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ABSTRACT 

A theoretical investigation of an efficient numerical solution 

scheme to solve approximately the nonlinear Donnell equations for 

imperfect isotropic cylindrical shells with edge restraints and under 

axial compression was carried out. 

The nonlinear partial differential equations have been reduced 

to an equivalent set of nonlinear ordinary differential equations. The 

resulting two-point boundary value problem was solved, first, by 

using liN ewton's Method of Quasilinearization" to obtain a set of lin­

earized differential equations for the correction terms and, secondly, 

these differentials were approximated as finite differences to cast 

the linearized system of equations into the form of a block tridiagonal 

matrix equation. The Potters' Method solution scheme was used to 

solve efficiently the block tridiagonal matrix equation. By succes sive 

iterations a solution to the set of nonlinear ordinary differential equa­

tions was obtained. 

The use of this method makes it possible to investigate how the 

axial load level at the limit point is affected by the following factors: 

the choice of inplane boundary conditions, the prebuckling growth 

caused by the radial edge constraint, the orientation and shape of the 

axisymmetric and asymmetric imperfection components, and the 

finite length of the shell. 
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I. INTRODUCTION 

The stability of circular cylindrical shells under axial 

compression has been studied extensively both theoretically and 

experimentally by many investigators. Buckling loads, predicted 

by linearized sm.all deflection theories, proved much higher than 

those realized in experiments and the experimental results showed 

a perplexingly large scatter band. Choice of in-plane boundary 

conditions and prebuckling deformation caused by edge restraints 

have been shown to affect the buckling load (Refs. I, 2, 3, and 4). 

However, initial geometric imperfections have been accepted as 

the main cause for poor correlation and wide experimental scatter 

between the predictions of the linearized small deflection theory and 

the experimental results. 

In earlier works (Refs. 5, 6, 7, 8, and 9) imperfections 

were assumed to be axisymmetric, having the same form as the 

classical buckling mode of the shell. In 1969 Arbocz and Babcock 

(Ref. 10) reported the results of buckling experiments where the 

actual initial imperfections and the prebuckling growth of electro­

plated isotropic shells were measured by means of an automated 

scanning mechanism. The measured irnperfections consisted mainly 

of asymmetric modes that corresponded to buckling loads higher than 

the classical value. The theoretical analysis used for correlation 

in this study included asymmetric modes. The comparison of the 

analytical results with the experimental values showed good agree­

ment. However, the analysis has met with criticism because the 

double Fourier series expressions used to represent initial imper-
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fections and deflections do not satisfy all of the boundary conditions. 

An extended theoretical analysis (Ref. (11)) was performed which 

included one asymmetric mode for the initial imperfection and also 

satisfied the boundary conditions. The method of numerical solution 

of the equations required large amounts of computer time, and 

precluded anything but scant preliminary results. It was the purpose 

of this study to develop an alternate method of theoretical analysis 

capable of including asymmetry and satisfying rigorously the experi­

m.ental boundary conditions which would be less tim.e-consum.ing. 
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II. THEORETICAL ANALYSIS 

A. Development of the Analysis 

Assurning that the radial displacement W is positive outward 

and that the two-dirnensional rnernbrane stress resultants can be ob-

tained frorn an Airy stress function F as F, = N = to , F,xx = yy x x 

N = to , and -F, = N = to • then the Donnell equations for an 
y y xy xy xy . 

irnperfect cylindrical shell (Ref. 12) can be written as 

Displacement Conlpatibility: 

I 4 1 I -
Et'V F - R W'XX +ZL(W,W+2W) = 0 (I) 

Equilibriurn: 

Et
3 ~-- 1 

----..",.2- 'V-W + R F,xx - L(F, W+W) = 0 
12(I-v ) 

(2) 

where the nonlinear operator L is defined by 

L(S,T)=S, T, -2S, T, +S, T, xx yy xy xy yy xx 
(3 ) 

and 'V
4 

is the two-dirnensional biharmonic operator. 

Arbocz and Babcock (Ref. 10) obtained an approximate solution 

to the Donnell shell equations by representing the rneasured initial 

irnperfections as 

w = g I t cos i ;: + ~2 t cos k ;: cos n y /R 

+ ~3t sin k ;: cos n y/R ( 4) 

In deriving the nonlinear buckling equations they as surned 

that any equilibriurn state of the axially loaded cylinder could be 
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represented by 

W = EV 
(J R + w = t(~ ~) + w x c 

(5) 

(6) 

where the terms added to wand f constituted the membrane prebuck-

ling solution for the perfect shell. Further, w was approximated as 

w = sIt cos i ~x + £2 t cos k ~x cos nf 

e t . k 7T'X L + '='3 sm --r:-- cos n R (7) 

Approximate solutions of the full nonlinear equations (1) and (2) were 

obtained as follows. First, the compatibility equation (1) was solved 

exactly for the stress fUllction F in terms of the assumed radial dis­

placement Wand the measured imperfection W, guaranteeing a 

kinematically admissible displacement field to be associated with 

the solution of the second equation. In that analysis, only the effect 

of initial imperfections on the buckling load was of interest. There-

fore the boundary conditions on the finite length shell were neglected. 

Thus only a particular solution of equation (1) was used. Second, 

the equation of equilibrium (2) was solved approximately by substi­

tuting for F, W. and Wand applying the Galerkin procedure. The 

solution of the resulting set of nonlinear algebraic equations yielded 

the equilibrium configuration of the finite shell as a function of the 

loading parameter}... 1£}.. attained a maximum. as the compressive 

axial load was increased, then this value of }.. at the limit point was 

associated with the buckling load of the shell, }.. s. Using this model 

• 
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with experimentally measured imperfection harmonics, Arbocz and 

Babcock located the" pairs of critical modal components, 11 defined 

as that combination of one axisymmetric and one asymm.etric com-

ponent that would yield the lowest value for ~ s' The agreement 

between their analytical predictions and experimental values was 

good (within 10%). 

However encouraging the results were, the analytical rnodel 

contained several simplifying as sumptions that need justification. 

First of all, as mentioned above, the assumed displacement func­

tions did not satisfy the experimental boundary conditions at the 

shell edges. It might be argued that since the effect of boundary 

conditions at moderate load levels is confined to the region next to 

the shell edges, one is justified in neglecting the boundary conditions 

if the imperfections have many waves in the axial direction. The 

"pairs of critical modal components" reported by Arbocz and Babcock 

turned out to have, in most cases, OIle wave or one half wave in the 

axial direction. Secondly, the effect of prebuckling deformations 

due to edge constraints were neglected. Almroth (Ref. 2) showed 

that prebuckling deformation caused by edge-constraints would reduce 

the buckling load predicted by linearized small deflection theory for 

perfect shells by at most 15%. Finally, it was questionable whether 

the prebuckling behavior, especially close to the limit point, was 

adequately represented by the "pair of critical modal components." 

1. Formulation in Terms of Ordinary Differential Equations 

In order to obtain an approximate solution of the nonlinear 

Donnell-type equations which will include rigorous satisfaction of 
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the experimenta.l boundary conditions, the form used by Arbocz and 

Sechler (Ref. 11) is assumed to represent the initial imperfection 

surface, namely 

(8) 

where AO(x) and Al (x) are known functions of x. Assume also that 

the deformation and stress state of the axially compressed cylinder 

is adequately represented by 

W(x, y) 
tv}" - - -= -c- + tw O(x) + tw 1 (x) cos ny (9) 

(10) 

Assuming the axial dependence of the response to be an unknown 

function of x will reduce the buckling problem to the solution of a 

set of nonlinear ordinary differential equations, which allows the 

satisfaction of the experimental boundary conditions. 

Substituting the expressions assumed for W, Wand F into 

the compatibility equation (1), using some trigonometric identities, 

and equating coefficients of like terms, (see details in Appendix A), 

results in the following system of 3 nonlinear ordinary differential 

equations 

(11 ) 

f iv 2 2f " + 4f "ct 2 [A" (A )"] - 0 1 - n I n 1 - cw 1 - If" nOw 1 + 1 +w 1 w 0 - (12 ) 
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Substituting in turn the expressions assutned for W, Wand F 

into the equilibrium equation (2) and applying Galerkin's procedure 

(see Appendix A), gives the following two nonlinear ordinary differ-

ential equations: 

wiv+4c(R)2 f"+4c R }...(AI'+W")+2c Rn2 [(A"+w")f o tOt 00 tIll 

+(A +w )fll+2(A'+w' )f'] - 0 III 111-

iv 2 4 R 2 R w -2n w"+n w +4c (-) fll+4c - }...(A"+W") 
1 1 1 t 1 t 11 

+2c R n 2 [2(A"+w")f +4(A"+w")f HA +w )f" t 001 112'112 

+4(Ai+w pfZ + 2(A1 +w 1 )fO'] = 0 

d where I = 

( 14) 

(15 ) 

As pointed out by Narasimhan and Hoff (Ref. 13), equation (11) can 

be integrated twice to yield 

( 16) 

In order to satisfy periodicity in the circumferential direction, the 

constants of integration are set equal to zero (Ref. 14). Substituting 

equation (16) into equations (12-15) gives the following system of 

four nonlinear ordinary differential equations. 
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iv 2 2£" 4£ I I ct 2 [AI I +(A + \ I I] = 0 (17) £ 1 - n 1 +n 1 - cw 1 - R nOw 1 1 w 1'w 0 

£12."V_2(2n)2f211 (2 )4£ c t 2 [A I '+A' I + n 2 - '2 R n 1w 1 1 WI 

( 2A I +w I )w I + w w I I ] = 0 ( 18) 
- 1 1 1 1 1 

+2c R n 2 [(AI I+W II )£ +(A +w )f' 1+ 2(A I+W l )£1] = 0 
t 111 111 III 

(19 ) 

+4c (R)2 f"+4c R).. (A"+w" )+2c R n 2 [2.(A"+W")f 
tIt lIt 001 

+4(A"+w")f + (A +w )£1 I + 4(A' +w ' )f '] = 0 
112 112 112 

(20) 

2. Boundary Conditions 

Of interest are the SSI, SS3, and C-3 boundary conditions. 

The C-3 clam.ped boundary condition corresponds closest to m.ost 

experim.ental test conditions. According to Arbocz (Ref. 14) the 

various boundary conditions m.ay be represented as follows 

SSI (W = W, = N, = 0, Nxx = -NO at x = 0, L/R) which reduces to xx xy 

(21 ) 

SS3 (W::. W 'xx =v = 0, Nxx = -NO at x = 0, L/R) which reduces to 

Wo = -v}../c } 

W - WI I - W I I - £ - f - f" - fll - 0 1- 0 - 1 - 1- 2 - 1 - 2-
at x = 0, L/R (22.) 
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C-3 (W = W, = v ::: 0, N = -NO at x = 0, L/R) which reduces to 
x xx 

at x = O. L/R (23) 

The system of equations (17-20) and the boundary condition equations 

(either (21), (22), or (23» constitute a nonlinear 2-point boundary 

value problem. The solution of this nonlinear 2-point boundary value 

problem will locate the limit point of the prebuckling states. The 

value of the loading parameter >-. corresponding to the limit will be, 

by definition, the theoretical buckling load. 

3. Linearization of the Differential Equations 

In order to solve the system of nonlinear ol·dinary differential 

equations, Newton's Method of Quasilinearization is used. The 

assumed forms for out-of-plane displacements, and the Airy stress 

function are written as the sum of initial values plus correction 

terms. The initial values are considered to be known values, while 

the correction terms are the unknowns. Writing in detail, the out-of­

plane displacement is represented by 

The Airy stress function is written as 

(25 ) 



-10-

Inserting (21) and (22) into the system of c;Hfferential equations (17). 

(IS), (19), and (20), and dropping terms with products of correction 

terms (see details in Appendix B) yields the following set of linearized 

differential equations for the correction terms. 

41:£ 2 21:£11 1:£iv ct 2( A)1: II ct 2( II A")1: 
nUl - nUl + U 1 - R n wI + 1 uW 0 - If n w 0 + 0 uW 1 

4 2 iv ct 2 [ ] -c 5w " = -n f +2n f"-f + - n (w +A )w"+A"w +cw" 1 1 1 1 R 11001 1 (26) 

(27) 

2 2 
+2cn f 5w" =-2cn «(w"+A")f +2(w'+A' )f'+(w +A )f") 1 1 1 11111111 

(2S) 

2 t 2 2 t iv 
+Scn fZ5wi+(-2 R n +4c>..+Scn f2 )owi'+ R OWl 
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4 t c 2 {(A +w )(2A +w }w } + 2.!. n2w"-4c'\(A"+w") -n R 1 1 1 1 1 R 1 (\. 1 1 

(29) 

Starting with some initial values, equations (26-29) are used 

in an iterative scheme converging to a solution of the nonlinear equa-

tions (17-20) with the enforcement of the appropriate boundary con-

ditions (either (21), (22), or (23». 

B. Numerical Analysis 

1. Formulation in Terms of Central Difference Matrix Equations 

Due to the nonlinear nature of the 2-point boundary value 

problem, anything but a numerical solution is precluded. Trying to 

devise an efficient method of numerical solution it was decided to 

use the "Potters' Method" (Ref. 15) which lends itself particularly 

well to the solution of differential equations. The linearized differ-

ential equations for the correction terms (26-29) are first converted 

to finite difference equations by using central difference formulae 

for derivatives of certain correction term variables. The central 

difference equations are then written as matrix equations. Observe 

that first, second, and fourth derivatives of correction terms appear 

in the equations (26-29). The central difference formulae for first 

and second derivatives involve values of the variables at 3 different 

points. The central difference formula for fourth derivatives, how-

ever, involves values at more than 3 points. In order to use the 

Potters' Method, the matrix central difference equations are written 
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to include values at three points. It is therefore necessary to carry 

along second derivatives of variables in the solution vectors of the 

central difference matrix equations. Fourth derivatives are then 

computed as second derivatives of the second derivative variables. 

Choosing a grid of N points spaced at a distance h apart, the first 

and second derivatives at point i of a variable g are written (Ref. 16) 

(30) 

g! I = (g. 1 - 2g. + g.+l >lh
2 

1 1- 1 1 
(31) 

The solution vector of the matrix central difference equation is 

constructed at point i 

(32) 

The four differential equations (26-29) yield four central difference 

equations (see details in Appendix B). The solution vector is con-

structed with eight unknowns, therefore four additional equations 

are needed. These additional equations arc identities between the 

second derivative variables in the solution vector, and the second 

derivatives of the corresponding variables constructed by the central 

difference formula (31). The eight central difference equations are 

written in matrix form (see Appendix B) 

A. 6Y. 1 + B. bY . + C. bY.+ 1 = d. 
1 "'1- 1 "'1 1 "'1 "'1 

(33) 

where A., B., and C. are (8 x 8) matrices and the 6Y . and d. are 8 
1 1 1 "'1 "'1 

dimensional vectors. 
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Z. Enforcement of the Boundary Conditions 

The matrix central difference equations (33) are applied to 

points Z to N -1 yielding a system of N-Z matrix equations and N vec-

tor unknowns. It remains to construct Z matrix boundary condition 

equations using the boundary condition equations (either (21), (22), 

or (Z3» with the help of the forward (or backward) difference formula 

g! = (g'+1 - g. )/h 
1 1 1 

(34) 

The boundary condition equations written in matrix form are (see 

Appendix B) 

(35) 

(36) 

where the G and Hare (8 x 8) matrices, and the € are 8 dimensional ,...., 

vectors. The resulting system of N matrix equations and N vector 

unknowns may be written in terms of a single block tridiagonal 

m.atrix equation. 

°Y 1 € ,....,1 

0 6Yz £Z 
6Y3 ~3 
I'" • 

= (37) 

. . 
6I N _2 d ,....,N-2 

AN..;lBN _1 eN
_

1 °IN _1 
d ,....,N-l 

o 

HN GN °YN iN 
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3. Solution Via the Potters' Method 

The block tridiagonal system. (37) is solved using the Potter s I 

method (Ref. 15) assum.ing that the solution vector at the ith point 

o Y , can be written in terms of the corresponding solution vector at 
"'1 

. the i+l th point 0Ii+l by 

o Y , = p, 0 Y '+1 + a , 
"" 1 "1 '" 1 ,..Q 1 

(38) 

where p, is an (8 x 8) m.atrix and a, is an 8 dim.ensional vector. 
1 ~1 

Substituting the Potte·r s I equation (38) into the matrix central 

difference equation (33) yields 

A, [p, lOY, + a, 1] + B, 0 Y , + C, 0 Y '+1 = d , 
1 1- ""1 ~1- 1 "'1 1 "'1 "'1 

(39) 

which gives 

oY,=-[A,P, l+B,rlC,oY'+l+[A,P, l+B,rlJd,-A,a, I} (40) 
"" 1 1 1- 1 1 '" 1 1 1- 1 ~ 1. 1";:' 1-

providing that the inverse exists. 

Comparison of the equations (40) and (38) yields the recurrence rela-

tions. 

p, = - [A,P, I + BTl C, 
1 1 1- 1 1 

(41 ) 

a. = [A. P. I + B. r 1 {d. - A. a. I} 
-<>1 1 1- 1 "'1 1,..Q1-

(42) 

To start the solution of the recurrence relations it is necessary to 

determine starting P and oS. values. Normally the first equation in 

the system (37) would be solved for oIl in terms of oI2' giving 

values for PI and ,9,1. The matrix HI in this formulation may however 

be singular. Accordingly, the solution is started by the simultaneous 
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solution for o!Z and o!3 in. terms of 0YI frOIn the first two equations 

of the systern (37) 

(43) 

(44) 

Then 

(45) 

providing that the inverse of AZ exists, also 

(46) 

(47) 

providing that the inverse exists. Cornparing (47) with the Potters' 

equation (38) yields 

(48) 

(49) 

Starting with the values (48) and (49) (P3' •••• ·, P N - 1 ) and 

(s'3' ••••• ,'sN -1) are cornputed via the recurrence relations (41) 

and (42). Using the last of the rnatrix equations in the systern (37) 

(50) 

and writing 0x'N_1 in terrns of bIN using the Potters' equation (38) 
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(51 ) 

Substituting (51) into (50) 

(52) 

equation (52) is solved for 0X
N 

providing that the inverse of (HNPN+GN] 

exists. Next the solution vectors (oXN_l' •••• , o.~2) are found using 

the Potters! equation (38). Finally the solution.vector 0XI is found 

using equation (45). 

4. Completion of the Solution of Correction Terms 

The solution vectors oY . as in equation (32) are composed of 
"'1 

correction term variables and second derivatives of the correction 

term variables. In order to provide the complete solution of the dif-

ferential equations for the correction terms (26-29), first and fourth 

derivatives of the correction term variables are computed from the 

terms in the solution vectors using the formulae (30) and (31). 

Special forward and backward difference formulae are used in com-

puting first and second derivatives on the boundaries. The special 

forward and backward difference formulae are (Ref. 16) 

At point 1 (Forward Gregory Newton) 

(53) 

(54) 

At point N (Backward Gregory Newton) 

(55) 
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(56) 
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III. PREPARATION AND DEBUGGING 

OF THE COMPUTER PROGRAM 

In coding the solution for the IBM 370/158 a modular approach 

was used. The various tasks of computation were divided into several 

subroutines, which were tested and debugged separately before 

attempting to run the program as an entire integrated- unit. In order 

to check the completed program, two special cases were run which 

have closed form solutions available for comparison. The special 

cases studied a.re 1) the case of axisymmetric imperfections only, 

with enforcement of the C-3 boundary conditions, and 2) the case of 

asymmetric imperfections only. at low load level, with enforcen1.ent 

of the SS3 boundary conditions. For the first case the program was 

run by setting the asymmetric initial imperfection amplitudes on the 

-7 
order of 10 • Similarly the second case was run by setting the 

axisymmetric initial imperfection amplitude on the order of 10- 7• 

setting Poisson's ratio equal to 10- 5 , and setting the load level equal 

-1 to 10 . 

A. Case of Axisymmetric Imperfections Only 

If the initial imperfection is axisymmetric, then it can be 

represented by 

(57) 

The prebuckling stress and deformation state is also axisymmetric 

since the uniform axial compression loading and the boundary condi-

tions are axis ymmetric. Thus 
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- vtf-. -
W(x) = c + t wo(x) (58) 

- - ERt
2 

{ f-. -2 - } F(x, y) = -c- - 2 Y + fO(x) (59) 

As shown by Arbocz (Ref. 14) upon substituting eqs. (57) and (58) 

into the Donnell type shell equations (1) and (2), an inhom.ogeneous 

linear ordinary differential equation with constant coefficients for 

w 0 is obtained. 

iv R 2 R2 R 
wo + 4c A Wll + 4c -2 Wo = -4c - '\ All tOt t ~ 0 

(60) 

where I = d/dx 

Assuming that the initial imperfection function has the form 

- - . R-
AO(x) = g cos 111' L X (61) 

the general solution for the axisymm.etric deflection response ob-

tained by Arbocz is 

where 

W(x) = v A aRx - -
t c + e (C 1 sin f3Rx + C 2 cos f3Rx) 

+ e -aRX(C
3 

sin f3RX + C
4 

cos f3RX) 

4p.2~f-. . Rx 
4 2 cos 111' L 

4p. +1-41l A 
+ 

a = ~~c . Rt 

f3 = "1+f-. ~ c Rt 

(62) 

(63) 
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and for the C-3 boundary condition: 

C
I 

= e -aL (~ cos j3L- sin j3L)(A cos i?T + ~ ~) 

C
2 

= -e -aL (~ sin j3L + cos j3L) (A cos i?T + ~ ~) 

a v~ 
C = - - (A +-) 

3 j3 c 

v 
C = -(A + -~) 4 c 

(64) 

where 

A= 

Figure I shows the results of the com.puter program c?mpared to the 

analytical solution (62) for the case when ~ = O. 1, i = 2, v = O. 3, 

x. = 0.2, R = 4, L = 4, and t = O. 004. 

B. Case of Asymmetric Imperfections Only 

If the initial imperfection is purely asymmetric, then it can 

be represented by 

W = tAl (x) cos ny (65) 

At low load level with a zero Poisson's ratio the Donnell-type equa-

tions (1) and (2) will admit a solution of the form 

W = t w 1(x) cos ny 

2 
ERt { x. -2 - -} F = c - '2 y + fl (x) cos ny 

( 66) 

(67) 
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Substituting the forms (65), (66) and (67) into the Donnell equations 

(1) and (2), and dropping the highest order terms gives 

where I = d/dx. 

Imposing the SS3 boundary conditions - see equations (22) - a sine 

function may be used for the axial dependence of the initial imper-

fection and the deflection and stres s respons e functions. 

Let 

(70) 

The response will be 

(71 ) 

(72) 

Substituting the forms (70), (71), and (72) into the governing equations 

(68) and (69) the coefficients a and bare found to be 

b = (73 ) 

3 
a = 

-C1T 
-b 

a (74) 

4 2 2 4 
where a = (1T + 21T n + n ) 
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Figure 2 shows the results of the cOIrlputer prograln solution for 

the case when g = -0.05. n = 13, R = 4, t = 0.004, L = 4, and"'- =0.1. 

The analytic solution for this particular case is 

WI (i) 
-3 -• -5.54198 x 10 sin 1TX 

Al (x) 
-6 -

..!. 2. 9611 79 x lOs in 1TX 
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IV. NUMERICAL RESULTS 

A. Convergence Study 

In order to study the convergence of the nUInerical solution, 

i. e., the number of grid points required and the computation time, 

a general case is chosen entailing both axisymmetric and asymmetric 

initial imperfection modes. The cylindrical shell under study has a 

length of 4 inches, a radius of 4 inches, and a thicknes s of O. 004 

inches. The C-3 boundary conditions are enforced. The initial im-

perfection functions are 

AO = 0.5 cos (21TX) 

An axial load level of X. = 0.4 is applied. The circumferential wave 

number for the asymmetric response is n = 13. 

The numerical solution scheme requires the computer pro-

gram to have an internal convergence check, to determine whether 

or not a satisfactory solution has been obtained. The check is made 

by forming the ratio of a correction term variable to its associated 

variable, for all variables at each grid point. The maximum in abso-

lute value of ratios thus obtained is compared to an input acceptable 

error value. If it is smaller than this acceptable value, then the 

solution is considered to be satisfactory. For the cases run in the 

h -5 convergence study, t e acceptable error value was set equal to 10 . 

To start, a solution was obtained using 26 grid points. The 

program was then run repeatedly, each time doubling the number of 

grid points. 
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Table I lists results of the convergence check, giving the 

number of grid points used, the number of iterations required for 

the nu.rnerical scheme to bring the solution from an initial guess to 

a satisfactory solution, and the total computation time for the run. 

Figures 3, 4, 5, and 6 show the convergence of the functions w 0' wI' 

f l , and f 2 . 
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V. CONCLUSIONS 

The aim. of this study was to devise an efficient nUlnerical 

m.ethod for finding an approxim.ate solution to the Donnell-type non­

linear shell equations. By increm.enting the axial load level, one 

m.ay ascertain the lim.it point which is, by definition, the theoretical 

.buckling load of the shell. 

Referring to figures 3 through 6, the convergence of the 

num.erical solution schem.e appears to be quadratic with respect to 

the spacing of grid points. As the m.esh size is halved upon successive 

iterations, the m.ean distance between solution curves seem.s to be 

reduced by about one fourth. For the case used in the convergence 

check, the solution com.puted with 51 grid points appears to have 

sufficient accuracy to describe the response behavior of the shell. 

An im.portant consideration is that the boundary layer has sufficient 

grid points to insure convergence in that region. Within the charac­

teristic wavelength of .JRt, there should apparently be at least 7 or 

8 grid points. As shown in table I, the total com.putation tim.e for a 

solution with 51 grid points is about 20 seconds. Even if 101 grid 

points were necessary to insure sufficient accuracy, the solution at 

a single load level would be obtained in approximately 30 seconds. 

The II shooting method" numerical solution scheme used by Arbocz 

and Sechler (Ref. 11) required approximately lO minutes to obtain 

a solution at a single load level for the same degree of accuracy. 
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APPENDIX A 

The approximate solution of Donnell's equations for an imper-

fect cylindrical shell assumes that the initial imperfection surface ie 

represented by 

(1 ) 

The equilibrium state of the axially loaded cylinder is approximated 

as: 

- - tv}.. - - -
W(x, y) = -c- + t wO(x) + tW l (x) cos ny (2) 

- - ERt
2 

{ } -2 - - -
F(x, y) = --c- - i y + fO(x) + fl (x) cos ny 

(3) 

In order to facilitate the substitution of (1), (2) and (3) into the Donnell-

type equations, write the spacial derivatives in the Donnell equations 

in nondirnensional form by using 

1 d 
R dx = 

d 

dX 
1 d 
R dy = 

The Donnell shell equations are then 

(4) 

1 =4 1 1 -
~ "V F - -3 W,-- + -4 LNL(W, W+2W) = 0 (5) 
R Et R xx 2R 

where the nonlinear operator LNL is defined by 
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LNL(S, T) = S, -- T, -- - 2S, -- T, -- + S,-- T, -- (7) 
xx Y Y x Y x Y Y Y xx 

and the two-dimensional biharmonic operator \7 4 is 

(8) 

Performing the various operations on W, W, and F' in equations (5) 

and (6), using the assumed forms (1), (2) and (3) 

- 4 ERt2 { iv iv - iv - 2 -
\7 F = -c- fO + fl cos ny + f2 cos 2ny-2n fl' cos ny 

_8n2f" - 4 - 6 4 -} 2 cos 2ny + n fl cos ny + 1 n f2 cos 2ny 

W -- = t{w" + WI' cos ny} 'xx 0 1 

(9) 

(10) 

2 2{ - 2-} -t n w (w" +2A" )cos ny+w (w" +2A" )cos ny ·100 111 

-4 {iv iv - 2 - 4 -} \7 W = t Wo + wI cos ny-2n wI' cos ny+n WI cos ny 

2 
ERt {, - -} F -- = -- f' + f" cos ny + f" cos 2ny , xx cOl 2 

+ f2' cos ny cos 2ny) 

(11 ) 

(12 ) 

(13 ) 

(14) 
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where' = d/dx. 

Substituting the trigonometric identities 

(15) 

2 1 
cos a = ~1+cos2a) ( 16) 

into equation (11) yields 

WI' w 
L NL(W,W+2W) = _t

2
n

2
( 21 (W 1+2A1 )+wl(Wl+ZAP+-t(WI'+2A1'» 

2 2 -
-t n (wO' (w 1 +2A1 )+w 1 (wO'+2AO'» cos ny 

2 2 wi' wI 
-t n (2 (w 1 +2A1 )-wi (wi+2Ai)+ 2 (wi '+2A1') )cos2ny 

(17 ) 

Substituting the terms (9), (10), and (17) into the compatibility equa-

tion (5) yields 

\ 
t (fiv 2 2fll 4f ) t "t

2
n

2
( "( 2A) + -3- 1 - n 1 +n 1 - 3 wI - -4- wOw 1+ 1 

R c R 2R 

+w 1 (wO' +2AO'»! cos ny 

I 
2 2 W" 

t iv 2 II 4 t n 1 
+ -3- (£2 -8n f2 +l6n f 2 ) - --4 (2 (w1+2A1) 

R c 2R 

-w'(w'+2A')+ wI (W Il +2AII »l cos 2ny 
111211) 

= 0 (18) 

3 
Multiplying through by R

t 
c and equating coefficients of like terms 
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yields the following 3 equations 

( 19) 

£iv 22£11 4£ II ct 2[AII (A+ )wll] =0 1 - n 1 +n 1- cw l - It n 0 w1+ 1 WI 0 (20) 

( 2A' +w' )w' +w Wi'] - 0 - 11111- (21) 

Substituting the trigonometric identities (15) and (16) into equation 

(14) yields 

+(w" +AII ) ~ + .!.. (Wll +AII)£ } 
0022111 n 

3 
- ERt n 2 {(w +A )£II+(wll+A")£ + (wll+A") ~} cos ny 
clIO 001 112 

n 

ERt3 2 1 --- n {-(w +A )£II_(wl+A I )£' + 4(w"+A")£ 
c 2111111 002 

+.!.. (wll+A")£ } cos 2ny 
2 1 1 1 

3 
-E~t n2{(w1+A1)£2'+4(Wl'+Al' )£2} cos ny cos 2ny 

3 
_ E~t n2{4(wi+Ai)fZ}sinnysin2ny 

(22) 

Substituting the terms (12), (13), and (22) into the equilibrium equa-

tion (6) yields 
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iv + Et f" + E _t_ n 2 { l(w +A )f" 
1 

Et4 2 3 

12R4(1_v2) Wo cRZ 0 c R3 2 1 1 1 

+ (wi+Ai)fi+(wO'+AO') \ + i(W1'+A1' )f1}t 
n 

3 
+ ~ ;3 n2{(w1+A1)fo'+(wo'+Ao') f1 

+ (wj'+Aj') }}t cos ny 

+l(W"+A")f}/ cos 2ny 2 1 1 1 

3 
+ E _t_ n2{2(w1+A') f I} {sin ny sin 2ny} = E 

c R3 1 1 2 
(23) 

The right-hand side of the equation is nonzero because the equilibrium 

equation is not necessarily satisfied exactly by the assumed form of 

the solution. Applying the Galerkin procedure, the following inte-

grals are evaluated. 

211' 
J E dy = 0 
o 

21T 

J E co S (n y) d y = 0 
o 

(24) 

(25) 
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Using equation (23) to evaluate the integral (24) yields 

2 
w 1

0
. V + 4c ~ f" + 4c R}" (A' , +w' , ) 

t2 0 tOO 

+ 2cR n 2{(A"+w")f +(A +w )f"+2(A'+w')f'} - 0 (25) t 111111 111-

Again using equation (23) to evaluate the integral (25) yields 

+ 2cR n 2 [2(A"+w")f +4(A"+w")f 
,t 001 112 

(26) 
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APPENDIX B 

The Donnell-type shell equations are written using a special 

form. for the im.perfection surface 

(1) 

and the corresponding form. for the out-of-plane displacem.ents, and 

Airy stress function. 

VA - - -
W = t (-c + w o(x) + wl(x) cos ny) (2) 

ERt
2 

{ A -2 - - - - -} F = -c- -"2 y + fO(x) +fl(x) cos ny +f2(x)cos 2ny (3) 

The resulting system. of 4 nonlinear ordinary differential equations 

are, after integrating the equation involving fO and substituting into 

the rem.aining equations, 

f iv 2 2£11 4£ I I ct 2 [A" (A ) I I] = 0 1 - n 1 +n 1 - cw 1 - R nOw 1 + 1 +w 1 w 0 ( 4) 

f iv 2(2 )2fll (2 )4f c t 2[A II All 
2 - n 2 + n 2 - '2 R n lW 1 + 1 wI 

-(2A I +w ' )W I +W Wll] - 0 1 1 1 1 1 - (5) 

+4c(R)2£II+4c R A(A"+w")+2c Rn2 [2(A"+W")£ +4(A II +W II )f 
tIt lIt 001 112 

(7 ) 
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Applying Newton's Method of Quasilinearization to linearize the sys-

tem of differential equations, the out-of-plane displacement and Airy 

stress function (2) and (3), are rewritten in terms of initial values, 

and corrections to these values. 

v).. - - - - -
W = t (c + w O(x) + ow O(x)+(wl (x)+6wl (x» cos ·ny) (8) 

ERt
2 

{ ).. -2 - - - - -
F = -c- - 2" y + fO(x)+O£O(x)+(f l (x)Hifl(x» cos ny 

The initial values are considered to be known values, while the cor-

rection terms are the unknowns. Rewriting equations (4), (5), (6) 

and (7), using the form of (8) and (9) gives 

+(w +6w )(w"+6w")] = 0 1 1 1 1 (11 ) 

+4c R)"(A"+(w"+6w lt »+2c R n 2 [(A"+(w"+ow lt )(f +0£) 
tOOO tIl 1 1 1 

( 12) 
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+ 4c R >-. (A"+(w"+ow" »+2c R n 2 [2(AII +(w" +OW II »(f +0£ ) t 111 tOO 011 

+ 4(A"+(W II +OW II »(£ +0£ )+(A +(w +6w »(£11+0£11) 
1112211122 

+ 4(AI+(W I+ow l»(f l +0£1)] = 0 
1 1 1 2 2 

Rearranging terms and dropping products of correction terms, 

(13 ) 

t: II _ 4£ +2 2£11 fiv ct 2 [( A) II _All] II (14) -cuw1 - -n 1 n 1 - 1 + jfn w 1+ 1 w o,. OWl +cw 1 

t 2 ( I +A I ) t: I C t 2 ( A ) t: I I +c R n wI 1 uW 1 - "2 R n wI + 1 uW I = 

(2 )4f 2(2 )2fll fiv c t 2[( A) II All (I 2AI) I] - n 2+ n 2 - 2 + '2 R n w 1+ 1 wI + I w1- w 1+ 1 w l 

(15 ) 

4 2 R t iv 4 '\ (All II) 2 2 2A ) - c TWo - R w 0 - c'" 0 +wo - c n ( 1 +w 1 W 1 ( 16) 
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- 4cn2 (w ll +A")f -4c R f ll -Scn
2

(w"+A")f -Scn
2

(w'+A')f' -- 0 0 1 tIll 2 l12 

(17 ) 

Equations (14-17) are the four linearized differential equations for 

the correction term.s. Equations (14-17) are converted to central 

difference equations by using the central difference formulae for 

first and second derivatives. Choosing a grid of N points, spaced 

at a distance h apart, the central difference formulae for the first 

and second derivatives of a variable g at point i are 

g~ = (g'+l - g. 1 )/2h 
1 1 1-

(18) 

g~' = (g. 1 - 2g. + g'+1 >lh
2 

1 1- 1 1 
( 19) 

Using the form.ulae (IS) and (19) on first and fourth derivatives of the 

correction term variables in equations (14)-(17) yields 
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n 4 O£
1

. _ 2n2 O£" +_1_(0£" -20£"+0£" )_ ct n 2(w +A )ow" 
1. h2 1. 1 1. 1. + 1 R 1 1 O. 

1 1 1- 1 1 1 

/ 
2 11 A") I' 4£ 2 2£11 fiv -(ct R)n (wO + 0 oWL - COWL = -n 1+ n 1 - 1 

1 1 

(20) 

(2n)4O£ _2(2n)2 0£" + _1_(0£" -20£" +0£" )- ~ n2(w"+A")ow 
2i 2i h 2 2 i _1 2i 2i+l 2R 1 1 Ii 

+ ~h :.. n
2

(wi+A i)(owl. -owl. ) - ~ ~ n 2
(W1+A1)OWr=-(2n)4£2+2(2n)2£Z' 

1+1 1-1 1 

(21) 

2 

2Cn
2

(Wl'+A11 
)0£1/ 2~ (Wi+Ai)(0£1i+l- 0£l

i
_

1 
)+2Cn2 (W

1
+A

1
)0£i: 

1 

+4c2 R OW +4c>..ow l ' + _t_ (OW'! -2ow'! +OW'! 
t O. o. h 2R O. 1 O. 0.+1 1 1 1- 1 1 

2 2 2 2cn2 
+(2c n (w1+A1)+2cn £i')owl.+-h- £i(owl. -owl. 

1 1+1 1-1 

+2cn
2

£ OWl' - -2cn2«w" +A")£ +2(w' +A' )£'+(W +A )£") 1 1. - 1 1 1 1 1 1 1 1 1 
1 

4 2 R t iv 4 '\ (AI' II) 2 2(2A ) - c TWo - R w 0 - C I\. 0 +w 0 - c n 1 +w 1 wI (22) 

t 2 2 t 
+( - 2R n +4c>.. +8cn £2 )owr + -2- (6wi~ -20w!: + owi: ) 

1 h R 1-1 1 1+1 
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2 R 2 2 = -4cn (w"+A")f -4c -fll-Sen (w"+A")f -Scn (wl+AI)fl 001 t1 J 112 112 

4 t 2 {(A ) 2A )} 2 t 2 "4 (All II) t iv -n R c 1 +w 1 ( 1 +w 1 w 1 + R n w 1 - c A. 1 +w 1 - R w 1 (23) 

where all non-correction term variables are evaluated at point i. 

Since correction term second derivatives are carried along as un-

knowns t four additional equations are needed to relate the second 

derivatives to the corresponding variables. Using the central dif-

ference formula (19) the additional equations are 

aWOl. - ~{awo. -2awO.+awO. } = 
1 h 1-1 1 1+1 

- W 01.+ ~ { W 0 . - 2w 0 . +w 0 . } (26) 
1 h 1-1 1 1+1 

(27) 

The system of central difference equations (20)-(27) is written as a 

matrix central difference equation 

A. a Y. 1 + B. a Y . + C. a Y. 1 = d . 
1 "'1- 1 "'1 1 "'1+ "'1 

(2S) 

The terms in equation (2S) are written in detail 
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Of1 

of" 
1 

oY. = 
Of2 (29) 

...... 1 
of" 

2 

OWO 

ow" 
0 

oWl 

ow" 1 i 

2 Multiplying equation (28) through by h the nonzero components of A. 
1 

are 

A( 1,2) = 1 

A(2,4) = 1 

A(2, 7) = _ ~h ~ n 2
(w

1
+Ai) 

2 A(3, 1) = -2hcn (w1+A
1

) , 

t 
A(3, 6) = R 

A(3, 7) = -2hcn2fi 

A(4, 3) = _4hcn2 

A(4, 7) = -4hcn2fZ 

t 
A(4,8) = R 

A(S, 1) = -1 

A(6, 3) = -1 

A(7, 5) = -1 

A(8, 7) = -1 
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The nonzero con1.ponents of B. are 
1 

2 4 
B(I,I}=hn 

2 2 
B(l,2} = -2h n -2 

2 
B( I, 8} = -ch 

4 4 
B(2, 3) = (2n) h 

2 2 B(2,4) = -2(2n} h -2 

2 2 
B(3, I} = 2ch n (wI'+AI') 

2 t 
B ( 3, 6) = 4ch )... - 2 R 

22222 
B(3, 7) = 2c h n (w1+A1)+2ch nfl' 

2 2 
B(3, 8) = 2ch n fl 

2 2 
B(4,l) = 4ch n (wo'+Ab') 



2 R 
B( 4,2) = 4eh (T) 

2 2 
B( 4, 3) = 8eh n (wI' +AJ.') 

2 2 
B(4,4) = 2eh n (w1+A1) 

222 
B(4, 5) = 4e h n (w1+A1) 

2 2 
B(4,6) = 4eh n fl 
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4 2 t 2 2 222 
B(4,7) =n h R + 2eH n £Z'+4e h n Wo 

2t 2 2 22 t 
B(4,8) = -2h R n +4h e>.. + 8h en f2 - 2 R 

B(5, 1) = 2 

2 
B(5, 2) = h 

B(6,3) = 2 

2 B(6,4)=h 

B(7,5)=2 

2 
B(7,6) = h 

B( 8, 7) = 2 

2 
B(8,8)=h 



-43-

The nonzero components of C. are 
. 1 

C(I,2)=I 

C(2,4) = I 

t 
C(3,6) = R 

t 
C(4, 8) = R 

C(5,I)=-I 

C(6, 3) = -I 

C(7,5) =-1 

C(8, 7) = -1 

The components o£ the vector d . are 
"'1 

d(I) h 2 4f 2h2 2£11 h 2
f iv ct h 2 2[( . A) 'I AI' ] h 2 " = - n 1+ n 1 - 1 + R n w 1+ 1 w 0 + 0 wI +c wI 
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t h 2 iv 4 h 2 (A" ") 2h Z 2(2A + ) - R w 0 - c h. 0 +w 0 - c n 1 wI wI 

2 2 "A' I )f 4 R h 2f' I 8 h 2 2( I' +A' I )f d(4) = -4ch n (wO + 0 1 - c t 1 - c n wI 1 2 

d(5) = -h 2f}: +£1. - 2£1. +fl. 
1 1-1 1 1+1 

d(6) = -h
2

fZ'. + f 2 . -2£2. + f 2 . 
1 1-1 1 1+1 

d(7) = -h
2

w O'. +wo. -2w O. +w O. 
1 1-1 1 1tl 

d(8) = -h2wr + WI. - 2wl.+w l. 
1 1-1 1 1+1 

Matrix Boundary Condition Equations 

The boundary condition equations are written in znatrix forzn 

with the help of the forward difference forznula 

g! = (g'+l-g. )/h 
1 1 1 

(30) 
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(31) 

(32) 

where the G and Hare (8x 8) m.atrices, and the ~are 8 dim.ensional 

vectors. The com.ponents of the rnatrices for the various boundary 

conditions are 

(i) 551 Boundary Conditions 

at x = 0, L/R 

The nonzero com.ponents of the G I m.atrix are 

G
1
(4,3)=1 

The nonzero com.ponents of HI are 
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The error vectors ~ 1 and.tN have the components evaluated at points 

I, and N respectively. 

€(l)=-f} 

€(2) = -hfi 

€(3) = -f 2 

€(4) = -hf I 
2 

€(6) = -WI I o 

€(8) = -wI! 
1 

The nonzero components of the G
N 

matrix are 
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G~(5, 5) = 1 

The nonzero components of HN are 

(ii) SS3 Boundary Conditions 

at x = 0, L/R 

All of the components of matrix G
1 

are equal to zero. 

HI is equal to the identity matrix. 

G
N 

is equal to the identity matrix. 

All of the components of matrix HN are equal to zero. 

The error vectors ~ 1 and ~N have the components at points 1 and N 

re spectivel y. 

€(2) = -f" 1 
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€( 4) = -fZ' 

€(5) = -(wO +VA./c) 

€( 6) = -wO' 

€(8) = -wI' 

(iii) c- 3 Boundary Conditions 

at x ::: 0, L/R 

The nonzero com.ponents of the G
I 

m.atrix are 

The nonzero com.ponents of the HI m.atrix are 

HI (2, 2) = 1 
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H
1
(8,7) =-1 

The nonzero components of the GN matrix are 

GN(l, I} = 1 

G
N

(2,2} = 1 

G
N

(3, 3} = 1 

The nonzero components of the HN matrix are 

The error vectors ~ 1 and ~N have the components evaluated at points 

1 and N respectively 



€(2) = -fi l 

€(3) = -f2 

€(4) = -f21 

€(5) = -(w
O
+ v>../c) 

€(6) = -hwO 

€(7) = -wI 

€(8) = -hwi 
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TABLE I 

RESULTS OF CONY ERGENCE CHECK 

R = L = 4 t = . 004 }.., = . 4 n = 13 

AO =0.5 cos(2'lTx,> Al =-0.05 sin('lTx,> 

The C-3 boundary conditions are enforced 

Number of Grid Points Number of Iterations Total Computation 
Required Tim.e 

(sec. ) 

26 4 9. 19 

51 5 20.06 

101 4 31. 20 

201 5 76.73 

401 5 149.04 
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Analytic Solution 

{
Computer Program Solution 
(201 Grid Points) 

p 
vOutside Scale 

~ 
\ , 
P 
\ 
P 
~ ,(000-.0 
~ '0 

'0 
\ 0.3 0.4 0.5 

0, 

'0 , 
'0 , 

'0 , 
'0 

"''0.. -0...-0-0 

FIG. I AXISYMMETRIC RESPONSE Wo - THE CASE 
OF AXISYMMETRIC IMPERFECTIONS ONLY. 

~ = 0.1, i = 2, R = 4 , t = 0.004, v = 0.3, A = 0.2 
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FIG.2 RESPONSE TO ASYMMETRIC IMPERFECTION 

e =-0.05, "I = 13, v = 0, X=O.I, R=4,L=4,t=O.004 
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o 26 Grid Points 

x 51 Grid Points 
A 101 Grid Points 

Inside Scale 

Outside Scale 

X/R 

0.4 0.5 

FIG.3 DISPLACEMENT FUNCTION Wo - THE GENERAL 

CASE OF AXISYMMETRIC AND ASYMMETRIC 

1M PERFECTIONS 
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FIG.4 DISPLACEMENT FUNCTION WI - THE 

GENERAL CASE OF AXISYMMETRIC AND 

ASYMMETRIC IMPERFECTIONS 
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x 51 Grid Points 

f. fj 101 Gri d Points 
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FIG.5 STRESS FUNCTION fl - THE 

GENERAL CASE OF AXISYMMETRIC 

AND ASYMMETRIC IMPERFECTIONS 



-8 
-1-10 

-8 
-2·10 

-8 -3-10 

-8 
-3.4·10 

-57 -
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FIG.6 STRESS FUNCTION f2 - THE GENERAL CASE 
OF AXISYMMETRIC AND ASYMMETRIC IMPERFECTIONS 


