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ABSTRACT

A numerical method is developed for solving the problem of
a wing in arbitrary non-planar ground effect. The linearized equa-
tions of unsteady motion for an arbitrary non-planar wing in non-
planar ground effect are presented. Numerical calculations were
made to determine all the aerodynamic characteristics and stability
derivatives for various thin, uncambered planar and non-planar wings
(including two wings connected in tandem) in planar and non-planar
ground effect. These calculations were incorporated into the equa-
tions of unsteady motion to determine the dynamic stability charac-
teristics of these wings in the various ground effect situations.
Several wings were found to be longitudinally stable, but only in
rare cases were they found to be laterally stable,

An experiment was conducted to compare some of the

numerical calculations with reality. The agreement was reasonable.
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INTRODUCTION

The search for new high-speed ground transportation water
and rough terrain vehicles has spread in many directions., One of
these directions involves the use of aerodynamic lift to support and
stabilize a high-speed vehicle above a planar or non-planar (regular
or irregular) ground surface. The ram wing and the terrafoil are
the most popular names associated with this mode of transportation.
A ram wing can be described as a vehicle which is geometrically
similar to a large low-aspect-ratio airfoil flying close to the ground
and being subject to aerodynamic ground effects, Various ram wing
configurations are shown in figure 1. A detailed description of a
terrafoil vehicle is presented in reference 1. In general, it can be
described as a tandem winged vehicle subject to close ground effect
and which aerodynamically interacts with the surface or guideway
to achieve static and dynamic stability. Various terrafoil configu-
rations are shown in figure 2.

The ram wing and terrafoil concepts for multi-terrain travel
have several advantages over other proposed guided and multi-
terrain vehicles, such as the air-cushion vehicle. Among these
advantages are: 1) the utilization of ground augmented dynamic lift
at high speeds, 2) the reduction in induced aerodynamic drag due to
the presence of ground effect, 3) the reduction of wave and spray
drag over water since these vehicles will in general (and particularly
at high speeds) fly appreciably higher than the corresponding air
cushion vehicle, 4) the elimination of momentum or sink drag, which

is the equivalent of induced drag for a wing, 5) the capability of
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being integrated with a captured air-bubble lift augmentation system,
and 6) the capability for negotiating drastic changes in height above
the ground to facilitate travel over very rough terrain or for obstacle
avoidance.

There have been, however, some major difficulties which
have held back the development of these vehicles for use in high-
speed surface transportation. One of these difficulties has been the
absence of any analytical or numerical methods for solving the prob-
lem of the completely arbitrary non-planar wing flying in the presence
of any arbitrary non-planar ground situation. Another difficulty
stems from the fact that there has been a lack of investigations into
the static and dynamic stability characteristics of three-dimensional
wings in arbitrary ground effect.

It is therefore the purpose of this investigation to develop a
suitable numerical method for solving the problem of completely
arbitrary wings flying in the close proximity to any arbitrary planar
or non-planar ground, and to present the linearized equations of
unsteady motion for non-planar wings in non-planar ground effect.
Chapter I states the analytical problem, reviews the previous attempts
at solutions for wings in ground effect and introduces the generalities
of the present solution technique. In Chapter II the aerodynamic
analysis using this solution technique is presented and applied to
two and then three-dimensional problems, and compared with other
solution techniques. Included in this chapter are the numerical
results involving the aerodynamic characteristics of various planar

and non-planar wings in planar and non-planar ground effect. Chapter
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IIT is concerned with the development of the linearized equations of
unsteady motion (longitudinal and lateral) for arbitrary wings in
arbitrary ground effect. Solutions to these equations are presented
for most of the wings and ground effect situations discussed in
Chapter IL Finally, Chapter IV presents an experimental inves-
tigation of a non-planar wing in planar and non-planar ground effect
and comparisons are made with the numerical solution to similar

problems.,
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CHAPTER I

A, Statement of the Analytical Problem
1. Principal Assumptions
Before an attempt can be made to consider the analytical

problem, it is helpful to discuss some of the basic underlying as-
sumptions with regard to the flow field around a wing in ground effect.
First, it is assumed that the flow field about all the wings and ground

planes investigated satisfy L.aplace's equation, That is,

K72<,0 = (1)
where @ is the velocity potential, Second, it is assumed that the
Kutta condition is satisfied at the trailing edge of all wings investi-
gated. That is, it is assumed that the velocity is continuous at the
trailing edge of these wings. With these assumptions in mind, the
remaining boundary conditions on the flow field can now be written.

2. Boundary Conditions
a. Boundary Condition on the Wing
We wish to write down the boundary condition on an arbitrary
wing surface that satisfies the condition that the fluid flow is tangent

to the wing surface at the wing surface. The unit normal vector to

the wing surface is

fy= 1 L+ Ny Ny, R

The velocity at any point _ Z
in the flow field is " \M /[/X
T-UrdzHpgrtirg® < |
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where —\7: ([/‘L’ l.,/o) Mo/o) = External freestream velocity
accounting for rigid body motion
in translation and rotation, This
also accounts for the velocity in-
duced by other objects in the flow
field whose pressure distribution
is already known,

V= (U,U, W) = Velocity induced by the lifting

surface and the velocity induced
by any planar or non-planar ground.

The wing boundary condition is satisfied if

Ve, =0
b. Boundary Condition on the Ground
The boundary condition on an arbitrary non-planar ground
plane must satisfy the condition that the fluid flow is tangent to the

ground on the grou.ﬁd surface., The unit normal vector to the ground

sur face is

Ng="g £+ Mo, b T m?’ak
The velocity at any point in the flow field is
V-UL +V] +Wk
where V is defined as above. However, V can also be split into its

two components; that is, the velocity induced by the lifting surface

and the velocity induced by the ground. Hence,
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V=V +G = (U, ug)Z +(vw+ \/8);[ + (WW+ wg) R
Now, the ground boundary condition is satisfied if

Ve Vi?:: (@]

B. Analytical Solutions

Although, in general, it is not possible to solve, in closed
form, the problem of an arbitrary non-planar wing in non-planar
ground effect, it is useful to review the results of those special
cases where analytical solutions have been presented,

1. Analytic Solutions in Two Dimensions

The first "exact' solution dealing with two-dimensional wings
in potential flow was that given by Tomotika et al. (ref. 2) in 1933
for a flat wing. The solution was arrived at through the conformal
transformation of a flat wing and ground plane into the outer and
inner boundaries, respectively, of an annular region in the complex
plane. The flow in this annular region is known, hence the pressures
on the annular region were calculated and transformed back to the
coordinate system of the flat plate with ground plane, and the lift
was then determined. In general, the results showed that the in-
crease in lift on a flat two-dimensional wing in ground effect decreases
as the angle of attack is made larger. Tomotika later extended his
solution to include all Joukowski-type airfoils.

A more recent analytical solution for the two-dimensional
wing in ground effect was presented by Widnall and Barrows (ref. 19)
in 1969 using the method of matched asymptotic expansions. In

general, the solution for the flow in the region above the wing was
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matched to the solutions at the leading and trailing edges and to the
channel flow solution beneath the wing. Results obtained by this
method were fairly accurate for height to chord ratios less than 0.5,

Widnall later extended this solution to the case of a sinu-~
soidal ground plane (ref. 14).

2. Analytic Solutions in Three Dimensions

Using the method of matched asymptotic expansions, Widnall
and Barrows (refs. 14 and 19) have presented approximate analyti-
cal solutions for the case of an optimally loaded flat elliptical wing
with a straight trailing edge in planar ground effect and in the pres-
ence of a ground plane with sinusoidal bumps of small amplitude.
In addition, they have presented approximate solutions for a nearly
optimally-loaded wing in a tube and for a ram wing in a rectangular
shaped trough where the flow is nearly two-dimensional., All of
these solutions are, of course, for very special cases and, in addi-
tion, are valid for certain limited regions of aspect ratio and ground
clearance.

There have been other investigations into the problem of a
wing in a fully confined space such as a tube or a wind tunnel, but
it is expedient to limit the present discussion to wings in semi-

confined spaces.
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C. Numerical Solution Techniques

1. Introduction

Since it is essentially impossible to analytically solve the
flow field around the arbitrary wing in the presence of an arbitrarily
non-planar ground, it is essential to make use of numerical tech-
niques in order to solve the average problem.

There are a multitude of satisfactory numerical techniques
available for representing and solving potential flow problems in-
volving wings. These techniques usually involve the use of vortex
distributions, source/sink distributions, doublet distributions, or
a combination of these distributions to represent the presence of a
wing in a flow field.

One of the simplest and most direct methods of representing
a wing is the vortex-lattice method. This method consists of sub-
dividing the upper and lower surface of a wing into quadrilateral
patches, A horseshoe vortex is placed along the line one-fourth
the length of the patch from the front of the patch., The flow tangency
boundary condition on the wing surface is satisfied at the midpoint
of the line which is three-fourths the length of the patch from the
front of the patch. These patches are distributed in the chordwise
and spanwise directions. The strengths of the individual vortices
are determined by applying the wing boundary condition at as many
points on the wing surface as there are vortices, A system of
simultaneous equations is then solved to determine the horseshoe-
vortex strength. Although the Kutta condition is not explicitly

accounted for in this method, numerical results indicate that it is
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satisfied nonetheless. One of the features of this method is that it
eliminates the need for spanwise and chordwise loading functions.
The origin of the vortex-lattice method is usually attributed to
Falkner (ref., 20). Since its inception, it has been used by many
investigators, including most recently Giesing (ref. 21). The
two-dimensional special case of this method has been rigorously
investigated by James (ref. 22) and has proven to be remarkably
accurate for two-dimensional airfoils.

Another successful, although more complicated, method
is that used by Watkins et al. (ref. 4). This method numerically
solves the integral equation relating the lift and downwash dis-
tributions for thin wings in subsonic flow, The unknown lift dis-
tribution is represented by the product of chordwise and spanwise
modes of lift, each given an unknown weighting factor. The rela-
tion between the downwash and the lift distribution is then applied
to as many points as assumed modes of 1lift. This gives a set of
simmultaneous algebraic equations to solve for the weighting factors.
The aerodynamic coefficients are then determined by numerically
integrating the pressure distribution over the wing surface. Saunders
(ref. 5) has used a modification of this method to numerically com-
pute the aerodynamic coefficients of some thin wings in planar
ground effect.

Previous to the present investigation, the only method used
to represent a ground plane for use in calculations of wings in ground
effect, was the imaging method. It consists of placing an identical

wing in mirror image fashion on the opposite side of the plane
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designated as the ground plane. In this way, the boundary condition
on the ground surface is automatically satisfied because the equal
and opposite flow velocities exactly cancel at the plane designated
as the ground plane. Kohlman (ref, 24) used the imaging method
in conjunction with a discrete vortex digital computer program to
determine the ground effect on wings of arbitrary planform. Saun-
ders (ref. 5) also used the imaging method and the kernel function
wing representation of Watkins (ref. 4) to determine the ground
effect on some thin flat wings as well as thin non-planar wings with
sweep and taper ratio. Most recently, Kalman (ref. 23) used this
method with the vortex-lattice method to compute the ground effect
on thin flat rectangular wings of various aspect ratio. The results
obtained by all three methods seem to be in general agreement
with each other as well as with experimental data.

However, there have been no investigations conducted that
have considered the problem of the arbitrary non-planar ground.
All numerical investigations have only considered the case of wings
in planar ground effect. The reason for this is obvious; the imaging
method cannot be extended to the arbitrary non-planar ground prob-
lem, Therefore, if any solutions are to be obtained for the problem
of an arbitrary wing in arbitrary non-planar ground effect, they can
only be obtained by developing a new method for representing ground
interference,

2. The Present Technique — Generalities

The main considerations involved in choosing the numerical

technique used in this investigation were simplicity, flexibility, and
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cost minimization. Therefore, the method chosen for the simulation
of the presence of a wing in the flow field was the vortex-lattice
method. This method can be used for any arbitrary wing shape,
since the Kutta condition is automatically satisfied. The method
also generates the proper singularity at the leading edge automati-
cally. In addition, the simple calculations involved in satisfying

the boundary condition on the wing, which avoided any problems

with singularities, were very attractive.

However, a new method had to be developed for representing
the presence of the ground in the flow field, This method had to be
equivalent to the method of images for two-dimensional and three-
dimensional planar ground problems, but had to have the capahility
of being extended to three-dimensional non-planar ground problems.
Therefore, it was decided to represent the presence of the ground
in the flow field by a distribution of mass sources and sinks. The
distribution of sources and sinks were placed on the ground surface
and the boundary condition prescribing that there be no normal flow .
through the ground was satisfied at a discrete number of points.

The strengths of the sources or sinks at these discrete points as
“well as the strengths of the horseshoe vortices representing the wing
were then determined by solving a set of simultaneous equations
developed by satisfying the boundary conditions on the wing and
ground, A rigorous mathematical development of this technique

is shown later in this section. There were many problems associ-
ated with this technique. Among them was the need to truncate the

ground plane rather than extending it to + 0. Another problem
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evolved in the choice of locations on the ground plane for which the
boundary condition on the ground was to be satisfied. This problem
was especially critical in the region beneath the wing and in regions
near any corners in the ground plane. Additional problems also
arose due to the singular nature of the source strength directly at
the corners on the ground plane. The details as well as the resolu-
tion of these and other problems involved with this method are dis-
cussed in section II-B, part 3.

An entirely different technique for representing a non-planar
ground plane was also developed. This technique was actually an
extension of the principles of images and is thus referred to as
multiple imaging. It involves the placement of more than one image
of a given wing in the flow field to represent the effect of a non-
planar ground. This method, however, was only useful for solving
problems where the non-planar ground consisted of two straight
infinite ground planes intersecting each other at a certain angle.
However, the development of this technique was essential in order
to check some of the results of the source/sink distribution tech-
nique. The mathematical treatment of this technique and those men-
tioned previously will now be presented. First, the mathematical
treatment of the source/sink distribution technique in conjunction
with the vortex-lattice method as applied to two-dimensional flows
will be discussed. Then the imaging method in conjunction with the
vortex-lattice method as applied to two-dimensional flows will be
shown. The mathematical treatment of these methods will then be

applied to three-dimensional planar ground problems, and finally,
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the treatment of the former method and the multiple imaging method

will be applied to three-dimensional non-planar ground problems.
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CHAPTER II
A, Application to Two-Dimensional Problems:

The coordinate system for the two-dimensional flow of a
wing in ground effect using the source/sink distribution method in
conjunction with the two-dimensional vortex-lattice method (often
called the Weissinger approximation) is shown in figure 3.

In two dimensions the vortex-lattice method of representing
the wing consists of subdividing the wing into equal chordwise seg-
ments, A two-dimensional point vortex is placed in each segment
at. a point one-fourth the length of the segment from the front of the
segment, The flow tangency boundary condition on the wing surface
is satisfied at one point in each segment. This point is at a distance
of three-fourths the length of the segment from the front of the seg-
ment, This situation is depicted in detail in figure 3. It is of interest
to note here that James (ref. 22) has rigorously proved the validity
of this method in two dimensions for a wing in an unbounded fluid.

In fact, in an unbounded fluid, he has shown that the correct value

of the lift and moment is obtained regardless of the number of seg-
ments into which the wing is subdivided so long as the downwash is
everywhere bounded on the wing, In ground effect, this last conclu-
sion does not hold true. However, the correct value for the lift and
moment calculated by this method for a wing in ground effect is
asymptotically approached as the number of subdivisions is increased.
The closer the wing approaches the ground, the more subdivisions
are required for an accurate answer, This fact has been verified by

numerical calculations which are explained and expressed in detail
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in part C-1. We will now develop an expression for the lift on a two-
dimensional wing in ground effect using the source/sink distribution

method in conjunction with the vortex-lattice method.

Nomenclature:
c = length of chord of airfoil
¥liy) = circulation per unit length of vortex distribution

Y(%)
Pvy)

efflux rate per unit length of line source

1]

field point at which we wish to evaluate the velocity
induced by the line source and the vortex distribution

elemental vortex with circulation Xd/,(

Ydy
}70/5 = elemental source of strength 770’5

V4
o-(y)

distance along X-axis from origin to Ydy

distance along Y -axis from origin to ¥dy

distance along X -axis from origin to Xd¢
= distance from incremental source to P(ﬂ%’y)
angle between [ and X -axis

= velocity of freestream

PR N

=  local angle of vortex distribution to freestream
1. Source Distribution Method

The elemental stream function due to the line source is,

dy = -122

The complete stream function resulting from the entire line

source extending from — oo tO +oois

V=) 27 P

—~—o
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or
o0
_ X P
% - f 27 (/w-g)o/f
~ o0
The elemental stream function due to the vortex distribution
is,

y =B [(v)*+ (- Tu)* ]

The complete stream function resulting from the entire vor-

tex distribution extending from 4=0 to/K(:C is,

C
o, Vz
Y = | 35 Ln [(v )"+ (4o t0) ]
O
We can relate ¢- to 4 in the following way: -~ \

\C
o =h+ 7[(/{) on the airfoil ;i\——
Y

The stream function for the freestream is,

Vo=l

The total stream function from all components is then
W=W+y i
j = - [5—%%-’@%)«5 +
f Zn[(m )+ )] Uy
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The following boundary conditions must be met:

1) There is no flow through the ground. That is,

¥l -0
dv <o

2) On the airfoil surface the flow must be tangential to the surface

That is,

on the airfoil surface

—Q(M,q) =—-(/(w\',;b( -

LS

Conforming to the first boundary condition we find the follow-

ing:
Y _ w)//l;o’g X(/"/ %(/O//(
Jv 2 7?’— [(/p-g)z—f-nj_z] Z 7( [(/p/() +/ﬂ;—T)J

As /7_70 , it can be shown that the integral on the left ap-

proaches

yw)

7/1/)(0((/’/‘5’)0/5 =

Hence

Y ) slva)dy
T o™ 2 +27rf[(w)z+a»] =0
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Therefore we have an expression for }f/m), namely,

C
_ | ylrA)Iu
)7(/)//) - 7\(‘[[0’(”/()24‘(1\:{]
V -/ " g’(f‘/{)d,é( ﬁm"//% ) d -+
_._Z](, [(f—/,{)z‘f'ﬂ"z] -3 g

00

A

Hence

o

In order to determine the vortex strength distribution, we
must now satisfy the boundary condition on the wing surface. At
this point we will discretize the wing surface in the manner pre-
scribed by the vortex-lattice method. Hence the boundary condition

on the wing surface in discrete form is expressed as,

V( J/%( — R ;
Uvuiyg) = — o Fo%) tor cach

where the coordinates /!Z :% are the points at which the boundary

condition is satisfied on the wing surface. Hence

V(%5 08;) + X(g,ng;) a(yg,) = —<(57;) U,
Shortening the notation, so that #,57%; is replaced by J’ , and ex-

pressing the velocity in terms of its components, we have

Sy +vip =@ [ Z 40 +u)] = -y U_
A
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: . . s th .
The subscript £ refers to the velocity induced by the £ discrete
point vortex on the (/'ﬂ’ matching point, Also V’/‘j) and M'(o[) are the
contributions to the velocity induced at the matching point by the

infinite line source. They can be expressed as,

Y (5K, )ON, /;QC/E
(?/(}Zﬂv [(~- ;) +¢; ]

Vi) =

£ (54) 4 (%-3) ds
ulj) = Z7f Z(;

AV [y ]

—o<

Changing the order of integration and summation, we can express
(’(I(}) and V'(}) in terms of a shortened notation. That is,
7, . . M [ - 4 .
(,((0()~A§(/2(01) p V(J)’EVZ(J)
A
where the definitions of (/f,’(o(') and V,l(j) are obvious by reference to
“ P

the two previous equations.

Hence, we can rewrite the boundary condition on the wing as,

Z L@+ + <(uy) +wi)] = —wi) U
Since the velocity induced by each vortex is proportional to the circu-

lation ¥; of that vortex, we can define

V) = fo, (;) ; U&'(l):?/.“z(i)
AR A : =L wi)

and we can rewrite the equation as
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S [V +TG) <) (T + X ) =< U
This gives us a J’”’ order set of simultaneous linear algebraic equa-

tions to solve for the discrete point vortex strengths b: .

Assuming that this can be done, we can calculate the lift as,
L - E F((/( + M(k)) Xk e (x(R))
k o

where (k) = = 4(k)  + (k)
and R refers to the velocity induced at the kﬂ discrete vortex by all

other vortices and the line source. The moment is expressed as,
— (0) — (A (k))
M = > p(U +ulk) % [ covl=®) =g, aonta) ]
R

We will now develop expressions for the lift and moment for
the same problem using the method of images in conjunction with the
vortex-lattice technique.

2. Image Method

The complete stream function resulting from the entire vortex
distribution of both the real wing and the image wing and from the

freestream is,

|74 :le;( [ﬁn[(’”"«)z + ("4“’(/4))2}},2 + L [(2a)* + (flj_ﬁ-a‘(ﬁ())]yz]d/,{

+ Uy

The method of images automatically satisfies the boundary
condition of no normal flow through the ground; hence, we have only

to satisfy the boundary condition on the wing. That is,

V(o ) + (15 ) u (5 nf) = — < (%5 4;) U
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In a manner similar to that of the source distribution method, we

now write

> [+ ) + <@(wG+ w )] =~ =< U

A

where

N

) = L SR T) AK
W (i) = 7% AZ[(/&%/{)“(%*“)ZJ

"

A

A

I

I E (i H) AM
2N L [(m-p) +(gy )]

We then follow the same procedure as with the source dis-
tribution method and arrive at similar expressions for the lift and

moment. However,

(k) :Z U (k) + U(R)

3. Equivalence ofthe Source Method and the Image Methods

In order to prove that the source distribution method is
exactly equivalent to the image method for representing the presence
of the ground in two dimensions, it is only necessary to prove that
the velocity induced by a single point vortex together with an infinite
line source, whose source strength distribution satisfies the condi-
tion that there is no normal flow through it, is the same as the veloc-
ity induced by a point vortex and its image. This would be sufficient,
since any arbitrary airfoil can be expressed in terms of a point
vortex distribution along its upper and lower surface,

This proof is found in Appendix A. The definite integral over

the source distribution is evaluated by complex variable contour
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integration. The velocity induced by this source distribution is
shown to be exactly the velocity induced by a vortex image.
B. Application to Three-Dimensional Problems

1. Source Distribution Method

The coordinate system for the three-dimensional flow of a
wing in planar or non-planar ground effect using the source distri-
bution method in conjunction with the three-dimensional vortex-
lattice method is shown in figure 4.

a. Wing Representation

In three dimensions the vortex-lattice method of representing
the wing consists of subdividing the wing into spanwise and chordwise
segments, A three-dimensional horseshoe point vortex is placed in
each segment so that the bound portion of the horseshoe vortex lies
along the line joining the one-quarter chord points of the chordwise
edges of each segment., This situation is illustrated in figure 4.
The flow tangency boundary condition on the wing surface is satis-
fied at the midpoint of the line joining the three-quarter chord points
of the chordwise edges of each segment., There are some restric-
tions on the shape of a given segment. A segment can be a quadri-
lateral or a triangle. If it is a quadrilateral, the two chordwise
edges must be parallel to the plane defined by the freestream direc-
tion and the unit normal to the wing surface at that chordwise edge.
If it is a triangle (a degenerate case of the quadrilateral) the single
chordwise edge must be parallel to this plane. This is illustrated

in figure 5,



-23.

The accuracy associated with representing wings in this
manner has been found to be excellent. For a more detailed dis-
cussion of the method as well as many comparisons with experi-
mental data, the reader is referred to Kalman (ref. 23)., In fact,

a comparison of this method and the method of Saunders for cal-
culating the forces on thin flat rectangular wings in ground effect
and thin wings with dihedral in ground effect is presented in the
reference, The agreement was excellent,

We will now develop expressions for the forces and moments
on an arbitrary three-dimensional wing in arbitrary planar or
non-planar ground effect using the source distribution method in
conjunction with the vortex-lattice method.

b. Source Distribution Ground Representation

Theoretical Development

Nomenclature;

P(ﬂ"»ﬂp@)

field point at which we wish to evaluate the total

potential

coordinates of a differential element of the source

(8.4,7)

sheet ground plane

103, k)

1y du
R

(/"J,',/%",@,‘)= coordinates of 1/4-chord point of £” horseshoe

efflux rate per unit area of source sheet

1}

elemental 3-D source of strength 7{0’3‘0/&(

distance from incremental source to /D(/”,”;(-)

vortex patch

(ﬂfn,'yﬁ,@_,): coordinates of 3/4-chord point of 4™ horseshoe

vortex patch
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V,; = circulation of horseshoe vortex

(Pr = total potential induced by freestream, source sheet
ground plane and system of horseshoe vortices

Y. = potential due to the presence of the source sheet
ground plane

¢s = potential due to the n™ segment of the source sheet
ground plane where the infinite source sheet is divided

into several spanwise segments

¢.. = potential due to presence of the freestream
¢,, = potential due to the system of horseshoe vortices
7‘@ = velocity at any point in the flow field

Potential at any Point P in the Flow Field:

The velocity potential due to the presence of the source sheet

ground plane of infinitesimal thickness is:

(ﬂ_—.—-_’_ Y(EA) dsdu
s 4n /{mg)‘-f(/y-,q)ﬁ(?-y)”

-0 ~oQ
Assume that the shape of the source sheet does not vary in
the )(-direction, but does vary in the Y -direction.
We can write thef—coordinate of any incremental source in
the source sheet in terms of the 4 -coordinate.
Let f=f6¢{) where f is known and is at least piecewise con-
tinuous.

Hence, we can write (fs as,
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= / XA )y du
s AT | | - Hu )+ G- )

Furthermore, if we divide the source sheet ground plane
into several spanwise segments, say I segments, such that for

any given segment,

v 1 Y03 4)d3 %
S, 4K ‘/(;_;)14_(#7()24{34(‘))2 7

-oC ,l{"
1

v
Then {ﬂs"—'—zfﬂ
n:i "

We now add the potential due to the system of discrete horse-
shoe vortices and the freestream. For the present we shall refer to
these potentials as ¢, ~and ((”' .

Hence, the total potential for the flow field is,

v
@rzz qﬂs" +%.v. + WF.S.

ne

Boundary Condition of No Flow Through the Ground:

In order to simulate the presence of a ground plane by the
source sheet, we must satisfy the condition that there can be no flow

through the ground. That is,
V'ﬁgz & on the ground plane

In other words,



at the point where the boundary condition is being satisfied. We can
rewrite Vg,or as

— r - ~ &

Va :ng V@n +V¢, +VCs

A detailed derivation of the velocity induced by an arbitrary

horseshoe vortex is given in Appendix C. We must now calculate
v(psn . DBut first, let us subdivide the ground source distribution
into segments so that any arbitrary non-planar ground plane can be
represented by a finite set of straight segments placed at the apprc-
priate position in the ground plane to approximate the desired ground
shape. However, for the purposes of the configurations considered
in this investigation we need only to generalize the non-planar ground
plane to account for non-planarity in the A plane. Hence all
ground planes considered in this investigation will not have any
variation in the v -direction. In other words, the normal to the

ground plane can be expressed as ﬁ;: ﬂ%I +n53k
Consider the velocity induced at a point on a given segment
by the three-dimensional source distribution placed on that segment.
We will refer to the potential of the source distribution on the seg-
ment where we are satisfying the ground boundary condition at a

given point by 7 Then we can write 59@ as,
s 'y

.C.
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Since a/;"" does not enter into the boundary condition, we
3 %ys. e
—— and

L 043

To evaluate these velocities at the source sheet we let ﬁ

need only concentrate on the

approach f.c('q) .

From previous work in two dimensions we know that we can
evaluate these two integrals by analogy to the delta function. We
transform our coordinates into coordinates perpendicular to and
parallel to the segment of the source sheet at which we are satisfying
the boundary condition. We call these coordinates ¥,4,7 . We
then evaluate the velocity normal to the source sheet at the source

sheet,
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WERG-Ddidig | pEg)

H

¢

07 ..z 4% [ [(F5)+FA+G-7' )~ 2
77 2% #

[ 2
L

We see that 77///?) 4?)’—" )//47 Y, écr‘l))

RACY) = o =
z(m% ¥ Vg sy —ven

We must now calculate the velocities induced by the other
segments of the source sheet evaluated at the point where we are
satisfying the boundary condition. Thus, for all (@ other than

n
the one at which we are satisfying the boundary condition, we have

o ,l{”
o W05 1) () dyd
ot ") [ty L0
Similarly,
/(
WS" = ’7 (5, ) (£ 005, (1) d 3
3@ 3= f(@) 4 [('v 3) +(¢—,q) +(f(,,) 1((”,) ]g/z

oo A

n
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Hence, we can write the boundary condition of no flow through

the source sheet as,

o° I(,,u
#)dyd
_ Ny, 5% | N, (5,40 (A dyd o
O - Z + 'wzn 4N [(,y,.‘) +(,1‘ ) +(-f(lj) JC(K)) J"/Z
<. o

o9 Hn,

V(i«)( W -£(1) dydu o |2 "
) Ry Yt 5

In order to determine the source strength distribution on the
ground plane and the vortex distribution on the wing we must also
satisfy the boundary condition on the wing surface. We would like
to generalize this wing boundary condition to include the case where
the wing may be given an arbitrary roll, pitch, or yaw rate. The
detailed derivation describing the motion of a given point on the wing
surface undergoing an arbitrary translation and rotation rate is

A

given in Appendix B.

n

7

A



-30-

Hence, consider the boundary condition on an arbitrary wing
surface that satisfies the condition that the fluid flow induced by all
elements of the flow is tangent to the wing surface at the wing sur-
face. The unit normal to the wing surface is

Ny =M% +nwzj; + nwak
The velocity at any point in the flow field is
V=(Urwr +(V+v)F +(W +w)k

where (u_,\fo,w= The velocity induced by the wing translation and
rotation relative to a fixed coordinate system.
This velocity accounts for the speed of the wing and
accounts for the roll rate of the wing.

(u,\r,w) = The velocity induced by the wing on which the
boundary condition is being satisfied plus the
velocity induced by the presence of any ground
plane.

The wing boundary condition is satisfied if V‘ﬁ\:o. That is,

un, +vn, +wn, = ~Un, ~Vn, -Whn,
{

oo Wy
2 3 ? o 3

Suppose we have a wing which is translating and rotating
through space with velocity (uo)V”\IVO) and rotation rate (3=(P,q,,v‘) .
Let the distance from the center of rotation to any point on the wing
surface be denoted by ¢=(Y,‘,"r,'.l)r;3) where the center of rotation is fc .

Then, in a coordinate system translating and rotating with
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the wing, the velocity induced by the wing's rotation and translation
is
= - X v -rv)7 -pr
(U W) =(Umgrrre)e +(Vr P =re)T +(Wrgr-pr )k
Hence the boundary condition on the wing with arbitrary

angular rates and translation rates included is,

wn,, +vn, +wn, =—(U=gerre )0, ~(pr-re+Y)n,

.-((gy'-: —Pr;'g+V\/")nw3

The velocity vector (u,u-,w) can be decomposed into the
velocities induced by horseshoe vortices and the velocities induced
by the ground source distribution. In addition, the boundary condition
on the wing is satisfied at only a finite number of points dictated by
the vortex-lattice method. Using the symbol ‘\j_" to denote the
coordinates (lrj”/ﬁi’?i) of a given point at which the boundary condition
is being satisfied, and using the symbol “,(;” to denote the velocity
induced by the th horseshoe vortex at the }'"’ matching point,
we write the wing boundary condition in the following discretized

manner:

Z [u‘_(p n, + tg.(j)hwz+ uk.(;)an + WIN,+ V'(J)nwz+ vv(‘c)v\w3
A

==t rn -~ (Ve pg - )n~(Worgr -prn.,
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where (u'(i)))/"(}'), W'(})) is the velocity induced by the source
distribution representing the ground.
In order to numerically satisfy this boundary condition, and
the boundary condition on the ground, we must discretize the inte-
grals over the source distribution on the ground.

Discretization of the Source Distribution

The boundary condition on the wing and the boundary condition
on the ground represent a coupled set of integral equations for the
unknown vortex strengths Y; and source strength distribution )Z(E,/() .
An excellent means of numerically solving these equations is to rep-
resent the integrals over the source distribution as a finite sum,
Then satisfying the wing and ground boundary conditions at 'n” dis-
crete points gives “n” algebraic equations in "n”  unknowns. The
unknown vortex and source strengths are then solved for by any of the
many available methods for systems of linear algebraic equations.

Given these vortex and source strengths it is then possible to deter-

mine the forces and moments on the wing.
The mathematical treatment of the aforementioned process
is now presented., Recall that the expressions for the velocities

((;((}) V(}) N(‘) can be written as,

(3 1) (%-3) d ydu
47( [ 1)+ (370"t (g - )] %
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"(')

e Z A, (5 )(%73) I3
£ A% [(85) oty A)* (g F sy ]

had "

Liet us represent the integral by a double summation over a
finite number of intervals, Using Simpson's rule as the basis for

the summation, we get,

rowey,
I
M(“) T A LZQ%q"u('&,'?j.’}j,fk,gl))(n(fh)/{l) A‘;qAﬂ
1 3

”7;&

[y, Vo5 £ k)]

where .05 9,3, 4) =

AY, DY = step size of integration interval

and Qu dh = weighting functions for Simpson's 1 rule of integration.

3
If, in addition, we wish to be able to vary the step size of
integration in certain regions, we must make some modifications
to the above formula,

If WOX and NDY are the number of regions in the X andY

directions, then

NOX WPK, 1 WY, NPV,
M(})"ZTK“ i Z; kg"u(”?"’i'@"fa,/&)V(n(?,.,/&) AE'%A#,,

mz| Rz N2 opat L=l
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z: (k-c)NPYT + AL where AVPYT = total number of
points in the Y -direction

Writing (,('(p in more compact notation gives

i .
78 (J, )= —f("g eg g‘nﬁ—}‘%’—‘(‘ )(% where CjJ.t: 3u(f’)g)
W

- €= %%
Similarly

INUVA

= [
Vi) = "‘7(_ e

&{ where g = (’y{ﬂ‘) -
k e [Orn) s bym )4 (g~ f )] %

and

AE‘A/(”& g~ h k)

oy LS
W= 7757 % e where Jig” [ })z+(q-,t()+(3‘ ~fn) 2

z w

Substituting these relations for the velocities into the equation

for the boundary condition on the wing, we get

Y [wing+vpn, +wpn, N

A

oY 04
A?(Z [“‘szﬂ Mt Tt & il ] =

(U527 Jru= (e = e (Wt g1 =P,

Since the velocity induced by the vortices is proportional to

the circulation Y: , We can write,
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V() = Gig)
w.(j) = \:'I;I:(o()

Hence, we can rewrite the boundary condition equation as,
2 G L&, Gn, +Tn,]

"“Z(z[?:/;ret( B o ¥ Tie ey Gjg vy )| = RHS.

Ay, A/(e

et it BGW'(m +7J‘tn + 3. ..,)

and % = ()N, +'?7‘-(1)m1 + W ().,

Then the equation for the condition of no flow through the wing can be

written as,

Z C + X }« - RHS for all J
1)

A
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This gives us J equations for %-r} unknown. Hence, we
must get the remaining % equations from the boundary condition of
no flow through the ground,

The boundary condition of no flow through the ground is stated

as follows:

ﬂ"u
O=XEL 1 Z (54 () drdu

z 4X n#n,. [(m-})’+("m)‘+({{#"{W)T" :

-— 0
Hn,

A
Yo 9 ~£0)dy o Moy I
() s 100" ]T 5|~ oy T 93

"

—

where /) = unit vector normal to ground surface = n’I—Hth

Now, as before, we represent the integrals in the above equa-
tion by a double summation over a finite number of intervals. We
evaluate the integrand at the same points on the ground plane that we
used to evaluate the integrand for the previous boundary condition.
Hence, using the notation previously introduced, we can rewrite the

ground boundary condition as,
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Hence, we can write the boundary condition of no flow through

the ground in the form
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We now have a total of i-fé equations for f+é unknowns.

Special Source Strength Approximation

In order to accurately simulate the presence of a reasonably
complex wing flying in the presence of a given non-planar ground, a
large number of wing vortices and ground boundary condition match-
ing points will be required. Every discrete point at which the wing
or ground boundary condition is satisfied represents a linear alge-
braic equation. The sum total of all the equations produced by match-
ing the boundary conditions represents a set of simultaneous linear
algebraic equations in the unknowns )?/; and ‘: . These equations
must be solved numerically, However, the computing time required
to do this increases as /V3 where V' is the number of equations to
be solved. Therefore, it is essential to minimize the number of
equations that must be solved. An excellent means for reducing the
number of equations is to express some of the unknown source
strengths in terms of the other unknown source strengths by means
of an interpolation polynomial, This does not reduce the accuracy
of the overall method since the kernel functions in the integrands of
the integrals vary much more sharply than the source strength dis-
tribution, Therefore, a second order interpolation polynomial was
developed to approximate the variation of the source strength dis-
tribution. This was incorporated into the source sheet distribution
method by subdividing the ground integration interval into several
segmented integration intervals. Each segmented integration interval
consisted of five ground boundary condition matching points. How-

ever, the second and fourth points were expressed in terms of the
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first, third, and fifth points by means of the second-order inter-
polation polynomial. This approximation reduced the number of
equations in each direction by a factor of two, thereby reducing
the total number of equations by a factor of four. The accuracy of
the overall method was not impaired since the sub-intervals of
integration could be made as small as desired.

Calculation of Forces and Moments

The previous equations when solved give both the distribution
of circulation on the wing, and the distribution of source strength
on the ground plane.

Assuming that this linear system of 24-} equations can be
solved, we can calculate the forces and moments, Assuming that

the freestream velocity points in the + X ~-direction,
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Non-dimensionalizing with respect to the chord C , we get
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Similarly, we can write expressions for the other forces and

moments as,
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Defining C as the roll moment coefficient about the midpoint

Lie.
of the leading edge
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where (/V/A »’%i,%‘) are the coordinates of the midpoint of the bound
(NS 4
vortex in the segment £ .
Similarly, the pitch and yaw moment coefficients about the

midpoint of the leading edge are written as,
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2. Multiple Image Method

a. Generalities
The value of the multiple image method for solving non-planar
ground effect problems stems from the fact that this method automati-
cally satisfies the boundary condition of no normal flow through the
ground, Therefore, we only need to satisfy the boundary condition

of no flow through the wing. This provides us with a second
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independent method of solving certain non-planar ground effect prob-
lems, thus providing an excellent check on the source/sink distribu-
tion method.

However, it is obvious that the multiple image method is
limited to solving only a certain class of problems. That is, it can
only represent non-planar ground planes which can be described as
two straight semi-infinite ground segments intersecting at certain
angles. This type of problem is illustrated in figure 6. The method
consists of placing N identical wings in the flow field. These wings
are placed so that they are all facing the freestream direction but

330 A'-l) to the horizontal and equidistant from

are at an angle é—-

a line which is parallel to the freestream direction. This represents

the problem of a wing flying in the presence of a non-planar ground

consisting of two semi-infinite segments which intersect at an angle

_3%2 degrees in the/ﬁ—g plane. The ground plane is uniform in the

)(-direction. Since we can only place an integer number of wings

n= 2)3)4-,... the ground planes cannot intersect at any arbitrary

360
n

angle, but only at those angles that can be expressed as for .

HZ 2 . The case nN=| is, of course, representative of a wing
flying in an infinite medium. The case N=2 represents the planar
ground effect problems.

Let us now develop expressions for the forces and moments
on a wing in non-planar ground effect using the multiple-image method
in conjunction with the vortex-lattice method. We first consider the

boundary condition on the wing,
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b. Boundary Condition on the Wing
The general expression for the boundary condition on the
wing is the same as before, That is,
uny + v, +wn, = —(U-=¢ +r¢ )n
2 w3 2 w,
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But now,
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Similarly,
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where((l"(j))'l/;(j)) I‘{)(l)) are the velocity components induced by the n“‘
wing in the image system. Also, since all N wings are identical,

they each have the same circulation distribution. Hence, the velocity

induced by each discrete vortex and its images can be summed with

the Y: being a common factor,
Substituting these facts and the above relations into the wing

boundary condition, we get an equation for each point at which we

satisfy this boundary condition. That is,
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The system of equations represented by this equation when
solved gives the vortex strength distribution on the wing. We can

then calculate the forces and moments as follows:
| = Z 2 7%((4(%%)31)2 N,
A

where, in this case,
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The calculation of the other forces and moments follows in a
similar manner,

3. Equivalence of the Source Method and the Image Method

In order to prove that the source distribution method is exactly
equivalent to the image method for representing the presence of the
ground in three dimensions, it is only necessary to prove that the
velocity induced by a single horseshoe vortex together with an infinite
source sheet, whose source strength distribution satisfies the condi-
tion that there is no normal flow through it, is the same as the velocity
induced by a single horseshoe vortex and its image (for planar ground
problems) or images (for non-planar ground problems). This is
sufficient, since any arbitrary three-dimensional wing can be ex-
pressed in terms of a horseshoe vortex distribution,

In two dimensions we were able to show this proof analytically.
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However, in three dimensions the integrals that must be evaluated
are extremely difficult if not impossible to evaluate. Therefore, it
was necessary to numerically compare the solutions. This was
done by numerically computing the forces and moments on various
wings in ground effect as well as computing the vortex strength dis-
tributions on the wing surface and the source strength distribution
on the ground planes using both the source sheet distribution method
and the imaging method. Although the results showed that the
agreement between the two methods was excellent in all cases, it
was found that there are three inherent difficulties with the source
distribution method. First, it was very difficult numerically to
extend a source sheet distribution to infinity; therefore, the ground
plane had to be truncated at a certain finite radius in all directions
for ease of computation. Second, in order to accurately represent
the integrand of the integrals in the equations describing the boundary
conditions on the wing and ground, the ground boundary condition
matching points had to be placed at specific locations and with
specific spacing in the ground region beneath the wing. Third,
since the source strength on the ground goes to infinity at any corners
in the ground plane, the matching points near the corners had to be
placed very carefully also.

Detailed numerical investigations were carried out to deter-
mine how to correctly handle each of these difficulties. The descrip-
tion of these investigations and the results obtained from them are
presented in Appendix D. In general, three important results were

obtained., 1) The size of the source sheet distribution required to
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accurately represent an infinite ground plane depended on the height
above the ground at which the velocity induced by the source sheet
was calculated. It also depended on the particular component of
the velocity being calculated, It was found for a flat ground that a
source sheet distribution extended to a radius of 3 times H in all
‘ directions simulated the velocity induced in a direction normal to
the ground plane within an error of 5%, where H is the height above
the ground at which the velocity is evaluated. A source sheet dis-
tribution extended to a radius of about 7 times A in all directions
simulated the velocity induced in a direction parallel to the ground
plane within the same error bound. Furthermore, these results

for a flat ground were found to be applicable to any arbitrary non-
planar ground situation so long as the source sheet distribution is
placed in accordance with the distance normal to the particular
ground segment whose induced velocity is being calculated, and in
accordance with the component of the velocity being calculated.

2) In order to accurately represent the contribution of the source
sheet ground plane distribution in the equation describing the bound-
ary condition on the wing and in the equation describing the forces
and moments on the wing, the discrete points at which the integrand
of the integrals in these equations is evaluated must be placed
according to certain rules., These rules specify that integrand
evaluation points must be placed beneath the midpoint of the 1/4

and 3/4 line of each wing segment (for non-planar ground they would
be placed at the points on the ground which minimize the distance

between those points and the midpoints of the 1/4 and 3/4 line of
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each wing segment). In addition, the spacing must be about 1/2
or less for at least the next two points in all directions. The devel-
opment of these rules is more fully understood by a close reading
of Appendix D, 3) Although the source strength becomes unbounded
at any corners in the ground plane (that is, places where two ground
segments intersect at an angle), the mass flux contributed to the
flow field is zero at the singularity., Therefore, the singularities
at the corners do not adversely affect the flow field., For a detailed
mathematical treatment of the corner singularities see Appendix D.

c. Numerical Results and Comparisons

The numerical solution techniques outlined in sections II-A,
and II-B were formulated in several computer programs. In fact,
separate programs were written for two-dimensional wings using the
method of images, three-dimensional wings using the method of
simple and multiple images, and three-dimensional wings using the
source sheet distribution method. These programs were written in
FORTRAN IV language for use on an IBM 370/155 computer at Cal-
tech, and for use on an IBM 360/91 at UCLA.

It would be impossible, economically, to numerically solve
all the possible airfoil and wing shapes and all the possible planar
and non-planar ground shapes. Therefore, the choice was made to
numerically investigate several examples of only a single class of
wings and only a few types of ground plane situations. The class of
wings investigated was thin planar and non-planar wings without
camber or twist, The ground planes investigated were flat ground

plahes, in two and three di.rnensions, and three types of three-
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dimensional non-planar ground situations representing three possible
high-speed ground transportation vehicle guideways.

The results of these numerical investigations are divided into
three sections. The first section is devoted to two-dimensional
wings; the second section to wings in planar ground effect; and the
third section to wings in non-planar ground effect. Only the calcu-
lations of force and moment coefficients are presented in these
sections, and compared to experiments or other theories whenever
possible, More broad results dealing with stability derivatives and
dynamic stability characteristics of most of these wings are deferred
to Chapter III where a stability analysis is developed.

1. Results for Two-Dimensional Wings

Numerical calculations were carried out to determine the lift
on a two-dimensional thin flat wing in ground effect, Cases were
solved for wings represented by 1, 2, and 3 vortices, at angles of
attack of 2°, 10°, and 14°, and for heights ranging from one chord
length down to the height where the trailing edge touched the ground,
The angle of attack is defined here and in the rest of Chapter II as
the angle between the surface of the wing and the horizontal., This
is important to note because in Chapter III the angle of attack is
defined as the angle between the surface of the wing and the instan-
taneous wind vector. The difference between these two definitions
is discussed in Chapter III, Figures 7, 8, and 9 show the ratio of
the lift at the height h/C° to the lift at N=oo as a function of the
height of the quarter chord above the ground for the various numbers

of vortices and angles of attack, The figures also show the exact
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values of the lift derived by Tomotika (ref. 2).

The calculations showed that the two-dimensional vortex-
lattice method develops a different value for the lift depending on the
number of vortices used to represent the wing., This is contrary to
the situation in an unbounded fluid where the same value for the 1lift
is developed independent of the number of vortices used to represent
the wing. However, as the number of vortices is increased, the
numerical solution asymptotically approaches the exact value. The
calculations also indicate that the solution diverged when the air-
foils were placed very close to the ground. However, the onset of
the divergence occurred increasingly close to the ground as the
number of vortices was increased.

2. Results for Three~-Dimensional Wings in Planar Ground
Effect

Numerical calculations were carried out to determine the
forces and moments on various three-dimensional thin, uncambered
wings at angle of attack. For the purpose of brevity, these wings
were separated into three main categories: 1) single planar wings;
2) single non-planar wings; and 3) tandem planar wings. Results
concerning only the rudimentary aerodynamic parameters, such as
lift coefficient, induced drag coefficient, lift curve slope, moment
curve slope, and center of gravity location are presented in this
section. This is because experimental and other theoretical results
exist for these parameters for some wings in ground effect. More

general results concerning the static stability derivatives and

dynamic stability characteristics of these wings are presented in
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Chapter III,
a. Single Planar Wings

Calculations of lift-curve slope C , the induced drag

Lo

coefficient CD/L , and the quarter-chord moment-curve slope CM.(
were made for thin flat rectangular wings of aspect ratio 1, 2, andy‘
4, angles of attack 2.5° and 5°, and heights above the ground ranging
from . 05 chords to e0o. Consistent with the definition of the angle of
attack as used in all of Chapter 1I, the lift-curve slope CL« , and
the moment curve slope Cm are defined as the changes in the lift
o
and moment with changes in &e angle between the wing surface and
the ground., The lift and moment curve slopes are presented this
way in this chapter because all experiments with wings in ground
effect measure the variation of lift and moment with a variation in
the angle between the wing surface and the ground. These calcula-
tions were performed to compare the results to previous numerical
calculations and experimental data, and to determine the number of
vortices required to adequately represent a wing in ground effect by
the vortex-lattice method in conjunction with imaging.

Figure 10 shows the lift-curve slope vs. aspect ratio for
thin flat rectangular wings in an unbounded fluid, The results of
various numerical solutions and experiments agree well with the
vortex-lattice method, This indicates that a rather modest number
of vortices, such as 30 to 50, are required to adequately represent

a wing, and that more accurate results are obtainable merely by

increasing the number of vortices used to represent the wing,
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Comparisons of calculations and experimental data on the
lift- curve-slope in ground effect are shown in figure 11. The ex-
perimental data are for 11% thick airfoils with camber. Since
thickness causes a negative contribution to the lift in ground effect,
the experimental data points, as expected, were below the numeri-
cal calculations for thin, uncambered wings, The numerical results
by Kalman shown in figure 11 were achieved using the same vortex-
lattice procedure as used in this investigation. His results for
angle of attack compare excellently with Saunders' kernel function
procedure. The present results for « = 2,5° and & = 5° compare
very well with the other calculations. In addition, the results ob-
tained using only 12 vortices were reasonably close to the results
obtained using 36 vortices, This further indicates that the vortex-
lattice method converges quickly to a consistent result. All the
results illustrate the most fundamental property of ground effect.
That is, the lift on a wing in ground effect increases dramatically
as the ground is approached. Another less obvious property of
ground effect illustrated in this figure is that the lift-curve slope
is not a constant with angle of attack., In fact, it varies with height
above the ground, the pitch angle, and aspect ratio. It also varies
very strongly with the position about which the wing is pitched., An
illustration of the variation of the lift-curve slope as a function of
angle of attack for a wing in ground effect is shown in the results of
figure 12, These results are for a thin flat rectangular wing of
aspect ratio 1. The lift-curve slope is plotted as a function of angle

of attack for various heights above the ground. The center of rotation
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for pitch was the one-quarter chord. All heights were also measured
at the one-quarter chord. The results show the lift-curve slope to
be a concave upward function of pitch angle, However, if the trailing
edge were chosen as the center of rotation, the lift-curve slope would
have been a convex upward function of the pitch angle. A center of
rotation position most likely exists such that the lift-curve slope is
a constant. However, this position obviously varies with height,
pitch angle, and aspect ratio, as well as the wing geometry. Still
another important property of ground effect is shown in figure 13,
where the induced drag coefficient of thin flat rectangular wings is
plotted as a function of height for the previous aspect ratios and
angles of attack, The induced drag coefficient increases as a wing
of a given aspect ratio approaches the ground at constant angle of
attack. However, it decreases as the wing approaches the ground
if the lift coefficient is held constant. The total drag on a wing in
ground effect held at constant lift coefficient may increase or de-
crease relative to the same wing in an infinite medium. This is
because the density varies with altitude, and the drag depends linearly
on density, so that the total drag will vary accordingly,

Figure 14 shows the variation of the quarter-chord moment-
curve slope with height above the ground, aspect ratio, and angle of
attack, Results of the same previous numerical investigations shown
in figure 11 are compared with the present results, Kalman (ref. 23)
used the same vortex-lattice method as in the present investigation,
His results for & = 0 compare very well with Saunders' kernel function

method. The results of the present investigation indicate that the
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moment curve slopes at the quarter chord vary significantly with
angle of attack and height above the ground, whereas in an infinite
medium it is nearly a constant with angle of attack.

Calculations of the stability derivatives for various thin flat
rectangular wings in planar ground effect are presented in table 1.
The dynamic stability characteristics of these wings are discussed
in Chapter IIIL

b, Single Non-planar Wings

Numerical calculations were carried out to determine the
forces and moments on various single non-planar wings in planar
ground effect. All wings considered were thin, uncambered, and
untwisted.

Wings with dihedral:

The lift curve slope of a thin rectangular wing with dihedral,
having an aspect ratio of 4 and angle of attack of 5° is plotted as a
function of dihedral angle for a vertex height of 0.5 chords above
the ground and is shown in figure 15. The results are compared with
the previous calculations of Saunders and Kalman for o« = 0°, As
mentioned previously, Kalman used the same vortex-lattice method
as is being used in the present investigation, His results compare
very well with Saunders' kernel function method except when the
wing tips touch the ground. The kernel function method breaks down
at this point because it incorrectly forces the loading to go to zero
at the wing tips. In general, the lift-curve slope in all cases increases
as the dihedral angle is decreased. It is interesting to note that even

when the wing is represented by only 4 vortices, the results are in
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reasonable agreement with the more accurate results.

Rectangular wings with end plates:

Numerical calculations of the aerodynamic coefficients and
center of pressure location as a function of the height above the
ground for thin rectangular wings with two types of end plates are
shown in figures 17, 18, and 19. The two types of end plates con-
sidered were triangular end plates extended beneath the main wing
with the bottom edge parallel to the ground, and rectangular end
plates with top and bottom edges parallel to the ground. Illustra-
tions of these two end plated wings are shown in figure 16, The
various configurations investigated were wings of aspect ratio 0.5,
1, and 2 at angles of attack 2, 5°, 5°, and 10°., The only rectangular
end-plated cases considered were those for an aspect ratio of 0,5
at an angle of attack of 10°, These were the only rectangular end-
plated cases considered because it was exi)ected that these cases
would best illustrate any significant deviation from the triangular
end-plated cases.

The results indicate that the lift-curve slope is decreased
with the use of triangular end plates for the wings of aspect ratio
0.5 and 1, but is slightly increased for the wing of aspect ratio 2.
The lift and drag coefficients were, of course, increased with the
use of either type of end plates except for the 10° angle of attack
case. It is evident that the numerical solution becomes inaccurate
for these higher angles of attack. This inaccuracy probably stems
from the approximation that the trailing vortices shed straight back

from the wing. For high.angles of attack this is a poor
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approximation, especially for low-aspect-ratio wings, Hence, the
comparisons between wings with and without end plates for the aspect
ratio 0.5, angle of attack 10° case are probably not correct.

The presence of end plates also retards the rearward travel
of the center of pressure in ground effect for the wings of aspect
ratio 0.5 and 1. However, as the aspect ratio increases, this re-
tarding effect diminishes and in fact reverses itself., Hence, for
the wing of aspect ratio 2, the presence of end plates tended to cause
the center of pressure to be slightly rearward of the c. p. of the flat
wing without end plates, These results could have been expected
since end plates affect lower aspect ratio wings far more than the
higher aspect ratio wings., Furthermore, the peculiar shape of the
end plates caused their effects to be more prominent near the lead-
ing edge of the wing rather than the trailing edge.

Far more comprehensive results on wings with end plates
are shown and discussed in Chapter III where static and dynamic
stability is discussed. Numerical calculations of the stability deriva-
tives for various thin rectangular wings with end plates are presented
in table 2,

Flat Wing with End Plates at Angle of Attack:

Calculations were made of the 1lift coefficient as a function of
the height above the ground for the non-planar wing shown in figure
20. The horizontal wing segment had an average aspect ratio of
0.2564 and was placed with an angle of attack of 2. 5°. The two end
plates were 0. 154 chords in average width and were also placed at

an angle of attack of 2, 5° to the X‘Zplane. The bottom edges of the
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end plates were parallel to the ground plane. The results were
compared to an experiment which was performed as part of the
investigation. The details of the experiment can be found in Chapter
IV. The agreement between the numerical calculations and the
experiment were excellent at all heights except where the bottom
edges of the wing touched the ground. At this height, the turbulent
boundary layer beneath the wing caused the ground plane to become
effectively closer to the wing thereby creating higher lifts. In fact,
correction factors were applied to the experimental result to
account for this effect and the corrected results were much closer
to the theoretically predicted result.

Additional calculations were made to determine the lift
coefficient as a function of angle of attack at a height of 0.2123
chords. These results were compared to experimental measure-
ments of the same situation and are presented in figure 21, The
numerical results were slightly below the experimental results,
but were within the expected accuracy of the experiment. The lift-
curve slope at this height at an angle of attack of 2.5° was computed
numerically and from the experiment and were found to compare
quite well considering the accuracy of the experiment.

Flat Rectangular Wings in Tandem

Numerical calculations were made for a pair of thin flat
rectangular wings in tandem. The downwash on the rear wing due
to the presence of the front wing was accounted for automatically
by the trailing vortex portions of the horseshoe vortices used to rep-

resent the wing, The only assumption necessary with regard to
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these trailing vortices was that they shed from the front wing surface
parallel to the ground., This is a very good approximation in close
ground effect for low angles of attack. The results presented in ref-
erences (10) and (15) verify the validity of this assumption. The only
uncertainty arising in this calculation is whether the distribution of
trailing vortices, used to mathematically represent the wake, accu-
rately represent the downwash induced by the wing. In order to
verify the accuracy of this representation, numerical calculations
were made to determine the downwash induced by an elliptical plan-
form wing in an unbounded fluid. These numerical calculations were
then compared with theoretical predictions of the downwash induced
by the elliptical planform wing, The results were found to be
excellent, The numerical results became inaccurate near the tips
of the wake, but this was to be expected since the theory predicts
a discontinuity in downwash at the tips., A detailed description of
these downwash calculations for the elliptical wing and comparisons
with theory can be found in Appendix E.

With these results firmly established, the validity of the
trailing vortex distribution for representing the wake was assumed
to extend to wings in ground effect. The lift-curve slope, induced
drag coefficient, and leading edge moment coefficient as functions
of the height above the ground for flat rectangular wings in tandem
are presented in figures 22 and 23. Calculations were made for iden-
tical wings of aspect ratio 1, 2, and 4, with each wing at an angle
of attack of 2.5°, The wings were rigidly attached by a thin fuselage

and were placed 3 and 4 chords apart, The centers of gravity and
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rotation were placéd at the vehicle center of pressure.

The numerically calculated values for the lift-curve slope
became astoundingly large as the ground was approached. This was
due to the fact that the rotation arm was large and the center of
pressure was closer to the front wing than to the rear wing. A plot
of the vehicle center of pressure location as a function of height
above the ground, aspect ratio, and separation distance is shown
in figure 24. Small rotations about the vehicle c.p. caused large
variations in the height of the rear wing, and also caused large
variations in the downwash induced on the rear wing, The result
of these variations was a large lift-curve slope.

The results further indicated that the downwash did not vary
significantly with the separation distance between the two wings,
This is indicated by the fact that the lift-curve slope and induced
drag did not change significantly with separation distance.

Calculations of the stability derivatives for various thin flat
rectangular wings in tandem are presented in table 3. The static
and dynamic stability characteristics of these wings are discussed
in Chapter III.

3. Results for Three-Dimensional Wings in Non-Planar
Ground Effect

Numerical results were obtained for three types of non-planar
ground effect geometries. Schematics of these three geometries are
shown in figure 25. Two cases were solved with the same ground
geometry but with slightly different wings. In addition, a simplified

check case was run to compare the numerical results obtained by the
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source distribution method with the results obtained by the multiple
image method for the same problem. The check case is preéented
first, and then the results of the important cases are presented
separately.

a. Check Case

Figures 26 and 27 present a detailed description of the non-
planar ground effect situation simulated to compare the results of
the two methods for solving wings in non-planar ground effect.

The figure shows a thin wing flying in the presence of two
semi-infinite ground planes intersecting at a 90° angle. The wing
has an aspect ratio of 2, an angle of attack of 7. 1°, and is flying at
a height of 0.5 chords above the intersection of the ground planes.

This problem was solved by the multiple image method by
placing the actual wing and three image wings into the flow at 90°
angles to each other. The problem was then solved by the source
distribution method by placing a finite source sheet along the desired
ground plane, The source sheet extended 2. 576 chords in each
spanwise direction, and it extended from -1.4 chords to 2,25 chords
along the X-direction where the origin of the coordinate system is
on the ground directly beneath the leading edge of the wing.

Plots of the load distribution on the wing calculated by each
method are shown in figure 28. The two sets of curves are nearly
identical. The lift and moment coefficients were also nearly iden-
tical.

b, Slanted Channel — Wing with Dihedral

Calculations were performed on a wing of aspect ratio 2 with
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45° dihedral at a height of 0.5 chords above the vertex of a slanted
channel ground plane. Plots of the lift coefficient, the leading edge
moment coefficient, the induced drag coefficient, the lateral force
coefficient, and the leading edge roll moment coefficient as a function
of angle of attack, roll angle, and lateral deflection from equilibrium
are shown in figures 29 and 30. There are three important features
of these results. The first is that the lateral force and roll moment
are nearly linear with roll angle and lateral shift from equilibrium
even for relatively large perturbations from equilibrium. This indi-
cates that a linearized approximation for the equations of dynamic
stability would be very suitable at least for the roll and lateral
deflections from equilibrium. The second important feature of
these results is the fact that the longitudinal forces and moments
seem to be decoupled from the lateral perturbations. This is very
important since it means that the equations of dynamic stability
can be decoupled into the longitudinal equations of motion and the
lateral equations of motion which will simplify the analysis greatly.
It was expected that this configuration could not be decoupled be-
cause of the peculiar oblique type of ground effect. Since, however,
it is apparent that the equations of motion can even be decoupled
for this case, it can be concluded that the equations of motion can
be decoupled for most non-planar ground effect situations within
reason. The third important result is that the lateral force with a
perturbation in roll angle is unexpectedly destabilizing, This shows
that the change in the direction of the normal force coefficient is a

larger effect than is the change in the lift due to the change in
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proximity to the ground for roll perturbations.

The source strength distribution on the ground for the slanted
ground case is shown in figures 31 and 32, The source strength as
a function of X is consistent with the expected downwash distribution
induced by a wing at angle of attack., The source distribution as a
function of Y is also consistent, However, at the corners, the
source strengths are peaked. This phenomena has already been
explained in section II-B, part 3.

c. Rectangular Rail - End Plates at Angle of Attack
Beneath the Wing

Figure 25c illustrates this non-planar ground effect situation.
The top segment has an average aspect ratio of 0. 2564 measured at
the midchord., Cases were solved with the top segment at an angle
of attack of 2, 5° at various heights above the ground. Cases were
also solved for this wing in the presence of planar ground effect and
were discussed in part 2 of this section. Another non-planar ground
case was solved with the top wing segment at 5° and at a quarter
chord height of 0.2452 chords above the ground. The end plates
have average aspect ratios of 0,2014 and 0, 2233 for each case and
were placed at 2, 5° lateral angle of attack in both cases. The end
plates are 0.0783 chords from the side walls measured at the quarter
chord. The bottom edge of the end plates are parallel to the
plane. The rectangular rail is 0, 1323 chords high and 0. 1215 chords
wide.

A plot of the load distribution along the center line of the top
wing segment is shown in Chapter IV in figure 73 and compared with

experimental measurements for the 2, 5° angle of attack case at a
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height of 0.2123 chords., In addition, plots of the aerodynamic
coefficients as a function of height above the ground are shown in
figure 33. The calculations of the lift coefficient are compared
with experimental measurements for the 2, 5° angle of attack case
also in Chapter IV in figure 68,

Due to computer storage limitations, the ground plane was
only extended to a distance of 0, 2 chords in the iY-direction and
from -0. 45 to 1.2 chords in the X-direction. From results of cal-
culations on finite ground planes discussed in section II-B, part 3,
this should have caused the results for the lifts and moments to be
10 to 15% lower than if the ground plane were extended to infinity,
and the same percentage higher for the drags., This conclusion is
consistent with the comparisons to the experimental measurements.
In addition, the experimental measurements were probably too high
due to boundary layer effects on the simulated ground. These
effects are explained in detail in Chapter IV.

Calculations of all the stability derivatives for the case of
h =0.2123, angle of attack 2,5, and the case of h = 0, 2452, angle
of attack 5° are presented in tables 4 and 5, and the dynamic stability
characteristics for these cases are presented in Chapter III.

Comparisons of the 2. 5° angle of attack case in the presence
of a non-planar ground with the same wing in the presence of a
planar ground show that the presence of the non-planar ground piece
adds at least 10% to the lift. In fact, the increase is probably 20 to
25% because the non-planar ground case was solved with an extremely

truncated ground plane.
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d. Rectangular Channel — End Plates at Angle of Attack
Above the Wing

Figure 25d illustrates this non-planar ground situation. The
top segment has an average aspect ratio of 0.2936 measured at mid-
chord, an angle of attack of 2.5°, and the quarter chord is 0. 1327
chords above the channel bottom. The end plates are of average
aspect ratio 0.13098 also measured at the quarter chord, and at a
2, 5° lateral angle of attack. The end plates are also 0. 1327 chords
from the side walls. The top edge of the end plates are parallel to
the X~Y plane. The channel is 0,537 chords wide and 0, 2419 chords
deep.

The aerodynamic coefficients and stability derivatives for
this case are presented in table 6, and the dynamic stability charac-
teristics are discussed in Chapter III.

In general, the lift on the wing was not as large with the end
plates above the wing as it was with the end plates below the wing.
This is consistent with the results of the planar ground situation for
wings with parallel side plates., Evidently, the end plates below the
wing increase the pressure far more significantly than the end plates
above the wing decrease the pressure.

The results of this non-planar ground case are expected to
be very accurate because the ground plane was extended 0. 57 chords
in the + Y-direction and from -0. 6375 to 1. 44 in the X-direction,
These dimensions are at least 3 times larger in any direction than

the height of the wing from the ground.
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e. Discussion of Wings in Tandem in Non-Planar
Ground Effect

One of the most complicated problems with regard to wings
in ground effect is the situation where two planar or non-planar wings
are flying in tandem in the presence of a non-planar ground. Com-
plications occur as a result of the peculiar downwash field induced
by the front wing on the rear wing. The approximation that the trail-
ing vortices shed straight back from the wing is probably not very
accurate. In the actual situation, the trailing vortices most likely
shed at some angle to the X -axis. This angle has a lateral as well
as a vertical component, To further complicate the situation, the
trailing vortices most likely also have a significant amount of curva-
ture. The positioning of these trailing vortices in relation to the
rear wing may or may not significantly affect the values of the over-
all aerodynamic characteristics such as the lift, induced drag, and
moment coefficients, However, this positioning will undoubtedly
affect the values of the various stability derivatives. This is espe-
cially true for the stability derivatives with respect to w,v, 6, and
V¥, the vertical and lateral velocities and the pitch and yaw perturba-
tion angles. Depending on the particular type of non-planar ground
situation, the trailing vortices will shift in direction as a result of
a perturbation in any of these velocities or angles. However, it is
not clear in most cases what magnitude or direction this shift will
take. Hence, it is not clear how the downwash distribution at the
rear wing will be disturbed with a perturbation in any of these veloci-

ties or angles. But since.results of calculations on tandem wings in
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planar ground effect indicate that the stability derivatives with re-
spect to W and © are controlled mainly by the variation in the
downwash distribution at the rear wing, then calculations of these
derivatives in non-planar ground situations using the same approxi~
mations as with planar ground will probably be significantly in
error,

Therefore, a more generalized approach is required for
representing the position of the trailing vortices in non-planar
ground situations. One such approach would consist of representing
the trajectory of each trailing vortex by several straight segments.
The angles of each segment could be determined by an iterative
procedure, The trailing vortex segments would initially be directed
straight back parallel with the freestream direction. The flow field
could be solved using the usual vortex-lattice method in conjunction
with the source distribution method. The flow direction of the
velocity vector would then be calculated at the midpoint of each
trailing vortex segment, The angle of the segment would be set
parallel to this direction and the flow field would be solved again.
This procedure would be continued until further change in the angle
of each segment was no longer necessary.

A slightly more complicated approach would consist of rep-
resenting the trajectory of each trailing vortex by a second order
polynomial. The same type of iterative procedure would be used
to solve for the proper trailing vortex trajectory, but more compli-

cated equations would be involved.
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CHAPTER III

A, Introduction

The results presented in the previous chapter gave an indi-
cation of the equilibrium performance capabilities of various planar
and non-planar wings in planar and non-planar ground effect. How-
ever, these equilibrium parameters (the lift, moment, and induced
drag coefficients) do not provide any information about the static and
dynamic stability characteristics of these vehicles. An understanding
of these stability characteristics is of paramount importance to a
complete description of the properties of a wing in ground effect.
There have been some previous investigations of the stability charac-
teristics of wings in ground effect, but these investigations have not
been very satisfactory. A derivation of the general equations of
longitudinal dynamic stability by Kumar (ref, 13) for a wing in ground
effect has been found to be erroneous due to the misinterpretation of
the stability derivatives with respect to the angle of attack a—r and
pitch angle © , and due to the absence of € in the equation g:e-—u[,
These errors tended to underestimate the pitching motion in ground
effect. The equations of lateral motion have been presented by
Kumar for planar ground effect, but these equations have never been
presented for non-planar ground effect. Widnall et al. (ref. 14) have
presented a simplified longitudinal stability analysis for the nearly
2-D flow of a ram wing in a channel., However, the X -equation of
motion was neglected in this analysis, This led to the erroneous

result that single wings are neutrally stable in ground effect.
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Therefore, the purpose of this chapter is to investigate the
generalized longitudinal and lateral stability of the various wings
presented in the results of Chapter II by solving the linearized equa-
tions of unsteady motion as applied to planar or non-planar wings in
planar or non-planar ground effect, These equations are developed
by considering the forces and moments on a wing in a state slightly

perturbed from equilibrium,
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B. Theoretical Analysis

This perturbed state is illustrated in figures 34, 35, and 36.
The coordinate system in which the equations are expressed is one
which is rigidly attached to the vehicle. The linearized equations of
unsteady motion for arbitrary single or tandem non-planar wings in
planar or non-planar ground effect are basically an extension of the
equations of motion for wings flying in an infinite medium. However,
now there are also force derivatives with respect to such variables

as 8, z, K, y, $,¢, 8, and {. The equations are as follows:
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The (X, Z, M) equations are the longitudinal equations, while
the (Y, L, N) are the lateral equations of motion. The two sets of equa-
tions are completely decoupled to this approximation, and hence can
be solved separately. The derivatives of the forces and moments with
respect to the dependent variables appearing in these equations are

determined in the following manner. Let the angles of attack of the
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front and rear wings (we will consider the special case of a single
wing later) be a and a., and let the angles of sideslip be denoted by

Bf and ﬁr. Then,
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It is important to point out the distinction between the angle
of attack defined on the plots of the results in Chapter II, and the angle
of attack defined in Chapter III. In Chapter II, the angle of attack was
defined as the angle between the wing surface and the ground with the
wind vector being always parallel to the ground. Hence the lift-curve
slope -%(—i——— , and the moment curve slope —Z%n-— as used in Chapter
II refer to the change in lift and moment resulting from a change in the
angle between the wing surface and the ground with the wind vector

always parallel to the ground. However, in this chapter, the angle of

attack is defined as the angle between the wing surface and the relative
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wind vector. It is possible to have a change in the angle between
the wing surface and the relative wind without having a change in
the angle between the wing surface and the ground. This would
occur when the wing is experiencing a perturbation in vertical
velocity only. In terms of the nomenclature of Chapter 1II, the
angle of attack as used in Chapter II is defined as § . But the
change in a quantity with a change in § with the wind being kept

parallel to the ground is defined as

9
o0
f=w
In other words, changes in the angle between the wing surface
and the ground with the wind always parallel to the ground are
changes in 6 with w being kept equal to 6§ . Therefore,
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where -é%le is the change in a quantity with a change in the angle
between the wing surface and the relative wind with the angle be-
tween the wing surface and the ground being kept constant, and
—{% I is the change in a quantity with a change in the angle be-
tween :Zle wing surface and the ground with the angle between the
wing surface and the relative wind being kept constant. All ex-
perimental measurements of changes in aerodynamic character-

istics with changes in angles of attack for wings in ground effect
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0
have actually been measurements of —Eﬁlgzw' These have been

0

—8—w~ 0. The

measurements of the sum of two effects, _é%lw and
first effect is a measure of the influence of a change in the geo-
metric orientation of the wing with the external wind direction
relative to the wing surface held constant. This effect disappears
as h —oo. The second effect is a measure of the influence of a
change in the angle of attack with the geometric orientation to

the ground held constant, This effect approaches the conventional

d
-%ash 00,

The terms qu/U, q4_/U, r4,/U, r4_/U are included in
the expressions for the angles of attack and sideslip only when the

separation distances {_ and 1. are much greater than c, and

f f

c. respectively, Otherwise, the stability derivatives with re-
spect to g must be calculated taking the variation of velocity with
chordwise position into account, and the terms qlf/U, qJZr/U,
rJZf/U, rﬂr/U are no longer included in the angles of attack and
sideslip.

Also let h, and hr be the heights of the 1/4 chord of the front

f

and rear wings above the ground, and let d_ and dr be the lateral de-

f

flections from equilibrium as measured at the 1/4 chord of the front
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and rear wings, Then,

t
h, = hfo + J; Ue(r)dr - (2-2,) , +b0

h = ro+er(—r)d-r. (2-2), g +0.0
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Using these relationships, the force and moment derivatives
can easily be determined. We define the instantaneous (X, Y, Z)

forces and (L,,, M, N) moments as follows:

e
x= - ((Cp 5+ Cp §,) - (€, f<w-é£ T, s ) 1007
Y= (G, 5+ Cy S, u? -
Zo -(Cp, 8+ Cp, 8,) 1,02

= (Cy Sgeq + ClrSI;cr)%pUz
M= (CMfocf + CMrSrcr)%pUZ
N = (Cy Syeq + chsrcr)%pU2

where the subscripts f and r refer to the front and rear wings respec-

tively. Hence the force and moment derivatives can be expressed as



-73-

Fh
H

8C C
D L

r ,0¢ o€ r 1 172

t5a (Bhf+ ) >Sr 2pU

Oe ) de
aaf Y

— e

f £ G
aC
D
O¢ o¢c o¢
*oh P YR V- %5 - %
f h,h,a,a T
f £ r
BCDr BCDr N ,
o Utme Gt )U r 2pU
T f
0
oz -r‘ CDL s . 8CH3r+ 8cﬁ)r (85 R 9e A .
z Zh, i\ oh da_ ‘Oh, ' Gh_)r 2P
oz __2 1 18
Bu*-U(CLSf*’CLS)ZPU



~/8C oC oC aC,
oz _ | A0 Ol 3 W s 5 GRSUE TR TR
oW da U oh f 0 U oa an oni
£ £ £ £
a9C
1L
I aE 88 1 2
* 54 (ahf+ 5n)) Sy |2PU
r
i_—_"l
| 8C; , 9C, 1 9C, | 9Cy, .
Q_g:_ - f(__f_)+ fb+l f'S+ r(_ae(___f_).
dJq l_. ao.f U Bhf f L_&i—_: f da Baf U
9C
) L .
o€ r r , J¢ o€ O¢ oe
teR Pt o) T ea R, Ut eE, U R, % T
{ { T {
oC "
L
88 hy 1 2
-—55}1 h a ) - oh br Sr_szU
0 e O Oy
) 9C, aCL, 8C,, 9C;,
SZ_ £y +____f.U+_...__{: S + r(._af__
) oh, “f' “on . 06 , f "\ 6a_ ‘" ©h,
St f h.,h ,a,a T
£27¢ £ r
8C
L
oe Jde Ode T
*5h Pr v EE. U " 56 )= =g bt
T f h.,h ,a.,a
27 7P T
ach ach
M T L t g Ut
£ ,(lf,(l r
9C
L
Iy Je o€ 1 2
T e Gn. vV S, |zeU
f r
oC 9C oC
oz _ [ Lfs+( Lr+ Lr<85+ae)>s 1U2
oz oh, “f oh_ a_ 'oh, Ok r) 2P
a9C aC
B T (o (L g )
ow oa U ad U~ 96a.'U oh
£ T f f
8C
- Lr ._8_8_1._ S 1 U2
oa ¢ T)°r 2P



-75-

oM L -~
o © 0 because at equilibrium CMf Sf Cf + CMr SrCr_. 0
8C Yo 5C
Ve (.i‘_f.(_l_)____“f_f_ s c +(_&<_1_(1__ae_)+_a_e_)
ow sa, U " TR, £Cs da_ \T da, " Bk,
Yo aC
M M
r r { J¢ Je 1 118
-6t Ta <ah * oh ) 5,.Cp| 20U
T T b3 T
oC oC Yol 6C
M, 2 M 1°% M M 2
5 =| - O b ) 50+ ma (- v ) ¢
9q Bo.f U E)hf | q | a. ac
o —
aC
2 M
o€ T r [-0¢ o€
+'a‘1°be+TJ‘)+ 5a <8BU+BH U -
f r f T
oC
o€ O€ O¢ T 1 1.2
- Sn Prt oh br'ﬁ@ >- oh b, srcr 2pU
f r h ,h s Q. 0 r
£ 7
8C,, 8C, 8C,
oM _ £, . £ U4 f s c 4
56 _|\"on. Pt " 5B 50 lh,h,a,a £
£ f £27 7
oC
M
r O¢ O¢ O¢ e
*\5a (' oh. st Bn Pr T AR, U " 56 -
r f r f h,h ,a,a
b A S MR o
acMr acMr acMr
“wE PR | teE Ut
£ Dy Opr O r
8C
M
r , O€ o¢ 1 8
T e Gn T )U)S.C.lz2eU
T f
8C, -9C, 8C,
BM____ fSC+ ro, r(~ae+8e)sc UZ
oz ok, £-f oh Ja h; ' BR_/)rr 2P
oG 8C Yo
oM _|__ Mg S Mr(l__Q_»:__(l)+85 Yroe 1))
oW I T\ B 0%, © anf)‘ Sa_ 8d (G r




-7 b

<acY acy acy
bY £ r r 90 , 8Q )
—— = | =S+ ( + (= +5)5S_)]zpU
3y oq; o1t e, T ep, loap T d Ox
8, oG, 8C,
oy [ 1 £ £ r 1,1 90 , 90
X L ¥ 1S, + (et (e + £ 2T L 80,
ov ~\T 35, *aE, Pr' Gep, U7 U e T E,
2C, oC,
r,6 00 a0 r 1 1@
top Gea, Tea ) teE_ ) 5x) 2PV
5C, 8C, 5C,
Y £l r 1, 80 1, 80 r 90 1. )1 .2
or Lt lg 4y 4 Q0 Ly 80y, Lis_|ipuU
v “\op; U 'op, T e, UTea,) TEp, B UOr
oC, oC,  aC,
oY _ £ Yy r 80,c \1 2
o -\ ot T sl 9p 5r)2PU
8c, , 8C, l'_a_c;—} 8C ,
% - < apf T+ =5 bt arf’> Sf+< 5 | A Rk APE
£ £ Lo £ £
oG, 2C,,
T o0 o0 00 00 T 1 118
iy (‘a‘EI‘U’“ad by - a‘d“br*'aE)‘ EE >Sr zpU
P f f r r
5C, 8C,  oC,
oY _ £ T r 90 1 178
56 “\Tog %t o~ * ep. g Or )PV
- oC, 8C, oC, ac
oY _ £ i f r
5¢ \Ba Pt e Ut ) Sg* (g bt
£ f B, d r
| g d¢
oG,
r ,00 o0 o0 00
+ 2y, - b+ 29y +29)
5, ‘8d, "t~ Bd_°r toa, U T 5y
oC, oC, oC,
T T r, 00 o0 2
+ ¥ U+ L2220 +-29ups iU
o 2
e a ., O 5p, B,V *Ba_ V)5,
oY _



-77-

9G, 9C, aC,
oY f T T o0 00 1 112
9L | —L Us,+ ¢ U + U (5 + NS _1zpU
55 o4, £7 7ad o8 8d, " Bd_''"r
oC,, 9C,  aC,
oL _ £ r r, 90 oa 1 118
By “\7sa— S5¢Cst t5a— * w5 Gt 5 15:Cr)zPU
f r r £ r
< 8C,  8C, oC,
oL 1 f £ r1.,1 80, 80
22 | = + )S.C 4= (= + e + o)
ov U op, oa; Tt f 'op_ ‘U UBR, 94
8C, log
r ,00 00 r 1 2
top Ga T al) T ea] 5:Cr) 2PV
r f r r
aC, 8C, ac,
oL £ 1 r1., 8 1, 09 r, 00 1
2 = | —= =85.C.+ (—= (=+ =+ =) + + )S_C
ov %, T Vi %. U op; U 83, " op p; UPrr
3C, 9C, aC
oL _ £ r r 90 1.2
Tp S\ SeCet T T 55 Gy ) 2PV
8Cc, , 8C, Ira?:;_} oG ,
oL f °f f f r r, 00 f, 80
— =1¢ — + b +| NsS.C +( (= + —+=——Db,)
or o U @@ ier Vff 9B U '9p, U o4, f
Io oC
r , 00 90 (]s} o0 r 1
+ Ga, Ut 3d. P~ 5a Pr Y og) =~ BE Pr)S:C.) 20U
BBr f £ r r
3C,, 8C,  8C,
oL _ f / r r 90 i .2
o6 “\7o¢ %%t Top *ap. 99)5:C) 700
)
LA leb + 3cng +——-—-—aczf )S.C, + -—-—80 “b_+
oy od, £ 94, oy ' Gt (- 5q by
dpBg r
oC,
r, o0 00 00 oo Ly
+ Lt 2y b+ 22U +29) 4 T +
9p. ‘od, °f " 8d_ °r T 8@ £ o0
r f r f Brrdrdg, By
oC, oC,

+

r r , 00 o0 i
sa. Ut g, Utgq UNS.CL)zeU
r .. f r



-78-

= 0
= -———BCI US,C, + aCJZI'U+ 8CI Ly 2L+ 205 c_ u?
=\7a; Y% " T 56, © ‘aq, ad 2P
8C 9C. G
n n n
_ r r, 00 , 00 1 112
=\7oq; 5Cet e Tap. (aa) e 15,.C 20U
f r f
8C_ 0C_ 8G_
_{,1 f r,1 1 8g _9g
“\T w5, * S¢C; + 55 (T T o, T 08,
£ £ £
8C_ 8G_
r, 90 00 T 1 118
t——(5q. " aa“aa 15,Cp | 2pU
9p f r
Tr
8C_ aC_ 3G
=< — T SC+ -r(111+§gtlr+ailg)+ ¥ 2L 5)5.C, 30U
LY 8p, £ 8. 9B,
8G_ 8C_ 8C_
_ f r r 30’ 1 2
=\ 5= St i + o 3005, )3V
5G, , 9C, r"acN, °c_ ,
_ f °f f r r o0 f o0
=g 7t b, +l DS + (o (= o + o —— + == b,)
38, U ' ew, Peter 8. "T TBp, T TG, f
acn acn
o0 a0 o0
53 (8an+8d by - adbr aup) Ba_ Pp)5.C.)zpU
B : o,
8C_ 3G aC_
_ f r 1‘ o0 1 2
=\~ S¢Ci* g N 59)5,:C, | 10U
8G_ 8C_ 8C_ 8C_
o byt Ut S.Cy + (- —5g= b
£ £ b Ber d r F
8C_ | oC
r 9g 90 o0 o0 r
* o, d, P~ a Pr TeE, Uyl ter U



-79-

8Cn 3Cn 5
+— r(:g U+ ;’d" U) + 8¢r )S.C_|4pU
8ﬁr f Tr ﬁr, dr, df' pf
ON _
o =
8cn 8Cn acn
ON _ f r T o0 og 1 112
55 = \Ba USeCe* o~ Ut g U laa t5a ) 5:Cr)2PU
f T T f T
Note the terms that are within dashed blocks in the equations
involving 8/8q, 8/8r. These terms are included only for single

wings or for tandem wings whose distances from the vehicle c. g. are
not large compared to their chord lengths so that the vehicle as a
whole must be given a perturbation in p, ¢, or r to determine the
overall vehicle stability derivatives with respect to p, q, r. Fur-
thermore, we must set Cr = 0 and set Le=1, = 0 for these single
wings or closely spaced tandem wing vehicles.

All stability derivatives are calculated at the equilibrium posi-
tion for any given vehicle and assumed to be constant throughout the

small perturbations from equilibrium. However, since the reduced

frequency for the motion is assumed to be small, the stability deriva-
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are neglected. All remaining stability derivatives were calculated by
the aerodynamic lifting surface computer program.
Now, the linearized equations of unsteady motion are two sys-
tems of linear first-order differential equations with initial conditions.
This type of system is most easily solved by Laplacie transform

methods. The resulting solutions can be expressed as:

6 A‘longit
voE L A1ong. ¢
i= i
_ 6 s Alongit
z Z long.e
i= i
) i c A‘longit
ko= long.® ‘
1=1 1
6 ‘>“1ong1t
6 = Z‘I x‘long longie
1=
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The N 's and X\ 's are the roots of the characteristic
longi 13.t:i

L. , .
equation for each system, and A_longi s, Blongi s, long A'lat ,

Blat 's, and clat 's are determined from the initial cond1t1ons. The
i i

characteristic equations for the longitudinal and lateral equations

will now be presented. Note that each first term is negative.
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Note that the last term of the longitudinal equation is iden=-
tically zero and the last two terms of the lateral equation are
identically zero. This can be verified by noting that the force and
moment derivatives with respect to z and y are the same as the
force and moment derivatives with respect to Kk and § . Also, the
partial derivatives with respect to { are zero, Therefore, the
characteristic equation for longitudinal motion can be reduced to
a fifth-order polynomial and the characteristic equation for the
lateral motion can be reduced to a sixth order polynomial. Routh's
criteria can be applied to these equations to determine whether the
roots are stable., However, for these large polynomials, the
criteria is long and tedious. Details for applying Routh's criteria
to these equations can be found in ref. (13). It is of interest to note
that, in satisfying Routh's criteria for dynamic stability, the cri-
teria for static stability is also necessarily satisfied, The coeffi-
cients multiplying the first power of llong and Alzat must be less than
zero in order that static stability be achieved. These terms are the
constant terms after the characteristic equations are reduced to
fifth and sixth order polynomials respectively. For wings flying in
an infinite medium the characteristic equations reduce to fourth

order polynomials and the criterion for static stability for longitudinal

8CM

ow

The equations presented above were used as a basis for inves-

motion reduces to the familiar criteria CL> 0, < 0.

tigating the dynamic stability of wings in planar and non-planar

ground effect. Solutions to these equations were obtained for most
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of the wings mentioned in section II-C. The roots of the character-
istic equations were calculated by computer program and are pre-
sented in the following sections, For the tandem wings, the time
history of the motion was also calculated.

Crude estimates of the parasitic drag of each of the wings
were made, because the total drag, not just the induced drag, was
required in the equations of motion., The parasitic drag estimates
are presented in Appendix F,

All radii of gyration ( except for the tandem wings) were deter-
mined assuming a uniform mass distribution while neglecting the
mass of all end plates,

The vehicle Froude numbers (Uz/cg) were 21 for the single
flat and end-plated wings, 250 for the tandem wings, and 12.5 for the
non-planar wings in non-planar ground effect, These Froude numbers
represent typical high-speed ground transportation parameters best
suited for each type of wing, Since there already were a large number
of variable parameters, the Froude numbers were not varied.

C. Results

1. Single Flat Rectangular Wings

Numerical calculations were carried out to determine the
stability characteristics of single flat rectangular wings flying in
planar ground effect. Cases were solved for aspect ratios of 0.5,

1, 2, and 4, heights ranging from 0. 05 to o, and angles of attack
of 2.5°, 5°, and 10°. The c.g. was placed at the center of pressure
on the wing surface.

Root-locus diagrams depicting the variation of the roots of the
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characteristic equafion with height, aspect ratio, and angle of attack
are shown in figures 37 through 44, It was found that the flat rec-
tangular wings were not longitudinally stable at any height, aspect
ratio, or angle of attack. They were also laterally unstable except
for the wings of aspect ratio 0.5 at angle of attack 10°. The fact that
the calculations indicated lateral stability for these configurations is
surprising. In fact, it is probable that the high angle of attack case
for aspect ratio 0.5 was inaccurate, The reason for the inaccuracy
is discussed in section II-c, part 2, a.

2. Single Flat Rectangular Wings with End Plates

Numerical calculations were carried out to determine the
stability characteristics of ram wing models consisting of a single
flat rectangular wing with triangular and rectangular end plates
flying in planar ground effect. For the triangular end-plated wing,
cases were solved for aspect ratios of 0,5, 1,0, 2.0, heights rang-
ing from 0. 05 to 0.5, and angles of attack of 2,5°, 5°, 10°., In
each case, the c.g. was placed at the center of pressure on the
wing surface; and the end plates were always shaped so that the
bottom edge was parallel to the ground in the equilibrium position.

It was decided that the differences between the triangular
and rectangular end plates would be brought out more clearly for
the high angle of attack, low aspect ratio cases. So these were the
only cases solved for the wing with rectangular end plates.

Root-locus diagrams depicting the variation of the roots of
the characteristic equation with height, aspect ratio, and angle of

attack are shown in figures 45 through 50. In general, it is seen
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that the ram wing was longitudinally stable below a certain height.
This height, however, varied with aspect ratio and angle of attack,
as shown in figure 51 for the triangular end-plated wing. Similar
behavior is exhibited by the rectangular end-plated wing., In fact,
very little difference is found between the triangular end-plated wing
and the rectangular end-plated wing. The only basic differences
between the behavior of the two types of wings was that the lift devel-
oped by the triangular end-plated wing was higher, and the frequency
of oscillation for the rectangular end-plated wing was slightly higher
than for the triangular end-plated wing in longitudinal motion.
However, as previously mentioned, the results for the 10° angle
of attack, aspect ratio 0.5 case are probably inaccurate,

The results for lateral stability were completely negative,
Regardless of the height above ground, the aspect ratio, angle of
attack, and end plating, there was no configuration for which stick-
fixed lateral stability was achieved. The laterally unstable char-
acter was due principally to the yaw instability of the ram wing.

3. Flat Rectangular Wings Connected in Tandem

Plots of the time required to damp to 1/10 of the original
perturbation from equilibrium are shown in figures 52 and 53 for
two identical, flat rectangular wings of aspect ratio 1, 2, 4, at
angle of attack 2.5°, heights above the ground ranging from 0. 05 to
0. 3 chords given an initial perturbation of 0. 05 chords vertical
displacement. Figure 52 is for a wing separation distance of 4
chords. The c.g. was placed at the center of pressure of the

over-all vehicle, It is seen that for a given aspect ratio there is an
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optimum height for which the damping time is minimized. This
optimum height decreases with decreasing aspect ratio and also
decreases with decreasing wing separation distance. A plot of this
optimum height versus aspect ratio and separation distance is shown
in figure 54.

It is also seen from figure 55 that for a given aspect ratio
there is a critical height above which instability occurs. This critical
height decreases with decreasing aspect ratio and also decreases
with decreasing wing separation distance. Root-locus diagrams
depicting the variation of the roots of the characteristic equation
with height, aspect ratio, and separation distance are also shown in
figures 56 a, b, c through 58 a, b, c.

4. Non-Planar Wings in Non-Planar Ground Effect

Numerical calculations were carried out to determine the
stability characteristics of three cases of single non-planar wings
in non-planar ground effect. Schematics of these three cases are
shown in Chapter II in figure 25b, ¢c,d. The geometrical details
concerning the wing and ground dimensions are explained in section
II-C, parts 3c and 3d. Root-locus diagrams depicting the variation
of the roots of the characteristic equation for these three cases are
shown in figures 59 and 60, Figure 59 shows the roots of the longi-
tudinal equations, while figure 60 shows the roots of the lateral
equations.

The root-locus diagram for longitudinal stability shows that

all three configurations are unstable. For the two cases with end
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plates below the wing at angle of attack, an increase in the angle of
attack of the top wing segment was longitudinally destabilizing. This
is concluded from the fact that the real parts of the roots shifted
positively, In fact, the smallest real root went from negative to
positive with the change to 5° angle of attack. It is clearly possible
that the case with end plates above the wing would become stable
if the wing were closer to the ground, This is concluded from the
fact that the roots at -1.92 and 0,17 go together and would approach
each other as the height above the ground is decreased.

The root locus diagram for lateral stability indicates that
all three situations are unstable, Again, an increase in angle of
attack is destabilizing. However, in this case it is not clear that
a decrease in height for the case with. the end plates above the wing
would be stabilizing. It would be stabilizing if the roots at -6,1

and 0, 29 went together,
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CHAPTER IV

In order to investigate the validity of some of the assumptions
and idealizations used in the numerical calculations presented in the
previous chapters, an experiment was conducted.

This experiment consisted of a wind tunnel study where
measurements were taken of the lift and drag on a non-planar wing
in planar and non-planar ground effect, This wing was also investi-
gated numerically so that a valuable check could be made between
theory and experiment,

The details of this experiment are now presented.

A, Introduction

It was important to investigate the accuracy of the numerical
calculations made in Chapters II and III for the most general case
possible. It was equally important to be able to investigate the
accuracy of the ground representation and the accuracy of the wing
representation separately, Therefore, it was decided to make
experimental measurements of a non-planar wing model in both
planar and non-planar ground effect. Since the method of images
was used for planar ground effect, the accuracy of the wing repre-
sentation could be investigated very well from the planar ground
measurements, Then the accuracy of the source distribution method
for representing a non-planar ground could be investigated in the
experimental measurements with the non-planar ground.

The non-planar wing model used for the experimental meas-
urements is shown in figure 25c, It was described in section II-C,

part 2,b and in section II-C, part 3,b as the '""Thin Rectangular Wing
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with End Plates at Angle of Attack Extending Beneath the Wing.,"
The non-planar ground situation investigated was the one described
in section II-C, part 3,b. A detailed description of the experimental
wing, the wind tunnel, and the ground plane model now follows.,
B. Wing Model

A schematic of the experimental wing model is shown in
figures 61 and 62. Schematics of the wing supports are shown in
figures 63 and 64. Photographs of the model in position in the wind
tunnel in close proximity to the non-planar ground model are shown
in figure 65, The main requirements for the model besides having
the correct planform shape were that it be uncambered and as thin
as possible. Therefore, the chordwise thickness distribution was
made to resemble a thin wedge. The model was 15" long with a
maximum width of 4, 5'". The maximum thickness was about 1.25%.
In the original configuration, the leading edge was given a circular
radius of 3/32'". The trailing edge was about 1/32" thick. The
upper and lower surfaces were straight between the leading and
trailing edges but were at an angle to each other., During the course
of the experiment, however, the upper surface of the leading edge

had to be sanded down to a more streamlined shape to eliminate a
small separation bubble which appeared near the leading edge. The
new leading edge shape is shown as a dashed line in figure 61. The
effects of this change in leading edge were shown mainly in the drag.
This will be discussed in more detail in the results of this chapter.
The model was constructed out of aluminum and the supports

were constructed out of steel. The side supports were placed so
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that the model rotated about the one-quarter chord line of the top
wing segment. This was consistent with the center of rotation in
the numerical calculations. The rear support was placed beneath
the centerline of the top wing at about 11, 75" to the rear of the lead-
ing edge. All supports were streamlined to minimize interference
effects.,

-C, The Wind Tunnel

The wind tunnel used for this study was the Merrill Wind
Tunnel at the Graduate Aeronautical Laboratory of the California
Institute of Technology. The test section measures 46 by 32 inches
and is 9 feet in length. The tunnel is a closed return, constant
operating tunnel capable of speeds in excess of 200 feet per second.
However, to obtain high enough Reynolds numbers, a speed of 185
ft. per second was used in the tests,

The effect of the wind tunnel walls might be expected to be
significant, However, the influence of these walls can be crudely
estimated by placing wake system images above and below and on
the two sides of the actual wake system. These images induce
insignificant velocities at the airfoil locations for two reasons.
First, the vorticity representing the various wake image boundaries
are of opposite direction and also of nearly equal strength. There-
fore, the induced velocity of the pair nearly cancels. Secondly, the
image systems are at a distance of at least two chords from the
airfoil at their nearest point, This distance results in small induced
velocities at the airfoil when compared to the velocity induced by

the wake system immediately behind the airfoils, Due to these
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factors, the wall influences were expected to be small,
D. Ground Plane Model

Schematics of the experimental simulation of the planar
and non-planar ground are shown in figures 66 and 67. In general,
it resembles a flat plate airfoil, but it is more than 4 times longer
than the wing model, and about 9 1/2 times wider. From the numeri-
cal results of section II-C, part 2,d we can estimate that the wing
model can be as high as 0. 45 chords (based on the wing model
length) above the experimental ground plane before the finiteness
of the ground plane begins to cause significant effects. Holes were
made for the wing supports. This was necessary because the
balance system for measuring the forces was beneath the test sec-
tion. A spanwise suction slot was placed at a position about 7 inches
in front of the wing model leading edge. The slot, about 0. 03"
wide, was used to remove the boundary layer on the simulated
ground plane. It was placed as close to the wing model leading
edge as was possible without disturbing the pressure distribution
on the ground plane induced by the model. The ground plane itself
was placed in the wind tunnel at a position about 19 inches from the
top of the test section. The three suction slot pumping hoses and
the wing model supports were inserted through holes in the bottom
of the test section, The non-planar segment of the ground plane
was about 1.8 inches by 2 inches and was removable so that planar
ground as well as non-planar ground measurements could be taken
with the same ground plane., The angle of attack of the ground plane

was set so the pressures on the top and bottom surfaces were equal,



-94-
E. Experimental Measurements

Measurements were taken of the lift and drag on the non-
planar wing model at various heights above the simulated ground
plane and at various angles of attack. In the planar ground configu-
ration, measurements were taken at heights (measured at the one-
quarter chord of the chordwise centerline of the top wing surface)
of 0.33 chords, 0.215 chords, and 0,17 chords, and at angles of
attack ranging from -5° to 8°, The range of angles of attack was
limited by the angles at which the bottom edges of the side plates
contacted the ground. In fact, for the 0.17 chord height, only the
measurement at the designed angle of attack of 2. 5° could be taken
because the bottom edges were nearly touching the ground. In the
non-planar ground configuration, measurements were taken at
heights of 0. 33 chords, 0.283 chords, and 0.215 chords, and through
a similar range of angles of attack,

In addition, measurements of the pressure distribution along
the centerline of the top of the non-planar ground piece, and the
pressure distribution along the centerline of the upper and lower
surfaces of the top wing segment were taken at the 0,215 chord
height. The pressures were measured by a piece of plastic tubing
about 0. 08 inches in diameter, A small hole was cut into the tubing
for static pressure measurements,

All measurements were taken at a wind tunnel dynamic
pressure of 38,7 lbs/ftz. This was equivalent to a velocity of 185, 4
ft/sec. Measurements of the dynamic pressure were taken with a

calibrated pitot-static pressure measuring device,



-95.-
The flow Reynolds number based on the chord length of the
wing model was 1. 35 x 106.
F, Experimental Results
Experimental measurements of the lift coefficients as func-

tions of angle of attack and height above the ground are shown in

figures 68 through 71 for the planar and non-planar cases. The
theoretically predicted results for these cases are also shown in
the figures., The above measurements were taken for two different
wing model leading edge shapes. This was necessary because the
original leading edge shape (a semicircle of radius 3/32 of an inch)
produced a small separation bubble about 2 inches in length near
the leading edge. This bubble occurred because the flow had a much
larger local angle of attack beneath the leading edge than the 2. 5°
to the freestream. The flow between the wing and ground was slowed
down as it attempted to pass through the converging channel produced
by the wing and ground. Therefore, the flow near the leading edges
went around rather than through the channel, This produced the
higher local angle of attack near the leading edge. A second set
of measurements were taken with a different leading edge shape.
This shape was streamlined to eliminate the separation bubble. As
expected, the drag was reduced significantly with the second shape.
The 1lift, however, was not changed significantly except at very high
angles of attack.

The measurements taken at the lowest heights for both the
planar and non-planar ground were significantly affected by the

boundary layer displacexnént thickness on the ground plane. In the
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planar ground case, the boundary layer was completely removed 7'
ahead of the wing leading edge; however, the extremely large ad-
verse pressure gradient on the ground just ahead of the leading edge
of the wing caused transition of the boundary layer to occur. In the
non-planar ground case, the boundary layer was not completely
removed due to limitations in the suction slot on the non-planar
ground piece. Therefore, a turbulent boundary layer developed
before the large adverse pressure gradient was encountered. Then
the adverse pressure gradient undoubtedly thickened the boundary
layer substantially. In both the planar and non-planar cases these
effects were very significant, In fact, in the planar ground case,
an estimate can be made of this effect. We can assume that the
boundary layer became turbulent about two inches ahead of the lead-
ing edge of the wing., This assumption is made by considering the
plot of the pressure distribution along the centerline of the non-planar
ground piece shown in figure 72. The pressure distribution along
the centerline of the planar ground situation was expected to be
quite similar with the peak in the pressure gradient occurring fur-
ther upstream. Using the 1/7th power law as a crude approximation
for the profile of the turbulent boundary layer, the growth of the

displacement thickness can be written as

4
Sy~ 0.002 88 27°

where x is measured in feet from the origin of the turbulent boundary
layer (2 inches upstream of the leading edge of the wing model)., This

displacement thickness caused an effective ground plane shape which
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was tilted up at 0.147 degrees., It also decreased the effective height
of the wing by 0, 0011 chords. However, the numerical solution cal-
culated for this problem in Chapter II indicated that the slope of the
curve of the lift as a function of height is approximately 65 at the
height of 0. 165 chords above the ground (see figure 20). In addition,
.‘.'),.C_L was approximately 20 at this height.

w
Hence, a simple correction to the measurement can be made as fol-

lows:
| ~ i ph 4 %no <

the partial derivative

This conservative estimate reduces the measured value of the
lift coefficient substantially.

This simple type of correction cannot be easily applied to
the non-planar ground situation because it was not clear where the
turbulent boundary layer effectively originated. In addition, Elder
(ref. 16) indicates that transition of the boundary layer occurs
earlier on a finite flat plate than on a 2-D flat plate, but it is not
clear how the boundary layer grows. Also, the effect of the highly
adverse pressure gradient cannot be determined beyond the qualita-
tive deduction that it causes the boundary layer to thicken more
rapidly than it would under zero pressure gradient conditions. A
plot of the load distribution along the centerline of the top wing seg-
ment is shown in figure 73. The numerically predicted load distribu-
tion is shown also. The difference in the two distributions is most
prominent near the trailing edge where the experimentally predicted

load distribution is much larger than expected. This indicates that
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the rear portion of the wing is effectively closer to the ground than
indicated by the numerical results, Hence, the measurement at the
height of 0,215 chords in the presence of the non-planar ground is
not a valid comparison to the equivalent numerical results.

The experimental measurements were also affected by the
wing leading edge shape. A semi-circular leading edge shape caused
a separation bubble to occur near the leading edge, whereas the
streamlined leading edge introduced a small amount of camber.

Both shapes should have caused the experimental lift coefficients

to be higher than expected. The separation bubble introduced both
an effective thickness and camber near the leading edge which should
have caused a shift upward in the lift vs. angle of attack curve at
each height above the ground. The streamlined leading edge also
introduced some camber at the leading edge, and so the lift curves
should have been shifted upward by the same reasoning. In general,
however, these effects were significant only at the smallest heights
above the ground.

The numerically predicted results were in good agreement
with the experimental results in all cases considering that the numeri-
cal results were for a truncated ground plane which reduced the lift
augmentation of the ground, The greatest deviations were at the
wing positions nearest the ground. However, in the planar ground
case these deviations were accounted for in a simple manner, and
in the non-planar ground case the deviations can be explained at

least qualitatively.
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APPENDIX A
Nomenclature:
}{ = efflux rate per unit length of line source
P(”","j)= field point at which we wish to find the effect of
the line source and point vortex

)Zc/g = elemental source of strength o}

= distance of point vortex above the line A~

= circulation about the origin of the point vortex

= distance from incremental source to P(”Z/}')

d
K
l = distance of vortex from Y-axis
R

= angle between R and the X-axis

It is the purpose of this appendix to prove that the velocity
induced by a single point vortex together with an infinite line source,
whose source strength distribution satisfies the condition that there
is no normal flow through it, is equivalent to the velocity induced
by a point vortex and its image.

The stream function associated with the incremental source

(see figure 74) is )70/36
Y == g

The complete stream function resulting from the entire line

source from -A to 4 is found by integrating from }="A fo f='4

"
p= |- zz Ads
Z4
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but '6=,éa»"(¢—/_¥};-)

Hence V /(}’) ( )df

A
S0 p=- )7/5 ) Zam [Mz)dg + ﬁn[(ﬂb»@)ﬂxy Tk

-A
and

W Wv%’} M ()
T feofeg] T ety

Note that the function
£
H09) = e

has for small £ a very sharp peak (resonance) at ¥ =/¢

Furthermore

where C is any
foryds = 8 d; arbitrary end point
e *) “ i

(”‘ 3He of integration

_ 3 . —_ A
tee ToET 5 gemc = Te- (S

_d; ‘ = - C=r-
dT= - ;¥ =¢ :}2’— =

Hence substituting into the above integral we get
Rints g C-H

3 £
JdT
— -/

+
- Cf;"‘ —(,Cgﬂ)
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The limits are proportional to ‘/6 and hence as £&5¢ , the

value of the integral is o

o=

- o<

consequently

Lo £ =
2 2 - (/,-§
o %[(AP}) * E:} §> where J(ﬂ“}') is

)W the delta function
— Wwe get

oK

Hence letting /z-—)o in

A

% X(3) & (x-3)dy +

[
Ny 2
40

—-A

T et
Zx [(M-X)z—f-d’]

Hence

\ (m-L)
2T [(p-k)*+d7]

_ )
O= = +

Hence

A
Vo G4 T
V= on o (3 )dH—*MM*WJ
2A

Now, we write the equivalent total stream function for the
point vortex and its image., Figure 75 shows the appropriate coor-
dinate system.

The stream function associated with each vortex is (see figure

75)
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“' where r is the distance from
'y/: ——-—,én r the point P to the origin of
2 the vortex

Hence the total stream function for the vortex pair is
b/}
= S el e ) T el 39T

Comparison of the Two Solutions

The stream function solution for the point vortex near a line

source was

A

- (! ﬁ) - _/E_d L i ? _ 2 }’2
" [(u)wzJ Sy i el ey

The stream function solution for the vortex pair was

h
f 27({ [(¢-l)+ -J] Lu[(ﬂl) "'(/%"f'd ]]

We are interested in comparing the two solutions for /\1_20 to de-
termine if they are equal. Indeed, for A—> oo the two solutions
should be equal for M20 . Hence, by inspecting the two solutions
we see that for the two solutions to be equal as A-3.a and /¥20 ,
the following must be true.

V[ (-0 _ Vel N1
T J[Wdzj ()05 = ~tnlw) ()]

Th1s integral is very difficult to evaluate. However, we can

make the integral easier by noting that
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A O¥
¥ vo;fex Qfx‘voy‘fcv ?
line source parr

Therefore, the following must be true:

L Ggydy o (#=K)
T30 [(pt) (g +d)’]

Integration of the above integral will be done by using the

residue theorems of complex variables. /U( Z-plane
CZ

Consider the following integral

R

Y

i f (zL)ydz
T J (L) & T2 +4] Ne,

where zZ=— §+,()(

and the contour of integration is the
closed semi-circle in the top half
of the Z -plane as shown in the

figure., The integral can be aplit up into two integrals. One along

the E -axis and the other around the edge of the semi-circle so that
[ [_(4)yde _ (3-2)4d3
T =
e deD] T[]
C ,
| | (z¢)yde

[(e-0)+d"][(x-2) %]

¢,

tx
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Consider the integral around the entire curve C . We can
determine the poles of the integrand by setting the terms in the

brackets in the denominator equal to zero. That is,

(z-4) w4%=0

= 2= 24 £Vag 44

2 =L+ 4d

(#-2)"+4"=0

_ 2n 2 Vam-Alr)
2

. :/Pilﬂé_

Hence the integrand has four simple poles %t AN and ,(.i-)t‘d

By the Cauchy Integral theorem

z - / (}: ) whereX . = sum of the resi-
j)[( )d? ZXA - KA - Kﬂ dues of the poles
C £ A of the integrand
B ut since we are only interested in the top half of the plane,
we need only consider the poles at /JL+A'A} and L+4d .,

The integral can now be rewritten as

l (Ev()/gdz

(2 ~(4+id)] [2-(2-2d)] [2- (r+ 1)) [ 3-(#41g) ]
C
The residue at the pole /X/-M'/g is

=2i(K+K,)
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K _ "y [(m—1)+,c'n4]
T 2 A) i)+ g2

The residue at the pole L+4d is

K.= i s
2 Z[(l‘/”> +ﬁ-(d""j)][(£'/¥) +A(d+/#)}

The value of the integral is then

(ne-L)
(K+K,)= 2 2
ZA(K| 2) [(1_”) +(’g+d)

Hence it has been shown that

I (Z-l)/yda - (/26-/()
T\ LT [ +(5+3)]
C
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Now consider the integral along the path CZ .

e
(2-L)4yd 2 ]
[(z-x)’+a*][(m-z)‘+¢]
“ _ \ > 5
On C2 , 2= Re*® C,
di=« Remde

X
Hence (z_)()/yd-z

c[@-l)’*J’][(”")’w’} [(Re')+dT[x-Re" )+ ]

< (R"I ) Rux R
T (R0 ][R -n?]

Therefore as P\"*)' oo

L)yd
J‘[(fl)’ﬁ Z >’O

(@) +d’][ (9 “+ny’]

Therefore, we see that as R—) o0
[ (0mds o " (50) 49
T (G0 y] 7 (G eD%]

¢,
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Therefore we can conclude that

N (¥-4)nydy _ (x~-L)
X GOSaTED*] (o) + ()]

We have shown that the for both stream functions are

n
equal, If we can also show that —&-!—VT— for both stream functions

are equal then we can say that boti/ztream functions are equal,
For the point vortex near a line source, as A—> oo
00
¥ _ ¥ V' (4-9)
OF 2R |[(30) (3 e'] +27<[<m-x)* +(y-d)?

For the vortex pair,

W _ Y‘[ (4-d) __ (y+d)
Iog T 2W (a0 +(y=d) ] [l ()]

Hence, we must show that as A= o0 , and for /\j 20

(TG0 __
TG40 ] [(+0)+(y+d)?]

To solve the integral on the left hand side we will use the
same method as was used in the previous integration, that is
Cauchy's Integral theorem., The procedure is quite similar to that

of the previous equations, so only the algebra will be shown without
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explanation until the answer is obtained.

K = —((=-A)+4n]
- [+ (- d)][(-R) +i (g + )] 2
K = [(2-£)-4d]

2" 2[(fr) +A[d-a)][ (o) +£(d+rg)]

. __ (d+n)
ZL(KI+K2) [(M°1)z+(ﬂj_+d)2]

Therefore is the same for both stream functions.

Hence we have shown that o and s
N )rg.

both the point vortex near a line source and the vortex pair for /:1_7.0

are the same for

given the boundary condition that there is no flow through n=0.
Therefore it must be true that the stream functions for the two prob-

lems are the same for /32.0 and /Al'—)oo.

That is,
U (00tc'Gds | T g ft)fr (y-o) ]
2T\ (G2 +d?] 2%

_\ (L)' + (g-d)?
“ﬁ%[(gd)*i(:;-»d)* )ZJ
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APPENDIX B

Arbitrary Velocity of a Point in Space:

Suppose we have a rotating coordinate system with rotation

rates (P)ZJF) . We wish to find the velocity of any point in space

relative to the non-rotating coordinate system,

r=r +t
L:_L J +wYX°Y
r=1 +y +@Xy

where 7‘; = velocity

. . / .
of origin Q relative

to O

—

'U; = velocity measured

in (/t,'ﬂé(; 3’) coord., system
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APPENDIX C

The velocity induced by the finite length line vortex between

(X,)Y,,Z,) and (xz;Yz)Zz) is (see figure 76)

7= L EXE F.(r;_ii_)
A% TexpE ° NET i

where

r= (Xz'x. > 7Y, zz'?')

n= (X'X. g Y7V, 2-2,)

r= (x—xz % A 2-2,)

Now, let Y-Y _/&m
X,-X - Aen3
2oL < fan
L2 Ly
XZ— Xl

Then, we can write the induced velocity as

5 O [ [omEn)-taee) |- [ea)er-eaox) |~
V“m[ ( D L D 4

+(x—x.)(Y-Y;)-(X-XJ(Y—Y‘) R (XX )(X=X) +(Y N )= )+ (72, )(2-2,)
D V(X=X )2 4(Y-Y,) 2+ (2-2)F

(XX X+ N(Y-5) + (2:2)(R+2,)
VX (Y1) 2+ (2-2,)?
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where )= [(r-n)(22)~(r1)E2)] + [E2) 0002 0%+
F[ (X)) =(x-x) (Y-¥)]°
We want to have (X”YLZI) all go to infinity while preserving

the angles o and ﬁ . Hence, we must put all terms involving

(X, Ye 2,) in terms of « and {6 . Then we will let X —c. This

gives,

V= ¥ T‘(Y‘Y')f“" +(28 ) famg) L +[(22)+ (XX JTamJ B X)) Lan B4(Y Y )]R |
4r l_[‘(Y'Y,)taAd. +(z-z,)1‘,..p]2+[-(z-z,) 4+ (x-x Maro]"+ [-(x-X,) TamB+(Y-¥,)]*

(%=X,)+ (-Y. ) fam g +(7-2.) Kan o + ‘
[ + Lan'x + fan]
[ Vi) (-2} v (3}

We are now ready to write down the complete velocity induced

by a single horseshoe vortex., This consists of the velocities induced

by the bound portion and the two trailing portions, See figure 77,

The total velocity induced by the horseshoe vortex shown on

figure 77 is,
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E(Y-Y.)(?-ZJ-<Y—vz)(2-2.)]/7+[(2~2.)(x-x,)—(z-z,)(X-x.)}I«»[(X-x,)(rY,)—(x—xz)(v-v.)]E}

v - __.\
: ( (Y-Yu)(Z’Z'_) (I-ll)(z'z-)rl [(2-2.)(X-)(2)-(2 -ZZ)(X‘X,)]Z'fl (X-X,)(Y‘ 'z)-(X'Xz)(‘ 'Y,)

4

[( LAY HEZNER)  (rox )X+ H (R 2N Z-Z,)
(R AN cE AL Vi P+ (G + (E-5) '

v &(Y—Y.)tm«. — @2 ) ManpJEH(@2)~ (X Ylamet JF +[OX VanB - (v-Y ] R
AX (-2 ) en = (1Y) omst J 24+ [06X,) famer, — (2-2.)] (Y'K)-(X'X.)/B»\,e,]z .

(x"xl) +(Y-Y|)Mﬂc + ("L"‘Z.,) m“l
VO r @y

+ T+ famie + Har ,']

Ry [[(Y-Yz)m-(z-(2-2,)xiwﬁz]z+£(z-z,)-<x‘xz)ﬁm«zJI+ [, o~ (r )R |
AT |[(2-2, a8, = (- Momot, T4 (4, Vot~ (22 )| 24 (1)~ (x-, HamB,]

[<><-xz)+(Y-mmﬂz+(z-z,)rw<l

A GARCE A +Vi+ M‘“ﬁ”‘ﬂi}
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This is the velocity induced by a single horseshoe vortex
whose trailing vortices are at arbitrary angles to the direction of

the freestream.
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APPENDIX D
INVESTIGATION OF THE INTEGRAND OF THE VARIOUS
INTEGRAL EQUATIONS INVOLVED IN THE REPRESENTATION
OF A NON-PLANAR GROUND PLANE (3-D) BY A
DISTRIBUTION OF SOURCES AND SINKS

Introduction:

When a non-planar ground plane is represented by a distribu-
tion of sources and sinks, one is faced with solving integral equations
in order to determine the source strength distribution of the ground
plane. Also, after solving for the distribution then, in order to
calculate the forces and moments on a wing, one must evaluate an
integral representing the effect of the ground plane on the flow at
any point in the flow field, Thus it is very important to have an
accurate knowledge of the integrand of the various integrals and
integral equations before being able to discretize them and numeri-
cally calculate solutions on a computer. Therefore, the purpose of
this investigation was to gain this desired knowledge.

There are three types of integral equations involved with
non-planar wings in non-planar ground effect. One is the integral
equation which arises when we attempt to determine the effect of
the ground on the surface of the wing when satisfying the boundary
condition of no normal flow through the wing surface. Another inte-
gral equation arises when we determine the effect of the ground
plane when satisfying the boundary condition of no normal flow
through the ground. The third integral of importance is the one

which must be evaluated when determining the effect of the ground
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on the horizontal velocity at the quarter chord of each vortex patch,
This arises when calculating the lift [L . These three integrals
are investigated in this appendix.

Integral Equation Arising from Boundary Conditions on the Wing:

In order to calculate the forces and moments on an inviscid
representation of a 3-dimensional thin non-planar wing in non-planar
ground effect, we must satisfy two boundary conditions in the flow
field. One of these boundary conditions is that the flow must be
tangential to the wing surface. This boundary condition is expressed

mathematically as,

-+ - for each point j at
(u-o u) n“’, + (\{:\r) n“’l + (W°°+w) nw3 O which thepbounglary
condition is satis-
fied

Since we will be solving this equation numerically, we must
discretize the wing and satisfy the boundary condition at a finite
number of points on the boundary, thereby solving for a finite num-
ber of unknowns (that is, a finite number of points in the circulation-
and source strength distributions).

Therefore we must have an accurate picture of the functions
we are discretizing so as to accurately represent them.

But, at each point on the wing surface which we use to satisfy
the boundary conditions there is a contribution to the velocity at that
point from two different places. That is, the wing induces a velocity
at the point and the ground induces a velocity at the point. At this
time, we will investigate tfhe velocity induced by the ground at the

point.
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Since the ground is defined as a set of sources lying at points
along the ground, and at each source point there is a different source
strength, then we must integrate the effect of all these source points.
Mathematically, this integral for each velocity component

is,
oo

Cave [ AN (8 dydudry
4% W4 7(5 ((/’5-*3)1+('y,-‘/f)’+(5rf)’]’”

-~ 00 -0O

(| 0GADA)dsdudy

SO EIT | el ) T

- -w

oo

noa )= L | (MGAT) G 1) dydudy
2‘;(”3 /‘JJ %) 4T ((’3")24'("’,"/{)2*(?;]’)1]%’

- oo -0

However, we want to study the integrals as they appear in
the equations for the boundary conditions so we want to consider the
integral

o0 N

(773) Mo, H (AN (3 0)Ng | 4. {
(G [[(ff-x)’ﬂv,w)‘ +(47°7)'1 ]ds A

= Q-
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It is not nec;essary to solve a major problem to study this
integral., The important thing to notice is that the integrand is the
product of two different functions. One function is )((}/,t{/f) and the
other we will call the kernel function, This kernel function is of a
form such that as (3//(/3’)-—"(0‘/,/‘%, 7'/) the kernel function — oo . But

(”jl /y‘-,gj) are coordinates on the ground, Hence, for a wing boundary
condition matching point near the ground, the kernel function has the
form of an approximate delta function centered at (/33,’5.“9‘) .

However, )((}'H']') depends on the overall gamma distribution
of the wing., Hence it should not have as much variation as will the
kernel function. So the entire integrand should vary much like the
kernel function varies,

To verify this hypothesis, some numerical calculations were
made for a wing represented by a single horseshoe vortex flying at
5° angle of attack at a 1/4 chord height of 0.2 chords above the
ground. A flat ground plane was used for these calculations, On
figures 78 and 79 we see plots of the kernel function and ){(}'//{,5’)
vs. /& and A on the ground plane. The matching point for the bound-
ary condition on the wing was at the 3/4 chord so that the matching
point was 0. 15645 chords above the flat ground plane., We see that
the kernel function is quite peaked at (”’075;41:0)9:0) which is the
smallest possible distance from the matching point. Also )((}’//.{/f)
varies rapidly near the 1/4 chord, but the kernel function is so small
here that it is not very important, Hence, we see that the kernel
function definitely dominates the integrand. It has a very large peak

near the matching point and dies off very quickly in all directions,
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For matching points higher above the ground the peaking is
much less pronounced but then the integrand does not die off relative
to the peak value so quickly.

Fl;rther numerical calculations were made to determine the
size of the source sheet distribution required to accurately simulate
an infinite ground plane, The results of these calculations indicate
that there are several factors which affect the accuracy and the
amount of computation time taken to numerically integrate and pre-
dict the solution of the horseshoe vortex in ground effect. These
factors are: 1) The ratio of the height above the ground to the radius
of integration away from the field point being solved, 2) The number
of intervals in the area of integration needed to obtain the proper
accuracy, and 3) The accuracy required in the actual integration
process. We will consider each of these factors in more depth,

Before the study began it was decided that an error of less
than 5% was tolerable. Therefore in all phases of the study, 5%
was used as the proper error criteria,

It was found that the proper ratio of integration radius to
height above the ground was on the order of about 3 in the Y -direc-
tion and about 1, 75 in the X -direction. These ratios caused errors
of about 4% to 5% while all other sources of error were held con-
stant, A graph of the error in the ground induced vertical velocity
vs. the ratio of the Y -limits of the finite ground plane to the height
above the ground at which the vertical velocity is evaluated, is

shown in figure 80,



-119-

Integral Equation Arising from Boundary Condition on Ground:

The other boundary condition which must be satisfied when
solving inviscid non-planar wings in non-planar ground effect is the
condition that there can be no flow through the surface of the ground.
This boundary condition is expressed mathematically as (see section

titled '" Applications to Non-Planar Ground Effect'),

)7(”‘3') i) 94’) / <7;'7‘0 Ny, + (Z- 7) N,
2 tix J Yi4,1) (rxf-})%(/yj-/f)ﬁ(dj-ﬂ)’] % % dﬂ df

P

3

Vn,v. c) ‘,;(.V.
"

1+ )3

+ n

“3 :O

3

This equation results from satisfying, V-Nn=0O
on the ground surface, where A = outward normal from
the ground surface.

The velocity induced by the ground at any other point on the
ground is represented by the integral in the above equation. At the |
moment we are interested only in this integral. That is, we are
concerned with the profile of )7(}'//())’) and the kernel function and
the product of the two which makes up the entire integrand. There-
fore, consider the integral

i (00, +(37)n,
F?G’ﬂ’ f [(o-5+ (1) + (37 1) T Iucly

~ 00~ 0

As with the wing boundary condition we see that the kernel

function of the integrand «—>» o0 as (}I/(}j)._?(/yj)%)g) Hence the
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integrand should have a sharp peak where there are corners on the
ground plane or discontinuities in the slope of the ground plane.
From the nature of the numerator of the kernel function we see that
the peaks should be sharper as a function of { and f than as a
function of ¥ . Also, the integrand as a whole should vary much the
same as the kernel function varies.

To verify these hypotheses, some numerical calculations
were made for a wing with 45° dihedral, aspect ratio = 4 and angle
of attack = 5°, represented by 2 horseshoe vortices, and flying
above a non-planar ground plane whose shape resembled a V with
each side being 45° to the horizontal, The figure below illustrates

the problem.

45°
AN 2

Front View

After observing the numerical calculations it was found that
the kernel function of the integral involved in the ground boundary
condition did exhibit the distribution that was expected. It was found

that the peak of the kernel function occurred at a distance from the
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corner about equal to the distance of the matching point from the
corner along the opposite wall of the ground plane. As the matching
point approached the corner, the peak became higher and sharper.
In fact, if the matching point is placed at the corner, a singularity
occurs in the kernel function at the corner, But if the matching
point is not at the corner, then the kernel function goes to zero at
the corner. Therefore, we see that the kernel function is a non-
uniformly convergent function in the closed region from the corner
to infinity. It is a uniformly convergent function in the open interval
from the corner to infinity.

It is also apparent from the graphs that if d is the minimum
distance of the matching point from the opposing ground plane, then
the integration limits need to extend about 4d from the point on the
opposing ground plane where the minimum distance occurs from the
matching point, This is illustrated more clearly in the figures

below.

/\4 = distance from corner to peak of kernel function.
e
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The only location where the kernel function may cause diffi-
culties is at a corner, As mentioned previously, a singularity occurs
in the kernel function at the corner, It is important to determine
what effect this singularity might have on the flow field, Therefore,
let us investigate the boundary condition on the ground at a corner
in greater detail, We first investigate the corner boundary condition
for two dimensions and then for three dimensions.

Boundary Condition at a Corner in Two Dimensions:

Consider a pair of 2-d point vortices in the presence of an
infinite boundary with a corner. The figure below illustrates the
problem. Let us represent
the presence of the wall by
a distribution of sources Y
and sinks all along the wall. \
Assume we know the
strength of the vortices ir.
Then the only unknown is
the source strength distri-

bution along the wall, To

determine this distribution
we must satisfy the boundary

condition at the wall that

e,

/7/7///7X

NN N NN

+VT
L
L/

there can be no normal flow

pN

N
N
N

through the wall, Let )((’*)
and yﬂ;)be the source

strength along x or y, Then
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the boundary condition expressed mathematically is,

W) | 6.8 1 [ni)sds
z It 2T | 4yt
0
N») oG, () /M
o= + - z 2
Z Iy 2 | g

(o]

O=vV.n=

For simplicity, we have chosen to consider a symmetric
situation, so that yﬂ;}rf/y) Then, the two equations defining the boun-
dary condition are identical. Both of these equations are linear
Fredholm integral equations of the second kind with a singular kernel,
This type of equation has not been solved in closed form. However,
iteration procedures have been applied to these problems with some
success. That is, an approximate solution can be written as,

L) =-2 L 40 [ L5
? 4t

amj

where )/(/7_)"" a)/%

- L
and A T

As n—»~, the approximate solution converges to the correct
solution for sufficiently small j.

Using this procedure, an attempt was made to develop an
approximate solution for )(//7.) and thus examine the behavior of )///y as
A0, However, due to the complexity of the integrals in the higher
order terms, only a first approximation to V/'g) could be obtained,

This approximate solution was rather lengthy so it will not be presented

here. However, y/oj was determined to be
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‘) U/O, -/ -/
{10 ==2 T g o) 2 (2]

Hence, %/0) does not -0 asy-o at least to this approximation,
However, higher order terms in %,/7,) may —ye= as 4~y . Even if
)((’j}—’, ~as g0, this singularity should not adversely affect the flow
field anywhere except very near the corner. This conclusion is based
on the fact that corners and steps occur quite often in two-dimensional
subsonic potential flow problems. The flow is usually affected only in
regions very near the corner or step. Hence, although )f(a) may -9 «o ,
the over-all contribution of the corner to the flow field is expected to
be small,

An independent method of solving the problem of the point
vortices in the presence of a corner is the method of multiple images.
That is, three images of the point vortices would be placed in each of
the other three quadrants of the x-y plane. The ground boundary
condition would be automatically satisfied. Therefore, the flow field
is determined merely by summing the velocities induced by all the
point vortices in the x-y plane. However, using this method to
determine the flow field does not provide any information in examining
the ground boundary condition at the corner.

Now, let us consider the same problem in three dimensions,

Boundary Condition at a Corner in 3 Dimensions:

Consider a horseshoe vortex in the presence of an infinite
wall in both theX,Ya.nd 7 directions, We want to examine the source

strength distribution at a corner in theV,Z -direction. The figure



below illustrates the problem:

Z

Let us represent
the presence of the )\
wall by a distribu-
tion of sources and

sinks all along the

wall., Assume we
know the strength of

the vortex T .

Then the only unknown
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Vo

SIMVLA

is the source-sink

strength distribution

along the wall,

X

To determine this distribution we must satisfy the boundary

condition at the wall that there can be no normal flow through the

wall. Let v(”,‘&l) and )///)‘,g)be the source-sink strength along the

/}‘«-AJ, and/x,—g, planes, then the boundary condition expressed mathe-

matically is,

(% 3)

%3

O=V-n= Z +

¥

0= Hiwvy) | 4 (ry)

[ YO H) Hdnd
ATC | |3 fou s a0

-0 0

+

z 9

[ (G Pdeds
AT [/Jo-;)ifu(g.,()’j’é
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In general, it is very difficult, if not impossible, to solve
these equations. They are a coupled set of linear singular integral
equations of the second kind. An attempt to develop an approximate
analytical solution by iteration procedures would also be exceedingly
complex because the initial guess at the solution would necessarily
o ~3) and o0, (% %)

. However, the equations for these functions, as
J/y, I3

shown in Appendix C, are very long and complex. Even the integrals

involved in the first iteration,

" (a,_,a,u)[ Ay oy
It ((x-3) 44"+ (3-1)° 1"
--00 O
w,,,(z r) 7drds
E(m P gu) ] 7

would be impossible to evaluate analytically,

Therefore, a numerical investigation was conducted to
determine the behavior of the source strength distribution near a
corner, Numerical calculations were performed on the same problem
described on p. 120; that is, a thin wing represented by 2 horseshoe
vortices, aspect ratio 4, dihedral angle 45°, angle o,f_k a}Lttack 5°, flying
in the presence of two semi-infinite ground planes intebrsecting at a 90°
angle. The 1/4 chord of the vertex of the wing was placed .5 chords

above the intersection of the ground planes., The figures below

illustrate the situation,
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SiMuLATe»
wine

The problem was solved by both the source distribution
method and the multiple image method. The agreement between the
answers calculated by the two methods was excellent. The source
strength distribution as developed by the source distribution method
tended to become very large in the region near the corner. To deter-
mine the effect of the source strength at the corner on the rest of the
source strength distribution and the rest of the flow field, the
previously mentioned problem was solved using different pre-set
values for the source strength at the corner. These pre-set values
at the corner ranged from zero to about twice the source strength of
any other point in the distribution, The results showed that the
source strength became large near the corner regardless of the value
of the source strength at the corner. In fact, the value of the source
strength at the corner affected only a small neighborhood near the

corner, Some illustrations of the variations in the source strength
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distribution in the y-z plane with a variation in the value of the source

strength at the corner are shown in the figures below,

}\7{(5) 1 }(/S)

nY
Y
W

S
L~ s
Furthermore, variation in the value of the source strength
at the corner caused negligible changes in the calculated lift, drag,
and moment coefficients of the wing flying above the corner.

However, as the accuracy in the natural representation of the corner

was increased, the source strength at the corner tended to grow
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larger. Therefore, it is probable that the exact source strength at
the corner is V/oj: oo ., However, this singularity in the source
strength at the corner is apparently integrable, and its contribution
to the integral over the entire plane is also apparently quite small,
Therefore, a simple method of representing the boundary

condition at a corner was incorporated, This method is illustrated

in the figure below, ’

F _Nn+n,
coRpER lﬁ."’ﬁzl

A3

As the figure illustrates, we assume the direction of the
normal at the corner to be the average of the two normal directions of

the intersecting segments in the region near the corner. Since the
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infinite source strength at the corner is caused by the source dis-
tribution infinitely near the corner, we now can eliminate the possi-
bility of a numerically computed infinite source strength at the
corner by placing the next ground point a finite distance from the
ground point at the corner. Although the source strength distribution
will be in error near the corner, it will not affect appreciably the
overall solution anywhere else as shown by the foregoing analysis.

Integral Arising From Calculation of Horizontal Velocity at 1/4 Chord:

In order to calculate the lift on a non-planar wing in non-

planar ground effect, we must evaluate the formula,
[_‘:-ZZt‘.pa(”;-/y;) 30\ Ny,
£

where we have represented the wing by a discrete set of horseshoe
vortices, and the ground by a set of sources and sinks. If we know
the circulation distribution on the wing and the source-sink strength
distribution on the ground, then we need only numerically evaluate
the quantity (/(/{/J%,g‘)at the 1/4 chord of each vortex patch on the

wing. Expressing (%, 4. 44) mathemat1ca11y, we have

(KD D) dsd ¢

L(( =) Y ( % P )+ )( (/(

") Z S [t )35 U

where M (4‘ KA 3.‘) = Horizontal velocity induced by the jth
horseshoe vortex on the wing

and the integral represents the horizontal velocity induced by the
source-sink distribution on the ground. In fact, the purpose of this
investigation is to study the behavior of the integral and determine

where any difficulties would arise in evaluating it.
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We see that the integrand is the product of )7(}//{[{) and a
kernel function. As (!//(,f)-—»(l}z,%,gi)the kernel function —» o0 .
Therefore, we can expect a peak in the kernel function near where
“(@'5),(”}{#),(5{}’)” is a minimum. Also, note that when =3 , the
kernel function is zero for o FH and/or 4b¢'f . So the distribution
of this kernel function should be peculiar., One would expect that
7{ distribution is much more smooth, and that the integrand should
vary iike the kernel function varies,

To verify these hypotheses, some simple numerical calcula-
tions were made with a single horseshoe vortex in flat ground effect
at h/C = 0.2 above the ground. The other parameters were AR =4,
« = 5°, (8 = 0. All length parameters were non-dimensionalized
with respect to the chord. The graphs on the following pages rep-
resent the results obtained (see figures 81 through 84).

It is seen that the kernel function has two peaks, one on
either side of the minimal distance point on the ground, The sharp-
ness of the peak varies with /y and the integrand dies out a lot more
slowly than the other integral equations involved in this problem,

In fact, a detailed investigation was made to determine the accuracy
of the numerical calculation as a function of the integration limits
used to calculate the integral, It was found that for reasonable accu-
racy ( 25%) we needed to have integration limits greater than 5
times % in all directions away from the minimum distance on the

ground from (#4,#4;4 ) . This is illustrated in the figure below.
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It was also found that the peaks in the kernel function
occurred on the ground at a distance of ~ % in all directions
from the minimum distance from /X/“/yilg,/;),

Summary of Appendix D

An investigation of the various integrals involved in the
source sheet distribution method shows that excellent results can
be obtained using this method if certain fundamental restrictions
are kept in mind., In general, these restrictions dictate that dis-
crete ground points must be placed in accordance with the peaks
of the integrands of the various integrals, These peaks exist due
to the nature of the kernel functions which are multiplied by the
source strength to comprise the integrand of the various integrals.
Figures 85 and 86 are a series of plots of the universal curves
representing the normalized value of these kernel functions in

terms of the distance away from the point at which the velocity
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is evaluated. The placement of ground points as well as the spacing
between them must be done in accordance with the variation in these
curves,

Furthermore, ground points may be placed at corners in the
ground plane, so long as the next nearest ground point to the corner
is any "finite'" distance away from the corner. The source strength
distribution at the corner and very near the corner must be in error,
but this error does not appreciably affect the flow field anywhere

else,
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APPENDIX E
NUMERICAL CALCULATIONS OF THE DOWNW ASH
DISTRIBUTION OF AN ELLIPTICAL PLANFORM WING
IN AN UNBOUNDED WING

Calculations were performed to numerically determine the
downwash induced by a thin, flat, elliptical planform wing of aspect
ratio 8 at an angle of attack of 2.5°, The vortex-lattice method was
used to solve the problem, The downwash distribution was deter-
mined 100 chords downstream and compared with the theoretically
predicted downwash distribution, These results are shown in figure
87. The agreement is very good except near the tips where the
numerical solution would be expected to break down, In addition,
the numerically computed circulation distribution on the wing was
compared to the theoretically predicted circulation distribution and
was found to agree excellently, The theoretical distribution was
slightly lower near the tips.

The discrepancies near the wing tips resulted from difficul-.
ties in representing the geometry accurately near the tips, If a
larger number of vortices were placed in the region near the wing

tips, the solution would have been more accurate there.
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APPENDIX F
PARASITIC DRAG APPROXIMATIONS
Parasitic Drag of a Lifting Flat Plate (Ref. 25)
To take into account the difference in parasitic drag due to
lift we take into account the extra drag due to the change in dynamic
pressure. That is, the total parasitic drag is the sum of the para-

sitic drags on the bottom of the wing and the top of the wing.
C C

- B P N
C, (q,S,+q; S, ) Q¢ q q.-9  93,-9

CD :Z_f-._'i_t._i)__b_ :Cf(__t.+_P.)=C(2+ t +b

P 4P . pqS a4 f a4
where Cf——D—— where S = planform area of wing

1ou22s
Now, as a first approximation assume

= 1ift = P )

L = lift —pUFavg.b = G $pUbe

where
I'(y) = fﬁ « dS = Zuavg (y)C
X

= 1-‘a.vg = 2ua.vgC

: = 1

= 2uavg =Cpz

Ya CL
= —ﬁy-g-= 5 where + for top side (suction side) of plate

- for bottom side (press, side) of plate
2
2 2 9

> qp-a = p(Utu)i-4pu’ = Lo+ By -

2
L L
9-9 = 95— + —5¢)

C C



2
2 2 2u , u
a,-a = 3p(U-0) - 1pU” = Lpt(- 4+ L)
2 U
c. C
L, ‘L
Wpraxal-—3* 7g) 5
2 2
cL,cL L, S ‘L

= Cp,~Ci2+—5"+— 7 -3 ) RCUZ +

For the wing used for the dynamic stability study of planar
wings in planar ground effect, we have

U
C

v

200 ft/sec.
5 ft.
.15 x 10-3 ftz/sec.

=> from skin-friction curves for flat smooth plates,

C;~ . 0032
-3 CE
= CDQ 3.2x10 (2+'—§—)
P 9C;
3Cp 2C, —— 5C
P L 0a 1 L
= ~%a Ce—75 ) =3CCL, =53
oC
Y L
D 2C., —= aC
P L 5h,_1 L
5h Cel—3 )=7CC, 5
=> For our problem
9Ch 4 8C
oL ® 8x 1077 ¢ o=
9CH 9C
~8x10 %, L
5h L oh

Now, we are in a position to calculate total drag derivatives.

That is,
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D D
i P
oC oCp oCp
P - 1 P
= Fa 5a T Ta
8Cp  9Cp; . 8Cp,
5h - oh 5h

PARASITIC DRAG DUE TO END PLATES (Ref. 25)
End plates cause extra skin-friction drag and interference

drag (at the corners).

The extra skin friction drag is just

S
C = Z(ZCf) g]_i_‘, where SE = planform area of
DE. P, .. each end plate
Frict.
S = planform area of
wing

The interference drag is accounted for empirically by the

following formula:

2 =~ ¢
C oy -3 (s 8(—c—) -.0005) where = = thickness

E.P.. € ratio of wing
inter,

Hence the total contribution to the parasitic drag due to the presence

of the end plates is

S

5 E
C =C +C 24C_ ~——+
Pe.e. Prop. D p. . £5

rict. inter.

2 t,3
E(.S(E-) -. 0005)

For a flat plate of chord length 15 feet, U_ =100 ft/sec

C, =.003
°E _.o01 £
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PARASITIC DRAG FOR NON-PLANAR SINGLE WING

U =200 ft/sec.

C =100 ft.
y =.15x 107> £%/sec.
2x10%x10°% 4 3 8
Re = 22X~ X107  1.33x 10" x 10~ =1.33x10
=3
. 15x10

from skin-friction curves for flat smooth plates

(Hoerner, ' Fluid Dynamic Drag" p. 2-6, 1965).

Cf ~ ,002
= cr S .0005
Cp =Cl2+5)+4C 5 -—x
P ,
=1 gin(o 2 2
Sg = $sin(f )C% + d)e
We have neglected extra
2 skin friction drag due to the
S=C" AR lift of the side plates.
5 1 £, 1
= —_ = (58 —_—) —_
5 = sl v O &
CZ

_ L . £, 1 .0005
= ch R . 002(2 + =) + . 008(z8in(Gy P+ 2) 7 - g
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2-d’ VORTEX DISTRIBUTION IN GROUND PROXIMITY
SOURCE DISTRIBUTION METHOD
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3-d NON-PLANAR THIN WINGS
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L/Lo vs h/c
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LIFT CURVE SLOPE vs h/c
TANDEM FLAT RECTANGULAR WINGS IN GROUND EFFECT
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SIMULATION OF NON-PLANAR
GROUND BY MULTIPLE IMAGE
METHOD

Multiple Image

Ground Plone\/

\ Actual Wing /

Image Wings

/ FRONT VIEW \\

Fig. 26
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SIMULATION OF NON-PLANAR GROUND BY SOURCE
SHEET DISTRIBUTION METHOD

FRONT VIEW

Source Sheet
Distribution Ground
Plane

TOP VIEW

Fig. 27
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SLANTED CHANNEL WING WITH DIHEDRAL
CL ’ CML.E.' CD" CY’ CR Vs

ANGLE OF ATTACK AND LATERAL SHIFT
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0.00l

"
Angle of Attack
ain?®

0.15} ~0.003
CL-Cm_ e -Cy,Cr
0.l —40.002

-\

0.05} Cm_g—0.00I

g

0 ] ] | .
O 002 004 006 008

Lateral Shift from Equilibrium AY in Chords
- Fig. 30




1G°2=¢
O — o= \quldunq..m%m@..mhlarlldllldl
ﬁmm\uu\n T A oy — -V VY spJoyd ul
e | “ | — X
gl- O'l- GO- O GO Ol Gl 0¢
,/x _
mo.o-,,w//o
q
R ./.
' G0=H OolI'o+ J‘ 691'0=S \“\\
Oc=4 N® glI0=k 8E£E80=S 7 o
=D \ ‘O=K 7 \.“v\u -
oG O//. 88G 0= /‘w\\
o /O/ = 4
. o— 0= 7
Glo+ ROo—-Q— ® 7
Om.v ”/ \\
/\ ———— o
=K *
(zh%) b 20§

IVYA3HIQ HLIM ONIM ONNOYO G3LNVIS
ANNOYS 3HL NO NOILNGIYLSId HION3HLS 304N0S ISIMAYOHI



-173=-

SPANWISE SOURCE STRENGTH DISTRIBUTION
ON THE GROUND

n (x,y.Z)A

T __

a=5°
m=2
H=0.5
x=1.0833
Sl | | | ]
25 20 1.5 0 . 05

Fig. 32
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ROOT LOCUS DIAGRAM LONGITUDINAL STABILITY
SINGLE FLAT WING

‘Im)\i

-+1.5
h=0.150

-+1.0
h=0.2 O

—+05

Mm=0.5
oo a=i0°

-05
+-05
o
+-10
o
+-15

Fig. 37
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ROOT LOCUS DIAGRAM LONGITUDINAL STABILITY
SINGLE FLAT WING

A imx;
h=0.05e@ MmR=10

h=0. O ®0 a=2.5°
om a=5°

h=0.l

Fig. 38
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ROOT LOCUS DIAGRAM LONGITUDINAL STABILITY
SINGLE FLAT WING

[\
ImX;
MR=2.0
+1.5
eonaz2.5°
h=0.075@
+1.0
h=0.l ®
h=0.2 ® T0.5
h=0. 0.075 h=0.2
h=0. h=0.l
l h=0.2 i;,mo.o-rs
| = = >Re)\i
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° T-05
ImX;
® h=0.2 h=0.l
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° —t - »REN|
-4 -2 2 4 6x10-3
~+~1.5

Fig. 39



-181-

ROOT LOCUS DIAGRAM LONGITUDINAL STABILITY
SINGLE FLAT WING

Alm)\,
MR=4.0
+1.5
00 a=2.5°
h=0.075 @
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h=0.2 ® TOS
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Fig. 40
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- ROOT LOCUS DIAGRAM LATERAL STABILITY

SINGLE FLAT WING

ﬁlm)\i
R=05 Lis
A A a=|0°
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h=028 | .
h=0,2#N=015
} } i % > Re);
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a
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Fig. 41
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ROOT LOCUS DIAGRAM LATERAL STABILITY
SINGLE FLAT WING

M=1.0 o0 h=0.05
: <+1.5
eo a=25°
oma=5°
h=0.10 410

Fig. 42
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ROOT LOCUS DIAGRAM LATERAL STABILITY
SINGLE FLAT WING

?Im)\i

MR=2.0 +1.5
®0 a=2.5°
0h=0.075 Lo
oh=0.1 Los
h=0.075
h=0.2 h=0.2\L h=0.|
=0.2
: —0 —Re\j
-1.5 -1.0 -05 o)
h=0.2
o +-0.5
o +-1.0

Fig. 43
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ROOT LOCUS DIAGRAM

TRIANGULAR END PLATED WING IN GROUND EFFECT
(LONG. STAB)

‘|m>\l
= R=.5 +2.8
h '050 a=25° |10°
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ROOT LOCUS DIAGRAM
END PLATED WING IN GROUND EFFECT

(LAT. STAB)
.5 Alm)\i
h=15
2.5,10 s 15
a =2.5triang.
a =10 triang.
a=10rect.
h=15
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- h=.15 h=.15
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o -20 -0 10 20
A+-1.0 RG)\i
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Fig.48
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ROOT LOGUS DIAGRAM
Triangular End Plated Wing In Ground Effect

(Lat. Stab.)
R=1 O h=.1
a=2.5,5.0
oa»as 5e h=.075
e X»Qq=25"°
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X On=15

Fig. 49
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ROOT LOCUS DIAGRAM :

Triangular End Plated Wing In Ground Effect

(Lat.Stab.) A Im \;
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Tandem Flat Wings
100 |- a= 2.5
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Fig. 52



100

80

20

«]94-

}

B Tandem Flat Wings
a=2.5
sep=|4
ke = o |/
~ ——=Front Il
Rear /
R=
R=2
&= {
-
- \ /
\_"~
1 ]
A .2 h/c

Damping Time Vs. h/c

Fig, 53



OllvVYd 103dSV 'SA 1HS9I3H WNWI1ldO
dWi] asuodsay wnwiuliy 404 9/y
e Si’

T

=195

103y
JUOI4 ———

0G2=D
sbuim 4014 wapuo]




i i 1 i

|
0.2 0.4 0.6 0.8 1.2
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MAXIMUM STABLE HEIGHT VS. ASPECT RATIO

Fig., 55
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EXPERIMENTAL WING MODEL
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SUPPORTS FOR WING MODEL
 SIDE SUPPORTS (2)
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SUPPORTS FOR WING MODEL
REAR SUPPORT
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PHOTOGRAPHS OF EXPERIMENTAL APPARATUS
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LOAD DISTRIBUTION ALONG
TOP CENTERLINE OF WING
NON-PLANAR GROUND
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FINITE LENGTH POINT VORTEX AT AN ARBITRARY
ANGLE TO THE FREESTREAM DIRECTION
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Fig. 76
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HORSESHOE VORTEX WITH TRAILING VORTICES
AT AN ARBITRARY ANGLE TO THE FREESTREAM
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Fig. 77
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COMPONENTS OF INTEGRAND OF INTEGRAL EQUATION
IN WING BOUNDARY CONDITION
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COMPONENTS OF INTEGRAND OF INTEGRAL EQUATION
IN WING BOUNDARY CONDITION
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ERROR IN GROUND INDUCED VERTICAL VELOCITY vs
RATIO OF Y-LIMITS OF FINITE GROUND PLANE TO

HEIGHT OF VERTICAL VELOCITY EVALUATION POINT
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ERROR IN GROUND INDUCED HORIZONTAL VELOCITY
vs Y-LIMITS OF FINITE GROUND PLANE
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ERROR IN GROUND INDUCED HORIZONTAL VELOCITY
vs X-LIiMITS OF FINITE GROUND PLANE
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POSITION OF KERNEL FUNCTION MAXIMUM FOR
U-VELOCITY AND V-VELOCITY
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NUMERICAL CALCULATIONS FOR AN
ELLIPTICAL PLANFORM WING
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Tables of Aerodynamic Coefficients

Szmbol
AR

ANGLE
HEIGHT

CDI
CL

CMLE

XCG
DCDI/DH
DCL/DH
DCMLE/DH
DCDI/DT
DCL /DT
DCMLE/DT
DCDI/DW
DCL/DW
DCMLE/DW
DCDI/DQ
DCL/DQ
DCMLE/DQ
DCY/DY
DCLLE/DY
DCNLE/DY
DCY/DPHI
DCLLE/DPHI
DCNLE/DPHI
DCY /DPSI
DCLLE/DPSI
DCNLE/DPSI
DCY/DV
DCLLE/DV

And Stability Derivatives

Description

Aspect Ratio

Angle of Attack in Degrees of Horizontal
Segment of Wing

Height in Chords of 1/4 Chord of
Horizontal Segment of Wing

Induced Drag Coefficient = (.

Lift Coefficient= CL

Leading Edge Moment Coefficient = CM“'

Position ofCenter of Pressure
9Cs,
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Tables of Aerodynamic Coefficients
And Stability Derivatives (Cont'd)

Symbol Description
oC,
DCNLE/DV Sy
¢,
DCY/DP H—
DCLLE/DP s
C)
DCNLE/DP 3—%&4-
2
DCY/DR 32,*
DCLLE/DR fe
DCNLE/DR ;lfp
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TTUTTTTTTUTYHINTFLUAT RECTANGULARTENDT PLATED WINGS IN GROUND EFFECT

TRTANGULAR END PLATES

AR W5 S S - S S S
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HEIGHT o ('8 LT85 ol , «2 #1l5
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DCDI/OH -e 3048 -e 036014 -.01303 =-.NC1873 -1,159
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THIN FUAT RECTANGUUAR  END PLATED WINGS IN GPOUND EFFECT
TRTANGULAR END PLATES
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DCY/DOPSIT Oe o
DCLLE/ZOPST Do, O
DCNLE/DPST Co Vs
DCY/DV = UDNG2237 =, 0N0O2RIT
DCLLE/DV —e 55266 ~»2408

T DCNCE/DV T o (GR4RG T, 0N44673
DCY/DP e 04579 » 02908
ODCLLE/DP -1.7327 —a 1427
DCNLE/DP » 05573 e N2361
OCY/DR —o UNZZNT =, CH1NT9
. DCLLE/DR « 07013 «035R2 .
DCNLE/DR =« O3S TT T=,002C97




TTTABLE 2

TTHIN FUAT RECTANGUUAR END PLATED WINGS IN GROUND EFFECT

RECTAMGULAR END PLATES

AR 25 5
ANGLE 10, 10,
HE TGHT » 15 o2
CDI e NATVRT T noeRT T T -
cL a4182 22776
AR oF ' | 1) RS [P 1 I oS- & R T
XCG e 2365 o242
DCYT/DH -« B84R6 -all66
DCL/DH -7-081 -1.174
T T T DEMLEYDHT T AL INT » 5502
DCoI/DT 24734 1.607
TTTTURCU/DT T 12043 RL862 o
DCMLE/DT -9,163 ~5. 662
0COT/DW L2167 e 189
DCL/DW 2.0623 1.438
T DCMLE/DA | =, T439 T =,3761
DCDI/DQ 02346 e 1619
) DCL/DQ 1« 000 e 8329
DCMLE/DQ -ab713 -a4B25
DCY /DY Co Ne
DCLLE/DY DNe On
A o T =) 2 P s VO
DCY/DPHI 0 40N5 » NG46T
T TDCULLE/DPHI  =a1379  =-,01503
PCMLE/DPHI -.1305 -,0103
DCY/DPSI De Ce
DCLLE/DPSI 0O, 0,
T T TDCNLE/DPST e Os -
DCY/DV -2 9844 -»3937
T TUDCLLE/DV T SAYT TR, 1340
DCNLE/DV -2 52h4 -»13109
DCY/DP s D4G6T . Y4TTTG
DCLLE/DP -eN2134  «,01515
T TTDCNLE/DP T =L 0N9Tas T = ,004T18
___ DCY/PR 21347 a112R
T DCLLE/DR 401216  L00701
DCNLE/DR -. 05675 207093
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T TABLE 3

T TTTHIN RECTANGULAR WINGS CONNMECTED IN TANDEM IN GROUND EFFECT

SEPARATION BETWEEN WINGS = 3 CHORDS

AR le Y. T I. 2o 2.
ANGLE 2e D 245 25 205 2+ 5
HEIGHT « 08 02 05 075 ]
CD1 201264 aNG2RTE £ 002002 «01399 » 005783
B cL w4127 7 T s 1215 T L,049103% w6237 » 2844 -
CMLE ~e 359 -+C6798 - 04543 -+ 8137 -+ 3083
XCG
DCDI/DH —a 6448 ~2NNTENE =, R2TE-3  =.2681 ~+"1785
DCL,DH ‘1534 ‘0?852 ‘st“‘?Z "(5»()51 s 8339
. DIMLE/DH 19,28 0211 «N2665 157 1,133
T TTTTTTTCOTIDT T T T 2627 « 1027 W OBALT T L6754 » 1020
DCL/DT 44,02 2+ 261 1.182 13,2 1,899
T TDCMLE/DT -15%8,2 =7, 004 T T =3,561  =57.9%4 ~T.288
. DCOHI/ DA « 5075 s 1268 «a 29309 e 4bR2 4 » 2262
DCL/DW Be&T5 2e 155 2,079 13.05 6. 369
DCMLFE/DW ~7-3093 -1,552 -1a 004 ~17e 65 -64978
0THT/0Q le 568 s 3928 e 2969 «9R32 » 5005
DCL/DQ 25¢ 84 BelS 6,278 22:.21 12,18
DCMNLC./DQ -80.§2 "'25."8 -annb -BQQ(’K ‘45.31
DCY /DY
NCLLF/DY
NCNLE/DY
T T DCY/DPHET
DCLLE/DPHI
) DCNLE/DPHT
DCY/DPSI
DCLLE/DPST
DCNLE/DPSI
DCY/DV
DCLLE/DYV
DCNLE/DV
DCy/CP
DCLTE/DP
OCNLE/DP
LCY/DR
DCLLE/DR

DCNLE/DR
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e TN 1 I i Sh

T THTN RECTANGULART WINGS COMNECTED TN TANDEM TN GROUND EFF ECTY

SEPARATION BETWEEN WINGS = 3 CHORDS

AR — Yo TTTTRY T 4, 4,
ANGLF 265 25 205 2+5
HEIGHT .5 w075 0l o5
CDI 0 003824 001232 0 NO66NE » NUGONY
i cL w 188 T TTTTT1,153 7T T 45339 T ,3478
CMLE -e1773 -1.963 ~+B068 —aT774
e A le 5635 Te0UIOE 4rre
DCHT/DH —e 00234 -21626 -.01618 -, 002028
OCL/0H =, 1761 -1%,.%5% 1,592 -2 2456
DCMLE/DH 0 1692 30,21 2 8 e4518
T TN/ oT S0AYITTTTTUR06 T T T L1319 T T T 05067
ncL /0T 1274 7,486 »BO13 02869
N TTTDCMLE/DT T =24397 7 TT=53,22  -6,3N8 ~1,428
DCDI/DW « 1631 -.0 6401 e 197 .1821
DCL/DW 4o 282 272408 11.73 7. R68
DCMLE/DW -4,064 -38,32 -17.,85 -10.,83
T TR CDT/D0 T T 3oy T T T W 3077 » 30873 « 2881
pCL/DQ 94139 16,85 12,08 10,01
) TTDCMLE/DQ =31, 88 <92.51 ~56s 771 -472.1
DCY/DY
NCLLE/DY
DONLE/DY
TTTTTRCY/DPHT i
DCLLE/DPHI
T T DCNLE/DPHT T
DCY/DPSI
OCULE/DPSI
DCNLE/DPST
- DCY/DV
DCLLE/DV
T T DCNLE/DV -
DCY/DP
DCLLE/DP
DCNLE/DP
DCY/DR -
DCLLE/DR
- "DCNLE/DR
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TABLE 3

CTHIN RECTANGUULAR WINGS CONNECTED IN TANDEM IN GROUND EFFECT

SEPARATION BETWFEN WINGS = & CHORDS

A% 1 ..___“ —1 1 “ o 1_: ,,-_,.._;-_4.__..__.1._’_‘____...A._ S —
ANGLE 205 245 205 2+5 2+ 5
HETGHT « 05 ol 2125 el5 s 5
COI e (31264 e DN4LET2 « 003881 e NNA4] » 002094
Y T L4127 a1852 L1880 e 1412 » JO1CE
CMLE —e 4104 -21384 -~1125 —un0713 -00537 L
SR N— _.x Cfi e e e T DT T U i ——
DCHT/DH -e 440 - 0421 -2 02367 --01509 ~+82E-3
DCL/DH -15.4 -ledl12 -+ B3D7 2543 -, 133%4
. DCMLE/DH 21.88 1,279 s 7646 e 4905 » 03098
T DODTI/DT T 2.9l T T T e 3552 T T 2420 T 41048 « 086756
DCL/DT 56¢66 T.725 5, 31 4e N5 4 1,523
T T DRCMLE/DT T =267 3 -33.117 -22.729 -16,92 -5, 383
DCOT/0W e 5076 2017 ¢ 1601 «1493 « 09317
DCL/DW 8e48 4,133 3,547 3.186 2,079
DCMLE/DW -8,430 -3,130 -2+559 -2+212 -1,229
R 1010 741 - oL S Ay AR Y £ () AL ] ¥ s 3816
DCL/DQ 33.47 15,55 13,35 12, T 991
DCMLE/DQ -153,2  =67.C5 -56,98 -50.82 -32. 71
DCY/DY
DCLLE/DY
DCNLE/DY
DCY/DPHT -
DCLLE/DPHI
7 DCNLE/DPHI
DCY/DPSI
DCLLE/DPST
DCNLE/DPS 1
T - DCY/DV
DCLLE/DV
DCNLE/DV
DCyrsDP
PDCLLE/DP
DCNLE/DP
DCY/DR
DCLLE/DR

DUNLE/DR
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T T TARLE 30

TTTTTTTTTTTHIN RECTANGULUAR WINGS CONNECTFED (N TANDEM IN GROUND EFFECT

SEPARATION BETWFEN WINGS = 4 CHORDS

e g Ry e e T SE
ANGLE 2605 245 205 2e5 2.5
HEIGHT 50, . 075 el "2 » 5
cnI . 001859 e 01200 s NN9025 . ON5T85 » 003829
CTTTCUL « 0814 e 6238 7 43 T T g2865 T T ,1881
CMLF -0 04153 -1.013 —-"TN7 ~a3854 -e2225
XCG
DCDI/DH Ce -e 268), -, 1007 -+01788 -.002331
DCL/DH Oe —9, 654 —4aCT -. 833 -21198
DCMLE/DH Da 194 44 7+ 571 le4l . 2099
TTTTTTTTTDTOT/0Y T W 0814 T T L8189 39T T 41231 .« 04914
DCL/DT -e0iN1859 16,58 Be 157 2.411 09322
TTTDCMLE/DT T Ge 97,50 T o4, 1T 12422 =4,037
DCNI/DW . 08200 e 4825 « 3714 2362 1633
NCL/DW 1e 86 13,05 10,09 Ga 376 4,284
DCMLF/DW -e9516 -22, -15. A8 -8,723 54079
TTTDENTI/00 T T a3523 T 14228 49455 0 6272 e 4757
ncL/nQ Tat? 2777 22432 15,23 11. 4
T TTUDCMLEY DO =29.66  =-151.,8 T -118.7 7711 =544 39
DCY/DY
DCLLF/DY
DCNLF/DY
T DCY/DPHT T
DCLLE/DPHI
T T DCNLE/DPHI
NCY/DPSI
DCLLF/DPST
DCNLE/DPSI
e Y DV e
DCLLF/DV

T T DCNLE/DV o B
DCY/DP
DCCLE/DP
DCNLE/DP
T T DCY/DR N
DCLLE/DR
~ DCNLE/DR
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e -
THIN RECTANGULAR WINGS CONNECTED IM TANDEM TN GROUND EFFEC
SEPARATINN HAETWFEN WINGS = & CHORDS
_________ AR 2 e gy g g -
ANGLE 2a5 245 245 25
HE IGHT 2 075 el 2 . 5
CDI n 012213 » DCORST . 006600 e NN4Q
cL 1,154 " BR2 - 53471 © 3479
CMLF "’20485 ‘1:8?8 "'10(\26 ".611%
o G abel o Theren Terr
NCDI1/0KH -al6?26 -2 07234 -~ N1AG ~.NN2013
NCL/DH ~15.48 - Te533 ~1,69% ~a 2462
. DCMLF/DH 37.97 17.0 36 533 e 5657
TN I/oTY e B4R B A4 T T IARRTTTTT T, NR3IAT
DCL/DT 84852 4,535 1. 188 e 3586
TTTTTTTTTTDCMLE/DT T =01 DT T E45,73 T =10, A2 =7+421
DCNI1/DW ~aN6367 01239 « 1967 s 1821
NCC/0W 2207 18.79 T1. 7% 787
DCMLE/DW -48,5R -38.1 -22.72 -13.87
nCN1I/DQ e 4423TTTTTTTLUL1SG e 367 o 341735
DCL/DQ 1952 17,93 14032 11,86
T TDCMUE/DOQ =154, =133,.,2  =95,37 =T70.,8%5
NCY/DY
DCLLE/DY
DCNLF/DY
T TTDCY/DPHI
DCLLE/DPHI
T DCNLE/DPHT o )
DCY/DPSI
DCLLF/DPST
DCNLE/DPSI
T DCYJDV
PCLLE/DV
TCNLE/DV
DCY/DP
OCLCLCE/DP
DCNLE/DP
DCY/DR
DCLLE/DR
DCNLF/DR
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© TABLE 4

T UNCON=PLANAR WING IN NON-PLANAR GROUND EFFECT

RECTANGULAR RATL--WING WITH END PLATES
(ILLUSTRATED IN FIGURE 25,B)

AR 2 2564
ANGLE 265
HETIGHT 22123
TCoI T L, 006176 T
cL o 1147
CMLE -e 02437
XCG n212
DCDI/DH o X517
DCL/DH -2 h?2R
T DCWLE/DH 218 o
OCNI/DTY e0l04t
T DbeL/oTr T L 1eTA
DCMLE/DT -219327
DCODT/7DW ~ IZ2R7
DCL/DWw 1la526
DCMLUT /DR =,3004
DCDI/DAQ 20546409
DCL/DbQ 2 6555
DCMLE/DQ -.3381
DCY /DY —ea31%
DCLLE/DY «CIRS1S
DCNLE/DY 205774
NCY/DPHI « 02633

~ DCLLE/DPHT -.103876
NDCNLE/DPHI -.01129

DCY7DPST SITET
NDCLLE/DPST  =o02441
TODCNLEZDPST —=,07420

DCY/DV -1,415
DCLLE/DV 21657
DCNLE/DV . 3709
DCY7 TP STIRNET
DCLLE/DP -oN1282
DUNLE/DP = TI577
OCY /DR » 3587
DCULE/DR e G397

DCNLE/DR -2 2029
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R A e TV TN - R

T T T TTNGN-PLANAR TWING IN NON-PLANAR TGROUND EFFECT
KECTANGUUAR HATU=-WING WITH FND PLATES
(ILLUSTRATED IN FIGURE 25,B)
AR 22554
ANGLE 5
HEIGHT 22452
b1 ~0l46& -
CL w2042
A of U1 1) S A VAT b T
XCG 22191
TCHT/DH = NT4T8
NCL/OH -49769 L
T DCMLF/DA X130
DCHT/DT e 06263
B 5 Yol Y o it [ 7
NDCMLF/DT -.111
DCNT/DW 02004
DCL/DW 1a693
T T DCMLE/DW T =a382 - T
DCD1/DN 2 0QA3D
[ WA 21523 T
DCMLE/DO -23859
OCY /DY = 151%
DCLLE/DY 201603

~ DCNLE/DY «QOTT37
NCY/DPHI ~N3889

T " DCLULE/DPHI —.CRgDNG T
DCNLE/DPHI =o(1745

DCY/DPST s 130R
DCLLE/DPSI =4N36619

T T T DENLF/DPRST T ~-.(9398 o o
DCY/DV -1.861
T DCLLE/DV » 2457 T
NDCNLE/DV e 5N24
DCY/DP 1134
DCLLE/DP -.P2114
T DCNLE/DP -.02209
DCY/DR e3741
DCLLE/DR - 06054 o
DCNLE/DR ~+2101
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T TABLE 6

TTNON=PLANAR WING IN NON-PUANAP GROUND EFFECT

PECTANGULAR CHANNEL--WING WITH END PLATES
(TLLUSTRATED IN FIGURE 25,C)

AR 2936
ANGLE 2 ©
HE ITGHT -« 1327
CD1 . COLT4T
cL < 08RAE2
CMLE -2 (3245
XCG » 3659
NCHOT/DH -~ 0N233R
DCL/DNH -21312
T DCMLFE/DH « N6255
nenl/ot e 02569
DCcL/07 « 5408
DCMLE/DT -.2Mn10
DCDI/DW YA NA
DCL/DW 1455
DCMLE/DW 25117
DCNI1/DQ « 002214
DEL/DG « 6RIT
DCMLE/DQ —p b1
DCY/DY —»C 5375
DCLLE/DY -, 015647
T DCNLE/DY - 03081
DCY/DPHI -e 07995
DCLLE/DPHT =.C00376
DCNLE/DPHI 004218
DCY/DPST . 108
NCLLE/DPSI  o03428
— DCNLE/DPST =,.T111%
DCY/DV ~e3762
T DCLLE/OV - 71689
DCNLE/DV 3999
TTY7DP <. 5B97
DCLLF/DP - 17915
— _DCNLE/DP 2 072473
DCY/DR ° 284

DCLLE/DR "« 02363

DCNLE/DR

- 2041




