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ABSTRACT 

A nUrrlerical rrlethod is developed for solving the problem. of 

a wing in arbitrary non-planar ground effect. The linearized equa­

tions of unsteady rrlotion for an arbitrary non-planar wing in non­

planar ground effect are presented. Nuxnerical calculations were 

rrlade to deterrrline all the aerodynarrlic characteristics and stability 

derivatives for various thin, uncarrlbered planar and non-planar wings 

(including two wings connected in tanderrl) in planar and non-planar 

ground effect. These calculations were incorporated into the equa­

tions of unsteady rrlotion to deterrrline the dynarrlic stability charac­

teristics of these wings in the various ground effect situations. 

Several wings were found to be longitudinally stable, but only in 

rare cases were they found to be laterally stable. 

An experirrlent was conducted to cOrrlpare SOrrle of the 

nUrrlerical calculations with reality. The agreerrlent was reasonable. 
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INTRODUCTION 

The search for new high- speed ground transportation water 

and rough terrain vehicles has spread in ITlany directions. One of 

these directions involves the use of aerodynaITlic lift to support and 

stabilize a high- speed vehicle above a planar or non-planar (regular 

or irregular) ground surface. The raITl wing and the terrafoil are 

the ITlost popu1ar naITles as sociated with this ITlode of transportation. 

A raITl wing can be described as a vehicle which is geoITletrically 

siITlilar to a large low-aspect-ratio airfoil flying close to the ground 

and being subject to aerodynaITlic ground effects. Various raITl wing 

configurations are shown in figure 1. A detailed description of a 

terrafoil vehicle is presented in reference 1. In general, it can be 

described as a tandeITl winged vehicle subject to close ground effect 

and which aerodynaITlically interacts with the surface or guideway 

to achieve static and dynaITlic stability. Various terrafoil configu­

rations are shown in figure 2. 

The raITl wing and terrafoil concepts for ITlulti- terrain travel 

have several advantages over other proposed guided and ITlulti­

terrain vehicles, such as the air-cushion vehicle. Arrlong these 

advantages are: 1) the utilization of ground augITlented dynaITlic lift 

at high speeds, 2) the reduction in induced aerodynaITlic drag due to 

the presence of ground effect, 3) the reduction of wave and spray 

drag over water since these vehicles will in general (and particularly 

at high speeds) fly appreciably higher than the corresponding air 

cushion vehicle, 4) the eliITlination of ITlomentUITl or sink drag, which 

is the equivalent of induced drag for a wing, 5) the capability of 
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being integrated with a captured air-bubble lift augm.entation system., 

and 6) the capability for negotiating drastic changes in height above 

the ground to facilitate travel over very rough terrain or for obstacle 

avoidance. 

There have been, however, some major difficulties which 

have held back the developm.ent of these vehicles for use in high­

speed surface transportation. One of these difficulties has been the 

absence of any analytical or num.erical m.ethods for solving the prob­

lem. of the com.pletely arbitrary non-planar wing flying in the presence 

of any arbitrary non-planar ground situation. Another difficulty 

stem.s from the fact that there has been a lack of investigations into 

the static and dynam.ic stability characteristics of three-dim.ensional 

wings in arbitrary ground effect. 

It is therefore the purpose of this investigation to develop a 

suitable num.erical m.ethod for solving the problem of com.pletely 

arbitrary wings flying in the close proxim.ity to any arbitrary planar 

or non-planar ground, and to present the linearized equations of 

unsteady motion for non-planar wings in non-planar ground effect. 

Chapter I states the analytical problem., reviews the previous attem.pts 

at solutions for wings in ground effect and introduces the generalities 

of the present solution technique. In Chapter II the aerodynam.ic 

analysis using this solution technique is presented and applied to 

two and then three-dimensional problem.s, and com.pared with other 

solution techniques. Included in this chapter are the num.erical 

results involving the aerodynam.ic characteristics of various planar 

and non-planar wings in planar and non-planar ground effect. Chapter 
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III is concerned with the development of the linearized equations of 

unsteady motion (longitudinal and lateral) for arbitrary wings in 

arbitrary ground effect. Solutions to these equations are presented 

for most of the wings and ground effect situations discussed in 

Chapter IL Finally, Chapter IV presents an experimental inves­

tigation of a non-planar wing in planar and non-planar ground effect 

and comparisons are made with the numerical solution to similar 

problems. 
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CHAPTER I 

A. Statement of the Analytical Problem 

1. Principal As sumptions 

Before an attempt can be made to consider the analytical 

problem, it is helpful to discuss some of the basic underlying as-

sumptions with regard to the flow field around a wing in ground effect. 

First, it is assumed that the flow field about all the wings and ground 

planes investigated satisfy Laplace's equation. That is, 

where i..f is the velocity potential. Second, it is as sumed that the 

Kutta condition is satisfied at the trailing edge of all wings investi­

gated. That is, it is as sumed that the velocity is continuous at the 

trailing edge of these wings. With these assumptions in mind, the 

remaining boundary conditions on the flow field can now be written. 

2. Boundar y Conditions 

a. Boundary Condition on the Wing 

We wish to write down the boundary condition on an arbitrary 

wing surface that satisfies the condition that the fluid flow is tangent 

to the wing surface at the wing surface. The unit normal vector to 

the wing surface is 

The velocity at any point 

in the flow field is x 
y 
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where ~ (LL, ~,~) = External freestreatn velocity 

accounting for rigid body tnotion 

in translation and rotation. This 

also accounts for the velocity in-

duced by other objects in the flow 

field whose pressure distribution 

is already known. 

v = (U, If, w) = Velocity induc ed by the lifting 

surface and the velocity induced 

by any planar or non-planar ground. 

The wing boundary condition is satisfied if 

Von =0 
W 

b. Boundary Condition on the Ground 

The boundary condition on an arbitrary non-planar ground 

plane rn.ust satisfy the condition that the fluid flow is tangent to the 

ground on the ground surface. The unit norrn.al vector to the ground 

surface is 

n :::: VI Iv + n~ J + n q f 
'if ~I Z (13 

The velocity at any point in the flow field is 

where V is defined as above. However, Ii can also be split into its 

two corn.ponents; that is, the velocity induced by the lifting surface 

and the velocity induced by the ground. Hence, 
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(V w + ( 3)L +(Vw-+V/J)j + (Ww+WjJ-) k 

Now, the ground boundary condition is satisfied if 

B. Analytical Solutions 

Although, in general, it is not possible to solve, in closed 

forrn, the problem of an arbitrary non-planar wing in non-planar 

ground effect, it is useful to review the results of those special 

cases where analytical solutions have been presented. 

1. Analytic Solutions in Two Dimensions 

The first "exact" solution dealing with two-dimensional wings 

in potential flow was that given by Tomotika et al. (ref. 2) in 1933 

for a flat wing. The solution was arrived at through the conformal 

transformation of a flat wing and ground plane into the outer and 

inner boundaries, respectively, of an annular region in the complex 

plane. The flow in this annular region is known, hence the pressures 

on the annular region were calculated and transformed back to the 

coordinate system of the flat plate with ground plane, and the lift 

was then determined. In general, the results showed that the in­

crease in lift on a flat two-dimensional wing in ground effect decreases 

as the angle of attack is made larger. Tomotika later extended his 

solution to include all Joukowski-type airfoils. 

A more recent analytical solution for the two-dimensional 

wing in ground effect was presented by Widnall and Barrows (ref. 19) 

in 1969 using the method of matched asymptotic expansions. In 

general, the solution for the flow in the region above the wing was 
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matched to the solutions at the leading and trailing edges and to the 

channel flow solution beneath the wing. Results obtained by this 

method were fairly accurate for height to chord ratios les s than O. 5. 

Widnalliater extended this solution to the case of a sinu­

soidal ground plane (ref. 14). 

2. Analytic Solutions in Three Dimensions 

Using the method of matched asymptotic expansions, Widnall 

and Barrows (refs. 14 and 19) have presented approximate analyti­

cal solutions for the case of an optimally loaded flat elliptical wing 

with a straight trailing edge in planar ground effect and in the pres­

ence of a ground plane with sinusoidal bumps of small amplitude. 

In addition, they have presented approximate solutions for a nearly 

optimally-loaded wing in a tube and for a ram wing in a rectangular 

shaped trough where the flow is nearly two-dimensional. All of 

these solutions are, of course, for very special cases and, in addi­

tion, are valid for certain limited regions of aspect ratio and ground 

clearance. 

There have been other investigations into the problem of a 

wing in a fully confined space such as a tube or a wind tunnel, but 

it is expedient to limit the present discussion to wings in semi­

confined spaces. 



-8-

C. Numerical Solution Techniques 

1. Introduction 

Since it is essentially impossible to analytically solve the 

flow field around the arbitrary wing in the presence of an arbitrarily 

non-planar ground, it is essential to make use of numerical tech­

niques in order to solve the average problem. 

There are a multitude of satisfactory numerical techniques 

available for representing and solving potential flow problems in­

volving wings. These techniques usually involve the use of vortex 

distributions, source/Sink distributions, doublet distributions, or 

a combination of these distributions to represent the presence of a 

wing in a flow field. 

One of the simplest and most direct methods of representing 

a wing is the vortex-lattice method. This method consists of sub­

dividing the upper and lower surface of a wing into quadrilateral 

patches. A horseshoe vortex is placed along the line one-fourth 

the length of the patch from the front of the patch. The flow tangency 

boundary condition on the wing surface is satisfied at the midpoint 

of the line which is three-fourths the length of the patch from the 

front of the patch. These patches are distributed in the chordwise 

and spanwise directions. The strengths of the individual vortices 

are determined by applying the wing boundary condition at as many 

points on the wing surface as there are vortices. A system of 

simultaneous equations is then solved to determine the horseshoe­

vortex strength. Although the Kutta condition is not explicitly 

accounted for in this method, numerical results indicate that it is 
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satisfied nonetheless. One of the features of this method is that it 

eliminates the need for spanwise and chordwise loading functions. 

The origin of the vortex-lattice method is usually attributed to 

Falkner (ref. 20). Since its inception, it has been used by many 

investigators, including most recently Giesing (ref. 21). The 

two-dimensional special case of this method has been rigorously 

investigated by James (ref. 22) and has proven to be remarkably 

accurate for two-dimensional airfoils. 

Another successful, although more complicated, method 

is that used by Watkins et al. (ref. 4). This method numerically 

solves the integral equation relating the lift and downwash dis­

tributions for thin wings in subsonic flow. The unknown lift dis­

tribution is represented by the product of chordwise and spanwise 

modes of lift, each given an unknown weighting factor. The rela-

tion between the downwash and the lift dis tribution is then applied 

to as many points as assumed modes of lift. This gives a set of 

simultaneous algebraic equations to solve for the weighting factors. 

The aerodynamic coefficients are then determined by numerically 

integrating the pressure distribution over the wing surface. Saunders 

(ref. 5) has used a modification of this method to numerically com­

pute the aerodynamic coefficients of some thin wings in planar 

ground effect. 

Previous to the present investigation, the only method used 

to represent a ground plane for use in calculations of wings in ground 

effect, was the imaging method. It consists of placing an identical 

wing in mirror image fashion on the opposite side of the plane 
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designated as the ground plane. In this way, the boundary condition 

on the ground surface is autoInatically satisfied because the equal 

and opposite flow velocities exactly cancel at the plane designated 

as the ground plane. KohlInan (ref. 24) used the iInaging Inethod 

in conjunction with a discrete vortex digital cOInputer prograIn to 

deterInine the ground effect on wings of arbitrary planforIn. Saun­

ders (ref. 5) also used the iInaging Inethod and the kernel function 

wing representation of Watkins (ref. 4) to deterInine the ground 

effect on SOIne thin flat wings as well as thin non-planar wings with 

sweep and taper ratio. Most recently, KalInan (ref. 23) used this 

Inethod with the vortex-lattice Inethod to cOInpute the ground effect 

on thin flat rectangular wings of various aspect ratio. The results 

obtained by all three Inethods seeIn to be in general agreeInent 

with each other as well as with experiInental data. 

However, there have been no investigations conducted that 

have considered the probleIn of the arbitrary non-planar ground. 

All nUInerical investigations have only considered the case of wings 

in planar ground effect. The reason for this is obvious; the iInaging 

Inethod cannot be extended to the arbitrary non-planar ground prob­

leIn. Therefore, if any solutions are to be obtained for the probleIn 

of an arbitrary wing in arbitrary non-planar ground effect, they can 

only be obtained by developing a new Inethod for representing ground 

interference. 

2. The Present Technique - Generalities 

The Inain considerations involved in choosing the nUInerical 

technique used in this investigation were siInplicity, flexibility, and 
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cost ITliniITlization. Therefore, the ITlethod chosen for the siITlulation 

of the presence of a wing in the flow field was the vortex-lattice 

ITlethod. This ITlethod can be used for any arbitrary wing shape, 

since the Kutta condition is autoITlatically satisfied. The ITlethod 

also generates the proper singularity at the leading edge autoITlati­

cally. In addition, the siITlple calculations involved in satisfying 

the boundary condition on the wing, which avoided any probleITls 

with singularities, were very attractive. 

However, a new ITlethod had to be developed for representing 

the presence of the ground in the flow field. This ITlethod had to be 

equivalent to the ITlethod of iITlages for two-diITlensional and three­

diITlensional planar ground probleITls, but had to have the capability 

of being extended to three-diITlensional non-planar ground probleITls. 

Therefore, it was decided to represent the presence of the ground 

in the flow field by a distribution of ITlass sources and sinks. The 

distribution of sources and sinks were placed on the ground surface 

and the boundary condition prescribing that there be no norITlal flow 

through the ground was satisfied at a discrete nUITlber of points. 

The strengths of the sources or sinks at these discrete points as 

well as the strengths of the horseshoe vortices representing the wing 

were then deterITlined by solving a set of siITlultaneous equations 

developed by satisfying the boundary conditions on the wing and 

ground. A rigorous ITlatheITlatical developITlent of this technique 

is shown later in this section. There were ITlany probleITls as soci­

ated with this technique. AITlong theITl was the need to truncate the 

ground plane rather than extending it to + dO. Another probleITl 
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evolved in the choice of locations on the ground plane for which the 

boundary condition on the ground was to be satisfied. This problem 

was especially critical in the region beneath the wing and in regions 

near any corners in the ground plane. Additional problems also 

arose due to the singular nature of the source strength directly at 

the corners on the ground plane. The details as well as the resolu­

tion of these and other problems involved with this method are dis­

cussed in section II-B, part 3. 

An entirely different technique for representing a non-planar 

ground plane was also developed. This technique was actually an 

extension of the principles of images and is thus referred to as 

multiple imaging. It involves the placement of more than one image 

of a given wing in the flow field to represent the effect of a non­

planar ground. This method, however, was only useful for solving 

problems where the non-planar ground consisted of two straight 

infinite ground planes intersecting each other at a certain angle. 

However, the development of this technique was essential in order 

to check some of the results of the source/sink distribution tech­

nique. The mathematical treatment of this technique and those men­

tioned previously will now be presented. First, the mathematical 

treatment of the source/sink distribution technique in conjunction 

with the vortex-lattice method as applied to two-dimensional flows 

will be discussed. Then the imaging method in conjunction with the 

vortex-lattice method as applied to two-dimensional flows will be 

shown. The mathematical treatment of these methods will then be 

applied to three-dimensional planar ground problems, and finally, 
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the treatment of the former method and the multiple imaging method 

will be applied to three-dimensional non-planar ground problems. 
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CHAPTER II 

A. Application to Two-Dimensional Problems: 

The coordinate system for the two-dimensional flow of a 

wing in ground effect using the source/sink distribution method in 

conjunction with the two-dimensional vortex-lattice method (often 

called the Weissinger approximation) is shown in figure 3. 

In two dimensions the vortex-lattice method of representing 

the wing consists of subdividing the wing into equal chordwise seg­

ments. A two-dimensional point vortex is placed in each segment 

at. a point one- fourth the length of the segment from the front of the 

segment. The flow tangency boundary condition on the wing surface 

is satisfied at one point in each segment. This point is at a distance 

of three-fourths the length of the segment from the front of the seg­

ment. This situation is depicted in detail in figure 3. It is of interest 

to note here that James (ref. 22) has rigorously proved the validity 

of this method in two dimensions for a wing in an unbounded fluid. 

In fact, in an unbounded fluid, he has shown that the correct value 

of the lift and moment is obtained regardless of the number of seg­

ments into which the wing is subdivided so long as the downwash is 

everywhere bounded on the wing. In ground effect, this last conclu­

sion does not hold true. However, the correct value for the lift and 

moment calculated by this method for a wing in ground effect is 

asymptotically approached as the number of subdivisions is increased. 

The closer the wing approaches the ground, the more subdivisions 

are required for an accurate answer. This fact has been verified by 

numerical calculations which are explained and expressed in detail 
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in part C-l We will now develop an expression for the lift on a two-

ditnensional wing in ground effect using the source/sink distribution 

tnethod in conjunction with the vortex-lattice tnethod. 

Notnenc1ature: 

c = 
([(/1) = 

1(:) = 

P~Jtj)= 

7fdJ1 = 

Y(dJ = 

)( = 

o--(;{ ) = 

5 = 

R = 

f3 = 

u = 00 

0( = 

length of chord of airfoil 

circulation per unit length of vortex distribution 

efflux rate per unit length of line source 

field point at which we wish to evaluate the velocity 

induced by the line source and the vortex distribution 

eletnental vor tex with cir culation 't d){ 

eletnental source of strength Y(dJ 

distance along )( -axis frotn origin to d'df{ 

distance along Y-axis frotn origin to 'td).{ 

distance along X -axis frotn origin to Y{dJ 

distance frotn incretnental source to P(IP) 'V) 

angle between R and X -axis 

velocity of freestreatn 

local angle of vortex distribution to freestreatn 

1. Source Distribution Method 

The elemental stream function due to the line source is, 

d 1// - - y/ds!3 
T5 - 2 rr 

The complete stream function resulting from the entire line 

source extending from - 00 to -!-00 is 

-00 
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or 

- e>O 

The elemental stream function due to the vortex distribution 

is, 

The complete stream function resulting from the entire vor-

tex distribution extending from,A"=O to A-=C is, 

c 
1;( = 1 Xf! k [(/Y-'-;4' f + ('1- ~(;{ ~2 J Yz 

o 

We can r elate a- to){ in the following way: (]-' 

v = h + {(;<) on the airfoil '~ 
h 

The stream function for the freestream is, 

The total stream function from all components is then 
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The following boundary conditions mus t be met: 

1) There is no flow through the ground. That is, 

J'i(; := 0 
d /)?' lIJ=o 

2) On the airfoil surface the flow must be tangential to the sur face. 

That is, 

on the air foil sur face 

Conforming to the first boundary condition we find the follow-

ing: 

As Aj-" 0 , it can be shown that the integral on the left ap­

proaches 

-.., 
Hence 

o 
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Therefore we have an expression for Y(~), namely, 

Hence ),/ -~11 f-~(J-J1)dJ-1 ;-) -;- -If Af- J d 
r, - 2. J(~.o (.j [O-;I-(J' + cr'] J,M>< (~J I + 

ff~ ~[(IP-;I-(/+ (~-U'/t + U".,11j-
o 

In order to determine the vortex strength distribution, we 

must now satisfy the boundary condition on the wing surface. At 

this point we will discretize the wing surface in the manner pre-

scribed by the vortex-lattice method. Hence the boundary condition 

on the wing surface in discrete form is expressed as, 

where the coordinates ~., I7jj are the points at which the boundary 

condition is satisfied on the wing surface. Hence 

Shortening the notation, so that ~',!If;.. is replaced by j , and ex­

pressing the velocity in terms of its components, we have 

2.. '0ft) + V'r,p -+ 0( rJ) [ 2. ~(j) + U/(j)] == - o<(j) U
oa 

)., 
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. fh 

The subscript.i refers to the velocity induced by the J- discrete 

point vortex on the jth matching point. Also VIP and (A/{jJ are the 

contributions to the velocity induced at the rna tching point by the 

infinite line source. They can be expressed as, 

-00 

u..'() =-.LjOO(~ r;.(f-p.L)L-.j{; 
J 2 J( ~ (J -J(.Y +<r'z 

J. ,L "" 

-0<; 

(1'I;-3)dr 

[(~.-J/+ IY;.! ] 

Changing the order of integration and summation, we can expres s 

U.'(~) and V '( jJ in terms of a shortened notation. That is, 

• vl(j) ::: ~ V;' (iJ 
,( 

where the definitions of U,,/P and ~'(j) are obvious by reference to 

the two previous equations. 

Hence, we can rewrite the boundary condition on the wing a,s, 

Since the velocity induced by each vortex is proportional to the circu-

lation ~;., of that vortex, we can define 

• , 

and we can rewrite the equation as 
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~ ~ [~(P +~'(j) +~(j)(~(j) --t- CS'(,)) -= - o{U) ~ 
.<.. 

This gives us a j. tl-, order set of sirrlUltaneous linear algebraic equa-

tions to solve for the discrete point vortex strengths ~ • 

As suming that this can be done, we can calculate the lift as, 

where 

and ~ refers to the velocity induced at the k -H, discrete vortex by all 

other vortices and the line source. The moment is expressed as, 

M =.2 f (U
oo 

+ <-«(~») ~ [~ ~(<>«ft») -1fIt~(O«(k»J 
~ 

We will now develop expressions for the lift and moment for 

the same problem using the method of images in conjunction with the 

vortex-lattice technique. 

2. Image Method 

The complete stream function resulting from the entire vortex 

distribution of both the real wing and the image wing and from the 

freestream is, 
c 

Yr =J 2~ [£n.[( "'-4 -+- (".I-O'ff{l), f'- + .e..- [C"''''!' -+- ("i- +or-(Hl)f']d}l 
o 

+ Uoo '} 

The method of images automatically satisfies the boundary 

condition of no normal flow through the ground; hence, we have only 

to s atis fy the boundar y condition on the wing. That is, 
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In a manner similar to that of the source distribution method, we 

now write 

~ [V,L(j} +V,.:'(j) + 0< (j) (U/P + L\"(j))] =-o(j) ~ 
Iv 

where 

We then follow the same procedure as with the source dis-

tribution method and arrive at similar expres sions for the lift and 

moment. However, 
U(k) =::E U,J~) -T u"(k) 

"'-

3. Equivalence ofthe Source Method and the Image Methods 

In order to prove that the source distribution method is 

exactly equivalent to the image method for representing the presence 

of the ground in two dimensions, it is only neces sary to prove that 

the velocity induced by a single point vortex together with an infinite 

line source, whose source strength distribution satisfies the condi-

tion that there is no normal flow through it, is the same as the veloc-

ity induced by a point vortex and its image. This would be sufficient, 

since any arbitrary airfoil can be expres sed in terms of a point 

vortex distribution along its upper and lower surface. 

This proof is found in Appendix A. The definite integral over 

the source distribution is 'evaluated by complex variable contour 
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integration. The velocity induced by this source distribution is 

shown to be exactly the velocity induced by a vortex i:mage. 

B. Application to Three-Dilllensional Problellls 

1. Source Distribution Method 

The coordinate systelll for the three-dilllensional flow of a 

wing in planar or non-planar ground effect using the source distri­

bution lllethod in conjunction with the three-dilllensional vortex­

lattice lllethod is shown in figure 4. 

a. Wing Representation 

In three dilllensions the vortex-lattice lllethod of representing 

the wing consists of subdividing the wing into spanwise and chordwise 

seglllents. A three-dilllensional horseshoe point vortex is placed in 

each seglllent so that the bound portion of the hor seshoe vortex lies 

along the line joining the one-quarter chord points of the chordwise 

edges of each s eglllent. This situation is illustrated in figure 4. 

The flow tangency boundary condition on the wing sur face is satis­

fied at the lllidpoint of the line joining the three-quarter chord points 

of the chordwise edges of each seglllent. There are SOllle restric­

tions on the shape of a given seglllent. A seglllent can be a quadri­

lateral or a triangle. 1£ it is a quadrilateral, the two chordwise 

edges lllust be parallel to the plane defined by the freestrealll direc­

tion and the unit norlllal to the wing surface at that chordwise edge. 

1£ it is a triangle (a degenerate case of the quadrilateral) the single 

chordwise edge lllust be parallel to this plane. This is illustrated 

in figure 5. 
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The accuracy associated with representing wings in this 

Ulanner has been found to be excellent. For a Ulore detailed dis-

cussion of the Ulethod as well as Ulany cOUlparisons with experi-

Ulental data, the reader is referred to KalUlan (ref. 23). In fact, 

a cOIllparison of this Illethod and the Illethod of Saunders for cal-

culating the forces on thin flat rectangular wings in ground effect 

and thin wings with dihedral in ground effect is presented in the 

reference. The agreeUlent was excellent. 

We will now develop expressions for the forces and UloUlents 

on an arbitrary three-diUlensional wing in arbitrary planar or 

non-planar ground effect using the source distribution Ulethod in 

conjunction with the vortex-lattice Ulethod. 

b. Source Distribution Ground Representation 

Theoretical DevelopUlent 

NOUlenclature: 

p(fl..-, iii, IJ) = field point at which we wish to evaluate the total 

potential 

(t).(1 1) = coordinates of a differential eleUlent of the source 

= 

= 
= 

sheet ground plane 

efflux rate per unit area of source sheet 

eleIllental 3-D source of strength tfdJef/< 

distance froUl increUlental source to P(~Ilf) 

coordinates of 1/4-chord point of ,i./h horseshoe 

vor tex patch 

coordinates of 3/4-chord point of ).tIt horseshoe 

vortex patch 
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\.i = circulation of horseshoe vortex 

<fJr = total potential induced by freestream, source sheet 

ground plane and system of horseshoe vortices 

It's = potential due to the presence of the source sheet 

ground plane 

~s" = potential due to the '/)111 segment of the source sheet 

ground plane where the infinite source sheet is divided 

into several spanwise segments 

cP,.s.. = potential due to presence of the freestream 

~.v. = potential due to the system of horseshoe vortices 

t7 <l'r = velocity at any point in the flow field 

Potential at any Point P in the Flow Field: 

The velocity potential due to the presence of the source sheet 

ground plane of infinitesimal thickness is: 

As sume that the shape of the source sheet does not vary in 

the Y -direction, but does vary in the Y -direction. 

We can write the J -coordinate of any incremental source in 

the source sheet in terms of the A - coordinate. 

Let j=lwJ where f is known and is at least piecewise con-

tinuous. 

Hence, we can write ~ as, 
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Furthermore, if we divide the source sheet ground plane 

into several spanwise segments, say r segments, such that for 

any given segment, 

r 
Then ~::::'L ~ 

n:/ " 

We now add the potential due to the system of discrete horse-

shoe vortices and the freestream. For the present we shall refer to 

these potentials as if".v. and If
F
•S. 

Hence, the total potential for the flow field is, 

r 
~ :: Z. ~n + ~.v. + ~.s. 

n"/ 

Boundary Condition of No Flow Through the Ground: 

In order to simulate the presence of a ground plane by the 

source sheet, we must satisfy the condition that there can be no flow 

through the ground. That is, 

Von, -= 0 on the ground plane 

In 0 ther words, 
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o 

where 

n, =- n~, I + Yl~z 1 + Y1~ k 

at the point where the boundary condition is being satisfied. We can 

rewrite \1fT as 

A detailed derivation of the velocity induced by an arbitrary 

horseshoe vortex is given in Appendix C. We must now calculate 

\lV's . But first, let us subdivide the ground source distribution 
" 

into segments so that any arbitrary non-planar ground plane can be 

represented by a finite set of straight segments placed at the apprc-

priate position in the ground plane to approximate the desired ground 

shape. However, for the purposes of the configurations considered 

in this investigation we need only to generalize the non-planar ground 

plane to account for non-planarity in the "fi plane. Hence all 

ground planes considered in this investjgation will not have any 

variation in the /,f/ -direction. In other words, the normal to the 

ground plane can be expr es sed as n, = Y1:J + n.,}~ 

Consider the velocity induced at a point on a given segment 

by the three-dimensional source distribution placed on that segment. 

We will refer to the potential of the source distribution on the seg-

ment where we are satisfying the ground boundary condition at a 

given point by <fs 
/J,e. 

Then we can write 'il ~ 
s.c, 

as, 
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V' lfs = d <PsI.( . X + 0> ~ f.G. J + 
•. c. d tt.- J f\j 

d~ 
Since J::.c . does not enter into the boundary condition, we 

d ~ • .G d 'Is ,-c. 
need only concentrate on the ;)1· and )IJ. 

To evaluate these velocities at the source sheet we let :J. 
approach f ("S) • •. c. 

From previous work in two dimensions we know that we can 

evaluate these two integrals by analogy to the delta function. We 

transform our coordinates into coordinates perpendicular to and 

parallel to the segment of the source sheet at which we are satisfying 

the boundary condition. We call these coordinates ~/i,lj We 

then evaluate the velocity normal to the source sheet at the source 

sheet. 



We must now calculate the velocities induced by the other 

segments of the source sheet evaluated at the point where we are 

satisfying the boundary condition. Thus, for all ~ other than 
5n 

the one at which we are satisfying the boundary condition, we have 

Similarly, 
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Hence, we can write the boundary condition of no flow through 

the source sheet as, 

o f/(II;"II f,.l~?) 

2 

In order to determine the source strength distribution on the 

ground plane and the vortex distribution on the wing we must also 

satisfy the boundary condition on the wing surface. We would like 

to generalize this wing boundary condition to include the case where 

the wing may be given an arbitrary roll, pitch, or yaw rate. The 

detailed derivation describing the motion of a given point on the wing 

surface undergoing an arbitrary translation and rotation rate is 

given in Appendix B. 
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Hence, consider the boundary condition on an arbitrary wing 

surface that satisfies the condition that the fluid flow induced by all 

elements of the flow is tangent to the wing surface at the wing sur-

face. The unit normal to the wing surface is 

The velocity at any point in the flow field is 

where (l.i.'~JVO= The velocity induced by the wing translation and 

rotation relative to a fixed coordinate system. 

This velocity accounts for the speed of the wing and 

accounts for the roll rate of the wing. 

(tA,V',w) = The velocity induced by the wing on which the 

boundary condition is being satisfied plus the 

velocity induced by the presence of any ground 

plane. 

The wing boundary condition is satisfied if V'n =-0. 
\IV 

That is, 

Suppose we have a wing which is translating and rotating 

through space with velocity (U
o 
)\C w.) and rotation rate w=(pJC(,JY') • 

Let the distance from the center of rotation to any point on the wing 

surface be denoted by f=(t;:,f; ,r;.) where the center of rotation is Fe • r I I 3 

Then, in a coordinate system translating and rotating with 
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the wing, the velocity induced by the wing's rotation and translation 

is 

(u V W)=(U -or;.+rr,.)x; +(V+ pr,. -rr;)T +(W+or,.-pr;.)~ 
.... ' .oj _ 0 b J t 0 3 I J- 0 II I Z 

Hence the boundary condition on the wing with arbitrary 

angular rates and translation rates included is, 

un +vn +wn =-(u-or;+rt;.z)nw-(p~-n;+~)n 
\,\I( "'2. w3 0 D 3 'J I Wz. 

-(or;. -p~ +~)nw 
(] I 2. 3 

The velocity vector (U.,'lT)w) can be decomposed into the 

velocities induced by horseshoe vortices and the velocities induced 

by the ground source distribution. In addition, the boundary condition 

on the wing is satisfied at only a finite number of points dictated by 

the vortex-lattice method. 
\' . " 

Using the symbol J- to denote the 

coordinates (~J"jp'h) of a given point at which the boundary condition 

" . " 
is being satisfied, and using the symbol,(, to denote the velocity 

·th induced by the -L horseshoe vortex at the matching point, 

we write the wing boundary condition in the following discretized 

manner: 

= -(U-~ry + r~)n -(V -r pr;. -yy,..)n - (W +Q r: -pr;. )nw 
o 3 2. "", 0 1 ,wz. 0 0 I'j Z 3 
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is the velocity induced by the source 

distribution representing the ground. 

In order to numerically satisfy this boundary condition, and 

the boundary condition on the ground, we must discretize the inte-

grals over the source distribution on the ground. 

Dis cretization of the Source Distribution 

The boundary condition on the wing and the boundary condition 

on the ground represent a coupled set of integral equations for the 

unknown vortex strengths \,i and source strength distribution r((J,J{). 

An excellent means of numerically solving these equations is to rep-

resent the integrals over the source distribution as a finite sum. 

Then satisfying the wing and ground boundary conditions at "n w 

dis-

crete points gives "n" algebraic equations in "n unknowns. The 

unknown vortex and source strengths are then solved for by any of the 

many available methods for systems of linear algebraic equations. 

Given these vortex and source strengths it is then possible to deter-

mine the forces and moments on the wing. 

The mathematical treatment of the aforementioned process 

is now presented. Recall that the expressions for the velocities 

-..0-_ 



Let us represent the integral by a double sununation over a 

finite number of intervals. Using Simpson's rule as the basis for 

the sununation, we get, 

NP)( r NPrn 

t.4'{j) = A~ L L L ~<'.';/"y~/'Yi'~,j1 JIt'~) Y(" (f"/{t) A !t11 
A=, no( t~1 

where 

AJ ,6f{ = step size of integration interval 

and ~,dlt = weighting functions for Simpsoni s ~ rule of integration. 

If, in addition, we wish to be able to vary the step size of 

integration in certain regions. we must make some modifications 

to the above formula. 

If NOX and Nor are the number of regions in the X and Y 
directions, then 
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Let ~ ': (~-I) NPYT + L where tYPYT = total number of 

points in the ,Y -direction 

Writing (), '(P in more compact notation gives 

where 

Similarly 

where 

Substituting these relations for the velocities into the equation 

for the boundary condition on the wing, we get 

Since the velocity induced by the vortices is proportional to 

the circulation r. ,we can write, 
). 



U 1. (i) = \;. U:(i) 

LT· (J') =: ,..11. u ) 
.(. J. J. t 

lJ.(jJ == rw.(J·J 
~ A .L 
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Hence, we can rewrite the boundary condition equation as, 

Let 

and 

Then the equation for the condition of no flow through the wing can be 

written as, 

. 
for all J 
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This gives us J equations for ~ + i unknown. Henc e, we 

must get the remaining 't equations from the boundary condition of 

no flow through the ground. 

The boundary condition of no flow through the ground is stated 

as follows: 

0= 1I(~ IIJ) ~l-s~ 
2 

where n = unit vector normal to ground surface = nzT + (13 k 

Now, as before, we represent the integrals in the above equa-

tion by a double summation over a finite number of intervals. We 

evaluate the integrand at the same points on the ground plane that we 

used to evaluate the integrand for the previous boundary condition. 

Hence, using the notation previously introduced, we can rewrite the 

ground boundary condition as, 
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• 
for all J 

Or, rewriting in more compact form 

Let 

and 

Hence, we can write the boundary condition of no flow through 

the ground in the form 
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We now have a total of ~f j equations for f+J 

Special Source Strength Approxirnation 

unknowns. 

In order to accurately sirnulate the presence of a reasonably 

cornplex wing flying in the presence of a given non-planar ground, a 

large nUITlber of wing vortices and ground boundary condition rnatch-

ing points will be required. Every discrete point at which the wing 

or ground boundary condition is satisfied represents a linear alge-

braic equation. The SUITl total of all the equations produced by rnatch-

ing the boundary conditions represents a set of sirnuItaneous linear 

algebraic equations in the unknowns Y(~ and ~ These equations 

must be solved numerically. However, the computing tirne required 

3 
to do this increases as N where N is the nurnber of equations to 

be solved. Therefore, it is essential to rninimize the nurnber of 

equations that must be solved. An excellent means for reducing the 

number of equations is to express some of the unknown source 

strengths in terms of the other unknown source strengths by means 

of an interpolation polynomial. This does not reduce the accuracy 

of the overall rnethod since the kernel functions in the integrands of 

the integrals vary much more sharply than the source strength dis-

tribution. Therefore, a second order interpolation polynornial was 

developed to approximate the variation of the source strength dis-

tribution. This was incorporated into the source sheet distribution 

method by subdividing the ground integration interval into several 

segmented integration intervals. Each segmented integration interval 

consisted of five ground boundary condition matching points. How-

ever, the second and fourth points were expressed in terms of the 
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first, third, and fifth points by means of the second-order inter-

polation polynomial. This approximation reduced the number of 

equations in each direction by a factor of two, thereby reducing 

the total number of equations by a factor of four. The accuracy of 

the overall method was not impaired since the sub-intervals of 

integration could be made as small as desired. 

Calculation of Forces and Moments 

The previous equations when solved give both the distribution 

of circulation on the wing, and the distribution of source strength 

on the ground plane. 

Assuming that this linear system of 'Z4-j equations can be 

solved, we can calculate the forces and moments. Assuming that 

the freestream velocity points in the + X -direction, 

But 

yielding 

L = 2: 2 t" fUCa:. )~,() 1J t nW3 
,..<.. 

+ L u'(1.) 

~ " 
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Non-dimensionalizing with respect to the chord C , we get 

C :: 2 .£ I f.. (t + I I; ap) 
L 5 . c '"*1.. LA c 

~ J ~ D~ b~ 
+\ ~e C2

(} c~c" )\i n 
L U ( (,lit 3bt U c wJ 
~ 00 06 

Similarly, we can write expressions for the other forces and 

moments as, 

Note: This obviously is an expression for the induced drag only. 

c =- 2.£. \"" t.i( / + uri.) i- (.,('(j)) ~. n 
y S L c UC() u.., U C We? -
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Defining Ct as the roll mOInent coefficient about the midpoint 
l.e. . 

of the leading edge 

where (~'~i../}i.) are the coordinates of the midpoint of the bound 

," • N 
vortex in the segment ".v 

Similarly, the pitch and yaw moment coefficients about the 

midpoint of the leading edge are written as, 

c = 2..£'\ A ~ (";C{J..:- ~.£.\ (\.IJ(i) + W'c,i} ) 
M 5 ~ c lAc ~ c "") V\ II 

L.£.. J.. _ aD V\ ... 

- ('1,,;"1.,)( ~,() + r;W)] 
o<:J o<:J 

2. Multiple Image Method 

a. Generalities 

The value of the multiple image method for solving non-planar 

ground effect problems stems from the fact that this method automati-

cally satisfies the boundary condition of no normal flow through the 

ground. Therefore, we only need to satisfy the boundary condition 

of no flow through the wing. This provides us with a second 
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independent method of solving certain non-planar ground effect prob-

lems, thus providing an excellent check on the source/sink distribu-

tion method. 

However, it is obvious that the multiple image method is 

limited to solving only a certain class of problems. That is, it can 

only represent non-planar ground planes which can be described as 

two straight semi-infinite ground segments intersecting at certain 

angles. This type of problem is illustrated in figure 6. The method 

consists of placing n identical wings in the flow field. These wings 

are placed so that they are all facing the freestream dir ection but 

are at an angle A = 3~O(i._I) to the horizontal and equidistant from 

a line which is parallel to the freestream direction. This represents 

the problem of a wing flying in the presence of a non-planar ground 

consisting of two semi-infinite segments which intersect at an angle 

3~O degrees in the~-~ plane. The ground plane is uniform in the 

X-direction. Since we can only place an integer number of wings 

rl:: 2) )4) ••• the ground planes cannot intersect at any arbitrary 

3"0 angle, but only at those angles that can be expressed as -n-- for 

The case Y1::.( is, of course, representative of a wing 

flying in an infinite medium. The case n -::.2. represents the planar 

ground effect problems. 

Let us now develop expres sions for the forces and moments 

on a wing in non-planar ground effect using the multiple-image method 

in conjunction with the vortex-lattice method. We first consider the 

boundary condition on the wing. 
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b. Boundary Condition on the Wing 

The general expression for the boundary condition on the 

wing is the same as before. That is, 

(,( \1w. + V"n + 'W n == -( U -Q'(. + Y"V; ) V1 
r \N~ IN) 0 b '3 2 w, 

-(py;.-r~ -t-V )nw -('b~-p~+Wo)Vlw 
3 I () Z' '3 

But now, 

Sim.ilar 1 y , 

v( IYJ J "ii) 1-.) = ~ \ ~ V.}j) 

W(I¥J°J!tJiJ!J) == r ~ L ~.(j) 
,.(. r1.A. 

where (U,,<J)}{,Vo ») ~(i~ are the velocity components induced by the n +~ 

wing in the image system. Also, since all n wings are identical, 

they each have the same circulation distribution. Hence, the velocity 

induced by each discrete vortex and its images can be summed with 

the f; being a common factor. 

Substituting these facts and the above relations into the wing 

boundary condition, we get an equation for each point at which we 

satisfy this boundary condition. That is, 
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The system of equations represented by this equation when 

solved gives the vortex strength distribution on the wing. We can 

then calculate the forces and moments as follows: 

L = L 2 :I::c. f u.( Itj )ilJA.) Iji.) \. Y)\II3 

,i.. 

where t in this case t 

D L2~fW(a;)~,i)~)\2 
j., 

and 

The calculation of the other forces and moments follows in a 

similar manner. 

3. Equivalence of the Source Method and the Image Method 

In order to prove that the source distribution method is exactly 

equivalent to the image method for representing the presence of the 

ground in three dimensions, it is only neces sary to prove that the 

velocity induced by a single horseshoe vortex together with an infinite 

source sheet, whose source strength distribution satisfies the condi-

tion that there is no normal flow through it, is the same as the velocity 

induced by a single horseshoe vortex and its image (for planar ground 

problems) or images (for non-planar ground problems). This is 

sufficient, since any arbitrary three-dimensional wing can be ex-

pressed in terms of a horseshoe vortex distribution. 

In two dimensions we were able to show this proof analytically. 
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However, in three dimensions the integrals that must be evaluated 

are extremely difficult if not impossible to evaluate. Therefore, it 

was necessary to numerically compare the solutions. This was 

done by numerically computing the forces and moments on various 

wings in ground effect as well as computing the vortex strength dis­

tributions on the wing surface and the source strength distribution 

on the ground planes using both the source sheet distribution method 

and the imaging method. Although the results showed that the 

agreement between the two methods was excellent in all cases, it 

was found that there are three inherent difficulties with the source 

distribution method. First, it was very difficult numerically to 

extend a source sheet distribution to infinity; therefore, the ground 

plane had to be truncated at a certain finite radius in all directions 

for ease of computation. Second, in order to accurately represent 

the integrand of the integrals in the equations des cribing the boundary 

conditions on the wing and ground, the ground boundar y condition 

matching points had to be placed at specific locations and with 

specific spacing in the ground region beneath the wing. Third, 

since the source strength on the ground goes to infinity at any corners 

in the ground plane, the matching points near the corners had to be 

placed very carefully also. 

Detailed numerical investigations were carried out to deter­

mine how to correctly handle each of these difficulties. The descrip­

tion of these investigations and the results obtained from them are 

presented in Appendix D. In general, three important results were 

obtained. 1) The size of the source sheet distribution required to 



-46-

accurately represent an infinite ground plane depended on the height 

above the ground at which the velocity induced by the source sheet 

was calculated. It also depended on the particular component of 

the velocity being calculated. It was found for a flat ground that a 

source sheet distribution extended to a radius of 3 times H in all 

directions simulated the velocity induced in a direction normal to 

the ground plane within an error of 5 %, where H is the height above 

the ground at which the velocity is evaluated. A source sheet dis­

tribution extended to a radius of about 7 times H in all directions 

simulated the velocity induced in a direction parallel to the ground 

plane within the same error bound. Furthermore, these results 

for a flat ground were found to be applicable to any arbitrary non­

planar ground situation so long as the source sheet distribution is 

placed in accordance with the distance normal to the particular 

ground segment whose induced velocity is being calculated, and in 

accordance with the component of the velocity being calculated. 

2) In order to accurately represent the contribution of the source 

sheet ground plane distribution in the equation describing the bound­

ary condition on the wing and in the equation describing the forces 

and moments On the wing, the dis crete points at which the integrand 

of the integrals in these equations is evaluated must be placed 

according to certain rules. These rules specify that integrand 

evaluation points must be placed beneath the midpoint of the 1/4 

and 3/4 line of each wing segment (for non-planar ground they would 

be placed at the points on the ground which minimize the distance 

between those points and the midpoints of the 1/4 and 3/4 line of 
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each wing s egITlent). In addition, the spacing ITlUS t be about 1/2 

or less for at least the next two points in all directions. The devel­

opITlent of these rules is ITlore fully understood by a close reading 

of Appendix D. 3) Although the source strength becoITles unbounded 

at any corner s in the ground plane (that is, places where two ground 

segITlents intersect at an angle), the ITlass flux contributed to the 

flow field is zero at the singularity. Therefore, the singularities 

at the corners do not adversely affect the flow field. For a detailed 

ITlatheITlatical treatITlent of the corner singularities see Appendix D. 

c. NUITlerical Results and COITlparisons 

The nUITlerical solution techniques outlined in sections II-A, 

and II-B were forITlulated in several cOITlputer prograITls. In fact, 

separate prograITls were written for two-diITlensional wings using the 

ITlethod of images, three-dimensional wings using the method of 

simple and multiple images, and three-dimensional wings using the 

source sheet distribution ITlethod. These prograITls were written in 

.FORTRAN IV language for use on an IBM 370/155 computer at Cal­

tech, and for use on an IBM 360/91 at UCLA. 

It would be impossible, economically, to numerically solve 

all the possible airfoil and wing shapes and all the possible planar 

and non-planar ground shapes. Therefore, the choice was made to 

nUITlerically investigate several examples of only a single class of 

wings and only a few types of ground plane situations. The class of 

wings investigated was thin planar and non-planar wings without 

camber or twist. The ground planes investigated were flat ground 

planes, in two and three diITlensions, and three types of three-
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dimensional non-planar ground situations representing three possible 

high- speed ground transportation vehicle guideways. 

The results of these numerical investigations are divided into 

three sections. The first section is devoted to two-dimensional 

wings; the second section to wings in planar ground effect; and the 

third section to wings in non-planar ground effect. Only the calcu-

lations of force and moment coefficients are presented in these 

sections, and compared to experiments or other theories whenever 

possible. More broad results dealing with stability derivatives and 

dynamic stability characteristics of most of these wings are deferred 

to Chapter III where a stability analysis is developed. 

1. Results for Two-Dimensional Wings 

Numerical calculations were carried out to determine the lift 

on a two-dimensional thin flat wing in ground effect. Cases were 

solved for wings repres ented by 1, 2, and 3 vortices, at angles of 

attack of 2°, 10°, and 14°, and for heights ranging from one chord 

length down to the height where the trailing edge touched the ground. 

The angle of attack is defined here and in the rest of Chapter II as 

the angle between the surface of the wing and the horizontal. This 

is important to note because in Chapter III the angle of attack is 

defined as the angle between the surface of the wing and the ins tan-

taneous wind vector. The difference between these two definitions 

is discussed in Chapter III. Figures 7, 8, and 9 show the ratio of 

the lift at the height hie to the lift at h -::: CJQ as a function of the 
o 

height of the quarter chord above the ground for the various numbers 

of vortices and angles of attack. The figures also show the exact 
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values of the lift derived by Tomotika (ref. 2). 

The calculations showed that the two-dimensional vortex-

lattice method develops a different value for the lift depending on the 

number of vortices used to represent the wing. This is contrary to 

the situation in an unbounded fluid where the same value for the lift 

is developed independent of the number of vortices used to represent 

the wing. However, as the number of vortices is increased, the 

numerical solution asymptotically approaches the exact value. The 

calculations also indicate that the solution diverged when the air-

foils wer e placed very clos e to the ground. However, the ons et of 

the divergence occurred increasingly close to the ground as the 

number of vortices was increased. 

2. Results for Three-Dimensional Wings in Planar Ground 
Effect 

Numerical calculations were carried out to determine the 

forces and moments on various three-dimensional thin, uncambered 

wings at angle of attack. For the purpose of brevity, these wings 

were separated into three main categories: l) single planar wings; 

2) single non-planar wings; and 3) tandem planar wings. Results 

concerning only the rudimentary aerodynamic parameters, such as 

lift coefficient, induced drag coefficient, lift curve slope, moment 

curve slope, and center of gravity location are presented in this 

section. This is because experimental and other theoretical results 

exist for these parameters for some wings in ground effect. More 

general results concerning the static stability derivatives and 

dynamic stability characteristics of these wings are presented in 
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Chapter III. 

a. Single Planar Wings 

Calculations of lift- curve slope C
L 

ot.. 
, the induced drag 

coefficient C ,and the quarter- chord ITlOITlent- curve slope 
oJ.. 

were ITlade for thin flat rectangular wings of aspect ratio l, 2, 

CM 
O(Y<4 

and 

4, angles of attack 2. 5° and 5°, and heights above the ground ranging 

froITl • 05 chords to 00. Consistent with the definition of the angle of 

attack as us ed in all of Chapter II, the lift- curve slope Ct. ,and 
0( 

the ITlOITlent curve slope eM are defined as the changes in the lift 
O(Y.4 

and ITlOITlent with changes in the angle between the wing surface and 

the ground. The lift and ITlOITlent curve slopes are presented this 

way in this chapter because all experiITlents with wings in ground 

effect ITleasure the variation of lift and ITlOITlent with a variation in 

the angle between the wing surface and the ground. These calcula-

tions were perforITled to cOITlpare the results to pr evious nUITlerical 

calculations and experiITlental data, and to deterITline the nUITlber of 

vortices required to adequately represent a wing in ground effect by 

the vortex-lattice ITlethod in conjunction with iITlaging. 

Figure 10 shows the lift- curve slope vs. aspect ratio for 

thin flat rectangular wings in an unbounded fluid. The results of 

various nUITlerical solutions and experiITlents agree well with the 

vortex-lattice ITlethod. This indicates that a rather ITlodest nUITlber 

of vortices, such as 30 to 50, are required to adequately represent 

a wing, and that ITlore accurate results are obtainable ITlerely by 

increasing the nUITlber of vortices used to represent the wing. 
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COnlparisons of calculations and experinlenta1 data on the 

lift- curve- slope in ground effect are shown in figure 11. The ex­

perinlental data are for 11 % thick airfoils with canlber. Since 

thickness causes a negative contribution to the lift in ground effect, 

the experinlental data points, as expected, were below the nUnleri­

cal calculations for thin, uncanlbered wings. The nUnlerical results 

by Kalnlan shown in figure 11 were achieved using the sanle vortex­

lattice procedure as used in this investigation. His results for 

angle of attack cOnlpare excellently with Saunders' kernel function 

procedure. The present results for 0( = 2. 50 and 0(. = 50 COnlpare 

very well with the other calculations. In addition, the results ob­

tained using only 12 vortices were reasonably close to the results 

obtained using 36 vortices. This further indicates that the vortex­

lattice nlethod converges quickly to a consistent result. All the 

results illustrate the nlost fundanlental property of ground effect. 

That is, the lift on a wing in ground effect increases dranlatically 

as the ground is approached. Another less obvious property of 

ground effect illustrated in this figure is that the lift- curve slope 

is not a constant with angle of attack. In fact, it varies with height 

above the ground, the pitch angle, and aspect ratio. It also varies 

very strongly with the position about which the wing is pitched. An 

illustration of the variation of the lift-curve slope as a function of 

angle of attack for a wing in ground effect is shown in the results of 

figure 12. These results are for a thin flat rectangular wing of 

aspect ratio 1. The lift- curve slope is plotted as a function of angle 

of attack for various heights above the ground. The center of rota;tion 
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for pitch was the one-quarter chord. All heights were also m.easured 

at the one-quarter chord. The results show the lift- curve slope to 

be a concave upward function of pitch angle. However, if the trailing 

edge were chosen as the center of rotation, the lift-curve slope would 

have been a convex upward function of the pitch angle. A center of 

rotation position m.ost likely exists such that the lift-curve slope is 

a constant. However, this position obviously varies with height, 

pitch angle, and aspect ratio, as well as the wing geom.etry. Still 

another im.portant property of ground effect is shown in figure 13, 

where the induced drag coefficient of thin flat rectangular wings is 

plotted as a function of height for the previous aspect ratios and 

angles of attack. The induced drag coefficient increases as a wing 

of a given aspect ratio approaches the ground at constant angle of 

attack. However, it decreases as the wing approaches the ground 

if the lift coefficient is held constant. The total drag on a wing in 

ground effect held at constant lift coefficient m.ay increase or de­

crease relative to the sam.e wing in an infinite m.edium.. This is 

because the density varies with altitude, and the drag depends linearly 

on density, so that the total drag will vary accordingly. 

Figure 14 shows the variation of the quarter-chord m.om.ent­

curve slope with height above the ground, aspect ratio, and angle of 

attack. Results of the sam.e previous num.erical investigations shown 

in figure 11 are com.pared with the present results. Kalm.an (ref. 23) 

used the sam.e vortex-lattice m.ethod as in the present investigation. 

His results for 0( = 0 com.pare very well with Saunders' kernel function 

m.ethod. The results of the present investigation indicate that the 
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moment curve slopes at the quarter chord vary significantly with 

angle of attack and height above the ground, whereas in an infinite 

medium it is nearly a constant with angle of attack. 

Calculations of the stability derivatives for various thin flat 

rectangular wings in planar ground effect are presented in table 1. 

The dynamic stability characteristics of these wings are discussed 

in Chapter III. 

b. Single Non-planar Wings 

Numerical calculations were carried out to determine the 

forces and moments on various single non-planar wings in planar 

ground effect. All wings considered were thin, uncambered, and 

untwisted. 

Wings with dihedral: 

The lift curve slope of a thin rectangular wing with dihedral, 

having an aspect ratio of 4 and angle of attack of 5° is plotted as a 

function of dihedral angle for a vertex height of O. 5 chords above 

the ground and is shown in figure 15. The results are compared with 

the previous calculations of Saunders and Kalman for 0( = 0°. As 

mentioned previously, Kalman used the same vortex-lattice method 

as is being used in the present investigation. His results compare 

very well with Saunders I kernel function method except when the 

wing tips touch the ground. The kernel function method breaks down 

at this point because it incorrectly forces the loading to go to zero 

at the wing tips. In general, the lift-curve slope in all cases increases 

as the dihedral angle is decreased. It is interesting to note that even 

when the wing is represented by only 4 vortices, the results are in 
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reasonable agreeITlent with the ITlore accurate results. 

Rectangular wings with end plates: 

NUITlerical calculations of the aerodynaITlic coefficients and 

center of pres sure location as a function of the height above the 

ground for thin rectangular wings with two types of end plates are 

shown in figures 17, 18, and 19. The two types of end plates con­

sidered were triangular end plates extended beneath the ITlain wing 

with the bottoITl edge parallel to the ground, and rectangular end 

plates with top and bottoITl edges parallel to the ground. Illustra­

tions of thes e two end plated wings are shown in figure 16. The 

various configurations investigated were wings of aspect ratio O. 5, 

1, and 2 at angles of attack 2. 5°, 5°, and 10°. The only rectangular 

end-plated cases considered were those for an aspect ratio of 0.5 

at an angle of attack of 10°. These were the only rectangular end­

plated cases considered because it was expected that these cases 

would best illustrate any significant deviation froITl the triangular 

end-plated cases. 

The results indicate that the lift-curve slope is decreased 

with the use of triangular end plates for the wings of aspect ratio 

O. 5 and 1, but is slightly increas ed for the wing of aspect ratio 2. 

The lift and drag coefficients were, of course, increased with the 

use of either type of end plates except for the 10° angle of attack 

case. It is evident that the nUITlerical solution becoITles inaccurate 

for these higher angles of attack. This inaccuracy probably steITlS 

iroITl the approxiITlation that the trailing vortices shed straight back 

froITl the wing. For high angles of attack this is a poor 
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approxiITlation, especially for low- aspect- ratio wings. Hence, the 

cOITlparisons between wings with and without end plates for the aspect 

ratio 0.5, angle of attack 10° case are probably not correct. 

The presence of end plates also retards the rearward travel 

of the center of pressure in ground effect for the wings of aspect 

ratio 0.5 and 1. However, as the aspect ratio increases, this re­

tarding effect diITlinishes and in fact reverses itself. Hence, for 

the wing of aspect ratio 2, the presence of end plates tended to cause 

the center of pressure to be slightly rearward of the c. p. of the flat 

wing without end plates. These results could have been expected 

since end plates affect lower aspect ratio wings far ITlore than the 

higher aspect ratio wings. FurtherITlore, the peculiar shape of the 

end plates caused their effects to be ITlore proITlinent near the lead­

ing edge of the wing rather than the trailing edge. 

Far ITlore cOITlprehensive results on wings with end plates 

are shown and discussed in Chapter III where static and dynaITlic 

stability is discussed. NUITlerical calculations of the stability deriva­

tives for various thin rectangular wings with end plates are presented 

in table 2. 

Flat Wing with End Plates at Angle of Attack: 

Calculations were ITlade of the lift coefficient as a function of 

the height above the ground for the non-planar wing shown in figure 

20. The horizontal wing segITlent had an average aspect ratio of 

0.2564 and was placed with an angle of attack of 2. 5°. The two end 

plates were O. 154 chords in average width and were also placed at 

an angle of attack of 2. 5° to the X-l. plane. The bottoITl edges of the 
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end plates were parallel to the ground plane. The results were 

cOITlpared to an experiITlent which was perforITled as part of the 

inves tigation. The details of the experiITlent can be found in Chapter 

IV. The agreeITlent between the nUITlerical calculations and the 

experilTIent were excellent at all heights except where the bottoITl 

edges of the wing touched the ground. At this height, the turbulent 

boundary layer beneath the wing caused the ground plane to become 

effectively closer to the wing thereby creating higher lifts. In fact, 

correction factors were applied to the experimental result to 

account for this effect and the corrected results were much closer 

to the theoretically predicted result. 

Additional calculations were made to determine the lift 

coefficient as a function of angle of attack at a height of O. 2123 

chords. These results were compared to experimental measure­

ments of the same situation and are presented in figure 21. The 

numerical results were slightly below the experimental results, 

but were within the expected accuracy of the experiment. The lift­

curve slope at this height at an angle of attack of 2. 50 was cOITlputed 

numerically and from the experiment and were found to compare 

quite well considering the accuracy of the experiment. 

Flat Rectangular Wings in TandeITl 

Numerical calculations were made for a pair of thin flat 

rectangular wings in tandem. The downwash on the rear wing due 

to the presence of the front wing was accounted for automatically 

by the trailing vortex portions of the horseshoe vortices used to rep­

resent the wing. The only assumption necessary with regard to 
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these trailing vortices was that they shed froITl the front wing surface 

parallel to the ground. This is a very good approxiITlation in close 

ground effect for low angles of attack. The results presented in ref­

erences (10) and (15) verify the validity of this assuITlption. The only 

uncertainty arising in this calculation is whether the distribution of 

trailing vortices, used to ITlatheITlatically represent the wake, accu­

rately represent the downwash induced by the wing. In order to 

verify the accuracy of this representation, nUITlerical calculations 

were ITlade to deterITline the downwash induced by an elliptical plan­

forITl wing in an unbounded fluid. These nUITlerical calculations were 

then cOITlpared with theoretical predictions of the downwash induced 

by the elliptical planforITl wing. The results were found to be 

excellent. The nUITlerical results becaITle inaccurate near the tips 

of the wake, but this was to be expected since the theory predicts 

a discontinuity in downwash at the tips. A detailed description of 

these downwash calculations for the elliptical wing and cOITlparisons 

with theory can be found in Appendix E. 

With these results firITlly established, the validity of the 

trailing vortex distribution for representing the wake was assUITled 

to extend to wings in ground effect. The lift- curve slope, induced 

drag coefficient, and leading edge ITlOITlent coefficient as functions 

of the height above the ground for flat rectangular wings in tandeITl 

are presented in figures 22 and 23. Calculations were ITlade for iden­

tical wings of aspect ratio 1, 2, and 4, with each wing at an angle 

of attack of 2. 5°. The wings were rigidly attached by a thin fuselage 

and were placed 3 and 4 chords apart. The centers of gravity and 
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rotation were placed at the vehicle center of pressure. 

The numerically calculated values for the lift-curve slope 

became astoundingly large as the ground was approached. This was 

due to the fact that the rotation arm was large and the center of 

pressure was closer to the front wing than to the rear wing. A plot 

of the vehicle center of pressure location as a function of height 

above the ground, aspect ratio, and separation distance is shown 

in figure 24. Small rotations about the vehicle c. p. caused large 

variations in the height of the rear wing, and also caused large 

variations in the downwash induced on the rear wing. The result 

of these variations was a large lift- curve slope. 

The results further indicated that the downwash did not vary 

significantly with the separation distance between the two wings. 

This is indicated by the fact that the lift- curve slope and induced 

drag did not change significantly with separation distance. 

Calculations of the stability derivatives for various thin flat 

rectangular wings in tandem are presented in table 3. The static 

and dynamic stability characteristics of these wings are discussed 

in Chapter III. 

3. Results for Three-Dimensional Wings in Non-Planar 
Ground Effect 

Numerical results were obtained for three types of non-planar 

ground effect geometries. Schematics of thes e three geometries are 

shown in figure 25. Two cases were solved with the same ground 

geometry but with slightly different wings. In addition, a simplified 

check case was run to compare the numerical results obtained by the 
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source distribution method with the results obtained by the multiple 

image method for the same problem. The check case is presented 

first, and then the results of the important cases are presented 

separately. 

a. Check Case 

Figures 26 and 27 present a detailed description of the non­

planar ground effect situation simulated to compare the results of 

the two methods for solving wings in non-planar ground effect. 

The figure shows a thin wing flying in the presence of two 

semi-infinite ground planes intersecting at a 90° angle. The wing 

has an aspect ratio of 2, an angle of attack of 7. 1 0, and is flying at 

a height of O. 5 chords above the intersection of the ground planes. 

This problem was solved by the multiple image method by 

placing the actual wing and three image wings into the flow at 90° 

angles to each other. The problem was then solved by the source 

distribution method by placing a finite source sheet along the desired 

ground plane. The source sheet extended 2.576 chords in each 

spanwise direction, and it extended from -1. 4 chords to 2.25 chords 

along the X-direction where the origin of the coordinate system is 

on the ground directly beneath the leading edge of the wing. 

Plots of the load dis tribution on the wing calculated by each 

method are shown in figure 28. The two sets of curves are nearly 

identical. The lift and moment coefficients were also nearly iden­

tical. 

b. Slanted Channel - Wing with Dihedral 

Calculations were performed on a wing of aspect ratio 2 with 
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45° dihedral at a height of O. 5 chords above the vertex of a slanted 

channel ground plane. Plots of the lift coefficient, the leading edge 

m.om.ent coefficient, the induced drag coefficient, the lateral force 

coefficient, and the leading edge roll m.om.ent coefficient as a function 

of angle of attack, roll angle, and lateral deflection from. equilibrium. 

are shown in figures 29 and 30. There are three im.portant features 

of these results. The first is that the lateral force and roll m.om.ent 

are nearly linear with ro1l angle and lateral shift from. equilibrium. 

even for relatively large perturbations from. equilibrium.. This indi­

cates that a linearized approxim.ation for the equations of dynam.ic 

stability would be very suitable at least for the roll and lateral 

deflections from. equilibrium.. The second im.portant feature of 

these results is the fact that the longitudinal forces and m.om.ents 

seem. to be decoupled from. the lateral perturbations. This is very 

im.portant since it m.eans that the equations of dynam.ic stability 

can be decoupled into the longitudinal equations of m.otion and the 

lateral equations of m.otion which will sim.plify the analysis greatly. 

It was expected that this configuration could not be decoupled be-

caus e of the peculiar oblique type of ground effect. Since, however, 

it is apparent that the equations of m.otion can even be decoupled 

for this case, it can be concluded that the equations of m.otion can 

be decoupled for m.ost non-planar ground effect situations within 

reason. The third im.portant result is that the lateral force with a 

perturbation in roll angle is unexpectedly destabilizing. This shows 

that the change in the direction of the norm.al force coefficient is a 

larger effect than is the change in the lift due to the change in 
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proximity to the ground for ro1l perturbations. 

The source strength distribution on the ground for the slanted 

ground case is shown in figures 31 and 32. The source strength as 

a function of X is consistent with the expected downwash distribution 

induced by a wing at angle of attack. The source distribution as a 

function of Y is also consistent. However, at the corners, the 

source strengths are peaked. This phenomena has already been 

explained in section II-B, part 3. 

c. Rectangular Rail - End Plates at Angle of Attack 
Beneath the Wing 

Figure 25c illustrates this non-planar ground effect situation. 

The top segment has an average aspect ratio of 0.2564 measured at 

the midchord. Cases were solved with the top segment at an angle 

of attack of 2. 5° at various heights above the ground. Cases were 

also solved for this wing in the presence of planar ground effect and 

were discussed in part 2 of this section. Another non-planar ground 

case was solved with the top wing segment at 5° and at a quarter 

chord height of O. 2452 chords above the ground. The end plates 

have average aspect ratios of 0.2014 and 0.2233 for each case and 

were placed at 2.5° lateral angle of attack in both cases. The end 

plates are 0.0783 chords from the side walls measured at the quarter 

chord. The bottom edge of the end plates are parallel to the 

plane. The rectangular rail is O. 1323 chords high and O. 1215 chords 

wide. 

A plot of the load distribution along the center line of the top 

wing segment is shown in Chapter IV in figure 73 and compared with 

experimental measurements for the 2. 5° angle of attack case at a 
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height of 0.2123 chords. In addition, plots of the aerodynamic 

coefficients as a function of height above the ground ar e shown in 

figure 33. The calculations of the lift coefficient are compared 

with experimental measurements for the 2. 5° angle of attack case 

also in Chapter IV in figure 68. 

Due to computer storage limitations, the ground plane was 

only extended to a distance of 0.2 chords in the.±. Y-direction and 

from -0.45 to 1. 2 chords in the X -direction. From results of cal­

culations on finite ground planes discussed in section II-B, part 3, 

this should have caused the results for the lifts and moments to be 

10 to 15 % lower than if the ground plane were extended to infinity, 

and the same percentage higher for the drags. This conclusion is 

consistent with the comparisons to the experimental measurements. 

In addition, the experimental measurements were probably too high 

due to boundary layer effects on the simulated ground. These 

effects are explained in detail in Chapter IV. 

Calculations of all the stability derivatives for the case of 

h = 0.2123, angle of attack 2.5, and the case of h = 0.2452, angle 

of attack 5° are presented in tables 4 and 5, and the dynamic stability 

characteristics for these cases are presented in Chapter III. 

Comparisons of the 2. 5° angle of attack case in the presence 

of a non-planar ground with the same wing in the presence of a 

planar ground show that the presence of the non-planar ground piece 

adds at least 100/0 to the lift. In fact, the increase is probably 20 to 

25 % because the non-planar ground case was solved with an extremely 

truncated ground plane. 
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d. Rectangular Channel - End Plates at Angle of Attack 
Above the Wing 

Figure 25d illustrates this non-planar ground situation. The 

top segment has an average aspect ratio of 0.2936 measured at mid-

chord, an angle of attack of 2. 5°, and the quarter chord is O. 1327 

chords above the channel bottom. The end plates are of average 

aspect ratio O. 13098 also measured at the quarter chord, and at a 

2. 5° lateral angle of attack. The end plates are also O. 1327 chords 

from the side walls. The top edge of the end plates are parallel to 

the X -Y plane. The channel is O. 537 chords wide and 0.2419 chords 

deep. 

The aerodynamic coefficients and stability derivatives for 

this case are presented in table 6, and the dynamic stability charac-

teristics are discussed in Chapter III. 

In general, the lift on the wing was not as large with the end 

plates above the wing as it was with the end plates below the wing. 

This is consistent with the results of the planar ground situation for 

wings with parallel side plates. Evidently, the end plates below the 

wing increase the pressure far more significantly than the end plates 

above the wing decrease the pressure. 

The results of this non-planar ground case are expected to 

be very accurate because the ground plane was extended 0.57 chords 

in the.:!=. Y -direction and from -0. 6375 to 1. 44 in the X-direction. 

These dimensions are at least 3 times larger in any direction than 

the height of the wing from the ground. 
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e. Discussion of Wings in Tandem in Non-Planar 
Ground Effect 

One of the most complicated problems with regard to wings 

in ground effect is the situation where two planar or non-planar wings 

are flying in tandem in the presence of a non-planar ground. Com-

plications occur as a result of the peculiar downwash field induced 

by the front wing on the rear wing. The approximation that the trail-

ing vortices shed straight back from the wing is probably not very 

accurate. In the actual situation, the trailing vortices most likely 

shed at some angle to the X -axis. This angle has a lateral as well 

as a vertical component. To further complicate the situation, the 

trailing vortices most likely also have a significant amount of curva-

ture. The positioning of these trailing vortices in relation to the 

rear wing mayor may not significantly affect the values of the over-

all aerodynamic characteristics such as the lift, induced drag, and 

moment coefficients. However, this positioning will undoubtedly 

affect the values of the various stability derivatives. This is espe-

cially true for the stability derivatives with respect to w:, V, e) and 

'1', the vertical and lateral velocities and the pitch and yaw perturba-

tion angles. Depending on the particular type of non-planar ground 

situation, the trailing vortices will shift in direction as a result of 

a perturbation in any of these velocities or angles. However, it is 

not clear in most cases what magnitude or direction this shift will 

take. Hence, it is not clear how the downwash distribution at the 

rear wing will be disturbed with a perturbation in any of these veloci-

ties or angles. But since. results of calculations on tandem wings in 



- 65-

planar ground effect indicate that the stability derivatives with re­

spect to Wand e are controlled mainly by the variation in the 

downwash distribution at the rear wing, then calculations of these 

derivatives in non-planar ground situations using the same approxi­

rnations as with planar ground will probably be significantly in 

error. 

Therefore, a more generalized approach is required for 

representing the position of the trailing vortices in non-planar 

ground situations. One such approach would consist of representing 

the trajectory of each trailing vortex by several straight segments. 

The angles of each segment could be determined by an iterative 

procedure. The trailing vortex segments would initially be directed 

straight back parallel with the freestream direction. The flow field 

could be solved using the usual vortex-lattice method in conjunction 

with the source distribution method. The flow direction of the 

velocity vector would then be calculated at the midpoint of each 

trailing vortex segment. The angle of the segrnent would be set 

parallel to this direction and the flow field would be solved again. 

This procedure would be continued until further change in the angle 

of each segrnent was no longer necessary. 

A slightly more complicated approach would consist of rep­

resenting the trajectory of each trailing vortex by a second order 

polynomial. The same type of iterative procedure would be used 

to solve for the proper trailing vortex trajectory, but more compli­

cated equations would be involved. 
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CHAPTER III 

A. Introduction 

The results presented in the previous chapter gave an indi-

cation of the equilibrium per formance capabilities of various planar 

and non-planar wings in planar and non-planar ground effect. How-

ever, these equilibrium parameters (the lift, moment, and induced 

drag coefficients) do not provide any information about the static and 

dynamic stability characteristics of these vehicles. An understanding 

of these stability characteristics is of paramount importance to a 

complete description of the properties of a wing in ground effect. 

There have been some previous investigations of the stability charac-

teristics of wings in ground effect, but these investigations have not 

been very satisfactory. A derivation of the general equations of 

longitudinal dynamic stability by Kumar (ref. 13) for a wing in ground 

effect has been found to be erroneous due to the misinterpretation of 

the stability derivatives with respect to the angle of attack \.if 

U 
and 

pitch angle e . and due to the absence of e in the equation # = $- t(. 
These errors tended to underestimate the pitching motion in ground 

effect. The equations of lateral motion have been presented by 

Kumar for planar ground effect, but these equations have never been 

presented for non-planar ground effect. Widnall et al. (ref. 14) have 

presented a simplified longitudinal stability analysis for the nearly 

2-D flow of a ram wing in a channel. However. the X -equation of 

motion was neglected in this analysis. This led to the erroneous 

result that single wings are neutrally stable in ground effect. 
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Therefore, the purpose of this chapter is to investigate the 

generalized longitudinal and lateral stability of the various wings 

presented in the results of Chapter II by solving the linearized equa­

tions of unsteady :motion as applied to planar or non-planar wings in 

planar or non-planar ground effect. These equations are developed 

by considering the forces and :mo:ments on a wing in a state slightly 

perturbed fro:m equilibriu:m. 
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B. Theor etical Analysis 

This perturbed state is illustrated in figures 34, 35, and 36. 

The coordinate system in which the equations are expressed is one 

which is rigidly attached to the vehicle. The linearized equations of 

unsteady motion for arbitrary single or tandem non-planar wings in 

planar or non-planar ground effect are basically an extension of the 

equations of motion for wings flying in an infinite medium. However, 

now there are also force derivatives with respect to such variables 

as 0, z, K, y, ¢,lfJ, 0, and s. The equations are as follows: 

ax ax ax ax ax ax 
- u + - w + - q + e (- - mg co se ) + z - + K - = mll 
a u ow a q ae 0 a z oK 

+ ¢ mg cose + lfJ mg sine = m(v + r U) 
o 0 

az az az az az az az . . 
az z + au u + awW + dw w+ aq q + ae e +~-emgsmeo =m(w-qU) 

aL + aL + aL • + aL + aL aL rh aLoi. aLy + aL l:. -I • I . 
-y -v - v -p -r + n;:T;'t'+ <:).1. 't'+cV ':> 00 u- xxp - xzr 
ay av av Op or 0 't' U't' ':> 

aM z + aMu + aM w + aM w + aM q + aM e + ~M K = I q 
az au aw CNI aq ae uK yy 

aN + aNv + a~ v + aN + aN r + aNrh + aN lfJ + aN s + aNo=1 r-1 • 
ay y av a v apP or a¢ 't' alfJ as 06 zz xzp 

The (X, Z, M) equations are the longitudinal equations, while 

the (Y, L, N) are the lateral equations of motion. The two sets of equa-

tions are completely decoupled to this approximation, and hence can 

be solved separately. The derivatives of the forces and moments with 

respect to the dependent variables appearing in these equations are 

determined in the following manner. Let the angles of attack of the 
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front and rear wings (we will consider the special case of a single 

wing later) be n
f 

and n
r

, and let the angles of sideslip be denoted by 

rJ. v r 
i3r = U + 0' - U 

where 

and 

It is important to point out the distinction between the angle 

of attack defined on the plots of the results in Chapter II, and the angle 

of attack defined in Chapter III. In Chapter II, the angle of attack was 

defined as the angle between the wing surface and the ground with the 

wind vector 
oC

L 
slope on 

being always parallel to the ground. Hence the lift-curve 
oC 

m 
, and the moment curve slope on as used in Chapter 

II refer to the change in lift and moment resulting from a change in the 

artgle between the wing surface and the ground with the wind vector 

always parallel to the ground. However, in this chapter, the angle of 

attack is defined as the angle between the wing surface and the relative 
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wind vector. It is possible to have a change in the angle between 

the wing surface and the relative wind without having a change in 

the angle between the wing surface and the ground. This would 

occur when the wing is experiencing a perturbation in vertical 

velocity only. In tenns of the nomenclature of Chapter III, the 

angle of attack as us ed in Chapter II is defined as e . But the 

change in a quantity with a change in e with the wind being kept 

parallel to the ground is defined as 

a I 00 
e=w 

In other words, changes in the angle between the wing surface 

and the ground with the wind always parallel to the ground are 

changes in e with w being kept equal to e 

a 
ae I = e=w 

a 
ow 

Therefore, 

where a: Ie is the change in a quantity with a change in the angle 

between the wing surface and the relative wind with the angle be-

tween the wing sur face and the ground being kept constant, and 

aae Iw is the change in a quantity with a change in the angle be­

tween the wing surface and the ground with the angle between the 

wing surface and the relative wind being kept constant. All ex-

perimental measurements of changes in aerodynamic character-

istics with changes in angles of attack for wings in ground effect 
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have actually been measurements of ;e Ie ==we These have been 

measurements of the sum of two effects, ;e Iw and :w Ie. The 

first effect is a measure of the influence of a change in the geo-

metric orientation o£ the wing with the external wind direction 

relative to the wing surface held constant. This effect disappears 

as h - 00. The second effect is a measure of the influence of a 

change in the angle of attack with the geometric orientation to 

the ground held constant. This effect approaches the conventional 

a - as h -00. oa 

the expres sions for the angles of attack and sideslip only when the 

separation distances i£ and ir are much greater than c f and 

c respectively. Otherwise, the stability derivatives with re­
r 

spect to q must be calculated taking the variation of velocity with 

chordwise position into account, and the terms qif/U, qir/U, 

r if/U, r ir/U are no longer included in the angles o£ attack and 

sideslip. 

Also let h f and hr be the heights of the 1/4 chord of the front 

and rear wings above the ground, and let d
f 

and d
r 

be the lateral de-

flections from equilibrium as measured at the 1/4 chord of the front 
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and rear wings. Then. 

t 
hi = hi + J US(T)dT - (z- z) +biS o c. g. 

o 0 

t 
h = h + f US( T)dT - (z_ z) +b S r roc. g. r 

o 0 

t 

d i = JUljJ(T)dT+ Yc.g. + b~ 
o 

t 
d f = J UljJ (T}dT + Y c. g. - brljJ 

o 

Using these relationships, the force and moment derivatives 

can easily be determined. We define the instantaneous (X, Y, Z) 

forces and (L
M

, M, N) moments as follows: 

where the subscripts f and r' refer to the front and rear wings respec­

tively. Hence the force and moment derivatives can be expressed as 
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follows: 

S ]1. U2 
r zp 

I hi' h , a. , a.. r r 1 



00. 
r 

-74-
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oM 
au :::: 0 because at equilibrium CMf Sf C£ + C

Mr 
SrCr ~ 0 

~;: = [C:;f (&) - a:~f) SfCf +C~~r (& (I - ::/ + :~£) 

oM 
aq 

aM 
as 



-76-

( 

ac ac ac 
BY = (1:.. y £ Y f Y r 1 1 acr acr 
av u ~ + atl }S £ + (--a;:;:- (u + u a (.I. + aa ) + 

I-'f f I-'r 1-'£ f 

ac ac) Y r acr ocr Y r 1 Z 
+~ (ad + ad ) +~) Sr zpU 

uPr f r r 

ay Y £ 1 Y r 1 acr 1 acr Y r acr lIZ 
(

ac ac ae) 

ov = a~£ u S£ + (a~r (u + ai3£ u + aa£) 1:- ai3
r 

a~f U)Sr zpU 

ae 
Y r acr acr acr acr +-- (b b +-U+-)+ a i3r ad

f 
f ~ adr r aaf BljJ 

BY 
a~ = 0 
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oL 
a~ = 0 

aN 
a~ 
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aN a" = 0 

aN 
00 

Note the terms that are within dashed blocks in the equations 

involving a/aq, a/ar. These terms are included only for single 

wings or for tandem wings whose distances from the vehicle c. g. are 

not large compared to their chord lengths so that the vehicle as a 

whole must be given a perturbation in p, q, or r to determine the 

overall vehicle stability derivatives with respect to p, q, r. Fur-

thermore, we must set C = 0 and set lf = 1 = 0 for these single 
r r 

wings or closely spaced tandem wing vehicles. 

All stability derivatives are calculated at the equilibrium posi-

tion for any given vehicle and assumed to be constant throughout the 

small perturbations from equilibrium. However, since the reduced 

frequency for the motion is as sum~d to be small, the stability deriva-

tives 

aCL aCL aCL aCL aCM aCM aCM aCM aCD f r f r f r f r 
adf ad 

, 
an 

, 
ali • adf ad an 

, 
an 

, 
aaf r f r r f r 

aCD aC
D aCD ac ac ac ac aC

1 
aC

1 r £ r y£ Yr Yf Yr f r 
ad ' , ali 

, 
an . , 

aaf 
, 

aa . . 
r £ r ' a~f a~ r a~f a~ r r 

aC
l 

aC
l 

ac
N

" aCN aC
N aCN f r , £ r f r 

an£ 
, 

an . . , 
anf 

, 
an r a~£ ,a~ r r, 

£ 
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are neglected. All remaining stability derivatives were calculated by 

the aerodynamic lifting surface computer program. 

Now, the linearized equations of unsteady motion are two sys-

terns of linear first-order differential equations with initial conditions. 

This type of system is most easily solved by Laplace transform 

methods. The resulting solutions can be expressed as: 

6 ~ong.t 

i~ ~ong. 
1 u = e 

1 

6 ~ong.t 
.~ B e 

1 z = long. 1= 1 1 

6 ~ong.t 
K ~ C e 1 

= long. 
i=1 1 

6 ~ong.t , 
a = ~ ~ C 1 ong. long. e 

i=l 1 1 

8 ~at.t . 
y = ~ ~at.e J 

j =1 J 

8 ~1at. t 
~ = ~ Blat. e 

J 

j=1 J 

8 ~at.t 
6 = ~ Clat . e J 

j=1 J 

8 \at. t 

<P = L: \ B e J 
at. lat. 

j=1 J J 

8 ~at.t 
~ = L; ~ C e J 

at. lat. 
j=l J J 
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The AI's and A.
lat

.' s are the roots of the characteristic 
ongi 1 

equation for each system, and A_ 's, B1 's, C1 's, ~ t'S, -l.ong. ong. ong. -la . 
1 1 1 1 

B1 's, and C
l 

t 's are determined from the initial conditions. The 
at. a . 

1 1 

characteristic equations for the longitudinal and lateral equations 

will now be presented. Note that each first term is negative. 

A.
1
6 {+I m(Z 0 -m)} + 
ong yy w 

>--5 {-M m(Z 0 -m)-1 (X (Z. -m)-mZ )+(Z +mU)mM.} + 
"l.ong q w yy u w w q w 

A_4 {M (X (Z. -m)-mZ )-1 (X Z -mZ -Z X )-M-m(Z. -m) 
"l.ong q u w w yy u w z u w -(J w 

+(Z +mU)(-X M.l.+rnM )+ZornM. +X (Z M. -M (Z. -m))} + 
q u w W {7 W q U W U W 

>--3 {M (X Z -mZ -Z X )-1 (X Z -Z X )+Mn(X (Z. -m)-mZ ) 
"l.ong q u w z u w yy u z u z 0 u w w 

-M m(Z. -m)+(Z +mU)(M X -X M +mM )+Zo (-X M 0 +mM ) 
K w q uw uw Z 0 uw w 

+Z mM. +X (Z M -M Z )+X{)(Z M. -M (Z. -m))} + 
K w quw uw 0 uw uw 

>--2 {M (X Z -Z X )+Mo(X Z -mZ -Z X )+M (X (Z.t.-m)-mZ ) " -long q u z u z 0 u w z u w K u w w 

+(Z +mU)(M X -X M )+Zo(M X -X M +mM ) + 
q uz uz 0 uw uw z 

+(Z (-X M. +mM ) 
K u w w 

+X (Z M -M Z )+X;')(Z M -M Z )+X (Z M 0 -M (Z. -m))} + q u z u z 0 u w uw K u w u w 

A_ {Me(X Z -Z X )+M (X Z -mZ -Z X )+Z;')(M X -X M ) "l.ong u z u z /{ u w z u w 0 u z u z 

+ZK(M X -X M +mM )+X{)(Z M -M Z )+X (Z M -M Z )}+ 
uw uw z 0 uz uz K uw uw 
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{ M (X Z -Z X )+Z (M X -X M )+X (Z M -M Z )} 
K uz uz K uz uz K uz uz 

= 0 

where X8 = X8 -rng cos 8
0 

and 2:8 = Z8- rng sin 8
0 

and where Y cJ> = Y cJ> + rng cos 8
0 

and Y ljJ = Y ljJ + rng sin 8
0 

A.
1
8 

t«Y 0 -rn)(1 I _1
2

)) + a v xx zz xz 

7 2 
L «Yo-rn)(-N I -I L -L I -N I )+Y (I I -I )+ ""1at v r xx zz p r xz p xz v xx zz xz 

+Y (I N o+Lo1 )+(Y-rn)(Lo1 +I No))+ 
p xz v v zz r v xz xx v 

6 
L t«Y 0 -rn)( -I N,!, + L N -I L,k -L N -I N,k -L'I,1 )+ ""1a v xx 't' p r zz '+' r P xz '+' 't' xz 

Y (- N I - I L - L I - N I )+ v r xx zz p r xz p xz 

+ Y (I I _1
2

)+ Y (L No +I N -L 0 N + L I )+Y,j. (I N 0 + L 0 I ) 
Y xx zz xz p r v xz v v r v zz '+' xz V V zz 

,...., 
+(Y -rn)(L 0 N +L I +I N -L No )+Y,I,(L 0 I +I No ))+ r v p v xz xx v p V 't' V xz xx v 

5 
A.':- t( (Y 0 -rn)( -I N

o
+ L N,!,+ L,kN -I Ly -I Ny -L N,k -L'I,N -Lo1 ) "-la v xx p 't' '+' r zz ':> XZ ':> r '+' 't' P xz 

+Y (-I N,!,+L N -I L,k-L N -I N,k-L,!,1 ) 
v xx 't' p r zz '+' r p xz '+' 't' XZ 

+Y (-N I -I L -L I -N I )+Y (I N +L N +L,I,N 0-

y r xx zz p r xz p xz p xz y r v 't' v 

-L.N,!,-LN +1 L )+Y,k(L No+I N -L.N +L I )+ v 't' v r zz y '+' r v xz v v r v zz 

+Y y (1 N.+L.1 )+(Y -rn)(L.N,k-L N + L I +I N-
':> XZ V V zz r v '+' v P Y xz xx Y 

-L N -L,kN. )+?,!,(L. N +L I +I N -L N. )+Yo(L. I +I N. ))+ 
P V '+' V 't' "v P V xz xx v p v v xz xx v 
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4 
"lat( (Yy -m.)(LpN 0 + LcJ>NlfJ + LI;, N r -LrN I;,-LlfJNcJ> -L oNp )+ Y v(-lxxN 0 + LpNlfJ + 

+L,/,N -I Ly-1 Ny-L N,/,-L.I,N -L~1 )+Y (-I N.I,+L N -I L,/,-
'+' r zz '" xz '" r '+' 't' P u xz Y xx 't' p r zz '+' 

-L N -I N,/, -L'I,1 )+Y (L N tL,I,N +L~N. -L. N ~-L N",-L N )+ r p xz '+' 't' XZ pry 't' V u V V u V 't' Y r 
,...., 

+Y,/,(1 N +L N +L",N.-L.N.I,-L N +I L )+Yy(L N. 
'+' XZ Y r v 't' V V 't' V r zz y '=' r v 

+I N -L. N +L I )+(Y -m.)(L. Ny+L N,/,+L N -L N -L,/,N -
xz v v r v zz r v '" V '+' Y P P Y '+' V 

-LyN. )+Y,I,(L. N,/,+L N +L I +I N -L N -L,/,N. )+Y ~(L. N + 
'" V 't' V '+' V P Y xz xx Y P V '+' V u V p 

+ L I + I N - LN. )}+ v xz xx v p v 

3 
Aiat( (Yy -m.)(LcPN 0 + LI;, NlfJ-LlfJN I;, -L oNcJ>)+ Yv(LpN 0 + LcPNlfJ + LI;, N r -LrN 1;,-

-L.I,N,/,-L~N }+Y (-I N~+L N.I, +L,/,N -I Ly-1 N -L N,/, 
't' '+' u P Y xx u P 't' '+' r zz '" xz I;, r '+' 

-L.I,N -L~1 }+Y (L.I,N +L~N -L N~-L N }+Y,/,(L N +L.I,N +L~N. 
't' P u xz P 't' Y u V V u y V '+' r Y 't' V u V 

-L.N~-L N.I,-L N }+Y y (1 N +L N +L.I,N.-L.N,I,-L N +I L)+ 
v u V 't' Y r '" xz y r v 't' V V 't' V r zz y 

,...., 
+(Y -m.)(L Ny+L N,/,-L,/,N -LyN }+Y.I,(L. Ny+L N,/,+L N -L N -

r v'" y,+, ,+,y "'V 't'V", V,+, yp py 

-L,/,N -LyN. )+Ys:(L. N,/,+L N +L I +1 N -L N -L,/,N.)) + 
'+' V '" V u V '+' V P Y xz xx Y P V '+' V 

2 
~lat( (Yy -m.)(LI;, No -L oNI;,)+ Y v(LcJ>N 0 + LI;, NlfJ -LlfJNI;, -L oNcJ»+ Y y(LpN 0 + 

+ LcJ>NlfJ + LI;, N r -LrN S -LlfJNcJ> -L oNp )+ Yp (L oNy-LyN 0)+ YcJ> (LlfJNy + 

tLs:N -L N~-L N,I)+Yy(L N +L,I,N +Ls:N.-L.Ns:-L N.I,-L N )+ 
uV VU Y't' '" ry 't'V uV V u V't' yr 

+(Y r-m.)(LyNI;, -LI;,NY}+YlfJ(LvNs + LyNcJ> -LcJ>Ny-LI;,N)+Y o(LyNI;, + 

+L N,/,+L N -L N -L,/,N -LyN. ))+ 
V '+' Y P P Y '+' V '" V 

~at(Y v(Ls No -L oN I;,}+ Y y(LcJ>N [) + Ls NlfJ -LlfJN I;, -L oNcJ> )+Y cJ> (L oN y -LyN 0)+ 

+Y l;, (LlfJN y +LoNv -LvN o-LyNlfJ)+Y lfJ(LyNS -LI;, Ny)+Y [)(LvN I;, + LyNcJ> 

-LcJ>Ny -Ls Nv))+Y y(Ll;, N 0 -LoNI;, )+Y I;, (LoNy -LyN o)+Y o(LyNS -Ls Ny)=O 
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Note that the last term of the longitudinal equation is iden-

tically zero and the last two terms of the lateral equation are 

identically zero. This can be verified by noting that the force and 

moment derivatives with respect to z and yare the same as the 

force and moment derivatives with respect to K and 0 • Also, the 

partial derivatives with respect to S are zero. Therefore, the 

characteristic equation for longitudinal motion can be reduced to 

a fifth-order polynomial and the characteristic equation for the 

lateral motion can be reduced to a sixth order polynomial. Routh's 

criteria can be applied to thes e equations to determine whether the 

roots are stable. However, for these large polynomials, the 

criteria is long and tedious. Details for applying Routh's criteria 

to these equations can be found in ref. (13). It is of interest to note 

that, in satisfying Routh's criteria for dynamic stability, the cri-

teria for static stability is also necessarily satisfied. The coeffi-

2 
cients multiplying the first power of Along and Alat must be less than 

zero in order that static stability be achieved. These terms are the 

constant terms after the characteristic equations are reduced to 

fifth and sixth order polynomials respectively. For wings flying in 

an infinite medium the characteristic equations reduce to fourth 

order polynomials and the criterion for static stability for longitudinal 

motion reduces to the familiar criteria 
aC

M 
CL>O'aw-<O. 

The equations presented above were used as a basis for inves-

tigating the dynamic stability of wings in planar and non-planar 

ground effect. Solutions to these equations were obtained for most 
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of the wings Inentioned in section II- C. The roots of the character-

istic equations were calculated by cOInputer prograIn and are pre-

s ented in the following sections. For the tandeIn wings, the tiIne 

history of the Inotion was also calculated. 

Crude estiITlates of the parasitic drag of each of the wings 

were Inade, because the total drag, not just the induced drag, was 

required in the equations of Inotion. The parasitic drag estiInates 

are presented in Appendix F. 

All radii of gyration (except for the tandeIn wings) were deter-

Inined assuIning a uniforIn Inass distribution while neglecting the 

Inas s of all end plates. 

2 
The vehicle Froude nUInbers (U Icg) were 21 for the single 

flat and end-plated wings, 250 for the tandeIn wings, and 12.5 for the 

non-planar wings in non-planar ground effect. These Froude nUInbers 

represent typical high- speed ground transportation paraIneters best 

suited for each type of wing. Since there already Were a large nUInber 

of variable paraIneters, the Froude nUInbers Were not varied. 

C. Results 

1. Single Flat Rectangular Wings 

NUInerical calculations Were carried out to deterInine the 

stability characteristics of single flat rectangular wings flying in 

planar ground effect. Cases Were solved for aspect ratios of O. 5, 

1, 2, and 4, heights ranging frOIn 0.05 to co, and angles of attack 

of 2. 50, 50, and 100 • The c. g. was placed at the center of pres sure 

on the wing surface. 

Root-locus diagraIns depicting the variation of the roots of the 
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characteristic equation with height, aspect ratio, and angle of attack 

are shown in figures 37 through 44. It was found that the flat rec­

tangular wings were not longitudinally stable at any height, aspect 

ratio, or angle of attack. They were also laterally unstable except 

for the wings of aspect ratio O. 5 at angle of attack 10°. The fact that 

the calculations indicated lateral stability for these configurations is 

surprising. In fact, it is probable that the high angle of attack case 

for aspect ratio O. 5 was inaccurate. The reason for the inaccuracy 

is discussed in section II-c, part 2, a. 

2. Single Flat Rectangular Wings with End Plates 

Numerical calculations were carried out to determine the 

stability characteristics of ram wing models consisting of a single 

flat rectangular wing with triangular and rectangular end plates 

flying in planar ground effect. For the triangular end-plated wing, 

cases were solved for aspect ratios of 0.5, 1. 0, 2. 0, heights rang­

ing from 0.05 to 0.5, and angles of attack of 2. 5°, 5°, 10°. In 

each case, the c. g. was placed at the center of pressure on the 

wing surface; and the end plates were always shaped so that the 

bottom edge was parallel to the ground in the equilibrium position. 

It was decided that the differences between the triangular 

and rectangular end plates would be brought out more clearly for 

the high angle of attack, low aspect ratio cases. So these were the 

only cases solved for the wing with rectangular end plates. 

Root-locus diagrams depicting the variation of the roots of 

the characteristic equation with height, aspect ratio, and angle of 

attack are shown in figures 45 through 50. In general, it is seen 
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that the ram wing was longitudinally stable below a certain height. 

This height, however, varied with aspect ratio and angle of attack, 

as shown in figure 51 for the triangular end-plated wing. Similar 

behavior is exhibited by the rectangular end-plated wing. In fact, 

ve ry little difference is found between the triangular end-plated wing 

and the rectangular end-plated wing. The only basic differences 

between the behavior of the two types of wings was that the lift devel­

oped by the triangular end-plated wing was higher, and the frequency 

of oscillation for the rectangular end-plated wing was slightly higher 

than for the triangular end-plated wing in longitudinal motion. 

However, as previously mentioned, the results for the 10° angle 

of attack, aspect ratio O. 5 case are probably inaccurate. 

The results for lateral stability were completely negative. 

Regardle ss of the height above ground, the aspect ratio, angle of 

attack, and end plating, there was no configuration for which stick­

fixed lateral stability was achieved. The laterally unstable char­

acter was due principally to the yaw instability of the ram wing. 

3. Flat Rectangular Wings Connected in Tandem 

Plots of the time required to damp to 1/10 of the original 

perturbation from equilibrium are shown in figures 52 and 53 for 

two identical, flat rectangular wings of aspect ratio 1, 2, 4, at 

angle of attack 2.5°, heights above the ground ranging from O. 05 to 

O. 3 chords given an initial perturbation of 0.05 chords vertical 

displacement. Figure 52 is for a wing separation distance of 4 

chords. The c. g. was placed at the center of pre s sure of the 

over -all vehicle. It is seen that for a given aspect ratio there is an 
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optiITluITl height for which the daITlping tiITle is ITliniITlized. This 

optiITluITl height decreases with decreasing aspect ratio and also 

decreases with decreasing wing separation distance. A plot of this 

optiITluITl height versus aspect ratio and separation distance is shown 

in figure 54. 

It is also seen froITl figure 55 that for a given aspect ratio 

there is a critical height above which instability occurs. This critical 

height decreases with decreasing aspect ratio and also decreases 

with decreasing wing separation distance. Root-locus diagraITl s 

depicting the variation of the roots of the characteristic equation 

with height, aspect ratio, and separation distance are also shown in 

figures 56 a, b, c through 58 a, b, c. 

4. Non-Planar Wings in Non-Planar Ground Effect 

NUITlerical calculations were carried out to deterITline the 

stability characteristics of three cases of single non-planar wings 

in non-planar ground effect. ScheITlatics of these three cases are 

shown in Chapter II in figure 25b, c, d. The geoITletrical details 

concerning the wing and ground diITlensions are explained in section 

II- C, parts 3c and 3d. Root-locus diagrams depicting the variation 

of the roots of the characteristic equation for these three cases are 

shown in figures 59 and 60. Figure 59 shows the roots of the longi­

tudinal equations, while figure 60 shows the roots of the lateral 

equations. 

The root-locus diagram for longitudinal stability shows that 

all three configurations are unstable. For the two cases with end 
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plates below the wing at angle of attack, an increase in the angle of 

attack of the top wing segment was longitudinally destabilizing. This 

is concluded from the fact that the real parts of the roots shifted 

positively. In fact, the smallest real root went from negative to 

positive with the change to 50 angle of attack. It is clearly possible 

that the case with end plates above the wing would become stable 

if the wing were closer to the ground. This is concluded from the 

fact that the roots at -1.92 and 0.17 go together and would approach 

each other as the height above the ground is decreased. 

The root locus diagram for lateral stability indicates that 

all three situations are unstable. Again, an increase in angle of 

attack is des tabilizing. However, in this cas e it is no t clear that 

a decrease in height for the case with the end plates above the wing 

would be stabilizing. It would be stabilizing if the roots at - 6.1 

and 0.29 went together. 
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CHAPTER IV 

In order to investigate the validity of some of the assumptions 

and idealizations used in the numerical calculations presented in the 

previous chapters, an experiment was conducted. 

This experiment consisted of a wind tunnel study where 

measurements were taken of the lift and drag on a non-planar wing 

in planar and non-planar ground effect. This wing was also investi­

gated numerically so that a valuable check could be made between 

theory and experiment. 

The details of this experiment are now presented. 

A. Introduction 

It was important to investigate the accuracy of the numerical 

calculations made in Chapters II and III for the most general case 

pos sible. It was equally important to be able to investigate the 

accuracy of the ground representation and the accuracy of the wing 

representation separately. Therefore, it was decided to make 

experimental measurements of a non-planar wing model in both 

planar and non-planar ground effect. Since the method of images 

was used for planar ground effect, the accuracy of the wing repre­

sentation could be investigated very well from the planar ground 

measurements. Then the accuracy of the source distribution method 

for representing a non-planar ground could be investigated in the 

experimental measur ements with the non-planar ground. 

The non-planar wing model used for the experimental meas­

urements is shown in figure 25c. It was described in section II- C, 

part 2, b and in section II- C, part 3, b as the" Thin Rectangular Wing 
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with End Plates at Angle of Attack Extending Beneath the Wing. " 

The non-planar ground situation investigated was the one described 

in section II- C, part 3, b. A detailed description of the experimental 

wing, the wind tunnel, and the ground plane model now follows. 

B. Wing Model 

A schematic of the experimental wing model is shown in 

figures 61 and 62. Schematics of the wing supports are shown in 

figures 63 and 64. Photographs of the model in position in the wind 

tunnel in clos e proximity to the non-planar ground model are shown 

in figure 6S. The main requirements for the model besides having 

the correct planform shape were that it be uncambered and as thin 

as possible. Therefore, the chordwise thickness distribution was 

made to resemble a thin wedge. The model was IS" long with a 

maximum width of 4. S". The maximum thicknes s was about 1. 2S'%. 

In the original configuration, the leading edge was given a circular 

radius of 3/3211
• The trailing edge was about 1/3211 thick. The 

upper and lower surfaces were straight between the leading and 

trailing edges but were at an angle to each other. During the course 

of the experiment, however, the upper sur face of the leading edge 

had to be sanded down to a more streamlined shape to eliminate a 

small separation bubble which appeared near the leading edge. The 

new leading edge shape is shown as a dashed line in figure 61. The 

effects of this change in leading edge were shown mainly in the drag. 

This will be discussed in more detail in the results of this chapter. 

The model was constructed out of aluminum and the supports 

were constructed out of steel. The side supports were placed so 
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that the ITlodel rotated about the one-quarter chord line of the top 

wing s egITlent. This was consistent with the center of rotation in 

the nUITlerical calculations. The rear support was placed beneath 

the centerline of the top wing at about 11. 75" to the rear of the lead­

ing edge. All supports were streaITllined to ITliniITlize interference 

effects • 

. C. The Wind Tunnel 

The wind tunnel used for this study was the Merrill Wind 

Tunnel at the Graduate Aeronautical Laboratory of the California 

Institute of Technology. The test section ITleasures 46 by 32 inches 

and is 9 feet in length. The tunnel is a closed return, constant 

operating tunnel capable of speeds in excess of 200 feet per second. 

However, to obtain high enough Reynolds nUITlbers, a speed of 185 

ft. per second was used in the tests. 

The effect of the wind tunnel walls ITlight be expected to be 

significant. However, the influence of these walls can be crudely 

estiITlated by placing wake systeITl iITlages above and below and on 

the two sides of the actual wake systeITl. These iITlages induce 

insignificant velocities at the airfoil locations for two reasons. 

First, the vorticity representing the various wake iITlage boundaries 

are of opposite direction and also of nearly equal strength. There­

fore, the induced velocity of the pair nearly cancels. Secondly, the 

iITlage systeITls are at a distance of at least two chords froITl the 

airfoil at their nearest point. This distance results in sITlall induced 

velocities at the airfoil when cOITlpared to the velocity induced by 

the wake systeITl iITlITlediately behind the airfoils. Due to these 
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factors, the wall influences were expected to be small. 

D. Ground Plane Model 

Schematics of the experimental simulation of the planar 

and non-planar ground are shown in figures 66 and 67. In general, 

it resembles a flat plate airfoil, but it is more than 4 times longer 

than the wing model, and about 9 1/2 times wider. From the numeri­

cal results of section II- C, part 2, d we can estimate that the wing 

model can be as high as 0.45 chords (based on the wing model 

length) above the experimental ground plane before the finitenes s 

of the ground plane begins to cause significant effects. Holes were 

made for the wing supports. This was necessary because the 

balance system for measuring the forces was beneath the test sec­

tion. A spanwise suction slot was placed at a position about 7 inches 

in front of the wing model leading edge. The slot, about O. 03" 

wide, was used to remove the boundary layer on the simulated 

ground plane. It was placed as clos e to the wing model leading 

edge as was possible without disturbing the pressure distribution 

on the ground plane induced by the model. The ground plane itself 

was placed in the wind tunnel at a position about 19 inches from the 

top of the test section. The three suction slot pumping hoses and 

the wing model supports were inserted through holes in the bottom 

of the test section. The non-planar segment of the ground plane 

was about 1.8 inches by 2 inches and was removable so that planar 

ground as well as non-planar ground measur ements could be taken 

with the same ground plane. The angle of attack of the ground plane 

was set so the pressures on the top and bottom surfaces were equal. 
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E. Experimental Measurements 

Measurements were taken of the lift and drag on the non-

planar wing model at various heights above the simulated ground 

plane and at various angles of attack. In the planar ground configu-

ration, measurements were taken at heights (measured at the one-

quarter chord of the chordwise centerline of the top wing surface) 

of O. 33 chords, 0.215 chords, and 0.17 chords, and at angles of 

attack ranging from _5° to 8°. The range of angles of attack was 

limited by the angles at which the bottom edges of the side plates 

contacted the ground. In fact, for the O. 17 chord height, only the 

measurement at the designed angle of attack of 2. 5° could be taken 

because the bottom edges were nearly touching the ground. In the 

non-planar ground configuration, measurements were taken at 

heights of 0.33 chords, 0.283 chords, and 0.215 chords, and through 

a similar range of angles of attack. 

In addition, measurements of the pressure distribution along 

the centerline of the top of the non-planar ground piece, and the 

pressure distribution along the centerline of the upper and lower 

surfaces of the top wing segment were taken at the 0.215 chord 

height. The pressures were measured by a piece of plastic tubing 

about 0.08 inches in diameter. A small hole was cut into the tubing 

for static pressure measurements. 

All measurements were taken at a wind tunnel dynamic 

2 
pressure of 38.7 lbs/ft. This was equivalent to a velocity of 185.4 

ft/sec. Measurements of the dynamic pressure were taken with a 

calibrated pitot- static pres sure measuring device. 
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The Dow Reynolds number based on the chord length of the 

6 wing model was 1. 35 x 10 • 

F. Experimental Results 

Experimental measurements of the lift coefficients as func-

tions of angle of attack and height above the ground are shown in 

figures 68 through 71 for the planar and non-planar cases. The 

theoretically predicted results for these cases are also shown in 

the figures. The above measurements were taken for two different 

wing model leading edge shapes. This was necessary because the 

original leading edge shape (a semicircle of radius 3/32 of an inch) 

produced a small separation bubble about 2 inches in length near 

the leading edge. This bubble occurred because the flow had a much 

larger local angle of attack beneath the leading edge than the 2. 50 

to the freestream. The flow between the wing and ground was slowed 

down as it attempted to pas s through the converging channel produced 

by the wing and ground. Therefore, the flow near the leading edges 

went around rather than through the channel. This produced the 

higher local angle of attack near the leading edge. A second set 

of measurements were taken with a different leading edge shape. 

This shape was streamlined to eliminate the separation bubble. As 

expected, the drag was reduced significantly with the second shape. 

The lift, however, was not changed significantly except at very high 

angles of attack. 

The measurements taken at the lowest heights for both the 

planar and non-planar ground were significantly affected by the 

boundary layer displacelllent thicknes s on the ground plane. In the 
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planar ground case, the boundary layer was cOInpletely reInoved 7" 

ahead of the wing leading edge; however, the extreInely large ad­

verse pressure gradient on the ground just ahead of the leading edge 

of the wing caused transition of the boundary layer to occur. In the 

non-planar ground case, the boundary layer was not cOITlpletely 

reInoved due to liInitations in the suction slot on the non-planar 

ground piece. Therefor e, a turbulent boundary layer developed 

before the large adverse pressure gradient was encountered. Then 

the adverse pressure gradient undoubtedly thickened the boundary 

layer substantially. In both the planar and non-planar cases these 

effects were very significant. In fact, in the planar ground cas e, 

an estiInate can be Inade of this effect. We can aSSUIne that the 

boundary layer becaIne turbulent about two inches ahead of the lead­

ing edge of the wing. This as sUInption is Inade by considering the 

plot of the pres sure distribution along the centerline of the non-planar 

ground piece shown in figure 72. The pressure distribution along 

the centerline of the planar ground situation was expected to be 

quite siInilar with the peak in the pres sure gradient occurring fur­

ther upstreaIn. Using the 1/7th power law as a crude approxiInation 

for the profile of the turbulent boundary layer, the growth of the 

displaceInent thicknes s can be written as 

~ *(~) ~ 0.002. &> g' ;p t'S-

where x is Ineasured in feet frOIn the origin of the turbulent boundary 

layer (2 inches upstreaIn of the leading edge of the wing Inodel). This 

displaceInent thickness caused an effective ground plane shape which 
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was tilted up at 0.147 degrees. It also decreased the effective height 

of the wing by O. 0011 chords. However, the numerical solution cal-

culated for this problem in Chapter II indicated that the slope of the 

curve of the lift as a function of height is approximately 65 at the 

height of O. 165 chords above the ground (see figure 20). In addition, 

the partial derivative ~1.1 was approximately 20 at this height. 
de "" 

Hence, a simple correction to the measurement can be made as fol-

lows: 

LlC --- ./233 
L 

This cons ervative estimate reduces the measured value of the 

lift coefficient substantially. 

This simple type of correction cannot be easily applied to 

the non-planar ground situation because it was not clear where the 

turbulent boundary layer effectively originated. In addition, Elder 

(ref. 16) indicates that transition of the boundary layer occur s 

earlier on a finite flat plate than on a 2-D flat plate, but it is not 

clear how the boundary layer grows. Also, the effect of the highly 

adverse pressure gradient cannot be determined beyond the qualita-

tive deduction that it causes the boundary layer to thicken more 

rapidly than it would under zero pres sure gradient conditions. A 

plot of the load distribution along the centerline of the top wing s eg-

ment is shown in figure 73. The numerically predicted load distribu-

tion is shown also. The difference in the two distributions is most 

prominent near the trailing edge where the experimentally predicted 

load distribution is much larger than expected. This indicates that 
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the rear portion of the wing is effectively closer to the ground than 

indicated by the numerical results. Hence, the measurement at the 

height of 0.215 chords in the presence of the non-planar ground is 

not a valid comparison to the equivalent nUInerical results. 

The experimental measurements were also affected by the 

wing leading edge shape. A semi-circular leading edge shape caused 

a separation bubble to occur near the leading edge, whereas the 

streamlined leading edge introduced a small amount of camber. 

Both shapes should have caused the experimental lift coefficients 

to be higher than expected. The separation bubble introduced both 

an effective thicknes s and camber near the leading edge which should 

have caused a shift upward in the lift vs. angle of attack curve at 

each height above the ground. The streamlined leading edge also 

introduced some camber at the leading edge, and so the lift curves 

should have been shifted upward by the same reasoning. In general, 

however, these effects were significant only at the smallest heights 

above the ground. 

The numerically predicted results were in good agreement 

with the experimental results in all cas es considering that the numeri­

cal results were for a truncated ground plane which reduced the lift 

augmentation of the ground. The greatest deviations were at the 

wing positions nearest the ground. However, in the planar ground 

case these deviations were accounted for in a simple manner, and 

in the non-planar ground case the deviations can be explained at 

least qualitatively. 
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APPENDIX A 

No:rnenclature: 

1 :: efflux rate per unit length of line source 

P(~IlJ}:: field point at which we wish to find the effect of 

the line source and point vortex 

Y(d! :: ele:rnental source of strength I(cI~ 

d :: dis tance of point vor tex above the line IIj. =0 

\ :: circulation about the origin of the point vortex 

L :: distance of vortex fro:rn Y-axis 

R :: distance fro:rn incre:rnental source to P(~,¥) 

/3 :: angle between R and the X -axis 

It is the purpos e of this appendix to prove that the velocity 

induced by a single point vortex together with an infinite line source, 

whose source strength distribution satisfies the condition that there 

is no nor:rnal flow through it, is equivalent to the velocity induced 

by a point vortex and its i:rnage. 

The strea:rn function associated with the incre:rnental source 

(see figure 74) is 

The co:rnplete strea:rn function resulting fro:rn the entire line 

source fro:rn -A to A is found by integrating fro:rn J =-A to J:: A 

f Ar? 
r~ - 2.1l: (3d~ 

-A 
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but (3 =k-_I(d-~) 

A )f/-j Jf(J) ~- '( (L )d J 
r 21( 1Jl--! 

Hence 

-A 

So, 1; =- 2.. ~f;(n to...-,(;..; )dJ + 2.~ £,..[($";') + ("J-41'· 
-A 

and A 
J¥-r __ , r '1(J)t;!-<f ') 

,)~ - 21l:J [(If--Jr+/'/J 
-A 

Note that the function 

has for small €. a very sharp peak (resonance) at .r =/)L 

Furthermore 

Jc ~c~ 
i(",)J = £. d 3' = £. J j r'><-i)'tc (~)'+I 

- c -c 

Let f--1'- • r =-c. =* (:"=-
) £ 

dZ-::.:!l 
E. ) 

J -::! ( ==} 

where C is any 
arbitrary end point 
of integration 

Z-=_(C;~) 

1:= C -/'I-

£. 

Hence substituting into the above integral we get 
E::.!t 

Jt_d_L _ 

1"'2+ ( 

- r;~) 
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The lim.its are proportional to Y€, and hence as £~6 , the 

value of the integral is 

consequently 

Hence 

o =:. y!(/Y-) t- \ 
Z ZJ( 

Hence 

=J( 

( (10-1) 

where J (II--j) is 
the delta function 

o 

Now, we write the equivalent total stream. function for the 

point vortex and its im.age. Figure 75 shows the appropriate coor-

dinate system.. 

The stream. function associated with each vortex is (see figure 

75) 
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where r is the distance frotn 
the point P to the origin of 
the vortex 

Hence the total streatn function for the vortex pair is 

Cotnparison of the Two Solutions 

The streatn function solution for the point vortex near a line 

source was 

A 

1(= ~J (I-i) ~-(( I'J- ld 3 + ~/.M.r(~-J.)~( _d)jYz 

r Z711 ((!-.£Y+d 2] ~-! -; 27{ l' Aj 

-A 

The streatn function solution for the vortex pair was 

We are interested in cotnparing the two solutions for 1l-J.20 to de­

termine if they are equal. Indeed, for A ~ 00 the two solutions 

should be equal for 1f.J..2. 0 • Hence, by inspecting the two solutions 

we see that for the two solutions to be equal as A-"oa and 126 , 

the following tnUS t be true. 
cO 

L( (~-.l) :IMt--'(-.L) _ _ tf[( _ )'2+( fl YZ 

2?rlj[(I-~)1+d~ 17'-J d ~ - pn- N- ~ ~;+d 
-00 

This integral is very difficult to evaluate. However, we can 

tnake the integral easier by noting that 
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Therefore, the following must be true: 

oc 

I. r O-.l)"j d~ 
?rJ [(~-.l) '. .11[("'-1)'.,,/-'J 

-00 

Integration of the above integral will be done by using the 

residue theorems of complex variables. l-p/dne 

Consider the following integral 

J 

where 

and the contour of integration is the 

closed semi-circle in the top half 

of the :C -plane as shown in the 

figure. The integral can be aplit up into two integrals. One along 
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Consider the integral around the entire curve C. We can 

determine the poles of the integrand by setting the terms in the 

brackets in the denominator equal to zero. That is, 

Z 'l 
(Z-l) + d=-O 

~ r = zl ±.V4J.~4.(ll-#-l) 
2 

~-

Hence the integrand has four simple poles ~±f..Af. and .it:Acl 

By the Cauchy Integral theorem 

whereLK. 
. l­

f.. 

= sum of the resi­
dues of the poles 
of the integrand 

But since we are only interested in the top half of the plane, 

we need only consider the poles at ;)!-+A~ and 1..-+~d • 

The integral can now be rewritten as 

The residue at the pole ,IJ/+,(11J. is 
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_ -,i.[(~-J.)+i.If;J] 
K, - 2[(~-J)+i(l1J-cl)][(I\t--.() + i("j +d)] 

The residue at the pole t+.i..d is 

The value of the integral is then 

Hence it has been shown that 

I . r (i-..t) I'J d T: 

7fJt(~-..{r+d2][ (1V--~?+~~1 
_ (tr- -.J) 
- [U.-IY-/ +(~ +d)2] 

c 
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Now consider the integral along the path Cz• 
~ 

Hence 

Therefore as R -+ 00 

Therefore, we see that as R ~ o<:J 
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Therefore we can conclude that 

(~-.i.) 

-00 

We have shown that the 
d~ 

for both stream functions are 

equal. 
J~~ 

If we can also show that JIIJ. T for both stream functions 

are equal then we can say that both stream functions are equal. 

For the point vortex near a line source, as A ~ 00 

-DO 

For the vortex pair, 

(~+d) 

Hence, we must show that as A~oO, and for I\j ~O 

- o<J 

To solve the integral on the left hand side we will use the 

same method as was used in the previous integration, that is 

Cauchy's Integral theorem. The procedure is quite similar to that 

of the previous equations, so only the algebra will be shown without 
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explanation until the answer is obtained. 

K -= -[(n:-~)+).IIJ] 
I [(IP-L)+.i(IIj-d )][(~-~) +,i ("j+ d)] 2 

[(~-.e) -"i. d ] 
K, 2[ (l?1'-) +i.(d-~)J[ (.t-tV-) +.L(d+':j)] 

d\f; 
Therefore -- is the same for both stream functions. 

JI1} J~)¥1 
Hence we have shown that _r_ and _T_ are the same for 

)1'1- J~ 

both the point vortex near a line source and the vortex pair for 120 

given the boundary condition that there is no flow through "';1:0 • 

Therefore it must be true that the stream functions for the two prob­

lems ar e the s arne for IfJ. 2. (J and I A I~oo • 
That is, 

-0<> 
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APPENDIX B 

Arbitrary Velocity of a Point in Space: 

Suppose we have a rotating coordinate system with rotation 

We wish to find the velocity of any point in space 

relative to the non-rotating coordinate system • 

. 
where ~ = velocity 

/ 
of origin 0 relative 

to 0 

v; = velocity measured 

in ('-':;1j.;IJ.') coord. system 

I I ,I 1-

Let r -= r;. X + r ... j: + ~ ~ =- v;. X + r;. J + rt: ~ 
... I t 3 I 1 ) 

==7> ; -:: p +V +(p:t+<1T +rk) x(r,. i + rt: } +r,.1;) 
o Y . ~q- f 1 3 

=9 F=~+V;+((}~-r~)x+(rr;.-p~)J-+(P~-or;.)k 
6,) z I 3 2 Of 
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APPENDIX C 

The velocity induced by the finite length line vortex between 

v =~f,X~ f .. f£_JL) 
4?r IF,X~I2. 0 \Jr.1 It'il 

where 

t;, -= (Xt X, , t;- Y" ~t-t,) 

r, -= (X-X, J Y-Y., l-l,) 

~= (X-X2,Y-Yz,l-~1) 

Now, let 

Then, we can write the induced velocity as 

V,: 4~ [ ( (y-Y,}(l-l.~(Y-Y')( H,) ) J + ( (N, ) (X- X,) ; (l-l,) (x-X,) ) J 

+((X-X,)(V- y~) - (X-Xl HY- r:) .\ k] ~XZ-XI)()(-X,) +(Yz-'I;)(Y-Y, )+(lil')~Z-l,) 
D ) L V (X_X,)2+(y_y,)1.-+(1.-1.,)Z 

_ (Xt-X, )(X-XZ )+O~-Y, )(Y-'f,) -+- (l1-~' )O-~Z) J 
J(Y.-X1Y+(Y-Yl)1+(l-1.~)2 ' J 
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where 
z 2 D = [(r-y,)(l-2 l)-(Y-YZ)(Z-C,)] + [(Z-2,)(X-Xz)-(l-LZ )(X-X,)] + 

+ [(X-X,)(Y-Y)-(X-Xl )( Y-Y. )J2 

We want to have (X y. t ) all go to infinity while preserving 
I) 'J Z 

the angles 0( and f3. Hence, we must put all terms involving 

()(l.) Yl , =t.,.) in terms of 0< and (3. Then we will let Xl.-}DO. This 

gives, 

Weare now ready to write down the complete velocity induced 

by a single horseshoe vortex. This consists of the velocities induced 

by the bound portion and the two trailing portions. See figure 77. 

The total velocity induced by the horseshoe vortex shown on 

figure 77 is, 
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V:. \ r(y-y,)(t-l,J-(Y-V2)(l-l,)).l"+[(l'2.)(X-Xl)-(l-l2)()C-X,~J+[(x-X')(Y'~)-(X-X2)(Y-Y,~k l. 
4Jf[(V-YJ(l-lt)-(y-Yz)(l-l,>]' +[(1-1'>(X-X2)-(2-~)()(-X.)Y +[(X-X, )(r-Yz)-(x-X.z)(Y-Y,) J 

~ )(rX,)(X-X,)+(\-Y.)(Y-Y,)+(lil,)(l-l.) _ (xCX,)(X-Xz)+(~-Y,)( Y-Yl)+(la-Z.)(l-lz) .l 
Lvex-x,)'+ty-r.>'+(l-l,)Z i V(X-Xz)'+(Y-Yz)1.+(l-l,)' I J 

+ \ f[(y-r.)~o(l-(l-Z,),t.....,s,]:r.+[(~-t,)-(X-x,>~o(,JJ+[O(-X,)tu.~,-(y-y,)]k l. 
4X [(l-1.,)t-~,-(y-y,)~e(,lz+ [(X-)(,):/.4....o(,-(l-ll)]2+[(y_y,>-(~-x.)~,]z J 

_..L [(Y-Yz)tu.oo(, -(l-tZ)~Pl]:r+[(t.-l,)-()<-XI)"4r.o(Z]J+ [O<-Xz)~,Bz-(Y-'Il )]~ J. 
4?r [(l-Zz)k..,Bl-(Y-Yz )t4,.,..o(zr+ [(X-X2)~e(l-(i!-~2)J2.r[(Y-Yz)-(X-Xl)~~]2 
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This is the velocity induced by a single horseshoe vortex 

whose trailing vortices are at arbitrary angles to the direction of 

the freestrearn.. 
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APPENDIX D 

INVESTIGATION OF THE INTEGRAND OF THE VARIOUS 

INTEGRAL EQUATIONS INVOLVED IN THE REPRESENTATION 

OF A NON-PLANAR GROUND PLANE (3-D) BY A 

DISTRIBUTION OF SOURCES AND SINKS 

Introduction: 

When a non-planar ground plane is represented by a distribu­

tion of sources and sinks, one is faced with solving integral equations 

in order to determine the source strength distribution of the ground 

plane. Also, after solving for the distribution then, in order to 

calculate the forces and moments on a wing, one must evaluate an 

integral representing the effect of the ground plane on the flow at 

any point in the flow field. Thus it is very important to have an 

accurate knowledge of the integrand of the various integrals and 

integral equations before being able to discretize them and numeri­

cally calculate solutions on a computer. Therefore, the purpose of 

this investigation was to gain this desired knowledge. 

There are three types of integral equations involved with 

non-planar wings in non-planar ground effect. One is the integral 

equation which arises when we attempt to determine the effect of 

the ground on the surface of the wing when satisfying the boundary 

condition of no normal flow through the wing sur face. Another inte­

gral equation arises when we determine the effect of the ground 

plane when satisfying the boundary condition of no normal flow 

through the ground. The third integral of importance is the one 

which must be evaluated when determining the effect of the ground 
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on the horizontal velocity at the quarter chord of each vortex patch. 

This arises when calculating the lift L . These three integrals 

are investigated in this appendix. 

Integral Equation Arising from Boundary Conditions on the Wing: 

In order to calculate the forces and mOITlents on an inviscid 

representation of a 3-dimensional thin non-planar wing in non-planar 

ground effect, we must satisfy two boundary conditions in the flow 

field. One of these boundary conditions is that the flow must be 

tangential to the wing surface. This boundary condition is expressed 

mathematically as, 

for each point j at 
which the boundary 
condition is s atis-
fied 

Since we will be solving this equation numerically, we must 

discretize the wing and satisfy the boundary condition at a finite 

number of points on the boundary, thereby solving for a finite num-

ber of unknowns (that is, a finite number of points in the circulation 

and source strength distributions). 

Therefore we must have an accurate picture of the functions 

we are discretizing so as to accurately represent them. 

But, at each point on the wing surface which we use to satisfy 

the boundary conditions there is a contribution to the velocity at that 

point from two different places. That is, the wing induces a velocity 

at the point and the ground induces a velocity at the point. At this 

time, we will investigate the velocity induced by the ground at the 

point. 
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Since the ground is defined as a set of sources lying at points 

along the ground, and at each source point there is a different source 

strength, then we must integrate the effect of all these source points. 

Mathematically, this integral for each velocity component 

is, 

However, we want to study the integrals as they appear in 

the equations for the boundary conditions so we want to consider the 

integral 
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It is not necessary to solve a major problem to study this 

integral. The important thing to notice is that the integrand is the 

product of two different functions. One function is J((tH,f) and the 

other we will call the kernel function. This kernel function is of a 

form such that as O){Jf)~(n;}tfJ;)1) the kernel function -toO' But 

(1Yj)lIJiJ~) are coordinates on the ground. Hence, for a wing boundary 

condition matching point near the ground, the kernel function has the 

form of an approximate delta function centered at (!Jj. J 'j /ai) . 

However, ~(}Jf{,:f) depends on the overall gamma distribution 

of the wing. Hence it should not have as much variation as will the 

kernel function. So the entire integrand should vary much like the 

kernel function varies. 

To verify this hypothesis, some numerical calculations were 

:made for a wing represented by a single horseshoe vortex flying at 

5° angle of attack at a 1/4 chord height of 0.2 chords above the 

ground. A flat ground plane was used for these calculations. On 

figures 78 and 79 we see plots of the kernel function and I((J/-(,r) 

vs. If/ and "1 on the ground plane. The :matching point for the bound­

ary condition on the wing was at the 3/4 chord so that the :matching 

point was 0.15645 chords above the flat ground plane. We see that 

the kernel function is quite peaked at (h-=o.7f,IIi::.o,1=O) which is the 

s:mallest possible distance fro:m the :matching point. Also r«(J)'Cf) 

varies rapidly near the 1/4 chord, but the kernel function is so s:mall 

here that it is not very i:mportant. Hence, we see that the kernel 

function definitely do:minates the integrand. It has a very large peak 

near the :matching point and dies off very quickly in all directions. 
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For matching points higher above the ground the peaking is 

much less pronounced but then the integrand does not die off relative 

to the peak value so quickly. 

Further numerical calculations were made to determine the 

size of the source sheet distribution required to accurately simulate 

an infinite ground plane. The results of these calculations indicate 

that there are several factors which affect the accuracy and the 

amount of computation time taken to numerically integrate and pre­

dict the solution of the horseshoe vortex in ground effect. These 

factors are: 1) The ratio of the height above the ground to the radius 

of integration away from the field point being solved, 2) The number 

of intervals in the area of integration needed to obtain the proper 

accuracy, and 3) The accuracy required in the actual integration 

process. We will consider each of these factors in more depth. 

Before the study began it was decided that an error of less 

than 5% was tolerable. Therefore in all phases of the study, 5% 

was used as the proper error criteria. 

It was found that the proper ratio of integration radius to 

height above the ground was on the order of about 3 in the Y -direc­

tion and about 1. 75 in the X -direction. These ratios caused errors 

of about 4% to 5 % while all other sources of error were held con­

stant. A graph of the error in the ground induced vertical velocity 

vs. the ratio of the Y -limits of the finite ground plane to the height 

above the ground at which the vertical velocity is evaluated, is 

shown in figure 80. 
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Integral Equation Arising from Boundary Condition on Ground: 

The other boundary condition which must be satisfied when 

solving inviscid non-planar wings in non-planar ground effect is the 

condition that there can be no flow through the surface of the ground. 

This boundary condition is expressed mathematically as (see section 

titled" Applications to Non- Planar Ground Effect"), 

o 

This equation results from satisfying, v·n =0 

on the ground surface, where n = outward normal from 

the ground surface. 

The velocity induced by the ground at any other point on the 

ground is represented by the integral in the above equation. At the 

moment we are interested only in this integral. That is, we are 

concerned with the profile of Y((~j{)f) and the kernel function and 

the product of the two which makes up the entire integrand. There-

fore, consider the integral 

As with the wing b~undary condition we see that the kernel 

Hence the 



-120-

integrand should have a sharp peak where there are corners on the 

ground plane or discontinuities in the slope of the ground plane. 

From the nature of the numerator of the kernel function we see that 

the peaks should be sharper as a function of j{ and f than as a 

function of! • Also, the integrand as a whole should vary much the 

same as the kernel function varies. 

To verify these hypotheses, some numerical calculations 

were made for a wing with 45° dihedral, aspect ratio = 4 and angle 

of attack = 5°, represented by 2 horseshoe vortices, and flying 

above a non-planar ground plane whose shape resembled a V with 

each side being 45° to the horizontal. The figure below illustrates 

the problem. 

Front View 

After observing the numerical calculations it was found that 

the kernel function of the integral involved in the ground boundary 

condition did exhibit the distribution that was expected. It was found 

that the peak of the kernel function occurred at a distance from the 
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corner about equal to the distance of the matching point from the 

corner along the opposite wall of the ground plane. As the matching 

point approached the corner, the peak became higher and sharper. 

In fact, if the matching point is placed at the corner, a singularity 

occurs in the kernel function at the corner. But if the matching 

point is not at the corner, then the kernel function goes to zero at 

the corner. Therefore, we see that the kernel function is a non-

uniformly convergent function in the closed region from the corner 

to infinity. It is a uniformly convergent function in the open interval 

from the corner to infinity. 

It is also apparent from the graphs that if d is the minimum 

distance of the matching point from the opposing ground plane, then 

the integration limits need to extend about 4d from the point on the 

opposing ground plane where the minimum distance occurs from the 

matching point. This is illustrated more clearly in the figures 

below. 

I\.f = distance from corner to peak of kernel function. 
I",..,." 
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The only location where the kernel function may cause diffi-

culties is at a corner. As mentioned previously, a singularity occurs 

in the kernel function at the corner. It is important to determine 

what effect this singularity might have on the flow field. Therefore, 

let us investigate the boundary condition on the ground at a corner 

in greater detail. We first investigate the corner boundary condition 

for two dimensions and then for three dimensions. 

Boundary Condition at a Corner in Two Dimensions: 

Consider a pair of 2-d point vortices in the presence of an 

infinite boundary with a corner. The figure below illustrates the 

problem. Let us represent 

the presence of the wall by 

a distribution of sources 

and sinks all along the wall. 

As sume we know the 

strength of the vortices + r. 
Then the only unknown is 

the source strength distri-

bution along the wall. To 

determine this distribution 

we must satisfy the boundary 

condition at the wall that 

there can be no normal flow 

through the wall. Let ~(I1-) 

and fr,,(-)be the source 

strength along x or y. Then 

y 

d 
1-1 

Tr:t 
-r 0JT 

tl 

d J., 
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the boundary condition expressed mathematically is, 

o ':: V· n = ff"f) + d~v(Af) - ~f((!) tJJ 
2. d /f.- 2 J( ( +1- 1 

o 
1(1'f) 

0---­- 2 + _ I !~'(4-)..4d,L{ 
2 J( /( 2+4- 2-

o 
For simplicity, we have chosen to consider a symmetric 

situation, so that r(~):tf1). Then, the two equations defining the boun-

dary condition are identical. Both of these equations are linear 

Fredholm integral equations of the second kind with a singular kernel. 

This type of equation has not been solved in closed form. However, 

iteration procedures have been applied to these problems with some 

success. That is, an approximate solution can be written as, 

As n~...o, the approximate solution converges to the correct 

solution for sufficiently small A • 

Using this procedure, an attempt was made to develop an 

approximate solution for J(t1-) and thus examine the behavior of >(1) as 

I'IJ -') 0 • However, due to the complexity of the integrals in the higher 

order terms, only a first approximation to rl~) could be obtained. 

This approximate solution was rather lengthy so it will not be presented 

here. However, fro) was determined to be 
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Hence, f,lo) does not ~,o aS1~o at least to this approximation. 

However, higher order terms in r.,1,..J may -}"'"' as "';J~" • Even if 

(t1~ .... as 1-40 , this singularity should not adversely affect the flow 

field anywhere except very near the corner. This conclusion is based 

on the fact that corners and steps occur quite often in two-dimensional 

subsonic potential flow problems. The flow is usually affected only in 

regions very near the corner or step. Hence, although Y(tO) may 4.0 , 

the over-all contribution of the corner to the flow field is expected to 

be small. 

An independent method of solving the problem of the point 

vortices in the presence of a corner is the method of multiple images. 

That is, three images of the point vortices would be placed in each of 

the other three quadrants of the x-y plane. The ground boundary 

condition would be automatically satisfied. Therefore, the flow field 

is determined merely by summing the velocities induced by all the 

point vortices in the x- y plane. However, using this method to 

determine the flow field does not provide any information in examining 

the ground boundary condition at the corner. 

Now, let us consider the same problem in three dimensions. 

Boundary Condition at a Corner in 3 Dimensions: 

Consider a horseshoe vortex in the presence of an infinite 

wall in both theX,Yand r directions. We want to examine the source 

strength distribution at a corner in the Y, t -direction. The figure 



below illustrates the problem: 

Let us represent 

the presence of the 

wall by a distribu-

tion of sources and 

sinks all along the 

wall. Assume we 

know the strength of 

the vor tex \ • 

Then the only unknown 

is the source- sink 

strength distribution 

along the wall. 

x 
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S/MV~AT£/) 

WING 

)'-------~y 

To determine this distribution we must satisfy the boundary 

condition at the wall that there can be no normal flow through the 

wall. Let J(("P,AJ,J and 'J{(I'I/J) be the source- sink strength along the 

1JI--1Ij- and~.~ planes, then the boundary condition expressed mathe-

=a~call~.~. = 11(-,,;,) + .,)~/.r;S) _ _ (_jroGr.t){)J{dl{ds 
2 JIIj 4?( J[b--!)\L<2+(j-1l1~Z 

-.0 () 

0- Y((~'V) +J~,(~') Lf{oOr((J,f) fdfd'f. 
- 2 J{j. . 47r J((~-J)~fZ~{'Y1(/J'h 

-tIO 0 
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In general, it is very difficult, if not impos sible, to solve 

these equations. They are a coupled set of linear singular integral 

equations of the second kind. An attempt to develop an approximate 

analytical solution by iteration procedures would also be exceedingly 

complex because the initial guess at the solution would necessarily 

~~/~,) d~l~V-) 
be \ and • However, the equations for thes e functions, as 

d/lf .)1-
shown in Appendix C, are very long and complex. Even the integrals 

involved in the first iteration, 

- oCI 0 
and 

~oo 0 

would be impossible to evaluate analytically. 

Therefore, a numerical investigation was conducted to 

determine the behavior of the source strength distribution near a 

corner. Numerical calculations were performed on the same problem 

described on p. 120; that, is, a thin wing represented by 2 horseshoe 

vortices, aspect ratio 4, dihedral angle 45°, angle of attack 5°, flying 
\ j 

in the presence of two semi-infinite ground planes intersecting at a 90° 

angle. The 1/4 chord of the vertex of the wing was placed. 5 chords 

above the intersection of the ground planes. The figures below 

illustrate the situation. 
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The problem was solved by both the source distribution 

method and the multiple image method. The agreement between the 

answers calculated by the two methods was excellent. The source 

strength distribution as developed by the source distribution method 

tended to become very large in the region near the corner. To deter-

mine the effect of the source strength at the corner on the rest of the 

source strength distribution and the rest of the flow field, the 

previously mentioned problem was solved using different pre-set 

values for the source strength at the corner. These pre-set values 

at the corner ranged from zero to about twice the source strength of 

any other point in the distribution. The results showed that the 

source strength became large near the corner regardless of the value 

of the source strength at the corner. In fact, the value of the source 

strength at the corner affected only a small neighborhood near the 

corner. Some illustrations of the variations in the source strength 
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distribution in the y- z plane with a variation in the value of the source 

strength at the corner are shown in the figures below. 

~(s) ~(s) 

5 

~(s) 

5 

Furthermore, variation in the value of the source strength 

at the corner caused negligible changes in the calculated lift, drag, 

and moment coefficients of the wing flying above the corner. 

However, as the accuracy in the natural representation of the corner 

was increased, the source strength at the corner tended to grow 
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larger. Therefore, it is probable that the exact source strength at 

the corner is !(raj = 00 However, this singularity in the source 

strength at the corner is apparently integrable, and its contribution 

to the integral over the entire plane is also apparently quite small. 

Therefore, a simple method of representing the boundary 

condition at a corner was incorporated. This method is illustrated 

in the figure below. 

As the figure illustrates, we assume the direction of the 

normal at the corner to be the average of the two normal directions of 

the intersecting segments 'in the region near the corner. Since the 
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infinite source strength at the corner is caused by the source dis-

tribution infinitely near the corner, we now can eliminate the possi-

bility of a numerically computed infinite source strength at the 

corner by placing the next ground point a finite distance from the 

ground point at the corner. Although the source strength distribution 

will be in error near the corner, it will not affect appreciably the 

overall solution anywhere else as shown by the foregoing analysis. 

Integral Arising From Calculation of Horizontal Velocity at 1/4 Chord: 

In order to calculate the lift on a non-planar wing in non-

planar ground effect, we must evaluate the formula, 

L = z: z."l.i.pU(t1;./'i.i.) IJ-,l) \ n~ 
,J.. 

where we have represented the wing by a discrete set of horseshoe 

vortices, and the ground by a set of sources and sinks. If we know 

the circulation distribution on the wing and the source- sink strength 

distribution on the ground, then we need only numerically evaluate 

the quantity U'(~/Y.t.~.Jat the 1/4 chord of each vortex patch on the 

wing. Expressing U(IK;./lc./)) mathematically, we have 
J 00 PO 

11/ )_\(..( (At'- . -) -(-j rJf(.tf(,1)(4;;~I)cI/{dlc1f +11 
'" ,iI';,~..:, ~" -T ~. " h/h -t- 4?r J( 0-;-l)' ... (~ ""/1)''''( ~J)']'I> 1A00 

where 
-.0 _tIO 

= Horizontal velocity induced by the /h 
horseshoe vortex on the wing 

and the integral represents the horizontal velocity induced by the 

source-sink distribution on the ground. In fact, the purpose of this 

investigation is to study the behavior of the integral and determine 

where any difficulties would arise in evaluating it. 
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We see that the integrand is the product of 1((J,,{ {) and a 

kernel function. As (!/(I:n-'t~/1j.l~.Jthe kernel function ~ fIfO • 

Therefore, we can expect a peak in the kernel function near where 

is a minimum. Also, note that when ~.'::J ' the .... 

kernel function is zero for lIJi'f:.)( and/or 1" -:f:: f. So the distribution 

of this kernel function should be peculiar. One would expect that 

y( distribution is much more smooth, and that the integrand should 

vary like the kernel function varies. 

To verify these hypotheses, some simple numerical calcula-

tions were made with a single horseshoe vortex in flat ground effect 

at h;c, = O. 2 above the ground. The other par ameter s wer e ;R = 4, 

0( = 50. f3 = O. All length parameters were non-dimensionalized 

with respect to the chord. The graphs on the following pages rep-

resent the results obtained (see figures 81 through 84). 

It is seen that the kernel function has two peaks, one on 

either side of the minimal distance point on the ground. The sharp-

ness of the peak varies with ~ and the integrand dies out a lot more 

slowly than the other integral equations involved in this problem. 

In fact, a detailed investigation was made to determine the accuracy 

of the numerical calculation as a function of the integration limits 

used to calculate the integral. It was found that for reasonable accu-

racy ( 25 0/0) we needed to have integration limits greater than 5 

times % in all directions away from the minimum distance on the 

ground from (~,~.j,j . .i.) This is illustrated in the figure below. 
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It was also found that the peaks in the kernel function 

occurred on the ground at a distance of""" X. in all directions 

from the minimum distance from (~J 1lJi. J'3-,,). 
Summary of Appendix D 

An investigation of the various integrals involved in the 

source sheet distribution method shows that excellent results can 

be obtained using this method if certain fundamental restrictions 

are kept in mind. In general, these restrictions dictate that dis­

cr.ete ground points must be placed in accordance with the peaks 

of the integrands of the various integrals. These peaks exist due 

to the nature of the kernel functions which are multiplied by the 

source strength to comprise the integrand of the various integrals. 

Figures 85 and 86 are a series of plots of the universal curves 

representing the normalized value of these kernel functions in 

terms of the distance away from the point at which the velocity 



-133-

is evaluated. The placeITlent of ground points as well as the spacing 

between theITl ITlust be done in accordance with the variation in these 

curves. 

FurtherITlore, ground points ITlay be placed at corners in the 

ground plane, so long as the next nearest ground point to the corner 

is any" finite" distance away froITl the corner. The source strength 

distribution at the corner and very near the corner ITlust be in error, 

but this error does not appreciably affect the flow field anywhere 

else. 
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APPENDIX E 

NUMERICAL CALCULATIONS OF THE DOWNW ASH 

DISTRIBUTION OF AN ELLIPTICAL PLANFORM WING 

IN AN UNBOUNDED WING 

Calculations were performed to numerically determine the 

downwash induced by a thin, flat, elliptical planform wing of aspect 

ratio 8 at an angle of attack of 2. 5° • The vortex-lattice method was 

used to solve the problem. The downwash distribution was deter­

mined 100 chords downstream and compared with the theoretically 

predicted downwash distribution. These results are shown in figure 

87. The agreement is very good except near the tips where the 

numerical solution would be expected to break down. In addition, 

the numerically computed circulation distribution on the wing was 

compared to the theoretically predicted circulation distribution and 

was found to agree excellently. The theoretical distribution was 

slightly lower near the tips. 

The discrepancies near the wing tips resulted from difficul- . 

ties in representing the geometry accurately near the tips. If a 

larger number of vortices were placed in the region near the wing 

tips, the solution would have been more accurate there. 
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APPENDIX F 

PARASITIC DRAG APPROXIMATIONS 

Parasitic Drag of a Lifting Flat Plate (Ref. 25) 

To take into account the difference in parasitic drag due to 

lift we take into account the extra drag due to the change in dynamic 

pressure. That is, the total parasitic drag is the sum of the para-

where C D 
f ipu22s 

where S = planform area of wing 

Now, as a first approximation assume 

L = lift =pUr b = C ipu
2
bc 

avg. L 

where 

r(y) = f u· dS = 2u (y)C avg
x 

r avg = 2uavg C 

2u = cLi avg 

u C 
~ = + ~ where + for top side (suction side) of plate 

U - 4 

for bottom side (press. side) of plate 

1 )2 1 2 1 _2 au u
2 

qt- q = zp(U+u -zpU = zplJ(+ U + 2) 
2 U 

CL CL 
qt- q ~ q(y + l'b) 
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For the wing used for the dynamic stability study of planar 

wings in planar ground effect, we have 

U = 200 ft/sec. 

C = 5 ft. 

v = • 15 x 10- 3 ft2 /sec. 

~ from skin-friction curves for flat smooth plates. 

2 
-3 CL 

3.2 x 10 (2 +8) 
oCL 

2C -
~ C ( L au 

f 8 au 

ah 

~ For our problem 

Now. we are in a position to calculate total drag derivatives. 

That is. 
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oC oCD" oCD 
~ = _~ __ l + _~_p~ 
ou ou OU 

oCD1" oCD 
+ P 

oh --=oh,..-L-

PARASITIC DRAG DUE TO END PLATES, (Ref. 25) 

End plates cause extra skin-friction drag and interference 

drag (at the corners). 

The extra skin friction drag is just 

where SE = planforITl area of 
each end plate 

S = planforITl area of 
wing 

The interference drag is accounted for eITlpirically by the 

following forITlula: 

CD 
E. P." t mer. 

2 t 3 
= 1R (. 8(c) -. 0005) where'!' = thickness 

c ratio of wing 

Hence the total contribution to the parasitic drag due to the presence 

of the end plates is 

CD =CD +CD 
E. P. E. P. f " t E. P. " rlC • lnter. 

For a flat plate of chord length 15 feet, U = 100 ft/sec 
00 

C
f 

= • 003 S 
CD = • 012 S E _ • .: 1 

E.P. 
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PARASITIC DRAG FOR NON-PLANAR SINGLE WING 

U = 200 ft/sec. [fU r 
C = 100 ft. J 

-3 2 ~------------------~ 
v=.15x10 ft/sec. 

2 2 
R 2xlO xlO 

e = -3 
• 15x1 0 

438 =1.33x 10 x 10 =1.33xlO 

from skin-friction curves for flat smooth plates 

(Hoerner, "Fluid Dynamic Drag" p. 2-6, 1965). 

We have neglected extra 
skin friction drag due to the 
lift of the side plates. 
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Rom Wing With End 
Plates Over Planar 

---Ground ---yL----~ 

Ram Wing With End Plates 
Over Open Guideway· 

Fig. No.1 HIGH SPEED GROUND TRANSPORTATION 

VEHICLES IN CLOSE PROXIMITY TO SOLID 

BOUNDARIES 
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2-d VORTEX DISTRIBUTION IN GROUND PROXIMITY 
SOURCE DISTRIBUTION METHOD 

y 

a..-- ,.,. 

P(x,y) 

Discretization of the Vortex 
Distri bution . 

FiO. 3 

x 
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3-d NON-PLANAR THIN WINGS 
IN 

NON- PLANAR GROUND EFFECT 

Wing Boundary Condition 
Matching Point z 

Bound Port ion 
of Vortex ri 

Trailing Vortex 
Portion of ri 

Y~-----------------~----------'------------

Fig. 4 
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L/Lo vs hie 

I Vortex 

2 Vortices 

2-d Flat Plate in Ground Effect 
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Exact Theory 
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LIFT CURVE SLOPE vs ASPECT RATIO 
FLAT RECTANGULAR WINGS AT H = CO 

2-d Limit 

I 
I P 'V { 50 Vortices, a = 5° 

resent . 
S I t

· A 40 Vortices, a = 5° 
o u Ion . x 200 Vortices, a = 0° 

o Sounders, a = 0° ( ) 
o Prondtl a Bet z (1920) 
A Scholz (1950) 
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LIFT CURVE SLOPE vs h/c 
TANDEM FLAT RECTANGULAR WINGS IN GROUND EFFECT 
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SIMULATION OF NON-PLANAR 
GROUND BY MULTIPLE IMAGE 

\ 

METHOD \ 

'., 

Multiple Image 
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" " " FRONT VIEW "-

Fig. 26 
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SIMULATION OF NON-PLANAR GROUND BY SOURCE 
SHEET DISTRIBUTION METHOD 

FRONT VIEW 

TOP VIEW 

Fig. 27 

\ 

Source Sheet 
Distribution Ground 
Plone 
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SLANTED CHANNEL WING WITH DIHEDRAL 
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SPANWISE SOURCE STRENGTH DISTRIBUTION 
ON THE GROUND 
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Fig. 32 
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ROOT LOCUS DIAGRAM LONGITUDINAL STABILITY 
SINGLE FLAT WING 
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ROOT LOCUS DIAGRAM LONGITUDINAL STABILITY 
SINGLE FLAT WING 
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ROOT LOCUS DIAGRAM LONGITUDINAL STABILITY 
SINGLE FLAT WING 
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ROOT LOCUS DIAGRAM LONGITUDINAL STABILITY 
SINGLE FLAT WING 
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EXPERIMENTAL WING MODEL 
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PHOTOGRAPHS OF EXPERIMENTAL APPARA TUS 
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LOAD DISTRIBUTION ALONG 
TOP CENTERLINE OF WING 

NON-PLANAR GROUND 
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2-d IMAGE METHOD 
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d 
P(x,y) 

~------------~------+-------------~x 

Fig. 75 
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FINITE LENGTH POINT VORTEX AT AN ARBITRARY 
ANGLE TO THE FREESTREAM DIRECTION 

Single Finite Length Line Vortex X 

Fig. 76 
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HORSESHOE VORTEX WITH TRAILING VORTICES 
AT AN ARBITRARY ANGLE TO THE FREESTREAM 
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Fig. 77 
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COMPONENTS OF INTEGRAND OF INTEGRAL EQUATION 
IN WING BOUNDARY CONDITION 

'1]. KERNEL (x,y,O.156) 
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COMPONENTS OF INTEGRAND OF INTEGRAL EQUATION 
IN WING BOUNDARY CONDITION 
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ERROR IN GROUND INDUCED VERTICAL VELOCITY vs 
RATIO OF Y-LIMITS OF FINITE GROUND PLANE TO 

HEIGHT OF VERTICAL VELOCITY EVALUATION POINT 
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ERROR IN GROUND INDUCED HORIZONTAL VELOCITY 
vs Y-LIMITS OF FINITE GROUND PLANE 
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ERROR IN GROUND INDUCED HORIZONTAL VELOCITY 
vs X-LiMITS OF FINITE GROUND PLANE 
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POSITION OF KERNEL FUNCTION MAXIMUM FOR 
U-VELOCITY AND V-VELOCITY 
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NUMERICAL CALCULATIONS FOR AN 
ELLIPTICAL PLANFORM WING 
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Tables of Aerodynamic Coefficients 

Symbol 

AR 

ANGLE 

HEIGHT 

CDI 

CL 

CMLE 

XCG 

DCDI/DH 

DCL/DH 

DCMLE/DH 

DCDI/DT 

DCL/DT 

DCMLE/DT 

DCDI/DW 

DCL/DW 

DCMLE/DW 

DCDI/DQ 

DCL/DQ 

DCMLE/DQ 

DCY/DY 

DCLLE/DY 

DCNLE/DY 

DCY/DPHI 

DCLLE/DPHI 

DCNLE/DPHI 

DCY/DPSI 

DCLLE/DPSI 

DCNLE/DPSI 

DCY/DV 

DCLLE/DV 

And Stability Derivatives 

Description 

Aspect Ratio 

Angle of Attack in Degrees of Horizontal 
Segrrlent of Wing 
Height in Chords of 1/4 Chord of 
Horizontal Segment of Wing 
Induced Drag Coefficient = CD-

I. 

Lift Coefficient= C
L 

Leading Edge Moment Coefficient = CI( 
,.~. 
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Tables of Aerodynamic Coefficients 

And Stability Derivatives (Cont'd) 

Symbol 

DCNLE/DV 

DCY/DP 

DCLLE/DP 

DCNLE/DP 

DCY/DR 

DCLLE/DR 

DCNLE/DR 

Description 
X~ ... 
~v 

~ 
JP 
~ Jp 
,)c,." .•. 
JP 
,JCy 

~ 
J(}'.I 
dt" 
dC~.I. 
~~ 
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TAtlLE 1 

THIN FLAT RECTANGULAR WINGS IN GKOUNO EFFECT 

AR • 5 .. 5 1. 1. l. 
A'lJC,LE 10. lU. 2.5 2.5 2.5 
HEIGHT 015 .2 .05 .1 .2 

----------- --C ITT -------------.. -G 7 qtr -------; -057? ------;-CT2TT------;ff,3119T----~-01T2351j-----------

CL .555 .. 4034 .3723 .1669 .1095 
---------- -1: Mt E-- - ----------~; 24~7------:;..-;; 1-4 53-----.;;;-.-17t1tr------.;;;;-CltrZT----=; U 204~-----------

XCG .4318 .3521 .3695 .3049 .28 
----ftlDC--t}i-t-u 11 - t ., Y2 5 - .. 2 ~5 t -. 5., 91 -. ,., ~_a-t1~2~--,-::;-• .,.,C~Oh'5~tHO"\'"2~---

DeL/DH -6.46 -1.425 -11.89 -1.303 -.2501 
------------OCMLElrm------ tt.-5'7'f-------.tf5bS-------b;.-Y47-------.50-g-S--------.-0(J433--------------

DeDI/DT 1.15 .1407 .5438 .05139 .Oll:i84 
----- - --- ---OC Ll DT - --------4. -9 7<J--------l.-70·f-------T .. -tt'15--------t.-f)~G--------.-399"{)-------------

DCMLE/DT -3.504 -.9631 -5.119 -.6164 -.2058 
-----+'It) C1:J1-/i)"W .. 7',11 • 5 n • 4~ 7 • 16 83 .. 1 n 4 

DCL/D~ 2.92 2.222 7.289 3.707 2.48 
- -----De ML E ID.,,-------= 1-.2-8 5--------.;;.;;-.1:) lo---------?;13('1~-------1-.('7i)'f-----= .;1)ors-------------

ocnI/D~ .2385 .1865 .2213 .n8376 .05622-
-- - -- --- --- -- OCt ID-q- --------.tfoT"S --------.-BC-Z-o-------3.-11JY-------I. -8-47-------T; 32Z--------------

DCMLE/DQ -.683 -.5564 -1.956 -.9659 -.6471 
-----OC-y-ft) 'f \'l. (' «I O. O. 0 • 

DCLLE/DY O. I:". O. O. O. 
------------DC Nt" f.-l DY - ---- -0-.------ - -------1);------ ---- -----c-.-------------C-.--- - -- --------0 ;-------------------

DCY/DPHI O. 11. O. O. o. 
------------DC t tEl OPttI-----.C136t'S------.-o 10 lfl-----=-.2Tl---------- .--\')02-15-------.-026;5-----------

DCNLE/DPHI .01928 .003015 .02609 .004828 .OC1919 
------f'ID-F-C ffi}y--S Ie. (" • tj • 0-. o. 

DCLLE/DPSI O. 0. O. O. Q. 
"------------oCNtEID?--S-t---c--G-------------\);-------------~.--------------o-;------------o-.------------------

OCY/DV .(,1805 .(/1863 .01377 .01152 .0101 
------------1)C Cl t:~1 DV------ ~.-C12-61-----.;.;;.-.-C3 '+3"6-----;3"1 tt5--------.1-r6cr-------.-CH9 0'-- ------------

OCNLE/DV .0007509 .005174 -.02514 -."r7696 -.OC4111 
----~D1-/C"-l'l ..... · ,+-< ftD po. c • C • C • O. 

DCLLE/DP -.02853 -.02335 -.1511 -.1111 -.09796 
-----------OCNtFl-mr------.O-tl-:3--------.-0-o-a-lfn-----.-o-Z173------;-01('2-r------.0153--------------

DeY/Ok 0. D. O. O. o. 
----------UCtt Eft] R--- ----.00 1-2 "J4 -----.-{}O 5-26-9-----.-0 t-8-r3------ .. -~}t-2_eT------" tJto-'ll- - -----------

DCNLE/DK -.C0238 -.001687 -.002902 -.001195 -.001476 

------------------------------ -------- -'---------- -------- - --_._- ----------------------- - ------ - - -----------------_. 

-----------------------------------------------._-------------------------------------------------------------. 
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T ARL E 1 

THIN FLAT RECTANGULAR WINGS IN GROUND EFFECT 

AR 1. 1. 1. 2. 2. 
-----f'rAffGl-E 5. ~. 5. 2. 5 2. 5 

HEIGHT .1 .15 .2 .075 .1 
-----------C 0-1- -------------.-02~4 a- ------.,::,-1-4 -g-5------.-o1T9Lt------;rr07TT5-----;·ouTIm-----------· 

Cl .4487 ~3027 .2525 .4471 .3341 
-----------CM l -(- -- ----------.- • -Hit; 6-------..... $-0 9l"6....:r---.fJ7 r;--gg-----.;;;.- IS-I --------.;;1" 1)3--------------

XCG .3963 .2829 .2417 .3375 .3082 
-----IOCi:rH-DH -. 41-~ -.f.<ni:6 -. r,-3<)('~ • 1(354 -.C!>7I9 

DCl/OH -5.703 -1.465 -.6785 -6~764 -2.898 
-----------vC"M t tfOH------y .. -1 A 1--------;oen-7-------.-2~_y-------y .. -rrz---------T;T5T-----------

DeDI/DT .4409 .1363 .08662 .172 .07631 
------------DC LI OT--------4-. I) 14--------h-3<f---------.-tHrt1-------t-.-(rt:J-------L.ZO~-----------

UCMlE/DT -2.5 -.7547 -.4405 -1.793 -.7206 
-----fD~C_n_tt D \~ .. If 9iS 1 • :HH .. 2 tt 9 5 • 2 687 • 1 988 

UCl/O~ 4.679 3.324 2 .. 814 8.978 7.098 
- --- -DeM-t-E ffJW------""1-. /3--------... 1-. -025------=.-79 cj3------..;;;3;1J7"1t------~r.-ZT3-------------

DeDI/DQ .. 2131 .1423 .1214 .1438 .1034 
-- - - --------- DC t-l OQ----------1.-874-------T.-rt97-------T,;-37g--------T;,-87.t9-------~;LTI--------------

OCMlE/DQ -1.134 -.8098 -.6928 -1.972 -1.505 
---ve-'tTf)'f o. o. r... c. o. 

OCLlE/OY O. C. O. G. O. 
-----------l)CNLftD'f~----n-.------------o.------------r.J;------------V-.-------------Cl;------------------

DCY/DPHI O. O. o. c. o. 
·------------1)C t t EI or H I---.... -.S6 3-1------"'"-. -OS1 rr4 ----=;I)"0B3"O-g---~T;'tZ5------..;;;.--S725-----------

OCNlE/OPHI .. 03425 .(1)1827 .0(02468 .0'+905 .01634 
-----OC-y-t1)t>-S I o. (, • Co • (J • O. 

DCllE/DPSI o. o. o. o. o. 
- - - - - - ---- - -DC -N L Y /1) p~-t ---0-. - ----- -------0-.----------- - -(1 .. -------------0 ;-------------r.r ;-------------------

DCY/DV .00409 .003397 .(02422 .01174 .009285 
-------------DC L L -E/1) v-------t-. 09~------ -,;; -Z 56 6 --------; 1:0-a-5 - -- -----1; -63-q --------. -gg6-rJ --------------

DCNLE/DV -.05477 -.009797 -.004004 -.05113 -.02926 
-----HD€-Y-!BP e. o. 0.. C. O. 

DCLlE/DP -.2047 -.1058 -.07876 -1.291 -.9911 
------------OCNt-EfOP-------.D-2"409-------.r}09-t-3-a------.-0f)-6ft-3t,-----.-(tT98L------;e5,7-g-------------

DCY/OR O. O. o. o. o. 
-------------f)(;ltf:fDR-------6U-l-~tr------.-f){)-'j-3-------.-{}-Q-3-1-3-------.-ft"f-e'r-------."O-54"4-9------------

DCNLE/OK -.001226 -.000427 -.000276 -.004466 -.003028 

----------------------------------------------.~--------------.----------------------------------------------------. 
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TABLE 1 

THIN FLAT RECTANGULAR WINGS IN GROUND EFFECT 

AR 2. 4. 4. 4. 
A!'\l(,LE 2.5 2.5 2.5 2.5 
HEIGHT .2 ~075 .1 .2 

------------Ca-t-------------.-C~3 r4T----.lJT::'t97tt----;r0367r-----;OUT't4T-------------------------

CL .2081 .6803 .5156 .3178 
------------C flitt E- - -----------..;;; t) 5 -~n"tf-----=--;Z3 80-----.;;;..-1 biZ-------.1J91rr-------------------------

XCG .2696 .3506 .3242 .2869 
-----1DC1}i-/t}H -~.{ttl9JHlr---... c--.. 1":Cc"l3~2~5~1t---=;:;:C"7.-rr.~jr"r1i5 ..... 2~q"!t3---------

DCL/DH -.5613 -9.174 -4.486 -.8694 
- ----------1)C MLE t t)l1-----;1 9') 6- -------4;-10 9--------r.-8"4---------;3r-ti-----------------------------

DCDI/DT .02326 ~2823 .1316 .0401 
---- ----- - - DC t.- / OT---------.-28- ----------2. 90-3-------t-.-o-B"t>--------.i-{)L5---------------------------

OCMLE/DT -.1577 -1.906 -.7308 -.09562 
------n..IJCOt,Dw .1""2134 -.1:!t455 .r 5128 .07371 

DCL/DW 4.639 12.12 10.33 6.942 
------------DC MLEIDW-------...;;1.2""50-------=4-.-335------.;;;.3;~---------...;;Z.--------------------------------

DCDI/DQ ~0679 .08721 .06758 .r4967 
------------DC lIn q - ---- ----Z .706 -------<+.-,"?"tj -------4.-113"2-------""");; IJ4-g -----------------------------

DCMLE/OQ -.9847 -2.335 -1.92 -1.287 
------""Il:)CYfOy o. o. c. n. 

DCLLEIDY O. o. o. o. 
------------OC N LEI Dy-------O .-----------1}. ------------0--;------------(1.---------------------------------

DCY/DPHI O. O. o. c. 
-- ------ --- -DC 1.:"L EI DP HI----..O ~6 4-4-----.;;1" r. -24------;;.;-s;-ro-s------;;. .--80-1"it---------------------------

DCNLE/DPHI .002139 .2091 .07375 .OlC52 
-----~DC1r,tD~I o. o. J. Q. 

DCLLE/DPSI o. r. o. o. 
-------------o( Nt E I DPS"""l--e-.---- ----------C. ---- --- -------0.-------------0-.---------------------------------

OCY/DV .105946 .02473 .01384 .C1143 
------------nc L LF.IVV------.... 39Z'-------1-.-50-9--------1.-Z-g-(j--------.0?9"5----------------------------

OCNLE/DV -.01129 -.01547 -.01464 -.009025 
----.....,[)C-y-ftJp C • ". ~. C. 

DCLLE/DP -.6582 -11.79 -9.112 -5.481 
-----------OCNtf-/OP-------.(J36A:g-------.-2i6"6---------.-2fJ-ij---------.1-53"4----------------------------

DCY/DR O. O. 0. O. 
----------Detl-E-rf}R-------.03z--8f:y~-----.1_S_5"9"--------._5_z8r-------.-2:8-1-1-----------------------------

DCNLE/DR -.001777 -.01464 -.008552 

-----------------------------------------------------------------_._--------------------------------------------------

--------------------,------ --------_._--------- "._-". -"-:----------- ----- -_. __ .•.. ---. ------- --- ------- ------ ---- ------- -- .. _-_.- - .-- ---- - - ---

-------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------. 
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,-------,---
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- T AR1.E-2 - -

---------TH I N--FlA,'R EeT i\N(;ULAR--E'Nr) PL-ATEn-w Y NGS---tNr,ROONO--EJ=fErr--------

------ -----

--- ----AR---------------- .;~----- .5--------.'5---
ANGLE ?~5 2.5 2~5 

----oH'E IGHT • ('1';,----, r.Ts .1 

COl 

- ---~--S-~ .. -5'"'-- -- ,-

2.5 10. 
.. 2 • 15'-' ------

---------t L --------- -------~-i 7246-.-"'9 2 ~ 75- - -----~ 07'153 ----.0 5irf6S---. -5-1'34 
CMLE -.n5 Q n3 -."2166 -_r147?5 -.00B674 -.1685 

---------X C r,- -- --- -'--a 3410 ------.. ? 3 4 5 -------. 2 (' 2 B -- -----..--1664 - -----;~3 42------
nCDI/OH -.304R -.~36014 -.rI303 -~n01R73 -1.15Q 

----oD~CL If)H - 8" (\1"9 - C-2s-i- -;5016---.:-;'0Flf'Q5--.:-9-o-=7:o"6:-6°-----
DC~LF/DH 4.17 .4763 .16144 .~22255 5.103 

------DC!1lfDT--- --~ '2(")(172 -------.-0 37A ~r----; 01 qq1---- "n"'8~T--;8454 

DCL/nT 3.644 ~751 .402 elQ 2.589 
------[lcr~[tJDI---,;,.2,()4 -- ---:.. 621 -- -- -":'.334--- -It f~)16--.:2~-827;--------

DC0I/DW .20o gR .09346 .. 06061 ~047~ .4145 
----=f)'t L Tow 3 ~,';\ 7 2.~C;2 1. 64i I.TI 7 2. 6 A-5.-------

nCMLE/DW -1.276 -"4901 -"~3407 -~19A3 -.R911 
-----------DC'1 r fDQ---.. IT77- -------~J619 ------; 04€rrJT6---~j"I-34716 • 2 70"'9..------

Del/DQ 2.009 1.298 1~0~3 .7 0 016 1.267 
----------- nCML f/T'n:r-----:;;:1-;;32----- -- .. 7267-----~-55T2-- -----..:.;-3~78--.7'(r6-7-----

rCY/DY O. O. 0.. O. ('I. 

----;cr3cITl7nY 0-. C-.----Oo (I. ---.. 0-.-------
DCNLF/DY (\. n.. O. 0. n. 

-------- f) CYI Q P RT----"'Ozt 9":\ 1---.. \) 0 857 1---. en' ~ 2 it 7 --~ 3gh E-'::3-~-32-3 
nCLLr/oPHI -.0940 Q4 -~0132 -.OC4670 -.573E-3 -.1769 

.. ----- -- DC Nl E/D-Pfn--~-~( 04q51--:-.774E~3-- -;'279E~3--::':-. 3-46E-4 -- ..:.;'061'63------' 
OeY/DPSI n. 0" n. 0. n. 

----[)C L L E II) PSI (\ • o:;;---------c' .. ("\. n. 
OCNLF/OPSI ". c. c. C. 0. 

----~---DC Y lOV--:..;,,;"'71RQ------..:..043 3Q-----..;. .. -O'l.4:?--f,t;----:;; .02713----. 3rS5 
DCL~E/DV -.23GS -.09113 -,,057076 -.03045 -.3729 

------- DO~ LE IDv---:,,;,-. ?,12 0 r-----,;,. • (106-- ----- -'::.0041 53 .. -:::~-~(i~654-:._;-03-8-4-----
OCY/DP .014h3 4 .. 01C5 .OOQ304 .008284 .04896 

----.....OCC,.-rL ..... L ...... ("71 D p -. ?J73~-z;--::-;-O 141'8----;TiIT9b -. 'Hr:rnA - .. 0286'"8"----
DCNLE/DP o8?48E-3 .2191E-3 .1265E-3 .2634E-4 -.002103 

------ -- o-CY7D R -. 81 cF"';'T-.-() (\ 1-4 8 T-----~ 1)1')2 n (r~----.;-0"-2 '11n---.:.-;O"O'7-Z'2'l----
DCLLE/DR Q6156E-3 .5388F.-3 .5647f-3 .5759E-3 .004078 

--------['fCNCEToR ..:.~Cf)r5 --~-('iC\lL-~-q-- -. f,mr253-~lH)UN----=-;0T56-"'-7----

.. - -------.. -~---~---, 

-------------, 

--.------------- -------.. ----
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- --------------------- -------- -- - - T A Bl E - 2------- ---------- -- -----------------

--------- T Hft-C FTAT- R E C f"h N t lll~ A R.- END - P ITf [b-- ~·n Nr.~S -1 N-t;,:f dUr';fh-rr F E Cf 

rRlANGlJLAR END PlAT~~---
.--------- -----_. -------------._------------------

----." R------- .. ~ - ---------- -- 1.------ - -- -TIt------------T~----- - - ---1 ~------

ANGLE 10 .. 2.5 2~5 2.5 2~5 .-----HE I GHT .2 ·-;;'-05 .o1r:. • 1 .2'----

COl 
----C L e 32 q6-------;-52 84 '3---- .2 e;~r'I ,..h------~l A14(Q-Q---- --;Tr14~-

CMLE - -.''':7966 -.20587 -.1177?47 -.n413 R63 -.025682 
-·-----XCG--------- -~23.~----------;~q(n ------.3"5 - ---~2(-,~-----._2261---

nU1I/DH -.] 5"i4 - .. 06618 - .. 1?7?1j -.()412Fl -.00575 
----=oIT7TIQ -T;-t;7 ~2T~-2(z;_--a+ .. ;"216_rr_=r;; ,2""16 -.-17-7;><""O..-7----

DCMLE/DH .63h6 q~9695 1.090&12 .6~5 .OQ8iA88 
--------LlCTI1/OT ~-27P) -- _n __ n,; 6144- -----.OR?14----.1J3 Q 7H'5--. U07t;·-----

Del/DT ~8401 7 0 94 1.661j .6059 .147 
----oCr-flF-'n~---.901R------.:. 5.263------1.1 f,t\6 ---':'.4 3AT--;;;;-;11 I"-S-

OC~l/n~ .270B .571 Q .2~4~5 .11jqQ .Oq5~8 
---~DQ70w 1. 1q~---Cr~4(,·T- 5~-4h7- 4. 017 206"7.,6;------

OC~LF/GW -.4458 -3~471 -1.bRh -1.r9 -.5831 
---.,..Ocl')r7()Q----.-T85-4-----:..-273r5-------~T7IS2~~----_.-I;Bn"3--~-()"507~5----

DCl/DO n9Q13 ~~A512 2ft 7 ?42q 2.0Roq 1.44 
-----nC1~LE IrrQ-----~. 5527- ----:,. 2:'- 2 55---H-·:;T~4;T9z--=1-;-n5~8 -.-6 AZ-gq-

DCY/DY I). 0.. n. O. 0. 
-----=o""C l L F tD Y () .. 0 ,. --0-. -- 0.. n • 

DCNLE/DY /)." o. r. n. I). 
--D CY I 0 P1H --- ,,0 ~-8 J 6 --,,-1696'5---- ---. 0"31 ;"I1Z--; 7JTT"3 4 -;lYOT4"? 8 

DCll,F/[)PHI -.01069 -1.164 - .. ?3('l795 - .. 07905 - .. 009 Q 52 
-------ncNcErDP~-~ .-on6T4""3--; 006573,---; 6 g8"7F..:1----;-I527E-"3 • 5VOT-l'""E---.-5----

DCY/DrSI o. ('I. 0.. (). O. 
----=-OC L L r: lOp S I o. \':\. ~,~ O·-.----...... D.-.-------

n CtJ l E / 0 PSI 0 • (") .. 0.. c.. 0 • 
------,.,ncy IDV ---..:; 2" 28 Q It--.;,.;,; r'o713 -s-----:. "03 3f t 6S---::;--;TT22Q 3 6 -. OT31flT-----

DCLlE/OV -.1257 -08081 -.409961 -.2431 -.10('6 
----f)c-N[FfDV-----:;;;-.!J Ib2T---;C-\.I 8643 ----;4R12F:..T-----;n~2 607 • 873 ,.....,-7,..-E--....-3-----

Dey/op .044~9 .038A6 .014~12 ~OlQ49b .01497 
neLlE/DP -.C'215Q -.-~g-5 -. rl);:nrZ4 -.1137 -.07991 
DCtJLE/DP -.rnI437 ."2'5185 .9B68E-? .006686 .4r:'52E-2 

---~[)c"'-Y-,rrp: .. L!TQ~:n.r-·-_;U0"325·T·-":-;8m;-F.-~·-~TlE-3 .. 35-S'r-E--..... 3----
DCLlE/OR .. 002A63 .01946 .7411E-2 .0052895 .3676E-2 

----....D"'"CNL E I D R - • OT6TT--..:-~-U0Z3Rq---- .00T279---;;;;-;l'JO 1 n 4 3 -. 8 59E - 3 

---._---------_. __ ._ ... _-_._---_.- ---------- ----- ._-----_._--

--- ----------.------ ------_ .. _._-----_._---_. -----_._-- -- --.-

------.------------ --------------

---------------------_._-----_. __ ._---



- .. -~--.. _ ... _---_._-_._-----------------_._-

-------_ ...... _------------------------
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---- ~ ~ T A R[- E-~ 2 -- - - --_. __ ._._. ---- .. ----.. --------" .------ .. -... ~.-----------

-·---··-------,tHR-Fl-hT· R rCTANi.lILl\R FND PL-A TI:DWfNr.$ I N--GP,-rJVNO- ErrrC.---------

TITAN Gut A R-EN Dr [firES 

·----2-. ----

2~~5------__ -5--.~----__ ~5~~ __ ------~5~ .. ~-----72~.~5-------

-------AR----------- -T-,.,--·---------·l.------- -r.-- ._-- 1. 
ANGLE 
HEIGHT 
COl 

~5 .1 .1~ .2 .075 

----C[--------.-r--Rt.2-·---------;,i .. 94(,------;.3("'·1B---- -~-?-45R • 5667 

CMLE -.0164~ -~1715 -.nAIQR -."6C61 -.195 
------XCG- - --------;-1 0 52-- --·-----.-3455 .---- -;;>'116 -- --. '245 =, ----.-343<)----------

OC1IlDH -.5AAE-3 -.5414 -.0.RI24 -.03731 -.11 Q97 
DeL In H -. ii 'll'f 4 9---':::-tf;-Ff6-8 :"-1 -;;-6R4----~-=r1. 47 - 1 0, 0,-::2,-:6----
DCMlE/DH ftO~QR01 4~441 .6864 .26R~6 4.37B 

-----I) C i1T/Dr-----; (;,., 3 t; 11 ----.. 4013------; 0925 -_ .. ; 0549----.13047-------

f)CL/OT .. 072 3 .. t:;61 .7Q3 .451 2.84 
--- -·---nCMcF/ot---- -. 0539 ~ 2.576 -. 5R4 r----.-3-3 7 3------:.:.1. 8665 

DCDI/DW .07171 .4447 .751Q .2023 .2166 
-----=o·CLlnw 1.91.3 5 .. ()R-8-~~-?-Q2· 2.1~4 1().9~2'-----

DCMLE/DW -.3762 -1.7~85 -.Qrh4 -.A1Q7 -3.8165 
-----DCo-I7n Q---- --"iYZ.-S7Q--·--- -1' 2 27 1·---··;T4 r4----~Tf<n------;_f ;r6~----

DCL/rQ 1.174 2~2R3 1~678 1.465 4.451 
OCM [;:7 [):Q --;; 5i+41------~ - r;-3-1---~:.:~-85 9q----:::~-720 4--~ - Z;-226---
DCY/OY 0., n.,. r.. 1',,, n. 
OC L LEI DY o. ". b. n -; -----,0=-.--------
o Cf'.j L E / f) Y :J .. (' .. (; .. 0 IJ 0 • 

-------~hc:V/bP·H·r---;T15t..::'r ---. 1232 --- .; O?245-----~~;'WHf66R--;-cl1r22-9 
OClLE/DPHI -.RI3E-3 -.510R -.08177 -.03042 -2.5695 

----. --DC I'J Cfl [j Pln-~-=~T 68 e-=--s--.oOtt 9 86~--.-1342t=:r---:::.4 R 8 E~-; 01976-----
nCY/f)PSI 0.. n~ o. n. nl!l 

-----~OtLLEjDPsr__O. o. b~- o. ------~o~.--------------
OCNLE/DPSI 0.. O. ('). 0. o. 

--- Dey 1 D V ------. -~ Il()3- ~---- ~- (' <) 2 t') 4--- -:.:-;;. [) 582-6----. (':7+ 86-Z--::~-(Y03T3 9 

DCLlE/DV -.(60926 -.535~ -02463 -.1642 -.7438 
DC ~J L CIFv---·:"3 7 C? r:.:. 3---';-~ Ii 8, I) 5----~;(') 0 ~ 2 3 8~ '-56-6-7 f-:;~ ---;-on--863 
I1CY/DP (,)1')13706 .04235 .032'5 .('\2961 .060456 

-----.t")C"'L-,Lc-EI D P -. cff-:q62- -. rt)·;n :.. .. m 1 - -;7f(rt"l t;3 -1 ~-8=9;::-'9:::------

DCNLE/DP .C03(l(n .. 01984 .. 010736 .on86497 .07261 
----- --- ---Or:V7 m~:-------.-6 9A E-= 3---.:.~ 0 C 5 3-S9--":'-; 79 '7 !::'3-·-;5-2~-1t:':'3-~003 8 94 

DCLLF/OR .0032 .017275 .01011 .00R716 .1117 
-~------DCN[EIoR---~7qE-3 --=-;-(f0413--~~~-;-(fo:r6r4---=_;,O()3366 -.005086 
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------------------ -------------------- ------- --------

----------A~- -- - -- -- 2;'--- --- - - 2 ~---- ---- ----- ----

ANr.LE 2~5 2.5 
------~= ~~~---------~ --~-HEIGHT nl .2 

COl ------_·t L" ------.-.-------. ~Qq 1 6 -~-? 2 t;4 --"-"~-"--"---~-- -.-----------------

CMLE -.12S24 -.n6094 
-----------xC"G---- ----. ------~ 31-3 A ----·-~-2 7r"? - "- -... -----> .. --~.- -~ ... -.----------.-----.. ------------

~cnI/OH -.r~0~2 -.0082R9 
-----r;;O=r:L ID-H --4-;::"-64-_ --:. AR3-q6----------------------

nCMLE/OH 1~722 .21hQ7 
----DCnr!DI------~-nI-,156---- -.1) 135 -- ----- ------

OCL/DT .QAR .1041 
--- -~- i)C~1L F/l)-f----~. 6715--- -.092 .-. __ . ___ 0. ---.------

,--------------

nCDI/Ow .lR744 .1267 
DeL/ow A. 3b34 5;oIA-5---------------------
nCMLF/OW -2~h555 -1.361 

-------------.ocoT/[fQ n (q789-----~ 06684 
DCL/DQ 3~5736 2.372 

----rH:~:~rtl[JQ - l~bllT-- :"l;-a 4 ,,--------
oCY/OY n. o. 

-----~O~CIll:.TDY o. ~-~-------------------------------

DC~LF/DY r. o. 
----~oc vlnPH C--;tr:l4r;)---"-0~4 s-CJ/t---------

nCLLE/OPHI -1 0 0535 -~1401 

n c l\JCEl1j~HT-;r\~8~ It 2---./'HH 405-
DeY/DDS! n. CQ 

nClLE/UPSI o. ~. 
DC~lf/OPSI o. 0. 
O-CY1UV - • r-0 lt2 2-1-_ -:;';;-;0 ():? R 97 
DCLLE/OV -.~~26A -.2408 

----t}CNIT lDV--;COR48zt---';'(j("l44b-'3 ---
DCY lOP 'II 0457Q .. 01 Q0R 
DC L [E ID P -1", 327 - <. T42 ........ 7--------------------
OCNLE/DP .. 05573 • ()33bl 

----T"rO-,--c v~-----~-;Q1T27..1'!7--;;;-.C fll. iF!9 ----- -------------------

DCLLE/oR .07013 .035R2 
-----.,....07"CTTNLF~ -.on3571 -.-Q02C'1T 

---------------,-----------------,-- -- --- ----------- -- --- ,-
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,~~--~- ·-··-----·--·T~nLE --2--- .. ------ ---.-~-.". -.---"---------.------.~.------

RE CT MIGUL ,f~END PL ATE S 

---------- --------- ------------------

!\R .. 5 
-------~ -~~------JINGLE 10., In .. 

HE I GHT ., 1 t:; • 2 --------c 0 ~r-----·--. -I} ~ 71··A-----n--h 21 R R--'-- .-_. --.----.... -- -.-------~~.-~-- -_. -.----

CL .. 4187 .?77h 
-------CM[F--- ---'-. 1429---:":: ~ 068r----------------

XCG .. 33h5 .. 242 
-----:I~t'll/[)H -. 8'-tRf> -" 1166 

OCL/DH -7~r,R1 -1.174 
-------OCML r:7ffff----! ... 1 "'7-----;55 () 2----------

DCDI/DT 2.734 1.607 
--- -~--Iic--[ i-rfT-----12-~ 4 -:f-·-·--~--8,. 8 A 2 - -----.--.---. 

DCMLF/OT -0 .. 163 -5~hh2 
-----CC'H/OH .27h7 • IiFi--------------------------

DCl/DW 2~~h23 1~43R 
DCMT'j::/b-w------:... 7-439----- 03761 
OCOI/OQ q23 6 6 .1619 

--------0(1:1 h-Q--- -r;c!o Q ------ • ~ 3 2 C) ------------

DCMLE/DQ -.673 -_4825 
-----cOC Y JOY C.. 6~ ------------------------

DCLlF/DY 0 0 0. -----------nc NL F=7DY------;-y~---- -----r,. - ------
nCY/DPHI n40n5 on4467 

------------nC-L L E InpHI--~-:;13 79 -. 0158 3--~---~·--'--·- ---~.-. 

rCNLF/DPHI -.1305 -.0103 
--------~ -------------------------------------------DCY/OPSI o. r. 

OCLLf/DPSI 0. 0. 
-------6CNCF I DPS-I-IJ.--------o <.\ 

DCY/DV -~9A44 -~3937 
--Del LEIr)v----.,:-.-4T7 --._--::. 1 "34~· 

DCNLf/DV -.52~4 -~131q 
-----,o""'Cv7-()'r .1) 4 467. -Y4('1-3-4 ---------------------------------

DCLLE/DP -.02134 -~01~15 
-- ---- ----DCNCF.To p-----=~-t\i) q-7 4S-::; 0 {)4 1Tr-----------

OCy/rR .1~47 ~112A 
--------(j"C~[ [--E ',15-R---; 0 1-21~6---~- <"' t17 01--'- ---- -.--

DCNLF/DR -.05~75 -.07093 
------ ---------------------------------

----- ----------------- - -- ------ ,,------------- -----

---------------- -------------
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.------ .-.------ _ ... -._---- - ---.. --------- --.------- - -"." --_. - --- -- ----~ .. - .. -----.- ----~--_._-_.- . ---_._.- _. ~--.- ---- --> ----._." .--.--

TABLE 3 

.-. -- .- ri1nr-RE (fA NG uflw:- -W-IN G S C ON ~I E-c'rE If IN T AND F M -fN-GP-dUNO---EFFF( r--- ---
SEPI\RATION-1fE,"WEE-N-w-rNGS" = 3 CHORDS 

------AR----I;- --------1-. ------ ------T .. - --------2~---------2~--· 

ANGLf 2.~ 2.5 2.5 2.5 2 9 5 
HE I GHT • () c; .. 2 " 5 .075 • 2;.--------
COl 001264 ."02876 .Co?nq2 .01399 .0057R3 

·------·C[·------------.. -4121-----01215 ----~(iqln~- ---a A? 37---;2Efit4 . ---
(MLE -.359 -.C67 Q 8 -~04S43 -.R137 -.3083 --·-------xCG .. ---- -----.... - ------.----.. - -- ----------- - ---.---.- -.-.. - --

QCDl/nH -.64 'R -~nn7606 -~R27E-3 -.26Rl -.01785 
----=[l-..-C...--L---rlnH -r5-~-4 ':--;;7852 -~-03:\32 ..::-q-;(01----....:...-xgnq·----

Q:MLE/nH 19.?R .211 ~n'665 15~7 1.133 
------Tl:m7nl--~-~27It-------; 102T-- • o S-'4,---": 6,Q4 .1C'zq ----

DCL/[lT 44 ... (12 2.261 1.1R2 13.2 1.899 
-·-----l)r:HlF/UT-----..:.L50~ 2-----..:.7. rn1+-----..:. 3 .. 56r-··---:':57; ot; -7-;'28~R----

QC1I1DW .5075 .. 1268 .oq,nq .4~?4 .2362 
o C L /0 W B;;47 5 2.(55 2;07 Q r,. 0-"--5 ---6~. -=-3~6-9::-----
OCMLF/DW -7,,1 0 3 -1~552 -1.04 -17 e 65 -6.97R 

-----7"{O--,.-C nT! 0 Q 1.;-56B---;J"3~r--~-6q----.qA~. 3~2 ---.-5"--0 "'-0---5 -----

OCL/[lQ 25~A4 8.15 6.278 22.21 12.18 
----I)C~Lr: /rjQ--;:sQ;92---~-S;48 ~ rq,,-r'-~ -_----,8--QO----.----::6c-4'.----_ 45;31·----

DCY/OY 
nCLLF/OY 
nCNLE/DY 

-----------,..0 CY7f:5PHr 
DClLE/DPHI 

-----.nCNCE7DPHT·--------------------·---------------
[lCY /[1PS I 
DeLLE/DPSI 
DCNLE/OPSI 

---------m:VTfiV -----------------. 

OCLLE/DV 
----DCN[F/P'<O"V~--------

DCY/OP 
DCLlE/DP 
OCNLE/OP 

-----O-C-Yll'YR-·-------------·----------------------

DeLLE/DR 
----~DCN[F7UR-------------

---------------------------_ .. _----



-- - -- --- - --- --- -------~-- -------------

-- _._--_ .. -_ .. "_. ---- ,. _ .... ----- -. -- -.~.--... ----.--.-----------.----
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T A ~l E --,- - --------

------------------TH IW R F eTA N G UL hP.--\..I HJ (, S- -CON N Fe T E DI N T JVJ DE WTN- Gf{ nu NI1 -l:F"F E-cr---

3 CHORDS 

--------A ~ ---------z~ ------ ----- ---4 -. ---- ----4~--- ---4;--------------

ANGLF 2.5 2.5 2~5 2~~ 
-------:HETGHT .. 5 .. r.7~5 c 2 ;-5---

CDI to 00'1824 II 01232 .. 006h f )f\ .0040(l1 
-- t L -------------0 1 P 8 -------- - 1.1 53---.- 5 3 ~9- -------;.3478 --------

C~LE -.1773 -1.903 -.8068 -.4774 --- ----------x cc;------ ------- - -- --------- ---- -- -- - -- -------

OC~J/DH -.00?34 -.1626 -.011)18 -.rO?028 
-----..:.O'7<"C-.L"-Tj 0 H -. r~rrr - 115" 4 '5 - l.:; 9 2 - ~-24:J6:-=-':"'--------

~CMLE/DH .169? 30~21 ?R .4S1A -------r c-:-n /tH .. 041 3---- .. -8 (l A -.--1 311) -------.D 5 1")6 ...,-
DCl/DT ~7274 7.48A .R o 13 .2Qh o 

---------- --- DO'L E / Of---'::-2 " 3 q 7-- ---~ 53 .. 2 ;C----- 6 ... -3 n 8 -------1. 42 A:----

DCDI/DW ~lh31 -.(6'01 .197 .IR21 
------=O'-:OC l / n W 4 ~ ? 82 i ?:-6g-----IT:73 7. A6 ~:----------

D(MLE/OW -4.~~4 -38~32 -17~R5 -10.~3 
-----1) C DT rnTJ-----;'37 95------- .. -30 71-----;""'30if3 ----~-2R 81----------

DCl/DQ 9.139 16.85 12~0R 10.rl 
ocr..f( EIDQ---31-;-ff8----;,;.;q2~5 [-----5-6:;.-77----=-42 .. 1 
DCY/DY 

-----:.[1 ct LEI D Y 
DCNLr:/oy 

-----------nCy lrfPH r 
nCLLE/OPHI 

------ ['lOll E/DP"HT 
DCY/DPSI 

--- --------- ------------ ----------------------

-----=OLLLE /DP;.-,S .. f.------------------------------
DCNLE/DPSI 

----DCY / [lV-------

QClLF/DV 
------1)( N L F / DV·'-----------.------ ------.---------------

DCY/DP 
----~O~lLt7nDT,p~-----------------------------------

DCNLE/DP 
--- OCY7DR-·------------------------------------

DCllE/DR 
-DCNITTD=R----

-----------

-------------



-- --- - ------ -- ---------- -------

-----_._-_._---
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.- -.----.----------.--- ----------------.- ---.----------f AA L E -Y------ -.-. ._-- -----------------_.-

---•. _--

J\-~.--~-- -1.--- ------1 ~ .. -. - - ·--------··1~···· - -------·-1;- ----·-------·1·-~--- ----------

ANGLE 2.~ Z~~ 2.~ 2.5 2.5 
HE I r. HT • (J 5 .. 1 .Tii:; • 1') ----.-;5""-------
COl .012A4 • 0n4672 .on'AAl .n0,41 .OC2C94 

----t C-----------.:41 2. 7----- -.. lB52 ------.~ 1 c:; 8- ---- ~T4 12 .-YcilOF 
CMLE -.4104 -.1184 -n1125 -.nQ7l3 -.0537 --------x Cr; - -- ._--.- --.- --------- -.------ .-. -.-.-.. - ------- --- .----
nC~I/DH -.f44Q -.04?1 -.02367 -~0150q -.R2f-3 
DeL/OH -1""5;7+ -le"4T2 -.-8VJ2 -;<)43 -.rr:n~-r4----
OCMLF/DH 2l~AB 1.379 .7646 .4Q 05 .03098 

'---nCDT/Dl "7 .t11T-----. 3552----~2 421T-----~ 1 f14~--.lJn 755------
DCL/DT 56.,66 70725 5., ,1 4.0,4 1.523 

---r"C MIT/flr - 2 f, 7 ~-3·---- '::33 .. rr------2 2~ "<1 ---::rb-~-Qr.-------S-;-9iB.".----
DC~I/DW ~,076 .2017 e16 Q l .1493 .09317 

-----,,:oC"::cLTnw 8.4 .q 4.T""33 3~-~4 7 3.186 2. 079 
DCMLE/rw -8,439 -3.13Q -2~55q -2.212 -1.229 ----""'oc OTI(YO -----2 ~-("I). - - --.7 g7 --_. ------;6 7("17-----.;""594"4 • 3811)-----

DCL/DQ 33.47 15~55 13.35 12. 7.991 
-------OC M I.:E I O-Q------=15::r;-r- -- --;;:lii.-C'S----;:-S-b-;9 g--:;5 ('j" A 2 - 3 2. 7 

DCY/DY 
---------;Q~CLLE/·~DvY-------------------------------------------------------------

DCNLF./DY 
---nCY/O"'P'H r---------------·-_· 
DClLE/DPHI 

---- --['GIL 1: lOPHr--------------------

DCY/I)PSI 
--------~DC~[lL~/nO~r~s~I-----------------------------------------------------------

DCNLF/DPSI 
-----oCv7ov--------

DCLLE/DV 
----DC NCC lIYV·----

DCY/DP 
--------~CLI~E~7~D~Pr------------------------------------------------------------

DCNLE/DP 
----UCyIDK---------

DCLLFJDR 
OCNLE7UR 

--------------

--------- ------_._------------ -.-- ---.. _ .. _--_ .. __ . ------.-- -.---
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T A R"t E~ 3 .-~--.--~.- --­ - ------- ---.--------------

----------- -----Tf-fTfr 1< ~c:TANG Lit" I\P, W Hf(;S-CnNNECr FO - TNT AN lYE M-HfGPOUN"D EFFECT 

... __ . _._~ __ .. _. __ . ____ ._ .. _ _ ___ . ___ ·_k_. __ ... _~_ .. _. ___ ... __ "~___ .. _ ------_____ . ___ ~ __ -----

---.. --.-----" R------------l- •. -----.- ·-----··-·2·~ ___ .. N .- 2 .. - . - ··-~·~-2--.··-· - .-- -~--'-2-~ - ---- ----.---_.----
ANGLE 2.5 2.5 2n~ 2.5 2.5 

-----:':rE IGHT 5-n. .. ()7c)-----;.-C-· .. 2-- .5·------
enI .or185Q ~Ol~Q9 .009 0 25 .. 0n57R5 .on~829 

.-------- - -CL---------;(}p 1';-------~62 3R -------. 4h63 - ----. ?R 4 5-------; 1 R 81-------
CMLE -.04153 -1.013 -~7n7 -~,854 -.2225 ---------x e-G- -- ------------- -------- - - - -----. ------- -- ------- - - --. -------

DcnI/OH C. -.2,.,81 -.10 n 7 -.01788 -.002331 
------:OOCL/fHI n. -9.£--'54 ";'-4-~T7 --.£-133 -.119'--:8~~---

[l C r~ U: I [) H n .. 1 9 At 4 4 7. 57 1 1" 4 1 • 2 () 99 
------.. --[)C;)lIDT-----.. -OAT4------,,-Bl R9-----; 391 ------.123 i - • (Y4-9r4 

DCL/or -.0nI859 16.58 A.OS~ 2.411 .9323 
~------.----~ r:CMl [I DT-~--·O. -- 97. 5"9------- ~-4c;.-i-·7-·-·------- f2.--22·----~-4~--03-1 

DCOI/OW .,<'R2QQ .4825 .3714 .2362 .1633 
------;O::nCL/rw I"e-A 13-;;-hS 10--~09 6 .. 174 4.284 

OCMLF/OW -.9516 -22. -15~AA -~~723 -5.079 
--------oCDi·/o(J-- -----;-3 5-~:\--------1. 2 2A-----; 9455 ---- ------~-6i7;[ • 4757-

nCL/OQ 7.42 27.77 22.32 15.23 11.4 
- ---- -- ----- DC iYflF7l" 0-----:::2 9;h6------15 r~-8"------:::ITil;.7----::.(1;_I 1 - 54.39 

OCY/Oy 
DCLL Floy 
DCNLF/OY 

-----~-----"- ('Ic't/lJPH-l-- -----~------~ -

DClLE/OPHI 
[lCNL t=1 OPH-I-- ----------- ---- ---------------.-- ... 

I"'CY/QPSI 
----cD(TD:~/D~P;:;-S;::----.I-------------------------------

DCNLE/DPSI 
---- ---DC Y fOV----------------·_----- ----- -----------------------------. 

DCLLF/OV 
----0 C NT Elf) V----------------- --- -------- -- '--- -- --- ------

DCY/[1P 
f)C[LE7D~Pr-----------------------------------------------­

DCNLE/DP -- - - ---n c y-lOR .-------------- ------------ ---------- -----

DCLLE/DR 
--------(YcN1:E'loR----------------.. ---------- -

-------.. --_._-- ... ----_._---------------------------------_ .. ---- ---- ----------- --- ... _--- - .... -------- --------

._--------.... _----
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- . - "--- ------.----~ ~--,,---- ---- ---

TAGLE 3 

_.- .. --- --_.-.- ----.-- ·T~'l-N---R Ec-fiil.fG lILA p'--w f~JG's'- -C()N-p...jEt·-TE-fi-·--·r~l -r ANffEM-"l-~f-(,ROrf~'b~--(-FFECf---'-

s [ P i\R f,fTFiNfff T w fENWTN r;s = 4 TIfO R 0 S 

--------AR---··--·-----~~----·---·4-.- . -·-----4~ - ·---··--·-4;' .- ---.-.--.-.-.-.----.-.-.----------

ANGlF 2"S ?~5 2~5 ?5 
-----t-·1E 1 G HT " () 75 • 1 .. 2 .5 -----------

COl .. 01233 .()C9R57 .. 00h60() .on4Q 
t L----··----r~ 1 54·----.. -8 R 2-·--·----~-'l~4T -----~~ 47 q . 

CMlE -2~4B5 -1~828 -l.02A -.611~ -----X CC;--------··--·-···· -----.-....... ---.-_ .. - --' . ------- ..... -... ---. 

nCDl/DH - .. 16?6 - .. 07234 -.01A'36 -.nn2f11"" 
-----,f)IT/FR - P~-.. 48 - 7 .. -5 33------=-1-~-f;-:~ 4 -to 2462 =----------

OC~LF/nH 37~Q7 17~Q 30 533 .5657 
------TCT ) r/DT---~.q4·U;---·-·~ 441- ··----~-118R----- -;n 5 3~~g----------

DCl/OT 8~852 4 0 535 l~lRR .3586 
------·----nCMl [/[1,---01..;1:'3-----:..45 .. 7T-·----IV" Flr----7~ 4-21---

DCDI/DW -.06367 .1239 .1967 ~IA21 
----.... OClT()·W 2z .. n7 ur~--rrq 11-;,4 7"rrr----------

DCMlE/DW -48~58 -38.1 -22 .. 71 -13.87 
-nr:1110Q-·-.-4423---·-·-;-zt156---;-.rb-r----."34""'r--3-r4--------. 

Del/ne 19~52 17~93 140 32 11.86 
-----..,DCN1.:E frnT--~lt.;"'3----;;; 1 T3';7 -t)5-;'-3T--~U-. -A?'S----------

nCY/OY 
--------~DCL[t7n~"yu-------------------------------------------------------

DCNLF/DY 
--------ncy7f)PH r-----··-------··-----·---··-··· 

DCLLE/OPHI 
-·-----oCNlT/DPB1-----·-··---··-·· --... -----------.. 

DCY/DPSI 
DC[[E7D~P~$'I---------------------------------------------------------

DCNL E/ Drs I 
----...,...DCy lfJV-----· 

f'ClLF/DV 
--·-·---nc N[EI DV"---

DCY/DP 
nellE/DD 
DCNlF/DP 

-----[1CYIDR ---

DeLLE/DR 
----·DCNCF7U~---

---_._-_._---_ ... 

._----_._ .. _---

. __ .. _-_. --.-.----- .. - ..... - .. - ... --.. ----.-.---.---.---------

----- -------- --------------- -_. - ---- - ---------. 

.. - --.-------------------

---------------_._--. __ .---_ .. _-----_ .. --
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R [C T.I\ NGUL fI R-ff~T[ --w ING-WffTfTN n PL A T E S 
(ILLUSTRATED IN FIGURE 25,R) ._- ._----_.- _._ .. _-_ .. _.- ----.. -------_ .. ---_ .. - -_._._._ . ...:...._--

AR ~2564 

----ANGLE 2." ---
HEIGHT .2123 
CD I --·-----;006·176---··---- .. · -.. _--.-... --- .. ------

CL .1141 .--- C~LE- ----~ .• (12437--'-- .. -.-.... ---.------
XCG ... 212 

----.....,D"'CTil7oH --;.M1)'f7 
DCL/DH -.h?B 

----........ OC1>.fl F/DF1--,,·18 ---.-.... - .... -.--.. --.----... -. 

rC~I/DT .01044 
---DeL/Of ~ 1673- -----.. 

DC~l[/OT -o,g~27 
------~D~C~O~I~7Dw ~17~,_----------------------------------------------

DCL/nh 1.~?6 
----DC~ITrD W:":·:;"3 ryq 4-------·--··---· 

DCDI/DQ ~05440 
------i)"CC7DQ ----:)-6555--·----------· 

DC~LE/OQ -.33~1 
------,...o-Cy~ -. ilO"qT·6r---~------------------------

OCLLE/DV .r0R~15 
----Ol:NlFTDY -;, 0 5774-----·--··---------· 

DCY/DPHI .02h33 
-----~DC L 1. F/D pm--..:-. L G 3876 

DCNlE/DPHI -.01120 
-----~D.,..CrTY-y7---D P-s I .. II hI 

nCLlE/DPS! -on2441 
-nCI\I [ U()!YST-;::':;07 4?~ ---.----

DCY/DV -1~415 
----m: n_ FJDV--"i65" -- ----.-.. - ... 

DCNlE/DV .37Jo 
DCY7~P ~nA047 
DCLlE/DP -8 0 12R2 

----"T'Dcmuuv----:;;-;;-rl""57 ..... '--- .------------------------
DCY/DR .35R7 

-----,-,DCITrTITR -. IJ7tTI ...... 7-----'--·---·--· 
DCNlf/OR -.2n29 

-_._ ... __ ._-------

-------_._-----------



--_.- -.. ----... -.----- ~.-.---.-.---.----.--.-------.-- ----
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"TAf1LE 5 

R r CTAfrG (JLfll<K~TI-::.:;wTNG-wTTH-F1\lfJ15I AT E S 
(ILLUSTRATED IN Ftr.URE 25,S' ------ .. ------- ...... -----.. -- ----_ .. __ .. - ----_ .. __ .. _ .. _------ .. _---------- ---- ...... - _ .. _--_ .... _--------_ .. _-------

.. -------.... --- ----_ .. ------_ .. - _ .. ---- ---- .. ------------ .. --- .. _.- .. -. ---_ .. - _ .. __ .. _ .. -------.. - ---_._---------_. 

AR .25A4 
------~A··NGLE 5. -------------------------------------------

HEIGHT .24~Z 
-----cnr------~ -0 14 () 4-------- --- -- -.. ---------.--... ----- .. ----. --------_._-

CL .~042 -------r MCt---------~ (,450T- .. - ... -----.- .... -... - ... --.. ---.----- .. -

XCG ~2191 
------r.".-C .. 'H JOH -;7514-7--0=------------.. 

DCL/OH - ft
Q 769 

--OCi·fD:IDfi---;:31 ~2------' -.------.----.-.. -----------------
(lc,n lOT to Of,?A3 

--1)( L / [) T ------ ., 1 '7 42------ - - ------------------- -- ------

nCMLF/OT -.111 
--------06 C n I I D W It 2 (1-4-

OCL/DW 1~hq3 
-·-------nCf.1CFfD W----~3 R ~ r ------------------.-.. ---.. ----.- .-. 

OCOI/OQ ~0Q632 
-.. ----.. ---nCCfnrr -----:;rC'.) 23----------- --- .. -.----- ----.. ---.--

DCMLF/OQ -.3R5q 
-----~Q~c~.Y~lDY -~I~16----------------------------------------------

OCLLF/DY .016r3 
·------o-t-NL E~7-rfy--~--() 773 7---·-·---~-- -~--.-- ---.--.. -.----------- -.------

nCY/DPHI ~()3R89 ------nc Ll E I 01' H1---~ c r: 6 Q '1 ~f-------- -----------. -------

DCNlE/DPHI -.01745 
------~DCYjr)ps I .. l3'''lR 

DCLlE/DPSI -.03669 
-------OCN"LI1[)P"S·~. C"~3<Hf----- .. --·-----··--.. ----· .. ---·-.. ------

DCY/OV -laR~l 
-----DC CL E IDV--. -2 4 57 --- ------.- --------. -.-------- .. 

DCNLE/DV ~50?4 
-----=--ncYlop .11"34 

DCLLE/OP -.r2114 
f:'fCNTE:-/bP - .-(12-2 (I cf----------·--------.. ------ .. --·-· 

DCY/DR .3741 
---~D-C CLElDR-~~O-60-"4------------- - -----

DCNLF/DR -.21"1 

------- - -_._-_._-- - .... - ---



_ .. _. ~ -'~'-.-'~-"---'--'----- ----..... - --._----- --.- .... ~~ - - .-----_._----- -
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TAHLf---6 

-.. ------.----- ----~--- _._- N-(YN ~ -p ['-/\ N h R- WIN G I r\J ---N (l N~~ p L ~I\N i\lJ - ~-G-R fJlT"J 5---- E F"F-E C T .-------.-­

P EC TANGULAR-cHA-NNfL-":-wTNGWl fH-rND PLATES 
(ILLUSTRATED IN FIGURE 25,t) 

AR. '" 2936 
AN (; Lf~ 2 ~-5--
HEIGHT .1127 ----t DT--------. Ci~ 1 74 r--------_·--·-------------· 
CL vOPRf,2 

-------C MD:--------~-~t 324-5---------------
XCG ~3A~9 

-----~r~1c~1~I/D~H~------$0023~~~8~----------------------------------------------

DCL/rH -.131? 
---""'O"C ~flT IDR ~ f)(-;"3 S e; ------.. -------------

GenI/Or .O?56Q 
----DCTlDT .44"".;-----------------

DC~Lf/OT 

DcnI/Dw 004464 
DCL/OW 1.4S5 

----- [)C~( FTDW - .. 5T17----------------
nCOI/OQ ~C02214 

-----=0 eyre) cY-- 'II 68'1.-1- -------------
OC~lE/DQ -~4611 

-------=o=-=c,-:-Y,-i· Oy - It C ~-~f75 
DCLLE/DY -.r~5647 

------01. f\fCE'TbY----.. 03C 81-
DCY/nPHI -.or7Q9~ 

-----,.D CT1.l: Tl)PH I - .. ('r)03; {)---------. 

OCNLC/OPHI .n04?~A 
-------~O~C=y/DPSI .1o·~q'_----------------------------------------------

~CLLf:/OPSI .0342B 
-----..OCT'llEfD D$ I - .1115---

DCY/OV -.q7h2 
-----'OC CCt / tYv --. -(" 6-A9 

OCNLE/OV .39Q9 
[) tv 7 DP -. c 5 ff~I"7'---------------------------------
OCLLF/DP -.(17915 

----.,....n"CN[" ETOP .. QZ4-Tlt 
DCY/OR .2B4 

----~DrL[e_'UR---~02J60-------------

OCNLE/OR -.2041 

.--.--.----... - .. --

------------_._-------------------.-


