

Figure 2.4: Schematic diagram of a (discrete) mixture of experts network architecture.

These networks avoid the need for a large single network to accurately model input

spaces that are only sparsely populated by locally dense pockets of data. Instead ,

several simple expert networks can be trained quickly to accurately model smaller

11

subsets of the data. The gate then only needs to be trained to select the corresponding

expert instead of approximate the actual output value. A subsequent advantage of

such an architecture is the capacity to add or expand experts to cover new data as

it becomes available without retraining the entire network. Only the new expert and

the gate networks need to be updated, significantly reducing retraining time.

2.2.5 Learning Models

Backpropagation

An efficient algorithm for training feedforward networks is backpropagation (see [13,

35] for a complete formalization of the algorithm). This method consists of pass

ing the input signals forward through the network to generate the network outputs.

These outputs are then compared with the desired outputs to compute an error sig

nal. The weight updates are computed by propagating the error backwards through

the network. The backward propagation step is performed using gradient decent

to update the weights based on the derivative of the error function with respect to

each weight. Weight updates are computed layer by layer since the updates for the

(i - 1)th layer can be computed directly from the updates for the ith layer, hence the

term backpropagation.

Competitive Learning

Training of competitive networks is dependent on the type of problem under con

sideration. If the output classification is given for the training data, i.e. , supervised

learning, the network can be trained using backpropagation since the error signal is

available. The input space is subsequently partitioned into regions that have pre

defined classifications.

A second type of training, unsupervised learning or self-organizing maps, consists

of clustering data with similar inputs without regard to the corresponding outputs,

i. e. , the classification is simply the arbitrary index of the closest neuron. Typically the

clustering neurons are radial basis functions and minimizing the expected maximum

12

likelihood metric is the training objective [16] . This procedure involves processing the

training examples with the network to produce an initial classification. The mean of

the examples in each class is then used to adjust the center of the classifying neuron

closer to the mean of the cluster. The network then repeats the reclassification and

neuron center updating until a stopping criteria is achieved. This type of learning

clusters the data by distributing neurons within densely populated regions of the

input space.

Mixture of Experts Training

Since mixture of experts networks are hybrids of both types of networks, both back

propagation and competitive learning are used to train the hybrid network. Initially

the gate network (typically a radial basis network) is trained using unsupervised

competitive learning. This step separates the training examples into subsets. These

subsets are then used as individual training sets for the expert networks which ap

proximate a local input-output function based on the data. The expert networks

(usually standard feedforward networks) are trained using backpropagation. There

fore , the gate network is trained to select the appropriate expert based on the input

and then the selected expert is trained to predict the output from the given inputs

within its region of expertise.

Perturbative Learning

One final learning technique presented because of its inherent simplicity (allowing

for implementation in analog circuitry [5]) involves perturbative methods [1] . In

this scheme, a random perturbation of the weights in the network is applied. If

the perturbation reduces the output error of the network, then the perturbation is

kept. Otherwise the perturbation is removed and a new one applied. Typically an

annealing schedule is required to adjust the size of the perturbations so that the

weights converge to at least a local error minimum. The obvious advantage of this

method is its computational simplicity; however, the drawback is that training is

often orders of magnitude slower than gradient methods such as backpropagation.

13

2.3 Control Theory

2.3.1 System Identification

The first step in any control design is to model the system to be controlled. This iden

tification can either be done from physical first principles, empirically from collected

data, or from a combination of both. Such models are inherently incomplete for any

physical system since no model will capture all the dynamics, particularly induced

by noise, of the system. Furthermore, generally the models are linear in nature since

there is a rich set of analysis and design tools available for such systems [19]. If the

system is fairly linear with reasonable noise levels, such a linear model is often suffi

cient to design a robust controller that achieves the desired performance level when

applied to the real system [8]. However, the model will only be as accurate as the

data used to generate the model. Hence any noise present in either the applied input

signals or in the output sensor measurements will limit the precision to which the

system can be modeled. Furthermore, if aspects of the physical system change over

time, for example due to wear or changes in components, then a new data set must

be obtained to derive a new model.

Model free identification systems, such as neural networks, provide a tool for

generically approximating the input-output map of the underlying physical system (at

least locally) without any a priori knowledge of the dynamics [20, 25]. Such models,

however , generally give no information about the structure of the system, particularly

in operating regimes where no training data is available. Therefore, caution must be

exercised when these models are used for controller design or validation since the

controller may drive the system into regions where the model is not valid. Since the

model can be continuously updated over time as necessary to compensate for changes

in the physical system, however, the controller can simultaneously be adjusted to

hopefully allow for successful adaptive control.

14

2.3.2 Linear System Analysis

Many powerful techniques for designing robust controllers for linear systems exist [8].

Often times for non-critical applications, a standard PID controller is used. The

controller gains are tuned by hand until acceptable performance is obtained. Algo

rithms also exist to allow the controllers to be self- tuning where the parameters are

adjusted automatically based on the deviation of the desired output from the actual

output [28]. Such controllers avoid the need for system identification on a quanti

tative level but have limitations to the systems they are able to adequately control.

More complex systems, either high order linear or nonlinear, require system identifi

cation before more advanced techniques , such as I-l-synthesis, can be used. Moreover

some systems have nonlinearities, present in any physical system, that are sufficiently

large such that any robust controller designed using linear techniques cannot provide

acceptable performance.

2.3.3 Nonlinear System Analysis

Due to the wide range of possible nonlinear systems, a general controller synthesis

technique does not yet exist. There are techniques which are useful for designing con

trollers for particular classes of nonlinear systems that satisfy certain conditions [27].

For example, the approximate linearization technique attempts to input-output lin

earize a system about an operating point and then apply linear control theory to

design a controller [12]. The technique can be repeated for several operating points

and a scheduler implemented to select the appropriate controller depending on the

particular operating point of the system. This technique is effective only if the system

has a significant linear range about the selected operating points. Furthermore, such

a design requires a system identification step for each operating point.

Other techniques exist to design nonlinear controllers that remove the nonlinear

dynamics of the system thus making the extended system linear [1 5]. The rich set of

linear control techniques can then be applied to the new system to derive a robust

controller. Such procedures again require a fairly accurate system identification,

particularly of the nonlinearities, and can be sensitive to unmodeled dynamics [17] .

15

2.3.4 Neural Network Control

Recently neural networks have been employed in both system identification and con

troller design [9, 20, 24, 25, 29]. The advantage of neural controllers is their inherent

model-free representation, thus avoiding system identification (although if done may

provide a good initial starting point for training the controller) . One disadvantage is

the complexity of the controller must be high enough to model the underlying system

dynamics but not too high that the data is overfit producing poor generalization. Also

the controller must first be trained, either on-line or off-line, before being employed,

which may not be feasible on certain critical or unstable systems. Three neural con

trol schemes that will be briefly discussed are inverse model control, forward model

control, and perturbative control.

Inverse Model Control

This controller model uses a neural network to approximate the inverse input-output

map of the system [37] and has been applied to many control problems including robot

control [38]. The inputs to the inverse model neural network are the actual outputs

of the system. The desired output of the neural network is the actual applied input

to the system. Hence, the error signal used for training is the difference between the

actual applied input and the input the model network would predict given the actual

system output. A copy of the inverse model network is then used as a feedforward

controller. The desired plant output is input to the controller which then predicts an

appropriate plant input to achieve that output. This scheme is shown in Figure 2.5.

weight copy

Figure 2.5: Schematic diagram of inverse model control.

16

Initially, a rich set of system inputs and resulting outputs needs to be gathered

In order to train a reasonable starting model and corresponding controller. After

the initial training, the predicted system inputs from the controller and the resulting

system outputs provide new training examples which are used to continually update

the inverse model and controller. Thus control can be performed successfully even on

systems which change over time (assuming the changes occur on a slower time scale

t han is required to sufficient ly adapt the network). Furthermore, the general function

approximation capabilities of neural networks allow this technique to be applied to

both linear and nonlinear systems. One limitation of this technique, however, is that

it cannot be used for systems which either do not have an inverse or with an unstable

inverse, since the network will be unable to converge to a stable set of weights.

Forward Model Control

To avoid the problem of the existence of an inverse plant , a second neural control

scheme, known as forward model control, can be used [24, pages 216-217] . This setup

employs two distinct networks , one for the model and one for the controller. The in

put to the model network is the actual input to the plant (which is also the output of

the controller network). The desired output of the model network is the correspond

ing output from the plant. The error signal is the discrepancy between the predicted

output from the model and the actual output. This error signal is backpropagated

through the forward model to update the model weights. Then further backpropaga

tion from the model is applied to update the controller weights. Figure 2.6 shows a

schematic representation of this setup.

Both networks are trained as if t hey a re a single larger multi-layer network . Prac

tically, two networks are typically used so that they can be updated at different rates ,

for example updating the weights of the model more frequently than those of the

controller. The advantage of this technique is that t he forward model can always be

t rained to provide at least a locally accurate model of the plant, hence a local con

troller can theoretically also be trained. The disadvantage is that since both networks

act as a single larger network for training purposes, training can be prohibitively slow

17

controller weight
update

model weight
update

y

Figure 2.6: Schematic diagram of forward model control.

particularly initially. Hence, if the system is rapidly changing, the networks (the

forward model in particular) may never converge adequately.

Perturbative Control

A third neural control technique involves using only a controller network. The net

work is trained using perturbative methods [1] where the applied perturbations are

influenced by the performance of the controller. Clearly this technique is of limited

utility due to the slower convergence rates of perturbative learning. However, for cer

tain systems that have very slow dynamics, such a technique provides for a physically

implement able controller due to the simplicity of the learning algorithm. This simple

scheme is shown in Figure 2.7.

+
on troller weight

update

Figure 2.7: Schematic diagram of perturbative model control.

18

2.4 Related Work

Many hybrid schemes have been developed combining case-based reasoning with neu

ral networks and other techniques in various applications. Neural networks have been

combined with case-based reasoning in the medical field for congenital heart disease

diagnosis [32J. The hybrid system attempts to circumvent the deficiencies inherent

in the two approaches when implemented separately, namely storage and retrieval

issues for case-based reasoning and output explanation and interpretation for neural

networks. Another hybrid algorithm has been successfully implemented for the design

of mixing systems where fuzzy logic and neural networks are used to perform case

adaptation [18J.

Many hybrid schemes have also been implemented in control applications. A

combination of a rule-based expert system with fuzzy logic and neural networks was

applied to the truck and trailer backer-upper control problem [14]. Associative mem

ories, a technique similar to case-based reasoning, has also proven useful for control

problems [11]. For example, Atkeson et al. have successfully applied this approach to

train a robot to perform a juggling task [3].

A wide range of controllers have been designed for the ball and beam problem.

Hauser, et al. design a nonlinear controller by approximating the ball and beam system

with one that is input-output linearizable [12]. Several different variations of fuzzy

logic controllers have likewise been successfully applied to ball and beam control [6,

22, 36]. A recurrent neural network solution has been developed by Chu, et al. [7]

Finally, Ng and Trivedi present a hybrid fuzzy logic and neural network controller

and demonstrate its ability to control a physical ball and beam apparatus [26].

19

Chapter 3 Hybrid Reasoning System

The motivation behind this thesis is to combine case-based reasoning with neural

networks to realize the advantages of both methods. Case-based reasoning is used

to intelligently generate an initial set of data (the casebase). This data set is then

partitioned into local clusters using a radial basis competitive learning network (the

gate). Separate simple threshold neuron feedforward networks (the experts) are then

trained to approximate the underlying local input-output fun ctions represented by

the local subsets of cases. Whenever the desired output lies sufficiently close to the

center of one of the experts, the gate will select that expert to generate the predicted

input. Otherwise if no expert is close, the gate will pass the decision to the case

based reasoning module to determine the action to implement. As more cases are

generated, the system can retrain or add new experts (and concurrently modify the

gate) to incorporate the new informat ion. Furthermore, if the experts no longer

produce acceptable results, for example due to changes in the underlying system,

they can be removed until a new set of cases is created in that region of input space.

3.1 Case-based Reasoning Model

Initia lly a case structure needs to be defined that represents all the relevant informa

tion necessary for the algorithm to make decisions . The syst em then needs a method

of input acquisition in order to filter out the relevant measurements from the exter

nal world and index them in a format that the reasoning engine can process. This

data is passed on to a case selection routine which retrieves the most relevant past

experience, t he basi" case, from the casebase. The selected basis case is passed to

the case modification routine which adapts this case in an attempt to compensate

for the differences between the past experience and the actual current situation. The

algorithm then uses case application to implement the computed inputs on the ex-

20

ternal system. The resulting output is analyzed by the result evaluation module to

determine whether some type of unusual or anomalous event occurred during the

execution of the input. If the output is reasonable, the casebase is expanded using

case augmentation to construct a new experience based on the applied input/resulting

output pair allowing the system to learn from the experience. The entire procedure

is shown schematically in Figure 3.1. The remainder of this section describes each of

these routines in more detail.

External

Sensors

Figure 3.1: Schematic diagram of the case-based reasoning algorithm.

3.1.1 Case Structure

Each case consists of a number of variables which contain information about the

resulting output (and usually the initial state) and the applied input. Hence, a case

is generically defined as a vector C consisting of two subvectors y and u

c = [: 1

where y contains the initial and final states of the system, i.e. , the resulting output,

and u contains the applied input. Other values, such as time for execution or expended

energy, may also be included for use in case selection.

3.1.2 Input Acquisition

The starting point of any reasoning system involves acquiring data describing the

current state of the system. Human beings use their five senses to collect information

about the environment in which they are operating. Machine systems obtain this

data through sensors that measure physical quantities of interest. Typically this raw

21

data can be noisy and cluttered with extraneous information. Hence some form of

signal preprocessing, i.e., a filter, is applied so that only the important information

is passed on. This preprocessing step is important in improving the efficiency of the

reasoning engine.

For any algorithm to work, the input data must sufficiently describe the current

state of the system. Addit ionally, the algorithm must also be provided with the

desired result to be obtained. Compiling these two pieces of information in the desired

result vector , Y d, a decision can be made as to what action is necessary to achieve

the desired result given the current state.

3.1.3 Case Selection

Once the desired result vector is constructed , the second step in the reasoning process

involves selecting the basis case, denoted by C*, which represents the past experience

that is most similar to the current situation. This selection is done by choosing a

distance metric (typically the l2 vector norm) as a measure of the distance between

the desired result vector, Yd , and the output vector from each case, y(i). A weighting

matrix, rv , can be used to bias the metric in favor of certain important components

within the output vector. Assuming discretely numbered sequential cases indexed by

i, the selection criteria is given by

A useful extension is often to apply a temporal weighting factor to the metric so

that the most recently generated cases are favored more heavily. This technique allows

for the casebase to dynamically adapt to a system that may be changing over time,

for example due to mechanical wear. Since the recent cases represent examples of the

inpu t-output map at the current time, they may be more appropriate for determining

a proper action than distant past experiences, even if the more recent output vector

is not the "best" in the simple weighted l2 norm sense. Hence defining the temporal

weighting function as f (i) , the modified selection criteria becomes

22

Sometimes due to natural symmetry within the system, additional cases can be

inferred from the existing ones. In particular, if the system is time invariant, then an

"inverse" case can be created by applying the inputs backwards in time and reversing

the initial and final states.

3.1.4 Case Modification

The input vector from the basis case provides the initial input "guess" denoted by u*.

In general, however, the selected basis case will not be an exact match to the desired

result vector. Hence, the system can either directly apply the basis case (u = u*)

thus accepting that significant error may exist in the output, or modify the input

vector from the basis case in an attempt to produce a better output. A common

method of modifying the basis case is to use first order gradient information within

a local neighborhood. By numerically approximating the gradient using cases close

to the basis case, a first order linear correction factor can be computed. Depending

on the dimensionality of the system and the density of the cases within the local

neighborhood, higher order corrections can also be computed.

3.1.5 Case Application

After modification of the inputs from the basis case, the final input, u, is then applied

to the system. The algorithm monitors the state of the system to watch for anomalous

behavior. Once the input sequence has completed, the resulting outputs are measured

and passed on to the result evaluation routine.

3.1.6 Result Evaluation

Before constructing a new case, the results must be validated to avoid corrupting the

casebase. The validation step often checks if something anomalous occurred during

case execution. Any anomalous cases are flagged in order to prevent them from

being directly used in the case modification step. Including such cases would cause

an erroneous gradient to be computed and hence incorrectly modify future selected

23

inputs. However, t.he anomalous cases are often stored in a separate casebase so

that modified cases can be compared with them in order to prevent the system from

performing a similar mistake.

3.1. 7 Casebase Augmentation

Assuming nothing anomalous occurred during the execution of the case, the initial

state and resulting output is stored in a vector y(i+I). Combining this vector with

the applied input vector, il, a new case is constructed as

[

(i+I) 1
C(i+I) = Y il

The case base is augmented with this new case which is then used in subsequent case

selection and modification steps.

3.2 Neural Network Generalization

Since each case in the casebase represents an input-output pair from the underlying

system's transfer function , a natural extension is to generalize a sufficiently dense case

base into a mathematical function. This procedure reduces the storage and retrieval

requirements of the case-based algorithm by directly computing the appropriate sys

tem input given the desired output. Any function approximation technique can be

employed to generalize the data. For specific systems, it may be beneficial to tailor

the functional form in order to take advantage of physical principles or other known

relationships inherent in the underlying system. Otherwise, model-free approxima

tion techniques, such as neural networks, can be used for more generic generalization.

Typically these techniques will require more data to avoid overfitting and insure good

generalization performance. The benefit is that they are not restricted to any partic

ular system and require no a priori knowledge or modeling of the underlying system.

24

As discussed in Section 2.2.4, mixture of experts networks are often used for

problems that have clusters of data. The advantage of this technique is that several

simple networks can be quickly trained to cover the important regions of the state

space rather than attempting to cover the entire state space with a single complex

network. Expert networks are only created in regions where enough experience has

been gained to support generalization. Outside these regions, the computed output

can either be an interpolated value between experts or an extrapolated one based on

the nearest expert. Each expert can be viewed as implementing a local version of

inverse model control (refer to Section 2.3.4) and updated whenever it is selected to

generate the system output.

3.3 Hybrid Algorithm

The purpose of this work is to combine a discrete variation of the mixture of experts

technique, known as a gated expert network, with case-based reasoning. In this

implementation, the gate network produces a winner-take-all decision rather than a

vector of mixing coefficients. Hence, each data point is allocated to one and only one

expert, dividing the input space into mutually exclusive regions. The center of each

region, i.e., the mean of the corresponding gate network neuron, is denoted by p,.

The algorithm used in this work additionally bounds the regions of expertise of the

expert networks to a local area where there is data by setting a threshold, denoted by

f, around the expert centers. This bounding allows the gate to default the decision

to the case-based reasoning module if the desired result is not within the regions of

expertise of any of the expert networks. Formally the output of the hybrid algorithm

is given by

{

UC

u=
u(il minllYd - p,(illl otherwise

z

·fll - (illl \-1·-1 1 Yd P, >fv~- , ... ,n

25

A schematic diagram of the hybrid algorithm is given below in Figure 3.2.

g
u"

u
U(I I

Figure 3.2: Schematic diagram of t he hybrid case-based reasoning and gated expert
algorithm.

3.4 ID Case-based Reasoning Example

The case-based reasoning procedure will now be demonstrated through a simple 1D

function approximation problem. Assume the underlying function is given by f (u) =

eU over the interval 0 ::; u ::; 1. Furthermore, take as ini t ial cases t he four data points

given by

c = [y] = { [1.26] , [1.63] , [1.84] , [2 . 5~] }
u 0.23 0.49 0.61 0.90

Finally, let the desired output be f(u) = 2.44.

26

3.4.1 Input Acquisition

For this simple example, the desired result vector is only the desired output value

Yd = 2.44.

3.4.2 Case Selection

L~sing the ahsolute difference as the metric, the distances are computed as follows

IIYd - y(i) II = IYd - y(i)1 = {1.18, 0.81, 0.60 , 0.15}

Hence, the selected basis case is

C* = {C(i) I min IIYd - y(i) II} = c(4)
1

3.4.3 Case Modification

In this 10 example, simple first-order linear interpolation will be used to modify 11,*,

refer to Figure 3.3. The nearest case in input space to C*, which shall be denoted by

C** , is clearly C(3). Formally,

Therefore , a correction factor , a , is computed as

Yd - y* 2.44 - 2.59
n = = = 0.20

y** - y* 1.84 - 2.59

Applying this correction factor gives a predicted input of

11, = (1 - n)u* + nu** = (0.80)(0.95) + (0.20)(0.61) = 0.88

27

3.4.4 Case Application

Applying the predicted input u = 0.88 produces the actual output y = f(u) = 2.41

giving an error of Iy - Ydl = 12.41 - 2.441 = 0.03.

3.4.5 Result Evaluation

Since the predicted input is within the interval for which the underlying function is

defined, the output is valid. Therefore, y(5) = 2.41.

3.4.6 Casebase Augmentation

Hence, the case base can be updated to include the new case

C(5) = [y(5) 1 [2.41 1
u 0.88

y

* y ----- -- --------------- ------------------------- --
y d --- ,

ex ,//td)
C*

C (3) ,/ ,/
, /

* y -------------- ------------------------

C (1) ////

. ,-,-,-
....... '

,-
... .,. ,

-------+--------------------~**--------~~-*~u

u u u

Figure 3.3: Case-based reasoning example.

28

Chapter 4 Experimental Setup

4.1 Description of Experimental Systems

The experimental system selected to demonstrate the hybrid algorithm is the standard

ball and beam control problem [12]. The objective of the control is to rotate the

beam in such a way that the ball position follows a desired trajectory. For the

experiments, three distinct setpoints are defined along the beam and the control

algorithm produces inputs that transition the ball position between these setpoints,

i.e., a setpoint regulation task. The system with corresponding variables is pictorially

given below in Figure 4.1.

-
. -)8.W

r = B(rm 2 -Gsin 8)

Figure 4.1: Diagram of the ball and beam system.

4.1.1 M athematical Equations for the System

Given the moment of inertia for the beam Jb; the mass, radius, and moment of

inertia of the ball M, R, and J respectively; and the acceleration due to gravity G;

the equations of motion for the system are given by

o = (~~ + M) r + MGsinB - MriP

T = (Mr2 + J + Jb) jj + 2MrriJ + MGr cos B

29

where T is the ball position, () is the beam angle, and T is the applied torque on the

beam. Furthermore , setting the input u = () gives

T = 2MTiiJ + MGrcos{) + (Mr2 + J + Jb) U

Defining a constant B as

M
B = -0---

1&+M

the equations of motion can be rewritten in state-space form as

Xl

.T2

X3

:£4

y

where

X2

B(x \:d - G sin X3)

X4

U

X l

r

T
X=

()

()

y=T

However, for the experimental systems under consideration, only the desired beam

angle, X3, can be commanded. Thus the actual dynamics of the beam servo in tran

sitioning from one beam angle to another are hidden from the controller.

30

4.1.2 Simulated Systems

The computer simulation computes the dynamics of the equations given above using

a fourth order Runge-Kutta method. Constraints are placed on the ball position to

account for the ball reaching the end of the beam. If this situation occurs, the ball

position is clipped to the beam end and the velocity is set to zero (simulating a stop

at each end of the beam). Furthermore, the beam transition dynamics are modeled

using a constant angular velocity resulting in a linear angular change from the current

angle to the commanded angle. The program is written such that the simulation runs

in real-time with the update time user definable. This setup allows for accurate

prediction of the performance of the hybrid control algorithm when applied to the

physical system.

The computer simulation allows for three different simulation modes. The first

mode is a full state mode in which the reasoning algorithm is provided with the exact

position and velocity of the ball at each update time. The second mode is a position

only mode where the algorithm is given just the exact ball position. In this mode,

the controller must approximate the ball velocity thus introducing a time lag into

the velocity measurement. The final mode is a noisy position mode which introduces

additive, uniformly distributed noise into each ball position measurement. The noise

level is set to roughly correspond with the noise level present in the physical system.

For this mode the algorithm is again required to approximate the velocity from the

noisy position measurements.

4.1.3 Physical System Construction

The physical system consists of a beam that is 4 ft. in length and utilizes a steel

pinball. The beam is constructed from two parallel rods attached via a mechanical

linkage to a standard RC servo. A PC is connected to the system using a custom built

I/O board which attaches through the parallel port. The board consists of buffered

analog inputs that are converted to discrete lO-bit integers using a Maxim 186 A/D

chip. The board also provides analog output channels with lO-bit resolution using a

Maxim 536 D / A chip.

31

One of the beam's rods is constructed of threaded nylon wrapped with resistive

Ni-chrome wire giving an end to end resistance of approximately 100 ohms. The

second rod is made of aluminum. A fixed voltage from the I/O board (5V) is applied

to the ends of the resistive rod. The ball then acts as a contact between the resistive

wire and the aluminum rod. Hence, the ball's position on the beam is sensed as the

voltage on the aluminum rod. This signal is passed through a simple low pass filter in

order to smooth out the signal before being fed into one of the analog input channels

on the I/O board.

The beam angle is set using an analog output channel on the I/O board. The

analog voltage is fed into a standard RC transmitter which performs the necessary

signal conversion and transmission to a standard RC receiver attached to the beam

support. A servo is then connected to the receiver and mechanically linked to the

beam. This setup provides a generic interface for the computer to control any system

utilizing RC servos. A photograph of the complete system is shown below in Figure

4.2.

Figure 4.2: Picture of the experimental ball and beam system.

32

4.2 Case-based Reasoning System

The details of the implemented case-based control algorithm using the structure pre

sented in chapter three will now be presented.

4.2 .1 Case Structure Variables

The input sequence consists of tilting the beam to a particular angle, Ul, until the

ball passes a particular reference position on the beam, Ym. The beam is then tilted

to another angle, U2, until the ball achieves a particular velocity, Vm , at which point

the beam is returned to level. This sequence produces a corresponding roughly linear

velocity change and subsequent quadratic positional change in ball position as shown

in Figure 4.3.

e

• t

y",

Yo -1--"'----------.

Figure 4.3: Graphical representation of input sequence.

The input sequence variables are stored in a vector, u , defined as

Ul

Ym
U =

U2

Vm

33

The initial state variables of the system and the resulting output variables are stored

in a vector, y, defined as

b.y YI - Yo

.6. V VI - Vo
y=

Yo Yo

710 Vo

Combining the above two vectors, the ith case is defined as a vector C(i) as follows

y(i)

C(i) = u(i)

.6.t(i)

where .6.t = t I - to is the total case execution time.

4.2.2 Input Acquisition Procedure

The reasoning algorithm is given the measured (possibly noisy) ball position, Yo·

For the full state simulations, the algorithm is also given the measured velocity, vo,

otherwise the velocity is approximated by a simple linear regression fit within a sliding

window of positional data. The desired final setpoint, Yd , and desired final velocity,

Vd , are also provided. Thus the desired result vector is constructed as

Yd - Yo

Yd =
Yo

Vo

4.2.3 Case Selection Procedure

Case selection is based on a weighted 12 norm for both the actual case and the inverse

case. The weighting matrix used is given by

34

1 0 o o
o 0.5 0 0

W=
o 0 0.5 0

o 0 0 0.1

This matrix emphasizes the positional change variable and to a lesser extent the

velocity change and initial position variables. Hence, the basis case, C*, is found by

4.2.4 Case Modification Procedure

Case modification is performed using a simple linear interpolation/extrapolation rou

tine. The casebase is searched to find the adaptation case, C**, that has minimum

distance in input space (again using the l2 norm) from the basis case, C*, selected in

the previous step.

A linear correction factor, a, is then computed using the positional change variable

as

6.Yd - 6.y*
a=-----

6.y** - 6.y*

The correction factor is used to compute the actual input, u, to be applied to the

beam as follows

U = (1 - a)u* + au**

35

Additionally, the transition velocity, Vrn , is modified based on the final velocity of the

basis case, the desired final velocity, and the ratio of the second beam angles by

Vrn (v~ - (vj - Vd)) ~~

(v;n - (~v* + v~ - Vd)) u:
1L2

4.2.5 Case Application Procedure

The input vector, u, is then applied to the system from the initial conditions, Yo and

va, using the sequence of beam angle transitions described in Section 4.2.1. If at any

time during the execution of the case the ball reaches the end of the beam, an invalid

flag is set to indicate this anomalous situation.

4.2.6 Result Evaluation Procedure

If the invalid flag was not set during case execution, then the measured final ball

position, Yf, and ball velocity, vf, are used to form the resulting output subvector

Yf - Yo

Vf - Va

Yo

Va

4.2.7 Case base Augmentation Procedure

This resulting output subvector is then combined with the applied input vector to

generate the new case

c(i+1) = U

~t

36

4.2.8 Neural Network Generalization Procedure

After a substantial number of cases have been generated, generalization using a gated

expert neural network is performed. The cases are first clustered based on the po

sitional change variable, boy, and the initial position variable, Yo. This clustering

is done using a simple radial basis network (the gate) trained using EM unsuper

vised competitive learning as described in Section 2.2.5. The number of radial basis

neurons in the gate network (and correspondingly the number of expert feed forward

networks) is chosen based on the number of possible set point transitions. One neuron

(and expert) is allocated for each distinct combination of positional change and initial

position. The center of each neuron, denoted by J1-{i), represents the mean of the class

corresponding to the particular combination.

Once the gate network is trained, the original case base is segmented into individual

casebases based on the classification from the gate. Individual feedforward threshold

neuron networks (the experts) are trained using backpropagation for each subset of

cases using y(i) as inputs and u(i) as the corresponding target output. Each expert

network essentially approximates a local inverse plant model from its training set.

The network function for the ith expert is denoted by

A threshold, denoted by t, is set for the output of the gate network neurons to

insure that the regions of expertise for the experts are bounded and mutually exclu

sive, i.e. , produce distinct classes for all inputs. As subsequent desired result vectors,

Yd, are presented to the gate network, the outputs of the gate neurons are compared

to the threshold. If the output of a neuron is less than the threshold (meaning the

desired result vector lies within the region of expertise of the corresponding expert),

then the final output of the hybrid algorithm, u, is the output of that expert given the

desired result vector. Otherwise, if the output of all the neurons exceeds the thresh

old, the gate defaults back to case-based reasoning to determine the final output,

refer to Figure 3.2.

37

Formally, the final output of the hybrid algorithm is given by

{

c of II _ (i)11 \.-10-1 u 1 Yd J.L >Ev~- ,ooo,n

U = U(i) = E(i)(Yd) minllYd - J.L(i)11 otherwise

Each new resulting output/applied input pair, (y, u) , is then used as either a training

point for the selected (inverse model) expert as discussed in Section 203.4 or as a new

case in the casebaseo

38

Chapter 5 Results

For all the simulation experiments, except the hybrid run, there are three fixed set

points located at 25%, 50%, and 75% of the total beam length and will be referred to

as 8 } , 82 , and 83, respectively. The update time for the simulation is set to oms, the

lumped constant in the state space equations given in Section 4.1.1 is B = 0.7, and

the gravitational constant is set as G = 9.81. All ball positions are given as a nor

malized fraction of total beam length, i.e., zero representing the left end of the beam

and one representing the right end. Velocity values are correspondingly fractions of

beam length per second. Finally, unless otherwise stated, the desired final velocity is

assumed to be zero (Vd = 0), i.e. , the ball is stopped at the setpoint.

5.1 Initial Cases

Two paradigm cases are given to the algorithm to create the initial casebase. The first

case consists of applying beam angles of approximately half the maximum angular

displacement in an attempt to transition from the initial position, Yo , to 83 with a

final velocity Vd. The transition point , Ym, is given as 40% of the distance to the finish

position. Hence after applying the initial inputs the first case is given by

(1)
Yf - Yo

(1)
Vf

Yo

o

:!!:..zruu:.
2

where the final position and final velocity are denoted by yY) and vjl) respectively.

39

From the ending state of the first case, (yj1), v?») , the second case attempts to

return the ball back to Yo using beam angles of approximately one quarter maximum,

again with final velocity Vd. The final transition velocity is computed based on the

final velocity after the completion of the previous case (refer to Section 4.2.4) as

Hence, the second case is given by

(2) (1)
Yf - Yf

(2) (1)
Vf - Vf

(1)
Yf

(1)
C(2) = Vf

where the final position after applying the case is yj2) and the final velocity is vj2).

5.2 Analytic Control- Hand Tuned PD Controller

The first controller implemented for baseline comparison is a simple PD (Proportional

Derivative) linear controller. The control law is given by

u = Py + Dy = Py + Dv

The values for the constants were empirically chosen as P = -1.0 and D =

-1.5 to give a slightly overdamped response with good performance. The results

of implementing this controller in the full state simulation is shown in Figure 5.1.

Figure 5.2 shows the performance of the same PD controller when random uniform

additive noise perturbations (with a level of 0.005 , refer to Section 5.5) are applied

to the position data.

0.9

0.8

0.7

0.6
<=
0

~05 ..
&>

0.4

0.3

0.2

0.1

a a 10 20 30 40

40

50
time (sec)

60 70 80 90 100

Figure 5.1: Hand tuned PD controller full state simulation results.

0.9

0.8

0.7

0.6
<=
0
~

~0.5 ..
&>

0.4

0.3

0.2

0.1

a a 10 20 30 40 50 60 70 80 90 100
time (sec)

Figure 5.2: Hand tuned PD controller noisy simulation results.

41

5.3 Full State Simulation

As described in Section 4.1.2, the reasoning algorithm in this simulation mode is

provided with both the exact position and velocity. These variables are used to

create the desired result vector as well as determine the transition points during case

execution. In order to demonstrate the feasibility of case-based reasoning, ten trial

runs using random initial conditions were conducted. Each trial consisted of a random

sequence of transitions between the three setpoints. The positional error after the

completion of each case was measured. Figure 5.3 shows a plot of the rms, minimum,

and maximum error versus case iteration. Clearly the algorithm successfully learns to

perform the task after only a few iterations by converging to within a small residual

error. It should also be noted that the velocity at the completion of nearly all the

transitions was negligible, i.e. , the algorithm was able to stop the ball at its final

position.

e
Q;

0.25 r.-~-----.-----.---------r-----.,---------r-------'

0.2

0.15

0.1

"
,

" , " ,
0.05 "

, ,

10 20 30
iteration

40

error range
- rmserror
- - min error
- - max error

50 60

Figure 5.3: Error convergence for the case-based reasoning algorithm.

42

Figure 5.4 illustrates the transition sequence for one of the trial runs showing the

rapid convergence of the algorithm. After a few initial transitions which show appre

ciable error, the algorithm is able to accurately predict inputs that allow successful

transitions between any two setpoints.

0.9

0.8

0.7

0.6
<= g
·~O. 5

~
0.4

0.3

0.2

0.1

0
0

. . ~ .

10 20 30

I Aclual position I
. . Desired selpolnl I

40 50 60
lime (sec)

. ..,,

70 80 90 100

Figure 5.4: Full state simulation results.

To demonstrate the flexibility of the algorithm, another simulation was run with

a non-zero final velocity (Vd = 0.05). The absolute errors as a function of iteration

are shown in Figure 5.5. The algorithm achieves the desired final velocity while

maintaining final position accuracy.
O.05 r-r.---- ,---.,-----,------.------,----., O.OS

- Absolule position error

0.04 - Absoluteveloatyerror 0.04

0.03

Figure 5.5: Absolute error results for a full state simulation run with Vd = 0.05.

43

5.4 Position Only Simulation

This simulation mode only provides the ball position data to the reasoning algorithm.

Hence, the velocity is computed using the slope from a linear regression fit for a

moving window of the last fifty position readings (250ms). Again the casebase is

initialized using the two cases presented in Section 5.1. Figure 5.6 shows that the

algorithm requires more transitions to learn the proper input sequences using the

approximated velocity but eventually obtains reasonable performance.

0.9

O.B

0.7

0.6
.§

~05
0;
.0

0.4

0.3

0.2

0.1

0
0

. 1'1

,

:"("

Actual position
Desired se~olnt

.,.,

10 20 30 40 50 60 70 BO
time (sec)

:.\.0,.

90 100

Figure 5.6: Position only simulation results.

5.5 Noisy Simulation

This simulation mode is similar to the position only mode in that the reasonmg

algorithm is again only provided with position data. However, in this mode the

positional data is perturbed with uniformly distributed, additive noise. The algorithm

attempts to filter out some of the noise in the position data using a moving average

window of the last five data values (25ms). The velocity is again approximated in

the same manner as in the position only simulation, i.e., linear regression on the last

fifty position values.

44

In order to assess the effects of noise on the algorithm, simulations were run for

increasing levels of noise until the algorithm failed. The simulations consisted of sixty

repeated back-and-forth transitions between 81 and 83, measuring the positional and

velocity error at the end of each transition. Plots of the rms values for these errors

as a function of noise level are given in Figure 5.7. Clearly the algorithm is able to

roughly achieve a similar final positional error for different noise levels. However, as

the noise level increases, the algorithm gets progressively worse at stopping the ball

at the final position as indicated by the increasing velocity error curve.

o.2,-------,--..,------r---,------.---,-----,,-----, o.2

- rms positional error

- - - rms velocity error

0.15 ... '
... ' 0.15

... ,
/

/

g
"

/ g
Q)

~ 0.1

I /

/
/

0.1 ~

0.05

/
/

0.05

~L---0.005L---0.L01--0.0L15--0~.02--0.~~-5--0~.ro--0~.ro-5-~O~
noise level

Figure 5.7: Rms errors as a function of noise level.

~

Figure 5.8 shows a simulation run with a noise level of 0.005. This noise level was

selected to approximate the noise level present in the physical hardware experimen

tal setup. Again the system eventually learns appropriate inputs but requires more

transitions to achieve similar performance.

5.6 Physical Hardware System

The position sensor in the physical system was polled every 5ms producing new

data at the rate modeled in the simulation runs. The noise level in the sensor is a

perturbation of approximately twenty counts in the 10-bit value (a normalized value

45

0.9

0.8

0.7

0.6
<=
0
:e
g.o.S
iii
&>

0.4

0.3

0.2

0.1 I Aclual posilion I
.. Desired selpolnl I

0
0 50 100 ISO

time (sec)

Figure 5.8: Noisy simulation results using a noise level of 0.005.

of approximately 0.005). Figure 5.9 gives the results of the algorithm applied to the

physical hardware experimental setup using the same computer and control software

used in the simulation runs. The algorithm was still able to achieve the desired final

position, but due to unmodeled dynamics such as friction and servo noise, usually

with a non-zero final velocity (as expected from the noisy simulation runs).

0.9

0.8

~
n A , ~

"
}I, 'n 'n ..

.. 0.7

0.6

I .. V\ .,....,
0.4

V :
V

U
.. , ':J .. \Ij V '.,

W

I \j I Actual position t I
Desired selpolnl

W

0.3

0.2

O.

10 20 30 40 50 60 70 80 90 100
time (sec)

Figure 5.9: Physical hardware experimental system results.

46

5.7 Neural Network Generalization

Since the full state simulation experiments were run using three set points, there are six

unique combinations of positional change, !:ly, and initial position, Yo, pairs. Hence,

the casebase generated from the full state simulation run (refer to Section 5.3) was

clustered using a six element radial basis neuron gate network. Based on the classi

fication of the trained gate network, the casebase was segmented into six individual

subcasebases. A standard feed forward network consisting of two hyperbolic tangent

hidden units with linear output units was subsequently trained on each subcasebase

to predict the system input vector, U , given a desired output vector, Yd. The results

of the clustering are presented in Figure 5.10.

0.0

0 .8

0.6

~O. 5

0.4

0.3

0.2

0.1

.no
~\:J

6)0 O· 1I'k o •

•

O Q.
8 v

~,~ ~~~' ~~.~~~4~~~.2--~0~0~.2 ~0~4~0.~'~0.'~ ,

Figure 5.10: Gated expert network clustering results. x - case data, 0 - cluster center

Figure 5.11 shows the performance of strictly the gated expert neural network

controller, i.e., all decisions are computed by the nearest expert. As expected, the

results of this controller are nearly identical to the case-based reasoning controller

(refer to Figure 5.4).

5.8 Hybrid System

In the hybrid scheme, the region of expertise for each expert is bounded to a local

region about the cluster center. For ease of implementation in the simulation code,

the regions were defined to be circular around the cluster center with radius 0.07,

see Figure 5.10. Furthermore, setpoint three was changed from 75% to 85% of the

47

0.9

O.S

0.7

0.6
c
g
·~0.5

2
0.4

0.3

0.2

0.1

0
0 10 20 30 40 50 60 70

time (sec)

Figure 5.11: Gated expert neural network controller results.

beam length. Transitions between setpoints one and two, therefore, were within

the neural experts domain and all other transitions utilized case-based reasoning.

Figure 5.12 shows the results with the case-based transitions shown in red, the neural

network transitions shown in green, and the desired setpoint shown in dotted blue.

As expected, the neural network transitions maintain identical performance to the

neural controller in the previous section. Furthermore, the case-based algorithm is

able to adapt to the modified setpoint transitions after only a few trials.

0.9

1''1 .- r'I ·n ·n
o.s

0.7

0.6
c
g
u;
&. 0.5 ."1 . ~ ~ :rJ :. '"1
0;
.c

0.4

0.3

"" "" :. "" :. \.1 .. \:.;.

0.2

Case-based input

0.1 - NNtnput

Desired s&1poin1

0
0 10 20 30 40 50 60 70 so 90 100

time (sec)

Figure 5.12: Hybrid system results.

48

Chapter 6 Discussion and Conclusions

One model of human learning involves choosing an action based on past experiences

in similar situations. Applying these actions produces subsequent new experiences

which can then be used to further improve future performance. Once sufficient ex

perience has been acquired in a particular regime, the individual experiences can

be generalized into conceptual form and the particular experiences discarded. This

thesis presents a model of this type of hybrid reasoning using a case-based structure

combined with a gated expert neural network. The applicability of the hybrid algo

rithm is demonstrated on a nonlinear control problem, setpoint regulation in a ball

and beam system.

Each experience is stored as a vector of relevant variables known as a case in a

set called the casebase. The algorithm performs input acquisition to collect relevant

information about the current state of the system to form the desired result vector.

Case selection then chooses the case from the casebase, the basis case, whose resulting

output is most similar to the desired result to serve as a starting point for determining

an appropriate action. The action from the basis case is further modified using case

modification to compensate for differences between the basis case and the actual

situation before being applied to the system during case application. Result evaluation

then determines whether anything anomalous occurred during the application of the

action ; and if not , then casebase augmentation updates the casebase with the new

experience. Once a sufficient number of cases have been generated , n eural network

genemlization segments the case base using a competitive radial basis network (the

gate) and then trains local inverse model, feed forward neural networks (the experts)

on the resulting partitioned data sets. The regions of expertise for the experts are

bounded and distinct. The trained gate network selects an expert if the desired result

lies within one of the expert's regions of expertise, otherwise it selects case-based

reasoning to generate the hybrid algorithm output.

49

6.1 Discussion of Results

As the resul ts in the previous chapter show, the case-based reasoning algorithm is

able to learn appropriate behavior, i. e., accurate setpoint regulation, through re

peated transitions both for zero and non-zero final desired velocities. In the full state

simulation, case-based reasoning has comparable performance to a hand-t uned PD

controller and a gated expert neural network controller trained on the casebasf'. The

hybrid system is also able to quickly learn new transitions using case-based reasoning

while maintaining performance on the old transitions using the neural experts. When

the algorithm approximates the velocity, it is still able to achieve good performance

after several addit ional transitions. When noise is further introduced into the sensor

measurements, performance expectedly degraded with increasing noise levels. The

algorithm was still able to achieve the desired results even with noise levels greater

t han those present in a crude physical system. This robustness was demonstrated by

implementing the hybrid a lgorithm to control an actual physical system.

6.2 Advantages and Disadvantages of the Hybrid

Algorithm

T he most obvious advantage of the hybrid algorithm is the elimination of the require

ment for system identification . As long as a functional form for the inputs is provided,

the reasoning algorithm requires no further knowledge of the system dynamics. Infor

mation about the system can be useful in improving either t he case selection or case

modification routines but is not essential. Case-based reasoning provides a method

for generating reasonable data points, particularly initially. In order to avoid the

problem of excessive storage requirements as the casebase expands over time (and

the corresponding retrieval issue) , particularly in the situation where the experiences

are densely clustered, neura l network experts provide a functional approximation in

these regions allowing those data points to be removed from the casebase.

50

Since each transition generates a new data point, the algorithm inherently adapts

to time varying systems either by augmenting the case base or by updating the ap

propriate expert using the training example. By adding a historical decay weighting

term to the case selection procedure, the system can emphasize more recent experi

ences through essentially "forgetting" what happened in the distant past. Likewise,

updating the experts produces local inverse models that adapt to any changes in the

underlying system. This advantage can also extend to a system that has a discrete

physical change. In this situation , the original casebase and experts can either serve

as a rough guess or discarded altogether allowing the algorithm to generate a new set

of experiences. This property makes it useful for control of t ime-varying nonlinear

systems that do not have strict robustness or performance requirements , since explicit

modeling and controller design is unnecessary.

The disadvantages of the hybrid reasoning scheme are similar in nature to those

of most model-free adaptive systems. The case structure provides little insight into

the actual physics of the underlying system. The cases do provide data that could

be used for system identification , but the algorithm itself does not explicitly model

the system. Likewise, the neural network experts only provide a local approximation

to the inverse input-output map, giving no information about the dynamics of the

underlying system. This limitation makes guarantees of robustness and performance

difficult, thus restricting the utility of the algorithm for critical systems.

6.3 Further Extensions

In the implementation for this work, the entire input sequence is selected by the

reasoning algorithm and then applied until completion. An extension would be to

have the algorithm select the entire input sequence but then possibly adjust t he second

beam angle based on the state of the system at the transition point. This extension

would improve learning time since the algorithm would be able to independently

adjust both parts of the input sequence dynamically rather than having to wait until

another similar circumstance presented itself. Adaptation of this sort could also be

51

accomplished using a neural network. One other possibility would be to break each

case up into two separate cases. Then the reasoning procedure would be used once,

based on the initial conditions, to determine the first beam angle; and then a second

time to select an appropriate action to achieve the desired result based on the actual

system state at the transition point.

Finally, in the work presented, the gated expert neural network was trained off

line from a pre-generated casebase. This procedure was done for simplicity in both

the simulation code and for real time performance evaluation of the algorithm. Given

parallel processing computational resources, a natural extension would be to perform

the network training and subsequent updates while the system is running online.

52

Bibliography

[1] J. Alspector, J. W. Gannett, S. Haber, M. B. Parker, and R. Chu. A VLSI

efficient technique for generating multiple uncorrelated noise sources and its ap

plication to stochastic neural networks. IEEE Transactions on Circuits and

Systems, 38(1):109- 123, Jan 1991.

[2] K. D. Althoff, R. Bergmann, S. Wess, M. Manago, E. Auriol, O. 1. Larichev,

A. Bolotov, Y. 1. Zhuravlev, and S. 1. Gurov. Case-based reasoning for medical

decision support tasks: The Inreca approach. Artificial Intelligence in Medicine,

12(1):25- 41, Jan 1998.

[3] C. G. Atkeson and S. Schaal. Memory-based neural networks for robot learning.

Neurocomputing, 9(3):243-269, Dec 1995.

[4] R. Barletta. An introduction to case-based reasoning. AI Expert, pages 43-49,

Aug 1991.

[5] G. Cauwenberghs. Analog VLSI stochastic perturbative learning architectures.

Analog Integrated Circuits and Signal Processing, 13(1-2):195- 209, May-Jun

1997.

[6] C. L. Chen and Y. M. Chen. Self-organizing fuzzy-logic controller design. Com

puters in Industry, 22(3):249-261, Oct 1993.

[7] Y. C. Chu and J. Huang. A neural-network method for the nonlinear servomech

anism problem. IEEE Transactions on Neural Networks, 10(6) :1412- 1423, Nov

1999.

[8J John C. Doyle, Bruce A. Francis, and Allen R. Tannenbaum. Feedback Control

Theory. Maclnillan Publishing Co. , New York, 1992.

53

[9] :vladan :-.:1. Gupta and Naresh K. Sinha, editors. Intelligent Control Systems:

Theory and Applications. IEEE Press, 1996.

[10] K. J. Hammond. Learning to anticipate and avoid planning problems through

the explanation of failures. In Proceedings of the Fifth National Conference on

Artificial Intelligence, pages 556-560, Philadelphia, PA, Aug 1986. AAAL

[11] \1. Hattori and M. Hagiwara. Associative memory for intelligent control. Math

ematics and Computers in Simulation, 51(3-4):349-374, Jan 2000.

[12] J. Hauser, S. Sastry, and P. Kokotovic. Nonlinear control via approximate input

output linearization: The ball and beam example. IEEE Transactions on Auto

matic Control, 37(3):392-398, Mar 1992.

[13] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the Theory of

Neural Computation, volume 1, chapter 6: Multi-Layer Networks, pages 115162.

Addison-vVesley, 1991.

[14] C. H. Higgins and R. \1. Goodman. Fuzzy rule-based networks for control. IEEE

Transactions on Fuzzy Systems, 2(1):82-88, Feb 1994.

[15] Alberto Isidori. Nonlinear Control Systems. Springer-Verlag, second edition,

1989.

[16] :vI. 1. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM

algorithm. Neural Computation, 6(2):181-214, Mar 1994.

[17] Hassan K. Khalil. Nonlinear Systems. Macmillan Publishing Company, 1992.

[18] T. Koiranen, T. Virkki-Hatakka, A. Kraslawski, and L. Nystrom. Hybrid, fuzzy

and neural adaptation in case-based reasoning system for process equipment

selection. Computers and Chemical Engineering, 22:S997-S1000, 1998. Suppl. S.

[19] Benjamin C. Kuo. Automatic Control Systems. Prentice Hall, sixth edition,

1991.

54

[20] J. G. Kuschewski, S. Hui, and S. H. Zak. Application of feedforward neural

networks to dynamical system identification and control. IEEE Transactions on

Control Systems Technology, 1(1):37- 49, Mar 1993.

[21] T. W. Liao, Z. M. Zhang, and C. R. Mount. A case-based reasoning system

for identifying failure mechanisms. Engineering Applications of Artificial Intel

ligence , 13(2):199- 213, Apr 2000.

[22] C. J. Lin. A fuzzy adaptive learning control network with on-line structure and

parameter learning. International Journal of Neural Systems, 7(5):569- 590, Nov

1996.

[23] B. Lopez and E. Plaza. Case-based learning of plans and goal states in medical

diagnosis. Artificial Intelligence in Medicine, 9(1):29-60, Jan 1997.

[24] W. Thomas Miller , III, Richard S. Sutton, and Paul J. Werbos, editors. Neural

Networks for Control. MIT Press, 1990.

[25] K. S. Narendra and D. Parthasarathy. Identification and control of dynamical

systems using neural networks. IEEE Transactions on Neural Networks, 1(1):4-

27, Mar 1990.

[26] K. C. Ng and M. M. Trivedi. Neural integrated fuzzy controller (NiF-T) and

real-time implementation of a ball balancing beam (BBB). In International Con

ference on Robotics and Automation, volume 2, pages 1590- 1595, Minneapolis,

MN, Apr 1996. IEEE.

[27] Henk Nijmeijer and Arjan van der Schaft. Nonlinear Dynamical Control Systems.

Springer-Verlag, 1990.

[28] F. M. Pait and A. S. Morse. A cyclic switching strategy for parameter-adaptive

control. IEEE Transactions on Automatic Control, 39(6):1172- 1183, Jun 1994.

[29] D. Psaltis , A. Sideris, and A. A. Yamamura. A multilayered neural network

controller. IEEE Control Systems Magazine, pages 17-21, Apr 1988.

55

[30] A. Ram, R. C. Arkin, K Moorman, and R. J. Clark. Case-based reactive naviga

tion: A method for on-line selection and adaptation of reactive robotic control

parameters. IEEE Transactions on Systems, Man, and Cybernetics, 27(3):376-

394, Jun 1997.

[31] A. Ram and J. C. Santamaria. Continuous case-based reasoning. Artificial

Intelligence, 90(1-2):25- 77, Feb 1997.

[32] E. B. Reategui, J. A. Campbell , and B. F. Leao. Combining a neural network with

case-based reasoning in a diagnostic system. Artificial Intelligence in M edicine,

9(1):5- 27, Jan 1997.

[33] Christopher K. Riesbeck and Roger C. Schank. Inside Cas e-Based Reasoning.

Lawrence Erlbaum Associates, Hillsdale, 1989.

[34] S. Roweis and Z. Ghahramani. A unifying review of linear gaussian models .

Neural Computation, 11(2):305- 345, Feb 1999.

[35] D. E. Rumelhart , G. E. Hinton, and R. J. Williams. Parallel Distributed Pro

cessing: Explorations in the Mi crostructure of Cognition, Volume 1 :Foundations,

volume 1, chapter 8: Learning Internal Representations by Error Propagation,

pages 318-362. MIT Press, 1986.

[36] L. X. Wang. Stable and optimal fuzzy control of linear systems. IEEE Transa c

tions on Fuzzy Systems, 6(1):137- 143, Feb 1998.

[37] B. Widrow. Adaptive inverse control. In Second IFAC Workshop on Adaptive

System8 in Control and Signal Processing, pages 1- 5, Lund, Sweden, 1986.

[38] L. L. Van and C. J. Li. Robot learning control based on recurrent neural network

inverse model. Journal of Robotic SY8tem8, 14(3):199- 212, Mar 1997.

