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Abstract 

The prediction of time dependent failure at the interface of a thin film bonded to 

a substrate is considered in terms of a thermorheologically simple viscoelastic ma

terial. An initial investigation of stress distribution at the interface is carried out 

to understand the possible location and the mechanism of failure. Subsequently, a 

detailed analysis is developed to obtain not only the longitudinal stress component 

but also the lateral and shear stress components at the interface. Viscoelastic mate

rial behavior is included in the model to account for the stress relaxation behavior 

of the film. The proposed model satisfies both the edge free boundary conditions as 

well as the displacement and traction continuity at the interface. Using the model, 

the magnitude of the stresses and their relaxation behavior has been studied for the 

case of a polyimide film bonded to a silicon substrate. The analysis is capable of 

incorporating the material property at different temperatures, Using this capability, 

the stress evolution in a polyimide film during a typical curing process is obtained. 

With a view towards reducing the residual stress developed in the film, the effect 

of cooling rate and cooling cycle on final built in residual stresses during the curing 

process is studied. 

Based on the stress analysis and also from experimental observations, the most likely 

type of failure mechanism appears to be edge decohesion. So, the problem of edge 

decohesion along the interface of a thin viscoelastic film bonded to an elastic sub

strate under tensile residual stresses is considered in the next chapter. An analytical 

model is developed to predict the crack growth along the interface and its velocity. 

The tensile residual stress in the film is replaced by a combination of edge loads 

and an explicit relation of strain energy with respect to time is obtained by simple 

beam analysis. The strain energy function is computed at small time intervals and 

the energy release rate is calculated using Griffith's energy balance approach; the 
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discretized time step is assumed to be very small so that the dissipation effects over 

a given time step are neglected. Crack growth along the interface is computed based 

on a fracture criteria. The validity of the assumptions in the analyticaJ results is 

checked by performing a finite element analysis. 
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Introductory Remark 

This dissertation is organized in two complementary papers, each containing its 

own abstract, introduction and conclusion. The first chapter is concerned with the 

stress analysis at the interface of the thin film bonded to a substrate. A complete 

distribution of longitudinal, lateral and shear stresses at the interface is obtained 

using an analysis based on composite beam theory. The stress distribution for the 

case of a thin polyimide film bonded to an elastic substrate show that the lateral and 

shear stresses are concentrated at the free ends indicating that the edge decohesion 

is the likely type of failure to be caused at the interface. The stress evoulution in the 

curing process of the polyimide film is also discussed. It is shown that by employing 

slow cooling rates with a stepwise cooling, the final residual stresses in the film will 

be reduced. 

The edge decohesion type of failure at the interface predicted by the stress analysis 

is considered in the next chapter. Strain energy release rates and crack velocity 

and crack growth relations are obtained by applying a Griffith energy balance to a 

discretized form of strain energy function. A finite element analysis is also performed 

and the results obtained are shown to agree well with the analytical results. 
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Time Dependent Interfacial Stresses in a Thin 
Film Bonded to a Substrate 

Abstract 

A viscoelastic stress analysis at the interface of a thin film and a substrate combina

tion under thermomechanical loading is presented. A detailed analysis is developed 

to obtain not only the 10ngitudina1 stress component but also the lateral and shear 

stress components at the interface. Viscoelastic material behavior is included in 

the model to account for the stress relaxation behavior of the film. The proposed 

model satisfies both the edge free boundary conditions as well as the displacement 

and the traction continuity at the interface. Using the model, the magnitude of 

the stresses and their relaxation behavior has been studied for the case of a poly

imide film bonded to a silicon substrate. The analysis is capable of incorporating 

the material property at different temperatures by using a shift factor. Using this 

capability, the stress evolution in a polyimide film during a typical curing process is 

obtained. \Vith a view towards reducing the residual stress developed in the film, 

the effect of cooling rate and cooling cycle on final built in residual stresses during 

the curing process is studied. 

1 Introduction 

Advances in electronic packaging technology has increased the demand for de

vices made of many layers bonded together. Among such heterogenous structures, 

electronic devices such as microchips have recently received considerable attention 

among researchers. The increasing demand of large scale integration require exten-
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sive use of multilayer technology with intermetal insulating layers. High temperature 

polymers are used as insulating layers [13] because of the ease of fabrication pro

cesses. Most extensively used polymer in multilayer packaging is polyimide which 

not only is a good insulator but also has low dielectric constant, high thermal and 

chemical stabilities and it is easy to apply by spin coating [22J. The majority of the 

applications use polymer films less than 1 mil (25 pm) in thickness while some use 

relatively thicker films on the order 2-3 mils such as displays and tapes. 

In spite of possessing such desirable properties, the polyimide films are subjected 

to very high residual stress caused by thermal mismatch during t.he fabrication 

of the film. Generally, the film is deposited by spin coating onto a substrate at 

elevated temperatures in a stress free condition. The film and substrate are then 

cooled to room temperature following a certain cooling pattern. During the cooling 

process, the mismatch in thermal coefficients of the film and the substrate results 

in residual stresses. The residual stresses have been determined experimentally [7] 

for a polyimide film on a silicon substrate, and they are found to be of the order 50 

to 70 :MPa. The polymer film deposited by spin coating is not defect free. Even a 

carefully deposited film has certain imperfections such as voids and inclusions. These 

defects act as stress raisers under the influence of residual stresses and the structure 

may fail based on the magnitude of the residual stress. Thus, an understanding of 

the thermomechanical residual stresses is critical in the prediction of cracking and 

delamination in the multilayer structure and hence their performance and reliability 
. . 
111 servIce. 

Timoshenko [21] analyzed a one dimensional problem of a bi-material strip submit

ted to a uniform heating. He obtained a simple relation for the longitudinal stress, 

CTXX> which was assumed to be distributed uniformly at sections remote from the free 

ends. The one dimensional analysis is a.s follows: 
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Consider a rod of length 1 and modulus E, clamped at both ends. If the temperature 

is reduced from T2 to T1 , it would tend to shrink in length by an amount equal 

to 0' (T2 - Td I, where 0' is the co-efficient of thermal expansion. But the rod is 

constrained and is, therefore, effectively elongated in tension. The tensile strain is 

given by 

(1.1 ) 

and the corresponding thermal stress 0'0' by Hooke's law, is 

0'0 = EO' (T2 - Td (1.2) 

Consider now the film-substrate combination (Fig. 1a) which is subjected to a 

temperature change !:IT. The strain in the film E1 and the substrate E2 are 

( 1.3) 

(1.4) 

In the above equations, modulus Ei is replaced by Ei/ (1 - vi) in order to account for 

biaxial stress conditions, where i=l refers to the film and i=2 refers to the substrate. 

But strain compatability requires E1 = E2; therefore, the thermal mismatch force is 

F _ -;--1_0.,:..( 0'_2;"",-_0-i-'1.,:..) _!:l_T~ 
- [t~~/)] + [(1/~~})] 

( 1.5) 

F (0'2 - 0'1) !:IT E1 
0' ----

o - h!'w - (1 - vd (1.6) 
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Regarding the stress distribution near the free ends, it was stated that the lateral 

and the shear stress components were concentrated at the ends. 

The one dimensional approximate model is simple and easy to incorporate in en

gineering applications. However, when we are interested in failure problems such 

as cracking and delamination, it is the lateral stress perpendicular to the interface, 

<7yy , and the shearing stress, T xy , which are important because the longitudinal stress 

component, <7J.:X' only determines the ultimate, fatigue and/or brittle strength ofthe 

material. So, a more rigorous analysis to determine, in addition, the longitudinal 

and shear stress is necessary from failure or life prediction point of view. 

An approximate solution for a rectangular plate clamped along the edges was ob

tained by Aleck [1] based on the elasticity theory. The normal and shear stress 

components were determined at each point in the plate. A classic paper on stress 

distribution in the bonded joints is by Goland et al. [8]. They have obtained sim

ple stress relations for two simplified cases in cemented lap joint based on structural 

analysis. Chen et al. [:3] used a similar approach to obtain several simple and typical 

ana.lytica.l models to bring out the relative importance of geometrical and material 

parameters. Suhir [19] extended Timoshenko's [21] theory of bimetallic strips and 

came up with relations for the stress components at the interface. He introduced 

the concept of longitudinal interfacial compliance to satisfy the stress free boundary 

condition of longitudinal stress component, <7XXl at the free ends. Later, in another 

paper, Suhir [20] included in addition the transverse (through thickness) compliance 

to satisfy the stress free boundary condition at the free ends for both longitudinal 

and shear stresses. 

All the works stated above have considered linear elastic material in their analysis. 

For a polymeric film, the material property is not linearly elastic, but it is viscoelastic 
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m nature, that is, if the film is subjected to stress, it tends to relax over time. 

Since the film failure is dependent on the magnitude of the residual stresses, the 

relaxation behavior could have great influence on it. It is essential to include time 

and temperature dependent relaxation behavior of polymeric materials to accurately 

model the behavior of the multi-layered structures. 

It is the purpose of the present work to study the stress distribution at the interface 

of a thin film and substrate incorporating the viscoelastic material properties of the 

thin film. 

2 Analysis 

2.1 Problem Description 

The configuration of the model problem to be analysed is shown in Fig. 1 b. A thin 

film of thickness hI is bonded to a substrate of thickness h2 and the length of this 

bonded structure is 21 such that 21 ::::t> hI. The film is deposited on the substrate at 

an elevated temperature, T2 , and cooled to the room temperature, TI , following a 

known cooling history. Due to mismatch in thermal coefficients of the film and the 

substrate, residual stresses are set up in the composite structure during cooling. 

The residual stresses along the interface of this structure are analysed on the basis of 

a plate theory. The coefficient of thermal expansion of the film and the substrate are 

assumed to be constant, that is, independent of temperature. The film and substrate 

are considered to be thennorheologically simple linearly viscoelastic materials which 

are characterized by a constitutive relation of the form [4], [12], [14], [16], 

(2.1 ) 
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O"kk(X, t) = jt :3f{ (~ - e) 88,Ckk (x, () de 
-00 t 

(2.2) 

where 8ij and O"kk are the deviatoric and dilatational components of the stress tensor 

u, eij and Ckk are the deviatoric and dialtational components of the strain tensor e, 

and G(t) and f{(t) are, respectively, the time dependent shear and bulk moduli of 

the material. 

The time temperature variation of the material property is incorporated using the 

concept of a reduced time ~ [12], [14] 

(2.:3) 

where c.p is a shift factor which is determined from experimental data. 

2.2 Basic Equations 

Figure 1 b shows the forces acting on the substrate and the film at any distance x 

along the length of the structure. The force T(x, t) is assumed to be distributed 

uniformly over the thickness. A correction to its actual non-uniform distribution 

is introduced by considering interfacial compliance as outlined by Suhir [20] in his 

elastic analysis. 

The longitudinal stress component, IJ"xx(x, t), in the film at the interface is due to the 

axial force T(:r, t) and the moment A1(x, t) which from the elementary mechanics is 

given by the relation, 

( 
T(:r, t) 6A1(;I:, t) 

0" x.r x, t) = I + I 2 
21 11 

(2.4 ) 
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The shearing stress, Txy(X, t), and the lateral stress, O"yy(x, t), which occur at the 

interface of a thin film bonded to a substrate experiencing a temperature change, 

are related by the following equilibrium equation: 

-ix i( O"yy((', t)d(d(' 
-/ -/ 

where 

T(x, t) = iT Txy((, t)d( 
-/ 

(2.5) 

(2.6) 

is the shearing force caused by thermal expansion or contraction mismatch of the 

materials. 

It will be more convenient to construct the above equations in Laplace domain so 

that the convolution type of constitutive equations ((2.1) and (2.2)) become a linear 

function thus making the future formulations simpler. The variables in the Laplace 

domain are denoted by the overbar and s is the Laplace parameter. The above 

equations (2.5) and (2.6) in Laplace domain can be written as 

and 

1
~' 1( 

- 7fyy ((',s)d(d(' 
-/ -/ 

T(:r,s) = i X 
TXy((,s)d( 

-/ . 

- h1 -
Ald:r, s) - 2 T(:r, s) 

- h2 -
-A12 (x,s) + 2"T(x,s) (2.7) 

(2.8) 
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Let WI (x, t) and 102 (:r, t) be the lateral deflection of the strips, which are treated 

here as elongated rectangular plates. The relation between the moment M(x, t) and 

the deflection w(x, t) in the Laplace domain are [see Appendix I]: 

(2.9) 

(2.10) 

where prime represents differentiation with respect to the spatial variable x. 

Substituting the expression for A11(S) and .M2(S) in equation (2.7) and differentiat-

ing it twice with respect to :r, 

0' yy (x, .s ) 
- -n' h1 _, 

- D 1 ( S ) 10 1 ( :r , s) + 2 'T xy ( :r , s ) 

- -IV h2 _, 
D2(S)W2 (:r,s) - 2 'Txy(x,s) 

The lateral stress 0" yy ( X , t) can also be represented as 

O"yy(:r,t) = lot /\s(t - t')(dWl(X,t') - dW2(X,t')) 

where /\s is the through thickness spring constant. 

The above equation in Laplace domain can be written as 

(2.11 ) 

(2.12) 

(2.13) 

The constant Ks is related to transverse compliance of the film and substrate which 

is evaluated in the following way: 

The elastic solution for the lateral displacements in a long and narrow strip due to 

a transverse load is given by the relation [20] 
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(2.14) 

Using the correspondence principle, the solution in the Laplace domain for the 

viscoelastic problem is 

_ (3K(s)+4j7(s))h _ 
w(x s) = (f (x s) 

, 4sj7(s)(3K(s) + j7(s)) yy , 
(2.15) 

Substituting equation (2.15) in (2.13)' we obtain, 

(2.16) 

But from equation (2.11), we have 

(2.17) 

Substituting (2.13) in the above equation, 

-IF D 2(s) -IF h _, 
WI (X,S) = sIC(s)D(s)(fyy(X,s) + 2D(s)TXY (X,S) (2.18) 

where D(s) = D 1 {s) + D2(S) is the total flexural rigidity and h = hI + h2 is the 

total thickness of the bi-material strip. 

Similarly, 

-IF 151 (05) -IF h _, 
'W2 (X, s) = -, (f yy (X, s) +:-=--( T x) X, s) 

sAs(05)D(s) . 2D s) . 
(2.19) 

From equations (2.11), (2.18) and (2.19) we obtain the following relationship be

tween ayy(x,05) and Txy(:r,s) 

(2.20) 

where 
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Another equation for the stress components O'yy(x, s) and Txy(X, s) can be obtained 

from the continuity of longitudinal displacements U1{X,S) and U2{X,S) at the inter

face. 

The displacement relations at the interface are given by: 

(2.21 ) 

(2.22) 

where 0'1 and 0'2 are coefficients of thermal expansion of film and substrate respec

tively, 

and 

are the in-plane compliances of the strips, 

and 
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are their interfacial compliances. In the above displacement equations ((2.21) and 

(2.22)), the first term represents the unrestricted thermal expansion, the second 

term is due to thermal mismatch forces T(x, t) which are assumed to be uniformly 

distributed through its thickness, while the third term accounts for the nonuniform 

distribution of the aforementioned forces, and the last term is due to bending. 

The continuity equation Ul(X,S) = U2(X,S) results in 

(2.23) 

where I{: ( 8) = I{:d s) + 1{:2 (s), 'X12 ( s) = 'Xl (s) + 'X2( s) are the total interfacial compliance 

and total in-plane compliance respectively and ~O' = 0'2 - 0'1. 

Differentiating equation (2.2:3) with respect to x and substituting (2.8) 

(2.24) 

Using equations (2.18) and (2.19), equation (2.24) can be presented in the form, 

(2.25) 

where the following notation is used: 

(2.26) 

_ _ 11. 2 

-\(8)=-\12(8)+ ) 
4D(s 

(2.27) 

Ii m ( s) = -=:--:.--
sIC(s)l{:(s) 

(2.28) 
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Equations (2.20) and (2.25) form a system from which the stress components Txy(X, s) 

and 0'" yy (x, s) at the interface can be determined. In order to separate these func

tions, we rewrite (2.2.5) in the form 

-IV 1 (_,,, -2 _, ) 
(J' yy (X, s) = _( ) T xy ( X , s) - k (s) T xy ( X, s) 

111, S 

and by substituting this equation into (2.20) we have 

where 

t(s) = 4jl(s)o24 (8)m(8) = jl2(s)D(8) 
k (s) A(8)1)1(S)1)2(S) 

is a dimensionless parameter of the normal stress. 

(2.29) 

(2.30) 

(2.31 ) 

Now substituting (2.30) int.o (2.25), we obtain the following homogenous differential 

equation for the shearing stress function T xy (;T, s) 

-4 -2 _ 
-40: (s)J.~ (S)TJ.y(:r,s) = 0 (2.32) 

By introducing the expression for the derivative T~y(X,.5) from (2.20) into (2.30), we 

obtain the following homogenous differential equation for the normal stress O'"yy(X, s), 

-v I - -2 -IV --t-" l7 yy (:r,s) - (1- E(s))J.· (s)l7yy (x,s) + 40: (s)l7 yy (x,s) 

(2.33) 

Thus, both the shearing and the lateral stresses can be determined on the basis of 

the same ordinary homogenous differential equation of the sixth order. 
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2.3 Boundary Conditions 

The equilibrium condition requires that the function T xy( x, s) must be antisymmetric 

with respect to the origin. Based on physical considerations, we assume that it takes 

the following form at the edge x = I. 

(2.34) 

The first condition follows from the equilibrium equation (2.7) which could be dif

ferentiated to be in the form 

(2.35) 

The lateral stress ayy(.r. s) is self equilibrated and therefore the summation over the 

whole length (:r = l) is zero. Since there are no concentrated lateral forces at the 

free end, w~'(/,s) = w~'(l,s) = O. This leads to the condition Txy(X,S) = O. 

The second condition can be obtained from (2.24) using the fact that there are no 

external forces at the free edges, i.e., T(/,s) = 0 and that there are no bending 

moments in the cross section:r = I, so that w~(l,s) = w~(l,s) = o. 

The third condition follows from (2.24) and (2.8). Since Txy(l,s) = 0 and, in ad

dition, w~'(l,s) = w~'(l,s) = 0, then the second derivative of the shear stress must 

also be zero at this cross section. 

The lateral stress a yy (:r, s) must be symmetric with respect to the origin and should 

satisfy the equilibrium conditions for the lateral forces and bending moments: 
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j +1 j+ljX 7'fyy(;r,s)dx = 7'fyy ((,s)dxd( = 0 
-I -I -I 

(2.36) 

Obviously, these conditions are fulfilled automatically as long as the conditions 

T( I, s) = 0 and T xy ( I, .5) = 0 are satisfied. 

2.4 Solution 

The differential equations (2.32) and (2.33) were solved by the method of char

acteristics [see Appendix II] satisfying the above mentioned boundary conditions. 

The normal stress 7'iyy and the shear stress Txy solutions obtained by solving the 

differential equations. 

Cd.5) sinh (f-j1(.5)X) + C3 (s) cosh (11(S)X) sin (12(s)X) 

+C\(.5) sinh (11 (.5)x) cos (12( 8)X) 

C 2(8) cosh (131 (8)X) + C4 (.5) cosh (11 (.5)x) cos (12(.5)X) 

+C6 (.5) sinh (11(.5):r) sin (12(8)X) 

(2.37) 

(2.38) 

where the constants C\ (8) through C 6( s) are the functions of Laplace parameter s 

and are given in Appendix II. 

The longitudinal stress 7'fu is represented by the equation 

_ ) T(x,.5) 6Aldx,s) 
(Tx.r(:r,.5 = I + 12 

~1 ~1 
(2.39) 

where T(:r,s) and Al(t,s) are given by the equations (2.8) and (2.7) respectively. 

The solution thus obtained in the Laplace domain is inverted back to the time 

domain numerically. 
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3 Thin Film Bonded to a Substrate 

3.1 Residual Stresses in the Film 

Solution to the problem of a viscoelastic thin film bonded to an elastic substrate is 

presented in this section. Analytical solutions established in the previous section are 

used to study the residual stresses and its relaxation behavior along the interface. 

The viscoelastic film material used in this example is a polyimide. Stress relaxation 

data obtained at different temperatures for the polyimide by Smith and Kim [18] is 

used to characterize the film material property. Master or composite curve at 300 e 
was prepared from the relaxation data available at different temperatures. Briefly, 

an arbitrary reference curve is selected (at 300 e) and then the other curves are 

shifted horizontally along the log t axis to obta.in a master curve. The master curve 

obtained by shifting is shown in Fig. 2, while the temperature dependence of the 

shift function is shown in Fig. :3. The master curve is fitted with a 13-term prany 

series [12) of the form 

13 (t ) E(t) = Eo + 2:= E; exp --
i=l T 

(3.1 ) 

to incorporate in the numerical calculations. The constants used in the above equa-

tion (3.1) is given in Table 1. The shift function 'I/-,(T) is fitted with a linear function 

given below: 

I091O'I/-'(T) = 0.06136T - 1.0697 (3.2) 

The coefficient of thermal expansion of the polyimide is temperature dependent; an 

average value of 1 X 10-5 rC between 300 e and 400°C was used as a representative 

value as adopteel by Numata and others [15]. The initial Poisson's ratio v(O) of 
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1 E (Pa) T (s) 
0 1.9953 X 109 ..... 
1 1.8479 X lOB 9.8286 X 10 2 

2 4.4533 X 108 6.6146 
3 5.4560 x 108 4.4516 X 102 

4 5.7778 X 108 2.99.59 X 104 

5 5.5759 X 108 2.0162 X 106 

6 7.3616 X 108 1.3.569 X 108 

7 5.8708 X 108 9.1321 X 109 

8 5.9782 X 108 6.1459 X 1011 
9 5.4039 X 108 4.1362 X 1013 

10 7.01.59 X 108 2.7836 X 1015 

11 6.1711 X 108 1.8734 X 1017 

12 6 .. 5697 x 108 1.2608 X 1019 

1:3 9.0950 x 108 8.4849 X 1020 

Table 1: Constants used in the prony series 

polyimide is 0.29. The glass transition temperature of the polyimide is around 

The experimental data cited above is sufficient to determine the relaxation shear 

modulus lL(t) and the (constant) bulk modulus K, once the dilatational response of 

the material is assumed to be elastic. Such an assumption appears to be reasonable 

for high polymers such as polyimide [14]. It is more expedient, however, to express 

these moduli in Laplace domain and they are obtained by the relations expressed in 

terms of transformed tensile modulus E(8) and Poisson's ratio 17(8) given by [14] 

G
' :3A'E(8) 

T (8) = ---=:'--
9K - 71E(8) 

~ E(O) 
J\ (8) = 38 (1 - 2v(0)) 

(3.3) 

(3.4 ) 

The substrate material chosen was silicon [2J whose Young's modulus value is 1.689 X 

1011 Pa, Poisson's ratio is 0.2624 and coefficient of thermal expansion is 2.8 x 
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1O-6;aC. 

Using these material properties, the stresses CTxx ( s), CTyy ( s) and l' Xy( s) were cal

culated from equations (2.39), (2.38) and (2.37) along the interface for different 

thickness ratio with varying Laplace parameter. The stresses so obtained were 

numerically inverted to the time domain by the Schapery's direct method of ap

proximation [17]. The method can be applied directly by simply multiplying the 

value of transformed function, say J( s) by the Laplace parameter sand eva.luating 

the function at s = 0.5/t. l\-iathematically, 

f(t) = [8](8)} s=so (3.5) 

where 80 = 0 .. 5/t. 

Figure 4 shows a plot of function SCTxx ( s) versus log s evaluated at different locations 

along the interface using the relation (2.39), and it is seen that the function SCTxx(S) 

is pra.ctically linear. Similar behavior is observed for the stress components SCTyy ( s) 

and 81' xy( s) which a.re shown in Figs. 5 and 6 respectively. The approximate method 

of inversion gives good results for this kind of behavior [5] and hence the method has 

been used here to study the relaxation behavior of the various stress components. 

3.2 Results and Discussion 

The residual stresses ohtained at different times and different aspect ratios were 

normalized with respect to the tensile modulus of the film at time t = a (glassy 

modulus). All the stress components were plotted against the location along the 

interface normalized by the length I of the film to study the relaxation behavior. 

Figure 7 displays the time variations of the longitudinal stress O'xAx, t), aJong the 
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right half of the interface. As may be expected, the stresses relax with time due to 

the viscoelastic nature of the film material. In the case of aspect ratio (hI: I = 1 : 5), 

the maximum stress occurs at the center and gradually tends to zero towards the 

free end. However, as the aspect ratio is decreased (hI : I = 1 : 50), the stresses 

remain fairly constant and suddenly drops to zero very close to the free end. 

The distribution of lateral stress t7yy is shown in Fig. 8 and they also relax with time. 

For relatively high aspect ratio the stresses near the center remain fairly constant 

while in the case of smaller aspect ratio, it remains nearly zero for most of its length 

except near the free ends. The range of length over which the stress variation occurs 

becomes smaller as the aspect ratio is decreased and the stresses fall very rapidly. A 

stress concentration occurs at the free end in both cases. A similar behavior would 

have been observed if a concentrated normal load was applied at the free end, thus 

suggesting a Saint Venant's type of behavior (rapid decay of end effects). Figure 

9 shows the variation of shear stress T:ry along the interface. The stresses relax as 

observed in the case of normal stresses. It attains a peak value gradually a.s we move 

from the center before vanishing at the free end. The location of peak stress moves 

closer to the free end as the aspect ratio is decreased. 

The above results indicate that the stress variation at the interface is highly local

ized near the free ends for smaller aspect ratios. These variations do not extend 

more than a few film thickness. This kind of behavior is expected for the problem 

considered here and can be explained by considering the superposition shown in Fig. 

10. In Fig. lOb, the film is under uniform misfit strain which is equivalent to the 

thermal strain. However, the edges are not traction free in this case. Therefore, we 

add a system of loads (Fig. IOc) where the edges are just subjected to stress t7xx 

but in the opposite direction and without misfit strain, so that when superposed, 

the original residual stress problem (Fig. lOd) with stress free boundary conditions 
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at the edge is recovered. 

The compressive loading in Fig.1Oc causes stresses O"xx, O"yy and Txy in the film which 

do not extend more than few film thickness as explained by Goodier's [10] extension 

of the Saint Venant's principle. The significance of this is that the thermal stress 

O"xx = E~o:~T, O"yy = 0 and Txy = 0 for the interior of the plate. The stresses 

calculated in the numerical example above approach these va1ues in the interior as 

the aspect ratio is decreased. Also, these stress values are of the same order as that 

obtained experimentally for a polyimide film on silicon substrate [7]. 

The ma.gnitude of the 10ngitudina1 stress O"xx is about 50-60 times larger tha.n the 

tensile lateral stress O"yy and maximum shear stress Txy. However, from a failure or 

reliability point of view, the interfacia1 stresses 0" yy and Txy are very important while 

the normal stress O""",~. is responsible for the ultimate, fatigue and brittle strength 

of the film. Thus, if there are any imperfections at the interface, the most likely 

location where the fracture will initiate is near the free edge because the stresses 

responsible for failure are concentrated in this region. Experimental observations of 

thin ductile films on brittle substrates [6] and brittle films on brittle substrates [11] 

have shown this kind of a behayior where the films decohere at the edges along the 

interface. 

4 Effect of Cooling Rate and Cooling Cycle 

The analytical model described before can also be used to calculate stresses at any 

temperature by incorporating the reduced time factor in the constitutive relation 

[12], [14]. The model with reduced time is used here to study the effect of cooling 

rate and cooling cycle on the fina1 residual stresses built in the film. In most practical 
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applications the aspect ratio of the film is very low and so the results presented in 

this section is for an aspect ratio hl : I of 1:50. Organic films such as polyimide are 

deposited by spin coating them onto a substrate and later subjecting it to thermal 

cycles to obtain the desired properties. Figure 11 shows a conventional curing cycle 

adopted to deposit a polyimide film [7]. 

Polyimide is insoluble in most commonly used solvents and therefore applied as 

precursor on the substrate by spin coating. The coated films are pre-baked at 80°C 

for about 30 minutes to evaporate the moisture content. Then they are heated 

at a constant rate to about 400°C. During heating, a hydrolitic chemical reaction 

(imidization) takes place to form polyimide. The chemical reaction is associated 

with volume shrinkage which might build up some shrinkage stresses. The film is 

then subjected to final baking at 400°C for about 30 minutes to get rid of all the 

moisture and excess solvents. Fina.!ly, the film is cooled at a constant rate to the 

room temperature. Goldsmith and others [9] have investigated the in situ stresses 

generated during the final baking process. They have shown that there are no 

shrinkage stresses developed at final bake temperature. Thus, the residual stresses 

are completely due to thermal mismatch. Since our model can calculate the thermal 

stresses, we will use it to study the evolution of these stresses. 

Given a combination of film and substrate materials and its geometry, the only 

parameters which affect the residual stresses during the film deposition and its 

curing are the cooling rate and the cooling cycle. The model developed earlier was 

used to study the effect of these parameters on final residual stresses built in the 

film. 

Figure 12 shows the longitudinal stress, f7xn distribution when the film is cooled at 

different rates to the room temperature. The stress components are plotted at a 
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fixed observer time. It is seen that the final residual stress values are reduced for slow 

cooling rates. The reduction in residual stress is due to the fact that when the film 

and the substrate are cooled, the stresses are generated due to thermal mismatch 

along with the relaxation of the generated stress due to viscoelastic nature of the 

film. The observed overall stress depends on the rate of stress generated relative 

to the stress relaxation over the course of time. Also, the relaxation is much more 

pronounced at higher temperatures, as the material clock is faster than the observer 

clock (reduced time, equation (2.2)). Thus, at very slow rates of cooling, the stress 

relaxation is more compared to higher cooling rates. So, the residual stresses in the 

film decreases as the cooling rate is slowed down. 

Figure 13 shows the stress evolution at a distance 1/4 from the free edge when 

the film is cooled to room temperature in different steps. The final residual stress 

decreases as the number of steps are increased. At each hold time in a cooling step, 

the stress relaxation occurs. As more number of steps are introduced, the longer 

the hold time, causing more relaxation. So, the final residual stress observed will 

be lesser when the number of cooling steps are increased as seen in Fig. 13. In an 

actual curing process, an optimum number of steps with a lower rate of cooling has 

to be worked out. It is however desirable to have more number of cooling steps at 

higher temperatures as the material time scale is higher in that region. 

5 Conclusions 

A detailed viscoelastic interfacial stress ana1ysis of a thin film bonded to a substrate 

under thermal loading was obtained. The stress analysis provided a complete dis

tribution of lateral, longitudinal and shear stress components along the interface as 

a function of time. The stress components relaxed a considerable amount over time. 
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The longitudina.l stress component, G'xx, was uniformly distributed away from the 

free ends as in the case of one dimensional model. The shear and latera.! components 

were concentrated near the free ends and had no effect on the interior as the aspect 

ratio was decreased. A stress concentration effect is observed at the free ends. The 

concentration of the shear and lateral stresses at the free ends indicate that the free 

ends are the possible location where the material is likely to fail. The model was 

used in studying the process where stress evolution over time occurs as in the case of 

curing of thin film. The effect of curing parameters such as cooling rate and cooling 

cycle in a typical curing process showed that the magnitude of the residual stresses 

in the film decreased under slow rates of cooling and also when a stepwise cooling 

was introduced. 
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I Appendix I: Moment Relation 

The film is modelled as a thin plate element so that the plane stress condition 

prevails in the y-direction (see Fig. 14). The stress components, 

(j yy ( x , s) = (j xy ( x, s) = (j yy ( x, s) = 0 (1.1 ) 

The curvature (1 /p( x, s)) of plate deflection can be approximated as 

1 d2 

_ = --2'W(.T,S) 
p(x,s) d:r 

(1.2) 

where w is the deflection of the bar in the y-direction which is assumed to be smaller 

compared with the length of the plate I. 

The strain Ex~:(:r, 8) of a fiber at a distance y from the neutral axis is given by 

(1.3) 

But from the constitutive relation (2.1) and (2.2), the strain components may be 

written as 

The lateral strain Syy (:r, 8) in the y-direction must be zero in order to maintain the 

continuity in the plate during bending, from which it follows: 

_ :31\(8) - 271(8) _ 
a yy ( :r, 8) = [ ] a xx ( x, s) 

2 3/\'(s) +71(s) 
(1.6 ) 

From equations (1.6), (1.4) and (1.3) we obtain, 
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_ 4s/1(s) (3K(s) + /1(s)) d2 _ 

0' xx (x, s) = - ( ) y d 2 W (X, S) 
3f{ ( s) + /1( s ) x 

(1. 7) 

The bending moment l\J(x,s) in the elemental strip is then evaluated by 

- 1~ - 4s/1(s) (3K(s) + /1(s)) 3 d2 
-

M(x,s)=- O'xxydy= (. ) h -d 2 w (x,s) (1.8) 
-~ 3f{(s)+i7(s) x 
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II Appendix II: Solution to the Differential Equa
tion 

The sixth order differential equations obtained in the main text is solved here by the 

method of characteristics. The characteristic equation of the differential equations 

(2.37) and (2.38) is of the form: 

(11.1 ) 

introducing a new variable ( = ;32 - (1 + E) P /3, the above equation is reduced to 

a simple cubic equation 

(11.2) 

where 

(11.3) 

(11.4 ) 

The discriminant d = q6 + q; of the equation (11.2) is always positive and hence it 

has one real and two conjugate complex roots: 

(11..5) 

_ (a+b). ;;:;(a-b) 
( 2 3 - - ± 1 V :3.c..----'-, 2 2 (11.6) 

where 

1 

a = (- qo + Jd) :;: (1I.7) 

(11.8 ) 
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Accordingly, the characteristic equation (11.1) has the following roots: 

where 

and 

7]2 = v'3-( a_-_b...;..) 
2 

Therefore the solution to the equations (2.32) and (2.33) are: 

Txy(:r, 05) = C 1(05) sinh (:81 (o5)X) + C3(8) cosh ("1\ (o5)x) sin (12(8 ).'1:) 

+C5(8) sinh (11(o5):r) cos eY2(o5)x) 

ayy(:r,s) = C2(s) cosh (:81 (s):r) + C4(8) cosh (11(8)X) cos (12(.s)X) 

+C6 ( 8) sinh (1\ (8)X) sin C?2( s)x) 

(II.9) 

(11.10) 

(II.ll) 

(II.12) 

(II.13) 

(II.14) 

(11.15) 

(II.16) 

(11.17) 
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The constants in the above equations can be obtained from the boundary conditions. 

The constants in equation (11.16) can be found using the boundary conditions (2.34). 

These result in the system of linear algebraic equations which are solved to obtain: 

(ILI8) 

(11.19) 

(11.20) 

- [ cos (2V2 ( S )) 1 
x tanh (u(s)) - /31(s) coth (2V1(S)) - . 1 ( _ ( )) 

S1111 2V1 S 
(11.21 ) 

is the determinant of the system of equations. 

The relationship between the constants with odd indices in (II.16) and the constants 

with the even indices in (11.17) can be obtained by substituting equations (II.16) 

and (II.li) into (2.20), 

C ( ) _ 4"j:l(s)a4(S)i11(S)C ( ) 
2 S - 4 '1 S 

/3 1(s) + 404 (s) 
(11.22) 

C4 (s) = 4"j:l(S)04(S) (81 (s)C3 (s) + 82 (s)C5 (s)) (II.23) 

(11.24) 
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where, 

7 ( ) _ 11 ( s r:y 2 ( s) - 12 ( S )11 ( S ) 
VI S - -2 -2 

fl(S) + f2(S) 
(11.25 ) 

7 ( ) _ 11 ( S )11 ( s) + 12 (s )12 (s ) 
V2 S - -2 -2 

11(s) + 12(s) 
(11.26) 

11(8) = 1ji(s) -1j~(s) + 4a4 (s) (II.27) 

(II.28) 
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Interfacial Crack Propagation in a Thin Viscoelas
tic Film Bonded to an Elastic Substrate 

Abstract 

Edge decohesion along the interface of a thin viscoelastic film bonded to an elastic 

substrate under tensile residual stresses is considered. The tensile residual stress 

in the film is replaced by a combination of edge loads, and an explicit relation 

of strain energy with respect to time is obtained by simple beam analysis. The 

strain energy function is discretized into small time steps, and the energy release is 

calculated using Griffith's energy balance approach; the discretized time is assumed 

very small so that the dissipation effects over the small time steps are neglected. An 

analytical model is developed to predict the crack growth and its velocity. Crack 

growth along the interface is predicted based on a fracture criteria. The validity of 

the assumptions in the analytical results is checked by performing a finite element 

analysis. 

1 Introduction 

Thin films deposited on a substrate are subjected to appreciable residual stresses due 

to difference in the thermal coefficients. The built in residual stresses are of relatively 

high magnitude, which for the case of a polyimide film on a silicon substrate is of the 

order 40-70 MPa [7]. These residual stresses in the presence of flaws or inclusions can 

act as a driving force to cause failure. The type and pattern of failure mechanism is 

dependent on many factors which has been extensively studied in recent years [9], 

[12]. 
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The failure mechanism is mainly dependent on the sign and magnitude of residual 

stresses and the relative strength of the film, interface and the substrate. In a 

compressively loaded film, any flaw in the form of interfacial separation buckles 

under the compressive loading, leading to delamination and eventual spalling of 

the film [8]. Another possibility is that the crack my propagate in the substrate 

in a direction perpendicular to the interface [10]. When the stresses in the film 

are tensile, the cracks can initiate along the interface at the free edges or at an 

initial crack in the film. The crack thus initiated can either continue to grow along 

the interface or can deviate into the film or substrate depending on the relative 

toughness of the constituent materials. Experimental studies in the case of brittle 

film on brittle substrate [11] and also for a ductile film on brittle substrate [.5] reveal 

that the cracks, after splitting through the film, extended along the interface for a 

few film thickness before deviating into the substrate and travelling parallel to the 

interface. However, when the interface is weak in strength, the most likely form 

of crack growth is along the interface [23]. There are many more forms of failure 

mechanisms which exist in bi-material systems, and they have been reviewed by 

Evans [9] and by Hutchinson and Suo [12]. 

Polymeric thin films such as polyimide are widely used in the microelectronics in

dustry as dielectric insulating layers. Polyimide films bonded to silicon substrate is 

of particular interest. This combination is of the type ductile film bonded to a brittle 

substrate with a weak interface. The most likely type of failure is the edge deco

hesion followed by crack growth along the interface. Suo and Hutchinson [22] have 

analysed this problem treating the film as an elastic material and have obtained the 

expressions for energy release rate and stress intensity factors. Polyimides in general 

exhibit time and temperature dependent (viscoelastic) properties and hence a time 

dependent fracture analysis of the bi-material system has been carried out. The 

focus of this paper is to study the time dependent fracture process in a bi-material 
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cracked along the interface. 

Before proceeding to the analysis, it is useful to review the published work on crack 

growth and crack initiation in the viscoelastic materials. An excellent review of 

the experimental and theoretical papers on crack growth in viscoelastic materials 

is presented by Knauss [14]. Williams [25] deduced an extended Griffith criterion 

for the fracture of linearly viscoelastic media. By using the thermodynamic power 

equation for the global energy balance, he was able to solve the time history of 

fracture in disintegrating spherica1 cavity. Christensen [3] extended this method to 

solve an explicit case of crack geometry. 

Wnuk and Knauss [26] investigated the case of a penny shaped crack in a linearly 

viscoelastic solid exhibiting a deformation rate sensitive yield stress to obtain the 

fracture initiation time. Knauss and co-workers [13], [18], [15] predicted the crack 

growth following initiation using the thermodynamic power relation but reducing 

the problem to a loca1 energy balance in a failure zone near the cracktip. Schapery 

[19], [20], [21] proposed a model for crack initiation and crack growth considering 

the failure zone \vhere no significant restrictions on the failing material was imposed. 

Schapery's criterion is equivalent to the local balance criterion [13], [18], [15] when

ever the crack propagates with a uniform velocity and the deformation associated 

with the crack remains fixed with time. Further, McCartney [17] used the same con

cept of failure zone ahead of cracktip, and by assuming a constant stress distribution 

in this zone, he solved the problem of crack growth. 

The role of conservation of energy in viscoelastic crack kinetics has been discussed 

in great detail. McCartney and Christensen [4] have stated that the global energy 

balance and local energy approaches both lead to deterministic, nontrivial failure 

criteria for crack growth in viscoelastic material with no inherent inconsistency 
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between them provided the boundedness of stresses is satisfied throughout. 

In this paper the interface crack problem for a viscoelastic film on an elastic substrate 

with weak interface is solved to predict the crack growth and crack velocity. An 

explicit relation for the time-dependent strain energy of the cracked bi-material 

system is obtained for a Maxwell solid. The whole crack growth process is discretized 

into small time steps, and the energy release rate based on Griffith's approach is 

obtained at the beginning of each time step. The dissipation during the small time 

step is assumed to be negligible. 

2 Problem Description 

The cross section of the bi-material system with an edge crack at the interface is 

shown in Fig. 1. Each layer is assumed to be homogenous, isotropic and linearly 

viscoelastic. The uncracked interface is perfectly bonded with continuous displace

ments and tractions. The upper layer has a thickness hI and a time dependent 

modulus EI (t) while the lower layer has a thickness h2 and time dependent modulus 

Ez (t). The film and substrate materials considered here are thermorheologically 

simple viscoelastic materials characterized by the constitutive relation 

Si.i(X,t) = 1t= 2G(~-e)~,eij(x,e)de 
O"kk(X, t) = 11 3J\'(~ - e)aa,Skk (x, e) de 

-,~ t 

(2.1 ) 

(2.2) 

where Sij and O"kk are the deviatoric and dilatational components of the stress tensor 

u, ejj and Ckk are the deyiatoric and dialtational components of the strain tensor e, 

and G(t) and J{(t) are, respectively, the time dependent shear and bulk moduli of 

the material. 
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The loading considered here is tensile residual stress in the film due to thermal 

mismatch. The film is assumed to be deposited to the substrate at an elevated 

temperature in a stress free condition. The film and substrate are then cooled to 

room temperature under a known cooling cycle. During this process, the residual 

stresses are built in the film due to thermal mismatch. A detailed residual stress 

analysis presented in the previous chapter indicates that the longitudinal stresses 

are almost uniformly distributed except near the free ends while the lateral and 

the shear stress components are concentrated near the free ends. Once the crack is 

initiated at the free end, the lateral and shear stresses (which are concentrated at 

the free ends in the case of un cracked bi-material) can be neglected and thus the 

only stress component in the film is the uniformly distributed longitudinal stress 

component, axx . It is assumed here that the film is cooled suddenly so that a step 

strain, cxx(t), is developed in the film which is given by 

cxx(t) = 6.o:6.T H(t) 

where 6.0: is the difference in thermal co-efficients of the film and the substrate, 6.T 

is the temperature change and H( t) is a heaveside step function. 

The biaxial misfit stress in the film due to step strain is evaluated from the consti

tutive relation (2.1) and (2.2), 

(2.3) 

But 

(2.4) 

where 8 is the Dirac delta function. 

For a film material, which is linearly viscoelastic and Maxwell type of solid, the 

extensional modulus is represented by the equation, 
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E(t) = El exp ( - :J (2.5) 

Substituting (2.4) and (2.5) in (2.3) gives 

(2.6) 

The residual stress a xx can also be obtained by the superposition shown in Fig. 2. 

In Fig. 2b, the film is under uniform misfit strain corresponding to the stress axx 

which is equivalent to the thermal strain. However, the edges are not traction free in 

this case. Therefore, we add to this a system of loads (Fig. 2b) where the edges are 

just subjected to the stress au but in the opposite direction without misfit strain, 

so that when superposed, the original residual problem with stress free condition 

(Fig. 2d) is obtained. There are no stress singularities present for the case in Fig. 

2b and singularities aTe entirely due to loading in Fig. 2c. Thus, while analysing a 

problem with singularity such as the crack propagation at the interface, the residual 

stresses can be replaced by an equivalent loading as shown in Fig. 2c. 

3 Analytical Model 

3.1 General Edge Loading Problem 

Figure 3a shows a general edge loading of a bilayer with an interfacial edge crack 

which can be used to solve several failure problems including fracture at the interface 

of a thin film bonded to a substrate under thermomechanical loading. The basic 

equations in this part are formulated in the Laplace domain. The Laplace parameter 

is indicated by s, and the overbar denotes the transformed variable in this domain. 

Far ahead of the crack tip, the bilayer may be regarded as a composite beam. The 

neutral axis of the composite beam lies at a distance (h 16(s)) from the bottom of 
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the beam. The position of this neutral axis is derived using the composite beam 

theory (Appendix I). 

For a composite beam, 

- - 2 
h

1
.6.(s) = 1 + 2L:(s)1] + L:(s)1] 

21] (1 + L:( s)1] ) 
(3.1 ) 

where E(s) = !~!:; is the modulus ratio and 1] = ~ is the thickness ratio. 

Overall equilibrium in Fig. 3a requires that the three axial loads and three moments 

satisfy 

(3.2) 

(3.3) 

Therefore, only four among the six variables are independent, say, P l (s), P 3 ( S), 

Nfl(S) and AI3(s). 

These four load variables can further be reduced to just two, namely P( s) and .AI (s), 

which makes the formulations much simpler in future analysis discussed later. Such 

a reduction is possible by a superposition of the form shown in Fig. 3. This kind 

of a superposition is possible since the governing equations (2.1) and (2.2) of a 

viscoelastic material are linear in Laplace domain. In Fig. 3b, a crack can be 

assumed to exist anywhere parallel to the interface since the stress components 

O'yy(s) and Txy(S) are zero so that it does not affect the stress singularity due to the 

presence of the crack. 
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The expressions for the two independent load variables P( s) and M (s) are con

structed using simple beam theory in the following way. 

Consider the stresses in the upper beam far behind the cracktip (Fig. 3a): 

(3.4) 

The stress component a xx (s) due to the force P 1 (s) acting alone is 

(3.5) 

The stress axx(s) due to the bending moment .M1(s) acting alone is 

(3.6) 

where, w( s) is the deflection of the beam and Yl is the distance measured from the 

neutral axis. 

In order to eliminate w~ (s), we make use of the moment relation, 

(3.7) 

Combining the solutions (3.5), (3.6) and (3.7), we obtain, 

(3.8) 

Similarly, the stresses in the lower beam far behind the cracktip (Fig. 3a) are: 

(3.9) 

(3.10) 

where Y2 is the distance measured from the neutral axis in the substrate. 

Stresses in the beam away from the crack tip (Fig. 3a) are: 
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The stress component O'~'x(s) due to the force P3(S) acting alone is 

_ ~(s) ]53(S) 
htA3( s) 

h2 - ht6.(s) < y < h2 - ht6.(s) + hI 

where, A3(S) = 1 + ~(s) 
7) 

The stress component 0'.1'.1'( s) due to the force 111 3( s) acting alone is 

sEt(s)exx(s) = -SEt(S)Y3(S)W~(s) 

h2 - ht6.(s) < y < h2 - hl6.(S) + hI 

-sE2(s)exx (s) = -SE2(S)]h(s)w~(s) 

-hl6.(s) < y < h2 - hl6.(S) 

(3.11 ) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

where Y3( s) = y - hI ~( s), w{ s) is the deflection of the beam, Yl is the distance 

measured from the neutra1 axis and y is the distance measured from the bottom 

surface of the substrate. 

The net force balance yields 

(3.16) 

Similarly, the net moment ba1ance requires 
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(3.17) 

Substituting (3.16) in the above equation, we obtain 

(3.18) 

But 

[hI +h2 . _ [hI _ ( _) II 

Jo l7xx (s)ydA(s) = - Jo sE2 (s) Y - h~(s) w (s)ydy 

l i'I+h2 - ( -) II -

- sE2 (s) Y - h~(s) w (S)'L,(s)ydy 
1,2 

(3.19) 

which, after further simplification, becomes 

(3.20) 

where 

73(S) ~(S) [ ( ells) - D 2 - (,;(S) - ;,) + i 1 
~(.S) (- 1) 1 +- ~(s)-- +-

7] 7] 37]3 

Combining (3.12), (3.14) and (3.20) we obtain, 

(3.21 ) 

Similarly, from equa.tions (3.1:3), (3.15) a.nd (3.20) we obtain 

(3.22) 
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The superposition of stresses in Fig. 3a and Fig. 3b leads to the following stresses 

in the upper beam: 

(3.23) 

For the loading in Fig. 3c, the stresses in the upper beam are: 

_ ( ) _ P(s) 12M(s) 
(Fxx S - h + 13 

1 /'1 
(3.24) 

But the stresses obtained in (3.23) and (3.24) are equivalent; therefore, equating 

them and separating the like powers of y on either sides of the equation, we obtain, 

_ _ P3(S)I:($) M3($)~(S) (* +! -l\(s)) 
P( s) = P 1 (s) - - -------:=-----~ 

A3(S) hI13(S) 
(3.25) 

1I1(s) = 1I11(S) _ M3(Sy~(S) 
1213(s) 

(3.26) 

Similarly, the superposition of stresses in Fig. 3a and Fig. 3b for the lower beam 

gIVes 
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(3.27) 

For the loading in Fig. 3c, the stresses in the lower beam are: 

(3.28) 

Equating the equivalent stress equations (3.27) and (3.28) and comparing the like 

powers, we obtain 

P*(s) = -P2(S) _ P3(S) + M3(S) (6(S) _ ~) 
1] A3(S) h1h(s)1] 21] 

(3.29) 

NJ*(s) = -111 (s) M3(S) 
2 + 121]313(s) 

(3.30) 

The variables P2(S) and 1I12(S) in (3.29) and (3.30) are eliminated by making use 

of equations (:3.2) and (3.3) to obtain: 

p* ( s) = - P ( 8 ) 

1vl*(8) = -111(8) _ P(8)h1 (1 + 1]) 
217 

(3.31) 

(3.32) 

Thus the set of forces and moments acting in Fig. 3a are replaced by two independent 

load variables P(s) and 1I1(s) given by the expressions (3.2.5) and (3.26) respectively. 
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3.2 Thin Film Bonded to a Substrate 

In this section, the equivalent system in Fig. 3c is used to study a specific problem of 

fracture behavior of a thin film bonded to a substrate. The film material considered 

here is a linear viscoelastic Maxwell type of solid whose modulus is of the form 

(3.33) 

where E1 is the glassy elastic modulus and T1 is the relaxation time. The Poisson's 

ratio III is assumed to be a constant with respect to time and temperature. The 

substrate is assumed to be an elastic material whose Young's modulus is E2 • 

The film which is loaded by the residual stresses can be replaced by an edge loading 

as discussed in section 2. The stresses acting at the edge of the film are given by 

the relation (2.6) which in the Laplace domain can be written as 

(3.34) 

The equivalent loads and moments as shown in Fig. 3c can be evaluated from the 

knowledge of stresses in the film. 

The axial load, Pds)' is given by 

(3.35) 

Similarly, 

P ( ,) _ tlo:tlT I E1T1 
3:; - 11 

(1 - lId (1 + T1S) 
(3.36) 
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The bending moment, AI3(s), is represented by 

(3.37) 

All other load variables, 

(3.38) 

Substituting the above load equations and the material variables (Appendix II) in 

(3.25) and (3.26), we obtain 

P(S) 
L:loL:lTh 1 [ EITI E 1Tl1]S 
(1-vd (1+Tl S) (1+TlS)(E2+C6S) 

E?EiT161]3(1 + 1])2S (1 + TIS) 1 
(C4 + Css) (C9 + ClOs + C11 s2) 

(3.39) 

Al(.<;) = L:loL:lThiEiE2TI
2
1]3 (1 + 1]) [ s 1 

. 2 (1 - vd 12 (C9 + C108 + C11 8 2 ) 
(3.40) 

Equations (3.39) and (3.40) are inverted analytically back to the time domain to 

obtain 

(3.41 ) 

.M(t) = C16exP(-CI3t) + C17 exp(-C1st) (3.42) 

where the constants C12 through C17 are given in Appendix II. 

The stress components in the film due to the axial load P{t) and the bending moment 

Al(t) are: 
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(
C12 12C16) h; + ~Y1 exp (-C13t) 

(
G14 12G17 ) + h; + ~Y1 exp ( -GI5 t) (3.43) 

while all the other stress components are zero. 

The strain component Cxx in the film can be calculated from the constitutive relation 

(2.1) and (2.2), which gives 

(3.44) 

where D( t) is the creep compliance of the material. But for a Maxwell type of solid, 

the creep compliance is given by 

(3.45) 

Substituting equations (3.43) and (3.45) in (3.44), we obtain 

(3.46) 

3.3 Energy Release Rate 

The fracture analysis in this part is based on the Griffith's energy balance approach. 

The energy balance for a crack in a media of length a is given by the relation, 
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J-U-S=O (3.47) 

where J is the energy input at the boundary, U is the strain energy density and S 

is the surface energy per unit area. 

However, when the material is considered to be elastic, the above equation can be 

written in the form 

(3.48) 

where G is defined as the energy release rate which IS gIven by the well known 

relation, 

au 
G=-aa (3.49) 

In the following anaJysis for the viscoelastic material, for the sake of simplicity, the 

whole process of crack propagation is assumed to take place in a stepwise manner. 

That is, at any instant tj the crack is assumed to be of length Q and the crack is 

then assumed to grow by an amount ~a in a small interval of time ~t. The time 

interval ~t is assumed to be so small such that the stress variat.ions in t.his time can 

be considered to be negligible so that. the dissipation effects are neglected over this 

small time step. In order to calculate the strain energy release rate, the stresses are 

allowed to relax up to any time t = tj and then during the small time interval (t = tj 

to t = tj + ~t) the process is assumed to have negligible dissipation of energy due 

to viscous effects, and therefore the elastic strain energy release rate relationship 

(3.49) can be llsed in this timestep. 

The strain energy density in the film as a function of time in the film is given by 

the relation 

(3 .. 50) 
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Substituting (3.43) in the above equation results in 

(3.51) 

The strain energy function is then discretised in terms of small timesteps fJ.t. The 

discretized form of the strain energy at any time (t + fJ.t) is 

a(tj + fJ.t) [ClS exp {-2Cl3 (tj + fJ.t)} 

+Cl9 exp {-2Cl5 (tj + fJ.t)} 

+ C20 exp {- (Cl3 + Cl5 ) (tj + fJ.t)}] (3.52) 

First of all, consider a crack of length a at time t = t j, which doesn't grow further 

in the next time interval (t = t j to t = t j + fJ.t) so that the strain energy Ul in this 

system at the end of time t = t j + fJ.t will be 

a(tj) [ClS exp {-2Cl3 (tj + fJ.t)} 

+Clg exp {-2Cl5 (tj + fJ.t)} 

+ C20 exp {- (Cl3 + Cl5 ) (tj + fJ.t)}] (3.53) 
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Now consider the same crack of length a, at time i = ij, and let it be allowed to 

grow by an amount (a + ~a) in the time interval (i = i j to i = i j + ~t), so that the 

strain energy U2 at the end of time i = i j + ~i will be 

(a(ij) + ~a) [C18 exp {-2C13 (ij + ~t)} 

+ C19 exp {-2C15 (i j + ~i)} 

+ C20exp{-(C13+C15)(tj+~i)}J (3.54) 

The energy difference ~U = U11 - U12 is the energy utilized in creating the new 

surface and hence the strain energy release rate G in this small timestep will be 

au ~U 

aa ~a 

[C18 exp {-2C13 (tj + ~i)} + C19 exp {-2C15 (tj + ~t)} 

+ C20 exp {- (C13 + C15 ) (tj + ~t)}J (3.55) 

where the constants C18 through C20 are given in Appendix II. 

The substrate material is elastic and therefore the elastic energy release rate relation 

can be used at all times. The expression for the strain energy in the substrate is 

given by 

u = a(t) [17P2(t) 1217
3 {A ( P(t)h l (1 + 77)}2] 

~ 2 ')E I + h3 1 t) + ') 
~ 2 11 1 ~17 

(3.56) 

By using the relation (3.49), the energy release is evaluated as 

G2 = _. 1_ [7]P
2
(t) + 12~3 {l\1(t) + P(t)h 1 (1 + 7]) }2] 

2E2 hI hI 27] 
(3 .. 57) 
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The above equation is discretized into small time steps so that it can be used with 

the energy release rate relation (3.55) obtained for the film. 

The total energy release rate G, in the film, is given by 

G(t + b.t) = Gdt + b.t) + G2 (t + b.t) (3.58) 

However, in most practical applications the substrate material is considered to be 

almost rigid (E2 ~ El)' In such a case the energy release rate contribution from the 

substrate is negligible compared to that of the film. We make use of this condition 

in the future calculations. 

3.4 Crack Propagation 

The crack once initiated can propagate further if it can overcome the fracture resis

tance at the interface. The fracture resistance is strongly dependent on the toughness 

or the adhesive fracture energy, r, of the interface. The adhesive fracture energy 

can be interpreted as the energy required to break the bonds at the interface. The 

magnitude of this energy depends on the number of bonds per unit surface area and 

the energy required to break each bond. Therefore, a fracture criteria has to be 

imposed to determine the crack growth. 

In the case of interfacial crack growth, mixed mode conditions prevail at the crack 

tip [12], [23]. \\Then dealing with such mixed mode conditions, the adhesive fracture 

energy is found to depend strongly on the mode mixity. Anderson and others [1] 

conducted experiments at different modes and found that in the case of mode II and 

mode III type of deformations, the adhesive fracture energy was more than that of 

mode I. 

In wide class of plane elasticity problems, Dundurs [6] has observed that the mode 
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mixity depends only on two non-dimensional parameters, a and {3, which account 

for the mismatch of the material properties in the two materials. The parameter a 

accounts for the mismatch in tensile elastic modulus and is given by 

(3.59) 

while the parameter {3 which accounts for the mismatch 111 bulk modulus and is 

given by, 

{3 = III ("~2 - 1) - Il2 (h:l - 1) 
III (h:2 + 1) + Il2 (h:l + 1) 

(3.60) 

where i = 1 denotes the upper layer and i = 2 denotes the lower layer; Jli refers 

to the shear modulus of the upper or lower layer, and K.i, which is expressed in 

terms of the poisson ratio Vi, is K.j = (3 - 4vd for plane strain, and in plane stress 

Hutchinson and SUO [12J have shown that in a special case of (3 = 0, the relative 

amount of mode II and mode I can be separated, and a measure of mode mixity is 

defined by 

1 (1\II) 'lj' = tan- -,-
/\/ 

(3.61 ) 

where 1\/ is the mode I stress intensity factor and 1\ II is the mode II stress intensity 

factor. Further, they have stated the fracture criteria for initiation of crack advance 

under mixed mode condition as 

(3.62) 

Several experimental studies such as scarf joint experiments by Trantina [24), cone, 

peel and blister tests by Anderson and others [1], blister tests by Liechti and Hanson 

[16] and the asymmetric and symmetric double cantilever beam method by Cao and 
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Evans [2] have shown that the adhesive fracture strength r is a function of mode 

mixity 'l/J, thus supporting the fracture criteria stated in (3.62). 

However, in the case of viscoelastic material, the time dependent variation of the 

mode mixity will cause the adhesive fracture energy to vary with time. In most 

cases for example [18], this variation is neglected. In the present analysis, the time 

variation of adhesive fracture energy is neglected and the adhesive fracture energy 

used at all times is the elastic adhesive fracture energy at time t = O. Suo and 

Hutchinson [22] in an elastic ana1ysis of interface debonding have shown that the 

mode mixity varies as a function of both thickness ratio and the modulus ratio. 

Thus, for a selected geometry and modulus ratio, the adhesive fracture energy can 

be assumed to be a constant, r 0, in which case the failure criteria becomes 

(3.63) 

Therefore, r 0 is a measure of the critical energy which has to be overcome for the 

crack to grow. In other words, the crack that has initiated at the edge will grow 

further only if the energy release rate is more than or equal to the adhesive energy. 

Once the crack which is introduced along the interface at the edge satisfies the 

fracture criteria and starts to grow, it is important to know at what speed it will 

grow and how far it grows. In order to calculate its speed of propagation, we make 

use of the velocity relation, 

aa .6. a 
V=-;:::::;-

at .6.t 
(3.64) 

But the energy release rate during a small time step is given by (3.49), 

a .6.U(t· + .6.t) 
G(tj + .6.t) = --a U(tj + .6.t) ;:::::; - ~ 

a a 
(3.6.5) 
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where !:lU = Un - U12 • Substituting these quantities Un and U12 from equations 

(3.53) and (3 . .54) along with the expression for !:la from (3.64) in equation (3.65), 

we get 

G(tj + !:It) [C18 exp {-2C13 (tj + !:It)} + C19 exp {-2C15 (tj + !:It)} 

+ C20exp{-(C13+C15)(ij+!:li)}] 

a(ij + !:li) 
+ () [2C13C18 exp {-2C13 (ij + !:li)} 

v ij 

+ 2C15 C1g exp {-2C15 (i j + !:li)} 

+ (C13 + C15 ) C20 exp {- (C13 + C15 ) (tj + !:It)} 1 (3.66) 

Making use of the criteria for crack growth (3.63) and substituting the expression 

for G (3.66) in this equation, we obtain the following equation for crack velocity v 

over a small time step !:It. 

(3.67) 

where 

Fl (t) a( i j) [2C13C18 exp {-2C13 (ij + !:li)} 

+ 2C15C19 exp {-2C15 (i j + !:li)} 

+ (C13 + C'ts) C20 exp {- (C13 + C15 ) (i j + !:li)}] (3.68) 

and 

F2(i) r 0 + [C\8 exp {-2GI3 (i j + !:li)} + G19 exp {-2C'ts(ij + !:It n 
+ G20 exp{-(C13+ GIS) (tj + !:li)}] 

+ [2G13C18 exp {-2C13 (tj + !:lin + 2C15C19 exp {-2CI5 (i j + !:lin 

(3.69) 
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The above equation is valid as long as the fracture criteria (3.63) is satisfied, and at 

all other times the velocity will be zero. 

Having obtained the velocity of crack v over a small time step, the crack growth at 

the end of this time step is calculated from the relation, 

a(tj + .0.t) = a(tJ + v.0.t (3.70) 

Again, the above equation is valid as long as the fracture criteria is satisfied and it 

ceases to grow when the energy is below the critical level for fracture. 

4 Finite Element Analysis 

4.1 Motivation 

In order to examine t.he validity of our assumptions and the analytical results ob

tained in the previous section, a numerical calculation using finite element technique 

was performed. Before attempting the actual problem described in the previous sec

tion, it is a.dvantageous in an initial investigation to consider the simplest possible 

situa.tion. Such a situation is provided by the plane stress steady crack growth of a 

large crack a > 1..5b (Fig. 4), along the center line of an infinitely long viscoelastic 

strip under constant lateral strain co. Analytical solution to this problem has been 

obtained by Mueller and Knauss [IS], and therefore the finite element solutions can 

be compared with this solution. 

A finite element analysis was performed for this problem usmg ABAQUS 1 code 

incorporating the viscoelastic material library. Due to symmetry in both x and y 

directions, only one quarter of the geometry was considered. An initial crack of 

1 Abaqus by Hibbit, Karlsson and Sorenson, Providence, R.I. 
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length a (such that a « I) was introduced at the center and the whole strip was 

discretized using eight noded plane stress elements. A focussed mesh was used near 

the cracktip with independent displacements allowed at all the nodes in the crack 

front nodal position. In addition, the mid-side nodes of the cracktip elements were 

moved to the quarter point position to capture the singularity near the cracktip. A 

typical finite element mesh near the cracktip is shown in Fig. 5. The upper end of 

the quarter strip was subjected to a constant lateral strain Eo while the displacement 

in the longitudina1 direction was constrained. Symmetry boundary conditions were 

imposed along the lines of symmetry. 

The finite element calculations were performed for a particular crack length a to 

obtain the strain energy density U1 of the complete system at different time steps. 

The crack length was then changed by a very small amount .6.a (such that .6.a/ I = 

1 : 500) and again the strain energy density of the whole system [12 at the same 

time steps were calculated. The strain energy release rate G for the crack length a 

was calculated by the Griffith's energy relation, 

G = _ au ~ _ .6.U 
oa .6.0 

(4.1 ) 

The analytica1 relation for the energy release rate G obtained by Mueller and Knauss 

[18] is given by the relation, 

(4.2) 

where E( t) is the extensiona1 relaxation modulus, v is the Poisson's ratio and the 

function F is given by 

Here, D(n)(t) are the time weighted averages of the creep compliance D( t) defined 

by 
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n = 1,2 

D(t) n=O 

The energy release rate is thus calculated ana1ytically at different time intervals. 

Figure 6 shows a plot of normalized energy release rate obtained by both the an

alytical and finite element method at different times. The plot indicates that the 

energy release rate obtained by the finite element method agrees closely with the 

analytical result. Motivated by this, finite element analysis of the actual problem 

discussed in Section 2 was performed to verify our analytical results presented in 

Section 3 and also to check the validity of our assumptions. 

4.2 Viscoelastic Thin Film Bonded to an Elastic Substrate 

Numerical computations were then performed for a viscoelastic thin film bonded to 

an elastic substrate. The modulus ratio of the film and the substrate considered in 

this case was E1 (0) : E2 = 1 : 100 so that the substrate can almost be considered as 

rigid. In most practical applications the film thickness will be very small compared 

to its length; therefore, a film geometry with aspect ratio (hI : I) equal to (1: 1 00) 

was considered. Initially, the influence of the film geometry on the deformation near 

the cracktip was explored. 

The thermal co-efficient of the film had a higher value than the substrate so that 

the tensile stresses were built in the film when cooled during fabrication. The film 

was assumed to be deposited at 4000 C under stress free condition and cooled to 

the room temperature at a high cooling rate so that the stresses in the film were 

given by the equation (2.6). The film was discretized using eight noded plane strain 

elements, and the focussed mesh with capa.bility of capturing singularity was used 
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near the cracktip as in the previous case. The loading in the film was introduced by 

applying a traction (O"xx) at the film edges. A fixed boundary condition in all degrees 

of freedom was introduced at the points along the interface where the film was still 

bonded to the substrate. Such a condition was imposed because the substrate was 

considered to be almost rigid compared to the film. 

For a given crack length a, the energy release rate was calculated as described in 

the case of the viscoelastic strip problem, and the results were obtained for different 

crack lengths at finite time steps. Figure 7 shows a plot of the normalized energy 

release rate with respect to normalized crack length at different time steps. Trends 

in the plot shmv that for each time step the energy release rate is nearly independent 

of the crack length. Thus the crack length has no influence on the cracktip geometry 

for larger crack lengths away from the free edge at all times. This is reflected in 

our analytical result for the energy release rate G (3.55) which is independent of 

the crack length. A similar conclusion was reached in the case of elastic analysis of 

debonding along an interface of a thin film bonded to a thick substrate [5] 

Another important information regarding the active modes of failure is obtained 

by looking at the deformation pattern. Figure 8 shows the deformation in the film 

at time tiT = 1.0. The displacement has both opening and sliding components 

indicating that both mode-I and mode-II types of deformation are active. 

5 Analytical Results 

The analytical expressions obtained in Section 3 are used here to study the failure 

behavior in some specific geometries. The film considered here is a Maxwell type 

of viscoelastic solid, and the substrate is an elastic material. The material prop-
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erties used in these calculations were the same as that used in the finite element 

calculations except that the thickness ratios used here are different. 

The strain energy release rate was calculated from equation (3.55) at different times 

using a time step .6.t = 10-3 for different thickness ratios. Figure 9 shows the 

variation of normalized energy release rate with time. The energy release is observed 

to remain constant at all time steps as the thickness ratio is increased. In all the 

cases, the energy release rate is observed to be a monotonically decreasing function 

which is quite clear from the relaxation behavior of the film. So, to begin with at 

time t = 0, if the energy release rate is more than the adhesive energy r 0, the crack 

starts growing before it reaches a stage where the energy level drops below that of 

r 0 and then it ceases to grow. In another situation, right at the beginning, if the 

energy release ra.te is below the critical value, the crack will never grow. 

The energy release rate obtained by finite element calculations for a thickness ratio 

of hI : h2 = 1 : 100 is compared with the analytical results in Figure 10. The 

finite element results agree closely with the analytical results further validating our 

assumptions in the ana1ytica1 model. 

The crack velocity and crack growth were also calculated at different times using 

a timestep .6.t = 10-3 for a thickness ratio of hI : h2 = 1 : 100 from the relations 

(3.67) and (3.70) respectively. An initial crack length of a/h = 40 was used in our 

computations. The critical energy used in this case were fractions of elastic energy 

release rate at time t = O. Figure 11 shows a plot of crack velocity as a function 

of time. The trend shows that the crack velocity increases with time and levels off 

until it ceases to grow. The crack velocity increases with the decrease in surface 

energy. The crack growth with respect to time is shown in Fig. 12 for different 

critical energy release rates r o. It is seen that the amount of crack growth increases 



- 74-

with the decrease in critical energy as it takes a longer time for the energy release 

to drop below the critical value. Also, the crack growth is almost linear in all the 

cases considered here. 

Conclusion 

A simple theory has been developed for studying a crack growing along the interface. 

The edge load analysis in Laplace domain gave simple expressions for equivalent 

load variables which were inverted analytically to time domain for a Maxwell type 

of solid. It has been demonstrated that by discretizing the strain energy function, 

the energy release rate is obtained during small time steps using a Griffith's energy 

balance approach which showed good agreement with the finite element results. 

The energy release rate for the Maxwell solid was observed to be a monotonically 

decreasing function which suggests that the crack which starts to grmv has to arrest 

after a while when it falls below the critical energy release rate or the crack might 

not grow right from the beginning if the critical energy release rate is not reached 

at the beginning. The analytical results showed that the strain energy release rate 

was independent of crack length, and the same behavior was also predicted by finite 

element analysis which corroborates the analytical model. The energy release rate 

was also seen to be independent of the thickness ratio. It was also possible to obtain 

explicit relations for the crack growth and its velocity. However, there was no basis 

currently available to check the accuracy of crack growth and its velocity. 

The general nature of the edge loading problem is helpful in studying many V1S

coelastic fracture problems. The analysis can further be extended to include general 

viscoelastic material by expressing the material properties in the form of a prony 

series. The present approach gives a rational tool for understanding the interfacial 

crack propagation in a viscoelastic film bonded to a rigid substrate. 
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I Appendix I: Composite Beam Theory 

Consider a composite beam of two different materials bonded together as shown in 

Fig. 13. It is convenient to replace the material in the upper layer by an equivalent 

area of lower layer material. However, the bonding strength should be retained in 

the equivalent section, i.e., the moment in any section must be the same in the 

equivalent section as in the original section so that the force at any given element of 

thickness dy in the equivalent beam must be equal to that at the strip it replaces. 

Therefore, 

abdy = a' b' dy (I.1 ) 

or 

ab = a'b' (I.2) 

where the primed variables refer to the equivalent section while unprimed variables 

refer to the original section. 

Making use of the constitutive relation (2.1) and (2.2), the above equation can be 

written as 

rt E (t _ T) dE( T ) b = rt E' (t _ T) de' ( T ) b' 
Jo dT Jo dT 

(1.3) 

For true similarity, the strains in both the sections have to be equal. Therefore, 

rt 
E (t _ T) dS(T) b = r E' (t _ T) ds( T) b' 

Jo dT Jo dT 

or in the Laplace domain, 

- . -' I 

sE(s)Z(s)b = sE (s)Z(s)b 

Thus the width of the equivalent section is given by 

b' = b E(s) 
E(s) 

(1.4 ) 

(1.5 ) 

(1.6) 

So, a composite beam can be treated as a homogenous beam provided the new width 

given by (1.6) is replaced. 
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II Appendix II: Time Dependent Material Con
stants 

The relevant material variables appearing in the equations (3.25) and (3.26) for this 

specific combination of film and substrate material are given by 

A3(S) = E2 + C6 s 
C7 + C8 s 

7
3
(s) = C9 + ClQS + C11 S

2 

(E2 + C2s) (C4 + C5s) 

where 

(11.1 ) 

(II.2) 

(II.3) 

(II.4 ) 

(11.5) 

(II.6) 

(11.7) 

(II.S) 

(II.9) 

(11.10) 

(11.11 ) 

(II.12) 

(11.13) 



- 78-

The other constants used in the main text are: 

D1 D3 

C11 C5 

ClO + JCla - 4C9 C11 

C13 = ,)C 
~ '11 

ClO - JCla - 4C9 C11 
C15 = ------.!....-·)-C----

~ '11 

C _ D~h1 D~hr 
19 - ')E + ')4E 

~ 1 ~ 1 

where 

D1 = 6!:1o:!:1T hI E; EiT12"l3 (1 + "l )2 

(1 - vd 

(II.I4) 

(11.15) 

(II.I6) 

(II.I7) 

(II.I8) 

(II.I9) 

(II.20) 

(11.21) 

(II.22) 

(11.23) 

(II.24) 

(11.25 ) 

(11.26) 



C1371 - 1 
D3 = C

13 
- C

15 

C1571 - 1 
D4 = C - C

13 15 

DI D 3 

D5 = h
1
C

5
C

U 

12D2C13 

DID4 

D7 = - h
1
C

5
C

11 

12D2 C15 
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(I1.27) 

(II.28) 

(11.29) 

(I1.30) 

(I1.31) 

(II.32) 
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Figure 5 
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