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ABSTRACT

A theoretical investigation of an efficient numerical solution
scheme to solve approximatel;r the nonlinear Donnell equations for
imperfect isotropic cylindrical shells with edge restraints and under
axial compression was carried out.

The nonlinear partial differential equations have been reduced
to an equivalent set of nonlinear ordinary differential equations. The
resulfing two-point boundary value problem was solved, first, by
using "Newton's Method of Quasilinearization!" to obtain a set of lin-
earized differential equations for the correction terms and, secondly,
these differentials were approximated as finite differences to cast
the linearized system of equations into the form of a block tridiagonal
matrix equation. The Potters' Method solution scheme was used to
solve efficiently the block tridiagonal matrix equation. By successive
iterations a solution to the set of nonlinear ordinary differential equa-
tions was obtained.

The use of this method makes it possible to investigate how the
axial load level at the limit point is affected by the following factors:
the choice of inplane boundary conditions, the prebuckling growth
caused by the radial edge constraint, the orientation and shape of the
axisymmetric and asymmetric imperfection components, and the

finite length of the shell,
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I. INTRODUCTION

The stability of circular cylindrical shells under axial
compression has been studied extensively both theoretically and
experimentally by many investigators. Buckling loads, predicted
by linearized small deflection theories, proved much higher than
those realized in experiments and the experimental results showed
a perplexingly large scatter band. Choice of in-plane boundary
conditions and prebuckling deformation caused by edge restraints
have been shown to affect the buckling load (Refs. 1, 2, 3, and 4).
However, initial geometric imperfections have been accepted as
the main cause for poor correlation and wide experimental scatter
between the predictions of the linearized small deflection theory and
the experimental results.

In earlier works (Refs. 5, 6, 7, 8, and 9) imperfections
were assumed to be axisymmetric, having the same form as the
classical buckling mode of the shell. In 1969 Arbocz and Babcock
(Ref. 10) reported the results of buckling experiments where the
actual initial imperfections and the prebuckling growth of electro-
plated isotropic shells were measured by means of an automated
scanning mechanism. The measured imperfections consisted mainly
of asymmetric modes that corresponded to buckling loads higher than
the classical value. The theoretical analysis used for correlation
in this study included asymmetric modes. The comparison of the
analytical results with the experimental values showed good agree-
ment. However, the analysis has met with criticism because the

double Fourier series expressions used to represent initial imper-
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fections and deflections do not satisfy all of the boundary conditions.
An extended theoretical analysis (Ref. (l1)) was performed which
included one asymmetric mode for the initial imperfection and also
satisfied the boundary conditions. The method of numerical solution
of the equations required large amounts of computer time, and
precluded anything but scant preliminary results. It was the purpose
of this study to develop an alternate method of theoretical analysis
capable of including asymmetry and satisfying rigorously the experi-

mental boundary conditions which would be less time-consuming.
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II. THEORETICAL ANALYSIS
A, Development of the Analysis
Assuming that the radial displacement W is positive outward
and that the two-dimensional membrane stress resultants can be ob-

tained from an Airy stress function F as F, = Nx = tcx, F, =

Yy xx

N =to , and -F, =N = to__, then the Donnell equations for an
y y xy Xy Xy _

imperfect cylindrical shell (Ref. 12) can be written as

Displacement Compatibility:

1 4 1 1 —
EV F-—ﬁW, +7L(W,W+2W)-O (1)
Equilibrium:
B a1 —
—_— V += F, - L(F,W+W) =0 (2)
2 R XX
12(1-v™)

where the nonlinear operator L is defined by

L(,T)=s,__T, -25,_ T, +S, T,
x=x vy Xy "Xy yy "xx

(3)
and V4 is the two-dimensional biharmonic operator.

Arbocz and Babcock (Ref. 10) obtained an approximate solution

to the Donnell shell equations by representing the measured initial

imperfections as

W =%, tcos iwa + E,t cos k—;:x—cos ny/R

+E,tsink —LE cos ny/R (4)

In deriving the nonlinear buckling equatiocns they assumed

that any equilibrium state of the axially loaded cylinder could be



represented by

= 2 = (L
W—onR+w—t(c)\)+w (5)
1 2 1 Et° | 2
F=-§0'xty +f=-E?R—)\Y + £ (6)

where the terms added to w and f constituted the membrane prebuck-

ling solution for the perfect shell. Further, w was approximated as

_ . X X y
w—glt cos i 4= +§2tcosk-——L cosnf
. LS y

+ §3t sink - cosn g (7)

Approximate solutions of the full nonlinear equations (1) and (2) were
obtained as follows. First, the compatibility equation (1) was solved
exactly for the stress function F in terms of the assumed radial dis-
placement W and the measured imperfection ‘V_V‘, guaranteeing a
kinematically admissible displacement field to be associated with
the solution of the second equation. In that analysis, only the effect
of initial imperfections on the buckling load was of interest. There-
fore the boundary conditions on the finite length shell were neglected.
Thus only a particular solution of equation (1) was used. Second,
the equation of equilibrium (2) was solved approximately by substi-
tuting for ¥, W, and W and applying the Galerkin procedure. The
solution of the resulting set of nonlinear algebraic equations yielded
the equilibrium configuration of the finite shell as a function of the
loading parameter\., If A attained a maximum as the compressive
axial load was increased, then this value of \ at the limit point was

associated with the buckling load of the shell, \ g+ Using this model
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with experimentally measured imperfection harmonics, Arbocz and
Babcock located the '"pairs of critical modal components,' defined
as that combination of one axisymmetric and one asymmetric com-
ponent that would yield the lowest value for )\s. The agreement
between their analytical predictions and experimental values was
good (within 10%).

However encouraging the results were, the analytical model
contained several simplifying assumnptions that need justification.
First of all, as mentioned above, the assumed displacement func-
tions did not satisfy the experimental boundary conditions at the
shell edges. It might be argued that since the effect of boundary
conditions at moderate load levels is confined to the region next to
the shell edges, one is justified in neglecting the boundary conditions
if the imperfections have many waves in the axial direction. The
"pairs of critical modal components' reported by Arbocz and Babcock
turned out to have, in most cases, one wave or one half wave in the
axial direction. Secondly, the effect of prebuckling deformations
due to edge constraints were neglected. Almroth (Ref. 2) showed
that prebuckling deformation caused by edge-constraints would reduce
the buckling load predicted by linearized small deflection theory for
perfect shells by at most 15%. Finally, it was questionable whether
the prebuckling behavior, especially close to the limit point, was
adequately represented by the "pair of critical modal components."

1. Formulation in Terms of Ordinary Differential Equations

In order to obtain an approximate solution of the nonlinear

Donnell-type equations which will include rigorous satisfaction of
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the experimental boundary conditions, the form used by Arbocz and

Sechler (Ref. 11) is assumed to represent the initial imperfection

surface, namely
WX, ) = tAyE) + tA (%) cos ny (8)

where AO(E) and A1(§) are known functions of x. Assume also that
the deformation and stress state of the axially compressed cylinder

is adequately represented by

W, y) = L

+ two(Sc_) + tw1(§) cos ny (9)
2

ERt

F(x,y) = =

{- ¥+ £,(%) + £, (X) cos ny
+ fz(-i) cos 2n§} (10)

Assuming the axial dependence of the response to be an unknown
function of x will reduce the buckling problem to the solution of a
set of nonlinear ordinary differential equations, which allows the
satisfaction of the experimental boundary conditions,

Substituting the expressions assumed for W, W and F into
the compatibility equation (1), using some trigonometric identities,
and equating coefficients of like terms, (see details in Appendix A),

results in the following system of 3 nonlinear ordinary differential

equations
fiv -ew!! - S tq2 [A,w!'+A'Ww +(2A+wi)witw o w!!'] =0 (11)
0 0 2 R i1 171 171771 7171 -
iv 2 4 ct 2
f1 - 2n fl"+n fl-cw'l‘ -y D [Ab'wl+(Al+w1)Wb'] =0 (12)
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n2 [A w!'+ A 'w

i 2 4
f;v-Z(Zn) £1+(2n)"f W AW

et
2 2R

-(2Ai+wi)wi+wlw'l' ] =0 (13)

Substituting in turn the expressions assumed for W, Wand F
into the equilibrium equation (2) and applying Galerkin's procedure
(see Appendix A), gives the following two nonlinear ordinary differ-

ential equations:

iv _I_{Z ' R trg 11 R 2 e '
W +4C(t) fo+4c T )\(Ao+w0 M2c T D [(Al tw) )f1

+(A1+w1)£'1'+2(A'l+w'l)fi] =0 (14)

WIV-ZnZW'l'+n4W +4c¢ (%)2 f'1'+4c

tt rt
1 1 ANAY+wlY)

R
t 1771

R 2 At N | 1
+2c 0 [2(A8+wb‘ )fl+4(A1 +w) )£2+(A1+W1)f2

+4(ALWE, + 2(A 4w )ED] = 0 (15)

4
dx

where ! =

As pointed out by Narasimhan and Hoff (Ref. 13), equation (11) can

be integrated twice to yield

o c i:_ 2
fo = cwg +7f gD (2A1+W1)W1 (16)

In order to satisfy periodicity in the circumferential direction, the
constants of integration are set equal to zero (Ref. 14). Substituting
equation (16) into equations (12-15) gives the following system of

four nonlinear ordinary differential equations,
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iv 2 4 o oct 2 _
fl -2n £'1'+n fl-cwl'- ® [Ab'w1+(Al+w1)wb'] =0 (17)
iv 2 4 c t _2 .
£5 -2(2n) f'z' + (2n) f, -3 g2 [Alw’1'+A1'w1
1 1 1 t -—
(AW )W) + W W) ]=0 (18)
v L 42 B2+ 2 Br22A +w, )w +4c S (AT W)
Wo tac (3w t (Twpw tae T Ay HwWy
12 B n? [(Altw! e H(A tw )Y £ 2(A +wE ] = 0
t 1 1771 1 171 1 171
(19)
iv 2 4 2 2R 2
w -2n w'1'+n [1+c (A1+w1)(2A1+wl)]W1+4c ™ (Al-l-wl)w0
R 2 tt _R__ [ 1t B 2 1 1t
+4c (—{) f1 +4c T )\(Al +w1 H2c T D [Z(A0 +w0 )f1
1t 1t 1t 1 t 1 -
+4(A1 W) )f2 + (Al+wl)f2 + 4(A1+w1)f2] =0 (20)

2. Boundary Conditions

Of interest are the SS1, SS3, and C-3 boundary conditions,
The C-3 clamped boundary condition corresponds closest to most
experimental test conditions. According to Arbocz (Ref. 14) the

various boundary conditions may be represented as follows

SS1 (W=W, = N,XY =0, N__=-N, atx = 0, L/R) which reduces to
v o]
0 " ¢ -
N atx = 0, L/R (21)
= = = = =f! = f' =
Wy =Wy =W, fl f2. fl f?_ 0
S83 (W =W,  =v=0, N_=-N, atx = 0, L/R) which reduces to
Wg = -v\/c _
atx = 0, L/R (22)
—w'! =w!l = f = = f£1 = It
Wy =W wy fl fz f1 fZ 0
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C-3 (W = W,X =v =0, Nxx = -N0 at x = 0, L/R) which reduces to
W =-w/c
atx = 0, L/R (23)
- | | - — - " o LN -
W, =wo=w =) fZ fl =f'! =0

The system of equations (17-20) and the boundary condition equations
(either (21), (22), or (23)) constitute a nonlinear 2-point boundary
value problem. The solution of this nonlinear 2-point boundary value
problem will locate the limit point of the prebuckling states. The
‘value of the loading parameter X corresponding to the limit will be,
by definition, the theoretical buckling load.

3. Linearization of the Differential Equations

In order to solve the system of nonlinear ordinary differential
equations, Newton's Method of Quasilinearization is used. The
assumed forms for out-of-plane displacements, and the Airy stress
function are written as the sum of initial values plus correction
terms. The initial values are considered to be known values, while
the correction terms are the unknowns., Writing in detail, the out-of-

plane displacement is represented by
W = t{% + W (X)+Ew(R) + (w (%) + 6w (%))cos ny} (24)

The Airy stress function is written as

ERt® ; \ —2

F == - Z Y+ £y (x)HEE(x)+(£; (x)+65)(x))cos ny

+ (£,(x) + 61,(x)) cos 2ny} (25)
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Inserting (21) and (22) into the system of differential equations (17),
(18), (19), and (20), and dropping terms with products of correction
terms (see details in Appendix B) yields the following set of linearized

differential equations for the correction terms,

4 2. iv ct
n 6f1—2n 6f1 +6fl "R

2 ct "
n (w1+Al)6wb' -y ® ( "+A )6W

-c 6w'1‘= -n4f1+2n2f'1'-£iv + gty 2 [( +A )w"+Ab' 1] +cw (26)

iv ¢

t t 2
(Zn) 6f Z(Zn) 6f"+6f2 -z R ™ (w'l'+A'1')6wl+c—n (wi-}-Ai)éwi

R

t 2
'E(

.:;

+A))bw!'= -(2n)f,+2(2n) f'z' f2

NIO

n? [(w +A )w"+A" -(w +2AN)w 1] (27)

+ 1

L
R

(V] e

2 1" 2 . 1 1 2 1 2 B
2cn (w1 +A1 )6f1+4cn (w1+Al)6fl + 2cn (w1+Al)6f1 +4c t 6w0

1y £ iv 2 2 2., 2008 4
+4c\ 6w0+ R 6wo + (2¢ n (w +Al)+2cn fl )6w1+4cn £ 6w

1 1771

2 [N - 2 |3 ] t 1 H
+2enf 5w} =-2en(w] +A] M +2(w]+A]E H(w +A

1 fll

i)

-402 R W, -

T -4c>\(A"+w") -c n (ZA +w1)w (28)

R 0

2 1 tt R [N 2 1 ] 2
4cn (w0 +A0 )6f1+4c (-1:—)6f1 +8cn (w1'+Al')5f2+8cn (Wi+Ai)6f'2

2

+2cn (w1+Al)6f'2'+4c2n2(w1+A1)6w0+4cn2fléwb'
t 2 2 4t 2

+{ §+2cn f'2'+4c nwatn® & ¢ [3w1 1+6w Ajt2A A }6W
2.0, t 2

2 t iv
+8cn 26W1+(-2 ‘R‘ n +4c\ +8cn f2)6Wi'+ -R— 6W1

= 2 LAt R
= -4cn (W0+AO )f1-4c —t-f"

2 te B 2
1 -8cn (W1 +A1 )f2-8cn (Wi+Ai)f'2
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2 " 2 2 4t
-2cn (W1+Al)f2 -4cn (w1+A1)wo-n 7 V]

4t 2 £ 2 1 _ 1 1"
-n gc {(A1+Wl)(2Al+wl)wl} + 2 ] 4c)\(A1 tw) )

wy’ (29)

X

R
Starting with some initial values, equations (26-29) are used

in an iterative scheme converging to a solution of the nonlinear equa-

tions (17-20) with the enforcement of the appropriate boundary con-

ditions (either (21), (22), or (23)).

B. Numerical Analysis

1. Formulation in Terms of Central Difference Matrix Equations

Due to the nonlinear nature of the 2-point boundary value
problem, anything but a numerical solution is precluded. Trying to
devise an efficient method of numerical solution it was decided to
use the '"Potters' Method" (Ref. 15) which lends itself particularly
well to the solution of differential equations. The linearized differ-
ential equations for the correction terms (26-29) are first converted
to finite difference equations by using central difference formulae
for derivatives of certain correction term variables, The central
difference equations are then written as matrix equations. Observe
that first, second, and fourth derivatives of correction terms appear
in the equations (26-29). The central difference formulae for first
and second derivatives involve values of the variables at 3 different
points, The central difference formula forAfourth derivatives, how-
ever, involves values at more than 3 points, In order to use the

Potters' Method, the matrix central difference equations are written
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to include values at three points. It is therefore necessary to carry
along second derivatives of variables in the solution vectors of the
central difference matrix equations. Fourth derivatives are then
computed as second derivatives of the second derivative variables.
Choosing a grid of N points spaced at a distance h apart, the first

and second derivatives at point i of a variable g are written (Ref. 16)
g; =(g;,; - 8_;)/2h (30)
"oz (g, . - 2g. +g.. .)/h% (31)
CH gi-1 g T &it1

The solution vector of the matrix central difference equation is

constructed at point 1

T

-— tt 1t tt 1
6:{1 = (6f1,6f1 ,6f2, 6f2,6w0,6w , 6w1, 6W1) (32)

The four differential equations (26-29) yield four cent1;al difference
equations (see details in Appendix B). The solution vector is con-
structed with eight unknowns, therefore four additional equations

are needed. These additional equations are identities between the
second derivative variables in the solution vector, and the second
derivatives of the corresponding variables constructed by the central
difference formula (31). The eight central difference equations are

written in matrix form (see Appendix B)

A8%5 P By 8Y; G 8Ky, =4,y (33)

where Ai’ Bi’ and Ci are (8 x 8) matrices and the Bzi and Si are 8

dimensional vectors.
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2. Enforcement of the Boundary Conditions

The matrix central difference equations (33) are applied to
points 2 to N-1 yielding a system of N-2 matrix equations and N vec-
tor unknowns. It remains to construct 2 matrix boundary condition
equations using the boundary condition equations (either (21), (22},

or (23)) with the help of the forward (or backward) difference formula

The boundary condition equations written in matrix form are (see

Appendix B)
H) 6Y, +G, 8Y, = ¢, | (35)
Hy 0in-1 ¥ ON 8EN &N (36)

where the G and H are (8 x 8) matrices, and the € are 8 dimensional
vectors. The resulting system of N matrix equations and N vector
unknowns may be written in terms of a single block tridiagonal

matrix equation.

n
P~ — r f =
H, G, 6Y, £1
AZBZCZ 0 522 Qz
A3B3C; 8Y 3 45
¢ >=< ) }m)
An-2PN2CN-2 | PEn-2|l 9wz
0 An-1Pnat O PEnoa| (e
H G.. 8Y €
- N N1 LN b >
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3. Solution Via the Potters' Method

The block tridiagonal system (37) is solved using the Potters'
. .th .
method (Ref. 15) assuming that the solution vector at the i~ point
Gzi can be written in terms of the corresponding solution vector at

. th .
the i+1™ point 6Y . by
6, =P 08X, 73, (38)

where Pi is an (8 x 8) matrix and 9; is an 8 dimensional vector.
Substituting the Potters' equation (38) into the matrix central

difference equation (33) yields

APy 0L+ g5 ) #B; 8%+ 60X =4y (39)

which gives

-1 ApL
8 ;=-[aP; 1+B. T C 6%, (+[AP, +B 1 {d;-A9; 1} (40)
providing that the inverse exists.
Comparison of the equations (40) and (38) yields the recurrence rela-

tions.

-1
BT C (41)

i
I

- [A.P,
1 1-

-1
;= [4P; + BT {d; - A9} (42)

To start the solution of the recurrence relations it is necessary to
determine starting P and g values. Normally the first equation in
the system (37) would be solved for GXI in terms of GXZ,

values for P1 and 9;- The matrix H1 in this formulation may however

giving

be singular. Accordingly, the solution is started by the simultaneous
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solution for 6Y2 and 6Y3 in terms of 621 from the first two equations

of the system (37)

H1-6Zfl +G1 632 =€ (43)
A2 6}\{’1+B2622+C2 623=22 (44)
Then
-1 4
6}\(,1-A2 [QZ—-BZ 61{’2-02 6X3] (45)
providing that the inverse of A2 exists, also
-1 -1 _ -1
[Gl-HlA2 BZ] 6Y 5 - HlAZ C, 6Y 5 = il'HlAZ d, (46)

-1 -1 -1 -1 -1 -1
5Y,=[G|-H A5 B, H A5 C, 8% 5 +[G-HA; B, T {g)-HjASd ]

(47)

providing that the inverse exists., Comparing (47) with the Potters'

equation (38) yields

_ -1 -1 -1
P, = [GI—HIAZ BZ] H,A,°C, (48)
-1 -1 -1
2 =[G -H A, Bl {e)-H A5, ) (49)
Starting with the values (48) and (49) (P3, e sees PN-I) and

(g3, seces ’SN-I) are computed via the recurrence relations (41)

and (42)., Using the last of the matrix equations in the system (37)

H  8Y, . +Gy 6Y

N %¥n-1 t Oy (50)

N " EN

and writing §Y in terms of Y . using the Potters' equation (38)

N-1 N
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8YIN-1  Pno1 8Nt Anad (51)
Substituting (51) into (50)
[Py * Oy 8%y = fen Byt (52)

equation (52) is solved for §Y providing that the invérse of [HNPN+GN]
exists. Next the solution vectors (6XN_1, cevey 632) are found using
the Potters' equation (38). Finally the solution vector 621 is found
using equation (45).

4, Completion of the Solution of Correction Terms

The solution vectors 6!1._ as in equation (32) are composed of
correction term variables and second derivatives of the correction
term variables. In order to provide the complete solution of the dif-
ferential equations for the correction terms (26-29), first and fourth
derivatives of the correction term variables are computed from the
terms in the solution vectors using the formulae (30) and (31).
Special forward and backward difference formulae are used in com-
puting first and second derivatives on the boundaries. The special
forward and backward difference formulae are (Ref. 16)

At point 1 (Forward Gregory Newton)
g} = (8,-g,)/h (53)
Y = (g,-2g,% e
g} = (g5-28,%8,)/ (54)
At point N (Backward Gregory Newton)



(56)
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III, PREPARATION AND DEBUGGING
OF THE COMPUTER PROGRAM

In coding the solution for the IBM 370/158 a modular approach
was used. The various tasks of computation were divided into several
subroutines, which were tested and debugged separately before
attempting to run the program as an entire integrated unit. In order
to check the completed program, two special cases were run which
have closed form sclutions available for comparison. The special
cases studied are 1) the case of axisymmetric imperfections only,
with enforcement of the C-3 boundary conditions, and 2) the case of
asymmetric imperfections only, at low load level, with enforcement
of the SS3 boundary conditions. For the first case the program was
run by setting the asymmetric initial imperfection amplitudes on the

order of 10-7. Similarly the second case was run by setting the
7

axisymmetric initial imperfection amplitude on the order of 10 ',

setting Poisson's ratio equal to 10'5, and setting the load level equal

to 1071

A, Case of Axisymmetric Imperfections Only

If the initial imperfection is axisymmetric, then it can be

represented by
Wi(x) =t AO(E) (57)

The prebuckling stress and deformation state is also axisymmetric
since the uniform axial compression loading and the boundary condi-

tions are axisymmetric. Thus
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W(x) = 12—)‘ + tw () (58)

2
FEY) = 5 {3 7+ 1@} (59)

As shown by Arbocz (Ref. 14) upon substituting eqs. (57) and (58)

into the Donnell type shell equations (1) and (2), an inhomogeneous
linear ordinary differential equation with constant coefficients for

W is obtained.

2 R?
tZ 0

R

R - 1"
= -4c¢ -E- )\A.O (60)

iv R "
w0 + 4c 1_')\w + 4c¢

where ' = d/dx

Assuming that the initial imperfection function has the form

x (61)

i

AO(;) = € cos iw

the general solution for the axisymmetric deflection response ob-

tained by Arbocz is

E) aRx

3

=Yg)\— + e sin BRx + C, cos BRX)

"l

(C

1 2

+ e *"¥ (G, sin BRX + G, cos BR%)

2
4k!: N . Rx
+ E cos 17 T (62)
where

= \1- _C
Q= 1)\_Rt

™
H

NSESY \/f({:'E (63)



_20-

and for the C-3 boundary condition:

where

C, = e oL (% cos BL- sin BL)(A cos im + YE N)
C, = _e"oL (% sin BL + cos BL) (A cos im + YE)\)
C, =-%(1&+-%})
Cy = -(A+2N) (64)
A= —3 B 2
4541 -4p50

Figure 1 shows the results of the computer program compared to the

analytical solution (62) for the case when £ = 0.1, i =2, v =0.3,

N =0.2, R=4, L =4, and t = 0. 004,

B. Case of Asymmetric Imperfections Only

If the initial imperfection is purely asymmetric, then it can

be represented by

W = tA, (x) cos ny

(65)

At low load level with a zero Poisson's ratio the Donnell-type equa-

tions (1) and (2) will admit a solution of the form

W =tw,(x) cos ny (66)
ERtZ ; W =2 _ _ |
F= == {-57+ £,(x) cos ny } (67)
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Substituting the forms (65), (66) and (67) into the Donnell equations

(1) and (2), and dropping the highest order terms gives

iv 2 4 4 "o
(f1 - 2n fl +n fl) - ewy' = ¢] (68)
T;— (Wiv~2n2w1”+n4wl) + 4CTR fl" + ‘4c)\w'1' = -4c)\A'1' (69)

where ' = d/dx.
Imposing the SS3 boundary conditions - see equations (22) - a sine
function may be used for the axial dependence of the initial impper-

fection and the deflection and stress response functions.

Let
A (x) =% sinnwx (70)
The response will be
f,(x) = a sin 7x (71)
w (&) =bsinmx (72)

Substituting the forms (70), (71), and (72) into the governing equations

(68) and (69) the coefficients a and b are found to be

b= -g’-)\ (73)
()\ _cr R __ at )
@ 4er®R
_ -cm
a= — b (74)
where a = (Tr4 + 21r2'n2‘ + n4)
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Figure 2 shows the results of the computer program solution for
the case when § = -0.05, n =13, R=4, t =0.004, 1. =4, and \ =0.1.

The analytic solution for this particular case is

_5.54198 x 10~> sin 1%

w) )

2.961179 x 10~ ° sin mx

A ()
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IV. NUMERICAIL RESULTS

A. Convergence Study

In order to study the convergence of the numerical solution,
i.e., the number of grid points required and the computation time,
a general case is chosen entailing both axisymmetric and asymmetric
initial imperfection modes. The cylindrical shell under study has a
length of 4 inches, a radius of 4 inches, and a thickness of 0. 004
inches. The C-3 boundary conditions are enforced. The initial im-

perfection functions are

A 0.5 cos (2wx)

0

A

1]

| = -0.05 sin (%)

An axial load level of X = 0.4 is applied. The circumferential wave
number for the asymmetric response is n = 13,
The numerical solution scheme requires the computer pro-
gram to have an internal convergence check, to determine whether
or not a satisfactory solution has been obtained. The check is made
by forming the ratio of a correction term variable to its associated
variable, for all variables at each grid point. The maximum in abso-
lute value of ratios thus obtained is compared to an input acceptable
error value. If it is smaller than this acceptable value, then the
solution is considered to be satisfactory. For the cases run in the
convergence study, the acceptable error value was set equal to 10'5.
To start, a solution was obtained using 26 grid points. The

program was then run repeatedly, each time doubling the number of

grid points,



-24-

Table I lists results of the convergence check, giving the
number of grid points used, the number of iterations required for
the numerical scheme to bring the solution from an initial guess to
a satisfactory solution, and the total computation time for the run.
Figures 3, 4, 5, and 6 show the convergence of the functions Wi, W

1’

fl’ and fZ.
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V. CONCLUSIONS

The aim of this study was to devise an efficient numerical
method for finding an approximate solution to the Donnell-type non-
linear shell equations. By incrementing the axial load level, one
may ascertain the limit point which is, by definition, the theoretical
buckling load of the shell.

Referring to figures 3 through 6, the convergence of the
numevrical solution scheme appears to be quadratic with respect to
the spacing of grid points. As the mesh size is halved upon successive
iterations, the mean distance between solution curves seems to be
reduced by about one fourth, For the case used in the convergence
check, the solufion computed with 51 grid points appears to have
sufficient accuracy to describe the response behavior of the shell.
An important consideration is that the boundary layer has sufficient
grid points to insure convergence in that region. Within the charac-
teristic wavelength of VRt, there should apparently be at least 7 or
8 grid points. As shown in table I, the total computation time for a
solution with 51 grid points is about 20 seconds. Even if 101 grid
points were necessary to insure sufficient accuracy, the solution at
a single load level would be obtained in approximately 30 seconds.
The ''shooting method' numerical solution scheme used by Arbocz
and Sechler (Ref. 11) required approximately 10 minutes to obtain

a solution at a single load level for the same degree of accuracy.
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APPENDIX A

The approximate solution of Donnell's equations for an imper-

fect cylindrical shell assumes that the initial imperfection surface is
represented by
'W‘:tAO(EHtAl(E) cos ny (1)

The equilibrium state of the axially loaded cylinder is approximated

as:
S —— tul _ - —
Wix,y)= —— +twy(x)+ twl(x) cos ny (2)
—— _ERt’; . -2, , — - -
F(x,y) = - P {-—é—y +f0(x)+f1(x) cos ny

+ fZ(;E) cos 2ny} (3)

In order to facilitate the sub-stitution of (1), (2) and (3) into the Donnell-

type equations, write the spacial derivatives in the Donnell equations

in nondimensional form by using

14 _4d ld _4d ) (4)

The Donnell shell equations are then

1 =4 1 1 —
Vir . L w,——+ L L (W, W+2W) = 0 (5)
= r> 'xx pp? NL
——E?———-—_V_4w+—l-F—-———LL (F, W+W) = 0 (6)
12R*(1-v%) r3 “'xx g4 TNL

where the nonlinear operator LN, 18 defined by
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Lyp(S: T) = S, op Topo - 25,55 Togs + 855 Togx (7)

and the two-dimensional biharmonic operator v% is

4 4 4
vt L 22—+ & (8)
ox ox oy oy

Performing the various operations on W, W, and F in equations (5)

and (6), using the assumed forms (1), (2) and (3)

2 . . .
viF - E—f}—t— {fzv + f;v cos ny + f12v cos 21.'1_)7-2n2 f)' cos ny

8! cos 2ny + n?f cos ny + 16 ot

5 , cOs Zn?} (9)

1

W,oz = t{wy + w)' cos ny} (10)

LNL(W’W+2—W_) = —t2n2(w6‘+w" cos ny)(w

1 +2A1 Jcos ny

1

-thnz(wi(wi+2Ai)) sin® ny

2 2 — 2 -
-t'n {wl(w'o'+2A'0' )Jcos ny‘+wl(w'1'+2A'l')cos ny}

(11}
54, _ iv iv — 5.2 4 -, 4 —
VW = t{wo + w)’ cos ny-2n w)' cosny+n w, cos ny} (12)
Eth
—_—— = L) 1" N7 1t o
i {fo +f!' cosny + £} cos2ny} (13)
i ERt3 2 — 2 —
LNL(F,W+W) =-——n (w1+A1)(f'0'cosny+f'l'cos ny
+ f}! cos ny cos 2ny)
ERt3 2 2 — — -
-2 3 — ° (wi-i—Ai)(fisin ny+2f2'sinny sin 2ny)
_ERt?

((Wbr +Abn )+(w|1|+Allv )Cosn_}7)()‘+n2flcosn§+4n2f2cosZn}_)

(14)
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where ' = d/dx.

Substituting the trigonometric identities
sin?a = H{1-cos2a) (15)
2 1
cos a = -z(l+cos2a) (16)

into equation (11) yields
2 W, t W

— 2,V 1
Ly (W, WH2W) = -t (= (W +2A) Jtw] (w]+ 2A1)+ — (w}'+24]"))

22 '

" " ~
-t™n (W0 (WI+ZA1)+W1(WO +2A0 )) cos ny

2 2% w1
-t"n" (5= (w T2A,)-Wi(W]H2A)F > (W i'+2A'1'))cos2n§

(17)
Substituting the terms (9), (10), and (17) into the compatibility equa-

tion (5) yields

;—t A T t°n? (w (w +ZA hw! (wi+2A] )+ Y—(w”+2A"))
73,0 T30 a7 2 1 1
. 2 2
% (f;"-znzf'l'm“fl) _-%w'l' £ L0 (wilw +24))
R 2R

W (wil+2A0 ))i cos ny

2 2 wi'

f"+16n4f y. o 1

2 7 (5 (W t24,))
2R

+§t—3(f -8n
R7c
w

! ! 1 __]; (R ] N
-W 1(w1+2A1)+ 5 (w1 +2A1 ))§ cos 2ny

=0 (18)

Multiplying through by Rt € and equating coefficients of like terms
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yields the following 3 equations

f:)v-cwb‘ £ & n [A,w|'+A]'W +(2Al+w]Jwi+ww! ] =0 (19)
£V - 20640t -ewl'- SEn? [Alw HA Hw W] = 0 (20)
£V -2(20)°1) +(2n) %, - § & n’ [A W] +A]'w,

-(2Ai+wi)wi+wlw'l'] =0 (21)

Substituting the trigonometric identities (15) and (16) into equation
(14) yields

3
Y - ERt 2 _:_'-_ 1y 1 1y
Ly(F, WW) = - == n {2 (W)t A Y +(wi+A] ]

' 1 __))__ l_ 1t 1
Hwy +AY) = 5 (w'+A] )fl}

_ ERt>

n’ { (wrAEHwL AL + (wi'+Al) A} cos ny
n

3
ERt 2 l 1t ! tyet LR} [V~
-=>—n {2 (W +A ' - (W HA]] + 4wl +AD ),

_1_ tt e -
+ > (w1 +A1 )fl} cos 2ny

_ERt>

C

nz{(wl+Al)f‘2'+4(w'l'+A'1' )fz} cos ny cos 2ny

ERt>
C

- n? {4(wi+Ai)f2‘} sinny sin 2ny
(22)
Substituting the terms (12), (13), and (22) into the equilibrium equa-

tion (6) yields



4 . 2 3
Et iv Et E t° 251 \
w, + fl' + = —%n {——(w +A,)f]
%12R4(1-v2) 0 " ge 0 ¢ g3 2l
+(witADE+wi+ar) A s LA
i L R R A Wi
4 . 2
12R*(1-v°) R
E t 2
Tt 1t 11t
I 3 n {(wl+Al)fO Hwi+A) £
+(w"+A")—-)f—} cos ny
177172
E t° E t2 241
= = fr —_ = = te_ 1 |AYA rt ]
—= 5+ —gn {2 (w tAE - (W)+AE +H(wH +AY) £,
R R
+ Liwrrranys }t cos 2ny
ZW1Trh
Et3 2 - -
— —— t 1t 1t
+ 2 3 n {(wtA)Ey + 4(wl'+A] )fz} cos ny cos 2ny
E t3 2 - _
+=—=n {2(w'+A')f’} {sin ny sin Zny} = € (23)
c R3 17717 72

The right-hand side of the equation is nonzero because the equilibrium
equation is not necessarily satisfied exactly by the assumed form of
the solution. Applying the Galerkin procedure, the following inte-

grals are evaluated.

2r _

[ edy=o0 : (24)
0
2w _

f € cos (ny) dy = 0 : (25)
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Using equation (23) to evaluate the integral (24) yields

. 2
v R " B [N
W + 4c —5 fo + 4c t)\(AO-t-w

[N
)
¢ 0

2cR
t

2 [ ] 1 LR} 1 1 H .
+ n {(A1 twlN)E HA AW ) +2(Aj W] )E } =0 (25)

1) 1

"Again using equation (23) to evaluate the integral (25) yields

2
iv 2 X 4 R 1oy _B_ [N ]
Wl -2n Wl +n Wl + 40 ?- fl + 4¢ t )\(AI TVVI )
2cR 2 T 0t ] R}
+=—n [Z(AO W )f.1+-'-1(Al twy )f2

HA | 1 1 LI i
+ (A1+w1)f2 +4(Al+wi)f2+2(A1+wl)fb ] =0 (26)
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APPENDIX B

The Donnell-type shell equations are written using a special

form for the imperfection surface
W = tAO(SE) + tAl(E)cos ny (1)

and the corresponding form for the out-of-plane displacements, ‘and

Airy stress function.

W=t (Y-C’: + w (%) + wy(%) cos ny) (2)

2
ERt -3 NPt o(F) +£,(F) cos ny +£,(X)cos 2ny } (3)

F =

The resulting system of 4 nonlinear ordinary differential equations

are, after integrating the equation involving f, and substituting into

0
the remaining equations,
iv 2 4 t 2
£, -2n°f)'+n"f, -ew)' - ; [Ayw HA W w' ] = (4)
1v 2.0 4 < t X
fz -2(2n) f2+(2n) f2 -3 ﬁn [AW +A'1' 1
-(2A+w)wy +wlwl ] =0 (5)
+ 4c2(B-)2 2 R n?(24 +w))w +4c Bx(ay+wy)
0 1 0 0]
+2¢ Rn® [(A+w])f, HA tw I H2(AlWDE ] =0 (6)
t 1TV AT T 1" L=

w;"-anw'lwn‘*{l+c2(Al+wl)(2Al+wl)}wl+4c2 Ro®(aptw w,

+4c(%)2f'1'+4c %)\ (A'l' +W'1' +2¢ %nz [Z(Abl +Wb' )fl+4(Ai|+wi| )fz

HA bW IS H4(AL+wI ) ]= 0 (7)
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Applying Newton's Method of Quasilinearization to linearize the sys-
tem of differential equations, the out-of-plane displacement and Airy
stress function (2) and (3), are rewritten in terms of initial values,

and corrections to these values.

W o=t ("—c’:‘- + w (%) + 6w (X)+(w,(X)+6w (%)) cos ny) (8)

2
F = ERt

{- > y + f (x)+6f (x)+(f (x)+6f (x)) cos ny
+(£,(x)+6£,(x)) cos 2ny} (9)

The initial values are considered to be known values, while the cor-
rection terms are the unknowns. Rewriting equations (4), (5), (6)

~and (7), using the form of (8) and (9) gives

2 1 1 4 1 T
(f +6f1 ) - 2n (f1 +6f1 )+n (f1+6f1)-c(wl‘+6w1)

2
‘%t n® [Af (W) +6w ) JH(A +H(w +6w))) (Wi +6w)] = 0 (10)

(f‘z"+6f;") 2(2n) (f"+6f")+(2n) (£,+6£,)
- S L nlla (witbw! ! )+AL (W +bw
Z R (W Tow AW

- (28] (W) +Ew!

1 !
1)(W1+5W

! 1

+(wl+6wl)(w'1'+6w'1')] =0 (11)
(wy +owe ) +ac? B2 w row )+ 2 En (24 H(w 16w ))(w 6w, )

+4c —)\(A"+(w"+6w"))+2c R 2[(A"+(W"+6w")(f +5))

+(A1+(wl+6wl))(f'l'+6f'l')+2(Ai+(wi+6wi))(fi+6fi)] =0

(12)
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i i 2 4 2
(wllv+6wiv)—2n (w'1'+6w’1')+n {l+c (Al+(w1+6wl))(2A1+(W1+6w1))}(w1+6w1)

2R 2 R,2 o 1
+ 4c Tho (A1+(W1+6w1))(w0+6w0) + 4c(?) (f1 %6f1 )

R
t

+ 4c %x(A'l'+(w'l'+5w'1'))+2c n? [2(AY +(wy +5w )£ +65,)
+ (AL () +5W] )£, +BE, V(A +(w + 5w, ))(Ey +6£5)
1 t 1 ] ! _—
+ 4(ALHw] oW D))(E+6E5) | = 0 (13)

Rearranging terms and dropping products of correction terms,

n*sf,-2n%s1 4611 - S nP(w +A )owly - £ nl(wlitAy )ow,

-c6w'1' = -n4fl+2n2f'1'-fi1V + ;—t n2 [(w1+A1)Wb' +Ab‘w1] +cw'1' (14)

(2n)46£2—Z(Zn)zﬁf'2'+6fizv- s & nz(w'l' +AY ) 6w,

et nf(witansw! - £ $ n’(w +A))sw! =

-(2n)4f2+2(2n)2f‘2‘ - fiz" +§ -I% r;z [(wtA Wi +AY W - (w]+2A] jw! ]
(15)

2cn2 (W'l' +A‘1' )6f1+4cn2(w'l+A'l)6fi+ch2(wl+Al)6f‘l' +4c:2 % &W

+4c\ éwb' + % 6wic')v+(Zcznz(wl+Al)+ch2f'l')6W1+42fi6wi

+ch2f16W'1‘ = -2cn2((w'1'+A'1' ) +2(W AL Hw +AE])

4t By £ wi'-den (Al +wl)-cPn? (24 tw )W, (16)
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2 R 2 2 .
4cn (wb‘+A8)6f1+4c(—t—)6f'1'+8cn (W'1'+A'1’)6f2+8cn (wi+Ai)6f2'

2 " 2 2, \ 2. 1y
+2c¢n (W1+A1)6f2 +4c™n (wl+Al,6w0+4cn flﬁwo

+{n4 < +2cn2f'2'+4c2n2w +n4

R

2
0 c” [Bw w, +6w A +2A A )] | 6w,

L
R
t 2

+8cn’e! L

2 iy £ iv
2 n +4c\+8cn fz)liw1 + Sw

1
6wl+(-2 R 1

= -4cn2(w'0' +A!")f

B 2 1 [} 2 1 1y !
0 l-4c t f‘l'-80n (w1 +A!') -8cn (w1+Al)f2

1772

4

2 : 2 2 t
-2cn (W1+Al) f'z'—4c n (W1+A1)Wo-n 7Y

4t 2 t 2, -]
-n g ¢ {(A1+wl)(2Al+wl)Wl}+ 2 g0 W —-’:lc)\(A1 +v&1 )

2w (17)
Equations (14-17) are the four linearized differential equations for
the correction terms. Equations (14-17) are convertec.l to central
difference equations by using the central difference formulae for
first and second derivatives, Choosiﬁg a grid of N points, spaced
at a distance h apart, the central difference formulae for the first

and second derivatives of a variable g at point i are
LR
g; = (84 - &_,)/2h (18)
"o (g, . -2g +g...)/k° 19
8 =(85_) - 28 *8y (19)

Using the formulae (18) and (19) on first and fourth derivatives of the

correction term variables in equations (14)-(17) yields
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n? o, - 2n26fi' + —% (65)' -268'+ 868" )- ;t nz(w +A))owy
i i h i-1 i i+l o
2 4 2 iv
-(ct/R)n (wb‘+Ab‘)6wli - c6w'1'i = -n f;+2n £'-£;
y St 2 [(w,+A) )W +ALw 11+ ew) (20)
R 1

zn)¥st, -2(2n)%68tr + L (£l 2580 46 )- <L n (w"+A")6w

2. 2. 2 2. 2. 2. ZR 1 1.

i i h i-1 i i+l i

4 2
n (w +A (6w, -bw, ) - %%nz(wlml)swi'_:-(zn) £,+2(2n)°1Y
1

1+1 i-1

n? [(w A W +AL W) - (wl+2A] )w}] (21)

2cn® (wi'+A]")8E) + ch (WitAr)(8f,  -8f

2 11
11+1 li_l)+20n (w1+A1)6fli

+4c? B R w,, +4chbw!! + L (ewl 2wl tewl )
i % n’R io1 i Q44

2 2 2 ch'2
+(2¢™n (WL+A1)+ch f'l')éwl +T fi(éwl -6w1 )
i

i+l i-1

2 1T _ 2 te 1! 1 1 ] LR
+2c¢n flliwli = -2cn ((wl -*-A1 )f1+2(vvl+Al)f1+(wl+Al)fl )

iv

-4c2 _R_W _.t..
t Yo "R Vo

-4ck(A"+w") c n (ZA +W1)W (22)

2 B 1t B_ 1t 2 T 't
4cn (wo +A0 )6f1i+4c( t ) 61?1.1 + 8cn (w1 +A1 )6f2i

4cn oAl 2 .
t o (WITA](SE,  -8f, )+ 2cn(w +A|)6EY
i+l i-1 i
+4c2n2(w +A1)6w +4cn f 6w” + {n = +2cn f'2'+4c2n2W0
4 t 4cn2
+n" = c [3ww +6WA+2A ]}6w fl(6w -6w )
R 1 . 2 1. 1.
i+l i-1
- 22 n®+4cn +8cn? £,)6w]! + —— (6wl' -28wl' + swl' )
i h R i-1 i i+l
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- 2 it i _13_ 1 2 ] T 2 1 Tyt
= -4cn (wo +A0 )fl-4c T f''-8ecn (w1 +A1 )fz—Scn (Wl+A1)f2

1
2 o 2.2 4t
-2cn (W1+Al)f2 - 4c™n (w1+Al)w0 -nt g w,
n4 {(A +w )(ZA +w )W } + 2 = nzw"—4c)\(A"+w")- —t—w v (23)
- 1 1 R 1 1

where all non-correction term variables are evaluated at point i.
Since correction term second derivatives are carried along as un-
knowns, four additional equations are needed to relate the second
derivatives to the corresponding variables. Using the central dif-

ference formula (19) the additional equations are

1
o1 - = _f1n -
6f {6£ 26f1 +6f1 } f 2{£L 2f, +f  } (24)
i-1 i i+l
1 1
]
sty - —{of, -25f, +6f2 } = -f" = {e, -2, +f, } (25)
i h i-1 i i-1 i i+l
1
sw! —-——{6W 28w, +6w } = _w"+-—{w -2w, +w } (26)
O n% O 0 0y O n¢ O 0 O

1 1
swi' - = {ow, -26w, +éw, | = -w!'+—=5{w, -2w, +w, } (27)
Lowd s Ly Ty Lop2 Ly T Ty

The system of central difference equations (20)-(27) is written as a

matrix central difference equation

A, 6Y.
1 ~

it B8, +C,8Y.

i+l =gi (28)

The terms in equation (28) are written in detail
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of

51!

8Y. = 2 (29)

Multiplying equation (28) through by h2 the nonzero components of Ai

are
A(1,2) = 1
A(2,4) = 1
A(2,7) = - 5-2_11 —;—;—nz(wi+Ai)

A(3,1) = -2hcn2(wi+Ai) \
A(3,6) = &
A(3,7) = -Zhen?f!
A(4, 3) = -4hcn?

A(4,7) = -4hen”f!

2
A(4,8) = %
A(5,1) = -1
A(6,3) = -1
A(7,5) = -1

A(8,7) = -1



The nonzero components of Bi are

B(l,1) = h?n*

B(l,2) = -2h%n%-2

B(1,6) = - & h%n? (w,tA))
B(1,7) = - %thznz (whi+AL)
B(1,8) = -ch®

B(2,3) = (2n)n*
B(2, 4) = -2(2n)%h%-2

B(2,7) = - (Z:—tﬁhznz (w}'+A')

B(2,8) = - § = hén? (wi+A)

B(3,1) = 2ch’n” (w}'+A!')

B(3,2) = 2ch®n? (wtA))

B(3,5) = 4c2h? R

B(3, 6) = 4ch®\ - 2 '11‘;{'

B(3,7) = 2¢%h%n? (w +A) )+2ch’nE)!

B(3,8) = ZCthZf1

B(4,1) = 4ch®n? (wh +AY)
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 B(4,2) = 4ch® &)

B(4, 3) = 8ch®n? (wl'+Al)

2

B(4,4) = 2ch2n (W1+A1)

B(4, 5) = 4c’h%n? (W +A,)

B(4, 6) = 4ch2n2f1

4 2 ¢t 2 2 2.2 2

B(4,7) = 2"h’ & + 2eH’n’ 1y +4c’nnw
+nh? £ cP[3ww +6w A +2A/A ]
B(4, 8) = -2h° ad n?+4nZen + 8h2cn2f2 -2 &
B(5,1) = 2
B(5,2) = h®
B(6, 3) = 2
B(6, 4) = h®
B(7,5) = 2
B(7, 6) = h°
B(8,7) = 2
2

B(8,8) =h
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‘The nonzero components of C, are
C(1,2) =1

C(2,4) =1

c@2, 7= % n’ (wi+A})

C(3,1) = Zhen” (w]+A])

C(3,6) =<

C(3,7) = thnzfi

C(4, 3) = 4hen” (w+A!)

C(4,7) = 4hen®t)
C(4, 8) =-1§-
c(5,1) = -1
C(6,3) = -1
C(7,5) = -1
C(8,7) = -1

The components of the vector 91 are

.2 4 22 2,iv , ct 12 2, 2
d(1) = -h°n%f+2n"n"e" - B + T W n [(w +A )Wy +ALw, | +chEw!!
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d(2) = -(2n)*n%e, + 2(20)°n%sy - W26
c t,2 2 ,
t5 R h"n [(w1+Al)w'1' +.A.'1‘w1 -(w'1+2Al)wi ]

2.2 2 2R
d(3) = -2ch™n [(w'1'+A'1' )f1+2(wi+Ai)f'1+(w1+A1)f'l'] ~4h”c T Yo

t 2 iv 2 a1y a2p 22
- -R—h Wy - 4ch )\(AO +WO)-C h™n (2A1+wl)w1
2 2 R 2 2 2 1 "
d(4) = -4ch™n" (wy +AG)E) - 4c T h7f)'-8ch™n"(w)'+AY ),

2 2 2 2
-8ch™n (wi+Ai)f2'-2ch n (w1+A1)f'2'

2
-4ch™n (W1+Al)w0

4 2 t 42t 2
-n'h R h T © {(A1+wl)(2A1+wl)wl}
t,2 2 2 aaty t 12 iv
+2-§h n wi'-4ch )\(A1 +w1 )- ﬁh W
2
d(5) = -h fl"-h‘f1 -Zfl +f1
i Ti-l1 i i+l
2
d(6) = -h“f'' + £, -2f +f
% % 4 4in
2
d(7) = -h"w!' +w 2w, tw
O 051 0 %y
d(8) = -hw!' + w, - 2w, 4w
1. 1. 1, 71,
i i-1 i i+l

Matrix Boundary Condition Equations

The boundary condition equations are written in matrix form

with the help of the forward difference formula

gj = (g;,;-8;)/h (30)
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Hy8Y, +G8Y, =g, (31)
Hy 6Y Y GNOYN €N (32)

where the G and H are (8 x 8) matrices, and the ¢ are 8 dimensional
vectors., The components of the matrices for the various boundary
conditions are

(i) SS1 Boundary Conditions

wW. =

v
0" "¢ V1TV

at x =0, L/R

The nonzero components of the G1 matrix are

G,(2,1) =1
G, (4,3) =1
The nonzero components of H, are
H,(1,1) =1
H,(2,1) = -1
H1(3, 3) =1
H,(4,3) = -1
H,(5,5) = 1

H1(6, 6) =1
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’ H1(7,7) =1
H1(8,8) =1

The error vectors £ and N have the components evaluated at points

1, and N respectively.

e(l) = -f.l

€(2) = -hf;

€(3) = -£,

€(4) = -hf;

€(5) = -(wot 2+)
€(6) = -wb‘

€(7) = -w,

€(8) = -w)’

The nonzero components of the GN matrix are

Gy(1,1) =1
Gp(2,1) =1
GN(3,3) =1

Gp(4,3) = 1
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GN(5,5) =1
GN(6, 6) =1
Gp(7,7) =1
GN(S, 8) =1
The nonzero components of HN are
HN(Z, 1) = -1
HN(4, 3) = -1
(i1) SS3 Boundary Conditions
= _ _‘_’_): | - - "o - "o -
WoT T Yo W= W= == g

atx = 0, L/R

All of the components of matrix G, are equal to zero.

H1 is equal to the identity matrix.

GN is equal to the identity matrix.

All of the components of matrix H,, are equal to zero.

N

The error vectors £ and £

1

respectively,

€(l) = -f1

€(2) = -f'l'

€(3) = -£,

N have the components at points 1 and N
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€(4) = -£)

€(5) = —(W0+v)\/c)

€(6) = -wy
e(7) = -w,
€(8) = -w'

(iii) C-3 Boundary Conditions

The nonzero components of the G

G1(6,5) =1
G1(8,7) =1
The nonzero components of the H
Hl(l, 1)=1
H,(2,2) =1
H,(3,3) =1
H1(4,4) =1

H1(5,5) =1

1

1

matrix are

matrix are
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H,(6,5) = -1
H,(7,7) = 1
H,(8,7) = -1

The nonzero components of the Gy matrix are

GN(I, 1) =1
GN(Z,Z) =1
GN(3, 3) =1
GN(4,4) =1
GN(5,5) =1
GN(6,5) =1
GN(7,7) =1
-GN(8,7) =1

The nonzero components of the HN matrix are

HN(6, 5) = -1
HN(S, 7) = -1
The error vectors £ and N have the components evaluated at points

1 and N respectively
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e(l) = -£,
€(2) = -£}'
€(3) = -£,
€(4) = -y

€(5) = -(wy+ v\ /c)

€(6) = -hwé
€(7) = -Wy
€(8) = -hw
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TABLE I

RESULTS OF CONVERGENCE CHECK

R=L=4 t=.004 X\ =.4 n=13
Ay =0.5 cos(2wx) A, =-0.05 sin(mwx)

The C-3 boundary conditions are enforced

Number of Grid Points Number of Iteraticns Total Computation
Required Time
(sec.)
26 4 9.19
51 5 20.06
101 4 31.20
201 5 76.73

401 5 149. 04
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Wo ———  Analytic Solution ,
Computer Program Solution
(201 Grid Points)
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FIG. 1| AXISYMMETRIC RESPONSE Wp - THE CASE
OF AXISYMMETRIC IMPERFECTIONS ONLY.

f: O0.l,i=2,R=4,t=0.004,v=0.3, A=0.2
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] Computer Program Solution
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FIG.2 RESPONSE TO ASYMMETRIC IMPERFECTION

§=-0.05,7m=13,v=0, A=0.1,R=4,L=4,t=0.004
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o} 26 Grid Points

X 51 Grid Points
A |0l Grid Points
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FIG. 3 DISPLACEMENT FUNCTION Wo - THE GENERAL
CASE OF AXISYMMETRIC AND ASYMMETRIC
IMPERFECTIONS
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FIG.4 DISPLACEMENT FUNCTION W, — THE
GENERAL CASE OF AXISYMMETRIC AND

ASYMMETRIC IMPERFECTIONS
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FIG.5 STRESS FUNCTION f, — THE
GENERAL CASE OF AXISYMMETRIC
AND ASYMMETRIC IMPERFECTIONS
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FIG.6 STRESS FUNCTION fp — THE GENERAL CASE
OF AXISYMMETRIC AND ASYMMETRIC IMPERFECTIONS



