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ABSTRACT

The stress boundary value problem of an infinite,
planar region with embedded rectilinear cracks is inves-
tigated from the viewpoint of two-dimensional, static,
linear elasticity theory (plane strain or generalized
stress). Any finite number of cracks may be considered.
Their orientation may be arbitrary, so long as they do
not intersect. Boundary loadings may take the form of
quite general in-plane tractions along the crack surfaces,
together with a bounded in-plane stress field at infinity.

Using Muskhelishvili's solution for colinear
cracks, the problem is reduced to a set of one-dimensional
Fredholm integral equations. A simple numerical technique
is presented for the approximate solution of these
equations. The method is established to possess an

extremely high rate of convergence.

Results are presented for a number of two-crack
interaction problems. As expected, the interaction of the
cracks generally tends to reduce the fracture strength of
a material, relative to the strength that would exist with
either crack acting independently. However, for certain
orientations, it is found that the interaction phemomenon

can actually increase the resistance to fracture.
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I. INTRODUCTION

1. Some Concepts from the Theory

of Fracture Mechanics

The first analytic solution to the problem of
a plate weakened by a crack is generally credited to

(9)

Inglis Using elliptical coordinates, he derived
the stress field about an elliptical hole in an infinite
plate, subjected to a tension field at infinity in a
direction normal to the major axis of the ellipse. If
the minor axis is allowed to tend to zero, the ellipse
degenerates into a straight line. This may be viewed
as a crack which has no thickness, but is simply a flaw
in the material along which free surfaces may exist.
Inglis® paper was first published in 1913. Since
that time, the problem of a plate weakened by a single
crack has been studied extensively. Solutions have been
found for quite general loadings, both at infinity and
along the crack surface itself.
These solutions exhibit a characteristic feature.
At a typical crack endpoint, consider a local coordinate

system in terms of the polar coordinates r and &

(c.f. Fig. 1.). Then the stresses exhibit the following
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*
unbounded behavior as r tends to zero :

O = Gy cosd [, (1+5in*8) + 3 Ky Sin €~ 2K tangJeo) (1.1a)

- - 3 . .
O = (—Z-&r_r?t cas—g-[kl cos* 8 - 2Ky sin 9} + O0) (1.1b)
t,e=mcos—2-[k,5ine +K1(3c,ose-:)J+O(:) (1.1c)
as r—o

where the terms 0(1) represent that portion of the stress
field which is bounded at the crack tip. The parameters
KI and KII
but are independent of r and © . The factor (27rr)°%

are dependent upon the loading conditions,

appearing in equations (1.1) explicitly exhibits the char-
acteristic "square root singularity”™ in the stresses at
the crack tip. Evidently, the singular term may be
completely determined by specifying only the two param-

eters K. and K These numbers are known as the symmetric

I 11’
and antisymmetric stress intensity factors, respectively.
The singular behavior of the stresses (and thus
the strains) is somewhat disconcerting. The problem is
posed in the realm of linear elasticity, or the "small

strain" theory. Yet, the solution yields strains in the

*¢.f. Erdogan and Sih. (5 ) It will be possible
to verify this characteristic singular behavior from
results developed in the subsequent investigation. Indeed,
(1.1) will be shown to be valid even when there are mul-
tiple interacting cracks.
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vicinity of the crack tips which not only fail to be
"small,"” but are in fact unbounded. In addition, for the
loading considered by Inglis, the shape of the deformed
crack surface is found to be that of an ellipse
(c.f., Fig. 1). This violates another tenet of linear
elasticity theory, namely, that the boundary conditions
may be applied in the undeformed state. In the vicinity
of the crack endpoint, the sharp tip of the undeformed
boundary clearly differs radically from the rounded end
of the deformed boundary. This is particularly true of
of the normal vectors to the two surfaces. In the unde-
formed state, this is always normal to the crack. In the
deformed state, it may be parallel to the crack.
Finally, the generalized plane stress assumption is used
in deriving the solution. This presumes that the stress
field is two-dimensional in nature, and that the
out-of-plane stress, g is essentially zero. The latter
agsumption then implies that the out-of-plane strain ¥,

will be given by

Y, = &(5 +75) (1.2)

where ¢ is a constant dependent on the material properties.
Hence, it follows that 3*, will also exhibit a square root
singularity in the vicinity of a crack tip. This neces-

sitates unbounded deformations in the out-of-plane
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direction, which clearly cannot be sustained without
destroying the two-dimensional nature of the problem.

Evidently, singular solutions cannot adequately
represent the mechanics of the problem in the very close
vicinity of the crack tips. However, because of the
relative simplicity of the linear theory in relation to
more complex approaches, one might hope that such
solutions could still be useful. Thus, it might be pre-
sumed that they would adequately represent the stress
field away from the crack tips. Experimental evidence
jndicates that this presumption is valid for materials
that are not too ductile. In one of the more careful
studies, Dudderar and 0'Regan (&) utilized laser holo-
graphic interferometry to obtain very high resolution in
the vicinity of a crack tip in polymethylmethacrylate. It
was found that within a certain radius of the crack tip,
the stress field was dominated by three dimensional
effects. This radius was generally on the order of (but
somewhat less than) the plate thickness. Outside of this
radius, the agreement with the theoretical singular
solution was quite good.

The singular solution can thus be justified on
the same basis as, for example, the point load in elas-
ticity or the point charge in electrostatics, neither
of which exists in reality. That is, it is merely a mathe-

matical convenience which considerably simplifies the
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analysis, but which can yield quite valid results as long
as its limitations are realized.

A very attractive feature of the singular stress
distribution is that the strain energy remains bounded in
any finite portion of the region, including the vicinity
of the crack tips. (This can be seen by noting that near
a crack tip, JijC{r-%' Hence, the strain energy den-
sity Wdfr-l. This remains bounded when integrated over
a circle enclosing the crack tip.) It might therefore
be hoped that the singular solution would provide a
fairly reliable estimate of the energy in any finite
region of a cracked, brittle material.

Griffith, (6,7 ) in his famous papers of 1920
and 1924, utilized the Inglis solution to calculate the
strain energy stored within a very large ellipse encom-
passing what is now known as the “Griffith Crack." 1In
considering the energy balance as the crack underwent a
virtual extension, Griffith found that energy was lost
from the system. Reasoning that in the elongation process
new surface is formed, and that a certain amount of "sur-
face energy" is required to form a unit area of new sur-
face, he logically proposed that the energy lost from the
system during crack growth contributes to the energy of
formation of new surface. Thus, a necessary condition

for actual crack growth is that the rate of energy loss

from the system must equal the rate of energy gained
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by the formation of new surface. This "necessary" con-
dition has since been applied as a "sufficient"™ condition,
with quite good experimental agreement, in predicting the
fracture strength of cracked, brittle materials.

Griffith's criterion is sometimes referred to
as a "global" criterion, since if considers the energy

(10) on the

balance throughout the entire plane. Irwin,
other hand, developed a fracture criterion based on a
"local" energy approach., He considered the work done by
forces in the vicinity of the crack tip, as the crack
undergoes a virtual extension in its own line. It was
found that the rate of mechanical work expenditure by the
system (per unit length of crack extension) is directly
proportional to KI. At the same time, the Griffith con-
cept of "surface energy" (which is more properly termed
"fracture energy") indicates that a certain minimum energy
expenditure rate is necessary to form new crack surface.
Thus, the Irwin energy criterion states that crack growth

may occur when KI reaches some critical value

Ki = Krep (1.3)

where KIcr' the "critical stress intensity factor," is

a material property which must be determined experimentally.
It might be argued that a local energy cri-

terion, based on a non-existent stress singularity, is

unrealistic. However, Sanders (18) has derived
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expressions for the global energy balance across an arbi-
trary contour in the plane. Using his results, it is
possible to show that Irwin's local criterion can be
directly related to Griffith's global criterion. Thus,
in spite of the fact that the stress singularity is merely
a fictitious mathematical construction in the very near
vicinity of the crack tip, the stress intensity criterion
emerges with an importance equal to that of a global
energy criterion.

The discussion thus far has been primarily
applicable to so-called "brittle" materials. In ductile
materials, plastic flow may occur near the crack tip. If
the region of plastic flow is very large, it could signif-
icantly affect the stress distribution. 1In addition, the
energy expended in the plastic zone upsets the energy

balance. However, Irwin (11)

and others have suggested
semi-empirical modifications to the brittle fracture
which would allow the extension to moderately yielding
materials. This would include such common structural
materials as steel and aluminum,

Until recently, energy criteria could be applied
only to cracks extending in their own line. This is
because analytic solutions are as yet unavailable for the
stress fields about "branch cracks," that is, cracks which

grow at an angle to the original crack line. Hence,

there is no readily available expression for the energy
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of the system in the extended state. However, it is gen-
erally found that cracks will tend to branch under any
loading condition other than normal tension. To account
for these cases, Erdogan and Sih (5) suggested a cri-
terion based on the maximum normal tension of the singu-~
lar part of the stress field. They proposed that the
crack will grow radially from the crack tip, in the
direction of maximum normal (singular) tension, and at a
stress level such that the coefficient of this singular
tension exceeds some constant which is dependent upon
the surface energy of the material. Thus, the normal
tension across a radial line is given by (1.1a), which

may be written as

_ _ Tt (1.4a)
Or = Gt + oo

where
T(e)= cos—g-[KI(l-l-Sinz—zQ)‘*‘% _nsine—ZKntan—g—] (1.4v)
Let T(e ) attain its maximum value at

O Bmax (1.52)

and let this maximum be given by

Tmax = T (Bmax) _ (1.5b)
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where, in this report, Tmax will be referred to as the
"cleavage intensity."”

Then the hypothesis states that crack growth

will begin when Tmax reaches some critical value,
Tmax = -T;r (1.63.)

and that the (initial) crack growth proceeds in a radial

direction along the line
& = Bumax (1.60)

Applying the criterion to the special case of a Griffith
crack loaded by normal tension at infinity, it may be

concluded from (1.3) and (1.6a) that

Ter = Kzer (1.7)

Erdogan and Sih (3) also presented experimental
evidence indicating satisfactory agreement with the
theory for brittle materials.

More recently, Palaniswamy (17) devised approx-
imate numerical techniques to analyze the branch crack
problem from the viewpoint of the energy balance criterion.
His calculations showed very good agreement with the
cleavage intensity criterion.

From the above equations, it is evident that
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Tmax is completely determined by the stress intensity
factors KI and KII' Thus, these two parameters play a

critical role in fracture phenomena.
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2. The Stress Boundary Value Problem

i

Evidently, from a knowledge of stress intensity
factors and crack energies, Fracture Mechanics can say
a great deal about the phenomenon of crack growth in a
material. Unfortunately, these critical parameters are
not always easy to obtain. In order to calculate these
quantities, it is first necessary to solve a boundary value
problem for the stress field in the material. Although
the use of linear elasticity theory provides an enormous
simplification, deriving the stress state can still be
a formidable problem.

In particular, no general solution exists for
the problem of an arbitrary (but finite) number of cracks
embedded in the plane at arbitrary orientations. Besides
Inglis*' original solution, the most significant con-
tribution in this area appears to be Muskhelishvili's (16)
solution for the problem of "colinear cracks." First
published in 1942, this is an integral form of solution
to the problem of rectilinear cracks which are constrained
to lie upon the same straight line. Otherwise, the
number and lengths of the cracks are arbitrary, as are
the external tractions acting on the crack surfaces, and

the (bounded) stress at infinity. (Muskhelishvili credits

D. I. Sherman (19) with publishing an earlier, but less

simple, solution in 1940.) In addition, Muskhelishvili
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published the first solution to the problem of the
infinite plane weakened by cuts which are arcs of circles.
These cuts are constrained to lie on one and the same
circle. Again, a relatively simple, integral form of
solution is found.

A number of papers have been published on the
problem of colinear cracks since Muskhelishvili's so-
lution. The problems treated, however, are simply special
cases of Muskhelishvili's more general solution.

In addition, quite a number of solutions have
been found for the problem of the infinite plane weak-
ened by an infinite number of cracks. These problems
generally assume the cracks to be arranged in a periodic
array, where one period of this array is equivalent to a
single crack in an infinite strip.

(2)

Berezhnitskii has derived approximate data
for two equal length, rectilinear, parallel cracks,
symmetrically placed one above the other. His results
were inferred from the solution for two symmetric,
arc-shaped cracks.,

(24)

Yokobori, Uozumi and Ichikawa constructed
approximate solutions for two equal length, rectilinear,
parallel cracks which may be staggered. The solution was
expressed in terms of an (unknown) distribution of dis-

location densities. Evaluation of the boundary conditions
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then led to integral equations for the unknown distri-
butions, which were then solved numerically. The approach
is quite closely related to that taken here. However,

the geometry and loadings are much more restrictive.

For the general problem of arbitrarily oriented
rectilinear cracks, an approximate solution technique
has been presented by Ishida (13). His approach is to
assume the solution in the form of a superposition of
single-crack solutions. The complex potentials gener-
ating each single-crack stress field are then expressed
in terms of their Laurent series outside a circle
enclosing the crack. The coefficients of the series are
the unknowns. They are found as solutions to infinite
systems of equations which result from the application
of the boundary conditions at each crack. These
equations are solved by a perturbation procedure. This
approach is primarily suited to problems in which the
crack separation distances are not too small relative to
the crack lengths. The reason for this is twofold.

(1) The theoretical derivation is valid only when none
of the cracks protrudes into a circle about another
crack. (2) As indicated earlier, the stresses (and
hence the complex potentials) will have square-root
singularities near the crack tips. Such a singularity
is very poorly represented by a Laurent series in the

vicinity of the crack tips. Thus, when one crack tip
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is very close to another crack, a large number of terms
will be necessary to adequately represent the stress
fields. This can lead to considerable numerical diffi-
culty, in terms of both computing time and roundoff error.

In this report, an improved numerical technique
for the analysis of interacting rectilinear cracks is
presented. The approach taken is to use the integral form
of Muskhelishvili's colinear crack solution to reduce
the problem to a set of one-dimensional integral equations.
These equations, which are reasonably simple alge-
braically, are then solved numerically. It is shown
that the method is valid for any orientation of the
cracks, so long as they do not intersect. Further, the
essential form of the solution can be retained throughout
the numerical computations. Finally, an error analysis
of the method shows that an extremely high rate of con-
vergence can be established.

A computer program was written to apply the method
to the problem of two interacting cracks with stress-free
surfaces, subject to bounded stresses at infinity. As
a check case, the program was applied to the problem of
colinear cracks. The agreement is found to be excellent,
and the rate of convergence is surprisingly good. Finally,
a survey of some two-crack interaction problems was run,

and a number of interesting conclusions drawn.
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II. ANALYTICAL FORMULATION

1, Problem Description

The problem under consideration is a stress boun-
dary value problem in the two-dimensional theory of elas-
ticity (plane strain or generalized plane stress). The
material body is assumed to be homogeneous; isotropic, and
linearly elastic. Body forces are absent, and the loadings
are independent of time.

The geometry and coordinate systems may be vis-
ualized with the aid of Figure 2. A two~dimensional
region, infinite in extent, is acted upon by constant
in-plane stresses at infinity. The far-field stresses,
denoted by g, are given relative to an arbitrary global
coordinate system defined by the complex variable .

2, = X, + iyoo In this system, J, may be characterized

by its principal stresses N1 and N2’ together with the
angle A, between the directions of N1 and the +xo axis
(measured as positive in the counter-clockwise direction).
A finite number (N) of cracks are embedded in the region.
These cracks, denoted by the line segments LYLZ""’LN’

are assumed to be rectilinear and non-intersecting. Other-
wise, the geometry is arbitrary. With each crack Ln may

be associated a local coordinate system in terms of the

complex variable z, = X, + iyn. Each system is chosen
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such that Ln lies along the real axis Yo = 0, and the cen-
" ter of the crack lies at z, = 0. The endpoints of the
crack L, then lie at z = */,, where 4, is the half-
length of the nth crack. The global coordinate z, may be

related to the local coordinate z, by

Zo = Zon + Z, €47 n=1.2, ... N (2.1)

where Zon is the location of the origin of the z, system
expressed in the z, system and Aon is the rotation of the
x axis with respect to the X, axis, measured as pos-
itive in the counter-clockwise direction. The quantities
Zon® %on? and.ln coﬁpletely define the geometry of the
cracks, and they are presumed to be given. Equations

(2.1) may be solved to relate any two coordinate systems

by
mn
Z"‘l: th + Z, e" (mln: O)i}"'jN) (2.2)
where Zz, =(2, ~Zom)€ """ | O, = Hon = Fom
and Zoo = Ko = O

The local coordinate systems may be used to differentiate
the two faces of each crack by defining the upper surface
(S;) to be that lying along Yo = 9+. and the lower sur-~
face (S;) to be that lying along y, = 0. This convention
may then be utilized to describe the tractions which are

allowed to act along the surfaces of each crack. These
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tractions are assumed to be given in the local coordinate

systems. Along S; there are in-plane tractions Ty+ and
n

Tx+ in the ¥, and +x directions, respectively. Simil-
n -
arly, in-plane tractions along S; are denoted by Ty and

n

Tx- in the +y_  and +x_ directions. The applied tractions
n

may be functions of the coordinate X, along the length of
the crack, but it is assumed that the functions satisfy

*
the H6élder condition (H condition) on L+

The boundary of the body is given by

L=UL, (2.3)

Where it is necessary to be more specific, the boundary
L may be viewed as being composed of two distinct surfaces

which happen to coincide. These are given by

N
S*:GS,I S =US, (2.4)
n=1 / n=j

The region occupied by the material body will be denoted

¥*

An extensive discussion of the Hélder condition
is given in Chapter I of Muskhelishvili (16). A function
$(t) defined on a closed interval L is said to satisfy
a Hélder condition on L if positive constants A and/a
may be found such that

[$ct,) - Bee)l € Alty- )P

for all pairs of points t,, t., of L. .

Evidently, a suff cieﬁt condition for ¢ to satisfy
the H condition on L is that be piecewise smooth on the
closed interval L. (This result follows directly from
the above definition, together with the Mean Value
Theorem. )
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by the open region

B=E,-L (2.5)

where E2 is the two-dimensional Euclidean space.
To facilitate the subsequent discussion, a
one-parameter family of bounded subregions of B will be

defined as follows:

B, = §x,v)ltx,v)€ B and x.3+y,‘<R2} (2.6)

That is, BR consists of that portion of B lying within a
circle of radius R centered at the origin 2, = 0., Let

such a circle be denoted by
CR = {(Xo/yv)’ xoz + Y°z = RZ} (2.7)

Since the cracks L. (n =1,2,...,N) are finite, both in
number and in length, it follows that for some sufficiently
large R all of L will lie within Cp. In the following
investigation, it will be assumed that such an R has

been chosen (and fixed) and denoted by Ry»
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2. Preliminaries. Stress States

and Traction Operators

In seeking a solution to the boundary value prob-
lem indicated above, one is generally concerned with deter-
mining the stress fieldgz(xo.yo) throughout the body B.
However, the displacement field ijo,yo) wgll be seen to be
of some interest. Hence, it will be convenient to speak
in terms of a stress state ., defined as the ordered array

of functions

S=Lu,r] | (2.8)

A stress state 4 will be called an admissible
elastostatic stress state (or, simply, an elastostatic
state) if the following conditions prevail. On the open
region B,dJ must be continuously differentiable and, to-
gether with the strain field Y ,.J must satisfy the
equations of two-dimensional static, linear elasticity for
a homogeneous, isotropic solid in the absence of body
forces:*

(i) The strain-displacement equations

b{(ﬂ: é(ua/p*'up}d) (2.9)

*In this report, dummy indices represented by
Greek letters will always assgsume the range (1,2,). The
presence of a repeated index indicates summation over its
range.
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(ii) The constitutive relations

Uip = X Vpp bug + 21 Vup (2.10a)
or e = -él; Tus ~ @—J—?-‘%;;j oy 6,,, (2.10b)
(11i) The equilibrium equations

O, =0 (2.11)

48,0

Here 5#315 the Kronecker delta, 2 and u are the Lamé

constants for the material, and

A (P Strai
5 - Plane rain) (2.12)
224 (cGeneralized Plane Str‘css)
A+ 2u

Further, 4 must be continuous up to the boundaries S+ and
S~ of B, with the exception of the crack endpoints

2 = iﬁ[n(n =1,2,...,N). (However, 4 may be discontinuous
across L.) Finally, u and g  must satisfy the following

boundedness conditions:

(i) There must exist some finite constant Mu such that

lu(z)l € My  for all 2o € Bg, (2.13)

(ii) The stresses must be bounded at infinity, or
0 (2,) =00 as [z,]/— o (2.14)

It may be noted that the above definition of an
elastostatic state J permits the existence of singular-

jties in 4 at the crack endpoints. The sole restriction
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on such singularities is the one implied by (2.13). That
is, the displacements must be bounded up to the crack tips.

The strain energy density W is given by
W= 3 q Yas (2.15)

Using (2.10), this may be equivalently expressed as

_ e 2 B2 .1
W =34 s T (X +u) & (2.160)
where 29:9’;5,5 ) @.-:o;ﬁ

The above expressions directly reflect the fact that W may
be expressed as a quadratic form in either the strains or
the stresses, The usual assumption will be made that these
are positive definite quadratic forms. It is well known
that this will be true if the material constants X, u« are

such that the following relations are satisfied:

/u>O , —-1427<-"§_‘ (2.17)

—
o~

where = £
Y 2 xew)

From (2.8), it is evident that the definition of
a stress state implicitly presumes the existence of some
reference coordinate system. However, allusions will be
made to the general concept of a stress state, without

reference to a particular coordinate system, when no



-22-
confusion will result. Conversely, a given stress state
may be referred to more than one coordinate system, in
which case the usual transformation properties will
govern. When necessary, a reference coordinate system for

d will be indicated by a superscript (n)' that is,

SM=[u” £  n=0

L (2.18)

where g(n)..gin) are referred to the coordinate system
defined by 2,

An additional formalism which will simplify the
subsequent discussion is the concept of traction oper-

(n)+ and U’(n)- are referred

ators. The traction operators ¢
to a given crack Ln and associated local coordinate
zZ,. _They operate on a stress state o as follows:

T}t = ~sMe) i) = GOy i ey (2:192)

T dH ey = ST ) =L SVt = Oy (8 A G () (2.,19b)

thé-(/[n/ln)j n=i)2j' )N
Here sz(n)+ and sl(n)+ are the tractions in the +yn and

+xn directions, respectively, which are generated by <f
on the surface S;. Further, Jéén)+ and Gién)+ are the
indicated stresses generated by & on the surface S;,

expressed in the z, system. Similarly, sz(n)-. Sl(n)--
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G—égn)’ and (Tiz(n)- are the corresponding tractions and
stresses generated by < on the surface Sn-. A reference
system for 4 need not be explicitly indicated.

Equations (2.19) clearly demonstrate the direct
relationship between the tractions acting on st and s7,

and the stress components on st and s7s

)
5;’1)"’ - - G;z(n)"' ) 5:” + - - o'-—z("')"'
(2.20)
= (- - _ ny-
52‘ 0;2 2 Sy - 0.';‘

It is pedantically more correct to speak of tractions
rather than stresses being applied to a surface. However,
in the development of this problem it will be convenient
to speak in terms of the applied stresses on the crack
surfaces., Due to the simple relationship indicated in
(2.20), no confusion should result.

Two additional operators will be defined by
Q;m) = 4 (g(n)-ﬂ; + Ulni-) (2.21a)
@‘;cn) S Q’m_) (2.21b)
From equations (2.19), it then follows that
T St = £l ey + )] 4 £G ey + 5 w]  (2.222)
LS )= £L G ey - G )] it [0 ey - )] (20220)

th€(~4n, L)) | n=12 N

25)
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S

From these equations it may be seen that J corre-
sponds to that portion of the applied stresses acting on
Lrl which is symmetric with respect to the upper and
lower surfaces, S; and S;. Similarly, {fén; corre-
sponds to that portion of the applied stresses which is
antisymmetric with respect to S; and S;.

With the aid of the above formalisms, the stress
boundary value problem which was indicated in Section 1
of this chapter may be more rigorously stated as follows:

Given the crack-embedded plane B, find an elastostatic

state o defined on B and satisfying

T dF k= ~ Tyt e + 4TI e) = G (2.23a)

X L) = T (e - AT (8) = GO (e (2.23b)
th€ (Lo, L) | n=l2,..., N

T= T+ oll) as |2, —> =@ (2.23c)

Note that the equations and continuity conditions that the
solution must satisfy are implied by the requirement that
4 be an admissible elastostatic stress state. Further,
since the applied tractions on Ln are assumed to satisfy
the H condition on Ln s it follows that the functions
6(“)+(t) and 8(“)'<t) defined in equations (2.23) will

also satisfy the H condition.

It might be noted that the strains are not
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explicitly exhibited in equation (2.8), the definition of a
stress state. This is because the problem posed is a stress
boundary value problem. Hence, the strains are not central
to the problem solution, and follow merely as a result of
the solution.

The displacements, which are explicitly exhibited
in (2.8), are central to the problem solution in two ways:
(1) uniqueness of the solution; (2) the problem of crack
surface "overlap."

The difficulty with uniqueness arises because the
problem being solved is a two-dimensional elasticity prob-
lem on a multiply-connected domain with stress boundary
conditions. It is well known that in such a circumstance
the stress equilibrium equations and boundary conditions
may possess an infinity of solutions, corresponding to
different multi-valued displacement fields. The correct
solution may be determined only by enforcing the require-
ment that the displacement be single-valued. The uniqueness
of this single-valued solution is proved for a wide class
of admissible singular solutions in Appendix I.

The difficulty with crack surface overlap arises
because the boundary conditions on the crack surfaces are
assumed to be given in terms of the tractions. Hence, the
displacements of the crack surfaces cannot be specified,
and can only be derived as a result of the solution. For

certain geometries and loadings, it may be found that the



26~

relative normal displacement of the upper and lower crack
surfaces is negative over certain intervals. That is, the
crack surfaces "go through” each other, or they "overlap."

A simple example is provided by the Griffith
crack with traction-free surfaces. If this is subjected to
a unit normal tension at infinity, then, as indicated in
Chapter I, the crack surfaces open into an ellipse. Con-
versely, if the crack is subjected to a unit normal com-
pression at infinity, then, by the linearity of the prob-
lem, reversing the sign of the loading should merely
reverse the sign of the response. Hence the crack surfaces
g0 through each other into an "inverted ellipse.” For
plane strain problems, this is clearly unnacceptable from a
physical viewpoint. The obvious difficulty lies in the
imposition of a traction-free boundary condition on the
crack surfaces. For normal compression at infinity, the
physically reasonable boundary condition is a displacement
condition, that is, there should be no relative dis-
prlacement of the crack surfaces. The correct solution
would then be merely a state of uniform compression
throughout the body, as though no crack were present.

It is not difficult to conceive of situations in
which the solution is not so simple. Thus, a given crack
might tend to open along part of its length, and to overlap
along part of its length. (An example of such a problem
is considered in Chapter III.) Evidently, a physically
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proper formulation for such a circumstance would be in
terms of a "contact problem." That is, a situation in
which part of the crack surface is in contact and part is
free, and the dividing point is not known beforehand. In
addition, the physically reasonable boundary condition
along the contact surface might be that there should be no
normal displacement but that there may be sliding displace-
ment which would depend upon, say, the shear traction

and some assumed coefficient of friction.

Although it would be desirable to incorporate
such considerations, the added analytical and numerical
complications are beyond the scope of the present inves-
tigation. Attention will be confined to the analysis of
the stress boundary value problem only. However, methods
will be provided for calculating crack surface dis-~
placements, which may then be checked to verify whether

the solution obtained is physically reasonable.
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3. An Integral Form of Solution

Although no solution has been found for the
general class of problems stated in Section 2 of this
chapter, a solution has been found for one particular
subclass of these problems. This is an integral form of
solution for the problem of colinear cracks. (The cracks
are said to be colinear when they all lie along the same
line, as shown in Figure 4.) This solution, which is given
in Section 120 of Muskhelishvili(lé), will be presented
here. It will then be applied to the special case of a
single crack, resulting in a relatively simple, integral
form of solution. This will be used in subsequent
sections to construct sclutions to the general problem,
which may then be analyzed by numerical techniques.

Without loss of generality, let the global coordi-
nate system be chosen so that the cracks all lie along
the real axis (c.f. Fig. 4). To simplify notation,
the global coordinate will be represented by z rather
than Zge Let the endpoint z, = -Zn be denoted by z = a,,
and the endpoint z, = th by z = b (n = 1,2,4c4,N)s
Further, assign a positive direction along Ln by the
direction from a to b . Let &£p be the (arbitrary)

rotation at infinity. Then Muskhelishvili's solution is
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given in terms of a pair of sectionally holomorphic

functions.*§(z) and Q(z), by

2 (U rau,)= 2 Pz)-w(Z)—(z2-Z) F) + const. (2.24a)
G+ =2[F@) + ED] (2.24b)
0, -4 0 = @) + (ZF) +(2-2) §(2) (2.24c)

where ®(z) and w(z) are defined by
P)=3@ , wi(z)= 0(z) (2.24d)

and where the constant term in (2.24a) represents the
(arbitrary) displacement at infinity. The factor ¥ is

given by

- 2t3u _ A
P4 >+ 3-4v ) X >0 (2.25)

*The usage in Muskhelishvili (16) for the terms
"holomorphlc“ and "analytic” will be followed here. The
distinction is indicated in a footnote on p. 131 of
Muskhelishvili (16). A function f = f, (x,y ) + if. (x,y)
of the complex variable z = Xx + iy, de}lned in somg domain
D of the complex plane, will be said to be holomorphic in
D if it is single valued and differentiable with respect
to z at every point z in D. Thus a holomorphic function
is one which many authors would define as "regular" or
"analytic."” However, Muskhelishvili reserves the use of
the term "analytic” for the broader class of multi-valued
functions. A function f defined and (possibly)
multi-valued on a domain D, will be said to be analytic in
D if each continuously varying branch of f is holomorphic
in any finite, simply connected subdomain of D.

The meaning of the term "sectionally holomorphic*®
is explained in Section 106 of Muskhelishvili (16),
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The functions &(z) and ()(z) may be found in
terms of the applied loads as followss: Let L be as given
in (2.3), and assign a positive direction to L in terms
of the positive directions of the line segments composing

L. Let t denote a point on L, and let

p)= [ &My + &) (2.26a)
gty = 2L &M - g w)] (2.26b)
tél—n n=12 . N

) YV

where the functions on the right are defined in (2.23).
Also, let
N L 4.
X(z)= T (z-3a,)%*(Z-b,)*= (2.27a)
n=1

where the branch cuts of X(z) are chosen to lie on the
line segments Ln (n =1,2,...,N) and the branch of X(z) is

chosen such that
X(z) = +z2" + ¢y, 2" 40 as 1z]—e (2.27b)

Then $(z) and (1(z) are given by

_ R@ . iAo T
$2)= @)+ Ly * L(r-F-r71") (2.28a)
- Rz _ (- FP-T7 .
Q@)= Qu(2)+ & L (r-F-T7) (2.28b)

where
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i,(z):Z—WT'x—@{;c%_L%th + 2_#_{313 Jt (2.29a)
£1,(2)= 27r:'X(Z)j >?t(t)zfiﬂ‘”: - 2:;'4'{28{%— dt (2.290)
R, (2) =k, 2V + RZM7 4 - -0 & Ry (2.29¢)
M= 2 (N +N) + 4 T’f’f‘cﬁ (2.29d)
M= =g(N-nN,) e 8% (2.29¢)
ko = (M+T +77) (2.29f)

The quantity X(t) appearing under the integral
in (2.29a) and (2.29b) is understood to be X'(t), the
value taken by X(z) on s*. The constants kl,kz,...,kN

are determined by the system of equations

2(>c+:)f xcz: 2 dtn, + xj[?f ten) -3t ldt, +j[n S~ ) dt,=0( 2. 298)

Equations (2.29g) are a result of the requirement that
the displacements be single valued about each crack. They
form a system of N linear, algebraic equations for the N
coefficients kl’kz""'kN‘

The assertion that $(z) and L.(z) are sectionally
holomorphic follows from equations (2.26), +together with
the fact that under the hypothesis of the problem, the
functions g(n)+ and ¢(n)- satisfy the H condition on L

(n = 1,2,0449N) (cef., Muskhelishvili (16)).
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If the above solution is applied to the special
case of a single crack, the expressions for the generating
functions may be considerably simplified. For a crack of
length 24, lying on the real axis and centered at the
origin, with vanishing stresses and rotation at infinity,

equations (2.26) - (2.29) yield

R R
)= () + z*—'r ) Q@=,@) + == (2.30)
where
§°(Z.)=w, (Z2) + W, (2) 5 O, (2) =W, (Z2)~ W, (Z) (2.31)
and
4 JE
~ ] pyvei-2*
Y]
W)= 5o £ 8 e (2.32b)
The functions p(t) and q(t) are given in equations
(2.26), where the dummy coordinate t may be taken

to be the global coordinate along the real axis. As
indicated above, p(t) and q(t) satisfy the H condition
on L, Consequently, it may be shown that the functions
wl(z) and w2(z) defined in equations (2.32) are
sectionally holomorphic.

The constant k; is determined by (2.29g) which,
together with (2.32) yields '

V) £ £
~200+k, | Zi = e[ (i wo)dt +6eDft-wp) At (2.33)
-£ -4 7
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The integral on the left is given by

[ 3

__{7{{%—.= —Am (2.34)

The first integral on the right of (2.33) 1is identically
zero for any Wy generated by any p(t) which satisfies the

H condition on L. This is most easily seen by contour
integration. Referring to Figure 5, consider the following

one-parameter families of contours:

(1) Cg

CR:)M = R, R>2£

(2) Cf. depending on the parameter T, defined by

depending on the parameter R, defined by

Cf! CII\‘ + C/f‘ + Cf‘ + Ch
1 2 3 Ty
where

C? : Z =X + iO+

1 - I+Pax<L-T
Ca ¢ 2 =X + i0~
92

- ”n

Co ¢ lz+tl =7
Ty

o<t < £

Since wl(z) is sectionally holomorphic, it is
continuous up to the boundary L, both from above and
below, at every point of L with the exception of the
endpoints z = +4. Further, the following may be shown

without undue difficulty: The fact that wl(z) is
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continuous up to the smooth boundary L implies that the
boundary values, denoted by w;(t) and w;(t), are themsgelves
continuous functions of the coordinate t along L,
for -¢< t<2, Thus the function wl(z) can be seen to be
continuous on the contours C? and Cgs for 0<T< 2 and R>Z.
Moreover, wl(z) is holomorphic at every point in the
domain bounded by Cg and CR' Hence, the strong form of
the Cauchy-Goursat Theorem* may be utilized to justify

the "deformation of contours,” that is,

Swiz)dz = $wrdz  (0<F<l, R>E) (2.35)
Cq CR
Thus
o7
fA[w.*Ct)-w,‘Ct)]alt = fW,(z)clz —ﬁvl,(z)dz (2.36)
-£+r C§+Ca CR

where the integrals on the right are taken in their posi-

tive (counter-clockwise) direction. But in the vicinity

of z = +4, wl(z) = O(?'%) while the length of the contours
093 and Cfb are proportional to T. Thus, taking the limit
of equation (2.36) as T—0, it follows that the integral

around C? and C? will vanish leaving
n

3
2
jL'w,*(t) -wi(t)]dt = *§w,(7_)dz (2.37)
-._l CR

From (2.32a) it is clear that w,(z) = 0(R™%) as R+,

*
c.f. Copson (3), Sections 4.22 and 4.3,
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while the length of the contour CR is proportional to R.
Therefore the right hand side of (2.37) vanishes as R—>® ,

resulting in

L
JIwiw-wiwldt =0 (2.38)

From (2.32b), wz(z) is defined by a Cauchy Inte-
gral of a function q(t) which is presumed to satisfy the
*
H condition of L. Thus, from the Plemelj Formulae one

has

W (£) - W (8) = g (¢t) t€(-£, L) (2.39)
Combining (2.33), (2.34), (2.38) and (2.39) yields

R = (25L)- Z—}rfilift)dt (2.40)

From (2.26b) and equations (2.23), it might be
noted that q(t) is the symmetric component of the
tractions acting on the crack surface. Thus the integral
on the right of equation (2.40) has a simple physical

interpretation.

V4
{%(t)dt= —A, + LA (2.41)

where AI' A2 are the net resultant forces (per unit

*c.f. Muskhelishvili (15,16)
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thickness) acting on the crack surface in the +x and +y
directions, respectively. Evidently k1 will be zero if
there is no net load acting on the crack.

Combining equations (2.30), (2,31), (2.32) and
(2.40) yields the following simplified expressions for
the generating functions of the unique single-crack stress

state with single-valued displacements:

r
80)= srvae zmﬁ?‘"“fgﬂ@dt* am J[t z (XHL]Z“)‘}': (2.42a)

OYLi-r* | _(x%_jL)_
QD= 575 VZog7 JF(_C:"H: 7—7'4”: VZ?—”]i(t)Jt (2.42b)

Since ¢(z) and ()(z) are sectionally holo-
morphic in the entire plane, and vanish at infinity, they
may be expanded in Laurent series outside of a circle

enclosing L.

co ‘o
¢(z)=Zcnz™" ,  Qz)=2 4,277 (z1>.4) (2.43)
hz/

Nx}

Thus, from (2.24), ®(z) and w(z) may be

expressed as

Qo
P@y= ¢, log(z) + Co - 2. Lau 70 (2.44a)
n=|{
o] d -n
w(z) = d, |oj(2.) +do ~ > ‘;‘,;,ﬂ' z (2.440)

n={

where Co and do are arbitrary integration constants.
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From these expressions, it is evident that if cy and d1
are non-zero, then $(z) and w(z) will be multi-valued
(and thus merely analytic). By utilizing equations (2.42),

it is easily shown that

4

¢, = (-1 +3L). Er%_{z(t)dt (2.45a)
i £

d, = (1+ L) - zwj{z(t)dt (2.45v)

By comparing (2.45) to (2.41), it is clear that ¢, and d;
will be zero if the net resultant force (per unit thickness)
acting on the crack surface vanishes, In this event, it

is evident from (2.44) that ¢(z) and w(z) will be
holomorphic. Further, by considering the behavior of ¥
and W near L, it is easily shown that they will be

sectionally holomorphic.
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4L, Reduction of the Problem

to Integral Equations

The single-crack solution given in the preceding
section is an integral form of solution. This immediately
suggests an approach which is quite commonly used when
an integral form of solution is known for a special
case of a more general, linear problem. One merely assumes
that the solution to the general problem of N arbitrarily
oriented cracks may be represented as the superposition
of N single crack solutions, where the nth single crack
solution is referred +to Lno Edch single crack stress
field is assumed to be generated by some (as yet) unknown
loading along the crack surface. The boundary conditions
are then enforced along each crack L (m =1,2,.0.,N),
This results in a system of one-dimensional integral
equations for the unknown single-crack loadings. That
is, the problem is “ reduced to integral equations.”

This reduction has a number of advantages.

(1) The number of dimensions involved in the problem is
reduced from two to one. Instead of seeking a stress
field J(x,y) satisfying field equations in the
two-dimensional plane, one need only seek loadings pn(t),
q™(t) satisfying one-dimensional integral equations along
the crack lines. (2) Many of the powerful theorems of

integral equations may be invoked to reach analytical
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conclusions. (3) Integral equations are often admirably
suited to approximate, numerical solution. (4) The
essential singular character of the solution may be
"built in" a priori.

With regard to (2) above, the theory of integral
equations will make it possible to justify the assumed
decomposition of the solution into a superposition of
single-crack stress states. It is not immediately obvious
that such a decomposition is valid. Thus, it will be
necessary to proceed at first in a formal manner. Once
the problem is reduced to integral equations, the theory
of integral equations can then be used to justify the
assumed decomposition.

With regard to (4) above, it may be seen that
the characteristic "square root singularity” of the stresses
at the crack tips is explicitly displayed in equations
(2.42)., The explicit representation will be carried
throughout the subsequent analytical and numerical
analyses. This might be contrasted with the approach
described in Chapter I, in which the singularity is "buried”
in a Laurent expression for the complex potentials gener-
ating the solution.

In the subsequent analysis, stress states may be
denoted by non-parenthetical (and possibly multiple)

superscripts. Thus
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,J"= [gn) g_n] (2.“‘6)

The presence of the superscripts will serve merely to
jdentify the stress state. This may be compared with the
notation concerning parenthetical superscripts indicated
in equation (2.18).

Before proceeding with the reduction to inte-
gral equations, an initial reduction will be made which
will prove quite helpful in the subsequent analytical
and numerical work. The total stress state .4' will

be expressed as

N

ST= S d" o+ S (2.47)

n=0

Here 4°%'° is the uniform stress state corresponding
to the applied dg= at infinity. S™° is the single-crack
stress state corresponding to the applied loadings a(n)+
and a(n)' acting on Ln' with vanishing stresses and
rotation at infinity (n = 1,2,...,N). .4 is the residual
stress state that remains after the above superposition
is effected.

The generating functions for S°'° cannot be
found as a special case of the colinear crack solution
since this solution presumes the existence of at least

one crack. Rather, it may be easily verified that the

generating functions are given by
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Fofzo) = O°%z)= T+ (2.48)

J

where " and "’ are defined in équations (2.29). The
generating functions for the states ‘!n,o (n = 1,2,04.,N)
may be found by applying the single-crack solution to

each L . Thus, from (2.42) and (2.26),

i .Zé.l
s dt, +a7uﬁt-r _&uL

(2= zrn’zT—“j t. -2, Vzi-77. jl)iw(t'-)‘/t (2.49a)

"z)= 214;/‘;_‘1‘—"[‘22&@ 2w f[t".z VZ—;~J "“tadt, (2.49b)
prectn = & [ G e + 67 ()] (2.50a)
~An< tn< Ln
o) = £ [ G - G (t0) (2.50b)
n=12.. N

) ) °)

The generating functions $"'° and OM*°

are, of course,
referred to the z system, as is the state L1000
which they generate (n = 0,1,...,N).

From equations (2.21) and (2.23), it is easily
seen that the boundary conditions on Ln can be written

in the completely equivalent form

J;(n){JrJ(t”)___ ‘!2‘[@‘")+(tn) + é(n)-(t")]____ Pn,o(t") (2-513.)
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TSt = L6 - E7a] = ¢t (2.51b)
thé(_ln,ln) 3 h‘—‘-l)Z)...)N

where the last equalities follow from (2.50). Thus
the function pn,o corresponds to the symmetric portion

of the applied stress, while qn'O

corresponds to the
antisymmetric portion of the applied stress.
But by the construction of the single-crack

stress state, &7'° must also satisfy
Og(n)zé,n,o}(tn): __é_[g(nw(tn) + é\m‘(t,,)]: Pn,o(t") (2.52a)
S5 "G en = [ ™M) - G = 970t (2.52b)
a th) - 2 " nl)] — i " ¢

the (4,L), n=12 N

IR RS
Thus (2.47), (2.51) and (2.52) imply the fol-

lowing boundary conditions on the residual state . :

N

Q:")fzf}(tn) = ‘§ 3;("’{J"'° (tn) = G"(tn) (2.53a)
i

T gHe) =-> FZOI Lk = 0 (2.53b)
min

th€-la, L) 5, N=0,2,... N

L =0() as |z,l—>w (2.53c)

Note that the second equality in equation (2.53b)
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follows because the stress states L™° (m = 0,1,...,N;m#n)
are all analytic across Ln' Thus they can produce only

symmetric stresses on the surfaces of Ln' since

gj’(nw{J"';O (t,) = Q"(")-ZJ"’:"}(t”) (m + n) (2.54)

th€Cla, L)) , m= 0,1y ... )N j n=1,2,...)N

J

Thus the antisymmetric component, represented by z(J™% T")
must be identically zero.

By use of superposition and the single-crack
solution, the problem can always be reduced to one in
which the applied stresses are symmetric across the
crack surfaces, and the stresses vanish at infinity.

The symmetry of the applied stresses represent a consid-
erable simplification, both analytically and numerically.
Further, the fact that the applied stresses on L, are
generated by stress states which are analytic in a
neighborhood of Ln implies certain analytic properties
of the solution which are quite beneficial in terms of
the convergence rate of numerical procedures that will
be used.

The functions Gn(tn) may be expressed in terms
of the generating functions $Me©° (zm). nNMmo (zm) by
utilizing some simplified transformation formulae for
the plane theory of elasticity. Consider two coordinate

systems, a primed system and an unprimed system
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(c.f. Fig. 6). The primed system is rotated by an
angle & in the positive (counter-clockwise) direction.

Then the relation between the stresses in the two systems

is given by
0:’:(' * 6;§' = G t 0;*/ (2-553.)
03 = Gane + 24 Gl = (G = Gy + 24 Gy ) €72 (2.55b)

(c.f. Muskhelishvili (16) p.25). Adding equations (2.55)
and taking the complex conjugate of the resulting

equation yields the second of the following equations.
Oege t Oyiye = Gry + 0 (2.56a)
)(1- €42%)+ (G3y-idx)e 2+ (2.56D)

Equations (2.56) give the transformation formulae in a
form suitable for use with equations (2.24).
From (2.1), (2.24), (2.53), (2.56), Gn(tn) is
given by
> T — —iza
G"(t)=2. {[§”"°(z..,) + 3™z ](1-e™* ’"")
m=o

m¥n e -A
L3z + ) +(2m-Z) T (2] € dej (2.57a)

where 2z, =2,(t,) =27Z,, +t, e mn , tn€(4, L) (2.57p)

Proceeding on to the reduction to integral
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equations, it will be assumed that the residual state
4 may be represented as a superposition of single-crack

stress states (this will later be justified). Thus
N n
d=2 (2.58)
n=

where ,Jn is a single-crack stress state referred to

Ln' and is generated by potentials of the form (2.42),
These potentials, in turn, are generated by some (as yet
unknown) symmetric and antisymmetric loadings, pn(tn) and
qn(tn), respectively. Since potentials of this form
generate vanishing stresses at infinity, it is clear that
the assumed superposition in (2.58) automatically satis-
fies the boundary condition on o at infinity, equation

(2.53c). Further, substituting (2.58) into (2.53b)

yields
N
2. &S (e =0 (2.59)
mz=i
tné(‘jq/,éu)j n:l)zl.,..)N

But ,ém is analytic across Ln (m=1,2,00¢,N, m # n) and
hence can generate no antisymmetric stresses across Ln

(n =1,2,...,N), Thus

T8 (L) =0 (m+n) (2.60)

th €L, L) , mn=12,...N
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Substituting (2.60) into (2.59) gives

T} (ta) = 9" (tn) =0 (2.61)

That is, the antisymmetric portion of the (unknown)
crack loading generating ‘3“ is identically zero. Hence,
one of the "unknown" generating loadings is completely
determined beforehand. It is necessary to consider only
one unknown loading, pn(tn). rather than two. This
represents a considerable simplification, particularly
when it comes to numerical analysis of the resulting
equations. It might be noted that the disappearance of
qn(tn) is a direct result of the initial reduction,
equation (2.47).

In the subsequent analysis, the (unknown)

symmetric loading will be denoted by

pi(tn) = F () = F () +4F(tn) th€(La, L)  (2.62)

Then from (2.42), the generating functions of & are
given by

l" n 3 F3

'z =0 = 277/':/??!?1 F(ELYE—:T

dt, (2.63)
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Substituting (2.63) in (2.24) and utilizing
(2.56), the final boundary condition, equation (2.53a),
may be evaluated to give

N ' ; ™ ~ACmn M, =
F"(X") +Z e-A,G(Mn {eux-nn § (z_m) + e @ (z_m)
men (2.64a)

Hen_ emion) F2.) + € 2N T ) C0

Lo = Zim(Xn) = Zmn + Xn€ % X, € (<hn, L) (2.64b)
From equation (2.63), §“‘(z$) is given in
terms of an integral of ", Thus equations (2.64) are a set
of integral equations of the form

£
AN Lm Pl ———— )
Fix,) +2. { f K (xn tm) F 7 (tm)d tm + f Ko (X, tm) F "‘(t..)Jt..}=G(Xn)( 2.65a)
mzy -1..

m#n A

Xne(‘lnl,en) ) n:{JZJ‘GO.)N

where
_ fEEam e et 1 (265
Knm (Xn,tm) = 27 4L ke U Vamze (e ) o)

= _ yti-7E e *%mn o idn
K (xn t - ”.‘ > mr - G
o) = R e (e B (T~ )

+ e-iamn(z_m_'z’m)(_g:l:i_;, { )J (2'650)

Z: 22

2= 21 (X0) T Zipy + X @ 4%mn
Equations (2.65) constitute a well-behaved set of Fredholm

integral equations of the second kind.
By separating the real and imaginary parts of
equations (2.65), one might view them as a system of

2N Fredholm equations for the 2N unknown functions
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1 .1 .2 .2 N N .
Fl’FZ'Fl'FZ"“’Fl'Fz' Alternately, it can be
shown that any system of Fredholm equations can always
be reduced to a single equation of the standard type
(c.f. Tricomi (23), Section 3.17). Thus without

carrying out the details, equations (2.65) can always be

expressed as a single equation of the form

i
FOo + 3 kK, F@) dt = GX) oexsl
o

For analytical arguments, it will frequently be convenient
to consider the equations in the above form.

The homogeneous Fredholm equations (2.65) cannot
have a non-trivial, quadratically integrable solution.
This is easily shown by contradiction. Suppose a
non-trivial solution were to exist. From (2.65b) and

(2.65¢c), it is easily seen that K_ (x_,t ) and K (x

nm' n° m nm t )

n'’m
are infinitely continuously differentiable with respect to
x_ in the rectangle -f <X £, -4, <t <4 Using (2.65a)
to express Fn(xn) in terms of the integrals on the right,
it then follows that Fn(xn) is infinitely continuously
differentiable on the interval ﬁé%éXﬁy; (n =1,2,.04,N).
Thus, the FI certainly satisfy the H condition on their
intervals of definition. From (2.63) it follows that §n
and N are sectionally holomorphic, non-trivial
potentials. Working backwards, it is easily seen that

these potentials generate a non-trivial solution to the

homogeneous stress boundary problem. But this is
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impossible by the uniqueness theorem (c.f. App.I). Thus,
by contradiction, there can be no non-trivial, quadratically
integrable solution to the homogeneous Fredholm equations.

The alternative Theorem of Fredholm equations
may now be applied (c.f. Tricomi, p. 64). Since the
homogeneous equations have only a trivial solution, it
follows that the corresponding non-homogeneous equations
must have one and only one solution. Working backwards
as before, this solution forms a solution to the original
(non-homogeneous) stress boundary value problem. Again
applying the uniqueness theorem, it follows that this
must be the solution.,

The above argument justifies the assumed super-
position in (2.58)., Further, it indicates that the
approach is valid for any arbitrary orientation of the

cracks, so long as they do not intersect.
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5. Expressions for Quantities of Interest

In this section, expressions are preéented
for various quantities of interest. As seen in Chapter I,
Section 1, this will include the stress intensity fac-
tors at the crack tips, as well as the "energy of the
cracks," that is, the energy difference due to the pres-
ence of the cracks. As indicated in Section 2 of this
chapter, some attention must also be given to the relative
displacements of the crack surfaces, to check for the
overlap problem.

The various quantities will be derived only for
the residual state . The analysis of the additional
states in (2.47) can be done in a nearly analogous
manner.

Since displacements will be of interest, it can
be seen from (2.24a) that it might be more convenient
to work in terms of 9" rather than én. From (2.61),
the antisymmetric component of the stresses generating
3" vanishes. From (2.45a), it follows that the loga-
rithmic term in (2.44a) disappears. Thus 9" is
sectionally holomorphic. Further, from (2.24d), %"

may be written

Pz, = f’é"(l,,) d4. + const (2.66)
Zy

h=1,2,...,N

)
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where Eh is an arbitrary point in the open region B.
Equation (2.63) indicates that @™ has only a square-root
singularity at the crack endpoints z, =+ 4, Since this
is integrable, it follows from (2.66) that P" is bounded
at the crack tips. Further, from (2.44a), " is holomorphic
at infinity. It can be shown that under these conditions,

?rWzn) may be represented as

In
prizy- 1B [ £t | _dtn
n

24 7 ta-2Zn Ve 1% (2.67a)
where
£t = PN (e + P77 (L) Ao Lt S (2.67D)
n=1,2,...,N

(c.f. Muskhelishvili (16) pp. 454-455), The arbitrary

integration constant in (2.44a) can be chosen so that

prlvanishes at infinity. From (2.67), this implies

2
J e s = 0 (2.68)

FT:))ZJ.,.)N

Applying the Plemelj Formulae to (2.63) gives

Frt) = 77 (e, + @77 () ~fp & T < Ln (2.69)

Equations (2.66), (2.67b) and (2.69) then imply
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d £ (tn) n
dt. = F () n=/2,...,N (2.70)
Since F? is uniquely determined, £? is also uniquely
determined by (2.68) and (2.70).,
By differentiating (2.64b), one gets

}%f- = gt ) j)z(: = g7 mn (2.71)

Also, since PM ig analytic across Ln for m#¢n, it follows

that
i%':x(:.__,_) = ef%mn $7(z.) (2.72a)
-‘if—g——f—:—l = e~ 4%mn $7(Z,) (2.72¢c)
ai";("zm) = e%mn ™z ) (2.72d)

Using (2.70)=-(2.72) in (2.64a) results in the following
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equivalent expression:

ffi{ Fid+S @~ [ 97(z.) + PT(Z) +(zom 2.) FaaJj=c")  (2.73)
m={
megn

Zm = Zm (Xn) = Zppy + X € F4%mn ) Xn€ (L, £n) yn=hZye N

Let gn(xn) be defined by

ci;.,x" = G (xn) ~fn & X, 2 2n (2.74a)

4 Jt (2.740)
" 2=, = 2.74b

e =0

h=12 ... N

’ ey
where the arbitrary integration constant in gn is fixed
by (2.74b). Note that from (2.53a), G™ is well-behaved
on Ln' Hence, gn will also be well-behaved, as will the
integral in (2.74b).

Subsgtituting (2.74a) into (2.73) and integrating

gives

Fl)+ S @[ P2, + PN+ (Zm-Zm) E )] T +A,  (2.75)

m¥n

Zim = Zim (X} = Zmnt X @t mn Xn G(-I”j ‘e") y n=1, 2‘!'“1”

where Kn are integration constants which may be determined

by (2.68).
Equations (2.75) together with (2.68) result in
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a gystem of Fredholm equations of the second kind for
the unknown functions fi.fé,ff,f%....,f?.fg. As before,

this can be made equivalent to a single Fredholm equation

of the form
!
f0+ 3Ry fordt = gy oexsl (2.76)

Since (2.64a) has one and only one solution, it follows
from (2.70) and (2.68) that there is one and only one
solution for the £,

In the following analysis, it will be assumed
that the equations are selved for the £%, The quantities
of interest will then be calculated in terms of this
solution.

Expression (2.67a) is not well suited for later
numerical work, since for large 'Iznl ’ ?nappears to
approach a constant. Although this constant is zero by
(2.68), it would contribute greatly to roundoff error if
the integrals are evaluated numerically. Hence it is
advantageous to eliminate this constant analytically by
using (2.68) in (2.67a) to get

Zn
P(zn) _12_:_——2:] [F.."——z',. - -i';]f"(t,.) “i"""tl f:(&

or 2T Vez—2=
&
Pz =L [ ta flt) . _dite (2.77)

2, B2 Vazk
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This form explicitly exhibits the z -1

behavior of P
for large lznl .

In (2.77) let

2,, = _lln_ (20783)
t, = -4, cos 6, 0«0 s (2.78b)
Then
.4
V Ay "
9z = - 222 f cos o f Lhc0s0) o, (2.79)

Differentiating gives

"(2,) = o= I"(3 2.80
é (Zn) lhvjo—T I (Zn) ( a)
$"z.) = el e Z o 12)+I7C2)] (2.80b)
3" (2= e [;—Z—"—’;-)L:I(in)Jr{z:-Zf;-I"’(zh)«»zr’(’z.a] (2.80c)

where

x
n,a I " in% "
I (Z") =E-?-r-![ ihc_'_ofoi e" -+ (isi-nco—%;:")z] ‘F ('j" cos e.') JG" (23 81&)

w . }
I3y = a5 [ 7558, + &S on_ T "/ cose,)de,  (2.81b)

JL(Z, +coso.) " (2, +coss,)?

12" 7% [(——9-9"'—@-"—-" + %Jf"(icos a)ds, (2.81c)

2. +cos 8% ' (Z.+
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Further, (2.64a) and its derivative give

N . . ) - m
F )= Gy - > e““""L eiomn §7(2,) + € (Z..)
mzy
m#n (2.82a)

+(e - e "‘""") m) + @z, 7)) § M(’z..)]

N . . ’ —l2a ™
Fri)= GMin)= 2. @74 [gdzamgnlz,) + @720~ §7(Z.)
m#n (2.82b)

+ ze-—(dmn (ejd—n_ e- jd-un) §M’(Z-”‘) + e_“lq—"(z,,rz,,)§n’?2..)]

Thus, if the £ are known, then F? and Fn/ can
be calculated through (2.80)-(2.82).

Note that the existence of F* can be shown
from the construction of F°. Indeed, it is shown in
Appendix II that F* has some quite remarkable analytic

properties.
Let
dn(xn)z q’”+(xn) - CP"'(x..) (2083&)
d"x) = ™) — 877k (2.83b)

where the second equation follows from the first by (2.66).
From (2.63), (2.67a) and the Plemelj Formulae, these

quantities may be expressed as



ﬁs‘—I:. Y e | dte 84
d"(x)= J R Vaar (2.84a)
d" ) = "—,l‘ I (x) (2.84b)
f"(xn): i f "Er(e) YEE otk Jt.. (2.84¢)

L 2. Tn — Xn

where the presence of a bar on an integral indicates
that the Cauchy principal value is to be taken. Also,
as before, all square roots evaluated on Ln are under-
stood to be taken in terms of their values on S:;.

It can be shown that

i - Jtn — 8
§wh s =0 (2.852)
£ .
#75 tt_-f = — Xn (2.85b)
-,én " "

These results are most easily shown using the theory of
sectionally holomorphic functions, but they may be
shown by contour integration or any other means.

Using (2.85) in (2.84) gives

d"ox) = EJ I, £) T V—F (2.86a)
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£

I"(x) = ;,—';f H"(x..,t.,) Ver =z dta = Xa F7(Xn)
._l"
where
£7(t0) = £7(Xn)
tn = Xn (tn:#Xn)
"1 (xn,tn) =
F™(x.) (tnh= Xn)
F (tn) = F(xn)
t" - Xn (tn # x")
H (%, tn) =
Fmx) (ta= x.)

(X, tn) € La XLn

(2.86b)

(2.87a)

(2.87v)

It might be noted that the bars have been removed

from the integrals in (2.86). This is because the

integrands are no longer singular at x, = t

Cauchy principal value is no longer required.

In fact,

it is shown in Appendix II that the functions defined in

(2.87) are not only continuous in their range of defin-

ition, but are infinitely continuously differentiable

there.

The quantities of interest are all basically

related to the d™ and T ™ given in (2.86). Evidently

these can be calculated from the X through equations

(2.80)~(2.82) and (2.86)-(2.87).

Congider the singular behavior of the stress
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field near the crack endpoints z = i‘[n' The states
I® (m =1,2,.44,N; m # n) are all analytic across L.
Hence, the only state that can contribute singular
stresses is 4 itself. As in (1.1), consider a local
polar coordinate system in the neighborhood of z, = +7n

(c.f. Fig. 1). Then

z,= Lo+ re*® (2.88)

From (2.63) it follows that

e4g
2(21rr‘)‘£

$"=0n" = AE I + O (2.89)

Substituting (2.89) into (2.24) and utilizing the trans-
formation equations (2.56) to express the result in
polar coordinates, it is not difficult to show that the
singular portion of the stress field exhibits the
asymptotic behavior claimed in (1.1). Further, by con-
gsidering the special case 8= 0, it 1s easily seen that

K;" + 4 Kzf" = - }/’27? f”(-,[,,) (2.90a)
kit v kgt = 1E INL) (2.90Db)
n=1,2,..., N

where (2.90a) gives the values of the stress intensity

factors at z, = -y, while (2.90b) gives the values
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at z, = +Ih' These values are, of course, referred

to the L, system.

The relative displacement of the crack surfaces
may be found directly in terms of the d". Note that
from the point of view of the overlap phenomenon, the
absolute displacements are immaterial and only the rela-
tive displacements are of importance. Across a typical
crack Ln. the stress states gfm (m#n) are analytic. Thus
they may contribute to absolute displacements, but they
cannot contribute to relative displacements. The only

state that may contribute to relative displacements is

Agrlitself. Let these relative displacements be given by

Ay () = Ue) - Ut (2.91)

tnE(‘/Zn)/Zn) ) V‘:i, 2-/--~}N

where the displacement components uf are referred to the
Z, system.

Note that the arbitrary integration constant
in " may be e¢hosen such that w?™ vanishes at infinity.

It then follows that
W (zn) = P (zn) (2.92)

Equations (2.24a), (2.67a), (2.84a), (2.92),
and the Plemelj Formulae then give
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AUN )+ 4 AU k) = L dT) (2.93)

Of course, in checking for overlap, it is only z>u2
that is of interest. Overlap is indicated if and only if
A&ug is negative somewhere along the crack line.

Suppose there is no net load acting on any of
the crack surfaces. Then from (2.41) and (2.49), it
follows that $7'° and M"'° are independent of the
material properties. From (2.57), it follows that the
G" are independent of the material properties, as are the
F? by (2.64). It then follows that the stress field will be
independent of the material properties. (This is
simply a special case of a general result. c¢.f. Muskhel-
ishvili (15). Section 44.) Further, it can be seen from
(2.67) and (2.84a) that the d” will be independent of
the material properties. One may therefore conclude from
(2.93) that the material properties enter only through
a multiplicative factor in the relative displacements.
Since only the sign of¢Aug is important in checking over-
lap, it follows that the validity of the solution with
regard to the overlap problem will also be independent
of the material properties.

Finally, the "energy of the cracks"™ will be

calculated. Intuitively, the “"crack energy" is a simple
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idea. In practice, it has resulted in considerable
confusion (c.f. Spencer (22) and Sih and Liebowitz (20)).
The expressions given here will be for the case of
traction-free internal cracks with some arbitrary load
at infinity. (Note that in this circumstance, the Gh
will be constants.) Congider the region BR given in
(2.6), for R>R,. Suppose tractions are applied to By
which would, in the absence of cracks, produce the uniform
stress state 0 =¢; . In addition, suppose that
tractions are applied to st and s~ in such a way that
the uniform stress state is produced. Now; suppose
that the tractions on S and S™ are allowed to relax
until they vanish. In the process of relaxing, the
tractions remove a certain amount of energy from the
system., It is this energy which will be called the
renergy of the cracks.” The case of the infinite region
under consideration will be treated as the 1limit of this
model as R—+~w . By utilizing the Reciprocal Theorem
of Betti and Rayleigh it can be shown that the energy

of the cracks, denoted by Ec’ is given by
2 N _
sor Ee = 221, {% G"_A[ d"(t,) dt ] (2.94)

Here Im{ } denotes the imaginary part of the term
in the curly brackets.

Since the cracks are traction-free, it follows
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from earlier discussions that the term on the right
of (2.94) is independent of the material properties.
Some interesting analyfic properties of dn(tn)
are demonstrated in Appendix II. It can be shown that

the function

T d f £ "(ta) dt
n - " - i al | n 9
d(x) = XE- A% TA = t, = Xa Vt.‘,-,(&' (2. 5)

is infinitely continuously differentiable with respect
to X, in the closed interval -/ <X </ . This will be

nn>'n
quite useful in later numerical analysis.
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III. NUMERICAL ANALYSIS

1. An Approximate Solution Technigue

Analytical solutions are not presently available
for the general stress boundary value problem discussed
in Chapter I1. Therefore, a numerical approach to the
solution of the integral equations (2.57) or (2.76) is
indicated. When such solutions are considered, conver-
gence rate of the numerical technique can be an important
factor. A rapidly convergent scheme has obvious advan-
tages in terms of cumputing efficiency, truncation error,
and roundoff error. Further, it will be seen that the
convergence rate sets the limit on the range of geometries
that may be practicably considered.

Consider a Fredholm equation of the second kind

in standard form,

/) A
P(x) + ﬁfH(x/t) de)dt = & o«x< X (3.1)
0

A quite common approach for the numerical solution of
such an equation is to replace the integral equation

by a system of algebraic equations. The integral in
(3.1) is approximated by some mechanical quadrature for-
mula with associated weights Sjo Thus

A J A A
P00 + Ah 2 6 Hix, t9) $(t9) + Ryx= Ax) osx<d (3.2)
J=0
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where tj are the interpolation points associated with the

quadrature

¢J
R

= ¢ (t)

= RJ(xi) 5

Evaluating (3.2) at

leads to the system

; /\JA
¢+ X 2. h&H
J=o
or
(Z+XxH)$ +
where
I =Csy)
$ = (89

It can be shown that so long as

formula, h =-2 is the step size, and RJ(x)
is the truncation error.

Let

HY = H(xi,t) (3.3)

al = 4(x')
the points x = xi (L =0,1,...,J)
of linear, algebraic equations
gl 4 RTi = qi i=01,...,J (3.4a)
R, = a (3.4D)
) H= (h 6JH'J)

J 2 _ /A
,  Ry=(Ry) , a=(a&’))
% is not an

eigenvalue of (3.2), the matrix (I + Sg) is non-singular

for sufficiently large J (c.f. Hoheisel (8

)y,

Conse-

quently, (3.4b) may be solved to give

= (L+34)"

29)

(x+

T+AH)'R; (3.5)

Assuming the second term on the right to be "small,

an approximate solution

is then given by
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>

$= (x+in)'a (3.6)

—~

Evidently, the second term on the right of (3.5)
represents the truncation error in j?' It can be shown
that o long as X 1is not an eigenvalue of (3.1), the
norm of (L +AH)™! remains bounded for sufficiently large
J (c.f. Hoheisel ( 8)). Consequently the truncation error
in'g is directly related to the truncation error RJ in
the approximate quadratic formula. Clearly the error in
é‘depends on just how "small"” RJ is. This in turn depends
upon the inherent accuracy of the quadrature formula
and the number of points taken, as well as the behavior
of the integrand.

For most composite quadrature formulas, one is
quaranteed that RJ—>0 as J—+<°, However, in solving the
system of algebraic equations leading to (3.6), the
computer storage capacity required is proportional to J2,
and the computing time is proportional to J3. Further,
in solving a large system of equations, one might gen-
erate a great deal of roundoff error (in addition to
the truncation error (;ﬁ’ig)'IBJ). Thus, much care must
be taken to select a quadrature formula which is inher-
ently well suited to the problem, so that a given
accuracy may be achieved with a smaller number of points.

It happens that the trapezoidal rule is par-
ticularly well suited to the present problem. Ordinary
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expressions for the truncation error in trapezoidal rule
integration indicate that RJdZﬁz. This does not seem to
be a terribly rapid rate of convergence. However, for
certain classes of integrands the convergence rate can
be far superior. This can be seen by considering the

Euler-Maclaurin Summation Formula (c.f. Abramowitz and

Stegun ( 1)). This is given by

A A " ~
of VX =h[£0 +0, 4+ 0, + £ 0]

>

am A
-5 B [0 gy - 0500 + B

X
>

3

-

where

h= < (3.7b)

A A

é — Mﬂ (“'”'")(X)I (3.7¢)

A
2m = (2M+2)] famax |v

(3.7a)

-1< 9<1 (3.7d)

and ﬁm are the Bernoulli numbers. Here it is assumed
that Vv possesses 2M+2 continuous derivatives in the closed
interval 0<x</.

For an arbitrary integrand ¥, one would not
expect that 9(1)(2) = 9(1)(0)9 Thus the first term in
the series in (3.7a) will in general be non-zero. Hence

Ry which is composed of the series plus ﬁZM’ will
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2 behavior usually attributed to

generally exhibit the h
trapezoidal rule integration.

However, if it happens that 0(1)(2) = 6(1)(0).
then RJ will behave at worst as %h. If, in addition,
0(3)(2) = 9(3)(0). then R; will behave at worst as %6,
and so on. (This presumes, of course, that v possesses
sufficient smoothness). In particular, for periodic
functions integrated over a period, it is easily seen
that G(Zm-l)(z) = 9(2m'1)(0) for all orders of the
indicated derivatives ( if they exist). As pointed out in

Isaacson and Keller (12)

, this is the basis for the
"remarkable"” accuracy which experience has shown to
hold for the trapezoidal rule when integrating periodic
functions over a period.

Consider integrals of the form

A

Y4
I= [ V() =it=

4 o (3.8)
where v(t) is infinitely continuously differentiable
on the closed interval =-f<t</. In (3.8), let
t =-2 cos & o<B<T (3.9)
Then
”

I= [ V) dé (3.10a)
(2]



where

A

V(8)= V(-2 cos 8) (3.10b)

By the smoothness of ¥(t), it follows that V(8)
will be infinitely continuously differentiable on the
closed interval 0<6<m. Further, from (3.10b) it is
easily verified that

\7'(2""'-')(71") - '\7'(2"'_')(0) = 0 m=] 2} .. (3'11)

If the trapezoidal rule is applied to (3.10), it then
follows from (3.4) that the result converges faster than
%2M+2. But M may be taken as large as desired, since v
is infinitely continuously differentiable. Consequently,
it may be concluded that the truncation error goes to
zero faster than any power of the mesh size h.

The integrals defining ?n(zn), which are given
in (2.67) and (2.68), are of the form indicated in (3.8).
Although fn(xn) is unknown, it is shown in Appendix II
that it must be infinitely continuously differentiable
in the closed interval -jnsxnglh. Consequently, if the
integrals defining f?n(zn) are transformed as in (3.9)
and then approximated by the trapezoidal rule, the result
converges faster than any power of the mesh size. If
this approximation is used to reduce the integral
equations (2.75) to an approximate set of algebraic
equations, it follows that the solution will converge
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faster than any power of the mesh size. Using the approx-
imate solution +the stress intensity factors, the rela-
tive displacements of the crack surfaces, and the energy
of the cracks may be calculated from the formulas given
in Chapter II, Section 5. It can be verified that all

of these quantities are expressed in terms of integrals of
the form indicated in (3.8). Further, it is shown in Ap-
pendix II +that the equivalent ¥(t) for each of these
integrals is infinitely continuoﬁsly differentiable in

the closed interval -/<t</. Consequently, it may be
concluded that the errors in the various quantities of
interest will go to zero faster than any power of the

mesh size.
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2. Resgults

A computer program was written to apply the
foregoing approach to the problem of twe traction-free
cracks of arbitrary orientation, subjected to a constant
stress field at infinity. The convergence of the
method was found to be quite good. Some surveys of
two-crack interaction problems were performed, yielding
interesting results.

The trapezoidal rule was applied to a known
integral to test the rate of convergence. The integral

considered is given by

4
i dt
‘F(Z-): —T—r'/_(.:it_z' 'vtr___/zz' (3.12)

From the arguments of the previous section, it is easily
geen that the integral in (3.12) is of the type which,
upon transformation to the trigonometric variable, should
converge faster than any power of the mesh size under
trapezoidal rule integration.

Thus letting

t= —-Fcos & (3.13)

in (3.12) yields

fizy = - fw___iﬁ___
(z) = T, Lcose+Z (3.14)



-72-
Let the trapezoidal rule approximation be represented by

N
[
f(2) = h Z goen iz (3.15)

4 (n=o r n=N)
L,:-z"— ) 5, = {z o
! (n=2,3,...,N-1)

By contour integration or other means, it can be shown

from (3.12) that f(z) has the known value

f(z) = ziil (3.16)

Let the relative error of fh be given by

_ 1z - fu(z)]
) = Liwos (3.17)

SCh:z

J

The behavior of §&(hjz) with respect to h is shown in
Figure 7. Note that the scales are logarithmic. The
normalization on h is chosen so that succeeding integral
values along the abscissa represent a halving of the
mesh size. Also, note that (negative) integral values
on the ordinate represent (approximately) the number of
figures of accuracy in the integration.

The integrand in (3.12) varies on a scale deter-
mined by the characteristic length S. Since the mesh
points are uniformly distributed along the & axis,
they are nonuniformly distributed along the t axis. How-
ever, one might define an "average”™ mesh length by

ty = 2£ (3.18)
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It might be noted that §(hjz) exhibits a broad "knee,”

or turning point, when ta is of the order of (but somewhat
less than) the charactertic length S. As h continues to
decrease past this knee, the convergence becomes extremely

rapid. Locally,

Logo 6 = Ci= Ca Loy, b (3.19)
or

§= 10 . |y < (3.20)

where 02 is the slope of the curve. Since the curve gets
steeper and steeper, it follows from (3.20) that even-
tually the method does indeed converge faster than any
power of the mesh size.

The convergence rate of the computer program
for interacting cracks was tested and found to exhibit
the same characteristic behavior. The error in the approx-
imate program was determined by comparison to the
special case of colinear cracks, for which the analytic
solution is known.

It might be noted that in the case of interacting
cracks, there are basically two length scales. These
are the length of the shortest crack, and the minimum
separation distance between cracks. The relative
importance of the two scales depends upon the specific

geometry.
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A survey was performed for the problem of two
equal-length, parallel cracks, subjected to a tension
field at infinity which is normal to the crack lines.
Some of the results are shown in Figures 8-10,

The crack energy might be used as a simple
scalar measure of the degree of interaction of the cracks.
For large separation, the energy for two cracks should
be twice that of a single crack. If it deviates from this
value, then interaction is taking place. From Figure 8,
it may be seen that there is virtually no interaction if
the cracks are separated by eight or more crack lengths.
Further, a gtrong interaction does not occur until the
separation is less than two to three crack lengths. This
conclusion is strengthened by the behavior of the cleavage
angle and cleavage intensity shown in Figures 9 and 10.

When the cracks are in an overlapping configuration
and the vertical separation becomes quite small, the
crack energy seemed to approach that of a single,
equivalent, elongated crack. This observation was used to
extend the energy curves along the dotted lines shown
in Figure 8. Further, the cleavage intensity at the
outer crack tips seemed to approach that of the equivalent
elongated crack. Hence, the curves in Figure 10 were
extended in a similar manner.

An interesting observation may be made from the



75~

data presented in Figure 10. The fracture strength of
a material may be increased due to the interaction of
the cracks. This is evidenced by the fact that in the
intermediate separation range, the cleavage intensity
actually dips below that of a single crack of length 22
in an infinite sheet. This seems to be connected with
the variation of the cleavage angle, as indicated in
Figure 9.

Finally, an interaction problem leading to
crack surface overlap was considered. The geometry and
some of the results are shown in Figure 11. The curve
is dotted where crack surface overlap was indicated.

It might be noted that as s decreases, the onset of over-
lap coincides with the point where the cleavage intensity
at A becomes negative. The singularity at A is then a
"compression singularity"” rather than a "tension singu-
larity.” The inset shows the shape assumed by the

surfaces of the vertical crack for a separation

257: O. | (3.21)

The separation shown in the inset is also drawn to this
scale.

Overlap problems such as that shown in Figure 11
might be solved by an approximate, iterative procedure.
When overlap is detected, the problem could be restated

with some assumed compression tractions along the
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overlap surface. These tractions might be taken in
proportion to the degree of overlap, The problem could
then be solved again. In ideal circumstances, the over-
lap in the second iteration would be less severe. The
process could be repeated until the overlap was reduced to
an arbitrarily small amount. Since the general method

put forth in this investigation is applicable to stress
boundary value problems with loads on the crack surfaces,

it would be useful in such an iteration procedure.
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APPENDIX I: ON THE UNIQUENESS OF THE SOLUTION

The concept of "uniqueness" should always be
understood to mean "uniqueness within a particular class
of admissible solutions."” The ordinary uniqueness
theorem of elastostatics (Kirchoff's uniqueness theorem)
is confined to the class of regular solutions. Thus,
whenever singular solutions are considered in elasto-
statics, the question of uniqueness must be re-examined.

A typical proof of the ordinary uniqueness
theorem for a bounded, three dimensional region may be

found in Sokolnikoff(21)

« The result follows directly
from the work-energy identity (Clapeyron's Theorem). In

¥* 3
the absence of body forces, this is given by

fw dv = & fs;u,- ds (I-1)
v aVv

where V is a three-dimensional, bounded, regular region,
and 3V is the surface of V. 1In equation (I-1), the
expression on the right may be deduced from the expression

on the left by a straightforward application of the

3*

The results presented in this section were
developed in consultation with Professor James K. Knowles
of the California Institute of Technology, Pasadena, Calif-
ornia,

* 3¢
In this report, dummy indices represented by
Latin letters will assume the range (1,2,3,) unless other-
wise indicated. The presence of a repeated index indi-
cates summation over its range.
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divergence theorem (Gauss' theorem). A rigorous statement
of the divergence theorem reveals that the vector field
¥ with components v, = Jljuj must be presumed to be
continuous up to the boundary 2R (c.f. Kellogg(lu)).
Thus, the ordinary uniqueness proof carries the implicit
agsumption that the admissible solutions are confined to
the class of regular solutions.

In the crack problem under consideration here,
it is necessary to expand the class of admissible so-
lutions to include solutions having singular stresses at
the crack tips. If singularities of arbitrary order are
admitted at the crack tips, then the solution may cease
to be unique. For example, in the case of the Griffith
crack it is not difficult to construct an infinite num-
ber of singular solutions, with each one having its own
characteristic singularity at the crack endpoints.

Thus, the objective must be to expand the class
of admissible solutions to include the "correct" singular
solution, but not to expand the class so far that multiple
solutions may occur. Evidently, some sort of restriction
must be placed on the singularities to limit their order.
Of course, a less réstrictive limitation will lead to a
more powerful uniqueness theorem, since it will apply to a
broader class of admissible singular solutions.

It will be shown below that the only limitation

that is necessary is the one implied by (2.13). That is,
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the displacements should be bounded (but not necessarily
even continuous) at the crack tips. Physically, this is
a quite reasonable restriction. Mathematically, it admits
a wide class of singular solutions.

To facilitate the uniqueness proof, the following
useful result will be proved. Consider an open, bounded,
two-dimensional region D, whose outer boundary consists
of a simple, piecewise smooth contour [°, and whose inner
boundaries consist of line segments LI'LZ""'LN' The
geometry and coordinate systems will be as in Section 1
of Chapter II, with the additional restriction that
the L do not intersect M. Let admissible elastostatic
stress state 4 be defined on D as in Section 2 of Chap-
ter 11, except that in place of the condition at infinity,
equation (2.14), it will be required that o be continuous

up to . Suppose a state o is given such that
Sg =O on Sf) S (1-2)

Then the strain energy UD (per unit thickness in the

out-of-plane direction) is bounded, and is given by

X

Up= Jwda = é_—rfs Uy dt (1-3)

where the first integral in (I-3) is understood to be
taken as an improper integral in the vicinity of the

crack endpoints.,
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Note that this result is to be expected on
physical grounds, and the proof is quite simple in the
absence of singularities. However, the presence of singu-
larities restricted only by the weak limitations implied
by (2.13) causes the proof to be somewhat more difficult.

Let
€, =minlL,] (I-4)
n=42,. )N

Let P represent a point in the plane, and let zn(P) be

its coordinate in the z, system. Let

T = {P] lzyp + Ll < €} (I-5a)
0< E K £,

T = {P| 1z.(P) L)< £} (I-5b)

h=1,2 ..., N

That is, 'TT'en'l consists of all points lying within a

circle of radius € centered at zrl = -,en, while 'TTE'n'Z

consists of all points lying within a circle of radius €
centered at z_ = +Zn (c.f. Fig. 3). The boundaries of these

regions are then given by the circles
o™ ={Pl iz, +b) = €] (1-6a)
[ ={P] 1z.co)-Lal= £} (1-6b)

Let

N — —
D= D-U (" U ™) oce<es (1-7)
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where the presence of a bar over a region represents the
closure of the region, that is, the region plus its
boundary points. Thus D¢ consists of that portion of D
lying outside circles of radius € which are centered at
the crack tips. The region Dg then has a boundary 9D
comprised of an outer boundary [’ and inner boundaries
consisting of the circles Efn'l and ’Zn.z (n =1,2,...N)

together with the line segments
Lfn,& = {P[ Z,(P) = Xy 4407 U HEL Xy & Lo 5} (I-8a)

Cue ={Pl 2.(8) = X440, Autes xa€4u-€]  (I-8b)

1l

Consider the three-dimensional region V¢ defined
by the two-dimensional region D¢ together with two planes
a unit distance apart in the out-of-plane direction. Then
the three-dimensional elastostatic state generated by the
plane strain state 4 will be regular in Ve + Hence the
work energy identity, equation (I-1), may be applied to
to the three-dimensional state on Vg . From the plane

strain assumption, the displacement u., is identically

3

zero, and the tractions 84 and S, vanish on the planar
surfaces. Consequently the integrand on the right hand
side of (I-1) vanishes identically on the planar surfaces.
Also, the term s3u3 vanishes on the lateral surfaces.

Further, the in-plane displacements, strainsg, stresses and
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tractions are independent of the out-of-plane coordinate.
By equations (2.15) and (2.16), the strain energy density
W must also be independent of the out-of-plane coordinate.
Consequently, the application of (I-1) to the
three-dimensional elastostatic state defined on Vg yields

U=fWdA = % {s.u,dsL (1-9)

Og 20

where Ug is the strain energy contained in the region D¢ ,
per unit thickness in the out-of-plane direction.

From (I-2) it follows that

S =0 on Lo , Lne O<E<Es (1-10)

Thus, combining (I-10) with (I-9),

Ue =4 [ s,uydl + 4 [saugde (I-11)
e r
where
L=0(p~urme)
E,—n:;(): Uf; ! (1-12)
Note that
| sau, del < Jlsiuglde (1-13)

Applying the Cauchy-Schwartz inequality to the integrand
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on the right yields

| [ sau,de] < stds‘,,' Vusus dL (I-14)
le I
Or, by squaring each side of (I-14)
I3 2
[fsavade] & [fo5sr Viaus dtf (1-15)
£ | A

Applying the Cauchy-Schwartz integral inequality to the

integral on the right then gives

[[seu.a] < [/{s.(s.,au]’[éuﬁu,,dz] (1-16)

Dropping the summation convention momentarily, recall that

2

S = ,GZ=' O;Fnﬂ (1-17)
or

s* = [é 0 anl }Z (1-18)

= 8o 4B p
Hence, by the Cauchy-Schwartz inequality

2
g, zf. z -

sk [;0:,,] [;nﬂ] (1-19)
But

én/; - (1-20)
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Thus, using (I-20) and summing over «,

a
uMN

2 2
sk & 25 Eé

=}

2 I-21
a%ﬁ ( )

Or, reintroducing the summation convention, this reads

S S & Oap Uap (1-22)
Now consider equation (2.16b), which may be

written as

—

02 = W = garkray ©° (1-23)

Again dropping the summation convention for the moment,

®? nay be expressed as
2 2
@ = [2 1., 6.l (I-24)

where 1, =] (a«a=12)

Applying the Cauchy-Schwartz inequality thus implies
& <23 gl (1-25)
ol=)
It then clearly follows that

A< 2 Uag Ug (I-26)

s

where the summation convention is again resumed.
It can be shown from (2.17) that the factor mul-

tiplying &* in (I-23) is always positive. This, together

with (I-23) and (I-26) then gives
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R Gap los W (1-27)

where

2 l"‘g l~217 9
R*= ke = ( 2);_‘ - , R >0 (1-28)

The fact that k2 is always a positive (non-zero) constant
follows from (2.17). It might be noted that k° is
dependent only on the material properties.

Using (I-22) and (I-27), it then follows that
SaSu & T W (I-29)

Or, integrating along [¢
[ s.s.dt € f;fwu (1-30)
le M
Further, (2.13) and (I-12) imply
Ffuﬁuﬂdzs ENTTMEE (1-31)
Thus, (I-16), (I-30) and (I-31) yield

[fs u,de]” € M 3 ({waz (1-32)

&

Define

hee)= W da “’é/_{sdudd,é O < E<E, (I-33)
D¢
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Note that if it can be shown that h( € ) tends to zero
as &£ tends to zero, then the desired conclusion given
in equation (I-3 ) will have been achieved. Now h( € )

may be expressed as

o‘n’
hee) = i (fofww o, a’en,,dac.,, + ffwtz,z(!en,z Jr;,l]
n=1 £ -y ! £ - (I-34)

rfWda -4 [sau, d2
D, r
where rn,l’ é’n.l' rn,Z' 9n,2 are local polar coordinates

based at the indicated crack tips. It might be noted

that the last two integrals in (I-34) are mere constants.
Further, the quantity W in the remaining integrals is
considered to be a function of the local polar coordinates,
and is independent of € . Thus the only appearance of € is
in the lower limits of the outer integrals in the sum.
Consequently, differentiating (I-3%) with respect to €
yields

N g "
heey= - ?:; [\Lwade,,,, +_wa8 dén, | (1-35)

i

Oor, from (I-6 ) and (I-12),

W) = - fwde (I-36)

3

Now, (I-9 ), (I-11) and (I-33) give

hee) =% [ sauydl (1-37)
[
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Hence, combining (I-32), (I-36) and (I-37) results in

Wee) & - cteh () (1-38)
where
ct= “——JW ) c* >0 (1-39)

From (I-33), h is a well-defined, smooth function
of £ in the open interval (O, Eo). By simple logic, it
follows that either one or the other of the following

two possibilities must be true (but not both):

Case I:

h(€)>0 +or some £,€ (0,E,) (I-40)
Case II:

h(e) £ O for all € € (0,E.) (I-b41)

Since W is positive definite, it may be seen

from either (I-33) or (I-36) that
hice) & O 0< E< Eo (I-42)

That is, h( € ) increases monotonically with decreasing €.

Consequently, if Case I is true, then it follows that h
will be greater then zero for all € in the open interval

(0, 81). Further, if Case II is true, and if

h(£,,) =0 for SOme 616(0) 60)
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then
h(e) =0  Ffor all g € (0, &,)

Thus Case I may be restated, and Case II may be decomposed
into two further categories as follows:

Case I:

h(e) >0 for all E€(O €)) (I-43)
Case II(a):

h(g) =0 for all £ € (0,E,) (I-U4h)
Case II(b):

h(e) <O for all €€ (0,€.) (I-45)

Now if Case II(a) is true, then there is nothing
left to prove, since (I-33) and (I-4#4) immediately imply
the desired conclusion given in equation (I-3 ). Thus,
assume that either Case I or Case II(b) is true. Let

g =

€, for Case I
(I-46)

€ for Case IL{(b)
Then for either Case I or Case II(b), it follows that

hz( € )»>0 in the open interval (O, 85). Consequently,

(I-38) may be rearranged to give

1'3“3—2 +-5!g$0 0K E< Es (1-47)

< .
Let €3' Eb, be chosen such that 0 €3<Eh < ES' Integrating
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(I-47) from €4 to €, then gives

. 1 £ ¢ -
h(Ey) Ty T T "’3 €3 €0 , (1-48)

Case I: 1Inequality (I-48) may be rearranged to

give

! > ! L L £ _
ey ~ CF fog%; + hiEs) > ct '0‘7-5":; (I-49)

where the last inequality follows by (I-43). Keeping in
mind that h(Eiu) is positive while rearranging the outer
inequalities in (I-49) yields

c?
loj % -~ (1‘50 )

h(e,) <
Letting €3 tend to zero in (I-50) yields

But by (I-43), h( €)) was assumed to be strictly greater
than zero. Hence a contradiction is achieved, and it may
be concluded that Case I can never occur.

Case II(b): Inequality (I-48 ) may be rearranged

to give

! l
h(gy) c* ‘03"5% < (&) < O ( I'S?)

where the last inequality follows by (I-45). Hence

l .
ey S log & (I-53)



Since h is presumed to be negative, multiplying inequality

(I-53) by h( EB) reverses the inequality. Thus

b 2-hces) -k log —g (1-54)
or
O < - h(es) € T% (1-55)
o7 €,

where the first inequality holds by (I-45). Letting 63

tend to zero in (I-55), it follows that

li ) =0 -
Ei—:qo L’<€ (I 56)

Therefore, in this final case, ( I1I-3) follows from (I-56)
together with (I-33).

Returning now to the question of uniqueness, it
might be noted that for a bounded region, the uniqueness
of the solution to the stress boundary value problem
follows directly from (I-3 ). Thus, suppose two states,
‘!1 and ‘Jz’ satisfy the same traction boundary conditions
on S+, S™ and [, Then defining

= -f, on D (1-57)

it follows that

S« =0 on ST, 85, I (1-58)

Consequently, (I-3 ) may be applied to yield



fwda =0 (1-59)
D

From (2.16a) and (2.17), W is a positive definite quad-

ratic form in the strains. Thus (I-59) requires
Yag =0 on D (1-60)

In the usual manner, it may then be argued that
kgl and Agé differ at most by an infinitesimal rigid
body motion, and the uniqueness proof is complete (for
bounded régions).

For the infinite region, the proof is compli-
cated somewhat by the fact that the only restriction
on the behavior of . at infinity is the weak limitation
given in (2.14)., Consider the stress boundary value
problem for the infinite region, as stated in Section 2
of Chapter II. Suppose two elastostatic states..&fl
and 452, satisfy the same boundary value problem.

Define
S-S, on B (1-61)
Evidently o satifies
Sa=0 on 3% 5~ (1-62a)
g =0(l) as |z,/—> o (1-62b)

Consider By as given in (2.6), for R2R,+ Then on the
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bounded region B, £ is an elastostatic state satisfying
(I-2 ). Consequently, (I-3 ) may be applied to £ on

BR to yield

;wam= "2!5.44,,, JL (1-63)

where CR is given by (2.7).

If it could be shown that the integral on the right
in (I-63) vanishes as R tends to infinity, then the proof
of uniqueness would follow in the usual manner. It might
not seem that the weak restriction given in (I-62b) is
sufficient to guarantee the vanishing of this integral.
However, a more detailed analysis indicates otherwise.

Let Tle be the exterior region given by

Te = {x,yo) | x3+v2 > R § (1-64)

The boundary of Tle is then given by the simple, smooth

contour
AT = CR (I-65)
[~
Suppose the resolvent force on CR vanishes, that is
c
Ag= J,,S"‘ Ji = O (1-66)

It can be shown that (I-66) and (I-62b), together with

the fact that Tz is an exterior region bounded by a
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simple, smooth contour, imply the following far-field

*
behavior for .

U=EyhU, +0W =00z as lz,/—>e0  (I-67)

)

Here u. is the displacement field due to a unit rigid
body rotation, and €, is the magnitude of the rotation.

A rigid body rotation generates no stresses. Thus, by
(2.16b), the integral on the left of (I-63) must be inde-
pendent of €& « Further, the only appearance of €o in
the expression for the displacements and strains is in the

term indicated in (I-67)., Thus, u may be written as

U= x4, +y’ (1-68)
where u’ is independent of €4 and, from (I-67)

u'= 0 as [z—>oo (I-69)

Then (I-63) may be written as

Jwda= £2(s. u,dt + +t(s.ulde (1-70)
Bg Cr Cp

where all indicated integrals are independent of £ .

Consequently, the integral on the left can only be

*This follows from the expressions given in
Section 36 of Muskhelishvili (16) for the form of the com-
plex potentials which generate 4 on e .
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independent of €« if the first integral on the right
vanishes. Further, using (I-67) and (I-69) to estimate
the second integral on the right yields

Swda=0(R" as R-—>o (1I-71)
Bg

or
Jwda =0 (1-72)
8

Thus, as in the uniqueness argument for the
case of a bounded region given above, it then follows that
Zfl and ;52 may differ at most by a rigid body motion.
Hence, the uniqueness proof for infinite regions will be
complete if the supposition in (I-66) can be proved.

Let B, be as in (2.6), and let D = By

R
c c
definitions in equations (I-4 ) through (I-8 ). Note that

in the

¢~ 1is regular on Dg . Consequently, if (2.11) are
integrated over D¢ , then Gauss' theorem may be applied

to yield

O = a; = 1-73
} G, A ;{):;pnﬂ dL (1-73)

Or using (I-12) and (I-62a) in (I-73)

[Aql = I/{sddﬁl (I-74)



Using the Cauchy-Schwartz integral inequality gives

A,Ad$4N7T£/_£SdS°, J2 (1I-75)

[ A

Therefore, from (I-30), (I-36) and (I-75)

Aata ¢ — T 1/ (g) (1-76)

Pick €;, £, such that 0<€g <& <&,y and integrate
(1-76) from €, to €, to get

Cg - 'S
O« AuAy ¢ ANTLhELhle (1-77)
logq -£2
J &
By (I-42), the quantity in brackets is positive, and by
earlier analysis h( € ) tends to zero as & tends to zero.
Thus letting €, tend to zero in (I-77) , the numerator
on the right remains positive and bounded, and one

concludes
AaA,( = O (1'78)

Hence, the proof is complete.

It might be noted that in the above proofs,
no particular use is made of the fact that the cracks
are rectilinear. Consequently, the proofs apply equally
well to cracks in the shape of non-intersecting, piece-
wige smooth curves, so long as stress singularities are

permitted only at the crack endpoints.
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APPENDIX II: SOME ANALYTIC PROPERTIES OF
THE SOLUTION TO THE INTEGRAL EQUATIONS

In this section, some analytic properties are
established for the function Fn(xn) on fn(xn), and also
for some of the integrands appearing in Chapter 1I,
Section 5. These analytic propertles are necessary to
verify the convergence rate of the numerical scheme devel-
oped in Chapter III, Section 1.

1,F2.....Fn be a set of functions satisfying

Let F
the integral equations (2.64) or (2.65), with each F!
defined on Ln (n =1,2,...,N). Then for each n, there
exists a neighborhood N” of L,» and a function Fg(zn)
defined on Nn. such that:
1.) N is a simply-connected domain and LnC:Nng
2.) F: is a holomorphic function of z_ for all znean;

and
P (x)= F¢x.) for all X, € Lu (11-1)

For any arbitrary integer n € (1,N), consider the
family of domains depending on the parameter >0, and

defined by

NG = {Can, vl Cxu= B 4 72 < 2% for some Rucln) (1I-2)

Since the cracks Ln do not intersect, it follows that for
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some sufficiently small o, N? will contain no points
of the cracks L, (m =1,2,+4.,N; m # n), Let such a p
be picked and denoted by N and let

n

N :N,;, (11-3)

Note that N" is easily shown to satisfy (1). Further,
it may be noted that N" is symmetric with respect to
the real exis Yo = 0. That is, let

N = §2.]Z. eN} (II-4)

Then, ﬁn is the "reflection" of N? through the real axis.

It is easily seen that
N™ = N7 (11-5)

Prom (2.53a), (2.58), and (2.62),

Frawy = I 5473 ~ L £ xy &L (11-6)
where
Be g £ g (1)
™y

From (II-7) and (II-3) it is easily verified that D

is analytic throughout N, Consequently, the stress field

éfn may be expressed as

Gn v Bn = 2] 8@y +3 "z ] (II-8a)
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Gl - G w24 Gam =207, $tza+ @ 2] (11-8b)

where & and f@n are holomorphic functions of z for all

zn € Nn. Define

———

Atz = BUEY 4z, s PED (11-9)

A
It can be shown that <1 ig a holomorphic function of

(16), Section 76).

z, for all 2, € N° (c.f. Muskhelishvili
Thus, by (II-S).ff is a holomorphic function of Z, for

all z_e N?. Combining (II-8) with (II-9) gives

A A An An = =5 Zn
Gr-2 6 = &7z + Q72+ (242 8 (2 (11-10)

Evaluating (II-10) for z,€L, and using (11-6)
together with (2.22a) gives

A

Fofxd= §7 (x) + % (%) —Lo £ Xa €4 (II-11)

Thus, letting

Frz)= 37z + L0020 for all z,enn  (II-12)

it follows that Fg has the properties claimed in (2).
Statements (2) above can also be shown to be

true for fn. Thus let

Zn .
. (z)= L F."(¢) db + £7(0) for all Z, €N (11-13)
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where the integral is taken along any path lying wholly
in N®. Then fg(zn) is easily seen to be holomorphic
throughout Nn, and satisfies

£ (xD = £ for all Xue L (II-14)

Since Ln is interior to Nn’ it then follows
that f (and F°) are infinitely continuously differentiable
on the closed interval =£n<xn¢1n- Further, it follows
trivially that the functions h” (xn,tn) and Hp(xn'tn) defined

in equations (2.87) are infinitely continuously

differentiable on the open square

Se :{_(x.,)t-h/:?"‘/o. <X <l t o —;e"-/a,/.t.‘é,e,,-fﬂ,} (11-15)

Hence they are certainly infinitely continuously differ-

entiable on the closed square
Se = § 0,8 |l € X S, ~lo g TS Lo § (II-16)
Finally, from (2.95) and (2.86a), 4™ may be

written as

.
d"(x) = 5k f B x, 0) %__;— (11-17)

In (II-17), let

t,= -Afu cos T, O = T £ (11-18)
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Then

—~

v
Ay ==L [ 1 (e, -l eos ) Az (II-19)

By the analyticity of h" on S,+ it follows from (II-19)
that a" is infinitely continuously differentiable on the
closed interval -lnfxn$1%.
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FIG.2 GEOMETRY, COORDINATE SYSTEMS, AND
LOADINGS
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FIG. 3 THE DELETED REGION
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FIG. 4 COLINEAR CRACKS
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FIG. 5 INTEGRATION CONTOURS
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2 r - Log|o( /r)/L0og(2)

Il 1 J |

8 10

|
()

Log,o 8(h ; 2)

=12

4 x
' ' L, at =l _d
f(2)= = : d cTr (t=-fcos0)
e ,2 mi t — 2 42 Lcosg+Z
2 G

f,(Z)= h % on hs ——
h neo £cos(nh)+Z ( N )

| £(2)-£,(2)]

1£(2)1
Locally: Log & = C;—C2 Logh

Lo & =10C.pC2

d(h;2)=

FIG.7 CONVERGENCE STUDY
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