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ABSTRACT

The objective of this investigation is to examine the
buoyancy-driven gravitational spreading currents, especially as
applied to ocean disposal of wastewater and the accidental
release of hazardous fluids.

A series of asymptotic solutions are used to describe the
displacement of a gravitationally driven spreading front during
an inertial phase of motion and the subsequent viscous phase.
Solutions are derived by a force scale analysis and a self-
similar technique for flows in stagnant, homogeneous, or linearly
density-stratified environments. The self-similar solutions for
inertial-buoyancy currents are found using an analogy to the
well-known shallow-water wave propagation equations and also to
those applicable to a blast wave in gasdynamics. For the viscous-
buoyancy currents the analogy is to the viscous long wave
approximation to a nonlinear diffusive wave, or thermal wave
propagation. Other similarity solutions describing the initial
stage of motion of the flow formed by the collapse of a finite
volume fluid are developed by analogy to the expansion of a gas
cloud into a vacuum. For the case of a continuous discharge
there is initially a starting jet flow followed by the buoyancy-
driven spreading flow. The jet mixing zone in such flows is
described using Prandtl's mixing length theory. Dimensional
analysis is used to derive the relevant scaling factors describing

these flows.
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CHAPTER 1

INTRODUCTION

It is a common practice to dispose of treated wastewater,
or cooling water from power plants, by discharging it into a
large body of receiving water, such as the ocean, lakes, or
rivers. In order to prevent the possible contamination of
the ambient water, pollution control agencies usually establish
requirements specifying the discharge concentration levels
permissible within a given distance from the point of
discharge. These permissible concentration levels can then be
used to calculate the dilution of the discharge that is
necessary. To gain the required dilution two types of
submerged discharge facilities are frequently used: one is
the single port discharge at the open end of an outfall pipeline
and the other is a multi-port diffuser. The usual goal is
rapid mixing to reduce the undesirable attributes of the discharge
to a tolerable concentration before the discharge is fully
diffused into a larger envirommental scale by ambient turbulence.

The minimum dilution requirement for submerged outfall
discharges usually considers only the dilution induced by the
discharge momentum and buoyancy without regard for dilution
subsequent to the discharge reaching a free surface or becoming
trapped by ambient density-stratification. Minimum surface
dilution is sometimes predicted on the basis of the dilution at

the same elevation as if the discharge were in an infinitely



deep receiving water. However, the outfall effluent, which
initially behaves like a positive buoyant jet, may reach the
free surface and become a free surface horizontal flow. The
residual buoyancy and the flow momentum then induce a horizontal
flow producing further dilution regardless of whether the
ambient fluid is in motion.

Since oceans and lakes are usually density-stratified,
especially in the summer season, diluted effluent may be trapped
at some submerged level of neutral buoyancy and then may
spread laterally. Such a submerged wastewater field is favored
for avoiding contamination of surface waters. Figures 1.1(a)
and (b) show the configurations of the surface spreading flow
and submerged spreading flow due to a horizontal single-port
outfall discharge; Figures 1.2(a) and (b) depict those due to
a multi-port diffuser discharge. The same internal spreading
layers are also found in thermally stratified lakes as shown
in Figure 1.3.

A similar, though inverted, situation occurs with marine
barge sludge disposal, which can sink as a negatively buoyant
plume and spread as a subsurface turbidity current, at the
sea floor or some intermediate level as shown in Figure 1.4,
Such bottom currents are also formed, for example, by turbid
or cold rivers flowing into a reservoir or lake, or by the

discharge of a relatively dense liquid, as shown in Figure 1.5.
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An analogous situation is found in the surface channel discharge
of cooling water from power plants and also from large scale
river flows into the ocean.

When there is a prevailing current the diluted discharge
forms a wide downstream field, which may be found at the surface
as shown in Figure 1.6, or lie below the surface for discharges
trapped in a density stratification. Preventing the surface
or subsurface wastewater field from reaching the shoreline
involves predicting the size of this field. On the other hand,
for cooling water discharges from nearshore power plants it
may be preferable to have a wide surface field to accelerate
the heat transfer to the atmosphere.

The object of the present investigation is to examine
surface and subsurface buoyant spreading mechanisms for the
wastewater fields due to submarine ocean outfalls discharging
wastewater or cooling water, or the ocean barged disposal of
sludge or dredge spoil. A review of previous studies of such
gravity currents is given in Chapter 2.

In Chapter 3, theoretical analyses are presented for unsteady
gravity-driven surface and subsurface spreading flows and
nearfield surface buoyant jet mixing. A force scale analysis is
used to derive a series of functions to describe both surface
and submerged density spreading in a stagnant environment. In
eaéh asymptotic formula for frontal position there is one empirical

coefficient. Similarity solutions of inviscid and viscous long
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Figure 1.6 A wide surface density spreading field persisting for
a long distance before oceanic turbulent diffusion
takes over, aerial photograph taken by Foxworthy and
Kneeling (1969) at Ventura Outfall on November 11, 1966.



wave approximation equations will be used to determine the unknown
coefficients. The fluid velocity, the spreading layer thickness
for the inertial and the viscous regimes of both surface and
subéurface spreading flows will be described. Surface jet
mixing of the nearfield spreading flow will be modelled using
Prandtl's assumptions. Dimensional analysis is used to show
the effect of initial conditions on the spreading currents.
Experimental studies of starting half radial surface buoyant
jet flows, the full radial surface buoyant jet flow in a cross-
current and nearfield surface jet mixing are described in
Chapter 4. Two sets of experimental measurements on surface
buoyant jet mixing were made: one for a full radial heated
jet and the other for a half radial buoyant jet. Experimental results
are presented in Chapter 5.
In Chapter 6, many previously published data of importance
to the horizontal spreaéing problem are compared with present
theoretical results. Examples of engineering applications will
be presented in Chapter 7. A summary of conclusions and discussion

is given in Chapter 8.



CHAPTER 2

REVIEW OF PREVIOUS STUDIES

2.1 Wastewater Field from Submarine Outfall Discharges

2.1.1 Maximum Height of Rise and Spreading Level

When the receiving body of water is density-stratified,
a diluted buoyant field can sometimes reach the free surface and
spread outward to become a surface field, but it is more usually
trapped at some neutrally buoyant level below the surface. If
it is trapped, it then spreads laterally at that level as an
intrusion layer and forms a submerged field.

To determine whether the diluted water will either become a
spreading field at the free surface or at some submerged level,
it is necessary to determine the maximum height of rise and the
submerged spreading level for a submerged buoyant jet discharging
into a density-stratified environment. Several previous
investigations have studied the maximum rise problem both
theoretically and experimentally and the terminal height of
rise can be predicted reasonably well in terms of the parameters
of the jet and the environment. These previous results are
summarized in Table 2.1.1 in terms of the characteristic lengths
appropriate to a turbulent jet or plume.

2.1.2 Observations of Spreading Flows

A diluted effluent, upon reaching the free surface,

or some intermediate neutral buoyancy level, is deflected from
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vertical flow to nearly-horizontal flow, whereupon it spreads
out uniformly. Descriptions on this spreading flow were
reported by Rawn and Palmer (1929) on the basis of their
laboratory measurements and field observations of four single-
port ocean outfalls around southern California. They noted that
the diameter of a rising column, when it impinges the free
surface, is around one-third of the path length traveled, for
both vertical and horizontal single-port discharging flows.

The speed of the initial fronts generated by the submerged
buoyant discharge were measured by recording the time at which
the dyed discharge front passed a designated location. They
found that the diameter of the front grew in proportion to the
two-thirds power of time. In the subsequent motion, the dyed
discharge frequently moved in a series of concentric waves, or
annular rings, as described by Brooks (1952) in an unpublished
report of his observations of seasonal ocean outfall operations
at White's Point and Point Loma (see also Rawn, Bowerman, and
Brooks, 1960). Each wave or ring was followed by an interval of
apparently clear water. The waves continued for some distance
from the rising column, and gradually merged to form a field of
uniform color which remained well stratified. Brooks (1952) did,
however, sometimes also observe a steady radial surface flow.
This periodic unsteadiness in flow is apparently typical of such
flows, for a similar series of the radial surface fronts were

observed by Green et al. (1972) and Scarpace and Green (1973) in
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their aerial photographs of the thermal plume from the surface
thermal water discharge at Point Beach Power Plant on Lake Michigan
and at three other power plants located at Port Washington,
Sheboygan and Madison, Wisconsin. Some field measurements of
temperature and velocity of heated discharges were conducted by
Frigo et al. (1974) at the Point Beach, J. H. Campbell and
Waukegan Power Plants located on Lake Michigan. Unknown coherent
oscillating fluctuations in water temperature and velocity were
observed with periods ranging from 2 to 20 minutes. It was
believed that the long period of fluctuation might be due to the
development of ''radial thermal fronts" structure as observed by
Scarpace and Green (1973). The same band structure was observed
on a larger scale by McClimans (1978) in a radial oceanic front
in a fjord at Trondheim, Norway, as shown in Figure 2.1.1.
According to the early observations by Rawn and Palmer
(1929) the interface between a surface horizontal flow and the
underlying fluid is not clearly defined close to the surface
impingement point. The intensive interfacial mixing of the
discharged water with the ambient water, and the periodic
concentric wave behavior made it very difficult to measure
the thickness of the spreading field. For both vertical and
horizontal buoyant round jet discharge, the overall average of
observations indicated that the thickness of the two-layer
stratified flow was about one-twelfth of the length of travel

of the effluent before it reached the free surface. Some
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laboratory observations of Frankel and Cumming (1965) indicated
that the thickness of the stratified layer generated by a horizontal
buoyant round jet discharge was around one-third of the total
water depth. The same layer thickness to depth ratio checks
fairly well with that found by Hart (1961) for a vertical buoyant
round jet discharge in an almost stratified fluid. More recent
laboratory experiments by Liseth (1970) and Liu (1976) showed
that the two-dimensional stratified layer formed by a downward,
or an upward, multi-port buoyant discharge into stagnant ambient
water, never exceeded 307 of the total depth. Other experiments
by Buhler (1974) showed that this two-dimensional bottom
stratified layer occupied the lower 407 of the water depth.
Roberts' (1977) results for a vertical line plume discharge show
a ratio around 307, which is close to the value predicted by
Koh (1976), i.e., approximately one-third of the total ambient
water depth.

When there is a slow prevailing ocean current the spreading
flow has a well-defined upstream edge. According to Brooks' (1952)
observations at White's Point and Point Loma, the stronger is the
current, the closer the upstream interface is to the point of
discharge. The boundary between the discharge and the ambient
water also becomes sharper. The ambient current apparently rides
under the sewage layer provided that the flowing layer is
substantially thicke? than the sewage layer. Downstream from the

point of discharge the sewage moves as if it were part of the
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overall current, but spreads laterally. Further mixing, due to
the natural turbulence found in the ocean proceeds slowly both
vertically and horizontally, and the diluted discharge ultimately
becomes an almost non-buoyant tracer.

The variation of lateral surface spreading width before
turbulent diffusion takes over was found by Foxworthy et al. (1966)
to vary as the 0.78th power of downstream distance measured from
the surface impingement point. An excellent photograph of the
transition from gravitational spreading flow to the turbulent
diffusion regime is shown in Figure 4 of Foxworthy and Kneeling
(1969). (See Figure 1.6)

Very few field observations have been made examining
submerged spreading flow and the subsequent dilution and diffusion.
This is possibly because the diluted effluent is trapped beneath
the sea surface and no immediate "visible'" nuisance is produced.
However, in a stably stratified atmosphere industrial discharges
are often seen spreading at a neutral density level. In
Figure 2.1.2(a) is a horizontal spreading plume due to the cooling
tower discharge at John E. Amos Power Plant observed by Kramer
and Seymour (1976). A series of discontinuous radially spreading
fronts can also be seen in Figure 2.1.2(b).

Submerged spreading of a turbid cloud at the ocean bottom and at
a strongly stratified interface due to ocean dumping of barged

sludge was reported by Beyer (1955). No details of measurements
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were made. Ocean dumping of dredge spoil was surveyed by Gordon
(1974) in one of the few published field studies of bottom
turbidity currents. He found that after the sinking turbid

plume reached the ocean bottom, it spread axisymmetrically over
the sea floor and increased in diameter proportionally to the
square root of time. The thickness of the turbid cloud at certain
locations was observed to decrease as a function of time after
initiation of dumping.

2.1,3 Unsteady Density Spread in a Stagnant Environment

As has been suggested by several investigators, such as
Frankel and Cumming (1965), Jirka and Harleman (1973) and Lee et al.
(1974), a starting or unsteady flow has three possible regions of
flow: the submerged buoyant jet, the subsequent surface
impingement and transition, and the horizontal spreading, as
shown in Figures 2.1.3(a) and (b).

As noted previously, the surface spreading front on a
motionless water surface, and due to a single port submarine
outfall discharge, was observed by Rawn and Palmer (1929) in
both the field and the laboratory and they found that the diameter
of a floating dye plume grew as the two-thirds power of time.

Sharp (1969a,b) conducted similar experiments for both
upward and downward horizontal buoyant round jets, as shown in

Figures 2.1.4(a) and 2.1.4(b). Experimental data werxe plotted
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Figure 2.1.4(a)
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Free surface spreading front due to a submerged
horizontal buoyant round jet discharge.
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Figure 2.1.5 Unsteady spreading tip position at time t due to a

buoyant pipe flow discharge, after Sharp (1971).
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using three dimensionless parameters in the form:

1g'1/5  £g'3/5 Qig'1/3

Qiz/s ’ Qil/s T y5/3

)
o

(2.1.1)

where L is the surface travel length of the spreading fluid on
time t, Qi is the volume flux at source of spread, which is
calculated by multiplying the discharge volume flux Qj with
the average dilutions from the graphical solutions by Fan and
Brooks (1969), g' is the reduced gravitational acceleration,

!Da—pil

5 » py is the calculated diluted fluid demsity at source of

a
spread, v is the kinematic viscosity of the spreading fluid and ¢ is

an unknown function. Hart (1961) also performed small scale labora-

tory experiments. However, both failed to show clearly the different

possible regions of flow that can occur.

Sharp (1971) exteﬁded his studies to surface spreading front due
to a horizontal buoyant round jet discharge on the surface of a wider
channel, as shown in Figure 2.1.5. A further dimensionless variable
involving the properties of a discharge from a round pipe was added

to those considered previously (2.1.1) to obtain:

11/3 11/5
Lg'l/s tg'3/5 Qig ng

’ s ’ = 0 2.1.
Q.2/5 Q,1/5 v5/3 qQ.2/5 (2:1.2)

J N J
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where L is the spreading length from the discharging pipe on
time t, Dj and Qj are the diameter and the volume flux of the

pipe discharge. The added dimensionless variable in Eq. (2.1.2),

D.gll/S

o L
sz/s

Froude number of the pipe flow.

, 1s related to the discharge Richardson number or

Experiments on radial spreading plumes due to a submerged
vertical buoyant round jet discharge were performed by Chen and
List (1976). After a very brief initial period the radially
symmetric front increased in diameter with the three-quarters
power of time and then broke sharply to a function of one-half
power of time. The second regime was also confirmed by Anwar
(1972). Both regimes were confirmed recently by Britter (1979)
in the laboratory experiments on radially spreading gravity currents.

Roberts (1977) observed a similar two-stage spreading front
from a submerged line plume discharge; the distance from
discharge to front increased as a linear function of time t
and then changed to t4/5, This implied constant velocity of the
plane spreading front, which depends only on the discharge
buoyancy flux, was also found earlier by Liseth (1970) and
Buhler (1974) for the flow from a multiport diffuser discharge
with dense fluid.

Different time functions were noted by Chen and List (1976)
for the radial surface spreading front produced by dumping a
finite volume of liquid onto the free surface of a denser

miscible liquid. The diameter of the spill grew as tl/2
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initially and then changed to t1/8, Different time functions
were also found by Almquist (1973) for a plane surface spreading
front produced by the release of a finite volume of buoyant
fluid: the distance grew initially as t2/3 and then changed

to t1/5.

In order to study spreading rate for a plane front in a
linearly density-stratified environment Maxworthy (1972)
examined a neutrally buoyant horizontal slot jet into a density
stratified fluid, as shown in Figure 2.1.6. After intensive
mixing with ambient fluid occurred in the neighborhood of exit,
the interflowing front distance increased as ts/6 for the case
of low source flow rate.

Similar experiments were also performed by Zuluaga-Angel et al.
(1972) and Manins (1976a), but different growth rates of the
interflowing wedge were found. Manins found the intrusion layer
length to be a linear function of time. Zuluaga-Angel et al.
found a three-quarters power of time. However, one of the
experiments of Zuluaga-Angel et al. did show a wedge increasing
its length in direct proportion to the time t and then changing
to t5/6 pefore reaching the end of the channel, aé plotted in
Figure 2,1.7. Thus no conclusive result has appeared for the
submerged density spread due to a submerged buoyant round or

plane jet discharge.
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Figure 2,1.6 Simulation of submerged density spreading by a
horizontal jet discharging at its own density
level in a linearly density-stratified environment,

after Maxworthy (1972).
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R(t)
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Figure 2.1.7 Growth history of the interflowing wedge front due
to a horizontal slot jet discharging at a neutral
buoyant level into a linearly density-stratified
ambient, data from Zuluaga-Angel et al. (1972).



24

Wu (1965,1969) found different results for the submerged
density spread due to a finite volume of homogeneous fluid
collapsing at a neutral density level in a linearly density-
stratified fluid, as shown in Figures 2.1.8(a) and (b). 1In
a series of experiments three stages of interflowing wedge front
were observed: an initial stage with Nt < 2.5, a principal stage
with 3 <Nt < 25, and the final stage with Nt > 25, where t is the
time after initiating collapse and N is the Brunt-Vaisala
frequency of the stratified ambient fluid. 1In the initial stage
the interflowing wedge moved almost at a constant velocity,
while in the later two stages the wedge front was decelerating
during the spreading. Wu gave an empirical formula describing

the front propagation in the initial stage as a function to time,

R(t)

x -1+ 0.29(Nt)1-08 , (2.1.3)
o
and in the principal stage:
Rét) = 1.03(Nt)0-55%0.02 (2.1.4)
o

where RO is the initial radius of the cylindrical section of the
two-dimensional homogeneous fluid, R(t) is the wedge length at
time t. In the final stage, the distance to the front increased

at a much slower rate than in the principal stage. The results
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Three stages of plane submerged density front spread
due to a finite volume of homogeneous fluid collapsing
at a neutral level in a linearly density-stratified
environment, after Wu (1965).
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Figure 2.1.8(b)

Sequential cross sections of plane submerged density
front spread at various times, after Wu (1965).
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given by Wu appear inconclusive. However, the front distances
does appear asymptotically to grow in proportion to tl/6 (see
Figure 4 of Wu (1969) and Figure 2.1.8(a)).

Similar experiments were performed by van de Watering (1966)
with a different apparatus. The dyed wedge was found to move in

the initial stage as

R(t)

- = 1+ 0.16(Nt) 0.9 (2.1.5)
(o]
and as
Rét) — 1.02(Nt)0- 3% (2.1.6)
[o]

for the principal stage.
A simple force scale analysis and similarity solutions of long
wave equations will be used later to derive these different power laws

of time for both the surface and the submerged density spread.

2.2 Surface Wastewater Discharge in a Cross Current

2.2.1 Non-Buoyant Models

Non-buoyant wastewater field models are reviewed
here. The models were developed by considering only the source
strengths and the diffusion mechanisms and by neglecting any
buoyancy effects.

The solution for a non-buoyant source in a uniform current

is well-known in hydrodynamics (see for example, Milne-Thomson
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(1969), pp. 480-481). The induced velocity field, as shown in

Figure 2.2,1, is asymptotic far downstream, to a constant width,

\[%% , where Q is the source strength, U is the current

velocity. The upstream edge where the velocity vanishes,

is located at a distance,-%‘%gg , upstream from the source.

No further information about the tracer distribution is given.
The turbulent diffusion field from a line non-buoyant tracer

source was developed by Brooks (1960) by neglecting the vertical

and the longitudinal diffusion. A turbulent diffusion field is

assumed to form as soon as the diluted effluent reaches the

free surface. The downstream concentration is found to decay

in both the transverse and stream directions. An overall sketch

of this diffusion waste field is shown in Figure 2.2.2. The

lateral spread of the waste field is found to be dependent on the

variation of the scale of eddy diffusivity € along the current

direction. The three types of growing field widths that are

found are:

L 24¢ 1/2
T=1+ Ub°% , (2.2.1)
L 12&O X
B"=l+ U6 0y (2.2.2)
and
L 24¢ 3/2
5=\ 3w b ’ (2.2.3)
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Figure 2.2.1 A non-buoyant and non-diffusive source in a uniform
cross current.
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Figure 2.2.2 Schematic diagram for diffusive field from line-like
diffuser in an ocean current, after Brooks (1960).
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each corresponding to one of three types of eddy diffusivity
functions assumed; (2.2.1) a comstant, (2.2.2) a linear
variation of the eddy diffusivity with the diffusion width,

and (2.2.3) a four-thirds law of eddy diffusivity, where L is

the nominal diffusion width defined as

L=2/3¢ (2.2.4)

and ¢ is the standard deviation of the concentration distribution
function at a given station downstream x, €5 is the initial

eddy diffusivity value at the origin ,where the initial width of
the water field is assumed as b.

For the diffusion field from a single-port outfall discharge,
mathematical models of the diffusion field, developed to describe
the material distribution of an emission from a smoke stack in
the atmosphere, are applicable. Frenkiel (1953) suggested that
if the longitudinal dispersion is negligible, a theoretical
steady plume model could be assembled by the superposition of
an infinite number of overlapping circular patches, as shown in
Figure 2.2.3(a), or one-dimensional slice elements, as shown in
Figure 2.2.3(b). However, some field density and coliform
concentration measurements by Foxworthy et al. (1966) and
Foxworthy and Kneeling (1969), in the vicinity of submarine
outfalls operated by Orange County Sanitation Districts,

indicate turbulent diffusion differing from Gaussian profiles.
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Figure 2.2,3(a) Superposition of a series of circular diffusion
patches in a horizontal turbulent current.
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Figure 2.2,3(b) Superposition of a series of slices of diffusion
elements in a horizontal turbulent current.
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It is believed that this is due to the buoyancy forces and
would indicate that the details of intermediate scale density
spread dynamics are important to the study of large scale
diffusion problems.

2.2.2 Surface Density Spread Models

To determine a non-diffusive surface wastewater
field several environmental factors must be considered in
addition to the discharge variables. Those include ocean currents,
tides, wind, local climate, and bottom topography. Inclusion of
all these factors together is difficult. Only the effect of a
uniform prevailing current will be considered here.

A density spread model was given by Larsen and Sdrensen (1968),
Cederwall (1968), and Hydén and Larsen (1975). Harremdes (1967)
used a similar model to consider the surface field due to a multi-
port diffuser discharge.

Larsen and SSrenseﬁ assumed that there is a uniform thickness
h of surface wastewater field at a location x, downstream from
the release point, and that the density front propagates with a

velocity

Uy = AWgbh . (2.2.5)

The boundary of the surface field will then be defined by the

relationship

Usin = U (2.2.6)
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as shown in Figures 2.2.4(a) and (b), where the coefficient X\ is
chosen as 1.0 by Larsen and Sorensen (1968) and Harremdes (1967),
and as 1.0 to 1.4 by Hydén and Larsen (1975). The angle 6 was

related to the half-width of the surface field by

dB _ tan 6 (2.2.7)
dx
so that for small angles 08
U % = A/zin (2.2.8)

The continuity relationship implies that
2 B{(x) hU = So Q (2.2.9)

so that one gets the half-width equation in differential form as

2 2
B(x) (SB) ) . L%AS_OQ (2.2.10)
x dx - 2U3 e

where A is the dimensionless density difference of the surface field

is related to the value of the discharge fluid as

A=-2 8__"a ] (2.2.11)
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Figure 2.2.4(a) Top view of surface density spread field in a
horizontal current.

R/
¥/
ST S

Figure 2.2.4(b) Central cross section along x direction of surface
density spread field in a horizontal current.
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Equation (2.2.12) after integration becomes

- 3 2/3
B(x) _ 3 x
B - 1+ 7B (2.2.12)
(o] [o]
in which
A2 gA 5, Q
Bo = —_— . (2.2.13)
2u3

The model described here is valid only when the current
velocity does not exceed some maximum value since Bo will
vanish. In the case of low current speeds the
longitudinal spreading velocity is no longer negligible, and
Eq. (2.2.8) is not a good approximation of Eqs.(2.2.6) and (2.2.7).

The width of the field is mainly dependent on the velocity
of the density front, which contains an unknown coefficient .
Harremoes (1967) argued that a constant value of A is doubtful
since the front edge is observed to propagate with a vanishing
thickness, which implies that the front velocity must vanish in
Eq. (2.2.5). To overcome such deficiencies, other models are
necessary.

Rawn and Palmer (1929) proposed the concept of a one-dimensional
transverse spreading field superimposed on a uniform current as
shown in Figure 2.2.5. Howland (1934) suggested that the

experimental results of lock exchange flow by O'Brien and Cherno (1932)
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Figure 2.2.5 Side-spread model for the plume boundary of a surface
wastewater field.
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may be used to predict this side-spread velocity. The same
concept was used by Koh (1976) and Roberts (1977) to determine

the surface spreading from a finite length diffuser discharge.

The same idea was also used by Lee (1971) to predict the surface
0il slick due to an oil tanker accident.

According to this model the downstream width of the surface
spreading field can be approximated by a Galilean transformation
of an unsteady time function describing the plane density front
motion in a stagnant ambient fluid. 1In other words, the sharp
boundary of the spreading field can be described by just changing
the time term t to a space term x/U in the solution for an
instantaneous finite volume release. The details of these
unsteady functions will be given in Section 3.1.

The above approach is a good approximation only when the
longitudinal spreading velocity is negligible compared to the
current velocity. 0the¥wise, a radially spreading front is a
better approximation, as shown in Figure 2.2.6. The sharp
density boundary of a surface wastewater field is in this case
similar to the shock wave curve formed by a moving source. There
is no upstream wedge in the critical or the supercritical flow
case, when the current velocity is equal to or higher than the
shock front velocity. In the subcritical flow case, there will
be an upstream edge formed by the interaction of the current

and the spreading flow.
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¥ x

Figure 2.2.6 Radial spread model for the plume boundary of surface
wastewater field.
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2.3 Gravity-Driven Starting Flows

2.3.1 Formation of Gravity-Driven Flows

Gravity-driven flows occur both in nature and in
engineering practice. They result from unsteady and non-uniform
free-boundary motion caused by a density difference which may
be due to:

(1) A difference in concentration of dissolved solute,
such as in saline wedges, or lock exchange flows as observed
by O'Brien and Cherno (1932).

(2) A difference in temperature, such as atmospheric cold
fronts, land breezes after sundown, and katabatic winds in
mountain valleys as observed by Margules (1906) and Schmidt (1910);
sinking melted ice water advancing on the sea floor, (Sandstrom,
1908), the surface thermal plume of power plant cooling water
discharge from a channel discharge (Scarpace and Green, 1973), and
submerged outfall dischérges (Sonnichsen, 1971).

(3) Suspended solids, such as in an atmospheric dust storm
(a "black blizzard"), turbidity currents of muddy river flows
into reservoirs and lakes (Bell, 1942) or from ocean-barge dredge
spoil disposal (Gordon, 1974), avalanches of powder snow
(Seligman, 1962), and the base surge of misty air from an atomic
bomb explosion in a shallow ocean (U.S. Atomic Energy Commission,

1950).
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(4) Different constituent fluids such as damp gas motion
in mining tunnels (Georgeson, 1942), oil slicks spreading on
the sea surface (Smith, 1968), and dam break flows into a
river channel (Schoklitsch, 1917).

(5) Combinations of the above items, such as muddy river
plumes after rain storm (Bell, 1942), oceanic and estuarine
fronts (Garvine, 1974 and McClimans, 1978), and vaporized
liquified natural gas (Drake and Reid, 1977).

Thus, although there have been many investigations made
of such unsteady flow problems, there is, as yet, no universal
theory that can explain the results obtained. The above
examples are considered in further detail.

2.3.2 Lock Exchange Flows

A lock exchange flow is produced by the removal of
a vertical barrier separating two sections of a channel filled
with fluids with a slight density difference, as shown in
Figure 2.3.1. According to Yih's (1947) laboratory observations,
two wedge-shape surge flows are found moving at the same speed

but opposite direction. The average value of the initial

U
(pz"pl)
2g ———— H
p,tp
2 1

is around 0.47, as shown in Table 2.3.1. The experimental value,

frontal velocity U, in terms of a Froude number, F =

F = 0.47, is 6% lower than the one predicted theoretically by

Yih (1947), or Keulegan (1934), or by O'Brien and Cherno (1932).
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Figure 2.3.1 Lock exchange flow.
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Keulegan (1957) performed several similar experiments,
but with a relatively shorter lock length as shown in Figures
2.3.2(a) and (b). He found the saline front advancing at a
constant velocity which depends only upon the initial water
depth and the density difference of two fluids. The frontal
Froude number, F, varied from 0.42 and 0.50. The average value
was around 0.452, which is very close to Yih's result. O'Brien
and Cherno (1932) also found the underflowing wedge front
moved at a frontal Froude number that varied from 0.46 to 0.59.
Smith (1965) found a variation from 0.50 to 0.60.

For longer travel, as shown in Figure 2.3.2(c), the under-
flowing front presented a head shape with a crest and trough.
The ratio of the two heights, d2/dl’ (see Figure 2.3.3) was
found to be almost a constant, 2.0, independent of the initial
lock size, salinity difference, viscosity of the fluids, and
the length of travel. The density head did not propagate with
constant speed and in fact quickly decelerated. In other words,
the lock exchange flow laws were not applicable. Keulegan (1957)

used another Froude number

2Apfdl

P
Patey
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Figure 2.3.2(a) Lock and channel before removing gate.
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Figure 2.3.2(b)> Advancing lock exchange flow.
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Figure 2.3.2(c) Finite~length exchange flow.
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Figure 2.3.3 Idealized shape of saline front from finite-length
lock exchange flow, after Keulegan (1957).
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to describe the decaying frontal velocity, where Apf is the local

density difference at the front and d, is the trough height near

Udy

the front. When the frontal Reynolds number, Rel=-7T— , was
m

greater than 400, the Froude number F1 was constant (1.07).

Vo is the average value of the initial kinematic viscosity of

1

the two fluids. But when the frontal Reynolds number Rel was
less than 400, the Froude number Fl was a function of the local
Reynolds number Rel

Fy = 0.22 Rell/L* . (2.3.1)

The decelerating velocity was also observed by 0'Brien and Cherno
(1932) for a saline front in a finite-length lock exchange flow.
The surge front from a finite-length turbid water lock
exchange flow was observed by Middleton (1966). He found a
constant velocity initially with the frontal Froude number, F,
varying from 0.404 to 0.51 with an average value of 0.44. Similar
rapid deceleration of the head at a longer travel. distance
was also noted by Middleton.

Shwartz et al. (1973) found that, for both saline and the
turbidity flows from a finite-length lock on a horizontal bottom,
and also with a mild bottom slope, the asymptotic decay of the

frontal velocity U with distance traveled x was

U~ x_l/2 . (2.3.2)
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There is no clear explanation why this rapid deceleration
occurs. Previous investigators have speculated that this may be
due to viscous bottom friction, or side wall friction or the
exhaustion of the supply of sediment caused by deposition of
the suspended material.

A three-dimensional structure to the finite-length lock
exchange flow was observed by Simpson (1972). A series of
cleft and the lobe structures were seen to develop in the
transverse direction to the "nose". The elevated height of the

nose, dn’ was found as a function of frontal Reynolds number,

ud
Re, = =2

3 v
s

o,

-
d

= 0.61 Re3—0'23i0'01 (2.3.3)
2

where Vg is the kinematic viscosity of the moving fluid. The
lobe length between two clefts, £, was found as a function

of Reynolds number,

2 = 7.4 Re0-39%0.2 (2.3.4)
d2 3

Similar experiments for lock exchange flow connected to a
wider channel, were also performed by Keulegan (1958). He found
that a saline front intruding into a narrow channel also moved

at a constant speed. The observed Froude number F was a function

of the width ratio of the two channels. In the limiting case of a
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river channel connected to an open sea, the saline front moved
initially at a faster constant speed than that for a constant
width channel. The average value of the frontal Froude number

F was 0.57. The frontal head characteristics were also found to
be different with the head being flatter and slightly longer.

The ratio of the crest height, d,, to trough height, dl’ was

2!
2.16. The Froude number, Fl’ based on the head velocity and the
trough height, dl’ was 1.04 when the frontal Reynolds number,

ud

Re1 = j;l , was greater than 550. For a frontal Reynolds
m

number, Rel less than 550
F) = 0.206 Re;1/* . (2.3.5)
Similarly, it was found that

F, = —— = = 0.705 (2.3.6)

2 Iy
.
g 5 %2
Ud
when the frontal Reynolds number Re2 =5 was greater than 1200
™
and
= 1/4
F2 0.113 Re2 (2.3.7)

when the frontal Reynolds number Re2 was less than 1200,
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2.3.3 Plane Surface Starting Buoyant Jets

Experimental studies on plane gravity currents have
been performed by many investigators, as shown in Table 2.3.2.
As shown in Figures 2.3.4(a) and (b), most of them produced a
current by discharging horizontally a fluid of density pj onto
the free surface or bottom surface at one end of channel filled
with a homogeneous fluid of density LI This type of density
current is found to move at approximately a constant speed,
even with viscosity drag effects.

The earliest experimental observations were made by
meteorologists modeling atmospheric cold front propagation.
Schmidt (1910) performed model experiments by discharging a
salt solution onto a channel floor. An advancing saline front
formed a nose, whose speed of advance depended on the salinity
difference between the frontal and the ambient fluids, Apn,
and the height of nose, hn' Schmidt (1911) proposed that the

frontal velocity, U, be expressed as
U = XVApnhn (2.3.8)

A is a dimensional constant. A similar results was derived by
Margules (1906) for modeling atmospheric cold front propagation
by equating the change of potential energy to the change of

kinetic energy.
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Forced free surface density currents.

Figure 2.3.4(a)
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Forced bottom surface density currents.

Figure 2.3.4(b)
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Barr (1959) produced so-called plane "forced surface density
currents'" on the free surface of a flume, as in Figure 2.3.5.
He found that sometimes a roller type front developed initially

after the discharge and sometimes a faster moving and pointed
wedge type front occurred, either initially or after some travel.
No clear explanation was given for this behavior although surface
tension effects were suspected.

Lean and Willock (1965) also performed similar experiments
and found the front moved out initially with a nearly constant
speed, with an intensive mixing region behind the front. The
thickness of the surface layer increased away from the entry point,
but downstream the surface layer changed to a uniform depth and
there was little further mixing with the underlying cold water.
The turbulence in the interfacial layer damped out smoothly to
form a sharp interface. Lean and Willock found that a higher
inlet Froude number flgw always lead to a thicker uniform
surface layer and that for an inlet Froude number less than
about 1.0, the thickening of surface layer was slight. The

local densimetric Froude numbers, F —— , were 0.69 to 1.14,

vghh
which generally agrees with the results of Ellison and Turner

2,:

(1959) for the case of negligible mixing.
Almquist (1973) also observed surface density front motion
and the details of the experimental parameters are shown in

Table 2.3.2, and in Koh (1976). The wedge-shape front grew
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first with time t, and then changed to t“/s, as shown in
Figure 2.3.6. The density fronts therefore propagated initially
with a constant speed and then decelerated, which was consistent
with the results of Barr (1959) and Lean and Willock (1965).

Density currents on the bottom were investigated by Bell (1942),
who used saline flows to model the turbid river flow entering a
reservoir. Middleton (1966) performed a series of experiments to
investigate the sediment transport mechanism by the turbidity
currents. A suspended sediment density current "head" was formed
and after an initial acceleration this flowed at an approximately
constant velocity down the sloping floor of a channel. The steeper
the slope is, the longer the acceleration stage will be. Eventually
the flow was decelerated to a nearly constant velocity and the head
shape was preserved. Figure 12 of Middleton (1966) shows nearly
uniform distributions of velocity and layer thickness in the
flow behind the current'head. Keulegan's (1957) results for
density currents were also checked by Middleton. The Froude

number, F, = U , was found to vary from about 0.7

2
2Ap a

pj+oa 2

for the low slope case (Sc==0.005) to about 0.8 to 0.9 for the

high slope case (Sc==0.04).
Similar experiments on a milder sloping floor were also
performed by Braucher (1950). The front propagated with a

constant velocity proportional to the cubic root of the buoyancy

flux discharged, B. The value of this coefficient

2

gl/3
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as shown in Column 9 of Table 2.3.2, is found to vary slightly
with channel slope.

Experimental studies of plane forced density current for a
range of bottom slopes, (0°, 6°, 28°, 50°, 90°), were conducted
by Wood (1965). All experimental results shown that after an
initial period the magnitude of the constant frontal velocity
was proportional to the cubic root of kinematic buoyancy flux
with the coefficient a function of slope angle, This coefficient
had its maximum value for a 50° slope and for the horizontal
bottom the value was close to that observed by Wilkinson (1970).

Keulegan (1946) also performed this type of experiment but
the discharge arrangement, as shown in Figure 2.3.7, lead to a
wedge shape front instead of the head or the cap shape observed
by Middleton (1966), Wood (1965), and Wilkinson (1970). Although
a constant frontal velocity was also observed, the ratio of
frontal velocity to the cubic root of buoyancy flux had an
average value of around 0.700. |

Georgeson (1942) studied frontal motion as a model of gas
spreading in mining tunnels and found that the propagating
velocity of the frontal edge was proportional to the cubic root
of the rate of inflow and varied little with the travel distance
along a sloping gallery roof. The ratios of the frontal velocity
to the cubic root of the buoyancy flux have been re-calculated,
as shown in Table 2.3.2, and vary from 1.06 to 1.18 for methane

gas and from 0.55 to 0.81 for hydrogen.
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Figure 2.3.7 Advancing wedge on the bottom of a channel, after
Keulegan (1946).
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2.3.4 Von Kidrmidn, Prandtl, and Benjamin Theories

Von Kirmdn (1940) made a pioneering theoretical study
of bottom density currents propagating in an ambient fluid of
infinite extent. The essential ideas are repeated in Yih (1965).
Figure 2.3.8(a) shows the nature of a dense current advancing
into a less dense fluid as viewed in a reference frame fixed
relative to the ground. Figure 2.3.8(b) shows the current as viewed
in a moving frame traveling with the front velocity U. 1In this
moving frame the front becomes a stagnation point and the layer
behind the front becomes a stationary layer under a uniform and
steady flow with velocity U.

Applying the Bernoulli equation along a streamline in the
ambient fluid in the neighborhood of the discontinuous interface
between stagnation point X (subscripts)and the far downstream
point Y(subscript®) gives

P
= a2
P =P +g °a h + U (2.3.9)

s 2
where PS and P_ are pressures, Pa is the ambient fluid demsity,
h_ is the thickness of the uniform layer at the far downstream
point Y and U is the horizontal current velocity. Since the current
is assumed steady, the application of Bernoulli's equation
along another streamline on the other side of interface implies

Ps =P +g Py h_ (2.3.10)
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Figure 2.3.8(a) Configuration of a forced plane gravity current

as viewed in a fixed reference frame to the
ground.

Yy

Figure 2.3.8(b) Configuration of a forced plane density wedge
as viewed in a moving reference frame with the
front, after von Kirman (1940).
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where Py is the fluid density of the arrested current. By
equating the two pressure differences in Eqs. (2.3.9) and (2.3.10)

one obtains

——h (2.3.11)

Using free streamline theory, von Kdrmin (1940) also showed
that the inclination angle of the frontal interface, B, must be
at 60° to the horizontal. A similar angle was also derived by
Stewart (1945) and Jeffreys (1952) using inviscid potential flow
theory in polar coordinates, Rannie (1975) also derived the
same angle, 60°, assuming an approximate profile in an
infinitely deep ambient fluid. Von Kirmin (1940) also suggested
that there must be a head at the front which is thicker than
the downstream layer. The head shape of the discontinuity
surface has not yet been determined.

Ambient stratification effects on such currents were
discussed by Kao (1976,1977). According to Kao's study, the
velocity of an intruding uniform current at a level of neutral

density in a stratified environment will be

> (2.3.12)
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_q dp,(2)

where the ambient stratification ¢ = — ——— and p =p (o)
o dz o a

which is to say that the Richardson number

Ri:@:l

G . (2.3.13)

An advancing density current propagating along a sharp
interface between two infinitely deep homogeneous fluids, as
shown in Figure 2.3.9, was studied by Engelund and Christensen
(1969), Moshagen (1973), Thorpe (1973), and Kao (1977). On
the basis of the Bernoulli theorem the front should move at

a speed U,

g ha . (2.3.14)

cO

e

Figure 2.3.9 Internally spreading currents between a stably
stratified interface.
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The limiting case of a surface spreading current when the density
C of the upper ambient fluid is small, i.e., pu/pa and pu/ps-*O.

Then

— g he . (2.3.15)

Prandtl (1952) studied the rate of advance of atmospheric
cold front, as shown in Figure 2.3.10(a). In a reference system
of coordinates traveling at the same velocity as the front,
the moving front is a stagnation point. He reasoned that pressure
must be the same on both sides of the stagnation point so by
neglecting the hydrostatic pressure terms, and equating the

dynamic pressure, he found

%ps (uf—U)2 =%an2 , (2.3.16)
which gives
u p
£ o1 4¢/-2 , (2.3.17)
U ps

where U and u, are the velocities respectively of the front and
the fluid particle just behind the front, Py and p, are the
densities of the ambient air and the cold air, as defined in

Figure 2.3.10(b).
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Figure 2.3.10{a) Advancing mass of cold air; actual flow relative
to the ground, after Prandtl (1952).

\?::.!}\\\\\\\\\\\\\\

Figure 2.3.10(b) Advancing mass of cold air; idealized flow relative
to the front, after Prandtl (1952).
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Prandtl's theory implies that the cold front must advance
at a velocity of about one half the velocity of a fluid particle
behind it, since the density of the frontal air usually differs
little from that of the ambient air. Thus, a roller-type stream
is expected to be formed when the fluid behind the front is
deflected upward at the front in a manner that is similar to
the development of a starting jet flow. For the case of an
avalanche, in which the density of the moving mixture of snow
and cold air is considerably greater than that of the ambient
air, the frontal velocity should become nearly equal to the
fluid particle velocity. Prandtl claimed that the results of
field observations by Koschmieder (1936) supported his
Eq. (2.3.17). These ratios of the front velocity to the fluid
velocity were also recalculated by Berson (1958) and the mean
values varied from 0.50_to 0.62.

However, this simple theory does not agree with the laboratory
experiment results obtained by Keulegan (1957), Ellison and
Turner (1959), Wood (1965), and Middleton (1966). Neither does
it agree with other field measurements of cold fronts by Clarke
(1961). Wood (1965) suggested that Prandtl's neglect of the
hydrostatic pressure terms in the steady layer behind the
front accounts for the error in the result. Benjamin (1968)
also argued that Prandtl's theory can only apply to the transient
problem immediately following the release of a stream of demnse

fluid into a deep expanse of lighter fluid.
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Benjamin (1968) studied the flow produced by a cavity
emptying a two-dimensional box, as shown in Figure 2.3.11(a).
In a reference frame moving with the same velocity as that of
cavity tip, Benjamin considered the steady flow past a cavity,
(as shown in Figure 2.3.11(b)). Benjamin balanced the total
flow force, that is, the momentum flux plus pressure force,
between the approaching and the receding streams and in this
moving coordinate system the cavity tip becomes a stagnation
point where the pressure can be chosen to be zero.

Applying Bernoulli's theorem along the free surface
streamline downstream one obtains

2 2 -
U,“ = 2g(h,-h ) , (2.3.18)

L
for the plane cavity flow, in which U2 is the mean fluid flow
speed downstream where the mean thickness is (d-h2), d is the
total thickness of the box and hz is the unknown head loss
between the approaching and the receding streams.

The total flow force Pu for upstream of the stagnation point
is equal to the sum of the hydrodynamic pressure, - %-anzd,
the hydrostatic pressure,-% pagdz, and the momentum flux,

anZd, i.e.

1 2 1 2
L =3P U%d 50 gd (2.3.19)

2]
"
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Figure 2.3.11(a) Cavity front moving at a constant velocity along a
two-dimensional box.

////////////////[/////4///

| R« R M
— !
g V2

TS S TS S

Figure 2.3.11(b) Arrested cavity front as viewed in a moving frame
with the same velocity of front.
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And the total flow force Pd far downstream is equal to the sum
of the hydrostatic pressure force, %-pag(d-hz)z, plus the

momentum flux, anzz(d-hz), i.e.

_ 2¢4 1 -h )2
Pd = anz (d h2) + 5 pag(d h2) . (2.3.20)

Equating the flow force terms and using the continuity relationship,

Ud = U,(d~h,) (2.3.21)
gives
h,(d-h,)(2d-h,)
U2=g 2 d(dihz) 2 , (2.3.22)
and
vz Bl ip (24~ hp) (2.3.23)

2 ~(,d—hz)(d+h2)

Using Eqs. (2.3.22) and (2.3.23) one has the relevant Froude numbers

1/2
s [a-nya@-n/o
Frl = - = (1-+h2/d) . (2.3.24)

(1-h,)(2-h,/d)(h,/d)
Fr, = % - 2 2 Z ., (2.3.25)
g

2 /o (1-+h2/d)
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and

e U, J(z—hz/dxhz/d)
3 m !- (1 +h2/d)

1
] (l-hzld) . (2.3.26)

Equating (2.3.18) and (2.3.23) gives the head loss term hg

between the approaching and the receding streams as

h.2(d - 2h.)
h, = 2 2 . (2.3.27)
(4 - h,?)

This relationship gives h2==d/2 when h2==0, i.e., no head loss,
and h2< d/2 when there is non-negative head loss. Without an
energy source the case h2> d/2 is clearly impossible.

Benjamin (1968) recommended that all the equations derived
here were still applicable to gravity currents by replacing

Pa~ Pg

g by g', where g'=g¢ ( ) . Benjamin found that the

Pa
equations so derived checked fairly well with the experimental
measurements of lock exchange flows made by Keulegan (1958)
and with measurements of forced gravity currents on a sloping
floor by Braucher (1950), but not with the turbidity flow
measurements on sloping bottoms made by Middleton (1966).

The energy loss Eq. (2.3.27) indicates that the possible
range of the cavity flow thickness h2 is from O to one-half of

the box thickness and the possible ranges of Froude numbers,

are from v2 to-—l for Fr

from 0 to %—for Frz, and from O to V2
Y2

l’
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for Fr3, depending on the depth ratio, , of the receding

h2
d
streams. A fairly good comparison with Benjamin's theory for

a plane propagating cavity flow was given by Ellis and Al-Khairulla
(1974), as shown in Figure 2.3.12.

Benjamin (1968) extended his analysis to cavity flows
propagating in a circular tube. In the limiting case without
any surface tension and viscosity effects, the theory was confirmed
fairly well by the experimental results of bubble motion in a
circular tube by Zukoski (1966).

Using a hodograph transformation, Benjamin (1968) was also
able to derive the actual shape of a free boundary for a two-
dimensional arrested cavity. The inclined angle at the tip was
found to be 60° just as von Karmin found, but no prominent "head"
shape, as von Kiarman suggested, was found.

Benjamin (1968) argued that there must be some separation
and turbulence behind the crest point of the density head in

order to balance the hydrodynamic force between the tip and a

point far downstream. In the limit of infinite depth of ambient

fluid, hz/d-+0, in Eq. (2.3.24), Benjamin has /ETE§'= V2,
which was also derived by von Karman earlier as
,U =2 . Benjamin claimed that although von Karman overlooked

vg 'he

the energy loss, he obtained the right value with wrong reasoning.
Recently, many experimental measurements were made by Britter
and Simpson (1978) and Simpson and Britter (1979) on an arrested

density wedge produced by a continuous release of saline water into
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Figure 2.3.12 Comparison of theoretical solution (solid line)
of Benjamin (1968) with the experimental results
(open circles) of emptying cavity flow in an
expansion gallery of surge tank by Ellis and
Al-Khairulla (1974).
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uniformly flowing fresh water. The wedge angle was found to be
around 40 5°, which is smaller than the 60° predicted by

von Kirman and others. Much higher values of the Froude numbers
than those predicted by Benjamin's theory were found for the
range of the relative depth, 0.0<<h2/d< 0.3. The trend of the

experimental results is that the Froude number will go to a

hy
-

rather than the value, Y2 , predicted both by von Kirmin and

large value for the case of vanishing relative depth, 0 ’

Benjamin. The difference between the experimental results by
Britter and Simpson (1978) and the theoretical results by

Benjamin is probably due to the downstream source condition.

2.4 Previous Analysis of Density Front Propagation

2.4.1 Spreading in a Homogeneous Environment

In Section 2.3, most of the density fronts discussed
belonged to the class of lock exchange flows or to the plane
forced surface density currents. Most were observed to propagate
with constant speed and any deceleration was believed due to the
effect of viscosity. The influence of other aspects of these
problems, such as the source condition (a finite volume release
or a continuous steady discharge), or radial motion, requires
further discussion.

A force scale analysis was used by Fay (1969,1971) to study
plane and radial spreading of an oil slick on the sea surface.

He concluded that an oil front spreading from a finite volume
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0il spill will be first driven by an unbalanced horizontal pressure
force due to the buoyancy and then later by surface tension.

The spreading is retarded at first by inertial forces and then by
the viscous force associated with an unsteady boundary layer

growth in the ambient water. A similar force balance method

was previously used by Langmuir (1933) to examine the extent of

an oil film lens.

Chen and List (1976) used the same methods to analyze the
frontal motion due to a steady submerged buoyant jet discharge
and also that resulting from a finite volume surface release of
miscible buoyant liquid. Two regimes were found for both cases,
each with different time histories corresponding to a buoyancy-
inertial spread and a buoyancy-viscous spread. In the finite
volume release case the inertialdensity front grows at the same
rate as that for a spreading oil slick, but the results are
different in the viscous regime. The same force argument can
be used to predict oil front motion resulting from a constant
discharge spill and the results are quite different from the case
of a finite volume release, (Waldman et al. (1972) and Chen (1975)).

In order to solve these problems for more than just the
frontal position function, several direct numerical calculations
of the Navier-Stokes equations have been used. Daly and Pracht
(1968) and Vasiliev (1975) considered lock exchange flows,

Kao et al. (1977,1978) plane forced surface density currents,
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and Harlow and Welch (1965) and Sokolov (1972) some miscellaneous
problems. Another approach, potential flow solution, was used
by Penney and Thornhill (1952), to determine the inertial phase
of flow of a squatting liquid column which was a different
density from that of ambient fluid. Similar method was also used
by Pohle (1952), for the dry-bed dam-break flow. Numerical
calculations were performed by Meng and Thomson (1978) and Meng
(1978) to study a mixed region collapsing in a stably density-
stratified interface between two homogeneous fluids.

Nonlinear internal shallow water wave equations were developed
by Penney and Thornhill (1952) to study the base surge flow due
to an atomic bomb explosion in a shallow ocean. These long wave
approximation equations were also used by Abbott (1961,1968)
and Hoult (1972) to study inertial spreading of oil slicks.
Numerical computations of the equations using the method of
characteristics were performed by Penney and Thornhill (1952),
Abbott (1961,1968) and Reid (as reported by Ichiye, 1972),
but problems were found in specifying the source conditions and
the initial and the boundary conditions at front. Other self-
similar solutions of the long wave equations were used by Hoult
and Suchon (1970), Fay (see Liang, 1971), and Fannelop and
Waldman (1972) for finite volume oil spills.

Recently, Mei (1966) and Buckmaster (1977) considered the
spreading flow of a sheet of viscous liquid down an inclined

plane. The special case involving spread over a horizontal plane
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was considered by S. H. Smith (1969b). He obtained similarity
solutions to appropriate to an instantaneous point source and
found that a liquid front moves over a horizontal bed with a
decelerating velocity proportional to t'L*/5 for plane flow and
proportional to t"7/8 for radial flow.

More general solutions including varying source conditionms
are presented in the next chapter.

2.4.2 Spreading in a Linearly-Stratified Environment

Numerical studies for interflowing density fronts
were made by Wessel (1969), Padmanabhan et al. (1970), Young and Hirt
(1972), Vasiliev et al. (1972), Bell and Dugan (1974), Dugan et al.
(1976), and Cerasoli (1978), as 1isted in Table 2.4.1. TFor the so-called
"principal stage" region, Manins (1976b) and Kao (1977) showed
that a plane submerged density front resulting from a volume
of homogeneous fluid collapsing at a neutrally buoyant level in
a linearly stratified environment will increase its horizontal
length scale in proportion to tl/z. However, the viscous long
wave approximation by Padmanabhan et al. (1970) showed that it
will increase as tl/6 when time is very large. By an inverse
analogy to selective withdrawal theory, Imberger et al. (1976)
obtained different power laws for the plane intrusion layer.
They found that in the absence of molecular diffusion, the
interflowing wedge due to a horizontal slot jet discharge at a
neutral buoyancy level in a linearly density-stratified environment

will grow in proportion to the time t in the inertial-buoyancy
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2.4,1 Summary of previous theoretical studies of a plane
(n=0) or a radial (n=1) submerged density front
spreading in a linearly density-stratified environment
due to a finite volume release (m=0) or a continuous
discharge (m= 1) at a neutral level.

Bumerical Analytical Asymptotic form of Valid
Author 1| Ssolution Solution R(O)/R Domain Note
Bell and Dugan 13 ] 2,2
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(1976) 0 | 0 | pifference - ~ 1+ N2¢2 Time
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ie swall
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e
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8
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region, and then in proportion to t5/6 in the viscous-buoyancy
region. A linear function of time was also obtained by
Manins (1976a) using a different approach. Mei (1969) found
by using internal long wave approximations that a finite volume of
homogeneous fluid collapsing initially in a linearly stratified
ambient fluid will propagate asymptotically in proportion to t.
Although Manins (1976a,b) obtained two different power
laws for interflowing fronts for two different source conditions,
he (1976b) suggested that there must be some dynamic similitude
between them. However, there is not, as yet, a unified theory
which can show how the wide variety of power laws for interflowing
fronts are related. A simple order of magnitude analysis will
serve this role in the next chapter.
General self-similar solutions of long wave approximation
are also presented for the inertial and the viscous phases of
interflowing fronts, inéluding the initial stage, the principal

stage, and the final stage.

2,5 Further Mixing of Surface Spreading Flow

2.5.1 Description of Spreading Flow

When a round or slot buoyant jet flow reaches the
free surface or the bottom, it may still have residual buoyancy
and horizontal momentum which will cause it to spread out as
a horizontal buoyant jet. For instance, in the two-dimensional

case, Jirka and Harleman (1973) found that a two-dimensional
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surface spreading flow moved out from the transition zone at

an initial densimetric Froude Number Fi around 2.6, where

F, = > Uy and hi are respectively the mean

velocity and the thickness of the spreading flow at the boundary
of the transition zone, and the density of the spreading fluid
is Ppy-

Any residual horizontal momentum flux will drive the diluted
water away from the surface intersection point and produces a
secondary entrainment of ambient fluid during horizontal spreading.
By contrast, residual buoyancy will gradually erode the capacity
of the spreading fluid to mix with the ambient fluid and will
force the less dense fluid into a thinner floating layer.
Eventually, interfacial mixing will be reduced to a negligible
amount and the interface will be sharpened. A two-layered
stratified flow will be formed.

The initial region of the surface spreading flow was found
by Jirka and Harleman to have rapidly increasing depth while
the local densimetric Froude number decreased to a lower value.
Intensive interfacial mixing with the ambient fluid occurred
inside this region. Jirka and Harleman (1973) and Lee et al.
(1974) suggested that this region formed an internal hydraulic
jump. List (1977) preferred to call this increasing depth zone
surface jet mixing rather than an internal hydraulic jump,

since although the Froude number of the spreading flow is
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reduced by an interfacial mixing process in the absence of a
downstream control there can be no stably hydraulic jump.
Some velocity measurements were made by Murota and Muraoka

(1967) and Anwar (1972) and excess-density or temperature
measurements by Anwar (1972) and Pryputniewicz and Bowley (1975).
Similar flow structures have been observed in other
experimental studies of surface buoyant jet discharges, such as by
Wood (1965,1967), Wilkinson and Wood (1971), Wilkinson (1970),
Stefan (1972) in the plane jet case and Jirka et al. (1977)
in the radial case. An intensive interfacial mixing zone was
followed by a two-layered stratified flow where vertical
entrainment was almost negligible. The plane jet mixing was
found to be sensitive to changes in the discharge condition
as well as in the downstream control. An internal hydraulic
jump does occur in this jet mixing zone when the entrainment
length is controlled by a broad-crested weir downstream
(Wilkinson and Wood, 1971).

2.5.2 Surface Buoyant Jet Models

A radial surface jet model by Chao (1975) simulates
the initial mixing zone of the surface spreading flow created
by a vertical single port discharge. Following the wall jet
solution by Glauert (1956), Chao derived the mean velocity
field of the radial surface jet for both laminar and the
turbulent flows. He found that there are similarity profiles

for the radial velocity, and that the maximum mean surface
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velocity decays in inverse proportion to the radial distance
from the stagnation point, while the surface jet thickness
increases linearly with the radial distance. Similar results
for radial surface jet flow and surface buoyant jets were also
derived earlier by Koh and Fan (1970) using an entrainment
theory approach. However, no information about the surface
jet dilution was presented.

An analytical solution for surface jet mixing, for both
plane and radial surface jets, will be presented in the next

chapter.
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CHAPTER 3

THEORETICAL ANALYSIS

3.0 1Introductory Note

In this chapter theoretical solutions describing gravity-
driven surface and subsurface spreading currents, in both
homogeneous and linearly density-stratified environments, due
to a variable rate source will be presented. An order-of-magnitude
analysis by a force-balance method is used to derive a series
of asymptotic time functions for both the inertial and the
viscous spreading regimes. Self-similar solutions of non-linear
long wave equations are also used to examine these asymptotic
formulae. For inertial spreading the solutions analogous to
blast wave propagation and to gas cloud expansion are derived
for the inertial-buoyancy spreading region and the initial stage.
For viscous spreading a éolution analogous to the '"power-law"
diffusion mechanism is derived. Solutions of surface jet mixing
in the momentum jet regime are also derived on the basis of
Prandtl's assumptions. Dimensional analysis will be used to consider

the initial condition effects on the spreading mechanisms.

3.1 Force Scale Analysis for Density Currents

3.1.1 Free Surface Spreading Currents

Suppose there is a pool of liquid with uniform density

Pg floating on a liquid of infinite depth with a uniform density
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Py (psj<pa), where the dimensionless density difference ratio A

is (pa-ps)/ps , as shown in Figure 3.1.1. At time t after

Q
RO —
r 1 Ah(t)
| 1)
7 A
| N

Figure 3.1.1 Idealized sketch of free surface spreading density
currents,

starting the discharge Q; the average thickness of the spreading
pool is h=h(t) and the pool radius R=R(t). Suppose the vertical
acceleration is very small in comparison to the horizontal one,

so that the pressure distribution will be hydrostatic. When

the floating layer is in hydrostatic equilibrium in the vertical
direction, the average super-elevation of the floating pool

over the free surface is Ahkt), which can be simply derived

from the hydrostatic assumption. Assume that there is no
molecular diffusion and a negligible amount of mixing through the

interface, then the total volume of the surface layer, which is
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proportional to (1+ A)hR , is fixed by the discharge. If the
integrated source discharge is th, then the volume conservation
equation is simply

q t® ~ ™M g (3.1.1)

in which n is a parameter that denotes the plane (n=0) and the
radial (n=1) cases, Q is the discharge rate, and m is a source
parameter that denotes an instantaneous finite volume release
(m=0) or a continuous steady source respectively (m=1). Q
represents a finite volume V when m= 0, and a constant discharge
rate Q when m=1.

If the surface tension force is negligible, the driving
force,,Fp, at the plume front is the resultant of two horizontal

pressure forces F_ and FA’ which are directed outwards and inwards

S

at the front. These are

Fg v r® o gh? (1+4)2 (3.1.2)
F, ~ R" p_gh? (3.1.3)
A a
and
- _ n. .o
FP = FS FA v R h pSgA (1+4) . (3.1.4)
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There are two forces retarding the spreading plume: one
is the inertial FI which is proportional to the product of the
plume mass with the acceleration
n+2

F_ pShRn+l(R/t2) = p_hR

I /e2 (3.1.5)

and the other is the viscous force. The viscous force may arise
from two different mechanisms of interfacial shear. For example,
an oil slick is usually very thin and its kinematic viscosity Vg
is much higher than that of the ambient fluid v, underneath the
0il layer, thus the viscous force FVA for a spreading oil slick
can be approximated by the boundary layer shear in the ambient
fluid, and

n+l n+2

F.,. v R Qava(R/t)/él = R

A pa\)al/z/t3/2 , (3.1.6)

where 61 is the Rayleigh's unsteady laminar boundary layer
thickness fva . For miscible fluids, the viscous force is
dominated by the fully developed boundary layer in the plume

fluid itself and we write

I p v (R/t)/h = rH2

VS pSvS/t h . (3.1.7)



82

From the comparison of the two possible retarding forces two
different asymptotic regimes for the starting plume can be
distinguished. 1In one, the inertial force dominates the viscous
force and in the second, the viscous force is predominant. By
balancing the driving force with either of the aforementioned
retarding forces and introducing the average thickness h from
the continuity relationship (3.1.1) the possible growth rates

are derived. For a buoyancy-inertial plume

1 m2
R(t) n (gaQ)™" ™ (3.1.8)
with an average thickness
2
‘Qn+3
h§t> ~ s Y e— . (3.1.9)
(gA)n+3 ¢ n+3
For a miscible buoyancy-viscous plume
1
= 3mtl
3\ 3n+5 —=
R(e) o (BA ¢30%3 (3.1.10)

s

and its average thickness
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_2
3n+5
h(t) ~ %ﬂ . (3.1.11)
3n+5 n-Jmtl
<g_A_> . 30¥5
\Y

s

The inertial-buoyancy spread regime is therefore identical with
that of a spreading oil slick. However, a different growth
history is found in viscous-~buoyancy spreading regime due to
the different mechanisms of interfacial shear. The equations

equivalent toEqs. (3.1.10) and (3.1.11) are, in this regime,

1
) 2(n+2) 4mrt3
R(t) o (88 ¢ 4(0t2) (3.1.12)
v 1/2
a
and
1
n+2
h(t) ~ fl . (3.1.13)
Z;—(I}TZ_)— 3n-4mt3
(%A) o . 4(at2)
a

More details of spreading oil slicks are given in Fay (1969,1971),
Hoult (1972), and Buckmaster (1973).

It is interesting to note that, from Egqs. (3.1.8) and (3.1.10),
the starting surface plume does not necessarily propagate with a
constant velocity except when m=n+1 (with no viscous effect) and
when m= (3n+4)/3 (with a viscous effect). Table 3.1.1 gives

the surface starting plume formulae for two conventional discharge



84

Table 3.1.1 Asymptotic formulae for starting surface plumes. (Chen, 1975).

ritem Source Inertial Viscous
Case condition plume plume
Instantaneous 3\1/5 1/5
2 AV
finite volume R(t)ﬁl(gAV)1/3t /3 R(t)ma(gg——) t
release S
Plane m=0
n=0
Steady 203 1/5 4/5
continuous R(t)nJ(gAq)1/3t R(t)'b(ssg—) t
discharge s
m=1
Instantaneous 311/8 1/8
2 AV
finite volume R(t)ﬂa(gAV)l/4tl/ R(t)’h(gs——) t
release s
Radial m=0
n=1 Steady 3/4 Q3 1/8 1/2
continuous R(t)ﬂ:(gAQ)l/4t / R(t)'»(gsg_) t
discharge 8
m=1
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conditions, corresponding to m=0 and m=1 for both plane and
axisymmetric cases. The relevant length and time scales for
normalizing experimental data as derived from Egs. (3.1.8) and
(3.1.10), are shown in Table 3.1.2. The frontal propagation
velocities can be simply derived by differentiation. For the
inertial regime the front velocity of the plume R decays along

with frontal travel distance according to

1 m-n-1

RR) ~ (gaQ)™t2 R T2 ) (3.1.14)
In the viscous regime
1
3 3mt+l  3m-~3n-4
R(R) ~ 3%9— g Smtl : (3.1.15)

s

These are shown in Tablé 3.1.3 for the cases in which n=0, 1 and
m=0, 1.

An alternative approach to the above, used by Koh and Fan
(1970), employed the hydrodynamic drag force FD’

n dr \2
FD U Pa R h (EE) (3.1.16)

and the interfacial shear force F

IS

€ [(dR nt+l n+l
FIS v N (E) (R - Ro ) (3.1.17)
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Table 3.1.2 Length and time scales for surface density spreading.

Item Source Length Scale Time Scale
R

Case condition 1 1

Instantaneous
1/7 u 1/7

finite volume gAV5 \'
release (vsz (gA)ﬁvS3

Plane m=0

n=0 Steady
continuous 2 sz
discharge (g0Q) *° vg (g8Q) 273 vy

m=1

Instantaneous 1/3
finite volume AVS 1/12 \'/ /
release “sz ghvg

Radial m=0

n=1
Steady 5 1/8 1/2
continuous (—ll—g) (—Jl——)
discharge ghvg ghvg

m=1
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Table 3.1.3 Asymptotic formulae for surface density spreading front
velocity as a function of frontal distance.

Item Source Inertial Viscous
Case condition plume plume
Instantaneous : _ o 3\ _
finite volume ﬁ(R)“'(gAV)l/ZR Hz R(R)QJ(géY_)R 4
release s
Plane m=0
n=0
Steady 311/4 ~1/4
continuous ﬁ(R)“f(gAQ)1/3 R(R)'b(gAQ ) R /
discharge 8
m=1
Instantaneous 3
- ° v -
finite volume ﬁ(R)ﬂ,(gAv)l/ZR_l R(R)IM(E%"_)R 7
release
Radial m=0
n=1
Steady _ 203 1/4 1
continvous | R~ (g8 /373 | Ry o (ng ) R
discharge s
m=1
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to express the two forces resisting spreading, Here € is an
effective viscosity coefficient and R0==R(O). Since the dimensions
of these two resisting forces, in Eqs. (3.1.16) and (3.1.17)

are homogeneous respectively with those of the previously derived
inertial force FI and viscous force FVS’ the same results for
frontal motion, as shown in Table 3.1.1, can be derived from this

approach (see Koh (1976)).

3.1.2 Bottom Spreading Currents

A bottom starting plume can be viewed as an inverted
version of the free surface plume without super-elevation Ah.
The two retarding forces are the same as for the free surface
case since the inertial force is still involved and the interfacial
shear dominates the wall shear. As shown in Figure 3.1.2 the
driving force FP' for a starting bottom current is the resultant

of two pressure forces F_ ' and F

14

'S A’
Fg' v R" o gh? (3.1.18)
F,' v R® p_gh? (3.1.19)

and FP'==FS'-FA' s0 thatFP‘ has the same form as Eq. (3.1.4):

Fp' n RE o h? gh (3.1.20)

and the free surface results may be applied directly.
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Q

~— R(t) —

' !

' t
. ,% h(t)

oo

S/ S

Figure 3.1.2 1Idealized sketch of bottom spreading density
currents.

on
—]
”’

Y-

2h(t)

Figure 3.1.3 A homogeneous layer intruding at a neutral buoyant
level into the linearly density-stratified ambient
fluid.
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3.1.3 Internal Density Currents

The driving force for submerged density currents is

the unbalanced horizontal pressure force F It is assumed that

P
the internal current is homogeneous and is spreading at a neutral
density level in a linearly stratified environment, as shown in
Figure 3.1.3; the density difference between the current and

the ambient stratified fluid is a linear function of depth.

The total pressure force FP in this case is proportional to the

cubic power of the average thickness of the current rather than

the square power as for surface and bottom spreading currents, i.e.

dp (2) n
Fp v g —3— h3(t) R (t) . (3.1.21)

In the two dimensional case (for which n=0), the total pressure

d pa(Z)
dz

The retarding forces for submerged density currents are

force is = ¢ h3, as derived by Kao (1974,1976).

12
the same as for free surface and bottom currents, i.e. the
inertial force FI and the viscous force FVS as defined in
Eqs. (3.1.5) and (3.1.7).

Equating the pressure force FP with the inertial force
FI and cancelling the average thickness term h with the aid of

the continuity relationship (3.1.1) enables the inertial

spreading front to be expressed as a function of time t as



91

1 o+l
R(L) ~ (NQ)n+2 tn+2

since N = Yge. Equating the pressure force FP to the viscous

force FVS’ gives the radius of the viscous spreading front

1
——— 4mtl
24 2(2n+3) YT
R(t) ~ N_\)g__ t2(2n+3)
S

Table 3.1.4 gives specific results for the various values of

(3.1.22)

(3.1.23)

m and n. The average thickness h(t) for the inertial spreading

wedge can be written as

A
n+2

Q
B O s ey

Nn+2 ¢ n+2

and for the viscous spreading wedge as

1
Q2n+3
h(e) ot ntl-2m
w2 |23 203)
v
8

.

(3.1.24)

(3.1.25)

The length and the time scales for normalizing experimental

data are given in Table 3.1.5.
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Table 3.1.4 Asymptotic formulae for submerged density spreading of
an intrusion layer in a linearly density-stratified

environment
Item Source Inertial Viscous
o Submerged Submerged
Condition
Case Spread Spread
Finite 2v4 1/6
Plane Volume 1/2.1/2 N 1/6
n=0 Release R(t) ~ (V) t R(t) v t
m=0 s
Steady 2 4 1/6
Continuous ' 1/2 N7Q 5/6
Discharge R(t) v (NQ) t R(t) ( v ) t
s
m=1
Finite 2 4 1/10
Radial Volume 1/3.1/3 NV 1/10
n=1 Release R(t) ~ (W) t R(t) ( v ) t
s
m=0
Steady 2 4 1/10
Continuous 1/3.2/3 N°Q 1/2
Discharge R(t) ~ (NQ) t R(t) ( vs t

m=0




Table 3.1.5 Length and time scales of submerged density spread
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for normalization.

Item Source Length Scale Time Scale
Case Condition Rl t]_
Instantaneous
finite volume 3 1/4 1/2
NV \Y
release —
\)s N vs
Plane m=0
n=0 Steady
continuous Q3/2
discharge =77 Q
N \)S N v
m=1 s
Instantaneous 1/7 1/7
finite volume NV3 V2
release \)S FLON:] vs
Radial m=0
n=1 Steady
continuous 3\ 1/5 2 \1/5
discharge — Q
_ Nv 2 N4y 3
m=1 s
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3.2 Similarity Solutions for Inertial-Buoyancy Density Curreénts

The force scale analysis presented in Section 3.1 provides
order of magnitude estimates of frontal trajectories for unsteady
and non~-uniform flows. However, in each power law growth rate
there is an unknown coefficient that must be determined from
experimental studies. Moreover, all of the fluid was assumed
to move at the frontal velocity and the spreading layer thicknesses
were assumed to be uniform. In this section two generalized
shallow-water equations will be used to describe the inertial-
buoyancy force balance for surface and the submerged density
spreading flows in more detail. Taylor's (1950) self-similar
technique for describing blast wave propagation is extended and
used to find the unknown coefficients and the non-uniform
features of the flows. The series of asymptotic formulae
that were derived by the.force scale analysis will be determined
directly from the equations of motion.

The effects of finite dimensions will be considered for
both the surface and the submerged spreading flow produced by a
finite volume release, and the self-similar solutions
are found to describe the early stage of flow before '"shock wave"
type propagation develops. This solution is similar to the

expansion of a suddenly released finite volume of gas.
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Theoretical results developed in this section will be compared with

previously published numerical and experimental data in Chapter 6.

3.2.1 Longitudinal Internal Shallow-Water Wave Equations

We consider the two flow configurations as shown in
Figures 3.2.1(a) and (b). At time t, there is a spreading
pool with a horizontal extent R(t) and layer thickmess h(r,t) at
a radial distance r. If the horizontal length scale is much
larger than the maximum vertical length scale, then the vertical
acceleration and velocity will be smaller than the corresponding
horizontal values. The pressure distribution is therefore
hydrostatic and the horizontal velocity u(r,t) is independent
of the vertical direction z. At hydrostatic equilibrium the

thickness of the surface pool above the water surface is

8(r,t) = A h(r,t) (3.2.1)

where the dimensionless density difference A = (pa-ps)/ps.

For a submerged spreading flow in a linearly density-stratified
medium, as shown in Figure 3.2.1(c), the flows are assumed
symmetrical. The coordinate system is chosen such that the
origin is at the point of symmetry and h(r,t) represents only
one-half the thickness of the submerged spreading layer.

Using a long-wave approximation, two generalized shallow~
water wave equations can be derived for these spreading flows

(see Appendix A). First, the continuity equation is
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S(r,t)

b

<:$

R(t)

\pi

Figure 3.2.1(a) Coordinate system for free surface spreading flows.

Z

A

R f—R(1t)

/g h(r,Y) r
4
VAV A S GV SV S v S G & v BV 4V GV BV SV AV AV A v 4y Sl

Figure 3.2.1(b) Coordinate systems for bottom spreading flows.

Figure 3.2.1(c) Coordinate system for submerged density flows.
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o2

8h 1
t n

(r"wh) _ 3h _ 3(uh) _ nuh
: {ruh) _ dh _ 3(uh)
r

3T ot ar T ¢ -0 (3.2.2)

and the horizontal momentum equation is

i oh _
+ ghsht === 0 (3.2.3)

8u , ,8u
ot or

where the parameter n denotes the case of plane spreading flow
for n=0 and radial spreading flow when n=1. The parameter
1 =0 denotes surface and bottom spreading flows in a uniform
environment. Submerged spreading flow in a linearly density-

stratified environment is denoted by i=1.

A for i=0

* 1 dpa . _
—— —— for i=1
ps dz

By adding Eq. (3.2.2) multiplied by u and Eq. (3.2.3)

multiplied by h the momentum equation can be rewritten as

(rnuzh)
or

3 (uh)
3t

i+l 3h _
or

1
+ = 0 (3.2.4)

r

+ gAih

Equation (3.2.4) is actually an energy equation for shallow-

water waves,
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Equations (3.2.2) and (3.2.3), with i=0 and n=1, were
derived by Penney and Thornhill (1952) to study the base surge
mist-air flow formed by an atomic bomb explosion in shallow water.
Equations (3.2.2) and (3.2.3), with i=0 and n=0, are the
general form of dam-break flow equations without friction effects,
in which case the relative density difference A is unity.. The
same shallow water wave equations, with i=0, were used by Hoult
(1972) to study inertial spreading of an o0il slick on the sea
surface. Equations (3.2.2) and (3.2.3), with i=1 and n=0,
were used by Mei (1969) to study the initial stage of collapse
of a plane mixed region in a linearly density-stratified fluid.

3.2.2 Gas Dynamics Analogy

It is well-known (see Courant and Friedrichs (1948),
pp. 32-35) that the two shallow-water wave equations (3.2.2) and
(3.2.3), when i=0, are similar to the equations of one-dimensional

unsteady isentropic gas-dynamics.

sc U, st =0 , (3.2.5)
39—+u—33+°—2@—=0 (3.2.6)
ot or p or

when the specific gas constant y is equal to 2, in which the sound
speed c=vYdp/dp and the parameter n denotes the plane, cylindrical

or spherical flow respectively when n=0, 1, and 2.
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Following the study of Penney and Thornhill (1952), the
characteristics equations for density spreading flows can therefore

be written as

i+l
" A ud/gd.h
9 i+l ) 9 2 i+l > + B ! i _
[_at + (u + gAih )—] (u + gAih t 0

or i+1 r
(3.2.7)
The Riemann invariants along the characteristics curves,
dr i+l
_— = +
Eriall gAih (3.2.8)
are
2 1+1 t “VgAihlﬂ
u x i1 gAih t n J R E— dt = constant s
(3.2.9)
or
i+l
s T u ghA.h
ux Tg~ gA.h1+1 +n J = dr _ constant
i+l N
utYgh h1+l
- (3.2.10)

With suitable initial and boundary conditions these equations
may be solved numerically except when a jump discontinuity

develops due to the non-linearity.
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Similarity solutions for the blast wave propagation produced
by an atomic bomb explosion were introduced independently by
Taylor (1950), and Sedov (1957). ZLater, this self-similar
technique was extended by several investigators, (see Rogers
(1958), Freeman (1968), Dabora (1972), Pitkin (1977)), to solve
the more general problem of the shock wave produced by a variable
rate of energy release. Taylor and Sedov found that shock wave
front propagated with a velocity that depends only on the specific

energy release. The trajectory of the front is described as

L m+2

n+3 —=
tn+3

R(t) = S(y,m,n) (E) (3.2.11)

0
where the proportionality coefficient S(y,m,n) is found from an
energy conservation condition. The similarity distributions for
particle velocity, densiéy and pressure were solved analytically
and numerically.

Sedov's self-similar technique was used by Hoult and Suchon
(1970) to study the inertial phase of spreading of a plane oil
slick formed by the release of a finite volume of o0il. However,
their computed results are not in agreement with their
experimental results. Later, Hoult (1972) revised the technique
to use a different independent self-similar variable but problems
were still met in specifying the boundary conditions and the
similarity profile for the spreading layer thickness was not

given for the radial spreading case. Similar difficulties were
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also encountered by Fay (see Liang, 1971) and Fannelop and Waldman
(1972).

Here, we use Taylor's self-similar technique, as extended
by Rogers (1958), to resolve the general problems of a variable
flow rate buoyant~discharge. However, first we must derive
the correct Taylor's self-similar formulae and the necessary
boundary conditions at the front.

3.2.3 Derivation of Self-Similar Formulae

Two methods of derivation will be given here. The
first one is the method of separation of variables and the
second one is the Taylor's method used for the blast wave
propagation.

3.2.3.1 Method of Separation of Variables

Assume that the two unknowns, u(r,t) and h(r,t)
in the shallow-water wave equations, have solutions in the

following forms:

u(r:t) Q(t) d)(g) » (3~2'12)

1]

h(r,t) = T(t) H(E) . (3.2.13)
where the dimensionless variable £ is defined as r/R(t), and

R(t) is the frontal position at time t, Q(t) and T(t), which will

be determined later, are two unknown scale functions for mean

velocity and spreading layer thickness, respectively.
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Substituting the above into the shallow-water wave equations

(3.2.2) and (3.2.3), one obtains

o [+d
RT ., _R ' 1 ' n¢H _
o7 H 2 EH' + ¢H' + ¢'H + E (3.2.14)
and
i+l

2 o gh, T .
R—Q __13 1 1 ____1___ ? =
2 g BTt e ¥ —— HH' =0 (3.2.15)

in which "°" denotes the differentiation of a function with
respect to time t and "'" to the dimensionless variable £,

In order to have the assumed form of solutions given in
Eqs. (3.2.12) and (3.2.13), one must let four unknown functions,
ﬁ/Q, Rﬁ/QZ, R%/QT and gAi Ti+l/92’ be dimensionless. Choose
unity for the first one ﬁ/Q. Then, the velocity scale will be
the front velocity and tﬁe similarity assumption for mean velocity

will become
u(r,t) = Q)6(E) = R(£)6(E) . (3.2.16)

o
The second function RQ/Q? will therefore automatically become

a dimensionless number A that we call the decay coefficient,

_RE _ R() R(p)

A
Q2 R2(t)

. (3.2.17)
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There are two kinds of self-similar solutions to choose
for the spreading layer thickness. The first one is to set

i+l

the fourth function gAi T /92 to unity. That is to say that

the length scale for the spreading layer thickness will be

L o T+1
T(t) = (5§L> - <53i51> i (3.2.18)

o
In this case the third function RT/QT will automatically become

a constant value that is related only to the decay coefficient, i.e.

A , (3.2.19)

and the similarity assumption, Eq. (3.2.13) will become
1

. %o i+l
h(r,t) = <EE§EQ-) H(E) . (3.2.20)
i

o
The second solution is to set the third function RT/QT to
a constant value a, i.e.

o4
RT _RT _oT_, | (3.2.21)

where the dimensionless frontal position n==R(t)/Ro, Ro is the
initial frontal length R(0). From Eq. (3.2.21) one has the

length scale for the spreading layer thickness
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T(t) = TC0) n*(t) , (3.2.22)

where T(0) is the initial length scale of the spreading layer
thickness. By choosing T(O)==h1, then the second solution for

the spreading layer thickness becomes
h(r,t) = hyn’(t) H(E) , (3.2.23)

in which o is an unknown constant and h1 is an initial layer

scale thickness. For this case the fourth function, gAiT s

will be a dimensionless number that is related only to the decay
coefficient A.

The first set of similarity solutiomns, Eqs. (3.2.16) and
(3.2.20), indicate that .only the frontal velocity plays the
role in defining the spreading layer thicknmess. In the second
set,Eqs. (3.2.16) and (3.2.23), only the relative frontal length
n is important. The first set thus is used to describe the
far~field gravitational spreading problem where the front is
so displaced from the origin of motion that the initial dimension
is no longer important but not so far that viscous effects
are negligible. The second set of solutions is appropriate

for the near~field problem and will be considered in Section 3.2.7.
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The first set of similarity solutions can also be derived
by Taylor's (1950) approach to solving the blast wave propagation
as extended by Latter (1955).

3.2.3.2 Taylor's Method

Assume that two unknowns, u(r,t) and h(r,t),

have similarity solutions of the following forms:
k
u(r,t) = R7(£)¢,(E) , (3.2.24)
h(r,t) = R*(£)H (5) , (3.2.25)

where k and 2 are two unknown integers that will be determined
later, ¢l ahd Hl are two unknown functions that are also to be
determined later.

Substituting above two assumptions in the shallow-water
wave equations (3.2.2) énd (3.2.3), one gets

néyHy

-k 2 ' ' ' =
R R(,Q.Hl- EHl ) + (¢1 H1+ ¢1H1 +——~°) = 0 (3.2.26)

and

(H+1)2-2k

RK R(kéy - £6;") + ¢;6," + gA, R =0 . (3.2.27)

In order to homogenize both Eqs. (3.2.26) and (3.2.27) into

dimensionless forms, one has to set
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RER=a , (3.2.28)
(i+1)2-2k =0 , (3.2.29)
and assume

$,(8) = A¢(%) (3.2.30)

1

i+l

_ [ A2

Hl(E) = (;ﬂ;{) H(E) (3.2.31)

in which A is a dimensional constant, and ¢(£) and H(E) are two
dimensionless similarity functions. From Eqs. (3.2.24), (3.2.25),
(3.2.28), (3.2.29), (3.2.30), and (3.2.31) two similarity

solutions are derived as (see Appendix B for details of derivation)

ulr, ) = R(£)$(E) (3.2.16)
and
1
o) i+l
_ (& (t))
h(r,t) < gAi H(E) . (3.2.20)

The two similarity functions ¢(£) and H(E) are the dimensionless
distributions of the relative mean particle velocity and the

local Richardson number behind the front. For the uniform
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environment case where i=0, the local Richardson number is

clearly defined as

H(Z) = Ri(r,t) = BAR(E.t) (3.2.32)
RZ(t)

and for the linearly stratified case where i=1, it is defined as

Nh(r,t)

H(E) = Ri(r,t) = —
R(t)

. (3.2.33)
in which N is the Brunt-Vaisdlid frequency of the ambient
stratification.

3.2.4 Evaluation of Self-Similar Solutions

3.2.4.1 General Derivation

The similarity assumptions (3.2.16) and (3.2.20)
when substituted into the continuity and the momentum equations
(3.2.2) and (3.2.3) reduce the two partial differential equations

to two ordinary differential equations:

2 n¢ =
(¢-g)H' + AL Mt ' + 3 H=0 R (3.2.34)

(6-E)¢' +A¢+ HH' =0 , (3.2.35)

in which ' denotes differentiation with respect to £, i.e. d/dg.
[+]
The decay coefficient A=RR/R? in Eqs. (3.2.34) and (3.2.35)

can be derived from the frontal function R(t).
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Now suppose a buoyancy source supplies a time-varying wvolume
Vj(t) of fluid that may be positively, negatively, or neutrally

buoyant. Then we have

o (3.2.36)

V.(t) =Q t
J
where m= 1 denotes the case of a steady, constant rate discharge
Q, and m=0 denotes the case of an instantaneous release of a
finite volume Vj =V,

Assuming that the amount of interfacial mixing between the
two fluids is negligible and also that free surface evaporation
loss or bottom floor seepage is negligible, then the total volume
V(t) of the spreading layer at time t must equal the amount that

has been supplied Vj(t), i.e.
V(t) = Vj(t) . (3.2.37)

The total volume of a spreading layer at time t is

2
.
R(t) . kI, R(e)® R(eyitt
v(t) = J kin h(r,t)r dr = 1 s
O -
i+l
(gAi)

(3.2.38)
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in which the integration constant in each case will be

1
_ n
Iimn —'L g H(E)dg s (3.2.39)

and the shape factor kin is defined as

(i+1) , n=0
k, = (3.2.40)

(@+1)27r , n=1

When the relative density difference A is rather small, i.e. for
the case of free surface spreading of sewage or thermal water
discharge, Eq. (3.2.38) is still a good approximation with an
error to the order of A, but for a spreading oil slick, the
relative density difference is not very small and the shape
factor has to be multiplied for a factor (1+A) for correction,
i.e,

(1+2) , n=0

kon = (3.2.41)
(L+A)2m , n=1

From the similarity assumptions (3.2.19) and the condition
of volume conservation, one obtains the differential equation

for the trajectory function,
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it
12
(1+11§n+1) (e (gAi)l+l 9 m(lZl)
R(t) T e t ,(3.2.42)
in “imn

for both surface and submerged spreading flows. Integrating

Eq. (3.2.42) from R==R(O)==R0 to R=R(t) gives the frontal function,

R(t) =

2
i+l (i+1) (n+1)+2
(i+1l) (n+1)+2 B 2 m(i+1)+2
R 2 + (i+l) (n+1)+2 i ¢ 2
o m(i+1)+2 k. .
in “imn
(3.2.43)
in which the generalized definition of kinematic or specific
buoyancy flux Bi is
= ghq , 1=0
Bi = (gAi) Q= (3.2.44)
NQ , i=1

When the initial size of the spreading pool is very small, i.e.

(i+1) (n+1)+2 i+l m@E+1)+2
2 2 2

RO/R(t)<< 0(1) or RO Bi t << 0(1), an

asymptotic form for R(t) is



111

i+l m(i+l)+2
R(t) = c. B.(i+1) (nt1)+2 t(i+1) (n+1)+2 , (3.2.45)
mn 1

in which the coefficient in the asymptotic form Cimn is

2

(i+l)(n+1)+2
e = [ (i+1) (n+1)+2 {k .

i+l
} (i+1) (n+1)+2

imn 1 m(i+1)+2 in “imn

(3.2.46)

The power law is a general form for describing inertial-buoyancy
motion for both surface and submerged spreading currents due
to a variable source of buoyant discharge. The decay coefficient

A becomes

_ RK(e) _ (i+1) (w-n-1)

A - (3.2.47)
The two non-linear ordinary differential equations for H and ¢
become
n¢ (¢-¢) . (1-i) (m-n-1) o - 2(m-n-1) £
H' - £ m(i+l)+2 m(i+1)+2 (3.2.48)
m .2,

gl - (4-6)2
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(i+1) (m-n-1) 2(m-n-1) n i+l
m(it) 42 2(9-8) - (m(i+l)+2 +'2?> H

o' = .
gt o (4-5)2

(3.2.49)

To solve these two differential equations for the similarity
profiles two boundary conditions are needed and they are found
from the shock discontinuities at the front.

3.2.4.2 Shock Conditions at Front

From continuity of mass, Eq. (3.2.2), and momentum

Eq. (3.2.3) or energy Eq. (3.2.4), three shock conditions at the

front can be derived:

U[h] = [uh] , (3.2.50)
i i+l
1 gAih
Ulu] = g ui+—Tg , (3.2.51)
L
i gA i¥2
U[uh] = | u2h + ;+2 , (3.2.52)

where [ ] denotes the jump value of the term inside brackets
between the right-hand side (4 side) and the left-hand side

(- side) of the discontinuity and U=R(t) is the frontal velocity.
The derivation details for these three jump conditions are given

in Appendix G,
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Now, assume that the ambient fluid is stagnant, i.e.
u’a =u,= u(R+,t) =0, and the spreading layer thickness there

vanishes, i.e. h+=h(R+,t)=0. From Eq. (3.2.50), one has

- R - u-h - uphy =
U= R(p) = BT Ly - y(r,0) (3.2.53)

(1) = BRt) _ uRe,8) (3.2.54)
R(t) R(t)
From Eqs. (3.2.51) and (3.2.53), one has
i+l i+l
s ghyhy 1+1
l112+————-_lu2————-——— gA.h
g = ﬁ(t) _2 - i+1 2 i+1 S S i
u- - uy 27T ifl u.
(3.2.55)
1.8,
= 1
gl . i+1
H(1) = —2(RsE) = = h(R-,t) = Eil>
1 8o 2
: T \©
Rz(t)/gAi :
(3.2.56)

Similarly, from Egs. (3.2.52) and (3.2.53), one has

i+2 i+2
A, h- A, -
u2h- + 5 - u?h, - S g h
U = R(t) = —— it2 B i+2 R T Sl
= Rt = u_h_ - ushy -T2 T u

(3.2.57)



114

h(R,t)

H(1) =

(ﬁz(t)/gA. i+1

. h(R_,t) = 0 (3.2.58)
R2 (t)

Two kinds of front are therefore possible depending on whether
momentum or energy is conserved: one is the wave front with a

constant frontal Richardson number,

1 1

gh, i+l . i+l
i h(R,t) = <1-§1)

Ri_. = H(1) = s (3.2.59)

£ R2(¢)

and the other is the front with a vanishing frontal Richardson

number,

1
i+l

h(R,t) = 0 . (3.2.60)

gl

R2(t)

Two kinds of moving surface fronts for the case i=0 were
also found by Abbott and Torbe (1963) using the method of
characteristics: one was called the wave front (or moving
hydraulic jump or bore) propagating with a finite frontal
Richardson number, the other was called the Saint Venant front
propagating with a vanishing frontal Richardson number.

According to their theoretical arguments, the front moving with
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a vanishing frontal thickness occurs at the coincidence of two
characteristics curves and the wave front moving with a finite
frontal Richardson number occurs when one of the characteristics
becomes time stationary. In the case of one fluid spreading
over or under another, a wave front must always be formed as

long as the velocities in both fluids are in the same direction.
A spreading front formed by a shallow fluid layer flowing over or
under another fluid of much greater depth will eventually develop
into a moving wave front since it does not induce appreciable
motion in ambient fluid.

The vanishing submerged frontal thickness in Eq. (3.2.38)
when i=1 and n=m=0 was also derived by Mei (1969) for the
initial stage of dynamic collapse of a mixed region in a linearly
density-stratified environment,

3.2.5 Asymptotic Solutions for Surface Density Spreading

The asymptotic form of the frontal trajectory function
in this category, 1= 0, has the same time-power function as for
blast wave propagation produced by a variable rate of energy

release,

R(t) = ¢ B t . (3.2.61)

In this case the kinematic buoyancy flux, Bo==B==gAQ, or the

specific buoyant force per unit mass, Bo==B==gAV, is analogous
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to the specific power or energy release E/p in Eq. (3.2.11).

The coefficient c s
omn

2
n+3
n+3
Comn (3
(m+2) Yk I ?
on ~omn

can be determined from the integration constant Iomn of the self-
similar thickness profiles H(£) for each case n and discharge
conditions m. The similarity distributions for spreading layer
thickness and mean velocity can be solved analytically or

numerically from the two reduced ordinary differential equatioms,

m-n-1 . _ n¢ (¢ - £)
Emr (-2 + B ’ "

H- (¢-8)2

m-n-1 2(m-n-1) n
. o i o(o-p) - [2End)  nd]y .

H- (p-8)?

using two Rankine-Hugoniot type frontal boundary conditions,
H(1) = 3 and (1) = 1.

3.2,5.1 Plane and Radial Surface Density Spread from a

Finite Volume Release

The ordinary differential equations in this case

(n=0, 1, and m= Q) become

.2.62)

.2.63)

.2.64)
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(6-£) B' + H(-n-1 +“?¢+ $') = 0 (3.2.65)
and
(6-8) ¢' - (n‘;l) 6+ H' =0 (3.2.66)

Corresponding to the boundary conditions ¢(1) =1 and H(1l) not

specified, these equations have the solutions

$(8) = & (3.2.67)

and

e = (A7) @2-n +r . (3.2.68)

The Saint Venant front condition, H(1) = 0, gives a negative
value for H(Z) except at the front. The wave front condition,

H(1) = %—, gives the thickness distribution as

H(E) = (“Zl) £2 + (lzn) . (3.2.69)

Thus the integration constant

1
_ n - 1
Ioon = £) E" H(E)A = D (0F3) (3.2.70)
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and the spreading layer coefficient is

1
s n+3
Con = iﬂi%léﬁiil— (3.2.71)
on

The plane inertial spreading front (n=0) due to a finite volume

release therefore grows asymptotically according to
R(t) = 1.890(gav)1/3 ¢2/3 (3.2.72)

and the radial inertial spreading front (n=1) grows asymptotically

as

R(t) = 1.502(gav)l/% ¢1/2 . (3.2.73)

The density wave ffont from a finite volume release therefore
grows with the greatest thickness at the front and a continually
decreasing thickness behind the front. No 'density head" or
"density nose" is given by this blast wave analogy solution.

The whole spreading fluid acts as a stretching layer between
the front and the origin. The front pulls the spreading fluid
with the same velocity as the front at the frontal wall and a
linear distribution of fluid particle velocity, proportional to
its dimensionless location, &, occurs behind the front. The

details of this spreading flow are shown in Figure 3.2.2.
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front propagation due to a finite volume release
of buoyant fluid.
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This strong shock wave solution is applicable only when the
density fronts are so far away from the origin point that the
initial dimensions are negligible in comparison to the frontal

distance. The initial dimension plays no further role in
defining the length scale to the problem. In the case where the
initial dimensions are important, the initial flow problem is
totally different and will be discussed in Subsection 3.2.7.

3.2.5.2 Starting Two-Dimensional Stratified Flow

In this case n=0 and m=1 so that providing that

(4-£)%2 - H(E) # 0, the two similarity equations in this case are

¢$'(E) = 0
and
H'(E) =0 .
The non-trivial wave front solutions are
() =1
and
1
H(E) = 5 . (3.2.77)
Hence the integration constant
1 1
1010 = J H(E)dE =3 (3.2.78)

(o}

(3.2.74)

(3.2.75)

(3.2.76)
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and the coefficient for the two-dimensional inertial starting
flow is

= 21/3 = 1.260 , (3.2.79)

€010

i.e., the starting free surface inertial spreading flow grows as
R(t) = 1.260(gaQ)!/3 ¢ , (3.2.80)

where Q is the volume flux of the discharge. 1In the absence of
any viscosity effect the two-dimensional starting flow therefore
grows with a constant velocity which is proportional to the cubic
root of the discharge buoyancy flux B= gAqQ.

The velocity and the thickness of a two-dimensional starting
flow are therefore distributed in such a way that the local
Richardson number Ri(r,£) is uniformly distributed with a constant

value 0.5 over the entire spreading length, i.e.

_ Bbh(r,t) _ H(E) _ 1 ] (3.2.81)
u?(r,t)  $2(E)

Ri(x,t)

N

This is fully analogous to a two-dimensional propagating strong
shock front driven by a continuous steady energy release, as
derived by Rogers (1958). The shock wave front also propagates
with a uniformly distributed velocity, density (pressure also)

and Mach number.
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3.2.5.3 Surface Radial Starting Plume

In this case n=1, m=1, and the two ordinary

differential equations describing the similarity solution are

1 $ 2
S ¢(p-€) + H{E-7
o' (g) =3 (5 3) (3.2.82)
(6 - £)2 - H

and

H{$ (6-26)E- 6(6-©)}
H'(E) = , (3.2.83)
e{(¢~ )2 -1}

These two differential equations were solved numerically at
Caltech's Booth Computing Center by a program called "MODDEQ/
Differential Equation Solver'" using frontal boundary conditions
$(1) =1 and H(1) =1/2. The numerical calculation is based on
the method of Runge-Kutta-Gill with automatic error control.
Two similarity profiles are shown in Figure 3.2.3. It is
peculiar to see that there is an infinitely large fluid velocity
inside the plume at the location £=0.753. At this point the
thickness vanishes and another internal ring forms after the
former ring is dispatched.

The integration constant I011 as calculated by Simpson's

rule is

1
I = EH(E)dE = 0.09645 . (3.2.84)
011 L.753
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Fig. 3.2.3 Velocity and thickness distributions of a starting
internal radial ring.
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Thus, the coefficient for the radial starting plume is

(4/3)1/2

1/4
(k01 I011>

c = 1.309 . (3.2.85)

011
The frontal bore therefore propagates outwards according to
R(t) = 1.309 (gaQ)l/% ¢3/% . (3.2.86)

Suppose that there is a stationary observer located at a
distance r from the surface buoyant source point. He will
experience a series of internal ring fronts at a period T,

which is

1/3 1/3

= 1 r* ~ Ei)
' (1.309)%/3 (gAQ ) = 0.699 ( B . (3.2.87)

Velocity measurements at the same location r from the source point
will have an oscillation in magnitude, which is coherent with an
oscillation in density, at the same period T.

3.2.6 Asymptotic Solutions for Internal Density Spreading

The asymptotic Eq. (3.2.45) of the frontal trajectory

function in this category, i=1, becomes

1 ml

_ nt+2 nt2
R(t) = ©1mn Bl t R (3.2.88)
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in which the kinematic buoyancy flux Bl==NQ for the steady
_continuous discharge case, m= 1, and the specific buoyant force
per unit mass Bl==NV for the finite volume case, m=0. The
coefficient ¢ R

Imn

n+2

_ n+2
“ion T )@+ D k, I > (3.2.89)
in "1mn

can be determined from the integration of the self-similar
thickness profile H(E) for each case n and discharge conditions
m. This self-similar thickness distribution H(£) can be solved
analytically or numerically from two ordinary differential

equations,

ng(¢-€) m-n-1 £

gl =& wtl , (3.2.90)
H2 - (¢-8)?
m-n-1 m-n-1 . n¢\ ,,2
=== 9(0-8) - (T + FH) H
¢ = (e ‘5) (3.2.91)
H? - ($-8)2

with the boundary conditioms H(1l) =1 and ¢(1)=1.

3.2.6.1 Plane and Radial Submerged Density Spread from a

Finite Volume Release

The ordinary differential equations in this case

(n=0, 1, and m=0) become
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H'(¢-E) + H(s' +P£i—n~1) =0 (3.2.92)

and

$'(¢-¢) +HH' - (n+1)¢p =0 . (3.2.93)

Corresponding to the boundary conditions ¢(1) =1 and H(1) =1, these

equations have the solutions

() = ¢ (3.2.94)
and
H(E) = Y(n+1)E2-n . (3.2.95)

The half-thickness will be seen as a linear function of the

dimensionless variable £ for the plane flow, n=0,

H(E) = & (3.2.96)

and for the radial flow, n=1, will be

H(E) = V2E2~1 , (3.2.97)

where the value exists only for 1/Y2 ¢ £ s 1. A circular internal ring
structure must be formed for this case which is different from that of

radial surface spreading. Details of self-similar half-thickness
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profiles are given in Figure 3.2.4. Therefore, the integration

constant 1 becomes
lon

1

I1on = (n+1)(n+2) ’ (3.2.98)
and the coefficient ¢ becomes
lon
1
) n+2
e, =Jdntlin+2) (3.2.99)
lon kln

A plane inertial spreading front (n=0) due to a finite volume

release therefore grows asymptotically according to
R(t) = (28V)1/2 ¢1/2 (3.2.100)
and the radial spreading front (n=1) grows asymptotically as
R(t) = (g%) Y3yl /s : (3.2.101)

For the special case of an initially cylindrical section of

radius Ro’ (n=0), the frontal position function will be

Rét) = /2 (yp)l/2 . (3.2.102)
o]



o8

0.6

H(¢)

04

02

0.0

Figure 3.2.4

128

| Rl L T
- n - O —
! i i ]
00 02 04 06 08 10

r

= RM

Similarity profiles of the half-thickness for a
plane (n=0) and radial (n=1) interflowing layer
resulting from a collapsing homogeneous mixed region
at a neutral density level in a linearly stratified
environment.
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For an initially spherical section of radius Ro, (n=1), the

frontal position will be specified by

Rét) = 61/3 (Nt)l/3 ) (3.2.103)
o

3.2.6.2 Internal Plame Starting Layer (Continuous Flow)

Providing that (¢ -£)2 - H2(f) # 0, the two

similarity solutions in this case (n=0 and m=1) are

]
o

H'(E) (3.2.104)

and

I
o

' (&) = (3.2.105)

The non-trivial wave frpnt solutions for the half-thickness and the

mean velocity of the intrusive layer are:

H(g) = l.t) (3.2.106)
R(t)
and
oe) = 2t _ 4 (3.2.107)

ﬁ(t)
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The integration constant in this case is

1
Lo = J H(E)AE = 1 , (3.2.108)

o

and the coefficient for the plane intrusive layer is

SN

110 . (3.2.109)

An intrusion layer front resulting from a discharge at a neutral
Nh.

density level, with a discharge Richardson number Rij = 7;;
J
of unity, will increase its displacement according to
R(t) = —'/—g mQ)l/2 ¢ , (3.2.110)

where hj is the half-thickness of the slot jet opening, uj is
the mean jet velocity and Q is the volume rate of discharge,
Q==2uj hj' When the jet Richardson number is less than

s NII. )
unity, i.e. Rij = :I;-< 1, there will be a region of mixing.

J

This jet mixing will reduce the mean velocity to a lower value
such that the flow will move at a Richardson number of unity.

However, the total volume of the interflowing layer will be

larger than the amount discharged. In this case the constant
R(t)
NQ)/2 ¢

of proportionality in Eq. (3.2.110), , will be greater

than 1/v2.
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3.2.6.3 Internal Radial Starting Layer (Continuous Flow)

In this case n=1 and m=1 and the decay

coefficient A = - %-. Two reduced differential equations are
obtained:
1
Tup+H(o-5)(E-3)
H' = s (3.2.111)
B2 - ($-8)2
and
1
-3 060 -8 (E-3)
' = . (3.2.112)

H? -~ (¢-¢)2

With the two boundary conditions, ¢(1) =1 and H(1) =1, these

two differential equations were solved numerically using the
subroutine "MODDEQ/Differential Equation Solver" at Caltech's
Booth Computing Center. The subroutine is based on the method
of Runge-Kutta-Gill with automatic control of error truncation.
The two similarity profiles for mean velocity and half-thickness
obtained for the spreading layer are shown in Figure 3.2.5.

It is peculiar to see that there is also an infinitely large
fluid velocity inside the plume at the location &= 0.6915
where the half-thickness vanishes. Since the neutral density
source is continuously discharged at the origin, a series of

such internal rings should form after the first ring is dispatched.
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Figure 3.2.5 Similarity profiles of the average velocity and
the half-thickness of interflowing radial ring
due to a continuous release.
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The coefficient of integration is computed using

Simpson's rule as

1
I,., = J EH(E)dE = 0.231
0.6915

and the radial front coefficient becomes

3 1/3
€111 ° \2x4m x 0.231 = 0.802

An internal ring front will therefore propagate according to

R(t) = 0.802 (NQ)1/3 ¢2/3

(3.2.113)

(3.2.114)

(3.2.115)

Suppose there is a stationary observer located at a distance r

from a submerged neutral density source discharging with a

flow rate Q in linearly density-stratified environment for which

the Brunt-Vaisdli frequency is N. The observer will see a

steady series of fronts passing at a period T

1/2
T = 1,391 ('@) .

3.2.7 1Initial Stage of Density Spread

A spreading density front generated by release of

a finite volume of liquid has an initial stage formed by the

(3.2.116)

collapse of the volume. Subsequently the front formed develops
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into the decelerating shock wave type propagation that was
considered in the previous Subsections 3.2.5 and 3.2.6. As
was discussed in Subsection 3.2.3.1 to solve the two shallow-
water wave equations (3.2.2) and (3.2.3) in this case,
similarity solutions for velocity and thickness were developed

in the form

ulr,t) = R(£)$(E) (3.2.16)
and

h(r,t) = hyn"(t) H(E) , (3.2.23)

where £ is the dimensionless variable r/R(t) as before, n is
the frontal position relative to the original radial length Ro’
i.e. n==R(t)/Ro, hl is the original characteristic thickness
before spreading, and a.is an unknown number. ¢(£) and H(E)

are the similarity profiles for the mean velocity and the
spreading layer thickness. Substitution of these two similarity
solutions into the internal shallow water-wave Eqs. (3.2.2)

and (3.2.3) gives

(¢-2)H' + H(¢' + %? +a) =0 (3.2.117)

and

gh hi+l
($-E)¢" + Ao + (—%—~—

- n(i+1>“) BH' =0, (3.2.118)
R
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where the decay coefficient A is equal to ﬁﬁ?ﬁz as before and
i=0 for surface spreading and i=1 for internal spreading.
To homogenize the above equation (3.2.118), one must have
that
i+l

gh;h L (+1)a

= =8 (3.2.119)
R

for some constant 8, so that Eq. (3.2.118) becomes

(6-£)¢" + Ap + gHIH' = 0 . (3.2.120)

Equations (3.2.117) and (3.2.120) have solutions (see Appendix D)

() = ¢ (3.2.121)
1
H(g) = (1-¢g2)tT (3.2.122)
satisfying
(1) = 1 (3.2.54)
H(1) =0 (3.2.58)

provided that constants o and 8 are chosen



136

o =-(n+1) s (3.2.123)
B = —(i%lﬂ (3.2.124)

The characteristic thicknesstﬁ‘can be derived from a conservation
of volume. The total volume of spreading fluid V(t) must be
equal to the total volume Vo at the start of spreading. The

relationship is

v(t) = Vo , (3.2.125)
where
R(o) n
Vo = i) h(x,o0) kin r dr (3.2.126)
and
R(t) 1
v(t) = J h(r,t) k, " ar = ko thon+1 J £"H(E)dE
(o) (o)
(3.2.127)

It thus becomes possible to find the unknown length scale, hl’

R n
J h(r,o)r dr
o

VO
Mt T - ) I
ki, Ry L} ePH(E)dE ROn+1 [ Pe1o g2yt g

(o
(3.2.128)
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The values of the original characteristic thickness scale h

1
are listed in Table 3.2.1 for spreading in a homogeneous
environment (i=0) and in Table 3.2.2 for spreading in a
linearly density-stratified environment (i=1). Thus, the
unsteady and non-uniform thickness distribution h(r,t) can
be expressed explicitly as
(n+1) =
o)
h(r,t) JjR(t) = H(E) = (1- g2)1+1 . (3.2.129)
h1 Ro

These two similarity profiles for spreading fluid thickness are
plotted in Figure 3.2.6 for i=0 and in Figure 3.2.7 for i=1. The
thickness profile of an initial spreading layer in a homogeneous
environment (i=0) is not an elliptical section as Longuet-Higgins
(1972) expected. However, the thickness profile in a linear density-
stratified environment (i=1) is an elliptical section which was also
assumed by Mei (1969).

The frontal contact angle B with the horizontal bed (or the

neutral water level) can be found from the following relationship,

h R n+2
B = arctan {ﬂl%—’-t—l} = arctan {—2(1—{;) (R(E)) } (3.2.130)
[o]

for i=0 and

8 = arctan -{éh%§l51 } = arctan {=} = %‘ (3.2.131)
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for i=1. This means that the internalwedge angle at the front
is always perpendicular to the propagation direction at the
neutral level for a stably stratified environment (i=1).

But more interesting, the frontal contact angle of inertial
spreading in the homogeneous environment (i=0) is a function
of: (i) the relative frontal distance n==R(t)/RO; (ii) the
initial shape of liquid volume; and (iii) the initial aspect
ratio (or hl/RO) and also the case considered n. For a very

long reservoir, hl/Ro-*O, the initial value of B defined by

hl
Bo = arctan «{— (§—>} , (3.2.132)

will be asymptotically zero, which coincides with the dry-bed

break flow result obtained by Ritter (1892). For a long time,
n+2

h R
(%)( . ) + 0, So the frontal contact angle will be
o R(t)

asymptotic to a constant value, 0, for a reservoir with
finite aspect ratio.
The frontal trajectory function is determined by integration

of the equation,

i+1 [ (i+1) (n+1)+1]
"oy - LaR2 2 ghshy /R
2@ i+l R, \R g

o}
(3.2.133)
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Equation (3.2.133) can be rewritten as

d (dn)? __4 _-[@E+1D)(a+1)+1]
5 (a?) = 3T’ ,  (3.2.134)
where
n(t) = R(t)/R(0) = R(£)/R, (3.2.135)

T=t JgAihliﬂ/z(O) (3.2.136)

This equation is solved with initial conditions

n(0) =1 (3.2.137)
dn(0) _
It 0 (3.2.138)
to give
i+l 1/2 n dn
- (H2) e 7
1 [1_ n-—(1+l)(n+l)]
(3.2.139)
The normalized frontal velocity for large time is clearly
R(t) . 2 (3.2.140)

‘/gAihiiJ?I ) (i+1) (n+1)1/2
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For plane surface spreading in a homogeneous environment n=0

and i=0 so that Eq. (3.2.139) becomes

T =%{n1/2(n-1)1/2 +1n [n1/2 + (n-l)l/z]} (3.2.141)

while for radial surface spreading in a homogeneous environment

(i=0 and n=1) Eq. (3.2.139) becomes

T =—’{2—Z(n2—1)1/2 . (3.2.142)

For density stratified environments and internal spreading (i=1

and n=0) the plane spreading result is

T = (n2-1)1/2 (3.2.143)

and while for radial spreading the integral cannot be evaluated
explicitly. 1In each of the above cases the characteristic
length scale h1 must be evaulated from the given initial shape

of the spreading volume.

3.3 Similarity Solutions of Viscous~Buoyancy Density Currents

In this section the asymptotic functions describing both
surface and submerged density currents in the viscous-buoyancy
regime, which were derived by force scale analysis in Section 3.1,

will be evaluated by a self-similar analysis. Exact solutions
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analogous to point source solutions for nonlinear diffusion will
be given for the first four cases. These correspond to a plane
(n=0) or a radial (n=1) finite volume release (m=0) in a
uniform (i=0) or a linearly density-stratified (i=1) environment.
Series expansion solutions will be given for the continuous
discharge cases (m=1). Self-similar distributions of thickness
and velocity and the unknown numerical coefficients in the power
law descriptions for the viscous spreading front will be found.

A comparison of the results obtained with available experimental
data will be presented in Chapter 6.

3.3.1 Nonlinear Long Wave Equations

The relevant long wave approximation equation for
the viscous~buoyancy region of surface and submerged density

spread is the "(i+ 4)" power nonlinear diffusion equation,

Sh _ _..__,.gAi S 3_1114-4 (3.3.1)
ot 3(i+4)v D oT or i T

where h=h(r,t) is the thickness of the spreading layer (for i=0),
and is the half-thickness of an interflowing layer in a linearly
density~stratified environment (for i=1), n is a parameter

that denotes the radial case for m=1 and the plane case for

n=0, v is the kinematic viscosity of spreading fluid, gAi

denotes the reduced gravitational constant, g(ps-pa)/ps, for

i=0, and the square of Brunt-Viisi#li frequency of ambient
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—g 90,(2)
density stratification, N2 = ge = E&-——E;——
s

, for i=1, in

which Pl and p, are mass densities of the ambient and the
spreading fluid. The coordinate system of this spreading flow

is that shown in Figure 3.2.1. (See Appendix E for the derivation

of viscous long wave approximation equation.)

3.3.2 Derivation of Self-Similar Formula by the Method of

Separation of Variables

Assume that the unknown spreading layer thickness
h(r,t) in the nonlinear long wave equation has solutions of the

following form:
h(r,t) = T(t) H(E) ’ (3-3-2)

where the dimensionless variable £ is defined as r/R(t), R(t)
is the frontal position at time t, T(t) is the unknown scale
function for the spreading layer thickness and H(f) is the
similarity function to be determined.

Substituting Eq. (3.3.2) into Eq. (3.3.1) gives the ordinary

differential equation

3rfv P o3&t 1.4 [n ani* ,
3 13 n dE aE

8b;T gd,T 2 (3.3.3)

213
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in which "°" denotes differentiation of a function with respect
to time t and "'" differentiation with respect to the
dimensionless variable £. 1In order to have a self-similar
solution of Eq. (3.3.2), one must have the two terms, Rﬁv/gAiTi+3

i+4 40 the left-hand side of Eq. (3.3.3), be

and sz%/gAiT
dimensionless and constant. For simplicity, choose the first

o .
term RRv/gAiT1+3 equal to unity, so that the scale function

T(t) is

1

=iy \ ¥
T(t) = (gAi> . (3.3.4)

Then the second term will automatically be a dimensionless number,

R2I _ RRy (i) _RT _ 1+A (3.3.5)
.+‘ = . ° _T-‘ . ’ ™
gAiTl 4 gAiT1+3 RT RT i+3

where the decay coefficient A is defined as A==§§7ﬁ2 and can
be determined from the frontal trajectory functiop R(t). Therefore,

Eq. (3.3.3) can be rewritten as

i+4
3(1+A) . 1 a ( n dH* >
AT g - 3R = ——— & [ . (3.3.6)
(1+3) (14" A ac
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Thus, the similarity solution for surface and submerged spreading
layer thickness h(r,t) has the form

1
o \ i+3
h(r,t) =<RR"> H(E) ) (3.3.7)

gh.
i
The same self-similar formula Eq. (3.3.7) can also be derived
straightforwardly by substituting the Taylor's (1950) similarity

assumption Eq. (3.2.25) into the nonlinear wave Eq. (3.3.1) (see

Appendix E for details of derivation).

3.3.3 Derivation of General Self-Similar Solutions

If interfacial mixing and diffusion, and surface
evaporation were negligible, then the total spreading volume
V(t) at time t must be equal to the volume that has been

supplied Vj(t). Since the total spreading volume at time t is

n

h(r’t)kin r dr , (3.3.8)

R(t)
v({t) = J

(o]

where kin is a shape function of 1 and n and is defined in
Eqs. (3.2.40) and (3.2.41), The total volume supplied is
assumed to be

V() = Q £ , (3.3.9)

so that one obtains
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i+3
. gA.Q .
R(n+1)(1+3)+1 ﬁ _ a-—Q%———— t(1+3)m ’ (3.3.10)
where o = 1 143 ° and the integration constant Iimn is
(kin imn)
defined as
1 n
Lim =J g H(§)dE (3.3.11)

(o}

which is a function of i, m, and n (since the similarity
distribution H(E) is a function of i, m, and n). Carrying out
integration of Eq. (3.3.10) from R=R0 to R=R(t) and t=0

to t=t gives the explicit form of frontal trajectory functions:

1
(ntl) (i+3)+2

(i+3)

R(E) _ ), , (D) (i#43)+2 %8840 (m(iF3)+
R, m(i+3)+l v g (ot1) (43)+2

(o}

(3.3.12)

When the spreading distance R(t) is much larger than the initial
length Ro’ i.e. R(t)>>R0 or equivalently when the time t>>

1

vRo(n+l)(i+3)+2 m(i+3)+1

1+3 , the asymptotic form of viscous-buoyancy
gh.Q
i

spreading becomes
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1
rq +3 (n+1) (i+3)+2 n(i+3)+1
R(t) = b 8% o (aF1) (i+3)+2
imn v ?
(3.3.13)
in which the coefficient b, is
imn
' q +1)(1'+3)+2 it3
b= J(otl) (Ea3y+2 [ PTTHR 1 (o+1) (i+3)+2
imn m(i+3)+1 in “imn
(3.3.14)

This function has exactly the same form as that derived by the
force scale analysis in Section 3.1. The unknown coefficient
mainly depends on the spreading layer thickness distribution
which can be derived by integrating Eq. (3.3.6) with suitable
boundary conditions.

From Eq. (3.3.13).the decay coefficient now is

X4

RR _ (i+3) (m-n-1) - 1

A= ﬁZ m(it3) + 1 (3.3.15)
so that the ordinary differential equation for a viscous
layer spreading thickness (Eq. (3.3.6)) becomes
i+4
3 (2m-n-1) 1 d (n au*
— H - 3 H' = ———— — 3.3-16
m(it3) + 1 2 PN C (% dz ) ( )
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3.3.4 Solutions for Spreading from a Finite Volume Release

In this case (m= 0) the ordinary differential Eq. (3.3.16)

for surface and submerged spreading layer thickness is

i+4
- 3(n+1)H - 3zH' = ———1——5(1% <£n dig ) (3.3.17)
(i+4)E
or
i+ \ ,
3(i+4) &™)y o+ <g“‘ﬂ;g > =0 (3.3.18)

Integrating twice from £=1 to £=£ and using the boundary condition
H(1) =0 (3.3.19)

and assuming

3@ ) = o (3.3.20)

gives the similarity distribution for spreading layer thickness as

A 1

. i+3 _—
H(E) = {-3(—12:_"'—3—)} (1 - £2)it3 (3.3.21)
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which is consistent with Eq. (3.3.20). Thus the self-similar
profile for the surface and submerged spreading layer thickness
becomes

1 1

° \i+3 . i+3
h(r,t) = <~;—R§3> {—3—(—12—”1 (1—52)} . (3.3.22)
i

The shape of this thickness profile is shown in Figure 3.3.1
for the case of spreading in a homogeneous environment (i= Q)
and in Figure 3.3.2 for the case of spreading in a linearly
density-stratified environment (i=1).

The integration constant Iion is

1 1
i+3 1 —
= 3(i+3) n,. .2 i+3
Lion = { T } L g (1~¢89) dg . (3.3.23)
The special case n=1, gives
- 1 1

C(3G+3 L ™3 [36+3) | 3 ,
Iiol—{ 7 } J“l‘gz) - 2 2(1+4) ’

(3.3.24)

1%}

and for n=0,
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Figure 3.3.1 Self-similar thickness distribution of plane and
radial viscous surface spread layer due to a
finite volume release (i=0, m=0, n=0 and 1).
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Figure 3.3.2 Self-similar thickness distribution of plane and
radial viscous submerged density spread layer due
to a finite volume release (i=1, m=0, n=0 and 1).
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1
== .7 i+5 i+4
o {3a» 1P 7 w364 £ r( ) (1+3
ioo 2 s 2 o (3LFLL ) ’
° 2(i+3)

(3.3.25)

where T(x) is the Gamma function of x. The approximate value

of the integration constant Iion is listed in Table 3.3.1 for
each case of i and n. The approximate value of the coefficient
bion in viscous-buoyancy spread Eq. (3.3.13) is then calculated
and the viscous-buoyant trajectory function for each case i and

n is listed in Table 3.3.2.

The frontal contact angle B defined by

- (R, )| _
B f arctan { 5T } 5 (3.3.26)

for all time during viscous-buoyant spreading.
As derived in Appendix E, the horizontal velocity of a fluid

particle will be given by

i+2

BART T oy z\2
u(r,z,t) = - —-—2—\)-——3; {1 - (E) } (3.3.27)
or
u(r,z,t) _ 3 -(2 2} 3.3.28
o : E{l (h) (3.3.28)



Table 3.3.1 The value of the integration constant I.
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ion

for surface and submerged spreading from

a finite volume release (m=0).

n Plane Spreading Radial Spreading
I,
ion
i n=0 n=1
i
In 3 5 3
Homogeneous -% JZ c035/36d6 ‘[g '-%
Environment b
i=0 = 1,389 = 0.619
In L3
Linearly " 2 3/2 vl . 2
Density-Stratified \/g L cos*/76de 5
Environment
i=1 = 1.386 = 0.626




Table 3.3.2
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The frontal trajectory functions for the viscous-~

buoyant surface or submerged spreading due to a
finite volume release (m=0).

n Plane Spreading Radial Spreading
R(t)
1 n=0 n=1
" 1/5 1/8
Homogeneous 3 3
Environment 1.133<§%¥—) tl/5 0.779<§%¥—) £1/8
i=0
In
Linearly / 1/
Density~Stratified 2l 1/¢6 vl 10
Environment 0.689 <E—Vi’—> 1/6 | 0.552 (E—\Y—) g1/10

i=1
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as shown in Figure 3.3.3. The peak fluid particle velocity
will therefore be 50% faster than the frontal velocity. The
cross~sectional average fluid particle velocity is, however,
continuous with the frontal velocity and still a linear function

of location, since

u(r,t) _ 1 Jh(r’” ulr,z,t) 4, - ¢, (3.3.29)
R(t) h(x,t) o ﬁ(t)

3.3.5 Plane Viscous Spreading Layer from a Continuous Discharge

Equation (3.3.16) in this case (m=1 and n=0) is
i+ \" . \
H = 3H - 3(i+4)EH . (3.3.30)

According to the mathematical study by Gilding and Peletier
(1976), there is no exact weak solution to Eq. (3.3.30). However,
the solution was shown to exist and be unique. Moreover, it

is bounded between a lower bound solution HL’

1

. i+3
H (&) ={9—(—1—§-L—§l (1—52)} (3.3.31)

and an upper bound solution Hu,

1

3 i+3
Hu(«E) = {[3(1-*' 3) +—2- (1—5)](1-—&)} . (3.3.32)
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An approximate solution HA between two bounds,

1
H(D = {3a+na-p} (3.3.33)
was given by Grundy (1979) with the method of phase plane analysis.
The approximate solution in Eq. (3.3.33) is actually a solution

near the front as £~+1. It can also be derived easily by

integrating the simplified Eq. (3.3.30) twice near the front,
(H1+4> ~ =3(i+4)H' , (3.3.34)

with two boundary conditions, H(1l) =0 and H1+3(1)H'(1)==0. The
lower bound solution is the exact weak solution given in Eq. (3.3.21),
which was derived in the Subsection 3.3.4.
Equation (3.3.30) can be rewritten in new form,
1

L I+

+3(144)(1-x) %xﬁ ) (3.3.35)

where f(x) =Hl+4(F,) and x=1-E. Assume that the solution of
Eq. (3.3.35) has the following series expansion form near the front,

it+h

£(x) = [3(1+3)x]*P {1 £y ajxj} . (3.3.36)
=1
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Substituting the series solution in Eq. (3.3.35) one can find

the coefficients aj. Two values, ay and a,, are found,

~ -1
3 T IEFH T (3.3.37)

and

Q. = 2(i+4)3 = 2(i+4) (A+3) - ({+3)
2 [2(i+4)2 + 4(31+10) (i+3) (i+4) + (A+3)1[2(i+4)2(i+3)]

(3.3.38)

The solution of Eq. (3.3.30) can be expressed up to the third

order as

1
H(E) = [3(1+3) (-1 {1 - sarn ey
1
2(i+4)3 - 2(i+h) (i+3) ~ (i+3) (1-£)2+ .”11+4
[2(i+4)2 + 4(31i+10) (i+3) (i+4) + (i+3)1[2(@i+4)2(i+3)] J
(3.3.39)

Two self-similar profiles of plane spreading layer thickness
are shown in Figure 3.3.4 for the homogeneous environment (i=0)
case and in Figure 3.3.5 for the linearly density-stratified
environment (i=1) case. The integration values Iilo are given
in Table 3.3.3 and the coefficients bilo in the asymptotic

form of frontal trajectory functions are given in Table 3.3.4.



161

ooL | ! | 1
00 02 04 06 08 10

_ T
¢ R(t)

Figure 3.3.4 Self-similar thickness distribution of plane
viscous surface spread layer due to a constant
rate of discharge into a homogeneous environment
(i=0,m=1, n=0). Solid line denotes the
first approximation, and open circles denote the
third approximation.
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Figure 3.3.5 Self-similar half-thickness distribution of plane
viscous submerged density spread layer due to a
constant rate of discharge into a linearly density-
stratified environment (i = 1, m = 1, n = Q). Solid
line denotes the first approximation and open circles
denote the third approximation.
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Table 3.3.3 Integration values Li10 for plane viscous-
buoyancy spreading currents due to a
continuous steady discharge plume.

i Uniform Linearly
I, Environment Density-
il0 e
Stratified
Environment
derived i=0 i=1
from

Upper bound
of solution 1.6078 1.5140

H_(€)

Lower bound
of sclution 1.3890 1.3679

Hy ()

1st term
approximate
solution of 1.5600 1.4889

H(Z)

2nd term
approximate
solution of 1.5507 1.4848

H(E)

3rd term
approximate
solution of 1.5510 1.4849

H(E)




Table 3.3.4 Coefficients by, for the plane viscous-
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buoyancy spreading currents to a
continuous steady discharge plume.

H(E)

Uniform Linearly
Environment Density-
Stratified
Environment
derived
from i=0 i=1
Upper bound
of solution 0.7864 0.4925
B (E)
Lower bound
of solution 0.8585 0.5270
HL(a)
1st term
approximate
solution of 0.8008 0.4980
H(E)
2nd term
approximate
solution of 0.8036 0.4990
H(E)
3rd term
approximate
solution of 0.8036 0.4989
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The series solutions are convergent very fast over all the
domain between 0 and 1. Therefore, the solutions derived from
the third term approximation are good enough for comparison.

The frontal trajectory functions can be expressed as

1/5
3 L/5
R(t) = 0.8036 (5%(3—) et (3.3.40)

for the spreading currents in the homogeneous environment (i=0)

and as

1/6
204 5/6
N\)Q ) ! (3.3.41)

R(t) = 0.4989 (
for the spreading currents in the linearly density-stratified
environment (i=1).

3.3.6 Radial Viscous Spreading Layer from a Continuous Discharge

Equation (3.3.16) in this case (m=1 and n=1) is

A
—;—g <£ 31; ) = - 3(i+4)E? %ﬁj— . (3.3.42)

The simplified Eq. (3.3.42) near the front can be expressed in
the same form given in Eq. (3.3.34). Thus, the approximate
solution near the front is also of the same form in Eq. (3.3.33).

Rewrite Eq. (3.3.42) in the form,
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1

2 i+4
1-x) 3£ 4 5hrna-x2 4 . (3.3.43)
dx2 dx dx

where f(x) = Hi+4(§) and x=1-£. Assume that the solution of

Eq. (3.3.43) can also be expressed in the series expansion form
about the solution near the front, i.e. Eq. (3.3.36). Substituting
the power series expansion Eq. (3.3.36) in Eq. (3.3.43), one

can find the coefficients aj. Two values, a, and a,, are found,

1

(i+2)

1= 2(1+3) (3.3.44)

a

and

o = (3F2) { (1+2) (i+5) + 2(4i+13) (i+3) (i+4) } N
2 20143) 2(i+4)2 + (i+3) + 4(3i+10) (i+3) (i+4)

2(i+4)2
{2(i+4)2 + (i+3) +4(31+10) (i+3) (i+4)}

(3.3.45)

Thus, the self-similar function H(f) can be expressed up to the

third order as

1 =

- . 1+4
i+3 {1+ (132) (L-¢) +a2(l—£)2+ }

2(i+3)
(3.3.46)

H(E) = {3(i+ 3N@- E)}



167

Two self-similar profiles of radial spreading layer thickness
are shown in Figure 3.3.6 for the homogeneous environment (i=0)
case and in Figure 3.3.7 for the linearly density-stratified
environment (i=1) case. The integration values Iill are given
in Table 3.3.5 and the coefficients bill in the asymptotic form
of frontal trajectory functions are given in Table 3.3.6,

The series solutions are also convergent rather fast all
over the domain between 0 and 1. Therefore, the frontal

trajectory function can be expressed as

1/8
R(t) = 0.63 <5£v93> 1 (3.3.47)

for the radial spreading currents in the homogeneous environment

(i=0) and as

' 1/10
R(t) = 0.45 (E%gi> tl/2 (3.3.48)

for the radial spreading currents in the linearly density-

stratified environment (i=1).

3.4 Further Mixing of Surface Spreading Flow

3.4.0 Introductory Note

After a discharged effluent reaches a free surface or
the bottom, the momentum flux causes an increase in pressure which

together with any buoyancy flux causes the diluted effluent to
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Self-similar thickness distribution of radial
viscous surface spread layer due to a constant
rate of discharge into a homogeneous environ-
ment (1 =0, m=1, n=1). Solid line denotes
the third term approximation, open circles, the
first term approximation, and triangles, the
second term approximation.
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Self-similar half-thickness distribution of radial
viscous submerged density spread layer due to a
constant rate of discharge into a linearly density-
stratified environment (i=1l, m=1, n=1). Solid line
denotes the third term approximation, open circles,
the first term approximation, and triangles, the
second term approximation.
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Table 3.3.5 Integration values I for the radial
viscous~buoyancy spreaéing currents due
to a continuous steady discharge plume.

i Uniform Linearly
Environment Density-
Stratified
Environment
derived
from i=0 i=1
1st term
approOXflf?latlon 0.6686 0.6618
H(E)
2nd term
apprizfmatlon 0.6895 0.6795
H(E)
3rd term
appriiimatlon 0.6977 0.6858
H(E)
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Table 3.3.6 Coefficients bjy7 for the radial viscous-
buoyancy spreading currents due to a
continuous steady discharge plume.

Uniform Linearly
Environment Density-
Stratified
Environment
derived
from i=0 i=1
lst term
approximation 0.6366 0.4593
of ) )
H(E)
2nd term
approximation 0.6293 0.4545
of . .
H(E)
3rd term
approximation 0.6265 0.4528
of : ‘
H(E)
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flow horizontally. The pressure gradient induced by the momentum
flux makes the initial regime of horizontal flow behave as a
surface jet and therefore causes a considerable amount of mixing
with the ambient fluid beneath it, as shown in Figure 3.4.1(a).
Further away from the impact point the buoyancy effects due to
any small density difference become more important. The buoyancy
gradually reduces the vertical mixing to a negligible amount
and eventually produces a two-layer stratified flow. The
behavior is therefore quite different from a vertical submerged
buoyant jet.

The mixing due to both plane and radial buoyant jets, as
shown in Figure 3.4.1(b), will be discussed in this section.

3.4.1 Turbulent Surface Jet Mixing

Suppose there is a radial or plane momentum source
located at the origin of an r-z coordinate system in the free
surface, as shown in Fiéure 3.4.2. The steady jet flow produced
is assumed turbulent so that the molecular transport quantities
are neglected. With the usual boundary layer assumptions the
continuity, horizontal momentum, and mass conservation equations

for mean jet flow can be written as

1 B(rnu) oW _
rn o Nz 0 ’ (3.4.1)
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Figure 3.4.1(a) Flow regimes of an outfall discharge (soon after startup):
I: Submerged buoyant jet flow,
I1I: Surface transition,
I1I: Surface buoyant jet flow.

\%gg

Figure 3.4.1(b) A surface buoyant jet flow model with finite
dimension of discharge (soon after startup).
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dr
e — __..!___.l
‘ (r,u)
— >
o T §

/ ’q u‘\? T~

1

W(r+dr)=— f— W(r) M(r)—= F—=M(r+dr)

y(zw)

Figure 3.4.2 Point source surface jet nomenclature,

z
M(r) = J okon rnuzdz, M(r +dr) = M(r) + aM(r)

W(r) = [j konrncwdz, W(r+dr) = W(r) +dW(r).
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T
Ju Ju - 9 zZr
u o + w ™ 3;-<-?;-> . (3.4.2)
oc dc _ 3
us-t v = W) s (3.4.3)

where u and w are the time-averaged velocities in the horizontal
and the vertical direction, respectively; c is the relative mean
temperature or mean density difference; T,r is the turbulent
shear stress and W is the turbulent flux of ¢ at horizontal
position r and depth z, n=0 denotes the plane surface jet flow,
and n=1 the radial surface jet flow. The ambient fluid is
assumed infinitely deep.

Assume that the time-averaged horizontal velocity u(r,z)

has a similarity solution of the form

u(r,z) = um(r)f(g) (3.4.4)

where the mean velocity at free surface u(r,0)==um(r) and the
dimensionless similarity variable £ =az/r. The exact form of
the maximum free surface velocity um(r) can be derived from

the condition of horizontal momentum conservation, namely that,

+
rn lu2

o 0.
J ok rfuldz = —3 °na a J £2(g)dg =p M ,(3.4.5)
(8] 0




176

where the initial kinematic momentum jet flux M==kOn rjn hj uj2
and koo=l for n=0 and k01= 21 for n=1 and the subscript

j implies the initial jet values. Thus,

J
um(r) = m N (3.4.6)

*® 1/2
where J = {aM/kon J fz(g)dg} or simply in terms of the
(o)

discharge jet dimensions and jet velocity uj:

u (r) r.% h,
L. a {3 J (3.4.7)

u(r,z) = r—lna—‘i’ , (3.4.8)
w(r,z) = - ;]—'H-g% . (3.4.9)
to give
um(r)rn+l
Y(r,z) = ——————— F(£) R (3.4.10)
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13
where F(g) = J f(£)dt. Therefore the vertical mean velocity
can be deduced as
u (r)

o) - 232 o) (3.4.11)

w(r,z) =

and the vertical gradient of the mean horizontal velocity as

du(r,z) _ a up (r)

9z

F'"(&) (3.4.12)

where the prime denotes differentiation with respect to E.
Two unknown values of turbulent quantities in Eqs. (3.4.2)

and (3.4.3), Tzr/p and W, are assumed as

Tzr ou
_2r _ _ v o ou
5 u'w €, 3z (3.4.13)
= Yegl = —a c
W=rc'w c 32 (3.4.14)

by introducing two eddy viscosity terms, €4 and €.» value primes
denote fluctuations from the mean values. Following Prandtl-
Tollmien's two assumptions are made for the two eddy viscosity

terms:
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e =242 Iégﬂ

u o 133 R (3.4.15)

- du
e, = %y L. laz , (3.4.16)

where lu and lc are Prandtl's mixing length for the momentum

and the tracer transfer,
L = c,t (3.4.17)
L = c T (3.4.18)

in which c, and c, are two unknown coefficients. 1In short,

Prandtl-Tollmien assumptions for two eddy viscosity terms are

_ 2|9u
e, “ K, T |az| , (3.4.19)
e =k r2j2Y (3.4.20)
c c 3z >

where two unknown numbers Ku and Kc are related to Ku==cu2

and K =c_c .
c u ¢
An alternate approach is, following Prandtl-G8rtler (1942),

to assume that



179

m
]

Xy bu(r) u () R

m
I

Xg bc(r) um(r) ,

(3.4.21)

(3.4.22)

where bu(r) and bc(r) are two mixing thickness scales that are

defined as

I
o
i}

bu(r)

bc(r)

1l
o
la}

implying that the eddy viscosity terms are expressed as

e =K r um(r)

e =K r um(r) s

where two unknown numbers Ku and Kc are related to Ku = Xuku

and KC = Xckc in Prandtl-Gortler assumption.

(3.4.23)

(3.4.24)

(3.4.25)

(3.4.26)

Substituting the Prandtl-Tollmien assumptions, Eqs. (3.4.13)

and (3.4.19), into the integral form of horizontal momentum

equation,
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1 9 z n Tzr
uw+——Lru2 dz - — =0 , (3.4.27)
n ar p
r
given the ordinary differential equationm,
F'2(g) - F(E)F'(E) = 0 , (3.4.28)

where = YLD
a 2Ku

conditions at the free surface of u(r,0)==um(r), w(r,0) =0 and

from derivation of Eq. (3.4.28). With boundary

at depth u(r,») =w(r,») =0, i.e. F'(0) =1 and F(0) =F(x) =F'(x) =0,
the similarity profile for mean velocity is obtained by integrating
Eq. (3.4.28) as shown in Table 3.4.1.

The mean tracer distribution of the turbulent jet flow is
found from the self-similar distribution assumed to be of the

form

c(r,z) = cm(r)e(g) . (3.4.29)

where the longitudinal tracer distribution at the free surface
c(r,0)==cm(r). The total amount of tracer loss through the
free surface is assumed very small so that the total integral
amount of tracer distribution should be conserved at each

radial location r, i.e.
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Table 3.4.1 Prandtl-Tollmien similarity solutions of turbulent
surface jet flows.

aw(r,z) ' n+1l
£ “—(—1(’—&52—)—= F'(E) | F(E) Plane Radial
UptT Surface Jet Surface Jet
n=0 n=1
0.0 1.000 0.000 0.000 0.000
0.1 0.979 0.100 0.048 -0.002
0.2 0.940 0.200 0.088 -0.012
0.3 0.897 0.287 0.126 -0.018
0.4 0.842 0.370 0.152 -0.033
0.5 0.782 0.450 0.166 -0.059
0.6 0.721 0.520 0.173 -0.087
0.7 0.660 0.590 0.167 -0.128
0.8 0.604 0.650 0.158 -0.167
0.9 0.538 0.710 0.129 -0.226
1.0 0.474 0.760 0.094 -0.286
1.1 0.411 0.810 0.047 -0.358
1.2 0.357 0.860 -0.002 -0.432
1.3 0.300 0.880 -0.050 -0.490
1.4 0.249 0.910 -0.106 ~-0.561
1.5 0.200 0.930 -0.165 -0.630
1.6 0.165 0.950 -0.211 -0.686
1.7 0.125 0.960 -0.268 -0.748
1.8 0.095 0.965 -0.312 -0.794
1.9 0.067 0.970 -0.358 ~0.843
2.0 0.046 0.980 -0.398 -0.888
2.1 0.030 0.985 -0.430 -0.922
2.2 0.020 0.990 -0.451 -0.946
2.3 0.009 0.995 -0.477 -0.974
2.4 0.000 1.000 ~0.500 -1.000
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o k rn+lcm(r)um(r) 0
J Ko rfeudz = =2 Lf(@e(s)d& = ¢,Q ,

a

(3.4.30)

where cj is the initial jet tracer concentration and Q is the

n .
h.u.. Therefore, the maximum

jet discharge rate, Q = kon rj 3%

tracer distribution is decaying according to

(3.4.31)

Substituting the Prandtl-Tollmien assumption Eq. (3.4.14) with

Eq. (3.4.20) in the integral form of tracer equation,

cw +-j;-§% cudz - W=0 , (3.4.32)
gives
Kc
e F'(g)e'(g) - F(&)o(e) = 0 (3.4.33)
u

By the aid of Eq. (3.4.28), Eq. (3.4.33) can be written as
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K
c 6'(8) F(&) F" (&)

£ = = . 3.4.34

K, 6 F'@)  F'(©) ¢ )
Integrating Eq. (3.4.34) providing with boundary conditions
0(0)=1 and F'(0) =1 from cm(r) =c(r,0) and um(r) =u(r,0)
gives the self-similar distribution 6(£) for mean tracer as
a power function of mean velocity distribution,

Kc/Ku KC/Ku
6(8) =[F'(&g)] = f €9, . (3.4.35)

Thus, the mean tracer distribution is expressed as

o
a £f2(g)dg n Kc/Ku
c(r,z) _ J L R © | (.4.36)

C.

o —
’ J £(E)e(E)dE . 2

Similarly, using the Prandtl-Gortler assumptions Eqs. (3.4.13)
and (3.4.14) with Eqs. (3.4.25) and (3.4.26) in the integral form

of horizontal momentum Eq. (3.4.27), gives

2F(E)F'(E) + F"(8) = 0 (3.4.37)
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+1
K
u

j=]

The tracer equation (3.4.32) becomes

with a A

K
8'(E) + 2‘EE F(£)6(E) = O (3.4.38)
(o4

Integrating Eq. (3.4.37) twice with boundary condition F'(0) =1

and F(0) =0, gives
F(£) = tanh ¢ . (3.4.39)

The similarity distribution of a mean horizontal velocity in

dimensionless form is therefore

u(r,z) _ ., -
7§J§5— = F'(£) = sech? (3.4.40)
From Eqs. (3.4.37) and.(3.4.38)
K K
8'(e) _ _u o _ uF"(E)
16) 2 ) F R, T (3.4.41)

Integration of Eq. (3.4.41) with boundary conditions 6(0) =F'(0) =1

gives

Ku/Kc K /K
8(g) = F' () = [sech?(r)] "

¢ (3.4.42)
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Thus, the mean tracer distribution is expressed as

J L eoae oy 2K /K
c(r z) _ - ue .(3.4.43)

sech €9

f £(£)8(E)dE rT

The two mean tracer distributions, Eqs. (3.4.35) and (3.4.42),
derived from the Prandtl-Tollmien and Prandtl-Gortler assumptions,
therefore do not necessarily coincide with the mean horizontal
velocity distribution £=F'(E£) except when two mixed coefficients
Ku and Kc are equal. As shown in Figure 3.4.3 in this case

the profiles of mean horizontal velocity and mean tracer
distribution derived from the two assumptions give values close

to each other.

3.5 Dimensional Analysis

The advantage of using kinematic fluxes instead of the actual
physical dimensions to describe the general time-mean properties
of a submerged buoyant jet has been demonstrated by List and
Imberger (1973). The same dimensional methods may be used to
solve the problem of a horizontal turbﬁlent surface buoyant jet.

3.5.1 Radial Surface Buoyant Jet

As shown in Figure 3.5.1 a radial surface buoyant
jet discharges a fluid of uniform density pj and temperature

Tj at the free surface of a large body of water of density Pa
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Figure 3.4.3 Two self-similar profiles of mean horizontal velocity,
F'(g) = u(r,z)/up(r), and mean tracer when Ky =Kc,
8(&) =c(r,z)/cg(r). Dash line indicates the solution
derived from the Prandtl-Tollmien assumption and
solid line from the Prandtl-Gortler assumption.
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Figure 3.5.1 Sketch of a radial surface buoyant jet.
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and temperature Ta. The jet originates from a circular slot
of radius rj and thickness hj' For the case of stationary
ambient fluid and when surface tension is neglected, there

are (8+1i) independent variables to describe this buoyant jet

flow so that any dependent variable ¢ is given by

¢ = ¢(xi,rj,hj,uj,pa,pj,g,v,H) R (3.5.1)
where H is the depth of the ambient fluid, x; are the space or
the time independent variables which can be r,z,t, or r and z,
or only t, v is the kinematic viscosity of the discharging fluid.
It is assumed that the density difference between the discharged
fluid and the ambient fluid is sufficiently small in comparison
to some reference density, say pj, that the density difference
is only important in the body force term of the jet flow.
Now, four independent variables rj, hj’ u,

]

are transformed into three kinematic flux variables, Q, M, B, and

, and gA=g(oa-pj)/oj
one physical dimension of the jet, either rj or hi’ so that
¢ = ¢(xi,Q,M,B,rj or hj,H,v) R (3.5.2)

in which the volume flux Q==anj13 uj, the momentum flux
b1=(2uj and the buoyancy flux B =gAQ. The dimensions corresponding
to each flux are respectively as L3/T, L¥/T? and L%/T3. There

are three length scales associated with any combination of two
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flux variables, as given in Table 3.5.1. Each length scale
has its own meaning. For example, lMB is the length scale
located where the momentum flux produced by the buoyancy will
begin to dominate the initial discharge momentum flux M. Thus,
two regimes of flow, which are dominated respectively by the
momentum flux M and by the buoyancy flux B, are roughly separated
at a distance from the origin of order QMB' Other time scales
and velocity scales can also be derived from the similar combinations
of any two fluxes, as given in Table 3.5.1.

The densimetric Froude number Fr (or the inverse square
root of Richardson number Ri) of the buoyant jet flow is defined

as the ratio of two length scales, QMB and zQM’ i.e.

2 5/4 u.
Fr=—2_ M7 _ J ) (3.5.3)

A 1/2 y—

Similarly, it is found that the ratio of any other two length
scales, time scales, or velocity scales also forms a power of
Froude number Fr.

To characterize the turbulent flow two Reynolds numbers
are defined. The first is the Reynolds number of the jet

flow Re.,
J

] uQM QQM )

5 S = J (3.5.4)

v v

[} u,v2nr.h.
Re “MB “MB - Ml/2 j “rJ
AY



190

Table 3.5.1 Length, time, and velocity scales of a radial surface
buoyant jet.

luxes Combinations of
Item
Scales Q and M M and B Q and B
. - _Q . =M3/L+ . =93/5
Length M /2 MB  R1/2 M g1/s
scale
(2rr )1/ u, (2nr,h,u,)2/5
= (2ﬁr.h.)1/2 - 3] J - 3313
NN (gn)1/2 (gr)1/5
@ y3/2 B QB p3/s
Time
scale (27r,h,)1/2 u, (2mr,h,u,)1/5
= 33" - _J _ j i3
. A
%3 & (80)3/5
M pl/2 g2/5
u = — = ———— u B me—
T Q MB T Li/u B " 1/
Velocity
scale / / / /
= u, = (gA)1/2 (2rr,h )Y/% | = (ga)?/5 (2nr,h,u)l/d
u, (g8) ( mry J) (g2) ( mry JuJ)
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which indicates the turbulence level in the jet flow regime and

the second is the Reynolds number of the plume flow Rep,

_ Yo fap _ @2f5 /s B0/ECrrihiup/E

v AV v

Re
P

(3.5.5)

which indicates the turbulence level in the plume region. The
ratio of these two Reynolds numbers is also a function of the

Froude number,

= Fr2/5 ) (3.5.6)

This implies that Froude number and one or the other Reynolds
number is necessary to model the whole regime of buoyant jet
flow. Different levels éf turbulence in the plume flow downstream may
result depending on the jet Reynolds number, which is generally
neglected in jet flows since it is very large.

From Buckingham m-theorem (7+ i) - 2= (5+1i) dimensionless
terms can be formed to describe the flow problem given in
Eq. (3.5.2). The first two m-terms are the densimetric Froude
number Fr and the jet or the plume Reynolds number. There is
no difference in choosing rj or hj to be normalized by the
length scale QQM’ since the resultant dimensionless terms are

reciprocal to each other, i.e.
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r, rj
- - (3.5.7)
zQM 21rhj

and
h. hj
-1 - , (3.5.8)
ZQM ZﬂrJ

and describe the aspect ratio rj/hj of the jet. One more m-term
is the relative depth of ambient fluid H/hj. The other (1+ i)
terms can be formulated by suitable normalization with the length,
time, or velocity scales an appropriate choice depending on the
problem being considered. Thus, Eq. (3.5.2) can be rewritten

¢:: - ¢ X.::,FI’E(Q,I. h..,Ii 11. s 3-5-9

in which xi* and ¢* denote the dimensionless independent and
dependent variables, the Reynolds number Re can be Rej or Rep.
Consider the initiation flow for a radial buoyant surface
jet. The independent variable .9 in this case is time t and the
dependent variable is R(t), the growth history of the radial

tip. The dimensionless equation becomes

R*(t*) = ¢(t*,Fr,Re,rj/hj,H/hj) s (3.5.10)
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where R* and t* are suitable normalized values of R(t) and t.
When the dimensionless length R(t)/SLMB or the dimensionless time

t/t is much less than unity, there is a region of starting

MB

jet flow, i.e.

R(t) = ML/# ¢1/2 ¢ (Fr,Re,x, /by H/h,) . (3.5.11)
Similarly, there is a region of inertial plume flow,

R(t) = BL/% ¢3/4 ¢ (Fr,Re,T /by H/h,) (3.5.12)

when tMB <t < th or RMB < R(t) < RBv' Subsequently there is a

region of viscous plume flow

1/8
o3
R(t) ==<f¥¥l—) gl/2 ¢(Fr,Re,rj/hj,H/hj) (3.5.13)

when th< t. All the coefficients for starting jets, inertial

plumes, and viscous plume flows are functions of the densimetric
Froude number, a Reynolds number, the aspect ratio and the
relative depth of ambient fluid. The limiting values for two
starting plume coefficients were given in Sections 3.2 and 3.3

and b The time scale t and the

respectively as ¢ 011" Bv

011

length scale R y are proportional to the values t, and R, given

B 1 1

in Table 3.1.2.
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3.5.2 Surface and Submerged Horizontal Buoyant Jets

The derivations of the dimensionless parameter in
Subsection 3.5.1 can be extended to the case of a plane surface
buoyant jet and to plane or radial submerged buoyant jets. The
latter two cases involve the discharging of a fluid into a
linearly density-stratified environment at a neutral demsity
level. In these cases the general definitions for the volume
flux Q, the momentum flux M, and the buoyancy flux B are given
in Table 3.5.2. The general form of Eq. (3.5.2) can be

written as
¢ = ¢(xi,Q,M,B,v,H,nrj) . (3.5.14)

In the plane jet case there is one less independent variable rj,
since the coordinate system can be shifted to eliminate the
jet length rj.

Just as found in the previous section, there are three
possible starting flow regimes for the initiation flow, viz. a

starting jet flow,

R(t) v M t—_ (3.5.15)

a starting inertial plume flow,
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Table 3.5.2 Definitions of volume, momentum, and buoyancy fluxes
for a horizontal surface or submerged buoyant plane
or radial jet.

Items
Definition Dimensions
Fluxes
Volume 1 Ln+2
flux 2% u,h, 2nr. )"
Q J 3] 3 T
Momen tum i Ln+3
flux 2% u2h, (27"
M 333 72
Buoyancy 1 (n+]._) (i+1)+2
-— . i+l
flux (g )1+l 2iy h (27mr )n L
B 884 30 3 i+3
T:i_+l
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1 i+ 3
R(t) ~ B(n+1)(1+l)+2 t(n+l)(1+l)+2 (3.5.16)
and a starting viscous plume flow,
1
o Qi+3 (n+1) (i+3)+2 P44
R(t) n| ——— (D EFFZ (5 5 17)

Two time scales, tMB and th, and two length scales, RMB and
RBv’ can be derived from the above three equations (3.5.15),
(3.5.16), and (3.5.17) to distinguish the three regimes of starting
flow and steady flow, as shown in Figure 3.5.2.

However, not all three regimes necessarily exist in a
starting flow or in a steady buoyant jet flow. For example,
when the ratio of th/tﬁB is very small, there is no starting
inertial plume regime. Similarly, there is no inertial plume

regime, when RBv/RMB is very small.

3.5.3 Dynamic Collapse

The dynamic collapse of a homogeneous mass in a
linearly density-stratified environment (i=1) or for the
squatting of a liquid column in a uniform environment (i=0)
may be similarly described. There are three flow regimes as
shown in Figure 3.5.3. There is an initial stage, a principal

flow stage, and a final spreading stage. Two time scales,
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Figure 3.5.2 Three regimes of starting surface or submerged

buoyant jet flow.
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Figure 3.5.3 Three stages of dynamic collapse flows.
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t =R/ 4gA:h o oand e

o o gh;hg Bv* and two length scales RO and RBv’ can

be developed to distinguish the three regimes although as before,

not all three regimes necessarily exist. For example,

i+l

when the ratio of RBv to Ro (or t_,  to to = RO/ gAiho ) is

Bv

rather small, there is no principal stage.

The relationship of RBv and th to Rl and tl’ which were

given in Tables 3.1.2 and 3.1.5, are given in Table 3.5.3 for
i=0 and in Table 3.5.4 for i=1. The limiting values of two

ratios, RBv/Rl and th/t from the long wave solutions are

1’

also given.

3.5.4 Radial Surface Buoyant Jet in a Cross Current

The above analysis can be extended to describe
spreading in a crossflow. If U is the magnitude of horizontal
current velocity, and ¥ is the downstream distance from the
source then substituting t for x/U in Egqs. (3.5.11) and (3.5.12)

gives the width of (inertial) surface wastewater field, y(x),

y(x) ~ Ml/”(%>l/2 (3.5.18)
and
y(x) ~ B/% (%)3/“ . (3.5.19)

The location of the upstream edge from the center of a

radial buoyant jetAxe, can be derived from balancing the



Table 3.5.3 The ratio of R, to R
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1 B

and t

to t, when i=0.
v 1

ratio Ray tay
Rl tl
n m
10 \1/7 18/7
Instantaneous booo booo
Plane release 3 = 0.910 c = 0.334
z =0 oo 000
currents
n=20 Continuous bglo boio >
discharge = 0.133 = 0.106
m=1 cglo COIO
Instantaneous 1/3 8/3
release bio; boo1
Radial m=20 = 0.626 = 0.174
€001 Coo1
currents
n=1 Continuous b3 b #
discharge 011 _ 9.143 ol = 0.0523
m=1 ) c '
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Table 3.5.4 The ratio of R to R1 and th to t, when i=1,
rati
io RBv tay
R t
n m 1
1/2
Instantaneous b340 b, oo
Plane release = 0.481 = 0.487
m=0 €100 €100
currents
n=20 ,
Continuous b6 b 6
: 11 110
discharge % - 0.0874 = 0.124
m=1 5 €110
110
Instintaneous b10 1/7 b 30/7
r; :age ;01 = 0.407 <E§U§L> = 0.0469
Radi 101
adial clo1
currents
n=1 .
Continuous b4 b 6
discharge 111 111 = '
= 0.0816 0.0325
m=1 €111
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starting flow velocity with the ambient current velocity, to give

1. Ml/2
x =5 a2 = (3.5.20)
and
/ 3
x =3 u/3)" B , (3.5.21)
e 4 U3

in which d is the starting jet coefficient R(t)/ML/% /2 4n
Eq. (3.5.11) and ¢ is the inertial starting plume coefficient
R(t)/B1/% £3/% in Eq. (3.5.12).

From Eqs. (3.5.15), (3.5.16), and (3.5.17) similar relations
can also be derived for the internal spreading of a submerged

wastewater field (i=1).
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CHAPTER 4

EXPERIMENTAL STUDIES AND APPARATUS

4.0 Introduction

Many experimental studies have been made on the unsteady phase
of plane gravitation-driven spreading flows, and a systematic
review of previous studies on these subjects was presented in
Chapter 2. The theoretical results developed in Chapter 3
will be compared with these previous experimental results in
Chapter 6.

In this chapter experiments on radial surface buoyant jets
are described. Apparently no previous experiments of this
type have been performed, at least ﬁone seem to be described
in the research literature. The experiments to be described
were performed to determine the effect of initial jet momentum

on the jet mixing by evaluating the density distributions.

Conductivity measurements will be described in which a
periodic radial spreading motion develops, as predicted by the
analysis in Chapter 3. Surface buoyant jet flows were also
performed in which the buoyant surface flow field prevailing

in a steady cross current was measured.

4.1 Surface Buoyant Jet

4.1.1 Experimental Set-Up

The experiments were conducted in a square tank

(4.0 meters by 4.0 meters) one meter deep filled with tap



204

water to a depth of 75 centimeters. A half-radial buoyant jet
flow was generated by discharging blue-dyed buoyant water from
a half-cylindrical chamber combining flow-straightening rings
a half-circular slot 9.962 cm in radius and 0.3175 cm wide
(see Figure 4.1.1 for details). A constant head tank was used
to provide the pressure necessary to drive the radial jet and
a calibrated precision bore flow meter (tube number B6-27-10/27
manufactured by Fischer & Porter Corporation) was used to
regulate the flow rate with an accuracy of 17. Another flow
meter was connected to a drain pump and was set to a flow rate
equal to the discharge simultaneously in order to keep the
free surface at a constant depth during the experiment. The
overall experimental set-up is shown in Figure 4.1.2.

Before running each experiment, the effluent fluid was
mixed well and cooled to a temperature close to that of the
tank water. Both temperatures of the discharging fluid, and
tank water were checked with a thermometer (graduated in
0.1°C intervals and read to +0.02°C).

4.1.2 Density and Dilution Measurements

The discharged fluid was a mixture of tap water,
methanol, sodium chloride (Food grade 999 salt supplied by
Morton Salt Company) and a small amount of blue dye (blue
concentrate supplied by 7-K Color Corp) for flow visualization.
The sodium chloride was the tracer. The concentration change

due to mixing was measured by a calibrated conductivity probe
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Figure 4.1.1 Cross section of the half-radial discharging box
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Figure 4.1.2 Overall experimental set-up for the half-radial
surface buoyant jet.
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(shown in Figure 4.1.3), forming part of a Wheatstone bridge
circuit. The response of concentration change was measured
as a conductivity change, which was recorded on a strip chart
via a Sanborn analog recorder (Model 150).

The conductivity probe was mounted on a carriage, and
could be moved vertically with an accuracy to 0.0l cm and
radially to 0.10 cm. The probe electrodes were cleaned
regularly and platinized using a platinum chloride solution.
The probe was immersed in distilled water when not in use.

Before experiments were performed, the values of specific
gravity of both the effluent and the tank water were measured
by a specific gravity hydrometer (specified as ASTM 151H) in a
graduated plastic cylinder (1000 c.c.). The accuracy of the
specific gravity measured by hydrometer is within *0.0002.

A calibration curve was plotted for the conductivity probe by
diluting the effluent fluid with the tap water in the tank
(in a series of proportion of 1/2, 1/4, 1/8, 1/16, 1/32...).
A typical calibration curve for the conductivity probe is
shown in‘Figure 4.1.4.

4.1.3 Photographic Equipment

Side-view photographs of the discharge flow were
taken with a Nikon F camera equipped with a 17 mm lens and
mounted on a tripod in front of glass-side wall of tank. The
camera was equipped with a motor drive which was connected via

a cable to the timer of the Sanborn recorder, so that the strip
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Figure 4.1.3 Photograph of a conductivity probe.
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Figure 4.1.4 Typical calibration curve of conductivity probe
(Run No. 10/27/77).
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chart was marked as each photograph was taken. The photographs
were scales from a projected image of the film negative using

the known dimensions of the discharge box.

4.2 Radial Surface Heated and Buoyant Jets

4,2.1 General Experimental Set-Up

Two series of radial jet experiments were performed
in a rectangular recirculating flow basin. The first set was
for a heated radial surface jet in a stagnant environment. The
second was set for a buoyant radial surface jet in a uniform
steady current.

The test basin (36 feet long, 20 feet wide, and about 16 inches
deep) is described in detail in Koh et aql. (1974). The bottom
of the basin is a uniform white sand (median diameter 0.8 mm)
and for the experiments it was leveled to within *1 mm of
horizontal by use of a grader rolling on steel rails at each
side of the tank. The recirculation system consists of two
pumps which allow the simulation of a wide range of current
speeds, The average current speed was measured by timing
cross—shaped lucite drogues (1 inch high and 2 inches long)
while traveling a known distance in the tank. Five manifolds
in both ends of basin were adjusted to guarantee the horizontal
uniformity of the cross current. Two swimming pool skimmers
were used to clean the free surface film from the water in

the basin.
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The general set-up for the radial surface heated jet
experiments is shown in Figure 4.2.1. The flow injection system
is essentially similar to that for the half-radial surface
buoyant jet experiments shown in Figure 4.1.2, except an
electrical heater was included to provide hot water at a
constant temperature at the circular slot jet (7.62 cm radius
and 0.3175 cm thick) generating the radial flow. Two precision
bore flowmeters (Tube number FP-1-35-G-10/27 manufactured by
Fischer & Porter Corp.) were used. In the observations of
a radial surface buoyant jet in a cross current the discharge
was a mixture of tap water with methanol and a small amount of
blue dye for flow visualization. The overall experimental
set-up is similar to that shown in Figure 4.1.2.

4.2.2 Temperature Measurements

Six fast-response thermistors were used for temperature
measurements in the heated jet experiments and their characteristics

are given in Table 4.2.1. Each thermistor was insulated and

Table 4.2.1 Fast-response thermistor characteristics

Bead Dissipation Time Resistance
Type Diameter Constant-Still Constant in at 25°C
Water at 25°C Moving Water

Small head

Veco ° 27 or 45

n,

thermistors 0.35 mm 0.75 mw/®C milliseconds 200 K&
type 52A26
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mounted in a stainless steel tube. One thermistor was installed
inside the discharging chamber to record the initial temperature
of the jet fluid. The other five formed an equally spaced

vertical rake as shown in Figure 4.2.2. The rake was mounted on
a carriage so that it could be moved in the radial direction
(accurate to +0.10 cm) and vertically perpendicular to the free

surface (accurate to +0.01 cm).

The thermistor response to temperature was measured with a
bridge circuit designed by Gartrell (1979), as shown in Figure 4.2.3.
A dual operational amplifier (Texas Instruments, SN558) was used
to buffer, amplify and low-pass filter the signal from the bridge.
All resistors used in the circuit were precision metal-film or
wire-wound resistors. The electrical current passing through
the thermistor was approximately 4.0 x 10~® amperes so that the
ohmic dissipation of the thermistor was approximately 2 X 1076
watts. Hence the self-heating of thermistor was about 0.003°C
by using the dissipation constant given in Table 4.2.1.

The amplified signal response was about 1.0 volt/°C, and
the output of the circuit could be offset so that the zero-level
output would correspond to a convenient temperature level. Six
bridge circuits were connected in parallel to a DC power supply
(15 volts) and were housed in a grounded aluminum box. The
drift of the thermistor circuit was less than 10 mV over an

extended period, giving the thermistor an accuracy of better than
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Figure 4.2.2 Photograph of a rake of five fast-response thermistors.
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Figure 4.2.3 Fast-response thermistor circuit designed by
Gartrell (1979).
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0.01°C. A buffer circuit made from an integrated circuit operational
amplified (Texas Instruments SN741), as shown in Figure 4.2.4, followed
the thermistor circuit and was used to increase the input impedance of
the analog-to-digital converter system to about 1 megohm.
Each analog output voltage was fed into one channel of an

eight channel analog-to-digital data acquisition system (manufactured
by Digital Data System) which digitized the information and
packed it on magnetic tape. Data written on the magnetic type
were retrieved and processed at Caltech's Booth Computer Center
with the IBM 370/168 high speed digital computer. The sample time
of the A/D system was set at 150 seconds and the sample rate at
10 samples per second. The total length of the measurement records
was 2 minutes for each location.

Each thermistor was individually calibrated with the same bridge
circuit and same cable as in experiment. A third-order polynomial

was fitted, in a least-square sense, to the calibrated data so that

T=a, +a, V+a

2 3
0 1 o Vet ay v R (4.2.1)

where T is the temperature in °C, V the analog output from the
bridge in volts, and aj, j = 0,1,2,3, are regression coefficients.
Typical calibration curves along with calibration data are shown

in Figure 4.2.5.
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4.2,3 Overhead Photographs

Overhead photographs of the dyed buoyant surface flow
field were taken with a Nikon F camera equipped with a wide angle
lens (17 mm). The camera was equipped also with motor drive so
that it could be triggered remotely. The scale of flow field
was read from the negative image by comparing the known spacing
between two fiducial marks on the sand floor of the basin. The
upstream edge position was also checked with direct measurement
with a steel scale. Elapsed time photographs were also taken
for some experiments involving initiation of flow in a steady

cross current.
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CHAPTIER 5

EXPERIMENTAL RESULTS

5.1 Half-Radial Surface Buoyant Jet

A total of thirty experiments were performed using the
apparatus described in the previous chapter. The relevant
data are given in Table 5.1.1. These experiments covered the
range of initial jet conditions as shown in Table 5.1.2. The
densimetric Froude number Fr ranged from 2.80 to 25.0, the jet
Reynolds number Re = Rej from 5040 to 13,700, and the ratio of

two length scales, Rlll from 31.64 to 72.28 (or equivalently,

QM’

Re/Fr? from 29.5 to 645.6). These dimensionless numbers were

defined in Section 3.5 as

£ 5/u
Fr=7@= M (5.1.1)
QM QB1/2
L 1/2
Re, = UMBV gL , (5.1.2)
k|
R 1/8 Y 1/8
2_1. = (Frz . Re3) / =( M ) R (5.1.3)
QM v3qQ2B

Re =<R1>= Q’B , (5.1.4)



Table 5.1.1 Summary of data for starting half-radial surface buoyant jet experiments,
= 0.3175 cm and H = 75.0 cm.

rj = 9,962 cm, h

3

N Ta Tj pa pj A uj Q M B
un Density
No. (°c) (°c) (gm/cm3) | (gm/em3) [ (1073) [ (cm/sec) | (em3/sec) | (cm“/sec?) | (em/sec") | yeasurements
8/23/77 - - 0.9990 0.9970 2.0 30.70 610 18,724 1,199.2 No
24 - - 0.9994 0.9988 1.6 20.13 400 8,052 627.2 No
26 25.05 | 25.05 0.9994 0.9971 2.3 28.38 564 16,000 1,272.0 Yes
28 25.90 | 27.35 0.9990 0.9985 0.5 28.38 564 16,000 276.6 Yes
29 25.40 | 25.40 0.9990 0.9984 0.6 28.38 564 16,000 332.0 Yes
30 25.95 | 25.70 0.9990 0.9985 0.5 21.34 424 9,046 208.0 Yes
31 25.60 | 25.80 0.9990 0.9986 0.4 15.90 316 5,024 124.0 Yes
9/01/77 | 25.30 | 25.45 0.9990 0.9987 0.3 17.21 342 5,886 100.6 Yes
06 24.80 | 25.80 0.99905 0.9975 1.65 18.84 374.4 7,054 605.9 Yes
19 24.75 | 24.70 0.9991 0.9958 3.3 17.61 350 6,164 1,132.9 No
20 24.60 | 23.90 0.9991 0.99635 2.75 16.35 320 5,315 876.7 No
21 24.40 | 24.45 0.99915 0.99505 4.1 15.92 316.4 5,038 1,272.4 No
22 24.65 | 25.00 0.99915 0.9954 3.75 11.32 225 2,548 827.6 Yes
27 23.50 | 24.70 0.9996 0.9972 2.4 11.32 225 2,548 529.4 No
28 24.60 | 24.60 0.9990 0.00715 1.85 11.75 233.6 2,746 424.0 Yes
10/05/77 | 23.70 | 24.70 0.9992 0.0071 2.1 15.92 316.4 5,038 651.7 Yes
10 23.50 | 24.60 0.99945 0.00735 2.1 15.92 316.4 5,038 651.7 Yes
14 23.90 | 24.40 0.9995 9.9984 1.1 15.92 316.4 5,038 341.2 Yes
17 24.30 | 24.70 0.9995 0.9984 1.1 15.92 316.4 5,038 341.2 Yes
22 23.10 | 24.20 0.9992 0.9980 1.2 16.71 332.0 5,547 459.9 Yes
24 23.60 | 24.60 0.9995 0.9980 1.5 20.50 407.4 8,352 599,2 Yes
27 23.40 | 25.00 0.9995 0.9984 1.1 21.94 436.0 9,566 470.2 Yes
29 22.90 | 24.20 0.9995 0.9988 0.7 17.51 348.0 6,094 238.8 Yes
11/01/77 | 22.70 | 23.60 0.9995 0.9994 0.1 16.53 328.4 5,429 32.2 Yes
04 22.70 | 23.80 0.9995 0.9991 0.4 19.83 394.1 7,817 154.6 Yes
13 21.90 | 23.00 0.9995 0.9991 0.4 26.44 525.3 13,891 206.0 No
16 22.35 | 23.85 0.9998 0.9989 0.9 19.83 393.9 7,811 347.5 Yes
20 - - 0.9997 0.9988 0.9 19.83 394.1 7,816 347.7 Yes
29 21.90 | 23.20 0.9998 0.9974 2.4 17.00 337.3 5,741 794, 4 No
12/12/77 | 20.80 | 22.60 1.0000 0.9980 2.0 15.55 309.0 4,804 605.6 Yes

81¢



Table 5.1.2 Summary of calculated data for starting half-radial surface buoyant jet experiments.

Run mB “MB Fr Re Re/Fr2 It R(t) R(t) R(t)
No. (cm) (sec) oM YLISVERN B AR (gAg3)”"t”2
Y
8/23/77 46.22 15.61 10.37 13,684 127.3 63.83 1.05 - -
24 33.94 12.84 7.61 8,973 154.8 50.44 - - -
26 39.90 12.58 8.95 12,652 158.0 59.73 1.04 - -
28 85.56 57.86 19.19 12,652 34.4 72.28 1.03 - -
29 30.75 48.22 17.52 12,652 41.3 70.65 1.11 1.04 -
30 64.32 43.50 14.43 9,511 45.7 60.48 1.04 - -
31 53.60 40.52 12.02 7,089 49.1 51.75 - - -
9/01/77 66.98 58.48 15.03 7.672 34,0 56.37 1.06 - -
06 31.27 11.64 7.01 8,399 170.7 48.20 1.07 - -
19 20.67 5.44 4.64 7,851 365.3 42.38 1.30 0.93 -
20 21.02 6.06 4.71 7,290 317.8 41.55 1.40 1.00 -
21 16.76 3.96 3.76 7,097 502.0 38.72 1.32 0.84 0.725
22 12.46 3.08 2.80 5,047 645.6 31.64 1.53 0.77 -
27 15.58 4.81 3.49 5,047 413.0 33.46 1.43 - -
28 18.42 6.48 4.13 5,240 306.8 35.38 1.30 0.85 0.777
10/05/77 23.42 7.73 5.25 7,097 257.1 42.10 1.25 0.80 0.713
10 23.42 7.73 5.26 7,097 257.1 42.10 1.15 0.75 -
14 32.37 14.76 7.26 7,097 134.6 45.65 1.12 - -
17 32.37 14.76 7.26 7,097 134.6 45.65 1.05 0.70 -
22 29.97 12.06 6.72 7,447 164.8 45.59 1.18 0.78 -
24 35.69 13.94 8.00 9,139 142.6 51.43 1.07 0.71 -
27 44.60 20. 34 10.00 9,780 97.7 55.78 1.02 0.70 -
29 44.63 25.51 10.01 7,806 77.9 51.26 1.07 0.81 -
11/01/77 111.44 168.57 25.00 7,368 11.8 63.06 0.95 0.88 -
04 66.87 50.57 15.00 8,842 39.3 59.43 1.04 0.89 -
13 89.15 67.43 20.00 11,785 29.5 71.13 1.08 0.88 -
16 44.57 22.48 10.00 8,838 88.4 53.69 1.07 0.77 -
20 44.57 22.48 10.00 8,841 88.4 53.70 1.05 0.78 -
29 23.40 7.23 5.26 7,577 274.8 43.14 1.30 0.85 -
12/12/77 23.45 7.93 5.26 6,931 250.6 41.74 - - -

61¢C
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in which the kinematic viscosity of the jet fluid, v, is assumed
a constant at 0.01 cm?/sec in all of the calculations.

In these experiments the aspect ratio of jet dimensiomns,
hj/rj, was fixed at 0.03187 while the relative depth of ambient
fluid, H/hj, was also fixed at value of 236.2, corresponding to
relatively deep water.

5.1.1 Starting Half-Radial Surface Buoyant Jet

Typical side-view photographs of a starting half-radial
surface buoyant jet are shown in Figure 5.1.1(a), (b), and (c).
Figure 5.1.1(a) shows a starting buoyant jet at an initial
Froude number, Fr = 5.25. Figure 5.1.1(b) shows that with a
Froude number Fr = 10.0 and Figure 5.1.1(c) is for Fr = 15.0.
These photographs show the typical behavior of such jets. The
jet is initiated with a frontal head that is thicker with
larger Froude number. Just behind the front there is a vortex
growing and traveling with the front until at some point the
vortex collapses, as shown in Figure 5.1.1(c).

The growth histories of the radial fronts, as determined
by the photographic methods described in the previous chapter
are shown in Figure 5.1.2. This graph is a logarithmic plot
of front radius R(t) as a function of time from release. It
is clear that the data fall into two categories corresponding
to a slope of 1/2 or a slope of 3/4. However, some of the data

show an initial slope of 1/2 followed by a slope of 3/4 leading
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Figure 5.1.1 Cross sectionsof half-circular front at various time t after initiation
of discharge (a) Run No. 10/5/77, Fr = 5.25, Re = 7100.
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Figure 5.1.2 Growth history of starting radial surface turbulent
buoyant jet flow. Closed symbols indicate the
photographs are shown in Figure 5.1.1.
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Figure 5.1.3 Normalized growth history of starting radial
surface turbulent buoyant jet flow. Closed symbols
indicate the photographs are shown in Figure 5.1.1.
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to a further slope of 1/2. According to the discussion in
Chapter 3 these can be categorized, respectively, a starting
jet, a starting inertial plume, and a starting viscous plume.

The data in Figure 5.1.2 are replotted in Figure 5.1.3
in a normalized form, where length scales have been made relative
to KMB and the time scale by tMB' These normalized data do
not show a common curve for all three segments, as is to be
expected, since the coefficients in each relation are not
necessarily constant.

From the dimensional analysis given in Eq. (3.5.11) the
coefficients for starting turbulent surface jet flows are a

function of initial Froude number and Reynolds number,

R(t)

§T7:—:;7Z = ¢(Fr,Re) . (5.1.5)

The relationship of the.jet coefficient to Reynolds number is
shown in Figure 5.1.4(a) and to the densimetric Froude number

in Figure 5.1.4(b). The value of starting jet coefficient
decreases with increasing Froude number and it begins to approach
to an asymptotic value around 1.05 when the Froude number is
greater than 10. That means that the buoyancy enhances the
initiation jet flow when the Froude number is less than 10.

At a Froude number higher than 10 the buoyancy plays a less
important role in initiation of flow so that starting turbulent

buoyant jet flows can be described by the asymptotic formula,
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Figure 5.1.4(a) Relation of starting jet coefficient to jet
Reynolds number.
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R(t) = 1.05 ML/% ¢1/2 ; (5.1.6)

From Eq. (3.5.12) the starting radial plume coefficient
will also be a function of initial Froude number and Reynolds

number, i.e.

R(t)

= ¢(Fr,Re) . (5.1.7)
pl/4 ¢3/4

As shown in Figure 5.1.5(a) there is no systematic dependence
of the starting plume coefficient on Reynolds number. Figure 5.1.5(b)
and (c) shown the relation of starting plume coefficient to

8

1/
Froude number and Rlll = (Re3 « Fr2) . All the values of the

QM
starting plume coefficients are between 1.04 and 0.70, which is
lower than theoretical results 1.31, given in Subsection 3.2.6.
Momentum and viscosity effects may be the possible reasons.

Only three values of viscous starting plume coefficient are
found (0.713, 0.725, 0.777) as listed in the final column of
Table 5.1.2. These values are about 15% higher than the theoretical
result, 0.63 obtained from viscous long wave solution. There are
insufficient data to show the dependence on the initial Froude
and Reynolds numbers, i.e.

R(t)
1/8

() o

= ¢(Fr,Re) . (5.1.8)
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Without any initial effects, such as momentum jet mixing, ¢ will
approach to the theoretical value, 0.63, as the dimensionless
ratio Rl/£QM tends to be small.

Three similarity profiles for viscous spreading currents
are compared with viscous long wave solution, as shown in
Figure 5.1.6. The experimental profiles are all thicker than
the theoretical profile and there is a prominent head at the
front and some internal waves behind the front. The greater
profile thickness may be due to jet mixing and possibly some
error due in the kinematic viscosity value. The spreading
currents thickness scale T(t) in this case is independent of

time t, i.e.,

1/u

ov ¢2 1/3
RR \)9

in which ¢ is the viscous spreading plume coefficient given in

1/3

Eq. (5.1.8) and v is assumed as 0.01 cm?/sec. This thickaess
scale was also found independent of time by the force scale
analysis (see Eq. (3.1.11)). Although the thickness scale for
two-layered radial stratified flow is independent of time,

in an infinite extent of ambient water, it does not mean that
the thickness of flow is also uniformly distributed in 311 space

(see Figure 5.1.6).
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5.1.2 Density Measurements

Figure 5.1.7(a) shows a two-layered radial stratified

flow being formed from a radial surface buoyant jet discharge
at Fr = 5.25. The first photograph (t = 200.5 seconds) in
Figure 5.1.7(a) was taken when the circular front just touched
two side-walls (see Figure 5.1.1(a) for reference). The surface
jet thickness became constant at a distance which was approximately
the length scale ZMB as indicated. It then collapsed to produce
circular interfacial waves which were damped out quickly. After
the circular front touched all the walls of the tank, the surface
layer thickness kept increasing. The circular surface jet zone
then looked like a circular internal hydraulic jump followed by
a series of undular internal waves with a circular plan form.

Figure 5.1.7(b) shows the surface flow field produced by
the half-radial surface buoyant jet with Fr = 10.0 and Figure 5.1.7(c)
with Fr = 15.0. 1In those two cases the circular jet mixing also
began to collapse at a distance which is roughly equal to QMB'
However, more violent jet mixing and a propagating wavy interface
made it difficult to locate the exact point of the jet collapse.

Typical records of density measurements as recorded by
a conductivity probe are shown in Figure 5.1.8. The turbulent
fluctuation was found to decrease as the depth of measurement
increased at any radial distance. Mean values of density at a
given radius were obtained by dividing these depth-density curves

into two regions having equal area. The distribution of fluid
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Radial stratified flow due to a half-radial surface buoyant jet discharge
(a) Run No. 10/5/77.

[ANA



233

SpuU028s |'6
e

I
4

ne

oA

}

wo g

7A7%

LL/9T/TT "ON Uny

(Q)£°1°S @an31d




t= 2470
286.9seconds

'=ﬁﬂ‘i‘lﬂiﬁ.ﬁhﬁtﬁhﬁmﬂhﬁhm& ~~5P~%; ;;
.  fyg = 66.87cm, t=3303

344, | seconds

Figure 5.1.7(c) Run No. 11/4/77

AYA



235

z=1.5cm

z =2.0cm

- zero density
et l
o ? difference . -

i

R e :

2=35cm |-

..................

Figure 5.1.8 Density measurements of a half-radial surface buoyant
jet (Run No. 10/27/77) with Fr = 10.00 at a radial
distance r = 32.39 cm (or r/lMB = 0.726).
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density difference on depth at three radial locations are shown
in Figure 5.1.9, in which circles denote the mean density difference
and a bar denotes the maximum and the minimum values.

In Figure 5.1.10 the relative mean density difference,

A(r,z)/Am(r) plotted against normalized depth z/z (r), is

1/2
compared with the similarity tracer distribution given by the
radial surface jet solution in Section 3.4. The half-thickness
zl/z(r) is defined as the thickness where the relative density
difference is half of the maximum value Am(r) at the free surface.
In this case the discharge Froude number is Fr = 10.0. The
maximum values of mean density difference, Am(r), are found to
agree fairly well with the radial jet solution, i.e. the density
deficiency decays inversely proportional to the radial distance r,
as shown in Figure 5.1.11. However, the half-thickness zl/z(r) is
a linear function of rgdial distance r for the region where the
buoyancy effects do not become important, i.e., where r/SLMB <1,
as shown in Figure 5.1.12.

Similar results are shown in Figures 5.1.13, 5.1.14, and
5.1.15 for a radial surface buoyant jet with a lower densimetric
Froude number, Fr = 5.26. In this case it is hard to find a
linear growth function of half-~thickness zl/z(r). It approaches

to a constant thickness without any sharp collapse from the

jet regime.
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Figure 5.1.10

Self-similar distribution of relative density
deficiency. Dotted line denotes Prandtl-Tollmien's

solution.
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5.1.3 Periodic Feature

The analysis in Chapter 3 predicted the existence of
a periodic wave feature in the buoyancy-inertial regime of flow.
However, only a weakly periodic radial surface plume was observed
in these experiments. Since there is intensive surface jet
mixing in the upstream and strong viscous effects in the downstream,
most of the periodic feature can only be observed in the position
close to the interface. The period record as shown in the last
record of Figure 5.1.8 results from breaking internal waves
which form travelling mixing billows. The billows then collapse
into a series of circular internal waves.

In Figure 5.1.16 all the observed periods Tob are compared

reasonably wellwith the predicted value T as given by Eq. (3.2.87).

The details of the measurements are presented in Table 5.1.3.

5.2 Radial Heated Surface Jet

Four radial heated surface jet experiments were performed
as listed in Table 5.2.1. 1In these experiments the density
variations are produced by the temperature variations specified

by the equation,

D(lT) dpd(TT) = oD ’ (3.2.1)

where p(T) is the fluid density at temperature T°C, a(T) is the

thermal expansion coefficient (1/°C) at temperature T°C.
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Table 5.1.3 Summary of observed and predicted periods,
run B Location of Measurement Tob T
No. (cm™/sec?) r r/Q,MB z (sec) (sec)
(em) (cm)
8/26/77 1272 29.21 0.732 2.30 5.8 5.80
8/28/77 276.6 44.45 0.520 5.46 13.5 16.90
" " 29.21 0.340 1.96 8.0 9.65
9/1/77 100.7 39,37 0.588 3.96 11.8 20,10
9/6/77 605.9 29,21 0.934 2.40 9.0 7.40
" " 59.69 1.909 3.90 17.0 19.30
10/10/77 651.5 41.91 1.789 2.50 10.6 11.70
10/14/77 341.2 17.78 0.549 2.11 7.2 4.64
" " 22.86 0.706 2.50 9.1 6.49
" " 38.10 1.177 2.50 13.8 12.80
" " 53.34 1.648 4.00 14,4 20.10
10/17/77 341.2 27.94 0.863 2.50 8.0 8.48
" " 43,18 1.334 3.50 13.2 15.20
" " 68.58 2.119 3.50 25.6 28.10
10/22/77 459.9 17.15 1.453 1.20 4.0 4.00
" " 22.23 1.883 2.20 7.0 5.66
" " 62.87 5.328 2.70 16.4 22,60
10/24/77 599.2 66.04 1.850 2.00 4.3 5.18
" " 52.71 1.477 4.00 14,0 16.40
10/27/77 470.2 32.39 0.726 3.50 7.9 9.28
10/29/77 238.9 52.71 1.181 4.37 22.7 22.30
11/16/77 347.5 134.62 3.020 4,68 53.5 68.60
11/20/77 347.7 114.30 2.560 6.05 45,0 55.10
" " 93.98 2.110 5.05 35.53 42.50
11/29/77 794 .4 93.98 4.020 3.43 35.50 32.30
12/12/77 605.6 69.85 2.979 2.66 23.40 23.80
" " 83.82 3.574 2.66 31.20 30.30




Table 5.2.1 Summary of experiments on radial surface heated jet in a stagnant environment.

T T = = 2 o =
a 3 vy a(Ty) A B - Fr Re, Re, /Fr Rl/sLQM
RUN / 1/8
5/4 1/2 2 4
No., ) | °c) | (1072 cm?/sec) | (107*) | (1073) | (cm*/sec?) | (em) | M d Ritel i
QBl/2 V5 \,jMz v,302B
10/17/78 21.5 26.4 0.7955 2,748 1.346 422,2 36.19 9.28 10320 119.8 55.85
10/18/78 21.0 25.3 0.8138 2.646 1.138 356.8 39.36 10.10 10090 98.94 56.55
()
10/19/78 20.9 30.2 0.7378 3.081 2.865 898.5 24,81 6.36 11120 274.8 52.27 i;
10/20/78 21.4 30.8 0.729 3.131 2.943 923.0 24,47 6.28 11250 285.7 52.33
Note: rj = 3 in. (7.62 cm), hj = 1/8 in. (0.3175 cm), lQM = v’21rrjhj = 3.899 cm
Q = 320 cm3/sec
uj = Q/Zﬂrjhj = 21.05 cm/sec
M= Quj = 6736.3 cm"/sec3

a(Tj) = (-0.773 + 0.19 T

]

]

- 0.0027 T,2 + 0.000021 T,3) x 10~"

3
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For pure water an algebraic expression for the thermal expansion

is given by Batchelor (1970) as

a(T) = (-0.773 + 0.19 T - 0.0027 T? + 0.000021 T3) x 107%

(5.2.2)

which is plotted in Figure 5.2.1 as a solid curve. The values
of kinematic viscosity of the hot water discharged are given in

Figure 5.2.2,

v (T) = (1.745-0.0468 T+ 0.0005823 T3 -0.2614x 107> T3) x 10 2 cm?/sec,

(5.2.3)

which is from the data also given by Batchelor (1970).

In these experiments the ambient water depth H was kept
at 17.78 ecm (7 inches). The relative depth of ambient water,
H/hj, was then fixed at 56 and the aspect ratio of the jet,
h./rj, was fixed at 1/24. The maximum value of the temperature

J

excess at radial distance r, defined by

ATm _ T(xr,0) - Ta
AT, T, - T
h h| a

was found to decay proportionally with the inverse of r, as

shown by the data plotted in Figures 5.2.3 and 5.2.4. However,
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Figure 5,2,1 Thermal expansion coefficient of water as a function
of temperature after Kotsovinos (1975).
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temperature.
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0.l

DATE Fr Re A

o 10/20/78 6.28 11250 0.002943
o 10/19/78 6.36 11120 0.002865
- A 10/18/78 10.10 10090 0.001138 1
v I0/17/78 9.28 10320 0001346

0'05 L 1 1 1 | i 1 |
10 50 10

r/rj

Figure 5.2.3 Relation of the maximum value of relative mean

temperature excess to the relative radial distance
r/r,.
J
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Figure 5.2.4 Relation of the maximum value of relative mean
temperature excess to the normalized radial distance
r/ZMB.
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Figure 5.2.5 Relation of the normalized half-thickness to the
normalized radial distance. Symbols are defined
in Figure 5.2.4.
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while the decay exponent of -1 is clearly independent of Froude
number the coefficient of proportionality is not.

The half-thickness =z (r) of the time averaged mean

1/2
temperature excess above the ambient temperature is not a linear
function of the radial distance r. In Figure 5.2.5, it is clear
that the relative half-thickness, zl/z(r)/hj is a concave upwards
curve and is deflected and the deflection is more rapid for a
lower Froude number which implies it is due to a buoyancy effect.
The time averaged mean temperature excess is found to have
a self-similar distribution, as shown in Figure 3.2.6(a), (b),
(¢), and (d). It is very close to the Prandtl-Tollmein's
solution obtained when the two coefficients, Ku and KC, are
equal as discussed in Chapter 3.
One profile of the intensity of turbulent temperature
fluctuations is shown in Figure 5.2.7. The maximum value of
turbulent intensity, v:fTZ/ATm, seems to increase with increasing

radial distance r/r. and the location of the maximum turbulent

intensity deepens with increasing radial distance.

5.3 Radial Surface Buoyant Jet in a Cross Current

Experiments were performed to evaluate the performance of a
buoyant radial surface jet in a cross current. The primary
purpose of the experiments was to determine the relative importance

of the jet momentum and buoyancy fluxes.
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As listed in Table 5.3.1 seventeen experiments were performed
and in all the tests the ambient water depth was maintained at
H = 19.81 cm with a circular slot jet thickness of hj = 0.3175 cm
(1/8 inch). The relative depth of water was therefore constant at
H/hj = 62.4 for all experiments.

A typical development of initiation flow pattern to a well-
developed flow field due to a radial surface buoyant jet discharge in
a cross current is shown in Figure 5.3.1. The downstream edge position
X4 in the current direction can be simply predicted by the superposition
of a radial surface buoyant jet front and a uniform current. Therefore,
the downstream edge grows as a starting jet flow followed by a

starting plume flow, but with the velocity relative to the free stream,

i.e.

R(t) = x, - Ut , (5.3.1)
where U is the current speed.

When the downstream displacement is plotted against time as in
Figure 5.3.2 it is clearly seen that two different spreading regimes
are distinguishable. One is the starting jet flow which specifies
a jet coefficient defined by
Xy - Ut

RCE) : (5.3.2)
Ml/4 (172 yl/u c1/2

In the four tests where this is appropriate the coefficient varies

from 1.22 to 1.45. The other regime is the inertial starting



Table

5.3.1 Summary of experimental data for a radial surface buoyant jet in a
cross current.

Run No. i} Pa pJ A Q uj M B Fr Re
(cm/sec) | (gm/cm®) | (gw/em3) | (107%) | (em3/sec) | (cm/sec) | (cm*/sec?) | (cm*/sec?)
2/23/18 0.920 0.9991 0.9987 4,005 328.0 21.58 7080 128.7 17.4 | 8400
2/27/178 " 0.9997 0.9985 12.018 " " " 386.3 10.1 "
3/02/78 0.962 1.000 0.9985 15.020 " " " 482.9 9.0 "
3/05/78 " 0,9997 0.9988 9,011 325.3 21.40 6970 287.3 11.5 | 8340
3/06/78 " 1.000 0.9990 10.010 328.0 21.58 7080 321.8 11.0 | 8400
3/06/78a " 0.9995 0.9988 7,008 " " " 225.3 13.2 "
3/07/78 0.926 0.9998 0.9989 7.010 202.7 13.33 2700 179.0 7.2 5200
3/07/78a 0.949 0.9999 0.9985 14,523 328.0 21.58 7080 466.8 9.2 8400
3/08/78 0.933 0.9999 0.9989 10.011 202.7 13.33 2700 198.8 6.8 5200
3/09/78 0.933 1.000 0.9993 7.005 328.0 21.58 7080 225.2 13.2 | 8400
3/21/78 1.00 0.9996 0.9995 1.001 315.4 20.75 6540 30.9 33.5 8090
3/22/78 " 0.9995 0.9991 4.004 " " " 123.8 16.8 "
3/22/78a " " 0.9990 5.005 " " " 154.7 15.0 "
3/27/78 " 0.9997 0.9995 2,001 320 21.05 6740 62.8 24.1 8200
3/28/78 " 0.9994 0.9992 1.501 376 24,73 9300 55.3 32.7 9640
3/29/78 " 0.9997 0.9973 24,568 320 21.05 6740 770.4 6.9 8200
4/10/78 " 1.000 0.9992 8.006 376 24,73 9300 295.0 14,1 9640

Y4
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(a)

(b)

Figures 5.3.1(a,b) Photographs of the development of a surface flow

due to a radial surface buoyant jet in a cross
current (Run No. 4/10/77). (a) t = 35, (b) t = 80
seconds after initiation of discharge.
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(c)

(d)

Figures 5.3.1(c,d) Photographs of the development of a surface flow
due to a radial surface buoyant jet in a cross
current (Run No. 4/10/77). (e¢) t = 110,
(d) t = 485 seconds after initiation of discharge.
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plume (slope 3/4) for which the starting plume coefficients,

defined by

x, - Ut
R(t) _ _“d , (5.3.3)

pl/u ¢3/4  gl/u 3/4

vary from 1.24 to l.44.
In general, the location of the upstream edge of radial

buoyant jet in a crossflow is specified by

*a U2
= ¢<-—————-, Re, Fr, H/h.) (5.3.4)
B/U3 B/Ml/z J

Where M and B are specific or kinematic fluxes of momentum and
buoyancy. It was shown in Section 3.5.4 that the asymptotic

solutions corresponding to a radial momentum jet is

_d?2 m?
=TT (5.3.5)
and
3
x =(-3— c“/3) B (5.3.6)
e 4 U3

for a radial surface plume. d and c are respectively the coefficients
of spreading defined by jets and plumes in the absence of a cross-

flow that

R(t)

= —mm———— 5.3.7
Ml/u (1/2 ( )
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and
¢ = —RE (5.3.8)
pl/t4 ¢3/u

Figure 5.3.3 is a plot of the upstream position Xy normalized
by B/U3 and it shows how the upstream position varies from a jet
flow to a plume flow. The upstream displacement was actually
found to fluctuate between a maximum and a minimum value which
is denoted by bars on the figure. The straight lines are shown
for d = 1.05 and ¢ = 0.75.

Figure 5.3.4 is a logarithmic plot of the surface half-width
produced by a radial buoyant jet. The surface field also shows
the transition from a jet flow to a plume flow. For Run No.
3/22/78a, the appropriate dimensionless numbers for each range

of half-width of the surface field are found to be

> = 1.06 , (5.3.9)
M1/u(X/U)1/2
b4 = 0.76 , (5.3.10)
Bl/“(x,/U)3/“
and
4 = 0.85 ) (5.3.10)

21Q° 1/8 L\ 1/2
¥) ()

The value of kinematic viscosity v was assumed to be 0.0l cm?/sec.
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Figure 5.3.3 Upstream edge position of surface buoyant field. Symbols are defined
in Table 5.3.2.
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Table 5.3.2 Calculation of upstream edge position.

u? e
Symbol Run No. B/M1/2 B/U3

Minimum | Median | Maximum

0) 2/23/78 0.553 - 0.216 -

O 2/27/78 | 0.184 - 0.152 -
A 3/02/78 | 0.161 - 0.112 0.145

\Y% 3/05/78 | 0.269 - 0.142 -
4 3/06/78 | 0.242 0.168 - 0.197
> 3/06/78a | 0.345 0.150 - 0.170
a] 3/07/78 0.249 0.101 0.130 0.158
+ 3/07/78a | 0.162 - 0.100 0.112
[ 3/08/78 | 0.228 0.0935 - 0.0987
] 3/09/78 0.325 0.0963 | 0.110 0.119
A 3/21/78 2.616 0.970 1.099 1.293
v 3/22/78 0.654 0.299 0.347 0.388
<4 3/22/78a | 0.523 0.181 0.194 0.213
> 3/27/78 1.308 0.590 | 0.669 0.701

X 3/28/78 1.743 - 0.687 -
O 3/29/78 | 0.106 0.117 - 0.151
P 4/10/78 | 0.327 0.136 | 0.153 0.207
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CHAPTER 6

COMPARISONS WITH PREVIOUS STUDIES

In this chapter theoretical solutions derived in Chapter 3
will be compared with the results of previous experimental studies.
The first section discusses spreading currents in a homogeneous
environment (i=0) and in the second section those in a linearly

density-stratified environment (i=1).

6.1 Spreading Currents in Homogeneous Environment

6.1.1 Plane Current from a Finite Volume Release

From the theoretical results previously developed
for this case a plane current (after a brief initial period)

will advance asymptotically according to the regime described by
R(t) = 1.890 (gav)l/3 £2/3 (6.1.1)
for an inertial-buoyancy balanced flow and according to

1/5
R(t) = 1.133 <§%¥i> £1/5 (6.1.2)

for a viscous-buoyancy balanced flow without any mass diffusion.
Table 6.1.1 lists twenty experiments performed by Almquist

(1973). 1In these experiments a tilting partition plate separated



Table 6.1.1
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Summary of experiments performed by Almquist (1973)

on the plane surface currents due to a finite volume

release.
Symbol | Bun o, 0, pap- Pg v Ro h JEE}? h R(t) R(§}5
No. s (gAv)lls e2/3 (&‘P_‘i) (175
(gm/cn®) | (gm/cm®) | (2073) | (4n?) | (4n) | (dm) e
A 1 1,018 1.014 3.945 4.5 1212 | 4.25 7.51 1.580 1.720
v 2 " " " 8.0 | 2.83 5.65 11.51 1.750 1.610
@ 3 " v " 4.0 | 2.00 | 4.00 6.86 1.571 1.630
o 4 » " " 2.0 | 1.414 { 2.83 4.08 1.493 1.810
[ ] 5 v 1.009 8.920 3.0 | 1.732 | 3.46 8.30 1.564 1.660
D 6 " " " 1.0 | 1.00 | 2.00 3.65 1.430 1.881
A 7 v 1.015 2,956 1.0 | 1.00 " 2,10 1.471 1.897
A 8 " " 2.956 3.0 [ 1.732 | 3.46 4.78 1.455 1.670
a 9 N " " 9.0 | 3.00 | 6.00 10.91 1.695 1.730
(o} 10 " 1.009 8.920 " " " 18.95 1.696 1.710
v 1B | 1.020 1.004 15.936 4.5 | 2.12 | 4.25 15.10 1.820 1.730
L J 2B u v " 9.0 | 3.00 | 6.00 25.33 1.808 1.726
(] 3B v " " 18.0 | 4.24 8.49 42,63 1.835 -
(=) 4B " 1.012 7.905 4.5 [ 2.12 | 4.25 10.63 1.762 1.700
o) 5B v " " 18.0 | 4.24 | 8.49 30.02 1.760 -
+ 6B " " " 9.0 | 3.00 | 6.00 17.84 1.840 1.730
< 7B | 1.0217 1.0177 3.930 2.0 | 1.414 | 2.83 4.07 1.377 1.700
'e) 8B " " " 4.5 [ 2,12 | 4.25 7.50 1.550 1.760
0 9B " " " 9.0 | 3.00 6.00 12.58 1.666 1.635
X 108 ” » " 18.0 | 4.24 | 8.49 21.17 1.740 1.540
Note:

Initial aspect ratio hO/RO = 2,00,
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a right-triangular section of volume V per unit width from the
ambient fluid., The triangular section had an initial horizontal
length Ro on one side and an initial vertical thickness hO on
the other side. The plate was removed and the time when the
dyed front passed through several fixed locations was recorded.
The growth histories of twenty fronts are plotted in Figure 6.1.1.
Two slopes are apparent: one is 2/3, which is appropriate for
inertial-buoyancy spreading, and the other is 1/5 which is
appropriate for the viscous-buoyancy spreading. A normalized
plot of the twenty experiments is shown in Figure 6.1.2, however,
all of the experimental points do not collapse into a single
curve. Equation (6.1.1) is found to be an upper limit for
inertial-buoyancy spreading. Equation (6.1.2) gives a low
estimate for the viscous-buoyancy spreading. (The value of the
kinematic viscosity of.spreading fluid was assumed to be
v=0.01 cm?/sec for all calculations).

An understanding of the variations of the coefficients in
Egs. (6.1.1) and (6.1.2) is apparent from a dimensional analysis.

The growth histories of a frontal trajectory can be described by

R h
R(t) _ t 1 0
RO | ¢<_t T ) , (6.1.3)

1/7

L

in which the time and the length scales t1 = ———EL————> and
5 (ga)2 V3

1/7
R1 = <§é%—> are as listed in Table 3.1.2. The second
v
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dimensionless number, Rl/Ro’ represents the viscosity effect in
terms of ratio of the two length scales, R1 and Ro. The

ratio is

s 1/7
gAv 34 2
Rl ( Ny ) gAho h0
O a— —_ (6.1.4)
(o] o) v2 R02

1/7

-
2

which contains a Reynolds number /EZE;'hO/v and an aspect ratio
of the initial geometry ho/Ro' The aspect ratio ho/Ro in these
experiments was kept at 2.0. Therefore, when the length scale
ratio Rl/Ro + o an inviscid buoyant spreading current will result.

In this case the coefficients which have the following form

R(t) =4 gAho ho Eg
(gAV)1/3 t2/3 v ’ Ro > (6.1.5)

will approach the limiting wvalue o0 25 shown in Figure 6.1.3
and as given in Eq. (6.1.1). Similarly, when the length scale
ratio Rl/Ro-+0, the flow will begin with a viscous current.

The coefficient for a viscous-buoyancy spreading current,

R(E) _, ghh_ b h

(o)
\Y]
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Figure 6.1.3 Coefficients of inertial-buoyancy spreading currents
expressed as a function of Reynolds number VgAho ho/v.
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Figure 6.1,4 Coefficients of viscous-buoyancy spreading currents
expressed as a function of Reynolds number Ygbh ho/v.
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will approach to the limiting value b given in Eq. (6.1.2).

000
The fact that the data in Figure 6.1.4 lie above the data

specified by Eq. (6.1.6) may be due to the error of assuming a
constant value of kinematic viscosity of spreading fluid

v=0.01 cm?/sec for all computations, although this is unlikely
because of the fact that the experimental data are all very
consistent.

A similar set of experiments were performed by Keulegan (1957)
although the details of the initial flow are somewhat different.
His experiments involved the density front produced by a finite
length lock exchanging fluid with a semi~infinite channel. This
flow eventually produces a rapidly decelerating velocity due
both to the viscous effects and the fact that there is a finite
volume of fluid spreading. Keulegan made observations of the
frontal velocity at different locations rather than observing the
frontal travel as a fuﬁction of time. 1In this case it is
best to rewrite Eq. (6.1.2) in the form (see also Eq. (3.1.15) with

n=m=0).

° 3

UR) = R(R) = 0.373 <§ﬂ> , 6.1.7)
VR

which may be used to describe the decelerating flow. Equation

(6.1.7) rewritten in terms of lock variables, as defined in

Figure 2.3.2, is
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L3 L
UR) _ .373 _g___*'AIjH <_H£> /(%) , (6.1.7a)

in which R(t) =L(t) + Lo and H is the initial lock fluid depth.

Figure 6.1.5 shows that the frontal velocity decays with
travel distance as the distance to the -4 power anticipated by
Eqs. (6.1.7) and (6.1.7a). Equation (6.1.7a) compares very well
with one set of experiments (denoted by circles). The initial
Reynolds number /EZE'H/V is approximately equal to that given
by Keulegan (1957), /§Zﬁ H/vm, where Vo is the mean value of
kinematic viscosity of both ambient and saline fluids and the
dimensionless distance R/H is approximately equal to L/H
when R(t) >> LO.

Middleton (1966) performed similar experiments using
turbidity currents, however, Eq. (6.1.7a) overestimates the
velocity of the currents produced. The theoretical value,
U(R)//EZE, (denoted by dotted line in Figure 6.1.6) is about
ten times the value actually observed at the same location L/H.
The simplest explanation for the discrepancy is the rapid
settling of suspension which reduces the relative density
difference to a value about 17 of the initial value.

From Subsection 3.2.4 we know that Eq. (6.1.1) is valid
only when the initial relative density difference is much smaller

than the order of 0.1. Otherwise, the coefficient in Eq. (6.1.1)
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Figure 6.1.5 Frontal velocity decay of demsity currents from a
finite-length lock exchange flow, experimental data
from Figure 3 of Keulegan (1957). H=15.8 cm,

Lo = 41.7 cm, and width of channel = 2.54 cm.
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Figure 6.1.6 Frontal velocity decay of turbidity currents from a
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from Figure 10 of Middleton (1966). H=20.3 cm,
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settling velocity of suspension= 0.9 cm/sec.
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needs correcting to the form

1.890

(ghv)1/3 ¢2/3 ) (6.1.8)
(1+a)1/3

R(t) =
For example, in the case of a spreading oil slick the relative
density difference is A=0.136 for an experiment by Liang (1971).

In this case Eq. (6.1.8) will be corrected to

R(t) = 1.811 (gav)l/3 ¢2/3 . (6.1.9)

However, as shown in Figure 6.1.7(a) the theoretical value given
by Eq. (6.1.9) is still slightly higher than experimental observation.
The reason, for this is not clear. Measurements of the spreading
layer thickness h(r,t) are of two types. One is a 'wave-gage-type"
measurement by fixing the measurement location and varying
observation time. The other is a "photographic type' measurement
performed by fixing the time and observing the spatial location
of the front. Results for plane currents obtained by using the
first technique will be discussed here. Results for the radial
current case obtained with the second method will be discussed
in the next subsection, 6.1.2.

The similarity profile of inertial buoyancy spreading layer
thickness due to a finite volume release was derived in Section 3.2.5

as

g2 2
h(r,t) =-13?g(-§-)—{1 +(R(rt)> } , (6.1.10)
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Figure 6.1.7(a) Frontal trajectory for an inertial-buoyancy oil
slick spreading in a channel, data from Run No. 1
of Liang (1971). V=131.2 cm?, A=0.136.
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for which the frontal displacement function R(t) is in Eq. (6.1.8).
For a spreading oil slick the inertial layer thickness measured

by photocell equipment located at rs is actually the total

thickness h+ 8 = (1+ A)h so that the thickness as measured by

Liang (1971) is of the form

c? v2/3 s ?
h(r ,t) = 35 1+ .
s (ga)l/3 ¢2/3 c(gav)l/3 2/3

(6.1.11)
The value c¢ can be computed from c¢ = R(t)/(gAV)l/3 t2/3.
Thus, the spreading layer thickness at one fixed location, L
will decay proportionally to £2/3, Figure 6.1.7(b) shows that
the agreement of the similarity solution (6.1.11) with three
experimental observations by Liang (1971) is fairly good except
for a damping internal wave train behind the steep fromnt.

The collapse of a mixed region at a stably stratified
interface can be viewéd as a combination of two surface spreading
currents. As shown in Figure 6.1.8 the numerical calculation
performed by Meng and Thomson (1978) supports this assumption.
The density front displacement grows proportionally to £2/3
rather as a linear time function.

6.1.2 Radial Current from a Finite Volume Release

After an initial stage the radial spreading current

produced by a finite volume release grows asymptotically according to

R(t) = 1.502 (gav)l/t ¢1/2 (6.1.12)
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Figure 6.1.7(b) '"Wave gage' measurements (in solid curve) of
inertial oil slick spreading thickness by photocell
equipment located at three locations (60, 85,110 cm
from end wall of channel for Station no. 1,2,3).
Dotted curves indicate prediction by similarity
solutions, data from Liang (1971).
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Figure 6.1.8 Dynamic collapse of a homogeneous region at a stably

stratified interface. Numerical calculation data
from Figure 7 of Meng and Thomson (1978).
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for the inertial-buoyancy stage and then according to
3 1/8
R(t) = 0.779 <5-A-\}’—> g1/8 (6.1.13)

for the viscous-buoyancy stage. Experimental results by Chen
and List (1976) showed that two such regions of flow do exist
but they found higher coefficients in both equations which
can be ascribed to mixing.

As previously discussed for an oil slick, spreading in

inertial stage, Eq. (6.1.12) needs an adjusted coefficient to give
(gav) L/t ¢1/2 . (6.1.14)

For the experiments by Abbott (1961) shown in Figure 6.1.9(a),

A = 0.250 and Eq. (6.1.14) becomes
R(t) = 1.240 (gav)l/¥ ¢1/2 . (6.1.15)

Figure 6.1.9(b) shows that the agreement of Eq. (6.1.15) with
the observations made by Abbott (1961) is very good. TFigure 6.1.9(c)
shows the comparison of similarity profiles developed in
Subsection 3.2.5 with observations given in Figure 6.1.9(a).
The similarity profile for thickness of a radial spreading

layer was computed as
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Figure 6.1.9(a) 0il spreading sections at four times after release
of 1500 cubic meters of oil (1200 toms). Data
from Abbott (1961).
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h(r,t) = RoLE) { r }2 (6.1.16)

for each time t. In dimensionless form, this may be written as

ghh(r,t)
(% cpl/v t—1/2) z

1 r ’ , (6.1.17)
T 2 IR(t)

in which the total buoyént force per unit mass B = gAV and

c = R(t)/B1/“ tl/2 for each instant time t after release. The

superelevation §(r,t) over free surface is equal to Ah(r,t).
Although the frontal Richardson number, gAh(R,t)/ﬁz(t) is

found to agree with the theoretical value of 0.5, the spreading

layer thickness follows the plane front solution (n = 0 in

Figure 6.1.9(c)) rather than the radial solution (n=1) given

by Eq. (6.1.16). It is not clear how this result comes about.
In order to consider the results of Martin and Moyce (1952)

for the radial spreading problem, Eqs. (6.1.12) and (6.1.13) are

rewritten as

o R
RR) _ 5 o0 5 (6.1.18)
VgAho t
and
0 R 7/
R(R) = 0.526 Re * Ar .<{R(2) } . (6.1.19)
vYghh
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in which RO and h0 are the initial radii and the initial height
of circular column before spreading. The Reynolds number

Re = /EZE; ho/v and Ar is the aspect ratio hO/RO, v is the
kinematic viscosity of the spreading fluid and is assumed to be
0.01 cm?/sec in the calculations. Figures 6.1.10(a) and (b)

show that Eq. (6.1.18) is an upper limit for inertial spreading
and Eq. (6.1.19) is a lower limit for viscous spreading. Similar
experiments were also performed by Hoge and Brooks (1951),
however, there is insufficient information on the experiments to
perform a comparison.

For the viscous spreading front, as described by Eq. (6.1.13),
the frontal velocity decelerates proportionally to t'7/8, which
agrees with a similarity solution found by Smith (1969b). One
experiment performed using syrup on a flat aluminum surface appears
to confirm this basic result, as shown in Figure 6.1.11.

6.1.3 Plane Current from Continuous Steady Discharge

In this case the density front advances at an

asymptotically constant velocity according to
R(t) = 1.260 (gaQ)1/3 ¢t (6.1.20)

in the inertial-buoyancy stage and according to

1/5

3
R(t) = 0.804 (gf? ) g4/5 (6.1.21)
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Figure 6.1.10(a) Radial gravity currents produced from circular
‘lock exchange flow. The aspect ratio Ar= 2 and
the initial radius R_=3.45 cm, data from Table 1
of Martin and Moyce ?1952, Part V).
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Figure 6.1.10(b) Radial gravity currents produced from circular
lock exchange flow. The initial relative density
difference A = 0.428, data from Table 2 of Martin
and Moyce (1952, Part V).
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in the viscous-buoyancy stage. These results apply after a
short period in a starting jet regime.

Figure 6.1.12(a) shows the agreement of these results
with experimental results by Barr (1959) (Experimental apparatus
was shown in Figure 2.3.5). There appears to be some initial
starting jet flows before approaching the plume flows. Figure
6.1.12(b) also shows agreement with another set of experimental
results by Almquist (1973) who used a different discharge
apparatus from Barr's (1959) (see Koh (1976)). Figure 6.1.13
also shows the agreement with Eqs. (6.1.20) and (6.1.21) of plane
density currents propagating on a flat bottom as measured by
Wood (1965) and Wilkinson (1970). There is insufficient
information given by above three investigators to determine the
dependency of the coefficients on the discharge Froude number

and Reynolds number as discussed previously.

1/§(ti/3 or R(:;3 or Rf;i = ¢ (Fr, Re or Rl/lQM) ,
M t (8AQ) t ( AQ3> e
v
(6.1.22)

where Fr = u,/VghAh, Re = u.h,/v and R,/%_, = R./h, = Fr2/3 « Re.
3/78bhy iP5/ 1/ Aqu = R1/by
Plane surface currents, which were produced by a
horizontal buoyant surface discharge from a circular pipe into a
channel of motionless ambient water as illustrated in Figure 2.1.5 were

observed by Sharp (1971). Four dimensionless numbers,
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LEnl/S e@nis a@ni/r 2@
2/s 1/s ° 5/3 2/5
Qj Qj v Qj

¢

(6.1.23)

were used to described these currents, in which the definition of
each variable is given in Eq. (2.1.2). Sharp (1971) used at
least two figures to illustrate Eq. (6.1.23). However, by using

the following transformations,

2/3

oY <g' g? Ce@nils [yt e [y v

81_)2 Qj1/5 v5/3 Qj2/5

Dy (6.1.24)
L v (g' 81>>1/3 1173\ "3/® 175\ /2

Pi ) L(g')1/5 . Qj(g ) ] D.(g")
<_Q_3_)2 Qj2/5 v5/3 Q2/5 ’
P (6.1.25)

it is seen that the dimensionless length and time scales R/R1
and t/t1 are contained within Eq. 6.1.23. Using these variables,
all the experimental data given by Sharp (1971) can be plotted
in one figure as shown in Figure 6.1.14, Two slopes, 1 and 4/5,

can also be seen to indicate the inertial and the viscous

starting plumes.
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From Eq. (6.1.20) we know that inertial-buoyancy spreading
currents will propagate at a constant velocity which is

proportional to the cubic root of kinematic buoyancy flux, i.e.
R /
R(t) = 1.260 (gAQ)l/3 . (6.1.26)

Such constant horizontal surface spreading velocities‘were observed
by Bithler (1974) and Roberts (1977) when a submerged line plume
reached the bottom or a free surface. From Eq. (6.1.26) the
theoretical value of E/(ZgAij)1/3 (since the submerged buoyancy

flux is two times that of a one-sided spreading plume) will be

o 1/3
R = 1.26 (——599——-> n 1.0 , (6.1.27)

(2gAij)1/3 2885 Q

when the buoyancy flux is assumed conserved. The average value
of experimental results.is 0.66 from Buhler (1974) and 0.68 from
Roberts (1977). It is not clear why these values are lower than
predicted.

For the viscous spreading regime, Eq. (6.1.21) can be

rewritten as

R(t) _ 0.804 <_Q_>2/5< gAQ )1/5< - Q, )2/5 vt 1/s
(2gAij)l/3 t 21/3 Qj gAij (gAij)l/S H H2

(6.1.28)
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From Roberts (1977) the experimental range of (Qj/(ZgAij)I/3 H)2/5

varies from 0.0972 to 0.229. Thus, Eq. (6.1.28) becomes

' 2/5 -1/5
R(t) = (0.062 ~ 0.146) <69_> / <£> / (6.1.29)
<2gAij>1/3 t i H2

when the buoyancy flux is assumed conserved, i.e. gAQ = gAij.
The experimental results for viscous spreading reported by

Roberts (1977) give

R(t) = 0.27<y_t_>—1/5 R (6.1.30)
(ngij)1/3 t B2

The difference is believed mainly due to the mixing occurring
before the plume reaches the free surface, so that Q/Qj is
significantly greater than 1.

Numerical calculations of plane overflowing and underflowing
currents in a finite depth of ambient fluid were performed by
Kao et al. (1977,1978) using the full Navier-Stokes and diffusion
equations. The range of calculations for surface currents
varied from a starting jet flow to a starting plume flow. The
local Richardson number Ri(r,t) = gAh(r,t)/u?(r,t) for the
sufface flows was found to be roughly constant at 1.00. However,
no further information is available for comparison with

the similarity solutions given above.

6.1.4 Radial Current from Continuous Steady Discharge

In this case the spreading front advances asymptotically

according to
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R(t) = 1.309 (gaQ)l/% £3/4 (6.1.31)
for the inertial-buoyancy stage and according to

3 1/8
R(t) = 0.63 <5¥%l—> g1/2 (6.1.32)

for the viscous-buoyancy stage.

These two stages of flow for surface currents were investigated
by Chen and List (1976). The spreading currents were produced by
a submerged buoyant round jet discharging vertically into a unifé?m
stagnant environment. Typical flow patterns produced by
radial surface spreading currents are shown in Figures 6.1.15(a),
(b), and (c). Figure 6.1.15(a) shows the radial two-layered
stratified flow formed behind a circular front. Figure 6.1.15(b)
shows a band of radial stratified flow formed behind the circular
front and connected to a radial surface jet zone (also note that
the circular surface wave formed by the impingement of submerged
jet on the free surface). Figure 6.1.15(c) shows the formation
of a series of travelling circular rings behind the outer front.
The rings are smoothed out gradually by viscous effects to from
a stratified radial surface flow. The ratio of radii of two
sequential dark streaks is found to be from 0.70 to 0.77, which

is close to the theoretical value 0.753 found in Subsection 3.2.5.3.



Figure 6.1,15(a)
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Radial surface stratified flow formed after the
diluted effluent reached the free surface (77.9
and 155.5 seconds later). Due to a submerged
buoyant round jet (dj = 0.586 cm, A = 0.0170,

QJ = 40.8 cm3/sec) discharged vertically into a
uniform stagnant environment (H = 11.72 cm).
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Figure 6.1.15(b) A band of radial surface stratified flow formed
after the diluted effluent reached the free
surface (70.5 and 166.5 seconds later). Due to
a submerged buoyant round jet (d; = 0.586 cm,

A = 0.0142, Qj = 18.9 cm3/sec) dischraged vertically
into a uniform stagnant environment (H = 6.19 cm).
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Figure 6.1.15(c) -A series of outward travelling circular internal
waves formed after the diluted effluent reached
the free surface (79.1 and 121.6 seconds later).
Due to a submerged buoyant round jet (d; = 0.586 cm,
A = 0.1092, Qj = 4.5 cm3/sec) discharged vertically
into a uniform stagnant enviromment (H = 23.41 cm).
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The spreading stage of each photograph presented in Figure 6.1.15
is shown in Figure 6.1.16 by solid symbols.
Britter (1979) performed experiments on bottom spreading

radial gravity currents and Eqs. (6.1.31) and (6.1.32) rewritten as

R(t)
(gAq)1/u £3/4

= 1.309 (6.1.33)

for the inertial-buoyancy spreading currents, and as

-1/n
R(t) = 0.63 Eiﬁﬁégllii (6.1.34)
(gaQ) 1/t ¢3/4 ) Q T

for the viscous-buoyancy spreading currents agree well with his
experimental data for the viscous region as shown in Figure 6.1.17.
However, the theoretical value of the constant in the inertial
spreading stage is greéter than that observed.

Many experimental data describing radial surface and bottom
density currents have been analyzed by Sharp (1969a,b), using the

following dimensionless form (previously given in Eq. (2.1.1)),

L(gv)l/s t(gl)3/5 Qi(g')1/3
Q.2/5 ~ qils T \3/s

1 1

=0 (6.1.35)

in which Qi is the calculated volume flux at the surface origin

of spreading. Using the following transformations,
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-3/4
L = L(g)!/s . Eigiliii (6.1.36)
(g'Qi)l/u £3/u Qiz/s Qil/s T
and
. / ' -3/10
t(vg Qi)1 2 ) { £(a')3/5 ]. [(g y1/3 Q l ,
% Q,1/ v3/3 (6.1.37)

all of Sharp's data can be replotted as in Figure 6.1.18

for the surface currents, and as in Figure 6.1.19 for the

bottom currents. Since the experimental frontal position L(t)

is not exactly the same value as R(t), there are some deviations,
however, the agreement with Egs. (6.1.33) and (6.1.34) is
generally fairly good. It is clear that most of Sharp's
experiments were performed in the transition region.

McMinn and Golden (1973) studied the spreading of crude oil on
ice, as shown in Figure 6.1.20. Equation (6.1.32) also predicts
radial spreading of crude oil reasonably well. A surface buoyant
discharged from a boundary can be viewed as an inertial plane
current in the near field and as a radial viscous current in
the far field. The spreading front therefore will eventually
increase its distance from the boundary in proportion to tl/z.

As shown in Figure 6.1.21 the experimental data from Barr (1959)
and Hayashi and Shuto (1967) for such a boundary discharge show

this to be the case.
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Figure 6.1.20 Radial spreading rate of crude oil on ice, The
kinematic viscosity v of crude oil is assumed as
60 cm?/sec for open symbols and as 23.1 em? /sec
for solid symbols, Data are from McMinn and Golden
(1973).
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6.1.5 Initial Stage of Finite Volume Release

The initial collapse of a liquid column in a homogeneous
environment was found to have a self-similar thickness profile,

previously derived from the shallow-water wave equations, given by

h(r,t) nn+l =1 - g2

by

, (6.1.38)

where n=0 for plane currents and n=1 for radial currents. The
thickness scale h1 is dependent on the initial shape of liquid
column and examples are listed for reference in Table 3.2.1.

The relative frontal position n = R(t)/Ro, grows as

t/gAhl

= %.{nl/z (n- 1)1/2 + ln[nl/z + (n - 1)1/2]} (6.1.39)
o

for the plane currents and as

(n?2 - 1)1/2 (6.1.40)

for the radial currents (see Section 3.2.7).

As for plane-symmetric flows the thickness scale h1 =-% ho
for a rectangular section and hl = %;-ho for a semi-circular

section.
Martin and Moyce (1952, part IV) made many laboratory

observations of the collapse of a liquid column in air (A=1).
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Figure 6.1.22(a) shows a sketch of three typical photographic
sections taken during collapse of a liquid column with an
initially rectangular section. Figure 6.1.22(b) shows the
comparison of the self-similar profile given by Eq. (6.1.38)
(with n = 0) with these three observations. The growth history
of a plane front formed during collapse of a rectangular column
is shown in Figure 6.1.23. It is interesting to note that the
theoretical curve overestimates the displacement. The smaller
the aspect ratio ho/Ro of the initial rectangular section is, the
closer ar e the experimental data points to the theoretical
curve. Two cases with initial aspect ratio ho/Ro = 1 begin to
show deceleration with a change in slope of the displacement
curve to 2/3 (i.e. R(t) ~ t2/3) around t/EHEYRO = 6. In the
one case with an aspect ratio ho/RO = 4 the plane front shows a
constant velocity up tq t/EEEYRO = 20. Figure 6.1.24 also shows
the theory overestimates the displacement for the collapse
of a semi-circular column section. The reason may be due to
an insufficient description by the shallow-water wave equations
of the initial stage of the collapse since the vertical acceleration
is not small in this stage of the flow.

The radial front displacement produced by the collapse of
a vertical cylindrical column is plotted in Figure 6.1.25. The
theory also overestimates the observed displacement. The displace-
ment also appears to be dependent on the initial aspect ratio

as shown in Figure 6.1.25.
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Although the theoretical frontal trajectory displacement
functions Eqs. (6.1.39) and (6.1.40) are only asymptotic limits
valid when the initial aspect ratio is small, the self-similar
thickness profile compares very well with the results of numerical
calculations with finite difference method and the method of

characteristics as shown in Figures 6.1.26, 6.1.27, and 6.1.28.

6.2 Spreading Currents in Linearly Stratified Environment

In the first subsection the results of experimental studies
and numerical calculations for a plane mixed region collapsing
in a linearly density-stratified environment will be compared
with the theoretical solutions that were developed in Chapter 3.
Other experimental results for a plane starting intrusion layer
due to a horizontal slot discharge into a linearly density-
stratified environment will be examined in Subsection 6.2.2,
There are no experimental results available for the radial submerged

spreading case.

6.2.1 Plane Submerged Current from a Finite Volume Release

In Sections 3.2 and 3.3 a three-stage description
was developed for a front advancing at its own density level in
a linearly density-stratified environment. It is given by the
case 1=1,n=m=0., In particular the front due to collapse of
a finite volume of homogeneous fluid is described by:

(I) 1Initial Stage

1/2
R(t) = (R02 + h12 ge t2) / (6.2.1)
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Figure 6.1.26

_r
<S'R(t)

Comparison of self-similar profile with numerical
calculation results by Harlow and Welch (1965) and
Fox and Goodwin (1952) for the collapse of a plane
symmetrical column in vacuo, initially rectangular
at rest, at various relative distance n==R(t)/Ro.
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Figure 6.1.27 Comparison of self-similar profile with numerical
calculation results by the method of characteristics
by Penney and Thornhill (1952) for the collapse of
an initially semi-cylindrical section column at

rest at specific time ¢t V ﬁi- = 0.8 or n==R(t)/Ro==1.78.
0
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Comparison of self-similar profile with numerical

calculation results by the method of characteristics

by Penney and Thornhill (1952) for the collapse of

an initially semi-elliptic column at rest at various
tVgh_

R
o
relative distance n = R(t)/R_= 1.44, 2.08, 2.75,
o
and 3.50.

time = 0.5, 1.0, 1.5, and 2.0 or various
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(II) 1Inertial~Buoyancy Balance Region

R(t) = (2nv)1/2 ¢1/2 , (6.2.2)
(I1I) Viscous-Buoyancy Balance Region
y 1/6
R(t) = 0.69 <§%?L-) cl/6 (6.2.3)
s

where Ro and hO are the initial horizontal and vertical length
scale, V is the initial half-volume of homogeneous fluid, R(t)

is the horizontal extent at time t, Vg the kinematic viscosity

of the spreading fluid. The thickness scale hl is dependent on
the initial shape of spreading fluid and is listed in Table 3.2.2.
For an initially semi-circular cross-section, the value of hl is
equal to ho. In this case, the horizontal length scale R0 and
the vertical length sgale ho are both equal to the initial radius

of the semi-circular section. The volume per unit width of
2
TRg

5 -

the three stages of spreading flow will, in this case be

the semi-circular section is equal to V = Formulae for

simplified to:

R(t) _ ,1/2 , (6.2.4)
(1) R " {1 + (Nt) }
(11) Rét) = pl/2 (yeyl/2 , (6.2.5)
(o]
1/6

NR 2
() R 0.93( °_ . Nt> , (6.2.6)
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NR 2

in which the dimensionless parameter on the right-hand side

s
of Eq. (6.2.6) is a Reynolds number ReN.

The three stages of submerged spreading flows are illustrated
clearly in Figure 6.2.1. For a volume of semi-circular cross-
section fluid with a Reynolds number ReN greater than 500,
the interflowing front will have three complete stages of flows
which have been previously described by Wu (1965) as: the .initial
collapse stage, the principal collapse stage, and the final
collapse stage. With an initial Reynolds number between 500 and 5,
only two stages will exist for the flow (the principal stage is
excluded). For an initial Reynolds number less than 5 there is
only one final collapse stage.

The dimensionless transition time from the initial stage to
the principal stage is about Nt = 2.8 and the dimensionless
transition length is about R(t)/Ro = 3.0. However, the dimensionless
transition time and length from the principal stage to the final
stage are dependent on the initial Reynolds number ReN. The
larger the Reynolds number is, the longer the transition time and
the transition length are.

For an initially rectangular shape of plane mixed region,

three stages of collapse can be expressed:

(I) 1Initial Stage
1/2

2
_S 2,2
R ) N t b (602-7)
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(II) Principal Stage (Inertial-Buoyancy Balance)

h \1/2
R(t)=2<_g) we)l/2 (6.2.8)

(I11) Final Stage (Viscous-Buoyancy Balance)

1/6
h 1/3 Nh 2
R(t) _ e o .
R = 1.10 <R > < " Nt) ,(6.2.9)

s

in which Ro and ho are now respectively the one-half length of the
horizontal and the vertical sides of the rectangular section. The
ratio of these two length scales, ho/Ro’ is the aspect ratio of

the initial shape and the initial Reynolds number now is defined
th

as Re,, =

N where the velocity scale is Nh0 and the length

s
scale is h .
o}

For the special case when the aspect ratio ho/R0 is unity,

i.e. the initial shape is square, and the three collapse stages

are described by:

/
@ e 1+<i)2 N2¢2 v
L) - ¢ (6.2.10)
O
(11) Rét) = 2(Nt)1/2 (6.2.11)
(o]

1/s
(arny R - g 10 ( 2. Nt> (6.2.12)
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Consider only the inertial-buoyancy and the viscous-buoyancy

regions. A more general way to normalize the experimental data

NV3

1/4
" ) and the time scale

is by using the length scale R1 =<' N
tl =<%;>1/2 as listed in Table 3.1.5 Then the intercept of
two oblique lines given by Egqs. (6.2.2) and (6.2.3) will be at
the point where the vertical ordinate is R/Rl==0.481 and the
horizontal abscissa is t/t1==0.487 as listed in Table 3.5.4.

Two sets of experimental data are available for comparison:
Wu (1965,1969) and van de Watering (1966). Both experiments
were originally performed to study the collapse of a turbulent wake ina
density-stratified fluid. A semi-circular or circular homogeneous
mixed region was prepared to simulate a uniform parcel of
turbulent wake. Sequential pictures were taken as soon as the mixed
region began to collapse. Thus, a history of horizontal spread
was obtained by measuring the horizontal spreading length as a
function of time. |

A comparison by Mei (1969) of the theoretical solution for
the initial collapse stage of a circular mixed region with the
experimental results by Wu (1965) was found to be fairly good
for dimensionless time Nt between O and 1. The theoretical
curve shown in Figure 2 of Mei (1969) actually is the same curve
given by Eq. (6.2.4). When the dimensionless time Nt is greater
than 1, the theoretical solution overestimates the experimental

results. The reason why the error is introduced is that the

data probably lie in the so-called principal collapse stage.
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In Figure 6.2.2, the comparison of two theoretical solutions
with the experimental results is presented for the transition
behavior from the initial collapse stage to the final collapse
stage. All the experimental data are from Figure 16 of van de
Watering (1966). The Reynolds number ReN for each run is calculated
to check its effect on submerged density spread. Since the
kinematic viscosity of the spreading fluid was not given, it is
assumed to be the same as that of pure water, 0.01 cm?/sec. A
log-log plotting of the data shows that the experimental results
follow the theoretical prediction in the initial stage very well.
For the final stage, or the viscous-buoyancy balanced spread, a
slower growth rate of horizontal spread is found according to
the 1/6 power of t as shown. Most of the experimental results by

van de Watering (1966) are in the lower Reynolds number Re, range.

N
Therefore, from the theqretical solution shown in Figure 6.2.1
it is known that the horizontal front moves as such a rate that
it does not pass through the principal collapse stage. This is
probably the reason why a false conclusion (see Eq. (2.1.6))
was drawn by van de Watering (1966) in his description of the
principal collapse stage.

Figure 6.2.3 shows the transition from the principal collapse
stage to the final collapse stage for eleven experiments by
Wu (1965). The two different stages are noted by the sharp

change of slope from 1/2 to 1/6 in the log-log plot of growth

history for a horizontally spreading front. All the data are from
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Figures 10, 11, and 12 of Wu (1965). Details of experimental
parameters for each run are given in Table 6.2.1.

The data shown in Figure 6.2.3 are normalized in two ways.
One is shown in Figure 6.2.4 along with Eqs. (6.2.5) and (6.2.6).
The other is shown in Figure 6.2.5 with Egs. (6.2.2) and (6.2.3).
Although the theoretical solutions predict very well the power
laws of growth for the submerged spreading rate for both initial
and final collapse stages, there is some discrepancy in the
magnitude of coefficients in the two equations (6.2.2) and (6.2.3).
The variations in the coefficient are found to depend on the
initial size of the mixed region and the Reynolds number ReN
(for data presentation the kinematic viscosity of the spreading
fluid is assumed to be 0.01 cm?/sec for all the eleven cases).
As shown in Figure 6.2.6 the theoretical value of the coefficient
(V2) for inertial—buoygncy spreading is an upper limit for the
eleven experimental results. For each initial size of homogeneous
mixed region the coefficient for inertial spreading forms a
curve which is asymptotic to the upper limit at the lower
Reynolds number ReN. Although there are not enough data available
to show the value of Reynolds number where the intercept to the
upper limit occurs, some idea can be gained from Figure 6.2.6.
The larger the initial size, the larger the intercept Reynolds
number will be. Similar results are also seen in Figure 6.2.7
for the coefficient for the final collapse stage. The only

difference is that the theoretical value for the viscous-buoyancy
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spreading coefficient is almost at the middle value of the
experimental results.

Other experimental data for comparison with the theoretical
solutions for the final collapse stage are taken from Tables 1 and
2 of Wu (1965). The value of upper tangent points of the principal
collapse stage are re-calculated and plotted in Figure 6.2.8.
(Details of the re-calculation are given in Table 6.2.2.)

Equation (6.2.6) obviously is an upper limit for all 26 experimental
points.

Several numerical calculations were performed using wvarious
methods by Cerasoli (1978), Dugan et al. (1976), Meng (1978),
Padmanabhan et al. (1970), Wessel (1969), and Young and Hirt (1972).
All investigators claim that their numerical results are
in agreement with the experimental results by Wu (1965,1969),
although only Young and Hirt (1972) give all the details of the
numerical parameters as shown in Table 6.2.3. Most results of
the numerical studies predict values lower than the theoretical
solution in the inertial-buoyancy spread region, with the exception
of the study by Padmanabhan et al. (1970), as shown in Figure 6.2.9.
There is no way to compare the numerical results with the
experimental results obtained by Wu (1965,1969) for the principal
or the final collapse stage, since information such as the

initial size and the Reynolds number Re, are not given. The

N

inertial~buoyancy spread coefficient calculated by Young and Hirt

(1972) is around 0.98 for the Reynolds number Rey = 301 and the
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Table 6.2.2 Re-calculation of experimental data for the final collapse
stage of a plane mixed region in a linearly density-
stratified environment. Data are taken from the upper
tangent points of principal collapse stage in Tables 1
and 2 of Wu (1965).

dp 1 Nr 2 Mixed
Ro € =r—l a-z-é N= (ge:)’5 RI({t). Nt %= \)0 % Nt Region
¥s o s Produced
by
(in) (££71) (sec™1) (103) (103)
0.00204 0.254 6.7 17.0 5.894 100.1
0.00401 0.359 6.8 22.0 8.335 183.4
0.00801 0.511 7.2 28.0 11.86 332.1
0.01549 0.707 7.0 24.0 16.41 393.8
0.02334 0.866 6.9 25.0 20.12 502.9 W
6.00 all-
0.03101 1.000 6.3 | 25.0 | 23.20 580.6 mxer
0.03861 1.115 6.6 25.0 25.89 647.3
0.04578 1.214 6.6 27.0 28.21 761.5
0.08070 1.612 6.2 26.0 37.44 973.4
0.09210 1.722 6.2 21.0 40.00 840.0
0.0966 1.764 2.7 10.0 2.15 21.52
0.0814 1.619 3.0 14.5 1.97 28.63
0.0660 1.458 2.9 13.2 1.78 23.47
0.0550 1.331 2.9 14.5 1.62 23.54
0.0419 1.162 3.6 16.0 1.42 22.68
1.375 Paddle-
0.0337 1.042 3.1 9.6 1.27 12.20 mixer
0.0254 0.904 3.0 10.5 1.10 11.58
0.0213 0.828 3.4 11.0 1.01 11.11
0.0171 0.742 3.4 11.0 0.91 9.96
0.0129 0.645 3.5 11.0 0.79 8.65
0.0043 0.372 3.3 6.3 0.45 2.86
0.0032 0.321 3.2 7.8 0.39 3.05
0.875 0.0966 1.764 3.7 16.7 0.87 14.55
0.0659 1.456 3.6 13.6 0.72 9.78( Paddle-
0.0419 1.162 3.5 12.2 0.57 7.00 mixer
0.0254 0.904 3.4 15.0 0.45 6.70
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initial radius of circular section Ro = 15.6 cm. It can be seen
that it is a little lower than the experimental results by Wu
given in Figure 6.2.6. Three cases of transition from the
principal collapse stage to the final collapse stage were

given by Padmanabhan et aql. (1970) and Dugan et al. (1976).
Unfortunately, no comparison between theoretical and experimental
results in the final collapse stage is possible, since the

value of initial size of mixed region was not given. Similarly,
there is insufficient information available about the experiments
reported by Amen and Maxworthy (1980) to compare their results

with the present theories.

6.2.2 Plane Submerged Current from Continuous Steady Discharge

From the theoretical results and dimensional arguments
of Chapter 3, it is known that in the absence of any diffusion
effects there are three possible successive growth rates for a
submerged intrusion froﬁt due to a horizontal slot buoyant jet
discharging into a linearly density-stratified environment.

These three stages are:

(I) Starting Jet
R(t) ~ M1/3 ¢2/3 , (6.2.13)
(II) 1Inertial Starting Plume (or Inertial-Buoyancy Balanced

Spread), Bl = NQ,

R(t) = l/—g 311/2 t , (6.2.14)
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(IIT) Viscous Starting Plume (or Viscous-Buoyancy Balanced

Spread)

2oy \ 176
R(t)=o.499<ﬁvﬁ_> £5/6 . (6.2.15)

s

It should be noted that not all three stages of spreading
are necessarily present in any given discharge situation. Also,
end wall effects may modify these results. The results depend
on three dimensionless parameters. The first is the Richardson
number, Rij = Nhj/uj, which is used to classify whether the
starting flow is a starting jet or a starting plume. The second
is the Reynolds number, Rej = Q/vs, which is used to determine
whether the discharge flow is turbulent or laminar initially.
The third is also a Reynolds number, Rev = (NQ)1/2 hj/vs, which
is used to determine whether there exists an inertial plume regime
or not. Excluding the case of a starting laminar jet, all
three stages of spreading front exist only when the initial
discharge Richardson number Rij is rather small and two Reynolds
numbers, Rej and Rev, are simultaneously large. If the discharge
Richardson number, Rij, is large and the two Reynolds numbers are
both small, there will exist only the viscous starting plume stage

NV

(or more precisely, when Rl/JLQM is very small, Rl/'q“QM = (N—Z%J—> .
E%?i) . There are two other combinations of these three parameters

for the two other flow patterns. The details are given in Table 6.2.4.
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Table 6.2.4 Four flow patterns for a plane intrusion layer due to
combinations of three dimensionless numbers.

different

Dimensionless Discharge Discharge Plume
Numbers Richardson Reynolds Reynolds
- Number Number Number
Condition
Nh, Q (NQ)1/2 n,
Flow Ri, = —L Re, =7 Re_ = ——v———-J—
Patterns J uj J 8 s
Three spread stages
R(t) ~ t2/3
() small large large
t
£5/6
Two spread stages
R(t) ~ £2/3 small large large
Two spread stages
R(t) ~n t large large large
£5/6
O 3
ne spread stage large small small

R(t) ~ £5/6
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These three dimensionless numbers are useful in predicting
the four possible different growth histories of the plane intrusion
layer. It is easily seen why three kinds of growth rate were
observed by Manins (1976a), Maxworthy (1972), Zuluaga-Angel et al.
(1972) under different combinations of the three parameters. In
an analogous way, Imberger et al. (1976) showed why two different
growth rates occurred with a selective withdrawal theory with
no diffusion effects.

As shown in Table 6.2.5 three sets of experiments by Manins,
Maxworthy, and Zuluaga-Angel et al. have almost the same range of volume
flux Q, as does the discharge Reynolds number Rej = Q/vs, since
the variation of kinematic viscosity of discharge fluid is rather
small. However, the discharge slot thickness 2 hj and the
Brunt-VdisHd1l4d frequency, N, of the ambient stratification, did
vary one order of magnitude. Consequently, the discharge
Richardson number, Rij = Nhj/uj = 2Nhj2/Q, in these three sets
of experiments has a wide range of variation and covers three
orders of magnitude.

As shown in Figure 6.2.10, Manins (1976a) observed that the
length of the intrusion layer increased in proportion with time t
in most of his experiments. In some cases, such as in experiments
A, B, C, G, and H, the layer decelerated to grow with t5/6 at
the larger times. As given in Figure 6.2.11, Maxworthy (1972)

reported that the length of intrusion layer increased with tS/G,
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Figure 6.2.10 Growth history of an inertial starting plume observed
by Manins (1976a). Details of experimental parameters
are given in Table 6.2.6.
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Table 6.2.6 Experimental data for plane intrusive layer spreading
related to Figures 6.2.10, 6.2.11, 6.2.12, 6.2.15,
6.2.16, and 6.2.17.

Nh ©
Sy:t;ol N Rej - _vg_ Rij - Ti Rev R/2 Source
Run No. (sec 1) 8 3 (NQ)I Place Author
A 3.78 72 23.6 247.5 0.70
B 3.51 110 14.4 294.7 0.74
c 3.81 142 12.1 348.8 0.84
D 3.39 180 8.48 370.6 0.87
E 3.94 183 9.68 402.6 0.86
F 3.59 225 7.18 426.4 0.94
G 2.58 101 11.5 242.1 0.80 Figure Manins
H 2.58 116 10.0 259.4 0.81 3 (1976 a)
1 2.65 148 8.04 296.8 0.79
J 2.57 181 6.39 323.6 0.87
K 2.55 224 5.13 358.7 0.90
L 2.70 255 46.76 393.6 0.93
M 1.95 86 10.2 251.8 0.83
N 1.76 159 4.98 250.8 1.00
0 1.87 208 4.05 296.1 1.01
P 1.94 257 3.39 334.6 1.03
+ 1.48 233, 0.128 58.9 1.30
a 1.06 33 0.093 49.8 1.27 Figure Maxworthy
x 1.06 161 0.132 41.4 - 4 (1972)
® 1.48 117 0.256 41.7 -
o 1.06 117 0.183 35.2 -
A 1.06 57.3 0.371 24.7 -
v 1.06 10.8 1.98 10.7 -
v 1.06 5.5 3.87 7.65 -
< 1 0.325 175 0.000531 2.86 -
> 2 0.221 136 0.000506 2.16 -
< 3 0.406 132 0.000927 2.85 -
© 4 0.473 129 0.00108 2.99 -
» 5 0.356 82 0.00135 2.13 - Tables | Zuluaga-Angel,
land 2 Darden and
0| 6 0.170 89 0.000601 1.55 - Fischer
Ay 7 0.284 82 0.00108 1.90 - (1972)
o} 8 0.519 88 0.00197 2.77 -
@ 9 0.316 83 0.00120 2.04 1.25
© | 10 0.219 29 0.00476 0.986 -
e | 11 0.712 28 0.00810 1.60 1.12
® | 12 0.417 27 0.00475 1.31 -
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especially at the lower source flow rate. He found also that it
grows proportionally with two-thirds power of discharge rate, i.e.
Q2/3. The intrusion layer thickness, after an intensive mixing
near the source point, increased as t!/6, which is predicted by
the force scale analysis and also by the viscous long wave theory.

In the experiments by Zuluaga-Angel et al. (1972), no
discharge Richardson number, Rij was above 0.01. It is therefore
to be expected that the discharge fluid would undergo intensive
jet mixing on entering the stratified tank, just as in the case
of the higher flow rate experiments by Maxworthy (1972). The
intrusion layer length would then have at least two kinds of
spreading history before meeting the end wall of tank. That
is to say that the intrusion layer would increase with tz/3 at
first corresponding to the starting turbulent jet region, and
then with t and t5/6 fo; both the inertial and the viscous plume
region. The criterion to determine which flow pattern would
occur between the two possibilities in the latter stage is the
plume Reynolds number Rev, as defined previously.

As shown in Table 6.2.5 the Reynolds numbers ReV in the
experiments performed by Zuluaga-Angel et al. (1972) are rather
small, 0(l) in magnitude, whereas Maxworthy's are 0(10) and
Manins' order 0(100). Clearly, it is not easy for an inertial
starting plume region (i.e. an inertial-buoyancy spreading) to

exist behind the starting jet region in those experiments by
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Zuluaga-Angel et al. As shown in Figure 6.2.12, most of their
experiments have two stages of spread, i.e. t2/3 and then t5/6,
except for Run No. R-9. The three-quarters power of time
reported by Zuluaga-Angel et al. may be due to the fact that

the average value of time power between two-thirds and five-sixths
was taken in order to cover the two different regions of flow.

According to the three experimental parameters listed in
Table 6.2.6, the viscous starting plume region should have
appeared after the inertial starting plume in Manins' experiment,
however, his experiments were limited by the available length
of tank. This is apparently the reason why only one inertial
plume was observed by Manins in most of his experiments. Although
a slightly longer channel was used by Maxworthy, only the larger
time record was presented. It can be surmised that there were
also two possible flow patterns which existed before the viscous
plume region found by Ma#worthy.

A comparison of the experimental results by Manins with the
constant propagation velocity inertial intrusion front similarity
solution (n = 0 and m=i=1) is given in Figure 6.2.13. 1In
Figure 6.2.14 the intrusion layer thickness near the source point
is compared with the self-similar solution, i.e.

1/2

h(r - 0,8) = 2 n(o) -(2)  uo . (6.2.16)
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Intrusion front velocity as a function of buoyancy
flux Bj=NQ. Experimental data are taken from
Manins (1976a)Q, N2=3.5; O, N2=7.0; &, N?=1.40.
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Self-similar distribution of intrusion layer half-
thickness near the source. Exgerimental data are
taken from Manins (1976a)£), N2=3.5; O, N2=7.0;
A, N2=14.0.
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where H(O) is equal to 1. That is to say, the intrusion nose
velocity is proportional to the product of the thickness near

the source point and the Brunt-Viaisala frequency of the ambient
stratification. The values of volume flux Q used in Figures 6.2.13
and 6.2.14 are the Q. computed by Manins from the actual flow
patterns, rather than an initial discharge value Q. The discrepancy
shown in the two figures between the experiments and theoretical
value may therefore be due to the small amount of jet mixing

near the source point. These errors can be seen more clearly from
t